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resumo 
 

 

A Doença de Alzheimer (AD) é a maior doença neurodegenerativa a nível 
mundial, e a principal causa de demência na população idosa. O 

processamento da proteína precursora de amilóide (APP) pelas β- e g-
secretases origina o peptídeo Aβ, que agrega em oligómeros neurotóxicos e 
em placas senis. Estes são eventos-chave na patogénese da DA que levam à 
rutura da neurotransmissão sináptica, morte neuronal e inflamação neuronal 
do hipocampo e córtex cerebral, causando perda de memória disfunção 
cognitiva geral. Apesar dos grandes avanços no conhecimento do papel do 
processamento da APP na DA, a sua função fisiológica ainda não foi 
totalmente elucidada.  
Os mapas de interações proteína-proteína (PPI) humanos têm desempenhado 
um papel importante na investigação biomédica, em particular no estudo de 
vias de sinalização e de doenças humanas. O método dois-híbrido em 
levedura (YTH) consiste numa plataforma para a produção rápida de redes de 
PPI em larga-escala. Neste trabalho foram realizados vários rastreios YTH 
com o objetivo de identificar proteínas específicas de cérebro humano que 
interagissem com a APP, ou com o seu domínio intracelular (AICD), tanto o 
tipo selvagem como com os mutantes Y687F, que mimetizam o estado 
desfosforilado do resíduo Tyr-687. De facto, a endocitose da APP e a 
produção de Aβ estão dependentes do estado de fosforilação da Tyr-687. Os 
rastreios YTH permitiram assim obter de redes proteínas que interagem com a 
APP, utilizando como “isco” a APP, APP

Y687F
 e AICD

Y687F
. Os clones positivos 

foram isolados e identificados através de sequenciação do cDNA. A maior 
parte dos clones identificados, 118, correspondia a sequências que codificam 
para proteínas conhecidas, resultando em 31 proteínas distintas. A análise de 
proteómica funcional das proteínas identificadas neste estudo e em dois 
projetos anteriores (AICD

Y687E
, que mimetiza a fosforilação, e AICD tipo 

selvagem), permitiram avaliar a relevância da fosforilação da Tyr-687. Três 
clones provenientes do rastreio YTH com a APP

Y687F
 foram identificados como 

um novo transcrito da proteína Fe65, resultante de splicing alternativo, a 
Fe65E3a (GenBank Accession: EF103274), que codifica para a isoforma 
p60Fe65. A p60Fe65 está enriquecida no cérebro e os seus níveis aumentam 
durante a diferenciação neuronal de células PC12, evidenciando o potencial 
papel que poderá desempenhar na patologia da DA.  
A RanBP9 é uma proteína nuclear e citoplasmática envolvida em diversas vias 
de sinalização celulares. Neste trabalho caracterizou-se a nova interação entre 
a RanBP9 e o AICD, que pode ser regulada pela fosforilação da Tyr-687. 
Adicionalmente, foi identificada uma nova interação entre a RanBP9 e a 
acetiltransferase de histonas Tip60. Demonstrou-se ainda que a RanBP9 tem 
um efeito de regulação inibitório na transcrição mediada por AICD, através da 
interação com a Tip60, afastando o AICD dos locais de transcrição ativos. 
O estudo do interactoma da APP/AICD, modelado pela fosforilação da Tyr-687, 
revela que a APP poderá estar envolvida em novas vias celulares, contribuindo 
não só para o conhecimento do papel fisiológico da APP, como também auxilia 
a revelar as vias que levam à agregação de Aβ e neurodegeneração. A 
potencial relevância deste trabalho relaciona-se com a descoberta de algumas 

interações proteicas/vias de sinalização que podem que podem ser relevantes para 
o desenvolvimento de novas estratégias terapêuticas na DA.  
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abstract 

 

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder 
worldwide and the leading cause of dementia in the elderly. Processing of 

amyloid-β precursor protein (APP) by β- and g-secretases produces Aβ, which 
aggregates into neurotoxic oligomers and senile plaques. These are key events 
in the pathogenesis of AD that lead to the disruption of synaptic 
neurotransmission, neuronal cell death, and inflammation in the hippocampus 
and cerebral cortex, thus causing memory loss and global cognitive 
dysfunction. Despite advances in understanding the role of APP processing in 
AD, the normal physiological function of this protein has proven more difficult to 
elucidate.  
Human protein-protein interaction (PPI) maps play an increasingly important 
role in biomedical research and have been shown to be highly valuable in the 
study of a variety of human diseases and signaling pathways. The yeast two-
hybrid (YTH) system provides a platform for the rapid generation of large scale 
PPI networks. Several YTH screens were performed to identify human brain-
specific proteins interacting with APP, or with its intracellular domain (AICD), 
either the wild-type or the Y687F mutant, which mimics the dephosphorylated 
residue. In fact, APP endocytosis and Aβ generation are dependent upon Tyr-
687 phosphorylation. A human APP network comprised of the protein 
interactions was assembled through YTH screening, using as baits APP, 
APP

Y687F
 and AICD

Y687F
. Positive clones were isolated and identified by DNA 

sequencing and database searching. The majority of these clones, 118, 
matched to a protein coding sequence, yielding 31 different proteins. Functional 
proteomics analysis of the proteins identified in this study, and two additional 
screens from previous projects (phospho-mutant AICD

Y687E
 and wild-type 

AICD), allowed to infer the relevance of Tyr-687 phosphorylation. Three clones 
from YTH with APP

Y687F
 were identified as a new splice variant of the APP 

binding protein Fe65, Fe65E3a (GenBank Accession EF103274), encoding the 
p60Fe65 isoform. Fe65E3a is expressed preferentially in the brain and the 
p60Fe65 protein levels increased during PC12 cell differentiation. This novel 
Fe65 isoform and the regulation of the splicing events leading to its production, 
may contribute to elucidating neuronal specific roles of Fe65 and its 
contribution to AD pathology. 
RanBP9 is an evolutionarily conserved nucleocytoplasmic protein implicated as 
a scaffolding protein in several signaling pathways. In this work a novel 
interaction between RanBP9 and AICD, which can be regulated by Tyr-687 
phosphorylation, was characterized. Moreover, a novel interaction between 
RanBP9 and the histone acetyltransferase Tip60 was identified. RanBP9 was 
demonstrated to have an inhibitory regulatory effect on AICD-mediated 
transcription, through physical interaction with Tip60, relocating AICD away 
from transcription factories. 
Overall, the APP/AICD interactome shaped by the phosphorylation state of Tyr-
687 provided clues to elucidate APP pathways leading to amyloid deposition 
and neurodegeneration. As such the work here described brings us nearer to 
unravelling the physiological functions of APP. This in turn is of potential 
significant relevance in the pathology of AD, and for the design of effective 
novel therapeutic strategies. 
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TTHHEESSIISS  OOUUTTLLIINNEE  

 

The present thesis is organized into six Chapters. In Chapter I, a general introduction to 

Alzheimer’s disease (AD) is presented. It includes a review of the literature in the field of the 

cellular and molecular aspects that contribute to the pathogenesis of AD. The thesis Introduction 

is mainly focused on the biology of the amyloid-β precursor protein (APP), including a description 

of APP trackiffing and processing. The putative functions of APP holo protein and its fragments are 

also addressed. Phosphorylation of APP intracellular domain (AICD) and the interactome of APP 

are described in an AICD signaling perspective. 

Chapters II to V correspond to different scientific studies. Chapter II presents all the 

material and methods used to perform three yeast two-hybrid (YTH) screens, using as baits 

diverse constructs of the amyloid precursor protein (APP), as well as the results obtained in the 

screens. 

Chapter III corresponds to the identification of the positive clones obtained, 

characterization of the novel putative APP binding proteins by bioinformatics methods and 

analysis of the protein networks around APP. 

Chapter IV presents a novel splice variant of the APP binding protein Fe65, termed Fe65E3a. 

Fe65 is a well-known APP interacting protein, and the novel Fe65 splice variant generates a 

neuronal-specific shorter protein, relevant for APP physiological roles and potentially for AD. 

In Chapter V, the new interaction between APP intracellular domain and the scaffolding 

protein RanBP9 is characterized. The new complex AICD-RanBP9-Tip60 is also described, in the 

perspective of AICD nuclear signaling.  

In Chapter VI, a general discussion and conclusions resulting from the data obtained are 

presented. 
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OOBBJJEECCTTIIVVEESS  

 

Phosphorylation/dephosphorylation of consensus sites in the cytoplasmic domain of 

amyloid-β precursor protein (APP) affects its subcellular localization, proteolytic processing and, 

consequently, Aβ production. In fact, the intracellular domain of APP (AICD) contains eigth 

phosphorylatable residues, and seven of these are hyperphosphorylated in AD brains. For 

example, Tyr-687 that is contained in the 682YENPTY687 motif, is a docking site for interaction with 

cytosolic proteins that regulate APP metabolism and signaling. In fact, APP endocytosis and Aβ 

generation are dependent upon Tyr-687 phosphorylation, which was shown in vivo using 

phosphorylation-/dephosphorylation-mimicking mutants. The molecular function of APP is 

unknown, but Tyr-687 phosphorylation is probably regulating the interactions with other proteins. 

Therefore, the aim of this work was to identify brain proteins capable of interacting with the APP 

or AICD harbouring mutations that mimic the phosphorylation state of Tyr-687. The 

characterization of APP protein complexes shaped by Tyr-687 phosphorylation/ 

dephosphorylation will contribute to elucidate APP physiological function, and APP pathways 

leading to AD. Furthermore, APP binding proteins represent potential targets for novel 

therapeutic approaches. Hence, specific aims were to: 

 

1. Perform preliminary steps for YTH screening, in particular to construct the bait plasmids 

and verify the expression of the GAL4-BD fusion proteins by immunoblotting. 

 

2. Perform three YTH screens using large-scale yeast mating with pretransformed human 

brain library and isolate the putative positive clones. 

 

3. Identify the novel APP, APPY687F and AICDY687F binding proteins by sequencing of the 

preys’ cDNA plasmids. Perform in silico analysis of APP protein networks. 

 

4. Select potentially relevant clone(s) for further functional analysis. To accomplish this 

specific aim a novel interaction between AICD and RanBP9 was selected for further 

functional characterization. Addionally, an alternatively spliced Fe65 positive clone was 

also selected for further studies. 
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I.1 ALZHEIMER’S DISEASE (AD): THE MOST COMMON FORM OF AGE-RELATED 

DEMENTIA 

 

In 1907, the German psychiatrist and neuropathologist Alois Alzheimer published a report 

concerning “an unusual illness of the cerebral cortex” (Alzheimer, 1907; Alzheimer et al., 1995), 

which Emil Kraepelin subsequently named after him (Kraepelin, 1910). Alzheimer described the 

case of a 51-year-old woman, Auguste D., who initially developed a delusional disorder followed 

by a rapid loss of short-term memory. Post-mortem brain examination, using a silver staining 

method, revealed cortical atrophy and the presence of two histopathological modifications: senile 

plaques (SPs), and neurofibrillary tangles (NFTs) in the cerebral cortex and limbic system, which 

are known today as the hallmarks of the disease. 

Alzheimer’s disease (AD) is a slowly progressive disorder, with insidious onset and 

progressive decline in cognitive and functional abilities as well as behavioral and psychiatric 

symptoms leading to a vegetative state and ultimately death. AD is the most common cause of 

dementia, accounting for 50-60% of all cases. The prevalence of dementia increases exponentially 

with age, from below 1% in individuals aged 60-64 years, up to 24-33% in people over age 85, in 

the western world. One century after the first description, AD has become the most common age 

related neurodegenerative disorder. In 2001, around 24 million people worldwide had dementia 

and the number is expected to double every 20 years, because of the anticipated increase in life 

expectancy (Ferri et al., 2005; Qiu et al., 2009). 

 

I.1.1 Clinical symptoms of AD 

 

AD, as the prototype of cortical dementias, is characterized by the development of major 

cognitive defects. The clinical symptomatology begins by episodic memory deficits with preserved 

alertness and motor function. The syndrome of mild cognitive impairment (MCI), characterized by 

a subtle decrease in short-term declarative memory although with normal cognition, is often a 

precursor of AD (Petersen and Negash, 2008; Werner and Korczyn, 2008). Over time, progressive 

cognitive impairment appears, including impaired judgement, decision-making and orientation, 

often accompanied, in later stages, by psychobehavioural disturbances as well as language 

impairment (McKhann et al., 1984). Besides the cognitive decay, patients display dramatic 
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neuropsychiatric symptoms, namely mood disturbances, delusions and hallucinations, personality 

changes and behavior disorders, such as aggressiveness, depression and circadian disturbances 

(Knopman et al., 2001). In contrast with cognitive symptoms, the non-cognitive defects do not 

show a progressive course (Chung and Cummings, 2000). Patients usually survive 7 to 10 years 

(range 2-20 years) after the onset of symptoms and typically die from medical complications, such 

as bronchitis or pneumonia (Beal et al., 2005). 

 

I.1.2 Diagnosis of AD 

 

The patient history, together with clinical, neurological and psychiatric examination, 

provide the basis for establishing the clinical diagnosis of AD. According to previous criteria, AD 

could only be definitively diagnosed by postmortem brain biopsy (MRC-CFAS, 2001), but 

laboratory tests and neuroimaging are today valuable tools to exclude other causes of dementia. 

Therefore, full confirmation of AD diagnosis requires both presence of progressive dementia 

(episodic memory impairment and involvement of at least one additional cognitive domain, with 

impairment in daily living activities) and demonstration of the presence in the brain of SPs and 

NFTs. Given that the neuropathological hallmarks of the disease, SPs and NFTs, are only observed 

postmortem, AD diagnosis is primarly probabilistic (probable AD). According to National Institute 

of Neurological and Communicative Diseases and Stroke/ Alzheimer’s Disease and Related 

Disorders Association (NINCDS/ADRDA) criteria AD could be definite (at autopsy), probable or 

possible (McKhann et al., 1984). 

Meanwhile, Braak and Braak (1991) presented another model of AD stageing, based on the 

frequency and location of the deposition of neurofibrillary tangles. This has led to the simplified 

hypothesis testable with in vivo imaging that the entorhinal cortex is the first involved area, 

followed by the hippocampus, and then the neocortical temporal cortex. 

Increasing scientific knowledge, regarding the pathobiology of AD, led to research focused 

on the search for biomarkers. The most reliable biomarkers validated in the last few years include: 

an abnormal cerebrospinal fluid amyloid-β protein (Aβ) and Tau profile (Blennow et al., 2010; 

Spitzer et al., 2010); the presence of hippocampal atrophy on magnetic resonance imaging (MRI), 

glucose hypometabolism on positron emission tomography (PET) scan, or the presence of a 

known pathogenic mutation in APP, PSEN1 and PSEN2 genes. Hence, in 2007 new research criteria 

were proposed (Dubois et al., 2007). According to the new criteria, the diagnosis of AD is 
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confirmed in the presence of episodic memory impairment and a positive biomarker. It has a high 

level of accuracy even at the stage of earliest clinical manifestations, i.e. the MCI stage. 

 

I.1.3 Neuropathological phenotype 

 

The histopathological features of AD, described for the first time by Alzheimer and still 

considered as the two main pathological hallmarks of the disease, are abundant amounts of 

extracellular plaques composed of the amyloid-β and intracellular neurofibrillary lesions formed 

of hyperphosphorylated tau protein. Neuronal and synaptic loss and numerous other structural 

and functional alterations, such as energy dysfunction, oxidative stress (Pappolla et al., 1992; 

Eckert et al., 2003) and inflammatory responses (Wyss-Coray, 2006) are associated with AD. 

 

Neuronal and synaptic loss 

 

The combined consequences of all the pathological changes lead to massive neuronal and 

synapse loss at specific brain regions involved in learning, memory and emotional behavioral such 

as the hippocampus, association cortices and subcortical structures including the amygdala and 

nucleus basalis of Meynert (Selkoe, 2002; Duyckaerts et al., 2009). Cortical atrophy and 

concomitant enlargement of ventricles and sulci, particularly in the frontal, temporal and parietal 

lobes, are characteristic changes in AD (Fig. I.1). The occipital lobe and the sensory and motor 

regions of cortex are relatively spared. The first neurodegenerative changes are observed in 

hippocampus and entorhinal cortex and measurement of hippocampal atrophy can discriminate 

between AD and non-affected elderly people (Robakis, 2011). Atrophy of these regions is, 

however, also present in other dementias and is not specific for AD. The atrophy in AD is due to 

decreased number of synapses, degenerated neurites and neuronal loss (Terry et al., 1991). 

Neurons that use glutamate or acetylcholine as neurotransmitters appear to be particularly 

affected, but cells that produce serotonin and norepinephrine are also damaged (Whitehouse et 

al., 1981). At the time of death, the brain of a patient with AD may weigh one-third less than the 

brain of an age-matched, non-demented individual (Petrovitch et al., 2000). 
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Figure I.1: Image representating a normal brain half, on the left, 

and an Alzheimer’s brain half, on the right (cross-section of brain 

coronal sections). The Alzheimer’s brain is smaller, particularly in 

the hippocampus (red circle) and there is some widening of the 

ventricles (blue circles) (Adapted from 

http://www.alz.org/brain/09.asp). 

 

 

 

Senile plaques (SPs) 

 

SPs are extracellular deposits of amyloid-β protein (Aβ), a peptide derived from proteolytic 

cleavage of amyloid precursor protein (APP) by the sequential action of β- and g-secretases 

(detailed in Section I.2.2). Relatively heterogeneous cleavage by g-secretase produces diverse Aβ 

species, variable in length (Esch et al., 1990; Zhao et al., 2007). The plaques are composed 

primarily of the Aβ species from 39 to 43 residues in lengh. Most of the Aβ produced by g-

secretase is the 40-residue form (Aβ40) whereas the 42-residue variant (Aβ42) represents only 5-

10% of all Aβ produced. However, the major Aβ species deposited in the plaques is Aβ42 

(Iwatsubo et al., 1994; Wolfe, 2008b). SPs can be observed as neuritic plaques or diffuse plaques. 

Neuritic plaques are microscopic foci of extracellular amyloid deposition and associated axonal 

and dendritic injury (Fig. I.2). The cores of the neuritic plaques are mostly composed of Aβ42 

(Iwatsubo et al., 1994) that occur mainly in a filamentous form, i.e., as star-shaped masses of 
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amyloid fibrils. Dystrophic neurites occur both within this amyloid deposit and immediately 

surrounding it (Dickson, 1997). Neuritic plaques are also closely associated with microglia and 

reactive astrocytes. In contrast, diffuse plaques show a finely granular pattern, without a clearly 

fibrillar, compacted center and lack the associated dystrophic neurites and glia (Masliah et al., 

1993; Selkoe, 2001). The diffuse plaques are not only found in limbic and association cortices, 

where often large numbers of the neuritic plaques are found, but also in regions which do not 

generally display the typical AD pathology, such as cerebellum, striatum and thalamus. It has been 

suggested that diffuse plaques might represent precursor lesions of neuritic plaques (Selkoe, 

2001). 

Aside from plaques, Aβ deposits can also be found in the walls of blood vessels within the 

cerebral cortex (mainly Aβ40), leading to the development of cerebral amyloid angiopathy, 

another pathological condition observed in AD (Miller et al., 1993). In fact, Aβ was first isolated 

and sequenced from meningeal vessels in AD and Down’s syndrome (DS) cases, prior to its 

isolation from plaques (Glenner and Wong, 1984b).  

 

Neurofibrillary tangles (NFTs) 

 

NFTs are intracellular neurofibrillary lesions composed of the microtubule-associated 

protein tau (encoded by the MAPT gene), which is present in a hyperphosphorylated form (Brion 

et al., 1985; Hernandez et al., 2010). NFTs are large, non-membrane bound bundles of abnormal 

fibers that accumulate in the perinuclear region of the cytoplasm (Fig. I.2). Electron microscopy 

showed that most of these fibers consist of pairs of filaments wound into helices, termed paired 

helical filaments (PHFs). Tau hyperphosphorylation favours its dissociation from microtubules and 

stimulates the self-assembly of tau, in paired helical filaments that in turn assemble into 

neurofibrillary tangles (Selkoe, 2001). 

The two classical lesions of AD, SPs and NFTs, can occur independently of each other. Tau 

aggregates that are biochemically similar to those in AD have been described in other less 

common neurodegenerative diseases, in almost all of which no Aβ deposits and neuritic plaques 

are present. Conversely, Aβ deposits can be seen in the brains of cognitively normal-aged humans 

in the virtual absence of tangles (Terry et al., 1987). 
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Figure I.2: Photomicrographs of temporal cortices of Alzheimer's disease patients (modified Bielschowski 

stain). (A) Numerous senile (neuritic) plaques (black arrows) and neurofibrillary tangles (red arrow) are 

shown (original magnification, 100×). (B) Two senile (neuritic) plaques with a neurofibrillary tangle 

between them are shown (original magnification, 400×) (Adapted from Perl, 2010). 

 

 

Other AD microscopic lesions 

 

Besides SPs and NFTs, other microscopic features were identified in AD brains such as 

Hirano bodies, also named eosinophilic rod-like inclusions (Hirano, 1994). Hirano bodies are 

eosinophilic perineuronal lesions encountered within the CA1 region of the hippocampus, 

currently considered to be a non-specific lesion of unknown significance. Immunohistochemical 

studies indicate the presence of actin, tropomyosin, and vinculin within these bodies (Galloway et 

al., 1987; Perl, 2010). 

Granulovacuolar degeneration is a poorly understood lesion that consists of an 

intraneuronal cluster of small vacuoles each containing a small, dense basophilic granule. The 

central granules stain intensely with silver impregnation stains and with antibodies directed 

against phosphorylated neurofilaments, tubulin, tau, and ubiquitin (Dickson et al., 1987). Little is 

known about the nature of these lesions or their significance. They are seen in brain specimens 

derived from elderly individuals with normal cognitive function, but studies have shown that large 

numbers of such lesions in the boundary zone between the CA1 and CA2 regions of the caudal 

aspect of the hippocampus correlate well with a diagnosis of Alzheimer's disease (Ball and Lo, 

1977; Perl, 2010). 
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I.1.4 Genetics and risk factors of AD 

 

The etiology of AD is complex and not yet fully understood, however it is widely accepted 

that inheritance of specific genes plays a critical role in predisposing to onset and/or in modifying 

disease progression. In particular, the identification of specific, disease-segregating mutations in 

previously unknown genes has directed attention to specific proteins and pathways that are now 

considered critical in the pathogenesis of the disease, e.g. mutant amyloid-β precursor proteins 

that cause AD (Bertram and Tanzi, 2004). 

In common with various neurodegenerative diseases, AD shows familial (rare) and 

apparently non-familial (common) forms. The latter are also frequently described as “sporadic” or 

“idiopathic”, although increasing evidence suggests that a large proportion of these cases are also 

significantly influenced by genetic factors. These risk genes are likely to be numerous, displaying 

intricate patterns of interaction with each other as well as with non-genetic factors. Therefore, AD 

is a genetically complex disease , not exhibiting a simple or single mode of inheritance (Bertram, 

2011). 

 

Early-onset familial AD (EOFAD) 

 

EOFAD, often transmitted as an autosomal dominant trait with onset ages usually below 65 

years of age, is caused by rare, but highly penetrant mutations in at least three genes: APP 

(amyloid precursor protein; located on chromosome 21q21.3), PSEN1 (presenilin 1; on 14q24.3), 

and PSEN2 (presenilin 2; on 1q31-q42) (Tanzi et al., 1987; Goate et al., 1991; Rogaeva, 2002). 

However, these cases probably represent not more than 5% of all AD cases. An up-to-date 

overview of AD mutations is found in the “AD and FTD Mutation Database” 

(http://www.molgen.ua.ac.be/ADMutations/) (Cruts and Van Broeckhoven, 1998; Rovelet-Lecrux 

et al., 2006). 

The mutations in APP occur near or within its cleavage sites (Fig. I.3), thereby altering APP 

processing such that more Aβ42 is produced (Hardy and Selkoe, 2002). The presenilins are a 

central component of g-secretase, the enzyme responsible for liberating from the C-terminal 

fragment of APP, and mutations in the presenilins also alter APP processing, producing more Aβ42 

(Wilquet and De Strooper, 2004). These genetic data are the basis for the amyloid hypothesis of 

AD (see the Section I.1.5), and suggest that Aβ42 is the initiating molecule in Alzheimer’s disease. 
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Additional data have reinforced this view, with APP gene duplications also causing the disease 

(Rovelet-Lecrux et al., 2006). Indeed high levels of APP expression were already known to be 

highly significant, as Down’s syndrome patients have an extra copy of chromosome 21 (trisomy 

21) and develop AD by the age of 50. Post-mortem analyzes of those who died young showed 

diffuse intraneuronal deposits of Aβ in the absence of any tau pathology, suggesting that Aβ 

deposition is an early event in AD (Esler and Wolfe, 2001). 

In AD, no mutations have been identified in the gene encoding tau, MAPT (located on 

chromosome 17q21.1). However, more than 30 exonic and intronic mutations in MAPT have been 

found in a familial dementia related to AD, the frontotemporal dementia with Parkinsonism linked 

to chromosome 17 (FTDP-17). Tau mutations are mainly located in the microtubule binding repeat 

region or close to it and reduce tau ability to promote microtubule assembly and lead to NFT 

formation (Hasegawa et al., 1998). 

 

 

Figure I.3: APP mutations associated with early-onset familial Alzheimer’s disease (FAD). Most APP 

mutations are clustered in the close vicinity of β- and g-secretase-cleavage sites, thereby influencing APP 

processing (Adapted from Karran et al., 2011). 

 

 

Late-onset AD (LOAD) 

 

The vast majority of AD cases occurs after the age of 65 years (late-onset; LOAD), and 

does not show any evident pattern of familial segregation. However, strong evidence exists 
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suggesting the presence of additional AD genes for both forms of the disease. For example, a 

large population based twin study showed that the extent of heritability for the sporadic disease 

is almost 80% (Gatz et al., 1997; Gatz et al., 2006). 

The identification of complex disease genes is affected by several factors: locus and/or 

allelic heterogeneity; small effect sizes of the underlying variants; unknown and difficult to model 

interaction patterns; population differences; insufficient sample sizes/sampling strategies; and, 

linkage disequilibrium among polymorphisms other than those initially associated with the 

disease. The emergence of powerful and efficient genotyping technologies, e.g. genome-wide 

association studies (GWAS), has suggested the existence of over three dozen potential new AD 

susceptibility genes. To date, the results of 15 GWAS have been published for AD, reporting more 

than 40 different loci as potential AD susceptibility modifiers. Interestingly, all published AD 

GWAS to date share the highly significant association between increased AD risk and the presence 

of the apolipoprotein E (APOE) ε4 allele (Bertram, 2011). 

There are three allelic variants of the APOE gene: ε3, ε2 and ε4, encoding the 

corresponding isoforms. Meta-analysis showed that the APOE ε4 allele increases the risk of the 

disease by three times in heterozygotes and by 15 times in homozygotes (Poirier et al., 1993; 

Saunders et al., 1993; Dickson et al., 1997). In contrast, ε2, the least common allele, is suggested 

to be protective (Corder et al., 1994). The apoE isoforms are suggested to influence the risk of 

developing AD by differentially affecting the aggregation and clearance of Aβ (Kim et al., 2009), 

presumably through a direct interaction between apoE and Aβ (Strittmatter et al., 1993). 

 

 

Gene Protein Location 

Physiological/Pathogenic 

relevance 

APOE Apolipoprotein E 19q13 

Aggregation and clearance 

of Aβ; cholesterol 

metabolism 

BIN1 Bridging integrator 1 2q14 
Production and clearance of 

Aβ 

CLU Clusterin 8p21.1 
Aggregation and clearance 

of Aβ; inflammation 

CR1 
Complement component (3b/4b) 

receptor 1 
1q32 

Clearance of Aβ; 

inflammation 

PICALM 
Phosphatidylinositol-binding 

clathrin assembly protein 
11q14 

Production and clearance of 

Aβ; synaptic transmission 

Table I.1: Established susceptibility genes for non-Mendelian forms of Alzheimer’s disease. 
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“AlzGene” is a publicly available internet database (http://www.alzgene.org) that 

uncovers the information of every peer-reviewed genetic association study in AD (Bertram et al., 

2007). Of the more than 40 loci implicated in AD etiology in addition to APOE by GWAS, only five 

currently show sufficient evidence of representing genuine associations with AD risk (Table I.1), 

being all associated with Aβ generation, aggregation or clearance: APOE; BIN1; CLU; CR1; and 

PICALM. A few others show at least some evidence for replication in independent follow-up 

studies, though no association at genome-wide significance in meta-analyzes (Bertram, 2011): 

CD33 (siglec-3), GAB2 (GRB2-associated binding protein 2), or GWA_14q32 (not assigned to a 

specific gene). 

 

Epidemiological studies also suggested that other factors such as aging, traumatic brain 

injury (Jellinger, 2004), female gender, low physical and social activity, hypertension and high 

serum cholesterol levels at midlife are associated with AD (Pasinetti et al., 2011; Sakurai et al., 

2011). Nevertheless, further work is needed to elucidate the impact of some of these factors and 

their possible role in pathogenesis. 

 

I.1.5 The amyloid cascade hypothesis  

 

Genetic data provided the intellectual basis for the amyloid hypothesis of AD, suggesting 

that Aβ is the initiating molecule in the disease process (Hardy and Allsop, 1991; Selkoe, 1991). 

Indeed, familial AD is caused by highly penetrant mutations in genes that affect the release of Aβ 

from APP (APP, PSEN1 and PSEN2), leading to increased production of its amyloidogenic forms, 

namely Aβ42. The dementia associated with Trisomy 21 and APP locus duplications causing the 

disease had reinforced this view. The genetic polymorphism in the APOE gene (allele e4) is also 

believed to induce higher Aβ aggregation by interaction of apoE with Aβ in the process of its 

clearance (Biere et al., 1995). Therefore, an increase in production of either total Aβ or the 

amyloidogenic Aβ1-42 isoform is well established in familial AD, but only limited evidence exists for 

a specific disturbance in Aβ clearance in sporadic AD.  

The amyloid hypothesis states that overproduction of Aβ, i.e. the imbalance between the 

production and clearance of Aβ in the brain, causing an increase in the Aβ levels, and its 

aggregation into senile plaques is a primary event in AD pathogenesis (Hardy and Selkoe, 2002). 

The original amyloid cascade hypothesis had proposed that the key event in AD development is 
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the extracellular accumulation of insoluble fibrillar Aβ, nevertheless the “extracellular insoluble 

Aβ toxicity” hypothesis was later modified to acknowledge the role of soluble Aβ oligomers as 

pathogenic agents (Klein et al., 2004; Lesne et al., 2006). In both familial and sporadic AD, soluble 

Aβ is believed to undergo a conformational change that causes its aggregation into soluble 

oligomers and the larger insoluble fibrils found in plaques. At the molecular level, the mechanisms 

underlying this conformational change are largely unknown but diffuse neurocentric amyloid 

deposits would evolve over time and eventually would become neuritic SP. The deposition of 

Aβ42 may form a “precipitation core” to which soluble Aβ40 could aggregate, in an AD-specific 

process. The in vivo aggregation of Aβ may originate a chronic and destructive inflammatory 

process in the brain, occurring in the immediate vicinity of SPs in AD patients’ brains (Selkoe, 

2001).  

 

 

Figure I.4: The amyloid cascade hypothesis of AD. An imbalance between the production and clearance of 

Aβ in the brain, causing an increase in the level of the peptide, is the initiating event in AD, and ultimately 

leads to neuronal degeneration and dementia (Adapted from Blennow et al., 2010). 

 

Fibrillar Aβ deposited in plaques might be neurotoxic; however, synaptic loss and clinical 

progression of the disease mainly correlate with soluble Aβ levels. Subsequently, the gradual 

accumulation of aggregated Aβ initiates a complex, multistep cascade (Fig. I.4) that includes 
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gliosis, inflammatory changes, neuritic/synaptic change, NFTs and neurotransmitter loss (Selkoe, 

2001). Data suggest that soluble Aβ oligomers might inhibit LTP in the hippocampus and, hence, 

disrupt synaptic plasticity. Tau phosphorylation and subsequent neurofibrillary tangle formation, 

as well as inflammation and oxidative stress, are regarded as downstream events.  

The amyloid hypothesis generated testable predictions that have been the basis for most 

work on the pathogenesis of AD. Some predictions have been fulfilled and others have not been 

shown to be true. Therefore, undertstanding the normal physiological function of amyloid-β 

precursor protein is a major scientific need to unravel the disease process. 

 

I.1.6 Current therapeutic approaches for AD 

 

In addition to the impact on the lives of AD patients, their families and caregivers, AD is of 

major public health concern. Even though of symptomatic benefit, neither of the treatments 

available today stops the progression of the disease and efficient pharmacological treatment is 

needed. Two classes of medications are approved by North American and European Union 

regulatory criteria and marketed for AD: cholinesterase inhibitors (for example, donepezil 

[Aricept], galantamine [Razadyne], and rivastigmine [Exelon]) and the N-methyl-D-aspartate 

(NMDA)-receptor antagonist memantine (Namenda, Axura, Ebixa, etc.) (Hooli and Tanzi, 2009; 

Aisen et al., 2012). These drug classes work on different but complementary neurochemical 

pathways; both are important in cortical information processing, and cognitive functions, 

especially memory, learning, attention, and stimulation. Hence, these drugs treat mainly the 

symptoms, with no known effects on disease progress (Aisen et al., 2012).  

Currently there are 75 drugs in clinical trials and other 200 or more in development. The 

drugs being developed are targeting different intra- and extra-cellular targets as well as different 

mechanisms of action. They include both symptomatic and disease modifying approaches. For 

example, dimebolin, which is currently in clinical trials, is a retired antihistamine that is thought to 

be neuroprotective based on mitochondria stabilization properties (Hooli and Tanzi, 2009). All 

four of the established AD genes lead to enhanced accumulation of Aβ42 in the brain (APP, PSEN1 

and PSEN2 mutations increase Aβ production and APOE decreases Aβ clearance), most of the 

current AD therapies in development aim at either reducing Aβ42 production/aggregation or 

potentiating its degradation/clearance. Pharmaceutical approaches have focused primarily on 

inhibitors and modulators of the β- and γ-secretases, compounds that attenuate Aβ aggregation 

(for example, by preventing interaction of the peptide with copper and zinc), and anti-Aβ 
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immunotherapy aimed at stimulating the degradation of the Aβ peptide (Selkoe, 2007; Nitsch and 

Hock, 2008; Aisen et al., 2012). Approaches aimed at modulating the abnormal aggregation of tau 

protein into neurofibrillary tangles, and those targeting metabolic dysfunction, are also being 

pursued (Citron, 2010). 
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I.2 THE AMYLOID PRECURSOR PROTEIN (APP) 

 

I.2.1 APP isoforms and gene family 

 

In 1984, Glenner and Wong isolated Aβ from deposits in blood vessels from AD brains and 

DS brains and provided a partial sequence (Glenner and Wong, 1984a, b). A year later, Aβ was 

identified as the main component of neuritic plaques in AD brain (Masters et al., 1985). Shortly 

thereafter, the APP gene was cloned and shown to localize to chromosome 21 (Kang et al., 1987). 

APP is one of three members of a larger gene family. These include APLP1 and APLP2 in 

humans, Appl (fly), and apl-1 (worm) (Coulson et al., 2000). All genes encode type I membrane 

proteins with a large extracellular domain and a short cytoplasmic region that undergo similar 

processing (see below). Importantly, only APP, but not any of the other APP related genes, 

contains a sequence encoding the Aβ domain. Therefore, APLP1 and APLP2 are not the precursors 

of Aβ and if these two genes contribute to AD pathogenesis, then their roles must be indirect. APP 

and APLP2 are ubiquitously expressed although alternative splicing generates isoforms that may 

be cell type specific. In contrast, APLP1 is expressed selectively in the nervous system (Thinakaran 

and Koo, 2007). 

 

 

Figure I.5: Schematic representation of the predominant APP isoforms in mammalian tissues. 

Numbers indicate the corresponding exons. The most abundant neuronal isoform, comprising 695 

amino acids, is APP695. APP751 and APP770 are alternatively spliced isoforms that differ from APP695 

in the expression of exons 7 and 8, as shown. The solid gray region represents the Aβ peptide 

(Adapted from da Cruz e Silva and da Cruz e Silva, 2003). 
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The human APP gene consists of 18 exons (Fig. I.5), spanning approximately 300 kb of 

genomic DNA with parts of exons 16 and 17 encoding the Aβ sequence (Yoshikai et al., 1990; 

Rooke et al., 1993). Alternative splicing of exons 7, 8 and 15 of the APP mRNA produces eight 

isoforms, ranging in size from 677-770 aminoacids (L-677, 695, L-696, 714, L-733, 751, L-752, 770) 

(Tanzi et al., 1993). The three major isoforms are APP695, APP751 and APP770 (Palmert et al., 1988; 

Sandbrink et al., 1994). APP695 lacks exons 7 and 8, which encode the Kunitz protease inhibitor 

(KPI) domain (56-amino acid motif homologous to the Kunitz-type of serine protease inhibitors) 

and the MRC antigen OX-2 homologous domain (Kitaguchi et al., 1988; Tanzi et al., 1988). Exon 15 

can also be spliced out generating an isoform that forms the core protein of the secreted 

chondroitin sulfate proteoglycans, appicans, named L-APP isoforms after their initial discovery in 

leucocytes (Konig et al., 1992; Pangalos et al., 1995). 

APP is ubiquitously expressed in mammalian cells with a broad tissue distribution. The APP 

splice variant containing 695 amino acids is expressed at higher levels in neurons, whereas the 

751- and the 770-residues isoforms are widely expressed in non-neuronal cells but also occur in 

neurons (Haass et al., 1991; Sandbrink et al., 1997). The ratio of APP 770:751:695 mRNA is 1:10:20 

in cortex. However, in cultured astrocytes, the KPI-containing APP predominates, APP 

770:751:695 mRNA ratio is 2:4:1 (Tanaka et al., 1989; Turner et al., 2003). 

APP is a type I transmembrane glycoprotein originally predicted to be a type of cell surface 

receptor (Kang et al., 1987). APP has a large extracellular amino-terminal domain and a small 

intracellular cytoplasmic domain (Fig. I.6). Within the extracellular domain the protein has a 

cysteine-rich subdomain close to the extreme amino terminus, followed by an acidic subdomain, 

and two other subdomains, one of which has been deduced to have a neuroprotective function 

(De Strooper and Annaert, 2000). Numerous other subdomains have also been identified on APP 

extracellular tail related with its attributed functions (Turner et al., 2003). 

 

 

Figure I.6:. Structure of APP showing several functional domains and motifs. TM: membrane; Binding 

domains: Heparin (Hp), Copper, Zinc, Collagen (Col), Go proteins (G).  
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I.2.2 Proteolytic processing of APP  

 

Full-length APP undergoes sequential proteolytic processing, being first cleaved by α-

secretase (non-amyloidogenic pathway; Fig. I.7.A) or by β-secretase (amyloidogenic pathway; Fig. 

I.7.B), resulting in the shedding of the ectodomain and generation of membrane tethered α- or β-

C-terminal fragments (termed CTFα or C83; CTFβ or C99). g-Secretase cleavage of C83 and C99 

results in the generation of p3 and Aβ, respectively, as well as the APP intracellular domain (AICD) 

(reviewed in Turner et al., 2003). 

 

 

Figure I.7:. Proteolytic processing of APP. (A) Non-amyloidogenic 

processing of APP refers to sequential processing of APP by membrane-

bound α- and g-secretases. α-Secretase cleaves within the Aβ domain, 

thus precluding generation of intact Aβ peptide. (B) Amyloidogenic 

processing of APP is carried out by sequential action of membrane-bound 

β- and g-secretases. CTF, C-terminal fragment (Adapted from Thinakaran 

and Koo, 2008). 

 

A novel pathway for APP processing had been recently described, where α- and β-secretase 

pathways may converge to produce short carboxy-terminal truncated Aβ peptides, independent 

from g-secretase, including Aβ1-14, Aβ1-15 and Aβ1-16 (Cook et al., 2010; Portelius et al., 2011). 
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β-Secretase 

 

The major neuronal β-secretase is BACE1 (β-site APP cleaving enzyme), also known as Asp-2 

or memapsin-2. BACE1 is a membrane tethered aspartyl protease that cleaves APP within the 

ectodomain, generating the N-terminus of Aβ (Vassar et al., 1999). However, the principal BACE 

(β’) cleavage site in native APP is between Glu +11 and Val +12 of the Aβ peptide (Fig. I.8). 

Amyloidogenic processing is the favoured pathway of APP metabolism in neurons largely due to 

the greater abundance of BACE1, and non-amyloidogenic pathway is predominant in all other cell 

types. 

The relatively low affinity of BACE1 toward APP led to the suggestion that APP is not its sole 

physiological substrate. Indeed, several transmembrane proteins were reported as BACE1 

substrates, such as Golgi-localized membrane-bound α2,6-sialyltransferase, P-selectin 

glycoprotein ligand-1 (PSLG-1), the APP homolog proteins APLP1 and APLP2, low-density 

lipoprotein receptor-related protein (LRP), the voltage-gated sodium channel (Nav1) β2 subunit 

(Navβ2), neuregulin-1 (NRG1), and neuregulin-3 (NRG3) (Vassar et al., 2009). 

BACE1 activity increases with age (Nistor et al., 2007) and in AD-affected brains (Li et al., 

2011). 

 

α-Secretase 

 

The activity of α-secretase is mediated by one or more enzymes from the family of 

disintegrin and metalloproteinase domain proteins (Lammich et al., 1999), such as 

TACE/ADAM17, ADAM9, ADAM10 and MDC-9, also by and an aspartyl protease, BACE2. APP 

cleavage at, or near, the α-secretase site, located within the Aβ domain (between residues Lys16 

and Leu17 of the Aβ peptide; Fig. I.8), precludes the generation of intact Aβ (Allinson et al., 2003). 

Besides APP, α-secretase also cuts several others transmembrane proteins such as pro-

TNFα and pro-TGFα (Buxbaum et al., 1998).  
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g-Secretase 

 

The second proteolytic event in APP processing involves intramembranous cleavage of α- 

and β-CTFs by g-secretase, that liberates p3 (3 kDa) and Aβ (4 kDa) peptides, respectively, into the 

extracellular milieu. g-Secretase is a membrane embedded multiprotein complex with presenilin-1 

or -2 (PSEN1 or PSEN2), as the catalytic component. Besides presenilin, which is an unusual 

intramembranous aspartyl protease (Wolfe et al., 1999), the other members of the g-secretase 

complex are the membrane proteins nicastrin, APH1, and PEN2 (Haass, 2004). Protein subunits of 

the g-secretase complex assemble early during biogenesis and cooperatively mature as they leave 

the endoplasmic reticulum. APH-1 and PEN2 are thought to stabilize the g-secretase complex and 

nicastrin to mediate the recruitment of APP CTF to the catalytic site of the g-secretase (Wolfe, 

2008a). 

 

 

Figure I.8:. The major sites of APP cleavage by α-, β-, and g-secretases are indicated, 

along with Aβ numbering from the N terminus of Aβ (Asp-1) (Adapted from 

Thinakaran and Koo, 2008). 

 

 

g-Secretase cuts within the transmembrane domain of APP CTF and determines the length 

of Aβ peptides. The major sites of g-secretase cleavage correspond to positions 40 and 42 of Aβ 

(Fig. I.8). Nevertheless, the 40-residue peptide is the predominant and Aβ42 accounts for less 

than 10% of total Aβ. Moreover, minor amounts of shorter Aβ peptides such as Aβ38 and Aβ37 
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have also been detected. g-secretase cleavage at a distal ε-site (Fig. I.8) generates a cytoplasmic 

polypeptide, termed APP intracellular domain (AICD) (Thinakaran and Koo, 2008).  

Additional secretase activities had been described in intermediate positions, between the γ- 

and ε-sites, such as the δ- and ζ-sites (Zhao et al., 2004). ζ-cleavage is another PS-dependent 

cleavage within the transmembrane domain of APP that leads to Aβ46 generation, which recently 

has been suggested as a previous step to Aβ40 and Aβ42 generation (Zhao et al., 2007). 

The different Aβ species are proposed to be produced by γ-secretase cleavage of APP CTFs 

in a stepwise manner starting at the ε-site and then cleaving approximately every third residue via 

the ζ-site to the γ-site (Qi-Takahara et al., 2005). Importantly, Aβ40 and Aβ42 are suggested to be 

generated through independent production lines. The ε-cleavage might occur before proteolysis 

at the g-site. Indeed, analysis of intracellular Aβ reveals a small but significant amount of longer 

forms of this peptide, up to Aβ49, which is the proteolytic counterpart to the 50-residue AICD. 

This model of processive proteolysis of APP transmembrane domain by g-secretase, beginning at 

the ε-cleavage site and cleaving every three residues explains how reduction of proteolytic 

function due to presenilin mutations might lower Aβ peptide production but increase the ratio of 

Aβ42 to Aβ40. Longer forms of Aβ, including most of the hydrophobic transmembrane domain, 

might be more likely to be retained in the active site of the protease, whereas the shorter forms 

are more likely to be released. Less catalytically efficient g-secretase complexes would allow more 

time for the release of longer Aβ peptides. In addition, AD-causing presenilin mutations shift the 

initial ε-cleavage site to produce more Aβ48, which would lead to Aβ42 (Xu, 2009). 

Presenilin catalytic function is required for intramembraneous g-secretase cleavage of 

several type I membrane proteins other than APP, such as the Notch1 receptor and its ligands, 

Delta and Jagged2, cell-surface adhesion protein CD44, the receptor tyrosine kinase ErbB4, netrin 

receptor DCC, LRP, lipoprotein receptor ApoER2, cell adhesion molecules N- and E-cadherins, 

synaptic adhesion protein nectin-1α, cell surface heparin sulfate proteoglycan syndecan-3, p75 

neurotrophin receptor, etc (Koo and Kopan, 2004). Uniformly these substrates all undergo an 

ectodomain shedding by α-secretases, which in many cases is triggered by the binding of 

extracellular ligands. On the other hand, several noncatalytic g-secretase-independent functions 

have been assigned to presenilins, such as regulation of intracellular calcium homeostasis, 

neuronal signaling, protein trafficking, protein degradation, fine-tuning of the immune system, 

neurite outgrowth, apoptosis, memory and synaptic plasticity (Sisodia et al., 1999; Koo and 

Kopan, 2004; Wakabayashi et al., 2007). 
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Caspase cleavage of APP 

 

Additional reports have revealed that APP can also be proteolytic processed at it C-

terminus by caspases like caspase-3, caspase-6, caspase-7 or caspase-8 (Gervais et al., 1999; 

Pellegrini et al., 1999; Soriano et al., 2001). In vitro assays identified a major caspase cleavage site 

at Asp-664 (VEVD; APP695 numbering) (Weidemann et al., 1999). The resultant C-terminus peptide, 

termed C31 is a potent inducer of apoptosis, and this cleavage was shown to reduce APP 

internalization and to have varying effects on the Abeta secreted levels (Lu et al., 2000; Soriano et 

al., 2001).  

 

I.2.3 Intracellular trafficking 

 

The APP proteins mature in the endoplasmic reticulum (ER) and Golgi (G) apparatus and 

undergo post-translational modifications, such as phosphorylation, glycosylation and sulfation 

(Weidemann et al., 1989; Godfroid and Octave, 1990). In fact, APP is a sialoglycoprotein that is 

post-translationally modified through the constitutive secretory pathway (Georgopoulou et al., 

2001). Following protein synthesis on membrane-bound polysomes APP is transported to the ER 

where it undergoes N-glycosylation and is then transported to the Golgi, where it goes through 

N- and O-glycosylation, phosphorylation, and tyrosine sulfation (Oltersdorf et al., 1990; Caporaso 

et al., 1992; Hung and Selkoe, 1994). APP can be packaged into secretory vesicles in the trans-

Golgi network (TGN) and delivered to the plasma membrane (PM). In cultured cells, it is 

estimated that only about 10% of nascent APP molecules are successfully delivered to the PM. 

Cell surface APP may be cleaved to sAPP or reinternalized into the endocytic pathway (Koo et al., 

1996; Yamazaki et al., 1996). 
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Figure I.9: Intracellular trafficking of APP. Nascent APP molecules (black bars) mature through 

the constitutive secretory pathway (step 1). Once APP reaches the cell surface, it is rapidly 

internalized (step 2) and subsequently trafficked through endocytic and recycling 

compartments back to the cell surface (step 3) or degraded in the lysosome. Non-

amyloidogenic processing occurs mainly at the cell surface, where α-secretases are present. 

Amyloidogenic processing involves transit through the endocytic organelles, where APP 

encounters β- and g-secretases (Adapted from Thinakaran and Koo, 2008). 

 

APP trafficking is tightly regulated and the protein can be proteolytically processed at the 

cell surface mainly by α-secretases, resulting in the shedding of sAPPα ectodomain (Sisodia, 

1992). Activation of protein kinase C increases sAPPα secretion by mechanisms involving the 

formation and release of secretory vesicles from the trans-Golgi network, thus enhancing APP 

trafficking to the cell surface (Caporaso et al., 1992; da Cruz e Silva et al., 1993). Approximately 

70% of surfacebound APP is internalized within minutes of arriving at the plasma membrane. The 

682YENPTY687 internalization motif at APP C-terminus (APP695 isoform numbering) is responsible 

for this efficient internalization. Following endocytosis, APP is delivered to late endosomes and a 

fraction of endocytosed molecules is recycled to the cell surface (Fig. I.9) or APP can also undergo 

degradation in the lysosome (Small and Gandy, 2006). APP retrieval to the TGN is mediated by 

the retromer protein complex. This recycling pathway is enhanced by direct APP phosphorylation 
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at its cytoplasmic Ser-655 residue, which lies in the 653YTSI656 (human APP695 isoform numbering) 

basolateral sorting motif, at APP C-terminus (Vieira et al., 2010). 

BACE1 predominantly localizes to the late Golgi/TGN and endosomes, consistent with 

amyloidogenic cleavage of wild-type APP during endocytic/recycling steps (Koo and Squazzo, 

1994). Active g-secretase was detected in multiple compartments, including the ER, ER-Golgi 

intermediate compartment (ERGIC), Golgi, TGN, endosomes, and plasma membrane. Studies 

conducted in non-neuronal and neuroblastoma cell lines show that Aβ is generated mainly in the 

TGN and endosomes as APP is trafficked through the secretory and recycling pathways. Evidence 

converging from a number of studies also indicates that amyloidogenic processing occurs in 

cholesterol- and sphingolipid-enriched membrane raft microdomains of intracellular organelles 

(Riddell et al., 2001; Ehehalt et al., 2003; Vetrivel et al., 2005).  

In the brain, where BACE1 is highly expressed, APP is preferentially processed trough the 

amyloidogenic pathway. Moreover, in neurons, APP is transported anterogradely along 

peripheral and central axons and proteolytically processed during trafficking (Koo et al., 1990). 

Axonal transport of APP is thought to be mediated by direct or indirect binding of APP to the 

kinesin light chain subunit of kinesin-1. It has also been proposed that APP may represent a 

kinesin cargo receptor, linking kinesin-1 to a unique subset of transport vesicles (Kamal et al., 

2001). However, this notion remains highly controversial (Lazarov et al., 2005). Nevertheless, the 

intracellular organelles/transport vesicles where Aβ is generated in neurons are not fully 

characterized. 

 

I.2.4 APP function 

 

Despite advances in our understanding of the role of APP processing in AD, the in vivo 

function(s) of the molecule remain unclear. APP knockout (KO), knockdown and transgenic 

phenotypes in different organisms have provided clues to physiological functions of the APP 

protein family. Moreover, information from APP functional domains and motifs, the discovery of 

APP interacting proteins and gene expression profiling have led to the identification of putative 

pathways for APP associated with cellular and developmental changes. 
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I.2.4.1 APP knockouts and transgenics 

 

In Caenorhabditis elegans, deletion of one copy of the APP orthologue apl-1 caused 

pharyngeal pumping defects, while loss of both copies led to larval lethality (Zambrano et al., 

2002; Hornsten et al., 2007). This lethality could be rescued by neuronal expression of the APL-1 

ectodomain, which indicates that APP plays a role in development through its extracellular 

domain (Hornsten et al., 2007). In Drosophila, deletion of the single APP-like gene (appl) resulted 

in only subtle behavioral defects that could be rescued by wild-type but not mutant APPL or APP 

(Luo et al., 1992), and a later study suggested that deletion and mutation affects kinesin-

mediated axonal transport and neuronal viability (Gunawardena and Goldstein, 2001).  

In mice, single KOs of APP gene family members were viable, but exhibited impaired spatial 

learning and long-term potentiation (LTP). These deficits could be rescued by a knock-in allele of 

sAPPα, indicating that the ectodomain of APP is sufficient for APP function in the adult mouse 

brain (Ring et al., 2007). Conversely, the APP-APLP2 and APLP1-APLP2 double KO or APP-APLP1-

APLP2 triple KO resulted in loss of viability. APP-APLP2 double KO mice displayed neuromuscular 

junction defects (Wang et al., 2005), whereas the triple KO has neuronal ectopias resembling type 

II lissencephaly (Herms et al., 2004). These findings demonstrated the importance of the APP 

family in development, and suggest functional redundancy consistent with a role in neuronal cell 

adhesion and migration. Interestingly, APP KO phenotypes are similar to those seen knocking out 

Fe65 (an AICD interacting protein), in worms (Zambrano et al., 2002), or the double Fe65-Fe65L1 

KO in mice (Guenette et al., 2006). This suggests that APP and Fe65 are involved in a common 

developmental pathway. 

 

Transgenics have also elucidated APP potential physiological roles. In Drosophila, 

overexpression of APP family members affected the development of the peripheral nervous 

system and displayed Notch gain-of-function phenotypes, possibly due to the interaction of APP 

with Numb, a negative regulator of Notch signaling (Merdes et al., 2004). Additionally, APP and 

Notch can interact directly through their transmembrane domains (Fassa et al., 2005; Oh et al., 

2005). Transgenic APP flies also showed increased axonal arborization, which depends on the 

cytosolic domain of APP and its interaction with c-Abl (Leyssen et al., 2005).  
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APP transgenic mice mostly recapitulated AD genetic data. Mice with APP mutant 

transgenes developed amyloid plaque pathology, and this pathology was enhanced by crossing 

them with mice with mutant presenilin transgenes. However, APP transgenic mice neither 

developed extensive neuronal loss nor exhibit tangle pathology (LaFerla and Oddo, 2005). 

Crossing the APP mice with plaque pathology with the mutant tau mice potentiated the tangle 

pathology but had no effect on the plaque pathology, which suggested that, in the pathological 

cascade, the Aβ/amyloid pathology is upstream to the tau/tangle pathology (Hardy et al., 1998).  

A later study showed that pathological, physiological and behavioral deficits in APP-

transgenic mice were not observed in those with a mutation at the caspase-cleavage site of APP, 

but still produce Aβ and amyloid deposits (Galvan et al., 2006). This suggests a role for the APP 

intracellular domain and possibly for the caspase-released cytosolic tail in the pathogenesis of 

AD.  

 

I.2.4.2 APP physiological roles 

 

A number of functional domains have been mapped to the extra- and intracellular regions 

of APP (Fig. I.6), which include: metal binding (copper and zinc); extracellular matrix binding 

(heparin, collagen, and laminin); neurotrophic and adhesion domains; and protease inhibition 

(the Kunitz protease inhibitor domain present in APP751 and APP770 isoforms). Zn(II)-binding is 

assumed to play a structural role, whereas APP was shown to catalyse the reduction of Cu(II) to 

Cu(I) (Multhaup et al., 1994; Maynard et al., 2005). 

Initial reports speculated that APP was a cell-surface receptor that transduces signals 

within the cell in response to an extracellular ligand (Kang et al., 1987; Kimberly et al., 2001), but 

until recently, extracellular ligands have not been identified. Several physiological roles have 

been attributed to APP, such as regulation of neuronal survival, neurite outgrowth, synaptic 

plasticity and cell adhesion (Mattson, 1997; Turner et al., 2003).  

 

Cell adhesion 

 

It has also been suggested that APP may have CAM (Cell Adhesion Molecule) and SAM 

(Substrate Adhesion Molecule) like activities. Several domains in APP extracellular tail promote 

binding to extracellular matrix proteins, such as heparin and collagen (Fig. I.6), which implicate 

cell-surface APP in cell-substrate adhesion (Breen, 1992; Multhaup, 1994; Beher et al., 1996). The 
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most C-terminus heparin-binding contains the 676RHDS679 (APP770 numbering) sequence, which is 

an integrin-binding motif (Ghiso et al., 1992). In fact, APP colocalizes with integrins on the surface 

of axons and at sites of adhesion (Storey et al., 1996; Yamazaki et al., 1997). Evidence of 

interaction with laminin and collagen provides further evidence of adhesion-promoting 

properties (Ho and Sudhof, 2004). Homo- and heterodimerization between the APP family 

members in adjacent cells has also been suggested to promote intercellular adhesion (Soba et al., 

2005), analogous to that of known cell adhesion molecules such as cadherins and nectins.  

Furthermore, binding of the APP heparin binding domain to heparan sulfate proteoglycan 

glypican-1 stimulates neurite outgrowth and the latter has been proprosed as an APP ligand (Qiu 

et al., 1995; Williamson et al., 1996). It is difficult to separate the cell adhesion from the neurite 

outgrowth roles of APP, since neuronal migration, neurite outgrowth, and even synaptogenesis 

involve substrate adhesion. Consistently, APP is required for migration of neuronal precursors to 

the cortical plate; furthermore, this activity is mediated by Dab1 acting downstream of APP 

(Young-Pearse et al., 2007). The phenotypes of APP/APLP KOs are in agreement with these 

proposed physiological activities of APP. 

 

Trophic properties 

 

A trophic role for APP has been the best established function for the molecule. Initial 

evidences of APP function came from knocking down APP levels in fibroblasts (Saitoh et al., 

1989). These cells showed growth retardation that could be restored by treatment with sAPP. 

The active domain was subsequently mapped to the pentapeptide domain 403RERMS407 (APP770 

numbering) in the APP ectodomain (Ninomiya et al., 1994). Infusion of this pentapeptide as well 

as sAPP into brain resulted in increased synaptic density and improved memory retention in 

animals (Yamamoto et al., 1994; Meziane et al., 1998). In fact, the APP ectodomain released 

through α-secretase has neurotrophic and neuroprotective properties (Furukawa et al., 1996; 

Meziane et al., 1998), but the underlying molecular mechanisms and a potential receptor for APP 

remain to be identified. Conversely, the APP ectodomain released through β-secretase cleavage 

appears to have a proapoptotic function, at least during early development, by binding and 

activating the death receptor 6 (DR6) on neurons (Nikolaev et al., 2009). Since sAPP is 

constitutively released from cells following α-secretase cleavage, these findings indicated that 

APP has autocrine and paracrine functions in growth regulation.  
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APP has been shown to stimulate neurite outgrowth in a variety of experimental models. 

This phenotype is compatible with the up-regulation of APP expression during neuronal 

maturation (Hung et al., 1992). Brain injury also increases APP expression, which suggests that 

APP plays a repair role in this context (Graham et al., 1996). The correlation of AD with head 

trauma may reflect an increase in APP expression (causing adversely an increase in Aβ 

generation). 

The N-terminal heparin-binding domain of APP also stimulates neurite outgrowth and 

promotes synaptogenesis (Fig. I.6). Interestingly, the crystal structure of this domain shows 

similarities to known cysteine-rich growth factors (Rossjohn et al., 1999). Moreover, in adult 

rodent brains, sAPPα acts as a cofactor with EGF to stimulate the proliferation of EGF-responsive 

neural stems cells in the subventricular zone (Caille et al., 2004). 

Several studies have also demonstrated a role for sAPP in regulating stem cells. Indeed, 

sAPPα induces the differentiation of neural stem cells into astrocytic lineage (Kwak et al., 2006).  

APP and its intracellular binding partner, Fe65, have also been reported to influence cell 

motility, and several regulators of actin dynamics (transgelin, α2-actin) were recently found to be 

regulated by AICD (Sabo et al., 2001, 2003; Guenette et al., 2006; Muller et al., 2007). 

 

APP as a putative receptor 

 

Given the APP structure as a type I integral membrane protein, which resembles a 

membrane-anchored receptor molecule, several studies demonstrated that full-length APP could 

function as a cell surface G-protein-coupled receptor (Okamoto et al., 1995). Despite being 

controversial, these results demonstrated that APP binds to heterotrimeric G proteins (Go), 

involved in signal transduction.  

The idea that APP functions as a receptor arose from analogy with the Notch receptor 

signaling, which was found to undergo a proteolytic processing pathway that is remarkably 

similar to that of APP (Annaert and De Strooper, 1999; Selkoe and Kopan, 2003). Notch is a type I 

transmembrane receptor involved in differentiation events during development and adulthood. 

Activation of the Notch heterodimer by binding of its ligands Delta1 or Jagged1, presented by 

neighboring cells, induces Notch processing. Notch is initially cleaved by ADAM metalloproteases, 

ADAM10 or ADAM17, similarly to APP in the α-secretase pathway, followed by g-secretase 

intramembrane cleavage (De Strooper et al., 1999). An additional g-secretase cleavage occurs at 

Notch S3-site corresponding to the e-site of APP, releasing an intracellular domain  (De Strooper 
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et al., 1999; Sastre et al., 2001). Both the Notch Intracellular Domain (NICD), and the APP 

intracellular domain (AICD) can translocate to the nucleus (Cupers et al., 2001) and interact with 

transcription factors to control gene expression. The AICD fragment is extremely small when 

compared with the NICD and lacks motifs commonly found in transcriptional regulators, 

suggesting that it may function in signaling in a different way, specifically by interaction with 

other proteins, forming multimeric active complexes or by activating transcription in an indirect 

manner. 

The role of AICD in transcription has been controversial and APP proteolysis was even 

suggested as a degradative mechanism for turning off normal APP functions. g-Secretase, which 

cleaves many type I integral membrane proteins, was even compared to a proteasome of the 

membrane (Kopan and Ilagan, 2004). Nevertheless, in addition to APP and Notch, γ-secretase 

cleaves more than 60 other substrates (McCarthy et al., 2009) within their transmembrane 

domains, by a highly conserved process, called regulated intramembrane proteolysis (RIP) (Brown 

et al., 2000; Lichtenthaler and Steiner, 2007). RIP controls the activity of membrane proteins and 

is required for signal transduction and diverse cellular processes, such as cell differentiation, 

transcriptional regulation, axon guidance, neurite outgrowth, cell adhesion, lipid metabolism, 

cellular stress responses and the degradation of transmembrane protein fragments. In animals, 

RIP is essential for a variety of physiological processes, such as embryonic development, the 

normal functioning of the immune system and the nervous system. The RIP process appears to be 

tightly regulated, and a deregulation of RIP is associated with diseases, such as AD and cancer 

(Lichtenthaler et al., 2011). 

Recent reports have demonstrated the role of the cytosolic fragment of APP in the 

regulation of gene expression, and several AICD-target genes were identifiued (detailed in 

Section I.3.3). Nuclear signaling of AICD was also shown to occur predominantly through the 

amyloidogenic pathway of APP, and through the neuronal 695 isoform, providing evidences for a 

role of AICD nuclear signaling in AD pathology (Konietzko, 2011). 

Until recently, the search for APP ligands had not been successful, although several 

molecules were proposed, e.g. fibrillar forms of Aβ were reported to bind to cell-surface APP, 

exerting neurotoxicity (Lorenzo et al., 2000). Proteins interacting with the extracellular domain of 

APP and were suggested to have a role in signaling events. However, unlike the cytoplasmic C-

terminus of APP, the N-terminus is surprisingly devoid of known specific neuronal interacting 

proteins. Candidate interacting proteins thus far known include ApoE (Barger and Harmon, 1997) 



 

 
56 

 

and the most recently identified F-spondin. F-spondin, a secreted neuronal protein involved in 

cell-cell interactions, was identified as an extracellular ligand for APP. F-spondin expression 

prevents shedding of the APP ectodomain by β-secretase and reduces Aβ production (Ho and 

Sudhof, 2004). 

Another APP ectodomain binding protein is reelin, an extracellular matrix protein essential 

for cortical development that shares homology with F-spondin. Reelin was shown to increase APP 

binding to Dab1, a reelin signaling mediator (Hoe et al., 2006). Moreover, reelin is depleted in the 

entorhinal cortex of APP-transgenic mice and AD brains (Chin et al., 2007). The Nogo-66 receptor, 

implicated in axonal sprouting in the adult CNS, has also been reported to interact with the APP 

ectodomain and inhibit Aβ production (Park et al., 2006). LRP and SORL1 (SorLA, LR11) also bind 

to the APP ectodomain and influence Aβ production (Andersen et al., 2005; Bu et al., 2006). 

The cell adhesion molecule TAG1 (transient axonal glycoprotein l) was discovered to act as 

a binding partner for full-length APP (Ma et al., 2008). TAG1 binding to APP induced APP 

processing (preferentially through α- and g-secretase). Both TAG1- and APP-deficient animals 

showed more neuroprogenitor cells than did wild-type animals. In this proposed pathway, it is 

the release of AICD that suppresses neurogenesis in a pathway that may be dependent on the 

binding to Fe65 because the NPTY motif of AICD is required. These findings demonstrate a critical 

role of TAG1–APP signaling in brain development and suggest the potential involvement of TAG1 

in adult neuroplasticity and pathogenesis of Alzheimer's disease. 

APP plays essential roles in the development of the nervous system, however APP signaling 

pathways and their activation/regulation are not fully elucidated.  
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I.3 APP INTRACELLULAR DOMAIN (AICD) 

 

I.3.1 AICD production and degradation 

 

As already described (Section I.2.2), g-secretase-mediated cleavage of APP CTF releases 

AICD (Passer et al., 2000), specifically the ε-cleavage of APP in the cytosol, close to the inside 

membrane leaflet (Gu et al., 2001; Sastre et al., 2001; Weidemann et al., 2002). The 50-residue 

AICD was detected by mass spectroscopy in neuroblastoma cells, corresponding to aa 50-99 of 

C99 (or CTFβ) (Yu et al., 2001). It appears that ε-cleavage occurs before g-cleavage, since C59 and 

C57 have not been detected and in turn, Aβ48 and Aβ49 are processed into Aβ40 and Aβ42 in cells 

(Funamoto et al., 2004).  

Initially it was thought that g- and ε-cleavages could result from the same proteolytic 

activity, because presenilin mutations, presenilin KO or presenilin inhibitors affected the 

production of both Aβ42 and AICD (Qi-Takahara et al., 2005; Kakuda et al., 2006). However, 

evidences arose of independent g- and ε-cleavages, such as presenilin or APP mutations that could 

trigger opposite effects on Aβ and AICD productions (Chen et al., 2002). Moreover, it appears that 

Aβ and AICD are differently regulated by intracellular proteins, such as the APP-binding protein 

Fe65 that increases AICD production and concomitantly reduces Aβ42 formation (Wiley et al., 

2007), suggests that ε-cleavage is a limiting step and controls g-clevage (Pardossi-Piquard and 

Checler, 2012). 

Both C83 and C99 undergo subsequent cleavage by g-secretase and therefore, can be 

potential precursors of AICD. However, AICD is mainly produced via the amyloidogenic pathway. 

Acidic proteases as is the g-secretase complex, are more active in a lower pH environment, 

(Checler, 2001), and ε-cleavage is also modulated by pH changes, suggesting that AICD production 

is more likely associated with endosomal/lysosomal pathway (Fukumori et al., 2006; Vingtdeux et 

al., 2007b). Moreover, Goodger et al. (2009) recently showed that AICD nuclear signaling occurs 

predominantly through the amyloidogenic pathway of APP cleavage, and another report 

confirmed that β- and g-secretase inhibitors but not α-secretase blockers abolished AICD-

mediated function (Belyaev et al., 2010). 
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AICD is usually poorly detectable in cells and human tissues due to its extreme lability, 

having a very rapid turnover (around 5 minutes) (Cupers et al., 2001), which presents a difficulty in 

establishing a physiological role for AICD. However, AICD was initially detected by MALDI mass 

spectroscopy in sporadic AD brains (Passer et al., 2000). Once produced, AICD undergoes rapid 

inactivation by the insulin-degrading enzyme insulysin, which is mainly cytosolic and endosomal 

(Edbauer et al., 2002; Venugopal et al., 2007). Interestingly, insulysin levels decrease with aging in 

the hippocampus of human brains as well as in transgenic mice models of AD (Caccamo et al., 

2005). Therefore, in the aging brain there is increased β-secretase processing of APP (section 

I.2.2), leading to increased C99 formation, and concomitantly lowered insulysin-mediated 

degradation of AICD, which would lead to increased AICD (and Aβ) production, contributing to AD 

pathology. 

Finally, degradation of AICD can also occur via caspase cleavage, however it is not clear if 

the caspase substrate is AICD, FL APP or a membrane-bound CTF. Processed of APP C-terminal tail 

by caspase-3 releases a cytotoxic fragment referred to as C31 (Lu et al., 2000).  

 

I.3.2 AICD functional motifs 

 

The functions attributed to AICD are related either to its phosphorylation state or to 

interactions with other proteins. The carboxy-terminus of APP contains three functional motifs 

corresponding to phosphorylation sites, critical for interaction with binding proteins that are 

thought to regulate the rate of APP secretion, endocytosis, and Abeta production (da Cruz e Silva 

et al., 2004a). The 653YTSI656 (APP695 isoform numbering) sequence matches YXXI tyrosine-based 

internalization and/or basolateral sorting signal. The motif 667VTPEER672, containing the Thr-668, 

which is important for controlling interactions with APP binding proteins. The 682YENPTY687 motif, 

which is absolutely conserved across APP homologues and across species (Fig. I.10), contains a 

NPXY internalization signal, which is found in several cell surface proteins, including growth factor 

receptors, transporters and adhesion molecule receptors.  
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Figure I.10: The short cytoplasmic tail of APP and its homologues contains the YENPTY sequence, 

which is phylogenetically conserved (Adapted from Sabo and Ikin 2002). 

 

 

The NPXY sequence was first identified as the sequence required for internalization of LDL 

receptors. In some cases, NPXY motifs are required for anchoring of receptors in clathrin-coated 

pits (Chen et al., 1990). NPXY motifs are also important for the function of some molecules, e.g. in 

insulin-like growth factor receptors. The NPXY motif is required for efficient ligand-mediated 

internalization and biological signaling (Hsu et al., 1994). In the cytoplasmic tail of integrin b3 the 

NPXY sequence is essential for post-ligand-binding events involved in cell migration (Filardo et al., 

1995). Furthermore, the NPXY motifs found in many integrin b subunits regulate the affinity for 

their ligands. Interestingly, an NPXY sequence in the integrin b1 cytoplasmic domain is required 

for localization to focal adhesions (Reszka et al., 1992), which in turn is necessary for integrins 

accurate functioning. In the EGF receptor, tyrosine phosphorylation of NPXY is required for 

recognition by Shc and subsequent signaling (Russo et al., 2002).  

The YENPTY sequence was also demonstrated to be important in the regulation of APP 

processing and trafficking (Lai et al., 1995; Rebelo et al., 2007a). APP deletions within the YENPTY 

sequence results in increased secretion of sAPP and decreased secretion of Ab (Koo and Squazzo, 

1994). The effects of these deletions are thought to be the result of altered internalization of APP 

from the cell surface. Mutation of the second tyrosine in the YENPTY sequence to alanine also 

increases sAPP secretion but has no effect on Ab secretion (Jacobsen et al., 1994), suggesting that 

secretion of Ab and sAPP may be regulated independently by signals in the cytoplasmic tail of 
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APP. These observations bring together the AICD YENPTY-dependent regulation and the AICD role 

in AD. 

 

I.3.3 Phosphorylation of AICD 

 

Protein phosphorylation is a major control mechanism of eukaryotic organisms, allowing for 

rapid and reversible regulation of multiple protein activities in response to diverse environmental 

and developmental changes. Protein phosphorylation is a reversible process in which a protein 

kinase transfers a phosphate group from ATP to a substract, thus altering the substrate’s 

conformation and function. A protein phosphatase removes the phosphate and the protein 

reverts to its dephosphorylated state. The phosphorylation state of a single protein depends on 

the balance between the highly regulated cellular activities of multiple protein kinases and 

protein phosphatases. 

As knowledge on the molecular basis of AD expands, interest on protein phosphorylation 

continues to increase, as misregulation of normal phosphorylation/dephosphorylation control 

mechanisms is found to underlie an increasing number of pathologies. Since so many diseases 

have at their core a deficiency in cellular signaling involving protein phosphorylation, kinases have 

for some time been considered viable targets for the design of novel therapeutics, contrary to 

phosphatases, that only recently have started to be considered targets for the development of 

therapeutic strategies (da Cruz e Silva et al., 2004a). 

Brain aging is characterized by a progressive decline in cognitive functions and memory 

loss. Protein phosphorylation may be one of the fundamental processes associated with memory 

and brain function, playing a role in the processing of neuronal signals and in the short-term or 

long-term modulation of synaptic transmission. In neurodegenerative disorders such as AD there 

is evidence for abnormal regulation of protein phosphorylation, which appears to contribute to 

the disease condition (Wagey and Krieger, 1998).  

The high levels of protein kinases and phosphatases in the brain suggest that 

phosphorylation is critically important in brain function. Misregulation of the cellular 

phosphorylation system has been reported to occur in AD. These include abnormalities in both 

expression and activity levels of kinases, and/or phosphatases, thus leading to alterations in the 

processing of APP and Abeta production (Gandy et al., 1993; da Cruz e Silva et al., 1995). For 

instance, altered activities of protein kinase C (PKC), decreased activity of phosphatases PP1 and 

PP2A, overexpression of calcineurin mRNA levels, protein tau and β-tubulin hyperphosphorylated 
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state have all been associated with AD (Gong et al., 1993; Matsushima et al., 1996; Bennecib et 

al., 2000; Vijayan et al., 2001; da Cruz e Silva and da Cruz e Silva, 2003). Concomitantly, many 

proteins that are relevant to AD, including APP, tau, presenilin-1 and presenilin-2, or BACE, are 

phosphoproteins. It is also worth noting that alterations on the phosphorylation state of AICD 

were recently reported in the brains of AD patients (Lee et al., 2003). 

AICD has eight phosphorylatable residues, which belong to three APP functional motifs 

previously mentioned in section I.3: 653YTSI656, 667VTPEER672, and 682YENPTY687 (Fig. I.11).  

 

 

Figure I.11: The cytoplasmic domain APP contains three functional motifs (red lines) that encompass 

almost all phosphorylatable residues (highlighted in red; numbering is according to the APP695 

neuronal isoform). AICD phosphorylation sites were shown in vivo in cultured cells and adult rat 

brain for Thr-654, Ser-655 and Thr-668 (Oishi et al., 1997). Abnormal enhanced phosphorylation of 7 

AICD residues (Tyr-653; Ser-655; Thr-668; Ser-675; Tyr-682; Thr-686; Tyr-687) was detected in AD 

brains (Lee et al., 2003). 

 

In the internalization signal domain 682YENPTY687, Tyr-682 phosphorylation is a consensual 

site, in contrast with Tyr-687 phosphorylation. APP phosphorylation on Tyr-682 was detected in 

vivo (Suzuki et al., 1994; Zambrano et al., 2001) and in AD brains, suggesting a pathogenic role 

(Oishi et al., 1997; Lee et al., 2003). Tyr-682 can be phosphorylated by the nerve growth factor 

receptor TrkA, c-Abl or Fyn (Zambrano et al., 2001; Tarr et al., 2002a; Hoe et al., 2008), but for 

Tyr-687, kinases were not described yet. Nevertheless Tyr-687, which is within the internalization 

signal NPXY, was reported to be phosphorylated in vivo (Lee et al., 2003). Concomitantly, previous 

work from our laboratory has addressed the role of Tyr-687 phosphorylation by mimicking its 
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constitutive phosphorylation (Y687E) and dephosphorylation (Y687F) (da Cruz e Silva et al., 

2004c). APPY687E-GFP was shown to be targeted to the plasma membrane and could not be 

detected in endocytic vesicles, the major site of β-secretase activity, exhibiting a concomitant 

dramatic decrease in Aβ production. In contrast, APP
Y687F-GFP was endocytosed similarly to wild 

type APP, but was relatively favoured for beta-secretase cleavage (Rebelo et al., 2007a). 

 

I.3.4 AICD binding proteins 

 

Given the characteristics of the APP cytoplasmic tail, the complex network of protein-

protein interactions that centred around it became an exciting new target for therapeutic 

intervention (Russo et al., 1998; Annaert and De Strooper, 2002). Many proteins, indeed, interact 

with this C-terminal domain of APP, most of them possessing multiple protein-protein interacting 

domains, which in turn form complexes with other proteins. This suggests that these proteins 

function as adaptor proteins bridging APP to specific molecular pathways (Fig. I.12). 

Several laboratories have used the AICD as ‘‘bait’’ in the yeast hybrid systems, identifying 

two major families of APP binding proteins, the FE65 proteins and the X11/Mint proteins (Fiore et 

al., 1995; Bressler et al., 1996; Guenette et al., 1996; McLoughlin and Miller, 1996; Borg et al., 

1998b; Lau et al., 2000a; Lau et al., 2000b; Mueller et al., 2000; Minopoli et al., 2001; Zambrano 

et al., 2001).  

The endocytosis mediating motif 653YTSI656 binds to the microtubule interacting protein 

PAT1 (Zheng et al., 1998) and the motif 667VTPEER672 is responsible for interaction with 14-3-3g 

(Sumioka et al., 2005). The conserved 682YENPTY687 internalization motif is, recognized by 

phosphotyrosine binding domains of several proteins such as the Fe65 protein family (Fe65, 

Fe65L1 and Fe65L2) (Fiore et al., 1995; Bressler et al., 1996; Guenette et al., 1996; Duilio et al., 

1998); the X11/Mint proteins (X11, X11L, X11L2) (Borg et al., 1996; McLoughlin and Miller, 1996; 

Zhang et al., 1997; Tanahashi and Tabira, 1999b); Shc A and Shc C (Tarr et al., 2002b); JIP-1 and 

JIP-2 (Scheinfeld et al., 2002); Dab1 (Trommsdorff et al., 1998) ; Numb and Numb-like (Roncarati 

et al., 2002); GULP1 (Beyer et al., 2010). Other AICD binding proteins have been identified, such as 

Go (Nishimoto et al., 1993); cAbl (Zambrano et al., 2001); APP-BP1 (Chow et al., 1996); UV-

damaged DNA-binding protein (Watanabe et al., 1999); ARH (Noviello et al., 2003); Grb2 (Zhou et 

al., 2004); Pin1 (Pastorino et al., 2006); FKBP12 (Liu et al., 2006); AIDA-1 (Ghersi et al., 2004); SET 

(Madeira et al., 2005); CPEB (Cao et al., 2005); Flotillin-1 (Chen et al., 2006); and SNX17 (Lee et al., 

2008). 
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APP binding proteins involved in APP subcellular localization include PAT1, kinesin and JIP-1 

(c-Jun-amino-terminal kinase-interacting protein 1) and the X11/MINT family proteins, the latter 

with a role in microtubule association, and putative functions as an APP vesicle coat-protein 

(Okamoto and Sudhof, 1997). The already mentioned binding to G0, which links APP to G-protein 

signaling, is likely to play a role in APP targeting, since G0 and other related heterotrimeric G-

proteins were found to be located at subcellular membranes domains that are specialized in the 

sorting of trafficking proteins (Turner et al., 2003). The function of all the APP binding proteins has 

yet to be completely elucidated, but considerable contributions have already been made.  

 

 

Figure I.12: Protein network around the cytoplasmic domain of APP (Adapted from Turner et al., 

2003). 

 

 

The X11/mint protein family comprises three members: X11a, b, and g or mint-1, -2, and -3 

or X11, X11-L and X11-L2 (McLoughlin and Miller, 1996; Tanahashi and Tabira, 1999a, b). X11 

family members contain divergent N-terminal sequences but highly conserved C-termini 

consisting of a PTB domain and two PDZ domains. The “Mint” designation arose from interaction 

of X11 and X11-L, but not X11-L2, with munc 18-1, a protein essential for synaptic vesicle docking 

and exocytosis (Biederer et al., 2002). While X11-L2 expression is ubiquitous, X11 and X11-L are 

expressed only in the brain (McLoughlin et al., 1999; Hase et al., 2002). 
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Besides binding to the YENPTY of APP, through its PTB domain, several other proteins have 

been reported to interact with X11 (Fig. I.8), for instance it interacts with CASK–Veli to form a 

heterotrimeric complex that may target transmembrane receptor proteins in polarized cells (Borg 

et al., 1998a). 

A yeast two-hybrid screen of a brain cDNA library using the X11 PTB domain as bait reveals 

a specific interaction with APP, APLP-1, and APLP-2 (Borg et al., 1996; McLoughlin and Miller, 

1996; Tomita et al., 1999). In contrast, the PDZ domains of X11 may interact with several proteins 

(Fig. I.8) including presenilin-1 (Lau et al., 2000a), spinophilin–neurabin II, the copper chaperone 

of SOD1, the dendritic kinesin KIF-17 and, via X11-CASK-Veli, to the N-methyl-D-aspartate 

receptor NR2B subunit (King and Scott Turner, 2004). X11 was also reported to potentially 

interacting with itself by PDZ domain dimerization (Walhout et al., 2000). The X11/MINT protein 

family was implicated in APP vesicle coat-protein (Okamoto and Sudhof, 1997; Hill et al., 2003). 

Several X11 binding proteins mediate synaptic functions, implying an adaptor role for X11 in the 

pre- and postsynaptic complex.  

 

I.3.4.1   The Fe65 protein family 

 

FE65 is a multimodular adaptor protein, possessing three protein-protein interacting 

domains: a WW domain (a protein module with two conserved triptophans) and two tandem 

phosphotyrosine binding domains – PTB1 and PTB2 (or phosphotyrosine interaction domains – 

PID1 and PID2) (Bressler et al., 1996; McLoughlin and Miller, 1996). The Fe65 family comprises 

three members: FE65, FE65L1 and FE65L2, being all reported to interact with APP (Fiore et al., 

1995). Whereas, the FE65L1 and FE65L2 are ubiquitously expressed the FE65 is neuronally 

enriched and a splice variant of FE65 (E9) is neuronal specific (Fiore et al., 1995; Duilio et al., 

1998).  

The most extreme C-terminal phosphotyrosine binding domain (PTB2) of FE65 is 

responsible for the interaction with the Alzheimer’s Amyloid Precursor Protein (APP) intracellular 

domain, through the latter’s YENPTY motif. The pathways for APP processing are particularly 

important with respect to the generation of the Abeta peptide, which is deposited in the 

Alzheimer’s disease (AD) brain. The amyloidogenic processing, with the subsequent Abeta 

production is affected by the interaction of APP with FE65 (Sabo et al., 1999). Likewise FE65 also 

appears to bind to APP like proteins (APLP1 and APLP2) (Duilio et al., 1998). 
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Interaction of the FE65 PTB2 domain with APP requires the YENPTY motif as well as Thr-

668, 14 residues N-terminal to the internalization sequence. Phosphorylation of APP Thr-668 

impairs FE65 interaction suggesting that adaptor protein interactions with APP are differentially 

regulated by phosphorylation states. APP has been demonstrated to act as a cytosolic anchor for 

FE65, able to regulate its nuclear translocation (Ando et al., 2001). 

Besides APP-binding, FE65 in turn forms complexes with other proteins, suggesting that it 

bridges APP to specific molecular pathways (Fig. I.12). For instance, FE65 has been found to be 

associated with Neurofibrillary Tangles (NFTs) in AD. The main constituent of NFTs is Tau, a 

protein involved in neurite morphogenesis, axonal growth and axonal transport (Shahani and 

Brandt, 2002; Stamer et al., 2002). In AD Tau is hyperphosphorylated, which favours expansion of 

NFTs. Barbato et al. demonstrated the interaction of FE65 PTB1 domain with N-terminal domain 

of Tau in vivo and in vitro. The physical interaction between the adaptor protein FE65 and Tau is 

dependent on microtubule network integrity and is regulated by Tau phosphorylation, apparently 

via the proline-directed kinases GSK3β and Cdk5, since they are reported to be complexed with 

phosphorylated Tau (Hamdane et al., 2003; Barbato et al., 2005). This interaction suggests that 

FE65 bridges Tau to APP, representing a functional link between the two hallmarks of AD, namely 

NFTs and amyloid plaques. 
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Figure I.13: FE65 contains multiple protein interaction 

domains: the PTB1 domain interacts with the 

transcription factor complex CP2/LSF/LBP1 and with 

LRP, linking FE65 to a2M and ApoE; the PTB2 domain 

interacts with APP; the WW interacts with Mena, thus 

linking FE65 and APP to actin (adapted from (King and 

Scott Turner, 2004). 

 

The PTB1 domain of FE65 binds the low density lipoprotein receptor-related protein (LRP), 

a transmembrane glycoprotein which mediates the internalization and degradation of 

extracellular ligands, including α-2-macroglobulin, apolipoprotein E and KPI-containing isoforms 

of APP (Trommsdorff et al., 1998; Herz and Strickland, 2001). LRP interacts with APP also by an 

extracellular ligand-receptor interaction. FE65 in turn interacts with the cytoplasmic tails of APP 

and LRP, acting as a bridging protein. Pietrzik et al. demonstrated that FE65 can also be a 

functional linker between APP and LRP and the APP-FE65-LRP complex formation is critical for 

APP processing (Pietrzik et al., 2004). 

The WW domain of FE65 binds proline-containing motifs (PPXY or PPLP) of Mena 

(mammalian homologue of enabled), a protein involved in the regulation of actin dynamics 

(Ermekova et al., 1997). Mena belongs to the Ena/VASP family of proteins, which concentrate in 

focal adhesions and stress fibers and are found in dynamic actin remodeling areas, e.g. 
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lamellipodia and axonal growth cones (Ermekova et al., 1997). FE65 and APP colocalize with 

Mena in lamellipodia, which associates the FE65-APP complex to cytoskeletal dynamics and 

cellular motility and morphology (Sabo et al., 2001). Integrins are concentrated in lamellipodial 

adhesion sites, where they co-localize with FE65 and APP. FE65 PTB1 binds the β1-integrin 

cytoplasmic domain, at one of the two NPXY motifs of the latter. Integrins are a family of cell 

adhesion receptors that mediate cell–matrix interactions, playing a role in cell proliferation, 

differentiation, and migration (Sabo et al., 2001). Another ligand for FE65 WW domain is the c-

Abl tyrosine kinase, which phosphorylates FE65 on Tyr-547, in the PTB2 domain. Tyrosine kinase 

c-Abl is localized within the nucleus and phosphorylates APP, on Tyr-682 (Zambrano et al., 2001; 

Perkinton et al., 2004). 

The FE65 N-terminal PTB1 domain binds the transcription factor CP2/LSF/LBP1, involved in 

the regulation of several genes. The FE65-CP2/LSF/LBP1 complex was found both in nuclear and 

non-nuclear fractions (Zambrano et al., 1998); however the ternary complex AICD–FE65– 

CP2/LSF/LBP1 can assemble in the nucleus, inducing GSK-3β expression which can potentially 

increase Tau phosphorylation, contributing to AD (Kim et al., 2003). Other transcriptional factors 

may also be formed, for example the PTB1 FE65 domain functionally interacts with the histone 

acetyltransferase Tip60, forming the complex AICD–FE65–Tip60 which may regulate gene 

transcription (Cao and Sudhof, 2001). Alternatively, APP may anchor FE65 in the cytoplasm 

impairing its nuclear translocation (Minopoli et al., 2001). 

 

I.3.5 AICD in nuclear signaling 

 

The interaction between AICD and Fe65 has been extensively studied with respect to the 

transactivation properties of the AICD/Fe65/Tip60 complex (Cao and Sudhof, 2001). After 

intramembranous g-secretase cleavage of APP, AICD is released and may translocate to the 

nucleus where it participates in transcriptional regulation, in a manner analogous to Notch 

signaling. In the canonical Notch signaling pathway, sequential cleavage by α-/g-secretases 

releases the intracelular domain of Notch (NICD) that translocates to the nucleus to modulate 

gene expression, through binding to transcription factors (De Strooper et al., 1999). In the 

nucleus, AICD was reported to associate in multiple spherical nuclear spots with Fe65 and the 

histone acetyltransferase Tip60, known as the AFT-complexes, which were demonstrated to 

correspond to transcription factories (von Rotz et al., 2004; Konietzko et al., 2010). Indeed, 
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several AICD target genes have been identified, such as the genes coding for KAI1 (Baek et al., 

2002), thymidilate synthase (Bruni et al., 2002), GSK-3β (Kim et al., 2003; Ryan and Pimplikar, 

2005), APP, BACE, Tip60 (von Rotz et al., 2004), neprilysin (Pardossi-Piquard et al., 2005), p53 

(Alves da Costa et al., 2006), α2-actin, transgelin (Muller et al., 2007), EGF receptor (Zhang et al., 

2007), LRP1 (Liu et al., 2007), the mouse Nme1 and Nme2 (Napolitano et al., 2008), and, in 

Caenorhabditis elegans, acetylcholinesterase (Bimonte et al., 2004). 

APP and Notch are analogous to many other membrane proteins that are subject to 

regulated intramembrane proteolysis (RIP) (Kang et al., 1987; Kopan and Goate, 2000). 

Nevertheless, the cytoplasmic tail of APP is relatively short and is rapidly degraded after release 

from the membrane by the insulin degrading enzyme or by the endosomal/lysosomal system 

(Cupers et al., 2001; Edbauer et al., 2002; Vingtdeux et al., 2007a). However, the half-life of AICD 

can be considerably increased by interaction with Fe65, facilitating the translocation of AICD to 

the nucleus (Kimberly et al., 2001). Moreover, only the AICD generated through the 

amyloidogenic pathway exhibited nuclear signaling, due to the localization of β-secretase 

processing of APP at the endosomes, allowing a faster microtubule-based transport to the nuclear 

vicinity before g-cleavage releases AICD (Goodger et al., 2009). 
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II.1 INTRODUCTION – THE YEAST TWO-HYBRID SYSTEM 

 

II.1.1   Principles of the yeast two-hybrid system 

 

Protein-protein interactions (PPIs) are fundamental to all cellular processes. It is often 

possible to infer the function of an unknown protein by identifying the proteins with which it 

interacts. The YTH system has become one of the most popular and powerful tools to study PPIs, 

providing a sensitive in vivo assay for interaction analysis. The YTH system, was initially developed 

as a simple method to probe PPIs (Fields and Song, 1989; Fields and Sternglanz, 1994). It takes 

advantage of the modular architecture of eukaryotic transcription activators, which comprise two 

functionally independent domains: a DNA-binding domain (BD) that recognizes a specific DNA 

sequence in the promoter region and a transcription activation domain (ActD) that brings the 

transcriptional machinery to the promoter’s proximity, leading to activation of gene transcription. 

The original two-hybrid system was based on the yeast GAL4 transcription factor, involved in 

galactose metabolism, and is known as the GAL4 system (Fields and Song, 1989). This system 

relied on a single reporter gene for the detection of an interaction. The LexA or interaction trap 

system is a similar approach that utilized the BD of the bacterial repressor protein LexA in 

combination with the Escherichia coli B42 ActD (Gyuris et al., 1993).  

The two functional domains of a transcriptional activator, the BD and the ActD, can be split 

apart and each fused to one of a pair of partner proteins in order to reconstitute the activator’s 

ability to turn on a reporter gene. These two elements can be cointroduced into yeast strains 

modified with one or more reporter genes (the use of multiple reporter genes decreases the 

number of false positives obtained). These reporter genes have a binding site specific to the BD 

on their promoter region, causing the transcription of those genes to be dependent on the 

interaction between prey and bait proteins. Interaction of the BD-bait fusion with the ActD-prey 

fusion, positions the ActD in the proximity of the reporter gene, thus activating its transcription 

(Fig. II.1) (Causier and Davies, 2002). 
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Figure II.1: The yeast two-hybrid system principle. Two hybrid proteins are expressed in yeast: GAL4 

DNA-binding domain (BD) fused to a bait protein and GAL4 activation domain (ActD) fused to a prey 

protein. A. The BD-bait hybrid protein can bind to upstream activation sequences (UAS) but cannot 

activate transcription). B. The ActD-prey protein cannot recognize the UAS, thus, alone it is not 

capable of initiating transcription. C. When the bait and the prey interact, the BD and ActD are 

brought together and can activate reporter gene’s transcription. 

 

 

The YTH technique was automated for high-throughput studies of protein interactions, 

allowing the identification of a large number of proteins capable of interacting with a protein of 

interest. A large number of clones can be simultaneously tested using a cDNA expression library 

from a particular tissue. Larger scale two-hybrid approaches typically rely on interaction mating 

(Serebriiskii et al., 2001). In this method, a yeast strain expressing the bait protein is mated with 

another yeast strain of opposite mating type pretransformed with the cDNA library. Interaction 

between two proteins can then be determined by the activation of one or more reporter genes in 

the diploid strain. One advantage of this approach is the possibility of using frozen aliquots of 

pretransformed yeast cells saving time and resources. Additional benefits of using yeast mating 
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are that diploid cells are more tolerant to expression of toxic proteins and, because the reporter 

genes are less sensitive to transcription activation in diploids than they are in haploids, yeast 

mating reduces the background from proteins that activate transcription, which results in fewer 

false positives (Kolonin et al., 2000). 

Since its introduction, the YTH system has been modified, greatly expanding its biological 

and technological applications. First developed as an agent of biological discovery, the YTH has 

been a tool in proteomics and, additionally, as a means towards engineering novel 

pharmaceutical agents. Some YTH alternative systems have been developed and in many cases 

resulted in remarkably elegant hybrid systems, e.g. one-hybrid, tri-hybrid, reverse two-hybrid, 

membrane yeast two-hybrid (MYTH) and mammalian two-hybrid (Serebriiskii et al., 2001; Tyree 

and Klausing, 2003; Causier, 2004). 

Although the YTH system has been widely used both to demonstrate and to identify novel 

protein interactions with proteins from multiple sources, from prokaryotes to plants and 

mammals, this system has some intrinsic limitations that should be considered. It relies on yeast 

expression of two hybrid proteins and on their action as transcription factors in the yeast nucleus, 

which is dependent on their interaction. Limitations exist if one of the proteins cannot be 

expressed, folded or post-translationally modified in yeast cells, or if the GAL4 fusion impairs 

correct folding. In addition, if any of the fusion proteins are capable of activating reporters’ gene 

transcription by itself, false positives will arise. One also has to bear in mind that a legitimate PPI 

may have no functional significance if it involves two proteins that never co-localize in 

physiological systems (e.g. proteins that are expressed in different tissues or cellular organelles). 

Additionally, the inability of fusion proteins to migrate to the nucleus may also lead to false 

results. The limitations of the YTH system do not exclude it from protein networks research, but 

reinforce the need to validate all the interactions. These should be tested in different systems, 

preferably, by confirming the physical association of the native proteins in the cell where the 

functional interactions are predicted to occur. Nevertheless, it is important to remember the 

usefulness of the YTH in the construction of large interaction networks, and in identifying 

unsuspected interactions that may later be confirmed by a variety of independent methods. 
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II.1.2   YTH Screening workflow 

 

The MATCHMAKER Two-hybrid System 2 (Clontech) was used to perform YTH screening, 

according to the manufacturers’ instructions. A flow chart of the general procedures is shown in 

Fig. II.2. Briefly, the cDNA library, which expresses fusions with the Gal4-AD, was provided in the 

yeast strain Y187 (MATCHMAKER human brain cDNA library, Contech). The bait protein was 

expressed as a fusion with the Gal4-BD in yeast strain AH109. A bait culture was combined with 

one aliquot of pretransformed cDNA library overnight, allowing mating to occur. The diploid cells 

are plated in selective media with X-α-Gal. Four reporter genes: HIS3, ADE2, MEL1 and lacZ, 

which are activated in response to two-hybrid interaction (expression from the lacZ reporter can 

only be detected if the cells are lysed in a colony lift assay), allow for the identification of the 

positive clones.  

The key components and features of MATCHMAKER Two-hybrid System 2 (Clontech) are (i) 

the reporter genes used, (ii) the yeast host strains, (iii) the optimized plasmids and (iv) the cDNA 

libraries, as detailed below: 

 

i) Reporter genes 

 

The reporter genes used in this system are the MEL1 gene (coding for a-galactosidase, that 

is secreted into the culture medium) and the lacZ (coding for β-galactosidase, which can only be 

detected if the cells are lysed in a colony lift assay). Additionally, the auxotrophic reporter genes 

HIS3 and ADE2 allow yeast cells carrying interacting proteins to grow in medium lacking histidine 

and adenine. The nutritional selection reporter genes allow for easy recovery of interacting 

clones in large screening procedures, using a cDNA library, designed to identify new interacting 

proteins with a selected bait. Additionally, the YTH bait plasmid pAS2-1 and the library plasmid 

pACT2, which contain the TRP1 and LEU2 genes, respectively, allow for selection in medium 

lacking tryptophan and leucine. Hence, the high-stringency selection consists of medium lacking 

tryptophan, leucine, histidine and adenine, and also in the presence of X-a-Gal. The selection of 

positive clones with the “five” reporter genes TRP1, LEU2, HIS3, ADE2 and MEL1 (Matchmaker 

Yeast Two-Hybrid System 2, Clontech) was designed to reduce the number of false positives, thus 

allowing faster identification of true interactions with the bait protein. 
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Figure II.2: Flow chart of the yeast two-hybrid screening methodology. The bait protein was 

expressed as a fusion with the Gal4-BD in yeast strain AH109. The high-complexity 

pretransformed cDNA library, which expresses fusions with the Gal4-AD, was provided in the 

yeast strain Y187 (Matchmaker human brain cDNA library, Contech; yellow box). When 

cultures of the two transformed strains are mixed together overnight, they mate to create 

diploids. Four reporter genes, HIS3, ADE2, MEL1 and lacZ, are activated in response to fusion 

protein interaction. 
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ii) Yeast host strains 

 

Saccharomyces cerevisiae strains of two opposite mating types were used: AH109 (MATa) 

and Y187 (MATα). The complete genotypes are provided in Appendix III. The AH109 yeast strain 

virtually eliminates false positives by using three reporters – ADE2, HIS3 and MEL1 (or lacZ) – 

under the control of distinct GAL4 upstream activating sequences (UAS) and TATA boxes (Fig. 

II.3). The lacZ, HIS3, ADE2 and LEU2 reporter genes are under control of artificial promoter 

constructs comprised of a TATA and UAS (or operator) sequence derived from another gene. 

 

 

Figure II.3: Reporter gene constructs in yeast strains AH109 and Y187. In AH109, 

the HIS3, ADE2, and MEL1/lacZ reporter genes are under the control of three 

completely heterologous Gal4-responsive UAS and promoter elements - GAL1, 

GAL2, and MEL1, respectively. The protein-binding sites within the UAS are 

different, although each is related to the 17-mer consensus sequence recognized 

by Gal4 (Adapted from Pretranformed MATCHMAKER Libraries User Manual, 

Clontech). 

 

 

iii) Plasmids 

 

The Gal4 DNA-BD fusion vector pAS2-1 and the Gal4-AD fusion vector pACT2 have multiple 

cloning sites that allows for the insertion of bait or library cDNA, respectively (Appendix IV). They 

also carry a bacterial replication origin and an ampicilin resistance gene, for selection in bacteria. 
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pAS2-1 contains the TRP1 gene for selection in Trp- auxotrophic yeast strains (AH109, Y187 or 

diploids) and pACT2 contains the LEU2 gene for selection in Leu- auxotrophic yeast strains 

(AH109, Y187 or diploids).  

Additionally, the YTH system includes yeast plasmids carrying Gal4-BD and Gal4-AD fusion 

cDNAs that provide controls for negative and positive interactions, pVA3-1, pTD1-1 and pLam5’-1, 

which were used to validate interactions (Chapters III and V). 

 

iv) cDNA libraries 

 

Three YTH screens were performed in the context of this thesis (YTH-s1, YTH-s2 and YTH-

s3). Two aliquots of a Pretransformed Human Brain MATCHMAKER cDNA Library (CAT. HY4004AH; 

Clontech) were used for YTH-s1 and YTH-s2. This library was constructed using whole brain mRNA 

from a 37 years old Caucasian male (cause of death: trauma). Pretransformed MATCHMAKER 

libraries are high-complexity cDNA libraries cloned into the yeast Gal4-AD vector pACT-2 and 

pretransformed into S. cerevisiae Y187 host strain.  

For YTH-s3 a human brain MATCHMAKER cDNA library was obtained in E. coli BNN132 

(CAT:HL4004AH, Clontech). The mRNA source was the whole brain from a 60 years old Caucasian 

male (cause of death: sudden death). To make this cDNA library available for YTH screening, 

several steps were previously carried out in our laboratory: library amplification in E. coli; library 

DNA isolation; library-scale transformation in yeast strain AH109; plating the transformation 

mixture; and harvesting the transformants at high viability and density in freezing medium. The 

frozen aliquots were thus ready for YTH screening. 

 

II.1.3  The baits for YTH screening 

 

The full-length cDNA encoding human APP (isoform 695) was used as bait in screen YTH-s1. 

The YTH-s2 was performed with APPY687F, which mimics the dephosphorylated state of Tyr-687. 

For YTH-s3 only the cytoplasmic domain of the mutant APP, AICDY687F was used as bait (Table II.1). 
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YTH screen Bait Description 

YTH-s1 APP (bait-1) 

 

human wild-type APP cDNA, coding for the neuronal 

isoform with 695 amino acids (APP695) (GenBank 

Accession NM_201414) 
 

YTH-s2 APPY687F (bait-2) 

 

human APP cDNA, coding for the neuronal 695 amino 
acids isoform with the Y687F mutation, which mimics 

the dephosphorylated state of Tyr-687 

 

YTH-s3 AICDY687F (bait-3) 

 

cDNA coding for the intracellular domain of human 

APP695 with 50 amino acids(C50) 

 

 

Several steps were required to prepare each YTH screen, namely to: 

(i) Construct the Gal4-BD-bait fusion genes: each bait cDNA was subcloned into 

the yeast expression vector pAS2-1, in frame with Gal4-BD; 

(ii) Transform the bait plasmids in the appropriate yeast strain; 

(iii) Verify that Gal4-BD fusion constructs do not activate reporter genes: the 

transformants from the previous step were assayed for autonomous activation 

of the reporter genes HIS3, ADE2 and MEL1;  

(iv) Verify protein expression: yeast protein extracts were prepared from the 

transformants mentioned above and the expression of each bait cDNA fused to 

the Gal4-BD was verified by immunoblotting. 

 

After all the prerequisites were verifiyed, the YTH screens were performed by large-scale 

yeast mating, as described in the following sections. 

 

Table II.1: Description of the cDNA baits used in each YTH screen. 
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II.2 CONSTRUCTION OF THE BAIT PLASMIDS 

 

The same strategy was followed to prepare all bait fusion constructs (Table II.2). 

Vector  

pAS2-1 

Inserts 

APP/APP
Y687F

/AICD
Y687F 

DNA amplification in E. coli XL1-blue 

DNA isolation by Megaprep 

Sequential digestion with NcoI and SmaI 

Ethanol precipitation 

Incubation with alkaline phosphatase  

Insert amplification by PCR 

PCR fragments purification (silica-membrane-
based column) 

Sequential digestion with NcoI and SmaI 

Ethanol precipitation 

Ligation of vector and insert 

Transformation of ligation mixtures into E.coli 

Identification of insert-containing plasmids by restriction analysis 

Verification of orientation, sequence and reading frame by DNA sequencing 

 

 

II.2.1   Materials and Methods 

 

For the complete composition of all reagents, media and solutions used, see Appendix I. All 

the reagents were cell culture grade or ultrapure. 

 

II.2.1.1 Isolation of pAS2-1 plasmid from bacteria - PROMEGA “Megaprep” 

 

A 1 L cell culture was pelleted by centrifugation at 1,500g for 20 min at RT. The cell pellet 

was resuspended in 30 ml of Cell Resuspension Solution by manually disrupting the pellet with a 

pipette. 30 ml of Cell Lysis Solution were added to the cells and the solution mixed gently by 

inverting, until it became clear and viscous. Then, 30 ml of Neutralization Solution were added 

and immediately mixed by inverting the tube. After centrifugation at 14,000g for 15 min at RT the 

Table II.2: Cloning strategy followed to obtain the Gal4-BD-Bait fusion constructs. 
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clear supernatant was transferred by filtering through gauze swabs to a new tube and the volume 

of supernatant was measured. At this stage 0.5 volumes of room-temperature (RT) isopropanol 

were added and the solution mixed by inversion. This solution was centrifuged at 14,000g for 15 

min at RT, the supernatant was discarded and the pellet resuspended in 4 ml of TE buffer. 20 ml 

of WizardTM Megapreps DNA purification resin (Promega) were added to the DNA and mixed by 

swirling. A Wizard TM Megacolumn (Promega) was inserted into the vacuum manifold port and the 

DNA/resin mix was transferred into the Megacolumn. Vacuum was applied to pull the mix 

through the Megacolumn. Two washes with 25 ml of Column Wash Solution were performed and 

the resin was rinsed with 10 ml of 80% ethanol. The Megacolumn was inserted into a 50 ml screw 

cap tube and centrifuged at 4000g for 5 min using a swinging bucket rotor centrifuge. The 

Megacolumn was placed in a clean tube and 3 ml of pre-heated nuclease-free water (70°C) were 

added to the column. After waiting 1 min the DNA was eluted by centrifugation at 4000g for 5 

min. The DNA was stored at -20°C. 

This procedure was used to prepare a large amount of plasmid DNA for storage and 

subsequent cloning, yeast transformation and other purposes.  

 

II.2.1.2 Plasmid DNA digestion with restriction enzymes 

 

Plasmid DNA was sequentially digested with SmaI and NcoI with the DNA being precipitated 

between the digests. 

For a typical DNA digestion the manufacturer’s instructions were followed. In a microtube 

the following components were added: 

§ 100 µg/ml DNA 

§ 1x reaction buffer (specific for each restriction enzyme)  

§ 1 U/µg DNA of restriction enzyme 

The mixture was incubated at the appropriate temperature (30°C for SmaI; 37°C for NcoI) 

for a few hours (or overnight if convenient). 

 

II.2.1.3 Plasmid DNA purification with ethanol 

 

This method was used to concentrate nucleic acids as well as to purify them. Approximately 

1/10 volume of 3 M sodium acetate (pH 5.2) was added to the DNA solution to adjust the salt 

concentration, followed by 2 volumes of ice-cold ethanol. The solution was well mixed and stored 
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at -20°C for 30 min to allow the DNA precipitate to form. DNA was recovered by centrifugation at 

4°C for 15 min at 12,000g. The supernatant was carefully removed without disturbing the pellet. 

The microtube was half filled with ice-cold 70% ethanol and recentrifuged at 12,000g for 5 min. 

The supernatant was again removed and the pellet allowed to dry before being resuspended in 

sterile water.  

 

II.2.1.4 Baits cDNA amplification by PCR 

 

The baits cDNA fragments were generated by PCR with the NcoI and SmaI restriction sites 

incorporated into the forward and reverse primers, respectively (Table II.3). 

 

Bait 
Forward primer 

(NcoI RE site) 

Reverse primer 

(SmaI RE site) 

bait-1: APP NAPPII APPCTERMIII 

bait-2: APPY687F NAPPII APPCTERMIII 

bait-3: AICDY687F NAPPC APPCTERMIII 

 

 

The reaction was carried out in a 0.5 ml tube where the following components were added: 

§ 10 ng template DNA 

§ 10 pmol forward primer 

§ 10 pmol reverse primer 

§ 2 µl dNTP’s 10 mM 

§ 5 μl reaction Pfu buffer 10x  

§ 2 Units of Pfu  

§ H2O to a final volume of 50 µl 

 

The PCR reactions were then carried out in a thermo cycler using different conditions. 

Inserts for bait-1 (APP695 cDNA) and bait-2 (APP695
Y687F cDNA) are approximately 2100 bp and were 

Table II.3: Primers used to amplify each bait cDNA (for primers’ sequences see 
Appendix II). 
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amplified using the same PCR settings. Bait-3 (AICDY687F) is shorter, with only 150 bp, and was 

amplifyied using specific PCR conditions (Table II.4). 

 

 

Bait 1 - APP Bait 2 - APP
Y687F

 Bait 3 - AICD
Y687F

 

95°C 4 min  95°C 4 min  95°C 4 min  

95°C 1 min 

60°C 1 min 

72°C 6 min 

5 cycles 

95°C 1 min 

60°C 1 min 

72°C 6 min 

5 cycles 

95°C 30 sec 

55°C 30 sec 

72°C 1 min 

5 cycles 

95°C 1 min 

68°C 1 min 

72°C 6 min 

25 cycles 

95°C 1 min 

68°C 1 min 

72°C 6 min 

25 cycles 

95°C 30 sec 

60°C 30 sec 

72°C 1 min 

25 cycles 

72°C 7 min  72°C 7 min  72°C 4 min  

 

 

II.2.1.5  Insert DNA purification – QIAGEN DNA Purification kit 

 

The QIAGEN DNA Purification kit was used to purify DNA fragments from PCR and other 

enzymatic reactions. It permitted purification from primers, nucleotides, polymerases and salts by 

using QIAquick spin columns (silica-membrane-based columns). Briefly, 5 volumes of buffer PB 

(QIAGEN) were added to 1 volume of the solution to be purified and mixed. The spin column was 

placed in a collection microtube and the sample was applied to the column and centrifuged for 1 

min at 12,000g to bind the DNA. The flow-through was discarded and the column was washed 

with 0.75 ml of buffer PE (QIAGEN), centrifuged for 1 min at 12,000g and the flow-through 

discarded. The column was placed back in the same microtube and centrifuged again to remove 

traces of washing buffer. Then, the column was placed in a clean microtube, 50 µl of H2O were 

added and allowed to stand for 1 min. To elute the DNA, the column was centrifuged for 1 min at 

12,000g. 

 

II.2.1.6  Insert digestion with restriction enzymes 

 

The PCR products were sequentially digested with SmaI and NcoI, with a purification step 
between the two reactions, as described in sections II.2.1.2 and II.2.1.3.  

Table II.4: Specific conditions for bait cDNA amplification by PCR. 
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II.2.1.7  DNA ligation 

 

Alkaline phosphatase treatment 

In order to prevent self ligation of vector molecules, the digested plasmid DNA was 

incubated with shrimp alkaline phosphatase (SAP) (ROCHE) before ligation. According to the 

manufacturer’s instructions, the reaction mixture was adjusted with 1/10 volume 10X 

concentrated dephosphorylation buffer, and incubated with 1 µl of SAP at 37°C for 1 h. Finally, 

SAP was inactivated by heating the reaction mixture at 65°C for 15 min. 

 

DNA Ligation 

To carry out the ligation reaction, 50 ng of vector DNA from the previous step were 

transferred to a microtube with three times the equimolar amount of insert DNA. 2µl of 10x T4 

DNA ligase buffer and 1 µl of T4 DNA ligase (NEB) were added to the reaction mix and H2O was 

added to a final volume of 20 µl. The reaction was carried out for 16 h at 16°C. One additional 

control reaction was set up that contained the plasmid vector alone.  

 

II.2.1.8  Bacteria transformation with plasmid DNA 

 

Preparation of E. coli competent cells 

A single colony of E. coli XL1-Blue was incubated in 10 ml of SOB medium at 37°C overnight. 

Then, 1 ml of this culture was used to inoculate 50 ml of SOB and the culture was incubated at 

37°C with shaking at 220 rpm for 1-2 h, until OD550nm=0.3. The culture was cooled on ice for 15 

min and centrifuged at 4,000g at 4°C for 5 min. The supernatant was discarded and then 

resuspended in 15 ml of Solution I. After standing on ice for 15 min, the cells were centrifuged at 

4,000g for 5 min at 4°C and 3 ml of Solution II were added to resuspend the cell pellet. The cells 

were immediately divided in 100 µl aliquots and stored at -80°C. 

 

Bacteria transformation with plasmid DNA 

Competent cells were thawed on ice and the appropriate amount of DNA (plasmid DNA: 

0.1-50 ng; ligation mixture: 5 µl) were added each cell aliquot (100 µl) and gently swirled. The 

microtube was incubated on ice for 20 min and heat shocked at 42°C for 90 sec. The microtubes 
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were then incubated on ice for 30 min before adding 0.9 ml of SOC medium. The tubes were 

subsequently incubated at 37°C for 30 min with shaking at 220 rpm. The culture was centrifuged 

at 12,000g and the supernatant discarded. The cells were then resuspended in 100 µl of the 

selective medium and spread on the appropriate agar medium. The plates were incubated at 37°C 

for 16 h until colonies appeared. Control transformations were also performed in parallel. These 

always included a negative control transformation without DNA and a positive control 

transformation with 0.1 ng of non digested plasmid, such as pAS2-1.  

 

II.2.1.9  Isolation of plasmids from transformants “Miniprep” 

 

In order to screen for the recombinant plasmid in the transformants, the plasmid DNA was 

extracted from several isolated bacterial colonies for subsequent restriction fragment analysis and 

sequencing. 

 

Method 1 – Alkaline lysis “miniprep” 

A single bacterial colony was transferred into 3 ml of LB medium containing ampicillin (100 

µg/ml) and incubated overnight at 37°C with vigorous shaking (220-250 rpm). 1.5 ml of this 

culture were transferred into a microtube and centrifuged at 12,000g for 1 min at 4°C and the 

supernatant was discarded. The cell pellet was resuspended in 100 µl of ice-cold Solution I by 

vigorous vortexing. Then, 200 µl of freshly prepared Solution II were added to the microtube that 

was mixed by inverting several times. Keeping the microtube on ice, 150 µl of ice-cold Solution III 

were added and again the microtube inverted several times. After the microtube was allowed to 

stand on ice for 5 min, it was centrifuged at 12,000g for 10 min at 4°C and the supernatant 

transferred to a clean microtube. The DNA was precipitated by adding 2 volumes of ice-cold 

ethanol. The mixture was vortexed and placed at -20°C for 30 min. After centrifugation at 12,000g 

for 10 min at 4°C, the supernatant was completely removed and the pellet washed with 70% 

ethanol. Following centrifugation, the pellet was allowed to dry. The DNA was dissolved in H2O 

containing DNAase-free RNAase (20 µg/ml) and stored at -20°C. 

 

Method 2 – QIAGEN “miniprep” 

 The bacterial pellet was obtained as described above. The pellet was then resuspended in 

250 µl of buffer P1 (QIAGEN), 250 µl of buffer P2 (QIAGEN) were added and the microtube was 

mixed by gently inverting until the solution became viscous and slightly clear. Afterwards, 350 µl 
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of buffer N3 were added and the microtube was repeatedly inverted until the solution became 

cloudy. The microtube was centrifuged for 10 min and the resulting supernatant was applied to a 

QIAprep spin column placed in a microtube. After a 1 min centrifugation (12,000g) the flow-

through was discarded. The column was washed by adding 0.75 ml of buffer PE (QIAGEN) and 

centrifuged for 1 min to discard the flow-through, and then a subsequent 1 min centrifugation to 

remove residual wash buffer. Finally, the column was placed in a clean microtube and 50 µl of H2O 

were added to elute the DNA by centrifuging for 1 min having let it stand for 1 min. This method 

gives a cleaner DNA preparation than Method 1 with better yields. This method was used when 

the DNA was subsequently processed for DNA sequencing. For enzymatic restriction the first 

method was commonly employed. 

 

II.2.1.10   Restriction fragment analysis of DNA 

 

Plasmid DNA was analyzed throughout the digestion with a convenient restriction 

endonuclease, namelly HindIII. For the plasmid DNA digestion the manufacturer’s instructions 

were followed, as described previously (section II.2.1.2).  

 

II.2.1.11   Electrophoretic analysis of DNA 

 

The electrophoresis apparatus was prepared and the electrophoresis tank was filled with 

enough 1x TAE buffer to cover the agarose gel. The appropriate amount of agarose was 

transferred to an Erlenmeyer with 50 ml 1x TAE. The slurry was heated until the agarose was 

dissolved and allowed to cool to 60°C before adding ethidium bromide to a final concentration of 

0.5 µg/ml. The agarose solution was poured into the gel cast and the comb was positioned. After 

the gel became solid the comb was carefully removed and the gel immersed in the tank. The DNA 

samples were mixed with the 6x loading buffer (LB) (0.25% bromophenol blue/ 30% glycerol in 

water) and the mixture was loaded into the slots of the submerged gel using a micropipette. 

Marker DNA  was also loaded into the gel (1kb ladder or 1 Kb plus, Invitrogen). The lid of the gel 

tank was closed and the electrical leads were attached so that the DNA migrated towards the 

anode. The gel was run until the bromophenol blue had migrated the appropriate distance 

through the gel. At the end, the gel was examined by UV light and photographed or analyzed on a 

Molecular Imager (Biorad).   
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II.2.1.12   DNA sequencing 

 

All the DNA samples to be sequenced were subjected to the same protocol. If the DNA was 

obtained by the “alkaline lysis miniprep” method and had not been purified by QIAGEN miniprep 

spin column (section II.2.1.9), it was purified in a QIAquick spin column (QIAGEN DNA Purification 

Kit) as described bellow. 

 

QIAGEN DNA Purification kit 

Briefly, 5 volumes of buffer PB (QIAGEN) were added to 1 volume of the solution to be 

purified and mixed. The QIAquick spin column was placed in a collection microtube and the 

sample was applied to the column and centrifuged for 1 min at 12,000g to bind the DNA. The 

flow-through was discarded and the column was washed with 0.75 ml of buffer PE (QIAGEN), 

centrifuged for 1 min at 12,000g and the flow-through discarded. The column was placed back in 

the same microtube and centrifuged again to remove traces of washing buffer. Then, the column 

was placed in a clean microtube, 50 µl of DNAse-free water were added and allowed to stand for 

1 min. To elute the DNA the column was centrifuged for 1 min at 12,000g. The DNA was stored at 

-20°C. 

 

Sequencing reaction 

In a 0.5 ml microtube the following components were added: 

§ 500 ng of dsDNA  

§ 4 µl of Ready Reaction Mix* 

§ 3.2 pmol primer 

§ H2O to a final volume of 20 µl 

* Ready Reaction Mix is composed of: dye terminators, deoxynucleoside triphosphates, AmpliTaq 

DNA polymerase, FS, rTth pyrophosphatase, magnesium chloride and buffer (Applied Biosystems). 

This reaction mixture was mixed and spun down for a few seconds. The cycle sequencing reaction 

was then performed using the following conditions: 

 96°C 1 min 

96°C 30 sec 

 42°C 15 sec               25 cycles 

 60°C 4 min  
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Afterwards, the samples were purified by ethanol precipitation. Briefly, 2.0 µl of 3 M 

sodium acetate (pH 4.6) and 50 µl of 100% ethanol were added to the reaction mixture in a 

microtube, mixed and incubated at RT for 15 min to precipitate the extension products. The 

microtube was then centrifuged at 12,000g for 20 min at RT. After discarding the supernatant, 

250 µl of 70% ethanol were added, the microtube was briefly vortexed and recentrifuged for 5 

min at 12,000g at RT. The supernatant was discarded and the pellet dried. After this procedure, 

the DNA was ready to be applied in an Automated DNA Sequencer (ABIPRISM 310, Applied 

Biosystems). 
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II.2.2   Results 

 

The resulting bait plasmids were sequenced using the GAL4-BD sequencing primer 

(Clontech), which anneals with the pAS2-1 vector, to check the orientation of the insert and the 

reading frame. For bait-3, pAS2-1-AICDY687F, whose insert is only 150 bp this sequencing reaction 

was enough to span the entire insert and both insert-vector junctions (Fig. II.4). Baits 1 and 2 were 

also sequenced with several insert-specific primers and MATCHMAKER DNA-BD 3' Insert 

Screening Amplimer (pAS2-1, reverse; Clontech). 

The three bait plasmids, pAS2-1-APP, pAS2-1-APPY687F and pAS2-1-AICDY687F showed correct 

insert sequence, correct orientation and correct reading frame with Gal4-BD. 

 

 

 

 

 

Figure II.4: Partial sequence of the pAS2-1-AICD
Y687F

 fusion construct (Bait-3). Human AICD
Y687E

 

sequence is in blue; Gal4-BD sequence that is fused to AICD is in black; mutation site in Tyr-687 is in 

red; NcoI restriction site is in green and Sma I is in brown; Stop codon is in pink. 

atgaagctactgtcttctatcgaacaagcatgcgatatttgccgacttaaaaagctcaag
M  K  L  L S  S I  E  Q  A  C  D  I  C  R  L  K  K L  K

tgctccaaagaaaaaccgaagtgcgccaagtgtctgaagaacaactgggagtgtcgctac
C  S  K  E  K  P  K  C  A  K  C  L  K  N  N W  E  C  R  Y

tctcccaaaaccaaaaggtctccgctgactagggcacatctgacagaagtggaatcaagg
S  P  K  T  K  R  S  P  L  T  R  A  H  L  T  E  V  E  S  R

ctagaaagactggaacagctatttctactgatttttcctcgagaagaccttgacatgatt
L  E  R  L  E  Q  L  F  L  L I  F  P  R  E  D  L  D  M  I

ttgaaaatggattctttacaggatataaaagcattgttaacaggattatttgtacaagat
L  K M D S L Q D I K A L L T G L F V Q D

aatgtgaataaagatgccgtcacagatagattggcttcagtggagactgatatgcctcta
N  V  N  K  D  A  V  T  D  R  L  A  S  V  E  T  D  M  P  L

acattgagacagcatagaataagtgcgacatcatcatcggaagagagtagtaacaaaggt
T  L  R  Q  H  R  I  S  A  T  S  S S E  E S  S N  K  G

caaagacagttgactgtatcgccggtattgcaatacccagctttgactcatatggccatg
Q  R  Q  L  T  V  S  P  V  L  Q  Y  P  A  L  T  H  M  A  M

gtgatgctgaagaagaaacagtacacatccattcatcatggtgtggtggaggttgacgcc
V  M  L  K  K K Q  Y  T  S  I  H  H G  V  V E  V  D  A

gctgtcaccccagaggagcgccacctgtccaagatgcagcagaacggctacgaaaatcca
A  V  T  P  E  E R  H  L  S  K  M  Q  Q N  G  Y  E  N  P

accttcaagttctttgagcagatgcagaactgacccggggatccgtcgacctgcagccaa
T  F  K  F  F E  Q  M  Q  N  ^^^
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II.3 BAIT AUTO-ACTIVATION TEST 

 

After obtaining the Gal4-BD fusion constructs, it was necessary to demonstrate that the 

bait proteins do not autonomously activate the reporter genes HIS3, ADE2 and MEL1, for 

example, due to intrinsic DNA-binding and/or transcriptional activation sequences.  

In order to analyze the ability of the recombinant constructs to activate the reporter genes, 

they were independently transformed into the AH109 yeast strain. The transformed cells were 

selected on medium without tryptophan, because the pAS2-1 carries the TRP1 gene for selection 

in Trp- auxotrophic yeast strains. In order to verify that Gal4-BD fusion constructs do not activate 

reporter genes: the transformants from the previous step were assayed for growth in medium 

lacking histidine and adenine and for blue appearance of the colonies in the presence of X-α-Gal. 

 

II.3.1  Materials and Methods 

 

II.3.1.1 Yeast transformation with plasmid DNA  

 

Preparation of competent yeast cells 

One yeast colony was inoculated into 1 ml of YPD medium in a 1.5 ml microtube and 

vortexed vigorously to disperse cell clumps. The culture was transferred into a 250 ml flask 

containing 50 ml of YPD and incubated at 30°C with shaking at 230 rpm overnight, until it reached 

the stationary phase with OD600nm>1. An amount of this culture (20-40ml), sufficient to produce an 

OD600nm=0.2-0.3, was transferred into 300 ml YPD in a 2 L flask. The culture was incubated for 3 h 

at 30°C with shaking at 230 rpm, and then centrifuged at 4000g for 5 min at room temperature. 

The supernatant was discarded and the cells resuspended in 25 ml of sterile H2O. The cells were 

recentrifuged and the pellet was resuspended in 1.5 ml of freshly prepared, sterile 1x TE/LiAc.  

 

Yeast transformation- Lithium acetate (LiAc)-mediated method 

In a microtube 200 ng of plasmid DNA were added to 100 µg of herring testes carrier DNA. 

Then, 100 µl of freshly prepared competent cells were added to the microtube, followed by 600 µl 

of sterile PEG/LiAc (40% PEG 4000/ 1x TE/LiAc). The mixture was incubated at 30°C for 30 min 

with shaking (200 rpm). After adding 70 µl of DMSO the solution was mixed gently and then heat-
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shocked for 15 min in a 42°C water bath. The cells were pelleted after being chilled on ice, 

centrifuged for 5 sec at 12,000g and resuspended in 0.5 ml of sterile 1x TE buffer. The cells were 

then plated in the appropriate SD selection medium (SD/-Trp selects transformants with pAS2-1 

plasmid constructs), and incubated at 30°C for 2-4 days, until colonies appeared. 

 

II.3.1.2 Bait autoactivation tests 

 

The AH109 yeast cells independently transformed with the three bait plasmids (pAS2-1-

APP, pAS2-1-APPY687F and pAS2-1-AICDY687F) and with the pAS2-1 empty vector, were replica plated 

on SD/-Trp/X-α-Gal, SD/-Trp/-His/X-α-Gal and SD/-Trp/-Ade/X-α-Gal. The plates were incubated at 

30°C for 2-4 days. 

 

 

II.3.2  Results 

 

The three bait plasmids (pAS2-1-APP, pAS2-1-APPY687F and pAS2-1-AICDY687F) were 

independently tested for growth in selective media lacking His and Ade. None of the bait plasmids 

were able to drive the expression of the nutritional reporter genes HIS3 and ADE2, since no 

growth was detected. Likewise, the colorimetric reporter gene MEL1 was not activated by any of 

the fusion constructs, since no blue color was detected in the SD/-Trp/X-α-Gal. All the Gal4-BD 

fusion genes behaved similarly to the pAS2-1 empty vector, which was expressed as a negative 

control (Table II.5).  

 

 

Bait 
Growth and Blue color 

SD/-Trp/X-α-Gal SD/-Trp/-His/X-α-Gal SD/-Trp/-Ade/X-α-Gal 

Bait 1 – APP white colonies no growth no growth 

Bait 2 - APP
Y687F

 white colonies no growth no growth 

Bait 3 - AICD
Y687F

 white colonies no growth no growth 

Negative control 

(empty pAS2-1) 
white colonies no growth no growth 

  

Table II.5: Results of the baits autoactivation tests. 
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II.4   EXPRESSION OF THE BAIT PROTEINS IN YEAST 

 

In order to verify the ability of the recombinant constructs to drive the Gal4-BD-bait fusion 

protein expression, the bait constructs were independently transformed into the yeast strain 

AH109. The transformed cells were grown on the appropriate selective medium (SD/-Trp) and 

each Gal4-BD-bait expression was confirmed by immunobloting of the corresponding protein 

extracts.  

 

II.4.1   Materials and Methods 

 

II.4.1.1 Expression of proteins in yeast  

 

Preparation of yeast cultures for protein extraction 

A colony of each previously transformed yeast was inoculated in 5 ml of the appropriate SD 

selection medium (SD/-Trp) and incubated at 30°C with shaking at 230 rpm overnight. As a 

negative control an untransformed yeast colony was inoculated in YPD. The overnight cultures 

were vortexed and separately added to 50 ml aliquots of YPD. These cultures were incubated at 

30°C with shaking (220 rpm) until OD600nm=0.4-0.6. At this point the cultures were quickly chilled 

by pouring them into a prechilled 50 ml centrifuge microtube halfway filled with ice. The tubes 

were immediately centrifuged at 1,000 g for 5 min at 4°C. The supernatant was discarded and the 

cell pellet was washed in 50 ml of ice-cold water. The pellet was recovered by centrifugation at 

1,000 g for 5 min at 4°C and immediately frozen by placing tubes in liquid nitrogen.  

 

Preparation of protein extracts 

The cell pellets were quickly thawed by resuspending each one in 100 µl of prewarmed 

cracking buffer (60°C) per 7.5 OD600 units of cells (OD600 of a 1 ml sample multiplied by the culture 

volume). The samples were briefly thawed in a 60°C water bath. After 15 min an additional aliquot 

(1 µl of 100x PMSF per 100 µl of cracking buffer) of the 100x PMSF stock solution was added to 

the samples and every 7 min thereafter during the procedure. Each cell suspension was 

transferred into a 1.5 ml microtube containing 80 µl of glass beads per 7.5 OD600 units of cells. The 

samples were heated at 70°C for 10 min to release the membrane-associated proteins. Then, the 
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microtubes were vortexed vigorously for 1 min and centrifuged at 12,000g for 5 min at 4°C. The 

supernatants were transferred to fresh microtubes and placed on ice. The pellets were boiled for 

5 min, vortexed for 1 min and centrifuged again, the resulting supernatants were combined with 

the first ones. The samples were boiled and loaded immediately on a gel. 

 

II.4.1.2  SDS-PAGE  

 

The Gal4 DNA-binding domain encoded by the yeast vector pAS2-1 migrates around 21 kDa 

in SDS-PAGE. Full-length APP695 (bait-1 and bait-2) is predicted to migrate around 100 kDa, and 

the predicted molecular weight of APP C-terminus of 50 amino acids (bait-3) is around 5 kDa 

(Table II.6).  

 

 

Bait Fusion construct 
Fusion 

protein 

Predicted MW of fusion 

protein (kDa) 

Bait-1 pAS2-1-APP Gal4-BD-APP 120 

Bait-2 pAS2-1-APP
Y687F

 Gal4-BD-APP
Y687F

 120 

Bait-3 pAS2-1-AICD
Y687F

 Gal4-BD-AICD
Y687F

 26 

control pAS2-1 empty vector Gal4-BD 21 

 

In order to visualize the expression of the fusion proteins Gal4-BD-APP and Gal4-BD-

APPY687F, a 6.5% gel was used. The shorter Gal4-BD-AICDY687F fusion peptide was visualized in a 

12% gel (Table II.7).  

Each running gel was prepared by sequentially adding the components indicated on Table 

II.7 (APS and TEMED were added last, as they initiate the polymerizing process). The solution was 

then carefully pipetted down the spacer into the gel sandwich, leaving some space (4 cm) for the 

stacking gel. Then, water was carefully added to cover the top of the gel and the gel was allowed 

to polymerize for 1 h. The stacking gel was prepared according to Table II.7. The water was 

poured out and the stacking gel was added to the sandwich; a comb was inserted and the gel was 

Table II.6: Approximate sizes of Gal4-BD and control fusion proteins. 
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allowed to polymerize for 30 min. Then, the samples were prepared by the addition of ¼ volume 

of loading gel buffer. The microtube was boiled and centrifuged, the combs removed and the 

wells filled with running buffer. The samples were carefully applied into the wells that were filled 

with running buffer, and the samples were run at 45 mA (1 gel in the system) or 90 mA (2 gels in 

the system) until the bromophenol blue from the LB reached the bottom of the gel. 

 

Components 
Running gel final concentrations Stacking gel 

(3.5%) 12% 10% 7.5% 6.5% 

Water 10.4 ml 12.6 ml 14.6 ml 15.8 ml 6.6 ml 

30%Acryl./8%Bisacryl. 12.0 ml 9.9 ml 7.5 ml 6.5 ml 1.2 ml 

4X LGB* 7.5 ml 7.5 ml 7.5 ml 7.5 ml ------- 

5X UGB* ------- ------- ------- ------- 2.0 ml 

SDS 10% ------- ------- ------- ------- 100.0 µl 

10% APS 150.0 µl 150.0 µl 150.0 µl 150.0 µl 100.0 µl 

TEMED 15.0 µl 15.0 µl 15.0 µl 15.0 µl 10.0 µl 

 

 

II.4.1.3  Western blot transfer 

 

For immunoblotting the tank transfer system (Hoefer) was used as follows: 3MM blotter 

paper was cut to fit the transfer cassette and a nitrocellulose membrane of the gel size was also 

cut. The gel was removed from the electrophoresis device and the stacking gel removed and 

discarded. The transfer sandwich was assembled under transfer buffer to avoid trapping air 

bubbles. The cassette was placed in the transfer device filled with transfer buffer. Transfer was 

allowed to proceed overnight at 200 mA. Afterwards, the transfer cassettes were disassembled; 

the membrane carefully removed and allowed to air dry prior to further manipulations.  

 

 

  

Table II.7: Composition of the running and stacking gels for SDS-PAGE (*Buffers composition is in 

Appendix I). Recipes for one gel (30 ml; 1.5 mm thick Hoefer SE 600/400). 
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II.4.1.4  Immunodetection by enhanced chemiluminescence (ECL)  

 

ECLTM (GE Healthcare) is a light emitting non-radioactive method for the detection of 

immobilized antigens, conjugated directly or indirectly with horseradish peroxidase-labelled 

antibodies.  

Fusion proteis corresponding to bait-1 and bait-2 were detected with the mouse 

monoclonal antibody 22C11 (Boehringer), targeted to APP N-terminus. To visualize the fusion 

protein GAL4-BD-AICDY687F two distinct blots were probed with different antibodies: GAL4 DNA-BD 

monoclonal antibody (Clontech) and 369 polyclonal antibody, that recognizes the carboxy-

terminus of human APP (a kind gift from Professor Samuel E. Gandy - Mount Sinai Medical Center, 

NY, USA). 

 

Protocol for the 22C11 monoclonal antibody  

The membrane was soaked in 1x TBS for 10 min. Non-specific binding sites were blocked by 

immersing the membrane in 5% low fat milk in TBST for 2 h. After washing with 1x TBST, the 

membrane was incubated with a solution of the primary antibody diluted (1:150) in 5% low fat 

milk in TBST for 4 h with shaking. The membrane was allowed to stand in the primary 

antibody/milk solution overnight at 4°C. After three washes of 10 min with 1x TBST the 

membrane was incubated with a solution of the anti-mouse secondary antibody diluted (1:5000) 

in 5% low fat milk in TBST for 1 h with shaking. The membrane was then washed 3 times for 10 

min. 

 

Protocol for the GAL4 DNA-BD monoclonal antibody  

The membrane was soaked in 1x TBS for 10 min. Non-specific binding sites were blocked by 

immersing the membrane in 5% low fat milk in TBST for 2 h. After washing with 1x TBST, the 

membrane was incubated with a solution of the primary antibody diluted (0.5 µg/µl) in 5% low fat 

milk in TBST for 2 h with shaking. After three washes of 10 min with 1x TBST the membrane was 

incubated with a solution of the anti-mouse secondary antibody diluted (1:5000) in 5% low fat 

milk in TBST for 1 h with shaking. The membrane was then washed 3 times for 10 min. 

  



  

Identification of Protein Complexes in Alzheimer’s Disease 

 

CHAPTER II – YEAST TWO-HYBRID SCREENING 

  

 

 97 

Protocol for the 369 polyclonal antibody 

The procedure was similar to that described above, but the membrane was blocked by 

immersing it in 5% low fat milk in TBST for 3 h, with shaking, plus an overnight incubation at 4°C. 

After washing with 1x TBST, the membrane was incubated with a solution of the primary antibody 

diluted in 5% low fat milk in TBST for 2 h with shaking. After washing 6 times for 15 min in 1x TBST 

the membrane was incubated with the anti-rabbit secondary antibody diluted (1:5000) in 5% low 

fat milk in TBST for 1h30min with shaking. The membrane was then washed 6 times for 15 min. 

 

Subsequently the membrane was incubated for 1 min at RT with the ECL detection solution 

(a mixture of equal volumes of solution 1 and solution 2 from the ECL kit, approximately 

0.125ml/cm2 membrane). Inside the dark room, the membrane was gently wrapped with cling-

film, eliminating all air bubbles and placed in a film cassette and an autoradiography film (XAR-5 

film, KODAK) was placed on the top. The cassette was closed and the blot exposed for short 

periods of time. The film was then removed and developed in a developing solution, washed in 

water and fixed in fixing solution. If needed, a second film was exposed for a longer or shorter 

period depending on the outcome the first exposure. 

 

II.4.2   Results 

 

To carry out a YTH screen it is necessary to demonstrate that the Gal4-BD-bait fusion 

protein is expressed in yeast cells. In order to analyze the ability of the three bait recombinant 

constructs to be expressed in yeast, they were independently transformed into the AH109 yeast 

strain. The protein extracts produced in section II.4.1.1 were analyzed by western blotting using 

antibodies targeted to the Gal4-BD or the fusion APP peptide. 

Expression of bait-1 and bait-2 were analyzed in the same blot, since the sizes of the 

corresponding fusion proteins, Gal4-BD-APP and Gal4-BD-APPY687F; are practically the same. The 

anti-APP 22C11 antibody detects the expected band around 120 kDa for both bait fusion proteins. 

As expected, no signal is dected in the control yeast protein extract, which expresses the Gal4-BD 

alone (Fig. II.5, A). 

The expression of Gal4-BD-AICDY687F (bait-3) was probed with GAL4 DNA-BD monoclonal 

antibody, which recognized the GAL4-BD peptide (Fig. II.5, B). A band of the expected molecular 

mass (26 KDa) was detected in the protein extract from yeast cells containing the bait-3 plasmid 
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(Fig. II.5, B, lane 2), demonstrating that the yeast cells are expressing the fusion protein. As 

expected for the control yeast, the peptide is smaller (21 kDa), because it is encoded by pAS2-1 

vector without the fusion construct. When probed with 369 antibody, in the first lane the GAL4-

BD is not detected (Fig. II.5, C).  

 

 

 

In summary, the three bait fusion constructs were successfully obtained. Having 

demonstrated that they do not autonomously activate reporter gene expression and that the 

fusion proteins are expressed in yeast, all the prerequisites were verifyed, the YTH screens were 

thus carried out. 

 

 

 

Figure II.5: Immunoblot analysis of yeast protein extracts. (A) The 22C11 antibody was used to 

detect bait-1 (B1) and bait-2 (B2), which corresponds to the fusion proteins Gal4-BD-APP and 

Gal4-BD-APP
Y687F

, respectively. BD, control yeast transformed with empty pAS2-1 vector. (B) 

Expression of bait-3 (B3; Gal4-BD-AICD
Y687F

) probed with GAL4-BD antibody and (C) with the anti-

APP antibody 369. In A, B and C two parallel sections from the same gel are represented. 
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II.5 TWO-HYBRID LIBRARY SCREENING USING YEAST MATING 

 

To unravel the interactome of wild-type APP, APPY687F and AICDY687F, three YTH screens were 

performed (Table II.8). Two aliquots of a Pretransformed Human Brain MATCHMAKER cDNA 

Library (CAT. HY4004AH; Clontech) were used for YTH-s1 and YTH-s2. This library was constructed 

using whole brain mRNA from a 37 years old Caucasian male (cause of death: trauma). 

Pretransformed MATCHMAKER libraries are high-complexity cDNA libraries cloned into the yeast 

Gal4-AD vector pACT-2 and pretransformed into S. cerevisiae Y187 host strain.  

 

YTH 

screen 

Bait cDNA Library 

Gal4-BD fusion host strain Gal4-AD fusion host strain 

YTH-s1 

 

APP (Bait 1) 

 

AH109 

 

Pretransformed Human 

Brain MATCHMAKER cDNA 

library (Clontech) 

 

mRNA source: whole brain 

from a 37-yr-old 

Caucasian male (cause of 

death: trauma) 

 

Y187 

YTH-s2 APP
Y687F

 (Bait 2) AH109 Y187 

YTH-s3 AICD
Y687F

 (Bait 3) Y187 

 

Human brain 

MATCHMAKER cDNA 

library (Clontech) 

 

mRNA source:  whole 

brain from a 60-yr-old 

Caucasian male (cause of 

death: sudden death) 

 

AH109 

 

 

For YTH-s3 a Human brain MATCHMAKER cDNA library in E. coli BNN132 was obtained 

(CAT:HL4004AH, Clontech). The mRNA source was the whole brain from a 60 years old Caucasian 

male (cause of death: sudden death). To make this cDNA library available for YTH screening, 

several steps were previously carried out in our laboratory: library amplification in E. coli; library 

DNA isolation; library-scale transformation in yeast strain AH109; plating the transformation 

Table II.8: Description of the bait and corresponding cDNA library for each YTH screen. 
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mixture; and harvesting the transformants at high viabilityand density in freezing medium. The 

frozen aliquots were thus ready to use for YTH screening. 

 

II.5.1   Methods 

 

The procedure adopted to perfom three distinct YTH screens, using as baits APP (YTH-s1), 

APPY687F (YTH-s2) and AICDY687F (YTH-s3), was the same. 

 

II.5.1.1  cDNA library screening by yeast mating  

 

A concentrated overnight culture of the bait strain was prepared by inoculating a colony of 

the bait strain into 50 ml of SD/-Trp and incubating it at 30°C overnight with shaking at 250 rpm. 

The next day, when OD600>0.8, the culture was centrifuged at 1,000 g for 5 min, the supernatant 

was decanted and the pellet was resuspended in the residual liquid (5 ml) by vortexing. The cells’ 

concentration (> 1x109 cells/ml) was verified in an haemocytometer. Just prior to use, a frozen 

aliquot (1 ml) of the library culture was thawed in a water bath at room temperature. The library 

was gently mixed and 10 µl were set aside for titering. The entire bait strain culture was combined 

with the 1 ml library aliquot in a 2 L sterile flask, 45 ml of 2x YPDA were added and gently swirled. 

This culture was incubated at 30°C for 20-24 h, with shaking at 40 rpm. After 20 h of mating a 

drop of the mating culture was checked under a phase-contrast microscope, to check for the 

presence of zygotes, thereafter allowing the mating to proceed for another 4 h. The mating 

mixture was transferred to a sterile 50 ml tube and the cells spun down at 1,000 g for 10 min. The 

mating flask was rinsed twice with 2x YPDA (50 ml) and the rinses were combined and used to 

resuspend the first pellet. The cells were centrifuged again at 1,000 g for 10 min, the pellet 

resuspended in 10 ml of 0.5x YPDA and the total volume (cells + medium) was measured. Half of 

the library mating mixture was plated on SD/QDO (SD without Leu, Trp, Ade and His), and the 

other half on SD/TDO (SD without Leu, Trp and His), at 200 µl per 150 mm plate. For mating 

efficiency controls, 100 µl of 1:10,000, 1:1,000; 1:100 and 1:10 dilutions of the mating mixture 

were plated on 100 mm SD/-Leu, SD/-Trp and SD/-Leu/-Trp plates. All plates were incubated at 

30°C until colonies appeared, generally 3-8 days on TDO and 8-21 days on QDO medium. Then, 

growth of the control plates was scored and the mating efficiency and number of clones screened 

was calculated. All positive clones were replated twice in SD/QDO medium containing X-α-Gal and 

incubated at 30°C for 3-8 days. True positives formed blue colonies. The master plates were 
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sealed with parafilm and stored at 4°C. Stocks in 25% glycerol were prepared for all the positive 

clones and stored at -80°C. 

 

II.5.1.2 Library titering 

 

A library aliquot (10 µl) was transferred to 1ml of YPDA in a 1.5 ml microtube – dilution A 

(dilution factor 10-2). 10 µl from dilution A were added to 1 ml of YPDA in another microtube and 

mixed gently – dilution B (dilution factor 10-4). From dilution B, 100 µl were spread onto three 

SD/-Leu plates. All the plates were incubated at 30°C for 3 days after which the number of 

colonies was counted. The titer of the library was calculated using the following formula: 

[#colonies]/[plating volume (ml)x dil factor] = cfu/ml. 

 

 

II.5.2  Results 

 

II.5.2.1 Mating efficiency and number of clones screened 

 

The three YTH screens were performed by yeast mating, whereby more unique positive 

clones are usually obtained, due primarily to the “jump-start” that the new diploids receive 

before being plated on selective medium (Serebriiskii et al., 2001). Additionally, diploid yeast cells 

are more vigorous than haploid cells and can better tolerate the expression of toxic proteins. Also, 

in diploids, the reporters are less sensitive to transcription activation than they are in haploids, 

reducing the incidence of false positives from transactivating baits (Kolonin et al., 2000). 

Three human brain cDNA library aliquots were screened to identify new interacting 

partners for bait-1, bait-2 and bait-3. The mating cultures was observed under a phase-contrast 

microscope to check for the occurrence of zygotes (Fig. II.6), indicative that mating was occurring 

as expected. 
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Figure II.6: Zygote formation in the mating 

mixture with its typical three-lobed shape. 

The arrow is pointing the budding diploid 

cell. The other two lobes are the two 

haploid (parental) cells. This picture was 

taken using an inverted microscope in phase 

contrast mode, during the mating event 

(40x magnification). 
 

 

After plating the mating mixture in the appropriate selective media and waiting several 

days for colonies to appear, the growth on the control plates was scored and the mating efficiency 

and number of clones screened were calculated (Table II.9). 

 

YTH screen 
Bait  

(Gal4-BD fusion) 

Mating efficiency  

(% diploids) 
Clones screened 

YTH-s1 APP (bait-1) 4.6 % 5.6 x 10
5 

YTH-s2 APP
Y687F

 (bait-2) 7.9 % 4.2 x 10
6 

YTH-s3 AICD
Y687F

 (bait-3) 19.8 % 6.0 x 10
5
 

 

 

 

  

Table II.9: Estimation of mating efficiency and number of clones screened. To calculate the mating 

efficiency the following equation was used [# cfu (in SD –Leu/-Trp) X 1000µl/ml/ volume plated (µl) x 

dilution factor] / [# cfu (in SD -Trp) X 1000µl/ml/ volume plated (µl) X dilution factor] X 100. To 

estimate the number of clones screened the following equation was used [# cfu/ml of diploids X 

resuspension volume].  
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II.5.2.2 Positive clones isolation and re-testing 

 

In each YTH screen performed, the mating mixture was plated on 40 150 mm plates (20 

SD/TDO + 20 SD/QDO). Some colonies started to appear after 2-3 days, but the plates were 

incubated for 8 days (TDO) or 16 days (QDO) to allow slower growing colonies to appear. 

According to the Clontech’s MATCHMAKER YTH System User Manual, true His
+, Ade+ colonies are 

robust and can grow to more than 2 mm in diameter. The small, pale colonies that may appear 

after 2 days but never grow more than 1 mm should not be considered as positives clones. 

Nevertheless, all the colonies isolated from the SD/TDO and SD/QDO selective media plates were 

restreaked twice in SD/QDO plates in order to retest for the expression of the nutritional reporter 

genes HIS3 and ADE2 (Fig. II.7, A). His+, Ade+ colonies were further tested for MEL1 expression, 

another reporter gene, by growing these putative primary positive clones in SD/QDO media with 

X-a-Gal. True positive clones grew and developped blue color (Fig. II.7, B). 

 

 

Figure II.7: Positive clones isolation and retesting. (A) Primary positive clones isolated from the original 

SD/TDO or SD/QDO plates and were all retested for growth in SD/QDO selective medium (lacking Trp, 

Leu, His and Ade). (B) MEL-1 expression test of the positive clones obtained in the YTH screen. Light blue 

colonies also represent positive interactions, but took longer to turn blue in the presence of X-α-GAL. 

 

The colonies isolated did not always grow or turned blue in SD/QDO/X-α-Gal, in particular 

the pale smaller colonies, which were isolated despite doubting that they were true positives. In 

Table II.10 the number of clones isolated and the number or true positive clones is summarized. 
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YTH screen 
Bait  

(Gal4-BD fusion) 
Colonies isolated 

True positive 

clones 

YTH-s1 APP (bait-1) 161 60 

YTH-s2 APP
Y687F

 (bait-2) 579 131 

YTH-s3 AICD
Y687F

 (bait-3) 134 88 

Table II.10: Number of colonies isolated and true positive clones in each YTH screen. All the 

colonies isolated from the SD/TDO and SD/QDO selective media plates were restreaked 

twice in SD/QDO plates. His
+
, Ade

+
 colonies were further tested for MEL1 expression in 

SD/QDO/X-a-Gal. True positive clones grew and turned blue. 
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II.6   DISCUSSION 

 

As with all detection methods, the YTH system is known to result in the detection of some 

false positives. This was a relatively serious problem in the early days of the YTH method but the 

elimination of such false positive results has been greatly improved by the recent YTH systems. 

False positive signals result from cells in which the reporter genes are active even though the bait 

and prey do not interact. There are several classes of false positives. For example, false positives 

may arise from preys that interact with DNA upstream of the reporter genes or with proteins that 

interact with promoter sequences. These two classes of false positives can be eliminated by the 

use of more than one reporter gene under the control of different promoters, as was the case 

with the present work. Another inherent problem with the system is that not all proteins will be 

efficiently folded and/or post-translationaly modified in the yeast nucleus, which may result in the 

protein not interacting with the true partner. In the same way, the protein may adopt a different 

tertiary structure when expressed as fusions with the transcription factor domains. Also, some 

proteins may be toxic when expressed as fusions in yeast, inhibiting growth when expressed at 

high levels. This can be avoided to some extent by the use of inducible expression plasmids. Other 

false positive results include interactions that occur in the YTH screen but not in a physiological 

context, because the partners are not expressed in the same cellular or subcellular environment 

at the same time. 

By screening 5.1 x 104 clones from a human brain cDNA library with APP695 as bait 60 

positive clones were obtained as accessed by their ability to grow on SD/QDO selective media and 

to turn blue in the presence of X-α-Gal. In YTH-s2, using as bait APPY687F, with a mutation that 

mimics the dephosphorylated state of Tyr-687, 4.2 x 106 clones were screened, resulting in 131 

positive clones. These should include the APP interactome when it is dephosphorylated on Tyr-

687. The YTH-s3 was carried out with the 50 aa C-terminus of mutant APP, AICDY687F and 6 x 105 

clones were screened resulting in isolation of 88 true positive clones. 

Subsequently the positive clones were identified (Chapter III). Validation of protein protein 

interactions and subsequent analysis can be later applied to some positive clones, since numerous 

molecular and cellular biology methods can be employed to explore new protein interactions. 
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CCHHAAPPTTEERR  IIIIII..  IIDDEENNTTIIFFIICCAATTIIOONN  OOFF  TTHHEE  PPOOSSIITTIIVVEE  CCLLOONNEESS  

AANNDD  IINN  SSIILLIICCOO  AANNAALLYYSSIISS  OOFF  AAPPPP//AAIICCDD  NNEETTWWOORRKKSS 
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III.1  INTRODUCTION  

 

Human protein interaction maps play an increasingly important role in biomedical research 

and have been shown to be highly valuable in the study of a variety of human diseases and 

signaling pathways. The yeast two-hybrid (YTH) system provides a platform for the rapid 

generation of large scale protein-protein interaction (PPI) networks. The majority of the APP 

binding proteins that have been identified to date were discovered using the two-hybrid 

methodology, which allows for the identification of binary interactions. Other methods, such as 

the affinity purification/mass spectrometry approach, can identify larger protein complexes, 

containing reciprocal interactions among complex components (Goudreault et al., 2009). Since 

the YTH system is based on the interaction of hybrid proteins in a living yeast cell, it offers 

numerous advantages in comparison to biochemical methods, such as detection of PPIs in vivo, 

high sensitivity to detect rare interactions and avoidance of expensive production of antibodies or 

protein purifications. Nevertheless, the novel PPIs identified by YTH screening should be 

validated, at first in the YTH system, and then confirmed by other in vivo and in vitro methods. 

These confirmatory studies can virtually exclude all classes of false positives. The main objectives 

are to prove that a new interaction between two proteins is specific and direct, prove that the 

two proteins can “meet” in the same subcellular environment, and investigate the physiological 

relevance of the interaction. Often, when performing an YTH screen, only a few clones are 

selected for validation and for further functional investigation in a relevant biological system.  

Several protocols are suggested for the initial identification of the positive clones by the 

YTH system manufacturer (Clontech). One can make a decision according to the number of clones 

to analyze, expertise/affinity with a given method, time and resources available, etc. In the work 

here described the strategy adopted for each positive clone isolated was the following: 

i. Extraction of plasmid DNA from yeast cells; 

ii. Rescue of library plasmids via transformation in E.coli; 

iii. Analysis of library inserts by restriction digestion and DNA sequencing; 

iv. Identification of interacting proteins by database searching; 

v. Validation of selected positive clones. 
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Classes of presumed false positives: 

 

Arbitrary criteria have been used to define false positives in the YTH system. For instance, a 

false positive can be any clone that fails to reproduce the interaction with the bait upon 

retransformation; a clone that is subsequently shown to interact with multiple unrelated baits; a 

protein that appears implausible as a partner based on the known physiology of bait and prey 

(e.g., the proteins are not known to be expressed in the same subcellular compartment at the 

same time); or a clone for which interaction cannot be confirmed by other methods (e.g. co-

immunoprecipitations, GST pull-downs, etc.), although the interaction can be real but below the 

sensitivity threshold of non two-hybrid methods (Serebriiskii and Golemis, 2001). Hence, 

classification of a positive clone as a presumed false positive can arise from: (1) the initial analysis 

of the library insert sequence; (2) failure to validate the bait-prey interaction using the YTH 

system; or (3) failure to validate the bait-prey interaction by other non two-hybrid methods. The 

majority of the criteria summarized below are not exclusion rules, some are purely judgment calls. 

Nevertheless, wasting time and resources to exclude a presumed false positive should be avoided, 

when the main interest is the bait biology. 

 

1) False positive clones arising from the analysis of library cDNA sequence and ORF 

identification:  

 

§ alignment out of coding sequence – The library insert sequence aligns with the 3’- 

untranlated region (3’-UTR) of a given cDNA. However, it might be a real positive if another 

open reading frame (ORF) is present downstream of the stop codon, since nontranslated gaps 

upstream of ORF inserts are commonly found in genomic libraries. Due to occasional 

translational read-through, two different ORFs may be expressed as a fusion with the Gal4-

AD, eventhough a nontranslated gap comes between them. 

 

§ early stop in the sequence – A very small peptide (less than 10 aa) is fused to the Gal4-AD or 

no fusion peptide is present at all. Though it might be a real positive if another ORF is present 

downstream this stop codon, as described above. 

 

§ inverted library insert – The library insert is in the reverse orientation relative to the Gal4-

AD fusion. Nevertheless, it might be a real positive given that the insert can be transcribed in 
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the reverse orientation from a cryptic promoter within the ADH1 terminator. Such proteins 

function as transcriptional activators as well as interacting with the bait protein (Chien et al., 

1991). 

 

§ wrong reading frame – When the library insert is in a different reading frame from the Gal4-

AD. If it is a large ORF, it can be a genuine positive clone because yeasts tolerate translational 

frameshifts and can express the correct fusion protein, which will promote survival in the 

selective medium (Gesteland and Atkins, 1996). 

 

§ mitochondrial clones – Library inserts aligning with mitochondrial genome encoded proteins 

are unlikely to interact with the bait if the latter is not known to be expressed in 

mitochondria.  

 

§ “sticky proteins” – Broadly interactive proteins may have intrinsic secondary structure 

properties (e.g. exposed hydrophobic or charged patches) that lead to non-specific frequent 

interactions or the biological function of a protein may involve binding a large number of 

different proteins (e.g. HSPs, proteasomal subunits, proteins involved in transport functions, 

etc.) (Serebriiskii and Golemis, 2001). A survey of published data and web resources might 

lead to lists of proteins frequently isolated in YTH screens, less likely to be of biological 

significance. However, these preys are not always false positives, since the natural function of 

the bait may involve binding to HSPs, proteins involved in transport, etc. 

 

§ proteins inducing biological effects in yeast cells – Expression of a prey that induces indirect 

effects on yeast metabolism (altered growth rate, viability, cell permeability, etc.) might bias 

transcriptional activation of reporter genes (Serebriiskii and Golemis, 2001).  

 

2) False positive clones failing the validation using the YTH system: 

 

§ prey auto-activates reporter genes – The library-encoded protein can activate the reporter 

genes due to non-specific interaction with the DNA-BD of the bait fusion. This class of false 

positives also includes proteins that interact directly with promoter sequences or with DNA 

upstream of reporter genes (e.g. chromatin or transcription operating proteins) (Fig. III.1). The 
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occurrence of these false positive clones is reduced in YTH systems that use several 

independent reporter genes, nevertheless any α-galactosidase positive colonies that contain 

the library plasmid alone should be discarded. 

 

 

 

Figure III.1: False positive clones that auto-activate reporter genes. Library-derived prey 

fusion proteins auto-activate reporter genes if they interact non-specifically with the DNA-

binding domain, or if they interact directly with promoter sequences or with DNA 

upstream of reporter genes (Adapted from 

http://www.clontech.com/images/brochures/BR943071_MMGold_IN.pdf). 

 

§ fails to reproduce the interaction in the YTH – Yeast cells can incorporate more than one 

library plasmid, therefore an isolated prey plasmid should be co-introduced in yeast with the 

bait plasmid, by co-transformation or yeast mating, to confirm the positive interaction. A prey 

that fails to reproduce the interaction with the bait upon retransformation should be 

discarded. 

 

3) False positives failing the validation by other non two-hybrid methods: 

 

§ fails to interact with bait by other methods – The new protein-protein interactions (PPIs) 

confirmed in the YTH system should be further validated by other methods. In vitro methods 

such as GST pull-downs or blot overlay can be employed to prove that the interaction 

between two proteins is specific and direct. Cell-based co-immunoprecipitations and co-

localization studies are also important to confirm a new PPI in a biological context, assaying 
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proteins in their native state. If a new YTH interaction cannot be readily confirmed by other 

means it is unlikely to occur naturally, although the interaction can be real but below the 

sensitivity threshold of the non two-hybrid method. 

 

§ interaction appears implausible based on know physiology – Eventhough a new interaction 

has been reproducibly validated, the known physiology of bait and prey may suggest that the 

interaction is implausible, i.e. the two proteins have to be expressed in the same 

cellular/subcellular compartment at the same time for the interaction to occur naturally. This 

is not an exclusion criterion, since the PPI may still occur and contribute to regulatory 

pathways yet to be discovered. 
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III.2   MATERIALS AND METHODS 

 

For the complete composition of all reagents, media and solutions used, see Appendix I. All 

reagents were cell culture grade or ultrapure. 

 

III.2.1   Plasmid isolation from yeast 

 

The extraction of plasmid DNA from yeast cells was carried out with one of the three 

methods described below. The “Boiling” method or the “Breaking Buffer” method were employed 

for the analysis of the majority of the positive clones. The “High Efficiency Yeast Plasmid Rescue” 

method was performed in selected clones in an attempt to improve the transformation efficiency 

in E. coli. 

 

“Boiling” Method 

A frozen aliquot of the yeast culture was thawed, transferred into 3 ml of SD/TDO medium 

and incubated overnight at 30°C with vigorous shaking (220-250 rpm). 1.5 ml of this culture were 

transferred into a microtube, centrifuged at 12,000g for 3 min and the supernatant was 

discarded. The cell pellet was resuspended in 100 µl of STET buffer by vortexing. Then, 0.3 g of 0.5 

mm acid-washed glass beads (Sigma) were added and the mixture was vigorously vortexed for 5-8 

min. After adding 100 µl of STET the mixture was boiled for 5 min (96-100°C). The tubes were 

cooled down briefly on ice and cetrifuged at 12,000g for 10 min, at 4°C. The supernatant was 

transferred to a new microtube, 0.5 ml of 7.5 M amonium acetate were added. The tube was 

incubated at -20°C overnight and centrifuged at 12,000g for 10 min. The supernatant 

(approximately 400 µl) was transferred to 1000 µl ice-cold 100% ethanol. The solution was well 

mixed and stored at -20°C for 30 min to allow the DNA precipitate to form. DNA was recovered by 

centrifugation at 4°C for 15 min at 12,000g. The supernatant was carefully removed without 

disturbing the pellet. The microtube was half filled with ice-cold 70% ethanol and recentrifuged at 

12,000g for 5 min. The supernatant was again removed and the pellet allowed to dry before being 

resuspended in 30 µl of H2O containing DNAse-free RNAse (20 µg/ml).  

 

“Breaking Buffer” Method 

Yeast plasmid DNA was extracted by resuspending the cell pellet in 0.2 ml of breaking 

buffer, adding 0.3 g of 0.5 mm acid-washed glass beads (Sigma) plus 0.2 ml 25:24:1(v/v/v) 
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phenol/chloroform/isoamyl alcohol and vortexing for 4 min before centrifuging for 5 min at 

12,000g. The upper layer was transferred to a new microtube and once more, 0.2 ml 25:24:1 

(v/v/v) phenol/chloroform/isoamyl alcohol were added, followed by vortexing for 2 min and 

centrifugation for 5 min. The upper layer was transferred to a new microtube and 0.2 ml 

chloroform were added, vortexed for 1 min and centrifuged for 5 min. The DNA in the upper layer 

was ethanol precipitated. 

 

“High Efficiency Yeast Plasmid Rescue” Method  

An alternative method was used for isolating yeast plasmid DNA: 3 ml of yeast cells were 

pelleted and the DNA extracted using the QIAprep kit (QIAGEN). The pellet was resuspended in 

250 µl of buffer P1, added about 250 µl of 0.5 mm acid-washed glass beads and vortexed on high 

for 5 min. Afterwards, 250 µl of buffer P2 were added and the microtube was mixed by gently 

inverting until the solution became viscous and slightly clear. Then 350 µl of buffer N3 were 

added and the microtube was repeatedly inverted until the solution became cloudy. The 

microtube was centrifuged for 10 min and the resulting supernatant was applied to a QIAprep 

(QIAGEN) spin column placed in a microtube. After a 1 min centrifugation the flow-through was 

discarded. The column was washed by adding 0.75 ml of buffer PE and centrifuging 1 min to 

discard the flow-through. The column was centrifuged for an additional 1 min to remove residual 

wash buffer. Finally, the column was placed in a clean microtube and 50 µl of H2O were added to 

elute the DNA by centrifuging for 1 min having let it stand for 1 min. 

 

III.2.2   Rescue of library plasmids via transformation in E. coli 

 

Yeast plasmid DNA isolated from the positive clones was tranformed in E. coli XL1-blue, as 

described in section II.2.1.8. The Gal4-BD and Gal4-AD cloning vectors carry the Ampr marker, to 

select for bacteria transformants by their resistance to ampicillin.  

Several isolated colonies of transformed E. coli were independently inoculated in 3 ml of LB 

with 50 µg/ml ampicillin to extract the plasmid DNA by “Alkaline lysis miniprep”, as described in 

section II.2.1.9. 

Plasmid DNA was digested with the restriction endonuclease HindIII, and fragments 

produced were separated by agarose gel electrophoresis as described in sections II.2.1.10-11.  
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III.2.3   Identification of the positive clones by DNA sequencing and database 

searching  

 

The HindIII-digested pACT-2 vector produced a characteristic pattern of fragments that 

allowed its differentiation from colonies resulting from transformation by the bait vector. 

Plasmids generating DNA fragments characteristic of the pACT-2+library insert digested with 

HindIII were further sequenced.  

Plasmid DNA samples selected for sequencing were first purified in a QIAquick spin column 

(QIAGEN DNA Purification Kit). Sequencing reactions were performed using the GAL4-AD primer 

(Clontech), as described in section II.2.1.12. Additional sequencing reactions with different 

primers, such as 3’ AD Amplimer (Clontech) or insert specific primers, were performed for 

selected positive clones.  

A search for similar sequences in the GenBank database was performed using the latest 

release of BLASTN, nucleotide BLAST (Basic Local Alignment Search Tool) (Altschul et al., 1990), on 

the NCBI web site (http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

 

III.2.4   Verifying protein interactions in yeast by co-transformation  

 

The initial positive clones may contain more than one ActD/library plasmid. Therefore, it is 

important to confirm the interaction of each library plasmid with the bait in yeast. This procedure 

was adopted only for selected clones. 

Protein interactions were verified by co-transformation of the AH109 yeast strain with each 

BD-bait and ActD-library plasmid pairs. The Gal4-BD and Gal4-AD empty plasmids were co-

transformed as an interaction negative control. A positive control is given by co-transformation of 

pVA3-1 and pTD1-1 vectors, that express the Gal4-BD-p53 and the Gal4-AD-SV40 large T antigen 

fusions, respectively. The protocol was described in section II.3.1.1, but 200 ng of each plasmid 

were transformed. The co-transformants were selected in SD/-Trp/-Leu medium. To confirm 

protein interactions, the fresh colonies of the co-transformants were assayed for growth on 

SD/QDO plates and for X-α-Gal activity. 

In the case of RanBP9 prey clone (A10), the library plasmid was first tested for autonomous 

activation of a GAL4-dependent HIS3 promoter in the AH109 strain in the presence of different 

concentrations of 3-aminotriazole (3-AT) establishing 60 mM as the optimal concentration to use 

in the subsequent tests.  
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III.2.5 Quantitative α-Gal activity assay 

 

For the quantitative a-Galactosidase activity assay fresh yeast colonies expressing the pairs 

of interacting proteins being analyzed were grown on 4 ml of SD/TDO (-Trp, -Leu, -His). The 

negative control AH109 (pAS2-1 + pACT2) was grown on SD/-Trp/-Leu. The cultures were 

incubated overnight at 30°C with shaking at 200 rpm. The optical density of the culture at 600 nm 

was recorded. 1ml of the culture was centrifuged for 5 minutes at 12,000g, and the supernatant 

was removed for analysis. The assay was performed by combining 8 µl of culture supernatant with 

24 µl of Assay Buffer (100 mM PNP-α-Gal solution, 1X NaOAc [1:2 (v/v) ratio]). After incubation for 

60 minutes at 30°C the reaction was terminated with 960 µl of 1X stop solution (0.1 M NaCO3) 

and the optical density at 410 nm was recorded. The α-galactosidase milliunits were calculated 

with the following formula, as described by the manufacturer (Yeast Protocols Handbook, 

Clontech) for the 1ml assay format: [milliunits/(ml x cell)] = OD410 x 992 x 1000 / [OD600 x time 

(min) x 16.9 x 8]. Data are expressed as mean ± SEM of three independent experiments. Statistical 

significance was determined by one way analysis of variance followed by Tukey-Kramer multiple 

comparisons test.  

 

III.2.6 Bioinformatics analysis of the proteins identified in the YTH screens 

 

The proteins identified in each YTH screen were analyzed with respect to the presence of 

protein domains and motifs, transmenbrane domains and signal peptides. A bioinformatics 

approach was followed for each protein sequence, using several web-based tools (Table III.1), 

such as InterPro, Scansite and ELM, InterPro is an integrated documentation resource of protein 

families. Searches simultanously in Pfam, PRINTS, ProDom, PROSITE, SMART, SWISS-PROT, 

TIGRFAMs, PIRSF (PIR Superfamily), and Superfamily for domains, families, repeats and short 

sequence motifs. Scansite is a database of motifs within proteins that are likely to be 

phosphorylated by specific protein kinases or bind to specific protein domains. ELM is a resource 

for predicting functional sites in eukaryotic proteins. Putative functional sites are identified by 

patterns (regular expressions), which have a slightly different syntax than PROSITE patterns. 

TMHMM is a program for prediction of transmembrane helices in proteins. HPRD is a database of 

human protein and was also checked for each protein in the datasets for information concerning 

domains, motifs and protein families.   
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III.2.7 Curation and Gene Ontology mining of each putative new interactor 

 

Each putative new interactor was expertly curated to gather pertinent information via a 

comprehensive and targeted literature and database search (last updated in January 2011; Table 

III.2). To facilitate the analysis of each putative new interactor all proteins were unambiguously 

matched to a human gene in the HGNC (HUGO Gene Nomenclature Committee) database (Eyre et 

al., 2006). The Entrez Gene database, available via interactive browsing, was used to collect 

information for each interactor, such as nomenclature, genomic location, gene products and their 

attributes, phenotypes and links to citations, sequences, variation details, maps, expression, 

homologs, protein domains and interactions.  

Curation of all the proteins identified in the screens was also achieved through interactive 

browsing the universal protein resource (UniProt), a comprehensive resource for protein 

sequence and annotation data. UniProtKB, the UniProt Knowledgebase, is a collection of 

functional information on proteins which provided information on protein domains, 

Database Searched items Database location Reference 

ELM Functional sites prediction http://elm.eu.org/ (Dinkel et al., 2011) 

HPRD Protein family http://www.hprd.org/ (Prasad et al., 2009) 

InterPro 

Domains and motifs prediction 

Transmembrane domains 

Protein family 

http://www.ebi.ac.uk/Tools/pfa/iprscan/ (Hunter et al., 2012) 

PROSITE Domain and motifs http://prosite.expasy.org/ (Sigrist et al., 2010) 

Scansite 
Motifs 

Posttranslational modification 
http://scansite.mit.edu/ 

(Obenauer et al., 

2003) 

TMHMM Transmembrane domains http://www.cbs.dtu.dk/services/TMHMM/ (Krogh et al., 2001) 

Table III.1: Web resources for bioinformatics analysis of protein sequences. 
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posttranslational modifications and Gene Ontology (GO) annotations. GO terms were also 

collected from the Gene Ontology website (http://www.geneontology.org/). Then the collected 

GO terms were manually and expertly categorized for each YTH screen dataset. The aim of this 

analysis was to determine whether particular GO terms were disproportionately represented in a 

particular protein set.  

For all proteins in this study, information about participation in signaling pathways was 

obtained from KEGG Pathway Database and NetPath. 

The AlzGene database, that uncovers the information of every peer-reviewed genetic 

association study in AD (Bertram et al., 2007), was checked for the genes in the YTH dataset that 

were positively associated with AD. Association with genetic disorders was checked in the OMIM 

database at NCBI. Information concerning predisposition or risk for a particular disease/condition 

was collected from literature curation. 

Database Searched items Database location Reference 

Alzgene AD risk genes http://www.alzgene.org (Bertram et al., 2007) 

Entrez Gene 

Chromosome mapping phenotypes, 

links to citations, variation details, 

expression, protein domains, 

interactions 

http://www.ncbi.nlm.nih.gov/gene/ (Maglott et al., 2010) 

Gene Ontology 
Molecular function (MF), Biological 

process (BP), Cellular component (CC) 
http://www.geneontology.org/ 

(Ashburner et al., 

2000) 

HGNC 
Gene symbol - HUGO Gene 

Nomenclature Committee 
http://www.genenames.org/ (Eyre et al., 2006) 

KEGG Pathway 

Database 
Signaling pathways 

http://www.genome.jp/kegg/pathwa

y.html 

(Kanehisa et al., 

2010) 

NetPath Signaling pathways http://www.netpath.org/index.html 
(Kandasamy et al., 

2010) 

OMIM Mendelian disorders 
http://www.ncbi.nlm.nih.gov/sites/e

ntrez?db=omim 
(McKusick, 2007) 

UniProt 

Molecular function (MF), Biological 

process (BP), Cellular component (CC),  

Posttranslational modifications 

citations 

http://www.uniprot.org/ (Consortium, 2012) 

Table III.2: Web resources for curation and Gene Ontology mining. 



 

 
120 

 

 

III.2.8 PPI datasets and networks representation 

 

The PPI networks around each YTH bait, were generated with Cytoscape version 2.8.2 

(Shannon et al., 2003; Smoot et al., 2011). The curated APP interactome was obtained from 

Perreau et al. (2010) and several APP interactions published after that were added (last updated 

March 2011; APPENDIX VII). The APBB1 (Fe65; APPENDIX VIII) and RANBP9 (RanBP9/RanBPM; 

APPENDIX IX) interactomes were manual curated via a broad and targeted literature and database 

search. PPI databases were collected from Entrez Gene, which is a meta-database that includes 

information from BIND (Alfarano et al., 2005), HPRD (Keshava Prasad et al., 2009) and BioGRID 

(Stark et al., 2010). 

The curated PPI networks were crossed with the YTH networks using Cytoscape. MiMI, a 

Cytoscape plugin, was used to search online PPI databases (Gao et al., 2009). 
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III.3   RESULTS 

 

III.3.1 Preliminary analysis of the positive clones 

 

In order to identify the library insert present in a given positive clone, the plasmid DNA was 

first isolated from yeast. Each yeast cell can incorporate more than one library plasmid. Therefore, 

a mixture of different plasmid DNAs can be isolated from a single yeast clone, namely the bait 

plasmid (Figure III.2, lane 6) and one or more library plasmids. In order to isolate library plasmids 

and obtain pure DNA for sequence analysis, the plasmid DNA isolated from yeast cells was used to 

transform E. coli XL1-Blue. The plasmid DNA obtained from the resulting transformants was 

further analyzed by restriction digestion with the endonuclease HindIII and the restriction 

fragments were separated by agarose gel electrophoresis. Figure III.2 exemplifies a typical result 

obtained after this procedure.  

 

 

Figure III.2: HindIII restriction analysis of plasmid DNA 

isolated from E. coli colonies. Lanes: 1, 1 Kb Plus DNA 

Ladder (Invitrogen); 2-4, pACT-2+library insert CF2 

(7.4+1.7+0.9 Kb); 5, pACT-2+library insert CF1 (7.4+1.7+1.1 

Kb); 6, pAS2-1-AICD
Y687F

 plasmid (bait-3) (4.6+2.2+0.9 Kb). 

 

The plasmid DNA extracted from the positive clone CF2 (from YTH screen 3) was 

transformed in E. coli. Plasmid DNA from three isolated E. coli colonies was digested with HindIII 
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and the resulting fragments were resolved on an agarose gel, showing a similar pattern of bands 

(Fig. III.2, lanes 2-4). One of these plasmids (CF2.1) was further analized by DNA sequencing. 

The same strategy was adopted for each positive clone. After identifying transformants 

carrying the cDNA library plasmids, their respective inserts were sequenced with the GAL4-AD 

primer (Appendix II). Figure III.3 is a representative example obtained with one of the positive 

clones, CF2: 

 

 

 

 

 

 

 

 

Figure III.3: Partial nucleotide sequence of the positive clone CF2. The shadow area limits the vector 

sequence. The EcoRI restrition site is highlighted in pink and the library linker sequence is shown by a 

brown box “GCGGCCGCGTCGAC”. 

 

 

The nucleotide sequence of each clone (flat file) was then converted to FASTA format (Fig. 

III.4). In this format, in the first line the signal “>” precedes the name or additional information on 

the sequence and the sequence itself starts on the second line. 
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Figure III.4: Partial sequence of clone CF2 in FASTA format. 

 

A search for similar sequences in the GenBank database was performed using the BLAST 

(Basic Local Alignment Search Tool) algorithm on the NCBI (National Center for Biotechnology 

Information) web site (http://www.ncbi.nlm.nih.gov). The query sequence in FASTA format was 

copied to the nucleotide BLAST (BLASTN) window to be compared with the GenBank Database of 

nucleotide sequences (Fig. III.5).  

 

 

Figure III.5: Blast window to introduce the query sequence. 

 

The BLASTN algorithm was selected to search the non-redundant (NR) database, which is 

wide and indeed integrates several databases, GenBank, EMBL (European Molecular Biology 

Laboratory) and DDBJ (DNA Database of Japan), and actually is not non-redundant. 

 

 
>VCF2_sequence_FASTA  

CTCAAGCTGGGCTACCTTATCCCAGGGCAGCCCCTCCTATGGCTCCCCAGAGGACACAGA 

TTCCTTCTGGAACCCCAACGCCTTCGAGACGGATTCCGACCTGCCGGCTGGATGGATGAG 

GGTCCAGGACACCTCAGGGACCTATTACTGGCACATCCCAACAGGGACCACCCAGTGGGA 

ACCCCCCGGCCGGGCCTCCCCCTCACAGGGGAGCAGCCCCCAAGAGGAGTCCCAGCTCAC 

CTGGACAGGTTTTGCTCATGGAGAAGGCTTTGAGGATGGAGAATTTTGGAAGGATGAACC 

CAGTGATGAGGCCCCAATGGAGCTGGGACTGAAGGAACCTGAGGAGGGGACGTTGACCTT 

CCCAGCTCAGAGCCTCAGCCCAGAGCCGTTGCCCCAAGAGGAGGAGAAGCTTCCCCCACG 
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Figure III.6: Blast results for clone CF2. Clone CF2 aligned both with NM_001164 and NM_145689 mRNA 

Refseqs, with 100% of sequence coverage and E-value=0.0 (arrowheads). 

 

As an example of the bioinformatic analysis performed for the initial identification of all 

positive clones, analysis of the clone CF2 is described. In the BLASTN results window there are two 

mRNA refseqs (NM_145689 and NM_001164) on the top hits (Fig. III.6). “mRNA Refseqs” are 

curated mRNA sequences from NCBI Reference Sequence Project. These GenBank records show 

the cDNA sequence, protein translation, chromosome mapping, coding sequence, relevant 

references and links to Entrez Gene, HGNC (HUGO Gene Nomenclature Committee), HPRD 

(Human Protein Reference Database) and OMIM (Online Mendelian Inheritance in Man), which 

provide additional information.  
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Clone CF2 aligned both with NM_001164 and NM_145689 mRNA Refseqs, with 100% of 

sequence coverage and E-value=0.0. The E-value is the expected threshold and specifies the 

statistical significance threshold for reporting matches against database sequences. The lower the 

E-value, the more significant the score. The GenBank records NM_001164 and NM_145689 

correspond to transcript variants 1 and 2, respectively, of Homo sapiens Fe65, also known as 

Amyloid beta precursor protein-binding, family B member 1. The human Fe65 oficial gene symbol 

is APBB1. Hence, the library insert on clone CF2 codes for Fe65, a protein already described to 

interact with AICD. The library insert is a partial cDNA: the alignment with NM_001164 starts in nt 

763 and alignment with NM_145689 starts at nt 746. The coding sequence (CDS) starts at nt 101 

(NM_001164) or nt 84 (NM_145689). The sequence of clone CF2 obtained with GAL4-AD primer 

does not cover the entire library insert. Therefore, it is not possible to distinguish between 

transcript variants 1 and 2, which only differ in the presence or absence of 6 nucleotides.  

All positive clones sequenced were subjected to sequence similarity searching and the 

information gathered was organized in a table for each YTH screen. However, different BLAST 

algorithms and changes in searching parameters were tried for clones that did not immediately 

match mRNA Refseqs or when no ORFs where found. Comparison of DNA:DNA (BLASTN) to 

translated DNA:protein (BLASTX) searches were also performed to look for the presence of 

conserved protein domains and motifs that could help to characterize the putative interaction 

with the bait. 

 

III.3.2  YTH screen with full-length APP 

 

For YTH screen-1 the human APP cDNA, coding for the neuronal isoform with 695 amino 

acids (APP695) (GenBank Accession NM_201414), was used as bait to search for interacting 

proteins in a pretransformed Human Brain MATCHMAKER cDNA library (mRNA source: whole 

brain from a 37-yr-old Caucasian male; Clontech). The mating efficiency was 4.6% and 5.6 x 105 

clones were screened. YTH-s1 resulted in the isolation of 60 positive clones, for their ability to 

activate the three reporter genes HIS3, ADE2 and MEL1. 

Of the original 60 positive clones isolated, 47 were recovered from yeast and transformed 

in E. coli. From these, 44 were successfully analyzed by DNA sequencing. The results obtained are 

summarized in Table III.3. Analysis of the 44 positive clones resulted in the identification of 

nucleotide sequences that could be divided into the following categories: 
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· 22 positive clones matched a protein coding sequence (CDS); 

· 6 library inserts aligned with Open Reading Frames (ORFs); 

· 6 clones matched genomic clones; 

· 6 library inserts aligned with mitochondrial genes; 

· 2 library inserts aligned with 3’ untranslated regions of mRNA (UTRs); 

· 2 clones contained an inverted cDNA. 
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GenBank 

Accession 
Definition 

Gene 

symbol 
Chr 

No. of 

clones 
Clones 

Insert 

size (kb) 

Full-

length 

cDNA 

Frame 

with 

Gal4-

AD 

library inserts encoding known proteins identified as putative APP interactors 

NM_022735.3 
Acyl-Coenzyme A binding 

domain containing 3 
ACBD3 1q42.12 2 

A52 3.5   

A132 3.6  ü 

NM_015367.2 BCL2-like13 BCL2L13 22q11.1 1 A44 0.5   

NM_001704.2 
Brain specific angiogenesis 

inhibitor 3 
BAI3 6q12 2 

A9 2.8  ü 

A20 2.2  ü 

NM_016279.3 Cadherin 9 type 2 (T1-cadherin) CDH9 5p14 1 A11 3.0   

NM_001122898.1 CD99 transcript variant 2 CD99 
Xp22.32/ 

Yp11.3 
1 A12 1.3 ü ü 

NM_025134.4 
Chromodomain helicase DNA 

binding protein 9 
CHD9 16q12.2 1 A98 2.3  ü 

NM_022742.3 
Coiled-coil domain containing 

136 
CCDC136 7q33 1 A43 1.1 ü  

NM_001945.2 
Heparin-binding EGF-like 

growth factor 
HBEGF 5q23 1 A18 2.3 ü  

NM_020738.2 
Kinase D-interacting substance 

220 kDa 

KIDINS22

0 
2p24 1 A16 0.7  ü 

NM_005573.2 Lamin B1 LMNB1 
5q23.3-

q31.1 
1 A51 3.2   

NM_005732.3 RAD50 homolog RAD50 5q31 1 A101 1.3  ü 

NM_005493.2 Ran binding protein 9 RANBP9 6p23 1 A10 2.8  ü 

NM_021136.2/ 

NM_206857.1 

Reticulon 1 transcript variant 

1/2 
(a)

 
RTN1 14q23.1 1 A92 1.4   

NM_206852.1 Reticulon 1 transcript variant 3 RTN1 14q23.1 1 A71 1.4 ü  

NM_006054.2 Reticulon 3 transcript variant 1 RTN3 11q13 2 A26, A129 2.6   

NM_201429.1 Reticulon 3 transcript variant 3 RTN3 11q13 1 A3 2.7 ü ü 

NM_020532.4/ 

NM_207521.1 

Reticulon 4 transcript variant 

1/5
 (b)

 
RTN4 2p14-p13 1 A75 2.4   

NM_015602.2 Torsin A interacting protein 1 
TOR1AIP

1 
1q24.2 1 A5 3.3  ü 

NM_001002261.3 

Zinc finger FYVE domain 

containing 27 transcript variant 

1/2/3/4/6 
(c)

 

ZFYVE27 10q24.2 1 A13 2.2  ü 

library inserts encoding ORFs 

NM_173821.2 
Chromosome 2 open reading 

frame 45 
C2orf85 2q37.3 1 A21 1.4  ü 

NM_024104.3 
Chromosome 19 open reading 

frame 42 
C19orf42 19p13.11 1 A105 1.4  ü 

NM_024293.4 
Family with sequence similarity 

134 member A 

FAM134

A 
2q35 4 

A14, A17, 

A34, A145 
2.8  ü 

library inserts matching genomic clones 

AC008440.9 clone CTC-331H23  19 2 A30, A122 0.6   

AC109912.10 clone RP11-640G21  3 1 A150 1.5   

AL358175.18 clone RP11-343N15  1 1 A151 1.3   

AC009477.4 clone RP11-209H16  2 1 A99 1.7   

AC007255.4 clone RP11-550A18  7 1 A126 1.3   

library inserts encoding mitochondrial proteins 

NC_012920.1 Cytochrome c oxidase II MT-CO2 mtDNA 

1 A82 0.8  ü 

2 A37, A60 0.8  ü 

1 A49 0.8  ü 

1 A53 0.7  ü 

Table III.3: Complete list of the positive clones from YTH screen-1 (APP695) identified by partial sequencing of 

the library insert using a primer targeting the GAL4-AD. 
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NC_012920.1 
NADH dehydrogenase subunit 

4 (complex I) 
MT-ND4 mtDNA 1 A142 1.1  ü 

library inserts aligning with 3' UTRs 

NM_002545.3/ 

NM_001012393.1 

Opioid binding protein/ cell 

adhesion molecule-like 

transcript 1/2
 (d)

 

OPCML 11q25 2 A35, A149 1.3  ü 

inverted cDNAs 

NM_005277.3/ 

NM_201591.1/ 

NM_201592.1 

Glycoprotein M6A transcript 

variant 1/2/3
 (e)

 
GPM6A 4q34 2 A65, A67 2.3   

(a)
Similar alignment score with transcript variants 1 and 2.       

(b)
Similar alignment score with transcript variants 1 and 5.       

(c)
Similar alignment score with transcript variants 1, 2, 3, 4 and 6.      

(d)
Similar alignment score with transcript variants 1 and 2.       

(e)
Similar alignment score with transcript variants 1, 2 and 3.       

 

 

III.3.3   YTH screen with APP
Y687F

 dephospho-mutant 

 

The YTH screen-2 was carried out using as bait the human APP695 cDNA, with the Y687F 

mutation, which mimics the dephosphorylated state of Tyr-687, APPY687F. A pretransformed 

Human Brain MATCHMAKER cDNA library (mRNA source: whole brain from a 37-yr-old Caucasian 

male; Clontech) was screened to search for APPY687F interacting proteins. The mating efficiency 

was 7.9% and 4.2 x 106 clones were screened. YTH-s2 resulted in the isolation of 131 positive 

clones, for their ability to activate the three reporter genes HIS3, ADE2 and MEL1. 

Of the original 131 positive clones isolated, 34 were successfully recovered from yeast and 

transformed in E. coli. These were all analyzed by DNA sequencing. The results obtained are 

summarized in Table III.4. Analysis of the 34 positive clones resulted in the identification of 

nucleotide sequences that could be divided into the following categories: 

· 30 clones matched a protein coding sequence (CDS); 

· 1 library insert aligned with a mitochondrial gene; 

· 1 library insert aligned with a 3’ UTR; 

· 1 library insert aligned with an intronic sequence; 

· 1 clone contained an inverted cDNA. 
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GenBank 

Accession 
Definition 

Gene 

symbol 
Chr 

No. of 

clones 
Clones 

Insert 

size 

(kb) 

Full-

length 

cDNA 

Frame 

with 

Gal4-AD 

library inserts encoding known proteins identified as putative APP
Y687F

 interactors 

NM_001164.2/ 

NM_145689.1 

Amyloid beta precursor protein-

binding family B member 1 

transcript variant 1/2 
(a)

 (Fe65; 

p97Fe65)  

APBB1 11p15 12 

AF69 2.6 ü ü 

AF38 2.4     

AF19, AF55 2.3     

AF82 2.3     

AF27, AF39, 

AF47 
2.3     

AF51 2.3     

AF52 1.8     

AF42 1.8     

AF67 1.8     

EF103274.2 

Amyloid beta precursor protein-

binding family B member 1 

transcript variant 3 (p60Fe65) - 

new splice variant
 (b)

 

APBB1 11p15 3 

AF18, AF41 1.9     

AF29 1.8     

NM_006368.4 
cAMP responsive element 

binding protein 3 
CREB3 9p13.3 7 

AF58 1.4 ü   

AF26, AF40, 

AF46, AF54 
1.4     

AF13, AF53 1.4     

NM_017801.2 

CKLF-like MARVEL 

transmembrane domain 

containing 6 

CMTM6 3p22.3 1 AF81 1.6   ü 

NM_152609.2 
Consortin, connexin sorting 

protein, transcript variant 1 
CNST 1q44 1 AF22 5.4     

NM_016129.2 

COP9 constitutive 

photomorphogenic homolog 

subunit 4 

COPS4 4q21.22 1 AF20 2.4 ü ü 

NM_001945.2 
Heparin-binding EGF-like 

growth factor 
HBEGF 5q23 2 AF70, AF71 2.2 ü ü 

NM_018928.2 

Protocadherin gamma 

subfamily C 4 transcript variant 

1 

PCDHGC

4 
5q31 1 AF43 2.6   ü 

NM_006054.2 Reticulon 3 transcript variant 1 RTN3 11q13 1 AF65 1.2     

NM_003006.3 Selectin P ligand SELPLG 12q24 1 AF78 2.2   ü 

library inserts encoding mitochondrial proteins 

NC_012920.1 
NADH dehydrogenase subunit 

4L (complex I) 

MT-

ND4L 
mtDNA 1 AF49 2.5     

library inserts aligning with 3' UTRs 

NM_001968.3/ 

NM_00113067

9.1/ 

NM_00113067

8.1 

Eukaryotic translation initiation 

factor 4E transcript variant 

1/2/3
 (c)

 

EIF4E 
4q21-

q25 
1 AF60 1.6   ü 

library inserts aligning with intronic sequences 

AF111168.2 
Serine palmitoyl transferase 

subunit II 
SPTLC2 14q24.3 1 AF68 2.1     

inverted cDNAs 

M31423.1 
Cerebellar degeneration-related 

protein 1 
CDR1 

Xq27.1-

q27.2 
1 AF32 0.8     

(a)
 Similar alignment score with transcript variants 1 and 2.      

(b)
 Distinct 5' sequence - new transcript variant.      

(c)
 Similar alignment score with transcript variants 1, 2 and 3.      

Table III.4: Complete list of the positive clones from YTH screen-2 (APP
Y687F

) identified by partial 

sequencing of the library insert using a primer targeting the GAL4-AD. 
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III.3.4   YTH screen with AICD
Y687F

  

 

The YTH screen-3 was performed with the cDNA coding for intracellular domain of APP 

with 50 amino acids (C50), with the Y687F mutation, which mimics the dephosphorylated state of 

Tyr-687, AICDY687F. A Human Brain MATCHMAKER cDNA library (mRNA source: whole brain from a 

60-yr-old Caucasian male; Clontech) was used as bait to search for proteins interacting with 

AICDY687F. The mating efficiency was 19.8% and 6.0 x 105 clones were screened. The YTH-s3 

resulted in the isolation of 88 positive clones, for their ability to activate the three reporter genes 

HIS3, ADE2 and MEL1. 

Of the original 88 positive clones isolated, 85 were successfully recovered from yeast and 

transformed in E. coli. From these, 50 were analyzed by restriction enzyme digestion and DNA 

sequencing and 35 were only analyzed by restriction digestion. The results obtained are 

summarized in Table III.5. Analysis of the 85 positive clones resulted in the identification of 

nucleotide sequences that could be divided into the following categories: 

· 61 clones matched a protein already known to interact with APP; 

· 5 clones matched other proteins; 

· 4 library inserts aligned with genomic clones; 

· 3 library inserts aligned with mitochondrial genes; 

· 8 library inserts aligned with 3’ UTRs; 

· 1 clone contained an inverted cDNA; 

· 2 clones were chimeric, containing sequences from two distinct chromosomes; 

· 1 clone did not have library insert. 

 

The majority of positive clones interacting with AICDY687F were hits on the Fe65 protein 

(amyloid beta precursor protein-binding family B member 1), already described to interact with 

the intracellular domain of APP.  
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Figure III.7: Restriction map of a pACT2 plasmid that carries a Fe65 full-length 

cDNA insert. The 1669 bp fragment can be smaller if the library insert does not 

contain the full-length cDNA (*). 
 

 

The HindIII restriction enzyme digestion analysis of these clones, performed prior to DNA 

sequencing, showed a pattern of bands on agarose gels characteristic of a pACT2 plasmid carrying 

a Fe65 library insert: 7359 bp, 1733 bp and 1669 bp. The 7359 bp and 1733 bp bands were 

common to all the HindIII-digested Fe65 clones, but the “1669 bp” band can be smaller if the 

library insert does not contain the full-length cDNA (Fig. III.7). For that reason, analysis of the 

HindIII fragment sizes by agarose gel electrophoresis revealed 5 different patterns of bands for 

the Fe65 clones, which were classified in group A, B, C, D, E or F (Table III.5). Several Fe65 clones 

from each group were selected for sequencing analysis. 
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Group 

HindIII 

Restiction 

analysis 

(kb) 

Insert 

size 

(kb) 

Library 

insert 

sequenced 

Clones 
No. of 

clones 

GenBank 

Accession 

Transcript 

variant 

mRNA 

(bp) 

Coding 

sequence 

on mRNA 

Library 

insert 

start 

Full-

length 

cDNA 

A 
7.4 + 1.7 + 

1.7 
2.7 

ü 

CF11 

17 

NM_001164.

2 

transcript 

variant 1  
2653 101-2233 

6 ü 

CF8, CF9.2, 

CF12, CF14, 

CF15 

18 ü 

CF3, CF4, 

CF13 
25 ü 

  

CF16, CF17, 

CF21, CF34, 

CF39, CF45, 

CF126, 

CF130.2 

          

B 
7.4 + 1.7 + 

1.6 
2.6 

ü CF10 

8 

NM_145689.

1 

transcript 

variant 2  
2634 84-2210 49 ü 

ü CF7.1 
NM_001164.

2 

transcript 

variant 1  
2653 101-2233 91 ü 

  

CF25, CF26, 

CF27, CF33, 

CF42, CF54 

            

C 
7.4 + 1.7 + 

1.3 
2.3  ü 

CF18, CF23, 

CF24 
3 

NM_001164.

2/ 

NM_145689.

1 

 transcript 

variant 1/2 
(a)

 

        

D 
7.4 + 1.7 + 

1.1 
2.1 

ü CF1, CF128.2 

13 

NM_001164.

2/ 

NM_145689.

1 

 transcript 

variant 1/2 
(a)

 

2653 101-2233 571   

  

CF28, CF35, 

CF46, CF48, 

CF63, CF64, 

CF65, CF67, 

CF86, 

CF131.1, 

CF133 

            

E 
7.4 + 1.7 

+0.9 
1.9 

ü CF2 

10 

NM_001164.

2/ 

NM_145689.

1 

 transcript 

variant 1/2 
(a)

 

  763   

ü 
CF5, CF6, 

CF7.2, CF9.1 

NM_001164.

2 

 transcript 

variant 1 
2653 101-2233 813   

  

CF22, CF31, 

CF49, CF53, 

CF66 

          

F 
7.3 + 1.7 + 

0.7 
1.7   

CF32, CF41, 

CF43, CF47, 

CF61 

5             

(a)
 Similar alignment score with transcript variants 1 and 2. 

 

 

 

Table III.5: Analysis of the 56 positive clones from YTH screen-3 (AICD
Y687F

) identified as Fe65 (Amyloid 

beta precursor protein-binding family B member 1), by HindIII fragment sizes pattern and sequencing of 

selected clones using the GAL4-AD primer. 
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The HindIII fragment sizes analysis revealed that a high percentage (around 70%) of the 

positive clones from YTH-s3 appeared to contain library inserts coding for the same protein, Fe65. 

Restriction analysis allowed to eliminate the Fe65 duplicates and all the library inserts that 

presented a different pattern of bands were sequenced. The results obtained are summarized in 

Table III.6. 

 

 

GenBank 

Accession 
Definition Gene Chr 

No. of 

clones 
Clones 

Insert 

size 

(Kb) 

full-

length 

cDNA 

frame 

with 

Gal4-

AD 

library inserts encoding known proteins identified as putative AICD
Y687F

 interactors 

NM_001164.2/ 

NM_145689.1 

Amyloid beta 

precursor protein-

binding family B 

member 1 transcript 

variant 1/2
 (a)

 (Fe65) 

APBB1 11p15 56 

group A: 

CF11, CF8, CF9.2, CF12, CF14, CF15, 

CF3, CF4, CF13, CF16, CF17, CF21, 

CF34, CF39, CF45, CF126, CF130.2 

2.7 ü  

group B: 

CF10, CF7.1, CF25, CF26, CF27, CF33, 

CF42, CF54 

2.6 ü  

group C: 

CF18, CF23, CF24 
2.3   

group D: 

CF1, CF128.2, CF28, CF35, CF46, 

CF48, CF63, CF64, CF65, CF67, CF86, 

CF131.1, CF133 

2.1   

group E: 

CF2, CF5, CF6, CF7.2, CF9.1, CF22, 

CF31, CF49, CF53, CF66 

1.9   

group F: 

CF32, CF41, CF43, CF47, CF61 
1.7   

NM_005503.3 

Amyloid beta 

precursor protein-

binding family A 

member 2 transcript 

variant 1 (X11L; 

MINT2) 

APBA2 
15q11-

q12 
2 

CF51 3.4   

CF69 3.4   

NM_005456.2 

Mitogen-activated 

protein kinase 8 

interacting protein 1 

(JIP1) 

MAPK

8IP1 

11p12-

p11.2 
3 

CF91 2.8  ü 

CF131.3 2.8   

CF112 2.0   

NM_033271.2 
BTB (POZ) domain 

containing 6 
BTBD6 14q32 1 CF105 0.7  ü 

NM_001005920

.2 

Jumonji domain 

containing 8 
JMJD8 

16p13.

3 
1 CF90 2.3  ü 

NM_015026.2 MON2 homolog MON2 
12q14.

1 
1 CF108 2.6   

NM_001033549

.1/ 

Chromosome 19 

open reading frame 

BABA

M1 

19p13.

11 
1 CF106 0.9   

Table III.6: Complete list of the positive clones from YTH screen-3 (AICD
Y687F

). 
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NM_014173.2 62 transcript variant 

1/2
 (b)

 

NM_000305.2/ 

NM_001018161

.1 

Paraoxonase 2 

transcript variant 1/2
 

(c)
 

PON2 7q21.3 1 CF110 1.0  ü 

library inserts matching genomic clones 

AC018628.13 clone RP11-342K2  17 1 CF93 5.0   

AK090888.1 
cDNA FLJ33569 clone 

BRAMY2010317 
SNRPN 

15q11.

2 
1 CF94 4.0   

AL512599.33 clone RP11-115D7 CAP1 1p34.3 1 CF115 3.4   

AC007027.3 clone RP5-832O14 
CNTNA

P2 
7q35 1 CF117 1.0   

library inserts encoding mitochondrial proteins 

NC_012920.1 
Cytochrome c oxidase 

II 

MT-

CO2 

mtDN

A 
1 CF114.1 0.7  ü 

NC_012920.1 
Cytochrome c oxidase 

III 

MT-

CO3 

mtDN

A 
2 

CF100 0.9 ü  

CF114.3 0.8   

library inserts aligning with 3' UTRs 

NM_020844.2/ 

NM_001099677

.1 

Chromosome 8 open 

reading frame 79 

transcript variant 1/2 
(d)

 

C8orf7

9 
8p22 1 CF116.1 1.1   

NM_001001132

.1 

Intersectin 1 

transcript variant 2 
ITSN1 

21q22.

1-

q22.2 

1 CF131.2 1.4   

NM_002338.3 

Limbic system-

associated 

membrane protein 

LSAMP 
3q13.2

-q21 
1 CF119.3 2.2   

NM_005907.2 
Mannosidase alpha 

class 1A member 1 

MAN1

A1 
6q22 1 CF97 1.4   

NM_002654.3/ 

NM_182471.1 

Pyruvate kinase, 

muscle, transcript 

variant 1/3
 (e)

 

PKM2 15q22 1 CF72 0.7   

NM_001039355

.1 

Solute carrier family 

25 member 29 

SLC25

A29 

14q32.

2 
1 CF98 0.8   

NM_015894.2 Stathmin-like 3 
STMN

3 

20q13.

3 
1 CF120 2.1   

NM_003165.3/ 

NM_001032221

.3 

Syntaxin binding 

protein 1 transcript 

variant 1/2 
(f)

 

STXBP

1 
9q34.1 1 CF114.2 1.8   

inverted cDNAs 

NM_021959.2 

Protein phosphatase 

1 regulatory 

(inhibitor) subunit 11 

PPP1R

11 
6p21.3 1 CF116.3 2.8   

other alignments 

NM_004426.2  

+ 

chimeric clone: 

Polyhomeotic 

homolog 1 (3'UTR)  

+ 

PHC1 + 12p13 

1 CF128.3 2.1   

NM_012347.4/ 

NM_033480.2/ 

NM_033481.3 

F-box protein 9 

transcript 1/2/3
 (g)

 
FBXO9 

6p12.3

-p11.2 

BX324178.9  chimeric clone:  22 1 CF134 2.8   
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+  genomic clone WI2-

81516E3  

+ 

NM_001455.3/ 

NM_201559.2 

Forkhead box O3 

transcript variant 1/2
 

(h)
 (3'UTR) 

FOXO3 6q21 

(a) Similar alignment score with transcript variants 1 and 2.    

(b) Similar alignment score with transcript variants 1 and 2.    

(c) Similar alignment score with transcript variants 1 and 2.    

(d) Similar alignment score with transcript variants 1 and 2.    

(e) Similar alignment score with transcript variants 1 and 3.    

(f) Similar alignment score with transcript variants 1 and 2.    

(g) Similar alignment score with transcript variants 1, 2 and 3.    

(h) Similar alignment score with transcript variants 1 and 2.    

 

 

III.3.5 Clones matching a protein coding sequence 

 

The majority of the clones identified in the three YTH screens were assigned to known 

proteins: 50% (YTH screen-1), 88% (YTH screen-2) and 78% (YTH screen-3), as summarized in 

Table III.7. The number of clones for each identified binding protein varied considerably, from 1 

clone (e.g. clone A44, corresponding to BCL2L13) to 56 clones (in YTH-s3, corresponding to 

APBB1) as discussed below. This group of clones include positive clones isolated from high and 

medium stringency selection. 

Among the positive clones identified as ‘known proteins’ are some well established APP 

interactors, such as Fe65 (official gene symbol: APBB1). Fe65 was isolated in YTH-s2 (12 clones) 

and in YTH-s3 (56 clones). Other known APP binding proteins were detected in YTH-s3: X11L (gene 

symbol APBA2; 2 clones) and JIP-1 (gene symbol MAPK8IP1; 3 clones). It is worthwhile noting that 

Fe65, X11L and JIP-1 are known to interact with the intracellular domain of APP, but the 

interactions with the phospho-mimicking mutants APPY687F (bait 2) and AICDY687F (bait 3) had not 

been previuosly described. In YTH-s1 there were no hits in any previously described APP binding 

proteins.  

Overall, in the YTH screens here described, numerous proteins never before related to APP 

were identified as potencial novel APP binding proteins (31 proteins, encoded by 45 positive 

clones). These were all analyzed by bioinformatics tools. Two positive clones were selected for 

further characterization and functional studies, presented in Chapters IV and V. These are 

p60Fe65 (clones AF18, AF41 and AF29; from YTH-s2) and RanBP9/RanBPM (clone A10; from YTH-
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s1). p60Fe65 is a shorter isoform of Fe65 (encoded by APBB1), that arises from alternative splicing 

of Fe65 pre-mRNA. The novel transcript, Fe65E3a, was identified in YTH-s2 (encoded by 3 clones) 

and was further characterized in Chapter IV. 

The other protein that was further investigated was RanBPM/RanBP9 (encoded by 

RANBP9), a protein involved in signal transduction, axon guidance and neurite outgrowth that had 

not been associated with APP at the time the work was started. Another report in 2009 described 

that APP and RanBP9 co-immunoprecipitated together (Lakshmana et al., 2009). 

 

 

 

 
YTH-s1 YTH-s2 YTH-s3 total 

No. of positive clones isolated 60 131 88 279 

No. of positive clones identified (RE or sequencing)  44 34 85 163 

No. of clones encoding known proteins 22 30 66 118 

Known proteins identified 17 9 8 31* 

No. of clones encoding APP binding proteins 0 12 61 73 

Known APP binding proteins identified 0 1 3 3* 

No. of clones encoding other known proteins 22 18 5 45 

Other  proteins identified 17 8 5 28* 

 No. of clones encoding mtDNA encoded proteins 6 1 3 10 

mtDNA encoded proteins identified 2 1 2 4* 

No. of clones encoding ORFs 6 0 0 6 

ORFs/ uncharacterized genes and proteins 3 0 0 3 

Genomic clones 6 1 4 11 

Clones aligning with 3'UTRs 2 1 8 11 

Clones with inverted cDNAs 2 1 1 4 

Other 0 0 3 3 

* The total number of clones does not correspond to the sum of the three YTH screens because some proteins 

were common to different screens. 

 

Although several positive clones identified as known proteins were not in frame with the 

activation domain of Gal4, they were not assigned as false positives. These clones are potentially 

genuine positive clone because yeasts tolerate translational frameshifts and can express the 

correct fusion protein, which will promote survival in the selective medium (Gesteland and Atkins, 

1996). Moreover several clones encoding well established APP binding proteins, such as Fe65, 

Table III.7: Comparison of the results obtained in the three YTH screens. 
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were in the wrong reading frame providing further evidence that thay are likely to be true 

positives. 

 

 

Figure III.8: Venn diagram of the proteins obtained within and between each YTH screen. Gene 

symbols were used instead of the proteins’ common names. Frequent clones are highlighted by 

bigger font size. 
 

 

III.3.6 Mitochondrial clones 

 

Mitochondria have a specific genetic code, different from the standard one used by the 

nuclear translation machinery, and as a result some mitochondrial amino acid codons are read as 

stop codons in cytoplasmatic translation (Anderson et al., 1981). Hence, in order to be detected in 

a two-hybrid assay, the plasmid encoded inserts must be expressed in the cytoplasm as GAL4-AD 

fusion proteins and imported to the nucleus, where they interact with a GAL4-BD-bait fusion to 



 

 
138 

 

activate reporter gene expression, mitochondrial translation is unlikely to be occurring. 

Mitochondrial clones (including cytochrome c oxidase) have previously been described as 

common false positives in two-hybrid screens (Serebriiskii et al., 2001). 

 

 

 

 

 

Translation of the cDNA of mitochondrial clones using the standard genetic code revealed 

premature stop codons in all reading frames, corroborating the hypothesis that these clones are 

likely to be false positives (Table III.8). Partial DNA sequencing of clone CF100 (from YTH-s3) 

showed a stretch of thymine nucleotides after the linker sequence followed by an in-frame stop 

codon and by the sequence aligning with the MT-CO3 gene (also with a premature stop codon). 

This clone is unlikely to be a genuine positive. 

clone gene 

BLASTX 

Query: translated cDNA using standard genetic code 

Subjet: Homo sapiens mitochondrial protein (Refseq protein database) 

A82 

(YTH-

s1) 

MT-

CO2 

 
Query  1    AAQVGLQDATSPIIEELITFHDHALIIIFLICFLVLYALFLTLTTKLTNTNISDAQEIET  180 

Sbjct  4    .............M...........M...............................M..  63 

 
Query  181  V*TILPAIILVLIALPSLRILYIXDEVNDPSLTIKSIGHQWY*TYEYTDYGGLIFNSYIL  360 

Sbjct  64   .W....................MT..................W...............M.  123 
 

Query  361  P  363 
Sbjct  124  .  124 

 

A142 

(YTH-

s1) 

MT-

ND4 

 
Query  16   GNQPERLNAGTYFLFYTLVGSLPLLIALIYTHNTLGSLNILLLTLTAQELSNS*ANNLI*  195 
Sbjct  137  .....................................................W....M-  195 

 

Query  196  XXLHQLAFIVKIPLYGLHL*LPKAHVEAPIAGSIVLAAVLLKLGGYGIIRLKLILNPLXK  375 
Sbjct  196  WLAYTM..M..M.......W.............M.............MM..T......T.  255 

 
Query  376  X*PTPSL  396 
Sbjct  256  HMAY.F.  262 

 

AF49 

(YTH-

s2) 

MT- 

ND4L 

 

Query  17   INIILAFTISLLGILVYRSHLISSLLCLEGIILSLFIIATLITLNTHSLLANIVPIAILV  196 
Sbjct  6    M..M.........M.......M........MM.....M...M...............M..  65 

 
Query  197  FAACEAAVGLALLVSISNTYGLDYVHNLNLLQC  295 

Sbjct  66   ............................S....  98 
 

CF100 

(YTH-

s3) 

MT-

CO3 

 

Query  60   MTHQSHAYHIVKPSP*PLTGALSALLMTSGLAM*FHFHSITLLILGLLTNTLTIYQ*WRD  239 
Sbjct  1    .........M.....W.................W.....M...M.........M..W...  60 

 
Query  240  VTRESTYQGHHTPPVQKGLRYGIILFITSEVFFFAGFF*AFYHSSLAPTPQLGGHWPPTG  419 
Sbjct  61   ......................M...............W.....................  120 

 

Query  420  ITPLNPLXVPLLNTSVLLASGVSIT*AHHSLIENNRNQIIQALLITILLGLYFTLLQA  593 
Sbjct  121  .......E.................W.....M......M...................  178 

 

Table III.8: BLASTX results of the mitochondrial cDNA clones translated using the standard genetic code 

against the Refseq protein database (http://blast.ncbi.nlm.nih.gov/Blast.cgi#). Premature stop codons 

(*) resulting from translation using the standard genetic code are highlighted in yellow. 
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Despite the criteria used to classify the mitochondrial clones as false positives, for all the 

corresponding mitochondrial genes there are polymorphisms associated with Alzheimer’s disease 

(Table III.9 and Figure III.9). 

 

 

Figure III.9: Location of published AD candidate genes in the mitochondrial 

DNA. Adapted from the Alzgene website: http://www.alzgene.org (Bertram 

et al., 2007).  

gene YTH screen References 

MT-CO2 YTH-s1, YTH-s3 (Davis et al., 1997; Coon et al., 2006) 

MT-CO3 YTH-s3 
(Corral-Debrinski et al., 1994; Hamblet et al., 2006; 

Lakatos et al., 2010) 

MT-ND4 YTH-s1 
(Corral-Debrinski et al., 1994; Coon et al., 2006; 

Lakatos et al., 2010) 

MT- ND4L YTH-s2 (Corral-Debrinski et al., 1994; Chagnon et al., 1999) 

Table III.9: Genetic association studies in mitochondrial genes performed in AD. 
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 The Gal4-AD fusion protein synthesized from the cDNA translation of clone AF49, using 

the cytoplasmic machinery of the yeast cells, has misdifferences with the original NADH 

dehydrogenase subunit 4L protein (encoded by the MT-ND4L gene). However, the interaction of 

the bait with the 92 amino acids peptide of clone AF49 might be relevant. Translating the cDNA 

from clone AF49, using the standard genetic code, and performing protein domain search using 

the InterPro scan tool, publicly available at http://www.ebi.ac.uk/Tools/pfa/iprscan/ (Hunter et 

al., 2009), revealed the presence of the NADH-ubiquinone oxiredutase chain 4L/K, a signal 

peptide and three predicted transmembrane domains, similarly to the mitochondrial protein 

ND4L. 

 

 

 

 

Figure III.10: InterPro domain search of clone AF49, translated using the standart genetic code 

(http://www.ebi.ac.uk/Tools/pfa/iprscan/). SignalP, Signal peptide; Tmhmm, predicted transmembrane 

domains. 
 

 

III.3.7   Clones aligning with non-coding sequences 

 

3’ UTRs 

In various cases the searches performed did not reveal any homologies within the coding 

sequences (CDS) of a known protein, or predicted gene product, for the sequenced insert portion. 

Several of these clones matched mRNA sequences, although aligning with the 3’ UTR 

(untranslated regions). This is the case of the prey clones A35 and A149 (from screen 1), and CF72, 

CF97, CF98, CF114.2, CF116.1, CF119.3, CF120 and CF131.2 (from screen 3).  
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The translation of these clones in all three forward reading frames revealed premature stop 

codons, therefore it may be possible that these small DNA fragments encode peptides with strong 

affinity to the respective APP bait. However, it cannot be ruled out that these small peptides may 

instead interact directly with the GAL4-DNA Binding Domain, leading to transcription of the 

reporter genes. Further testing would be required to clarify this issue, such as co-expressing the 

prey plasmid with the bait protein in yeast cells. 

The particial sequencing of the prey plasmids, in general, does not cover the entire library 

inserts. Therefore, it is also advisable to obtain the insert’s full sequence in this case. It might be a 

real positive if another open reading frame (ORF) is present downstream of the stop codon, since 

nontranslated gaps upstream of ORF inserts are commonly found in genomic libraries. Due to 

occasional translational read-through, two different ORFs may be expressed as a fusion with the 

Gal4-AD, eventhough a nontranslated gap comes between them (Serebriiskii and Golemis, 2001). 

Nevertheless, 3’ UTR clones were here assigned as false positives. For the same reasons the 

chimeric clones CF128.3 and CF134 (from screen 3) were here considered false positives. 

 

Intronic sequences 

One library insert, AF68 (from screen 2), matched an intronic region of the SPTLC2 gene, 

which encodes the Serine palmitoyl transferase subunit II. Despite being classified as a false 

positive, AF68 should be fully sequenced to roule out the existence of another ORF downstream 

the intronic region detected, for the above-mentioned reason that nontranslated gaps upstream 

of ORF inserts are commonly found in genomic libraries. The two different ORFs may be 

expressed as a fusion with the Gal4-AD due to occasional translational read-through, eventhough 

a nontranslated gap comes between them. 

Intron retention is a mechanism used to expand the diversity of mRNA splice variants and 

their consequent protein products, e.g. by hippocampal neurons (Bell et al., 2010). The presence 

of intronic sequences in library’s cDNAs might reflect the expression of uncharacterized 

transcripts, but this has to be further investigated. 

 

Inverted clones 

In all YTH screens there were library inserts that were in the reverse orientation relative to 

the Gal4-AD fusion: A65 and A67 (screen 1); AF32 (screen2); CF116.3 (screen 3). These might be 

real positives given that the insert can be transcribed in the reverse orientation from a cryptic 
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promoter within the ADH1 terminator. As already mentioned, such proteins function as 

transcriptional activators as well as interacting with the bait protein (Chien et al., 1991). 

Nevertheless, a plausible interaction between APP and an inverted prey clone demands for 

thorough validation experiments. Therefore, the inverted clones were here assigned as false 

positives and were not considerer for further studies. 

 

III.3.8 Library inserts matching genomic clones  

 

Library inserts matching human genomic clones were present in YTH screen 1 (A30, A99, 

A122, A126, A150, A151) and in YTH screen 3 (CF93, CF94, CF115, CF117). Since the library inserts 

were derived from mRNAs isolated from human brain, these clones might reveal the expression of 

brain transcripts yet to be identified. In fact, the human genome is fully sequenced but the human 

transcriptome and proteome are not yet fully characterized. The expression of such transcripts 

could be further investigated, however genomic clones were here classified as “uncharacterized 

proteins” and were not considered for further analysis. 

 

 

III.3.9 Validation of protein interactions and quantitative α-Gal activity assay 

 

Selected protein interactions were verified by co-transformation of the bait and the prey 

plasmids in the yeast AH109. This was achieved for Fe65, RanBP9 and other clones that were 

followed for different projects (RTN3, CDH9, CREB3, BAI3, BCL2L13, SELPLG).  

 

RanBP9 

 

The authenticity of the interaction between the RANBP9 clone, encoding a N-terminal 

truncated RanBP9, and the bait was confirmed by the ability to grow and turn blue on QDO/X-α-

Gal plates due to the expression of all the reporter genes HIS3, ADE2 and MEL1. RanBP9 

interaction with AICD wt and phospho-mutants was also analyzed. AH109 yeast cells were co-

transformed with the following plasmid pairs: AICD-pAS2-1/RanBP9-pACT2; AICDY687F-pAS2-

1/RanBP9-pACT2; AICDY687E-pAS2-1/RanBP9-pACT2. The co-transformants were plated on 

SD/QDO/X-α-Gal/60mM 3-AT. RanBP9 interacts with AICD wt and both mutants, since the 

appearance of the colonies is similar to the positive control which co-expressed the BD-p53 and 



 

Identification of Protein Complexes in Alzheimer’s Disease 

 

CHAPTER III – IDENTIFICATION OF THE POSITIVE CLONES AND IN SILICO ANALYSIS OF APP/AICD NETWORKS 

  

 

 143 

AD-SV40 fusion proteins (Fig. III.11A). The Gal4-BD and Gal4-AD empty vectors (pAS2-1 and 

pACT2) were co-expressed as a negative control. Another negative control suggested by the YTH 

manufacturer is the co-expression of the AD-prey with a BD-Lamin C fusion protein, which 

showed a residual growth. YTH tests were also carried out with yeast cells transformed with a 

single bait or prey constructs. While all yeast constructs were able to grow on the YPD rich 

medium (data not shown), only co-expression of BD-bait and AD-prey fusion proteins conferred 

survival on SD/QDO plates (Fig. III.11A).  

Quantitative X-α-Gal assays of liquid cultures showed that the AICD-RanBPM interaction is 

8.3 fold (P < 0.001) stronger than the negative control GaL4-BD + AD, confirming the plate assays. 

The interactions AICDY687F-RanBP9 and AICDY687E-RanBP9 were also significantly higher than the 

negative control (Fig. III.11B). Moreover, α-Gal activity revealed that RanBPM had less affinity for 

AICDY687E than for the wild-type AICD or AICDY687F. 

 

 

Figure III.11: Qualitative and quantitative confirmation of interaction between RanBP9 and AICD in the 

YTH system. (A) Growth of yeast cells containing different protein constructs was analyzed by streaking 

onto quadruple dropout (QDO; -Trp, -Leu, -His, -Ade) plates containing X-a-Gal. (B) Quantitative X-α-Gal 

assays of liquid cultures confirmed the interactions between RanBPM and all AICD constructs (*** P < 

0.001 vs. negative control). RanBPM had less affinity for AICD
Y687E

 than for the wild-type AICD or the 

Y687F mutant (��,
 
P < 0.01 vs. E; �, P < 0.05 vs. E). 
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Fe65 

 

Fe65 (encoded by APBB1) is a well known AICD interacting protein and was a very frequent 

clone in the YTH screens with AICDY687F and APPY687F. The YTH qualitative assay was performed in 

order to confirm that the Y687F mutant of AICD, and also Y687E, interact with Fe65. As shown in 

Fig. III.12A Fe65 associates with wt AICD, as described before, and also with both AICD mutants. 

The positive interaction is shown by growth on SD/-Trp/-Leu/-His plates and by the blue color of 

the colonies, which indicates expression of the MEL1 reporter gene. 

In order to determine the relative strength of the interaction of Fe65 with wt AICD and with 

the Y687E and Y687F mutants, the activity of α-galactosidase was measured in yeast culture 

supernatants. The α-galactosidase activity of AICDY687F-Fe65 was 1.36 fold higher than the 

interaction with wt. In contrast, the yeast cultures expressing AICDY687E and Fe65 showed a very 

low α-galactosidase activity of 0.07 fold (Fig. III.12B).  

 

 

Figure III.12: YTH interaction of Fe65 with wt AICD, AICD
Y687E

 and AICD
Y687F

. The yeast strain AH109 was 

co-transformed with the following pairs of plasmids: pACT2 + pAS2-1; Fe65-pACT2 + pAS2-1; Fe65-

pACT2 + AICD
WT

-pAS2-1; Fe65-pACT2 + AICD
Y687E

-pAS2-1; Fe65-pACT2 + AICD
Y687F

-pAS2-1; pVA3-1 + 

pTD1-1. (A) Yeast cells were grown on SD-Trp/-Leu/-His selective medium with X-α-Gal to test for the α-

galactosidase expression. (B) Yeast cells containing the various two-hybrid constructs were grown 

overnight in selective medium, after which cell-free supernatants were assayed for α-galactosidase 

activity. Results shown are mean ± S.E. of the fold induction of α-galactosidase actity compared to the 

AICD
WT

+FE65 interaction. ***P < 0.001 vs. wild-type interaction. 

 

It is worthwhile noting that the negative control usually shows a residual α-galactosidade 

activity, which in this case, appears to be higher than the AICDY687E-Fe65 interaction, and was also 

reported by the YTH system manufacturer. Though, the yeast cells that contain the pAS2-1 and 

pACT2 empty vectors were grown in SD/-Trp/-Leu, which only select for the plasmids 

transformation, and thus the residual value does not represent a positive interaction. 
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The same data from Figs.III.11B and III.12B were re-plotted for comparing the interactions 

between AICD (wt and mutants) and the prey proteins Fe65 and RanBP9. From the graph, both 

prey clones, RanBP9 and Fe65, had less affinity for AICDY687E than for wt or Y687F dephospho-

mutant (Fig. III.13). Moreover, wt AICD and AICDY687F interacted preferentially with Fe65, and 

AICDY687E had more affinity for RanBP9.  

 

 

Figure III.13: YTH interaction of RanBP9 with wt AICD, AICD
Y687E

 and AICD
Y687F

 

(light gray) and Fe65 interaction with wt AICD, AICD
Y687E

 and AICD
Y687F

 (dark 

gray).  

 

These results validate the interactions between RanBP9 and Fe65 with wt and mutant 

AICDs and also show that these interactions can be regulated by Tyr-687 phosphorylation. 

Furthermore, these results correlate with clone frequencies in the YTH screens (AICDY687E and wt 

AICD were also used as baits in similar YTH screenings, in previous group projects; APPENDIX V 

and APPENDIX VI). 

 

III.3.10   Analysis of the putative new APP/AICD binding proteins by bioinformatics 

tools 

 

To assign a biological context for APP/AICD phosphorylation at Tyr-687 a series of YTH 

screens against human adult brain libraries were performed using diverse baits: APP (YTH-s1), 
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APPY687F (YTH-s2), and AICDY687F (YTH-s3) are described in this thesis. Two other YTH screens of 

adult brain libraries were performed previously using as baits AICDY687E and wild-type AICD 

phospho-mutant (APPENDIX V and APPENDIX VI). All the clones identified in these five YTH 

screens, which encode known proteins or ORFs, were considered for producing protein-protein 

interaction (PPI) maps, by bioinformatics means. Given that the new PPI identified were not all 

confirmed neither in the YTH system, nor by other methods, the following data should be 

carefully interpreted. To facilitate the analysis of the PPIs, all interacting proteins were 

unambiguous matched to the official gene symbol, using HUGO Gene Nomenclature Committee 

database (http://www.genenames.org/) (Eyre et al., 2006).  

As a first approach, PPI networks were derived around each YTH bait using Cytoscape 

version 2.8.2 (Shannon et al., 2003; Smoot et al., 2011). The same strategy was followed for each 

individual screen (Fig. III.14).  
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Figure III.14: APP/AICD subnetworks of PPIs obtained in the YTH screens. The nodes represent 

proteins, described using the official gene symbol (http://www.genenames.org/). The central node in 

each map corresponds to the bait protein. Wild-type APP and AICD are highlighted in red. APP 

phospho-mutants are represented by rectangular nodes. Fe65 (encoded by the APBB1 gene), a well-

established APP/AICD interactor, is highlighted in green. The orange node is RanBP9, whose interaction 

with APP is characterized in Chapter V.  

 

Combination of these five maps produced a more complex network and highlighted the 

protein links between full length APP and AICD and between wild-type and phospho-/dephospho-

mutants (Fig. III.15). APBB1, the gene encoding Fe65, interacts with three baits: APPY687F, AICDY687F 
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and AICD. Wild-type APP and APPY687F dephospho-mutant share two nodes: RTN3 and HBEGF. 

AICDY687E is linked to wild-type APP only by RanBP9 (Fig. III.12). 

 

 

Figure III.15: Cross-complex APP/AICD network of PPIs obtained in five YTH screens against human adult 

brain libraries using the baits: APP, AICD, APPY687F, AICDY687F and AICDY687E. The nodes represent 

proteins, described using the official gene symbol (http://www.genenames.org/).  

 

 

III.3.10.1   Biological interpretation of the interaction networks 

 

To aid interpretation of the PPI data sets, the participant genes/proteins were analyzed 

with respect to chromosome mapping (Fig. III.16) and protein domains (Fig. III.17). The results are 

displayed in two-dimensional tables, where colors represent the number of proteins, per group.  

Genes from the wild-type APP screen (screen 1) are more evenly distributed throughout the 

23 pairs of chromosomes, which is likely be related to a higher number of proteins in this group 

(Fig. III.16). 
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Figure III.16: Chromosome mapping of the prey-proteins 

from each YTH screen.   

 

 

A higher number of clones in the APP PPI map, is also responsible for a greater diversity in 

the protein domains and motifs of the same group (Fig. III.17). Full-length wt APP harbours more 

interactions with proteins with transmembrane domains (13), signal peptides (5) and coiled-coil 

regions (6). Moreover, proteins containing G-coupled receptor domains were exclusive for the wt 

APP interactome (clone BAI3). The EGF-like (clone HBEGF), Cadherin (clones CDH9 and PCDHGC4) 

and Reticulon domains (clones: RTN1, RTN3, RTN4, FAM134A) are shared by the full-length APP 

baits, wt and Y687F dephospho-mutant. 
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Figure III.17: Domains and motifs of the prey-proteins, as obtained by sequence analysis using 

Interpro (http://wwwdev.ebi.ac.uk/interpro/), ELM (http://www.elm.eu.org/) and Prosite 

(http://prosite.expasy.org/).  
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One protein from the wt APP screen (clone ZFYVE27) is a zinc finger protein and has a zinc 

finger FYVE domain. FYVE domains bind to PI(3)Ps, membrane phospholipids enriched in the early 

endosomes (Seet and Hong, 2006). FYVE domain binding of PI(3)P has also been implicated it in a 

signaling role downstream of PI(3)kinase. Furthermore, FYVE containing proteins have been 

implicated in the regulation of the vacuolar/lysosomal membrane trafficking pathway and in 

regulation of signaling by TGFβ-receptors (Kutateladze, 2006). 

Very diverse protein binding domains were seen in all groups and, all together, these were 

the most frequent domains found. DNA binding domains were also present in all the groups, 

except for AICD, whose YTH screen resulted in hundreds of clones matching only one protein, 

Fe65 (APPENDIX VI).  

The proteins identified in the several YTH screens were further analyzed with respect to 

Posttranslational modifications and Gene Ontology (GO) categories: Cellular component (CC), 

Molecular function (MF) and Biological process (BP). This survey was performed by database 

searching in the web sites: Entrez Gene (http://www.ncbi.nlm.nih.gov/gene); UniProt 

(http://www.uniprot.org/); and HPRD (http://www.hprd.org/). 

 

 

Figure III.18: Posttranslational modifications of the proteins identified in the several YTH screens. The pie 

charts depict the relative number of proteins from each respective screen. 
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The proteins identified in YTH screen with full-length APP (wt and Y687F dephospho-

mutant) are mostly post-translationally modified by phosphorylation, acetylation and 

glycosylation. Proteins identified with AICD mutants, Y687F and Y687E, are mostly modified by 

phosphorylation (Fig. III.18). Fe65, the only protein identified with wt AICD is also a phospho-

protein. 

Cleavage/Processing were detected only for proteins in FL APP (wt and Y687F-mutant) 

interactomes (Fig. III.18). 

 

 

Figure III.19: Analysis of the proteins identified in the several YTH screens in terms of the GO 

classification ‘Cellular component’. The pie charts depict the relative number of proteins from each 

respective screen. PM, Plasma membrane; ER, Endoplasmic reticulum. 

 

Analysis of the proteins identified in the several YTH screens in terms of the GO 

classification ‘Cellular component’ revealed that proteins in FL APP (wt and Y687F-mutant) 

interactomes are mostly plasma membrane integral proteins (Fig. III.19), which is in accordance 

with their enrichment in transmembrane domains. Nuclear proteins are among FL APP 

interactions in the YTH system. In vivo, only the liberated AICD translocates to the nucleus, but in 

the YTH system APP interactors include proteins that interact with the FL molecule and also with 

its proteolitic fragments. Moreover, most nuclear proteins in these interactomes are also 

detected in other subcellular locations, except RAD50 and TOR1AIP1 (from the APP screen) which 

are exclusively nuclear.  
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Is is worthwhile mentioning that the GO terms analyzed here are as it appears in the 

databases mentioned. More accurate information from the literature was not taken into 

consideration for the GO classification. 

Interestingly, the cellular components endosomes, synapses and neurites had only been 

identified with the Y687F dephospho-mutants (FL and AICD). The endocytic vesicles are the major 

site of β-secretase activity and the APPY687F mutant was previously shown to be preferentially 

endocytosed and targeted for β-secretase cleavage, in contrast to the APPY687E phospho-mimicking 

mutant (Rebelo et al., 2007a). 

 

 

Figure III.20: Analysis of the proteins identified in the several YTH screens in terms of the GO 

classification ‘Molecular function’. The pie charts depict the relative number of proteins from each YTH  

screen.  
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The molecular function of the proteins identified in the YTH screens, as given by the above 

mentioned databases, revealed that most mediate protein interactions (Fig. III.20). This again is in 

agreement with the domain analysis. Most APP and AICDY687E interactors are involved in DNA 

binding, in contrast with the Y687F mutants interactions. Most AICDY687F are scaffolding proteins, 

which is the case for APBB1, APBA1 and BTBD6. 

Interestingly, interactions with AICD (de)phospho-mutants revealed a kinesin binding 

protein (MAPK8IP1) and a nuclear import protein (TNPO3). In the ‘Biological processes’ analysis, 

these proteins are classified in the ‘transport and trafficking’ group, important in AICD
Y687F and 

AICDY687E interactomes (Fig. III.21). 

Full-length APP (wt and mutant) interacted preferentially with proteins involved in signaling 

and regulation. Proteins involved in cell growth and proliferation and cell migration were common 

to these interactomes. Interestingly in the APPY687F interactome ‘cell migration’ contained more 

proteins and this category also appears in the AICDY687F group. The AICDY687E interactome contains 

proteins involved in cell growth and proliferation, and this is a prominent category in the APP 

interactome (Fig. III.21).  

Although the GO categories contain different proteins that are involved in the same 

biological processes, they help to interpret the protein interaction maps. Full-length APP (wt and 

dephospho-mutant) share two protein nodes (HBEGF and RTN3; Fig. III.15) and are also closely 

associated by the ‘Biological process’ GO categories.  

APPY687F and AICDY687F share one protein node (APBB1; Fig. III.15) and are also linked by the 

‘Cellular component’ categories endosomes and synapses, potentially involved in AD pathology. 
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Figure III.21: Analysis of the proteins identified in the several YTH screens in terms of the GO 

classification ‘Biological process’. The pie charts depict the relative number of proteins from each YTH 

screen. 

 

 

III.3.10.2   APP/AICD networks focusing on disease association 

 

Searching the AlzGene database, a field synopsis of genetic association studies in AD 

available at http://www.alzgene.org (Bertram et al., 2007), showed that besides the bait APP, only 

APBB1 (Hu et al., 1998; Lambert et al., 2000), MAPK8IP1 (Helbecque et al., 2000) and PON2 (Shi et 

al., 2004; Erlich et al., 2006) show positive association with AD (Fig. III.22, red nodes). From the 

OMIM (Online Mendelian Inheritance in Man) database and literature curation, a set of genes 

could be associated with diseases with neuropathological features (Fig. III.22, orange nodes). 
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Genes associated with other diseases are represented by yellow nodes and genes with unknown 

disease association are colorless (Fig. III.22). AICDY687F holds all the AD risk genes found (APBB1, 

MAPK8IP1 and PON2), while wt APP exhibits more interactions with proteins involved in non-AD 

pathologies. 

 

 

Figure III.22: Representation of the APP PPI network generated from five YTH screens against human 

adult brain libraries using the baits: APP, AICD, APP
Y687F

, AICD
Y687F

 and AICD
Y687E

. The nodes represent 

proteins, described using the official gene symbol (http://www.genenames.org/). Information 

concerning disease association data (AD, disease with neuropathological features or other) was 

attributed to the nodes and the network was re-plotted, using Cytoscape. Network statistics: 

diameter= 8; radius=4; centralization=0.449; heterogeneity= 1.625; no. of nodes=43; average no. of 

neighbors=2.  

 

 The disease association network was merged with the APP curated network (201 nodes), the 

APBB1 curated network (26 nodes) and RanBP9 curated network (73 nodes). The resulting cross-

complex network in represented in Fig. III.23, but here only the AD associated genes are 
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highlighted (red nodes). All APP/AICD baits are highlighted in red, due to disease association of 

APP, however APP fragments and (de)phospho-mutants might lead to distinct outcomes in the 

context of AD. 

 

 

Figure III.23: Cross-complex of the disease association network with networks of literature curated PPIs 

of APP, APBB1, RanBP9, using Cytoscape. Network statistics: diameter= 6; radius=3; 

centralization=0.693; heterogeneity= 6.082; no. of nodes=316; average no. of neighbors=2.133.  
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III.4   DISCUSSION 

 

The great diversity of human proteome and protein interactions are spatio-temporally 

regulated to perform specific tasks. Additionally the proteome seems to have diverged more 

rapidly in the brain than in other tissues (Enard et al., 2002), making proteomic analysis 

significantly more challenging than genomic or transcriptomic approaches. A major goal of 

functional proteomics is to identify the complete protein interaction network, or interactome, of 

an organism. Within these networks, proteins of similar function and cellular localization tend to 

cluster together (Bader and Hogue, 2002), making the study of PPIs a powerful approach for 

inferring information about protein function. Large-scale PPI network studies combine multiple 

approaches, such as manual curation, automated text mining, computational predictions and PPIs 

discovered by high-throughput methods, such as YTH and co-affinity purification followed by mass 

spectrometry (AP/MS). 

YTH interactions generated in the early days of this technology were thought to have a high 

level of false positives; however, recent reports proved that these data sets are mostly reliable 

and accurate (Yu et al., 2008; Braun et al., 2009). YTH data generally yielded high quality data on 

direct binary interactions. However, even high quality YTH networks are predicted to encompass 

only 20% of binary PPIs (Yu et al., 2008) and involve the expression of proteins in a non-

physiological environment resulting in a loss of spatial and temporal control. In addition to 

methodological limitations, many neuronal-specific interactions may be missed in these YTH 

screens due to posttranslational modifications, proteolytic processing, etc. In this work, using Tyr-

687 phosphorylation-mimicking mutants of APP/AICD successfully revealed numerous novel 

putative interactions, that can potentially help to understand the biology of APP, and, ultimately, 

APP pathways leading to AD. 

At this stage, the new putative protein interactions found by YTH screening should be 

confirmed. As such, supplementary data from other sources should be used to evaluate the 

credibility of interactions in an YTH screen. Thereby, the verification of a putative interaction can 

be achieved in a variety of ways. The first approach would be to retest each new bait-prey 

interaction in yeast cells, by co-transformation of the respective plasmids. These tests were 

performed for only a few selected positive clones. As such, the in silico analysis of PPI networks is 

speculative and future work should start by validating the new PPIs. Validation of PPIs by several 
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in vitro and in vivo methods strengthens the accuracy of PPI data and increases the knowledge on 

functional proteomics.  

In depth bioinformatics analysis of the three APP/AICD interactomes generated in this 

study, and two additional screens from previous projects in the group, revealed some distinctive 

characteristic within and between the PPI networks. The interpretation of these PPI data sets is 

particularly relevant since it allows to infer the distinct physiological context of FL APP and its 

liberated cytoplasmic fragment, AICD, and also, more importantly, among wt and dephospho-

/phospho-mimicking mutants. The generated Tyr-687 mutations have already proved effective in 

elucidating the role of APP/AICD phosphorylation in AD. The APPY687F mutant, which mimics 

dephosphorylation at Tyr-687, was preferentially endocytosed and targeted for β-secretase 

cleavage, in contrast with the APPY687E phospho-mimicking mutant (Rebelo et al., 2007a). 

Interestingly, analysis of GO terms also pointed in the same direction, in particular ‘Cellular 

component’, where endosomes, the major site of β-secretase activity, occurs only in the Y687F-

mutants interactomes. However, these data should be carefully interpreted. Validation of the 

novel putative interactions should be carried out with wt APP/AICD and also with (de)phospho-

mimicking mutants. As seen for Fe65 or RanBP9, clones interacting with dephospho-/phospho-

mutants may interact with the wt protein and vice versa. Additionally, comparing the interaction 

strengths among wt AICD and several dephospho-/phospho-mimicking mutants, by quantitative 

α-Gal assays, elucidated the role of Tyr-687 phosphorylation in the regulation of AICD protein 

interactions. The same strategy could be applied to other AICD phosphorylatable residues. 

In the YTH screen with FL APP, preys include proteins that interact with the FL molecule and 

also proteins that interact in vivo with APP fragments, such as sAPP, Aβ, C99, C83 or AICD. For this 

reason, exclusively nuclear proteins were found with FL APP. Further validation experiments with 

different APP constructs can narrow down the interaction region/domain of APP. 

The GO categories presented contain different proteins that were grouped together due to 

their involvement in the same cellular component, molecular function or biological process, thus 

helping to interpret the protein interaction maps. Full-length APP (wt and dephospho-mutant) 

share two protein nodes (HBEGF and RTN3) and are also closely associated by the ‘Biological 

process’ GO categories. APP
Y687F and AICDY687F share one protein node (APBB1) and are also linked 

by the ‘Cellular component’ categories endosomes and synapses, potentially involved in AD 

pathology. However, it is worthwhile mentioning that the GO terms analyzed here were taken 
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from online databases, instead of literature manual curation. Another limiting factor might be a 

poor characterization of the proteins (or genes) in this analysis.  

The APP/AICD PPI maps focusing on disease association elucidate the APP baits that are 

closer to AD genes and are in agreement to the GO information obtained for the nodes. AICDY687F 

harbors all the AD risk genes found, while wt APP exhibits more interactions with proteins 

involved in non-AD pathologies. The cross-complex network generated by merging the disease 

association network with curated APP, Fe65 (a major Y687F binding protein in this study) and 

RanBP9 (the most frequent in the AICDY687E screen) networks also show that AICDY687E and its 

binding partners are more distant from the AD genes, in contrast with the Y687F dephospho-

mimicking mutants. 

The YTH screens here described, although should be further validatied by YTH and other 

non-hybrid methods, showed numerous novel putative binding partners that can be selected for 

further studies. The PPI maps around APP/AICD, in particular, the differences between wt, Y687E 

and Y687F mutants reflect the known information about the role of AICD Tyr-687 phosphorylation 

in an AD context. Therefore, integrating genetic and protein networks to infer pathway 

organization in complex diseases, such as AD, seems an appropriate approach to unravel the 

disease mechanisms and more effectively find targets for therapeutic intervention.  
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The work described in the Chapter IV was included in the following research paper: 
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Abstract: 

Fe65 is a multimodular adaptor protein that interacts with the cytosolic domain of the β-

amyloid precursor protein (APP), the major component of Alzheimer’s disease (AD) senile 

plaques. In the work here presented, we describe the existence of a new Fe65 transcript variant 

(GenBank Accession EF103274). A unique 5’ sequence of 69 nucleotides, spanning a region 

between exons 2 and 3 of the FE65 gene, was present in a yeast two-hybrid clone from a human 

brain cDNA library. In silico analysis and RT-PCR revealed the presence of a novel exon of 133 bp, 

and we redefined the structure of the human FE65 gene. The novel exon 3a-inclusive transcript 

generates a shorter isoform, p60Fe65. The migration pattern of the p60Fe65 isoform was 

observed previously and attributed to an alternative translation initiation site within the p97Fe65 

transcript. Here, we provide evidence for the origin of the previously unexplained p60Fe65 

isoform. Moreover, Fe65E3a is expressed preferentially in the brain and the p60Fe65 protein 

levels increased during PC12 cell differentiation. This novel Fe65 isoform and the regulation of the 

splicing events leading to its production, may contribute to elucidating neuronal specific roles of 

Fe65 and its contribution to AD pathology. 
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IV.1 INTRODUCTION 

 

Many proteins which interact with the intracellular domain of APP (AICD) have been 

reported, most of them possessing multiple protein-protein interaction domains, which in turn 

form complexes with other proteins. This suggests that these interacting proteins function as 

adaptor proteins, linking APP to specific molecular pathways. Several laboratories have used the 

AICD as ‘‘bait’’ in two-hybrid systems, identifying two major families of APP binding proteins, the 

Fe65 proteins and the X11/Mint proteins (Fiore et al., 1995; Borg et al., 1996; Bressler et al., 1996; 

Guenette et al., 1996; McLoughlin and Miller, 1996; Duilio et al., 1998; Tanahashi and Tabira, 

1999b). The Fe65 protein family comprises three members, encoded by distinct genes: Fe65, 

Fe65L1 and Fe65L2, which have all been reported to interact with APP. Whereas the Fe65L1 and 

Fe65L2 are ubiquitously expressed, Fe65 expression is enriched in the brain, although it is 

detected in smaller amounts in other tissues (Fiore et al., 1995; Bressler et al., 1996; Duilio et al., 

1998).  

Fe65 was described to modulate APP processing and increase the generation of the APP-

derived Aβ peptide, the major constituent of Alzheimer’s disease (AD) senile plaques (Sabo et al., 

1999; Xie et al., 2007). Fe65 was also demonstrated to have a role in the regulation of AICD-

mediated gene expression, and KAI1 gene the most consensual target (Baek et al., 2002). Both 

KAI1 and APP gene promoters are targets for the AICD/Fe65/Tip60 complex but other targets 

have been reported, such as the genes coding for GSK3β, BACE1, Tip60, Neprilysin, p53, α2-actin, 

Transgelin and EGF receptor (Kim et al., 2003; von Rotz et al., 2004; Pardossi-Piquard et al., 2005; 

Ryan and Pimplikar, 2005; Alves da Costa et al., 2006; Muller et al., 2007; Zhang et al., 2007; 

Konietzko et al., 2008). Other cellular functions attributed to Fe65 include: regulation of cell 

movement (Sabo et al., 2001, 2003; Ikin et al., 2007); regulation of cell cycle progression (Bruni et 

al., 2002) and response to DNA damage (Minopoli et al., 2007). Fe65 was reported to interact 

with the APP protein family (APP, APLP1 and APLP2), Mena, LRP, Notch1, 14-3-3g, P2X2 receptor, 

Alcadein, ApoE receptor 2, Estrogen receptor α, microtubule associated protein Tau, Nek6 kinase, 

cAbl kinase, transcription factor CP2/LSF/LBP1, histone acetyltranferase Tip60 and nucleosome 

assembly factor SET. The capacity of assembling tripartite complexes between APP or AICD and 

most of the Fe65 binding proteins, places Fe65 as a key molecule in pathways potentially involved 

in AD. 

Fe65 is a multimodular adaptor protein, possessing three protein-protein interacting 

domains: a WW domain (a protein module with two conserved tryptophans) and two tandem 
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phosphotyrosine binding domains – PTB1 and PTB2. The C-terminal phosphotyrosine binding 

domain of Fe65, PTB2, is responsible for the interaction with the intracellular domain of APP 

through its YENPTY motif (Fiore et al., 1995; Borg et al., 1996; Bressler et al., 1996; McLoughlin 

and Miller, 1996; Zambrano et al., 1997). Interaction of the Fe65 PTB2 domain with APP is 

dependent on the phosphorylation state of the latter at Thr-668, 14 residues N-terminal to the 

YENPTY sequence. Phosphorylation of APP Thr-668 (695-isoform numbering) impairs Fe65 

interaction suggesting that adaptor protein interactions with APP are differentially regulated by 

phosphorylation states, through altering the conformation of AICD (Ando et al., 2001; 

Radzimanowski et al., 2008) or modulating APP intracellular trafficking (Chang et al., 2006; Rebelo 

et al., 2007a, b; Vieira et al., 2009). The intracellular domain of APP has eight potentially 

phosphorylatable residues (Lee et al., 2003). Seven of which reside in the three AICD functional 

motifs: 653YTSI656, 667VTPEER672, and 682YENPTY687 (da Cruz e Silva et al., 2004a). Previous work from 

our laboratory has addressed the role of Tyr-687 phosphorylation by mimicking its constitutive 

phosphorylation (Y687E) and dephosphorylation (Y687F) (da Cruz e Silva et al., 2004c). APPY687E-

GFP was shown to be targeted to the plasma membrane and could not be detected in endocytic 

vesicles, the major site of β-secretase activity, exhibiting a concomitant dramatic decrease in Aβ 

production. In contrast, APPY687F-GFP was endocytosed similarly to wild type APP, but was 

relatively favoured for beta-secretase cleavage (Rebelo et al., 2007a). 

The use of the yeast two-hybrid (YTH) method for the identification of interacting proteins 

allows for the selection, among a large number of clones, from a human brain cDNA library, of 

proteins interacting with a bait protein. Therefore, the aim of this work was to identify brain 

proteins capable of interacting with APP harboring a mutation that mimics the dephosphorylated 

state of tyrosine-687. A YTH screen was carried out using as bait the APPY687F cDNA. The positive 

clones were analyzed and several matched Fe65. 

The human FE65 gene comprises 15 exons and three distinct splice variants have already 

been reported. Transcript variant 1 (GenBank Accession NM_001164) represents the longest 

transcript and encodes the longest isoform (Fe65E9). Transcript variant 2 (Accession NM_145689) 

encodes a protein that maintains the reading frame but is a shorter isoform (Fe65ΔE9). The 

expression of the Fe65E9 and Fe65ΔE9 isoforms is regulated by alternative splicing of the pre-

Fe65 mRNA in a cell type-dependent pattern. Among the 15 exons of the human FE65 gene, exon 

9, which encodes part of PTB1 domain, is the shortest with only 6 bp (AGAGAG). This miniexon is 

alternatively spliced and the exon 9-inclusive form (Fe65E9) is exclusively expressed, at high 
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levels, in neurons, while the exon 9-exclusive form (Fe65ΔE9) is widely expressed, at relative low 

levels, in non-neuronal cells (Hu et al., 1998; Hu et al., 1999). Both alternatively spliced Fe65 

mRNAs were present in the neuronal derived cell line PC12, as well as in the total brain mRNA 

(Duilio et al., 1991). However, the non-neuronal tissues (lung, kidney, testis and liver) and the 

non-neuronal derived cell lines (C6 glioma cells, BRL liver cells, FAO liver cells and Rat2 fibroblasts) 

were reported to contain only the Fe65ΔE9 transcript. Another human Fe65 transcript variant 

results from alternative splicing of the terminal exon 14 by selection of an alternative acceptor 

site, which was attributed to an intronic polymorphism within intron 13. This allele 2 encoded 

isoform, Fe65a2, has an altered C-terminal region, lacking part of the PTB2 domain. Since the 

PTB2 domain is the APP binding site, the Fe65a2 isoform binds APP less efficiently, suggesting a 

protective contribution to very late onset AD (VLODAT) (Hu et al., 2002).  

A putative shorter isoform of 60 KDa has been reported by several independent groups 

(Sabo et al., 2003; Wang et al., 2004; Cool et al., 2010) referred to as p60. The p60Fe65 expression 

was attributed to an alternative translation of the Fe65p97 transcript initiated in a methionine 

present in exon 3 (Wang et al., 2004). Here we describe a new splice variant of Fe65, Fe65E3a 

(GenBank Accession EF103274), and provide evidence that the novel transcript is the origin of the 

brain enriched p60Fe65 isoform, which appears to be particularly relevant in neuronal systems, 

and thus potentially physiologically significant in AD.  
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IV.2 MATERIALS AND METHODS 

 

IV.2.1 Yeast Two-Hybrid Screening 

 

MATCHMAKER GAL4 Two-hybrid System 2 (Clontech, Enzifarma, Portugal) was used to 

perform a YTH screen according to the manufacturer’s instructions, with minor modifications 

(Fardilha et al., 2004). The bait plasmid (pAS2-1-APPY687F, see below) was transformed in the yeast 

strain AH109 (Clontech, Enzifarma, Portugal) using the lithium acetate transformation method. 

The transformants were assayed for HIS3, ADE2 and MEL1 reporter genes’ activation and the BD-

bait fusion protein expression was verified by Western blotting. A total of 4.2 x 106 transformants 

from a human brain matchmaker cDNA library were screened by large scale yeast mating. Half of 

the diploid mixture was plated on SD/QDO (SD without Leu, Trp, Ade and His), and the other half 

on SD/TDO (SD without Leu, Trp and His). All plates were incubated at 30°C until colonies 

appeared. All positive clones were replated twice in SD/QDO medium containing X-α-Gal and 

incubated at 30°C for 3-8 days. True positives were identified as His+, Ade+ colonies and were 

positive for the α-galactosidase activity. Yeast plasmid DNA was extracted from the positive 

clones using the breaking buffer method and the AD-library plasmids were rescued by 

transformation of E. coli. Bacterial plasmid DNA was digested with HindIII and fragments 

produced were separated by agarose gel electrophoresis. Plasmids generating DNA fragments 

characteristic of the pACT-2+library insert digested with HindIII were further ABI sequenced using 

the GAL4 AD primer (Clontech, Enzifarma, Portugal). A search for similar sequences in the 

Genbank database was performed using the BLAST algorithm on the NCBI web site 

(http://blast.ncbi.nlm.nih.gov/). The library insert on plasmid F18, identified as a Fe65 new splice 

variant, was fully sequenced using specific primers. 

 

IV.2.2 Plasmid Construction 

 

To perform the YTH screen, the vector used to insert the bait cDNA, was Clontech’s GAL4 

binding domain (GAL4 DNA-BD) expression vector pAS2-1 (Clontech, Enzifarma, Portugal). The 

cDNA for human APP695 isoform, with a Y687F mutation was used as bait (da Cruz e Silva et al., 

2004c). The bait cDNA was PCR amplified (5’CCGCGCACCATGGCGATGCTGCCCGGTTTGG-3’; 
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5’GTGGCCCCGGGCTAGTTCTGCATCTGCTCAAAG-3’) and inserted in the vector pAS2-1 using 

NcoI/SmaI restriction enzyme sites, in frame with the GAL4 DNA-BD.  

Plasmids were also prepared for other procedures. The p97Fe65-CMV was obtained from 

the I.M.A.G.E. consortium (MRC Geneservice, UK) and corresponds to the Fe65ΔE9 cDNA 

(GenBank Accession: BC010854) inserted in the mammalian expression vector pCMV-SPORT6. The 

p60Fe65-CMV construct was obtained by substitution of the p97Fe65-CMV with the unique 

sequence of Fe65E3a from the RT-PCR clone G4-pCRblunt. Both p97Fe65-CMV and G4-pCRblunt 

were digested with KpnI and BglII and the desired fragments were excised from an agarose gel. 

The fragments were purified using the QIAquick Gel Extraction Kit (QIAGEN, IZASA, Portugal) and 

T4-ligated to produce the p60Fe65-CMV construct. All the constructs were verified by sequencing 

with specific primers, using a ABI PRISM 310 Genetic Analyzer (Applied Biosystems, Portugal). 

 

IV.2.3  Bioinformatics analysis  

 

Database searches were performed using BLAST (Altschul et al., 1990) and ALIGN algorithms 

(http://www.ncbi.nlm.nih.gov) in order to find homology with the YTH clone F18 5’ unique 

sequence of 69 nucleotides. The splice site prediction was achieved by making use of the 

programs NNSPLICE (http://www.fruitfly.org/seq_tools/splice.html), SPLIGN 

(http://www.ncbi.nlm.nih.gov/sutils/splign) and the gene prediction program GENSCAN 

(http://genes.mit.edu/GENSCAN.html) (Burge and Karlin, 1997; Reese et al., 1997; Burge and 

Karlin, 1998; Kapustin et al., 2008). Multiple sequence alignment was performed using the 

CLUSTALW version 2.0 alignment tool (Larkin et al., 2007) on the EMBL-EBI web site 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). 

 

IV.2.4 RT-PCR and sequencing of the Fe65 transcript variant 3 in human brain 

 

Adult brain poly A+ RNA (Clontech, Enzifarma, Portugal) was reverse transcribed using the 

AccuScript High Fidelity RT-PCR System (Stratagene, Soquimica, Portugal) and the reverse primer 

E14RV (5'-GGAAGGTGGGGGCTTCTTCATGG-3’) targeted to exon 14. The synthesized cDNA was 

amplified using the forward primer E3AFW (5’-TACTGCCTCTTGGACCAGTCAGG-3’, targeted to 

exon 3a and the reverse primer E10RV (5'-CGGCCATGATCTTAGAGCAGATC-3’), targeted to the 

exon 10 and exon 11 boundary. PCR fragments were analyzed on a 1.7% agarose gel stained with 

ethidium bromide. The RT-PCR products were excised from a 1% agarose gel and purified by using 
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QIAquick Gel Extraction Kit (QIAGEN, IZASA Portugal). The purified fragment was cloned into the 

pCR-blunt vector (Zero Blunt PCR Cloning Kit; Invitrogen, Alfagene, Portugal). One clone was 

selected by restriction analysis, clone G4, and the insert was sequenced using the M13RV primer, 

the T7 primer and Fe65 specific primers. 

 

IV.2.5 Northern-blot analysis of FE65 gene transcripts 

 

Probe 1 was prepared by EcoRI digestion of the G4 clone, obtained by RT-PCR, and 

corresponds to exons 3a to 10 of Fe65E3a. The probe cDNA was purified by low melting-point 

agarose gel electrophoresis, labeled by the random primed method using the High prime DNA 

labeling kit (Roche Applied Science, Portugal) and [α-32P]dCTP (GE Healthcare, VWR, Portugal). 

The labeled probe was purified by passage through a NucTrap column (Stratagene, Soquimica, 

Portugal) to remove unincorporated nucleotides. A human multiple tissue Northern blot (Ambion, 

Applied Biosystems, Portugal), a human brain Northern blot (Clontech, Enzifarma, Portugal) and a 

rat multiple tissue Northern blot (Clontech, Enzifarma, Portugal), were incubated at 68°C in the 

presence of the denatured radiolabeled DNA and hybridizing mRNAs were detected using a 

PhosphorImager (Bio-Rad Laboratories, Portugal). After probe stripping in 0.5% SDS at 90–100°C 

for 10 min, the same blot was re-used with a β-actin probe as a control gray.  

 

IV.2.6 Cell culture and transfections 

 

COS-7 cells (monkey kidney cell line) were grown in Dulbecco’s modified Eagle’s medium 

(DMEM; Gibco Invitrogen, Alfagene, Portugal) supplemented with 100 U/ml penicillin, 100 mg/ml 

streptomycin, 3.7 g/l NaHCO3 and 10% (v/v) fetal bovine serum (FBS). For transient transfection 

experiments, COS-7 cells were grown on 100 mm plastic culture dishes and transfected using 

LipofectAMINE 2000 (Invitrogen, Alfagene, Portugal), according to the manufacturer’s 

instructions. PC12 cells (rat pheochromocytoma cell line) were grown in RPMI 1640 (Gibco 

Invitrogen, Alfagene, Portugal) supplemented 100 U/ml penicillin, 100 mg/ml streptomycin, 0.85 

g/l NaHCO3 and 10% (v/v) horse serum and 5% (v/v) FBS. For differentiation, PC12 cells were 

treated for 12 days with 75 ng/ml NGF (Gibco Invitrogen, Alfagene Portugal), with serum reduced 

to 1%. SH-SY5Y cells (human neuroblastoma cell line) were grown in a 1:1 combination of 

minimum essential medium (MEM, Gibco Invitrogen, Alfagene Portugal) and Ham’s F12 medim 
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(Gibco Invitrogen, Alfagene, Portugal), with 10% (v/v) FBS, 2 mM L-glutamine, 0.1 mM non-

essential amino acids, supplemented 100 U/ml penicillin, 100 mg/ml streptomycin and 1.5 g/l 

sodium bicarbonate.  

Primary rat neuronal cultures were established from embryonic day 18 fetuses, as 

previously described (Henriques et al., 2007). After dissociation with trypsin and 

deoxyribonuclease I (0.15 mg/ml) in Hank’s balanced salt solution (HBSS) (0.45 mg/ml or 0.75 

mg/ml for cortical or hippocampal cultures, respectively, during 5-10 min at 37°C) cells were 

plated on poly-D-lysine-coated dishes at a density of 1.0x105 cells/cm2 in B27-supplemented 

Neurobasal medium (Gibco Invitrogen, Alfagene, Portugal), a serum-free medium combination 

(Brewer et al., 1993). The medium was supplemented with glutamine (0.5 mM), gentamicin (60 

μg/ml), and with or without glutamate (25 μM) for hippocampal or cortical cultures, respectively, 

for 9 days before the experimental procedures. All cultures were maintained at 37°C and 5% CO2. 

 

IV.2.1 Western blotting 

 

Cells in culture were harvested in 1% SDS and boiled. The protein content of all lysates was 

determined by the BCA method (Pierce, Dagma, Portugal) and the normalized samples were 

resolved by SDS-PAGE and transferred to nitrocellulose membranes. Immunoblotting analysis for 

Fe65 protein was carried out by first blocking possible nonspecific binding sites with nonfat dry 

milk in 10 mM Tris-HCl (pH 8.0)/150 mM NaCl. The anti-Fe65 primary antibody (Upstate #05-758; 

Millipore, Grupo Taper, Portugal) was incubated overnight at 1:5000 dilution. Detection was 

achieved using the ECLplus detection system (GE Healthcare, VWR, Portugal). Band size 

calculation was performed using the Quantity One software (Bio-Rad Laboratories, Portugal). 
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IV.3 RESULTS 

 

IV.3.1 Identification of a novel Fe65 isoform by yeast two-hybrid screening 

 

In the YTH screen 4.2 x 106 clones were screened, the mating efficiency was 8% and 131 

clones were isolated. Fifteen positive cDNA clones encoded a fragment of the Fe65 protein, 

neuronal isoform E9. The library fragment alignment was within the coding region on the 

sequence with the NCBI (National Center for Biotechnology Information) accession number 

NM_001164. The Fe65 protein is encoded by the FE65 (or APBB1) gene spanning 25 kb in 

chromosome 11p15. Three out of the 15 clones did not exactly match the database sequence 

Accession NM_001164 due to a unique 5’ sequence of 69 nucleotides. These clones are identical, 

therefore in subsequent analysis only one clone is presented (clone F18). The novel identified 

cDNA sequence was submitted to the GenBank database (Accession number EF103274; APPENDIX 

X). 

 

IV.3.2 In silico analysis of the 5’ exons of the human FE65 gene 

 

Three distinct Fe65 splice variants had previously been reported (Fig. IV.1A): Fe65E9 

(transcript variant 1), Fe65ΔE9 (transcript variant 2) and Fe65a2 (Fe65 allele 2). Bioinformatics 

analysis of these transcripts and alignment with the genomic sequence revealed the presence of 

15 exons. Transcript variant 1 (GenBank Accession NM_001164) represents the longest transcript 

and encodes the longest isoform (Fe65E9). This isoform is exclusively expressed in neurons. 

Transcript variant 2 (Accession NM_145689) encodes a protein that maintains the reading frame 

but is a shorter isoform (Fe65ΔE9). These two transcript variants differ in the mini-exon 9, the 

shortest with only 6 bp (AGAGAG), which is present only in the Fe65E9 (Hu et al., 1998). Another 

human variant (GenBank Accession AF394214) results from alternative splicing of the exon 14 by 

selection of an alternative acceptor site, which was attributed to an intronic polymorphism within 

intron 13. This allele 2 encoded isoform, Fe65a2, has an altered C-terminal region, lacking part of 

the PTB2 domain (Hu et al., 2002). 
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  Intron 3' end 5' end - Exon size (bp) - 3' end Intron 5' end 

    Exon 1    

human   ATGTTGTG - 86 - CCGCGCAG GTaggagg 

monkey   ------ ------ 

mouse   *GAC*CC* - 53 - A****G** **ga*tcc 

    Exon 2   

human  ccccacAG GAGCTGCC - 735 - GGACACAG GTaccttg 

monkey ------ ------ ------ 

mouse  t*t***** **T**A** - 735 - ******** ******** 

    Exon 2.2 (predicted)   

human  tgacagGG ATGGCAGA - 189 - AACAGCAG GTattccc 

monkey ------ ******** - 186 - ******** ******** 

mouse   ------   

    Exon 3a   

human tcccttAG TACTGCCT - 133 - CCTGGCAG GTgagggg 

monkey ******** *G****** - 133 - ******** ******** 

mouse *****c** *G****** - 132 - ******** ******** 

    Exon 3b   

human  cctggcAG ATTCCTTC - 176 - AGTCCCAG GTgaggct 

monkey  ******** ******** - 176 - ******** ******** 

mouse  ******** ******** - 176 - ******** *****a** 

 

 

The novel transcript is noted herein as Fe65E3a. Full sequencing revealed that this 

transcript is exon 9 inclusive, similarly to the neuronal isoform Fe65E9. Databases were searched 

for entries bearing homologies with the unique 5’ sequence of 69 nucleotides present in the YTH 

clone. An homology with the rhesus macaque (Macaca mulatta) “predicted mRNA similar to 

human Fe65” (GenBank Accession XM_001101631) was found. The sequence from YTH clone F18 

was aligned against the genomic sequences of human and rhesus macaque FE65 genes, using 

BLAST and ALIGN algorithms, and revealed homology within the human intronic region between 

exons 2 and 3 (Fig. IV.1A). The alignment against the rhesus macaque genomic and mRNA 

sequences showed homology with half of the macaque’s Fe65 second exon. In an attempt to 

define a new exon that could be alternatively spliced, putative intron-exon junctions were 

identified by comparing genomic and cDNA sequences and making use of the in silico resources 

Table IV.1: Exons 1-3b and intron/exon junctions in the FE65 gene. Nucleotide 

sequences of the 5’ and 3’ end of exons 1-3b and of the donor and acceptor site at the 

respective intron/exon junctions (upper case) of the human, rhesus monkey and 

mouse FE65 gene. Sequences of intron ends are given in lower case, except for the 

donor and acceptor sites in upper case. Exons and introns are numbered as referred 

to on Figure 1A and exon sizes are given. Homologies are shown by asterisks. 
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NNSPLICE, SPLIGN and GENSCAN (Table IV.1). In silico analysis showed the presence of an 

additional exon of 133 bp, denoted as exon 3a, which included the 5’ unique sequence on clone 

F18 (Fig. IV.1B). Based on these observations, we propose a redefinition of the structure of human 

FE65 gene: the previously described exon 3 is renamed exon 3b. The novel exon here described is 

named exon 3a (Fig. IV.1C). Several human ESTs (Expressed Sequence Tags) present in the 

GenBank database share high homology with the novel exon 3a, presenting further evidence that 

this sequence is present in mature mRNAs. Furthermore, the sequence of exon 3a is conserved 

and the splice sites are according to the consensus rules (GT/AG) (Table IV.1). 

The novel exon 3a has no in-frame ATG codons, therefore the translation initiation of the 

transcript variant Fe65E3a has to be elsewhere. The first in-frame ATG of the former exon 3, 

renamed exon 3b, which codes for the Met-260 of the p97Fe65, is a likely possibility. If the 5’ first 

exon of the novel transcript is exon 3a and the start codon is at exon 3b, the Fe65E3a transcript 

size will be 1954 bp and can be translated in to a 451 amino acid peptide (Table IV.2). However, a 

putative additional exon, exon 2.2, can be defined based in the bioinformatics tools and in the 

alignment search with the rhesus macaque Fe65 predicted mRNA sequence. The predicted exon 

2.2 has one conserved in-frame ATG, both in human and rhesus macaque sequences and a human 

EST overlaps it. In the macaque’s predicted Fe65 transcript exons 2.2 and 3a are spliced together, 

while exons 1 and 2 are skipped (Fig. IV.1A). Noteworthy, the sequence of the putative exon 2.2 is 

not conserved in the mouse gene. To add further complexity a putative exon, exon 2.1, was 

predicted in the human Fe65 gene, between exons 2 and 2.2, by the web servers mentioned 

above. Although the putative exon 2.1 carries an in-frame methionine residue no homologies with 

ESTs were found. In Figure 1C we represent the structure of the human FE65 gene including the 

novel exon 3a. The relative positions of putative exons predicted by the bioinformatics tools are 

also represented, as well as their in-frame ATG codons. 
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Figure IV.1: Gene structure and splice variants of human FE65. (A) Schematic representation of the human 

FE65 splice variants and comparison with the rhesus macaque (Macaca mulatta) predicted mRNA. The 

rhesus macaque exons are numbered as the corresponding human exons, for comparison purposes. The 

novel human Fe65E3a splice variant was submitted to GenBank (Accession EF103274). The alternatively 

spliced exons 2, 3a and 9 are represented in black. The exon 2.2 in the rhesus macaque predicted mRNA is 

represented in dark gray. (B) Nucleotide sequence of the novel exon 3a of the human, rhesus macaque and 

mouse FE65 genes. The novel sequence present in the YTH clone is underlined. Homologies are shown by 

asterisks. (C) Structure of the human FE65 gene. Open boxes correspond to non-coding sequences in exons 

and coding exons are represented by black filled boxes. The novel exon 3a is highlighted by an asterisk and 

the predicted exons 2.1 and 2.2 are represented by striped boxes. The in-frame ATG codons in the exon 3b 

and in predicted exons are indicated by arrows. 
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IV.3.3 RT-PCR validation of the novel exon 3a-inclusive splice variant of Fe65 

 

To ascertain the existence of the novel Fe65 splice variant identified in the YTH system, 

further RT-PCR experiments were performed using specific primers. The cDNA was synthesized 

from adult brain mRNA using a reverse primer in exon 14. Subsequent amplification reactions 

were carried out using several primer pairs to amplify an exon 3a-inclusive transcript (Fig. IV.2A). 

The partial amplification of the new transcript using the primer set E3AFW (targeted to exon 3a) 

and E10RV (targeted to the exons 10 and 11 boundary) produced the expected 0.9 kb fragment 

(Fig. IV.2B). This PCR fragment was ligated to pCR-blunt vector and the insert was fully sequenced, 

which confirmed the complete sequence of the novel exon 3a of 133 bp. We were unable to 

detect a transcript using primers to target the putative exons 2.1 and 2.2, which could include a 

starting codon. Experiments using a 5’RACE kit also retrieved an exon 3a-inclusive amplicon, albeit 

the cDNA library used was from human testis, and did not reveal an ATG upstream of E3a 

(Supplementary Figure IV.1, APPENDIX X). In Table IV.2, the structure and size of the full-length 

Fe65E3a RT-PCR clone is represented and compared to the previously described transcript 

variants Fe65E9 and Fe65ΔE9. 

 

 

Figure IV.2:  RT-PCR of Fe65E3a. (A) Localization of the primers for RT-PCR on human FE65 gene. The 925 

bp PCR product is represented as it was the only amplified product that could be produced which included 

exon 3a. (B) The cDNA was synthesized from an adult brain poly A+ RNA (Clontech) using a reverse primer 

targeting exon 14. Further amplification of the cDNA using the specific primer set E3AFW (targeted to exon 

3a) and E10RV (targeted to the exons 10 and 11 boundary), produced the expected 0.9 kb fragment (lane 

2). Lane 1: DNA size marker 1 Kb ladder (Invitrogen). 
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IV.3.4 Tissue distribution of Fe65E3a mRNA 

 

To estimate the relative size and abundance of the splice variant Fe65E3a we performed 

Northern blotting analysis using three commercially available premade blots: human multiple 

tissue, rat multiple tissue and human brain. The 32P-labeled cDNA probe 1 matched exons 3a to 10 

of Fe65E3a. Therefore, more than 80% of probe 1 is also complementary to the p97Fe65 mRNAs 

(consisting of transcript variants Fe65E9 and Fe65ΔE9) and detected the previously described 2.6 

kb transcripts. Transcript variants Fe65E9 and Fe65ΔE9 migrate together, but previous reports 

showed that Fe65E9 is neuron-specific (Hu et al., 1999). Based on in silico analysis and RT-PCR 

validation, the Fe65E3a transcript (exon 3a-14) is 1954 bp (Table IV.2). Probe 1 hybridized to a 

band around 2 kb, which had less intensity than the higher band of 2.6 kb. From the approximate 

size of the Fe65E3a mRNA it is not possible to assure that the cDNA characterized above is the 

full-length transcript, although by size comparison it cannot be much longer. One or more 

additional “short” exons might be present upstream exon 3a, such as the putative exon 2.2 of 189 

bp, although RT-PCR did not detect such a product.From the Northern blot analysis we observed 

that Fe65E3a mRNAs from human (Figs. IV.3A,C) and rat tissues (Fig. IV.3B) appear to be the same 

size. In the human northern blot (Ambion) (Fig. IV.3A) all Fe65 mRNAs appear to migrate slightly 

faster than in the two other blots (Fig. IV.3B,C), compared to the RNA size markers. However, if 

one compares to the migration of the p97Fe65 transcripts (E9+ΔE9) bearing in mind a 2.6 Kb size, 

then the comparative migration for the p60Fe65 mRNA is nearer to that expected. The novel 

transcript migrated at 1.9 kb (Fig. IV.3A) in accordance with the size of the characterized cDNA 

(1954 bp) (Table IV.2). 
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    Human Fe65 transcripts 

    E9 (transcript 1) ΔE9 (transcript 2) E3a (transcript 3) 

  Exon Nº  total coding total coding total coding 

  1 86 0 69 0   ---     ---   

  2 735 721 735 721   ---     ---   

  3a   ---     ---     ---     ---   133 0 

  3b 176 176 176 176 176 120 

  4 57 57 57 57 57 57 

  5 86 86 86 86 86 86 

  6 64 64 64 64 64 64 

  7 150 150 150 150 150 150 

  8 128 128 128 128 128 128 

  9 6 6   ---     ---   6 6 

  10 115 115 115 115 115 115 

  11 85 85 85 85 85 85 

  12a 84 84 84 84 84 84 

  12b 116 116 116 116 116 116 

  13 177 177 177 177 177 177 

  14 577 168 577 168 577 168 

mRNA size (bp)  2642 2133 2619 2127 1954 1356 

    Human Fe65 isoforms 

  E9 (p97Fe65) ΔE9 (p97Fe65) E3a (p60Fe65) 

Number of amino acids 710 708 451 

Theoretical Mw (kDa) 77 77 50 

Migration in SDS gels 97 97 60 

 

 

All detectable splice variants of Fe65 are highly expressed in the brain compared to other 

tissues, both in human and rat blots (Figs. IV.3A,B). As described previously, the human Fe65 

transcripts E9 and ΔE9 are highly expressed in brain, but are also detected in the ovary and barely 

detected in other tissues (spleen and prostate). The novel Fe65E3a transcript is mainly detected in 

brain, though at a lower level than the p97 mRNAs. A weak signal of human Fe65E3a is also 

detected in spleen and prostate (Fig. IV.3A). Likewise, in the rat tissues the p97Fe65 transcripts 

are more abundant in the brain. Low levels of expression were detected in the heart. Fe65 had 

barely detectable expression in lung and liver. Among the rat tissues the Fe65E3a transcript was 

detectable only in the brain (Fig. IV.3B). 

  

Table IV.2: Exons 1-3b and intron/exon junctions in the FE65 gene. Nucleotide sequences of 

the 5’ and 3’ end of exons 1-3b and of the donor and acceptor site at the respective 

intron/exon junctions (upper case) of the human, rhesus monkey and mouse FE65 gene. 

Sequences of intron ends are given in lower case, except for the donor and acceptor sites in 

upper case. Exons and introns are numbered as referred to on Figure 1A and exon sizes are 

given. Homologies are shown by asterisks. 
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Figure IV.3: Northern blot analysis of Fe65 mRNAs in human and rat tissues. Premade blots from human 

tissues (Ambion) (A), rat tissues (Clontech MTN Blot) (B) and human brain and spinal cord (Clontech MTN 

Blot) (C) were hybridized with probe 1 (
32

P-labeled Fe65E3a cDNA corresponding to exons 3a-10). The 

previously reported transcript variants Fe65E9 and Fe65ΔE9 were also detected by probe 1 migrating 

together at 2.6 kb. The minor transcript of approximately 2 kb (Fe65E3a) is mostly seen in the brain. RNA 

size markers are depicted on the left side. β-actin was probed as a control. (D) The relative expression of 

the Fe65E3a splice variant is represented as a percentage of total Fe65 mRNAs. 

 

 

Analysis of the human central nervous system blot, containing 2 µg of poly(A)+ RNA per lane 

(Clontech Human Brain MTN Blot II) showed two bands in all tissues, though the lower band is 

barely detected in the spinal cord (Fig. IV.3C). The expression of a 1.9 Kb mRNA was in accordance 

with the size of the characterized mRNA, in all regions of the brain. The Fe65 novel transcript of 

1.9 kb had lower levels of expression than the p97Fe65. Normalizing the expression levels of 
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Fe65E3a to the total Fe65 transcripts, gave insights into the relative expression of Fe65E3a (Fig. 

IV.3D). The highest level was found in the cerebral cortex, where Fe65E3a represents 42% of the 

total Fe65 mRNAs. Relative lower levels where found in the other brain tissues and the lowest 

relative expression of Fe65E3a was in the spinal cord (9%) (Fig. IV.3C).  

 

IV.3.5 Evidence that p60Fe65 arises from the alternatively spliced Fe65E3a 

transcript 

 

The protein deduced from the novel Fe65E3a transcript has 451 amino acids and a 

theoretical molecular mass of 50 kDa (Table 2). The translation start site is in the first in-frame 

ATG in exon 3b, corresponding to Met-260 of p97Fe65. Consequently, this shorter isoform has a 

N-terminally truncated WW domain and lacks some features in comparison to p97Fe65, such as 

an acidic residue cluster (ARC) and a Ser phosphorylation site (Fig. IV.4A). The WW domain is 

encoded by exon 3b, and is present in p97Fe65, in both isoforms Fe65E9 and Fe65ΔE9. 

Western blotting analysis of the Fe65 isoforms, using an antibody that recognizes the WW 

domain of Fe65, showed the 97 kDa band of isoforms E9/ΔE9 as well as a band that migrates 

around 60 kDa. This 60 kDa band was observed before by other groups that used the same 

antibody (Sabo et al., 2003), or antibodies raised against the Fe65 C-terminus (Wang et al., 2004; 

Cool et al., 2010). 

The endogenous p60Fe65 isoform is detectable at higher levels in rat cortex and 

hippocampus primary cultures, and was detected in lower levels in PC12 and SY-SH5Y cell lysates, 

and not detected in COS-7 cells (Fig. IV.4B). Given that the expected MW of Fe65E3a is 50 kDa and 

the detected band is around 60 kDa, we generated a Fe65E3a construct in a mammalian 

expression vector and transfected COS-7 cells. Despite having a calculated molecular mass of 50 

kDa, the transfected Fe65E3a migrates around 60 kDa in parallel with the endogenous p60Fe65 

detected in rat hippocampus and cerebral cortex lysates (Fig. IV.4C). In fact, two bands were 

detected in hippocampus and cortex around 60 kDa. The band migrating slightly slower may have 

post-translational modifications such as phosphorylation, evident in the endogenous protein in 

vivo, but this has to be further tested. 
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Figure IV.4: p60Fe65 expression levels in different cells. (A) Comparison of the alternative splicing patterns 

that generate the p97Fe65(E9) and p60Fe65 isoforms. Asterisks represent phosphorylatable amino acids. 

(B) Endogenous Fe65 isoforms were detected by immunoblotting in a non-neuronal cell line (“NN”, COS-7) 

in neuronal-like cell lines (“NL”, PC12 and SH-SY5Y) and primary neuronal cultures [“N”, hippocampal (hipp) 

and cortical cultures (cortex)]. (C) Fe65E3a cDNA was inserted in a mammalian expression vector to 

generate a p60Fe65 construct. COS-7 cells were transfected with p97Fe65, p97Fe65+p60Fe65 and p60Fe65 

(C, non-transfected control). M, Molecular weight marker (Precision Plus Protein Dual Color Standards; Bio-

Rad). (D) PC12 cells were differentiated for 12 days in the presence of 75 ng/ml nerve growth factor (NGF). 

Cells were collected at days: 1, 4, 6, 10 and 12. For day one 25 µg of total protein was loaded (*), and 60 µg 

from the other samples. (E) Expression of p60Fe65 as a percentage of total Fe65 isoforms, during PC12 

differentiation with NGF for 12 days. Results were normalized to the amount of total protein content and 

to the β-tubulin expression levels. 
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IV.3.6 p60Fe65 protein levels in differentiating cells 

 

Previous reports showed that the Fe65 isoforms E9 and ΔE9 are alternatively spliced in a 

cell-type dependent pattern: the ΔE9 isoform is expressed in non-neuronal cells and the E9 is 

expressed in neurons. When P19 cells were differentiated to neurons with retinoic acid and 

cytosine arabinoside, the expression pattern of mRNA changed from the ΔE9 to the E9 isoform 

(Hu et al., 1999). Both isoforms were detected in the rat pheochromocytoma cell line PC12 with 

the E9 being more abundant (Duilio et al., 1991).  

To determine the effect of neuronal differentiating factors on the expression of p60Fe65, 

PC12 cells were differentiated with nerve growth factor (NGF). For differentiation experiments, 

cells were plated at 1x104 cell/cm2 and grown for 12 days in RPMI medium with serum reduced to 

1%, in the presence of 75 ng/ml NGF. Cells were collected at days: 1, 4, 6, 10 and 12. Due to the 

low initial cell density the sample corresponding to day 1 of NGF has a very low total protein 

content, as determined by the BCA method. Therefore only 25 µg of total protein was loaded on 

the SDS-PAGE for day 1, 60 µg were loaded for the other samples, but this was corrected for the 

quantitative comparison. Under our experimental conditions, the protein levels of p97Fe65, which 

corresponds to the E9 and ΔE9 isoforms migrating together, doubled from day 1 to day 4, 

normalizing for the amount of protein content and for β-tubulin expression levels. During the 

neuronal differentiation from day 4 to 12, p97Fe65 levels did not alter significantly (Fig. IV.4D,E).  

The 60 kDa protein deduced from the novel Fe65E3a transcript is exon 9-inclusive and its 

expression was mainly detected in neuronal cells. In undifferentiated PC12 cells p60Fe65 was 

barely detected. The levels of p60Fe65 increased consistently with time of NGF exposure and by 

day 12 it was 9.5 fold higher (Fig. IV.4D). Moreover, the ratios of p60Fe65/total Fe65 also 

increased from day 1 to day 12. At this final time point the p60Fe65 isoform makes up 30% of 

total Fe65. Overall, these results demonstrate that p60Fe65 is not only expressed in vivo but is 

closely associated with neuronal function. 
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IV.4 DISCUSSION 

 

In the work here presented we describe a novel Fe65 transcript variant, Fe65E3a, which 

arises from alternative splicing of the FE65 gene. A novel exon, exon 3a, was partially present in a 

YTH clone from a human brain library. In silico analysis and RT-PCR experiments revealed the 

sequence of the complete exon 3a. The estimated size of mRNA, as given by Northern analysis, 

and the corresponding protein analyzed by Western blotting provide evidence for the full-length 

transcript sequence. In summary, experimentally the existence of the exon 3a-inclusive transcript 

is supported by the fact that: (i) the YTH clone is from human brain cDNA expression library; (ii) 

the full-length exon 3a was obtained from a human brain mRNA expression library by RT-PCR; (iii) 

the Fe65E3a mRNA was detected in human and rat tissues by Northern blotting; (iv) the protein 

was detected in transfected cells migrating in parallel with the endogenous band; (v) several ESTs 

overlapping exon 3a are present in the database; (vi) the sequence of exon 3a is conserved and 

the splice sites are according to the consensus rules. We propose a redefinition of the FE65 gene 

to include the novel exon 3a, thus defining 16 exons for the Fe65 gene. The mechanism of 

alternative splicing, giving rise to the Fe65E3a mRNA is a mutually exclusive event between exon 2 

and exon 3a (exon 3a is spliced while exon 2 is skipped). The novel transcript denoted as Fe65 

transcript variant 3 or Fe65E3a, encoding isoform p60Fe65, is exon 9-inclusive, which is consistent 

with its origin from a brain library.  

Fe65E3a is predominantly expressed in the brain, both in human and rat, though at a lower 

level than the p97 mRNAs. Nevertheless, in some brain regions the ratios of Fe65E3a/total were 

noteworthy, e.g. in the cerebral cortex where Fe65E3a represents 42% of the total Fe65 mRNAs. 

We also find high Fe65E3a relative expression in the cerebellum and temporal lobe, which 

includes the hippocampus and the amygdala. The hippocampus, cerebral cortex and amygdala 

play a major role in memory, cognition and behavior and are the brain regions mostly affected by 

the neuropathological hallmarks of AD (reviewed in Duyckaerts et al., 2009). 

A 60 kDa Fe65 isoform of unknown origin has been mentioned in previous reports and 

referred to as p60. The 60 kDa band was observed specifically when using antibodies raised 

against the Fe65 C-terminus (Sabo et al., 2003) and was attributed to an alternative translation of 

the p97Fe65 transcript initiated in a methionine present in the former exon 3 (Wang et al., 2004; 

Cool et al., 2010). Wang et al. (2004) generated p97Fe65 knockout mice and observed an 

upregulation of the p60Fe65 isoform which was attributed to translation of an alternative 
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methionine on the p97Fe65 transcript (Wang et al., 2004; Cool et al., 2010). The endogenous 

p60Fe65 isoform is detectable in higher levels in rat cortex and hippocampus primary cultures and 

was not detected in non-neuronal cells. Despite having a calculated molecular mass of 50 kDa, the 

transfected Fe65E3a protein migrates around 60 kDa in parallel with the endogenous p60Fe65 

detected in rat hippocampus and cerebral cortex lysates. Together our results characterize a new 

Fe65 splice variant and provide evidence that the novel transcript is the origin of the brain 

enriched p60Fe65 isoform. 

The alternatively spliced p60Fe65 isoform in the brain is an interesting candidate of 

neuronal physiological relevance. In fact, isoform-specific p97Fe65 KO mice did not exhibit 

neuroanatomical brain abnormalities, but impaired performance in learning and memory tests 

were evident at 14 months, suggesting that p97Fe65 has a role in cognition (Wang et al., 2004). 

The lack of neuroanatomical alterations on the p97Fe65 KO mice might be due to elevated p60 

isoform or to the expression of the Fe65L1 and Fe65L2, since it is likely that there is some 

redundancy among the different Fe65 protein family members. Conversely, the Fe65;Fe65L1 

double knockout mice, deficient for two of the three Fe65 protein family members exhibited 

defective cortical neuronal migration during development, resembling cobblestone 

lissencephalies (Guenette et al., 2006). This phenotype is similar to that observed in 

APP;APLP1;APLP2 triple KO mice (Herms et al., 2004) and Mena KO mice (Lanier et al., 1999), 

suggesting that APP, Fe65 and Mena act together in a neurodevelopment signaling pathway. 

Indeed, p60Fe65 has a N-terminally truncated WW domain which might compromise the protein-

protein interactions occurring with Mena, SET, P2X2, Nek6, c-Abl or 14-3-3g. The integrity of the 

WW domain also influences the role of Fe65 in transcriptional activation (Duilio et al., 1991; Cao 

and Sudhof, 2004; Telese et al., 2005), as already shown for the p60Fe65 isoform (Cool et al., 

2010). 

It is interesting to note that this novel transcript was identified when the YTH screen was 

carried out with the APPY687F bait. Similar screens with the wild type APP construct resulted in 

Fe65 isoforms previously described (data not shown). In this context, it is important to consider 

data by Rebelo et al. (2007a, b) where the APPY687F mutant, which mimics dephosphorylation at 

Tyr-687, was preferentially endocytosed and targeted for β-secretase cleavage, in contrast with 

the APPY687E phospho-mimicking mutant. 

In closing, results demonstrate for the first time the sequence of the novel Fe65E3a splice 

variant, which codes for the previously unexplained p60Fe65 isoform. Alternative splicing is a key 
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regulatory mechanism for generating tissue-specific Fe65 transcripts increasing protein diversity 

from the same gene and its contribution to AD pathology deserves further investigation. 
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Abstract: 

Proteolytic processing of the β-amyloid precursor protein (APP) occurs through alternative 

pathways, culminating with the release of APP intracellular domain (AICD). AICD can translocate 

to the nucleus and regulate transcription, but its activity is dependent on interactions with other 

proteins. In the nucleus, AICD, FE65 and Tip60 associate into AFT complexes, which are targeted 

to nuclear spots that correspond to transcription factories. Here we report that RanBP9 interacts 

with the cytoplasmic domain of APP, through the NPXY internalization motif. Moreover, we found 

that RanBP9 interacts with Tip60, which dramatically relocated RanBP9 from a widespread cellular 

distribution to nuclear speckles. AICD nuclear signaling occurs predominantly through the 

amyloidogenic pathway of APP cleavage and RanBP9 transfection was demonstrated previously to 

increase Aβ generation. Nevertheless, we show that RanBP9 has a negative effect on AICD nuclear 

signaling. RanBP9 relocated AICD to the Tip60-enriched nuclear speckles, and prevented AFT spot 

formation. Furthermore, transfecting increasing amounts of RanBP9 reduced the expression of 

AICD-regulated genes. We conclude that RanBP9 has an inhibitory regulatory effect on AICD-

mediated transcription by relocating AICD away from transcription factories. 
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V.1   INTRODUCTION 

 

The β-amyloid precursor protein (APP) generates the Aβ peptide, which plays a central role 

in the amyloid cascade hypothesis of Alzheimer’s disease (AD) (Hardy and Higgins, 1992). APP is a 

type I transmembrane glycoprotein that undergoes sequential proteolytic processing being first 

cleaved by α-secretase (non-amyloidogenic pathway) or by β-secretase (amyloidogenic pathway) 

resulting in ectodomain shedding and generation of α- or β-C-terminal fragments (CTFs) (Esch et 

al., 1990; Sisodia et al., 1990; Gandy et al., 1992; Seubert et al., 1993; Vassar et al., 1999). 

Membrane-bound α- and β-CTFs are subsequently processed by g-secretase, liberating the p3 or 

the Aβ peptides, respectively, and the APP intracellular domain (AICD) (De Strooper et al., 1998; 

Wolfe et al., 1999; Passer et al., 2000).  

AICD has three functional motifs that mediate interactions with other proteins: 653YTSI656, 

667VTPEER672 and 682YENPTY687 (human APP695 isoform numbering) (da Cruz e Silva et al., 2004a). 

For example the endocytosis mediating motif 653YTSI656 binds to the microtubule interacting 

protein PAT1 (Zheng et al., 1998) and the motif 667VTPEER672 is responsible for interaction with 14-

3-3g (Sumioka et al., 2005). The conserved 682YENPTY687 protein interaction motif, which includes 

the NPXY internalization signal, is recognized by phosphotyrosine binding domains of several 

proteins such as the Fe65 protein family (Fe65, Fe65L1 and Fe65L2) (Fiore et al., 1995; Bressler et 

al., 1996; Guenette et al., 1996; Duilio et al., 1998); the X11/Mint proteins (X11, X11L, X11L2) 

(Borg et al., 1996; McLoughlin and Miller, 1996; Zhang et al., 1997; Tanahashi and Tabira, 1999b); 

Shc A and Shc C (Tarr et al., 2002b); JIP-1 and JIP-2 (Scheinfeld et al., 2002); Dab1 (Trommsdorff et 

al., 1998) ; Numb and Numb-like (Roncarati et al., 2002); GULP1 (Beyer et al., 2010). Other AICD 

binding proteins have been identified, such as Go (Nishimoto et al., 1993); cAbl (Zambrano et al., 

2001); APP-BP1 (Chow et al., 1996); UV-damaged DNA-binding protein (Watanabe et al., 1999); 

ARH (Noviello et al., 2003); Grb2 (Zhou et al., 2004); Pin1 (Pastorino et al., 2006); FKBP12 (Liu et 

al., 2006); AIDA-1 (Ghersi et al., 2004); SET (Madeira et al., 2005); CPEB (Cao et al., 2005); Flotillin-

1 (Chen et al., 2006); and SNX17 (Lee et al., 2008). 

The interaction between AICD and Fe65 has been extensively studied with respect to the 

transactivation properties of the AICD/Fe65/Tip60 complex (Cao and Sudhof, 2001). After 

intramembranous g-secretase cleavage of APP, AICD is released and may translocate to the 

nucleus where it participates in transcriptional regulation, in a manner analogous to Notch 

signaling. In the canonical Notch signaling pathway, sequential cleavage by α-/g-secretases 

releases the intracellular domain of Notch (NICD) that translocates to the nucleus to modulate 
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gene expression, through binding to transcription factors (De Strooper et al., 1999). Hence, APP 

and Notch are analogous to many other membrane proteins that are subject to regulated 

intramembrane proteolysis (RIP) (Kang et al., 1987; Kopan and Goate, 2000). Nevertheless, the 

cytoplasmic tail of APP is relatively short and is rapidly degraded after release from the 

membrane by the insulin degrading enzyme or by the endosomal/lysosomal system (Cupers et al., 

2001; Edbauer et al., 2002; Vingtdeux et al., 2007a). However, the half-life of AICD can be 

considerably increased by interaction with Fe65, facilitating the translocation of AICD to the 

nucleus (Kimberly et al., 2001). Moreover, only the AICD generated through the amyloidogenic 

pathway exhibited nuclear signaling, due to the localization of β-secretase processing of APP at 

the endosomes, allowing a faster microtubule-based transport to the nuclear vicinity before g-

cleavage releases AICD (Goodger et al., 2009). 

In the nucleus, AICD was reported to associate in multiple spherical nuclear spots with Fe65 

and the histone acetyltransferase Tip60, known as the AFT-complexes, which were demonstrated 

to correspond to transcription factories (von Rotz et al., 2004; Konietzko et al., 2010). Indeed, 

several AICD target genes have been identified, such as the genes coding for KAI1 (Baek et al., 

2002), thymidilate synthase (Bruni et al., 2002), GSK-3β (Kim et al., 2003; Ryan and Pimplikar, 

2005), APP, BACE, Tip60 (von Rotz et al., 2004), neprilysin (Pardossi-Piquard et al., 2005), p53 

(Alves da Costa et al., 2006), α2-actin, transgelin (Muller et al., 2007), EGF receptor (Zhang et al., 

2007), LRP1 (Liu et al., 2007), the mouse Nme1 and Nme2 (Napolitano et al., 2008), and, in 

Caenorhabditis elegans, acetylcholinesterase (Bimonte et al., 2004). 

The identification of proteins that specifically interact with the cytoplasmic domain of APP 

have gradually contributed to unraveling the biological functions of APP and its fragments. In fact, 

APP binding proteins can influence its intracellular trafficking and consequently its processing via 

different pathways (da Cruz e Silva et al., 2004a). RanBP9 was recently reported to co-

immunoprecipitate with APP and BACE1, increasing β-processing of APP (Lakshmana et al., 2009). 

Here, we characterize the association of RanBP9 with AICD and show a novel interaction between 

Tip60 and RanBP9. We demonstrate that RanBP9 recruits AICD to Tip60-enriched nuclear 

speckles, preventing AFT-complex formation and AICD-mediated nuclear signaling. 
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V.2 MATERIALS AND METHODS 

 

V.2.1 Yeast two-hybrid screens 

 

MATCHMAKER GAL4 Two-Hybrid System 2 (Clontech, Enzifarma, Portugal) was used to 

perform several yeast two-hybrid screens according to the manufacturer’s instructions, as 

previously described (Domingues et al., 2011). The vector used to insert the baits cDNA, was 

Clontech’s GAL4 DNA-binding domain (GAL4-BD) expression vector pAS2-1. Bait-1 cDNA, coding 

for human APP695 (GenBank accession NM_201414), was PCR amplified (5’CCGCGCACCATGGCGAT 

GCTGCCCGGTTTGG-3’; 5’GTGGCCCCGGG CTAGTTCTGCATCTGCTCAAAG-3’) and inserted in pAS2-1 

using NcoI/SmaI restriction enzyme sites, in frame with the GAL4 DNA-BD. Bait-2, corresponding 

to AICDY687E
, was PCR amplified (5’ATCACCATGGTGATGCTGAAGAAG-3’; 

5’GTGGCCCCGGGCTAGTTCTGCATCTGCTCAAAG-3’) from a plasmid containing the APP
Y687E mutant 

cDNA (pAV10) (da Cruz e Silva et al., 2004b). The insert was T4-ligated to the vector pAS2-1 using 

NcoI/SmaI restriction enzyme sites, in frame with the GAL4 DNA-BD. The bait plasmids pAS2-1-

APP and pAS2-1-AICDY687E were transformed in the yeast Saccharomyces cerevisiae strain AH109 

(Clontech, Enzifarma, Portugal) using the lithium acetate transformation method. The 

transformants were assayed for HIS3, ADE2 and MEL1 reporter genes’ intrinsic activation and the 

BD-baits fusion protein expression was verified by western blotting. 

A total of 5.6 x 105 (YTH1, YTH screen with bait-1) or 1.1 x 108 (YTH2, screen with bait-2) 

independent clones from human brain Matchmaker cDNA libraries (Clontech, Enzifarma, Portugal) 

were screened by large scale yeast mating. True positive clones were  identified as His+, Ade+ 

colonies and were positive for the α-galactosidase activity. Yeast plasmid DNA was extracted from 

the positive clones using the breaking buffer method (Yeast Protocols Handbook, Clontech) and 

the pACT2-library plasmids were rescued by transformation in E. coli XL-1 Blue. The library cDNAs 

were sequenced using the GAL4-AD primer (Clontech, Enzifarma, Portugal) and specific primers 

using an ABI PRISM 310 Genetic Analyzer (Applied Biosystems, Portugal). A search for similar 

sequences in the GenBank database was performed using the BLAST algorithm 

(http://www.ncbi.nlm.nih.gov) (Altschul et al., 1990).  
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V.2.2 Analysis of APP/AICD-RanBP9 interactions in yeast and α-Gal activity assay 

 

The RanBP9 prey clone CYE1 (or N-terminally truncated RanBP9) was tested for activation 

of a GAL4-dependent HIS3 promoter in the AH109 strain in the presence of different 

concentrations of 3-aminotriazole (3-AT). A concentration of 60 mM was established as the 

optimal to use in all subsequent tests. The yeast strain AH109 was co-transformed using the 

lithium acetate method, with the following plasmid pairs: pAS2-1/pACT2; pVA3-1/pTD1-1; pAS2-

1/RanBP9-pACT2; APP-pAS2-1/RanBP9-pACT2; AICD-pAS2-1/RanBP9-pACT2. To assay for the 

reporter genes activation, co-transformed clones were grown on SD/QDO/X-α-Gal/60mM 3-AT. 

For the quantitative a-Galactosidase activity assay, fresh yeast colonies expressing the pairs 

of interacting proteins being analyzed were grown on 4 ml of SD/TDO selective medium (SD/-

Trp/-Leu/-His). The negative control AH109 (pAS2-1 + pACT2) was grown on SD/-Trp/-Leu. 

Cultures were incubated overnight at 30°C with shaking at 200 rpm. The optical density of the 

culture at 600 nm was recorded, 1 ml of the culture was centrifuged for 5 minutes at 12,000g, and 

the supernatant was removed for analysis. The assay was performed by combining 8 µl of culture 

supernatant with 24 µl of Assay Buffer (100 mM PNP-α-Gal solution, 0.5 M NaOAc [1:2 (v/v) ratio]; 

PNP-α-Gal, p-nitrophenyl α-D-Galactopyranoside, Sigma-Aldrich, Portugal). After incubation for 60 

minutes at 30°C the reaction was terminated with 960 µl of stop solution (0.1 M NaCO3) and the 

optical density at 410 nm was recorded. The α-galactosidase milliunits were calculated applying 

the formula below, as described by the manufacturer (Yeast Protocols Handbook, Clontech), for 

the 1 ml assay format: [milliunits/(ml x cell)] = OD410 x 992 x 1000 / [OD600 x time (min) x 16.9 x 8].  

 

V.2.3 Mapping of AICD and RanBP9 interaction domains 

 

Several deletion mutants of APP C-terminus (APP695 human neuronal isoform) were 

inserted in the pAS2-1 vector in frame with Gal4-BD: p24 (expressing amino acids 599-681), p26 

(expressing 599-669), p27 (expressing 599-660), p28 (deletion of amino acids 662-672) and p30 

(deletion of amino acids 675-691). The yeast strain AH109 was transformed with the following 

plasmid pairs: AICDWT/RanBP9; pVA3-1/pTD1-1; pAS2-1/pACT2; p24/RanBP9; p26/RanBP9; 

p27/RanBP9; p28/RanBP9; p30/RanBP9. The co-transformants were assayed for reporter genes’ 

activation by streaking onto SD/QDO/X-α-Gal/3-AT. 
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The RanBP9 protein comprises four domains: SPRY, LiSH, CTLH and CRA. cDNA sequences 

corresponding to the SPRY domain (amino acids 212-333), to the LiSH/CTLH domains (amino acids 

365-460) and to the CRA domain (amino acids 615-729) were inserted in pACT2 in fusion with 

Gal4-AD. Other combinations of these domains were also used: BN1 (amino acids 136-333), BN2 

(amino acids 136-460), BM1 (amino acids 212-460), BC1 (amino acids 409-729) and BC2 (amino 

acids 365-729). The yeast strain AH109 was transformed with the following plasmid pairs: 

AICD/SPRY; AICD/LisH-CTLH; AICD/CRA; pAS2-1/pACT2; pVA3-1/pTD1-1; AICD/BN1; AICD/BN2; 

AICD/BM1; AICD/BC1; AICD/BC2. The co-transformants were assayed for growth and for the 

presence of blue color on SD/QDO/X-α-Gal/3-AT. 

 

V.2.4 Analysis of RanBP9-Tip60 interaction in yeast 

 

Tip60 isoform 2 cDNA (GenBank Accession Number NM_006388) was excised from the 

Myc-Tip60 plasmid by digestion with NcoI/BamHI and inserted in pAS2-1, in frame with Gal4-BD. 

The yeast strain AH109 was transformed using the lithium acetate method, with the following 

plasmid pairs: pAS2-1/pACT2; Tip60-pAS2-1/pACT2; Tip60-pAS2-1/RanBP9-pACT2 and pVA3-

1/pTD1-1. Co-transformants were selected on SD minimal medium lacking, Trp and Leu. To assay 

for the reporter genes’ activation co-transformed clones were grown on SD/QDO/X-α-Gal/60mM 

3-AT. 

In order to map the RanBP9 domain responsible for the interaction with Tip60, the above 

mentioned Gal4-AD fusion constructs corresponding to the RanBP9 domains (SPRY, LiSH-CTLH, 

CRA, BN1, BN2, BM1, BC1 and BC2) were also co-transformed with Tip60-pAS2-1 in AH109 yeast 

cells. Co-transformants were assayed for growth and for the presence of blue color on SD/QDO/X-

α-Gal/60mM 3-AT. 

 

V.2.5 Glutathione S-transferase pull-down assay 

 

A GST pull-down assay was performed to confirm the specific interaction between RanBP9 

and APP in vitro. To express a recombinant GST-tagged RanBP9 protein, pGEX-2T (GE Healthcare, 

VWR, Portugal) glutathione S-transferase (GST)-fusion vector was digested with BamHI and EcoRI. 

RanBP9 cDNA was PCR amplified (5’-GCAGTTGATCAGTCG CGGCCGGGATGTCCG-3’; 5’-GCTCTTGC 

AATTGATAGCTAATGTAGGTAGTC-3’) and digested with MfeI and BclI. T4 DNA ligase joined the 

EcoRI/BamHI-digested pGEX-2T and the RanBP9 fragment, to obtain the plasmid pGEX-2T-
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RanBP9. pGEX-2T-RanBP9 was digested with NcoI and re-ligated, to obtain an internal deletion of 

RanBP9 (aa 254-489). The plasmid obtained, pGEX-2T-ΔSLC, was used as a negative control in the 

pull-down assays. MfeI/EagI digested APP695 cDNA was cloned into the pET-28a expression vector 

(Novagen, Merck, Portugal) between the EcoRI and EagI sites to construct the vector pET-APP, 

which was used to express His-tagged APP in Rosetta cells. All of the recombinant plasmids were 

verified by sequencing. 

 Competent Rosetta cells were transformed with the plasmids pGEX-2T, pGEX-2T-RanBP9, 

pGEX-2T-ΔSLC and pET-APP and the recombinant clones were induced with 0.6 mM isopropyl-β-

D-thiogalactopyranoside (IPTG) at 30°C for 2 h (pGEX-2T, pET-APP) or 4 h (pGEX-2T-RanBP9, pGEX-

2T-ΔSLC). The induced bacterial cultures were centrifuged and resuspended in lysis buffer (50 mM 

Tris–HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA and 3% Triton X-100) in the presence of a protease 

inhibitor cocktail (PMSF, Leupeptin, Aprotinin, Pepstatin A, Benzamidin) and further disrupted by 

sonication. Following centrifugation at 5000g for 10 min, the soluble GST, GST-RanBP9 and GST-

ΔSLC proteins were then immobilized on glutathione sepharose 4B beads (GE Healthcare, VWR, 

Portugal) by incubating 1 ml of supernatant with 25 μl beads for 4 h at 4°C. The beads-adsorbed 

proteins GST, GST-RanBP9 and GST-ΔSLC were incubated with equal amounts of 6His-APP 

supernatant overnight at 4°C. After the beads were washed 4 times in wash buffer (50 mM Tris pH 

8, 100 mM NaCl), the bound proteins were eluted in SDS-PAGE loading buffer by boiling at 100°C 

and then isolated by centrifugation. The supernatants and the soluble fractions of the bacterial 

lysates, as input samples, were resolved in 12% SDS–PAGE followed by immunoblotting with the 

anti-APP antibody 22C11 (1:150; Boehringer) and anti-GST antibody (1:2000; GE Healthcare, VWR, 

Portugal). 

 

V.2.6 Mammalian expression constructs for transfections 

 

The following expression constructs were described previously: APP695-GFP (da Cruz e Silva et al., 

2004b); GFP-RanBP9 (Nishitani et al., 2001); Citrine-AICD, Myc-Fe65 and CFP-Tip60 (von Rotz et 

al., 2004); SwAPP-Citrine (Goodger et al., 2009); Myc-Tip60 (Konietzko et al., 2010). APP-2Myc and 

mCherry-Fe65 were created from APP-Citrine and Myc-Fe65 (von Rotz et al., 2004), respectively, 

by replacing the tag using standard cloning procedures. For RanBP9-3HA, RanBP9 cDNA was PCR 

amplified (5’-CGACTAGTGGCCGCCATGTCCGGGCAG-3’; 5’-
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GAAATGGGCGCGCCATGTAGGTAGTCTTCCAC-3’), digested with SpeI/AscI and inserted into a 

vector containing a CMV promoter, in frame with three tandem HA tags (Goodger et al., 2009). 

 

V.2.7 Cell culture and transfections 

 

COS-7 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; Gibco Invitrogen, 

Alfagene, Portugal), supplemented with 10% (v/v) fetal bovine serum, 100 U/ml penicillin, 100 

mg/ml streptomycin and 3.7 g/l NaHCO3. Human cervical epithelia HeLa cells were cultured in 

Minimal Essential Media with 1% Non-Essential Amino Acids, 10% heat inactivated Fetal Bovine 

Serum (FBS) and 1% antibiotic/antimycotic (AA) mix. HEK293 cells were grown in DMEM (Gibco, 

Basel, Switzerland) supplemented with 10% fetal calf serum and penicillin/streptomycin 

(PenStrep, Invitrogen, Basel, Switzerland). Rat neuronal primary cultures were established from 

embryonic day 18 fetuses. Cells were dissociated with 0.45 mg/ml trypsin and 0.15 mg/ml 

deoxyribonuclease I in Hank’s balanced salt solution (HBSS) during 5-10 min at 37°C. Cells were 

plated on poly-D-lysine-coated dishes at a density of 1.0x105 cells/cm2 in B27-supplemented 

Neurobasal medium (Gibco Invitrogen, Alfagene, Portugal), a serum-free medium combination 

(Brewer et al., 1993). The medium was supplemented with glutamine (0.5 mM), gentamicin (60 

µg/ml), without glutamate, for 9 days before being used for experimental procedures. All cultures 

were maintained at 37°C in an atmosphere of 5% CO2. To address Aβ effects on RanBP9 

intracellular levels, primary cortical cultures were incubated with 20 µM Aβ25-35 (Sigma-Aldrich, 

Portugal) in complete medium for 24 h (Henriques et al., 2009). 

 For transient transfection experiments, COS-7, HeLa or HEK293 cells were grown on 

plastic culture dishes or on glass slide chambers coated with polyornithine (10 µg/ml) and 

fibronectin (5 µg/ml) and transfected using LipofectAMINE 2000 (Invitrogen) as previously 

described (von Rotz et al., 2004; Domingues et al., 2007). A stably transfected HEK293 cell line 

was induced to express Citrine-AICD the day before transfection, resulting in expression for 40-44 

h (von Rotz et al., 2004). The induced cells were co-tranfected with RanBP9, Fe65 and Tip60 

expression constructs using LipofectAMINE 2000 (Invitrogen, Basel, Switzerland). 

 

V.2.8 APP and RanBP9 Co-immunoprecipitation 

 

Mammalian cell-based co-immunoprecipitation (Co-IP) experiments were performed in 

COS-7 cells and in adult rat hippocampus and cortex lysates. Endogenous and transiently 
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transfected APP and RanBP9 constructs were analyzed as COS-7 cells express both proteins. 

Subconfluent COS-7 cells in 100 mm culture plates were transfected with GFP-RanBP9, RanBP9-

3HA or APP-GFP. Cells were harvested in a non-denaturant lysis buffer (50 mM Tris pH 8, 120 mM 

NaCl, 4% CHAPS; Sigma-Aldrich, Portugal) with a protease inhibitor cocktail (PMSF, Leupeptin, 

Aprotinin, Pepstatin A, Benzamidin; Sigma-Aldrich, Portugal). Adult rat hippocampi and cortexes 

were isolated and immediately homogenized in the non-denaturant lysis buffer supplemented 

with protease inhibitors.  

 The cell lysates or the rat tissue lysates were immunoprecipitated with an anti-APP 

antibody (22C11, 6E10, KPI or 4G8) overnight at 4°C under end-to-end mixing. Anti-mouse IgG 

agarose beads (Sigma, Portugal) were added to each sample and the samples were incubated for 

2 h at 4°C. The agarose beads were washed 4 times with 50 mM Tris pH 8/ 120 mM NaCl and 

resuspended in SDS loading buffer. Immunoprecipitations with anti-HA antibody (Roche) were 

immobilized with G-protein Sepharose (GE Healthcare, VWR, Portugal). The immunocomplexes 

were analyzed by Western blotting using the primary antibodies: 22C11 (1:150; Boehringer); JL-8 

(1:500; Clontech, Enzifarma, Portugal); 5M (1:2000) (Nishitani et al., 2001); or anti-RanBP9 ab5295 

(4 µg/ml; Abcam, Cambridge, UK). 

 

V.2.9 SDS-PAGE and Immunoblotting 

 

Transfected cells were harvested in 1% SDS and boiled. The protein content of cell lysates 

was determined by the BCA method (Pierce, Dagma, Portugal). Normalized samples were 

resolved by SDS-PAGE and transferred to nitrocellulose membranes followed by immunological 

detection with the indicated antibodies. Briefly, membranes were blocked in 5% non-fat dry milk 

in TBS-T for 2 h and incubated with the primary antibody. The antibodies used were: APP N-

terminal antibody (22C11, Boehringer); JL-8 antibody (1:500; Clontech, Enzifarma, Portugal); anti-

transgelin H-75 (1:400; Santa Cruz, Frilabo, Portugal); anti-GSK3 AB9258 (1:500; Chemicon 

Millipore, Grupo Tapper, Portugal); and anti-RanBP9 ab5295 (4 µg/ml; Abcam, Cambridge, UK). 

Detection was carried out with horseradish peroxidase-conjugated anti-mouse IgGs as secondary 

antibody and proteins were visualized by enhanced chemiluminescence (ECL; GE Healthcare, 

VWR, Portugal). Immunoreactive bands were quantified by densitometric analysis with 

QuantityOne software (Bio-Rad Laboratories, Portugal), using β-tubulin as an internal control. 
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V.2.10 Immunocytochemistry and confocal microscopy 

 

Cells were fixed with 4% paraformaldehyde in PBS 16-20 h after transfection. The fixed cells 

were washed and blocked as previously described (Konietzko et al., 2010). The primary antibodies 

were mouse anti-Myc and rat anti-HA (1:100; Roche, Rotkreuz, Switzerland). Cy2-, Cy3- or Cy5-

conjugated secondary antibodies (1:250; Jackson Labs, Bar Harbor, Maine) were applied and, after 

subsequent washing, the cells were embedded in Mowiol mounting medium containing 2.5% of 

DABCO anti-fade reagent (Sigma-Aldrich, Buchs, Switzerland). 

 Images were acquired on a Leica TCS/SP2 confocal microscope (Leica, Wetzlar, Germany) 

with a 63x water immersion objective. The Argon Laser line of 458 nm was used to excite CFP 

(PMT window: 465–485 nm) and the 514 nm line to excite citrine (PMT window: 525–545 nm). A 

543-nm HeNe laser was used to excite Cy3 (PMT window: 553–600 nm), and a 633-nm HeNe laser 

was used to excite Cy5 (PMT window: 655–710 nm). Antibody staining with Cy2 is always color-

coded in green, Cy3 in red and Cy5-staining in blue. 
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V.3 RESULTS 

 

V.3.1 Identification of RanBP9 as an APP/AICD interacting protein  

 

Large-scale YTH screens of human brain cDNA libraries were performed using as baits 

diverse APP or AICD constructs (Supplementary Table 1). Several positive clones matched RanBP9 

cDNA (NCBI accession number NM_005493). The full-length RanBP9 is a 90 kDa protein of 729 

aminoacids, possessing a long stretch of proline and glutamine residues in the N-terminal region 

and four signaling domains (SPRY, LisH, CTLH and CRA domains) (Nakamura et al., 1998; Umeda et 

al., 2003; Menon et al., 2004). RanBP9 was recently described to co-immunoprecipitate with full-

length APP (Lakshmana et al., 2009). 

 Protein interactions were verified by co-transformation of each bait and the prey plasmids 

in AH109 yeast cells. The authenticity of the interaction between the positive clone CYE1 

encoding a N-terminal truncated RanBP9 and AICD bait was confirmed by its ability to grow and 

turn blue on QDO/X-α-Gal plates due to the expression of all the reporter genes HIS3, ADE2 and 

MEL1. The appearance is similar to the positive control which co-expressed the Gal4-BD-p53 and 

Gal4-AD-SV40 fusion proteins (Fig. 1A). The Gal4-BD and Gal4-AD empty vectors (pAS2-1 and 

pACT2) were co-expressed as a negative control.   
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Figure V.1: RanBP9 binds to the APP cytoplasmic domain through the NPXY motif. (A) Plate assay 

(SD/QDO/X-a-Gal) of interaction between RanBP9 prey clone and AICD, or deletion mutants of APP C-

terminus (p24, p26, p27, p28 and p30) (the two image sections belong to the same plate). (B) The AH109 

yeast strain was co-transformed with AICD and each RanBP9 construct, representing the RanBP9 domains 

SPRY, LiSH/CTLH and CRA, or combinations of these, and streaked onto SD/QDO/X-α-Gal. Growth and blue 

appearance of yeast colonies indicate positive interaction (sections from the same plate are shown) (C) 

Recombinant GST alone and fusion proteins GST-RanBP9 and GST-∆SLC (deletion mutant lacking domains 

SPRY and LiSH/CTLH) were immobilized on Glutathione Sepharose 4B and incubated with recombinant His-

tagged APP. The bound proteins were analyzed by 12% SDS-PAGE and immunoblotted with anti-APP 

antibody (22C11). The bait GST or GST fusion proteins were detected with anti-GST antibody, 

demonstrating a direct interaction between RanBP9 and APP. 
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V.3.2 RanBP9 binds to the APP cytoplasmic domain through the NPXY motif 

 

To determine the APP intracellular domain sequence necessary for the interaction with 

RanBP9, several deletion mutants of AICD were co-transformed in the yeast strain AH109 with the 

RanBP9 prey plasmid. The co-transformants were assayed for reporter genes’ activation by 

streaking onto SD/QDO/X-α-Gal/3-AT. Only the BD-p28 fusion protein (internal deletion 662-672) 

conferred ability to grow on QDO and develop blue color, comparable to the yeast co-expressing 

intact AICD and RanBP9 or the positive control p53 plus SV40 large T antigen (Fig. 1A). The BD-p28 

fusion is the only deletion construct used in this experiment that includes the 682YENPTY687 motif, 

which corresponds to the NPXY internalization signal of APP. Therefore the 682YENPTY687 motif, 

responsible for several protein-protein interactions with APP, is also necessary for the association 

with RanBP9.  

 The RanBP9 protein comprises four domains: SPRY, LiSH, CTLH and CRA (Nakamura et al., 

1998; Umeda et al., 2003; Menon et al., 2004). Five Pro-rich regions and a Gln stretch are also 

present at the N-terminus of RanBP9. However, as the N-terminus is absent from our YTH clones, 

it was excluded from interaction domains mapping analysis. Co-expression of the fusion protein 

BD-AICD with the Gal4-AD fused to the SPRY, LiSH/CTLH or CRA domains did not activate all the 

reporter genes, since the co-transformants could grow but did not turn blue in QDO/X-α-Gal 

media (Fig. 1B). Other combinations of these domains were also used. Co-expression of Gal4-AD-

BN2 with the Gal4-BD-AICD fusion showed the expression of all reporter genes (Fig. 1B). The BN2 

fusion construct includes the SPRY, LiSH and CTLH domains as well a region of 76 aa N-terminal to 

SPRY and a region between SPRY and LiSH. Thus we were able to map the RanBP9 sequence 136-

460 as the region necessary for the interaction with AICD in the YTH system.  

 

V.3.3 RanBP9 associates with APP directly in vitro 

 

The interaction between RanBP9 and APP was confirmed to occur directly in vitro using 

Glutathione S-transferase (GST) pull-down assays. GST fusion constructs were prepared with full-

length RanBP9 (GST-RanBP9) and with a deletion mutant lacking the domains SPRY and LiSH/CTLH 

(GST-∆SLC). Recombinant GST alone and fusion proteins GST-RanBP9 and GST-∆SLC (APPENDIX XI) 

were immobilized and purified on Glutathione Sepharose 4B and used as baits in the pull-down 

assays. Each bait (GST, GST-RanBP9 and GST-ΔSLC) was incubated with similar amounts of 
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recombinant His-tagged APP. The bound proteins were analyzed by 12% SDS-PAGE and 

immunoblotted with anti-APP antibody (22C11). APP from the input sample was detected in the 

GST-RanBP9 complex (Fig. 1C, lane 2). APP was not detected either in the GST or GST-ΔSLC control 

samples (Fig. 1C, lanes 1 and 3), thus confirming that RanBP9 binds to APP directly and specifically 

in vitro. 

 

V.3.4 RanBP9 co-localizes with APP and Fe65 in mammalian cells 

 

To confirm that APP interacts with RanBP9 in mammalian cells we performed several co-

immunoprecipitation assays. Neuronal tissues and COS-7 cells were used to co-

immunoprecipitate the endogenous or transfected proteins, using different plasmid constructs 

and antibodies (Fig. 2A). The interaction between APP and RanBP9 was confirmed in adult rat 

hippocampus and cortex lysates by immunoprecipitation with either an anti-APP antibody (22C11) 

or an anti-RanBP9 antibody (ab5295) (Fig. 2A, panels 1 and 2). In GFP-RanBP9 transfected COS-7 

cells, immunoprecipitation with the 6E10 antibody, pulled-down GFP-RanBP9 (Fig. 2A, panel 3). As 

expected, no signal is detected by the JL-8 antibody in the non-transfected (NT) cells. COS-7 cells 

were also transiently transfected with APP-GFP and RanBP9-3HA, and RanBP9 was 

immunoprecipitated with anti-HA antibody. Both APP-GFP and endogenous APP co-

immunoprecipitated with RanBP9, detected with 22C11 antibody (Fig. 2A, panel 4). In APP-GFP 

transfected COS-7 cells, immunoprecipitations were also carried out using the anti-GFP and 

several anti-APP antibodies (22C11, KPI, 6E10 and 4G8). Endogenous RanBP9 was detected in all 

samples using either the 5M antibody, raised against a RanBP9 N-terminal region (aa 133-229) 

(data not shown), or with ab5295 antibody, which recognizes the RanBP9 C-terminus (Fig. 2A, 

panel 5). Co-immunoprecipitation of endogenous APP and RanBP9 in COS-7 cells was also 

confirmed using the anti-APP antibodies 6E10 or 22C11 and probed with the anti-RanBP9 

antibody 5M. RanBP9 was observed both in the 22C11 and 6E10 immunocomplexes (Fig. 2A, 

panel 6). 
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Figure V.2: RanBP9 co-localizes with APP and Fe65 in mammalian cells. (A) RanBP9 and APP were co-

immunoprecipitated in adult rat brain tissues (panels 1-2) and COS-7 cells (panels 3-6), using the 

specified antibodies. For transfected COS-7 cells the fusion construct is indicated. NT, non-transfected 

cells; Hp, hippocampus; Cx, cortex. (B) Confocal analysis of RanBP9, APP and Fe65 transfected HEK293 

cells. ROI, region of interest; Bar, 13 μm. 
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 Full-length RanBP9 was described to localize both in the cytoplasm and in the nucleus 

(Nishitani et al., 2001). Other subcellular locations were also reported, such as the plasma 

membrane (Denti et al., 2004) and nuclear speckles (Wang et al., 2002b). An antibody raised 

against the formerly described truncated 55-kDa RanBP9 protein stained the centrosome, but this 

subcellular localization was not confirmed by other RanBP9 full-length specific antibodies 

(Nakamura et al., 1998; Nishitani et al., 2001). Transfection of HEK293 cells with the RanBP9-3HA 

construct confirmed the localization in the nucleus, cytoplasm and at the membrane. We also 

found RanBP9 staining at ruffled edges of cells that contained a characteristic lamellipodial 

structure, as showed in the magnified ROIs (regions of interest; Fig. 2B, panel 1).  

Fluorescently tagged APP can be observed in the endoplasmic reticulum, Golgi complex, 

lysosomal or endocytic vesicles and plasma membrane, being proteolytically processed 

throughout its subcellular trafficking (da Cruz e Silva et al., 2004b). The liberated AICD fragment 

translocates to the nucleus (Kimberly et al., 2001; von Rotz et al., 2004). RanBP9 and APP co-

localized prominently at the plasma membrane, particularly in lamellipodia (Fig. 2B, panel 2). 

RanBP9 localized far less to ER/Golgi, heavily stained by APP and by the APP binding protein Fe65, 

especially when APP is co-expressed (Fig. 2B, panels 3 and 4). RanBP9 co-localized with Fe65 in 

the plasma membrane and nucleus and when RanBP9, APP and Fe65 were expressed 

simultaneously co-localization was observed in the same subcellular compartments. Antibody-

mediated staining of nuclear AICD is strongly restricted (von Rotz et al., 2004) explaining the lack 

of AICD signal in the nuclei (Fig. 2B, panel 4). Additional transfection experiments performed with 

SwAPP-Citrine instead of APP-2Myc showed a similar pattern of co-localization (Supplementary 

Fig. S1, APPENDIX XI). 

 

V.3.5 RanBP9 shows high affinity for AICD in vivo 

 

Since RanBP9 cDNA clones were found in YTH screens with full-length APP (APP-FL) and 

AICD baits, we validated the interaction with both baits. Positive interaction with RanBP9 was 

confirmed for both baits given the growth on QDO plates and the blue color detected (data not 

shown). Additionally, we performed quantitative X-α-Gal assays to compare the strength of each 

interaction. α-galactosidase activity of liquid cultures showed that the RanBP9/AICD interaction is 

significantly stronger (~2.8 fold) than the RanBP9/APP-FL interaction (Fig. 3A).  
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Figure V.3: RanBP9 shows high affinity for AICD in vivo. (A) Quantitative X-α-Gal assays of liquid cultures 

were performed to compare the strength of the interactions between RanBP9 and APP-FL or AICD in the 

YTH system. Graph shows means ± SEM of 7 independent experiments (Unpaired t test; **, P<0.01). (B) 

HEK293 cells stably expressing Citrine-AICD were transfected with RanBP9-3HA (panel 2), Myc-Fe65 (panel 

3) or both (panel 4) showing co-localization in the nucleus, cytoplasm and plasma membrane (arrow, 

lamellipodia). Bar, 13 μm. 
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To characterize the interaction between RanBP9 and AICD in vivo we used a clonal 

HEK293 cell-line with inducible expression of fluorescently tagged Citrine-AICD (von Rotz et al., 

2004). These stably transfected cells allow to overcome the experimental difficulty of observing 

AICD in vivo, since it is rapidly degraded after release from the membrane (Cupers et al., 2001). 

Co-transfection of RanBP9-3HA, showed that RanBP9 and AICD overlap throughout the nucleus, 

cytoplasm and at the membrane (Fig. V.3B, panel 2). In fact, as in the HEK293-AICD cells the 

nucleus is strongly stained, there is extensive co-localization with RanBP9 in the nuclear 

compartment. RanBP9 and AICD also co-localize in the cytoplasm and plasma membrane, 

particularly in lamellipodia. The same pattern of co-localization was observed with simultaneous 

co-expression of AICD and Fe65 (Fig. V.3B, panel 3), and with AICD, RanBP9 and Fe65 (Fig. V.3B, 

panel 4). 

 

V.3.6 Tip60 and RanBP9 can directly associate and Tip60 targets RanBP9 to 

nuclear speckles 

 

Tip60 is a histone acetyltransferase that binds to Fe65 (Cao and Sudhof, 2001). Tip60, Fe65 

and AICD can form tripartite complexes (AFT complexes), which were shown to concentrate in 

spherical nuclear spots where they can regulate transcription (von Rotz et al., 2004; Konietzko et 

al., 2010). Alone, Tip60 localizes to speckle-like nuclear structures. In the absence of exogenous 

AICD expression, Tip60 and Fe65 were previously shown to co-localize in nuclear spots (von Rotz 

et al., 2004). Confocal microscopy observations showed that when RanBP9 was simultaneously 

expressed with Tip60, it dramatically changed its subcellular localization, in particular the diffuse 

nuclear staining of RanBP9 is not observed. The majority of RanBP9 was targeted to the large 

nuclear speckles, where Tip60 is usually found (Fig. V.4A, panel 1). RanBP9 and Tip60 completely 

overlap in these nuclear speckles (100% of the cells imaged). The relocation of transfected 

RanBP9-3HA to the nuclear speckles happens either when co-transfecting with CFP-Tip60 (Fig. 

V.4A, panel 1) or with Myc-Tip60 (Fig. V.4A, panel 2). Moreover, when Fe65 is co-expressed 

together with RanBP9 and Tip60, the three proteins also co-localize in the nuclear speckles (Fig. 

V.4A, panel 3). Only 3 of the 13 imaged cells had nuclear spots with Fe65 and Tip60, with low or 

no RanBP9 expression. Therefore, co-expression of RanBP9 prevents the Fe65-mediated 

relocation of Tip60 to nuclear spots but instead targets Fe65 to speckle structures.  

The relocation of RanBP9 to nuclear speckles by Tip60 strongly suggests that they can 

directly interact. To address this question we subcloned Tip60 cDNA into the YTH vector pAS2-1 in 
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frame with the Gal4-BD and the fusion proteins Gal4-BD-Tip60 and Gal4-AD-RanBP9 were co-

expressed in yeast. The interaction between Tip60 and RanBP9 was confirmed in SD/QDO/X-α-

Gal/3-AT plates, due to the expression of all the reporter genes HIS3, ADE2 and MEL1. The 

appearance is similar to the positive control which co-expressed the BD-p53 and Gal4-AD-SV40 

fusion proteins (Fig. V.4B). The Gal4-BD and Gal4-AD empty vectors (pAS2-1 and pACT2) were co-

expressed as a negative control. 

 

 

Figure V.4: Tip60 targets RanBP9 to nuclear speckles. (A) Co-expression of RanBP9-3HA with CFP-Tip60 

(panel 1) or with Myc-Tip60 (panel 2) in HEK293 cells. Number of imaged cells: 38 cells with speckles 

(RanBP9 localizes to Tip60 speckles). In panel 3, RanBP9-3HA, CFP-Tip60 and mCherry-Fe65 were 

simultaneously expressed. ROIs denote co-localization in nuclear speckles. Number of imaged cells: 10 cells 

with speckles (Fe65+Tip60+RanBP9); 3 cells with spots (Fe65+Tip60 and low or no RanBP9). Bar, 13 μm. (B) 

Plate assay (SD/QDO/X-a-Gal) of interaction between Tip60 and RanBP9. RanBP9 constructs represent the 

domains SPRY, LiSH/CTLH and CRA, or combinations of these (sections from the same plate are shown). 

The Gal4-BD and Gal4-AD empty vectors were co-expressed as a negative control. Gal4-BD-p53 and Gal4-

AD-SV40 plasmids show a positive interaction. 
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YTH tests were also carried out with yeast cells co-transformed with BD-Tip60 and the Gal4-

AD fused to the RanBP9 domains SPRY, LiSH-CTLH and CRA or the combinations already 

mentioned above: BN1, BN2, BM1, BC1 and BC2. Co-expression of Gal4-AD-BN2 with the BD-

Tip60 fusion allowed the yeast cells to grow and turn blue in SD/QDO/X-α-Gal, showing the 

expression of all reporter genes (Fig. V.4B). Therefore the RanBP9 amino acid sequence 136-460, 

including the SPRY, LiSH and CTLH domains, is necessary for the interaction with Tip60. This is the 

same RanBP9 region that was shown above to be responsible for the interaction with AICD. 

 

V.3.7 RanBP9 targets AICD to Tip60 and prevents AFT complex formation 

 

The HEK293 cell-line with inducible expression of Citrine-AICD was transfected with CFP-

Tip60 showing that Tip60 alone has no effect on AICD subcellular localization (Fig. V.5A, panel 1), 

as shown before (von Rotz et al., 2004). However, co-transfection of CFP-Tip60 and RanBP9-3HA 

relocated AICD to the nuclear speckles where Tip60 is usually found (in all imaged cells Tip60, 

RanBP9 and AICD were present in the speckles; Fig. V.5A, panel 2), showing that RanBP9 binds to 

AICD and Tip60 simultaneously. 

Co-expression of AICD, Fe65 and Tip60 generates AFT complexes that localize to nuclear 

spots (Fig. V.5B, panel 1) as previously demonstrated (von Rotz et al., 2004). In contrast, RanBP9 

did not re-localize Tip60 to nuclear spots as Fe65-AICD does but co-localizes with Tip60 in 

speckles. To investigate the effect of RanBP9 on the AFT complex formation, the Citrine-AICD-

expressing cell-line was co-transfected with Myc-Fe65, CFP-Tip60 and RanBP9-3HA (Fig. V.5B, 

panel 2). In general, cells expressing RanBP9 do not form nuclear AFT spots and AICD is detected 

in larger nuclear speckles, together with RanBP9, Fe65 and Tip60. This morphology was observed 

in 43% of the imaged cells, always when RanBP9 levels were high. Conversely, in cells with lower 

RanBP9-3HA expression (evaluated by fluorescence intensity), RanBP9 did not prevent the 

formation of the nuclear spots (Fig V.2B, panel 2). Although RanBP9 could be detected in nuclei 

containing AFT spots we saw no accumulation of RanBP9 in these spots.  

Another observation is the effect of RanBP9 on cytosolic AICD levels. As shown in previous 

reports, formation of nuclear AFT complexes is accompanied by depletion of AICD in the cytosol 

(Fig. V.5B, panel 1). However, in cells co-expressing RanBP9, AICD, Fe65 and Tip60 that co-localize 

in speckles, AICD is not depleted from the cytosol (Fig. V.5A and B, panels 2). 
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Figure V.5: RanBP9 targets AICD to Tip60 and prevents AFT-complex formation. (A) Transfection of CFP-

Tip60 in HEK293 cells with inducible expression of Citrine-AICD did not change AICD subcellular localization 

(panel 1; number of imaged cells: 22 cells with Tip60 in speckles). Co-transfection of CFP-Tip60 and 

RanBP9-3HA relocated AICD to nuclear speckles (panel 2; number of imaged cells: 26 cells with Tip60, 

RanBP9 and AICD in speckles). ROIs show co-localization at nuclear speckles. (B) Co-expression of AICD, 

Fe65 and Tip60 generates AFT complexes that localize to nuclear spots (panel ; number of imaged cells: 16 

cells with AICD, Fe65 and Tip60 in spots). ROI shows enlargement of nucleus with AFT spots. In panel 2, co-

expression of RanBP9 with AICD, Fe65 and Tip60 show two distinct morphologies: in cells expressing faint 

RanBP9 fluorescence nuclear AFT spots are formed (dashed boxes); in cells expressing high levels of 

RanBP9 the AFT spot formation is abolished and AICD is relocated to the larger nuclear speckles, together 

with RanBP9, Fe65 and Tip60 (full boxes). Number of cells imaged: 14 cells with low or no RanBP9 and 

AICD, Fe65 and Tip60 in spots; 15 cells with more RanBP9 and AICD, Fe65 and Tip60 in spots; 22 cells with 

high RanBP9 fluorescence and all colocalize in speckles. Bars, 13 μm. 
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V.3.8 RanBP9 prevents nuclear signaling 

 

To further analyze the inhibitory effect of RanBP9 on AFT spot formation we also co-

expressed full-length APP labeled at the C-terminus with Citrine. In contrast with the inducible 

expression of AICD, the APP-derived AICD is not detected in speckles with Tip60 and RanBP9 (data 

not shown). 

Simultaneous expression of APP, Fe65, Tip60 and RanBP9 prevents AFT spots in 100% of the 

imaged cells, either when transfecting wt APP (data not shown) or with the Swedish mutant (Fig. 

V.6A). Again, AFT spot formation was prevented and RanBP9 colocalized with Tip60 in speckles. 

Fe65 was also found in these speckles when APP expression was low (Fig. V.6A, lower cell) but 

with sufficiently high expression of APP, Fe65 was trapped outside the nucleus (Fig. 6A, upper 

cell). In any case, no APP-derived AICD could be detected in speckles, in contrast to the expression 

of AICD alone or the formation of AFT spots in the absence of RanBP9. 

The irregular speckle nuclear structures, where RanBP9 is found with Tip60, were 

investigated previously and they did not co-localize, neither with nucleoli nor with splicing 

speckles (Konietzko et al., 2010). The AFT nuclear spots represent sites of transcription that are 

closely associated with splicing speckles, Cajal bodies and PML bodies, and also with APP and KAI1 

gene loci (Konietzko et al., 2010). Therefore, the consequences of preventing AFT complex 

formation by RanBP9 deserves further investigation. 

When HeLa cells were transiently transfected with increasing amounts of GFP-tagged 

RanBP9, endogenous intracellular APP decreased significantly, as 1 µg caused a significant 

reduction of ~40% (P<0.001) compared to non-transfected control. APP protein levels were also 

significantly lower in GFP-RanBP9 cells (~30%, P<0.01) compared to the same amount (1 μg) of 

GFP empty vector (Fig. V.6B). The effect of RanBP9 on endogenous APP was also observed in COS-

7 and SH-SY5Y cell lines, and was accompanied with a slight decrease of sAPP in the conditioned 

media (data not shown). 

Since AICD regulates the expression of its own precursor APP (von Rotz et al., 2004), the 

decrease in endogenous APP expression levels could be an effect of RanBP9 in the regulation of 

transcription of AICD target genes. Therefore, we also evaluated the protein levels of other AICD 

target genes in RanBP9 transfected cells. Transfecting HeLa cells with increasing amounts of GFP-

RanBP9 slightly decreased transgelin (P<0.1) and GSK-3β (P=0.1) protein levels (Fig. V.6C-D). 
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RanBP9 was recently described to increase BACE1 cleavage of APP and Aβ generation 

(Lakshmana et al., 2009) and under pathological conditions Aβ can mediate neurotoxic events. 

Moreover, AICD nuclear signaling occurs predominantly through the β-processing of APP 

(Goodger et al., 2009). Since RanBP9 transfection experiments reduced AICD nuclear signaling, we 

checked for the RanBP9 protein levels upon incubation with Aβ peptide. Rat cortical primary 

neurons treated for 24 h with 20 µM Aβ25-35 showed a significant decrease of about ~43% (P<0.05) 

in endogenous RanBP9 compared to the control (Fig. V.6E). Taken together, these data show that 

RanBP9 decreases nuclear AICD-mediated signaling by preventing the assembly of nuclear spots, 

thereby decreasing the expression of AICD-regulated genes.  
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Figure V.6: RanBP9 prevents nuclear signaling. (A) Transfection of HEK293 cells with RanBP9-3HA, CFP-

Tip60, Myc-Fe65 and SwAPP-citrine. AFT spots were not observed and RanBP9 and Tip60 colocalized in 

nuclear speckles. Number of imaged cells: 10 cells with speckles. Bar, 13 μm. (B) HeLa cells were transiently 

transfected with increasing amounts of GFP-RanBP9 (0.5 and 1.0 µg of DNA) and also with 1.0 μg of pEGFP-

N1 empty vector. Holo APP levels in the lysates were determined using the 22C11 antibody (1:150). Values 

are expressed as mean±SE from three independent experiments (One way ANOVA followed by Tukey’s 

multiple comparison test; ***, P<0.001; **, P<0.01; È, P£0.1). (C) The same HeLa cells lysates were probed 

for the protein levels of transgelin (H-75 antibody; 1:400) (D) and GSK-3β (GSK3 antibody; 1:500). (E) Effect 

of Aβ on RanBP9 expression in rat cortical primary neurons. RanBP9 intracellular levels were evaluated 

upon incubation with 20 µM Aβ25-35 using an anti-RanBP9 antibody (ab5295; 4 µg/ml). (C, Control; Aβ, Aβ 

exposure during 24 h). Values are expressed as mean±SE from two independent experiments (Unpaired t 

test; *, P<0.05). 
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V.4 DISCUSSION 

 

 

The YTH screens performed to unravel the APP/AICD interactomes yielded numerous 

positive clones, including several hits on RanBP9 protein. RanBP9 (Ran binding protein 9) or 

RanBPM (Ran binding protein in the microtubule organizing centre) was initially identified in a 

YTH screen using Ran as bait. Ran is a small GTPase involved in nuclear import and export and 

spindle formation (Nakamura et al., 1998). RanBP9 is an evolutionarily conserved 

nucleocytoplasmic protein implicated as a scaffold for receptors associated with the Erk1/2 

pathway (Wang et al., 2002a). Additionally, the presence of several functional domains, and the 

fact that RanBP9 was found in a 670 kDa multi-protein complex of unknown function, supports a 

role as a scaffolding protein (Nishitani et al., 2001; Kobayashi et al., 2007; Murrin and Talbot, 

2007). RanBP9 interacts with the cytoplasmic domain of signaling receptors, including Met, 

Integrin LFA-1 and neuronal cell adhesion protein L1CAM (Wang et al., 2002a; Denti et al., 2004; 

Cheng et al., 2005). Through interaction with Plexin-A receptors, RanBP9 negatively regulates 

axonal outgrouth and branching (Togashi et al., 2006). RanBP9 is also involved in regulation of cell 

morphology, adhesion and migration (Dansereau and Lasko, 2008; Valiyaveettil et al., 2008). 

RanBP9 was reported to co-immunoprecipitate with APP, LRP and BACE1 and to increase 

Aβ production (Lakshmana et al., 2009). We confirmed that RanBP9 binds APP directly and 

specifically in vitro, using GST pull-down assays. We also confirmed the association of RanBP9 

with APP in vivo in several cell types and tissues. Moreover, we mapped the interaction to the 

intracellular domain of APP, specifically mediated by the 682YENPTY687 motif, which comprises the 

canonical NPXY internalization signal (Chen et al., 1990). This amino acid sequence is found in 

several cell surface receptors, and is also responsible for the interaction with other APP binding 

partners, such as Fe65, suggesting that APP cannot bind simultaneously to RanBP9 and Fe65. 

RanBP9 localizes both to the cytoplasm and nucleus, but other subcellular locations were 

also reported, such as the plasma membrane and nuclear speckles (Nishitani et al., 2001; Wang et 

al., 2002b; Denti et al., 2004). RanBP9 co-localized with APP and Fe65 at the plasma membrane, 

particularly at ruffled edges of cells that showed a characteristic lamellipodial structure. The fact 

that RanBP9 has only a minor localization to the ER or Golgi, which are extensively stained by APP 

and Fe65, suggests that RanBP9 associates with APP after ER/Golgi, i.e. at the cell membrane. APP 

was already known to associate with Fe65, Mena and β1-integrins in dynamic adhesion sites 
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known as focal complexes, and to have a role in actin-based cell migration and neurite outgrowth 

(Sabo et al., 2001, 2003). The colocalization of RanBP9 with APP and Fe65 at lamellipodia is in 

agreement its role in neurite growth and branching (Togashi et al., 2006), and in a recent report 

RanBP9 expression alters integrin-dependent cell adhesion and focal adhesion signaling, 

presumably due to the enhanced endocytosis of APP, LRP1 and β1-integrin (Woo et al., 2012). 

Confocal microscopy showed co-localization of RanBP9 with AICD and Fe65 in the nucleus. 

Indeed, RanBP9 exhibited higher affinity for the AICD fragment than for the full-length APP in the 

YTH reporter system. A proteolytic fragment of RanBP9, RanBP9-N60, was identified recently by 

Lakshmana et al. (2010). RanBP9-N60 was increased in AD brains and interacted more strongly 

with APP/BACE1/LRP than full-length RanBP9, potentiating Aβ generation. Additionally, RanBP9-

N60 lacks a nuclear localization signal and showed increased cytoplasmic vs. nuclear localization. 

The nuclear localization of full-length RanBP9 and high affinity for AICD, that we demonstrate 

here, is in agreement with the above mentioned study. Though it is worthwhile mentioning that 

proteolysis of RanBP9 was never observed under our experimental conditions, since N60 is 

formed only at low density and our cultures reached confluency.  

Full length RanBP9 comprises multiple signaling domains: SPRY, LiSH, CTLH and CRA. Five 

proline-rich regions and a glycine stretch are also present at the N-terminus of RanBP9, which also 

contains six SH3-binding domains (Murrin and Talbot, 2007). Proline-rich regions interact with 

proline recognition domains, such as SH3, WW, EVH1, etc., and are common to signaling proteins 

involved in actin motility (Small et al., 2002). The function of SPRY domain is unknown, but it is 

thought to be involved in protein-protein interactions and RNA-binding. The suggested functions 

for some SPRY-containing proteins are RNA-binding, cell growth and differentiation (Ponting et 

al., 1997). The LisH (Lissencephaly type-1-like homology) domain has a conserved protein-binding 

function and is present in several proteins involved in microtubule dynamics, such as 

Lissencephaly-1, which has a key role in the control of neuronal migration (Emes and Ponting, 

2001). C-terminally to LisH motif, there is a predicted α-helical sequence of unknown function, 

CTLH, that is adjacent to the LisH motif in several proteins (Emes and Ponting, 2001). The C-

terminus of RanBP9 is very conserved and was described to comprise the CRA domain, whose 

function is unknown and is responsible for the interaction with the fragile X mental retardation 

protein (Menon et al., 2004). We determined that the sequence 136-460 of RanBP9 is necessary 

for its interaction with APP, which includes the SPRY, LiSH and CTLH domains. In a recent report, 

using cell-based co-immunoprecipitation assays, this region was narrowed down to the domains 

SPRY-LisH (Lakshmana et al., 2009). 
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The RanBP9-APP molecular association might exert diverse effects depending on the 

context or subcellular compartment. The high affinity for AICD and their co-localization in the 

nucleus suggested an influence of RanBP9 in the transcriptional activity of AFT complexes. The 

series of transfections and confocal analyses showed several RanBP9 effects. When RanBP9 was 

simultaneously expressed with Tip60 it underwent a striking change in its subcellular distribution. 

All of the RanBP9 was redirected from extranuclear localizations, i.e. at the plasma membrane, to 

the nuclear speckles where Tip60 resides. We confirmed the RanBP9-Tip60 interaction in the YTH 

system and the region encompassing the SPRY/LiSH/CTLH domains of RanBP9 was the minimal 

region necessary for the interaction with Tip60. Thus, as described for AICD-Fe65 complexes that 

cycle across the nuclear membrane, providing nuclear docking sites in the form of Tip60, can also 

retain RanBP9 in the nucleus.  

Co-expression of AICD, Fe65 and Tip60 results in the formation of AFT complexes that 

localize to spherical nuclear spots, which were shown to represent transcription factories (von 

Rotz et al., 2004; Konietzko et al., 2010). Despite binding to AICD and Tip60, RanBP9 did not re-

localize Tip60 to nuclear spots as does Fe65. We showed that the simultaneous interaction of 

RanBP9 with AICD and Tip60 targeted all components to irregular speckle structures. Thus, in 

contrast to Fe65 that relocates Tip60 and AICD to a spherical nuclear compartment involved in 

transcription, RanBP9 traps AICD in nuclear speckles that are not involved in transcription and 

might represent a storage compartment (Konietzko et al., 2010).  

When RanBP9 was co-expressed with AICD, Fe65 and Tip60 we observed two opposite 

outcomes, depending on the expression levels. In most cells, RanBP9 expression prevented AFT 

spot formation, trapping AICD in the speckles occupied by Tip60. Only in cells with low RanBP9 co-

expression, AFT spot formation was observed. Therefore, the levels of nuclear RanBP9 influence 

the localization and thus the function of AICD in the nucleus. AFT spots have been characterized 

as transcription factories, whereas Tip60 speckles do not co-localize with splicing speckles but 

rather represent a storage compartment (Konietzko et al., 2010). Based on these results we 

expected RanBP9 to have a negative effect on AICD-mediated transcription. Consequently, we 

saw RanBP9 expression reducing the expression of described AICD target genes such as APP (von 

Rotz et al., 2004); TAGLN, which encodes transgelin (Muller et al., 2007); and GSK3B, encoding 

GSK-3β (Kim et al., 2003; Ryan and Pimplikar, 2005). In line with a role in transcriptional 

regulation, RanBP9 was shown previously to interact with several transcription factors resulting in 

induction or repression of the transcriptional activity. For example, RanBP9 enhances 
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transactivation of androgen receptor, thyroid hormone receptor and p73α (Rao et al., 2002; 

Kramer et al., 2005; Poirier et al., 2006). In contrast, through its interaction with TrkA receptor, 

RanBP9 inhibits NGF-mediated nuclear factor of activated T cells (NFAT) dependent gene 

transcription (Yuan et al., 2006). 

The suppression of AICD-mediated signaling by RanBP9 is intriguing because AICD signaling 

occurs mainly from the amyloidogenic processing of APP (Goodger et al., 2009), and RanBP9 was 

reported to increase Aβ generation and thus amyloidogenic processing (Lakshmana et al., 2009). 

In addition, we found that RanBP9 protein levels decrease upon incubation with Aβ. Thus, the 

interplay of RanBP9 and APP is very complex. Although RanBP9 promotes amyloidogenic cleavage 

of APP, it at the same time redirects the generated nuclear AICD signal to transcriptionally 

inactive compartments, by competing with Fe65 in binding to AICD and Tip60. RanBP9 is therefore 

able to uncouple amyloidogenic processing of APP from nuclear signaling. The promotion of b-

secretase processing by RanBP9 is counter-balanced by the reduction of RanBP9 through the 

amyloidogenic pathway product Ab, constituting a negative feedback loop. 

In summary, our results and recent findings place RanBP9 as an important player in the 

multiple steps of APP signaling. RanBP9 is involved in a regulatory cycle with the pathogenic Ab 

peptide, such that it increases Ab production and hence, toxicity, being on the other hand down-

regulated by Ab. With regard to nuclear signaling by AICD, RanBP9 increases amyloidogenic 

processing, leading to an increased translocation of AICD to the nucleus. Despite resulting in 

increasing nuclear AICD levels, nuclear RanBP9 redirects AICD away from transcription factories 

and thus results in inhibition of AICD-mediated transcription. There is increasing evidence that 

dysregulation of AICD target genes in AD might contribute to the pathology of disease (Konietzko, 

2011), therefore RanBP9 is bound to influence various aspects of the AD pathology induced by the 

different APP cleavage products. 
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VI.1 OVERVIEW – APP IN THE ETIOLOGY OF ALZHEIMER’S DISEASE 

 

 

AD is the most prevalent neurodegenerative disorder worldwide and the leading cause of 

dementia in the elderly. The incidence and prevalence of AD rise steadily with increasing 

longevity, and AD is already a significant health problem, particularly in developed countries 

(Culmsee and Landshamer, 2006; Hooli and Tanzi, 2009). AD patients typically present symptoms 

of global cognitive decline and memory loss. Pathologically, the disease is characterized by 

excessive deposition of amyloid deposits (senile plaques), neurofibrillary tangles, synapse and 

neuronal loss, and inflammation in the brain. The proteolytic processing of APP and production of 

Aβ, the major component of β-amyloid plaques, by β- and g-secretases, are key events in the 

pathogenesis of AD. In addition, the hyperphosphorylation and aggregation of the microtubule-

associated tau protein drive neurofibrillary tangle formation within neurons. The discovery of the 

APP gene was followed by the identification of missense mutations associated with familial, early-

onset AD, most of which increase the ratio of Aβ42/Aβ40. The longer form of the peptide, Aβ42, is 

the most neurotoxic species as it enhances the aggregation of Aβ into neurotoxic oligomers and 

senile plaques, leading to the disruption of synaptic neurotransmission, neuronal cell death, and 

inflammation in the hippocampus and cerebral cortex, thus causing memory loss and global 

cognitive dysfunction. 

Despite advances in understanding the role of APP processing in AD, the normal 

physiological function of this protein has proven more difficult to elucidate. Initial reports 

speculated that the protein is a cell-surface receptor (Kang et al., 1987). The discovery of 

interacting proteins, genetic studies in animal models, and gene expression profiling have led to 

the identification of APP putative pathways associated with cellular and developmental changes. 
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VI.2 YTH CONTRIBUTIONS TO INTERACTOME MAPPING 

 

 

Current medical treatments for AD are purely symptomatic and hardly effective (Citron 

2010), Therefore, the complete understanding of the molecular mechanisms underlying AD is 

crucial for the development of novel therapies able to efficiently modify the biology of the 

disease. A full understanding of a biological system requires defining the interactions among its 

constituent molecular parts, such as the identification and characterization of PPIs, since proteins 

play a role in virtually every biological process. Most of the binary protein interaction data were 

generated through large-scale YTH screens. Despite the YTH technical limitations, such as 

incomplete coverage and the detection of false-positives, YTH data has provided the basis for 

many studies.  

The first aim of this work was to identify brain proteins that interact with the AD core 

protein APP, and also with the dephosphorylation-mimicking mutants APPY687F and AICDY687F. 

Advantages of YTH screening include the detection of in vivo PPIs, high sensitivity to detect 

interactions between low abundant proteins and avoidance of expensive production of antibodies 

or protein purifications. The results presented here confirm that YTH screening is an important 

tool for identifying new PPIs. Despite it being considered as a robust method, some caution is 

required in the analysis of the results, and one should be aware of its limitations when discussing 

the biological significance of the detected interactions. Further interactome studies should be 

carried on only with interactions validated in the YTH system, and preferably each new interaction 

should be further demonstrated using with a different assay.  

A human APP network comprised of the protein interactions was assembled through YTH 

screening, using as baits APP, APPY687F and AICDY687F. Hundreds of putative positive clones were 

isolated, of which 163 were identified by DNA sequencing and database searching (or restriction 

analysis in some cases). The majority of these clones, 118, matched to a protein coding sequence, 

yielding 31 different proteins. Several clones that did not match protein sequences where 

identified in these screens. These interacting peptide sequences may, in the future, be analyzed 

to potentially reveal APP-specific binding motifs. Similarly, the occurrence of mitochondrial 

proteins might simply reflect the presence of similar peptide sequences in the mitochondrial prey 

clones. Mitochondrial clones are unlikely to be genuine positives, nevertheless for all the 

corresponding mitochondrial genes there are polymorphisms associated with AD. 
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The recovery of two distinct library plasmids from the same clone is likely to happen, 

because in the library transformation, yeast can occasionally acquire more than one plasmid. This 

situation was overcome by restreaking the isolated putative positive clones two or three times, 

thus selecting for the plasmids that allow the cells to grow on the selective culture media used. 

Nevertheless, to verify that an isolated plasmid is responsible for the interaction, it should be re-

tested for interaction with the bait, by co-transformation of yeast with the respective bait/prey 

plasmids. Subsequently, all interactions need to be confirmed by a different method, such as co-

immunoprecipitation or in vitro methods, such as GST pull-down assay or blot overlay. 

Microscopy-based approaches, such as Bimolecular fluorescence complementation (BiFC) and 

Fluorescence resonance energy transfer (FRET), can validate a protein-protein physical interaction 

in vivo and confirm the simultaneous expression of the two binding partners in the same 

subcellular compartment. In the case of APP/RanBP9 interaction, confocal microscopy analysis 

also strengthened the PPI data and demonstrated new roles for the APP/RanBP9 interaction.  

A series of experimental in vitro and in vivo analysis can be employed to validate each novel 

protein interaction, thus different strategies may be followed, taking into account that the main 

objective was to unravel the biology of the bait. 

As with all detection methods, the YTH system is known to also detect some false positives, 

but false positive clones have been greatly reduced by the recent improvements in the YTH 

systems. Besides from large-scale screening, the YTH system was also employed in this work to 

investigate the protein domains responsible for selected protein interactions, e.g. RanBP9/AICD. 

The YTH system was also used to perform α-galactosidase activity assays, which allowed to 

relatively quantify PPI strengths between e.g. RanBP9 and AICD phospho-/dephospho-mimicking 

mutants, demonstrating that this interaction can be regulated by Tyr-687 phosphorylation. 

The YTH has proven useful in the construction of large interaction networks, despite its 

limitations, and in identifying unsuspected interactions that may be confirmed by a variety of 

independent methods. The quality and sensitivity of the interaction map is crucial to the ability to 

draw conclusions from the interactions and recently improved YTH systems are of acceptable 

quality, yielding high quality data on direct binary interactions (Yu et al., 2008; Braun et al., 2009). 

However, many neuronal-specific interactions may be missed in these YTH screens due to 

posttranslational modifications, proteolytic processing, etc. Despite these limitations, the use of 

YTH data is widespread in complex diseases research: the inherited ataxias (Lim et al., 2006), 
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Huntington’s disease (Goehler et al., 2004), Schizophrenia (Camargo et al., 2007) and AD (Soler-

Lopez et al., 2011).  

In a previous report, a curation of APP interactome was carried out, based on a complete 

survey of PPI databases and literature (Perreau et al., 2010). In this well conducted work, 

information about the APP isoform, proteolytic processing products involved in the interaction or 

the binding domain of APP involved was taken into account. Nevertheless, 

phosphorylation/dephosphorylation, a key cellular event that changes protein conformation and 

determines APP interactions with other proteins, should also be considered when analyzing the 

APP interactome. APP phosphorylation on Thr-668 abolishes the interaction with Fe65 (Ando et 

al., 2001) and phosphorylation of Tyr-682 promotes interaction with Shc (Tarr et al., 2002b). 

Additionally, Tamayev et al. (2009) have recently shown that phosphorylation of the cytoplasmic 

tail of APP on Thr-668 and Tyr-682 regulates APP interactions with several SH2-domain containing 

proteins. Nevertheless, in the 682YENPTY687 protein interaction motif of AICD, Tyr-687, and not Tyr-

682, is the consensual Tyr in the NPXY internalization signal. Moreover, Tyr-687 phosphorylation 

was shown to regulate APP intracellular trafficking, endocytosis and Aβ production (Rebelo et al., 

2007a). For these reasons, Tyr-687 phosphorylation-mimicking mutants of APP/AICD were used as 

baits in the YTH screens, which revealed putative new interactions, that can potentially help to 

understand the biology of APP, and, ultimately, APP pathways leading to AD. 
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VI.3 THE APP INTERACTOME CAN BE REGULATED BY TYR-687 PHOSPHORYLATION 

 

 

Bioinformatics analysis of the three APP/AICD interactomes generated in this study, and 

two additional screens from previous projects (Domingues, 2005; Capelo, 2010), revealed some 

distinct characteristics within and between the PPI networks. The interpretation of these PPI data 

sets, although speculative since validation of the putative new PPIs is necessary, is particularly 

relevant, since it allowed to characterize the physiological context of FL APP and its liberated 

cytoplasmic fragment, AICD. More importantly, the characterization of the protein networks 

around wt APP/AICD and dephospho-/phospho-mimicking mutants allowed to infer the relevance 

of Tyr-687 phosphorylation. The generated Tyr-687 mutations have already proved effective in 

elucidating the role of APP/AICD phosphorylation in AD. The APPY687F mutant, which mimics 

dephosphorylation at Tyr-687, was preferentially endocytosed and targeted for β-secretase 

cleavage, in contrast with the APPY687E phospho-mimicking mutant (Rebelo et al., 2007a). 

Interestingly, the functional proteomics analysis also pointed in the same direction, in particular 

the gene ontology terms under the domain ‘Cellular component’, where endosomes, the major 

site of β-secretase activity, occurs only in the Y687F-mutants interactomes. Nevertheless proteins 

interacting with dephospho-/phospho-mutants may interact with the wt protein and vice versa, 

as seen for Fe65 or RanBP9. Quantitative α-Gal assays could be carried out to compare the 

interaction strengths among wt AICD and several dephospho-/phospho-mimicking mutants, and 

elucidate the role of Tyr-687 phosphorylation in the regulation of AICD protein interactions. The 

same strategy could be applied to other AICD phosphorylatable residues.  

In the YTH screen with FL APP, preys include proteins that interact with the FL molecule and 

proteins that interact in vivo with APP proteolytic fragments, such as AICD, which can explain the 

exclusively nuclear proteins found in this group. Again, APP interaction domains can be mapped 

using the YTH system, as was the case for APP/RanBP9 and RanBP9/Tip60. 

The major goal of the functional proteomics approach was to identify the complete protein 

interaction network, or interactome, of each bait tested. Within PPI networks, proteins of similar 

function and cellular localization tend to cluster together (Bader and Hogue, 2002), making 

interactomics a powerful approach for inferring information with respect to protein function. 

Similarities in features such as posttranslational modifications could be expected for proteins with 
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similar function, but still they must perform their function in the context of the same cellular 

machinery and GO mining determined whether particular terms were disproportionately 

represented in a particular protein set. However, a poor protein characterization, or inaccuracy of 

the GO annotations may lead to incoherent results. 

Full-length APP (wt and dephospho-mutant) share two protein nodes (HBEGF and RTN3) 

and are also closely associated by the ‘Biological process’ GO categories (‘Signaling and regulation’ 

is the most frequent category). These two interactomes are enriched in transmembrane proteins, 

which was also confirmed by protein domain analysis. Proteins interacting with the APP 

extracellular tail may act as extracellular ligands of APP. Heparin-binding EGF-like growth factor 

(HBEGF) was the only protein associated to the extracellular space. 

APPY687F and AICDY687F share one protein node (APBB1) and are also linked by the ‘Cellular 

component’ categories endosomes and synapses, potentially involved in AD pathology. 

Interestingly, AICDY687F harbors all the AD risk genes found, while wt APP exhibits more 

interactions with proteins involved in non-AD pathologies. PPIs networks also showed that 

AICDY687E and its binding partners are more distant from the AD genes, in contrast with the Y687F 

dephospho-mimicking mutants. Functional analyses of Y687F mutants interactomes (APPY687F and 

AICDY687F) are in agreement with previous data on enhanced endocytosis and Aβ production by 

APPY687F, but the detection of hyperphosphorylated AICD (including on Tyr-687) in AD brain, is 

intriguing in this context. Overall the data suggests that APP must be dephosphorylated at Tyr-687 

for its efficient internalization and cleavage by β-secretase. However, increased phosphorylation 

on Tyr-687 and other AICD residues, detected by mass spectrometry in AD brain lysates (Lee et al., 

2003), likely results from dysregulation of the cellular phosphorylation system that has been 

reported to occur in AD (Gandy et al., 1993; da Cruz e Silva et al., 1995; da Cruz e Silva and da Cruz 

e Silva, 2003).  

The PPI maps around APP/AICD, in particular, the differences between wt, Y687E and Y687F 

mutants reflect the known information about the role of AICD Tyr-687 phosphorylation in an AD 

context. Therefore, integrating genetic and protein networks to infer pathway organization in 

complex diseases, such as AD, seems an appropriate approach to unravel the disease mechanisms 

and more effectively find targets for therapeutic intervention.  
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VI.4 A NOVEL ALTERNATIVELY SPLICED FE65 TRANSCRIPT WAS FOUND EXCLUSIVELY IN 

THE APP
Y687F

 INTERACTOME 

 

 

The APP binding protein Fe65 is a major determinant of APP/AICD function. In the YTH 

screens performed, Fe65 was a frequent clone with wt AICD, AICDY687F and APPY687F. Interactions 

between Fe65 and wt AICD, AICDY687F and AICDY687F were validated in the YTH system and α-Gal 

quantitative assays showed that AICDY687F/Fe65 was stronger than wt AICD/Fe65 interaction. In 

contrast, AICDY687E
/Fe65 showed a very low α-galactosidase activity. These results corroborate 

with clone frequencies in the YTH screens. Interestingly, 3 independent clones from YTH screen-2 

(APPY687F) were identified as a new splice variant of Fe65, Fe65E3a, which arises from alternative 

splicing of the FE65 gene.  

In silico analysis and RT-PCR experiments revealed the complete sequence of the new exon 

3a. The estimated size of mRNA, as given by Northern analysis, and the corresponding protein 

analyzed by Western blotting provided evidence for the full-length transcript sequence. This work 

led to a redefinition of the FE65 gene to include the novel exon 3a, thus defining 16 exons for the 

Fe65 gene. The mechanism of alternative splicing, giving rise to the Fe65E3a mRNA is a mutually 

exclusive event between exon 2 and exon 3a (exon 3a is spliced while exon 2 is skipped). The 

novel transcript, Fe65 transcript variant 3 or Fe65E3a, encodes isoform p60Fe65, which is exon 9-

inclusive, consistently with its origin from a brain library.  

Fe65E3a is predominantly expressed in the brain, both in human and rat, though at a lower 

level than the p97 mRNAs. Nevertheless, in some brain regions the ratios of Fe65E3a/total were 

noteworthy, e.g. in the cerebral cortex, and also in the cerebellum and temporal lobe, which 

includes the hippocampus and the amygdala. The hippocampus, cerebral cortex and amygdala 

play a major role in memory, cognition and behavior and are the brain regions mostly affected by 

the neuropathological hallmarks of AD (reviewed in Duyckaerts et al., 2009). 

Fe65E3a encodes the p60Fe65 isoform, which is detectable in higher levels in rat cortex and 

hippocampus primary cultures and was not detected in non-neuronal cells. These results 

characterize the new Fe65 splice variant and provided evidence that the novel transcript is the 

origin of the brain enriched 60 kDa Fe65 isoform of unknown origin, previously observed by other 

groups (Sabo et al., 2003; Wang et al., 2004; Cool et al., 2010). Wang et al. (2004) generated 
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p97Fe65 knockout mice and observed an upregulation of the p60Fe65 isoform which was 

attributed to translation of an alternative methionine on the p97Fe65 transcript (Wang et al., 

2004; Cool et al., 2010). Interestingly, isoform-specific p97Fe65 KO mice did not exhibit 

neuroanatomical brain abnormalities, but impaired performance in learning and memory tests 

were evident at 14 months, suggesting that p97Fe65 has a role in cognition (Wang et al., 2004). 

The lack of neuroanatomical alterations on the p97Fe65 KO mice might be due to elevated p60 

isoform or to the expression of the Fe65L1 and Fe65L2, since it is likely that there is some 

redundancy among the different Fe65 protein family members. Conversely, the Fe65;Fe65L1 

double knockout mice, deficient for two of the three Fe65 protein family members exhibited 

defective cortical neuronal migration during development, resembling cobblestone 

lissencephalies (Guenette et al., 2006). This phenotype is similar to that observed in 

APP;APLP1;APLP2 triple KO mice (Herms et al., 2004) and Mena KO mice (Lanier et al., 1999), 

suggesting that APP, Fe65 and Mena act together in a neurodevelopment signaling pathway. 

It is interesting to note that this novel transcript was identified when the YTH screen was 

carried out with the APPY687F bait. In the future, the role of Tyr-687 phosphorylation on the 

interaction with p60Fe65 can be addressed by quantitative α-Gal assays with APP/AICD phospho-

mutants. Of note YTH-s2 (APPY687F) and YTH-s3 (AICDY687F) were carried out with human brain 

cDNA libraries from different origins, which could influence the screening outcomes. 

Nevertheless, YTH-s1 (wt APP) was carried out with the same cDNA library as YTH-s2, and still not 

a single Fe65 clone (either p60Fe65 or p97Fe65) was recovered with this bait.  

The integrity of the N-terminally truncated WW domain of p60Fe65 can compromise the 

protein interactions occurring with this Fe65 domain (Mena, SET, P2X2, Nek6, c-Abl or 14-3-3g) 

and was shown to influence the role of Fe65 in transcriptional activation (Duilio et al., 1991; Cao 

and Sudhof, 2004; Telese et al., 2005; Cool et al., 2010).  

The functional importance of alternative splicing in neurons is well established (Lipscombe, 

2005). Alternative splicing might be the primary mechanism for generating the spectrum of 

protein activities that support complex brain functions in the brains of higher organisms. 

Alternative splicing is controlled at the level of individual neurons to custom design proteins for 

optimal performance and splice isoforms can be modified during development and as neuronal 

activity changes (Lipscombe, 2005). Likewise, neuronal-specific Fe65 transcripts, produced by 

alternative splicing can be a regulatory mechanism for generating proteins involved in highly 

specialized tasks. Therefore, the alternatively spliced p60Fe65 isoform in the brain is an 

interesting candidate of neuronal physiological relevance. 



 

Identification of Protein Complexes in Alzheimer’s Disease 

 

CHAPTER VI – DISCUSSION AND CONCLUSIONS 

  

 

 227 

 

VI.5 RANBP9, A NOVEL APP CYTOPLASMIC TAIL INTERACTING PROTEIN 

 

 

RanBP9 was the most frequent clone in YTH-s4 (AICDY687E) and also appeared with wt APP, 

being the only common node between these two sub-networks, therefore this clone was chosen 

for further analysis. YTH interaction validations were carried out with both APP and AICD 

constructs, as well as with wt and phospho-mimicking mutants, and all exhibited positive 

interaction with RanBP9. Quantitative α-Gal assays demonstrated that RanBP9 interacted 

preferentially with wt AICD and with AICDY687F, when compared to AICDY687E. However, combining 

the α-Gal data obtained for the two prey clones, Fe65 and RanBP9, revealed that AICD and 

AICDY687F interacted preferentially with Fe65, and AICDY687E had more affinity for RanBP9, 

corroborating the results from YTH screens. 

RanBP9 is an evolutionarily conserved nucleocytoplasmic protein implicated as a 

scaffolding protein in several signaling pathways. Full length RanBP9 comprises multiple signaling 

domains (Murrin and Talbot, 2007), such as SPRY, which is thought to be involved in protein-

protein interactions and RNA-binding (Ponting et al., 1997). The LisH (Lissencephaly type-1-like 

homology) domain has a conserved protein-binding function and is present in several proteins 

involved in microtubule dynamics, such as Lissencephaly-1, which has a key role in the control of 

neuronal migration (Emes and Ponting, 2001). RanBP9 was reported to interact with the 

cytoplasmic domain of signaling receptors, including Met, Integrin LFA-1 and neuronal cell 

adhesion protein L1CAM (Wang et al., 2002a; Denti et al., 2004; Cheng et al., 2005). Through 

interaction with Plexin-A receptors, RanBP9 negatively regulates axonal outgrouth and branching 

(Togashi et al., 2006). RanBP9 is also involved in regulation of cell morphology, adhesion and 

migration (Dansereau and Lasko, 2008; Valiyaveettil et al., 2008). 

The interaction between RanBP9 and APP/AICD was validated in the YTH system and was 

also confirmed in other systems, such as co-immunoprecipitation and microscopy analysis, which 

confirmed the association of RanBP9 with APP in vivo in several cell types and tissues. Moreover 

the RanBP9/APP interaction is direct and specific, as confirmed in vitro using GST pull-down 

assays. RanBP9 interaction with APP/AICD is specifically mediated by the 682YENPTY687 motif, 

which also mediates the interaction with other APP binding partners, such as Fe65, suggesting 

that APP cannot bind simultaneously to RanBP9 and Fe65. 
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During the course of this work, RanBP9 was reported to co-immunoprecipitate with APP, 

LRP and BACE1 and to increase Aβ production (Lakshmana et al., 2009), however the interaction 

with AICD and phospho-mutants has not been previously shown. 

RanBP9 co-localized with APP and Fe65 at the plasma membrane, particularly at ruffled 

edges of cells that showed a characteristic lamellipodial structure. The fact that RanBP9 has only a 

minor localization to the ER or Golgi, which are extensively stained by APP and Fe65, suggests that 

RanBP9 associates with APP after ER/Golgi, i.e. at the cell membrane. APP was already known to 

associate with Fe65, Mena and β1-integrins in dynamic adhesion sites known as focal complexes, 

and to have a role in actin-based cell migration and neurite outgrowth (Sabo et al., 2001, 2003). 

The colocalization of RanBP9 with APP and Fe65 at lamellipodia is in agreement with its role in 

neurite growth and branching (Togashi et al., 2006). Furthermore, in a recent report RanBP9 

expression was shown to alter integrin-dependent cell adhesion and focal adhesion signaling, 

presumably due to the enhanced endocytosis of APP, LRP1 and β1-integrin (Woo et al., 2012). 

Confocal microscopy showed co-localization of RanBP9 with AICD and Fe65 in the nucleus. 

Interestingly, in the YTH reporter system, RanBP9 exhibited higher affinity for the AICD fragment 

than for the full-length APP. A proteolytic fragment of RanBP9, RanBP9-N60, was identified 

recently by Lakshmana et al. (2010). RanBP9-N60 was increased in AD brains and interacted more 

strongly with APP/BACE1/LRP than full-length RanBP9, potentiating Aβ generation. Additionally, 

RanBP9-N60 lacks a nuclear localization signal and showed increased cytoplasmic vs. nuclear 

localization. The nuclear localization of full-length RanBP9 and high affinity for AICD, that we 

demonstrate here, is in agreement with the above mentioned study. Though it is worthwhile 

mentioning that proteolysis of RanBP9 was never observed under our experimental conditions, in 

fact N60 is formed only at low cell density and our experimental design made use of confluent cell 

cultures.  
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VI.6 RANBP9, AICD, FE65 AND TIP60 PROTEIN COMPLEXES IN NUCLEAR SIGNALING  

 

 

The RanBP9-APP molecular association might exert diverse effects depending on the 

context or subcellular compartment. The high affinity for AICD and their co-localization in the 

nucleus suggested an influence of RanBP9 in the transcriptional activity of AFT complexes. Indeed, 

when RanBP9 was simultaneously expressed with Tip60 it underwent a striking change in its 

subcellular distribution. All of the RanBP9 was redirected from extranuclear localizations, i.e. the 

plasma membrane, to the Tip60-enriched nuclear speckles. Therefore, Tip60 can retain RanBP9 in 

the nucleus.  

Co-expression of AICD, Fe65 and Tip60 results in the formation of AFT complexes that 

localize to spherical nuclear spots, which were shown to represent transcription factories (von 

Rotz et al., 2004; Konietzko et al., 2010). Despite binding to AICD and Tip60, RanBP9 did not re-

localize Tip60 to nuclear spots as does Fe65. The simultaneous interaction of RanBP9 with AICD 

and Tip60 targeted all components to irregular speckle structures. Thus, in contrast to Fe65 that 

relocates Tip60 and AICD to a spherical nuclear compartment involved in transcription, RanBP9 

traps AICD in nuclear speckles that are not involved in transcription and might represent a storage 

compartment (Konietzko et al., 2010).  

When RanBP9 was co-expressed with AICD, Fe65 and Tip60 we observed two opposite 

outcomes, depending on the expression levels. In most cells, RanBP9 expression prevented AFT 

spot formation, trapping AICD in the speckles occupied by Tip60. Only in cells with low RanBP9 co-

expression, AFT spot formation was observed. Therefore, the levels of nuclear RanBP9 influence 

the localization and thus the function of AICD in the nucleus. In similar transfection experiments 

where FL SwAPP fluorescently tagged was transfected with Fe65, Tip60 and RanBP9, AFT complex 

formation was completely abolished, in contrast with the nuclear spots that assemble in the 

absence of RanBP9.  

As expected by the negative effect on AFT spot formation, RanBP9 expression reduced the 

protein levels of described AICD target genes such as APP (von Rotz et al., 2004); TAGLN (Muller et 

al., 2007); and GSK3B (Kim et al., 2003; Ryan and Pimplikar, 2005). RanBP9 was shown previously 

to interact with several transcription factors resulting in induction or repression of the 

transcriptional activity. For example, RanBP9 enhances the transactivation activity of androgen 
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receptor, thyroid hormone receptor and p73α (Rao et al., 2002; Kramer et al., 2005; Poirier et al., 

2006). In contrast, through its interaction with TrkA receptor, RanBP9 inhibits NGF-mediated 

nuclear factor of activated T cells (NFAT) dependent gene transcription (Yuan et al., 2006). These 

results also suggest a role for RanBP9 in AICD-mediated transcriptional regulation. 

The suppression of AICD-mediated signaling by RanBP9 is intriguing because AICD signaling 

occurs mainly from the amyloidogenic processing of APP (Goodger et al., 2009), and RanBP9 was 

reported to increase Aβ generation and thus amyloidogenic processing (Lakshmana et al., 2009). 

In addition, RanBP9 protein levels decrease upon incubation with Aβ. Thus, the interplay of 

RanBP9 and APP is very complex. Although RanBP9 promotes amyloidogenic cleavage of APP, at 

the same time it redirects the generated nuclear AICD signal to transcriptionally inactive 

compartments, by competing with Fe65 in binding to AICD and Tip60. RanBP9 is therefore able to 

uncouple amyloidogenic processing of APP from nuclear signaling. The promotion of β-secretase 

processing by RanBP9 is counter-balanced by the reduction of RanBP9 through the amyloidogenic 

pathway product Aβ, constituting a negative feedback loop. 

In summary, these results and recent findings place RanBP9 as an important player in the 

multiple steps of APP signaling. RanBP9 is involved in a regulatory cycle with the pathogenic Aβ 

peptide, such that it increases Aβ production and hence, toxicity, being on the other hand down-

regulated by Aβ. Nuclear RanBP9 redirects AICD away from transcription factories and thus results 

in inhibition of AICD-mediated transcription. There is increasing evidence that dysregulation of 

AICD target genes in AD might contribute to the pathology of the disease (Konietzko, 2011), 

therefore RanBP9 is likely to influence various aspects of the AD pathology induced by the 

different APP cleavage products. 
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VI.7 CONCLUDING REMARKS 

 

 

Despite the considerable complexities of AD genetics, tremendous progress has been made 

towards our understanding of the etiological and pathophysiological mechanisms leading to 

neurodegeneration.  

In conclusion, this work resulted in: 

· the characterization of a new splice variant of the APP binding protein Fe65, 

relevant for neuronal function; 

· the characterization of a novel interaction between RanBP9 and AICD that can be 

regulated by Tyr-687 phosphorylation; 

· the identification of a novel interaction between RanBP9 and the histone 

acetyltransferase Tip60, and also the triple complex AICD/RanBP9/Tip60, relevant for 

nuclear signaling; 

· the identification of novel putative interactions with APP/AICD, and their 

phospho-mutants, which elucidate APP pathways leading to AD pathology. 

 

In particular, this work still leaves some open questions that will need to be pursued in the 

future, such as the validation of YTH clones. Investigating the effects of RanBP9 on AICD-mediated 

transcription also seems to be a promising field in the context of this work. 

Interactomics-based approaches revealed that Tyr-687 phosphorylation can regulate the 

interaction of APP with synaptic proteins. RIP signaling from synapse to the nucleus involves 

active retrograde transport of signaling endosomes, and again Y687F interactomes have proteins 

that localize to endocytic vesicles. The potential role of Tyr-687 phosphorylation state, acting as a 

‘‘biochemical switch’’ and changing the molecular composition of APP complexes, presents an 

interesting possibility to revert AD pathological events, deserving further exploration.  

Overall, being able to decipher the APP/AICD interactome shaped by the phosphorylation 

state of the several AICD phosphorylatable residues is expected to continue to elucidate APP 

pathways leading to amyloid deposition and neurodegeneration. As such the work here described 

brings us nearer to unravelling the physiological functions of APP. This in turn is of potential 
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significant relevance in the pathology of AD, and for the design of effective novel therapeutic 

strategies. 
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AAppppeennddiixx  II  --  CCuullttuurree  mmeeddiiaa  aanndd  ssoolluuttiioonnss  

 

 

Bacterial Media 

 

LB (Luria-Bertani) Medium 

To 950 ml of deionized H2O add: 

LB 25 g 

Agar 12 g (for plates only) 

Shake until the solutes have dissolved. Adjust the volume of the solution to 1 L with deionized H2O. 

Sterilize by autoclaving. 

 

100 mg/ml Antibiotics stock solutions (Ampicilin or Kanamycin)  

Dissolve 1 g of the antibiotic in 10 ml of deionized H2O. Mix until the solutes have dissolved, filter 

through a 0.2 mm filter, aliquot and store at -20 °C. 

 

SOB Medium 

To 950 ml of deionized H2O add: 

25.5 g SOB Broth 

Shake until the solutes have dissolved. Add 10 ml of a 250 mM KCl (prepared by dissolving 1.86 g of KCl 

in 100 ml of deionized H2O). Adjust the pH to 7.0 with 5 N NaOH. Adjust the volume of the solution to 1 

liter with deionized H2O. Sterilize by autoclaving. Just prior to use add 5 ml of a sterile solution of 2 M 

MgCl2 (prepared by dissolving 19 g of MgCl2 in 90 ml of deionized H2O; adjust the volume of the solution 

to 100 ml with deionized H2O and sterilize by autoclaving). 

 

SOC Medium 

SOC is identical to SOB except that it contains 20 mM glucose. After the SOB medium has been 

autoclaved, allow it to cool to 60°C and add 20 ml of a sterile 1 M glucose (this solution is made by 

dissolving 18 g of glucose in 90 ml of deionized H2O; after the sugar has dissolved, adjust the volume of 

the solution to 100 ml with deionized H2O and sterilize by filtration through a 0.22-micron filter). 

 

 

Yeast Media 

 

 

YPD medium 

To 950 ml of deionized H2O add:  

50 g YPD  

20 g Agar (for plates only) 

Shake until the solutes have dissolved. Adjust the volume to 1 L with deionized H2O and sterilize by 

autoclaving. Allow medium to cool to 60°C and add glucose to 2% (50 ml of a sterile 40% stock solution).  
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10X dropout solution (DO10X) 

This solution contains all but one or more of the following components: 

             10X concentration (mg/L)    SIGMA # 

L-Isoleucine    300       I-7383 

L-Valine    1500      V-0500 

L-Adenine hemisulfate salt  200      A-9126 

L-Arginine HCl    200      A-5131 

L-Histidine HCl monohydrate  200      H-9511 

L-Leucine    1000      L-1512 

L-Lysine HCl    300      L-1262 

L-Methionine    200      M-9625 

L-Phenylalanine   500      P-5030 

L-Threonine    2000      T-8625 

L-Tryptophan    200      T-0254 

L-Tyrosine    300      T-3754 

L-Uracil    200      U-0750 

(10X dropout supplements may be autoclaved and stored for up to 1 year.) 

 

SD synthetic medium 

To 800 ml of deionized H2O add:  

6.7 g Yeast nitrogen base without amino acids (DIFCO)  

20 g Agar (for plates only) 

Shake until the solutes have dissolved. Adjust the volume to 850 ml with deionized H2O and sterilize by 

autoclaving. Allow medium to cool to 60°C and add glucose to 2% (50 ml of a sterile 40% stock solution) 

and 100 ml of the appropriate 10X dropout solution. 

 

2X YPDA 

Prepare YPD as above. After the autoclaved medium has cooled to 55°C add 15 ml of a 0.2% adenine 

hemisulfate solution per liter of medium (final concentration is 0.003%). 
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Cell Culture and Rat primary neuronal cultures 

 

 

COS-7 cells (monkey kidney cell-line): 

DMEM medium 

For a final volume of 1 L, dissolve one pack of DMEM powder (with L-glutamine and 4500 mg glucose/L, 

Sigma Aldrich) in deionized H2O and add: 

3.7 g NaHCO3 (Sigma-Aldrich) 

adjust to pH 7.4. Sterilize by filtering through a 0.2 μm filter and store at 4 °C.  

 

Complete DMEM (COS-7 cells) 

For a final volume of 1 L, when preparing DMEM medium adjust to pH 7.4 and before sterilizing add: 

100 ml Fetal Bovine Serum (FBS) (Gibco BRL, Invitrogen) (final concentration: 10% v/v) 

Notes: FBS is heat-inactivated for 30 min at 45 °C. For cells maintenance, prior to pH adjustment add 

100 U/ml penicillin and 100 mg/ml streptomycin [10 ml Streptomycin/ Penicilin/ Amphotericin solution 

(Gibco BRL, Invitrogen)]. 

 

PC12 cells (rat pheochromocytoma cell-line) 

RPMI 1640 medium (Gibco) supplemented with 10% horse serum and 5% FBS, 100 U/ml penicillin and 

100 mg/ml streptomycin (Gibco). 

For a final volume of 1 L, dissolve one pack of RPMI 1640 powder (with L-glutamine and 4500 mg 

glucose/L, Gibco) in deionized H2O and add: 

0.85 g NaHCO3 (Sigma)  

adjust to pH 7.4 and before sterilizing add: 

50 ml Fetal Bovine Serum (FBS) (Gibco) (final concentration: 5% v/v) 

100 ml Horse Serum (HS) (Gibco) (final concentration: 10% v/v) 

100 U/ml penicillin and 100 mg/ml streptomycin 

 

SH-SY5Y cells (human neuroblastoma cell-line)  

1:1 combination of minimum essential medium (MEM, Gibco) and Ham’s F12 medim (Gibco), 

supplemented with 10% FBS. 

For a final volume of 1 L of deionized H2O add: 

MEM 

Ham´s F12 

1.5 g NaHCO3 (Sigma)  

0.055 g C3H3NaO3  

2 mM L-glutamine  

0.1 mM Non-essential aminoacids  

adjust to pH 7.4 and before sterilizing add: 

100 ml Fetal Bovine Serum (FBS) (Gibco) (final concentration: 10% v/v) 

100 U/ml penicillin and 100 mg/ml streptomycin 

 

HeLa cells (human cervical adenocarcinoma cell-line) 

Minimal Essential Media with 1% Non-Essential Amino Acids, 10% heat inactivated Fetal Bovine Serum 

(FBS) and 1% antibiotic/antimycotic (AA) mix. 

For a final volume of 500 ml, add: 

Complete MEM + GLUTAMAX 
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50 ml (10% v/v) Fetal Bovine Serum (FBS) (Gibco BRL, Invitrogen) 

5 ml Non-Essential aminoacids (100x) 

100 U/ml penicillin 

100 mg/ml streptomycin 5 ml 

FBS is heat-inactivated for 30 min at 56 °C. For cells maintenance, prior to pH adjustment add 100 

U/mL penicillin and 100 mg/ml streptomycin [10 ml Streptomycin/ Penicilin/Amphotericin 

solution (Gibco BRL, Invitrogen) 

 

PBS (1x) 

For a final volume of 500 ml, dissolve one pack of BupH Modified Dulbecco’s Phosphate Buffered Saline 

Pack (Pierce) in deionized H2O.  

Final composition: 

8 mM Sodium Phosphate 

2 mM Potassium Phosphate 

140 mM NaCl 

10 mM KCl 

Sterilize by filtering through a 0.2 mm filter and store at 4°C. 

 

Rat neuronal primary cultures 

Rat cortical neurons were isolated from cortex or hipoccampus of Wistar Hannover 18 days rat embryos 

whose mother was killed by rapid cervical dislocation. After brain dissection, tissues were dissociated 

with 0.45 mg/ml trypsin and 0.15 mg/ml deoxyribonuclease I in Hank’s balanced salt solution (HBSS) 

during 5-10 min at 37°C.  

Cells were washed with HBSS supplemented with 10% FBS to stop trypsinization, centrifuged at 1,000 

rpm for 3 min, and further washed and centrifuged with HBSS for serum withdraw. 

Cells pellet was ressuspended in complete Neurobasal medium, which is supplemented with 2% B27. 

Viability and cellular concentration were assessed by using the Trypan Blue excluding dye [0.4% Trypan 

Blue solution (Sigma)], and cells with (dead) or without (living) intracellular blue staining were counted 

in a hemocytometer chamber. Cellular viability was calculated and normally higher than 95%. 

Cells were plated on poly-D-lysine-coated dishes at a density of 1.0x10
5
 cells/cm

2
 in B27-supplemented 

Neurobasal medium (Gibco Invitrogen, Alfagene, Portugal), a serum-free medium combination. The 

medium was supplemented with glutamine (0.5 mM), gentamicin (60 µg/ml), without glutamate, for 9 

days before being used for experimental procedures. 

 

All cultures were maintained at 37°C in an atmosphere of 5% CO2.  

 

Complete Neurobasal medium (Hippocampal primary cultures) 

This serum-free medium (Neurobasal; Gibco, BRL) is supplemented with: 

2% B27 supplement (Gibco, BRL)  

0.5 mM L-glutamine (Gibco, BRL)  

25 μM L-glutamate (Gibco, BRL)  

60 μg/ml Gentamicine (Gibco, BRL)  

0.001% Phenol Red (Sigma Aldrich, Portugal)  

Adjust to pH 7.4. Sterilize by filtering through a 0.2 μm filter and store at 4°C. 
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Hank’s balanced salt solution (primary neuronal cultures) 

This salt solution is prepared with deionized H2O. Final composition: 

137 mM NaCl  

5.36 mM KCl  

0.44 mM KH2PO4  

0.34 mM Na2HPO4.2H2O  

4.16 mM NaHCO3  

5 mM Glucose  

1 mM Sodium pyruvate  

10 mM HEPES  

Adjust to pH 7.4. Sterilize by filtering through a 0.2 μm filter and store at 4°C. 

 

 

Solutions for cell fixation and immunocytochemistry 

 

 

1 mg/ml Poly-L-ornithine solution (10x) (COS-7 cells) 

To a final volume of 100 ml, dissolve in deionized H2O 100 mg of poly-L-ornithine (Sigma-Aldrich, 

Portugal).  

 

10 mg/ml Poly-D-lysine stock (100x) (rat primary neuronal cultures) 

To a final volume of 10 ml, dissolve in deionized H2O 100 mg of poly- D-lysine (Sigma-Aldrich).  

 

Poly-D-lysine solution (neuronal cells) 

To a final volume of 100 ml, dilute 1 ml of the 10 mg/ml poly-D-lysine stock solution in borate buffer.  

 

Borate buffer  

To a final volume of 1 L, dissolve in deionized H2O 9.28 g of boric acid (Sigma-Aldrich). Adjust to pH 8.2, 

sterilize by filtering through a 0.2 mm filter, and store at 4°C. 

 

4% Paraformaldehyde Fixative solution 

To a final volume of 100 ml, to 25 ml deionized H2O add 4 g of paraformaldehyde. Dissolve by heating 

the mixture at 58°C while stirring. Add 1-2 drops of 1 M NaOH to clarify the solution and filter (0.2 mm). 

Add 50 ml of 2X PBS and adjust the volume to 100 ml with deionized H2O. 
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Solutions for DNA manipulation 

 

50X TAE Buffer 

242 g Tris base 

57.1 ml glacial acetic acid 

100 ml 0.5 M EDTA (pH 8.0) 

 

TE Buffer (pH 7.5) 

10 mM Tris-HCl pH 7.5 

1 mM EDTA pH 8.0 

 

6X Loading Buffer (LB) 

0.25% bromophenol blue 

30% glycerol 

 

 

Competent Cell Solutions: 

 

Solution I (1 L) 

9.9 g MnCl2.4H2O 

1.5 g CaCl2.2H2O 

150 g glycerol 

30 ml KHAc 1 M; 

adjust pH to 5.8 with HAc, filter through a 0.2 μm filter and store at 4°C 

 

Solution II (1 L) 

20 ml 0.5 M MOPS pH 6.8 

1.2 g RbCl 

11 g CaCl2.2H2O 

150 g glycerol;  

filter through a 0.2 μm filter and store at 4°C  

 

Miniprep Solutions 

 

Solution I 

50 mM glucose 

25 mM Tris.HCl pH 8.0 

10 mM EDTA 

 

Solution II 

0.2 N NaOH 

1% SDS  

 

Solution III 

3 M potassium acetate 

2 M glacial acetic acid  
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Megaprep Solutions 

  

Cell Resuspension Solution: 

50 mM Tris-HCl pH 7.5 

10 mM EDTA 

100 µg/ml RNAase A  

 

Cell Lysis Solution:  

0.2 M NaOH 

1% SDS 

 

Neutralization solution: 

1.32 M potassium acetate pH 4.8 

 

Column Wash Solution: 

80 mM potassium acetate 

8.3 mM Tris-HCl pH 7.5 

40 µM EDTA 

55% ethanol 

 

 

 

Solutions for proteins manipulation 

 

 

SDS-PAGE and Western blotting solutions  

 

4X LGB (Lower Gel Buffer) 

To 900 ml of deionized H2O add:  

181.65 g Tris  

4 g SDS  

Shake until the solutes have dissolved. Adjust the pH to 8.9 and adjust the volume to 1 L 

with deionized H2O. 

 

5X UGB (Upper Gel Buffer) 

To 900 ml of deionized H2O add:  

75.69 g Tris  

Shake until the solute has dissolved. Adjust the pH to 6.8 and adjust the volume to 1 L 

with deionized H2O. 

 

30% Acrylamide/0.8% Bisacrylamide 

To 70 ml of deionized H2O add: 

29.2 g Acrylamide  

0.8 g Bisacrylamide  

Shake until the solutes have dissolved. Adjust the volume to 100 ml with deionized H2O. 

Store at 4°C. 
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4X Loading Gel Buffer 

250 mM Tris-HCl pH 6.8 

8% SDS 

40% Glycerol 

2% 2-mercaptoethanol 

0.01% Bromophenol blue 

 

10 % APS (ammonium persulfate) 

In 10 ml of deionized H2O dissolve 1 g of APS. Note: prepare fresh before use. 

 

10 % SDS (sodium dodecilsulfate) 

In 10 ml of deionized H2O dissolve 1 g of SDS. 

 

10X Running Buffer 

250 mM Tris-HCl pH 8.3 

2.5 M Glycine 

1% SDS 

 

1X Electrotransfer buffer 

25 mM Tris-HCl pH 8.3 

192 mM Glycine 

20% Methanol 

 

10X TBS (Tris buffered saline) 

10 mM Tris-HCl pH 8.0 

150 mM NaCl 

 

10X TBST (Tris buffered saline + Tween) 

10 mM Tris-HCl pH 8.0 

150 mM NaCl 

0.05% Tween 

 

Membranes Stripping Solution  

62.5 mM Tris-Cl pH 6.7 

2% SDS 

100 mM b-mercaptoethanol 

Dissolve Tris and SDS in deionized H2O and adjust with HCl to pH 6.7. Add the 

mercaptoethanol and adjust volume to 500 ml.  

 

 

Coomassie staining  

 

Gel washing solution 

50% (v/v) methanol 

10% (v/v) acetic acid 
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Staining solution 

0.2% (m/v) Coomassie Brilliant Blue 

50% (v/v) methanol 

10% (v/v) acetic acid 

 

Destain solution 

25% (v/v) methanol 

5% (v/v) acetic acid 

 

Storage solution 

20% (v/v) methanol 

5% (v/v) glycerol 

 

 

Immunoprecipitation solutions 

 

Lysis Buffer 

50 mM Tris-HCl (pH 8) 

120 mM NaCl 

4% CHAPS 

 

Lysis Buffer + Protease inhibitors 

Add to 4 mL of Lysis buffer the following quantities for a final volume of 5 mL: 

23,8 μl Pepstatin A (1 mg/mL stock solution in DMSO) 

0,72 μl Leupeptin (5 mg/mL stock solution) 

180 μl Benzamidine (200 mM stock solution) 

43,2 μl Aprotinin (2.1 mg/mL stock solution) 

176 μl PMSF 100X 

Washing solution 

50 mM Tris-HCl 

120 mM NaCl 

 

 

Yeast two-hybrid solutions 

 

 

Yeast plasmid extraction – Breaking buffer 

2% Triton X-100 

1% SDS 

100 mM NaCl 

10 mM Tris-HCl pH 8.0 

 

STET Buffer  

8% Sucrose 

5% Triton X-100 

50 mM Tris-HCl pH 8.5 
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50 mM EDTA pH 8.0 

 

Solutions for preparation of yeast protein extracts 

 

a) Protease inhibitor solution 

Always prepare solution fresh just before using. Place on ice to prechill. To prepare 688 µl 

add in a microfuge tube: 

66 µl Pepstatin A (1 mg/ml stock solution in DMSO) 

2 µl Leupeptin (10.5 mM stock solution) 

500 µl Benzamidine (200 mM stock solution) 

120 ml Aprotinin (2.1 mg/ml stock solution) 

 

b) PMSF (phenylmethyl-sulfonyl fluoride) stock solution (100X) 

Dissolve 0.1742 g of PMSF (SIGMA) in 10 ml isopropanol. Wrap tube in foil and store at RT. 

   

c) Cracking buffer stock solution 

To 80 ml of deionized H2O add:  

48 g Urea  

5 g SDS 

4 ml 1M Tris-HCl pH 6.8 

20 ml 0.5 M EDTA  

40 mg Bromophenol blue  

Shake until the solutes have dissolved. Adjust the volume to 100 ml with deionized H2O. 

 

d) Cracking buffer 

To prepare 1.13ml add in a microfuge tube: 

1 ml Cracking buffer stock solution (recipe above) 

10 ml β-mercaptoethanol  

70ml Protease inhibitor solution (recipe above) 

50 ml 100X PMSF stock solution 
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AAppppeennddiixx  IIII  --  PPrriimmeerrss    

 

Oligo name Sequence (5'-3') 
Length 

(bp) 
Target RE 

18FE1449 CCGCGTGTGGGGCGTCGGGC 20 FE65 (NM_001164) 
 

AD amplimer 3' GTGAACTTGCGGGGTTTTTCAGTATCTACGAT 32 pACT2 
 

AD amplimer 5' CTATTCGATGATGAAGATACCCCACCAAACCC 32 pACT2 
 

APP1980F GGATGCAGAATTCCGACATGACTCAGG 27 APP (NM_201414) EcoRI 

APP2000N TGACTCAGGATATGAAGTTCAT 22 APP (NM_201414) 
 

APPCTERMIII  GTGGCCCCGGGCTAGTTCTGCATCTGCTCAAAG 33 APP (NM_201414) SmaI 

APPRV4 GTGGCCCCGGGCTAGTTCTGCATCTGCAGGTGG 33 pAV30 SmaI 

CRA-F GAGGCCCGGGGGCCGCCATAGAAAGAATGATCCAC 35 RanBPM (NM_005493) XmaI 

CRA-R GAAACTCGAGGCTAATGTAGGTAGTCTTCCACTGTG 36 RanBPM (NM_005493) XhoI 

E10RV CGGCCATGATCTTAGAGCAGATC 23 FE65 
 

E14RV GGAAGGTGGGGGCTTCTTCATGG 23 FE65 
 

E1FW ATGTTGTGATGGAGAAGCCGCGG 23 FE65 
 

E2BFW ATGGCAGATGGATTGGTGTGTGTG 24 FE65 
 

E2CFW TACTGCCTCTTGGACCAGTCAGG 23 FE65 
 

E3RV CCAGGTGAGCTGGGACTCCTC 21 FE65 
 

EGFP-C2-FW  GGAGTTCGTGACCGCCGC 18 EGFP-C2 vector (U57606) 
 

FE1900F GGCAGTGCTGGGAGAGTG 18 FE65 (NM_001164) 
 

FE2350F GCCCCTCCCCAGTAGC 16 FE65 (NM_001164) 
 

FE65CT GGGGATCCCTTCATGGGGTATGGG 24 FE65 (NM_145689) BamHI 

FE65NT GCTGGGATCCCCATGTCTGTTCCATC 26 FE65 (NM_145689) BamHI 

FESEQ1 GCTCATGGAGAAGGCTTTG 19 FE65 (NM_001164) 
 

GAL4 AD TACCACTACAATGGATG 17 pACT2 
 

GAL4 BD TCATCGGAAGAGAGTAG 17 pAS2-1 
 

LISCT-F GAGACCCGGGATGGCAGACCATGATACAAAAAATGG 36 RanBPM (NM_005493) XmaI 

LISCT-R GCCTCCTCGAGATCGTACTTCACTATCTGTACC 33 RanBPM (NM_005493) XhoI 

NAPPC ATCACCATGGTGATGCTGAAGAAG 24 APP (NM_201414) NcoI 

NAPPII CCGCGCACCATGGCGATGCTGCCCGGTTTGG 31 APP (NM_201414) 
 

NRPUKF CGACTAGTGGCCGCCATGTCCGGGCAG 27 RanBPM (NM_005493) SpeI 

NRPUKRV GAAATGGGCGCGCCATGTAGGTAGTCTTCCAC 32 RanBPM (NM_005493) AscI 

pGEX2T-SEQ CGTATTGAAGCTATCCCAC 19 pGEX-2T 
 

PUK700 CCAAGTCTCCACCCCATTGACGTC 24 pUK-BK vector 
 

R1000R GTTTGAAGCCCCACAGTAGG 20 RanBPM (NM_005493) 
 

R107F GCAGCAGCTGTCGCCGCCACC 21 RanBPM (NM_005493) 
 

R1230F GCCAGATCTACAGACC 16 RanBPM (NM_005493) 
 

R1560F GCACCGCACATTTTTCAG 18 RanBPM (NM_005493) 
 

R1900F CAGGCCGCCATAGAAAG 17 RanBPM (NM_005493) 
 

R480R CTCCTGCTCGTTCAGGGCCGAG 22 RanBPM (NM_005493) 
 

R600R GCACCCGCAGGTTGTTCTGAG 21 RanBPM (NM_005493) 
 

R800F GGGATAAGCATTCATATG 18 RanBPM (NM_005493) 
 

RBGST-FW GCAGTTGATCAGTCGCGGCCGGGATGTCCG 92 RanBPM (NM_005493) MfeI 

RBGST-RV GCTCTTGCAATTGATAGCTAATGTAGGTAGTC 90 RanBPM (NM_005493) BclI 

RPUKF CGACGACTAGTGGCCGCCATGTCCGGGCAGCCGCCGCCG 39 RanBPM (NM_005493) SpeI 

SPRY-F TACCCCCGGGCTGTGGGATTTATTATTTTGAAGTA 35 RanBPM (NM_005493) XmaI 

SPRY-R CTATATCTCGAGCGAAAGGATGTTGCCCAAAATTGG 36 RanBPM (NM_005493) XhoI 
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AAppppeennddiixx  IIIIII  --  BBaacctteerriiaa  aanndd  yyeeaasstt  ssttrraaiinnss  

 

Bacteria strains: 

- E. coli XL1- Blue: recA endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac[F’ proAB lacZDM15 Tn10(Tet
r
)] 

- E. coli Rosetta (DE3) F
–
 ompT hsdSB(rB

–
 mB

–
) gal dcm (DE3) pRARE

2
 (Cam

R
) 

 

Yeast strains: 

- S. cerevisiae AH109: MATa, trp1-901, leu2-3, 112  ura3-52, his3-200, gal4D, gal 80D, LYS2:: GAL1UAS-

GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2, URA3::MEL1UAS-MEL1TATA-lacZ, MEL1 

- S. cerevisiae Y187: MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4D, met-, gal 80D, URA3:: 

GAL1UAS-GAL1TATA-lacZ, MEL1 
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AAppppeennddiixx  IIVV  --  PPllaassmmiiddss  

 

Plasmids for YTH: 

 

 

 

 

 

Figure 1: pAS2-1 vector map and MCS (Clontech, Enzifarma, Portugal). Unique sites are 

colored blue. pAS2-1 is a cloning vector used to generate fusions of a bait protein with 

the GAL4 DNA-BD. The hybrid protein is expressed at high levels in yeast host cells from 

the full-length ADH1 promoter. The hybrid protein is target to the yeast nucleus by 

nuclear localization sequences. pAS2-1 contains the TRP1 gene for selection in Trp
-
 

auxotrophic yeast strains. 
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Figure 2: pACT2 vector map and MCS (Clontech, Enzifarma, Portugal). Unique sites are 

colored blue. pACT2 is used to generate a hybrid containing the GAL4 AD, an epitope tag 

and a protein encoded by a cDNA in a fusion library. The hybrid protein is expressed at 

medium levels in yeast host cells from an enhanced, truncated ADH1 promoter and is 

target to the nucleus by the SV40 T-antigen nuclear localization sequence. pACT2 

contains the LEU2 gene for selection in Leu
-
 auxotrophic yeast strains. 
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Mammalian expression vectors: 

 

Figure 3: pCMV-SPORT6 vector map (source: IMAGE consortium). 

 

 

 

 

Figure 4: pcDNA3.1 vector map (Invitrogen, Alfagene, Portugal). 
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Mammalian expression vectors with GFP fusions: 

 

Figure 5: pEGFP-N1 vector map (Clontech, Enzifarma, Portugal). 

 

 

Figure 6: pEGFP C2 vector map (Clontech, Enzifarma, Portugal). 
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Bacterial expression vectors: 

 

Figure 7: pGEX-2T vector map (GE Healthcare Life Sciences). 

 

 

Figure 8: pET-28a(+) vector map (Novagen, Merck Millipore) 
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AAppppeennddiixx  VV  ––  YYTTHH  ssccrreeeenn  wwiitthh  AAIICCDD
YY668877EE

    

 

Results from YTH screen-4, carried out with AICD
Y687E

 (Domingues, 2005): 

 

Positive clones 

isolateds 

Mating efficiency 

(% diploids) 
Clones screened 

57 10% 1.1 X 10
8
 

 

  

gene Chr
Insert 

size

full-

length

frame 

with

symbol map (Kb) cDNA Gal4-AD

1,9,10,12,13,1

4,17,25,40,

48,54,57,71,7

5,160,192

NM_012470.3 Transportin-SR2 TNPO3 7q32.1 2 189197 0.7

NM_003000.2
Succinate dehydrogenase [ubiquinone] iron-sulfur 

subunit, mitochondrial
SDHB 1p36.1-p35 4 8,31,38,127 0.5

NM_138983.2 Oligodendrocyte transcription factor 1 OLIG1 21q22.11 3 224, 230, 235 2.2 P

NM_001077199.1 Serine/arginine-rich splicing factor 12 SFRS12 5q12.3 1 5 3.2

AL035608 clone RP3-479J7 Xq21 51,53 1.4

AC011500.7 clone CTB-60E11 19 177 1.1

AC055858.18 clone RP11-682M7 17 239 1.8

AC012652.7 clone RP11-46M12 15 136 2.8

AC128708.8 clone RP11-714L1 12 237 1.8

AL355432.7 clone BAC RP11-56F10 9 130 1.5

AL354855 clone RP11-64E14 9 4 1.3

AC023880 clone RP5-999D10 7 44,52 0.5

AC008957.7 clone CTD-2353F22 5 105 1.8

AC115282.2 clone RP11-122D19 3 41,81,125 1.5

AC007318.4 clone RP11-420C9 2 83 2.8

1 128 0.9

NM_006160 NDRF 17 1 145 0.7

AC005037 TAF15 17 2 84.92 1.3

BC014553 RAB3IP 12 1 231 1.7

NM_004321 KIF1A 2 1 2 0.5

NM_014873.1 LPGAT1 1 1 123 2.2

NM_015726 WDR42A/H326 1 1 153 0.9

1 166

1 163

genomic contig + chimeric clone:  genomic contig +

NM_001007026.1 Atrophin-1 (chimeric clones) ATN1

P

other alignments

82, 

144,152,174
3.1

6p23

GenBank Accession Definition
No. of 

clones

library inserts encoding known proteins

Clones

NM_005493.2 Ran binding protein 9 RanBP9 16 2.8

library inserts matching genomic clones

library inserts matching mitochondrial proteins

library inserts aligning with 3' UTRs

not analyzed
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AAppppeennddiixx  VVII  ––  YYTTHH  ssccrreeeenn  wwiitthh  wwiilldd--ttyyppee  AAIICCDD  

 

Results from YTH screen-5, carried out with wt AICD (Capelo, 2010): 

Positive clones 

isolated 

Mating efficiency 

(% diploids) 
Clones screened 

347 0.1% 3.0 X 10
3
 

 

 

 

  

gene Chr

symbol map

NM_182471.2 Piruvate kinase muscle transcript variant 3 PKM 15q22 1

library inserts encoding known proteins

library inserts aligning with 3' UTRs

GenBank Accession Definition
No. of 

clones

NM_001164.2/ 

NM_145689.1

Amyloid beta precursor protein-binding family B 

member 1 transcript variant 1/2 (a) (p97Fe65) 
APBB1 11p15 346
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AAppppeennddiixx  VVIIII  ––  AAPPPP  lliitteerraattuurree  ccuurraatteedd  iinntteerraaccttoommee  

 

The curated APP interactome was obtained from Perreau et al. (2010) and several APP 

interactions published after were added (last updated March 2011): 

 

 

Gene UniProt 
Entrez 

Gene 

A2M P01023 2 

ABCB1 P08183 5243 

ABL1 P00519 25 

ACE P12821 1636 

ACHE P22303 43 

ACTB P60709 60 

ADAM10 O14672 102 

ADAM17 P78536 6868 

ADNP Q9H2P0 23394 

AGER Q15109 177 

AGRN O00468 375790 

ALB P02768 213 

APBA1 Q02410 320 

APBA2 Q99767 321 

APBA3 O96018 9546 

APBB1 O00213 322 

APBB2 Q92870 323 

APBB3 O95704 10307 

APCS P02743 325 

APLP1 P51693 333 

APLP2 Q06481 334 

APOA1 P02647 335 

APOA2 P02652 336 

APOE P02649 348 

APP P05067 351 

APPBP2 Q92624 10513 

ATP2B2 Q01814 491 

BACE1 P56817 23621 

BACE2 Q9Y5Z0 25825 

BGN P21810 633 

BLML Q13867 642 

C1QA P02745 712 

CALR Q6IAT4 811 

CALU O43852 813 

CANX P27824 821 

CASP3 P42574 836 

CASP6 P55212 839 

CASP8 Q14790 841 

CAT P04040 847 

CAV1 Q03135 857 

CAV3 P56539 859 

CD14 P08571 929 

CD36 P16671 948 

CDK1 P06493 983 

CDK5 Q00535 1020 

CHRNA7 P36544 1139 

CKMT1B P12532 1159 

CLSTN1 O94985 22883 

CLSTN3 Q9BQT9 9746 

CLU P10909 1191 

CNTN1 Q12860 1272 

CNTN2 Q02246 6900 

CNTN3 Q9P232 5067 

CNTN4 Q8IWV2 152330 

COL18A1 P39060 80781 

COL25A1 Q9BXS0 84570 

COL4A2 P08572 1284 

CPE P16870 1363 

CPEB1 Q9BZB8 64506 

CSNK2A1 P68400 1457 

CST3 P01034 1471 

CTSD P07339 1509 

DAB1 O75553 1600 

DAB2 P98082 1601 

DDB1 Q16531 1642 

DNM1 Q05193 1759 

EPB41L3 Q9Y2J2 23136 

ERP44 Q9BS26 23071 

F10 P00742 2159 

F12 P00748 2161 

F2 P00734 2147 

F7 P08709 2155 

F9 P00740 2158 

FBLN1 P23142 2192 

FKBP1A P62942 2280 

FLOT1 O75955 10211 

FLOT2 Q14254 2319 

GABBR1 Q9UBS5 2550 

GANAB Q14697 23193 

GFAP P14136 2670 

GNAO1 P09471 2775 

GPC1 P35052 2817 

GRB2 P62993 2885 

GRIN1 Q05586 2902 

GRIN2A Q12879 2903 

GSN P06396 2934 

GULP1 Q9UBP9 51454 

HGS O14964 9146 

HMGB1 P09429 3146 

HMOX1 P09601 3162 

HMOX2 P30519 3163 

HOMER2 Q9NSB8 9455 

HOMER3 Q9NSC5 9454 

HSD17B10 Q99714 3028 

HSP90AA1 P07900 3320 

HSP90AA1 P07900 3320 

HSP90B1 P14625 7184 

HSPA1A P08107 3303 

HSPA4 P34932 3308 

HSPA5 P11021 3309 

HSPA8 P11142 3312 

HSPB1 P04792 3315 

HSPB6 O14558 126393 

HSPB8 Q9UJY1 26353 

HSPD1 P10809 3329 

HSPG2 P98160 3339 

HTRA2 O43464 27429 

HYOU1 Q9Y4L1 10525 

IDE P14735 3416 

ITGB1 P05556 3688 

ITM2B Q9Y287 9445 

ITM2C Q9NQX7 81618 

KAT5 Q92993 10524 

KLC1 Q07866 3831 

KLK6 Q92876 5653 

KNG1 P01042 3827 

L1CAM P32004 3897 

LAMA1 P25391 284217 

LDLRAP1 Q5SW96 26119 

LINGO1 Q96FE5 84894 

LRP1 Q07954 4035 

LRP1B Q9NZR2 53353 

LRP8 Q14114 7804 

MAP3K5 Q99683 4217 
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MAPK10 P53779 5602 

MAPK8 P45983 5599 

MAPK8IP1 Q9UQF2 9479 

MAPK8IP2 Q13387 23542 

MAPT P10636 4137 

MAT1A Q00266 4143 

MBP P02686 4155 

MMP2 P08253 4313 

MMP9 P14780 4318 

MT-ND3 P03897 4537 

NAE1 Q13564 8883 

NCAM1 P13592 4684 

NCSTN Q92542 23385 

NEDD8 Q15843 4738 

NEFL P07196 4747 

NF1 P21359 4763 

NFASC O94856 23114 

NGFR P08138 4804 

NID1 P14543 4811 

NOTCH1 P46531 4851 

NOTCH2 Q04721 4853 

NSF P46459 4905 

NSG1 P42857 27065 

NTN1 O95631 9423 

NUMB P49757 8650 

NUMBL Q9Y6R0 9253 

OAT P04181 4942 

PAK3 O75914 5063 

PDIA3 P30101 2923 

PDIA4 P13667 9601 

PDIA6 Q15084 10130 

PGAM1 P18669 5223 

PI4K2A Q9BTU6 55361 

PIN1 Q13526 5300 

PION A4D1B5 54103 

PLD1 Q13393 5337 

PPIA P62937 5478 

PPIB P23284 5479 

PPP1R2 P41236 5504 

PREP P48147 5550 

PRKCA P17252 5578 

PRNP P04156 5621 

PRSS1 P07477 5644 

PSEN1 P49768 5663 

PSEN2 P49810 5664 

RANBP9 Q96S59 10048 

RCN2 Q14257 5955 

RELN P78509 5649 

RTN4R Q9BZR6 65078 

SERPINA3 P01011 12 

SHC1 P29353 6464 

SHC3 Q92529 53358 

SLC5A7 Q9GZV3 60482 

SNCA P37840 6622 

SNCB Q16143 6620 

SNX17 Q15036 9784 

SORL1 Q92673 6653 

SPARCL1 Q14515 8404 

SPON1 Q9HCB6 10418 

SPTAN1 Q13813 6709 

SRGAP3 O43295 9901 

STUB1 Q9UNE7 10273 

STXBP1 P61764 6812 

TGFB1 P01137 7040 

TGFB2 P61812 7042 

TGM2 P21980 7052 

THBS1 P07996 7057 

THY1 P04216 7070 

TMEM30A Q9NV96 55754 

TMEM30B Q3MIR4 161291 

TNF P01375 7124 

TNFRSF21 O75509 27242 

TP53BP2 Q13625 7159 

TTR P02766 7276 

TUBB P07437 203068 

UCHL1 P09936 7345 

UNG P13051 7374 

YWHAZ P63104 7534 
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AAppppeennddiixx  VVIIIIII  ––  FFee6655  ((AAPPBBBB11))  lliitteerraattuurree  ccuurraatteedd  iinntteerraaccttoommee 

 

The Fe65 (encoded by APBB1) interactome was manualy curated via literature and database 

search (last updated March 2011): 

 

Gene 
Entrez 

gene 
Protein 

UniProt 

Accession 
References 

ABL1 25 Tyrosine-protein kinase ABL1, c-Abl P00519 Zambrano 2001; Perkinton 2004 

APLP1 333 APLP1 P51693 Bressler 1996 

APLP2 334 APLP2 Q06481   

APP 351 Amyloid Precursor Protein P05067 

Fiore 1995; Bressler 1996; 

Mcloughlin and Miller 1996;  

CLSTN1 22883 Alcadein-alpha, Calsyntenin-1 O94985 Araki 2004 

DAB1 1600 Dab1, Disabled homolog 1 O75553 Kwon 2010 

ENAH 55740 Mena Q8N8S7 Ermekova 1997; Sabo 2001 

ESR1 2099 

Estrogen receptor alpha, 

ERalpha,NR3A1 P03372 Bao 2007 

GSK3B 2932 

Glycogen synthase kinase-3 beta, GSK-3 

beta P49841 Lee 2008 

KAT5 10524 

Tip60, Histone acetyltransferase KAT5, 

HTATIP Q92993 

Cao and Sudhof 2001; von Rotz 

2004 

LRP1 4035 

Lipoprotein receptor-related protein 1, 

LRP1, A2MR, CD91 Q07954 

Trommsdorff 1998; Kinoshita 2001; 

Pietrzik 2002, 2004 

LRP2 4036 Megalin P98164 Alvira-Botero 2010 

LRP8 7804 

ApoEr2, Low-density lipoprotein 

receptor-related protein 8 Q14114 Hoe 2006 

MAPT 4137 Microtubule-associated protein Tau P10636 Barbato 2005 

NEDD4L 23327 

Nedd4-2, E3 ubiquitin-protein ligase 

NEDD4-like Q96PU5 Lee 2009 

NEK6 10783 Serine/threonine-protein kinase Nek6 Q9HC98 Lee 2007 

NOTCH1 4851 Notch1 P46531 Fischer 2005; Kim 2007 

P2RX2 22953 P2X2, P2X purinoceptor 2 Q9UBL9 Masin 2006 

RAC1 5879 Rac1 P63000 Wang 2011 

RASD1 51655 

Dexras1, Dexamethasone-induced Ras-

related protein 1 Q9Y272 Lau 2008 

SET 6418 SET, TAF1beta, I2PP2A Q01105 Telese 2005 

TFCP2 7024 

CP2/LSF/LBP1, Alpha-globin 

transcription factor CP2 Q12800 Zambrano 1998; Kim 2003 

TSHZ1 10194 Teashirt homolog 1 Q6ZSZ6 Kajiwara 2009 

TSHZ2 128553 Teashirt homolog 2 Q9NRE2 Kajiwara 2009 

TSHZ3 57616 Teashirt homolog 3 Q63HK5 Kajiwara 2009 

YWHAG 7532 14-3-3 protein gamma P61981 Sumioka 2005 
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AAppppeennddiixx  IIXX  ––  RRaannBBPP99  lliitteerraattuurree  ccuurraatteedd  iinntteerraaccttoommee 
 

The RanBP9 (encoded by the RanBP9 gene) interactome was manualy curated via literature and 

database search (last updated March 2011): 

Gene 
Entrez 

gene 
Protein 

UniProt 

Accession 
References 

ACHE 43 Acetylcholinesterase, Ach E P22303 Gong X 2009 

ADAP1 11033 
p42IP4/centaurin alpha-1, Arf-GAP with 

dual PH domain-containing protein 1 
O75689 Haase A 2008 

APC 324 Adenomatous polyposis coli protein P25054 Bandyopadhyay S 2010 

APP 351 APP P05067 Lakshmana M 2009 

AR 367 Androgen receptor, AR, NR3C4 P10275 Rao MA 2002 

AXL 558 
Tyrosine-protein kinase receptor UFO, AXL 

oncogene 
P30530 Hafizi S 2005 

BACE1 23621 Beta-secretase1, Bace1 P56817 
Wickham L 2005; Lakshmana M 

2009 

BRAF 673 
Serine/threonine-protein kinase B-raf, 

NS7, BRAF1 
P15056 Bandyopadhyay S 2010 

C20orf11 54994 
Protein C20orf11, Two hybrid associated 

protein 1 with RanBPM Twa1 
Q9NWU2 Umeda M 2003 

CACNA1G 8913 
Cav3.1 T-type Ca2+ channel, alpha 1 

subunit 
O43497 Kim T 2009 

CALB1 793 Calbindin D28K P05937 Lutz N 2003 

CBS 875 Cystathione beta-synthase, CBS P35520 Kabil O 2006 

CDK11B 984 
Ciclin-dependent kinase 11B, CDK11p46, 

CDC2L1 
P21127 Mikolajczyk M 2003 

CIT 11113 Citron Rho-interacting kinase, CITK, STK21 O14578 Chang Y 2010 

CLEC7A 64581 
hDectin-1E, type II lectin receptor 

homolog 
Q9BXN2 Xie J 2006 

DDX4 54514 
Probable ATP-dependent RNA helicase 

DDX4, Vasa homolog, MVH 
Q9NQI0 Shibata N 2004 

DISC1 27185 
Disrupted in schizophrenia 1 protein, 

DISC1 
Q9NRI5 Morris JA 2003 

DYRK1B 9149 

Dual specificity tyrosine-phosphorylation-

regulated kinase 1B,  Minibrain related 

kinase, Myrk/Dyrk1B 

Q9Y463 Zou Y 2003 

ENTPD1 953 

Ectonucleoside triphosphate 

diphosphohydrolase 1, CD39/ 

ectoNTPDase1 

P49961 Wu Y 2006 

FMR1 2332 
Fragile X mental retardation protein, 

FMRP 
Q06787 Menon RP 2004 

GRM2 2912 
Metabotropic glutamate receptor 2, 

GPRC1B, MGLUR2 
Q14416 Seebahn A 2008 

GRM8 2918 
Metabotropic glutamate receptor 8, 

GPRC1H, MGLUR8 
O00222 Seebahn A 2008 

HIPK2 28996 
Homeodomain-interacting protein kinase 

2, hHIPk2 
Q9H2X6 Wang Y 2002 

HMBS 3145 Porphobilinogen deaminase, PBGD P08397 Greenbaum L 2003 

HNF4G 3174 
Hepatocyte nuclear factor 4-gamma, 

HNF4g, NR2A2 
Q14541 Albert M 2005 

ITGB1 3688 
Integrin beta-1D (muscle specific), FNRB, 

MDF2, MSK12 
P05556 Hunter C 2009 

ITGB2 3689 LFA-1 Beta 2 Integrin P05107 Denti S 2004 

JUN 3725 Transcription factor AP-1, c-Jun, p39 P05412 Bandyopadhyay S 2010 
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KAT5 10524 
Tip60, Histone acetyltransferase KAT5, 

HTATIP 
Q92993 

 

L1CAM 3897 
Neural cell adhesion molecule L1, L1 cell 

adhesion molecule 
P32004 Cheng L 2005 

LLGL1 3996 
Mgl-1, mammalian lethal giant larvae-1, 

DLG4, HUGL, HUGL1 
Q15334 Suresh B 2010 

LRP1 4035 
Lipoprotein receptor-related protein 1, 

LRP1, A2MR, CD91 
Q07954 

 

MAP3K10 4294 
Mitogen-activated protein kinase kinase 

kinase 10, Mlk2 
Q02779 Bandyopadhyay S 2010 

MAP3K7 6885 
Mitogen-activated protein kinase kinase 

kinase 7, TAK1 
O43318 Bandyopadhyay S 2010 

MAPK13 5603 
Mitogen-activated protein kinase 13, 

MAPK p38 delta, PRKM13, SAPK4 
O15264 Bandyopadhyay S 2010 

MAPK6 5597 
Mitogen-activated protein kinase 

6,PRKM6, ERK3 
Q16659 Bandyopadhyay S 2010 

MAX 4149 
Protein max, Myc-associated factor , 

bLHLd4 
P61244 Bandyopadhyay S 2010 

MEF2C 4208 Myocyte enhancer factor 2C Q06413 Bandyopadhyay S 2010 

MET 4233 
Hepatocyte growth factor receptor, MET 

RPTK, HGFR 
P08581 Wang D 2002 

MKLN1 4289 Muskelin, hMuskelin homolog, Twa2 Q9UL63 Umeda M 2003 

MPHOSPH8 54737 
M-phase phosphoprotein 8, HSMpp8, 

Mpp8, Twa3 
Q99549 Umeda M 2003 

NCOA6 23054 Nuclear receptor coactivator 6, RAP250 Q14686 Albert M 2005 

NCOR2 9612 

Nuclear receptor corepressor 2, Silencing 

mediator of retinoic acid and thyroid 

hormone receptor, SMRT 

Q9Y618 Albert M 2005 

NGFR 4804 

p75 Neurotrophin receptor, Tumor 

necrosis factor receptor superfamily 

member 16 

P08138 Bai D 2003 

NR3C1 2908 Glucocorticoid receptor, GR P04150 Rao MA 2002 

NTRK1 4914 
High affinity nerve growth factor receptor, 

NRTK1, TrKA receptor 
P04629 Yuan Y 2006 

NTRK2 4915 
TrkB receptor, BDNF/NT-3 growth factors 

receptor 
Q16620 Yin YX 2010 

OBSCN 84033 Obscurin, Obscurin-RhoGEF Q5VST9 Bowman AL 2008 

OPRM1 4988 Mu-opioid receptor, MOP, MOR P35372 Talbot JN 2009 

PLK1 5347 Plk1, Polo-like kinase 1 P53350 Jang YJ 2004 

PLXNA1 5361 Plexin-A1, Semaphorin receptor NOV Q9UIW2 Togashi H 2006 

PMS1 5378 
PMS1, HNPCC3, DNA mismatch repair 

protein 
P54277 Cannavo E 2007 

POU2F1 5451 
Octamer factor 1, Oct-1, POU domain, 

class 2, transcription factor 1 
P14859 

Tantin D 2005; Schild-Poulter C 

2007 

PPARB 5467 
Peroxisome proliferator-activated 

receptor delta, PPARD, NR1C2, NUC1 
Q03181 Albert M 2005 

PPARG 5468 
Peroxisome proliferator activated 

receptor gamma, NR1C3 
P37231 Albert M 2005 

PPP1CC 5501 Serine/threonine-protein phosphatase 

PP1-gamma catalytic subunit 

P36873 Fardilha M 2011 

PRKCD 5580 Protein kinase C delta type Q05655 Rex EB 2010 

PRKCG 5582 Protein kinase C gamma type P05129 Rex EB 2010 

RAF1 5894 
RAF proto-oncogene serine/threonine-

protein kinase, RafBXB 
P04049 Johnson SE 2006 

RAN 5901 Ran-GTPase P62826 Nakamura M 1998 
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RAPGEF2 9693 
Rap guanine nucleotide exchange factor 

2,PDZ domain-containing GEF1 
Q9Y4G8 Bandyopadhyay S 2010 

S100A7 6278 Psoriasin , Psor1, Protein S100-A7 P31151 Emberley ED 2002 

SHC1 6464 SHC-transforming protein 1, ShcA P29353 Bandyopadhyay S 2010 

SOS1 6654 Son of sevenless homolog, Sos1 Q07889 Wang D 2002 

SPAG8 26206 
hSMP-1 sperm membrane protein, Sperm-

associated antigen 8 
Q99932 Tang X 2004 

TAF4 6874 
Transcription initiation factor TFIID 

subunit 4, TAF4 
O00268 Brunhorst A 2005 

THRA 7067 
Thyroid hormone receptor alpha, NR1A1, 

THRA1, THRA2 
P10827 Poirier MB 2006 

THRB 7068 
Thyroid hormone receptor beta, ERBA2, 

NR1A2, THR1 
P10828 Poirier MB 2006 

TP73 7161 Tumor protein p73 O15350 Kramer S 2005 

TYRO3 7301 
Tyrosine-protein kinase receptor TYRO3, 

SKY, BYK, DTK, RSE 
Q06418 Hafizi S 2005 

UBE2I 7329 
SUMO-conjugating enzyme UBC9, SUMO-

E2 
P63279 Chang LK 2008 

UCHL1 7345 

Ubiquitin thiolesterase, Ubiquitin 

carboxyl-terminal hydrolase isozyme L1, 

UCH-L1 

PGP9.5, PARK5 

P09936 Caballero OL 2002 

USP11 8237 Ubiquitin carboxyl-terminal hydrolase 11 P51784 Ideguchi H 2002 

YPEL5 51646 Protein yippee-like 5, YPEL5 P62699 Hosono K 2010 

YWHAG 7532 14-3-3 gamma, PKC inhibitor protein 1 P61981 Bandyopadhyay S 2010 
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AAppppeennddiixx  XX  ––  SSuupppplleemmeennttaarryy  ddaattaa  ffrroomm  CChhaapptteerr  IIVV  

 

New Fe65 transcript variant, Fe65E3a, submitted to the NCBI nucleotide database NCBI (GenBank 

Accession EF103274): 
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Supplementary data (5’ RACE from human testis cDNA library): 
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AAppppeennddiixx  XXII  ––  SSuupppplleemmeennttaarryy  ddaattaa  ffrroomm  CChhaapptteerr  VV  

 

 

Supplementary data (Co-localization of APP, FE65 and RanBP9 in HEK293 cells): 

 

 

 

 

Expression of recombinant GST-RanBP9 in E. coli Rosetta (DE3): 
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Expression of recombinant GST-ΔSLC in E. coli Rosetta (DE3): 

 

 

 

 

Expression of recombinant GST in E. coli Rosetta (DE3): 
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Expression of recombinant 6His-APP in E. coli Rosetta (DE3): 
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