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Abstract 

The parameter of human body metabolic rates has been popularly used for the 

prediction of human heat stress in hot environments. However, most modules use the 

fixed and estimated metabolic heat production. The aim of this study is to develop the 

prediction of personal heat stress in dynamic working environments. Based on the 

framework of the predicted heat stress (PHS) model in ISO 7933, a heart-rate based 

PHSHR model has been developed using the time-based heart rate index, which is 

suitable for prediction in situations where metabolic rates are dynamic and there are 

inter-individual variations. The infinitesimal time unit Δti, has been introduced into the 

new PHSHR model and all the terms used in the PHS model related to metabolic rates 

are thus redefined as the function of real-time heart rates. The PHSHR has been validated 

under 8 experimental combined temperature-humidity conditions in a well-controlled 

climate chamber. The feature of the PHSHR model is being able to calculate dynamic 



 

 

changes in body metabolism with exposure time. It will be useful to the identification 

of potential risks of individual workers so to establish an occupational working 

environment health and safety protection mechanism by means of simultaneous 

monitoring of workers’ heart rates at the personal levels, using advanced sensor 

technology.    
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Nomenclature 

A body surface area (m2) 

AD DuBois body surface area (m2) 

Ar effective radiation area of body(m2) 

Ag Age (yr) 

pa water vapor partial pressure (Pa) 

H height of human body (cm) 

W weight of human body (kg) 

Icl total thermal insulation of clothing (clo) 

fcl clothing area factor 

hr radiant heat transfer coefficient (W/m2) 

hc convective heat transfer coefficient (W/m2•oC) 

C convective heat losses (W/m2) 

R radiative heat losses (W/m2) 

Csp specific heat of the body (J/kgoC) 

RES respiratory heat (W/m2) 

Cres respiratory convective heat flow per body surface area (W/m2) 

Emax maximum evaporative heat flow at the skin surface (W/m2) 

Eres evaporative heat loss from respiration per body surface area (W/m2) 

dSeq body heat storage rate for increase of core temperature (W/m2) 

Ereq required evaporative heat flow (W/m2) 

PHS predicted heat stress model  

PHSHR Heart-rate-based PHS model 

HR Heart rate during activity (bpm) 

HR0 resting heart rate, normally defined as 65bpm when unknown (bpm) 

HRi heart rate at the time point of “i”, (bpm) 

HRmax the maximum heart rate based on age (bpm) 

M total metabolic rate (W/m2) 

M0 resting metabolic rate, normally defined as 55 W/m2 when unknown 

(W/m2) 

Mi metabolic rate at the time point of “i” (W/m2) 



 

 

Mmax the maximum metabolic rate (W/m2) 

Tcr core temperature (oC) 

Tcl mean temperature of the outer surface of the clothed body (oC) 

Tcr,eq core temperature as a function of the metabolic rate (oC) 

Tcr,i core temperature at time point “i”(oC) 

Tsk skin temperature (oC) 

Tre rectal temperature (oC) 

Tsk,0 the initial skin temperature of the subject at resting status(oC) 

Tsk,i the skin temperature at the time point "i"(oC) 

Tsk,eq skin temperature as a function of the metabolic rate (oC) 

Tsk,eq,x the ideally stable skin temperature at the time point “x”(oC) 

MST mean skin temperature (oC) 

ta mean air temperature (oC) 

RH relative humidity (%) 

tr mean radiant temperature (oC) 

va mean air velocity (m/s) 

ti time point after i*Δt (s) 

Δt time infinitesimal 

x intermediate variables, 1< x< i 

i, i-1 time point  

α proportion of core part in body weight, normally at 0.22 

εsk average emissivity of skin 

ρ density (kg/m3) 

σ Stefan-Boltzmann constant (W/ (m2•K4)) 

σ*εsk*Ar/AD constant value, normally taken as 4.234923*10-8 

Mean mean value of the data 

SD standard deviation 

1. Introduction 

According to the “Fourth Assessment Report” from IPCC, climate change has led 

to an increase in ambient temperatures around the world[1] and a warming of 0.2 oC 

per decade is projected for the next two decades. The consequent extremely hot 

environments have created a great threat to people’s health and work performance [2], 

and increased heat-related morbidity and mortality[3]. It is estimated that there are two 

out of every 1,000 people exposed to high overheating risks[2]. In 2003, for example, 

heatwaves led to extra mortality and morbidity in the population during the summer in 

Europe[4] and North America[5-7]. As the risk of heat-related illness and injuries is 

expected to rise[8,9] due to the globally frequent hot days and heatwaves[10], 

preventing occupational heat stress presents a great challenge requiring a concerted and 



 

 

multi-disciplinary effort from employers, health authorities, engineers, and 

researchers[11]. Although workers on construction sites, military operations, sports 

training, factory workshops, etc., would have a higher health and safety risk in such 

situations, the extent and consequences of heat exposure in different occupational 

settings, countries, and cultural contexts are not well studied[11]. As such, it is of 

importance to evaluate accurately the heat stress of workers in such high- temperature 

working environments[12, 13], which is helpful in producing legislation and making 

instant managerial decisions to mitigate overheating risks. 

The high-temperature working environment is defined as one in which the dry bulb 

temperature is over 35 oC with the combined effect of radiation, high humidity and 

other thermal factors[14], and that would cause significant heat storage in the human 

body[15,16]. The initial studies have mainly concentrated on the physiological 

responses of the human body to heat stimuli and health protection[17-20], and the 

indices to evaluate heat stress (e.g. the thermal work limit (TWL)[21,22], the equivalent 

temperature (ET)[22], and the air enthalpy[23]). According to these studies, upper 

limits for some human physiological indices have been recommended. For example, a 

rectal temperature of 38 oC-38.2 oC is suggested to be the upper limit for light work 

while a value of 39.2 oC is the upper limit for heavy work[24]. In addition, it is 

suggested in ISO 9886 that the maximum heart rate should be under 180bpm during 

work [25]. Moreover, studies on the effect of heat acclimatization showed that the 

overheating risk would be increased by over 50%[2] for people without heat 

acclimatization, while acclimatization to extreme hot environments would modify the 

human physiological responses: reducing heart rates[26], decreasing core 

temperatures[27], lowering the sweating threshold[27, 28], and increasing exposure 

time to fatigue[29, 30]. Therefore, ISO 7933-1989[31] suggests a maximum sweat rate 

of 780g/h-1040g/h for acclimatized individuals while the acceptable value is just half 

that for people without heat acclimatization. 

With the in-depth studies on heat stress, some evaluation indices[32-36] are 

proposed, aiming to predict the human thermoregulation and give guidance for specific 



 

 

populations from the view of health, safety, and work performance. More than 100 heat 

stress indices and models have been developed during this time, with varying 

complexity and easiness to use [37]. Havenith and Fiala reviewed[38] the most 

commonly used indices and models, looking at how these were deployed in the different 

contexts of industrial, military and son on. In general, these indices have been 

categorized into three types[2]: 1) the rational indices (e.g. Heat Stress Index(HSI), 

Required Sweat Rate(SWreq), Predicted Heat Stress(PHS)) based on the heat balance 

equation for the human body; 2) the empirical indices (e.g. Effective Temperature(ET), 

Predicted Four Hour Sweat Rate(P4SR)) based on the experience indicators in hot 

environments and their physiological response; 3) the direct indices (e.g. Wet Bulb 

Globe Temperature(WBGT), Oxford Index(WD)) based on environmental parameters. 

Parsons[39] summarized the different assessment methods in the ISO series of 

standards on heat stress and discussed the improvements for different indices. Among 

these indices, the rational indices are recognized as the most complex but the most 

accurate ones. Based on the 672 experiments in 8 European thermal physiology 

laboratories and 237 field experiments, Malchaire[40] improved the typical SWreq in 

ISO 7933[31] and proposed the modified index - the Predicted Heat Strain model (PHS) 

- in 2001, which laid the foundation for the PHS model for heat stress prediction. During 

the next few years, the accuracy of the PHS model was widely examined and compared 

to the other indices. Kampmann[41], comparing the PHS and SWreq indices, showed 

the results from the PHS model were much better. Further comparison by Malchaire 

and Piette[40] between the PHS model and the WBGT index similarly manifested the 

advantages of the PHS model in heat stress prediction. Ingvar[42] analyzed WBGT and 

PHS under similar climate conditions and the results indicated that WBGT provided a 

more conservative assessment that allowed much shorter working times than did the 

PHS model. Besides, the PHS model provides a method to predict the maximum 

allowable exposure time through calculating the limitations of rectal temperature and 

the water loss[43-45]. Malchaire[46] found that the PHS ensured a high degree of 

accuracy for the sweat rate and rectal temperature between the predicted values and the 

measured values via experiments and on-site surveys. A number of powerful 



 

 

verifications contribute to the results so that the PHS model has been adopted in the 

ISO 7933-2004[47] and remains widely used today.  

However, the PHS model is too complicated due to the difficulty in measuring all 

these parameters accurately and the limitations of cheap and compact computing power, 

which thwarts its application more widely[38, 39]. More importantly, it fails to reflect 

some non-environmental or physiological factors affecting human heat stress (e.g. 

changing work intensity, individual differences, etc.), leading to some deviations in 

application[44]. In fact, the workers’ activity levels change from time to time at work 

but the metabolic rate input in the traditional PHS model is mainly based on the 

estimated values, thus failing to reflect the real-time and continuous changes of 

metabolic rates. To close these gaps, it is necessary to modify the PHS model to 

simulate responses of individuals rather than population-based /group-based responses. 

As a result, the aim of this research is to develop an improved PHS model through 

adopting the easily-obtained physiological index - the heart rate - to provide dynamic 

metabolic rate estimations and reflect the inter-individual variations. In addition, the 

infinitesimal time Δti is introduced into the framework of the PHS model, in order to 

simplify the calculation and application. The developed model is expected to predict 

heat stress at the level of individuals in a dynamic process due to allowing the real-time 

inputs of personal heart rates and predicting the personal heat stress in responding to 

changing environmental parameters through opening the time-iterative program in the 

PHS model.  

2. Modification of the PHS model 

2.1 Basic theory of the PHS model in ISO 7933 

The PHS model in the current edition of ISO 7933 was prepared by Technical 

Committee ISO/TC159, Ergonomics, Subcommittee SC5 and Ergonomics of the 

Physical Environment[47]. The basic human heat balance equation in the PHS model 

is described in Eq. (1).  

Ereq=M-Cres-Eres-C-R-dSeq                      (1) 



 

 

Where 

Ereq: required evaporative heat flow, W/m2;  

M: metabolic heat generation, W/m2; 

Cres: convection heat exchange of respiration, W/m2; 

Eres: evaporation heat exchange of respiration, W/m2; 

C+R: convective and radiant heat exchange between body surface and surroundings, 

W/m2; 

dSeq: body heat storage under heat stress, W/m2;  

The different terms of Eq.(1), like RES, C&R and dSeq, and the involved variables 

during calculation in the PHS model are shown in Table 1. 

 

Table 1: The terms used in the PHS model  

Terms Equations Involved Variables 

RES 
Cres=0.00152M(28.56-0.885ta+0.641Pa) M, ta, Pa 

Eres=0.00127M(59.34+0.53ta-11.63Pa) M, ta, Pa 

C&R 

C=hcdyn×fcl×(Tcl-ta) Tsk, Tcl, ta, va, M, Icl 

R=hr×fcl×(Tcl-tr) Tsk, Tcl, tr, Icl  

dSeq dSeq=Csp×(Tcr,eq,i-Tcr,eq,i-1)(1-α) Tcr,i 

 

From Table 1, the PHS model includes a wide range of direct and intermediate 

variables. However, some of them are difficult to obtain in the practical working process, 

such as the rectal temperatures and the varying metabolic rates. Besides, the closed 

calculation program through time iteration in the PHS model fails to provide the 

intermediate results during a dynamic working process.  

2.2. Modification of the PHS model 

As discussed above, the PHS in ISO 7933[47] has some shortcomings in its 

application; thus, in this study we focus on modifying the PHS model considering the 

following principles:  

a) to replace estimated metabolism in the PHS model with more convenient and real-



 

 

time measurable parameters;  

b) to limit system deviations caused by intermediate variables and simplify the 

computation process making it suitable for real world practice.  

2.1.1 Metabolic rate (M)  

As seen in Table 1, the variable M is a required parameter for the PHS model. 

However, in most cases, M is estimated by the different job classification and empirical 

estimation based on ISO 8996[48]; whereas it will change with time and thermal 

environments. Under such a case, the value of M would significantly affect the 

prediction accuracy of the PHS model.  

From the concept of physiology, heart rate and oxygen consumption are the two 

main parameters to estimate metabolic rates accurately. Measuring the rate of oxygen 

consumption requires an analysis of the person’s expired air, which needs to be 

collected over the period of interest using a “Douglas bag”. The problem is not to 

interfere with the task being measured and avoid problems with leaks, experimental 

variability, and calibration, which is almost unachievable in the workplace[49]. In 

contrast, studies have shown that the human heart rate changes significantly with 

different working status and is a typical physiological index to reflect the metabolic 

rate[2, 50]. Thanks to advanced sensor technology, wearable heart rate sensors are 

available on the market which could be used to monitor workers’ simultaneous heart 

rates during a working process. Therefore, in this study the idea emerged to use the 

‘heart rate’ as an input parameter to estimate the ‘metabolic rate’ in the original PHS 

model.   

Based on the ISO 8996[48], the prediction of metabolic rate based on heart rate 

can be defined using Eq. (2).  

 

Mi=M0+
HRi-HR0

180-0.65Ag-HR0
[(41.7-0.22Ag)×W0.666-M0]         (2) 

Where: 

Mi: metabolic rate at t=i, W/m2; 



 

 

M0: initial metabolic rate at t=0, W/m2; 

HRi: heart rate at t= i, bpm; 

HR0: heart rate at t= 0, bpm; 

Ag: age of subject, yr; 

W: weight of subject, kg. 

2.1.2 Convective, and evaporative heat exchange of respiration 

In Table 1, the convection and evaporation heat transfer of respiration, RES can 

be defined as the function of M, ta and Pa, as shown in Eq. (3). 

 

RES=Mi(0.118773-0.00067ta-0.01379578Pa)            (3) 

Where  

Mi: the metabolic rate at t=i;  

ta: the air temperature, oC;  

Pa: the atmospheric pressure, kPa.  

2.1.3 Convective and radiative heat exchange from the body surface 

The calculation of C&R in the PHS model introduces the intermediate variable of 

clothing temperature “Tcl”. However, it is difficult to determine the size, style, and 

material of the clothing and other garments such as gloves and helmets of the workers 

in practical working situations. So in this study, the clothing temperature “Tcl” has been 

simplistically considered in the modification of C&R, which is expressed in Eqs. (4) 

(5). 

 

C=hcfcl(Tsk,i-ta)                                (4) 

R=hrfcl(Tsk,i-tr)                                (5) 

Where: 

hc: convective heat transfer coefficient (W/m2•oC); 

hr: radiative heat transfer coefficient (W/m2•oC); 

fcl: clothing area factor; 

Tsk,i: mean skin temperature at t=i, oC; 



 

 

ta: air temperature, oC; 

tr: radiant temperature, oC. 

 

In Eqs.(4)(5), the key point is to determine the values of hc and hr. Referring to the 

ISO 7933[47], the convective heat transfer coefficient hc, which considers  dynamic 

characteristics of convective heat exchange between body and environments, is 

dependent on the highest value according to the calculating results from Table 2. 

 

Table 2: The value of hc under different air velocities during working 

Ventilation status hc 

natural ventilation 
2.38|Tsk,i-ta|

0.25
 

var≤1m/s 3.5+5.2var 

var>1m/s 8.7var
0.6 

 

To note, the var in Table 2 represents the relative air velocity during the period of 

working process, rather than the absolute air velocity. As the var would affect the total 

clothing insulation, this study referred to the ISO 7933[47] definition:  

1) when the environmental air velocity is more than 3m/s, the value of 3m/s is adopted;  

2) when the walking speed is more than 1.5m/s, the value of 1.5m/s is adopted.  

3) when the walking speeding is undefined or the person is static, the value can be 

calculated as: var=0.0052(Mi-58). 

The radiative heat transfer coefficient “hr” is expressed as Eq. (6). 

hr=σ×εsk×
Ar

AD
×

[(Tsk,i+273)
4
-(tr+273)4]

Tsk-tr
                      (6) 

The clothing insulation coefficient “fcl”in Eqs. (4)(5) is defined as Eq. (7).   

fcl=
1

[(hc+hr)Icl+
1

1+0.97Icl
]
                                 (7) 

In Eqs. (6,7), where  

Mi: metabolic rate at t=i, W/m2; 

Ar: effective radiation area of body, m2; 

AD: DuBois body surface area, m2; 



 

 

σ×εsk×Ar/AD: constant, 4.234923×10-8; 

Tsk,i: mean skin temperature at t=i, oC; 

ta: air temperature, oC; 

tr: radiant temperature, oC; 

va: air velocity, m/s;  

2.1.4 Body heat storage 

When the human body is exposed to the hot environment with non-steady working 

states, the stable inner core temperature Tcr,eq,i and the transient Tcr,i, will change over 

time. Therefore, introducing Eq.(2), where the Mi changes with the HRi, the Tcr,i in the 

original PHS model can be expressed as the function of HRi. As a result, it would 

inevitably cause some deviations using the stable Tcr,eq to predict dSeq. In that case, the 

transient value of dSeq at t=i is introduced, and the corresponding body heat storage at 

t= m and t= n (n> m, MIN (m) = 0), which stood for the period after m*Δt and before 

n*Δt, could be redefined as follows in Eqs. (8-10). 

 

Tcr,tm=36.8+ ∑ 0.0036(Mi-55)× [1-exp(-
Δti

10
)]m

i=1                (8) 

Tcr,tn=36.8+ ∑ 0.0036(Mi-55)× [1-exp(-
Δti

10
)]n

i=1                 (9) 

dSeq=Csp× [36.8+ ∑ 0.0036(Mi-55)× [1-exp(-
Δti

10
)]n

i=m ] ×(1-α)    (10) 

 

Eqs (8,9) describe the changes of Tcr,t with the real time metabolic rate Mi after a 

period of m*Δt and n*Δt. This based on the Tcr calculation in ISO 7933 but used the 

function Mi instead of M. Meantime, during the calculation, we transform the time 

iteration from ti to ti+1 to the cumulative sum of a period of Δt. Based on Eqs.(8,9), the 

cumulative effect on body heat storage from t=m to t=n can be reflected. Therefore, the 

original expression describing dSeq in PHS model Table 1 can be transformed as the 

function of Mi, as shown in Eq (10). 

Accordingly, the heat storage of the human body from t=0 to t=i can be defined as 

Eq. (11). 



 

 

dSeq=Csp× {36.8+ ∑ [0.0036(Mx-55)× (1-exp(-
x

10
))]i

x=1 } ×(1-α)  (11) 

where 

dSeq: total heat storage of the human body, W/m2; 

Csp: specific heat of body, 2890.435(J/kg oC); 

x: calculating variable, 1≤x≤i; 

α: weight of the core layer of body, 0.22. 

 

In theory, the dSeq would change continuously under some cases, including 

changing thermal environments, activity levels, locations, etc. In such cases, the 

introduction of the infinitesimal summation unit Σ in Eq. (11) has advantages in 

calculating the heat storage of the human body in such situations.  

2.1.5 Intermediate variables 

The skin temperature (Tsk) and core temperature (Tcr) are the intermediate 

variables during the calculation in the developed model, which will affect the accuracy 

significantly. 

○1 Core temperature Tcr 

The core temperature shows a fluctuation of exponential volatility over time in the 

PHS model; while in fact it acts as a function of the metabolic rate; hence, the changes 

of metabolic rate caused by the dynamic working status would significantly affect the 

prediction of the core temperature. Therefore, in the developed model, the introductions 

of the infinitesimal time variable Δti and indirect heart rate are considered to calculate 

the core temperature. The following definitions are proposed:  

(a) the mean heart rate is HRi at t=ti;  

(b) the mean heart rate variation is described by ΔHR during Δti;  

(c) the corresponding metabolic rate change is ΔM.  

As a result, the changes in body core temperature Tcr over time can be redefined 

as Eq. (12). 

 



 

 

Tcr,i=36.8+ ∑ {0.0036(Mi-55)× [1-exp(-
i

10
)]}i

1         (12) 

 

○2 Skin temperature Tsk 

Human skin temperature plays an important role in determining the heat exchange 

between the body and the ambient environment[2] so it is a main factor for the model 

prediction. In the PHS model, Tsk is determined through the iterative calculation process 

based on time. In fact, both the skin temperatures (Tsk,eq,i) at steady-state and at the 

transient (Tsk,i) would change simultaneously over time. With the introduction of Δt, 

the Tsk,eq,i and Mi can be obtained at t=i , and thus the skin temperature Tsk,i at the t= i 

after the period of i*Δt can be determined as in Eq. (13). 

Tsk,i=0.7165
i
Tsk,0+0.2835 ∑ Tsk,eq,x×0.7165

i-xi
x=1                    (13) 

The Tsk,eq at steady state can be calculated as Eq. (14). 

Tsk,eq,i=12.17+0.020ta+0.044tr-0.253va+0.194p
a
+0.005346Mi+ 0.5124Tcr,i  (14) 

Where 

Tsk,i: the mean skin temperature at t=i, oC; 

Tsk,0: the mean skin temperature at t=0, input parameters according to measurement, oC; 

x: the calculating variable, 1≤x≤i; 

Tsk,eq,x: the stable mean skin temperature at t=x, oC; 

Indeed, at steady state the sensible heat loss from body skin surface to the adjacent 

clothing is equivalent to the value from clothing to surrounding. Given the Tsk,eq would 

be significantly affected by changing clothing during work, the values thus should be 

modified by clothing insulation differences, as shown in Eqs. (15-17), according to the 

empirical formula[2]. Combined with Eqs.(12-14), the temperature of the clothing 

surface Tcl therefore can be calculated based on Eqs. (15-17). Eqs. (15-17) reflects the 

physiological responses of body skin temperatures to hot environments under different 

clothing insulation levels, which contribute to the calculation of the convective and 

radiant heat exchanges between the clothing surface and the environments.   

When Icl≤0.2, as Eq. (15): 



 

 

Tsk,eq,nu=7.19+0.064ta+0.061tr-0.348va+0.198Pa+0.616Tcr,i            (15) 

When 0.2< Icl<0.6, as Eq. (16): 

Tsk,eq=Tsk,eq,nu+2.5×(Tsk,eq,cl-Tsk,eq,nu)×(Icl-0.2)                      (16) 

When Icl≥0.6, as Eq. (17): 

Tsk,eq cl=12.17+0.02ta+0.044tr-0.253va+0.194Pa+0.005346Mi+0.51274Tcr,i (17) 

Where 

Tsk,eq: the mean skin temperature, oC; 

Tsk,eq,nu: the mean skin temperature of a nude body at t=i, oC; 

Tsk,eq,cl: the mean skin temperature of a clothed body at t=x, oC; 

Based on the aforementioned, the newly developed model is renamed the PHSHR 

model, referring to the outline of the PHS model in ISO 7933[47], and covers the six 

basic environmental and individual factors in the heat stress prediction[2]; on the other 

hand, introducing the heart rate index enables the prediction of the dynamic metabolic 

rates, which can directly reflect the changes of activity levels during work. Based on 

this, the terms pertaining to the metabolic rates are redefined as the functions of heart 

rates, successfully reflecting the individual differences in heat stress prediction. More 

importantly, the model introduces the infinitesimal time Δt, instead of the time iteration 

calculation in the PHS model, making it possible to predict and output the heat stress-

related physiological indices in dynamic conditions like step changes of thermal 

environments and varying work intensity. 

3. Method of validation  

The validation of the new PHSHR model has been tested by comparing the data 

from the model with the experimental data from human subjects obtained in the 

laboratory.  

3.1 Climate chamber 

The experiments were conducted in a climate chamber in Chongqing University, 

with the dimensions of 4m(L)×3m(W) ×3m(H). The chamber was enclosed with 



 

 

100mm thick double color steel plate with polyurethane filling in the middle. This 

ensured that the indoor thermal environment was less affected by external environments 

and solar radiation. The controlled range of temperatures in the chamber was from 

10 °C to 40 °C within an accuracy of ±0.3 °C and from -5 °C to + 10 °C within an 

accuracy of ±0.5 °C. In addition, the RH was controlled from 10% to 90%, with an 

accuracy of ±5%. The air supply was from a ceiling perforated plate, designed to ensure 

a uniform air distribution during the experiments. A room, adjacent to the chamber, was 

maintained at 26 oC, and used by testers and subjects to do preparation work.   

3.2 Subjects 

A priori power analysis in G*Power 3[51] was used before the experiments to 

determine the sample size. According to the analysis(in this study, f=0.5, 1-β=0.05, α

=0.05), the calculated sample size for each group of males and females was 8. At first, 

twenty-five subjects were recruited randomly in school to minimize the effect of 

individual differences such as age, body constitution, cultural background etc. After the 

pre-experiments, 11 males and 9 females were identified to participate in all the formal 

experimental conditions. The subjects were all healthy college students between 20 and 

30 years of age, and were paid to participate in the experiments. The experiments were 

approved by the Institutional Review Board(IRB), Ethics Review Committee for Life 

Science Study of Central China Normal University (the partner in the program). The 

Project Ethics Ratification ID was CCNU-IRB-2009-003. Written informed consent 

was obtained from the participants and no privacy-related personal information was 

involved in the experiments. Basic information of the 20 subjects is shown in Table 3. 

 

Table 3: Basic information of the 20 subjects 

Physiological Indicators Mean ± SD Range 

Age (yr) 24.4±2.8 22-27 

Height (cm) 171.2±3.1 161-182 

Weight (kg) 55.7±3.6 46.5-81.6 



 

 

Resting Heart Rate (bpm) 74±7 55-79 

Clothing insulation (clo)  0.4 / 

3.3 Experimental conditions 

To create the hot environments, the air temperature was referred to the standards 

of hot environments by WMO and three air temperature levels (33 oC/36 oC/39 oC) 

were selected in experiments. Considering a combination of elevated relative humidity 

and air temperatures would create significant stress on the human body under hot 

conditions[23,30,52], three different relative humidity levels (30%/60%/90%) were 

selected to make comparisons. The preliminary experiment was conducted to check all 

the 9 conditions but the majority of the subjects were not accepted for the extreme 

condition of 39 oC/90%RH during the test. Since such a condition seldom takes place 

and workers in real situations would be protected from working, the condition of 39 

oC/90%RH was excluded in the formal study. Thus, 8 experimental conditions were 

used during the tests.  

Table 4 presents the experimental conditions and the measured physical 

parameters during the test. It is seen that the thermal environments were well controlled 

during the experiments to meet the design requirement. Besides, due to the inner 

enclosure structure of the chamber, the globe temperatures were close to the air 

temperatures. The air velocity was controlled around 0.1m/s during the experiments.  

 

Table 4: The designed and measured environmental parameters (mean±SD) 

Cases 
Designed conditions Experimental conditions 

Tair/RH Tair(oC) Tglob(oC) RH(%) V(m/s) 

1 33 oC/30% 33.1±0.2 32.5±0.2 31.9±3.1 0.09 

2 33 oC/60% 32.8±0.3 32.6±0.3 58.9±2.2 0.09 

3 33 oC/90% 33.0±0.2 32.4±0.2 86.9±3.6 0.09 

4 36 oC/30% 35.7±0.1 35.5±0.2 26.9±2.7 0.08 

5 36 oC/60% 35.8±0.2 35.4±0.3 59.1±1.7 0.13 

6 36 oC/90% 36.3±0.1 35.6±0.2 88.6±1.3 0.09 

7 39 oC/30% 38.9±0.1 39.1±0.3 32.4±2.4 0.11 

8 39 oC/60% 39.1±0.1 39.3±0.2 57.9±2.9 0.11 



 

 

3.4 Experimental design  

Considering that in real situations the activity levels and work intensity of workers 

change over time, the experimental procedure referred to the related heat stress 

studies[53, 54]. For each condition, two activity levels (i.e. walking and resting) were 

conducted for subjects. The set-up of time interval of walking and resting for hot 

environments were referred to studies of Lv[55] and Chan et al.[54].  

Before the experiment, subjects were asked to change into uniform clothes 

including T-shirts, thin pants, and shoes, with an estimated insulation value of 0.4clo 

[56] in the preparation room. The temperature sensors (TMC6-HD, accuracy: ±0.2 oC) 

were attached using medical adhesive tapes to four left body parts of subjects (arm, 

chest, thigh and calf) and data were recorded by a HOBO U12-006 Data Logger (Onset, 

US). The mean skin temperatures of subjects were calculated using the following 

Eq.(18) [57]. Besides, subjects were asked to put the heart rate sensor on their chest 

with skin contact (Polar RS800, Finland, accuracy: ±1bpm). After that, subjects were 

sedentary in the preparation room for 30min and clearly informed of the experiment 

schemes and potential risks and that they were allowed to quit at any time. Experiment 

termination conditions were set based on the World Health Organization (WHO)[58]. 

 

MST=0.3×Tchest+0.3×Tupperarm+0.2×Tthigh+0.2×Tcalf               (18) 

 

The whole test was set for 150 minutes for formal experiments, as shown in Fig. 1. 

Subjects were asked to be sedentary in the neutral thermal environment (ta=26oC, 

RH=60%) for 30min before they entered the chamber. Then they were exposed to 

different hot environments in the chamber for 50min and were asked to do light office 

work. After that, they were required to walk at the treadmill (1.2m/s, 2.6met, 150W/m2 

[56]) for 20min to increase their metabolic rates, as seen in Fig. 1. After finishing the 

heat exposure, subjects returned to the preparation room to be sedentary for 50 min 

recovering from heat strain. During the whole heat exposures, the instantaneous heart 



 

 

rates and skin temperatures of subjects were measured at a time interval of 10s. To point 

out, during the analysis, the data in the first 10 minutes were not used because the 

subjects’ initial thermal conditions were not yet stable[53]. 

 

 

 

Fig. 1: Experimental procedure and on-site test in the chamber 

4. Validation of the developed PHSHR model 

4.1 Changes in the subjects’ mean skin temperatures (MST) and heart rates 

(HR)  

 



 

 

 
Fig. 2: The skin temperature changes of subjects in different conditions 

 

 

 

Fig. 2 shows the changes of the subjects’ mean skin temperatures (MST) over time 

from t=10min to t=150min under 8 experimental conditions. From the figure, it is 

clearly seen that the MST of subjects increased significantly when they were exposed 

to hot environments, and increased with increasing air temperatures and relative 

humidity, suggesting the human body increased heat dissipation through the skin 

surface in hot environments. There were obvious increases in the MST when the 



 

 

subjects were walking from t=80min to t=100min. The MST reached its peak value at 

t=100min in each condition, the value of which was even up to 37 oC at 39 oC/60%RH. 

However, after they returned to the neutral thermal environment in the preparation room, 

remarkable decreases of MST for subjects were found, suggesting subjects’ recovery 

from heat strain was quick once they left the hot environments. Besides, it is 

interestingly found that the change of subjects’ MST differed with increasing relative 

humidity under different air temperature conditions. When the temperatures were 33 oC 

and 36 oC, there were slight differences of subjects’ MST under 30%RH and 60%RH, 

while the MST increased significantly when the RH increased to 90%, manifesting the 

negative effect of relative humidity on human heat stress. Moreover, the effect was 

enhanced at higher air temperature of 39 oC, where the significant differences were 

found between 30%RH and 60%RH.  

 

 
Fig. 3: The heart rate changes of subjects in different conditions 

In a similar vein, Fig. 3 shows the changes of real-time mean heart rates of 20 subjects 

under 8 conditions. From Fig. 3, subjects’ heart rates differed in different conditions. 

The higher the air temperature and relative humidity were, the higher the heart rates of 

subjects were, especially when subjects walked under hot environments. After subjects 

returned to the neutral thermal environments, the heart rates reduced quickly to their 

normal levels. However, being different from the changes of MST in  



 

 

 

Fig. 2, when subjects entered the chamber at t=30min, there were just slight 

increases of heart rates, suggesting the subjects’ MST were more sensitive to heat 

stimuli than their heart rates. While subjects’ heart rates sharply increased when they 

began to walk at the treadmill at t=80min, suggesting the activity levels had a significant 

effect on human heart rates. This indicates that human metabolic rates would change 

significantly with the coupling effect of thermal environments and activity levels, 

which should be carefully considered for model estimation and prediction.  

4.2 Evaluation of the predicted MST between the PHS and PHSHR models  

To test the validity of the developed PHSHR model, which introduced the use of 

heart rate to predict the changing metabolic rates, we compared the predicted results 

from two models based on experimental data. Taking the MST as an example, Fig. 4 

shows the changes of subjects’ predicted MST (MATLAB tool (R2011b)) with time 

under 8 different temperature-humidity conditions based on the original PHS model 

using estimated metabolic rate (M) according to ISO 8996[48], and the developed 

model based on the measured heart rates of subjects in experiments. Besides, to 

examine the prediction performance of the two models in hot environments, here we 

also plotted the measured mean skin temperatures of subjects under hot conditions in 

Fig.4, as shown in black dot lines.  



 

 

 

   

   

 

Fig. 4: The measured and predicted MST by the PHS and PHSHR models 

 

When interpreting the developed model in Fig. 4, the similar trends of predicted 

MST can be found in two models. Before t=30min, the differences of the predicted 

MST of subjects were much smaller. This may because that subjects were static at 26 

oC and the personal heart rate fluctuated slightly. Thus the advantage using heart rate to 

estimate the metabolic rates was not significant. When subjects entered the chamber 

and were exposed to heat stimuli, the predicted MST by the PHS and PHSHR models 

increased. When the air temperature and relative humidity were moderate, the predicted 



 

 

MST by two models were close to each other and were slightly higher in PHSHR model 

with increasing air temperature and humidity. It is thus speculated that the differences 

using the two methods to calculate the metabolic rates in PHS and PHSHR models may 

be small for light activities (e.g. sedentary). However, both the MST obviously 

increased when subjects began to walk at t=80min, and under this condition, the 

differences of MST between two models were enlarged. Since subjects’ heart rates 

changed sensitively with exposure time when they were walking, the developed PHSHR 

model adopted the real-time heart rates were more sensitive to the changes of activity 

levels, thus leading to significant increases of MST. Specifically, when subjects were 

exposed to high air humidity conditions at 33 oC/90%RH and 36 oC/90%RH, the 

deviations increased gradually with prolonged exposure, so that the predicted MST by 

the developed PHSHR model were higher than that by the PHS model. It is inferred that 

subjects’ metabolic rates would increase with increasing temperature and air 

humidity[59, 60]; while in the PHS model the metabolic rate was assumed as a constant 

value due to the unchanged activity level of subjects. By contrast, thanks to the real-

time heart rate input, the developed PHSHR model enables to reflect the changes of 

metabolic rates over time. When subjects returned to the preparation room (26 oC), the 

predicted MST by the two models decreased gradually. However, because subjects had 

accumulated significantly the heat storage in body due to activity and prolonged heat 

exposure before, the predicted MST of subjects were still higher after a period of 

recovery time of 50min. It is thus concluded that the activity intensities and exposure 

time would have significant affected the heat strain of human body and thus the 

recovery time, which is worthy of consideration in design.  

To further examine the prediction performance of the two heat stress models, Fig.4 

compares the predicted MST by the two models to the measured MST from experiments. 

From the whole, subjects’ measured MST were visibly higher than the predicted MST 

from models, especially when subjects entered the climate chamber at t=30min. Since 

the empirical formula calculating the different terms of body heat exchanges in the PHS 

an PHSHR models were based on a large number of labs experiments and semi-

theoretical derivations, this would cause some deviations between the real values and 



 

 

the predicted values from models. Especially, the PHS model was developed based on 

European and American populations [40] and the geographic and individual differences 

in this experiment would also make influence, which would be further verified and 

modified for application for Chinese people in our following study. Besides, from Fig.4, 

in fact, subjects’ skins were exposed to hot air directly, contributing to the sharp 

increases of MST. While the predicted MST by models based on mathematical 

calculation of heat exchanges and it therefore presented a cumulative effect rather than 

a step change. One more we noticed was that in hot environments, subjects began to 

sweat and the increased wetness on skin surface affected the contact between skin 

surface and thermocouples. As a result, the surrounding hot air possibly increased the 

values by thermocouples, leading to higher measured MST than the predicted ones. All 

these may attribute to some deviations in Fig.4, when comparing the experimental 

results to the predicted outcomes from models.   

After all, from Fig. 4, when subjects walked from t=80min to t=100min, the MST 

using PHSHR model increased sharply while the increase of MST in PHS model was 

slight without considering the accumulative effect of subjects’ metabolic heat 

generation. The remarkable increases of differences of skin temperatures were found at 

36 oC/90%RH and 39 oC/30%RH, and 39 oC/60%RH from t=80min to t=100min. This 

suggested that the air temperature and humidity, coupled with the exposure time, had 

significant effect on human heart stress. In this case, the PHS model under-predicted 

the skin temperature increasing, while the MST predicted by PHSHR model was much 

closer to the measured MST. As heat stimulus acts as a risk factor, it is expected for 

people to identify and prevent in advance. In this line of thought, the PHS model may 

underestimate the risk of physiological strain and thus the required recovery time, 

which was in agreement with Karin’ study [61] that the PHS simulation underestimated 

the thermal strain in experimental scenario of intermittent work. Given this, the 

developed PHSHR model can improve the prediction accuracy in dynamic working 

conditions if the heart rates of workers change significantly, which is superior to the 

original model. However, even though, it is the fact that both the two models have some 

deviations predicting MST compared to the experiments, especially for the hot humid 



 

 

environments, which should be further improved in future study of the model.  

To sum up, Table 5 further shows the deviation values (D-value) of average MST 

of 20 subjects during the whole process between the experimental and predicted values 

from the two models, where AV was the average value of the 8 experimental conditions. 

The SD represented the standard deviation of the AV fluctuation among the 8 

experimental conditions. The SDT represented the total standard deviation. From Table 

5, the average D-values of MST during the whole tests between the experiments and 

the predictions by the developed model fluctuate in the range of 0.3±0.76 oC, while they 

are 0.3±0.73 oC between the experiments and the PHS models, further manifesting that 

the method used in PHSHR model is reliable. 

 

Table 5: D-value of subjects’ MST between the experimental and the PHS and PHSHR models 

MST Difference between  

experiments and the 

PHSHR model 

Difference between 

experiments and the PHS 

model 

Difference between the 

PHSHR model and the PHS 

model  

index AV SD SDT AV SD SDT AV SD SDT 

D-values 0.3 0.76 0.765 0.3 0.73 0.765 0.041 0.1529 0.2584 

 

In fact, considering workers in the practical working sites would change their work 

intensities from time to time, the traditional PHS model relies on a number of 

physiological inputs and metabolic rate estimations in ISO7933[47], which would limit 

the applications and reduce the accuracy, especially in dynamic conditions with 

frequently-varying activity levels. From Fig. 4, the developed PHSHR have good 

consistency with the original PHS model in predicting mean skin temperature and have 

better sensitivity in dynamic working, validating the modification method in this study. 

In such cases, the developed PHSHR model would win its advantages because it can 

predict the real-time changes of body metabolic rates according to combining 

simulation with body worn sensors and using non-invasive sensor information, leading 

to the real time risk assessment of personal heat strains.  



 

 

5. Application of the developed PHSHR model  

5.1 Development of the new PHSHR model  

The original idea of this study is to simplify the calculation of the heat stress 

models, to make them more applicable in work places. As aforementioned, the related 

six basic indicators in the PHS model (Table 1) in ISO 7933[47] can be re-expressed in 

the developed PHSHR model, which are summarized in Table 6. From Table 6, it is 

clearly seen that all the terms in the human heat balance Eq.(1), including RES, C&R, 

dSeq, can be directly calculated using seven variables, i.e., 4 physical parameters (air 

temperature, radiant temperature, air pressure, and air velocity) and 2 individual 

parameters (clothing insulation and heart rates), as well as the exposure time. Compare 

to the original PHS model (Table 1), all the required variables in the PHRHR model 

(Table 6) are accessible without measuring the skin and body temperatures and so on. 

Instead, the personal heart rates are easily obtained with wearable and portable devices, 

without disturbing workers in the working place. More importantly, it takes advantages 

identifying the potential high risk populations exposed to extreme hot environments 

through monitoring individual heart rates, instead of predicting body heat stress of 

average people.  

 

Table 6: The six basic terms of the developed PHSHR model 

Terms Definitions Input Variables 

RES Mi(0.118773-0.00067ta-0.01379578Pa ta, Pa, HR, ti 

C&R C=hcfcl(Tsk,i-ta) ta, tr, va, Icl, Pa, ti 

R=hrfcl(Tsk,i-tr) 

dSeq 
dSeq=Csp[36.8+ ∑ 0.0036(Mi-55)×[1-exp(-

∆ti

10

n

i=m

)]](1-α) 
HR, ti 

Mi Mi=M0+
HRi-HR0

180-0.65Ag-HR0

[(41.7-0.22Ag)×W0.666-M0] HR, ti 

Tcr Tcr=36.8+ ∑ [0.0036(Mi-55)× [1- exp (-
i

10
)] ]

i

1

 HR, ti 



 

 

Tsk 

Tsk=0.7165iTsk,0+0.2835 ∑ Tsk,eq,x×0.7165i-x

i

x=1

 

ta, tr, va, Pa, ti 

 

According to ISO 7933, the required evaporative heat flow Ereq is regarded as a 

key object function to predict and evaluate human heat stress and its degree of severity. 

As analyzed in Eq.(1), the Ereq is the function of M, Cres, Eres, C&R and dSeq. However, 

from Table 6, since all the terms, M, Cres, Eres, C&R and dSeq. can be calculated by the 

seven variables, the Ereq is therefore indirectly dependent upon the seven factors, as 

marked in Eq.(19).  

 

Ereq=f(ta, tr, Pa, va, HRi, Icl, ti)                       (19) 

 

As a result, through introducing the real time Mi to re-express the different terms 

in Eq.(1), the object function Ereq can be easily calculated based on four physical 

parameters(ta, tr, va, Pa), two individual factors(Icl and real time HRi), and the time 

variable ti. In practice, the environmental parameters and clothing insulation are usually 

available and measurable. The input parameter of heart rates can be monitored with the 

real-time devices. One more advantage is that the results during the calculating process 

of the PHSHR model are able to be output at any time, which is different from the closed 

routine in the PHS model. In such cases, based on the Eqs. (1,19) and Table 6, the 

human physiological responses under the single and coupled effect of the seven factors 

can be predicted, which would be guided for on-site environmental design.   

5.2 Application of the new model 

As discussed before, to depict the applications of the developed PHSHR model, the 

following sections explored how the body’s physiological indices correlated to human 

heat stress change when the input parameters change. Here we referred to our previous 

on-site survey[62] and took the measured data of a typical working scenario in the field 

survey as the initial input parameters (see Table 7) to discuss the single and coupled 

effect of some factors in Eq. (19) on human heat stress.  



 

 

 

Table 7: Basic inputs for the application of the model 

Parameters Value  Unit 

Age 30 yr 

Weight 75 kg 

Original skin temperature 34.16 oC 

Heart rate 94 bpm 

Air temperature 34.8 oC 

Radiation temperature 35.5 oC 

Air velocity 1.5 m/s 

Water vapor pressure 2.5541 Kpa 

Clothing insulation 0.4 clo 

Time 80 min 

 

5.2.1 Effect of the single factor-exposure time 

As mentioned in Eq. (19), the exposure time ti is a key variable determining body 

heat stress. According to the given inputs from Table 6, we examined the changes of 

body temperatures with increasing exposure time, as well as the body heat generations 

and dissipations involved, using the developed PHSHR model, as shown in Fig. 5.  

 

 

Fig. 5: The fluctuation of Tsk and Tcr and the corresponding heat generation and dissipation of 



 

 

the human body over time 

 

From Fig. 5, with the time increasing, the Tsk and Tcr gradually increase. By 

contrast, the Tsk has a linear increase to exposure time due to the direct contact with hot 

environments, in order to enhance the heat dissipation; while due to the cumulative heat 

storage in the body, the Tcr increases slowly at the initial stage but increases 

significantly as time goes on. This shows that the exposure time has a significant effect 

on human heat stress, i.e. extending exposure time under hot environments would lead 

to body heat storage, which would increase the potential risk for people’s health and 

safety.  

Fig. 5 also presents the changes of heat generation and dissipation of the human 

body. Under the design conditions, M is the main source of body heat generation, which 

is up to 230W/m2. Although both evaporative and convective heat exchange take place 

through respiration, the value is much smaller compared to the heat generation by 

metabolism. So is the C&R heat dissipation. By contrast, as the direct indicator of heat 

stress prediction, the heat storage (dSeq) and the required evaporative heat flow (Ereq) 

are maintained at around 80W/m2 and 130 W/m2 respectively.  

5.2.2 Coupled effect of environmental and non-environmental factors 

In fact, workers exposed to hot environments are not only threatened by single 

factors but also by multiple factors, like air temperature & radiation, air temperature & 

air velocity, air temperature & work intensity, & exposure time, etc. Therefore, it is 

necessary to identify and quantify the coupling effect of these factors on human heat 

stress in order to provide references for working protection in hot environments.  

○1 air temperature VS air velocity 

The air temperature and air velocity are the two main physical factors that affect 

human heat stress. Fig.  shows the predicted Ereq changes with the coupled impact of 

ta and va according to the developed PHSHR model. 

 



 

 

 
Fig. 6: The Ereq variation with coupling impact of ta and va based on the developed model 

 

In Fig. , Ereq changes significantly with increasing ta and va: the values increase 

when va and ta increase but the increase of va has a greater effect on Ereq. The Ereq 

increases dramatically with the va increasing from 0m/s to 3m/s, while it increases 

slightly when the temperature increases from 32 oC to 37 oC. This may be because the 

body has developed the maximum sweating regulation for hot environments so that the 

effect of increasing temperature is not significant. By contrast, the air velocity would 

significantly enhance the convective heat transfer and evaporative heat dissipation. On 

real working sites, the improvements of thermal environments where the workers are 

exposed are limited by many technical and economic factors. However, from Fig. , the 

air velocity is more efficient at enhancing Ereq and it is convenient to control and 

manage this on-site. Therefore, based on the prediction of body thermal status using the 

developed PHSHR model, it can provide appropriate air velocity designs under different 

hot conditions, which would be beneficial for worker protection. 

○2 Heart rate VS exposure time 

As analyzed in Fig. 5, the exposure time would also have significant effect on 

human heat stress. More importantly, the permitted exposure time for workers is 

significantly affected by different work intensities. Here, Fig.  shows the fluctuation 

of Tcr of the human body with heart rates (being representative of different work 

intensities) and exposure time. 



 

 

 

 

 

Fig. 7: The Tcr variation with the coupling impact of HR and time 

The WHO[58] has recommended that the upper limit of the physiological core 

temperature is 39 oC in the case of continuously monitoring the workers’ core 

temperatures. Accordingly, we took “Tcr <39 oC” as the upper limit during calculations 

using the PHSHR model. From Fig. , if the HR is maintained below 110bpm, the 

permitted working time for the human body can be up to 100 minutes under the 

designed condition. However, when the heart rate exceeds 110bpm, the working time 

of 100 minutes fails to guarantee human health and safety. Besides, the metabolic rate, 

which is reflected by the real-time heart rate, also has a significant effect on the 

permitted exposure times. With the increasing metabolic rate, the permitted working 

time under the physiological threshold of Tcr (Tcr <39 oC) decreases rapidly. For 

example, the maximum working time is just about 30min when the heart rate is up to 

180bpm. When the maximum working time is extended to 90 minutes, the permitted 

heart rate should be under 100bpm. As the exposure time for safety is important for 

working time management to prevent the occurrence of accidents at work, the 

developed PHSHR model can provide the permitted working time with the dynamic 

changes of working intensities at individual levels once the heart rates of workers can 

be monitored simultaneously, which is superior to the present PHS model.  

Overall, based on the outlines of the PHS model, the developed PHSHR model can 



 

 

be applied to predict human thermal regulations in a variety of combinations of the 

seven variables in Eq.(19), and all outcomes related to heat exchanges in Table 6 can 

be obtained, making it convenient to be applied for the design, assessment, and 

improvement in specific high-temperature working environments (e.g. steel plants, 

construction sites, military, industry, and sports training, etc.). More importantly, with 

the recently emerged wearable and portable metabolic devices into the complex 

thermos-physiological models to develop the model individualization approaches[38], 

the developed PHSHR model has adopted the physiological index - heart rate - which is 

easily obtained by the present technical instruments. Through monitoring the workers’ 

real-time heart rates individually, the developed model can predict human heat stress 

easily in dynamic conditions at the personal level. This improvement ensures the risk 

evaluation for some heat-sensitive populations and provides the health protection in 

advance, which overcomes the inconvenient application of the PHS model in the 

ISO7933. Therefore, the developed PHSHR model can be widely applicable for design, 

reconstruction guidance, evaluation standards, and policy administration. 

6. Conclusions  

A dynamic heart rate-based predicted heat stress model (PHSHR) has been 

developed based on the framework of the PHS model in ISO 7933, achieving the real 

time risk assessment of heat stress. The validation of the model is conducted through 

human heat exposure experiments in a climate chamber. The main conclusions are 

drawn including the following aspects: 

1) The instantaneous heart rate (HR) is introduced into the PHS model to predict the 

dynamic metabolic rates (Mi) over time. Based on this, the relation between Mi and 

HRi is built and the various terms of heat exchange used in the heat balance equation 

(C, R, Cres, Eres, dSre) are redefined as the function of the heart rate index. 

2) The infinitesimal time unit Δti (x = 1, 2, 3 ... i) is introduced aiming to open the 

enclosed iteration calculation from ti to ti+1 in the PHS model, and the terms (C, R, 

Cres, Eres, dSre) are thus calculated with ΣΔtx (x = 1,2,3 ... i), which enables the 

dynamic outputs of physiological indices related to heat stress at any time according 



 

 

to the changing environmental and personal parameters.  

3) The developed PHSHR model shows a similar trend to the original model, verifying 

the validity of the modified method introducing heart rate into PHS model. The 

developed PHSHR has better sensitive responses in the dynamic situations where the 

real-time heart rates change significantly. Compared to the experimental data, the 

introduction of real-time heart rates contributes to the better prediction performance, 

especially with the metabolic rate changing over time. 

4) The application of the developed PHSHR model is discussed. The effect of the single 

and the multiple variables on human heat stress performances, such as Ereq, the 

permitted exposure time, is quantified in the PHSHR model, which makes it possible 

for application in the design, evaluation, and improvement of hot working 

environments.  
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