
Decomposing Quantified Conjunctive (or Disjunctive) Formulas

Hubie Chen∗ Vı́ctor Dalmau†

Abstract

Model checking–deciding if a logical sentence holds on a structure–is a basic compu-
tational task that is well-known to be intractable in general. For first-order logic on finite
structures, it is PSPACE-complete, and the natural evaluation algorithm exhibits exponential
dependence on the formula. We study model checking on the quantified conjunctive frag-
ment of first-order logic, namely, prenex sentences having a purely conjunctive quantifier-
free part. Following a number of works, we associate a graph to the quantifier-free part;
each sentence then induces a prefixed graph, a quantifier prefix paired with a graph on its
variables. We give a comprehensive classification of the sets of prefixed graphs on which
model checking is tractable, based on a novel generalization of treewidth, that generalizes
and places into a unified framework a number of existing results.1

1 Introduction

1.1 Overview of result

Model checking, the problem of deciding if a logical sentence holds on a structure, is a fundamental compu-
tational task that appears in many guises throughout computer science. Witness its appearance in areas such
as logic, artificial intelligence, database theory, constraint satisfaction, and computational complexity, where
versions thereof are often taken as canonical complete problems for complexity classes. It is well-known
to be intractable in general: for first-order logic on finite structures it is PSPACE-complete. By first-order
logic model checking on finite structures, we refer to the following problem: given a first-order sentence φ
and a finite structure B, decide if φ evaluates to true on B. Indeed, the natural algorithm for evaluating a
first-order sentence φ on a finite structure B can require time |B|m(φ), where |B| is the size of the universe
of B, and m(φ) denotes the maximum number of free variables over all subformulas of φ. (For more details
on both this PSPACE-completeness result and this natural algorithm, we refer the reader to the discussion
by Flum and Grohe [30, Section 4.3].) This general intractability, coupled with the exponential dependence
on the sentence, naturally prompts the search for restricted classes of sentences enjoying tractable model
checking.

One fragment of first-order logic that has been heavily studied in this light is the fragment of primitive
positive sentences, which are prenex sentences built from atomic formulas, conjunction, and existential
quantification, that is, sentences having the form ∃x1 . . . ∃xm(α1 ∧ . . . ∧ αn), where the xi are variables
and where the αi are atomic formulas. These sentences have been approached by researchers possessing a
variety of motivations and perspectives [29, 32, 40, 39, 34, 35, 36, 9, 16, 3, 4, 5, 19, 18, 23, 26, 25]. In the
∗Universidad del Paı́s Vasco and IKERBASQUE, Basque Foundation for Science
†Universitat Pompeu Fabra
1A version of this article appeared in the proceedings of LICS 2012.

0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/155776407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

database literature, they are known as conjunctive queries and are of central interest; the problem of model
checking such sentences is also a formulation of the constraint satisfaction problem [40]. One approach to
restricting such sentences is to restrict the primal graph of a sentence, which is the graph whose vertex set
is the set of variables of the sentence, and where two variables are linked by an edge if they occur together
in a common atomic formula. (This graph is also known as the constraint graph and as the Gaifman graph.)
A classical result in this vein is that when the primal graphs of a set of primitive positive sentences have
bounded treewidth, the model checking problem is polynomial-time decidable; see for instance the paper of
Freuder [32]. Treewidth is a complexity measure on graphs that assigns a non-negative integer value to each
finite graph; a set of graphs is said to have bounded treewidth if there exists a constant k that upper bounds
the treewidth of all graphs in the set. For a set of primitive positive sentences having bounded treewidth,
each sentence can be decomposed into a tree-like shape that admits efficient evaluation.

After bounded treewidth on the primal graphs (of primitive positive sentences) was identified as a suf-
ficient condition for tractability, a natural consideration was whether or not there were other graph-based
conditions that guaranteed tractability. This consideration can be formulated as follows.

Research Question 1 On which sets of primal graphs is primitive positive model checking tractable?

One can naturally ask this research question for two notions of tractability. The first is polynomial-time
tractability, and the second is fixed-parameter tractability, where the formula is taken as the parameter of an
instance; indeed, bounded treewidth implies tractability in both senses. Research Question 1 was completely
resolved by Grohe, Schwentick, and Segoufin [39], who proved that bounded treewidth is the only expla-
nation for tractability in this setting. Namely, they showed a perfect complement to the bounded treewidth
tractability result: if a set of primal graphs is tractable–under either of the tractability notions–then the
set has bounded treewidth. (As one would expect, this result is proved relative to a complexity-theoretic
assumption, in particular, an established and widely believed assumption from parameterized complexity.)
These authors make use of the excluded grid theorem of graph minor theory to help achieve an understanding
of graph sets having unbounded treewidth. In their paper, they point to the research direction of considering
larger fragments of first-order logic.

A fragment of first-order logic under current scrutiny [10, 20, 11, 12, 13, 14, 15, 21] is the class of
quantified conjunctive sentences, which is the generalization of primitive positive sentences where both
quantifiers are admitted, that is, sentences of the form Q1v1 . . . Qmvm(α1 ∧ . . . ∧ αn), where each Qi ∈
{∀, ∃} is a quantifier, each vi is a variable, and each αj is an atomic formula. The classical quantified boolean
formula (QBF) problem is a special case of model checking on such sentences, where the structures have
boolean (two-element) universes. Model checking quantified conjunctive sentences is PSPACE-complete
and thus in a certain sense captures the full complexity of first-order logic.

Researchers have pursued the graph-based approach to identify tractable restrictions of this fragment [10,
43, 33]. One basic result, proved by Gottlob, Greco, and Scarcello [33] is that, in contrast to the primitive
positive case, bounded treewidth of the primal graph is not sufficient to guarantee tractability of model
checking quantified conjunctive sentences. Indeed, they show that even when the primal graph is a tree,
this model checking problem is coNP-hard for Π2 prefixes, harder for the respective higher levels of the
polynomial hierarchy when further alternations are added, and PSPACE-hard for arbitrary prefixes.

The natural object pointed to by these results for further complexity studies is the pair consisting of the
primal graph and the quantifier prefix of a quantified conjunctive sentence. We call such a pair a prefixed
graph. Indeed, via this object, we have the following.

• The bounded treewidth tractability result on primitive positive sentences can be captured by consider-
ing sets of prefixed graphs having bounded treewidth and purely existential prefixes.

1

• Research Question 1 can be equivalently rephrased as follows.

Rephrasing of Research Question 1: On which sets of prefixed graphs that have purely existential
prefixes is quantified conjunctive model checking tractable?

• The intractability results of Gottlob, Greco and Scarcello [33] can be described by considering sets of
prefixed graphs having bounded treewidth and prefixes of various alternation forms.

A research issue prompted by this view of these results is to attempt to give tractability results on prefixed
graphs (having arbitrary prefixes) that both generalize the given tractability result and make use of the
prefix in a non-trivial way. Such tractability results were presented, for example, by Flum, Frick, and
Grohe [31] and Adler and Weyer [2]. (These works in fact describe tractable fragments of general first-order
model checking.) In analogy to and as a generalization of Research Question 1, one can ask for a complete
description of the tractable sets of prefixed graphs.

Research Question 2 On which sets of prefixed graphs is quantified conjunctive model checking tractable?

Observe that all of the complexity results described thus far contributed towards the understanding of this
research question, in particular by providing tractability or intractability results on particular sets of prefixed
graphs.

In this article, we completely resolve Research Question 2, for both polynomial-time tractability
and fixed-parameter tractability; we thus generalize and place into a unified framework all of the described
complexity results. In particular, we introduce a new notion of width on prefixed graphs. We then prove that
if a set of prefixed graphs has bounded width, then model checking is polynomial-time tractable, and hence
also fixed-parameter tractable (where the formula is taken as the parameter of an instance); otherwise, model
checking is not fixed-parameter tractable and hence not polynomial-time tractable, under a complexity-
theoretic assumption from parameterized complexity (namely, that W[1] is not contained in non-uniform
FPT). In the case of bounded width, we show that sentences can be efficiently transformed so as to fall in
a slight relaxation of bounded-variable first-order logic that allows for efficient evaluation. Note that model
checking for bounded-variable first-order logic is well-known to be tractable (see for example Vardi [45],
and also recall the discussion in the first paragraph of the present article). In the case of unbounded width,
we show (essentially) that any set of prefixed graphs can be closed under an operation that we refer to as
simplification, and then use this result to give a reduction from either the k-clique or co-k-clique problem.
As we discuss within the paper, our result also implies a classification result for model checking quantified
disjunctive sentences.

Our width measure has a simple definition that takes into account the ordering given by the quantifier
prefix and treats the two quantifiers asymmetrically. This measure is equal to treewidth (plus one!) on
prefixed graphs having purely existential prefixes, and constitutes a natural generalization of treewidth in
its own right. The novelty of this width measure is evidenced by an example set of formulas (described by
prefixed graphs) to which our tractability result applies, but which provably do not fall into the tractable
classes presented in the works of Flum, Frick, and Grohe [31] and Adler and Weyer [2].

It is worth pointing out and emphasizing that both our tractability results and our intractability results
are novel, and are being presented for the first time in this paper. This is in contrast to many complexity
dichotomy and classification theorems: oftentimes, when such theorems are established, they confirm that a
known condition for intractability is the unique source of intractability, or analogously, that certain known
conditions or techniques for tractability in fact are the only explanations for tractability.

2

1.2 Related work

Dalmau, Kolaitis and Vardi [27] generalized the bounded treewidth tractability result on primitive posi-
tive sentences; they proved that for any set of such sentences logically equivalent to a sentence set having
bounded treewidth, the set is tractable. Note that bounded treewidth implies bounded arity of relations, since
a relation of arity k induces a clique of size k in the primal graph, and a clique of size k in the primal graph
implies that the treewidth of the primal graph is k − 1 or greater. Grohe [38] proved a complement to this
tractability result by showing that, under the assumption of bounded arity, tractability of primitive positive
sentences implies inclusion in the tractable class identified by Dalmau, Kolaitis and Vardi; Grohe’s result,
which applies to arbitrary sentence sets (of bounded arity) also generalizes the discussed result of Grohe,
Schwentick and Segoufin.

Researchers have also given computational complexity results for primitive positive sentences based
on the hypergraph containing, for each atomic formula, an edge with the variables of the atomic for-
mula [35, 36, 1, 16, 41]. This line of research leads to a theory of hypergraph complexity measures. As
mentioned, bounded treewidth implies bounded arity of relations; tractability results based on the described
hypergraph, in contrast, can be applied to sentences where the arity of relations is not bounded. Bounded
treewidth is sufficient to describe the tractability results corresponding to Research Question 1, which deals
with a classification of graphs, and this theory of hypergraph complexity is not needed for the solution to Re-
search Question 1. Gottlob, Leone and Scarcello [35, 36] introduced and studied the hypergraph complexity
measures of hypertree width and generalized hypertree width, and showed that bounded hypertree width
constitutes a tractable class having various desirable properties. Later, the tractability of bounded general-
ized hypertree width was proved independently by Adler, Gottlob and Grohe [1] and Chen and Dalmau [17].
Comprehensive classification results on hypergraphs have been given by Marx under the truth-table repre-
sentation of relations [42] and under the representation of relations via an explicit listing of tuples [41]; see
also related work by Chen and Grohe [19].

We now turn to discuss results on quantified conjunctive sentences. Chen [10] presented an algorithm
showing tractability of such sentences under bounded alternation, bounded treewidth, and bounded universe
size on the structure (we refer the reader to the paper for precise details). Gottlob, Greco and Scarcello [33]
presented a number of complexity results, including a result showing hardness under bounded alternation
and bounded treewidth, in essence showing that the bounded universe size assumption was crucial for Chen’s
algorithm. Pan and Vardi [43] performed a close study of the time complexity of Chen’s algorithm, showing
that the non-elementary growth rate with respect to the number of alternations and the treewidth is necessary.

Flum, Frick, and Grohe [31] described tractable classes for general first-order logic based on non-
recursive stratified datalog programs. Chen and Dalmau [17] described a notion of treewidth for quanti-
fied conjunctive sentences, showing that bounded treewidth sentences are tractable via a consistency/pebble
game type algorithm. This work is a point of contact with the empirical work on solving such sentences:
Pulina and Tacchella [44] gave evidence suggesting that the Chen/Dalmau treewidth notion is a good esti-
mator of empirical hardness. Adler and Weyer [2] generalized a tractability result of Flum, Frick, and Grohe
as well as the tractability result of Chen and Dalmau by giving a notion of treewidth for first-order logic.

1.3 Structure of article

The remainder of this article is structured as follows. In Section 2, we present the basic notions to be used
and to be studied in the article. In Section 3, we present our width notion, and also present the statement of
the main theorem. In Section 4, we prove properties of prefixed graphs that will be of utility. In Section 5,
we give our tractability result; in Section 6, we give our intractability result. We conclude in Section 7.

3

2 Preliminaries

Graphs and prefixes All graphs that we will consider are undirected, finite, and simple. A graph G
consists of a vertex set, denoted by V (G), and an edge set, denoted by E(G), which is a set of size-two
subsets of V (G). In this article, when G, G′ are graphs with V (G) = V (G′) and E(G) ⊆ E(G′), we say
that G is a subgraph of G′, and also that G′ is a supergraph of G. The union G ∪G′ of two graphs G, G′ is
defined to be the graph with vertex set V (G)∪ V (G′) and edge set E(G)∪E(G′). When S is a set, we use
K(S) to denote the clique on S, that is, the graph with vertex set S and edge set {{s, s′} | s, s′ ∈ S, s 6= s′}.

Let G be a graph and let U ⊆ V (G) be a subset of the vertex set. The graph G[U] is defined to
be the graph with vertex set U and edge set E(G) ∩ E(K(U)). The graph G \ U is defined to be the
graph G[V (G) \ U]. The set of neighbors of U , denoted by N(U), is defined to be the set {v ∈ V (G) \
U | there exists u ∈ U such that {u, v} ∈ E}.

A quantifier prefix is a sequence of the form Q1v1 . . . Qnvn where each Qi ∈ {∀,∃} is a quantifier, and
the vi are pairwise distinct variables. Relative to a quantifier prefix, a variable vi for which Qi = ∃ is called
an existentially quantified variable or an existential variable; similarly, a variable vi for which Qi = ∀ is
called a universal variable or a universally quantified variable. A quantifier prefix Q1v1 . . . Qnvn naturally
induces an equivalence relation ≡B on the variables {v1, . . . , vn} where vi ≡ vj if either (1) i ≤ j and
Qi = Qi+1 = · · · = Qj , or (2) j ≤ i and Qj = Qj+1 = · · · = Qi. Each equivalence class of ≡B is
called a block. We say that a block is existential if its variables are existentially quantified, and that a block
is universal if its variables are universally quantified. Relative to a quantifier prefix P = Q1v1 . . . Qnvn,
we define a preorder ≤P on the set of variables {v1, . . . , vn} where vi ≤P vj if and only if vi ≡B vj or
i ≤ j. We write vi <P vj if and only if vi ≤P vj and vi 6≡B vj . We drop the subscript in ≤P and <P if the
quantifier prefix is clear from the context.

A prefixed graph is an undirected graph G that has associated with it a quantifier prefix P (G) =
Q1v1 . . . Qnvn where v1, . . . , vn is a list of the vertices of V (G), with each vertex appearing exactly once.
Let G be a prefixed graph and let U ⊆ V (G). We use G[U] to denote the prefixed graph whose graph is
(V (G), E(G))[U] and whose quantifier prefix is the subsequence of P (G) containing the elements of U .
We use G \ U to denote the prefixed graph G[V (G) \ U].

Parameterized complexity We present the elements of parameterized complexity that will be used in the
paper, and refer the reader to the book by Flum and Grohe [30] for more information.

Let Σ be an alphabet used to encode decision problems. A parameterization is a polynomial-time
computable mapping κ : Σ∗ → Σ∗ that maps each string x to a parameter κ(x). A parameterized problem
is a pair (Q, κ) consisting of a decision problem Q ⊆ Σ∗ and a parameterization κ.

A mapping g defined on Σ∗ is said to be non-uniformly fixed-parameter tractable (nuFPT) with respect to
a parameterization κ if there exist a function f from Σ∗ to the natural numbers and a polynomial p (over the
natural numbers) such that for every k, there exists an algorithmAk that computes g on {x ∈ Σ∗ | κ(x) = k}
in time bounded above by f(κ(x))p(|x|). A mapping g defined on Σ∗ is said to be fixed-parameter tractable
(FPT) with respect to a parameterization κ if there exists a single algorithm A that can, for every k, play the
role of Ak in the definition of nuFPT. A decision problem (Q, κ) is in nuFPT if the characteristic function
of Q is nuFPT with respect to κ, and is in FPT if the characteristic function of Q is FPT with respect to κ.

Let (Q, κ), (Q′, κ′) be parameterized problems. A nuFPT (respectively, FPT) reduction from (Q, κ) to
(Q′, κ′) is a nuFPT (respectively, FPT) mapping g such that (1) for all x ∈ Σ∗, it holds that x ∈ Q if and
only if g(x) ∈ Q′, and (2) for each k, the set κ′(g({x | κ(x) = k})) is finite. We will make use of the
following facts.

4

Proposition 2.1 The composition of a nuFPT reduction from (Q, κ) to (Q′, κ′) and a nuFPT reduction from
(Q′, κ′) to (Q′′, κ′′) is a nuFPT reduction from (Q, κ) to (Q′′, κ′′).

Proposition 2.2 The class of decision problems in nuFPT is closed under nuFPT reductions.

We will exhibit reductions from the k-clique problem, which we view as the parameterized problem
of deciding, given a pair (G, k) consisting of a graph and a positive integer k, whether or not the graph
contains a clique of size k; the parameterization is given by κ(G, k) = k. We also make use of the fact that
the k-clique problem is complete for the parameterized complexity class known as W [1] [30].

Problem framework By a signature, we mean a set consisting of relation symbols, each of which has a
finite arity associated with it. Let σ be a signature. A quantified conjunctive sentence over σ is a first-order
sentence of the form Pφ where P is a quantifier prefix and φ is the conjunction of σ-atomic formulas; by
a σ-atomic formula, we mean a predicate application R(v1, . . . , vk) where R ∈ σ, the vi are variables, and
k is the arity of R. We remark that in defining these sentences, we do not assume that equality “comes for
free”, but rather, assume that equality, if used, is explicitly represented in the signature σ. We permit arity 0
relation symbols, and say that a signature is binary if each relation symbol has arity less than or equal to 2.

A structure B over a signature σ consists of a universe B, which is a set, and a relation RB ⊆ Bk

for each R ∈ σ; here, k denotes the arity of R. Our results are robust across many natural representations
of structures; two representations for which our results hold are (1) the representation of a relation by an
explicit listing of included tuples, and (2) the representation of a relation by a truth table that contains a bit
for every element of Bk, where B is the universe and k is the arity of the relation.

For a quantified conjunctive sentence Φ = Pφ with quantifier prefix P = Q1v1 . . . Qnvn, we define the
prefixed graph GΦ of Φ to be the graph with V (GΦ) = {v1, . . . , vn}, E(GΦ) equal to the set of all pairs
{vi, vj} such that vi, vj are different and occur together in a φ-atomic formula, and P (GΦ) = P .

Let G be a set of prefixed graphs. We define quantified conjunctive model checking over G, denoted by
QC-MC(G), to be the problem of deciding, given a pair (Φ,B) consisting of

• a quantified conjunctive sentence Φ having GΦ ∈ G, and

• a structure B,

both over the same signature, whether or not B |= Φ. We will generally view QC-MC(G) as a parameterized
problem, and take its parameterization κ to be the mapping defined by κ(Φ,B) = Φ.

3 Width definition and statement of main theorem

We now present our width notion. An elimination ordering of a prefixed graph G is a pair (G′, u1, . . . , un)
consisting of a supergraph G′ of (V (G), E(G)) and an ordering u1, . . . , un of the vertices V (G) such that
for all distinct variables ui, uj in the ordering, the following conditions hold:

(1) If uk is an existential variable in the ordering such that i < k, j < k, {ui, uk} ∈ E(G′) and
{uj , uk} ∈ E(G′), then {ui, uj} ∈ E(G′).

(2) If {ui, uj} ∈ E(G′), ui is universal, uj is existential and ui <P (G) uj , then i < j.

(3) If ui is existential, uj is universal and ui <P (G) uj , then i < j.

5

Note that the ordering u1, . . . , un of the vertices V (G) may differ from the ordering given by the quantifier
prefix P (G). The width of an elimination ordering (G′, u1, . . . , un) is the maximum over all existential
vertices uk of the quantity w(uk) = 1 + |{ui | i < k, {ui, uk} ∈ E(G′)}|; if no existential vertices exist, it
is defined as 0. Note thatw(uk) can be viewed as the size of the set containing uk along with allG′-neighbors
of uk that come before it in the ordering. The width of a prefixed graph G is the minimum width over all
of its elimination orderings. In the case that the prefixed graph G contains only existential quantification, it
is readily seen that our definition specializes to the definition of treewidth based on elimination orderings,
and that the width of G is equal to the treewidth of G plus one. We refer the reader to Bodlaender [8] for
characterizations of treewidth based on elimination orderings.

To achieve our positive algorithmic results, we perform a translation from quantified conjunctive sen-
tences to a certain fragment of first-order logic, defined as follows. We use FOk

∀ to denote the set containing
each first-order formula φ such that every subformula of φ either has k or fewer free variables or is a uni-
versally quantified atomic formula, by which we mean a formula of the form ∀y1 . . . ∀yjψ for an atomic
formula ψ. This is a relaxation of FOk, the set of first-order formulas with at most k variables, primar-
ily due to our allowing universally quantified atomic formulas: note that it is known and straightforward
to verify that for any formula φ whose subformulas have at most k free variables, the formula φ can be
rewritten to a logically equivalent FOk-formula by renaming variables. We use QCFOk

∀ to denote the set of
all FOk

∀ formulas built from atomic formulas, conjunction (∧), existential quantification (∃), and universal
quantification (∀).

The following is the statement of our main theorem.

Theorem 3.1 Let G be a set of prefixed graphs.

• If there exists a constant k ≥ 1 such that every prefixed graph in G has width less than or equal to
k, then the problem QC-MC(G) is polynomial-time decidable (and hence fixed-parameter tractable).
In this case, there exists a polynomial-time algorithm that, given a quantified conjunctive sentence Φ
whose prefixed graph is in G, computes a logically equivalent sentence Φ′ ∈ QCFOk

∀.

• Otherwise, the problem QC-MC(G) is not fixed-parameter tractable, even when restricted to binary
signatures, unless W[1] ⊆ nuFPT.

In the first case, that is, when there exists a constant k ≥ 1 upper bounding the width of all prefixed
graphs in G, we say that the set G has bounded width; otherwise, we say that it has unbounded width. This
theorem follows directly from Theorems 5.1, 5.2, and 6.5, proved below.

Remark 3.2 This theorem also gives a complexity classification on quantified disjunctive sentences. The
definition of a quantified disjunctive sentence is that of a quantified conjunctive sentence, with the change
that the quantifier-free part is a disjunction (rather than conjunction) of atomic formulas. The prefixed graph
GΦ of a quantified disjunctive sentence is defined identically. In the case that G is a set of graphs having
bounded width, the tractability result applies to quantified disjunctive sentences; in particular, by taking
the negations of quantified disjunctive sentences to obtain quantified conjunctive sentences, translating to
the logic QCFOk

∀, and then negating again, one obtains a translation into the logic QCFOk
∃ that is dual to

QCFOk
∀. The intractability result also transfers to quantified disjunctive sentences: the key point is that

model checking a set of quantified conjunctive sentences over binary signatures can be reduced to model
checking a set of quantified disjunctive sentences in polynomial time, since computing the complements of
the relations of structures can be performed in polynomial time under the assumption of bounded arity.

6

Remark 3.3 The non-uniformity of the complexity-theoretic assumption originates from the lack of any
computability condition on the set G. If the set G is assumed to be recursively enumerable, then the sec-
ond part of the theorem can be proved under the (a priori) weaker assumption that W[1] ⊆ FPT does not
hold. (The situation is the same, for example, in the papers by Grohe, Schwentick and Segoufin [39] and
Grohe [38].)

Remark 3.4 By the results of Bodirsky and Grohe [6], there exists a family G of prefixed graphs such
that QC-MC(G) is in NP, but not NP-complete nor in P, unless P equals NP. This justifies the use of a
complexity-theoretic assumption that is more refined than P 6= NP.

Example 3.5 We define a set of prefixed graphs G = {Gn}n≥1 as follows. For each n ≥ 1, define P (Gn) =
∃x1 . . . ∃xn∀y and E(Gn) = {{xi, y} | i ∈ {1, . . . , n}}. Each prefixed graph Gn has width 1 via the
elimination ordering ((V (G), E(G)), x1, . . . , xn, y), and our main theorem (Theorem 3.1) thus implies the
tractability of QC-MC(G). From [2, Proposition 3.16] and [2, Theorem 6.5], it follows directly that the
sequence of quantified conjunctive formulas φn = ∃x1 . . . ∃xn∀y

∧
1≤i≤nE(xi, y) (given by [2, Proposition

3.16]) provably does not fall into the tractable classes presented by Flum, Frick, and Grohe [31] and Adler
and Weyer [2]. But, the prefixed graph of each formula in this sequence is contained in G. �

Example 3.6 Consider the set of prefixed graphs G = {Gn}n≥1 defined as follows. For each n ≥ 1,
define P (Gn) = ∃x1 . . . ∃xn∀y∃x and E(Gn) = {{y, x}} ∪ {{xi, x} | i ∈ {1, . . . , n}}. Observe that each
prefixed graph Gn is a star graph (and a tree) where if the variable y were to be removed, the result would
be a star of existential variables. In an ordering satisfying the conditions of elimination ordering of Gn, by
(3) each variable xi must appear before y, and by (2) the variable y must appear before x. Hence, the only
possible ordering, up to permutation of the variables xi, is x1, . . . , xn, y, x. For each such ordering, since x
is connected to all other vertices, by condition (1) a supergraph giving an elimination ordering must connect
all of the vertices, that is, must be a clique. We thus have that the width of Gn is n + 2, and that the set G
has unbounded width. �

4 Properties of elimination orderings of prefixed graphs

For a prefixed graph G and an arbitrary ordering u = u1, . . . , un of V (G), define Gu to be the minimum
(with respect to inclusion of the set of edges) supergraph of G satisfying condition (1) in the definition of
elimination ordering; the graph Gu can be computed by starting from G and then iteratively adding edges
wherever condition (1) is not satisfied, until a fixed point is reached. A straightforwardly verified fact that
we will use is that, for any prefixed graph G and any ordering u of V (G), if G′ is a graph such that (G′, u)
is an elimination ordering for G, then (Gu, u) is an elimination ordering which has width less than or equal
to that of (G′, u). We shall abuse notation and denote (Gu, u) by u, and for instance will say that u is an
elimination ordering to mean that (Gu, u) is an elimination ordering.

In this section, we establish a number of results concerning our width notion that will be used to un-
derstand prefixed graphs from a computational standpoint. The first lemma, which follows, shows that any
“projection” of an elimination ordering u for a graph G is an elimination ordering for the corresponding
induced subgraph of G. The second lemma gives, for an ordering u, a description of Gu in terms of G itself.

Lemma 4.1 If u = u1, . . . , un is an elimination ordering of a prefixed graph G then for every selection of
indices i1, . . . , im with 1 ≤ i1 < i2 < · · · < im ≤ n, the subsequence u′ = ui1 , . . . , uim is an elimination
ordering of G[{ui1 , . . . , uim}] having width that is less than or equal to that of u.

7

Proof. By assumption, we have that (Gu, u) is an elimination ordering of G. It is straightforward to verify
(using the definition of elimination ordering) that (Gu[{ui1 , . . . , uim}], u′), the restriction of (Gu, u) to u′,
is an elimination ordering ofG[{ui1 , . . . , uim}] having width that is less than or equal to that of u. It follows
that u′ = (Gu

′
, u′) is an elimination ordering having width that is less than or equal to that of u. �

Lemma 4.2 Let G be a prefixed graph and u = u1, . . . , un be an ordering of V (G). For every pair of
indices i, j with 1 ≤ i < j ≤ n, the pair {ui, uj} is an element of E(Gu) if and only if ui and uj are
connected in G[{ui, uj} ∪ {ul | l > j, ul is existential }].

Proof. Consider the sequence of supergraphs Gui of (V (G), E(G)), defined for i = n, . . . , 1 inductively as
follows:

• Gun = (V (G), E(G))

• Gui−1 = Gi if ui is universal

• E(Gui−1) = E(Gui)∪K({uj | j < i, uj ∈ N(ui)}) if ui is existential (here, N is with respect to Gui)

For every k with 1 ≤ k ≤ n define Vk as {ul | l > k, ul is existential }. Observe that Gu0 = Gu and that
{ui, uj} ∈ Gu if and only if {ui, uj} ∈ Guj . The result follows by combining this observation with the
following claim: for every 1 ≤ i < j ≤ k ≤ n such that {ui, uj} 6∈ E(G), {ui, uj} ∈ Guk if and only if ui
and uj are connected in G[{ui, uj} ∪ Vk].

We shall finish the proof by proving the claim. Let i, j, k be a counterexample to the claim with k −
j minimum. Since Gun = G it follows that k < n. By the minimality of k − j we can assume that
{ui, uj} 6∈ Guk+1, that ui, uj is not connected in G[{ui, uj} ∪ Vk+1}], and that uk+1 is existential. Hence,
we have that {ui, uj} ∈ Guk if and only if for every l ∈ {i, j}, {ul, uk+1} is an edge of Guk+1, which by
the induction hypothesis, is equivalent to the fact that for every l ∈ {i, j}, ul and uk+1 are connected in
G[{ul, uk+1}∪Vk+1}]. This is equivalent, since, ui and uj are not connected in G[Vk+1]), to the fact ui and
uj are connected in G[{ui, uj} ∪ Vk}]. �

We now introduce the notion of a final universal variable; intuitively, it is a universal variable y that can
be eliminated from a prefixed graph G, that is, can be placed in the final position of an elimination ordering.
After this, we relate the width and elimination orderings of G to those of G \ {y}. Following this, we define
an analogous notion for the existential variables, that of final existential component, and establish analogous
results.

Definition 4.3 Let G be a prefixed graph. A universal variable y ∈ V (G) that does not have any existential
neighbor x with y <P (G) x is called a final universal variable of G.

For two orderings u1, u2, we use the notation (u1, u2) to denote the concatenation of the orderings u1

and u2. With respect to a prefixed graph G, we say that an elimination ordering (G′, u) is minimal if its
width is equal to that of G.

Lemma 4.4 If y is a final universal variable of a prefixed graph G then width(G) = width(G \ {y}). In
particular, if u is a minimal elimination ordering for G \ {y}, then (u, y) is a minimal elimination ordering
for G.

Proof. (≤) If u is an elimination ordering of G \ {y} then (u, y) is straightforwardly verified to be an
elimination ordering of G of the same width.

(≥) This follows directly from Lemma 4.1. �

8

Definition 4.5 Let G be a prefixed graph and let B1, . . . , Br be the blocks of its quantifier prefix P (G), in
order. A nonempty set C ⊆ Br is a final existential component if

• Br is existential,

• C is a connected component of G[Br], and

• r = 1 or N(C) ∩Br−1 6= ∅.

Lemma 4.6 Assume that G is a prefixed graph and C is a final existential component of G. There is a
minimal elimination ordering (G′, u) of G such that (1) u = (u1, u2) where u2 is an ordering of C, and (2)
G′ contains the edges of K(N(C)).

Proof. Let u be a minimal elimination ordering of G. If v is a universal variable in N(C) then v preceeds
(in u) every element of C. Indeed, let D ⊆ C be maximal with the property that G[D] is connected and
every variable in D is preceeded by v (in u). Clearly, v ∈ N(D). If there is some variable w ∈ C \D then
there is such a variable w in N(D) and by Lemma 4.2, Gu contains {v, w} contradicting condition (2) of
elimination ordering.

Let B1, . . . , Br be the quantifier blocks of P (G), in order. Write u as u1, . . . , un, and let ui ∈ C.
We claim that if j > i and uj is existential then uj ∈ Br. Why? By definition of final existential

component, N(C)∩Br−1 contains some element v which, by the previous claim, should preceed ui (in u).
Hence, v preceeds uj (in u). If uj was not in the block Br, then it would be in a block strictly preceeding
(in P (G)) the block Br−1, and this would violate condition (3) of elimination ordering.

Assume now that ui+1 6∈ C. We claim that {ui, ui+1} 6∈ E(Gu). If ui+1 is universal, then this follows
immediately from condition (2) of elimination ordering. If ui+1 is existential, then this follows from the
previous claim and Lemma 4.2.

As a consequence of this claim, the ordering obtained by switching the positions of ui and ui+1 is an
elimination ordering of the same width. Iterative application of this argument shows that there is a minimal
elimination ordering satisfying (1). Finally, it follows from Lemma 4.2 that any ordering satisfying (1) also
satisfies (2). �

Definition 4.7 For a final existential component C of a prefixed graph G, define G−C to be the prefixed
graph with V (G−C) = V (G) \C, E(G−C) = E(G \C)∪E(K(N(C))), and P (G−C) equal to P (G) but
with the variables in C (and their accompanying quantifiers) removed.

Lemma 4.8 Assume that G is a prefixed graph and C is a final existential component thereof. Then

width(G) = max(width(G−C),width(G[C ∪N(C)]).

Furthermore, there is a polynomial-time algorithm that computes a minimal elimination ordering for G
given a minimal elimination ordering for G−C and G[C ∪N(C)].

Proof. (≥) Let (G′, u) be the minimal elimination ordering of G obtained by applying Lemma 4.6 to G and
C. By applying Lemma 4.1 to the subsequences of u containing the vertices of V (G) \ C and C ∪N(C),
respectively, one obtains elimination orderings for G−C and G[C ∪ N(C)] of width less than or equal to
width(G).

(≤) Let (Gu−C , u−C) be a minimal elimination ordering forG−C . By Lemma 4.6, there exists a minimal
elimination ordering of G[C ∪ N(C)] having the form (G′, (uN(C), uC)) where uN(C) is an ordering of

9

N(C), uC is an ordering of C, and G′ contains the edges of K(N(C)). Observe that the two elimination
orderings (Gu−C , u−C), (G′, (uN(C), uC)) overlap in exactly the variables N(C), and each have graphs
that contain the edges of K(N(C)). (Note that the graph Gu−C contains the edges of K(N(C)), by the
definition of G−C .)

We claim that (Gu−C ∪G′, (u−C , uC)) is an elimination ordering of G. We verify this as follows. First,
observe that any G-edge including a vertex in C is contained in G[C ∪ N(C)] and hence G′, and any G-
edge including a vertex in V (G) \ C is contained in G−C and hence Gu−C ; thus, the graph Gu−C ∪G′ is a
supergraph of G. We now verify each of the conditions (1)-(3).

(1) Consider first an existential variable uk inC. Any edges including uk must be contained inE(G′), and
hence condition (1) is satisfied for uk, since (G′, (uN(C), uC)) is an elimination ordering. Consider
next an existential variable uk in V (G) \ C, and assume that i < k and j < k. The variables
ui, uj , uk are all contained in u−C , and any edges between the variables ui, uj , uk that are contained
in Gu−C ∪G′ must be contained in Gu−C . That condition (1) holds for uk follows from the fact that
(Gu−C , u−C) is an elimination ordering.

(2) Suppose that {uj , uj} is an edge, ui is universal, uj is existential, and ui <P (G) uj . The variable ui
must be contained in V (G)\C, since it is universal. If uj is contained in V (G)\C, then i < j follows
from the fact that (Gu−C , u−C) is an elimination ordering (and itself obeys (2)). If uj is contained in
C, then i < j follows directly from the definition of the given ordering.

(3) Suppose that ui is existential, uj is universal, and ui <P (G) uj . The variable uj must be contained in
V (G) \C, since it is universal. The variable ui must also be contained in V (G) \C, since it does not
occur in the last block and hence cannot be an element of a final existential component. Thus, i < j
follows from the fact that (Gu−C , u−C) is an elimination ordering (and itself obeys (3)).

Having established that (Gu−C ∪ G′, (u−C , uC)) is an elimination ordering of G, it remains only to
show that this elimination ordering has width less than or equal to max(width(G−C),width(G[C∪N(C)]).
To demonstrate this, the following observation suffices. For any existential variable x, the value of w(x)
in our elimination ordering (Gu−C ∪ G′, (u−C , uC)) is equal to the value of w(x) in (Gu−C , u−C) when
x ∈ V (G) \ C, and is equal to the value of w(x) in (G′, (uN(C), uC)) when x ∈ C. �

Definition 4.9 When G is a prefixed graph containing a final existential component C such that V (G) =
C ∪N(C), we refer to G as a simple prefixed graph.

We remark that for any prefixed graph G and any final existential component C thereof, the prefixed
graph G[C ∪N(C)] is always simple.

We now turn to present a result on the width of simple prefixed graphs, but before doing so, present the
following lemma that will be of help. We say that a prefixed graph G is existential if all of the variables are
existentially quantified in P (G). For an existential prefixed graph G, we have that the width of G is equal
to the treewidth of (V (G), E(G)) plus one.

Lemma 4.10 Let G be an existential prefixed graph of width k and let u1, . . . , ui be a clique of G. Then
there exists an elimination ordering for G of width k that starts with u1, . . . , ui.

Lemma 4.10 is a well-known property of ordinary treewidth.

10

Lemma 4.11 LetG be a simple prefixed graph with final existential componentC and letH be an existential
prefixed graph with V (H) = V (G) andE(H) = E(G)∪E(K(V (G)\C)). Then width(G) = width(H) ≤
|(V (G) \ C)|+ width(G[C]).

Proof. (width(G) ≤ width(H)): Let u1 be an ordering of V (G) \ C such that for all u, v ∈ V (G) \ C,
if u <P (G) v then u precedes v in u1. By Lemma 4.10 there is a minimal elimination ordering for H
of the form (u1, u2), where u2 is an ordering of the variables in C. It is readily verified that (u1, u2) is an
elimination ordering forG that has width less than or equal to the width of (u1, u2) viewed as an elimination
ordering for H .

(width(G) ≥ width(H)): By Lemma 4.6 there exists a minimal elimination ordering (Gu, u) for G of
the form (u1, u2) where u2 is an ordering ofC and whereGu contains all edges ofK(N(C)). Let (H ′, u) be
the elimination ordering for H induced by u. It is straightforward to verify that (H ′, u) is equal to (Gu, u).
We claim that, with respect to this common elimination ordering, the width of H is less than or equal to the
width of G.

Let x0 ∈ C be the first variable that occurs in u2, and let k be |V (G) \ C|. By Lemma 4.2, for each
variable v in V (G) \C, it holds that {v, x0} is an edge in Gu. Hence w(x0) in (Gu, u) is equal to k+ 1. To
establish the claim, consider any variable v ∈ V (G). If v is existentially quantified in G, then w(v) is taken
into account when computing the width of (Gu, u) for each of G and H . If v is universally quantified in G,
then w(v) is taken into account when computing the width of (Gu, u) for H , but not G; however, w(v) is
less than or equal to k and hence less than or equal to w(x0).

(width(H) ≤ |(V (G)\C)|+width(G[C]): Let u1 be an arbitrary ordering of the variables in V (H)\C
and u2 be a minimal elimination ordering for G[C] = H[C]. Then (u1, u2) is an elimination ordering for
H of width at most |(V (G) \ C)|+ width(G[C]). �

We can now establish a basic computational property of our width notion: for any fixed k, an elimination
ordering for an input prefixed graph G of width at most k can be efficiently computed, if one exists at all.

Theorem 4.12 For every k ≥ 1 there is a polynomial-time algorithm that, given as input a prefixed graph
G, computes an elimination ordering for G of width less than or equal to k if width(G) ≤ k, and otherwise,
correctly reports “width(G) > k”.

Proof. The algorithm in fact computes a minimal elimination ordering (if it holds that width(G) ≤ k). The
following is the description of the algorithm.

• If the last quantifier block of the current graph G is universal, then, for any variable y in that block,
the algorithm is called on G \ {y}, and if an elimination ordering is returned, y is concatenated to it.
This is justified by Lemma 4.4.

• If the last quantifier block of the current graphG is existential, andG has a final existential component
C, it is checked if the width ofG[C∪N(C)] is less than or equal to k by Lemma 4.11 and an algorithm
for computing treewidth [7]. If this check fails, the algorithm halts and reports “width(G) > k”; this
is justified by Lemma 4.8. Otherwise, a minimal elimination ordering for G[C ∪N(C)] is recorded,
and the algorithm is recursively applied to G−C . If the recursive call returns an elimination ordering,
then the algorithm returns a minimal elimination ordering for G by making use of the algorithm of
Lemma 4.8.

• If the last quantifier block B of the current graph G is existential, and G has no final existential
component C, then the following is performed.

11

If B is the only existential quantifier block, then either it is the only quantifier block or there is one
other quantifier block that is universal. Then, since G[B] is purely existential, its width is equal to the
treewidth of the graph of G[B] plus one. So, an algorithm for treewidth [7] checks if the treewidth of
this graph is less than or equal to k − 1; if so, it finds a minimal elimination ordering u of G[B] and
outputs the ordering consisting of any universal variables of G followed by u.

If B is not the only existential quantifier block, let B1, . . . , Br denote the quantifier blocks of P (G).
Then letG′ be the prefixed graph equal toG but with the change that P (G′) is equal toB1, . . . , Br−2∪
Br, Br−1. It is straightforward to verify that the elimination orderings of G and G′ coincide, and so
width(G) = width(G′). Thus, the algorithm is called recursively on G′.

�

5 Tractability

In this section, we establish the first part of Theorem 3.1. We first show that, when k upper bounds the width
of a quantified conjunctive sentence, the sentence can be efficiently translated into an equivalent sentence
in QCFOk

∀ (Theorem 5.1). We then show that for any fixed k, sentences in QCFOk
∀ can be efficiently

model-checked (Theorem 5.2).

Theorem 5.1 For each constant k ≥ 1, there exists a polynomial-time algorithm that, given any quantified
conjunctive sentence Φ whose prefixed graph has width less than k computes a logically equivalent sentence
Φ′ ∈ QCFOk

∀.

The idea of the proof of Theorem 5.1 is as follows. The algorithm is defined by induction on the length
of an elimination ordering u1, . . . , un for Φ. Two cases are considered depending on how the last variable un
in the elimination ordering is quantified. In each of the two cases, a formula Ψ is constructed; this formula
Ψ is structurally similar to Φ, and has u1, . . . , un−1 as an elimination ordering. The algorithm can then be
applied inductively to Ψ, and then from the resulting QCFOk

∀ formula, the desired formula Φ′ ∈ QCFOk
∀

can be constructed.
Proof. (Theorem 5.1) The algorithm first invokes the algorithm of Theorem 4.12 to obtain an elimination
ordering u = u1, . . . , un of the prefixed graph G of Φ. Following this, we define the behavior of the
algorithm inductively on the length of the elimination ordering u. In the case that n = 0, the sentence Φ
does not contain any variables, and the algorithm outputs Φ.

Now suppose that the sequence has length n > 0. Assume that Φ has the form Pφ where P is the
quantifier prefix and φ is the quantifier-free part. We describe how the sentence Φ′ is computed in two cases,
depending on whether un is existential or universal.

Assume first that un is universal. We write φ as a conjunction of atomic formulas φ1∧· · ·∧φm. Variable
un is a final universal variable by condition (2) of elimination ordering, and thus we have that Φ is logically
equivalent to P ′∀unφ where P ′ is obtained by removing ∀un from P . Also we have

P ′∀un(φ1 ∧ · · · ∧ φm) ≡ P ′((∀unφ1) ∧ · · · ∧ (∀unφm))

where ≡ denotes logical equivalence. Define ψi = (∀unφi) for all i ∈ {1, . . . ,m}. Define Ψ to be the
formula P ′(R1(t1) ∧ · · · ∧Rm(tm)) where the Ri are new relation symbols and ti is a tuple containing the
free variables of ψi.

12

The ordering u1, . . . , un−1 is an elimination ordering of the prefixed graph of Ψ, and so the algorithm
can be invoked recursively to obtain a sentence Ψ′ ∈ QCFOk

∀ that is logically equivalent to Ψ. Define Φ′

to be the formula obtained from Ψ′ by replacing each instance of Ri(ti) in Ψ′ with ψi. The formula Φ′ is
clearly logically equivalent to Φ. We now argue that Φ′ ∈ QCFOk

∀.
Consider a subformula φ∗ of Φ′. If φ∗ is a subformula of one of the ψi, then by definition φ∗ is a

universally quantified atomic formula. Otherwise, we have that φ∗ is obtained from a subformula ψ∗ of Ψ′

by replacing each instance of Ri(ti) in ψ∗ with ψi. By induction, it holds that Ψ′ ∈ QCFOk
∀, implying that

ψ∗ either has k or fewer free variables or is a universally quantified atomic formula. It follows that φ∗ must
also have k or fewer variables or be a universally quantified atomic formula.

Assume now that un is existential. By condition (3) of elimination ordering un belongs to the last
quantifier block of P implying that Φ is logically equivalent to P ′∃unφ, where P ′ is obtained by removing
∃un from P . Write φ as φ1∧φ2 where φ1 is the conjunction of all atomic formulas from φ that do not contain
un, and φ2 is the conjuntion of all atomic formulas from φ that do contain un. We have P ′∃un(φ1 ∧ φ2) ≡
P ′(φ1 ∧ (∃unφ2)). Define Ψ to be the formula P ′(φ1 ∧ R(t)), where R is a new relation symbol and
t is a tuple containing the free variables of ∃unφ2. The prefixed graph of Ψ has as elimination ordering
(Gu[{u1, . . . , un−1}], (u1, . . . , un−1)), and so the algorithm can be invoked recursively to obtain a sentence
Ψ′ ∈ QCFOk

∀ that is logically equivalent to Ψ. Define Φ′ to be the formula obtained from Ψ′ by replacing
R(t) in Ψ′ with ∃unφ2. The formula Φ′ is clearly logically equivalent to Φ.

We now argue that Φ′ ∈ QCFOk
∀. Consider a subformula φ∗ of Φ′. If φ∗ is a subformula of one of

the ∃unφ2, then the claim follows because φ2 has at most k variables (φ2 has at most k variables since, by
condition (1) in the definition of elimination ordering, un and all of its neighbors in the prefixed graph of G
form a clique in the graph of G). Otherwise φ∗ is obtained from a subformula ψ∗ of Ψ′ by replacing each
instance of R(t) in ψ∗ with ∃unφ2. By induction, we have that Ψ′ ∈ QCFOk

∀. We consider the form of ψ∗.
If ψ∗ has k or fewer free variables, then φ∗ also has k or fewer free variables. If ψ∗ is a universally quantified
atomic formula, we consider the atomic formula underlying ψ∗. If this atomic formula came from φ1, then
φ∗ is equal to ψ∗. If this atomic formula is equal to R(t), then it must have (k− 1) or fewer variables, since
t has (k − 1) or fewer variables; it follows that φ∗ must also have (k − 1) or fewer variables. �

Theorem 5.2 If G is a set of prefixed graphs having bounded width, then the problem QC-MC(G) is
polynomial-time decidable.

Proof. There exists a constant k upper bounding the width of all prefixed graphs in G. The algorithm behaves
as follows. Given an instance (Φ,B) of QC-MC(G), the algorithm invokes the algorithm of Theorem 5.1,
with respect to k, to obtain a logically equivalent sentence Φ′ ∈ QCFOk

∀. The algorithm then evaluates Φ′ on
B in the natural fashion, computing the satisfying assignments for each subformula of Φ′ recursively [45].
The set of satisfying assignments for a subformula φ∗ of Φ is less than or equal to |B|k in the case that
φ∗ has k or fewer variables, and is less than or equal to |RB| in the case that φ∗ is a universally quantified
atomic formula where the atomic formula is on relation symbol R. Thus, the set of satisfying assignments
for each subformula is bounded above by a polynomial in the input representation, and the algorithm can be
carried out in polynomial time. �

6 Intractability

In this section, we establish hardness of the problem QC-MC(G) for graph sets G having unbounded width.
It will be convenient to work with relatively quantified formulas. For a unary relation symbol S, we use

13

(∀y ∈ S)φ as syntactic shorthand for ∀y(S(y) → φ). Let G be a prefixed graph. Let σG be the signa-
ture {R(v,v′) | {v, v′} ∈ E(G)} ∪ {Sy | ∀y appears in P (G)} where the R(v,v′) are binary relation sym-
bols and the Sy are unary relation symbols. Let R(G) be defined to be equal to P (G), but with each
universally quantified variable ∀y replaced with ∀y ∈ Sy. Define φG to be the quantifier-free formula∧
{v,v′}∈E(G)R(v,v′)(v, v

′). Define ΦG to be the sentence R(G)φG. We have that ΦG is a sentence over
σG. We will interpret ΦG over structures B having the property that for every {v, v′} ∈ E(G), it holds
that {(a, b) | (a, b) ∈ RB

(v,v′)} = {(a, b) | (b, a) ∈ RB
(v′,v)}. When working with structures, for an edge

{v, v′} ∈ E(G), we may discuss only one of R(v,v′), R(v′,v), which will be justified by this property; for
instance, in defining structures, we may define the interpretation of just one of R(v,v′), R(v′,v).

Let G be a set of prefixed graphs. We define RQC-MC(G) to be the parameterized problem of deciding,
given a pair (ΦG,B) whereG ∈ G and where B is a structure over σG, whether or not B |= ΦG; the prefixed
graph G is taken as the parameter of an instance. Note that the R of RQC-MC is intended to indicate that
the quantified formulas are relatively quantified. The following lemma shows that it is sufficient to prove
the hardness of RQC-MC(G).

Lemma 6.1 For any set G of prefixed graphs, there exists a polynomial-time reduction from the problem
RQC-MC(G) to the problem QC-MC(G).

Proof. Let (ΦG,B) be an instance of RQC-MC(G). We assume that for each universally quantified variable
y ofG, it holds that SB

y 6= ∅. For each universally quantified variable y ofG, we fix a mapping fy : B → SB
y

where fy acts as the identity on SB
y . Let Φ be the formula P (G)φG. We describe a structure B′ such that

(Φ,B′) is an equivalent instance of QC-MC(G), as follows. We have B′ = B.
If y, y′ are both universally quantified, we define RB′

(y,y′) = B × B if RB
(y,y′) ⊇ SB

y × SB
y′ , and we

define RB′

(y,y′) = ∅ otherwise. If y is universally quantified and x is existentially quantified, we define

RB′

(y,x) = (RB
(y,x)∩(SB

y ×B))∪{(b1, b2) | (fy(b1), b2) ∈ RB
(y,x)}. An existential winning strategy for (Φ,B′)

is straightforwardly verified to also be an existential winning strategy for (ΦG,B). In the other direction,
suppose that there is an existential winning strategy [37, Chapter 3] for (ΦG,B). Simulating this strategy and
mapping the value assigned to each universally quantified variable y under fy is straightforwardly verified
to give an existential winning strategy for (Φ,B). �

If G and H are prefixed graphs, we say that H is a simplification of G, denoted H ≺ G, if:

1. H = G−C where C is a final existential component of G, or

2. H = G[U] where U (V (G).

We will now show, in the next lemma, that when H ≺ G, there is a quite desirable type of reduction
from RQC-MC({H}) to RQC-MC({G}), in particular, a reduction that increases the universe size of the
structure by at most a multiplicative constant (Lemma 6.2). Here, by {H}, we denote the set that contains
H as its single element; the notation {G} is explained analogously. The following lemma will then show
(essentially) that, with respect to the problem RQC-MC(·), there is a nu-fpt reduction from any graph G′

derived by taking simplifications of G-graphs to G itself (Lemma 6.3); the reduction iteratively applies the
reduction in Lemma 6.2.

Lemma 6.2 There exists a polynomial-time mapping that, given

• a pair H,G of non-empty prefixed graphs such that H ≺ G and

14

• an instance (ΦH ,B) of RQC-MC({H}),

computes an instance (ΦG,B
′) of RQC-MC({G}) that is equivalent in the sense that B |= ΦH if and only

if B′ |= ΦG; in addition, for each such pair H ≺ G, there exists a constant L ≥ 1 such that any pair of
instances (ΦH ,B), (ΦG,B

′) related by the mapping has |B′| ≤ L|B|.

Proof. Suppose thatH = G[U] for a subset U (V (G), and let (ΦH ,B) be an instance of RQC-MC({H}).
Let W denote the variables V (G) \ U . We define B′ as follows. For each w ∈ W , let bw be a fresh value,
and let B′ = B ∪ {bw | w ∈W}. For every universally quantified variable w ∈W , we define SB′

w = {bw}.
For every pair of distinct variables w,w′ ∈W , we define RB′

(w,w′) = {(bw, bw′)}. For every pair of variables

w ∈ W , u ∈ U , we define RB′

(w,u) = {bw} × B. It is straightforward to verify that B |= ΦH if and only if
B′ |= ΦG.

Suppose now that H = G−C for a final existential component C of G with B1, . . . , Br the blocks
of P (G). If r = 1, we can use the previous argument, so we argue the case where r > 1 and where
N(C) ∩Br−1 6= ∅.

We define a structure B′ in the following way.
Fix a variable y0 ∈ Br−1 ∩N(C). We define

SB′
y0 = {(b, n) | b ∈ SB

y0 , n ∈ N(C)}.

For all other universally quantified variables y ∈ V (G), we define SB′
y = SB

y .
Define DC = {(n ≈ b) | n ∈ N(C), b ∈ B}. The universe of B′ is B′ = B ∪DC ∪ SB′

y0 . Clearly, we
have |B′| ≤ |B|(2|N(C)|+ 1).

We define the binary relations as follows.

1. For each edge {v, v′} ∈ E(G) not containing y0 that is in E(H), define

RB′

(v,v′) = RB
(v,v′)

2. For each edge of the form {v, y0} ∈ E(G) that is in E(H), define

RB′

(v,y0) = {(a, (b, n)) | (a, b) ∈ RB
(v,y0), n ∈ N(C)}

3. For each edge {c, c′} ∈ E(G) with c, c′ ∈ C, define RB
(c,c′) to be {((n ≈ b), (n ≈ b)) | b ∈ SB

y0 , n ∈
N(C)}, that is, the equality relation on DC .

4. For each edge {n, c} ∈ E(G) with n ∈ N(C) \ {y0}, c ∈ C, define RB′

(n,c) to be the set of elements
(b, (nc ≈ bc)) such that

[n = nc ⇒ b = bc] ∧ [n 6= nc ⇒ (b, bc) ∈ RB
(n,nc)]

5. For each edge {y0, c} ∈ E(G) with c ∈ C, define RB′

(y0,c)
to be the set of elements {((b0, n0), (nc ≈

bc)) such that [y0 = nc ⇒ b0 = bc] and

[y0 6= nc ⇒ (b0, bc) ∈ RB
(y0,nc)] ∧ [n0 = nc]

15

We now prove that B |= ΦH if and only if B′ |= ΦG. We view the problem of deciding whether or not
a quantified conjunctive sentence Pφ holds on a structure B as game between an existential player and a
universal player: the variables are set to values in B by the respective players according to the order P , and
the existential player wins if and only if all φ-atomic formulas are satisfied. We use πi to denote the operator
which projects a relation onto the ith coordinate.

Suppose that existential player wins the ΦH -game on B. We show that the existential player can win the
ΦG-game on B. Consider the following existential strategy for the ΦG-game. The strategy plays according
to the winning strategy for ΦH on B1, . . . , Br−2. The result is an assignment gr2 = hr2 defined on B1 ∪
. . . ∪ Br−2. Then, for an assignment gr−1 defined on Br−1, we define hr−1 to be equal to gr−1 but with
hr−1(y0) = π1(gr−1(y0)). The ΦH -winning strategy, in response to hr−1, provides a response assignment
hr defined on Br \ C such that h = hr−2 ∪ hr−1 ∪ hr is a satisfying assignment of φH .

Define n0 = π2(gr−1(y0)). Define gr to be the extension of hr defined on Br where for all c ∈ C,
it holds that gr(c) = (n0 ≈ h(n0)). Let g denote gr−2 ∪ gr−1 ∪ gr. We verify that g satisfies all atomic
formulas of φG, by considering the different cases above. For atomic formulas of type (1) and (2), it
suffices to check the definition of h(y0) = hr−1(y0) in terms of g(y0) and to observe that on all other
variables where h is defined, g is defined and equal to h. Atomic formulas of type (3) are clearly satisfied
since g gives the same value to all c ∈ C. Consider an atomic formula R(n,c)(n, c) of type (4). We have
(g(n), g(c)) = (h(n), (n0 ≈ h(n0))) which is straightforwardly verified to be in RB′

(n,c). Consider an

atomic formula RB′

(y0,c)
(y0, c) of type (5). We have (g(y0), g(c)) = ((hr−1(y0), n0), (n0 ≈ h(n0))), which

is straightforwardly verified to be in RB′

(y0,c)
.

Suppose that the universal player wins the ΦH -game on B. We show that the universal player can win
the ΦG-game on B′; we describe a universal strategy. First, the strategy simulates the winning universal
strategy for the ΦH -game on the blocks B1, . . . , Br−2, obtaining an assignment gr−2 = hr−2 to these
blocks. There is an assignment hr−1 to Br−1 such that no extension of hr−2 ∪ hr−1 satisfies φH . We now
consider two cases.

If hr−2 ∪ hr−1 already violates an atomic formula in φH of the form R(n,n′)(n, n
′), with n, n′ ∈ N(C),

then the strategy being defined sets gr−1(y0) = (hr−1(y0), n), and sets gr−1 equal to hr−1 on the variables
in Br−1 \ {y0}. We claim that there is no assignment gr defined on Br such that g = gr−2 ∪ gr−1 ∪ gr
satisfies φG. Consider any assignment gr defined on Br. Let h′ = hr−2 ∪ hr−1, and fix an element c ∈ C.
The value gr(c) has the form (n ≈ b). By considering the definition of RB′

(n,c), it can be seen that in fact
gr(c) has the form (n ≈ h′(n)). By using the fact that (h′(n), h′(n′)) /∈ RB

(n,n′), inspection of the definition

of RB′

(n,c) shows that g does not satisfy φG.
If hr−2 ∪ hr−1 does not violate an atomic formula in φH of the form R(n,n′)(n, n

′) with n, n′ ∈ N(C),
then the strategy being defined sets gr−1(y0) = (hr−1(y0), a) for some arbitrary a ∈ N(C) and sets gr−1

equal to hr−1 on the variables in Br−1 \ {y0}. We claim that there is no assignment gr defined on Br such
that g = gr−2 ∪ gr−1 ∪ gr satisfies φG. Consider any assignment gr defined on Br, and set hr = gr. The
assignment h = hr−2∪hr−1∪hr violates an atomic formula in φH . But by assumption, this atomic formula
must have the form R(v,v′)(v, v

′) where {v, v′} ∈ E(G), and hence this atomic formula appears also in φG.
The assignment g does not satisfy φG by the definition of (1) and (2). �

In the rest of this section, when G is a set of prefixed graphs G, we will use G∗ to denote the closure of
G under taking simplifications.

Lemma 6.3 For any set of prefixed graphs G, there exists a nu-fpt reduction from RQC-MC(G∗) to RQC-MC(G).

Proof. We describe a reduction. Let G′ be an arbitrary prefixed graph in G∗. By definition of G∗, there

16

exists a sequence of prefixed graphs G′ = G1 ≺ G2 ≺ · · · ≺ Gm with Gm ∈ G. The reduction, given an
instance (Φ1,B1) of RQC-MC({G1}), repeatedly applies the mapping of Lemma 6.2 to obtain a sequence
of instances (Φ1,B1) . . . , (Φm,Bm) where (Φi,Bi) is an instance of RQC-MC({Gi}); we use σi to denote
its signature. The output of the reduction is (Φm,Bm).

We bound the running time of this reduction as follows. We use the fact that there exists a polynomial s
such that any binary structure B over signature σ (having at least one non-empty relation) has a representa-
tion of size s(|B||σ|). We may and do assume that s has only positive coefficients. Let t be a polynomial that
bounds the running time of the mapping of Lemma 6.2; we also assume that t has only positive coefficients.

Let Li be the constant given by Lemma 6.2 for the pair Gi ≺ Gi+1, for each i = 1, . . . ,m − 1.
For each i, we have |Bi| ≤ L1 · · ·Li−1|B1|. For each i, we thus have |Bi| ≤ L1 · · ·Lm−1|B1|. The
reduction described here invokes m − 1 times an algorithm of running time t on an input of size at most
s(L1 · · ·Lm−1|B1|). The total running time is thus bounded above by (m − 1)t(s(L1 · · ·Lm−1|B1|)) ≤
(m− 1)(L1 · · ·Lm−1)Dt(s(|B1|)) where D denotes the degree of the polynomial t · s. �

Putting together the results given in this section so far, we have a nu-fpt reduction from RQC-MC(G∗)
to QC-MC(G). We thus need to show hardness of the problem RQC-MC(G∗). The following lemma is key.

Lemma 6.4 Suppose that G is a set of simple prefixed graphs of unbounded width. Then, there exists a
nu-fpt reduction from either k-clique or co-k-clique to RQC-MC(G).

Proof. Let us consider the quantity width(G[C]) over simple prefixed graphsG in G with C = CG denoting
the final existential component of a graph G (this final existential component exists by the assumption that
G is a set of simple prefixed graphs).

If this quantity is unbounded, then by the result of [39], there is a nu-fpt reduction from k-clique to
RQC-MC({G[C] | G ∈ G}), which is a particular case of RQC-MC(G∗). The result then follows from
Lemma 6.3.

If this quantity is bounded, we argue as follows. By Lemma 4.11, for each k ≥ 1, there exists a graph
G ∈ G such that |V (G) \C| = |N(C)| ≥ k. We consider the number of existentially quantified variables in
N(C) over all graphs G ∈ G. If this is unbounded, then the graphs G−C contain (as subgraphs) cliques of
existential variables of all sizes. It follows that the set G∗ contains, as prefixed graphs, cliques of existential
variables of all sizes, and the k-clique problem can be reduced directly to RQC-MC(G∗); the result then
follows from Lemma 6.3.

It remains to argue the case where the number of universally quantified variables in N(C) is unbounded
over all graphs G ∈ G. By appeal to Lemma 6.3, it suffices to argue in the case where for each k ≥ 1, there
exists a graph G ∈ G with |N(C)| = k and N(C) contains only universal variables. We reduce from the
problem co-k-clique. Let ((V (H), E(H)), k) be an instance of co-k-clique. Let G ∈ G be a graph with
|N(C)| = k. We show how to encode the instance of co-k-clique as an instance of RQC-MC({G}). We
define a structure B as follows. Define SB

y = V (H) for each y ∈ N(C) and defineDC = {(y′, y′′, v′, v′′) ∈
N(C)2 × V (H)2 | y′ 6= y′′, {v′, v′′} /∈ E(H)}. For each pair c, c′ ∈ C, define RB

(c,c′) to be the equality
relation on DC . For each y ∈ N(C) and c ∈ C, define RB

(y,c) to be the relation containing all pairs
(v, (y′, y′′, v′, v′′)) ∈ V (H)×DC such that

[y = y′ ⇒ v = v′] ∧ [y = y′′ ⇒ v = v′′].

We claim that there is no k-clique in (V (H), E(H)) if and only if B |= ΦG. Let y1, . . . , yk denote the
elements of N(C).

17

Suppose that there is no k-clique in (V (H), E(H)). Consider any mapping f : N(C)→ V (H). There
exist distinct indices i, j such that {f(yi), f(yj)} is not contained in E(H). It is straightforward to verify
that the extension of f sending all variables c ∈ C to (yi, yj , f(yi), f(yj)) satisfies φG. We conclude that
B |= ΦG.

Suppose that there is a k-clique {v1, . . . , vk} in (V (H), E(H)). Let f : N(C) → V (H) be the
mapping that sends each yi to vi. We claim that there is no extension of f that satisfies φG. We prove this
by contradiction. Assume that there is such an extension f ′. By the definition of the relations RB

(c,c′), we
have that f ′ sends all variables c ∈ C to the same value. Let c be any variable in C. By the definition of the
relations RB

(y,c), we have that f ′(c) has the form (yi, yj , f(yi), f(yj)). But this cannot be an element of DC ,
since {f(yi), f(yj)} ∈ E(H), and we have the contradiction. We conclude that B 6|= ΦG. �

We can now give the main theorem of this section.

Theorem 6.5 Let G be a set of prefixed graphs. If G has unbounded width, then QC-MC(G) is not fixed-
parameter tractable on binary signatures, unless W[1] ⊆ nuFPT.

Proof. From Lemmas 4.4 and 4.8 it follows that if G has unbounded width then G∗ contains simple prefixed
graphs of unbounded width. By Lemma 6.4, the problem RQC-MC(G∗) admits a nu-fpt reduction from
k-clique or co-k-clique. By Lemmas 6.3 and 6.1, the problem QC-MC(G), on binary signatures, does as
well. �

7 Conclusion

In this article, we gave a complete complexity classification of sets of prefixed graphs, with respect to the
problem of model checking quantified conjunctive sentences. A natural future direction for research is to
attempt to obtain classifications on sets of quantified conjunctive sentences. One classification of this form,
in a certain multi-sorted version of quantified conjunctive logic, was achieved by Chen and Marx [22]. One
can ask if such a classification can be obtained in usual one-sorted first-order logic. Another direction is to
study the complexity of counting answers to formulas; in this problem, one is given a first-order formula and
a finite structure, and the goal is to count the number of assignments, to the free variables of the formula,
that satisfy the formula on the structure. There have been recent results on this direction in the context of
primitive positive formulas [28, 23] and existential positive formulas [24].

Acknowledgements. The first author was supported by the Spanish Project MINECO COMMAS
TIN2013-46181-C2-R, Basque Project GIU15/30, and Basque Grant UFI11/45. The second author was
supported by MICINN grant TIN2010-20967-C04-02.

References

[1] Isolde Adler, Georg Gottlob, and Martin Grohe. Hypertree width and related hypergraph invariants.
Eur. J. Comb., 28(8):2167–2181, 2007.

[2] Isolde Adler and Mark Weyer. Tree-width for first order formulae. Logical Methods in Computer
Science, 8(1), 2012.

[3] Manuel Bodirsky and Hubie Chen. Oligomorphic clones. Algebra Universalis, 57(1):109–125, 2007.

18

[4] Manuel Bodirsky and Hubie Chen. Qualitative temporal and spatial reasoning revisited. Journal of
Logic and Computation, 19(6):1359–1383, 2009.

[5] Manuel Bodirsky, Hubie Chen, and Michael Pinsker. The reducts of equality up to primitive positive
interdefinability. Journal of Symbolic Logic, 75(4):1249–1292, 2010.

[6] Manuel Bodirsky and Martin Grohe. Non-dichotomies in constraint satisfaction complexity. In Pro-
ceedings of ICALP’08, pages 184–196, 2008.

[7] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput., 25(6):1305–1317, 1996.

[8] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer
Science, 209:1–45, 1998.

[9] Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set.
Journal of the ACM (JACM), 53, 2006.

[10] Hubie Chen. Quantified constraint satisfaction and bounded treewidth. In 16th European Conference
on Artificial Intelligence (ECAI), 2004.

[11] Hubie Chen. Quantified Constraint Satisfaction, Maximal Constraint Languages, and Symmetric Poly-
morphisms. In 22nd International Symposium on Theoretical Aspects of Computer Science (STACS),
2005.

[12] Hubie Chen. The Complexity of Quantified Constraint Satisfaction: Collapsibility, Sink Algebras, and
the Three-Element Case. SIAM Journal on Computing, 37(5):1674–1701, 2008.

[13] Hubie Chen. Existentially restricted quantified constraint satisfaction. Information and Computation,
207(3):369–388, 2009.

[14] Hubie Chen. Quantified constraint satisfaction and the polynomially generated powers property. Alge-
bra Universalis, 65:213–241, 2011.

[15] Hubie Chen. Meditations on quantified constraint satisfaction. In Robert Constable and Alexandra
Silva, editors, Logic and Program Semantics, volume 7230 of Lecture Notes in Computer Science,
pages 35–49. Springer Berlin / Heidelberg, 2012.

[16] Hubie Chen and Vı́ctor Dalmau. Beyond hypertree width: Decomposition methods without decompo-
sitions. In Eleventh International Conference on Principles and Practice of Constraint Programming,
pages 167–181, 2005.

[17] Hubie Chen and Victor Dalmau. From Pebble Games to Tractability: An Ambidextrous Consistency
Algorithm for Quantified Constraint Satisfaction. In Computer Science Logic 2005, 2005.

[18] Hubie Chen, Vı́ctor Dalmau, and Berit Grußien. Arc consistency and friends. J. Log. Comput.,
23(1):87–108, 2013.

[19] Hubie Chen and Martin Grohe. Constraint satisfaction with succinctly specified relations. Journal of
Computer and System Sciences, 76(8):847–860, 2010.

19

[20] Hubie Chen and Yannet Interian. A model for generating random quantified boolean formulas. In
IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Ed-
inburgh, Scotland, UK, July 30-August 5, 2005, pages 66–71, 2005.

[21] Hubie Chen, Florent R. Madelaine, and Barnaby Martin. Quantified constraints and containment
problems. Logical Methods in Computer Science, 11(3), 2015.

[22] Hubie Chen and Dániel Marx. Block-sorted quantified conjunctive queries. In ICALP, 2013.

[23] Hubie Chen and Stefan Mengel. A trichotomy in the complexity of counting answers to conjunctive
queries. In 18th International Conference on Database Theory, ICDT 2015, March 23-27, 2015,
Brussels, Belgium, pages 110–126, 2015.

[24] Hubie Chen and Stefan Mengel. Counting answers to existential positive queries: A complexity clas-
sification. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, pages 315–326, 2016.

[25] Hubie Chen and Moritz Müller. One hierarchy spawns another: graph deconstructions and the com-
plexity classification of conjunctive queries. In Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 32:1–
32:10, 2014.

[26] Hubie Chen and Moritz Müller. The fine classification of conjunctive queries and parameterized loga-
rithmic space. TOCT, 7(2):7, 2015.

[27] Victor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint Satisfaction, Bounded Treewidth,
and Finite-Variable Logics. In Constraint Programming ’02, LNCS, 2002.

[28] A. Durand and S. Mengel. Structural tractability of counting of solutions to conjunctive queries. In
Proceedings of the 16th International Conference on Database Theory (ICDT 2013), 2013.

[29] T. Feder and M. Vardi. The computational structure of monotone monadic SNP and constraint satis-
faction: A study through Datalog and group theory. SIAM Journal on Computing, 28:57–104, 1999.

[30] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[31] Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions. Journal of
the ACM, 49:716–752, 2002.

[32] Eugene C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In AAAI 1990,
pages 4–9, 1990.

[33] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. The complexity of quantified constraint
satisfaction problems under structural restrictions. In IJCAI 2005, 2005.

[34] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of acyclic conjunctive queries.
Journal of the ACM, 48(3):431–498, 2001.

[35] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and tractable
queries. J. Comput. Syst. Sci., 64(3):579–627, 2002.

20

[36] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers, marshals, and guards: game theoretic
and logical characterizations of hypertree width. J. Comput. Syst. Sci., 66(4):775–808, 2003.

[37] Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y. Vardi,
Yde Venema, and Scott Weinstein. Finite Model Theory and Its Applications. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2007.

[38] Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen from the
other side. Journal of the ACM, 54(1), 2007.

[39] Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evaluation of conjunctive queries
tractable? In STOC 2001, 2001.

[40] P. Kolaitis and M. Vardi. Conjunctive-Query Containment and Constraint Satisfaction. Journal of
Computer and System Sciences, 61:302–332, 2000.

[41] Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. In
Proceedings of the 42nd ACM Symposium on Theory of Computing, pages 735–744, 2010.

[42] Dániel Marx. Tractable structures for constraint satisfaction with truth tables. Theory of Computing
Systems, 48:444–464, 2011.

[43] G. Pan and M. Vardi. Fixed-parameter hierarchies inside pspace. In 21st Annual IEEE Symposium on
Logic in Computer Science, pages 27–36, 2006.

[44] Luca Pulina and Armando Tacchella. Treewidth: A useful marker of empirical hardness in quanti-
fied boolean logic encodings. In 15th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, pages 528–542, 2008.

[45] Moshe Y. Vardi. On the complexity of bounded-variable queries. In PODS’95, pages 266–276, 1995.

21

