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Abstract

We present and study a framework in which one can present alternation-based lower
bounds on proof length in proof systems for quantified Boolean formulas. A key notion in
this framework is that ofproof system ensemble, which is (essentially) a sequence of proof
systems where, for each, proof checking can be performed in the polynomial hierarchy. We
introduce a proof system ensemble calledrelaxing QU-reswhich is based on the established
proof systemQU-resolution. Our main results include an exponential separation of the tree-
like and general versions of relaxing QU-res, and an exponential lower bound for relaxing
QU-res; these are analogs of classical results in propositional proof complexity.

1 Introduction

Background. Traditionally, the area ofpropositional proof complexitystudies proof length in proposi-
tional proof systems for certifying the unsatisfiability ofinstances of theSAT problem, which instances are
quantifier-free propositional formulas [16, 5, 26]. This line of study is supported by multiple motivations;
let us highlight a few. First, while satisfiable formulas canbe easily certified by a satisfying assignment,
it is also natural to desire efficiently verifiable proofs forunsatisfiable formulas (for instance, to check that
a SAT algorithm judged unsatisfiability correctly); understanding whether and when proof systems have
succinct proofs is a prime concern of this area. Relatedly,SAT algorithmsfor deciding the SAT problem can
be typically shown to implicitly generate proofs in a proof system, and thus insight into proof length in the
resulting proof system can be used to gain insight into the running-time behavior of SAT algorithms (see
for example the discussions in [4, 1]). In addition, the question of whether or not there are proof systems
admittingpolynomially bounded proofsis (when formalized) equivalent to the question of whether or not
NP is equal to coNP [16], and one can thus suggest that studying proof length in propositional proof systems
sheds light on the relationship between these two complexity classes.

Over recent years, researchers have devoted increasing attention to methods for solving theQBF prob-
lem, a generalization of the SAT problem and a canonical PSPACE-complete problem; an instance of this
problem is a propositional formula where each variable is either existentially or universally quantified. (QBF
is short forquantified Boolean formula.) It is often suggested that the move to studying this more general
problem is based on advances in the efficacy of SAT algorithms(see for example [27]). As reinforces this
suggestion, let us point out that one can find QBF solution techniques which use SAT algorithms as black-
box, primitive components, and hence which arguably conceive of and treat the SAT problem as feasibly
solvable. For instance, sKizzo, a QBF solver dating back to 2005, would convert the QBF being processed
to a SAT instance and then call a SAT solver, whenever this wasaffordable [8]. As another example, a
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different QBF solver which extensively calls a SAT solver during a backtrack-style search was developed
and studied [25].

The rise in the study of the QBF problem has resulted in the identification of a number of core algorith-
mic techniques and corresponding proof systems that aim to capture these (see for example [13, 18, 17, 23,
3, 21, 9, 10] and the references therein). We refer to these proof systems asQBF proof systems; they can
be used as a basis for certifying a decision for a QBF instance. One can motivate the study of QBF proof
systems in much the same way that the study of propositional proof systems has been motivated; hence,
these QBF proof systems would seem to suggest a new chapter inthe study of proof complexity, and a new
domain for the existing lines of inquiry thereof.

However, one is immediately confronted with a dilemma upon inspecting the very basic question of
whether or not a typical QBF proof system requires long (exponentially sized) proofs—again, a primary
type of question in traditional proof complexity. As an example, let us discussQ-resolution[13], a QBF
proof system which is heavily studied and used, in both theory and practice (see for example [2, 19, 18,
22, 23, 3, 9] and the references therein). When applied to SATinstances (viewed as instances of QBF
where all variables are existentially quantified), Q-resolution behaves identically to resolution (a heavily
studied propositional proof system), and hence the known exponential lower bounds on resolution proof
length [20, 7] transfer immediately to Q-resolution. This observation leaves one with a lingering sentiment—
which is often expressed by members of the community—that there is something left to be said. After all,
Q-resolution is defined on QBF instances, which are substantially more general than SAT instances; the
observation does not yield any information about how Q-resolution handles this extra generality, that is,
how it copes with alternation of quantifiers. Indeed, there is a sharp disconnect between observing a lower
bound for a QBF proof system via a set of SAT instances, and thementioned treatment of the SAT problem,
by QBF algorithms, as a feasibly solvable primitive. These considerations naturally lead to the question of
whether or not one can formulate and prove a lower bound whicharises from alternation.

Contributions. In this article, we present and study a framework in which it is possible to present such
alternation-based lower bounds on proof length in QBF proofsystems.

We define aproof system ensembleto be an infinite collection of proof systems, where in each proof
system, whether or not a given stringπ constitutes a proof of a given formulaΦ can be checked in the
polynomial hierarchy (Definition 3.1). A proof system ensemble is considered to havepolynomially bounded
proofs (for a language) if it contains a proof system which has polynomially bounded proofs in the usual
sense (Definition 3.3). As a result, it is straightforward todefine proof system ensembles that have succinct
proofs for any set of QBFs with bounded alternation, such as aset of SAT instances (and the proof system
ensembles studied herein all have this property); this in turn forces proof length lower bounds, by nature,
to arise from a proof system’s inability to cope with quantifier alternation.1 In terms of complexity classes,
the question of whether or not there exists a polynomially bounded proof system ensemble for the QBF
problem (or any other PSPACE-complete problem) is equivalent to the question of whether or not PSPACE
is contained in PH, the polynomial hierarchy (Proposition 3.4). Indeed, the relationship that traditional
proof complexity bears to the NP equals coNP question is analogous to the relationship between the present
framework and the PSPACE equals PH question. (Let us point out that no direct implication is known
between these two open questions, and so, in a certain sense,progress in one framework may proceed
orthogonally to progress in the other!)

1 Note that there is, a priori, a difference between allowing proof systems oracle access to the SAT problem—which would be
natural for modelling QBF solvers that treat the SAT problemas feasibly solvable—and allowing oracle access to arbitrary levels
of the PH. We focus on the latter for various reasons: the proof length lower bounds will arise from alternation; we believe that
this results in a more robust model; and, this focus causes the proof length lower bounds, which are here of primary interest, to be
stronger.
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One of our main motivations in pursuing this work was to gain further insight into Q-resolution; here,
we focus on a slight extension,QU-resolution[18], where from existing clauses one can derive new clauses
in two ways: by a rule for eliminating literals on universally quantified variables and by resolving two
clauses on any variable (in Q-resolution, one can only resolve on existentially quantified variables). Q-
resolution, QU-resolution, and their relatives are typically defined only for clausal QBFs—QBFs that consist
of a quantifier prefix followed by a conjunction of clauses. Weshow how to parameterize and lift QU-
resolution to obtain a proof system ensemble which we callrelaxing QU-reswhich is in fact defined on
arbitrary QBFs (indeed, it is defined on what we callquantified Boolean circuits), and not just those in
clausal form; relaxing QU-res is the main proof system ensemble that we study. Let us overview how we
define it.

• We define anaxiomof a QBF to be a clause which is, in a certain precise sense, entailed by the QBF
(see Section 4.1).

• We then show that, given a QBFΦ and a partial assignmenta to some of its variables, one can
define a QBFΦras derived naturally fromΦ, where the variables on whicha is defined have been
instantiated (in a certain precise sense; see Section 4.2).This QBFΦras has the key property that if
it is false, then the clause corresponding toa is an axiom of the QBFΦ (see Proposition 4.3 for a
precise statement). We view the notion of inferring clausesfrom the falsity of QBFs whose variables
are partially instantiated as highly natural; indeed, in the case of SAT, performing such inferences is a
basis of modern backtracking SAT solvers that performclause learning.

• Recall that each proof system in our proof system ensemble may use, as an oracle, a level of the PH; in
particular, the QBF problem restricted to a constant numberof alternations may be used as an oracle.
In order to infer clauses from a QBFΦ using the method just described, we need a way of detecting
falsity of QBFs having the formΦras. But in general, this is difficult; such a QBFΦras may have
a high number of alternations, and thus might not be immediately decidable using an oracle of the
described form. To the end of permitting the falsity detection of QBFsΦras using such oracles, we
define the notion of arelaxationof a QBF. A relaxation of a QBFΦ is obtained fromΦ by changing
the order of the quantifier/variable pairs in the quantifier prefix; roughly speaking, such a pairQv may
be moved to the left ifQ is the universal quantifier (@), and may be moved to the right ifQ is the
existential quantifier (D). (See Section 4.2 for the precise definition.) A key property of this notion is
that if a relaxation of a QBFΦ is false, then the QBFΦ is false (Proposition 4.4).

With this notion of relaxation in hand, we define, for eachk ě 2, the setHpΦ,Πkq to contain
the axioms that arise from QBFsΦras havingΠk-relaxations (relaxations with aΠk prefix) that are
false. That is, in this set we collect the axioms obtainable by detecting falsity of QBFsΦras via the
consideration ofΠk-relaxations. (Hence, the detection is sound in that it is always correct, but it is
not complete). Note that it holds that

HpΦ,Π2q Ď HpΦ,Π3q Ď HpΦ,Π4q Ď ¨ ¨ ¨ .

• This gives us a sequence of versions of QU-resolution: for each k, we obtain a version by defining
a proof to be a sequence of clauses derived from the axiomsHpΦ,Πkq and the two aforementioned
rules of QU-resolution. This sequence is the proof system ensemblerelaxing QU-res. Let us re-
mark that each of these versions is sound and complete, in a precise sense (see Definition 3.1 and
Proposition 4.7).
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A couple of remarks are in order. First, note that the empty clause is an axiom inHpΦ,Πkq whenever
Φ is a false QBF whose quantifier prefix isΠk. Consequently, relaxing QU-res is polynomially bounded on
any set of false QBFs having bounded alternation (this is discussed in Section 4.2). Let us also note that
although here we explicitly lift QU-resolution to a proof system ensemble, the approach that we take here
can be applied to analogously lift any proof system which is based on deriving clauses from a set of axiom
clauses.

Apart from the formulation of the framework, our main results are as follows. We prove an exponential
separation between the tree-like and general versions of relaxing QU-res (Section 6), by exhibiting a set
of formulas which have polynomial size QU-resolution proofs, but which require exponential size proofs
in tree-like relaxing QU-res; this gives an alternation-based analog of the known separation between tree-
like and general resolution [12, 6]. Tree-like QU-resolution proofs can be viewed as the traces of a natural
backtrack-style QBF decision procedure (this is evident from the viewpoint in Section 4.3, and is also
developed explicitly in [14, Section 4.3]), and so this separation formally differentiates the power of such
backtracking and general QU-resolution. The lower bound ofthis separation is based on a prover-delayer
game for tree-like QU-resolution proofs (Section 5), whichcan be viewed as a generalization of a known
prover-delayer game for tree-like resolution [24]; note that recently and independently of our work [15],
a game similar to ours was presented for tree-like Q-resolution [11]. We also prove an exponential lower
bound for relaxing QU-res (Section 7).

All in all, the ideas and techniques developed in this work draw upon and interface concepts from
two-player game interaction, proof complexity, and quantified propositional logic. We believe that further
progress could benefit from creative input from each of theseareas, and certainly look forward to future
research on the presented framework.

Note that some proofs have been deferred to the appendix.

2 Preliminaries

For each integerk, we userks to denote the set that is equal tot1, . . . , ku whenk ě 1, and that is equal to
the empty setH whenk ă 1. We useN to denote the natural numberst0, 1, 2, . . .u.

We usedompfq to indicate the domain of a function. A functionf is a restriction of a functiong if
dompfq Ď dompgq and, for eacha P dompfq, it holds thatgpaq “ fpaq; when this holds, we also say thatg

is anextensionof f . Whenf is a function, we usef raÑ bs to denote the function on domaindompfqYtau
that mapsa to b, and otherwise behaves likef . We writef æ S to denote the restriction of a functionf to
the setS. We say that two functionsf andg agreeif for each elementa P dompfq X dompgq, it holds that
fpaq “ gpaq.

WhenA andB are sets, we userAÑ Bs to denote the set of functions fromA toB.
Clauses.In this article, we employ the following terminology to discuss clauses. Aliteral is a propo-

sitional variablev or the negationv thereof. Two literals arecomplementaryif one is a variablev and the
other isv; each is said to be thecomplementof the other. Aclauseis a disjunction of literals that contains,
for each variable, at most one literal on the variable. A clause is sometimes viewed as the set of the literals
that it contains; two clauses are considered equal if they are equal as sets. A clause isemptyif it does not
contain any literals. The variables of a clause are simply the variables that underlie the clause’s literals, and
the set of variables of a clauseα is denoted byvarspαq. Whenα is a clause, we useassignpαq to denote the
unique propositional assignmentf with dompfq “ varspαq such thatα evaluates to false underf . In the
other direction, whenf is a propositional assignment, we useclausepfq to denote the unique clauseα with
varspαq “ dompfq that evaluates to false underf . We will freely and tacitly interchange between a clause
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α and its corresponding assignmentassignpαq. A clauseγ is aresolventof two propositional clausesα and
β on variablev if there exists a literalL P α such that its complementM is in β, γ “ pαztLuq Y pβztMuq,
andv is the variable underlyingL andM .

Quantified Boolean circuits and formulas.We assume basic familiarity with quantified propositional
logic. A QBC (short forquantified Boolean circuit) consists of a quantifier prefix~P “ Q1v1 . . . Qnvn,
where eachQi is a quantifier int@, Du and eachvi is a propositional variable; and, a Boolean circuitφ built
from the constants0 and1, propositional variables amongtv1, . . . , vnu, and the gates AND (̂), OR (_),
and NOT ( ). We refer to the computational problem of deciding whetheror not a QBC is false as theQBC
problem. For brevity, we sometimes refer to existentially quantified variables asD-variables, and universally
quantified variables as@-variables. While it is typical to notate a QBC by simply specifying the prefix ~P

immediately followed by the circuitφ, we will typically separate these two parts by a colon for thesake
of readability, using for example~P : φ. We assume that each quantifier prefix does not contain repeated
variables. WhenΦ “ ~P : φ is a QBC, by apartial assignment ofΦ, we refer to a propositional assignment
f : S Ñ t0, 1u defined on a subsetS of the variables appearing in~P . A QBF is a QBC~P : φ whereφ is a
Boolean formula. Aclausal QBFis a QBF~P : φ whereφ is the conjunction of clauses.

Quantifier prefixes. Let i ě 1. A quantifier prefix~P “ Q1v1 . . . Qnvn is Πi if Q1 . . . Qn, viewed as a
string over the alphabett@, Du, is contained in the language denoted by the regular expression @˚D˚@˚D˚ . . .,
which containsi starred quantifiers, beginning with@˚ and alternating;Σi is defined similarly, but with
respect to the regular expressionD˚@˚D˚@˚ . . ..

The following notation is relative to a quantifier prefix~P “ Q1v1 . . . Qnvn; when we use it, the prefix
will be clear from context. We writevi ĺ vj if i ď j or if j ă i andQj “ Qj`1 “ ¨ ¨ ¨ “ Qi. We extend
this binary relation (and others) to sets in the following natural way: whenU andV are sets of variables,
we writeU ĺ V if for eachu P U and eachv P V , it holds thatu ĺ v. We also write, for example, that
U ĺ v for a single variablev whenU ĺ tvu. We writevi ” vj if vi ĺ vj andvj ĺ vi. It is straightforward
to verify that” is an equivalence relation; we refer to each equivalence class of” as aquantifier block. We
write vi ň vj if vi ĺ vj andvi ı vj. WhenS is a set of variables, we uselastpSq to denote the variable
of S appearing last in the quantifier prefix, that is, the variablevm, wherem “ maxti | vi P Su. Typically,
when we use the functionlastpSq, it is in conjunction with the just-defined binary relations, and hence what
is most relevant will be the relative location of the quantifier block oflastpSq.

Strategies.LetΦ “ ~P : φ be a QBC; letX denote theD-variables ofΦ, and letY denote the@-variables
of Φ. Whenx P X, defineYăx to be the set of variablesty P Y | y ň xu; dually, wheny P Y , defineXăy
to be the set of variablestx P X | x ň yu.

An D-strategyis a sequence of mappingsσ “ pσxqxPX where eachσx is a mapping fromrYăx Ñ t0, 1us
to t0, 1u. Whenτ : Y Ñ t0, 1u is an assignment to the universally quantified variables, weusexσ, τy to
denote the assignmentf defined byfpyq “ τpyq for eachy P Y andfpxq “ σxpτ æ Yăxq for eachx P X.
We say thatpσxqxPX is a winning D-strategy if for every assignmentτ : Y Ñ t0, 1u, it holds that the
assignmentxσ, τy satisfiesφ. A modelof Φ is defined to be a winningD-strategy ofΦ.

Dually, we define a@-strategyto be a sequence of mappingsτ “ pτyqyPY where eachτy is a mapping
from rXăy Ñ t0, 1us to t0, 1u. Whenσ : X Ñ t0, 1u is an assignment to the existentially quantified
variables, we usexτ, σy to denote the assignmentf defined byfpxq “ σpxq for eachx P X andfpyq “
τypσ æ Xăyq for eachy P Y . We say thatpσyqyPY is awinning@-strategyif for every assignmentσ : X Ñ
t0, 1u, it holds that the assignmentxτ, σy falsifiesφ.

The following are well-known facts that we will treat as basic.

Proposition 2.1 LetΦ be a QBC.

• There exists a winningD-strategy forΦ (that is, a model ofΦ) if and only ifΦ is true.
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• There exists a winning@-strategy forΦ if and only ifΦ is false.

3 Proof system ensembles

In this section, we formalize the notion ofproof system ensembleand present some basic associated notions.
For eachm ě 1, fix Spmq to be the QBC problem restricted to QBCs having aΣm prefix, which is a

Σ
p
m-complete problem; form “ 0, fix Spmq to be a polynomial-time decidable problem.

Let O be a language; when discussing an algorithmA that makes oracle calls, we useAO to denote the
instantiation ofA where oracle calls are answered according toO.

Definition 3.1 A proof system ensemblepA, rq for a languageL consists of an algorithmA which may
make oracle calls and receives inputs of the formpk, px, πqq wherek P N andx andπ are strings; and, a
computable functionr : NÑ N such that:

• For eachk P N, there exists a polynomialpk such that (for each pairpx, πq) the algorithmASprpkqq

halts on an inputpk, px, πqq within timepkp|px, πq|q.
• For eachk P N, whenLk is set totpx, πq | pk, px, πqq is accepted byASprpkqqu, it holds that the

languagetx | Dπ such thatpx, πq P Lku is equal toL.

Let us provide an intuitive explanation of Definition 3.1. For each fixed value ofk, the algorithmA

provides a proof system for the languageL; on inputs of the formpk, px, πqq, the algorithm is provided
oracle access toSprpkqq, and needs to accept or reject within polynomial time (in|px, πq|). Acceptance
indicates thatπ is judged to be a proof thatx P L. The second condition in the definition states that each
such proof system is sound and complete, that is, for each fixed k, an arbitrary stringx is inL iff there exists
a stringπ such thatpk, px, πqq is accepted byA.

We use the following terminology to present lower bounds on proof size in proof system ensembles.

Definition 3.2 LetZ be a set of functions fromN to N. A proof system ensemblepA, rq requires proofs of
sizeZ on a sequencetΦ1,Φ2, . . .u of instances if for eachk, there existsz P Z where (for alln ě 1 and all
stringsπ) it holds thatpk, pΦn, πqq P Lk implies |π| ě zpnq. Here,|π| denotes the size ofπ. We also apply
this terminology to other measures defined on proofs.

We say that a functionf mapping strings to strings is apolynomial-length functionif there exists a
polynomialq such that, for each stringx, it holds that|fpxq| ď qp|x|q.

Definition 3.3 A proof system ensemblepA, rq is polynomially boundedon a languageL if there exists
k P N and there exists a polynomial-length functionf (mapping strings to strings) such that the following
holds: ifx P L, then it holds thatpx, fpxqq P Lk, whereLk is defined as in Definition 3.1.

Proposition 3.4 There exists a polynomially bounded proof system ensemble for a languageL if and only
if L is in the polynomial hierarchy.

We next define notions of simulation between proof systems.

Definition 3.5 Let pA, rq andpA1, r1q be proof system ensembles for a languageL.
We say thatpA1, r1q simulatespA, rq if there exists a functionf : NÑ N and a sequence of polynomial

length functionspgkqkPN from strings to strings such that, for eachk P N and eachpx, πq P Lk, it holds that
px, gkpπqq P L

1
fpkq. Here,Lk andL1k are defined as in Definition 3.1, forpA, rq andpA1, r1q, respectively.
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We say thatpA1, r1q effectively simulatespA, rq if, in addition, the functionf is computable and there is
an algorithm that, for eachk P N, computesgkpxq from x within timepkp|x|q, wherepk is a polynomial.

Under a mild assumption on proof system ensembles, namely that (intuitively) they increase in strength
as the parameterk increases, it can be proved that, whenpA, rq andpA1, r1q are proof system ensembles
such thatpA1, r1q simulatespA, rq and such thatpA, rq is polynomially bounded, it holds thatpA1, r1q is
polynomially bounded. We will formalize and discuss this inthe full version of the article.

Let us remark that variations on Definitions 3.1 and 3.5 are certainly possible. For example, one could
require that the bounding polynomialsppkq in Definition 3.1 be computable, as a function ofk. Perhaps more
interestingly, observe that no assumption is placed on how these polynomialsppkq behave in aggregate; one
could, for instance, require that their degrees are all bounded above by a constant, obtaining a definition
reminiscent of that of fixed-parameter tractability. A similar comment can be offered for the polynomials
associated to the functionspgkq from Definition 3.5.

4 Relaxing QU-resolution

4.1 QU-resolution

LetΦ “ ~P : φ be a QBC. We define anaxiom set ofΦ to be a setH of clauses on variables of~P such that,
for eachC P H, C is anaxiomof Φ in the following sense: each model of~P : φ is a model of~P : C. Let
us give examples. First, if the QBCΦ is false, then the empty clause is an axiom ofΦ. Second, ifC is any
clause which is entailed byφ, thenC is an axiom ofΦ. A case of this is whena is an assignment to all
variables ofΦ that falsifiesφ; then,clausepaq is entailed byφ and is an axiom ofΦ.

Relative to a QBCΦ “ ~P : φ, we say that a clauseC is obtainable from a second clauseD by @-
elimination if there exists a literalL P D such thatC “ DztLu and the variabley underlyingL is a
@-variable and hasvarspCq ĺ y.

With these notions, we define QU-resolution for quantified Boolean circuits in the following way.

Definition 4.1 A QU-resolution proofof a QBCΦ “ ~P : φ from an axiom setH (of Φ) is a finite sequence
of clauses where each clause is either inH, is obtainable from a previous clause by@-elimination, or is
obtainable from two previous clauses as a resolvent; in the last two cases, we assume that the clause is
annotated with the previous clause(s) from which it is derived (this is to provide a clean correspondence
between proofs and certain graphs to be defined, see Section 4.3). Thesizeof such a proof is defined as the
number of clauses. Such a proof is said to be afalsity proof if it ends with the empty clause.

Note that in the case thatΦ is a clausal QBF, whenH is the set of clauses appearing inΦ, Definition 4.1
essentially coincides with usual definitions of QU-resolution in the literature (see for example [22]). The
only difference is that here, applying@-elimination eliminates just one universally quantified variable of
a clause, whereas many authors speak of@-reduction, which (when applied to a clause) eliminates each
universally quantified variable that come after all existentially quantified variables. One can simulate an
instance of@-reduction by applying@-elimination repeatedly.

It is a folklore and readily verified fact that when one has a clausal QBFΦ “ ~P : φ with clause setH,
andC appears in a QU-resolution proof ofΦ from H, then any model ofΦ is a model of~P : C. From this
fact and the definition of axiom set, we immediately obtain the following proposition.
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Proposition 4.2 LetC be a clause appearing in a QU-resolution proof of a QBCΦ “ ~P : φ from axiom
setH. Each model of~P : φ is a model of~P : C. Consequently, ifC is the empty clause, then the QBCΦ is
false.

4.2 Relaxing

In order to define a proof system ensemble based on QU-resolution proofs, we now describe how to obtain
a sequence of axiom sets for a given QBC. We start by exhibiting a way to infer that a partial assignment is
an axiom of a QBC.

Let a be a partial assignment of a QBCΦ “ ~P : φ. Define ~P ras to be the quantifier prefix which is
equal to~P but where the variables indompaq and their corresponding quantifiers are removed, and where
each quantifier of a variablev with v ň lastpaq is changed (if necessary) to an existential quantifier. As
examples, when~P “ @y1Dx1Dx2@y2@y3Dx3, if a is an assignment withdompaq “ tx1, y3u, it holds that
~P ras “ Dy1Dx2@y2Dx3; if a is an assignment withdompaq “ tx1, x2u, it holds that~P ras “ Dy1@y2@y3Dx3.
Defineφras to be the circuit obtained fromφ by replacing each variablev P dompaq with the constantapvq.
DefineΦras to be ~P ras : φras.

Proposition 4.3 Assume thata is a partial assignment of a QBCΦ “ ~P : φ such thatΦras is false. Then
clausepaq is an axiom ofΦ, that is, each model of~P : φ is a model of~P : clausepaq.

We believe that Proposition 4.3 provides a natural way to derive axioms from a QBC. Consider the case
whereΦ is a SAT instance, that is,~P is purely existential. In this case, ifa is a partial assignment such that
Φras is false, thenclausepaq is an axiom ofΦ. Indeed, in this caseΦras is simply the QBC instance obtained
by instantiating variables according toa, and then removing the instantiated variables from the quantifier
prefix. Note that, in the context of backtrack search for SAT,it is typical that, when some variables have
been set according to a partial assignmenta, a solver attempts to detect falsity ofΦras by heuristics such as
unit propagations and generalizations thereof.

In the case of general QBCs, it is natural to ask, when one has apartial assignmenta and then in-
stantiates its variables inφ to obtainφras, under what conditionsclausepaq can be inferred as an axiom.
Proposition 4.3 provides an answer to this question; let us explain intuitively why the quantifier prefix is
adjusted to~P ras. Consider the case where the first quantifier block of~P is existential anda is a partial
assignment to variables from this first block; then~P ras is simply ~P but with the variables ofa removed, and
so this case of the proposition generalizes the purely existential case just discussed. In the case wherea is
arbitrary, ~P ras can be viewed as the prefix where the lowest number of quantifiers have been changed from
universal to existential such that the first quantifier blockis existential, and all variables ofa fall into this
first block.

Proposition 4.3 can be proved in the following way. Fix a model σ “ pσxqxPX of ~P : φ; here,X denotes
theD-variables in~P . Suppose (for a contradiction) thatτ is an assignment to the@-variables of~P : φ such
that the assignmentf “ xσ, τy falsifiesclausepaq, or equivalently,f extends the assignmenta. Then, we
define a winningD-strategyσ1 for Φras as follows. Defineσ1x to be the function obtained fromσx after fixing
each@-variabley P dompaq Y tv | v ň lastpaqu to τpyq; and, for each@-variabley with y ň lastpaq (that
is, for each@-variable in~P that is changed to anD-variable in~P ras), defineσ1y to beτpyq.

Prima facie, Proposition 4.3 may appear to be of limited utility; even if one has oracle access to a
level of the polynomial hierarchy, it may be that many partial assignmentsa give rise to a quantifier prefix
~P ras which has too many alternations to be resolved by the oracle.In order to expand the class of axioms
derivable by this proposition (relative to such an oracle),we introduce now the notion of arelaxationof a
QBC.
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A relaxationof a quantifier prefix~P “ Q1v1 . . . Qnvn is a quantifier prefix which has the form~P 1 “
Qπp1qvπp1q . . . Qπpnqvπpnq whereπ : rns Ñ rns is a permutation and where, for each@-variabley and for

eachD-variablex, it holds thaty ĺ x impliesy ĺ1 x; here,ĺ andĺ1 denote the binary relations of~P and
~P 1, respectively. As an example, consider the quantifier prefix~P “ Dx1Dx2@y@y

1Dx3; relaxations thereof
include@y@y1Dx1Dx2Dx3, Dx1@y1Dx2@yDx3, and@y1Dx2@yDx1Dx3. A relaxation of a QBC~P : φ is a QBC
of the form ~P 1 : φ where ~P 1 is a relaxation of~P ; such a QBC is said to be aΠi-relaxationif ~P 1 isΠi.

The following is straightforward to verify.

Proposition 4.4 If a relaxation of a QBCΦ is false, then the QBCΦ is false.

Note that for any quantifier prefix, a relaxation may be obtained by simply placing the universal quanti-
fiers and their variables first, followed by the existential quantifiers and their variables. Hence, in this sense,
each QBC has a canonicalΠ2-relaxation, and in the sequel, we focus the discussion on relaxations that are
Πk-relaxations for values ofk greater than or equal to2.

Let Φ be a QBC; fork ě 2, we defineHpΦ,Πkq to be the set that contains a clauseC if there exists a
Πk-relaxation ofΦrassignpCqs that is false. The following fact follows immediately from Propositions 4.3
and 4.4.

Proposition 4.5 WhenΦ is a QBC andk ě 2, it holds thatHpΦ,Πkq is an axiom set ofΦ.

Note that whenΦ “ ~P : φ is a clausal QBF,C is a clause inφ, anda “ assignpCq, it holds thatφras
is unsatisfiable; consequently, for any quantifier prefix~P 1 on the variables ofφras, it holds that~P 1 : φras is
false, and thusC P HpΦ,Π2q. Hence, the setHpΦ,Π2q contains each clause ofφ.

Definition 4.6 Relaxing QU-resis defined as the pairpA, rq wherer is defined byrpkq “ k ` 3 and
A is an algorithm defined to accept an inputpk, pΦ, πqq if Φ is a QBC andπ is a QU-resolution falsity
proof ofΦ from axioms inHpΦ,Πk`2q. In particular, the algorithmA examines each clause inπ in order;
when a clauseC is not derived from previous ones by resolution or by@-elimination, membership ofC
in HpΦ,Πk`2q is checked by theΣk`3 oracle. (Such an oracle can nondeterministically guess aΠk`2-
relaxation and then check this relaxation for falsity.)

Proposition 4.7 Relaxing QU-resis a proof system ensemble for the language of false QBCs.

Note that for any setF of false QBCs having bounded alternation, it holds thatrelaxing QU-resis
polynomially bounded onF . Why? Letk be a value such that each QBC inF is Πk`2. For each QBC
Φ P F , we have that the empty clause is inHpΦ,Πk`2q, sinceΦ itself is a falseΠk`2-relaxation ofΦ.
Hence, for each such QBCΦ, the algorithmA of relaxing QU-res acceptspk, pΦ,Hqq, where hereH
denotes the proof consisting just of the empty clause.

Let us now introduce some notions which will be used in our study of tree-like relaxing QU-res(defined
below). Letf andg be partial assignments of a QBCΦ. We say thatg is asemicompletionof f if g is an
extension off such that for each universally quantified variabley with dompfq ĺ y andy R dompfq, it
holds thatdompgq ĺ y andy R dompgq. A setH of partial assignments ofΦ is semicompletion-closedif,
wheneverf P H andg is a semicompletion off , it holds thatg P H.

Lemma 4.8 For each QBCΦ and for eachm ě 2, the set of assignmentsHpΦ,Πmq is semicompletion-
closed.
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4.3 A graph-based view

Whenπ “ C1, . . . , Cn is a QU-resolution proof of a QBC~P : φ from axiomsH, defineGpπq to be
the directed acyclic graph where there is a vertex for each clause occurrenceCi, which vertex has label
assignpCiq; and, where (for all pairs of clausesCi, Cj) there is a directed edge from the vertex ofCj to the
vertex ofCi if Cj is derived fromCi.

Proposition 4.9 Let π be a QU-resolution proof of a QBC~P : φ from axiomsH. The directed acyclic
graphGpπq has the following properties:

pαq If a node with labela has no out-edges, thenclausepaq is an element ofH.
pβq If a node with labela has1 out-edge to a node with labela1, thena1 is an extension ofa with

dompa1q “ dompaq Y tyu wherey is a universally quantified variable withdompaq ĺ y.
pγq If a node with labela has2 out-edges to nodes with labelsa1 anda2, then there exists a variablev

such thata1 anda2 are defined onv anda1pvq ‰ a2pvq; pdompa1q Y dompa2qqztvu “ dompaq; a
anda1 are equal on the variables where they are both defined; and,a anda2 are equal on the variables
where they are both defined.

Moreover, a labelled graph with these three properties naturally induces a QU-resolution proof: for each
node, leta be its label, and associate to itclausepaq. l

Definition 4.10 We say that a QU-resolution proofπ is tree-like if the graphGpπq is a tree. We define
tree-like relaxing QU-resto be the proof system ensemblepA1, rq described as follows. LetpA, rq denote
relaxing QU-res. Then, the algorithmA1 accepts an inputpk, px, πqq if A accepts it andπ is tree-like.

5 A prover-delayer game fortree-like relaxing QU-res

In this section, we present a game that can be used to exhibit lower bounds on the size of tree-like QU-
resolution proofs; this game can be viewed as a generalization of a game for studying tree-like resolution,
which game was presented by Pudlák and Impagliazzo [24].

We first give an intuitive description of the game. Note, however, that this description is meant only to
be suggestive. For a precise description, we urge the readerto consult the formal definition, which follows
(Definition 5.1); in this formal definition, the game is formulated in a positional fashion: a state of the game
is formalized as a partial assignment.

Relative to a QBCΦ and a setH of axioms, the game is played between two players,ProverandDelayer,
which maintain a partial assignment. Prover’s goal is to reach a partial assignment inH, while Delayer tries
to slow down Prover, scoring points in the process. Prover starts by announcing the empty assignment, and
Delayer responds with a semicompletion thereof. After this, the play proceeds in a sequence of rounds. In
each round, Prover may perform one of three actions to the current assignmentf : select a restriction off ;
assign a value to a@-variabley R dompfq havingdompfq ĺ y; or, select a variablev R dompfq. In the first
two cases, Delayer responds with a semicompletion of the resulting assignment. In the third case, Delayer
may give a choice to the Prover. When a choice is given, the Prover sets the value ofv, and Delayer may
elect to claim a point which is then associated withv. When no choice is given, Delayer sets the value ofv.
After v is set, Delayer responds (as in the first two cases) with a semicompletion of the resulting assignment.
Delayer is said to have ap-point strategy if, he has a strategy where, by the time that Prover achieves her
goal, there arep variables on which the final assignment is defined such that Delayer has claimed points on
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these variables.
In what follows, we assumep ě 1.

Definition 5.1 Let Φ be a QBC. Relative to a setH of axioms, ap-point delayer strategyconsists of a set
F of partial assignments ofΦ and a functions : F Ñ N called thescore functionsuch that the following
properties hold:

• (semicompletion-of-empty)There exists a semicompletiong P F of the empty assignment such that
spgq “ 0.

• (all-points) If f P F XH, thenspfq ě p.
• (monotonicity)If g P F , then each restriction ofg has a semicompletionf P F such thatspfq ď spgq.
• (@-branching)If f P F andy R dompfq is a universally quantified variable withdompfq ĺ y, then,

for eachb P t0, 1u, the assignmentf ry Ñ bs has a semicompletiong P F with spgq “ spfq.
• (double-branching)If f P F andv R dompfq, there exists a valueb P t0, 1u such thatf rv Ñ bs

has a semicompletiong P F where (1)spgq ď spfq ` 1 and (2) ifspgq “ spfq ` 1, the assignment
f rv Ñ  bs has a semicompletiong1 P F with spg1q ď spfq ` 1.

Theorem 5.2 Assume that there exists ap-point delayer strategy for a QBCΦwith respect to a semicompletion-
closed axiom setH, and thatπ is a tree-like QU-resolution proof ending with the empty clause, from axioms
H. Then, the treeGpπq has at least2p leaves.

In order to prove Theorem 5.2, we introduce the following lemma.

Lemma 5.3 Assume that there exists ap-point delayer strategy for a QBCΦwith respect to a semicompletion-
closed axiom setH, and thatπ is a tree-like QU-resolution proof from axiomsH. Letu be a node ofGpπq
with labela. If a has a semicompletionf P F with spfq ă p, thenu has a childv1 with labela1 such thata1

has a semicompletiong1 P F with spg1q ď spfq ` 1; moreover, wheng1 P F hasspg1q “ spfq ` 1, the node
u has a second childv2 whose labela2 has a semicompletiong2 with spg2q ď spfq ` 1.

Proof. Sincespfq ă p, by the (all-points) condition, we have thatf R H. SinceH is assumed to be
semicompletion-closed, we have thata R H, and hence that the nodeu is not a leaf of the treeGpπq.

If the nodeu is of typepβq from Proposition 4.9, then leta1 be the label of the childv1 of u; a1 has the
form ary Ñ bs. By the (@-branching) condition, the assignmentf ry Ñ a1pyqs has a semicompletionf 1 with
spf 1q ď spfq. We have thatf 1 is a semicompletion ofa1, giving the lemma.

If the nodeu is of typepγq from Proposition 4.9, letx denote the variable described in the proposition
statement. We consider two cases. First, ifx P dompfq, then pick the child ofu with label a1 having
a1pxq “ fpxq. By (monotonicity), the restrictionf æ dompa1q has a semicompletiong1 P F such that
spg1q ď spfq, giving the lemma. Whenx R dompfq, we argue as follows. By the(double-branching)
condition, there exists a valueb P t0, 1u such thatf rxÑ bs has a semicompletionf 1 satisfying the properties
(1) and (2) given in Definition 5.1; in particular, we havespf 1q ď spfq ` 1. Let v1 be the child ofu whose
labela1 hasa1pxq “ b. The assignmenta1 restrictsarx Ñ bs which restrictsf rx Ñ bs, sof 1 extendsa1.
By the (monotonicity)condition, the restrictionf 1 æ dompa1q has a semicompletiong1 with spg1q ď spf 1q.
If spg1q ď spfq, the lemma is proved. Otherwise, we have thatspg1q “ spfq ` 1, and by property (2) of
(double-branching), the assignmentf rx Ñ  bs has a semicompletionf2 with spf2q ď spfq ` 1. Let v2

be the child ofu whose labela2 hasa2pxq “  b. We have thata2 restrictsarx Ñ  bs which restricts
f rx Ñ  bs; by (monotonicity), the restrictionf2 æ dompa2q has a semicompletiong2 P F such that
spg2q ď spf2q, giving the lemma.l
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Proof. (Theorem 5.2) We refer to a semicompletion of the label of a node simply as a semicompletion
of the node. We prove by induction oni “ 0, . . . , p that, for any nodev with semicompletionf having
spfq “ p ´ i, the nodev has2i leaf descendents. This suffices by the property(semicompletion-of-empty)
of Definition 5.1.

The claim is obvious fori “ 0, so suppose that it is true fori ă p; we will prove it true fori`1. We have,
by assumption, a semicompletionf of v with spfq “ p´pi`1q “ p´ i´1. Repeatedly invoke Lemma 5.3
to obtain a path fromv to a leaf where each vertex has a semicompletion associated with it. Notice that, in
walking along this path starting fromv and looking at the semicompletions, whenever the score increases,
it increases by at most1. Since any semicompletion of a leaf must have scorep or higher (by the reasoning
at the beginning of the proof of Lemma 5.3), there must be somedescendentu of v having semicompletion
with scorep´ i´ 1 such that the the childu1 of u provided by Lemma 5.3 has semicompletion with score
p´ i. By that lemma, the other childu2 of u has semicompletion with score less than or equal top´ i. By
repeatedly invoking Lemma 5.3 to obtain a path fromu2 to a leaf, one finds a descendentv2 of u2 having a
semicompletion with scorep ´ i. By induction, there are at least2i leaves belowu1, and at least2i leaves
belowv2 (and hence belowu2). Therefore, there are at least2i`1 leaves belowu, and hence belowv. l

6 Separation of the tree-like and general versions ofrelaxing QU-res

The family of sentences to be studied in this section is defined as follows. For eachi P t0u Y rns, defineXi

to be the variable settxi,j,k | j, k P t0, 1uu, and for eachi P rns, defineX 1
i analogously to be the variable set

tx1i,j,k | j, k P t0, 1uu. Define ~Pn to be the prefixDX0DX
1
1
@y1DX1DX

1
2
@y2DX2 . . . DX

1
n@ynDXn. Note that,

for a set of variablesX, we use the notationDX to represent the existential quantification of the variables in
X, in any order (our discussion will always be independent of any particular order chosen). Fori P rns, we
refer to the variables inX 1

i Y tyiu YXi as theleveli variables.

• DefineB “ t x0,j,k | j, k P t0, 1uu Y txn,j,0 _ xn,j,1 | j P t0, 1uu.
• For eachi P rns and eachj P t0, 1u defineHi,j “ t x

1
i,0,k_ x

1
i,1,l_xi´1,j,0_xi´1,j,1 | k, l P t0, 1uu.

Observe that the clause x1i,0,k_ x
1
i,1,l_xi´1,j,0_xi´1,j,1 is logically equivalent topx1i,0,k^x

1
i,1,lq Ñ

pxi´1,j,0 _ xi´1,j,1q.
• For eachi P rns, defineTi “ t xi,0,k_yi_x1i,0,k | k P t0, 1uuYt xi,1,k_ yi_x1i,1,k | k P t0, 1uu.

Defineφn to be the conjunction of the clauses contained in the just-defined sets. DefineΦn as ~Pn : φn.
This definition of this family of sentences was inspired partially by the separating formulas of [12, 6].

Let us explain intuitively what the clauses mandate and why the sentencesΦn are false. By the clauses
in B, all of the variablesx0,j,k must be set to0. By the clauses in the setsH1,j, either both variablesx1

1,0,k

or both variablesx1
1,1,k must be set to0. Once this occurs, the universal player can set the variabley1 to 0 or

1 to force either both variablesx1,0,k or both variablesx1,1,k to 0 (respectively), via the clauses inT1. This
reasoning can then be repeated; for instance, at the next level, either both variablesx1

2,0,k or both variables
x1
2,1,k must be set to0, and then after universal player assigningy2 appropriately, either both variablesx1,0,k

or both variablesx1,1,k are forced to0. In the end, the existential player must violate one of the two clauses
in B concerning leveln.

Proposition 6.1 The sentencestΦnuně1 have QU-resolution proofs of size linear inn.

Let n ě 1; we will use the following terminology to discussΦn.
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We say thatr is anormal realizationof level i P rns if it is an assignment defined on the leveli variables
such that, whenb is set torpyiq, the following hold:

• 0 “ rpxi,b,0q “ rpx1i,b,0q “ rpxi,b,1q “ rpx1i,b,1q
• rpxi, b,0q “ rpx1i, b,0q ‰ rpxi, b,1q “ rpx1i, b,1q

We say thatr is afunny realizationof level i P rns if it is an assignment defined on the leveli variables
such that, whenb is set torpyiq, the following hold:

• rpxi,b,0q “ rpx1i,b,0q ‰ rpxi,b,1q “ rpx1i,b,1q
• 0 “ rpx1i, b,0q “ rpx1i, b,1q
• rpxi, b,0q ‰ rpxi, b,1q

We state two key and straightforwardly verified properties of realizations in the following proposition.

Proposition 6.2 No assignment defined on the leveli variables is both a normal realization and a funny
realization. Also, each normal realization and each funny realization (of leveli) satisfies all clauses inTi.

We define the set of assignmentsFn to be the set containing allnormal assignmentsand all funny
assignments, which we now turn to define. Letf be a partial assignment ofΦn. Let ℓ ě 0 denote the
maximum levelℓ such thatf is defined on anD-variable in levelℓ.

We say thatf is anormal assignmentif the following hold:

• f is defined on the variables intx0,j,k | j, k P t0, 1uu and equal to0 on them.
• For eachi P rℓ´ 1s, the restriction off to the leveli variables is a normal realization of leveli.
• If ℓ ě 1, either the restriction off to the levelℓ variables is a normal realization of levelℓ; or,f is half-

definedon levelℓ, by which is meant thatf is not defined on any variables intxℓ,j,k | j, k P t0, 1uu,
but is defined on all variables intx1ℓ,j,k | j, k P t0, 1uu and has

ř

j,kPt0,1u x
1
ℓ,j,k “ 1.

For each normal assignmentf , we definesnpfq “ ℓ.
We say thatf is afunny assignmentif there existsm P rℓs such that the following hold:

• f is defined on the variables intx0,j,k | j, k P t0, 1uu and equal to0 on them.
• For eachi P rm´ 1s, the restriction off to the leveli variables is a normal realization of leveli.
• The restriction off to the levelm variables is a funny realization of levelm.
• For eachi with m ă i ď ℓ and for eachj P t0, 1u, if f is defined on one of the four variables in
txi,j,k, x

1
i,j,k | k P t0, 1uu, then it is defined on all of them andfpxi,j,0q “ fpx1i,j,0q ‰ fpxi,j,1q “

fpx1i,j,1q.

It is straightforward to verify that an assignment cannot beboth normal and funny, and also that, if an
assignment is funny, there exists a uniquem P rℓs witnessing this. For each funny assignmentf , we define
snpfq “ m. We also identify the following properties of funny assignments which will be used.

Proposition 6.3 Each funny assignmentf with snpfq “ m can be extended to a funny assignmentf 1 with
snpf

1q “ m which is defined on allD-variables. Moreover, letg be any assignment defined on all variables
(of Φn) which extends a funny assignmentf 1 defined on allD-variables; then,g satisfies all clauses inφn.

Theorem 6.4 For eachn ě 1, the pairpFn, snq defined above satisfies the conditions(semicompletion-of-
empty), (monotonicity), (@-branching), and(double-branching)from Definition 5.1.
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Proof. We verify each of the conditions.
(semicompletion-of-empty): The normal assignmentf defined only ontx0,j,k | j, k P t0, 1uu is a semi-

completion of the empty assignment withspfq “ 0.
(monotonicity): Suppose thatg P F . Let W Ď dompgq. We show thatg æ W has a semicompletion

f P F with spfq ď spgq.
If the last variablev in W (according to~Pn) has the formx1i,j,k or yi, then setf “ g æ tz | z ĺ vu.

Otherwise, the last variablev in W has the formxi,j,k, and we setf to be the restriction ofg to the variables
in levels0, . . . , i.

It is straightforward to verify thatf P F and thatspfq ď spgq. We briefly indicate how to do so, as
follows. Wheng is a normal assignment, thenf will also be a normal assignment. Wheng is a funny
assignment withspgq “ m, then consider two cases. If the last variablev in W comes before or is equal
to ym, the assignmentf will be normal. Otherwise, the assignmentf will be a funny assignment with
spfq “ m.

(@-branching): This property is straightforward to verify by examining the structure of the definitions
of normal assignmentand funny assignment. We perform the verification as follows. Letf P F and let
yi R dompfq be a universally quantified variable. We claim that, for eachb P t0, 1u, the assignment
f ryi Ñ bs is a semicompletion off having the same score asf .

Whenf is a normal assignment, we havei ě ℓ. We argue thatf ryi Ñ bs is a normal assignment. The
assignmentsf ryi Ñ bs andf are equal on variables in levels strictly before levelℓ. Also, if f on levelℓ is a
normal realization, theni ą ℓ andf ryi Ñ bs on levelℓ is the same normal realization. Iff is half-defined on
level ℓ, thenf ryi Ñ bs is also half-defined on levelℓ. Thus, we have thatf ryi Ñ bs is a normal assignment.
Clearly,spf ryi Ñ bsq “ spfq.

Whenf is a funny assignment withspfq “ m, we havei ą m. In looking at the definition of a funny
assignment with a funny realization at levelm, the requirements imposed on the variables coming strictly
after levelm concern only the existentially quantified variables. Hencef ryi Ñ bs is also a funny assignment
with spf ryi Ñ bsq “ m.

(double-branching): Suppose thatf P F and thatv R dompfq. We consider two cases.
Whenf is a funny assignment withspfq “ m, then the variablev must occur in levelm ` 1 or later.

If v is a @-variable, then setb arbitrarily; we then have thatg “ f rv Ñ bs is a funny assignment with
spgq “ spfq “ m. If v is anD-variable, then it is of the formxi,j,ℓ or x1i,j,ℓ; takeg to be the either of the two
extensions off defined ondompfq Y txi,j,k, x1i,j,k | k P t0, 1uu with fpxi,j,0q “ fpx1i,j,0q ‰ fpxi,j,1q “
fpx1i,j,1q. We have thatg is a funny assignment withspgq “ spfq “ m.

Whenf is a normal assignment withspfq “ ℓ, the variablev must come after all variables indompfq.
We may assume thatv is an D-variable (otherwise, one may reason as in the case of the condition (@-
branching)to obtain a semicompletiong with spgq “ spfq.)

First, suppose that the restriction off to level ℓ is a normal realization. Ifv is in level ℓ ` 1, then
bothf rv Ñ bs andf rv Ñ  bs have semicompletionsg andg1 (respectively) which are defined on levels
0 throughℓ ` 1 inclusive and are equal to funny realizations on levelℓ ` 1. In this situation, we have
spgq “ spg1q “ ℓ ` 1. If v is in level ℓ ` 2 or a later level, then we can obtain semicompletionsg and
g1 of f rv Ñ bs andf rv Ñ  bs (respectively) as follows. First, extendf to obtain an assignment that is
equal to an arbitrary funny realization on levelℓ` 1; then, we may extend the result by reasoning as in the
previous case (wheref is a funny assignment) to obtain the desired semicompletions g andg1, which are
funny assignments withspgq “ spg1q “ ℓ` 1.

Next, suppose thatf is half-defined on levelℓ.

(a) If the variablev has the formxℓ,j,k, then we extendf as follows: setyℓ arbitrarily if it is not already
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defined, and then extend the result so that it is either a normal realization or a funny realization at level
ℓ. The resulting assignmentg is a semicompletion off rv Ñ gpvqs wherespgq “ spfq.

(b) If the variablev has the formx1ℓ`1,j1,k1 , then take the assignment from the previous item (a); for each
value ofb P t0, 1u, this assignment can be extended to be defined on the variablesx1ℓ`1,j,k so that it is
equal tob onx1ℓ`1,j1,k1 and

ř

j,kPt0,1u x
1
ℓ`1,j,k “ 1. The resulting extensions are semicompletions of

f rv Ñ bs andf rv Ñ  bs with scoreℓ` 1.

(c) Otherwise, the variablev has the formxℓ`1,j1,k1 or occurs at levelℓ ` 2 or later. We first take the
extensionh of f that is described in item (a);h is defined on all variables in levelℓ. If h is equal to a
funny realization at levelℓ, then pickb arbitrarily; it is straightforwardly verified that there isa funny
assignmentg that is a semicompletion ofhrv Ñ bs; this assignmentg hasspgq “ ℓ “ spfq. If h is
equal to a normal realization at levelℓ, then one can straightforwardly verified that bothhrv Ñ bs
andhrv Ñ  bs have semicompletionsg andg1 (respectively) which are funny assignments having
spgq “ spg1q “ ℓ` 1.

l

Lemma 6.5 Let d, n P N be such that2 ď d ď 2n. Each assignmentf P Fn X HpΦn, dq hasspfq ą
n´ rd{2s.

Proof. Suppose thatf P Fn X HpΦn, dq. It cannot be thatf is a funny assignment, as for any funny
assignmentf , the QBFΦnrf s is true as a consequence of Proposition 6.3. Thusf is a normal assignment.
Suppose, for a contradiction, thatspfq ď n´ rd{2s. In this case,f is not defined on any of theD-variables in
the lastrd{2s levels, that is,f is not defined on any of theD-variables in levelsn´prd{2s`1q, . . . , n´1, n.
As a consequence, the prefix ofΦnrf s is notΠd. Now, consider the relaxationΦ1 “ ~P 1 : φ1 of Φnrf s
witnessing thatf P HpΦn, dq. Since ~P 1 is Πd, it must hold that, in~P 1, there exists a levelm P tn ´
prd{2s ` 1q, . . . , n´ 1, nu such that the variableyi comes before the variables inX 1

i.
We prove thatΦ1 is true (this suffices, as it contradictsf P HpΦn, dq). We describe anD-winning

strategy forΦ1, as follows. After each level is set, the resulting assignment is inFn. When it is time to set
anD-variable in leveli, first check if it holds thati “ m and no previous level is set to a funny realization.
If these two conditions hold, then leveli “ m is set to a funny realization. Otherwise, the variables at level
i are set as follows.

• If a previous level is set to a funny realization, then the variables inX 1
iYXi are set so that the resulting

assignment remains funny (this can in fact be done without looking at the value ofyi).

• Otherwise, proceed as follows. The variables inX 1
i are set so that the sum of their values is equal to

1. The variables inXi are set so that, at leveli, one obtains either a normal or funny realization.

ThisD-strategy is winning, as no matter how the universal player plays, the end assignment will be a funny
assignment (defined on all variables), which satisfies all clauses (Proposition 6.3).l

By Theorem 6.4 and Lemma 6.5, in conjunction with Theorem 5.2and Lemma 4.8, we obtain the
following result.

Theorem 6.6 Tree-like relaxing QU-res requires proofs of sizeΩp2nq on the sentencestΦnuně1.
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7 Lower bound for relaxing QU-res

We define a family of QBCs, to be studied in this section, as follows. Letn ě 1. Define ~Pn to be the
quantifier prefixDx1@y1 . . . Dxn@yn. Defineφn,j to be true if and only ifj `

řn
i“1pxi ` yiq ı n pmod 3q.

DefineΦn to be the sentence~Pn : φn,0; these are the sentences that will be used to prove the lower bound.
It is straightforward to verify thatφn can be represented as a circuit of size polynomial inn, and we assume
thatφn is so represented. We will also make use of the QBCs defined byΦn,j “ ~Pn : φn,j.

Proposition 7.1 For eachn ě 1, the sentenceΦn is false.

It is straightforward to verify that a winning@-strategy is to set the variableyi to the value xi.
To obtain the lower bound, we show that for any proofπ, the graphGpπqmust have exponentially many

sinks. We begin by showing that any assignment to an initial segment of theD-variables can be mapped
naturally to a sink.

Lemma 7.2 Let π be a relaxing QU-res proof ofΦn from an axiom set, and supposet ě 1. Let f :

tx1, . . . , xn´rt{2su Ñ t0, 1u be an assignment. There exists a sink ofGpπq whose label agrees withf .

We next show that each sink must be defined on a variable that occurstowards the endof the quantifier
prefix, made precise as follows.

Lemma 7.3 Letπ be a relaxing QU-res proof ofΦn from axiom setHpΦ,Πtq, wheret ě 2 andn ě rt{2s.
Each sink ofGpπq has a labela that is defined on one of the following variables:

xn´prt{2s´1q, yn´prt{2s´1q, . . . , xn´1, yn´1, xn, yn.

Proof. Suppose that there exists a sink ofGpπq with label a that is not defined on one of the specified
variables. We show that anyΠt-relaxation ofΦnras is true, to obtain a contradiction. It suffices to prove
that, forany assignmentf : tx1, y1, . . . , xn´rt{2s, yn´rt{2su Ñ t0, 1u, anyΠt-relaxation ofΦnrf s is true.
The sentenceΦnrf s is truth-equivalent to a sentence of the formΦrt{2s,j . This latter sentence has an even
number of variables which number is greater than or equal tot, and is notΠt. Now consider aΠt-relaxation
~P : φrt{2s,j of Φrt{2s,j . We claim that this relaxation~P : φrt{2s,j is true. Since~P is aΠt-relaxation of the

prefix of Φrt{2s,j , there exists a variablexk such thatyk appears to its left in~P . We describe a winning
D-strategy that witnesses the truth of the relaxation. First, consider the case thatk “ 1. In this case, the
variablesx1 andx2 can be set so thaty1 ` x1 ` x2 ” ´j pmod 3q, and each other variablexi can be set
to be not equal toyi´1. Then, no matter how the universal variables are set, the sumof all of the variables
excludingyn will be y1 ` x1 ` x2 ` py2 ` x3q ` ¨ ¨ ¨ ` pyn´1 ` xnq ” y1 ` x1 ` x2 ` pn ´ 2q ”
n ` 1 ´ j pmod 3q. Then, no matter howyn is set, the final sumS of the variables will haveS ı n ´ j

pmod 3q. In the case thatk ‰ 1, the variablex1 is set arbitrarily, and the variablesxk andxk`1 are set
so thatx1 ` yk´1 ` yk ` xk ` xk`1 ” 1 ´ j pmod 3q. Each other variablexi is set to be not equal to
yi´1. No matter how the universal variables are set, the sum of allof the variables excludingyn will be
x1 ` yk´1 ` yk ` xk ` xk`1 ` pn´ 3q ” n` 1´ j pmod 3q, which is sufficient as in the previous case.
l

Whenf is a partial assignment ofΦn, we refer to the elements oftv | v ĺ lastpfquzdompfq asholes.

Lemma 7.4 Letπ be a relaxing QU-res proof ofΦn from an axiom set of the formHpΦn,Πtq. Each sink
ofGpπq has a labelf having at most one hole.
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Proof. Suppose thatf has2 or more holes. There exist extensionsf0, f1, andf2 defined onV “ tv | v ĺ
lastpfqu such that

ř

vPV fipvq ” i pmod 3q for eachi “ 0, 1, 2. It is straightforward to verify that one of
the QBCsΦnrf0s, Φnrf1s, Φnrf2s is true, implying the truth ofΦnrf s and contradicting thatclausepfq is
an axiom inHpΦn,Πtq. l

Theorem 7.5 Suppose thatt ě 2 and thatn ě rt{2s. Letπ be a QU resolution proof ofΦn from the axiom
setHpΦn,Πtq. The graphGpπq has at least2n´rt{2s´1 sinks.

Proof. By Lemma 7.2, for each assignmentf : tx1, . . . , xn´rt{2su Ñ t0, 1u, there exists a sinkvf of Gpπq
whose label agrees withf . For each labelg of each sink, any variable intx1, . . . , xn´rt{2su on whichg is
not defined must be a hole ofg, by Lemma 7.3.

Fix a mapping taking each such assignmentf to such a sinkvf . Since the label of each sink has at most
1 hole (by Lemma 7.4), each sink is mapped to by at most two assignments. Hence the number of sinks
must be at least the number of assignments of the formf : tx1, . . . , xn´rt{2su Ñ t0, 1u divided by two.l

From the previous theorem, we immediately obtain the following.

Theorem 7.6 Relaxing QU-res requires proofs of sizeΩp2nq on the sentencestΦnuně1.

8 Discussion

Beyond the proof systems discussed already in the paper, another natural way to certify the falsity of a
QBF is by explicitly representing a winning@-strategy. Sometimes, the QBF literature refers to methods
for extracting strategies from falsity proofs or by outfitting a solver; this notion is often calledstrategy
extraction.

We can formalize a proof system ensemble based on explicit representation of@-strategies, as follows.
We use the notation in Section 2. LetΦ be a QBC, and letH be an axiom set ofΦ. Let us define acircuit @-
strategyto be a sequence of circuitspCyqyPY where eachCy has|Xăy| input gates, which are labelled with
the elements ofXăy. Such a sequencepCyqyPY naturally induces a@-strategypτyqyPY for Φ. We say that
pCyqyPY is awinning circuit@-strategy with respect toH if for every assignmentσ : X Ñ t0, 1u, it holds
thatxτ, σy falsifies a clause inH. This naturally yields a proof system ensemblepA, rq, whererpkq “ k`4

andA acceptspk, pΦ, πqq when the following condition holds:π is a winning circuit@-strategy forΦ with
respect toHpΦ,Πk`2q, that is, if for each assignmentσ : X Ñ t0, 1u, there exists a clauseC P HpΦ,Πk`2q
such thatxτ, σy falsifiesC. The latter formulation of the condition can be checked withaccess to aΠp

k`4

oracle (equivalently, aΣp
k`4 oracle). We call this proof system ensemblerelaxing stratex.

From a result appearing in previous work [19, Section 3.1], it can be shown that winning circuit@-
strategies can be efficiently computed from QU-resolution proofs. This implies the following.

Proposition 8.1 (derivable from [19, Section 3.1]) Relaxing stratex effectively simulates relaxing QU-res.

The QBC family studied in the previous section had very simple winning@-strategies which can clearly
be represented by polynomial-size circuits. We can thus conclude from Theorem 7.6 that relaxing QU-res
does not simulate relaxing stratex. The separation betweentree-like relaxing QU-res and (general) relaxing
QU-res (Proposition 6.1 and Theorem 6.6) implies that tree-like relaxing QU-res does not simulate relaxing
QU-res, while it is clear that relaxing QU-res simulates tree-like relaxing QU-res. The technical results under
discussion can thus be summarized via a small hierarchy of proof system ensembles: tree-like relaxing QU-
res is simulable by relaxing QU-res, but not the other way around; and, relaxing QU-res is simulable by
relaxing stratex, but not the other way around.
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A Proof of Proposition 3.4

Proof. For the forward direction, letpA, rq be a polynomially bounded proof system ensemble forL. Let k
andf be as in Definition 3.3. Fixk1 “ rpkq. Let q be a polynomially such that for each stringx, it holds
that |fpxq| ď qp|x|q. Membership of a given stringx in L can be decided by nondeterministically guessing
a stringπ of length less than or equal toqp|x|q, and then checking ifASpk1q accepts; this placesL in the
polynomial hierarchy.

For the backward direction, suppose thatL is in the PH. Then, there exists ak1 P N and a polynomial
time algorithmB which may make oracle calls toSpk1q such thatBSpk1q accepts a stringpx, πq if and only
if x P L. Definer to map eachn P N to k1. The pairpB, rq is readily verified to be a proof system ensemble
which is polynomially bounded (indeed, with respect to the constant polynomial equal everywhere to1). l

B Proof of Proposition 4.7

Proof. Suppose first thatpk, pΦ, πqq is accepted byA. Then,π is a QU-resolution falsity proof ofΦ
from axioms inHpΦ,Πk`2q; by Proposition 4.5,HpΦ,Πk`2q is an axiom set ofΦ, so it follows from
Proposition 4.2 that the QBCΦ is false.

Suppose thatΦ “ ~P : φ is a false QBC; letV denote its variables. LetF be the set that contains
each assignmentf : V Ñ t0, 1u that falsifiesφ. We have thatφ has the same satisfying assignments as
φ1 “

Ź

fPF clausepfq. Hence the QBCΦ1 “ ~P : φ1 is also false. It is known that there exists a QU-
resolution proofπ of Φ1 ending with the empty clause, from axiom setHF “ tclausepfq | f P F u; this
follows from thecompletenessof Q-resolution on clausal QBF. SinceHF Ď HpΦ,Πk`2q for eachk, it
holds thatA acceptspk, pΦ, πqq. l

C Proof of Lemma 4.8

Proof. Suppose thatf P HpΦ,Πmq and thatg is a semicompletion off . Suppose thatv P dompgqzdompfq.
Assume thatdompfq is non-empty. Iflastpfq is a@-variable, then by definition of semicompletion, either
v ň lastpfq; or, each variable of the quantifier block oflastpfq is in dompfq andv occurs in the quantifier
block (of D-variables) immediately following the block oflastpfq. If lastpfq is an D-variable, then by
definition of semicompletion, it holds thatv ĺ lastpfq. In each of these cases and also whendompfq “ H,
it holds thatv is in the first quantifier block ofΦrf s, which block is existentially quantified.

We have thus established that each variable indompgqzdompfq is existentially quantified inΦrf s. Let
Φ1 “ ~P 1 : φ1 be a falseΠm-relaxation ofΦrf s. LetΦ2 be the sentence obtained fromΦ by replacing each
variablev P dompgqzdompfqwith the constantgpvq in φ1, and removing each suchv (and its accompanying
quantifier) from~P 1. We have thatΠ2 is aΠm-relaxation ofΦrgs, and that the falsity ofΦ1 implies the falsity
of Φ2. l

D Proof of Proposition 6.1

Proof. We prove, by induction, that forc “ 0, . . . , n, it holds that, for eachj P t0, 1u, the clausexn´c,j,0_
xn´c,j,1 is derivable fromΦn by QU-resolution. Forc “ 0, we have that the two clauses of concern are
contained inB. Suppose thatc P rns and that the claim is true forc ´ 1. By induction, we have that

20



the two clausesD0 “ xn´pc´1q,0,0 _ xn´pc´1q,0,1 andD1 “ xn´pc´1q,1,0 _ xn´pc´1q,1,1 are derivable by
QU-resolution. By resolving the clauseD0 with the two clauses in

t xn´pc´1q,0,k _ yi _ x1n´pc´1q,0,k | k P t0, 1uu Ď Tn´pc´1q

we derive the clause yi _ x1
n´pc´1q,0,0 _ x1

n´pc´1q,0,1; by applying@-elimination, we derive the clause
E0 “ x1

n´pc´1q,0,0 _ x1
n´pc´1q,0,1. Similarly, by resolving the clauseD1 with the two clauses in

t xn´pc´1q,1,k _ yi _ x1n´pc´1q,1,k | k P t0, 1uu Ď Tn´pc´1q

we derive the clauseyi _ x1
n´pc´1q,1,0 _ x1

n´pc´1q,1,1; by applying@-elimination, we derive the clause

E1 “ x1
n´pc´1q,1,0 _ x1

n´pc´1q,1,1. By resolvingE0 andE1 with the clauses inHn´pc´1q,0, we derive the
clausexn´c,0,0 _ xn´c,0,1. Similarly, by resolvingE0 andE1 with the clauses inHn´pc´1q,1, we derive the
clausexn´c,1,0 _ xn´c,1,1. This concludes the proof of the claim.

The empty clause is obtained by resolving the unit clausest x0,j,k | j, k P t0, 1uu Ď B with the clause
x0,0,0 _ x0,0,1, or with the clausex0,1,0 _ x0,1,1. The resulting proof has linear size, since each step of the
induction requires a constant amount of size.l

E Proof of Lemma 7.2

Proof. Fix such an assignmentf . Since the empty assignment, the label of the root, agrees with f , it suffices
to show the following: each non-leaf nodeu whose label agrees withf , has an edge to a node which agrees
with f . If u has one outgoing edge, then this is clear by the description in Proposition 4.9. Ifu has two
outgoing edges, letv be the variable described in Proposition 4.9. Ifv is universally quantified, then both
of its children agree withf ; if v is existentially quantified, then one of the children must have labela where
apvq “ fpvq; this child’s labela then agrees withf . l
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