
1 
OUTCOME PREDICTABILITY 

Outcome predictability biases learning 

 

Oren Griffiths1, Chris J. Mitchell2, Anna Bethmont1 and Peter F. Lovibond1 

1 University of New South Wales, Sydney, Australia 

2 Plymouth University, Plymouth, United Kingdom 

Keywords: Associative learning, reasoning, attention, causal models, induction 

 

 

 

 

 

 

 

Please address correspondence to: 

Oren Griffiths 

University of New South Wales 

Kensington, Sydney, 

NSW, 2052, 

Australia 

Email: oren.griffiths@unsw.edu.au 

Phone: +61-2-93851380 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/155776592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
OUTCOME PREDICTABILITY 

Abstract 

Much of contemporary associative learning research is focused on understanding how and 

when the associative history of cues affects later learning about those cues. Very little work 

has investigated the effects of the associative history of outcomes on human learning. Three 

experiments extended the ‘learned irrelevance’ paradigm from the animal conditioning 

literature to examine the influence of an outcome’s prior predictability on subsequent 

learning of relationships between cues and that outcome. All three experiments found 

evidence for the idea that learning is biased by the prior predictability of the outcome. 

Previously predictable outcomes were readily associated with novel predictive cues, whereas 

previously unpredictable outcomes were more readily associated with novel non-predictive 

cues. This finding highlights the importance of considering the associative history of 

outcomes, as well as cues, when interpreting multi-stage designs. Associative and cognitive 

explanations of this certainty matching effect are discussed.  
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When a cue repeatedly fails to reliably predict an outcome, this failure could, in principle, be 

attributed to the cue or to the outcome. One could learn that the cue is non-predictive or that 

the outcome is unpredictable. Much experimental work has been conducted examining how 

people learn about non-predictive cues, and what the consequences are for the subsequent 

processing of and learning about that cue (e.g. Le Pelley & McLaren, 2003). However, there 

has been relatively little investigation of how people learn that an outcome is unpredictable, 

and whether that has implications for subsequent learning involving that outcome. The 

present experiments address this gap. Although there is little empirical evidence within the 

human learning literature concerning our ability to learn that an outcome is unpredictable, 

this idea has been investigated in the animal conditioning literature, primarily within two 

paradigms: unconditioned stimulus (US) pre-exposure effects and learned irrelevance. These 

paradigms will be discussed in turn. 

 

US pre-exposure effects 

Unpredictable presentations of a US retard later learning about that US. This is termed the 

‘US pre-exposure’ effect, and has been replicated in a number of species and learning 

paradigms, such as conditioned emotional response tasks with rats (Kamin, 1961) and eye-

blink avoidance learning in humans (Taylor, 1956). This finding has been interpreted in a 

number of ways. One possibility is that subjects learn in the first phase of training that their 

behaviour and the outcome are uncorrelated, and therefore that the outcome is uncontrollable. 

This ‘learned helplessness’ then reduces motivation and impairs subsequent learning of the 

reliable cue-outcome relationship (Maier & Seligman, 1976). In their extensive review of the 

‘US pre-exposure’ literature, Randich & LoLordo (1979) favoured an alternative explanation. 

They found that the majority of US pre-exposure effects could be accounted for by a process 

of blocking. Under this account, animals do not learn that the unsignalled US is unpredictable 
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during the pre-exposure phase. Instead, they learn an association between the experimental 

context and the US. This context-US association then blocks the subsequent learning of the 

relationships between a discrete cue and the US. Two predictions made by the context-

blocking account, but not the learned helplessness account, are that: (i) the animals will come 

to fear the context in which the pre-exposure occurred, and (ii) manipulations that reduce fear 

of the context, such as overshadowing by a discrete cue, will also reduce the magnitude of 

interference with subsequent conditioning. Baker and colleagues found evidence consistent 

with both predictions (Baker & Mackintosh, 1979; Baker, Mercier, Gabel & Baker, 1981), 

and thus the US preexposure effect is typically considered to be a product of blocking by the 

context. 

Interestingly, however, one key finding was inconsistent with the context blocking 

account. Baker et al (1981) found that exposure to unsignalled shocks in one context, context 

A, interfered with subsequent conditioning in a second context, context B, even though the 

animals did not display fear to context B (a similar result was observed with the 

addition/removal of a session-long auditory cue). This finding demonstrates that while 

context blocking goes some way to explain the US-preexposure effect, there may be another 

mechanism that allows the animals to transfer their knowledge about unpredictable shocks in 

context A to their subsequent learning about shock in context B. Baker et al (1981) concluded 

that it was likely that animals also learned that the unsignalled US was unpredictable, in a 

manner akin to learned helplessness, and that this learning interfered with the subsequent 

formation of associations involving the US. 

 

Learned irrelevance 

A second approach to examining the influence of unpredictability on subsequent learning 

uses a similar, but importantly different, manipulation. In ‘learned irrelevance’ studies, rats 
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are exposed to both the cue (e.g. auditory tone) and the outcome (e.g. electric shock) in an 

uncorrelated fashion. This cue is then paired with the outcome reliably, to assess the degree 

to which the initial manipulation of unpredictability affected subsequent learning. The typical 

finding is that animals’ learning of the reliable cue-outcome relationship is impaired, relative 

to either (i) animals that were not previously exposed to the cues or the outcomes prior to 

conditioning or (ii) to animals that had been exposed to either the cue alone or the outcome 

alone prior to conditioning (Kremer, 1971; Overmier & Wielkiewicz, 1983). This impairment 

is typically attributed to animals learning about a feature of the cue (i.e. that the cue is 

irrelevant; but see Bonardi & Ong, 2003 for a different interpretation). A further possibility is 

that animals learn about a feature of the outcome (i.e. that the outcome is unpredictable). 

In a series of cleverly designed studies, Matzel, Schachtman & Miller (1988) 

demonstrated that ‘learned irrelevance’ effects, unlike ‘US pre-exposure’ effects, were not 

readily attributed to animals learning to predict the outcome using the conditioning context as 

a cue. In their critical experiment, Matzel et al (1988; Experiment 1c) exposed animals to 

uncorrelated presentations of the target cue (a tone) and the target outcome (foot shock). 

However, to reduce the degree to which the shock was associated with the conditioning 

context, a second (non-target) cue was used to signal the shock throughout pre-exposure (an 

earlier experiment, 1b, demonstrated the efficacy of this manipulation in ameliorating 

conditioning to the context). A similar manipulation was used to control for the effect of pre-

exposing the cue (also termed ‘latent inhibition,’ e.g. Lubow, 1959). Matzel et al. argued, 

therefore, that the slow learning observed when the cue and outcome were paired in the final 

stage of training could not be readily attributed to the influence of learning context-outcome 

associations, or of mere exposure to the cues. Rather, it appeared that the animals had learnt 

that the outcome could not be predicted by the cue, and it was this that slowed later learning. 
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In brief, Matzel et al (1988) found a reduced, but significant impairment in 

subsequent conditioning for the animals given this uncorrelated cue-outcome pre-exposure, 

relative to controls. Interestingly, just as Baker et al (1981) found that US-preexposure effects 

persisted across a context change, Matzel et al (1988) showed that impairments in 

conditioning following uncorrelated cue-outcome exposure persisted when a context change 

occurred between pre-training and conditioning. These impairments in learning also persist 

across a change in the type of learning: Baker and Mackintosh (1976, 1977) showed that 

uncorrelated cue-outcome exposure influences subsequent learning about the cue-outcome 

relationship both when the relationship to be learned is excitatory (learning that the cue 

predicts the presence of the outcome) and also when it is inhibitory (learning that the cue 

predicts the absence of the outcome). Taken together, this body of research suggests that 

animals are learning something additional about the cue (or about the outcome) during 

uncorrelated cue-outcome exposure that affects subsequent learning. 

Crucially, Matzel et al (1988) attributed this impairment in subsequent cue-outcome 

learning to the animals learning that the cue was irrelevant (or non-predictive), rather than to 

the animals learning that the outcome was unpredictable. This approach is consistent with 

theories that account for cue competition effects by positing variations in ‘associability,’ or 

the degree to which a cue is associated with an outcome (e.g. Mackintosh, 1975; Pearce & 

Hall, 1980). The Mackintosh (1975) approach is particularly relevant here, as its fundamental 

prediction is addressed in the learned irrelevance design. Specifically, a cue that fails to 

predict outcomes of significance will subsequently receive less attention and will enter into 

associations less readily than more predictive cues. This prediction has been well validated in 

the animal literature (e.g. in ‘blocking of unblocking’ effects) and in human learning 

preparations (Mackintosh & Turner, 1971; Kruschke & Blair, 2000; Le Pelley, Beesley & 

Suret, 2007; Griffiths & Le Pelley, 2009). 
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Indeed, the learned irrelevance procedure developed in animal conditioning studies 

has been translated to an analogous preparation used to study human learning: the ‘learned 

predictiveness’ procedure (Lochmann & Wills, 2003; Le Pelley & McLaren, 2003). The 

typical finding is that cues that have been shown to be good predictors in the past are more 

readily associated with novel outcomes than are cues shown to have little predictive value. 

Much is now known about this phenomenon. For instance, recent experiments have shown 

that it is reflected in eye-gaze (Le Pelley, Beesley & Griffiths, 2011), that it is influenced by 

instruction (Mitchell, Griffiths, Lovibond & Seetoo, 2012) and outcome value (Le Pelley, 

Mitchell & Johnson, 2013), that it is evident in causal judgments (Le Pelley & McLaren, 

2003), social evaluations (Le Pelley et al, 2010) and sequential reaction time tasks (Beesley 

& Le Pelley, 2010), and that it is attenuated in people who are high in schizotypal personality 

traits or who are currently experiencing positive symptoms of schizophrenia (Le Pelley et al, 

2010; Morris, Griffiths, Le Pelley & Weickert, 2013). 

So it is clear that, in the human and animal contexts, being exposed to uncorrelated 

presentations of a cue and outcome results in subsequent impairment of learning involving 

the previously irrelevant cue. What is less clear, however, is whether outcomes that have 

been shown to be unpredictable in the past will be learnt about more slowly than previously 

predictable outcomes. Gunther, Miller and Matute (1997) noted the similarity in factors that 

affect ‘CS pre-exposure’ effects and ‘US pre-exposure’ effects. They highlighted the 

possibility that, just as cue associability has been shown to influence subsequent learning, so 

too might parallel ‘outcome associability’ influence learning. 

In sum, there is substantial evidence that humans (and other animals) encode whether 

a cue is predictive of an outcome or not (learned predictiveness/learned irrelevance). 

However, these data also leave open the possibility that the prior reinforcement history of an 

outcome (or US) may also subsequently shape learning involving that outcome. A novel 
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human learning task was constructed to examine the impact of manipulating outcome 

predictability on subsequent cue-outcome learning. It was predicted that outcomes that were 

predictable in the past will more readily enter into associations with novel cues than will 

outcomes shown to be unpredictable. 

 

Experiment 1 

The present experimental design extrapolated from Le Pelley & McLaren’s (2003) study of 

the influence of cue predictiveness on subsequent learning to instead focus on the influence 

of outcome predictability on learning. The manipulation of outcome predictability was made 

within subjects in an initial training phase, and then its impact on subsequent learning was 

measured in a second training phase (again, within-subjects). 

The present experiments used an allergist task, a common task used to assess human 

associative learning (Larkin, Aitken & Dickinson, 1998), in which participants were shown a 

fictional patient, Mr X, who ate different foods on each day. On some days he would 

experience an allergic reaction and on some he would not, and in this manner participants 

were required to learn which foods (cues) predicted Mr X’s allergic reactions (outcomes). Mr 

X experienced two types of allergies in the present experiment: stomach reactions (cramping, 

bloating) and skin reactions (itchiness, swelling). For each participant, the values on one 

outcome dimension were predictable and the values on the other outcome dimension were not 

(e.g. skin reactions were predictable, but stomach reactions were not). 

After participants learned the cue-outcome relationships in this first training phase, 

they were transferred to a second training phase in which the cues (foods) were changed but 

the outcomes (allergies) remained the same. Because a new set of cues was used in the 

second training phase, any learning of the cue-outcome relationships from the first training 

phase would not aid performance in the second phase; instead, participants needed to learn 
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new cue-outcome relationships involving the existing outcomes and the new cues. Moreover, 

in the second training phase, the cue-outcome contingencies were arranged such that both 

outcome dimensions were predictable. Thus, from an objective viewpoint, the relationships 

between the novel foods and the previously predictable outcome dimension (say, skin 

reactions) were just as strong as those between the novel foods and the previously 

unpredictable outcome dimension (e.g., the stomach reactions). For example, the novel food 

‘cherry’ might have been followed by itchiness (a previously predictable skin reaction) and 

bloating (a previously unpredictable stomach reaction). If participants were merely sensitive 

to the cue-outcome contingencies during the second phase of training, learning of the cherry-

itchiness association should proceed at the same speed as learning of the cherry-bloating 

relationship. If, however, participants learn that some outcomes are more predictable than 

others (that skin reactions are predictable and stomach reactions are not), then they may more 

readily associate cherry with itchiness (a previously predictable skin reaction) than with 

bloating (a previously unpredictable stomach reaction). This was the primary hypothesis 

addressed in Experiment 1. 

 

Method 

Participants. Fifty one undergraduate students from the University of New South 

Wales participated for course credit. 

Design. The design of Experiment 1 is summarized in Table 1. On each trial in the 

first training phase, participants were shown either one or two foods, and were asked to 

predict Mr X’s allergies on both allergy dimensions. On meals in which Mr X ate one food, 

he experienced one allergy (either a stomach reaction or a skin reaction). On meals in which 

Mr X ate two foods, he experienced two allergic reactions (both a stomach reaction and a 

skin reaction). The primary purpose of the first training phase was to arrange the cue-
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outcome contingencies so that participants could learn that one outcome dimension was 

predictable (labelled p in Table 1; e.g. skin reactions), but that the other outcome dimension 

was unpredictable (labelled u in Table 1; e.g. stomach reactions). Each outcome dimension 

had two positive values and an absent value. That is, if the predictable outcome dimension 

was skin reactions, then the two positive values on this dimension were itchiness (labelled p1 

in Table 1) and swelling (labelled p2 in Table 1). The absence of a skin reaction is labelled 

pØ in Table 1 (‘no skin reaction’). Equivalently for the unpredictable outcome dimension, the 

two positive values on the unpredictable outcome dimension (e.g. bloating and cramping if 

stomach reactions are unpredictable) are labelled u1 and u2, respectively, while the absence 

of a stomach reaction is labelled uØ. 

[Table 1 about here.] 

The first phase of training was arranged so that one cue (A) predicted a particular skin 

reaction (p1). On every trial in which cue A appeared, the outcome p1 occurred (A-p1 trials, 

AXp1,u1 trials and AX-p1,u2 trials). Moreover, outcome p1 never occurred on a trial in which 

cue A was absent. This rendered the outcome value p1 predictable (and cue A predictive). 

Similarly, a second cue, B, perfectly predicted the presence of the other value on the 

predictable outcome dimension, p2. On every trial in which cue B occurred, so too did 

outcome p2 (B-p2 trials, B-p2,u1 trials and Bp2,u2 trials). Again, outcome p2 never occurred 

on a trial in which cue B was absent. These two cues, A and B, were completely non-

predictive of the second outcome dimension (e.g. stomach reactions). On the trials in which 

cue A occurs, there was just as likely to be no stomach reaction (uØ), bloating (u1) or 

swelling (u2). The same was true for cue B. 

When seeking to examine the influence of outcome predictability on subsequent 

learning, it is important to minimize or negate the possible influence of context-outcome 

associations that may form and potentially block subsequent learning of the relationship 
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between that outcome and discrete cues. It is worthwhile noting that the training context in 

computer-based human associative learning tasks is likely not as salient a potential cue as the 

conditioning boxes used in animal conditioning tasks (and its associated processes: handling, 

transfer from home box, etc.).  Nevertheless, to reduce the possible influence of associations 

with the context, we followed the approach used by Matzel et al (1988) in which a discrete 

cue signalled the unpredictable outcome dimension in the first training phase. A third cue, 

cue X, always preceded a value (u1 or u2) on the unpredictable outcome dimension, but did 

not predict which value would occur. On half of the trials, cue X preceded the value u1 and 

on the remaining half it preceded u2. However, if cue X was absent, then the absent value on 

the unpredictable outcome dimension was always correct. That is, if cue X did not occur, no 

stomach reaction would occur. This made cue X a better predictor of the unpredictable 

outcome dimension than the context, and, in combination with the likely benefit in salience 

discrete cues enjoy over diffuse contexts, should have resulted in cue X overshadowing the 

context. 

In the second phase, a new set of cues was introduced (E, F, G, H and Y), but the 

outcomes remained the same as those used in phase one. In the second phase, both outcome 

dimensions were predictable. That is, the contingencies were arranged such that cues E, F, G 

and H each predicted a unique outcome value on each outcome dimension. For example, cue 

E was reliably followed by a value on the predictable outcome dimension, itchiness (outcome 

p1), and also by a second value on the unpredictable outcome dimension, bloating (u2). It 

was equally possible for participants to learn the association between cue E and its associated 

value on the predictable outcome dimension, p1, as it was for them to learn the association 

between cue E and its associated value on the unpredictable dimension, u2. All that differed 

between these outcome values was their prior signalled history; p1 was reliably predictable in 

phase one, where u2 was not. All cues E, F, G and H were similarly predictive of a single 
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value on the previously predictable outcome dimension (e.g. skin reactions) and a single 

value on the previously unpredictable outcome dimension (e.g. stomach reactions). 

Note that another cue, Y, was present on every trial in phase two, such that each trial 

consisted of two foods followed by two allergic reactions. This cue was included for two 

reasons. First, even though the previously unpredictable outcome dimension was objectively 

predictable, it may not have been perceived as predictable, and consequently it may have 

been associated with the context rather than the discrete cues. This was undesirable because 

assessing learning to the context in human associative learning tasks is difficult. Thus, again 

following the logic of Matzel et al (1988), cue Y was as predictive of the outcomes as the 

diffuse context, but due to being a discrete cue, should minimize conditioning between the 

phase two context and the previously unpredictable outcome dimension. Moreover, because 

cue Y was a discrete cue, learning for cue Y was readily measurable at the end of training. 

The addition of cue X (in phase one) and Y (in phase two) also served a secondary 

function. Namely, they allowed participants to learn that each outcome was associated with a 

unique cue: stomach reactions were predicted by cues A and B, whereas skin reactions were 

(partially) predicted by cue X. This was important because pilot testing revealed that 

participants experienced substantial difficulty mapping a single cause to more than one effect.  

Procedure. Participants assumed the role of an allergist who needed to learn which 

allergic reactions a new patient, Mr. X, experiences after he is exposed to vegetables (Phase 

1) and fruits (Phase 2). Either one or two food cues were shown on each trial. Each cue 

consisted of a coloured line drawing with a text label (e.g. apple). On trials where two foods 

were shown, the positions of the foods on the screen were randomly determined (either upper 

or lower). Participants were required to predict the allergic reactions that would occur after 

each meal. One reaction could be chosen from the skin reaction dimension (including no skin 

reaction, skin itchiness) and one from the stomach reaction dimension (including no stomach 
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reaction, stomach bloating), each of which included an ‘absent’ value (no skin reaction, no 

stomach reaction). The six allergic reactions were displayed as labelled buttons (e.g. 

“Stomach Bloating”) on which a small image of the outcome was shown (e.g. a small image 

of Mr X suffering from stomach bloating). The skin reactions were always shown on the left 

of the screen and the stomach reactions on the right. Once participants had made each 

selection they were asked to assess their confidence in each prediction on a scale of 1 to 5 (1 

was labelled ‘not at all confident,’ 5 was labelled ‘very confident’). Correct outcome values 

were then circled onscreen and matching pictures for each of the correct outcome values (e.g. 

stomach bloating and skin itchiness) were shown. 

The phase one trials were organized in blocks, whereby each block consisted of one 

repetition of each of the eight trial-types listed in Table 1. Each block consisted of both 

elemental trials (A, B and X alone trials) and compound trials (AX, BX trials). As noted 

earlier, cue A always preceded outcome p1; cue B always preceded outcome p2; and cue X 

preceded outcome u1 on 50% of trials and u2 on 50% of trials. If cues A and B were absent 

(X alone trials), no outcome was observed on the predictable outcome dimension (i.e. pØ 

occurred). If cue X was absent, then no outcome was observed on the unpredictable outcome 

dimension (i.e. uØ occurred). 

The trial order was randomized within blocks. The transition between blocks was not 

signalled. Fifteen blocks of Phase 1 training were given before participants proceeded to 

phase two. The second phase was preceded by a brief instruction that participants would now 

be shown fruits, and that their job was to learn about Mr X’s fruit allergies. The two training 

phases appeared similar to the participant, except that new foods (E, F, G, H and Y) were 

used in phase two (see Table 1). In the second phase, both outcome dimensions were 

predictable because cues E-H all reliably predicted particular values on both outcome 

dimensions. For example, cue E reliably predicted values p1 and u2. By contrast, cue Y 
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occurred on every trial and was thus partially reinforced (50%) with respect to outcomes p1, 

p2, u1 and u2. As in Le Pelley & McLaren’s (2003) learned predictiveness experiment, five 

repetitions of each trial-type were shown in Phase 2. 

After Phase 2, participants proceeded directly to the test phase. On each of the five 

trials in this phase, participants were shown one of the fruit cues (E, F, G, H or Y). The fruits 

were shown in a random order. Participants were asked to individually rate the likelihood that 

each fruit would lead to each of the six outcome values (uØ, u1, u2 and pØ, p1, p2). Each 

food-allergy rating was made by manipulating an onscreen scrollbar with a continuous scale 

from 1 (labelled ‘very unlikely’) to 100 (‘very likely’). The six ratings made for each food 

cue were made on the same screen, and each food allergy rating could be adjusted 

independently of the others. For example, if a participant desired, they could rate cue E’s 

relationship with outcome p1 as 100, and also rate its relationship with outcome p2 as 100 

(we examine whether participants did so below). The assignment of foods to cues was 

randomized for each participant within each phase. The food cues A, B, and X were always 

vegetables (eggplant, potato, and carrot) and cues E, F, G, H, and Y were always fruits 

(cherry, banana, peach, lemon, grapes, and apricots). The assignment of skin and stomach 

reactions to the ‘predictable’ or ‘unpredictable’ outcome roles was counterbalanced between 

participants. This variable did not lead to any significant main effects or interactions with our 

comparisons of interest, and is therefore not discussed further. 

 

Results 

Training performance and exclusions. Mean performance of participants indicated 

that they learned the contingencies presented to them in training. However, upon closer 

inspection there was considerable individual variability in training performance. Many people 

were able to learn the training contingencies rapidly and to a high degree of accuracy, but 
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others exhibited significant difficulty throughout both training phases. Because the 

manipulation of primary interest, outcome predictability, required participants to learn the 

phase one training contingencies well, we considered these two populations separately. A 

median-split was performed based upon average prediction accuracy across phase one. In 

calculating the average we only considered trials on which participants could make a correct 

prediction. For example, on an AX trial, the correct prediction for the predictable outcome 

was p1, but for the unpredictable outcome it was impossible to determine whether the 

outcome would be u1 or u2. On these trials we considered the predictions on the predictable 

outcome (i.e. did the participant choose p1?) but not their prediction for the unpredictable 

outcome (u1 or u2). The high performer group had 25 members, and the low performer group 

had 26. Because this performance criterion was based on phase one performance, training 

data from the second phase could be analyzed without risk of circularity. The phase one 

prediction accuracy of the high and low performing groups is depicted in Figure 1. 

[Figure 1 about here.] 

Prediction accuracy in phase two for the previously predictable outcome dimension 

and the previously unpredictable outcome dimension is plotted in the left-hand panel of 

Figure 2. The confidence ratings given by participants on these trials are plotted in the right 

hand panel. For both panels, the data are further separated into the first and last half of phase 

two, and by group (high and low performers). The hypothesis to be tested by these data is that 

if an outcome becomes more readily associable once it has been shown to be predictable, then 

participants will learn more readily about the predictable outcome dimension than about the 

unpredictable outcome dimension in phase two. This was the pattern observed in the high-

performing group, but no such pattern was seen in the low performing group. 

[Figure 2 about here] 
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To examine this pattern further, separate 2 (early or late training) x 2 (predictable or 

unpredictable outcome) ANOVAs were used to examine the prediction accuracy of the high 

and low performing groups. The high performing group is discussed first. There was a main 

effect of phase of training (early versus late) on accuracy, F(1,23)=68.51, p < .001, MSE = 

0.03, ηP
2=.75, 95% CI [.21, .35]; averaged across outcome-type, high-performing participants 

increased their prediction accuracy across Phase 2. A main effect of outcome-type on 

prediction accuracy was also observed, F(1,23)=4.78, p = .04, MSE = 0.03, ηP
2=.17, 95% CI  

[+.00, .13], whereby accuracy for the predictable outcome was higher than for the 

unpredictable outcome. A non-significant trend towards an interaction between training phase 

and predictability of the outcome was also observed. The difference in prediction accuracy 

between the predictable and unpredictable outcomes tended to be larger late in training than 

early in training, F(1,23)=3.00, p = .10, MSE = 0.02, ηP
2=.12, 95% CI [-.01,.11]. Although 

this interaction was non-significant, an interested reader may be curious as to whether 

prediction accuracy for the predictable outcome dimension was greater than for the 

unpredictable outcome dimension at the termination of Phase 2 training; it was, 

F(1,24)=5.44, p = .03, MSE =0.03, ηP
2=.19, 95% CI [.01, .23].  

The low performing group showed a significant main effect of training phase, F(1,24) 

= 16.82, p < 0.001, MSE = 0.04, ηP
2=.41, 95% CI [.08, .24], whereby their overall prediction 

accuracy increased across Phase 2. No main effect of outcome type was observed, F < 1, and 

no interaction between these variables was observed, F(1,24) = 1.27. The confidence ratings 

(right hand panel) were analyzed in an identical manner to the outcome prediction data. Both 

the high and low performing groups showed a significant main effect of training phase, 

minimum F(1,24)=9.45, p < .01, MSE = 0.34, ηP
2=.28, 95%[.12, .59], whereby their mean 

confidence increased across Phase 2. Neither group showed a main effect of outcome-type 

(previously predictable or unpredictable), maximum F(1,24)=1.51, or an interaction between 
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outcome-type and training phase, maximum F(1,24)=2.80. Note that the low performing 

group gave higher initial confidence ratings than the high performing group. It is unclear why 

this occurred. However, we note the close proximity of the low performers’ mean ratings 

throughout training to the midpoint of the rating scale, perhaps indicative of a “don’t know” 

response. 

Test Phase ratings. Our primary dependent variable was the ratings participants gave 

at test for the associations they learned in phase two. Recall that in this phase, most cues (E-

H) were reliably paired with a value from each outcome dimension. For example, cue E was 

always paired with outcome values p1 and u2. This was also true for cues F, G and H. The 

exception to this rule was cue Y. For cues E-H there was a clear ‘correct’ value for each 

outcome dimension (e.g. p1 and u2 were correct for cue E), a clear incorrect value (e.g. p2 

and u1 were incorrect for cue E) as well as the two ‘outcome absent’ values (pØ and uØ), 

which were never shown in Phase 2). The correct, incorrect and outcome-absent (hereafter 

labelled ‘nil’) ratings were averaged across the individual cues E-H, as these cues were 

treated identically. These values are shown in the left-hand panels of Figures 3 and 4 (which 

depict the high and low performing groups, respectively). 

The division between ‘correct’ and ‘incorrect’ was inappropriate for the Y cue, 

however, because cue Y did not have a clear ‘correct’ and ‘incorrect’ response in Phase 2. 

This is because cue Y was equally often followed by u1 and u2 on the unpredictable 

dimension, and by outcomes p1 and p2 on the predictable outcome dimension (but was never 

followed by pØ or uØ). For this reason, and because cue Y was shown more frequently than 

cues E-H, our analyses of the non-predictive cue Y were separated from our analyses of cues 

E-H. The measure of participants’ learning about the non-predictive cue Y was defined as the 

average of their ratings for both of the outcome values cue Y was associated with on each 

outcome dimension (i.e. the average of the ratings for u1 and u2 and, separately, the average 
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of their ratings for outcomes p1 and p2). These “correct” values were compared to 

participants’ ratings for the outcome-absent response on each dimension (pØ and uØ), as cue 

Y was never followed by this value. The “correct” and “nil” values are summarized in the 

right-hand panels of Figures 3 and 4 (high and low performing groups, respectively).  

There is some evidence that participants treated the test ratings for individual outcome 

values as independently as intended. To examine this issue, we sought to measure whether 

participants summed their ratings within each outcome dimension to 100 (or some 

approximation of this number). The ratings for individual values within a dimension were 

summed for each individual (i.e. ratings for p1, p2 and pØ were summed, as were ratings for 

u1, u2 and uØ). The mean sum of ratings significantly exceeded 100 for both the previously 

predictable outcome dimension (M=127.91, t(50)=5.85, p<.001, d = 0.82, 95% CI [118.47, 

137.34]) and the previously unpredictable dimension (M=127.72, t(50)=5.19, p<.001, d = 

0.73, 95% CI [117.15, 138.30]). These group statistics, however, may obscure individual 

patterns of responding, such that many individuals may have reliably sought to sum their 

ratings to approximately 100 but this may not have been evident at the group level. To 

investigate this possibility, each individual participant’s ratings for each cue (E, F, G, H and 

Y) on each outcome dimension (predictable, unpredictable) were investigated separately. Of 

the 51 participants, only 4 individuals reliably gave ratings that summed to within 20% (80-

120) for each individual outcome dimension. Together, these analyses suggest that the 

majority of participants did not systematically treat the ratings for individual outcome values 

(e.g. p1, p2, pØ) as zero-sum dependent. 

The inferential analyses of test ratings for predictive cues (E-H) and the non-

predictive cue Y are reported separately for the high and low performing groups. The high 

performer group is discussed first. 
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High performers. Our primary hypothesis concerned whether participants would 

exhibit a “learned predictability” effect, whereby they would more readily associate a cue 

with a previously predicable outcome (e.g. p1, p2) than with a previously unpredictable 

outcome (u1, u2). Participants’ ratings following cues E-H were entered into a 2 (outcome 

value: correct versus incorrect/nil) x 2 (outcome dimension: predictable versus unpredictable) 

repeated measures ANOVA. These data are summarized in the left-hand panel of Figure 3. 

[Figure 3 about here.] 

Overall there was a main effect of outcome value, whereby the correct outcome values were 

given higher ratings than the average of the two inappropriate responses (those labelled Nil 

and Incorrect in Figures 3 and 4), F(1,23)= 15.60, p= .001,MSE=190.26, ηP
2=.40, 95% 

CI[8.39,26.86]. There was no significant main effect of previously predictable versus 

unpredictable outcome dimension, F < 1, but there was a significant interaction between 

outcome value (correct versus incorrect and nil) and outcome dimension (previously 

predictable versus unpredictable), F(1,23)=6.17, p = .021, MSE=842.75, ηP2=.21, 95% 

CI[2.09,22.91]. The filled black columns of Figure 3 (Panel A) show that for the correct 

outcome values, high-performing participants gave higher ratings on the previously 

predictable outcome dimension than on the previously unpredictable outcome dimension. A 

simple effect analysis confirmed this impression, F(1,23)=5.23, p = .03, MSE = 752.79, 

ηP2=.18, 95% CI[1.67, 33.22]. That is, participants appeared to show a learned predictability 

effect whereby the most readily learned associations in Phase 2 were those involving the 

previously predictable outcome dimension. 

The ratings for the nil and incorrect outcome values showed, if anything, the opposite 

pattern. Ratings for these values on the previously unpredictable outcome dimension were 

numerically higher than those on the previously predictable outcome dimension, 

F(1,23)=4.65, p =.04, MSE = 307.22, ηP2=.17, 95% CI[0.30,14.82]. 
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Turning to the high-performing participants’ ratings for the non-predictive cue Y 

(Panel B in Figure 3), these ratings show the reverse pattern to that seen for the predictive 

cues E-H (Panel A). The ANOVA used to analyze cue Y was very similar to that used for 

cues E-H, except that for cue Y the outcome values variable only had two values (correct or 

nil). For ratings of cue Y, there was no significant main effect of outcome value (correct or 

nil), F(1,23)=2.91, p = .10, MSE = 1293.34, but there was a significant main effect of 

outcome dimension (previously predictable versus unpredictable), F(1,23)=5.56, p = .03, 

MSE = 406.15, ηP
2=.19, 95% CI[1.17, 17.86]. Overall, the correct outcome values (e.g. the 

average of p1 and p2) were rated significantly higher than the nil outcome value (e.g. pØ). A 

significant interaction between the two factors was observed, F(1,23)=9.02, p < .01, MSE = 

1999.62, ηP
2=.28, 95% CI[8.36, 45.39]. A simple effect contrast revealed that the ratings for 

the correct values following cue Y were higher on the unpredictable outcome dimension than 

on the predictable outcome dimension, F(1,23)=4.46, p = .046, MSE = 842.754, ηP2=.16, 

95% CI[0.36, 34.36]. This could be considered to be a “learned unpredictability” effect (we 

will return to this idea), as participants more readily associated the nonpredictive cue Y with 

the previously unpredictable outcome dimension than they did with the previously 

predictable dimension. 

A second simple effect contrast revealed that participants’ ratings for the nil outcome 

showed the opposite trend to that seen in the correct ratings. Ratings for the nil outcome were 

significantly higher on the previously predictable outcome dimension than on the 

unpredictable dimension, F(1,23)=10.57, p < .01, MSE = 1563.02, ηP2=.31, 95% CI[13.24, 

59.54]. 

In summary, participants showed no overall propensity to associate previously 

predictable outcomes with novel cues. This was due, however, to the confluence of two 

patterns of performance: predictive cues were more readily associated with previously 
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predictable outcomes but the non-predictive cue (Y) was more readily associated with the 

previously unpredictable outcome dimension. 

Low performers. The test ratings of the low-performing group are summarized in 

Figure 4. Notice that in this group, unlike the high-performing group, test ratings for the 

correct outcome values for the predictive cues E-H (left panel) were similar to their ratings 

for the incorrect outcome values. This reduced ability to distinguish between the correct and 

incorrect Phase 2 outcome values confirms that these participants did not learn the training 

contingencies well (they were classified as low performers based on their Phase 1 prediction 

accuracy, and this poor performance continued in Phase 2). 

[Figure 4 about here.] 

The data from these participants were entered into the same 2 x 2 (outcome value by 

outcome dimension) analyses used to examine the ratings of the high-performer group. For 

the predictive cues E-H, the low performing participants gave significantly higher ratings to 

the correct outcome value than to the nil or incorrect outcome values, F(1,24)=33.22, p < 

.001, MSE = 320.26, ηP
2=.56, 95% CI [11.25, 23.79]. There was no main effect of outcome 

dimension, F < 1, and the two factors did not significantly interact, F(1,24)=2.00, p = .17, 

MSE = 261.77. 

To ascertain whether a learned predictability effect was observed in this group, a 

follow-up simple effect contrast compared their cue E-H ratings for the correct outcome 

value on the previously predictable dimension against the correct value on the previously 

unpredictable dimension. No significant difference was observed, F(1,24)=1.38, p = .25, 

MSE = 267.85. Similarly, with respect to the non-predictive cue Y’s relationships with the 

outcomes, the low-performers’ ratings did not reveal any influence of the predictability 

manipulation. No main effect of outcome predictability was observed, F(1,24)=1.79, p = .20, 

MSE = 281.23, although overall this group gave higher ratings for the correct outcome value 
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than the nil outcome value, F(1,24)=25.47, p < .001, MSE = 833.13, ηP
2=.51, 95% CI[16.88, 

40.25]. Unlike the high performing group, in the low performing group there was no 

interaction between the outcome dimension variable (previously predictable versus 

unpredictable) and the outcome value variable (correct versus nil), F(1,24)=2.26, p = .15, 

MSE = 1173.12. Although no significant interaction was observed by between outcome 

dimension and value, a final simple effect contrast was conducted to test for a learned 

predictability (or unpredictability) effect. Ratings for the correct outcome on the predictable 

dimension were not significantly different to ratings for the correct outcome on the 

unpredictable dimension, F < 1. Overall, the low performer group’s test ratings were 

unaffected by the outcome predictability manipulation, which is consistent with their inability 

to learn the cue-outcome relationships in phase one. 

 

Discussion 

The participants who were able to learn the phase one contingencies (which 

constituted the outcome predictability manipulation) demonstrated significant biases in their 

subsequent learning of a second set of associations between novel cues and familiar 

outcomes. These high-performing participants learned more rapidly about the phase two 

relationships involving previously predictable outcomes than the previously unpredictable 

outcomes. However, no overall learning bias for previously predictable outcomes was evident 

in their test ratings, when averaged across the training cues. Instead, two opposing learning 

biases were seen for the predictive cues E-H and the non-predictive cue Y.  Specifically, their 

test ratings indicated that they more readily associated the previously predictable outcomes 

with the predictive cues E-H, than the previously unpredictable outcomes, but that this 

pattern was reversed for the non-predictive cue Y. We interpret these findings as evidence 

that participants’ learning is affected by the prior predictability of the outcome, in a manner 
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consistent with, and reminiscent of, the learned predictiveness effect seen with cues (Le 

Pelley & McLaren, 2003). However, as in the literature discussed in the introduction (US pre-

exposure and learned irrelevance effects), alternative explanations are possible. We withhold 

a full discussion of alternative accounts (e.g. context-blocking), and of the apparent 

modulating role of cue predictiveness, to the General Discussion. 

While it is tempting to directly compare the ratings given to the predictive cues E-H 

with those given to cue Y, and thereby consider the effect of cue-predictiveness on the 

formation of associations, such comparisons are inappropriate. Cue predictiveness was not 

the only difference between cues E-H and cue Y. For example, cue Y was shown more 

frequently, and in conjunction with more outcome values (p1, p2, u1, u2), than were cues E-

H. Thus, such direct conclusions concerning cue predictiveness cannot be drawn from these 

data. 

Finally, there is an important caveat to all of these interpretations. Each of the effects 

discussed above was only observed in the performance of participants who learned the initial 

contingencies well. No significant learning biases were observed in the low-performing 

group. Although there is little risk of circularity in the definition of the two groups (based on 

overall first phase performance), the generality of these conclusions is nonetheless threatened 

by considering only the highest performing half of the sample. Further, as acknowledged 

earlier, we only defined these groups after the experiment was conducted (via a median split 

analysis). For this reason we conducted a conceptual replication of Experiment 1 in which 

participants were trained until they reached a pre-specified high level of performance. 

 

Experiment 2 

The present experiment replicated Experiment 1, but used a performance criterion to 

determine the end point of phases one and two. Participants continued to be shown training 
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trials in the first phase until they demonstrated perfect knowledge of the contingencies. In 

order to be maximally sensitive to differences in learning of the second phase contingencies, 

we sought to cease this phase prior to participants reaching asymptote, but after learning had 

been demonstrated. For this reason, phase two training was terminated when participants 

reached 75% accuracy. Second, we conducted Experiment 2 using eye-scanning equipment. 

Attentional biases are often evident in participant’s gaze behaviour (e.g. Kruschke, 

Kappenman & Hetrick, 2005; Le Pelley, Beesley & Griffiths, 2011). If the biases towards and 

away from outcomes are comparable to biases amongst cues then differences in gaze toward 

outcome stimuli may be evident in the present experimental procedure. Finally, because the 

confidence ratings did not provide any additional explanatory power in Experiment 1 (and 

participants found them obstructive), we removed the confidence ratings in Experiment 2. 

 

Method 

Participants. Thirty four undergraduate students from the University of New South 

Wales participated in exchange for course credit. 

Design and Procedure. The present experiment was very similar to Experiment 1 with 

a few exceptions. First, participants no longer made confidence ratings after generating their 

outcome predictions. Second, eye-gaze was recorded continuously throughout both phases of 

training. Third, participants did not complete a set number of training blocks in either training 

phase. Participants could complete between fourteen and thirty blocks of phase one training, 

and between four and eight blocks of phase two training. The amount of training depended 

upon how rapidly participants passed the performance criterion set for that phase. At the end 

of each training block in phase one (every eight trials) participants’ number of correct 

responses in the last five training blocks (forty trials) was tallied. This algorithm allowed 

multiple responses to be considered correct for some predictions. For example, on an A-



25 
OUTCOME PREDICTABILITY 

p1,uØ trial, the algorithm would consider only p1 and uØ to be correct responses. In contrast, 

on an AX-p1,u1 trial, the algorithm would only score p1 as a correct response (not p2 nor 

pØ), but would allow either u1 or u2 to be scored as correct responses (not uØ). This is 

because the participant had no way of predicting whether outcome u1 or u2 would occur. If 

participants performed perfectly on the previous forty trials they were considered to have met 

the criterion. They were then given four additional training blocks to cement this knowledge 

before moving on to phase two. This criterion was only applied from the tenth training block, 

so fourteen blocks was the minimum a participant could experience prior to the second phase 

(for comparison, all participants completed fifteen blocks in phase one of Experiment 1). If a 

participant did not reach criterion they progressed to phase two after thirty blocks (240 trials) 

and their data were discarded. 

The performance criterion used in phase two operated similarly to that used in the first 

phase. The phase two criterion algorithm tallied participants’ responses after each block of 

four trials (there were four different trial-types in phase two), starting at the fourth block of 

training (trial number 16). If a participant responded accurately on 75% of the previous eight 

trials (12 correct responses from 16 outcome predictions), then they would proceed 

immediately to the test phase. Otherwise a maximum of eight blocks (32 trials) were 

administered. 

 

Results 

Training. As in Experiment 1, participants showed significant individual differences 

in their ability to learn the training contingencies. Fifteen participants (44%) failed to reach 

criterion performance in either phase one or two. For the nineteen participants who reached 

criterion performance, the mean number of trials before the criterion was passed was 116 

trials (SD= 33) in Phase 1 and 24 trials in Phase 2 (SD=4.8). 
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Participants’ prediction accuracy on the two outcome-types (previously predictable 

and unpredictable) in the first two and last two blocks of phase two training is shown in 

Figure 5. Note that the first two blocks of training were common to all participants, but the 

last two blocks of training occurred at different times for different participants. The 

participants who learned the phase two contingencies rapidly may have only experienced four 

blocks of training, so their first and last two blocks of training abut each other. A participant 

who learned more slowly may have seen seven blocks of phase two training, and their first 

and last two blocks of training would be separated by three training blocks. 

[Figure 5 about here.] 

The prediction accuracy data were entered into a 2 (early or late in training) by 2 

(outcome type) multivariate ANOVA. Unsurprisingly there was a main effect of training 

phase, with participants showing greater accuracy late in training, F(1,17)=145.89, p <.001, 

MSE = 0.03, ηP
2=.89, 95% CI [0.39,0.55]. There was also a main effect of outcome-type, as 

prediction accuracy was greater for the previously predictable outcome than for the 

previously unpredictable outcome, F(1,18)=4.85, p =.04, MSE = 0.02, ηP2=.22, 95% CI 

[+.00, .15]. These two effects did not significantly interact, F < 1. 

Gaze behaviour. Participant’s gaze-behaviour was recorded continually across phase 

two. Specifically, we recorded the total time spent fixating upon each of the cues (E-Y) and 

outcomes (uØ, u1, u2, pØ, p1, p2) prior to generating a response. These values were tallied 

separately for each trial. These fixation times were then divided by the total time spent 

fixating anywhere on the screen during that trial. Calculating a proportion in this manner 

controls for inter-trial and inter-individual differences such as the duration of the trial, or the 

portion of the trial in which the participant is looking at the screen. The resultant proportional 

fixation times (hereafter referred to as dwell times) were then aggregated across cues types 

(predictive cues E-H versus non-predictive cue Y). The fixations to outcome stimuli were 
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classified in the same manner as outcomes were classified in Experiment 1 (i.e. correct, 

incorrect or nil). The mean gaze dwell times for the cues (panel A) and outcomes (panel B) 

shown during phase two are summarized in Figure 6. 

[Figure 6 about here.] 

Dwell times for the cue stimuli were entered into a 4 (training block) by 2 (predictive 

or nonpredictive cue) multivariate ANOVA. Averaged across both cue-types, a significant 

linear trend was seen in the data, with participants proportionally gazing at all cue-types less 

at the end of training than at the beginning, F(1,18)=140.63, p < .001, MSE= 0.03, ηP
2=.86, 

95% CI[.05,.08]. A second main effect revealed that participants spent more time gazing at 

the predictive cues E-H than at the non-predictive cue Y, F(1,17)= 10.67, p < .01, MSE=0.02, 

ηP2=.28, 95% CI [.01,.03]. The linear trend contrast did not significantly interact with cue-

type, F < 1.  

Participants’ gaze data for the outcome stimuli in phase two were entered into a 3 

(outcome value: Correct, Incorrect, Nil) by 2 (outcome type: predictable or unpredictable) by 

4 (training block) repeated measures ANOVA. One participant was removed due to 

incomplete gaze data. A linear trend contrast was used to examine the influence of training 

block on gaze. No significant linear influence of training block was observed, F < 1. 

Similarly, the main effect of outcome type (previously predictable or unpredictable) was not 

significant, F(1,16)=4.49, p = .05, MSE<0.01, ηP
2=.15, 95% CI[.00, .04]. There was a main 

effect of outcome value. Overall, participants gazed longer at the correct outcome values than 

at the average of the nil and incorrect values, F(1,16)=23.70, p < .001, MSE<0.01, ηP
2=.59, 

95% CI[.04,09]. An interaction contrast showed that this bias toward the correct outcome 

values, over the incorrect and nil values, did not differ in magnitude between outcome types 

(predictable versus unpredictable), F < 1. That is, participants did not learn to selectively 

gaze at the correct outcomes on the previously predictable outcome dimension more rapidly 
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than they did for the previously unpredictable outcome dimension. A second interaction 

contrast revealed that the bias in gaze towards the correct outcome values increased in 

magnitude across the training blocks, F(1,16)=58.49, p <.001, MSE<0.01, ηP2=.74, 95% 

CI[.05, .09]. No other interactions were significant. 

In summary, participants gazed more at the predictive cues (E-H) than at the non-

predictive cue Y, and across training learned to gaze at the correct outcome values more than 

at the incorrect outcome values (both predictable and unpredictable). 

Test phase ratings. The primary dependent variable, participants’ mean likelihood 

ratings at test, are shown in Figure 7. These data were organized and analyzed in an identical 

manner to the test rating data in Experiment 1. To examine whether participants treated the 

test ratings for each outcome values as independently as intended, the same analysis of 

summed mean ratings per outcome dimension was conducted as that performed in 

Experiment 1.  As in Experiment 1, the mean sum of ratings significantly exceeded 100 for 

both the previously predictable outcome dimension (M=120.31, t(18)=2.51, p=.02, d = 0.57, 

95% CI [104.02,136.60]) and the previously unpredictable dimension (M=127.98, t(18)=5.04, 

p<.001, d = 1.15, 95% CI [116.81,139.12]). 

The ratings following cues E-H were analysed separately to the ratings following the 

non-predictive cue Y, in exactly the same manner as was used in Experiment 1. Ratings for 

cues E-H were analyzed using a 3 (outcome value: correct versus incorrect/nil) by 2 (outcome 

dimension: previously predictable vs unpredictable) ANOVA. For the analysis of cue Y’s 

ratings, the outcome value variable only had two values (correct and nil). Overall, there was 

no main effect of outcome dimension, F < 1, but there was a main effect of outcome type; 

reassuringly, the correct outcome values were given higher likelihood ratings than the nil and 

incorrect values overall, F(1,18)=27.96, p < .001, SEM = 592.51, ηP
2=.61, 95% 

CI[15.41,35.73]. The interaction between these variables was the crucial contrast; this was 
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significant, F(1,18)=6.76, p = .02, SEM=809.79, ηP
2=.27, 95% CI[2.83, 26.58]. Two further 

simple effect contrasts were conducted to aid interpretation of this interaction. The first 

simple effect contrast showed that people gave higher ratings to the correct outcome value on 

the previously predictable outcome dimension than to the correct value on the previously 

unpredictable dimension F(1,18)=4.81, p = .04, SEM = 783.24, ηP
2=.21, 95% CI[0.85, 

39.00]. Thus the learned predictability effect seen in Experiment 1 was replicated in the 

present experiment. The second simple effect contrast examined whether ratings for the nil 

and incorrect outcome values combined showed the opposite pattern, in that the ratings for 

these values on the previously unpredictable outcome dimension were higher than the 

predictable outcome dimension. This effect was also significant, F(1,18)=8.45, p < .01, 

SEM= 202.35, ηP
2=.32, 95% CI[2.63, 16.34]. 

[Figure 7 about here.] 

Similar to Experiment 1, participants appeared to give a pattern of ratings for the 

nonpredictive cue Y that were opposite to those they gave for the predictive cues E-H. 

Overall, there was no main effect of outcome dimension, F < 1, but there was a main effect of 

outcome value, F(1,18)=23.86, p < .001, SEM= 823.50, ηP
2=.57, 95% CI[18.32, 45.99], 

whereby the correct values were given higher ratings than the nil value overall. More 

importantly there was a significant interaction between these factors, F(1,18)=9.59, p < .01, 

SEM= 1281.00, ηP
2=.35, 95% CI[8.17, 42.67], that was opposite in direction to that seen for 

the predictive cues E-H. Two simple effect contrasts confirmed this. People gave higher 

ratings for the correct values on the previously unpredictable (u1, u2) outcome than for those 

on the previously predictable (p1, p2) outcome, F(1,18)=6.33, p = .02, SEM= 751.16, 

ηP
2=.26, 95% CI[3.69, 41.05], and showed the opposite pattern in their ratings of the nil 

outcome value, F(1,18)=8.42, p = .01, SEM= 915.24, ηP
2=.32, 95% CI[7.85, 49.10]. 
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Discussion 

The present experiment replicated the key findings of Experiment 1. That is, people learned 

more rapidly about the new associations involving previously predictable than about 

previously unpredictable outcome dimensions in phase two. Again, the opposite pattern was 

seen for the nonpredictive cue Y. Cue Y was more readily associated with values on the 

previously unpredictable outcome dimension than on the predictable outcome dimension. 

Contrary to Experiment 1, the present experiment did not divide participants on a post hoc 

basis. The use of a pre-defined performance criterion in the present experiment removes the 

risk of the important differences in test performance being entirely due to the application of 

post hoc classifications. 

The present behavioural data were complemented by the addition of eye-gaze 

measures. Participants gazed longer at the predictive cues E-H than at the non-predictive cue 

Y in Phase 2. This is consistent with previous observations of cue predictiveness being 

reflected in gaze behaviour (e.g. Beesley & Le Pelley, 2010), but is also explicable in terms 

of the greater familiarity of cue Y than cues E-H. The predictable outcomes were not, 

however, gazed at longer overall than the predictable outcomes during Phase 2. Although 

Experiment 2 replicated the key findings of Experiment 1 in a group of people selected in a 

pre-defined and systematic manner, it was still somewhat unsatisfying in that many people 

were excluded due to poor training performance. A final experiment was conducted in which 

an effort was made to increase the number of participants who reached criterion-level 

performance. 

 

Experiment 3 

Many people were unable to learn the training contingences in Experiments 1 and 2, yet those 

participants who were able to learn the training contingencies did so relatively rapidly and 



31 
OUTCOME PREDICTABILITY 

with high accuracy. It was not clear why some people were unable to learn the training 

contingencies. One possibility is that participants were not learning the elemental nature of 

the initial phase contingencies. To this end, the present experiment provided elemental pre- 

training with cues A, B and X (the Phase 1 cues) prior to phase one in the hope that this 

would encourage participants to treat the phase one cues elementally. Second, in Experiment 

2 relatively few blocks of phase two training (8 blocks) were provided to participants. It is 

therefore possible that some participants would have passed the criteria if given additional 

practice. Thus additional phase two training was offered to participants in the present 

experiment. 

 

Method 

Participants. Fifty six undergraduate students from the University of New South 

Wales participated in exchange for course credit. 

Procedure. The procedure of Experiment 3 was very similar to that of Experiment 2, 

with four differences. First, no eye-tracking data was collected in the present experiment. 

Second, the maximum number of phase two training blocks that were offered was increased 

from eight blocks to twenty blocks. Third, the performance criterion in phase one was relaxed 

slightly. Rather than requiring perfect performance on forty consecutive trials (eighty 

consecutive outcome predictions), one error was permitted. This change was made because a 

review of training data showed that some participants in Experiment 2 made a single error 

after a sustained period of perfect performance. As a consequence, these individuals had then 

been required to undergo (at least) another forty trials.  

Fourth, and most importantly, an initial elemental pre-training phase (phase zero) was 

provided to all participants prior to phase one. The design of this pre-training phase is 

summarized in the left-most column of Table 1. Essentially, this training phase was identical 
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to the first phase, except that only elemental trials were shown (i.e. AX and BX trials were 

excluded). The same algorithm was used to calculate whether predictions on a trial were 

‘correct’ or not as that used in Experiment 2 (i.e. a response of p1 was required on a trial in 

which p1 occurred, but a response of either u1 or u2 was considered to be correct on trials in 

which u1 or u2 occurred). Participants were required to make 39 or 40 consecutive accurate 

outcome predictions (that is, near perfect performance on twenty consecutive trials) before 

proceeding to Phase 1. The performance criterion was applied from the twentieth trial 

onwards (after five repetitions of each trial-type), and from then on was applied after every 

block of the four trial-types. Participants were provided 30 blocks of phase zero training 

before they were excluded if the performance criterion was not met. After reaching criterion 

performance, phase one began without a signal or break. Phases one, two and the test 

procedure were otherwise identical to Experiment 2. 

 

Results 

Training. Relative to Experiment 2, more participants passed the performance criteria 

in the present experiment. Only 4 people (7%) were unable to learn the training contingencies 

within the provided time, and their data have been excluded from further analyses. Three 

participants failed to learn the phase one contingencies to criterion with 30 repetitions of each 

trial-type (240 trials), and one failed to learn the phase two contingencies within 30 

repetitions (120 trials). The remaining 52 participants (93%) all reached criterion 

performance in phases zero, one and two. The mean number of trials taken to reach criterion 

in phase zero was 45.64 (SEM=1.40, minimum possible= 40 trials1), the mean number of 

trials taken to reach criterion in phase one was 98.20 (SEM=6.72, minimum possible = 72) 

and the mean number of trials taken to reach criterion in Phase 2 was 28.86 (SEM=2.27, 

                                                           
1 It was technically possible for participants to proceed after 36 trials, but this would require perfect 
performance from the very first trial. 
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minimum possible=16). Notably, just as in prior experiments, there was significant variation 

in the speed with which people learned the training contingencies. Many people learned the 

contingencies quite rapidly: 58% reached criterion at the first opportunity in phase zero, 58% 

reached criterion at the first opportunity in phase one and 33% reached criterion at the first 

opportunity in phase two. A sizeable proportion of participants, however, needed at least 50% 

more training than the minimum possible value (‘extra training’) in order to reach criterion on 

each phase: 8%, 21% and 60% needed extra training in phases zero, one and two, 

respectively. 

Participants’ prediction accuracy on the two outcome-types (previously predictable 

and unpredictable) in the first two and last two blocks of phase two training is shown in 

Figure 8. As in Experiment 2, the first two blocks of training were common to all 

participants, but the last two blocks of training occurred at different times for different 

participants. The participants who learned the phase two contingencies rapidly may have only 

experienced four blocks of training, so their first and last two blocks of training abut each 

other whereas for others there may be other blocks between their first and last two training 

blocks. 

[Figure 8 about here.] 

The prediction accuracy data were entered into a 2 (early or late in training) by 

2(outcome type) multivariate ANOVA. Unsurprisingly there was a main-effect of training 

phase, with participants showing greater accuracy late in training, F(1,50)=250.01, MSE=.05, 

p <.001, ηP
2=0.83, 90% CI [.04,.04]. There was no significant main effect of outcome-type, F 

< 1, and no significant interaction between training phase and outcome type, F < 1. 

Test phase ratings. The primary dependent variable, participants’ mean likelihood 

ratings at test, is shown in Figure 9. To examine whether participants treated the test ratings 

for each outcome values as independently as intended, the same analysis of summed mean 
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ratings per outcome dimension was conducted as that performed in Experiments 1 and 2.  

Again the mean sum of ratings significantly exceeded 100 for both the previously predictable 

outcome dimension (M=117.46, t(51)=4.52, p<.001, d = 0.56, 95% CI [108.21, 127.50]) and 

the previously unpredictable dimension (M=123.79, t(51)=5.60, p<.001, d = 0.66, 95% CI 

[112.62, 134.95]). 

The mean test rating data were organized and analyzed in an identical manner to the 

test rating data in Experiments 1 and 2, with the exception that one-tailed inferential analyses 

were used (as our hypotheses were confined to whether the key effects of Experiments 1 and 

2 replicate). 

The ratings following cues E-H were analyzed separately to the ratings following the 

non-predictive cue Y, in exactly the same manner as was used in Experiments 1 and 2. 

Ratings for cues E-H were analyzed using a 3 (outcome value: correct versus incorrect/nil) by 

2 (outcome dimension: previously predictable vs unpredictable) ANOVA. For the analysis of 

cue Y’s ratings, the outcome value variable only had two values (correct and nil). The ratings 

associated with cues E-H are discussed first. 

[Figure 9 about here.] 

Overall, there was no main effect of outcome dimension, F < 1, but there was a main 

effect of outcome type; reassuringly, the correct outcome values were given higher likelihood 

ratings than the nil and incorrect values overall, F(1,50)=111.32, p < .001, SEM = 908.75, 

ηP
2=.69, 90% CI[32.13, 44.27]. As in Experiments 1 and 2, the most important contrast is the 

interaction between outcome dimension (previously predictable, previously unpredictable) 

and the contrast comparing the correct outcome value with the other possible response 

options (incorrect, nil). This interaction was again significant: F(1,50)=7.02, p = .007, SEM = 

685.01, ηP
2=.12, 90% CI[2.61, 11.58]. A simple effect contrast revealed that the central 

finding of Experiments 1 and 2 was replicated: for the predictive cues E-H participants gave 
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higher ratings to the correct values on the previously predictable outcome dimension than the 

correct values on the previously unpredictable outcome dimension, F(1,50)=5.39, p = .01, 

SEM = 575.26, ηP
2=.10, 90% CI[3.04, 18.80]. A second simple effect found that participants’ 

average ratings for the two outcome values not associated with cues E-H (the incorrect and 

nil outcome values) did not significantly differ between the previously predictable and the 

previously unpredictable outcome dimension, F(1,50)=2.73, p = .05, SEM = 203.657, 

ηP
2=.05, 90% CI[-0.05,6.59]. When averaged across the previously predictable and 

unpredictable outcome dimensions, participants gave significantly higher ratings to the 

incorrect value than to the nil value, F(1,50)=12.99, p < .001, SEM = 685.014, ηP
2=.21, 90% 

CI[7.00,19.16] . This contrast did not interact with outcome type (previously predictable, 

unpredictable), F < 1. 

Mean likelihood ratings for the outcome values associated with the non-predictive cue 

Y are shown in the right-hand panel of Figure 9. These data were analyzed in a similar 

manner to the data from cues E-H, except that the outcome value variable only had two 

values (correct, nil). No significant main effect of outcome dimension (predictable, 

unpredictable) was observed, F(1,50)=2.40, p = .06, SEM = 407.32, ηP
2=.05, 90% CI [-0.35, 

9.03]. The main effect of outcome value (correct, nil) was significant, F(1,50)=63.81, p < 

.001, SEM = 1110.93, ηP
2=.56, 90% CI[29.18, 44.67] with the correct values given higher 

overall ratings than the nil values. Importantly, as in Experiments 1 and 2, these two contrasts 

significantly interacted, F(1,50)=3.44, p = .04, SEM = 835.43, ηP
2=.06, 90% CI[0.72, 14.15]. 

Two further simple effect contrasts clarified this interaction. People gave higher ratings to the 

correct values on the previously unpredictable outcome dimension (u1, u2) than the correct 

values on the previously predictable dimension (p1, p2), F(1,50)=4.83, p = .02, SEM = 

745.07, ηP
2=.09, 90% CI[2.80, 20.74]. However, no significant differences in ratings to the 

nil outcomes were observed across the two outcome dimensions, F < 1. 
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Discussion 

The present experiment replicated the central findings of Experiments 1 and 2, but did so 

using a training procedure in which almost everyone (93% of people) was able to learn well 

enough to attain near perfect performance within half an hour. Just as in Experiments 1 and 2, 

the prior predictability of an outcome appeared to strongly influence the degree to which that 

outcome entered into associations with novel cues. Again, the predictive status of the novel 

cues appeared to moderate this influence of prior predictability. Possible explanations of this 

effect are considered below. Finally, unlike in Experiments 1 and 2, no significant differences 

in learning rate (measured as the degree to which prediction accuracy increased over training 

blocks) were seen between the previously predictable and previously unpredictable outcome 

dimensions. It is unclear why no differences were seen in the present experiment. One 

possible explanation may be derived from the differences between Experiments 1 and 2 and 

the present experiment. Note that, in this experiment, participants were very highly trained on 

the phase one contingencies prior to engaging in phase two, so as to make all participants 

comparable to the ‘high performers’ in Experiment 1. This extra training may have allowed 

them to learn the relationships involving the previously predictable outcomes more rapidly in 

the present experiment, and that this afforded more resources to also learn about the 

previously unpredictable outcome values, thus reducing the performance difference between 

the two outcome dimensions. 

 

General Discussion 

Three experiments examined the degree to which prior experience of an outcome being 

unpredictable affected people’s ability to learn associations involving that outcome. Overall, 

our initial hypothesis that previously predictable outcomes would be more readily associated 
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with novel cues was partially supported. In all experiments, prior experience of an outcome 

being unpredictable resulted in impaired learning of that outcome’s relationship with a novel 

predictive cue (E-H). To our knowledge, this is the first such demonstration in a human 

population. Moreover, prior unpredictability appeared to impair the rate at which new 

predictive relationships were formed (as seen in the training prediction accuracy data in 

Experiments 1 and 2). Experiment 2 showed that prior predictability of outcomes did not 

influence the extent to which participants gazed at them later. Curiously, in a departure from 

our initial hypothesis, all three experiments found evidence that prior experience of an 

outcome behaving unpredictably had a facilitative effect on the formation of subsequent 

associations with a novel partially reinforced cue (Y). In summary, novel predictive cues 

were more readily associated with previously predictable outcome values, than previously 

unpredictable outcome values, whereas the opposite pattern was observed for novel non-

predictive cues. 

Importantly, the present experimental design affords confidence that the observed 

learning biases were not merely the product of a direct translation of the cue-outcome 

associations learned in phase one, or of some systematic generalization or response 

reassignment process, and instead reflect biases in new learning of cue-outcome associations. 

This is because novel cues were used in phase two, and there were no systematic 

relationships between the cues that were objectively predictive of particular outcome values 

in the first phase (e.g. A–p1, B–p2) and those that were predictive of particular outcome 

values in the second (E–p1,u2; H –p2,u2.). For example, knowing that potato predicted 

bloating in phase one provides no information as to whether cherry predicts bloating or 

swelling or perhaps no reaction. Thus, any biases seen in phase two as a result of phase one 

training cannot be mediated by discrete cues (but see below for a discussion of context driven 

effects), or by cue-outcome associations. The biases must instead be driven by some other 
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type of learning. This is an important finding, because learning biases mediated by a learned 

property of the outcome (i.e. its predictability) have previously been largely ignored in the 

human learning literature. 

As noted earlier, we favour the view that the biased phase two learning is due to 

people encoding information about which outcomes were predictable (e.g. see Baker et al, 

1981), and which were not, and using this information to guide subsequent learning. 

However, explanations that appeal to other forms of learning are also possible. We first 

consider explanations based on acquired equivalence and context-blocking, in turn, before 

returning to the possibility that people encode and use information about outcome 

predictability. 

 

Acquired equivalence 

One possible account of the present results is based on acquired equivalence (Miller & 

Dollard, 1941). Acquired equivalence (or mediated generalization) refers to the observation 

that two initially distinct stimuli can come to be treated as functionally identical by virtue of a 

shared association, in this case, a common antecedent (see Hall, Ray & Bonardi, 1993 for this 

effect in rats). This account suggests that, across phase one training, outcome values u1 and 

u2 came to be treated as the same outcome value, hereafter denoted u12, because both 

outcomes u1 and u2 were reliably preceded by the same cue (X). By the same mechanism, 

outcome values p1 and p2 came to be seen as more distinct due to their reliably different 

antecedents A and B (“acquired distinctiveness”). Thus, in the second phase, compound cues 

(EY, FY, GY, HY) are followed by three outcomes p1, p2 and u12. Importantly, E and G are 

the best predictors of p1. Also, F and H are the best predictors of p2. Finally, Y is the best 

predictor of u12. Of course, if acquired equivalence between u1 and u2 hadn’t taken place, E-

H would have been the best predictors of these two outcomes. Thus, as a consequence of the 
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acquired equivalence process, E-H will become associated with p1 and p2, whereas Y will 

become associated with u1 and u2 in Phase 2. 

One aspect of the current data does not seem consistent with this account. Participants 

learned to predict outcomes u1 and u2 correctly across the Phase 2 trials (achieving 80% 

accuracy in Experiment 2). This in itself suggests that u1 and u2 were not treated as the same 

outcome. Furthermore, correct predictions with respect to u1 and u2 require that the 

participants know the relationship between cues E-H and these unpredictable outcomes; cue 

Y will not tell the participant which outcome is to be presented. However, partial (but not 

complete) acquired equivalence between u1 and u2 should be sufficient to ensure that 1) Y 

becomes more strongly associated with u1/u2 than with p1/p2 and, therefore, that 2) Y 

competes more successfully with E-H for association with u1/u2 than it does for association 

with p1/p2. Because cues E-H and cue Y were treated very differently, it is not possible to 

compare them directly. However, within each cue type, the current results can be explained in 

terms of the idea that u1 and u2 were treated, to some extent, as the same outcome as a 

consequence of phase one training. This acquired equivalence learning could be the product 

of associative (e.g. Hall, Mitchell & Graham, 2003), attentional (Bonardi, Graham, Hall & 

Mitchell, 2005) and/or propositional processes (Smyth, Barnes-Holmes & Barnes-Holmes, 

2008).  

 

Context-blocking 

A number of alternative explanations of the present data can be generated by adding an 

additional mechanism to the context-blocking account (discussed in the introduction) of US 

pre-exposure effects in animal conditioning. Recall that the US pre-exposure effect refers to 

the observation that initial provision of unsignalled shocks to an animal impairs subsequent 

learning about the relationship between shock and a valid predictor (the US pre-exposure 
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effect). This could be seen as evidence that animals encode and use information about the 

predictability of USs to guide the formation of associations. However, as Randich & LoLordo 

(1979) demonstrated in their review of US pre-exposure effects, the ‘US pre-exposure’ data 

are more consistent with the view that when animals encounter unsignalled USs, they 

associate them with the experimental context, and this context-US association blocks the 

ability of discrete cues to subsequently become associated with that US. Because the present 

data appear to indicate that prior predictability guides subsequent learning, it is also important 

to consider the role that contextual learning might play. 

Applied to the present experiments, the context-blocking account suggests that 

participants may not have learned that outcomes u1 and u2 were unpredictable during Phase 

1, but instead learned an association between these cues and the diffuse context cues (i.e. 

screen colour, room lighting, background noise, internal state). As argued above, we 

explicitly included the additional cue, X, to minimize this possibility (following Matzel et al, 

1988). Cue X was (i) a better predictor of both unpredictable outcome values (u1, u2) than 

the context (0.5 contingency versus 0.33) during phase one, and (ii) was likely more salient to 

the participant (cue X was explicitly presented as a cue on each trial, the context was not). 

Nonetheless, it is possible that some conditioning accrued to the context for the unpredictable 

outcome values (u1, u2) in Phase 1, and that this conditioning would be greater than that for 

the predictable outcome values (p1, p2). 

Under this contextual learning account, any cue shown in phase two in conjunction 

with the unpredictable outcome values (u1, u2) would be less readily associated with u1 and 

u2, because the association between the context and u1/u2 would block this learning. This 

account provides an explanation as to how the predictive cues (E-H) were more readily 

associated with the previously predictable outcomes (p1, p2) in phase two. It does not, 

however, explain why the non-predictive cue Y was more readily associated with the 
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previously unpredictable outcome values u1 and u2, than with the previously predictable 

outcome values p1 and p2. If outcomes u1 and u2 formed associations with the context in 

phase one, these associations should impair the formation of associations between any cue 

(including cue Y) and the outcomes u1 and u2 (relative to the previously predictable 

outcomes p1 and p2). Thus, in order to provide a complete explanation of the present data set, 

the context blocking account needs an additional mechanism. There are a number of 

candidate mechanisms, including: the format of the response measure, inhibitory learning and 

differential overshadowing. We will consider these explanations in turn.  

Format of response measure. The first possibility is that  people’s higher ratings for 

the unpredictable outcomes u1 and u2, over p1 and p2, for the non-predictive cue Y is a 

consequence of the nature of the test measure, rather than being reflective of learning itself. 

This explanation relies on the observation that ratings for all outcome values (p1, p2, pØ, u1, 

u2, uØ) were made on the same screen. Perhaps people felt that the ratings were dependent, 

and that their individual outcome value ratings must sum to 100. Data presented in detail for 

Experiment 1 (and briefly reported for Experiments 2 and 3) suggests that fewer than 8% of 

participants behaved in a manner consistent with this hypothesis. Nevertheless, it is possible 

that some participants felt compelled to sum their ratings to 100 (or some nearby value) and 

that this subjective constraint resulted in the translation of biased learning of the association 

between the predictive cues (E-H) and previously predictable outcome (p1, p2) to biased 

responding for cue Y (in the reversed direction). 

One way to test this account is to examine the extent to which individuals constrained 

their responding in this manner, and the degree to which they showed biased test ratings for 

cue Y. Specifically, if this subjective constraint produced the higher ratings for the 

unpredictable outcome values (u1, u2) for cue Y, then one might expect that those 

participants who constrained their outcome ratings to sum to 100 (or thereabouts) would be 
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more likely to show greater bias in test ratings for cue Y at test. This hypothesis was tested 

using the data from Experiment 1. A measure of biased responding for cue Y for each 

individual (in the high performer group) was calculated by subtracting test ratings for the 

predictable outcomes p1 and p2 from their test ratings for outcomes u1 and u2. This biased 

learning score was correlated with a measure of the degree to which participants constrained 

their response ratings to sum to 100. This latter measure of constrained responding was 

calculated by summing each participant’s ratings for the three outcome values on each 

outcome dimension (e.g. p1+p2+ pØ or u1+u2+uØ) and for each cue (E-Y); yielding ten 

summed ratings scores. These summed scores were then averaged to yield a mean summed 

rating score (averaged across all cues and outcome dimensions). Finally, a ‘deviance’ score 

was calculated by taking the unsigned discrepancy between this mean summed ratings score 

and one hundred. Those participants that tended to constrain their test ratings such that they 

summed to 100 would have a deviancy score near 0, whereas those that gave independent test 

ratings for each of the outcome values would have higher discrepancy scores. This mean 

discrepancy score (M=20.13, SEM=5.96) was not significantly correlated with biased 

responding to cue Y, r=.06, t < 1. This result suggests that the tendency to associate cue Y 

with the unpredictable outcome values (u1, u2) was not associated with the tendency of some 

individuals to constrain their test ratings of individual outcome values to sum to 100. 

Inhibition. A second possibility focusses on uØ and pØ rather than the presence of 

these outcomes. Thus, in phase 1, the context might become more strongly associated with 

uØ than with pØ (perhaps because X is a perfect predictor of pØ and blocks context-pØ 

learning). As a consequence, in phase 2, cue Y may enter into an inhibitory relationship with 

predicted (by the context), but never presented, uØ.  An inhibitory Y-uØ relationship (Y 

predicts that the absence of “u” outcomes will not be observed) should be expressed on test as 
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a belief that Y predicts u1/u2. Future studies that use the present paradigm could directly test 

this prediction by testing cue Y’s inhibitory properties via a summation test.  

Differential overshadowing. The third possible account, which additionally assumes 

differential overshadowing,  is based on the rapid learning of associations between predictive 

cues (e.g. E) and previously predictable outcome values (e.g. p1) at the beginning of phase 

two. These relationships (e.g. E-p1), may then differentially overshadow the non-predictive 

cue Y with respect to the two outcome dimensions. That is, cue E may overshadow cue Y 

more strongly on the previously predictable outcome dimension (p1, p2), than on the 

previously unpredictable outcome dimension (u1, u2). This would result in stronger 

associations between cue Y and previously unpredictable outcome values (e.g. u2) than 

between cue Y and previously predictable outcome values (e.g. p1); the observed result. The 

limitation of this account is that it can only explain the data if the influence of differential 

overshadowing (which impairs Y-p1/p1 learning) was larger in magnitude than the effect of 

context blocking (which impairs Y-u1/u2 learning). While possible, this ordering of 

magnitudes seems unlikely given that, under this account, the differential overshadowing 

(which needs to be the largest effect) is the product of differential context blocking (which 

needs to be the smallest effect). 

 An alternative explanation for the bias in learning for predictive cues E-H with 

previously predictable outcomes is that learned predictability has a more direct impact on 

associability, perhaps via outcome salience.  This possibility, discussed below. When 

combined with differential overshadowing, it offers a complete explanation of the present 

data.    

Predictability as a stimulus feature 

The final explanation of the present data suggests that participants encoded the predictability 

of the outcomes during phase one, and used this information to guide subsequent learning 
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involving those outcomes. As noted in the Introduction, there is some evidence that rats are 

sensitive to the predictability of the US, and that this influences subsequent learning in a 

manner analogous to ‘learned irrelevance’ effects (e.g. Baker, 1979). Specifically, the 

observation that US preexposure effects occur across a change in context (but are removed by 

the provision of an overshadowing cue), was viewed by Baker et al (1981) as indicative that 

rats encode information about the unpredictability of a US and that this information impairs 

the subsequent formation of associations between that US and a discrete cue. One possibility 

is that predictable outcomes are higher in salience than unpredictable outcomes. 

Such an explanation accords well with the present observation of weaker associations 

between previously unpredictable outcomes, than previously predictable outcomes, and novel 

predictive cues. It does not, however, explain how the previously unpredictable outcome was 

more readily associated with a novel, non-predictive cue (Y). Differential overshadowing 

provides one explanation. If cues E-H were rapidly associated with the perhaps more salient 

outcome values p1 and p2, they may then have more readily overshadowed cue Y with 

respect to the predictable outcome dimension (values p1, p2, pØ), than to the unpredictable 

outcome dimension (values u1, u2, uØ). This would lead to a stronger association between 

cue Y and values u1 and u2, than between cue Y and values p1 and p2, as observed.  

 A second possibility is that, due to a bias for associations involving previously 

predictable outcomes, people learned the associations between the predictive cues and the 

previously predictable outcome first. Then, after these associations were learned, they sought 

to learn how to predict the previously unpredictable outcome. The question then becomes 

why the unpredictable outcome values were not also associated with the predictive cues. We 

speculate that this is due to inferences participants made during either training or test 

concerning the relationship between the cues and outcomes. We discuss two possible 

inferences below, but before doing so, it is worth noting that the ‘nil’ ratings in all three 
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experiments provide evidence that participants used inferential processes, as opposed to mere 

recollection of contingencies, when forming their test ratings. The ‘nil’ response values (pØ, 

uØ) were never shown in phase two (and thus never in conjunction with cues E-H and Y), 

and yet people gave high ratings to these outcomes values for some cues and not for others. 

This alone implies that participants are, at least partly, basing their test ratings on inferences 

drawn during either training or test, rather than reporting experienced contingencies. 

One possibility is that people noticed that the outcome dimensions were independent 

(for instance, the presence of p1 tells the learner nothing about the presence of u2). If they 

made the assumption that two independent outcomes were unlikely to be generated by the 

same cue then this would lead them to preferentially associate the previously unpredictable 

outcome with the only other cue available, the non-predictive cue Y. This kind of inference 

constitutes a ‘Markov violation’ (see Mayrhofer, Goodman, Waldmann & Tenenbaum, 2008 

for a discussion) that has been shown previously in human reasoning (e.g. Rehder & Burnett, 

2005).  A related idea is that people might generally favour a ‘one cause to one effect’ causal 

mapping whereby cues are individually associated with outcomes (similar to the ‘sparse and 

strong’ generic assumptions posited by Lu, Yuille, Liljeholm, Cheng & Holyoak, 2008). The 

assumptions that participants do not readily associate independent outcomes with the same 

cue, or that people generally prefer individual cue-outcome mappings, remain to be 

empirically tested in this setting. Nonetheless, it is possible that people encoded the 

predictability of the outcomes in phase one, and more readily associated the previously 

predictable outcome with novel cues in phase two. Then, on the basis of an additional 

assumption (perhaps due to the statistical independence of the outcomes, or due to generic 

prior assumptions), they preferentially associated the previously unpredictable outcome with 

the only other cue available, the non-predictive cue Y. 
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Conclusion 

The current experiments are the first to demonstrate that an outcome’s prior reinforcement 

history influences the degree to which people subsequently associate that outcome with novel 

cues. Previously predictable outcomes were more readily associated with predictive cues than 

were previously unpredictable outcomes. The opposite bias was seen for non-predictive cues. 

This finding dovetails with prior observations that previously predictive cues are more readily 

associated with novel outcomes, than are previously nonpredictive cues. The means by which 

exposure to an unpredictable outcome affects subsequent learning remain unclear. Some 

accounts suggest that outcome unpredictability directly affects learning (via participants 

encoding stimulus predictability and using this information to guide subsequent learning), 

while others suggest that effect is indirect (via fostering differential contextual learning or 

acquired equivalence). Further work is required to discriminate between the possible 

mechanisms that may produce this effect. 
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Table 1. Design of Experiments 1 to 3. 

 

Phase 0  

(Experiment 3 only) 

Phase 1  Phase 2  Test 

A – p1 , uØ 

B – p2, uØ 

X – pØ , u1 

X – pØ , u2 

 

A – p1 , uØ 

B – p2, uØ 

X – pØ , u1 

X – pØ , u2 

AX – p1 , u1 

AX – p1 , u2 

BX – p2, u1 

BX – p2, u2 

EY – p1 , u2 

FY – p2, u1 

GY – p1  , u1 

HY – p2  , u2 

 

Test E-Y for: 

pØ, p1, p2, 

uØ, u1, u2 

 

Note: Letters A-Y denote foods, and the set of symbols [pØ, p1, p2, uØ, u1, u2] denote 

allergic reactions (or outcomes). The letter ‘p’ denotes values on the predictable outcome 

dimension, whereas the letter ‘u’ denotes values on the unpredictable outcome dimension. 

For example, if skin reactions were the predictable dimension, p1 would refer to ‘itchiness’ 

and p2 would refer to ‘swelling.’ The symbol Ø refers to the absence of an outcome on that 

dimension. For instance, if skin is the predictable dimension, then pØ refers to ‘no skin 

reaction.’ Equivalently, for the unpredictable outcome dimension, u1 might refer to 

‘cramping,’ ‘u2’ to bloating and uØ to ‘no stomach reaction.’ The contingencies shown in the 

left-hand column (labelled Phase 0) were only presented in Experiment 3.  
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Figure 1. 

 

Figure 1. Mean prediction accuracy (proportion of correct outcome predictions) in Phase 1of 

Experiment 1 for the low- and high-performing groups. Prediction accuracy for the high 

performing group is indicated by the open circles, whereas the low performing group is 

indicated by open triangles. Prediction accuracy for outcomes that were possible to predict on 

each trial (labelled ‘Pred’, unbroken lines) are shown separately to those outcomes which 

were not possible to predict (labelled ‘Unpred’, broken lines) for both groups of participants. 

Each block of training included 16 trials (2 repetitions of each trial type). The dotted 

horizontal lines indicate 50% accuracy (the maximum achievable for the unpredictable 

outcomes values) and 33% accuracy (chance performance, assuming no knowledge of the 

predictable or unpredictable outcomes values). Error bars indicate SEM. 
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Figure 2. 

 

 

 

Figure 2. Mean prediction accuracy (left-hand panel) and confidence ratings (right-

hand panel) in Phase 2 for the low- and high-performing groups. Prediction accuracy and 

mean confidence for the previously predictable outcomes are indicated by the empty triangles 

and solid lines. Prediction accuracy and mean confidence for the previously unpredictable 

outcomes is indicated by the filled circles and dashed lines. Error bars indicate SEM. 
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Figure 3.  

 

 Figure 3. Mean likelihood ratings of the high-performing group at test in Experiment 

1. Panel A refers to ratings following presentation of the predictive cues E-H, and panel B 

refers to ratings following the non-predictive cue Y. In both panels, filled black columns 

indicate ratings given for the ‘correct’ response (see text for definitions) and unfilled columns 

indicate ratings for the ‘nil’ outcome response. The additional grey columns in the left-hand 

panel refer to mean ratings given to the ‘incorrect’ outcome value. Error bars indicated SEM. 
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Figure 4. 

 

Figure 4. Mean likelihood ratings of the low-performing group at test in Experiment 

1. Panel A refers to ratings following presentation of the predictive cues E-H, and panel B 

refers to ratings following the non-predictive cue Y. In both panels, filled black columns 

indicate ratings given for the ‘correct’ response (see text for definitions) and unfilled columns 

indicate ratings for the ‘nil’ outcome response. The additional grey columns in the left-hand 

panel refer to mean ratings given to the ‘incorrect’ outcome value. Error bars indicated SEM. 
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Figure 5. 

 

Figure 5.  Prediction accuracy in Phase 2 of Experiment 2. Prediction accuracy for the 

previously predictable outcomes is indicated by the empty triangles, and prediction accuracy 

for the previously unpredictable outcomes is indicated by the filled circles. Error bars 

indicated SEM. 
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Figure 6. 

 

Figure 6. Mean dwell times for the cues (Panel A) and outcomes (Panel B) in Phase 2 

of Experiment 2. For Panel A, the unbroken black line with unfilled squares refers to dwell 

times for the predictive cues E-H and the broken grey line refers to dwell times for the non-

predictive cue Y. In Panel B, the solid lines with filled squares refer to dwell times for correct 

outcome values, the broken black lines with unfilled squares refers to dwell times for 

incorrect outcome values, and the dotted grey line refers to dwell times for the nil outcome 

values.  Error bars indicate SEM. 
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Figure 7. 

 

 

Figure 7. Mean likelihood ratings in Experiment 2 for the predictive cues E-H (Panel 

A) and for the non-predictive cue Y (Panel B). For both panels, the black filled columns 

indicate ratings for the correct outcome values, whereas the unfilled columns indicate ratings 

for the nil outcome values. For the left-hand panel only, the grey columns indicate mean 

ratings for the incorrect outcome value (there was no “incorrect” value for the non-predictive 

cue Y shown in the right-hand panel). Error bars indicated SEM.  
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Figure 8. 

 

Figure 8. Prediction accuracy in Phase 2 of Experiment 3. Prediction accuracy for the 

previously predictable outcomes is indicated by the empty triangles, and prediction accuracy 

for the previously unpredictable outcomes is indicated by the filled circles. Error bars 

indicated SEM. 
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Figure 9. 

 

Figure 9. Mean likelihood ratings in Experiment 3 for the predictive cues E-H (Panel 

A) and for the non-predictive cue Y (Panel B). For both panels, the black filled columns 

indicate ratings for the correct outcome values, whereas the unfilled columns indicate ratings 

for the nil outcome values. For the left-hand panel only, the grey columns indicate mean 

ratings for the incorrect outcome value (there was no “incorrect” value for the non-predictive 

cue Y shown in the right-hand panel). Error bars indicated SEM. 

 

 


