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STOCHASTIC DIFFUSION:

FROM MARKOV TO NON-MARKOV MODELING∗

E. Gudowska-Nowak, B. Dybiec, P.F. Góra, R. Zygadło

M. Smoluchowski Institute of Physics, Department of Statistical Physics
and

Mark Kac Complex Systems Research Center, Jagellonian University,

Reymonta 4, 30-059 Kraków, Poland

(Received May 7, 2009)

We briefly discuss omnipresence of stochastic modeling in physical sci-
ence by recalling definitions of Markovian diffusion and generally, non-
Markovian continuous time random walks (CTRW). If the motion of an
idealized system can be described by a sum of independent displacements
whose statistic over short time intervals has a well defined variance, the
resulting random walk converges to a normal diffusion process. In turn,
if formulation of such motion assumes the idea of distribution of waiting
times between subsequent steps, the CTRW scenario emerges, which typi-
cally violates the Markovian property.

PACS numbers: 05.20.Dd, 05.40.Jc, 05.45.–a, 05.40.Fb

1. Markov and non-Markov processes

A stochastic process [1–3] {x(t)} is composed by a family of random
variables which are indexed by time, i.e. for each time t, the random variable
x(t) takes on the value x with some probability. The most popular example
of a stochastic process is a Brownian movement, discovered by a botanist
R. Brown in 1827 [4]. Brown has observed under the microscope a strong
irregular motion of pollen particles on a surface of water. The trajectories
of particles in a “Brownian process” are irregular and a displacement of
a Brownian particle at time t is a probabilistic, random variable.

2. Markov property

Stochastic processes and Markov processes, in particular, serve as a pow-
erfull tool to describe and understand various phenomena at different lev-
els of complexity — from the molecular to the population level. Modeling
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diverse complex systems via stochastic processes allows to incorporate the
effects of secondary factors for which the detailed knowledge is missing. The
technique has been widely used to model not only physical and chemical
systems [1] but also population growth and extinction [5, 6], population ge-
netics [7, 8], chemical kinetics [1, 9], firing of neurons [10, 11], opening and
closing of biological channels [12] or cell survival after irradiation [13, 14].
In what follows we first recall briefly a definition of Markovianity which
simplifies mathematical tools employed in stochastic modeling. We shall
emphasize however, that the assumption of Markovianity relates mostly to
natural systems perturbed by (equilibrium or non-equilibrium) fluctuations
which are uncorrelated in time. Such an idealization seems to be insufficient
in many physical realms where some degree of memory on the “past behav-
ior” influences future evolution of the system and driving fluctuations are
usually correlated.

A real stochastic process is fully statistically determined if its n-th order

or n-point distribution function [1] is given

P (x1, t1;x2, t2;x3, t3; . . . xn−1, tn−1;xn, tn) , (1)

for any n and t, where P (x1, t1;x2, t2;x3, t3; . . . , xn−1, tn−1;xn, tn) stands
for the probability that the process {x(t)} is in the state xn (takes the value
xn) at time tn and in the state xn−1 at time tn−1 . . . and in the state x1

at time t1. These functions are not arbitrary but they must satisfy certain
conditions. A distribution of a given order is determined from a distribution
of lower order by use of the Bayes rule for conditional probabilities:

P (x1, t1;x2, t2;x3, t3; . . . xn−1, tn−1;xn, tn)

= P (xn, tn|xn−1, tn−1; . . . x1, t1) . . . P (x2, t2|x1, t1)P (x1, t1) , (2)

where

P (xn, tn|xn−1, tn−1; . . . x1, t1)=
P (x1, t1;x2, t2;x3, t3; . . . xn−1, tn−1;xn, tn)

P (x1, t1;x2, t2;x3, t3; . . . xn−1, tn−1)
(3)

defines the conditioned probability that the process takes on value xn at time
tn provided the sequence of events {xn−1, tn−1; . . . x2, t2;x1, t1} took place at
earlier times. A Markov process is a stochastic process {x(t)} which can be
fully characterized by a conditioned probability and a one-point probability
functions [1].

The basic definition of Markovianity of the process can be expressed as

P (xn, tn|xn−1, tn−1; . . . x1, t1) = P (xn, tn|xn−1, tn−1) . (4)
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This criterion is to be complemented by the so-called Smoluchowski–Chapman
–Kolmogorov (SCK) equation (tn > tm > tk):

P (xn, tn|xk, tk) =

∞
∫

−∞

P (xn, tn|xm, tm)P (xm, tm|xk, tk)dxm , (5)

which follows directly from the definitions Eqs. (3) and (4). Therefore,
a process which does not satisfy either the basic definition Eq. (4) or the
SCK equation (5) is not Markovian. A non-Markovian process may satisfy
one of these relations but both are necessary conditions of Markovianity
(i.e. neither is a sufficient one).

3. Itô transformation formula

A continuous time parameter Markovian process, for which sample paths
{x(t)} are continuous functions of time, is called a diffusion process [1, 2].
The stochastic diffusion process is fully determined by two moments:

lim
h→0

1

h
〈∆hX(t)|X(t) = x〉 = µ(x, t) , (6)

lim
h→0

1

h
〈{∆hX(t)〉}2|X(t) = x〉 = σ2(x, t) , (7)

where x ∈ Ω,∆h = X(t + h) − X(t). The functions µ(x, t) and σ2(x, t) are
called expected infinitesimal displacement (drift coefficient) and infinitesimal
variance, respectively. In addition to infinitesimal relations (6), (7), higher
order infinitesimal moments are zero. Based on (6) and (7), it can be shown
[2] that the probability density function for the process follows the evolution
equation:

−
∂P (x, t′|y, t)

∂t
= µ(y, t′)

∂P (x, t′|y, t)

∂y
+

1

2
σ2(y, t′)

∂2P (x, t′|y, t)

∂y2
. (8)

An alternative approach to deriving evolution equation for the transition
probability densities of a Markov diffusion process was presented by Itô
[15]. Itô’s version of stochastic calculus starts with the stochastic differential
equation of the form

dx(t) = µ(x, t)dt + σ(x, t)dW (t) , (9)

where W (t) is an unit Wiener process describing Brownian motion (i.e.
a normal Gaussian process with stationary independent increments fulfilling
the relations E[W (t)] = 0 and E[(W (t) − W (s))2] = |t − s|). Accordingly,
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given that X(t) = x, the increment ∆x(t) in a small time interval ∆t has
the mean value µ(x, t)∆t, the variance σ2(x, t)∆t and is independent of
all previous increments. In this scheme, the Smoluchowski–Fokker–Planck
equation (being the adjoint equation to the Kolmogorov backward equation)

∂P (x, t′|y, t)

∂t′
= −

∂[µ(x, t′)P (x, t′|y, t)]

∂x
+

1

2

∂2[σ2(x, t′)P (x, t′|y, t)]

∂x2
(10)

can be derived by introducing the time-derivative for the moment generating
function Φ(s, t) of the process X(t)

Φ(s, t) = E[e−sX(t)] =

∞
∫

−∞

e−sxp(x, t)dx (11)

and truncating the Taylor series expansion at the second order.
According to the theorem proved by Itô, a continuous, strictly monotonic

function g with continuous derivatives g′ and g′′ may be used to transform
an arbitrary stochastic diffusion process {X(t)} into another diffusion pro-
cess {Y (t)}, y = g(x) by use of so called Itô transformation formula [2].
Infinitesimal parameters of the transformed process are:

µY (y) =
1

2
σ2(x)g′′(x) + µ(x)g′(x) (12)

and

σ2
Y = σ2(x)[g′(x)]2 . (13)

4. Random sums and Lévy random walks

With the results summarized above, the stochastic diffusion process may
be viewed as “locally” Gaussian. Further generalizations of Itô’s approach
are possible by e.g. introducing increments dW (t) as following the stable
law (self-similar but non-Gaussian) or, by analyzing properties of ∆W (t)
incorporated in Eq. (9) as of a random sum of random elements

∆W̃ (t) = ∆x(t) =

N(t)
∑

i=1

Xi , (14)

where the number of summands N(t) is statistically independent from Xi

and governed by a renewal process
∑

s
N(t)
i=1 Ti 6 t <

∑N(t)+1
i=1 Ti with t > 0.

Let us assume further that Ti,Xi belong to the domain of attraction of
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stable distributions, Ti ∼ Sλ,1 and Xi ∼ Sα,β, whose corresponding charac-

teristic functions φ(k) = 〈exp(ikSα,β)〉 =
∫

∞

−∞
eikxlα,β(x;σ, µ = 0)dx, with

the density lα,β(x;σ, µ = 0), are given by

φ(k) = exp
[

−σα|k|α
(

1 − iβsignk tan
πα

2

)]

, (15)

for α 6= 1 and

φ(k) = exp

[

−σ|k|

(

1 + iβ
2

π
signk log |k|

)]

(16)

for α = 1. Here the parameter α ∈ (0, 2] denotes the stability index, yielding
the asymptotic long tail power law for the x-distribution, which for α < 2 is
of the |x|−(1+α) type. The parameter σ (σ ∈ (0,∞)) characterizes the scale
whereas β (β ∈ [−1, 1]) defines an asymmetry (skewness) of the distribution
and µ represents the shift, which for the strictly stable distributions [17] is
set to 0. For 0 < ν < 1, β = 1, the stable variable Sν,1 is defined on positive
semi-axis. Within the above formulation, the counting process N(t) satisfies

lim
t→∞

Prob

{

N(t)

(t/c)ν
< x

}

= lim
t→∞

Prob







[(t/c)νx]
∑

i=1

Ti > t







= lim
n→∞

Prob







[n]
∑

i=1

Ti >
cn1/ν

x1/ν







= lim
n→∞

Prob







1

cn1/ν

[n]
∑

i=1

Ti >
1

x1/ν







= 1 − Lν,1

(

x−1/ν
)

, (17)

where [(t/c)νx] denotes the integer part of the number (t/c)νx and
Lν,1(x

−1/ν) represents the cumulative distribution function of the stable
density.

Moreover, since lim
n→∞

Prob
{

(1/c1n
1/α)

∑n
i=1 Xi < x

}

→Lα,β(x) and p(x, t)

=
∑

n p(x|n)pn(n(t)), asymptotically one gets (dLα,β(x)/dx = lα,β(x))

p(x, t) ∼ (c2t)
−ν/α

∞
∫

0

lα,β((c2t)
−ν/αxτν/α)lν,1(τ)τν/αdτ , (18)

where c1 and c2 are constants. The resulting (non-Markov) process becomes
ν/α self-similar Lévy random walk [18–20], i.e. p(x, t) = t−ν/αp(xt−ν/α, 1).
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Fig. 1. (Color online) Examples of sample trajectories of ν/α self-similar random

walk. The spread of trajectories is visualized by quantile lines (0.1, 0.2, . . . , 0.9 —

from bottom to the top). The p-quantile line for the process is a function qp(t)

defined via relation Prob{X(t) 6 qp(t)} = p.
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Fig. 2. Exemplary ν/α self-similar motion in 2D. The trajectories have been simu-

lated independently in x and y direction. The values for time and space fractional

parameters are displayed.
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In general, Lévy random walks are neither Gaussian nor Markov [21–23].
An interesting class of these processes can be built up by allowing coupling
between N(t) and Xi and introducing the hierarchical clustering transfor-
mation [24]. In consequence, the asymptotic distribution of the resulting

diffusion front W̃ (t) depends on the way the jumps are correlated within the
clusters. Time relaxation patterns of such fronts are interesting models of
transport and relaxation phenomena in complex, inhomogeneous systems.

The 2008 Marian Smoluchowski Symposium on Statistical Physics has
been entitled “Questioning Appearance of Stable Noises in Statistical
Physics” and has been devoted to contemporary trends exploring and making
use of the theory of stochastic processes and anomalous diffusion in a number
of branches: chemical kinetics and biological devices, nonlinear flows, quan-
tum processes and information theory. We had a privilege of hosting groups
of mathematicians and physicists whose works in the field have profoundly
progressed the theory and influenced applications of anomalous diffusion in
various domains of natural science. We hope that their contributions, pre-
sented in this volume of Acta Physica Polonica B will be an inspiring step
towards exciting problems of stochastic complexity, process subordinations,
fractional diffusion and coupled CTRW.

On behalf of the Organizers we thank all institutions which have spon-
sored the conference with much hope for possibility of next meetings to come
and illuminating discussions within the scope of future Smoluchowski sym-
posia.

E. Gudowska-Nowak, B. Dybiec, P.F. Góra, R. Zygadło.
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