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Abstract

We consider a fuel oil distribution problem where an oil company is responsible for the rout-
ing and scheduling of ships between ports such that the demand for various fuel oil products is
satisfied during the planning horizon. The production/consumption rates are given and assumed
to be constant. We provide two alternative mixed integer formulations: a discrete time model
adapted from the case where the production/consumption rates are varying and a classical con-
tinuous time formulation. We discuss different extended formulations and valid inequalities that
allow us to reduce the linear gap of the two initial formulations. A computational study com-
paring the various models accordingly to their size, linear gap and running time, was conducted
based on real small-size instances, using a commercial software.

1 Introduction

Maritime transportation is a major mode of transportation of goods worldwide. The importance of
this mode of transportation is obvious for the long distance transportation of cargoes but it is also
crucial in local economies where the sea is the natural link between the local developed regions,
such as countries formed by archipelagoes. When a company has the responsibility of coordinating
the transportation of goods with the inventories at the ports, the underlying planning problem is
a maritime inventory routing problem. Such problems are very complex. Usually modest improve-
ments in the supply chain planning can translate into significant cost savings.

Problem description

In this chapter we consider a real maritime inventory routing problem occurring in the archipelago of
Cape Verde. An oil company is responsible for the inventory management of different oil products,
such as, diesel, gasoline, fuel and jet, in several tanks located in the main islands. Fuel oil products
are imported and delivered to specific islands and stored on large supply storage tanks. From these
islands, fuel oil products are distributed among all the inhabited islands using a small heterogeneous
fleet of ships. These products are stored in consumption storage tanks. Some ports have both
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supply tanks for some products and consumption tanks of other products. Not all islands consume
all products.

Production and consumption rates are assumed to be given and constant. Typically the con-
sumption rates are forecasted. Hence safety stocks must be considered. Additionally, the storage
tanks have limited capacity. Hence, the level of each product in each tank must always be kept
between a given lower level, determined by the safety stock, and an upper level, determined by
the tank capacity. As the capacity of the supply tanks is very large when compared to the total
demand over the horizon, we omit the inventory aspects for these tanks.

To transport fuel oil products between the islands, the planners control a small heterogeneous
fleet. Each ship has a specified load capacity, fixed speed and cost structure. The cargo hold of each
ship is separated into several cargo tanks. The products cannot be mixed and cleaning operations
to change between products on the same tank should be avoided. Therefore we assume that the
ships have dedicated tanks for each product.

Given the initial stock levels at the consumption tanks, the initial ship position (which can be
a point at sea) and the quantities on board each ship, the inter-island distribution plan consists
of designing routes and schedules for the fleet of ships including determining the number of visits
to each port and the (un)loading quantity of each product at each visit to each port. This plan
must satisfy the safety stocks of each product at each island, and the capacities of the ships and
tanks. The transportation and operation cost of the distribution plan are to be minimized. This
problem is called a Short Sea Inventory Routing Problem (SSIRP), where short sea stands for sea
transportation along short distances.

Literature review

We have witnessed an increased interest in studying optimization problems within maritime trans-
portation. See the reviews on maritime transportation; [12, 13] and [14]. Combined routing and
inventory management within maritime transportation have been present in the literature the last
one and a half decades only; see [6] and [10]. These problems are often called Maritime Inventory
Routing Problems (MIRPs). Most of the published MIRP contributions are based on real cases
from the industry, see for the single product case [7, 9, 18, 16, 17, 20, 29] and for the multiple
products case [5, 11, 24, 25, 27, 28].

In [5], [9] and [27], the production and/or consumption rates are considered given and fixed
during the planning horizon. For those problems event based models are used where an index
indicating the visit number to a particular port is added to most of the variables. These event
based models are known as time continuous models [13]. In [1, 17, 19, 20, 24, 25], and [28] time
discrete models are developed to capture the complicating factors with varying production and
consumption rates.

The most related problems to the SSIRP given here are presented in [2] and [5]. In [2] it is
considered a variant of this SSIRP for short-term planning with demand orders, that is, amounts
of oil products that must be delivered until a given time period. These orders are determined from
the initial stock levels and the consumption rates. Typically, demand orders lead to a problem
with varying demands where demands are zero for most time periods and a large amount for
a few periods. Several key issues taken into account in the short-term problem, such as port
operating time windows for each time period, are relaxed here or incorporated indirectly in the
data. Otherwise, the problems considered originate from the same company in the same region. In



[5] a problem similar to the SSIRP is considered with constant consumption rates. However, in [5]
only a continuous model is considered. In both papers the products have dedicated compartments
in the ships.

Just recently the study of valid inequalities was incorporated in maritime inventory routing
problems. In [26] valid inequalities are included in order to enhance the proposed formulations to
an oil products transportation problem, and in [23] valid inequalities are developed within a column
generation approach for a maritime inventory routing problem. Also, in [18] valid inequalities are
derived for a single-product maritime inventory routing, which are used within a branch-price-
cut algorithm. In [20] valid inequalities are included to improve the formulation presented for
the liquefied natural gas inventory routing problem. Finally, [28] presents valid inequalities for
MIRPs including several practical constraints for solving problems in different shipping segments.
Comparison of different formulations in conjunction with valid inequalities have been used in [1]
and [2].

As discussed in both [6] and [28], most combined maritime routing and inventory management
problems described in the literature have particular features and characteristics, and tailor-made
methods are developed to solve the problems. These methods are often based on heuristics or
decomposition techniques. The choice of these solution approaches might be explained by the high
complexity of real MIRPs and the possibility to utilize the special structure of the problem. How-
ever, the constant hardware development combined with the theoretical advances in optimization
techniques have produced optimization solvers capable of handling increasingly larger instances.
Currently, it is possible to obtain optimal or near optimal solutions to small real instances occur-
ring in maritime transportation problems using commercial solvers. See [2] for the case of Cape
Verde, and [1, 21, 26, 28].

Contributions

Mathematical formulations, and related discussion, for maritime inventory routing problems have
received some attention during the last decades, see for instance, [1, 2, 3, 5, 8, 18, 28]. However,
to the best of our knowledge, comparison of different formulations for a given MIRP have been
considered only in [1] and [2]. Such study is of crucial relevance when one plans to solve a problem or
subproblems (embedded in a more general solution approach) using commercial solvers. The SSIRP
considered here offers an interesting test bed for a computacional study of different formulations.
In this chapter we discuss and compare different mathematical formulations for the SSIRP, some of
them sharing the characteristics of well-known and widely used formulations. Therefore, although
the problem presented here is a particular maritime inventory routing problem, the formulations
discussed and compared are of interest to other related maritime inventory routing problems as
well.

In addition to the common approach (see [5] and [9]) that consists of using event based models
(known as continuous time models), we introduce a model that combines a discrete and continuous
time where the discrete time corresponds to an artificial discretization of the continuous time.
This model is similar to the one given in [2] for SSIRP with time varying consumption rates. For
each approach, following [2] (see also [1] for a completely discrete model), we develop an arc-load
formulation and two extended formulations. Arc-load formulations are the most used formulations
in MIRPs, see [5, 9, 18, 28]. The extended formulations use new sets of variables that provide
additional information about the solution. That information is essential to derive a tighter model,



that is, to derive a model whose linear relaxation is closer to the optimal solution than the linear
relaxation of the arc-load model. Similar extended formulations have been extensively used to other
problems, such as lotsizing and network flow problems. In MIRPs they have been used in [1, 2] for
problems with time varying consumption rates. To the best of our knowledge, the two extended
formulations introduced for the event time model, and the formulations resulting from adaptation
to the constant rate problem of models including time discretization, are new for MIRPs.

We provide a comparison of the two approaches and the three different formulations for each
approach using as criteria the size of the models, the integrality gaps, the number of branch and
bound nodes, and the running time to solve the instances. All formulations are strengthened with
valid inequalities and tightening of constraints. As in [1, 2], computational experiments indicate
that the best performances are obtained using extended formulations based on sets of variables
that associate flows to the ship arcs (called arc-load-flow models). This conclusion is high relevant
since, as mentioned above, most of MIRPs have been modeled using arc-load formulations which
are dominated (both theoretically, considering the integrality gap, and computationally, considering
the running times) by the arc-load-flow models.

The real test instances are of small size which allow us to use a commercial software to solve
them to optimality. However, it should be remarked that the tested models have a structure that
is well suited to solve instances with longer planning horizons than those considered here. For
instance, the underlying models can be used as subproblem of heuristic procedures when solving
larger problems. In [3], instances are heuristically solved for time horizons of several months using
a rolling horizon heuristic where the planning horizon is split into smaller sub-horizons. Then,
repeatedly, a limited and tractable problem (which is much related to the one considered in this
paper) is solved for the shorter sub-horizons using a commercial software.

Outline

The remaining of this chapter is organized as follows. Section 2 presents arc-load discrete time
and arc-load continuous time formulations. Extended formulations are discussed in Section 3. In
Section 4 we discuss how the formulations can be tightened with valid inequalities. The computa-
tional study is reported in Section 5. Conclusions and final remarks are presented in Section 6. A
glossary of problem and model acronyms is given in Appendix A.

2 Mathematical Formulations

In this section we introduce two distinct arc-load-flow formulations. It is mainly the network
structure that differs in the two formulations. Since a ship can visit the same port several times
during the planning horizon, one needs to define the ship visits to each port unambiguously. One
approach consists of adapting a discrete time model of the SSIRP by performing a discretization
of the time to overcome the complicating factor of handling the multiple visits to each port. The
other approach is to consider an ordering of the visits, and introduce an index indicating the visit
number to a particular port. Hence, each network node corresponds to an event. The first network
is in general larger than the second one. However while the first network can have only cycles
within each time period, the second one includes many cycles.

First we introduce a discrete time formulation. This type of formulations is usually used in
problems with time varying consumption rates. These problems differ from the constant consump-
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Figure 1: Example of two routes with a discrete time network. Each column corresponds to a
period and each horizontal layer corresponds to a port.

tion rate on the consumption type (constant or varying) and on the inventory constraints. While
for the constant case inventory bounds (safety stocks and upper bound capacity) must be satisfied
during all time horizon, for the varying case inventory bounds need to be guaranteed at the end of
time periods only.

First, we introduce the SSIRP formulation for the time varying consumption rates problem and
call it the Basic Arc-Load Discrete Time formulation with time varying consumption (BD-SSIRP-
V). Then we explain the changes of the formulation for the problem with constant consumption
rates and call it BD-SSIRP. In both models, the time is discretized into time periods. A node in the
underlying network is described by the port and time period. The time discretization needs to be
appropriately chosen. The time unit should be simultaneously large enough to accommodate the
duration of a full ship operation, and fine enough as certain constraints can only enforced over the
entire period or at the end of each time period. For example, restricting the number of operating
vessels can only be enforced over the entire time period, and constraints such as inventory capacity,
can only be enforced at the end of each time period. In addition, the consumption rate needs to
be constant within a time period in the case of time varying consumption.

Demand rates and consumption rates could be used interchangeably, but we prefer consumption
rates in most cases.

An example of the ship routes in a feasible solution is depicted in Figure 1. Ship 1 sails from
its origin to port 2. Then it starts to operate in period 2 at port 2. Further on, it sails to port 4
and starts to operate in period 3 at port 4. Then it sails to port 3 and starts to operate at port 3
in period 7. Finally the ship sails to the destination. Observe that the period that defines a visit
is the period at which the ship starts to operate.

The second formulation is called the Basic Arc-Load Continuous Time formulation (BC-SSIRP)
and has been used by several authors when the consumption rates are constant during the planning
horizon, see for instance [5] and [9]. For each port, we define a sequence of events associated with
vessel arrivals. Each event is represented by a pair: (port, order of the arrival). Ship paths are
illustrated in Figure 2. For instance, ship 2 leaves origin O2 and sails to port 4 (for the first visit
to this port), then sails to port 2 (for the second visit to this port, since the first visit was made by



Figure 2: Example of ship routes where each node represents a visit. The first label indicates the
port and the second label indicates the visit. Each arc type represents the path of a different ship.

ship 1), and sails to port 1 for its first visit. Finally, the ship sails to port 3 (for the second visit to
port 3 since the first visit was made by ship 1) before it ends at its destination.

2.1 Arc-Load Discrete Time Formulations

In this section we present the basic arc-load models BD-SSIRP-V and BD-SSIRP for the time
varying consumption and constant consumption, respectively. The finite time horizon is divided
into a discrete number of periods. A ship path is defined as a sequence of pairs (port, period)
representing the nodes of the network. The period that defines a visit is the period in which the
ship starts to operate. Waiting, operating and traveling times are considered in a continuous time
measure.

First we introduce the model BD-SSIRP-V. Then we adapt this formulation for the constant
consumption rate case.

2.1.1 SSIRP with time varying consumption rates

The BD-SSIRP-V is similar to the formulation introduced in [2], but some of the problem specific
details are skipped. To the best of our knowledge, the model has never been used for constant
consumption rates. In this model, all variables will have a superscript D to indicate the discrete
time model.

The presentation of the formulation is split into the following parts: routing constraints, loading
and unloading constraints, time constraints and inventory constraints. The objective function is
presented at the end.

Routing constraints:

Let V' denote the set of ships. Each ship v € V must depart from its initial position (in the
beginning of the planning horizon) that can be in a port or at a point at sea. The set of ports is
denoted by N and the set of periods is denoted by T.

For the routing we define the following binary variables: xiDtjuv is equal to 1 if ship v starts to
operate at port ¢ in period ¢ and then sails from port ¢ to port j and starts to operate at port j in
period u; and 0 otherwise, while azgtv indicates whether ship v sails directly from its initial position
to port i to start an operation in period t or not. zZ, could have been included in :L‘i[t)juv, but is

ottv
introduced to ease the reading. Variable zl% is 1 if ship v ends its route at port 7 after an operation



that started in time period ¢; and 0 otherwise, and 22 is 1 if ship v ends its route at the origin (it
is not used) and 0 otherwise. Variable wgv is 1 if ship v visits port ¢ in period ¢; and 0 otherwise.
Finally, yilt) is 1 if some ship visits port 4 in period ¢; 0 otherwise.

Variables w%uv are not defined for ¢ > . For ease of notation we include them in the model
assuming they are zero. We allow them to be positive if ¢ = u, that means a ship can visit two
ports in succession in the same time period. We also assume z2. =0 if i = j.

itjuv
The routing constraints are as follows:

ZZxﬁw + sz, =1, Yo eV, (1)

ieN teT

wﬁv—ZijDum—thU:O, VveViie NteT, (2)
JEN ueT

Wiy = > Y i, — 2, =0, YWweVieNteT, (3)
JEN ueT

Zw%:yﬁ), Vie N,teT, (4)

veV

T €{0,1},  YweV,ijeNtueT, (5)

D wh 2P e {01}, WweV,ieNteT, (6)

yP €{0,1}, VieN,teT, (7)

Def0,1}, weWw (8)

Constraints (1) ensure that ship v either departs from its initial position to port ¢ in period
t or it is not used. Constraints (2) and (3) are the flow conservation constraints ensuring that a
ship arriving at a port also leaves that port by either visiting another port or ending its route.
Equations (4) guarantee that at most one ship can operate at port i in a given time period.
Constraints (5)-(8) define the variables as binary.

Loading and unloading:

Let K represent the set of products and K, represent the set of products that ship v can
transport. Not all ports consume all products. Parameter J;; assumes value 1 if port i is a supplier
of product k; -1 if port ¢ is a consumer of product k, and 0 if ¢ is neither a consumer nor a supplier
of product k. The quantity of product k on board ship v at the beginning of the planning horizon
is given by Qur. Cyx is the capacity of the compartment of ship v dedicated for product k. The
minimum and maximum discharge quantities of product k£ are given by sz and Q,., respectively.

In order to model the loading and unloading constraints we define the following binary variables:
ogyk is equal to 1 if product k is loaded onto or unloaded from ship v at port 7 in time period ¢, and
0 otherwise; and the following continuous variables: qgvk is the amount of product k loaded onto
or unloaded from ship v at port 7 in time period ¢, lgvk is the amount of product k on board ship
v when leaving from port ¢ after an operation that started in time period t. For ease of notation,
variables Oi[t)vk’ such that J;; = 0, are included in the model and assumed to be zero.



The loading and unloading constraints are given by:

T8 Uo + Tik@uor — L) =0, Yo € Vyi,j € Nt,u € T,k € K,, (9)
orto(Qui + Jikaizor, — lizor) =0, Yo €Viie Nt €T,k € K, (10)
Bk <Cok D) 2l WeEViieNteT keK, (11)
FJEN ueT

qR . < Cuol . YweVieNteT keK,: Jy=1, (12)
Q. 0tk < Gigor, < min{Clo, QuYolty, Yo eViie NiteT ke K,: Jy=—1, (13)
S ohy>wh, WweVieNteT, (14)
keK,

ol <wh, WweVieNteTkeck,, (15)
12, a2, >0, YoeVyie NteTkek,, (16)
o €{0,1}, YweV,ieNteTkeckK,. (17)

Constraints (9) and (10) relate the quantity on board to the quantity loaded and/or unloaded.
Constraints (9) ensure that if ship v sails from port ¢ (after an operation started in period t) to port
Jj (to initialize an operation in period u), then the quantity of product k on board at the departure
from island j should be equal to the quantity on board at departure from port ¢ plus (resp. minus)
the quantity loaded (resp. unloaded) from j. Equations (10) relate the quantity on board with the
quantity loaded and/or unloaded in the starting position. Constraints (11) impose an upper bound
on the quantity on board. They also ensure that if the quantity on board is positive than the ship
must travel to some other port. Constraints (12) ensure that if an operation occurs at a loading
port, that is, qz%k > 0, than the setup variable ogvk must be one. They also impose an upper bound
on the quantity loaded. Constraints (13) impose lower and upper limits on the unload quantities,
respectively. Constraints (14) ensure that if ship v starts an operation at port ¢ in time period ¢,
then at least one product must be (un)loaded. Constraints (15) ensure that if ship v (un)loads
one product at port ¢ in period ¢, then wgv must be one. The nonnegativity requirements (16) are
given for the variables representing the load on board and the (un)loading quantity. Finally, the
formulation involves binary requirements (17) on the operating variables.

Constraints (9) and (10) are non-linear. Following [15], equations (9) can be linearized by
replacing them with the following two sets of constraints:

e+ ke — Uhpe + Conlju < Coky WweViijeNtueT, ke K,  (18)

12, + ijqﬁvk - zﬁwk - Cvkx%w > —Cyp, YoeV,i,je N, t,ueT ke K,. (19)

and equations (10) can be replaced by:

Qui; + Jikqgvk — li[t)vk + cvkxgw < Cyk, YveV,ie NyteT, ke K,, (20)
Qur; + Jikqgvk — li[t)vk — cvkxgw > —Cyk, YveV,ie NteT, ke K,. (21)

Time constraints:

In order to account for the time aspects correctly we consider a continuous time measure in
addition to the discrete time. In comparison to other discrete time MIRP formulations [1], we do



not need to explicitly define binary waiting variables. We define the following parameters: TZ% is
the time required to load/unload one unit of product k at port i; TZ‘Z is the set up time required
to operate product k at port i. Parameter Tj;, is the traveling time between port ¢ and j by ship
v; va) indicates the traveling time required by ship v to sail from its initial port position to port
i TZ»B is the minimum interval between the departure of one ship and the next arrival at port 7.
Finally, T is the length of the time horizon.

We define the nonnegative continuous variables tg as the start time of the operation at port 4
in time period ¢, and th as the end time of the operation that started during period t in port 7.
The time constraints are as follow,

ED D S D D .
tig =t + Z Z ,I;koitvk + Z Z zq’i%qitvk’? Vi € N,teT, (22)
veEV kEK, veV keK,

th—thly > TPy, VieNteT:t>1, (23)
thP + Tyjo —th, <T(1 —2,,,), WweVijeNtueT, (24)
Y TQxh, <tf, VieNteT, (25)
veV

t—1<th <t VieNteT, (26)
th thP? >0, VieNteT. (27)

Equations (22) define the end time of each operation. Notice the end time can be greater than the
starting time plus the set up times and the time for the (un)load operations. This accounts the
possibility of a ship to wait between (un)loadings. Constraints (23) impose a minimum interval
between two consecutive visits at port . Constraints (24) ensure that if ship v sails from port i
(after an operation started in period t) to port j (to initialize an operation in period u), then the
operation at port j can only start after the end time of operation at port ¢ plus the time required
to travel from ¢ to j. Constraints (25) ensure that if ship v travels from its initial position to port i
to start an operation in period ¢, then the starting time at port ¢ can only occur after the traveling
time. Constraints (26) link the continuous with the discrete time measures and constraints (27)
define the sign of the continuous time variables.

When time windows are considered they can be easily included in the model. For instance, if
the start of an operation at port 7 in period ¢ is restricted to a time-window [A;;, B;] then it suffices
to replace constraints (26) by Ay < tF < By.

Inventory constraints:

Inventory constraints are considered for each unloading port i (J;; = —1). Dy, indicates the
demand or consumption of product k£ at port i in period ¢. For each product k£ at a consumption
port 4, the minimum stock level is given by S, and the maximum stock level (tank capacity) is
given by S;i. ST;; denotes the initial stock level of product k in port i.

The nonnegative continuous variables sgk indicate the stock level of product k in port 7 at the
end of period t. The inventory constraints are as follow:



Sllzt—l)k+zqgvk_sgk:DZtkv VZ€N7t€T7k€K J’Lk:_]-a (28)

veV
sRe =Sy, Vie NkeK:Jy=—1, (29)
S < sB < S, VieNteT ke K:Jy=—1. (30)

Constraints (28) are the inventory balance constraints. These constraints together with the bounds
ensure that the demand for each product at each port in each time period is satisfied. Constraints
(29) define the initial stock levels. The upper and lower bounds on the stock levels are ensured by
constraints (30).

The objective function is to minimize the costs (transportation and setup costs):

Min Z Z Z Cijvxgjuv + Z Z Z Coivxgtv + Z Z Z Z Ciokoi?vk (31)

veV i,jeEN t,ueT veV ieN teT veV ieN teT keK,

where Cjj, is the total transportation cost for ship v to sail from port i to port j, Co;y is the cost for
ship v to sail from its origin to port ¢, and C’iok is the fixed cost of operating (load/unload) product
k at port 7.

The basic arc-load discrete time formulation with time varying consumption rates, BD-SSIRP-
V, is given by (1)-(8), (11)-(31).

2.1.2 SSIRP with constant consumption rates

In this Section we consider the variant of the SSIRP where constant consumption rates are assumed.
The problem considered in this case differs from the one with time varying consumption rates in
inventory aspects. In the time varying consumption case, inventory constraints are considered
only at the end of each time period, while in the constant consumption rate safety stocks must be
satisfied throughout the planning horizon. The two related problems occur in two different planning
problems. The time varying consumption problem occurs when a set of orders are given. Each
order corresponds to a quantity of an oil product that must be delivered into a specific port and has
a deadline to be satisfied. The constant consumption rate is the assumed when the planners are
considering longer time horizons. In this case the consumption rates correspond to the estimated
consumption rates from real data.

In order to model the constant rate case we can adapt the discrete time formulation.

In the BD-SSIRP-V the safety stock is guaranteed at the end of each period only. These ends
of periods are artificially established. Hence, by choosing a different discretization the model will
guarantee the stock level at different times. As depicted in Figure 3 it may happen that the stock
level goes below the minimum stock level in the middle of a period. This situation should not be
allowed in the constant rate case, SSIRP, where the safety stock must be satisfied at any time in
the interval [0, T].

In order to prevent such a situation to occur, while keeping a chosen discretization, we add the
following constraints

sk — Dink(th] —t+1)> Sy, VieNteT ke K: Jy=—1 (32)

10
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Figure 3: Delivery must occur no later than ¢* in SSIRP, and it must occur no later than ¢ in the
SSIRP-V.

The left hand side of (32) measures the stock level at the start time of the operation which is the
stock level at the beginning of the period minus the consumption until the start of the operation.
These levels should be above the safety stock levels.

Similarly, in order to prevent stock to go above the tank capacity at the end of a discharge
operation, we add the following constraints

shk — Diet” =t + 1)+ > qf, > S, VieNteT ke K: Jy=—1. (33)
veV

The basic arc-load discrete time formulation with constant consumption rates, BD-SSIRP, is
given by (1)-(8), (11)-(27), (28)-(33).

2.2 Arc-Load Continuous Time Formulation

In this section we present the basic arc-load continuous time formulation, BC-SSIRP, for the case
with constant consumption rates.

In the BD-SSIRP we discretized the time such that in each period at most one visit could occur
at each port. Here, we present an alternative formulation where port events, here called port visits,
are distinguished by the order of the visit. This type of formulation was used in [5] and [9)].

Again, we divide the set of constraints of the formulation in the following parts: routing con-
straints, loading and unloading constraints, time constraints and inventory constraints.

Contrary to the discrete model that combines both discrete and continuous time, this model
uses continuous time only.

For each port we consider an ordering of the visits according to the time of the visit. The ship
paths are defined on a network where the nodes are represented by a pair (i, m), where i is the port
and m is the visit number at port 7.

For this formulation only the new notation is introduced.

11



Routing constraints:
Each possible port visit is denoted by the pair (i, m) representing the mt visit to port i. Direct
ship movements (arcs) from port visit (i,m) to port visit (j,n) are represented by (i,m, j,n).

We define S* as the set of possible port visits (i,m), S as the set of possible port visits made
by ship v, and set S;X as the set of all possible movements (i, m, j,n) of ship v.

For the routing we define the following binary variables: a;gnjm is equal to 1 if ship v sails from
port visit (i,m) directly to port visit (j,n); and 0 otherwise, &, indicates whether ship v sails
directly from its initial position to port visit (,m) or not, wic;,w is 1 if ship v makes port visit (i, m);
and 0 otherwise, z{  is equal to 1 if ship v ends its route at port visit (i,m); and 0 otherwise, and
ygn indicates whether occurs the m!” visit to port i or not.

The routing constraints are as follows:

Z xS 428 =1, Yv eV, (34)

(i,m)eS¥

wé — Z %Cmmv —z8 =0, Yo eV, (i,m) e ST, (35)
(Gm)esy

Why = D Tiny — 2w =0, YV, (i,m) € ST, (36)
(Gm)est

S wS, =95, V,m)e s’ (37)

veV

Yim-1) — Ym =0, V(i,m)e ST :m>1, (38)

xgmv,wﬁm,zﬁm € {0,1}, Yv eV, (i,m) € Sf, (39)

T €{0:1}, Yo €V, (i,m,j,n) € S, (40)

v e{0,1},  V(i,m)e ST, (41)

2§ e {0,1}, Yo e V. (42)

Equations (34) ensure that each ship departs from its initial position and sails towards another
port or the ship is not used. Equations (35) and (36) are the flow conservation constraints, ensuring
that a ship arriving at a port also leaves that port by either visiting another port or ending its
route. Constraints (37) ensure that each port visit (¢,m) is made at most once. Constraints (38)
state that if port 7 is visited m times, then it must also have been visited m — 1 times. Constraints
(39)-(42) define the variables as binary.

Loading and unloading:

In order to model the loading and unloading constraints, we define the following binary variables:
ognvk is equal to 1 if product k is loaded onto or unloaded from ship v at port visit (i,m), and 0
otherwise. In addition, we define the following continuous variables: qz-c;m) i is the amount of product
k (un)loaded at port visit (7,m) and lgmk is the amount of product k on board ship v when leaving
from port visit (z,m).
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The loading and unloading constraints are given by:

Tmgno Ut + Tk @k — o) = 0, Yo €V, (i,m,j,n) € S,k € Ko, (43)

Zoimo (Quk + JikGior — lnot) =0, Y0 €V, (i,;m) € S,k € Ko, (44)

Kk < Cok > Tppings VeV, (i,m) € 8L ke K, (45)

(jm)ESE

@ <CuoS . YoeV,(i,m)e ST ke K, : Jy =1, (46)

fikogm’f < q¢ . <min{Cyr, Qi }oS 1., Yo eV, (i,m)eSE ke Ky: Jy = —1, (47)
Z ogm)k > wgm, Yo eV, (i,m) e ST, (48)
keK,

o v <ws Yo eV, (i,m) € ST,k € K,, (49)

ot Qoo 2 0, Yo €V, (i,m) € STk € K, (50)

of »€1{0,1},  YoveV,(i,m)e Sl keK,. (51)

Equations (43) determine the quantity of product k on board ship v when the ship sails from port
visit (i, m) to port visit (j,n). These constraints can be linearized as follows:

19 4+ ijqﬁwk — zjc,wk + Cvkxi%jm < Clpis Yo eV, (i,m,j,n) € SX ke K,, (52)
19 .+ ijqﬁvk — zjcm,k - cvkx?mjm > —Clyks Yo eV, (i,m,j,n) € SX ke K,. (53)

Constraints (44) are similar to (43) and determine the load on board the ship for the first ship
visit. These constraints can be replaced by the following linear constraints:

Qut + JirdS o — 15 1+ CorzS, . < Cor, Yo eV, (i,m) € SP k € K,, (54)
Qui + Jir 05 on — 15 1 — CorzS > —Co, Yo eV, (i,m) € S,k € K,. (55)

The ship capacity constraints are given by (45). Constraints (46) impose an upper bound on the
quantity loaded at supply port. Constraints (47) impose lower and upper limits on the unload
quantities. Constraints (48) ensure that if ship v makes port visit (7,m), then at least one product
must be (un)loaded. Constraints (49) ensure that if ship v (un)loads one product at visit (i, m),
then w , must be one. Constraints (50)-(51) are the non-negativity and integrality constraints.
Time constraints:
Given the start time and end time variables, t$ and t£¢

sty at port visit (i, m), the time constraints
can be written as:

tEC >0, + 3 3 TG + D> T35, W(im) € ST, (56)
veV keK, veV keK,

tom =ty — TPy, >0, ¥(i,m) € S”:m > 1, (57)

thC + Tijo — 5, < T(1 = 5 jn0)s Yo eV, (i,m,j,n) € SX, (58)

> T0aG, <th,,  V(i,m)e ST, (59)

veV

& tEC >0,  v(i,m)e St (60)
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Constraints (56) define the end time of service of port visit (¢, m). Constraints (57) impose a mini-
mum interval between two consecutive visits at port i. Constraints (58) relate the end time of port
visit (¢, m) to the start time of port visit (j,n) when ship v sails directly from port (i,m) to (j,n).
Constraints (59) ensure that if ship v travels from its initial position directly to port visit (z,m),
then the start time is at least the traveling time between the two positions. Constraints (60) define
the continuous time variables.

Single time windows for each visit can be introduced in a similar way to the discrete case.
However in case the time windows are associated to open hours at ports then new variables are
necessary to model multiple time windows.

Inventory constraints:

The inventory constraints are necessary to ensure that the stock levels are kept within the
corresponding bounds and to link the stock levels to the (un)loading quantities.

We define the nonnegative continuous variables sgnk and siEngg indicating the stock levels at the
start and at the end of port visit (i, m), respectively. The inventory constraints are as follow:

sGp = Shi, — RtS, Vie Nke K:Jy=—1, (61)

SE = 8ok T > Goner — Rin(the =15, V(i,m) € ST ke K+ Jy, = —1, (62)
veV

Sk = Sim1k — Rik(t5, — 5 1), V(im)e ST im>1ke K Jy=—1,  (63)

Sik < Sz'cmkasfwgc < Sik, V(i,m)e ST ke K : Jy = —1. (64)

Equations (61) calculate the stock level of each product at the first visit. Equations (62) calculate
the stock level of each product when the service ends at port visit (¢, m). Similarly, equations (63)
relate the stock level at the start of port visit (i,7m) to the stock level at the end of port visit
(i,m — 1). The upper and lower bounds on the stock levels are ensured by constraints (64).

It remains to ensure that the stock levels at the end of the planning horizon is within the stock
limits. We discuss two options. The following set of constraints was used in [21].
S < st — Rir(T = t5) Wi = Uiimany) < Sk Vim+1) e ST ke K Jy = -1,

We can see that tfmc is the end time of the last visit to port ¢ if and only if ?/Sn — yi(fm iy = 1. This

set of constraints is nonlinear and can be linearized as in [21]. However we omit the linearization
process here, because we will follow the approach used in [9], to handle the stock level at the end
of the planning horizon. Consider the following set of constraints where 1, is an upper bound on
the number of visits to port 3.

Sip < 585+ Re(T —t5°) < S, Vie Nk e K : Jy, = —1, (65)
Here the end time of the last possible visit is given by tl%?

Objective function:
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The objective is to minimize the total routing and operating cost:

Z Z vaxlm]m) + Z Z Cowxozmv + Z Z Z zkozmvk (66)

veEV (i,m,j,n)€SX veV (i,m)eSF veV (i,m)eSF keKy

The basic arc-load time continuous formulation with constant consumption rates, BC-SSIRP,
is defined by (34)-(42), (45)-(66).

2.3 Comparison of the Discrete Time and Continuous Time Models

Here we discuss the two models regarding their integrality gaps, size, and level of information
provided.

Integrality gaps

Although the meaning of the variables in the time discrete model is different from the meaning of
variables in the time continuous model, we can easily see that the two mathematical models are
very similar. In fact, removing the inventory constraints from both models and constraints (38)
from the BC-SSIRP, the mathematical expressions of both models is similar. The unique difference
is that variables :Ugjuv are defined for all uw > ¢ while xlmﬂw are defined for all m and n. As a
consequence the linear relaxation of the discrete model BD-SSIRP without inventory constraints
should provide bounds at least as good as those provided by the linear relaxation of the continuous
model BC-SSIRP without inventory constraints.

To compare theoretically the complete models (with inventory variables) is not a straightforward
task since one needs to relate the two sets of variables. Here we only provide an experimental
comparison. This study is conducted in Section 5 and shows that the bounds provided by the
two models are the same for the tested instances, which reinforces our comment on the similarity
of the models. The computational study also shows that the integrality gaps of BD-SSIRP and
BC-SSIRP are very high. In the two following sections we improve these formulations by deriving
tighter extended formulations (Section 3) and by including valid inequalities (Section 4). The ideas
employed in those improvements are similar for both types of formulations.

Size of the models

The size of the models is determined by the number of x (routing) variables since this number
establishes the bound for the number of variables and constraints. Contrary to the discrete model,
where the number of routing variables is well defined for a particular discretization, in the continuous
case this number depends on the maximum number of visits to each port ¢, ;. These upper
bounds 7z; can be computed using the minimum (un)loading quantities Qk and the time constraints.

However, usually the quantities Qk are not imposed by any real limit but to avoid a “large” number
of visits. Our experience showed that the maximum number of visits can be set to a minimum
number of visits (computed in Section 4) plus a constant: one, two or three, depending on the port
activity. For larger increases of fi;, only the running time increases, see Section 5.

We can also eliminate some routing variables xmw from the discrete model. Since the maximum
distance between two ports is short in the underlying real short sea inventory routing problem, we
can eliminate variables where u >> t. In Section 5, we present computational experiments to
evaluate the impact of the objective function, the size of the model, and on the running time of
these restrictions on the variables.
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Information provided

The solution of each model provides different information. However, the solution from one model
can easily be converted into a solution of the other. In the discrete formulation, the information of
the period in which the visits occur are given by the time variables tg as well as the routing variables
:cl%uv, while in the continuous model this information is provided only by the time variables. This
difference allows us to relate the routing aspects directly to the inventory in the discrete models.
As we will see later in Section 4, this property can be used to tighten the discrete model.

3 Linear Relaxations and Extended Formulations

In this section we discuss some of the weaknesses of the arc-load formulations and introduce two
extended formulations for each type of model (discrete time and continuous time). We consider
only the SSIRP with constant consumption rates.

In Figure 4 we present a fractional solution of the arc-load continuous time model that illustrates
the weaknesses the arc-load formulations.

q12 = 200

q12 = 400
q23 = 100 "

Y

Figure 4: Example of an optimal solution of the linear relaxation of the BC-SSIRP. The quantities
v next to node (i, m) represent the quantity of product & unload by ship v in the m!” visit to port
i. In this solution there are no loadings. The arc labels represent the values of the corresponding
arc-variables. Dark arcs represent ship 1 and dashed arcs represent ship 2. We assume @Q,r = 0,
Yv eV k € K,.

As we can see from the example, the fractional solution does not guarantee the equilibrium of the
flow on board the ship. Both ships unload products that they do not transport. For instance, ship 2
unloads 50 units at port 1 and these units are never loaded. Next we justify why such solutions can
occur. First notice that the unique link between the load on board the ship and the path of the ship
is established at the nodes. Additionally, that link is established through constraints (18)-(21) in
BD-SSIRP and through constraints (52)-(55) in the BC-SSIRP. These linking constraints are known
to be very weak. It is therefore possible to get, in a linear fractional solution, an unload operation
when the ship has nothing on board. Consider the BC-SSIRP case, and suppose Jj, = —1. If
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0<a¢ <landi¢ , =1¢

imjnv Wrwk Jnv
More specifically 0 < q]n'uk < C’Uszmjm)
Also, as expected, each ship follows multiple fractional paths.

i = 0, then the unload quantity qﬁwk of product k£ can be positive.

In order to avoid some of the drawbacks of the arc-load formulations we propose, in this sec-
tion, two extended formulations for each approach. The new set of variables introduced in each
formulation provides additional information about the solution. That information will be essential
to derive tighter models. All the formulations presented in the paper are compact. In general, the
linear relations of the extended formulations lead to better bounds but are harder (considering the
computational effort) to obtain. When using such formulations in a branch and bound scheme,
the number of tree nodes tends to be less than in the case where a smaller formulation is used.
However, the time spent in each node is usually greater.

In the first extended formulation, new variables indicating the amount of each product carried
along an arc are introduced. These new variables can be seen as defining the flow of individual
products along the chosen paths resulting from the routing variables for each ship. The second
extended formulation can be seen as a classical multi-commodity reformulation of the first extended
formulation where the flow variables are additionally indicate the destination of each product along
the chosen paths.

3.1 Arc-Load Flow Reformulations

In this section we introduce new arc-load flow variables that indicate the amount of each product
carried along each arc. These flow variables allow us to assign a flow of each product to the ship
path. In this way we can prevent fractional solutions as the one depicted in Figure 4.

3.1.1 Discrete time reformulation

Next we present the arc-load flow discrete time Formulation with constant consumption rates (FD-
SSIRP). Let us define f? itjuvk: 35 the amount of product k that ship v transports from port 4, after
an operation that started in period ¢, to port j in order to start an operation in period u. For ease
of notation, when mgjuv, variables fL itjuvk A€ included in the model and set to zero.

Let fP ook denote the amount of product k that ship v transports from its initial port position
to port ¢ in period t.

The two sets of variables lD o and  can be related using the following equations

'Ltjuv

ztvk ZZ itjuvks VweV,ie Nt eT ke K, (67)
Jj#i u>t

Constrains (9), (10) and (11) can be replaced by constraints

oyuvk + Z Z fzt]uvk + J]kq]uvk Z Z Jjuitvk» Vv e V.jeN,uel, ke Ky, (68)

i) t<u i) t>u
Do =Quzl, YweVieNteTkek,, (69)
fzt]uvk < Cvkmztjuvv Vo eV,i,je N,t,ueT, ke K,, (70)
o >0, YweViijeNtueTkeK, (71)
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The flow conservation constraints are given by equations (68). Equations (69) determine the amount
of product k& on board ship v at departure from the initial position Constraints (70) are the vari-
able upper bound constraints. They relate the flow variable f2 itjuvk O the routing variables :cgjuv
and, together with the nonnegativity constraints (71) impose bounds on the flow variables.

The FD-SSIRP formulation is defined by (1)-(8), (12)-(17), (22)-(27), (29)-(32), (68)-(71).

Adding constraints (70) for j and u we obtain

Z Z itjuvk < Cok Z Z Litjuo-

Jj#i u>t jF#i u>t

Using (67) we obtain (12). Hence constraints (12) can be obtained by aggregation of constraints
(70). Thus, the linear relaxation of FD-SSIRP should provide better bounds than the linear relax-
ation of BD-SSIRP. The drawback of this model is that it increases the size of the model by adding
a large number of continuous variables.

Notice that with the inclusion of variables fZ itiuk: variables qﬁwk can be eliminated from the
model using equations (68) and (69), that is, setting

quuvk Jk sz]uztvk ZZ itjuvk | o Vv e V.jeN,ueT, ke K,. (72)

i#j t>u i#j t<u

3.1.2 Continuous time reformulation

Here we define a similar flow model for the continuous time formulation, denoted by FC-SSIRP.
Let fzmjm}k denote the amount of product k that ship v transports from port visit (i,m) to port
visit (j,n) and f inok 85 the amount of product k£ that ship v transports from its initial position to
port visit (j,n).

Using these additional variables, constraints (43)-(45) can be replaced by the following set of
constraints:

jnvk Z fzgnjnvk + ijqjc;wk = Z nzmvk’? VveV, (],’I’L) € 51])37 ke Ky, (73)

(i,m)esF (i,m)eSf
fgmvk = ka:vg’;mv, Yo eV, (i,m) € Sf, ke K,, (74)
fzm]m}k < Cvk$zm]nv’ Vv e Vvﬂ (i7m7j7 n) € Si(v ke K’Ua (75)
Fmjnow 20, Yo €V, (i,m,j,n) € Y.k € K,. (76)

Constraints (73) ensure the equilibrium of product k on board ship v. Equations (74) determine
the quantity on board when ship v sails from its initial port position to port visit (i, m). Constraints
(75) link the new flow variables to the arc variables and impose an upper bound on the capacity of
the compartment of ship v dedicated to carry product k.

The arc-load-flow continuous time formulation with constant consumption rates, FC-SSIRP, is
defined by (34)-(42), (46)-(51), (56)-(66), (73)-(76).

Similar to the discrete case, the linear relaxation of FC-SSIRP can be shown to be tighter
than the linear relaxation of BC-SSIRP. In Figure 5 we illustrate the optimal solution of the linear

18



relaxation of FC-SSIRP for the same example as the one depicted in Figure 4. We can see that the
fractional solution satisfies the equilibrium of the flow along each fractional ship path.

Figure 5: Optimal solution of the linear relaxation of FC-SSIRP for the example used in Figure 4.
In this solution all unloaded products are previously loaded. The quantities g,r represent the
quantity of product k loaded (if k¥ € {1,2} and i = 2, or k¥ = 3 and i = 4) or unload (in the
remaining cases) by ship v.

3.2 Multi-Commodity Reformulations

A multi-commodity reformulation of a flow formulation can be obtained by disaggregating the flow
on each arc according to its destination. In general, such types of formulations lead to better
bounds.

3.2.1 Multi-commodity discrete time reformulation

In this section we define the multi-commodity discrete time formulation with constant consumption

rates (MD-SSIRP). By adding new indices to the flow variables indicating the destination of the

flow, we construct the non-negative multi-commodity arc-load-flow variables vi%uvkpe, representing

the amount of product k that ship v transports from port 4, after an operation that started in

period ¢, to port j for an operation starting in period u to be delivered at port p in period e.
These variables are nonnegative

Ui?juvk:pezoa VUEKi,j,pEN,t,u,eET,kGKU ;ka:fl’ (77)

and can be related to the arc-load-flow variables through the following equations,

Dok =Y vf YoeV,i,jeNtueTkeK,. (78)

itjuvk itjuvkpe>
pFi e>u

19



The tightening of FD-SSIRP can be obtained by replacing constraints (70) with

D

Vitjuvkpe < min{C’Uk,@pk}xz%w, YveV,i,j,pe N, t,u,e € T,k € Ky : Jpp, = —1. (79)

The MD-SSIRP can be obtained from the FD-SSIRP by replacing (70) with (77)-(79). Of course
the arc-load-flow variables z%wk can be eliminated from the model using (78).
3.2.2 Multi-commodity continuous time flow reformulation

Now we define a similar multi-commodity flow formulation for the continuous time model, denoted
by MC-SSIRP. We define v%jmkpl as the amount of product k destined to port visit (p,[), which is
transported from port visit (¢, m) to port visit (j,n) using ship v. These variables are nonnegative,

Uicr;@jnvkpl > 07 Vo € Vv (i7m7jv n) € Sf, (pal) € va k€ Kv : ka = _17 (80)
and can be related to the arc-load-flow variables by the following equations

C C . . X
fimjnvk; = E Uimjnvkpl’ Vv € Vvﬂ (Z’m7j7n) € Sv ’k € Kv‘ (81)
(p,l)ESII,)Zkazfl

The tightening of the FC-SSIRP can be obtained by replacing constraints (70) by
v%jmkp, < min{Cvk,@pk}x%jm,VU eV, (i,m,j,n) € Sf, (p,1) € Sf, ke Ky:Jpy,=-1, (82)

The MC-SSIRP can be obtained from the FC-SSIRP by replacing (75) with (80)-(82). Of course

the arc-load-flow variables f¢ invok €an be eliminated from the model using (81).

m,

4 Tightening the Models

The formulations discussed in Sections 2 and 3 can be strengthened by including valid inequalities
and by tightening some constraints. The ideas employed in these improvements are similar for
both types of formulations. However, as the discrete model embeds time specific information in
the network structure that makes the model more amenable for tightening and preprocessing.
We discuss only the case with constant consumption rates. The inequalities used in this paper
impose either a minimum number of visits to ports or a minimum number of (un)loads. Similar
valid inequalities have been used in related papers for constant rate case and for the non constant
consumption rates case, see for the last case, [1, 2, 18, 20, 28]. When consumptions are not constant
new inequalities based on lot-sizing relaxations have been used, see [1, 2, 18].

4.1 Valid Inequalities

Here we discuss valid inequalities for the models derived in the previous sections. These inequalities
allow us to reduce the integrality gap of the proposed models. Hence, although the linear relaxations
tend to become more time consuming to solve with the inclusion of these cuts, the reduction of the
integrality gap tends to reduce the number of nodes in a branch and bound scheme. The gain in
the reduced size of the branch and bound tree compensates the time increase required to obtain
the dual bound at each node.
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Here we just discuss a type of valid inequalities that impose visits to ports. These visits are
forced by the inventory levels combined with the consumption rates. First we consider the discrete
time models BD-SSIRP, FD-SSIRP, and MD-SSIRP.

For each unloading (consumption) port ¢ € N and product k, J;x = —1, let

NDik = ma,x{T X Rik — SIik +§ilm 0}

denote the net consumption or demand over the time horizon. If 0 < ND; < Qik’ then the net
demand can be increased to the minimum load quantity: ND;, = sz The minimum number of
visits at port ¢ for unloading product & is given by

ND;
e
Qik

Hence, the following inequalities are valid

DD DD whaw = An, VieNkEK: Ty =1, (83)
veV jeN ueT teT

YN 0B =y VieNkeK:Jy=-L (84)
veV teT

These inequalities can be generalized for each period t € T, as follows. We split the time horizon
into two periods, one from 0 to the end of period ¢ and the other from ¢ to the end of the time
horizon. Let

NDjopp =t X Rip — STip + Sy,

be the net consumption until the end of period ¢ and let

ND;7) = (T —t+1) x Rig, — Sit, + Sips

be an underestimation of the net consumption from the end of period ¢ until the end of the time
horizon. Define

otk — {NDZOHC-‘ )
Qik
and
CitTh = [NDitTﬂ ’
Qik

as a lower bound on the number of visits to port 7. Then the following inequalities are valid
D3N ahie Z ok, ViENteT ke K : Jy=—1, (85)
ueT|u<t jEN e€T veV

Yo > of =€y VieNteT ke K:Jy=-1, (86)
ueT|[u<tveV
SN ali z e ViENteT ke K:Jy =1, (87)

ueT|u>t jJEN e€T veV

S N R zem, VieNteTkeK:Jy= -1 (88)
ueT|u>t veV
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For each consumption port ¢ of product k, the following inequalities can be added.

Otk < Z Z :L’]%m, YVoeViteT. (89)
JEN ueT

These inequalities ensure that if ship v unloads product k at port ¢ in period ¢, then there must
exist a route of ship v passing through port ¢ at period ¢. Inequalities (89) coupled with constraints
(84) imply (83). This is no longer true if we consider in (83) the aggregated demand (consumption)
of a subset of consumption ports instead of the demand of port ¢ only.

In the underlying real planning problem, the inventory bounds are usually not tight for the
loading ports. Hence, the minimum number of departures can be estimated using the total demand
supplied by those ports. In the real problem, each product has a single origin, so the demand of
that product must be satisfied either from that port or from the quantity in the ship tanks at the
beginning of the time horizon.

For each product k € K and loading port i € N (J = 1) let

NDy= > (TxRj— ST+ Sy) — Y Quk,
JEN|Jp=—1 veV

denote the demand (consumption) in excess of what is available at the start of the planning horizon.
The minimum number of loadings of product k at port ¢ is given by

. NDy,
SR max{Cur :v e VY|

Hence, the following inequalities are valid

33N ek =y, VieNkeK:Jy=1, (90)

veV jEN ueT teT

S oy =Ap,  VieNEkeK:Jg=1 (91)
veV teT

As done for the consumption ports, we can derive inequalities for each period u for the loading
ports as well; see (85) - (89). We omit these inequalities here.

Observe that a lower bound on the total number of visits to port ¢ € N can be given by
p, =maz{Ay  k € K} (92)

Hence, the following inequality is valid for all ¢ € N :
> vl > by (93)
teT

Now we consider the continuous models BC-SSIRP, FC-SSIRP and MC-SSIRP. Here we can
only impose a minimum number of visits during the planning horizon since the order of the visit
does not provide information about the time for start of service at the visit. Inequalities (83) - (84)

22



for the consumption ports and (90)-(91) for the loading/production ports can be written for the
continuous case as follows:

SN Y aSzd VieNkeK (94)

veV (jn)eSE me{l,...n;}

Z Z Ogm,k > Nikes Vie N,k € K. (95)
veV me{l,...m;}

In the continuous time case, the lower bound on the number of visits can be imposed by the
inequality
Y, =1i€N. (96)

4.2 Tightening constraints

Now we consider another approach to strengthen the models by tightening the linking constraints.
The linking constraints relate the continuous variables to the binary variables. Improving these
constraints can lead to reductions in the integrality gap and in running times. We focus on formu-
lations for the constant consumption rate case only.

First we consider the tightening of constraints (24) for the discrete model and (58) for the
continuous model, linking time variables with routing variables. The main idea is to aggregate on v
the routing variables since the time variables do not depend on the particular ship v. Consider the
time constraints (24) for the discrete model. These inequalities can be replaced by the following
ones

D D D al D ..
tg + Z Tijvxitjuv - tju < T(l - Z xitjuv)’ VZ,] € Nvta u e T?
veV veV

When time windows are established to time events

Ay <t < By, VieNjteTl,
AZ <4EP < BE VieNteT,

then, constraints (24) can be replaced by inequalities
thE —tju + (BE + Tijo — Aju)Titjuw < BE — Aju.
These inequalities can be further strengthened as follows (see Proposition 1 in [4]):

tg - tju + Z max{O, Bg + Ejv - Aju}xitjuv < Bg — Aju,Wi e N, teT. (97)
veV

Constraint (25) establish time windows for t. For t£P we assume AZ =t —1 and BY =t + 1
since an operation take at most one time period (day).

For the continuous models, Constraints (58) can be strengthened in a similar way. We omit the
details here. The major difference is related to the computation of time windows [Ajp, Bim| for
tgn, and [Agn, Bfn} for tﬁ?- We considered A, = Agn =0 and B;,, = B{fn = T. By reducing the

widths of these time windows we strengthen the resulting inequality. However, since we are dealing
with multiple ships, multiple products, and all supply ports also act as demand ports of other
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products, it is hard to derive tight time windows. Additionally some preliminary results showed
that small improvements in the widths of time windows do not lead to any practical gain.

Next we consider another tightening which use the information of the demands to tighten
the linking coefficients. For instance, consider inequalities (13) in model BD-SSIRP. The unload
quantity at period ¢ can be additionally limited by the remaining consumption at that port. That
is,

qF  <min{Cu, Qi, AYol,, YveViie NjteT ke K, : Jy=—1, (98)

where A = max{(T —t + I)Rf,Qik}.

For the BC-SSIRP model, the corresponding variables, qgvk, do not provide information of time
of the visit. So we can only limit the demand/consumption for the total time horizon.

Similar reasoning can be applied to inequalities (11), (12), (18)-(21). For brevity we give the
tightening for the flow and multi-commodity formulations in more detail only.

Consider the arc-load-flow models FD-SSIRP and FC-SSIRP. In FD-SSIRP, inequalities (70)
can be replaced by

ok < min{Co, BL}2f,,,,  WEeVi,jeENbueT keK,, (99)
where B1 = Z max{R;,(T —u+1), ng} In FC-SSIRP, inequalities (75) can be replaced
JEN|Jjp=—1
by
fgnjm)k < min{Cy, BQ}zgnjm, Yo eV, (i,m,j,n) € SX ke K,, (100)

where B2 = max{ Z R;T, Q]k}
JEN|Jjr=—1
Now consider the multi-commodity flow models MD-SSIRP and MC-SSIRP. In MD-SSIRP,
inequalities (79) can be replaced by

v%uvkpe < min{C’vk,@pk,Cl}x%w, Voe Vi, j,pe N,t,u,e € Tk € Ky : Jpp, = —1, (101)

where C1 = max{ Ry (T — u + 1), ka}. In MC-SSIRP, inequalities (82) can be replaced by

C
vimjm;k:p

1 < min{cvkaépk702}xg71jnv7 Vo € ‘/7 (i7m7j7n) € 55(7 (pvl) € S{;a
ke Ky Jo=—1, (102)

where C2 = max{R,;T, ka}.
We can see that B1 and C'1 depend on the time period, while B2 and C2 do not. This is one
of the advantages of the discrete models.

5 Computational Experiments

In this section we conduct computational experiments to test and compare the discrete time and
the continuous-time models. All computations were performed using the optimization software
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Xpress Optimizer Version 20.00.05 with Xpress Mosel Version 3.0.0, on a computer with an Intel
Core 2 Duo processor, with CPU 2.2GHz, and with 4GB of RAM.

We use two sets of instances for the SSIRP with constant consumption rates. The first set
consists of 12 real instances from a company in Cape Verde including 2 ships, 4 products and 7
ports. The other set consists of 12 instances from an artificial scenario where the consumption rates
of the real instances are doubled as well as the number of ships.

Next we describe some characteristics of the instances. The typical planning horizon is two
weeks. Here we consider instances with 7' = 10 and 1" = 15. The demand for each product during
the planning horizon is, in average, 2.5 times the largest ship tank capacity. The tank capacity at
the main ports can cover the demand at that port for a week (without regard the safety stocks).
For the small islands typically one or two visits are required. The total number of visits for the
tested instances ranged between 12 and 15. The ships have in average 6 tanks.

Computational experiments are conducted to compare the models according to their size, run-
ning times and integrality gap without any additional tightening. Based on the information ob-
tained, we select some of the models for further testing. The selected models are used in a branch
and cut scheme to solve the two sets of instances.

We also tested the influence of the minimum unload values Ql , on solution quality and tractabil-

ity.

5.1 Comparison of the Size of the Models

Now we compare the size of the models without any tightening or addition of cuts. Table 1 provides
the information of the average number of variables and average number of constraints of the three
discrete time and continuous time formulations for a time horizon of 10 and 15 periods (days).
Additionally, column “Solved*” gives the number of instances solved to optimality using the default
options of Xpress optimizer within a time limit of 3 hours.

For the discrete time models we ignore all variables x%m} with 4 > t+ 3, and for the continuous
time model we established the upper bound of the number of visits to port ¢, 1; = p,+ 3.

We can see that each continuous time model is smaller than the corresponding "discrete time
model. Table 1 also shows that multi-commodity models are too large and most of the larger

instances cannot be solved within the time limit of 3 hours.

Next we study the impact of the elimination of the arc load variables in both types of models.
For the discrete time models we eliminate all variables xmw with u > t+ «, and for the continuous
time models we established the upper bound of the number of visits to port ¢, as 1; = M, + o If
« is small we reduce substantially the set of feasible solutions and it is possible that the 1nstance
becomes infeasible. On the other hand if « is large the size of the model increases and the running
times tend to be very high. In order to illustrate the effects of o on the optimal solution, we tested
the set of 12 real instances with 10 and 15 periods. Each instance was solved for a from 1 to 3.
The results are given in Table 2. The table gives the number of instances that resulted in the true
optimal value.

For @ = 1 the optimal value is worse compared to the true optimal value in most instances.
This situation is reversed for a = 2. For a = 3 we obtain the true optimal value for all the tested
instances. A more detailed test (not reported here) revealed that in order to keep the quality of the
optimal solution while minimizing the number of variables, for continuous time models, different
values of o can be chosen for different ports. Small values of « can be assumed for low activity
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Table 1: Average size of the tested models.

Model Binary Var. | Cont. Var. | Total Var. | Constraints | T | —V— | —K— | Solved
BD-SSIRP 3636 1185 4821 22854 | 10 2 4 10
FD-SSIRP 3636 7975 11611 13334 | 10 2 4 9
MD-SSIRP 3636 155955 159591 111668 | 10 2 4 7
< | BD-SSIRP 7392 2533 9925 74772 | 10 4 4 4
g | FD-SSIRP 7392 14209 21601 27928 | 10 4 4 12
% MD-SSIRP 7392 311975 319367 227748 | 10 4 4 2
% | BD-SSIRP 5706 1775 7481 36044 | 15 2 4 5
g FD-SSIRP 5706 12590 18296 20924 | 15 2 4 9
A | MD-SSIRP 5706 370570 376276 254543 | 15 2 4 2
BD-SSIRP 11592 3783 15375 159917 | 15 4 4 4
FD-SSIRP 11592 22004 33596 49933 | 15 4 4 7
MD-SSIRP 11592 741240 752832 525598 | 15 4 4 2
BC-SSIRP 2356 606 2962 15288 | 10 2 4 12
FC-SSIRP 2356 5376 7732 8668 | 10 2 4 12
| MC-SSIRP 2356 36896 39252 46085 | 10 2 4 12
< | BC-SSIRP 3278 960 4238 22411 | 10 4 4 4
§ FC-SSIRP 3278 8000 11278 12511 | 10 4 4 12
g | MC-SSIRP 3278 41908 45186 55006 | 10 4 4 3
g BC-SSIRP 2484 623 3107 16153 | 15 2 4 6
% FC-SSIRP 2484 5678 8162 9133 | 15 2 4 11
8 MC-SSIRP 2484 39074 41558 48726 | 15 2 4 2
BC-SSIRP 3926 1065 4991 27214 | 15 4 4 4
FC-SSIRP 3926 9656 13582 15004 | 15 4 4 8
MC-SSIRP 3926 51004 54930 66596 | 15 4 4 2
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Table 2: Number of instances where the true optimal solution was obtained. All instances are
solved to their optimality.

Discrete time model | Continuous time model
a | T=10 T=15 T=10 T=15
1 5 0 2 0
2 11 2 12 11
3 12 12 12 12

ports while larger values should be assumed for high activity ones. Additionally, Table 2 shows
that when the length of the planning horizon is increased the value of « should also increase to
obtain the optimal solution.

Figure 6 shows the average running times of the arc-load-flow models FD-SSIRP and FC-SSIRP
(which proved to be the fastest models among all the tested models) when « varies from 1 to 5.
It is clear that the running time increases rapidly with the increase of «, and the running times of
the discrete time model increase faster than the running time of the continuous time model.

2000 8000 -
; 1500 . 4000 +
800 2000 +

0 0

Figure 6: Average solution times using the arc-load-flow formulations (FC-SSIRP on left and FD-
SSIRP on right) on 12 real instances with T = 10, when increasing a.

5.2 Comparison of the Integrality Gaps

Next we present some computational results in order to compare the integrality gap of the various

formulations. The results of the set of real instances are reported in Table 3. For each formulation

Optimal value - Lower Bound % 100
Optimal value

for the several possible options. Column N means without tightening of constraints and without

inclusion of cuts; Column 7T means with tightening only; Column C' means with inclusion of cuts;
and Column (TT+C) means with tightening and inclusion of cuts. When cuts are added we indicate
the average number of cuts added (Column Ncuts). Notice that the lower bounds obtained without
valid inequalities and tightening are very poor, especially for the arc-load formulations, BD-SSIRP
and BC-SSIRP. We can observe that strengthening the models with the addition of inequalities (83),
(84), (90), (91) and with the tightening of constraints reduces the integrality gaps considerably.

we present the average integrality gap at the root node, gap =
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Table 3: Average integrality gaps with and without tightening of constraints and inclusion of valid

inequalities. An * means some of the instances were not solved within the time limit of 3 hours.

N T C TT+C

Model T=10 | T=15 | T=10 | T=15 | T=10 \ Ncuts \ T=15 \ Neuts | T =10 \ Ncuts \ T=15 \ Ncuts
BD-SSIRP 57.6 45.3 55.6 43.2 9.2 51 26.1 151.1 7.9 42.3 25.8 108.3
FD-SSIRP 48.9 31.4 47.5 31.1 6.5 60.9 16.1 151.1 3.1 39.1 13.3 94.5
MD-SSIRP | 43.3 26 41.3 22.8 6.5 68.3 16.1 151.2 3.1 65.1 13.1 150
BC-SSIRP 57.6 45.3 57.6 45.3 9.2 12.5 26.8 15.3 7.9 12.5 25.8 14.9
FC-SSIRP 48.9 31.4 48.9 31.4 6.5 12.1 16.7 13.8 3.1 10.3 15.1 13.5
MC-SSIRP | 43.3 26 41.3 23.6 6.5 15.2 17.4 13.7 3.1 10.3 14.8 13.5

Finally, we observe that the arc-load and the arc-load-flow formulations for N and C cases provide
essentially the same bounds for both approaches (discrete time and continuous time). With the
inclusion of valid inequalities and tightening of constraints the discrete time models provide slightly
better gaps than the corresponding continuous time models. This is explained by the fact that, in
discrete time models we can provide tighter constraints as explained in Section 4.2.

We conduct similar computational experiments for the set of artificial instances with 4 ships, 4
products and 7 ports, where the consumption rate is doubled. Here we report results obtained with
the models FD-SSIRP-C and FC-SSIRP only, since the running time was limited to three hours
and the multi-commodity formulations are very time consuming.

The results for these two models, including tightening constraints and cuts, are presented in
Table 4. We give the average initial integrality gap (Gap-I), that is, the average of the integrality
gaps at the root node, the average gap provided by Xpress after the three hours limit (Gap-E),
and the average running time (Time). We can see that the gap is smaller using FD-SSIRP but the
running times are smaller using the continuous model FC-SSIRP.

Table 4: Average computational results for FD-SSIRP and FC-SSIRP with | V' |= 4.

FD-SSIRP-C FC-SSIRP
Gap-1I ‘ Gap-E ‘ Time (sec.) | Gap-1 ‘ Gap-E ‘ Time (sec.)
| T=10] 129 | 0o [ 97 [139] o0 | 476 |
| T=15] 154 | 53 | 6172 | 178 | 24 | 5602 |

5.3 Impact of Minimum Delivery Quantities

Restrictions on the minimum delivery quantities of each product at each port are considered for
the SSIRP with constant consumption rates. In fact, delivering small quantities may result in
too many port visits. In reality one wants to avoid too many visits to a port due to issues like
weather conditions and port occupancy. Based on historical data of real instances we conclude that
the minimum allowed delivery quantities, Qik’ are around 40% of the maximum allowed unloading

quantities, Q;. In order to analyze the real impact of Qik, in the objective function value, integrality
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gap, running time, and in the number of branch and bound nodes, we solve using the FC-SSIRP
model the 12 real instances for different values of @, , ranging from 0% to 90% of Q). The results
are presented in Figures 7 and 8 and show that when Qik, varies from 0% to 60% the cost increases
slowly, but when it is greater than 60% the cost increases significantly. We also observe that time,
integrality gap and number of nodes, have small oscillation until 60%, increase significantly between
60% and 80%, and decrease after 80%.
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Figure 7: Impact of minimum delivery quantities on the integrality gap (left) and number of branch
and bound nodes (right).
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Figure 8: Impact of minimum delivery quantities on the solution cost (left) and on the running
time (right).

5.4 Comparison of the Running Times and Number of Branch and Bound
Nodes

From Section 5.1 we see that the multi-commodity formulations are much larger in number of
variables and constraints than the arc-load and arc-load-flow formulations. However, Section 5.2
shows that the reduction in the integrality gap by using the multi-commodity formulations is very
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Table 5: Average running times and number of branch and bound nodes

T =10 T =15
N TT C TT+C TT+C
Time | Nodes | Time | Nodes | Time | Nodes | Time | Nodes | Time | Nodes

BD-SSIRP | 743 | 38391 | 1090 | 26993 | 590 | 26493 | 412 | 26942 | 6305 | 37236
FD-SSIRP | 1614 | 32249 | 1347 | 16035 | 619 8537 86 916 3773 | 37213

BC-SSIRP | 487 | 85695 | 360 | 85395 | 112 | 29453 84 14839 | 3091 | 36976
FC-SSIRP | 245 | 26823 78 4320 84 8120 39 3544 | 2740 | 36926

small. These two observations lead to the conclusion that the multi-commodity formulations can
hardly be competitive compared to the other two formulations. Preliminary results, not reported
here, confirm this conclusion. Therefore, in this section we report results for the BD-SSIRP (BC-
SSIRP) and FD-SSIRP (FC-SSIRP) models.

A comparison of the running times and number of branching bound nodes using the BD-SSIRP
(BC-SSIRP) and FD-SSIRP (FC-SSIRP) models, for each approach, is shown in Table 5. The
notation is the same as the one for Table 5. For T = 15 only results with tightening and inclusion
of cuts are presented since for the remaining cases most of the instances were not solved within 3
hours. The tests were performed for the 12 real instances. We observe that tightening constraints
and including cuts is essential when solving the instances. The best results where obtained with
the improved (with tightened constraints and cuts) FD-SSIRP and FC-SSIRP models. In fact,
only this combination allowed us to solve all the tested instances to optimality. We can see that in
several cases the number of branch and bound nodes was smaller using the discrete models. This
can be justified by the fact that the discrete time model has, on average, slightly better integrality
gaps. However, the continuous time model was clearly faster than the discrete one. If we recall that
the size of the continuous model is smaller than the size of the discrete one, and the difference on
the average integrality gaps is small, we may conclude that this is the expected behavior of the two
models, that is, the continuous model should outperform the discrete model, and this difference
tends to be larger when T increases.

6 Conclusions

We present a real short sea inventory routing problem for fuel oil distribution. We provide two types
of formulations. A discrete time model for both time varying and constant consumption, and a
continuous time model for constant consumption rates. We discuss different extended formulations
for both types of formulations, and valid inequalities that allow us to derive tighter formulations.
All the models proposed were compared according to their size, integrality gap and running time
using a commercial software. From this comparison we conclude that: i) the extended formulations
based on arc-load-flow variables with valid inequalities provide the best compromise between inte-
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grality gaps and size of model; ii) the discrete time models tend to provide better bounds. However,
the running times using the discrete time models are in general worse than the running times using
the continuous time model.

From i) and ii) we conclude that, for the constant consumption rate case, the continuous time
arc-load flow model with valid inequalities is the best option among all the tested ones to solve small
real sized instances. With this formulation we solved instances with up to 15 days to optimality.
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Appendix A: glossary of problem and model acronyms

Problem acronyms:

SSIRP: Short Sea Inventory Routing Problem with constant consumption rates.
SSIRP-V: Short Sea Inventory Routing Problem with Varying consumption rates.

Model acronyms:

BD-SSIRP-V: Basic arc-load Discrete time model for the SSIRP-V.

BD-SSIRP: Basic arc-load Discrete time model for the SSIRP.

BC-SSIRP: Basic arc-load Continuous time model for the SSIRP.

FD-SSIRP: Arc-load Flow Discrete time model for the SSIRP.

FC-SSIRP: Arc-load Flow Continuous time model for the SSIRP.
MD-SSIRP: Multi-commodity arc-load Discrete time model for the SSIRP.
MC-SSIRP: Multi-commodity arc-load Continuous time model for the SSIRP.
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