

Universidade de Aveiro
2011-2012

Departamento de Electrónica, Telecomunicações e
Informática

Pedro Jorge Pereira
Lopes

Composição de Serviços para Aplicações Biomédicas

Service Composition for Biomedical Applications

Universidade de Aveiro
2011-2012

Departamento de Electrónica, Telecomunicações e
Informática

Pedro Jorge Pereira
Lopes

Composição de Serviços para Aplicações Biomédicas

Service Composition for Biomedical Applications

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Doutor em Engenharia Informática,
realizada sob a orientação científica do Doutor José Luís Guimarães Oliveira,
Professor Associado do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro!

 !

!

o júri

presidente Doutor Artur Manuel Soares da Silva
Professor Catedrático do Departamento de Química, da Universidade de Aveiro

 Doutor Víctor Maojo García
Professor Catedrático Faculdade de Informática, da Universidade Politécnica de Madrid

 Doutor Rui Pedro Sanches de Castro Lopes
Professor Coordenador do Departamento de Informática e Comunicação, da Escola Superior de
Tecnologia e Gestão do Instituto Politécnico de Bragança

 Doutor Francisco José Moreira Couto
Professor Auxiliar do Departamento de Informática da Faculdade de Ciências, da Universidade de
Lisboa

 Doutor Carlos Manuel Azevedo Costa
Professor Auxiliar do Departamento de Electrónica, Telecomunicações e Informática, da
Universidade de Aveiro

 Doutor José Luís Guimarães Oliveira
Professor Associado do Departamento de Electrónica, Telecomunicações e Informática, da
Universidade de Aveiro

agradecimentos

First of all I would like to thank my supervisor José Luís Oliveira for taking me
on as a student during these five, long (and yet short) years, and for sticking
with me through the good times and the bad, right until the end of the line. As I
have learned a great deal from you, I hope you have learned perhaps a little bit
from me too.
I also want to thank everybody in the UA.PT Bioinformatics team at IEETA, who
were with me on much of this journey. You have provided support to my
science through stimulating discussions and helped my mental sanity with all
other topics, from the best TV shows to what features will be available in the
next Apple product.
My deepest acknowledgement goes to my tireless Mother, whose support
throughout these years has been tremendously important to me at all levels.
You are, and will always be, my inspiration and role model.

Last, but not least, I want to thank my girlfriend Andreia, for everything and so
much more.

!

palavras-chave

Composição de serviços, aplicações biomédicas, bioinformática, sistemas de
informação, workflow, web semântica.

resumo

A exigente inovação na área das aplicações biomédicas tem guiado a evolução
das tecnologias de informação nas últimas décadas. Os desafios associados a
uma gestão, integração, análise e interpretação eficientes dos dados
provenientes das mais modernas tecnologias de hardware e software
requerem um esforço concertado. Desde hardware para sequenciação de
genes a registos electrónicos de paciente, passando por pesquisa de
fármacos, a possibilidade de explorar com precisão os dados destes
ambientes é vital para a compreensão da saúde humana. Esta tese engloba a
discussão e o desenvolvimento de melhores estratégias informáticas para
ultrapassar estes desafios, principalmente no contexto da composição de
serviços, incluindo técnicas flexíveis de integração de dados, como
warehousing ou federação, e técnicas avançadas de interoperabilidade, como
serviços web ou LinkedData.
A composição de serviços é apresentada como um ideal genérico, direcionado
para a integração de dados e para a interoperabilidade de software.
Relativamente a esta última, esta investigação debruçou-se sobre o campo da
farmacovigilância, no contexto do projeto Europeu EU-ADR. As contribuições
para este projeto, um novo standard de interoperabilidade e um motor de
execução de workflows, sustentam a sucesso da EU-ADR Web Platform, uma
plataforma para realizar estudos avançados de farmacovigilância. No contexto
do projeto Europeu GEN2PHEN, esta investigação visou ultrapassar os
desafios associados à integração de dados distribuídos e heterogéneos no
campo do varíoma humano. Foi criada uma nova solução, WAVe - Web
Analyses of the Variome, que fornece uma coleção rica de dados de variação
genética através de uma interface Web inovadora e de uma API avançada. O
desenvolvimento destas estratégias evidenciou duas oportunidades claras na
área de software biomédico: melhorar o processo de implementação de
software através do recurso a técnicas de desenvolvimento rápidas e
aperfeiçoar a qualidade e disponibilidade dos dados através da adopção do
paradigma de web semântica.
A plataforma COEUS atravessa as fronteiras de integração e
interoperabilidade, fornecendo metodologias para a aquisição e tradução
flexíveis de dados, bem como uma camada de serviços interoperáveis para
explorar semanticamente os dados agregados. Combinando as técnicas de
desenvolvimento rápidas com a riqueza da perspectiva "Semantic Web in a
box", a plataforma COEUS é uma aproximação pioneira, permitindo o
desenvolvimento da próxima geração de aplicações biomédicas.

keywords

Service composition, biomedical software, bioinformatics, information systems,
workflow, semantic web.

abstract

The demand for innovation in the biomedical software domain has been an
information technologies evolution driver over the last decades. The challenges
associated with the effective management, integration, analyses and
interpretation of the wealth of life sciences information stemming from modern
hardware and software technologies require concerted efforts. From gene
sequencing hardware to pharmacology research up to patient electronic health
records, the ability to accurately explore data from these environments is vital
to further improve our understanding of human health. This thesis encloses the
discussion on building better informatics strategies to address these
challenges, primarily in the context of service composition, including
warehousing and federation strategies for resource integration, as well as web
services or LinkedData for software interoperability.
Service composition is introduced as a general principle, geared towards data
integration and software interoperability. Concerning the latter, this research
covers the service composition requirements within the pharmacovigilance
field, namely on the European EU-ADR project. The contributions to this area,
the definition of a new interoperability standard and the creation of a new
workflow-wrapping engine, are behind the successful construction of the EU-
ADR Web Platform, a workspace for delivering advanced pharmacovigilance
studies. In the context of the European GEN2PHEN project, this research
tackles the challenges associated with the integration of heterogeneous and
distributed data in the human variome field. For this matter, a new lightweight
solution was created: WAVe, Web Analysis of the Variome, provides a rich
collection of genetic variation data through an innovative portal and an
advanced API. The development of the strategies underlying these products
highlighted clear opportunities in the biomedical software field: enhancing the
software implementation process with rapid application development
approaches and improving the quality and availability of data with the adoption
of the Semantic Web paradigm.
COEUS crosses the boundaries of integration and interoperability as it provides
a framework for the flexible acquisition and translation of data into a semantic
knowledge base, as well as a comprehensive set of interoperability services,
from REST to LinkedData, to fully exploit gathered data semantically. By
combining the lightness of rapid application development strategies with the
richness of its "Semantic Web in a box" approach, COEUS is a pioneering
framework to enhance the development of the next generation of biomedical
applications.

“I think the biggest innovations of the twenty-first century will be the intersection of
biology and technology.”

- Steve Jobs

i

TABLE OF CONTENTS

Table of Contents .. i!
1. Introduction .. 1!

1.1 Thesis aims ... 2!

1.2 Contributions ... 3!

1.3 Organization ... 5!

2. Biomedicine and ICT ... 7!
2.1 The "omics" Revolution .. 8!

2.1.1 From the Genotype to the Phenotype .. 9!

2.1.2 Individualized Healthcare .. 11!

2.2 Connecting Life Sciences Data ... 11!

2.2.1 The Landscape of Information Access in Biology ... 12!

2.2.2 Data Sources .. 13!

2.2.3 Services and Providers .. 16!

2.2.4 Applications & Frameworks ... 18!

2.2.5 Challenges for Modern Biomedical Software .. 20!

2.3 Discussion ... 24!

2.3.1 Enabling Bioinformatics .. 24!

2.3.2 Standardizing Bioinformatics Services .. 25!

2.3.3 Service Composition for Biomedical Applications ... 25!

3. Software Engineering for Integration and Interoperability 27!
3.1 Rethinking Software Engineering .. 28!

3.1.1 Development Paradigms ... 29!

3.1.2 Promoting Rapid Application Development .. 32!

3.2 Understanding Service Composition ... 33!

3.2.1 Accessing Resources .. 34!

 ii

3.2.2 Service-Oriented Architectures ... 34!

3.2.3 Heterogeneity ... 38!

3.3 Modern Data Integration .. 39!

3.3.1 Resource Integration Strategies .. 39!

3.4 Towards Software Interoperability .. 43!

3.4.1 The axioms of Interoperability in Informatics .. 43!

3.4.2 Foundations for Software Interoperability .. 44!

3.5 The Semantic Web ... 45!

3.5.1 Expressing Knowledge .. 46!

3.5.2 LinkedData .. 49!

3.6 Discussion ... 51!

3.6.1 Shortcomings and Challenges .. 51!

3.6.2 An Emerging Architecture Trend .. 52!

3.6.3 The Next Step for Service Composition ... 53!

4. Contributions to Workflow-based Service Composition 55!
4.1 Delivering Advanced Pharmacovigilance Workflows ... 56!

4.1.1 21st Century Pharmacovigilance .. 56!

4.1.2 The European EU-ADR Project ... 58!

4.1.3 Drug Safety Signal Substantiation ... 59!

4.1.4 Requirements Analysis and Design Issues ... 61!

4.2 The EU-ADR Web Platform .. 63!

4.2.1 Exploring Service Composition for Interoperability .. 63!

4.2.2 Application Setup ... 66!

4.2.3 Data Exchanges ... 68!

4.2.4 Wrapping Taverna Workflows ... 71!

4.2.5 Features and Usability ... 72!

4.3 Discussion ... 76!

4.3.1 Service Composition for Interoperability in Bioinformatics 76!

4.3.2 Fostering Pharmacovigilance Innovation through Service Composition 76!

5. WAVe: Building an Integrative Knowledge Base 79!
5.1 Human Variome Research ... 80!

5.1.1 Integrating Human Variome Information ... 81!

iii

5.1.2 The European GEN2PHEN Project ... 82!

5.1.3 Locus-specific Databases ... 83!

5.1.4 Gathering G2P Data .. 84!

5.1.5 Requirements Analysis and Design Issues ... 84!

5.2 WAVe: Web Analysis of the Variome ... 86!

5.2.1 Application Setup ... 86!

5.2.2 Data Content and Usefulness ... 94!

5.2.3 Case Study ... 96!

5.2.4 Features and Usability ... 99!

5.3 Discussion ... 104!

5.3.1 Service Composition for Integration in Bioinformatics 104!

5.3.2 A Unique Resource for Human Variome Data ... 104!

6. COEUS: An Application Framework for Enhanced Service Composition 107!
6.1 Dynamic Software Infrastructures for Life Sciences ... 108!

6.1.1 Reusable Assets ... 108!

6.1.2 Towards a Semantics-enabled Architecture .. 110!

6.1.3 Semantic Web State of the Art in Bioinformatics ... 112!

6.1.4 Opportunities for Building a Semantic Web Framework 114!

6.1.5 Requirements Analysis and Design Issues ... 115!

6.2 COEUS: A Semantic Web Application Framework .. 117!

6.2.1 Framework Setup ... 118!

6.2.2 Extract-Transform-Load ... 127!

6.2.3 APIs ... 133!

6.2.4 Case Studies ... 137!

6.2.5 Features and Usability ... 140!

6.2.6 Future Developments .. 142!

6.3 Discussion ... 143!

6.3.1 Ad-hoc Software Solutions VS Rapid Application Development 143!

6.3.2 Enhancing Rapid Application Development .. 144!

6.3.3 A Framework for Semantic Bioinformatics Software .. 145!

7. A COEUS Instance ... 147!
7.1 Improving Rare Diseases Research ... 148!

 iv

7.1.1 Diseasecard’s Legacy .. 148!

7.1.2 Collecting Rare Disease Information ... 149!

7.2 The New Diseasecard .. 150!

7.2.1 Application Setup ... 151!

7.2.2 Features and Usability ... 158!

7.3 Discussion ... 161!

7.3.1 A Suitable Software Infrastructure for each Bioinformatician 161!

7.3.2 Applying COEUS to the Rare Diseases Research Field .. 162!

8. Future Perspectives and Conclusions ... 165!
8.1 Results ... 165!

8.2 Future Perspectives ... 168!

8.2.1 Beyond Service Composition ... 168!

8.2.2 Linked Data and the Semantic Web .. 169!

8.2.3 Worldwide Knowledge Networks .. 170!

8.2.4 Modern Software Platforms ... 170!

8.2.5 Business Value .. 171!

8.3 Conclusion .. 172!

References .. 175!

v

 vi

Pedro Lopes
Service Composition for Biomedical Applications

1

1. INTRODUCTION

“Words, so innocent and powerless as they are, as standing in a dictionary, how potent for good and evil
they become in the hands of one who knows how to combine them.”

- Nathaniel Hawthorne

Computer science has been evolving vertiginously since the middle of the 20th century.

Converging with these phenomena, especially in the last decades, the life sciences research

field fosters this innovation through a constant demand of newer and more advanced

computational tools. As the “omics” revolution unfolds, sophisticated biomedical

applications require best-of-breed technologies to cope with more complex requirements

from miscellaneous niche fields within the life sciences.

Rather than being a simple auxiliary tool, bioinformatics software is essential for

understanding disease aetiology. The completion of the draft human genome sequence [1,

2] promptly started a new genomics era [3]. Where traditional genetics research focused on

analysing genes as individual entities, modern genomics envisages a grander

comprehension of all connections from our DNA sequence - the genotype - to the observable

changes in our organism - the phenotype. Understanding the genotype-to-phenotype

connections is the cornerstone to understanding ourselves as humans, and to decipher the

“Book of Life”.

The genotype-to-phenotype domain plays a key role in future visions for individualized

healthcare. With computer science advances, clinicians’ strategies based on trial and error

are being replaced by more precise treatments sustained by advanced software

infrastructures. These approaches push forward the need for taking state-of-the-art

technologies to a new level, through the better prediction, prevention, diagnostic and

treatment of subtypes of diseases [4]. To achieve this, individualized healthcare must cross

paths with custom drug design research and both will, in a long-term, realize the

personalized medicine premise [5, 6].

It is up to computer science to deliver hardware and software to tackle the myriad of

challenges emerging from the life sciences field. Genotype-to-phenotype investigations or

pharmacology research involve high-throughput sequencing technologies and huge

1. Introduction

 2

numbers of biological samples, generating data in immeasurable quantity and diversity.

These data need to be evaluated, interpreted and integrated with other data to generate

new knowledge [7]. To ensure the effective exploitation of this wealth of data, which

results in truly valuable research, new service composition technologies and strategies are

essential. Hence, the thrust of this thesis is the vital role played by service composition

strategies in bioinformatics data integration and biomedical software interoperability.

The explosive evolution of biomedical and computational biology hardware and

software technologies is making these fields the subject of extensive research projects.

However, whereas in an initial stage, the adopted approaches consisted on the translation

of state-of-the-art computer science technologies to the life sciences domain, nowadays,

bioinformaticians demands are quickly surpassing available technologies, driving the

development of more advanced systems. With these challenges in mind, this research

endeavour seeks to bring innovation to the life sciences field once again, moving computer

science technologies one-step ahead of biomedical applications’ demands. From ad hoc

service composition in biomedical applications to general-purpose service composition

frameworks, research conducted in this doctorate covers the evaluation of existing tools

and introduces newly developed solutions that are vital to keep bioinformatics at the

boundaries of computer science innovation.

1.1 Thesis aims
The research conducted in this doctorate and detailed in this thesis is focused on the

service composition, data integration and software interoperability challenges brought

about by biomedical applications’ evolution. The overall goals of this work are as follows.

 To evaluate service composition strategies as data integration and software

interoperability enablers in the life sciences. Focus is given to the inward data flow -

from external, distributed and heterogeneous resources - complemented by the

outward data flow - advanced methods to publish data from a knowledge base.

These address the general need for new approaches in the field that help facilitate

information integration and exchange.

 To explore the potential role of state-of-the-art service composition technologies

for biomedical applications. Particular areas include the tailored use of web services,

the study of bioinformatics integration models and the assessment of strategies in

place at widely used resources.

Pedro Lopes
Service Composition for Biomedical Applications

3

 To develop new service composition strategies geared towards enhancing how data

can be collected and addressing how it can be easily accessible later.

Notwithstanding the vast amount of techniques and technologies available,

emphasis is pointed to the semantic web as a streamlined development paradigm to

acquire, disseminate and reason over knowledge.

These objectives can be summarized in an overarching research challenge: What are the

best state-of-the-art strategies for service composition in biomedical applications? How can these

approaches be explored to improve existing scenarios? What are the strengths and opportunities that

should be embraced to enhance resource integration and software interoperability in bioinformatics

and computational biology?

1.2 Contributions
With the biomedical software setting in the background, the research conducted in this

doctorate originated a useful and advanced set of contributions towards both integration

and interoperability.

Regarding interoperability, modern computer science technologies exploit the growing

number of application programming interfaces to enhance the development of new

workflow management software. Continuing previous research on service composition for

interoperability, namely on DynamicFlow [8, 9], we focus on the background strategies that

enable the streamlined execution of workflows with the development of the EU-ADR Web

Platform.

Bioinformatics data integration environments were explored in this thesis with the

development of WAVe [10, 11], an integrative platform for human variome information

that uses innovative service composition strategies to collect and enrich data.

With this exploratory research work, a clear need for a different kind of strategies

arisen. To build future-proof software we need to facilitate the use of strategies that will

become common in the next years, from rapid application development technologies to the

semantic web paradigm. Hence, we started the development of COEUS, a next-generation

rapid application development framework [12-14]. With a prominent semantic web nature,

this framework features a unique package with the tools to enable the integration of a

wealth of information using type-specific data connectors and foster interoperability with

external systems through a comprehensive API collection. The legacy Diseasecard portal

1. Introduction

 4

was replaced with a new COEUS instance, validating and assessing COEUS role in a real-

world scenario.

The aforementioned solutions were conceived after an evaluation of the challenges

innate to the bioinformatics and computational biology fields as well as of the state-of-the-

art software engineering technologies in place to engineer modern software architectures.

As show in Figure 1-1, and detailed in the following section, this thesis is organized to

facilitate the reading and comprehension of the problems at hand and of the devised

solutions.

Figure 1-1. Thesis organization. Chapters 2 and 3 compose the state-of-the-art evaluation, introducing
the bioinformatics field and its problems, and analysing, in depth, the vast set of computational
technologies available to tackle bioinformatics challenges. Chapters 4 to 7 form the overarching
contributions of this thesis, highlighting innovative research and software products. Chapter 8
concludes this thesis.

8. FUTURE PERSPECTIVES AND
CONCLUSIONS

7. A COEUS INSTANCE

6. COEUS: AN APPLICATION
FRAMEWORK FOR ENHANCED

SERVICE COMPOSITION

4. CONTRIBUTIONS TO WORKFLOW-
BASED SERVICE COMPOSITION

5. WAVE: BUILDING AN INTEGRATIVE
KNOWLEDGE BASE

STATE OF THE ART

CONTRIBUTIONS

3. SOFTWARE ENGINEERING FOR
INTEGRATION AND
INTEROPERABILITY

2. BIOMEDICINE AND ICT

1. INTRODUCTION

Pedro Lopes
Service Composition for Biomedical Applications

5

1.3 Organization
The overall structure of the thesis takes the form of eight chapters. In addition to this

introductory section, the thesis is organized as follows:

 Chapter 2 - Biomedicine and ICT. This chapter contextualizes the thesis research

work and provides clear background information on the problem at hand. It

includes a brief walkthrough of the bioinformatics software landscape, identifying

the most important data sources, services and applications. This overview exposes

the most important challenges being faced in the biomedical software research field.

This chapter is targeted at readers unfamiliar with the bioinformatics domain

evolution over the last decades.

 Chapter 3 - Software Engineering for Integration and Interoperability. This chapter

is composed of an in-depth survey of mainstream computer science technologies

that support modern service composition strategies. Starting with an introduction

of service composition requirements and challenges, we move on to cover the best

strategies for data integration and software interoperability and finish discussing

the Semantic Web paradigm. This technological evaluation underpins the vital role

that this broad set of technologies will play in responding to biomedical innovation

demands. This chapter is directed to readers less experienced with the computer

science background sustaining bioinformatics and computational biology

innovation.

 Chapter 4 - Contributions to Workflow-based Service Composition. This section

details the exploration of workflow-based approaches towards the improvement of

service composition in bioinformatics. Introduced contributions were performed

within the context of the European EU-ADR Project and were part of the

development of an advanced pharmacovigilance tool, the EU-ADR Web Platform.

The chapter finishes with a discussion surrounding the use of workflows in

bioinformatics environments.

 Chapter 5 - WAVe: Building an Integrative Knowledge Base. In this section, one of

the key outcomes from this thesis’ research work is introduced: the Web Analysis of

the Variome portal. Set within the human variome research and the European

GEN2PHEN Project context, this discussion is centred on the produced technological

advances that make WAVe an unique platform, from the innovative integration

architecture to the exposed APIs. The final summary highlights how the

1. Introduction

 6

contributions from chapters 4 and 5 effectively bridge the gap between data and

services within the life sciences domain.

 Chapter 6 - COEUS: An Application Framework for Enhanced Service Composition.

In this chapter another key contribution of this research work is reported, the

COEUS framework. After a brief evaluation of existing tools for rapid application

development in bioinformatics, we introduce the reasoning and developments

underlying the creation of a new Semantic Web application framework. The COEUS

platform is discussed in detail, covering all aspects surrounding the ability to create

distributed knowledge networks.

 Chapter 7 - A COEUS Instance. This section covers the deployment of the first

COEUS instance. The reengineered Diseasecard is presented and its construction

discussed as a sample for modern dynamic bioinformatics software, validating

COEUS as a true enabler of rich knowledge ecosystems.

 Chapter 8 - Future Perspectives and Conclusions. The final chapter of this thesis

emphasizes the discussion surrounding future developments regarding the various

developed strategies and exposes the conclusions of the conducted research work.

Pedro Lopes
Service Composition for Biomedical Applications

7

2. BIOMEDICINE AND ICT

“We said that once we had finished sequencing the genome we would make it available to the scientific
community for free, ... And we will be doing that on Monday morning at 10am.”

- J. Craig Venter

Bioinformatics is emerging as one of the fastest growing scientific areas of computer

science. This expansion is fostered by the computational requirements leveraged by

unprecedented advances in life sciences hardware and software.

This revolution kicked-off with the Human Genome Project (HGP) whose efforts

resulted in the successful decode of the human genetic code [15]. HGP history starts in the

middle of the 20th century with the involvement of the USA Department of Energy (DOE) in

the first studies to analyse nuclear radiation effect in human beings. However, it took about

30 years, circa 1986, to propel and initiate the Human Genome Project. The ultimate project

goals were as bold, audacious and visionary as the NASA Apollo program: to decode the

“Book of Life” in its entirety. Moreover, this knowledge would be the basis of a new

generation of tools that can identify and analyse a single character change in the sentences

that compose our genetic sequence. Although HGP was an ambitious project, results

appeared sooner than expected. This was the outcome of a deep collaboration with

computer scientists that leveraged the deployment of novel software and hardware tools,

aiding biologists’ sequence decoding tasks. This joint effort between two large research

areas, life and computer sciences, gave birth to a new discipline denominated

bioinformatics.

The Human Genome Project brought about a variety of benefits in several fields.

Remarkable discoveries in sequence decoding fostered DNA forensics, genetic expression

studies, drug advances, and improved several other fields like molecular medicine, energy

and environment, risk assessment or evolution studies. At the positively premature ending

of the Human Genome Project, the availability of the human genome and other genome

sequences have revolutionized all biomedical research fields [16].

Several projects started riding along HGP’s success, using scientific discoveries and

technological advances from HGP in miscellaneous scenarios to obtain new relevant

2. Biomedicine and ICT

 8

information. On the one hand we have smaller projects, which are focused on specific

genomic researches [17, 18]. On the other hand, we have larger projects that span through

several institutions and cross various physical borders [19-21].

These projects originated a change on how everyone, from biologists to clinicians,

assess and use computational tools. Information and communication technologies’ role is

nowadays vital in any biomedicine project’s success. This happens to an extent where

bioinformatics demands are constantly ahead of what computational technology has to

offer, driving hardware and software innovation to new levels.

The ever-growing bioinformatics research brought about an infinite number of

resources: databases, applications, services and protocols. Whilst this interest is essential to

keep the research field dynamic and alive, the consequences of having too many systems

with competing models, formats and technologies resulted in an incredibly fragmented

software landscape. Alas, modern bioinformatics has to deal with common heterogeneity

issues resulting from an anarchical ecosystem. Considering simple services used daily by

bioinformaticians, such as PubMed literature search or BLAST sequence alignments, they

have a similar technological backbone and probably adopt identical design principles and

architectures. However, the user and data interfaces are entirely different in terms of

output format, style and content. Whilst this variety is irrelevant for each specific field

requirement set, the answers to most biological questions imply that the users browse,

access and filter a myriad of distinct services until they have tracked down all the

information they need. Thinking about large-scale projects where the proliferation of data

is a defining feature, it is imperative to automate the acquisition and interoperation of data

from both hardware devices and software systems.

Fortunately, important stakeholders are aware of these issues. Hence, current emphasis

is given to converging synergies to produce much better outcomes. This is an area where

the whole is more than the sum of its constituent parts, and this clear turn of events

requires advanced computer science skills to revolutionize the way science is made,

integrated and disseminated.

2.1 The "omics" Revolution
Genomic medicine evolution yielded great advances that reshaped how we generate,

explore, evaluate and understand biomedical data. Likewise, the technological landscape

was also reshaped with the breakthroughs of the last 20 years, originating an increased

Pedro Lopes
Service Composition for Biomedical Applications

9

awareness of the complex composition of our surrounding environment. The improvement

of analytical technologies and the availability of greater computational power were of

extreme importance for molecular biology dynamics, resulting in an increased mechanistic

understanding of ourselves. This lead to the development of various highly detailed fields,

each approaching this data wealth from a different standpoint: genomics, proteomics,

variomics, metabolomics, transcriptomics or pharmacogenomics, among others. Moreover,

instead of viewing datasets independently, analysing genes, enzymes or proteins with a

reductionist strategy, systems biology aims to exploit knowledge over different levels of

molecular biology at once, assessing data as a whole.

As the “omics” revolution unfolds, with the rapid accumulation of data from a variety of

distinct software and hardware bioinformatics tools, the simple standalone collection of

these data does not suffice to understand the complete and dynamic system of life

encrypted in our genetic material. Hence, this “omics” revolution demands a parallel

technological paradigm revolution, promoting the evolution of independent closed legacy

systems to futuristic open science integration and interoperability standards.

2.1.1 From the Genotype to the Phenotype
The genetic library that assembles life encrypts the heritability of gene-based disorders and

defines our genotype. The complex relationship between our genetic features and

environmental agents originates our phenotype. Despite the natural variability verified in

human individuals, regarding weight, height, eye or hair colour, the human genome has a

large common base [22]. In fact, most recent studies indicate that only 0.4% of our genetic

sequence changes in 1% of the population [23]. Therefore, identifying and understanding

individual or structural changes in our genotype is crucial to better explore the causes and

consequences of the changes in our phenotype. Furthermore, the sequencing cost per

genome is reducing drastically, faster than Moore’s law, as shown in Figure 2-1, enabling

access to a wealth of data like never before.

The collection of genetic mutations in the human genome is being researched in the

Human Variome Project [19]. Similarly, the International HapMap Project looks to build the

human haplotype map, describing human variation patterns [24, 25]. The 1000 Genomes

Project adopts a distinct approach, focusing on the statistical analysis of multiple human

genomes looking for correlations between common genotypes and phenotypes [26]. These

projects, among others, influence decision-making in these research areas and provide the

funding and opportunity to obtain further knowledge about us.

2. Biomedicine and ICT

 10

Nowadays the focus is divided in two parallel research lines, each with a distinct scope.

On the one hand there is a broader perspective, directed to genome-wide association

studies, analysing the genetic basis of complex traits like disease susceptibility and drug

response through large statistical correlation studies. On the other hand there is a

narrower approach, focusing on genetic mutations and their causes and effects on the

human organism. Genome-wide association studies provide valuable insights over the

genetic basis of some diseases, but lack the detail required for explaining disease

heritability and propagation. Genetic variation studies generate large collections of

granular data that in spite of being extremely precise, are missing richer connections for

an overarching view.

Figure 2-1. Sequencing cost per genome, the cost of sequencing a human-sized genome (logarithmic
scale), from September 2001 (€76,210,457.6) to September 2011 (€6,194.4)1.

Studying and understanding gene functions are essential steps to imply genes in human

diseases. The Online Mendelian Inheritance in Man (OMIM) catalogue lists over 2000

diseases with single-gene or Mendelian disorders (diseases with simple familial inheritance

patterns) [27]. Cystic fibrosis was one of the first Mendelian disorders to be identified and is

caused by mutations in the CFTR gene on chromosome 7 [28, 29]. This particular rare

disease affects approximately one person in 3,000. To figure out the roles of all players

involved in life, from genotypes to phenotypes, including genes, proteins, drugs, enzymes,

1
 http://www.genome.gov/sequencingcosts/

€1,000

€10,000

€100,000

€1,000,000

€10,000,000

€100,000,000

Sep-01 Oct-03 Oct-04 Oct-05 Oct-06 Oct-07 Oct-08 Oct-09 Oct-10 Sep-11

Pedro Lopes
Service Composition for Biomedical Applications

11

pathways, and their interactions, is a demanding interdisciplinary challenge crossing the

frontiers of life and computer sciences. Despite this, apprehending the meaning of the

interplay between genotypes and phenotypes is vital to enable a more individualized

healthcare.

2.1.2 Individualized Healthcare
Uncovering the genotype-to-phenotype intertwined relationship has the ultimate goal of

improving individualized healthcare. Humans are much more genetically similar than

different and, despite the population-based distinctions on phenotypes and diseases, only 5

to 10% of total human genetic variance occurs between populations and ethnic groups [30].

Nevertheless, most of worldwide population is being assaulted by similar conditions:

cancer, obesity, diabetes or heart diseases are the main causes of death in first-world

nations.

Individualized healthcare, through personalized medicine and custom drug treatments,

is in a pivotal position for improving global health. This demands a strategy update,

moving from traditional palliation care to directed cures. New therapeutic methods are

targeted to specific disease processes, which further reduce the chances that patients will

suffer from adverse drug events. By aiming at subgroups of patients with common genetic

ancestry, we will be able to deliver the “right treatment to the right patient at the right

time, every time” [4].

It is clear that this individualized healthcare evolution requires a parallel information

and communication technologies transformation. Biomedical software and hardware

technologies evolution culminates in a new transparent layer connecting the clinician with

genetics information. To foster research in these areas, the European Union is promoting

large funding initiatives, targeting vertical and horizontal integration and interoperability

of data. We need to connect data from digital health records distributed through multiple

region, nation or continent wide repositories. Furthermore, we need to connect data

coming from genetic diagnostic labs to these digital repositories and deliver this rich

knowledge to pharmaceutical researchers and clinical practitioners.

2.2 Connecting Life Sciences Data
To fully extract knowledge from the immense amount of data coming from omics research

we need to foster the development of novel strategies and technologies to connect existing

data and, above all, make these data available for future connections.

2. Biomedicine and ICT

 12

Life sciences innate complexity and heterogeneity require the most advanced computer

science expertise to tackle the challenges associated with the harmonization, integration,

interoperability and correct accreditation of data. This domain is extremely rich in

applications, standards for services and data sources. The downside of this richness is its

consequent fragmentation and enormous entropy. Randomly picking any life sciences

research domain we can easily find various databases, services and applications, each with

its own internal structures and data integration and exploration strategies.

Next, we detail our exploration of computational resources related to the multiple

omics fields that drove this doctorate work and assess the challenges and demands arising

for modern bioinformatics.

2.2.1 The Landscape of Information Access in Biology
The widespread availability of bioinformatics tools lead to an exponential increase in the

amount of data available for researchers. Alas, the data-growing curve is steeper than the

effective knowledge-growing curve. Being fairly easy to create new applications and

services from scratch, anyone can launch new systems without taking in account any

existing platform.

For all stakeholders involved in life sciences field, from wet-lab researchers to EU

policy-makers, the amount of available information is overwhelming. More information

also results in more applications, more platforms and more services. Nowadays, the

information access landscape is a fragmented view, sinking in its own entropy.

The Nucleic Acids Research (NAR) journal keeps a collection of the most relevant

biosciences databases, updated yearly. Figure 2-2 shows a graph showing the growth of this

collection and the number of new databases. The 2012 edition adds 92 new databases to the

2011 list [31]. A sample overview of these lists' evolution over the last few years reveals an

increasing complexity and specialization. Genetic variation datasets and single organism

databases are growing where the number of overarching resources is steadier. This idea is a

deciding factor to the new bioinformatics software path. Where niche fields were seldom

targeted in the past, they are gaining relevance with area-centric databases and scientific

curation.

This leverages a deeper background problem for connecting life sciences data.

Fragmentation is increasing and these new focused systems are often built disregarding

any integration or interoperability strategy. On the one hand, they do not integrate

existing models or datasets, adding further entropy to the ecosystem. On the other hand,

Pedro Lopes
Service Composition for Biomedical Applications

13

data are locked due to the lack of interoperability interfaces, blocking its use in other

systems.

In summary, the access to and evolution of computer science technologies is a double-

edged sword. On the upside, improved availability means that data are more easily at

researchers' fingertips. On the downside, this also means deeper fragmentation. This leads

to the branching of existing systems to uncoordinated areas, further augmenting the

bioinformatics software landscape granularity.

Figure 2-2. NAR database list evolution, from 2004 to 2012, regarding the total number of databases
(bars) and the number of new databases (line).

2.2.2 Data Sources
Biological databases play a central role in bioinformatics. They offer scientists the

opportunity to access a wide variety of biologically relevant knowledge, from reference

sequences to marketed drugs. In most cases, databases offer their data through web

services or flat files that can be easily accessed or parsed. However, these databases do not

follow a single model or notation, and, therefore, the same biological concept may be

represented in several distinct models and with various identifiers. The task of establishing

relationships from one data type to other is often quite complex due to the multitude of

existing data types, structures and domains.

Three large international players control the data sources landscape in bioinformatics

in its majority: the United States of America National Centre for Biotechnology Information

(NCBI), the partnership between the European Molecular Biology Laboratory and the

European Bioinformatics Institute (EMBL-EBI), and the DNA Data Bank of Japan (DDBJ).

0

250

500

750

1000

1250

1500

2004 2005 2006 2007 2008 2009 2010 2011 2012

548
719

858
968

1078
1170 1230

1330 1380

162 171 139 110 110 95 58 96 92

New Total

2. Biomedicine and ICT

 14

Notwithstanding the vital role played by the thousands of other data sources, registered in

the aforementioned NAR registry, these three entities aggregate the funding and

collaborations that enable the development of systems spanning the entire life sciences

spectrum. Whilst the boundaries for each of these large data repositories are blurred, we

can organize existing data sources according to their main controlling entity.

NCBI, associated with the National Library of Medicine in the USA, is a resource for

molecular biology information organized in various categories each containing several

databases. From the extensive NCBI database list we can highlight some major databases:

 dbSNP stores information about Single Nucleotide Polymorphisms (SNP), particular

changes in our genetic sequence that are relevant for the detection of anomalies in

our genes [32].

 The Mendelian Inheritance in Man (MIM) is a library of known diseases that are

mainly caused by genetic disorders. NCBI was initially responsible for the Online

MIM [27], which is now under John Hopkins University supervision.

 Medical Subject Headings (MeSH) is a thesaurus for medical terms, aggregating

human health information in a tree-based ontology [33].

 Medical Literature Analysis and Retrieval System (Medline®) is a huge bibliographic

database of published material referred to life sciences and biomedicine that can be

accessed through PubMed, an online search engine.

 GenBank is an open sequence database that contains information from laboratories

throughout the world and regarding a huge number of distinct species [34].

 The Entrez Global Query Cross-Database Search System (Entrez) offers online access

to a multitude of NCBI databases through a single user interface [35]. Entrez is also a

remarkable project on online resource integration, proving normalized data

formats and coherency across databases and services.

At an European level, coordinated efforts between EMBL, EBI and the Swiss Institute of

Bioinformatics (SIB) are the frontline of wide scale repositories, and have already left their

footprint in the bioinformatics community. From these, the following data sources must be

highlighted:

 UniProt is a universal protein resource, including a huge database of curated

protein functional information [36]. In a smaller scale, InterPro is a competitor

focused on proteins and the proteome [37].

Pedro Lopes
Service Composition for Biomedical Applications

15

 ExPASy is a proteomics resource portal, providing an entry point to a vast collection

of SIB resources focused on protein knowledge [38].

 PROSITE is a protein domain data source, focusing on annotating functional

products and features [39].

 ArrayExpress archives public functional genomics data in two databases [40]: 1)

Experiments Archive that stores results from conducted experiments submitted

from the entire world. 2) The Gene Expression Atlas is a curated and re-annotated

subset of the Experiments Archive that is directed to gene expression studies.

 Ensembl is a genome database that contains information from a large number of

species and is accessible through a large number of web services [41].

 The European Genome-phenome Archive2 (EGA) and the 1000 Genomes Project

collect datasets with complete sequence information from multiple individuals [26].

DDBJ cooperates with NCBI and EMBL-EBI to provide data replicas to the Asian market

and to develop new tools and data sources. The most relevant outcome is the Kyoto

Encyclopaedia of Genes and Genomes (KEGG), collecting genomic information relevant to

metabolic pathways and organism behaviours [42]. KEGG is composed of five main

databases, each with a distinct focus: Pathways, Atlas, Genes, Ligand and BRITE. With all

these databases, KEGG’s goal is to obtain a digital representation of the biological system

[43].

Besides the data sources associated with these three corporations, there are many more

high quality databases, often targeting niche-focused fields, from gene ontologies to

phenotype information:

 Gene Ontology is the most widely accepted ontology, aiming to unify the

representation of gene-related terms across all species [44]. This is only possible by

providing access to an annotated and very rich controlled vocabulary [45].

 PhenoGO is a Gene Ontology centric database that intends to support high

throughput mining of phenotypic and experimental data [46, 47].

 PhenomicDB is a database for comparative genomics regarding various species and

genotype-to-phenotype association. Information is obtained from several public

databases and merged in a single database schema improving database access

performance and making several other features possible [48, 49].

2
 https://www.ebi.ac.uk/ega/

2. Biomedicine and ICT

 16

 PharmGKB is a data source aiming to bridge the gap between pharmacogenomics

and bioinformatics through the establishment of curated association between genes

and drugs [50].

 GWASCentral collects and summarizes genome wide association studies, making

them more easily available for researchers [51].

Semantic Web awareness has also been increasing within the life sciences community

[52-54]. Hence, many existing knowledge bases are emerging, adopting new semantic web

paradigms and looking for their space in a very competitive market:

 Bio2RDF is the most relevant development [55]. Bio2RDF falls on the design of an

enhanced strategy for semantic data warehousing, complete with a complex

Extract-Transform-Load pipeline that enables the collection of millions of records

from the most relevant life sciences databases.

 Bioportal is a portal for the integration of ontologies in the life sciences domain,

which has grown to become the de facto location for biomedical ontology

exploration [56, 57].

 The LinkedData initiative is also strongly present in the life sciences field, where

multiple computational biology datasets are already published according to the

proposed guidelines [58-60].

On a broader field, DBPedia is a notable development, providing a semantic version of

Wikipedia data available through a public SPARQL endpoint and with rich internal crossed

relationships [61].

2.2.3 Services and Providers
Data management in life sciences offers constant challenges to software engineers. Offering

these data to end-users and researchers worldwide is an even bigger challenge. Web

applications tend to be complex and cluttered with data resulting in non-usable interfaces

and fragile workspaces. The possibility to offer data as a service is a valuable option that is

being used more often. The greatest benefit of these remote services is that they allow

static or real-time dynamic programmatic service composition. That is, developers can

merge several distributed services in a single centralized application.

Nowadays, most of the previously mentioned data sources provide access to their

internal knowledge base through a rich set of services. On top of these, there are many

other relevant web service standards and providers. Next we enclose a small revision of

these tools, from service protocols to registries.

Pedro Lopes
Service Composition for Biomedical Applications

17

 The Distributed Annotation System (DAS) specifies a protocol for requesting and

returning annotation data for genomic regions that has expanded to several life

sciences areas, not only sequence annotation [62]. The main idea behind DAS is that

distributed resources can be integrated in various environments without being

aware of other intervenient. That is, resources can be replicated and integrated in

several distinct systems, not only in a single static combination of resources.

 BioMart consists of a generic framework for biological data storage and retrieval

using a range of queries that allow users to group and refine data based upon many

different criteria [63, 64]. Its main intention is to improve data mining tasks and it

can be downloaded, installed and customized easily.

 The European Molecular Biology Open Software Suite (EMBOSS) is a software

analysis package that unifies a collection of tools related to molecular biology and

includes external service access [65-67]. Applications are catalogued in about 30

groups ranging several areas and operations related to the life sciences.

 Soaplab was developed at the EBI and is another set of web services that provide

remote programmatic access to several applications [68]. Included in the framework

are a dynamic web service generator and powerful command-line programs, such as

support for EMBOSS software.

 BioMOBY is a web-service interoperability initiative that envisages the integration

of web-based bioinformatics resources supported by the annotation of services and

tools with term from well-known ontologies [69, 70]. The BioMOBY protocol stack

defines every layer in the protocol from the ontology to the service discovery

properties.

 The Web API for Biology (WABI) is an extensive set of SOAP and REST web life

sciences APIs, focused on data processing and conversion between multiple formats

[71, 72]. WABI defines mainly a set of rules and good-practices that should be

followed when the outcome of a research project is a set of web services.

 Biocatalogue is an attempt to facilitate the discovery of existing web services [73]. In

this library, users can register, discover and annotate bioinformatics web services.

Taking advantage of this community-based approach, Biocatalogue complements its

internal service monitoring system with crowdsources curation, improving the

assessment of existing web services.

2. Biomedicine and ICT

 18

2.2.4 Applications & Frameworks
Goble conveyed a “state of the nation” in bioinformatics study and her main conclusions

were that there is still a long path to traverse, specially concerning integration and

interoperability efficiency [74]. Nonetheless, there were remarkable developments in the

last few years. These developments include novelties in data and services integration,

semantic web developments and the implementation of mashups/workflows in

bioinformatics. Moreover, as stated by Stein, integration strategies are vital to the creation

of a large bioinformatics ecosystem [75, 76].

The diversity of strategies results in a myriad of applications and frameworks that

tackle similar challenges. We can group these approaches under three concepts, according

to the basic functionality of each tool: integrative tools and applications; frameworks and

development libraries; and workflow managers.

First, the set of available software focusing on integration heterogeneous

bioinformatics components is nearly immeasurable. Everyday new applications appear,

targeted to distinct fields, end-users or operating environments. The following listing

highlights some of the existing applications with particular focus on some in-house

solutions:

 GeneBrowser adopts a hybrid data integration approach, offering a web application

focused on gene expression studies, which integrates data from several external

databases as well as internal data [77, 78]. Collected data are stored in an in-house

warehouse, the Genomic Name Server (GeNS) [79].

 Biozon is a data warehouse implementation similar to GeNS, holding data from

various large online resources like UniProt or KEGG and organized around a

hierarchical ontology [80]. Biozon clever internal organization (graph model,

document and relation hierarchy) confers a high degree of versatility to the system,

allowing a correct classification of both the global structure of interrelated data and

the nature of each data entity.

 Reactome is a generic database of biology, mostly human biology, describing in

detail operations that occur at a molecular level [81].

 BioDASH is a semantic web initiative envisaging the creation of a platform that

enables an association, similar to the one that exists in real world laboratories,

between diseases, drugs and compounds in terms of molecular biology and pathway

analysis [82].

Pedro Lopes
Service Composition for Biomedical Applications

19

The development of bioinformatics applications has been enhanced greatly in the last

decade. This was possible due to the appearance of multiple libraries and frameworks,

targeting miscellaneous development environments, and enabling the creation of new

software at a much faster rate. From the broad set of bioinformatics packages, we must

highlight the following:

 BioJava is an open-source framework that eases the development of bioinformatics

applications by providing packages facilitating access to widely used databases and

services [83]. Similar libraries are also available for other programming languages

such as Ruby [84], Perl [85] or Python [86].

 Bioconductor is another open-source and open development software package

providing tools for the analysis and comprehension of genomic data [87]. The

software package is constantly evolving and can be downloaded and installed locally.

The tools that compose the package are made available from several service

providers, generally in R language.

 Molgenis is a rapid application development framework enhancing the creation of

new bioinformatics web information systems with only a couple configuration files

[88]. Molgenis is introduced in detail in section 6.1.1.

For service composition, mashups or workflows are among the hottest trends in

bioinformatics application development. Service composition, which encompasses service

orchestration and choreography, is already possible in various scenarios:

 myGRID is a multi-institutional and multi-disciplinary consortium that intends to

promote e-Science initiatives and projects [89]. More recently, GRID is giving place

to cloud-computing strategies, a field that is still lacking interest in the

bioinformatics community, though it will gain relevance in a near future [90, 91].

 Bio-jETI uses the Java Electronic Tool Integration (jETI) platform, which allows the

combination of features from several tools in an interface that is intuitive and easy

to new users [92]. jETI enables the integration of heterogeneous services from

different providers or even from distinct application domains.

 BioWMS is an attempt to create a Taverna-like web based workflow enactor. The set

of features is not as complete as Taverna and the availability is very limited (unlike

Taverna, which is available freely for the major operating systems) [93].

 The Workflow Enactment Portal for Bioinformatics (BioWEP) consists of a simple

web-based application that is able to execute workflows created in Taverna or in

2. Biomedicine and ICT

 20

BioWMS [94, 95]. Currently, it does not support workflow creation and the available

workflow list is quite restricted.

 The Bioinformatics Workflow Builder Interface (BioWBI) is another web-based

workflow creator that connects to a Workflow Execution Engine (WEE) through

web-services to offer complete web-based workflow enactment [96].

 BioFlow [97, 98] is a new generative, declarative query language that permits the

exploitation of services, databases or ontologies for data integration.

 Taverna is the best state-of-the-art application regarding workflow enactment [99].

It is a desktop application that enables the creation of complex workflows allowing

access to files and complex data manipulation. Additionally, Taverna also configures,

automatically, the access to BioMOBY, Soaplab, KEGG and other services. Along with

these predefined services, users can also dynamically add any web service through

its WSDL configuration.

 Galaxy is Taverna’s most competitive alternative [100, 101]. This web-based

platform provides an online workspace for managing and executing workflows,

enabling the tracking of provenance data and the reproducibility of bioinformatics

research.

 Tavaxy attempts to combine the best features from Taverna and Galaxy in a

standalone bioinformatics integration and interoperability platform [102].

2.2.5 Challenges for Modern Biomedical Software
Many problems and requirements arise with life sciences research and technological

evolution can only do so much. The bioinformatics advances we are witnessing require a

strategy shift. We must tackle the overwhelming growth of data sources with novel

strategies to synthesize, harmonize and (re) connect data.

With an ever-growing data supply, researchers are given the task of assessing what is

relevant and not. Therefore, summarizing the huge datasets traditionally available is a first

step towards a better bioinformatics ecosystem. This also fosters the need for data curation.

Whether through social crowdsourcing strategies or direct data analysis and validation, the

wealth of life sciences data must be carefully curated to extract knowledge as precise and

accurate as possible. Moreover, data selection is also hindered by the well-known

researcher accreditation fear. The case with the majority of large-scale data sources is that

original data authors are lost along the way. Content ownership and authorship is

forgotten, removing credit from where it is due. Novel approaches such as micro-

Pedro Lopes
Service Composition for Biomedical Applications

21

attribution and nano-publications try to adapt the publication of data to similar strategies

as the ones with the publication of research literature, highlighting authors’ accreditation

[103].

The harmonization of data relates directly to the “reuse instead of rewrite” principle.

While innovation is achieved with new outstanding ideas, developers should first study

what has been done previously in a specific domain. This incorrect assessment results in

the key fragmentation issue: heterogeneity. Heterogeneity of data formats. Heterogeneity

of data structures and models. Heterogeneity of data access methods.

We can draw a linear path to wisdom. We acquire data then we translate it to

information, which allows us to gain new knowledge. However, to make the most efficient

transition from data to wisdom we need to fully explore the connections amongst

independent data units. Only by interlinking all bits of data we can obtain a rich, holistic,

overarching view of everything we have collected and, ultimately, to make sense of it.

With the increasingly growing amount of data and increasingly growing amount of

ways to deal with it, we are faced with the challenge of evaluating where the most relevant

data are stored, who created it, how we can connect it with our research, and how we can

make our results available to others in the future. Answering these questions will provide

us the path to improving our wisdom regarding the life sciences fields, and to accomplish

this we must seek the integration of our resources and foster interoperability amongst

them.

Integration
Integrated data views are essential for a better understanding of existing datasets. In the

majority of scenarios, the exploration of scientific results involves establishing connections

between data from diverse domains. In his workspace, a clinician needs direct access to

patients’ records, disease data and drug details. In the genetics wet lab, researchers require

hardware sequencing tools with connections to data pipelines and sequence aligners or

ontology browsers. In the office computer, researchers need the best set of tools to explore

wet lab data, select publications or navigate through a myriad of related resources.

In practical terms, analysing items individually results in poor quality views, which

ultimately imply inaccurate and non-precise results. There is a demand for more

comprehensive integrated data views, setting a wide number of resources at the users’

fingertips. For example, the in silico research scenario requires BLAST tools, protein data

from UniProt and PDB, literature views from PubMed and gene information from HGNC

2. Biomedicine and ICT

 22

database. Despite being a simpler scenario than what occurs in a real lab, we already need

access to 5 distinct resources, each with own independent data structures, exchange

formats and access methods.

Whether we are providing virtually centralized integration or replicating data or

features in their entirety, integration deals with the strategies for getting something from

an external, remote or distributed environment into a centralized tool - Figure 2-3.

Figure 2-3. Integration of distributed and heterogeneous resources. The idea behind integration is to
physically or logically move data from an external resource into a new virtually centralized location.

With the ever-increasing heterogeneity of the bioinformatics domain, creating these

integrated data views is especially difficult. Furthermore, considering the exploration of

niche scenarios, separating the wheat from the chaff is worse than finding a needle in a

haystack. Therefore, the most advanced resource integration strategies adopt service

composition approaches. Considering each distributed component as an autonomous entity

that can be connected with multiple others, with whatever software artefact, enables

simplifying the overall integration algorithm view.

Interoperability
A key feature for the integration of resources is inward interoperability. Being it a

straightforward process on a forced one, we need to make our centralized integrated

environment interoperate with some kind of external player. In an ideal scenario, if the

resources being integrated already account for modern outward interoperability features,

the tasking of integrating its features and/or data are facilitated.

In the previous integration scenario, the involved entities already provide a collection

of web-based services enabling streamlined access to their data. Hence, it is fairly easy to

develop a new static application to read and process RDF data from UniProt, XML data from

Pedro Lopes
Service Composition for Biomedical Applications

23

PDB and PubMed and CSV data from HGNC. In spite of being fairly easy to accomplish this,

most data remains locked in independent closed data-silos or available through legacy

methods.

For this matter, we need to make a sure bet on improving existing systems’

interoperability features and on including the adequate interfaces in newly built software.

This way, applications and services can be composed to form new dynamic software

ecosystems, where data are easily exchanged from tool to tool - Figure 2-4.

Figure 2-4. Interoperability amongst distinct resources. With autonomous software interoperability
resources are able to dynamically exchange and accurately interpret data.

Developers and researchers are already endowed with advanced interoperability

frameworks. Whether through resource-specific data access or standardized service-based

methods, developers are able to access and publish information easily. Nevertheless, in an

ideal scenario with all data promptly available, the heterogeneity issue strikes again. Even

when the data models are compatible, developing software to interoperate with multiple

services is not trivial. Furthermore, researchers have a new set of demands that cannot be

satisfied with the previously mentioned static application example.

With more data and more services, it is of utmost importance to select the best

alternatives for each field to enable the creation of dynamic interoperable software that

not only allows the integration of heterogeneous remote data, but also promotes the future

exploration of collected data through an advanced set of APIs.

2. Biomedicine and ICT

 24

2.3 Discussion
2.3.1 Enabling Bioinformatics
It is essential to grasp the true issue behind the bioinformatics software ecosystem to

understand what needs to be done to overcome current challenges. Researchers demanded

more data from their hardware and software platforms, resulting in an explosive data

growth that has given more than they asked for. In a way, the problem of getting quality

proof data is still present. Two decades ago it was cumbersome to get any data regarding

any life sciences subject due to the lack of adequate databases and services. Nowadays, it is

cumbersome to select the best resources from the overwhelming amount of data and

services in most of cases providing similar content.

In an ironic turn of events, the tools researchers proposed to solve a general problem

are now causing an entire new kind of challenges. Researchers demand new tools for

synthesizing, connecting and harmonizing available data. With this, the fields of software

integration and interoperability appear as the most viable solution for enhancing access to

life sciences knowledge, in a role that resembles the one played by scripting languages and

relational databases in the early days of bioinformatics.

Not only we need to improve how we collect, filter and select the best data in a given

domain, we also need to make these acquired and enriched data available to other players

through interoperable methods. To accomplish this we need to foster the development of a

new generation of bioinformatics software. This requires us to devise new strategies and

explore modern technologies that will enable the future of bioinformatics.

This new generation of bioinformatics tools will involve efforts from all stakeholders in

the life sciences domain. Wet-lab researchers, clinicians, principal investigators and policy

makers must be aware of where this uncontrolled evolution is going. While in the early 21st

century scientist could rely on the quality of existing databases without questioning their

content, the overwhelming heterogeneity issues are leading us to an undisputable quality

loss.

To enable modern bioinformatics, life sciences researchers and enterprise stakeholders

need to adopt new principles in their development process, rethinking how existing

information can be reused, i.e. integrated, and how it can endure the force of time, i.e.

made interoperable. For these matters, service composition strategies arise as the optimal

solution to help the field of bioinformatics thrive in the future as it has in its recent past.

Pedro Lopes
Service Composition for Biomedical Applications

25

2.3.2 Standardizing Bioinformatics Services
Despite the last decade’s bioinformatics evolution, the use of web services in the field

remains rather primitive. On the one hand, web service use is pervasive and their actual

execution has been largely facilitated on the last couple years. However, on the other hand,

this growing amount of services also makes it cumbersome to select the fit service for a

particular task. This results in an overwhelmingly chaotic services landscape.

With a growing number of services, it easy to assess the struggle for building

applications that routinely used distributed web services. In this context, several notable

initiatives to standardize bioinformatics service composition emerged. Services and

protocols highlighted in this chapter were the initial attempts to produce a broad web

service standard for bioinformatics. However, these technologies never gained enough

traction to become the mainstream de facto service standard. Whilst the standards

themselves are actually good, they sit atop the traditional service protocols, adding a new

complexity layer. Furthermore, the use of bioinformatics service standards hindered their

adoption from new developers. When implementing new solutions from scratch, the lack of

consensus regarding the best practice propelled most developers to create their own

protocols, further fragmenting the field.

With so many services from so many distinct providers to choose from, the

bioinformatics developer community is faced with a daunting challenge in the form of

choosing the best service for a given set of problems. This diversity arises in the form of

standards, programming languages, independent packages and/or frameworks. This means

that non-expert users have a though call to make when selecting an existing service

standard to build upon. To tackle these challenges, new strategies started to look at original

ways to enable service composition, namely through the adoption of workflow strategies

served in high-end user interfaces.

2.3.3 Service Composition for Biomedical Applications
In this chapter we highlighted the multitude of solutions devised to overcome past

bioinformatics and computational biology problems. However, a new set of demands arises

from this technological evolution. Therefore, and to avoid this vicious circle in the future,

we must adopt novel software integration and interoperability paradigms.

From a computer science perspective, the composition of web services is essential to

enhance the development of state-of-the-art bioinformatics software. Software

engineering experts must endow bioinformatics developers with tools and reusable assets

2. Biomedicine and ICT

 26

to promote a new generation of biomedical applications. These will allow the deployment

of software that will prevail over the multitude of drawbacks inherent to the need for

synthesizing, connecting and harmonizing knowledge.

To this end, service-oriented architectures and novel data integration and software

interoperability strategies must be evaluated, allowing the creation of guidelines for

delivering enhanced software to development partners. It is our belief that the pursuit of

better integration and interoperability platforms should drive bioinformatics development

in upcoming years.

Pedro Lopes
Service Composition for Biomedical Applications

27

3. SOFTWARE ENGINEERING
FOR INTEGRATION AND

INTEROPERABILITY

“Perhaps, I may get well if you will let me study engineering.”
- Nikola Tesla

In the middle of the 20th century the computational industry started to grow sustained by

an evolution in hardware components. During almost 4 decades, until the birth of the

modern PC, computers changed mostly in format and size. Only in the early 80s we

witnessed a major leap in available software and user interactions, brought about by

innovation from companies such as Apple, Microsoft or IBM and the advent of the Internet.

From there on, in the PC era, we can safely assume that strategic changes were

promoted by a software revolution despite the undeniable key role hardware has played.

Software engineering has evolved to better use available hardware resources and

transformed the way the world sees computers. At any given moment, all major sectors are

using some kind of computer software tool. Whether it is to trade stocks, manage

production factories or analyse sequencing data, computer science is essential to keep the

world moving forward.

Nowadays we are entering the post-PC era. Hardware advances have taken another leap,

this time into our pockets. With the mobile device number already largely surpassing the

number of desktop computers, software development paradigm changes are once again

required to push available hardware to its limits, exploring all the new ways we can

interact with machines and new ways machines can interact amongst themselves. Modern

software development revolves around the concept of web services. In a broad sense, web

services can be seen as any computational software feature available through a web-based

interface.

3. Software Engineering for Integration and Interoperability

 28

Services are (should be) built to be composed, to play together in an ensemble of

interactions amongst heterogeneous and distributed actors. Hence, the emergent relevance

of service composition is vital. In a world replete with a growing number of data coming

from all kinds of digital sensors, research labs, industry and entertainment products and,

above all, ourselves, the idea of providing these data as a service that can be used to build

new intelligent software ecosystems is deeply attractive.

To achieve this, we need to be able to include a wide variety of features and data in any

modern software system so that users’ demands can be fully satisfied. In a sense, users

want to have everything at their fingertips, a couple touches or clicks away.

This need is further highlighted in the life sciences research domain. The great

computational hardware and software leaps are occurring now in bioinformatics as new

technologies are generating more and more data, which in turn results in more and more

services, which ultimately results in an overwhelmingly heterogeneous landscape.

Researchers are now crushed beneath the house they have built due to the growing

entropy in their fields and increasing difficulty in getting the best data. From the life

sciences standpoint, this is the perfect opportunity to introduce state-of-the-art

technologies in the bioinformatics domain: modern service composition strategies are

perfect to satisfy integration and interoperability demands, widely common in the

biomedical domain.

This chapter covers in depth the technological requirements and state-of-the-art

solutions regarding modern software engineering. Integration and interoperability

strategies are discussed, leading the way to the introduction of Semantic Web technologies

as the best-of-breed paradigm to employ when developing new systems.

3.1 Rethinking Software Engineering
Regarding software, new application development paradigms are being implemented with

a more problem-oriented perspective. Instead of focusing on solving a single goal, modern

software tries to tackle multiple challenges at once, providing new tools with incredibly

wide feature sets. This demands a more integrative approach. We can no longer aim to

build an entire data-rich and feature-rich ecosystem from scratch without considering

what has been done before. We are not expected to build a social application without

connections to Facebook or Twitter. Likewise, bioinformatics developers are not expected

Pedro Lopes
Service Composition for Biomedical Applications

29

to build a new proteomics resource without integrating data from the UniProt knowledge

base, for example.

Moreover, applications are no longer created solely for end users. There is a growing

concern in providing tools that allow other developers to build upon the initial system.

This implies that software interoperability features are essential for an application success

and developers are now more prone to including them in their software.

This “reuse instead of rewrite” phenomenon is also observed in the application

development process. More often we now see applications build on top of existing

frameworks and APIs. Rapid application development strategies are in place to reduce the

time-to-market for new applications, leveraging on common features or data that will

undoubtedly be required in a given domain.

For computer scientists and, more specifically, software developers, this means that

there is an entire new set of technologies and strategies to be explored. New applications

are more connected with deeper integration features and broader interoperability tools.

3.1.1 Development Paradigms
We cannot assert that there are perfect strategies as the problems themselves change,

especially in an area as dynamic as the life sciences. Whereas for reading data from a

database a simple static shell script is enough to obtain the desired results, in complex data

integration environments more robust and complex solutions are required.

Service composition for biomedical applications can assume many forms, ranging from

the mentioned simple ad hoc approaches to advanced software engineering projects.

Whether we are building static applications or a modern workflow manager we need first

to take in account what exists in the area and what are the real demands to make a correct

assessment of the best strategy to use.

Static Applications
The simplest approach to use service composition strategies for the integration of

heterogeneous components is to implement the entire application workflow directly. These

applications combine a collection of methods to integrate each resource. As a result, a

static application is composed of a set of wrappers that encapsulate the access to

distributed data resources. At first sight, these applications do not represent a valuable

solution for the integration of resources. Nonetheless, this solution is widely used specially

due to the simplicity of the development and the speed of deployment. With static

applications, developers do not need to program dynamic or generic components. On the

3. Software Engineering for Integration and Interoperability

 30

downside, static applications are not generic, flexible or robust. Anytime one wishes to add

a new resource, developers must program the access to that particular service and add it to

the application. Whilst this solution is feasible at a small level, when we are dealing with

complex environments and a constantly evolving scenario it is not enough.

Dynamic Applications
The design and development of dynamic solutions requires a higher-level of computer

science expertise and background on the research area to support the various iterations of

the project execution. Dynamic applications are the expected evolution of static

applications and are distinguished for being able to allow changes in its inputs and outputs

as well as conveying distinct service combinations to reach a given goal [104, 105].

Dynamic access to external services or autonomous service composition requires the

development of several focused, flexible and generic integrative middleware protocols

[106]. Designing these protocols implies recurring to a multitude of distinct technologies

and requires the adoption of advanced strategies to describe integrated resources and

permit the interoperability with novel ones. Despite this new complexity layer, dynamic

applications’ generality makes them a more suitable solution for complex software

environments.

Meta-applications & Workflows
Metadata are data about data. Applying the same premise to applications, we conceive the

paradigm of meta-applications: applications working over applications. Meta-applications

are state-of-the-art systems that connect distributed applications enabling interoperability

among heterogeneous systems. Recent developments have also promoted a concept

described as “software-as-a-service”: any software can be provided as a remote service

[107]. If software engineers follow this paradigm, any application could act as a service,

easing the composition tasks.

The mashup term characterizes hybrid web applications: applications that mesh

applications. Their purpose is to combine data gathered from multiple services to offer a

wider centralized feature [108, 109]. Mashups allow easy and fast integration relying on

remote APIs and open data sources and services [110]. Mashups and meta-applications

share a common basic purpose: to offer a new level of knowledge that was not possible by

accessing each service independently.

According to the Workflow Management Coalition [111], a workflow is a logical

organization of a series of steps that automate business processes, in whole or part, and

Pedro Lopes
Service Composition for Biomedical Applications

31

where data or tasks are exchanged from one element to another for action. Adapting this

concept to software, a workflow is a particular implementation of a mashup that consists

on an ordered information flow that triggers the execution of several activities to deliver

an output or achieve a goal (Figure 3-1) [112-116]. A crucial workflow requirement is that

the inputs of each activity must match with the precedent activity outputs to maintain

consistency. Dealing with workflow execution operations requires the implementation of

workflow management systems [117].

Figure 3-1. Workflow example. Internal activities (independent tasks) are executed at distinct
providers and can operate within various domains.

A workflow management system allows designing, controlling and executing software

that is driven by a computational representation of the workflow logic. Describing the

workflow requires a complete description of its elements: task definition, interconnection

structure, dependencies and relative order. The most common solution to store workflows

is to use a description language, a configuration file or a database.

Existing workflow systems can support complex operations and deal with large

amounts of data. Though, there are emerging requirements that must be handled by

workflow management systems, such as provenance, event-driven activities, streaming

ACTIVITY 1A

Input: AA Output: BB

ACTIVITY 1B

Input: 11 Output: 22

ACTIVITY 2B

Input: 22 Output: 33

ACTIVITY 3

Input: 33 Output: 44

ACTIVITY 2A

Input: BB + 44 Output: CC

ACTIVITY 4A

Input: CC Output: DD

ACTIVITY 4B

Input: CC Output: EE

ACTIVITY 5

Input: EE Output: FF

ACTIVITY 6

Input: DD + FF Output: FINAL

START

FINISH

3. Software Engineering for Integration and Interoperability

 32

data and collaboration between personnel in distinct parts of the globe. In research

domains such as the life sciences, researchers prefer to design, execute and analyse the

workflows in real-time.

3.1.2 Promoting Rapid Application Development
From an implementation perspective, Rapid Application Development strategies (RAD) are

a software development method resembling high-level Agile, spiral, waterfall or SCRUM

ideals [118, 119]. The grounding for RAD relies on its focus on quickly prototyping entire

applications in opposition to having an intensive planning stage. This allows for a quicker

time-to-market development process sustained by quickly developing an initial application

version, shown to final clients, which is actively iterated until the final application is ready

for prime time.

At first, RAD strategies where used to deploy initial application prototypes with only

the application skeleton build. However, with the advances in software engineering, RAD

strategies become more prominent, enabling the use and combination of multiple skeleton

components in the final software system. Based on a set of architecture configuration files,

customizable components (databases, user interfaces, services…) are automatically

generated and combined with other reusable assets. This pushed RAD as a serious

development methodology, spreading its adoption to every software area.

RAD strategies found wide use in web-based applications [120]. Programming

environments such Ruby on Rails3 and web development frameworks such as Zend4,

Symfony5, Django6 or Grails7, among many others, provide developers with the tools to

quickly create new complex web information systems. These packages include database

abstraction layers, MVC support, wrapping APIs and easy web service creation facilities.

Once familiarized with these frameworks, developers are endowed with the minimal set of

tools to create their applications almost instantly.

The application of RAD strategies to user interface development is also witnessing an

increased use. Frameworks such as Boostrap8, endFoundation9 or HTML5 Boilerplate10,

3
 http://rubyonrails.org/

4
 http://framework.zend.com/

5
 http://www.symfony-project.org/

6
 https://www.djangoproject.com/

7
 http://grails.org/

8
 http://twitter.github.com/bootstrap/

9
 http://foundation.zurb.com/

10
 http://html5boilerplate.com/

Pedro Lopes
Service Composition for Biomedical Applications

33

include a diverse set of predefined user interaction components. This reduces the amount

of work required to build new interfaces and enables the creation of new integrative

toolsets based on customizable components in a LEGO-like way.

The entire software development process is changing in the post-PC era. Developers are

now looking for solutions that deliver more features with the smaller cost, i.e. with less

programming required. This is particularly evident in modern cross-platform application

scenarios, where the server-side and client-side components are reused even when the

final application targets distinct operating systems or working environments.

3.2 Understanding Service Composition
We have discussed the need for creating a more dynamic application ecosystem, fostered

by all fronts demanding improved interactions, flexibility, robustness and performance in

addition to the software fragmentation originating in a hardware market surrendered to

mobile, tablets, TV and web alternatives to the traditional desktop box. The glue to

maintain these rich architectures together is service composition. Service-oriented

architectures allow accessing online resources to obtain integrative views and promote

machine-to-machine interoperability through standardized data exchanges.

Service composition comes in two flavours [121]. On the one hand there is service

choreography, where each participant web service controls its own agenda. On the other

hand there is service orchestration, where a master node controls the coordinated

execution of distributed services.

Choreography approaches require a higher level of intelligence from each web service.

Services act autonomously based on a set of predefined rules to achieve the desired goal.

This means that artificial intelligence measures must be in place to manage the interaction

of multiple independent actors to yield an overall composition result. In a sense, service

choreography operates like an artistic dance performance, with each element working

together to deliver the best possible show.

Orchestration is a more easy and therefore common approach, requiring a controller

node to define the sequence of tasks within a workflow. These logic actions are

traditionally static and defined by developers. It is a centralized approach in contrast to

choreography’s distribution, resulting in the problematic of having a single point of failure.

Orchestration, as the name says, is similar to an orchestra playing, where the maestro

controls the arrangement and is able to predict or solve problems on demand.

3. Software Engineering for Integration and Interoperability

 34

3.2.1 Accessing Resources
Accessing online resources is no longer a challenging task for computer scientists. The set

of tools available for every development environment is enough to allow the creation of

advanced data access platforms. Online resource access services are responsible for

encapsulating data or features and making them available to other systems. They allow

access to databases, tools, file systems or any kind of external storage methods. The

services encapsulation should be made using wrappers to enhance and ease integration and

interoperability. With this in mind, it is important to take into account some generic

concerns:

 Performance is a crucial concern especially due to the fact that end-users want fast

and responsive applications regardless of the operation they are executing.

Performance can be optimized by reducing the amount of data that is sent across

the network or by minimizing query interdependence, thus reducing latency.

 Usability is also essential in any modern system. Expressiveness should be enough

to allow application developers to pose almost any query to the system. Usability

and expressiveness depend on metadata. Metadata should be carefully selected and

constrained to the minimal information necessary to interpret what the wrapper is

encapsulating.

 Distribution is an everlasting challenge for researchers, who are constantly dealing

with data that are located in distinct geographic locations and most of the times

they are accessing these data from different computers. It is very important to

prepare systems for future interoperability, enabling transparent access to

distributed resources and easing remote access.

3.2.2 Service-Oriented Architectures
Web services are, nowadays, the most widely used technology for the development of

distributed applications [122]. The World Wide Web Consortium (W3C) defines web services

as “software system designed to support interoperable machine-to-machine interaction

over a network” [123]. This wide definition allows us to consider a web service as any kind

of Internet available service as long as it enables machine-to-machine interoperability.

Service-Oriented Architectures (SOA) is a modern application deployment architectural

style. The rationale behind these architectures is that what the applications are connecting

are services and not other applications. Considering that every component that

applications require can be seen as an independent service, we create an implementation

Pedro Lopes
Service Composition for Biomedical Applications

35

and deployment strategy based in this paradigm. In traditional web application

architectures, the deployment can be decomposed in three generic layers: the presentation

layer, the business logic layer and the data access layer. In SOA architectures, the idea of

focused architecture layers does not exist. That is, each architecture component is

independent from the remaining and by combining miscellaneous components we can

compose multiple applications. This empowers two main concepts: reusable software,

which are applications wrapped as services that can be used in a multitude of applications,

and service composition, where applications can be built by combining sets of services.

Various patterns have been exploited over the years to promote the creation of service-

oriented architectures. Natural selection left two key standards that act as the foundation

for new applications with advanced service composition methods. SOAP is the strictest

standard, involving a more complex set of technologies to control all steps of the

composition. Unlike SOAP, REST is a more open alternative, leaving the standardization

and data exchange validation to the superior application layer.

SOAP
Standardized web services have the main purpose of providing a unified data access

interface and a constant data model of the data sources. Simple Object Access Protocol

(SOAP) [124], Universal Description, Discovery and Integration (UDDI) [125] and Web

Services Description Language (WSDL) [126] are the currently used standards and they

define machine-to-machine interoperability at all levels, ranging from the data transport

protocol to the query languages used. Web service interoperation occurs among three

different entities: the service requester, the service broker and the service provider.

SOAP standard defines a comprehensive architecture based on several layers where all

the components required for a basic message exchange framework are defined. These

components include message format, message exchange patterns, and message processing

models, HTTP transport protocol bindings and protocol extensibility.

WSDL standardizes the description of web service endpoints. This description enables

automation of communication processes by documenting every element involved in the

interaction (from the entities to the exchanged messages). The definition encompasses

several components that are structured in order to facilitate communication with other

machines and ease the readability of the web service by humans. Obviously, thinking of a

complex web service, we realize that there are numerous data types that need to be

described. Whether we are dealing with person’s names or protein interactions, each

3. Software Engineering for Integration and Interoperability

 36

scenario has its respective internal model, which must be exposed to make the system

interoperable. WSDL recognizes this need and can use XML Schema Definition (XSD) as its

canonical type system. Despite this, we cannot expect that this grammar will cover all

possible data types and message formats in the future. To overcome this issue, WSDL is

extensible, allowing the addition of novel protocols, data formats or structures to existing

messages, operations or endpoints [127].

UDDI allows describing, discovering and managing in the web services environment.

UDDI usually offer a central registry with “publish and subscribe” features that allows the

storage of service descriptions and detailed technical specifications about the web services.

The storage mechanism relies once again on XML to define a metadata schema that can be

easily searched by any discovery application

REST
REST service architecture styles are nowadays the most widely used solution for

interoperable software. REST-based solutions are used in every modern application form,

enabling streamlined data exchanges for all kinds of fields. REST stands for

representational state transfer and this service architecture uses all valuable features

inherent to the HTTP protocol [128]. Starting with the representation of resources with

unique URLs, developers can employ the GET, POST, PUT and DELETE operations available

in the HTTP protocol to enhance the access to remote data. Whereas normal web pages are

designed for human consumption, meaning that browsers only use the GET command to

load data in a closed window, the REST style uses all available operations to enable

machine-to-machine communication.

Developers can configure this page to respond with HTML, XML, JSON, CSV or, most

simply, free text. Using REST web services it does not matter what is the response structure

and its inner format, the essential requirement is that the exchanged messages are

understood between both the intervenient in the exchange. This feature makes REST web

services a lightweight and highly customizable approach for exchanges between machines

[129]. In April 2012, the Programmable Web library11 contains 5551 web APIs, 3740 of which

are REST-based, a staggering 78%.

This steady use growth and its availability in all kinds of services, from Twitter to

UniProt, is making REST the de facto solution for modern service oriented architectures,

empowering a true web-as-a-platform environment.

11

 http://www.programmableweb.com

Pedro Lopes
Service Composition for Biomedical Applications

37

The Promise and Limits of SOA
Service composition strategies are essential for achieving integration and interoperability.

We need an architecture that delivers organic interactions. This means that the

composition of services should be provided naturally, responding to project demands

swiftly and enabling the continuous improvement of available software without disrupting

existing systems. The resulting ecosystem, with greater flexibility, improved scalability and

better responsiveness, can be tailored to any modern development scenario.

However, these benefits came with a cost. In complex service composition scenarios,

involving multiple interacting workflows or mashups, many distinct problems may arise.

Distributed architectures may suffer from connectivity issues. With the Internet as the

main communication line, it is vital that a web connection is present 24/7 in the client

applications. For instance, developing mobile applications that rely on a remote service for

their execution limits the application usability to realities where the Internet is available.

Performance and robustness may also suffer. On the one hand, data exchanges can be

lighter and therefore faster, due to the use of smaller objects. On the other hand, the

parallelization of service execution is not straightforward, meaning that workflows’

services need to wait for the previous service completion before moving on. The lack of

robustness is exemplified by taking down a single service in a service-oriented system. This

can cause the entire system to fall apart, even if 99% of the involved components are

operational.

Managing a collection of distributed services is also challenging for SOA. These require

additional metadata to maintain adequate governance and application ownership. SOA

blurs the boundaries of where a self-contained application starts and ends. With the

emergent domination of the mobile application market, it is fairly trivial to write

applications that simply provide another view over a pre-existent service, without further

added value.

The limit of SOA tends to the concept of “everything-as-a-service”. This new paradigm

requires efforts for both service consumers and producers. Whether we are simply

requesting a listing from movies database, or delivering access to our oral cavity

knowledge base, we need to reengineer existing systems and change the way we think

about software systems’ architectures.

3. Software Engineering for Integration and Interoperability

 38

3.2.3 Heterogeneity
Online resource heterogeneity issues are of growing relevance, triggered by the constant

evolution of the Internet and the increased facility in publishing content online. We can

classify online resource heterogeneity in five distinct groups, varying according to their

complexity and their involvement at hardware/software levels (Table 3-1).

Table 3-1. Content heterogeneity organization according to hardware/software dependencies and
complexity, from physical data heterogeneity to the variety of access methods.

PHYSICAL
DATA

LOGICAL
STORING

DATA
FORMATS

DATA
MODELS

ACCESS
METHODS

 Web Server

 FTP Server

 File Server

 Backup Tape

 Relational

Database

 OO Database

 Text File

 Binary File

 HTML

 CSV

 XML

 TXT

 Excel

 Structure

 Ontology

 Semantics

 Local Access

 Remote APIs

 Web Services

Hardware related issues arise when dealing with physical data storage. For instance, a

medical imaging information system may require that image backups, stored in tapes, be

integrated in the system as well as images in the main facility web server. In this scenario,

the integration setup is considerably complex.

When dealing with file access in any storage, we may have logical storing heterogeneity.

Content can be stored in a relational database, a simple text file or a binary file, among

others. Hence, these several formats are accessed with entirely different interfaces. For

instance, integrating data from a Microsoft SQL Server 2008 database is a completely

different process from reading a binary file from a FTP server.

The next level where heterogeneity can be a problem is at data format levels. Data

stored in the same physical format can be stored in a distinct syntax. Although

programming languages’ evolution has improved access to distinct file formats, reading a

simple text file or a HTML file are operations that require different strategies and methods.

A simple scenario could be the integration of several accounting results, which are offered

in CSV formats, Excel files and tabular text files. To successfully integrate these files,

developers must implement distinct access methods to the three logical formats.

Moving deeper in the software layer, we reach the data models level where

heterogeneity issues arise when files are distinctly structured or do not obey to the same

schema/ontology. Difficulties in solving this issue were greatly reduced with the

appearance of the XML standard, and most of the modern applications rely on this

Pedro Lopes
Service Composition for Biomedical Applications

39

standard. Despite having normalized the process of reading and storing information, XML

allows an infinite number of valid distinct structures, which are different from application

to application. Once again, heterogeneity has to be solved with information and relation

mappings that can correctly transpose information structured following ontology A to

ontology B. These mappings are quite complex and traditionally require some kind of

human effort for success.

Finally there is access methods heterogeneity. Web services have evolved and are the

primary method for remote data access with standard protocols and data exchange formats.

Nevertheless, web services may be divided in HTTP-based (REST or SOAP) and XMPP web

services, further increasing the complexity of managing distinct interoperability

requirements within a single platform.

Summarily, resource heterogeneity is the main challenge for the development of novel

information integrative platforms. For the creation of novel knowledge and information

management systems, the integration of distributed and heterogeneous data are a major

drawback, reducing future interoperability features.

3.3 Modern Data Integration
As mentioned in Chapter 2, one of the great caveats for the successful integration of data in

the life sciences domain is the constantly growing amount of data and, consequently, of

ways to access those data. This is not true solely for bioinformatics. Whereas in the early

21st century it was very difficult to find ways to publish our personal content online, the

evolution and widespread availability of Internet access technologies has leveraged an

explosive growth of data in all fields.

3.3.1 Resource Integration Strategies
To deal with resource heterogeneity issues or to simply centralize large amounts of

distributed data in a single system, researchers have to develop state of the art resource

integration architectures. The main goal of any integration architecture is to support a

unified set of features working over disparate and heterogeneous applications. The

heterogeneity may be located at the previously presented levels, which include software

and hardware platforms, diversity of architectural styles and paradigms, content security

issues or geographic location. In addition to these technical restrictions to integration,

there are also other hindrances such as enterprise/academic boundaries or

political/ethical issues. Whether we are simply dealing with the integration of a set of XML

3. Software Engineering for Integration and Interoperability

 40

files or with distributed instances of similar databases, the concept of resource integration

will generically rely on hard-coded coordination methods to centralize the distributed

information or to give the idea that the data are centralized.

Several strategies for data integration can be used - Figure 3-2. These approaches differ

mostly on the amount and kind of data that is merged in the central database. Different

architectures will also generate a different impact on the application performance and

efficiency.

Figure 3-2. Data integration models categorized according to their relation with the integration
application and the integrated online resources. 1) Warehouse integration replicates entire datasets
from external resources in a new knowledge base. 2) Mediator-based solutions rely on a middleware
layer to serve as a proxy for connections to a set of virtually integrated external resources. 3)
Lightweight link-based integration is based on direct connections to the external distributed
resources.

Warehouse solutions (Figure 3-2.1) consist on the creation of a large database that

contains data gathered from several resources. The central database – the warehouse – may

consist of a mesh of connected repositories that the data access layer sees as a single

database. In terms of implementation, this model requires that mappings are made from

each data source to the central warehouse data model. Next, the content is moved entirely

from its source to the new location. The final result is a new data warehouse where the

content from the integrated data sources is completely replicated.

This model raises several problems in terms of scalability and flexibility: warehouses’

size can grow exponentially and each database requires its own integration schema. This

means that for each distinct database, developers have to create a new set of integration

methods, resulting in a very rigid platform. Despite these issues, this technique is very

MIDDLEWARE

1
WAREHOUSE

2
MEDIATOR

3
LINK

Pedro Lopes
Service Composition for Biomedical Applications

41

mature and a considerable amount of work has already been done to improve warehouse

architectures. Nowadays, the debate is focused on enhancing warehouse integration

techniques [130] and solving old problems with state-of-the-art technologies [131, 132].

Another widespread strategy involves the development of mediators – a middleware

layer – connecting the application to the data sources - Figure 3-2.2. This middleware layer

enables a dynamic customization of user queries performed in the centralized entry point,

extending their scope to several databases previously modelled in a new virtually larger

database. Kiani and Shiri describe these solutions [133] and a good example can be

DiscoveryLink [134]. Mediator-based solutions are usually constrained by data processing

delays: they require real-time data gathering, which can be bottlenecked by the original

data source. Additionally, the gathered content also has to be processed to fit in the

presentation model, hence, compromising even more the overall efficiency of the system.

Finally, link-based resource integration consists of aggregating in a single platform

links to several relevant resources throughout the Web (Figure 3-2.3). This is the most

widely used integration model due to the simplicity of collecting and showing links related

to a certain subject. However, inherent in this simplicity are several drawbacks, especially

regarding the limitations imposed by the fact that there is no real access to data, only to

their public URLs. Most of the modern resources are dynamic which means that access to

content may be generated in real-time. Also, in the scientific research area, there are new

data emerging daily. Therefore, the system requires constant maintenance in order to keep

the system updated with the area novelties.

Despite the fact that these approaches cover almost all possible solutions for data

integration, there are many problems that have not yet been solved. After a careful analysis

of these models we can conclude that, for the majority of life sciences resource integration

scenarios, the best option is to create a hybrid solution that is capable of coping with the

main disadvantages of the three strategies and take advantage of their main benefits as

well. The development of hybrid approaches has gained momentum in the recent years

especially with the introduction of novel data access techniques like remote and web

services.

In spite of the strategy chosen to integrate a collection of heterogeneous resources,

there are several concerns that should be taken in account: application coupling,

intrusiveness, technology selection, data format and remote communication [135]:

3. Software Engineering for Integration and Interoperability

 42

 Application coupling enforces the good software development practice of “low

coupling, high cohesion”, an ideal that is also applicable to integration strategies

[136]. High coupling results in high application dependencies on each other,

reducing the possibilities of the applications evolving individually without

affecting other applications. The optimal results would be resource integration

interfaces that are specific enough to implement the desired features and

generic enough to allow the implementation of changes as needed.

 Intrusiveness should be one of the main concerns when developing integration

applications. The integration process should not impose any modifications in

the constituent applications. That is, the integration strategy should operate

without any interference in the existing applications and both the integrator

and the integrated application should be completely independent.

 Technology selection is cumbersome when combining environments where

multiple distinct applications interact with each other. Despite being

dissimulated as local interactions by the integration engine, these remote

interactions, available in the majority of programming languages, are very

different due to the resort to network capabilities. Remote communication

concerns are reduced with the adoption of asynchronous communication

techniques and the support for communication error solving, thus reducing

network error susceptibility.

 Data formats must be unified in integrative applications. Traditionally, this

requirement is impossible to fulfil due to the fact that some of the integrated

data sources are closed or considered legacy. In these scenarios, the solution

consists in creating a translator that maps the distinct data formats to a single

model. In this case, issues may arise when data formats evolve or are extended.

The implicit complexities that arise when dealing with online resource integration

require large efforts and expertise to be overcome. Like any other issue, integration is

firmly related with the scientific area in question and, with this in mind, the adopted

strategy or model must take in account several variables present in the environment where

it will be implemented.

Pedro Lopes
Service Composition for Biomedical Applications

43

3.4 Towards Software Interoperability
Interoperable software is the main enabler of modern informatics systems. Whereas in

integration we deal with the development of a unified system that includes the features of

its constituent parts, interoperability deals with single software entities that can be easily

deployed in future environments. This means that interoperability is a software feature

that facilitates integration and collaboration with other applications. The ISO/IEC 2382-01

defines interoperability as follows: “The capability to communicate, execute programs, or

transfer data among various functional units in a manner that requires the user to have

little or no knowledge of the unique characteristics of those units”12.

In a sense, developing interoperable software means developing open and future-proof

applications. Nowadays, stakeholders are no longer interested in creating closed tools.

They are geared towards the creation of an open application ecosystem where any external

developer is able to connect to and exchange data with the central system.

3.4.1 The axioms of Interoperability in Informatics
Interoperable systems can access and use parts of other systems, exchange content with

other systems and communicate using predefined protocols that are common to both

systems. This interoperability can be achieved at several distinct levels as pointed by Tolk’s

work (Figure 3-3). For our research work, the essential levels are the ones that encompass

syntactic and semantic interoperability.

Figure 3-3. Levels of conceptual interoperability model defined by Tolk [137]. Each level (from 0 to 6)
increases the available interoperability features, from no interoperability to full software
composability.

12

 http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=7229

CONCEPTUAL
INTEROPERABILITY

DYNAMIC
INTEROPERABILITY

PRAGMATIC
INTEROPERABILITY

SEMANTIC
INTEROPERABILITY

SYNTACTIC
INTEROPERABILITY

TECHNICAL
INTEROPERABILITY

NO
 INTEROPERABILITY

6

5

4

3

2

1

0

COMPOSABILITY

INTEROPERABILITY

INTEGRATABILITY

MODELING / ABSTRACTION

SIMULATION / IMPLEMENTATION

NETWORK / CONNECTIVITY

3. Software Engineering for Integration and Interoperability

 44

Software syntactic interoperability can be defined as the characteristic that defines

where multiple software components can interact regardless of their implementation

language or software/hardware platform. Syntactic software interoperability may be

achieved with data type and specification level interoperability. Data type interoperability

consists in distributed and distinct programs supporting structured content exchanges

whether through indirect methods – writing in the same file – or direct methods – API

invoked inside a computer or through a network. Specification level interoperability

encapsulates knowledge representation differences when dealing with abstract data types,

thus, enabling programs to communicate at higher levels of abstraction – web service level

for instance.

Semantics is a term that usually refers to the meaning of things. In practice, semantic

metadata are used to specify the concrete description of entities. These descriptions and

their relevance are detailed further in this document. Summarily, they intend to provide

contextual details about entities: their nature, their purpose or their behaviour among

others. Hence, semantic software interoperability represents the ability for two or more

distinct software applications to exchange information and understand the meaning of that

information accurately, automatically and dynamically. Semantic interoperability must be

prepared in advance, in design time and with the purpose of predicting behaviour and

structure of the interoperable entities.

3.4.2 Foundations for Software Interoperability
When working with service composition we are required to enforce interoperability.

Composing services that already support some high degree of interoperability eases

developments but it is not a mandatory requirement. As long as there is an open door to

share data or features, it is up to the interested party to implement some kind of wrapping

middleware layer.

Integration and interoperability are directly tied together. There is no integration

without interoperability and interoperability is driven by the need to integrate. From a

centralized perspective, we can define integration as inward interoperability, to get

resources from an external physical or logical location into our own unifying resource.

Nevertheless, true software interoperability is only present when there is also outward

interoperability. This means that our system should not only integrate data, but should also

expose it for external usage. Assessing service composition as a whole, we want our

Pedro Lopes
Service Composition for Biomedical Applications

45

resources to be interoperable so that others can integrate them, enabling a

multidimensional data flow.

This focus on the interoperability of data and software has leveraged the birth of novel

development paradigms. Semantic Web technologies emerge as a modern solution tailored

to solve interoperability issues in any research field. With new standards for describing,

publishing and accessing data, the semantic web paradigm appears as the most viable

alternative for implementing best-of-breed service composition strategies towards a better

integration of resources and the improved interoperability amongst distributed

autonomous knowledge bases.

3.5 The Semantic Web
The dramatic growth in content promoted by recent web developments like Web2.0 and

social tools, combined with the ease in the publication of online content, have the major

drawback of increasing the complexity of resource description tasks. Standard web

technologies cannot support this exponential increase.

Tim Berners-Lee, the self-proclaimed inventor of the modern Internet and director of

W3C, promoted semantic Web developments in 2001 [138]. His futuristic initiative

envisaged to smoothly link personal information management, enterprise application

integration and worldwide sharing of knowledge. Therefore, tools and protocols were

developed to facilitate the creation of machine-understandable resources and to publish

this new semantically described resources online. The long-term purpose was to make the

Web a place where resources are shared and processed by both humans and machines,

enabling computers to comprehend, navigate, manipulate and infer reasoning from the

Web of data. The W3C Semantic Web Activity group has already launched a series of

protocols to promote the developments in this area – Figure 3-4.

Adding semantic features to existing content involves the creation of a new level of

metadata about the resource [139, 140]. This new layer will allow an effective use of

described data by machines based on the semantic information that describes it. These

metadata must identify, describe and represent the original data in a universal and

machine understandable way.

In order to make the semantic web possible, developers and researchers need to

cooperate. It is important to create and broadcast centralized ontologies for several public

interest areas and to empower the adoption of these ontologies by research groups and

3. Software Engineering for Integration and Interoperability

 46

private companies. Nevertheless, this crucial step can only be given if the cooperation

efforts originate enhanced semantic technologies that ease the complex task of describing

content. Research groups working with state-of-the-art technologies must promote this

difficult step that will require deep changes in the developed applications. Only promoting

this use we can foster the development of a new, cleverer, Internet [141, 142].

Figure 3-4. Semantic Web Stack, from URI resource identification to the top-level applications.

3.5.1 Expressing Knowledge
The fundamental building block of semantic web knowledge is a statement. Whilst this may

be an oversimplification, it opens many possibilities for setting the semantic web as a

standard for integration and interoperability. Whereas traditional WWW content is built

for human consumption, semantic web content consists primarily of statements for

application consumption. Whereas in traditional WWW it was up to users to decide and

acknowledge the connections amongst data bits, semantic web statements are linked

together through constructs that form the meaning of a link.

It is in these relationships that resides the semantic web’s added value. By connecting

millions of statements together we can form a rich knowledge base, even if the information

remains distributed. Semantic web relationships may be definitions, associations,

aggregations, and restrictions, amongst other hybrid custom connections. These

relationships are better understood as a graph, as shown in Figure 3-5, listing a small set of

statements.

IDENTIFIERS URI CHARACTERS UNICODE

SYNTAX XML JSON TTL N3

DATA INTERCHANGE RDF

QUERY
SPARQL

TAXONOMIES RDFS

ONTOLOGY
OWL

RULES
RIF SWRL

UNIFYING LOGIC

PROOF

TRUST

USER INTERFACE AND APPLICATIONS
CRYPTO

G
RAPHY

Pedro Lopes
Service Composition for Biomedical Applications

47

Statements and established relationships define concepts, for example a Person has a

name, and instances, such as “Alice is a friend of Bob” (p:hasFriend). The set of statements

defining concept relationship form the ontology. Likewise, the ones referring to unique

individuals form the data. Any statement can be asserted, created by a direct connection, or

inferred, discovered by using additional logic.

Figure 3-5. Example RDF graph, highlight direct and inferred relationships within a common object-
oriented Person ontology.

From Figure 3-5 graph we can extract a set of statements formed by three elementary

components - subject, predicate, and object. These individual triples are what forms

knowledge in the semantic web. The subject is the element of what we are saying

something new, the predicate is the meaning of the relationship we are establishing, and

the object is what we are explicitly stating about the subject. To express these statement

sets, we need to identify resources uniquely and rely on a group of technologies to

integrate information and explore acquired knowledge. This is achieved through the

combination of four web protocols: URI [143], RDF [144], OWL [145] and SPARQL [146, 147].

Identifying Resources
The Uniform Resource Identifier (URI) is a simple and generic standard that proposes a

sequence of characters to enable the uniform identification of any resource across the

entire Internet. The “Resource” term is used in a general sense as it can identify any kind of

component. URIs can identify electronic documents, services, data sources and other

resources that cannot be access via Internet like humans or corporations. Identifier refers

p : Person

s : Alice s : Bob

p : Date

13-10-198524-05-1987

s : John

rdf:typerdf:type

p:hasBirthDate

p:hasBirthDate p:hasBirthDate

p:hasAssociation

p:hasFriend

p:hasAssociation

p:hasFriend

rdfs:subPropertyOf

rdf:type (inferred)

p:hasAssociation (inferred)

3. Software Engineering for Integration and Interoperability

 48

to the operation of unequivocally distinguish what is being identified from any other

element in the scope of identification. This means that we are able to distinguish one

resource from all other resources regardless the working area or resource purpose.

Using URIs allows the definition of namespaces that can be expanded to accommodate

new data or features, enabling a scalable access to objects. In a trivial example,

http://www.facebook.com/ can be reserved as a generic namespace for Facebook data

and, in this case, http://www.facebook.com/<username> uniquely identifies a user

within Facebook’s context. Similarly, we can identify a protein in UniProt’s knowledge base

through the combination of UniProt’s namespace with the protein accession number,

resulting in http://www.uniprot.org/uniprot/P51587.

Describing Resources
The description of resources should provide details about its nature, intent or behaviour as

well as being, generically, “data about data”. The Resource Description Format (RDF) is

designed as a protocol to enable the description of web resources in a simple fashion [148].

The syntax neutral data model is based on the representation of predicates and their values.

A resource can be anything that is correctly referenced by an URI and is currently, like the

latter, not limited to describing web resources.

A major advantage for using RDF as a knowledge storage facility is its proneness to

sharing. The simple triple/graph structure is optimal for data exchanges. RDF has no

default data format and is not restricted to constrained data models. When all standards

are respected, combining two RDF graphs is easier than integrating two databases or

merging a couple XML files.

The basic idea of storing data as triples is by itself a powerful tool for the integration of

data. RDF data does not require any translation, mapping or contextual information to be

used. That is, by storing data in our knowledge base as triples, we are limitless to explore

that data and connect it with external resources without the traditional integration and

interoperability problems we face while integrating information from relational databases,

CSV or XML files.

Ontologies
Any scientific research field deals with specific terminology that is associated with a

particular area. Ontology defines the collection of terms and relations between terms that

are more adequate for a given topic [149]. These relationships, often designated axioms,

establish connections between terms in the thesaurus that mimic the real world.

Pedro Lopes
Service Composition for Biomedical Applications

49

Ontology is the collection of consensual and shared models in an executable form of

concepts, relations and their constraints tied to a scaffold of taxonomies. In practical terms,

we use ontologies to assert facts about resources described in RDF and referenced by an URI.

The Web Ontology Language (OWL) is the de facto ontology standard, extending the RDF

schema.

Querying Resources
To query RDF files and, in a larger scale, the Semantic Web, W3C developed the SPARQL

Protocol and RDF Query Language syntax. SPARQL is an SQL-like query language that acts

as a friendly interface to RDF information. SPARQL queries are directed to an endpoint, a

service that accepts queries and outputs the results in different formats. Besides being the

semantic web query language, SPARQL is also the protocol for setting up HTTP connections

from SPARQL clients to SPARQL endpoints.

SPARQL syntax is very similar to SQL and enables four distinct five types: SELECT,

CONSTRUCT, ASK, UPDATE and DESCRIBE. SELECT statements are similar to SQL

selections where we bind variables in our query to the results we expect to obtain from the

knowledge base. CONSTRUCT queries enable the addition of new graphs or the

transformation of existing triple graphs into new datasets. ASK queries are used to

evaluate the existence of a particular resource or relationship. The result for ASK queries is

always a boolean value, true or false. UPDATE queries are used to issue updates to data

already existing in a knowledge base graph. At last, the DESCRIBE query, limited to a single

resource, returns all known relationships for the given resource. This is an essential feature

for the automated discovery of new data without any awareness of existing structures.

DESCRIBE queries power up the LinkedData guidelines.

The SPARQL language is complete with advanced data access features just like SQL.

Filters, sorting, limits or modifiers are all present and are complemented with a clean

variable binding schema, making SPARQL an advanced query language.

3.5.2 LinkedData
Despite the increased awareness regarding semantic web potential for integration and

interoperability, its adoption has been painfully slow. “Semantic creep” is the new term for

this late adoption, sustained mostly by social obstacles and the proverbial chicken and egg

problem: the lack of immediate advantages after adopting the semantic web paradigm is

only resolved when a critical mass of cross-linked knowledge bases also does so [53].

3. Software Engineering for Integration and Interoperability

 50

The overarching goal of the semantic web is to enable a truly distributed knowledge

network. To connect the wealth of ontologies and data widespread in this web of

structured data, a set of best practices - LinkedData - were proposed by Tim Berners-Lee

more recently [58]. By adopting these guidelines, knowledge bases are exposed in a

standard, well-defined fashion, enabling a richer semantic web-based navigation [60].

LinkedData imposes four key rules:

 Use URIs as names for things

 Use HTTP URIs so that people can look up those names.

 When someone looks up a URI, provide useful information, using the standards

(RDF*, SPARQL)

 Include links to other URIs so that they can discover more things.

Despite being somewhat vague, obeying these rules empowers an easily navigable

distributed data graph. With the increased awareness surrounding semantic web

technologies, the LinkedData space already accounts for billions of assertions, all in a single

open data space (Figure 3-6) [59]. This openness is a defining feature for LinkedData. With

an adequate exploitation of semantic web’s strategies, we can correlate and connect data

from entirely distinct fields, from media, publications, geography, life sciences or the

corporate domain.

LinkedData obeys the semantic web principles and whilst most of the data navigation

should be made autonomously by intelligent software systems, we can also query

LinkedData using SPARQL [150]. This is federated query processing at its best, where data to

complete each query is dynamically discovered and virtually integrated in real-time.

Pedro Lopes
Service Composition for Biomedical Applications

51

Figure 3-6. LinkedData cloud evolution, from 2007 (1) to 2011 (2)13.

3.6 Discussion
3.6.1 Shortcomings and Challenges
Researchers’ daily work is getting more complex as traditional simple tasks like locating

necessary information, gathering it and working with tools to process it get more difficult.

The growing number of software tools is not helpful as well. Despite their quantity, their

quality is questionable; each tool works differently and requires distinct end-user skills.

Along with application complexity, there is also the immense number of data formats. In a

single scientific area there are numerous resources, applications, services, data formats,

data models and data types to consider. This imposes time consuming tasks, like manual

data transformations or development of custom wrappers and converters, which are far

beyond scientific researchers’ scope.

13

 Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/

1

2

3. Software Engineering for Integration and Interoperability

 52

Whilst there are already various notable efforts to overcome these issues, there is still a

clear lack of service depth. New tools and knowledge bases are starting to include web

services by default. However, this is causing further problems as these are shallow APIs,

they are not normalized and do not adhere to any previous guideline. The problem itself is

not the absence of standardization formats for data exchanges and services, but their lack

of use.

3.6.2 An Emerging Architecture Trend
As trivial as it may seem, there is no denying that the complex service architectures at play

in existing software systems occupy a determinant role. The mobile web itself, especially

with the omnipresent "apps", relies on service-based technologies to operate. Whether we

are checking our emails, sharing a photo with our friends or reading the latest news,

services empower our connections to the online world.

With these strategies, modern software engineering trends emerged. Nowadays,

developers do not think about building applications for single use or targeting a unique

scenario, developers must build entire platforms. In fact, more important than being a

unique popular application, the success of novel systems resides in the ability to provide

platforms that others can explore, enabling the appearance of a new controlled ecosystem.

The most widely used modern trend is to deploy a central logical ICT infrastructure to

support a multitude of applications, targeting distinct operating systems, hardware

platforms and users (Figure 3-7).

Figure 3-7. Modern software platform architecture trend with a centralized (cloud-based) source
providing data and features to miscellaneous client applications, each targeting a distinct market
segment, hardware device or operating system.

Pedro Lopes
Service Composition for Biomedical Applications

53

A quick overview on the approaches adopted by Apple, Amazon, Evernote, Facebook,

Google or Twitter, highlights this strategy. The idea of creating a platform that any

developer can rely on to build new applications is as enticing as writing HTML was in the

early WWW days. These companies adopted a cross-product API strategy that changes the

way new applications are built. Not only do they provide a collection of APIs to external

developers, but they also promote the use of these services internally in their products.

Completed with a rich documentation set, these companies build their brands capitalizing

on the community interest in their products and the community skills to improve the

existing ecosystem.

For software engineers, these new architectures push forward new demands for the

integration of existing resources and the interoperability with new external systems.

3.6.3 The Next Step for Service Composition
This chapter provides an overview over the various technologies and paradigms used to

empower a new software engineering age supported by service composition strategies.

Along with this description, there is also the highlight of where we can go in the future

using integration and interoperability demands as a driving guideline for software

development.

Software engineering dynamics and adaptability are remarkable. Using similar

architectures we can devise new platforms for controlling car manufacturing pipelines or

next-generation sequencing hardware, for entertainment or bioinformatics. This latter

field is definitely an innovation driver, demanding the employment of best-of-breed

techniques to solve computational biology problems. Whether re-engineering existing

technologies or using modern semantic web developments, state-of-the-art solutions must

be transposed from the general computer science field to bioinformatics.

For this matter, we need to go beyond service composition in bioinformatics, taking it

one step further. Integration and interoperability requirements define architectures for

novel biomedical applications and all stakeholders should promote the adoption of these

ideals. As active players in the biomedical software community, we introduce a set of

contributions aiming to enhance the wide field of service composition for biomedical

applications, and to thrive under the immense bioinformatics opportunities.

3. Software Engineering for Integration and Interoperability

 54

Pedro Lopes
Service Composition for Biomedical Applications

55

4. CONTRIBUTIONS TO
WORKFLOW-BASED SERVICE

COMPOSITION

“I do not fear computers. I fear the lack of them.”
- Isaac Asimov

With the latest advances in software architectures, modern service composition strategies

empower new tactics for interoperability. Emerging service-oriented architectures and

software-as-a-service trends bring new approaches that are more scalable, flexible and

efficient. Therefore, new applications and services ease researchers’ investigation tasks,

enabling advanced interactions amongst remote applications through distributed

workflows.

This chapter introduces our contributions to the research on workflow-based service

composition within the context of the European EU-ADR Project14. The goals behind this

project concern the improvement of post-marketing pharmacovigilance strategies and

technologies. Contemporary disease treatment and prevention revolves around a dynamic

medication market, where a myriad of pharmaceutical companies research, develop and

introduce numerous drugs in the international health marketplace. Hence, drug safety

continues to be a major concern for worldwide policy stakeholders as it continues to injure

patient’s health and, in many cases, lead to increased mortality risk.

Within the EU-ADR scenario, several features and research results are provided through

web services. This propelled the creation of a new platform, the EU-ADR Web Platform,

where services play together to form a set of innovative pharmacovigilance workflows. The

development of this platform leveraged miscellaneous service composition challenges,

namely on defining interoperability standards and wrapping Taverna workflows. From the

creation of custom drug studies to the remote execution of signal analysis workflows up to

14

 http://euadr-project.org/

4. Contributions to Workflow-based Service Composition

 56

cross-analysis against millions of anonymous electronic health records [151, 152], the EU-

ADR Web Platform enables an insightful exploration of pharmacovigilance signals’

evolution resulting in a superior risk evaluation. The EU-ADR Web Platform is available

online at http://bioinformatics.ua.pt/euadr/.

4.1 Delivering Advanced Pharmacovigilance
Workflows
The traditional pharmacovigilance approach tackles the problem from a pre-market

perspective, conditioning drug approval. Both the European Medicines Agency (EMA) and

the US Food and Drug Association (FDA) established rigorous guidelines for new medicine

approval, requiring intense testing, which results in a long and complex lab-to-market

development cycle. Along with these guidelines, pharmaceutical companies must also

define thorough risk management plans for post-market drug stages.

Consequently, the relevance of post-market pharmacovigilance in the health domain

has been growing steadily over the last four decades. Research in this area involves the

exploration and assessment of signals, defined by the World Health Organization as

undisclosed assertions on direct relationships between adverse events, such as gastro-

intestinal bleeding, and a drug, like rofecoxib [153]. Clinicians use spontaneous reporting

systems to identify adverse drug reactions [154]. Despite this, there is high-demand for

novel software tools capable of improving the post-marketing drug monitoring workflow

[155]. By taking advantage of modern knowledge engineering technologies, developers are

able to overcome the limitations associated with insufficient clinical trial data, complex

monitoring statistics and closed general practice data silos. Text- and data-mining tools,

combined with service composition strategies, pave the way for enhanced in silico signal

identification and adverse drug reaction assessment [156].

Whilst these software products are already available, their use is limited to a small

group of technologically skilled research experts. Hence, the creation of the EU-ADR Web

Platform to tackle these challenges, extending existing tools availability to every

researcher, clinician or stakeholder, through a web-based pharmacovigilance suite.

4.1.1 21st Century Pharmacovigilance
Hårmark and Grootheest research explains pharmacovigilance underlying concerns with

current drug evaluation approaches [157]. Whilst drug safety concerns are becoming more

Pedro Lopes
Service Composition for Biomedical Applications

57

prominent, the lack of adequate software to correctly understand drug adverse reactions

continues to challenge the pharmaceutical industry and research community.

The risk associated with any marketed drug triggers critical safety concerns, which, in

their turn, leverage a constant revision and update of medical products’ information. For

these tasks, modern adverse drug reaction (ADR) monitoring becomes essential. Despite the

complex set of drug trials, including the famous final randomized double blind evaluation,

clinical trials data are in most scenarios insufficient to assess drug risk. Rare ADRs, ADRs

identified in particular population cohorts or ADRs with long latency, require intensive

post-marketing drug analysis.

At this stage, spontaneous drug reporting systems (SRS) come to play. These systems

empower physician with the tools to report suspicions on certain drugs to a

pharmacovigilance centre. Latest advances take these tools even further, completing the

drug loop by providing a complete reporting infrastructure to pharmacists, clinicians and

patients. Pharmacovigilance centres task is to collect these reports, generating enough

data to inform stakeholders of potential risks as soon as they appear in the system. Despite

the invaluable data coming from SRS, their data alone are meaningless in most scenarios.

Viewing SRS as independent entities makes it nigh impossible to establish direct

relationships between the causes (a drug, or drug interaction) and consequences (a

phenotype). Hence, to extract meaningful insights from these SRS records, one needs to

rely on advanced data mining techniques. These will provide distinct perspectives over

acquired data and their connections to other information topics.

Another strategy was put in place to complement spontaneous reporting systems.

Intensive monitoring systems rely on prescription data, forcing drug prescribers to ask

about any adverse reaction during the drug intake cycle. Once these data are collected,

they are processed for signal evaluation. Unlike SRS, which is based on monitoring specific

drugs over a controlled time period, intensive reporting relies on a non-interventional

observational cohort. Hence, generated data are much nearer real-world scenarios than

data provided obtained through SRS. Intensive reporting also renewed the interest in and

importance of health information systems and general practice research databases.

Modern regional and national health information systems tend to store miscellaneous

information regarding patients’ clinical history, including drug prescriptions, vaccinations,

height, weight or laboratory test results, among others. These wide collections of data are

traditionally a good general representation of region demographics. Furthermore,

4. Contributions to Workflow-based Service Composition

 58

collected data are already used for pharmacoepidemiology, disease epidemiology and, to a

lesser extent, drug usage or pharmacoeconomics [158, 159]. From a pharmacovigilance

perspective and in a European or worldwide scale, the amount and type of data collected in

these databases is of tremendous importance for an improved post-market drug evaluation.

Despite the myriad of international developments in these fronts, most efforts

approach this problem from a pre-market approach, focusing on conditioning drug

approval and defining guidelines for risk management plans. Hence, modern projects such

as the EU-ADR project, define a proactive strategy for post-marketing drug assessment. The

foundation for this strategy is doing an in-depth data mining of the wealth of electronic

health records to generate filtered data that can be easily substantiated through

distributed computational tools. The final output, a ranked signal list, provides a broad look

over identified signals and their significance in health risk.

4.1.2 The European EU-ADR Project
The European EU-ADR Project exploits partner data from national electronic healthcare

records (EHR) and health information systems (HIS) of about 20 million European patients,

channelling it through state-of-the-art distributed computing software and enriching

signal detection. This large-scale drug safety monitoring relies in various mining,

epidemiological, statistical and computing techniques to assess acquired data and generate

a ranked signal list (Figure 4-1).

Figure 4-1. EU-ADR data flow. 1) Semantic harmonization methods prepare data from millions of
records originated from distributed electronic health records and general practitioners databases. 2)
Data are extracted from harmonized resources and mined for signals. 3) An initial signal evaluation
generated a ranked signal list. 4) Signals are re-ranked after further processing in workflows and
evidence combination services. 5) The EU-ADR Web Platform delivers the results to pharmacovigilance
researchers for the final system validation.

EHR
Sources

VALIDATION

Signal
Substantiation

2
DATA

MINING

Signal
Generation

Data
Extraction

1
SEMANTIC

HARMONIZATION

5
EU-ADR

WEB PLATFORM

3
RANKED
SIGNALS

4
RE-RANKED

SIGNALS

Pedro Lopes
Service Composition for Biomedical Applications

59

This innovative approach for the early detection of adverse drug reactions is available

to end-users through an online drug assessment tool: the EU-ADR Web Platform. In this

tool, project web services and workflows are composed to test drug-event data against

known literature or related protein-drug interactions, for example. With anonymous

access to EU-ADR data, any user can evaluate any represented drug within the entire

project scope, making this platform a unique tool for advanced drug studies.

4.1.3 Drug Safety Signal Substantiation
To coordinate efforts at a European level, EU-ADR project partners decided to distribute

data extraction, signal filtering, signal substantiation, and evidence combination tasks

through independent web services. These services are then composed using Taverna

workflows, and the standardized input/output can be analysed in customizable graph

visualization tools, such as Cytoscape [160].

Adoption of Workflow-based approaches
Within the EU-ADR context, the search for meaningful relationships amongst drugs and

clinical adverse reactions must be supported by the publicly available knowledge regarding

the involved drugs and phenotypes. In this pharmacovigilance effort, a better

understanding of drug-event pairs is obtained through two approaches. On the one hand,

the signal filtering process searches for drug-event association previously reported in

biomedical literature and biomedical knowledge bases. On the other hand, the signal

substantiation process looks for signals’ causal inferences. That is, drug and event protein

profiles are explored for common ancestry, which establishes indirect relationships

between drugs, events and proteins.

In general, these data exploration tasks could be accomplished in a single informatics

infrastructure. However, due to the distributed nature of the EU-ADR project, the

consortium opted for building web services. These web services must be interoperable

within the EU-ADR partnership, but also independent. With the former, services must obey

to strict software interoperability guidelines amongst the various EU-ADR software

modules. Nevertheless, with the latter, services should be designed in a way that enables its

standalone use, beyond the EU-ADR scenario.

With this distributed service architecture, the EU-ADR data analysis framework requires

the adoption of advanced service composition techniques to attain the expected results.

Hence, the adoptions of workflow-based approaches to integrate each independent module

in a high-level analysis pipeline. Web services can be executed independently or combined

4. Contributions to Workflow-based Service Composition

 60

with other services in Taverna. This required the definition of a “service communication

language”, the EU-ADR schema, discussed further in this chapter.

The workflow approach also enables accessing and executing services in a very

straightforward fashion, with no programming required. By wrapping each service in its

own Taverna workflow, and making it available for download, anyone can use it in a local

Taverna instance. With a set of well-documented and simplified workflows, EU-ADR signal

filtering and substations tools are available for use in any software infrastructure, inside

and outside the EU-ADR project scope.

Workflows for Automated Data Analysis
EU-ADR workflows are grouped according to two areas of work: signal substantiation and

signal filtering. For signal filtering, two workflows have been developed by project partners.

The ADR-FM workflow uses the MeSH® annotations associated with Medline® literature

to automate the search of publications related to given drug-event connections. By

analysing the chemically induced, adverse effects and pharmacological action subheadings, this

method determines if the adverse drug reaction (or a similar one) has been previously

published. One should not ignore the caveats of this automated mechanism. In spite of the

algorithm theoretical quality, expert reading of highlighted articles is advisable. Therefore,

in the EU-ADR framework, only signals matching at least 3 published elements are

considered risky.

The ADR-FD workflow explores associations between drugs and phenotypes that have

been previously reported in the literature (Medline®) or in drug databases (DailyMed® or

DrugBank). The algorithm behind this service identifies drug and side effects co-

occurrences in an indexed data warehouse, customized for EU-ADR’s information demands.

At last, the ADR-SS workflow performs the signal substantiation generating the protein

interaction graphs from the drug-event pairing. This involves searching for proteins

targeted by the drug and associated with the clinical event, and for biological pathways.

The algorithm generates Drug-Target and Event-Protein profiles that are searched for

common sets of proteins, the intersecting portion of the graph.

These three workflows accept a similar input, a drug-event pair, and produce a similar

output, standardized XML. This way they can be easily integrated in a single applications,

fulfilling the EU-ADR project initial goals. The EU-ADR Web Platform enacts these

workflows, using custom data inputs and displaying custom data views over output data.

Pedro Lopes
Service Composition for Biomedical Applications

61

4.1.4 Requirements Analysis and Design Issues
From the deep evaluation of pharmacovigilance state-of-the-art and the interactions with

various EU-ADR project partners, we uncovered a set of high-level requirements, which

drove the development of a new pharmacovigilance strategy and resulted in the creation of

the EU-ADR Web Platform. These general requirements are the following: (R1) support for

complex pharmacovigilance workflows, (R2) data mining results integration, (R3) data

sharing, (R4) signal substantiation, (R5) availability and (R6) exchange with software tools.

The requirements are detailed next:

 (R1) Support for complex pharmacovigilance workflows. The EU-ADR Web

Platform must support complex pharmacovigilance studies, which require

interactions amongst multiple players.

- (R1.1) Service/workflow interoperability. Software interoperability

must be assured for workflows and services within and beyond the EU-

ADR project.

- (R1.2) Taverna workflow integration and execution. The EU-ADR Web

Platform must allow the straightforward integration and execution of the

project partner’s workflows for data analysis.

 (R2) Data mining results integration. With the EU-ADR project collecting

harmonized data from millions of patients, new methods must be developed to

enable the correct display and assessment of acquired data.

- (R2.1) Suitable treatment of data files. The majority of the EU-ADR

Web Platform’s users will submit their private data in Excel or CSV files.

 (R3) Data sharing. Adequate data sharing features are essential for performing

successful research endeavours in any context. Hence, the EU-ADR Web

Platform must include data sharing functionalities to enable the reproducibility

and validation of results for any selected researcher.

- (R3.1) Promote collaborative research. Users must be able to share

submitted data with selected associates or within the context of a larger

user group.

- (R3.2) Research reproducibility. Collected data must be constantly

available for analysis, substantiation and exploration.

4. Contributions to Workflow-based Service Composition

 62

 (R4) Signal substantiation. The substantiation of submitted signals, which

includes the processing of these signals in all the project’s workflows, must be

facilitated and the analysis of results streamlined.

- (R1.1) Signal risk evaluation. New interfaces must be setup to display

signal risk evaluation results from the multiple workflow executions,

enabling a clear view regarding the importance of a relationship between

a drug and an adverse event.

- (R4.1) Combined risk assessment. EU-ADR workflow results must be

combined, using an independent evidence combination algorithm, into a

summary risk classification of high risk (H), medium risk (M) or low risk

(L).

 (R5) Availability. The EU-ADR Web Platform must be publicly available at all

times for all registered users.

- (R5.1) Highly interactive web-based workspace. A web-based

workspace must be implemented to support new analysis, the

visualization of results and the sharing of data. Highly interactive

interfaces should be used to facilitate access to the wealth of EU-ADR

data.

 (R6) Exchange with software tools. In addition to (R5), external data

evaluations must also be supported.

- (R6.1) Export results. Exporting direct results from Taverna executions

should be possible.

These requirements match the challenges brought about by various authors in the

pharmacovigilance research field over the last few years, as highlighted in Table 4-1.

Table 4-1. Match between published literature challenges and the requirements devised for the EU-
ADR Web Platform development.

 R1 R2 R3 R4 R5 R6
Meyboom et al. [154]  

Wadman et al. [155] 

Bauer-Mehren et al. [156]    

Harmark et al. [157]  

Wood et al. [158]  

Shannon et al. [160] 

Pedro Lopes
Service Composition for Biomedical Applications

63

 R1 R2 R3 R4 R5 R6
Coloma et al. [161]   

Trifirò et al. [162]     

4.2 The EU-ADR Web Platform
Workflow enactment within the EU-ADR project is essential to combine the variety of

deployed web services in a single integrative data analysis pipeline. To tackle this challenge,

the workflows were designed using the Taverna workbench. This approach permits both

the local standalone execution of workflows, using Taverna, as well as the inclusion of

workflows in existing applications, through Taverna’s command line interface, which

required the development of a new workflow execution engine. With a standard service

data exchange language and a customized workflow execution tool, all pieces were in place

to build the EU-ADR Web Platform.

4.2.1 Exploring Service Composition for Interoperability
Computational biology evolution has also greatly improved in silico experimentation and,

consequently, research reproducibility. This is fostered by the growing number of

organizations offering some kind of programmatic access to their knowledge bases and

applications. Web services offer straightforward, published, application programming

interfaces for interaction with and within other systems.

From a bioinformatics perspective, the tasks for analyzing and exploring in silico

experiments data are traditionally linked in a way that can be easily mapped to a software

workflow. By creating autonomous data flows between multiple services, the use of

scientific workflows greatly improves the clinicians and researchers computational tasks.

In section 2.2 we detailed a large number of data sources, services and applications, most

of which provide services that can be easily composed into new meta-applications.

DynamicFlow
With the Internet gaining momentum as a development platform, we are assisting a shift in

the computational paradigm: moving from desktop applications to web and mobile.

Therefore, we designed DynamicFlow (Figure 4-2), a solution to promote autonomous

dynamic service composition in a web-based environment, requiring nothing else than an

Internet browser [8, 9].

4. Contributions to Workflow-based Service Composition

 64

DynamicFlow’s goal is to offer access to a collection of visual components that bind

public web service as wrappers described following a predefined ontology. This description

contains essential information about the service execution. The content of each service

may vary but it has to follow a set of minimal mandatory elements:

 DisplayName, defines the name that will appear in the component list;

 Description, small description and relevant information that will be shown

within the Help section;

 Input and Output, the Type and the Value of the service inputs and outputs;

these elements are essential in the workflow execution process. Each workflow

is validated by checking the consistency of each component inputs against the

previous component outputs;

 Specie, list of the species where this component can be used;

 XmlString, XPath query used to select the correct objects from each service

output.

Figure 4-2. DynamicFlow workspace interface. Central area for workflow edition and right sidebar
with available task listing.

These services semantics are a primitive version of later developments described in

WAVe and COEUS. Despite this, the principle behind its use is the same: provide a content

description that enhances information queries and promotes automated interactions

among distinct resources.

Pedro Lopes
Service Composition for Biomedical Applications

65

Interoperability research in DynamicFlow platform was focused around three key areas:

the web-oriented architecture dividing processing workload between the web server and

the browser; the semantic description of web services and the agile web interface for

workflow composition.

First, client-side processing enables the creation of new features and increases

application performance by reducing client-server data exchanges. With more advanced

client-side development frameworks appearing daily, web clients’ data handling

capabilities are evolving, enabling intensive data processing tasks on the browser.

 Second, we designed an ontology with comprehensive semantics to describe the

services that are part of the workflow. In addition to making the framework generic and

enhancing the application flexibility, it was an initial endeavour on the description of

remote services for data exchanges.

At last, continuing with the modern client-side capabilities, the interface relies

completely on the browser, does not require any special plug-in, and adopts a traditional

desktop metaphor to create a richer environment for the design and execution of

workflows.

Taverna
The main goal of workflow management applications is to abstract the programming side

of the application, enabling the creation of comprehensive workflows without writing a

single line of code.

From the various software platforms for combining services, Taverna emerged as the de

facto standard for desktop-based workflow management in the life sciences [163].

Taverna’s success is mostly due to its flexibility and variety of available processors. In this

context, a processor is an activity that can be a part of workflow (Figure 4-3). Taverna’s

processors can be web services, XML splitters, file system handling tools, string

manipulation, Excel spreadsheet readers or custom Java code, among others. These allow

researchers to create complex service composition environment just by dragging and

dropping boxes in Taverna’s workbench.

4. Contributions to Workflow-based Service Composition

 66

Figure 4-3. EU-ADR’s signal substantiation workflow: the inputs, a drug (an ATC code) and an adverse
event, are processed through multiple activities, including UniProt and SMILE services, to generate
multiple outputs, including drug targets, protein interaction networks and genes.

4.2.2 Application Setup
The EU-ADR Web Platform is sustained by a distributed computerized system combining

multiple components in a single software ecosystem. The platform can be logically divided

in five key areas: the client application, the application engine, the workflow execution

engine, the evidence combination engine, and the external workflows – Figure 4-4.

As mentioned before, the EU-ADR project has deployed 3 workflows for drug-event pair

data exploration and assessment. These workflows play an active role in the EU-ADR Web

Platform, as they are required for the data analysis features. The challenging tasks of

accessing and executing these Taverna workflows required the development of a new

workflow execution engine, enabling real-time web-based communication with Taverna

workflows.

The server software includes the workflow execution and evidence combination

engines, the platform database and the application engine. The latter is the main EU-ADR

Web Platform controller, coordinating all involved components. Using the Model-View-

Presenter architecture, we rely on Google Web Toolkit15 (GWT) as application engine.

15

 https://developers.google.com/web-toolkit/

Pedro Lopes
Service Composition for Biomedical Applications

67

Figure 4-4. EU-ADR Web Platform architecture. 1) External distributed workflows are integrated with
the workflow engine. 2) The created workflow execution engine interacts with Taverna, launching new
workflow runs and processing results. 3) The evidence combination engine processes the signal list,
once all workflows have been executed, to generate a final ranked list. 4) The application engine,
developed with Google Web Toolkit and served trough Apache Tomcat, controls the entire application
execution, from triggering workflow execution to data persistence in the MySQL database. 5) The EU-
ADR Web Platform online application is a unique entry point to advanced pharmacovigilance features.

The client application uses a myriad of advanced user interaction components to

provide a clean perspective over the huge drug datasets and easy access to data exploration

features. The EU-ADR Web Platform server-side is controlled by GWT and implemented in

5
CLIENT APPLICATIONS

4
APPLICATION ENGINE

3
EVIDENCE COMBINATION

2
WORKFLOW ENGINE

1
WORKFLOWS

Evidence
Combination

Engine

ADR-FM ADR-FD ADR-SS

Workflow
Execution
Engine

Taverna

Hibernate

4. Contributions to Workflow-based Service Composition

 68

Java, with Apache Tomcat serving the application. Data are stored in a MySQL database,

assuring the persistence of the application business model.

For an improved data handling, Hibernate16 was used for the data abstraction layer and

object/relational mappings, thus reducing undesirable database coupling with the

application. This shields the development from future changes in the domain model

storage system and eases the use within the Java object-oriented environment.

Miscellaneous additional components were also used, such as Spring Security for

improved security features, Apache POI17 for enhanced data import and export, Google

Guice18 for dependency injection, Log4j for logging purposes and Apache Maven19 for an

enhanced project dependency management, building and deployment.

To improve on GWT’s user interactions library, we adopted the richer Ext GWT package

(GXT)20. This extends widgets bundled with GWT core distribution to provide a more

complete set of user interaction features required by the Web Platform’s interface.

The combination of GWT’s basic widgets with GXT ones was further improved with

Google Gin21 for dependency injection, achieving a truly decoupled architecture.

Investigation of any drug-event pair does not end after the primary workflow relative

risk assessment, as evidence needs to be combined to reach a final score to help separate

spurious signals from potential adverse drug reactions.

To perform these new combinations, the evidence combination engine uses the

Dempster-Shafer theory to reach a conclusion about the belief that a drug-event pair is

potentially an adverse reaction [164]. This combination process takes in account the results

of all workflows and any additional relevant data provided in the drug-event dataset.

4.2.3 Data Exchanges
The EU-ADR project web services required setting up a common data description and

exchange language. All workflows and web services had the same input data types and it

was adamant that the service outputs should be as similar as possible. Consequently, the

need for this “communication language” pushed forward the study and evaluation of

miscellaneous standardization technologies. Since we were dealing with distributed

16

 http://www.hibernate.org/
17

 http://poi.apache.org/
18

 http://code.google.com/p/google-guice/
19

 http://maven.apache.org/
20

 http://www.sencha.com/products/gxt
21

 http://code.google.com/p/google-gin/

Pedro Lopes
Service Composition for Biomedical Applications

69

services and were looking for the best way to exchange data in a format that could be easily

read and parsed in any programming language, we opted for modelling a custom XML

schema using XSD.

The EU-ADR schema is divided in two files. The first, Common Types22, describes

general data types used within the project and can be easily adapted for scenarios beyond

EU-ADR. The second, EU-ADR Types23, defines the structure for signal filtering and

substantiation data exchanges within the EU-ADR project context. These schemas allow for

a smooth integration of the different modules in Taverna workflows and in other

application development environments. Furthermore, using XSD enables both content and

structure validation for EU-ADR services’ input and output data.

Figure 4-5 displays the overall EU-ADR Types structure. The document is rooted in

relationships, which possess globalScore and relationships elements. A relationship is a

drug-event combination, using ATC codes for drugs, sourceId, and internal event

identifiers, targetId. Global score represents the mean score for all relationships in the

input/output data flow, detailed individually in the partialScore element. Additional

service metadata are included in the creator, observationDateTime and

informationSources elements. The latter is further divided in multiple elements,

comprising the justification for the relationship score. These include database identifiers,

relationship types, discovered interactions and evidence types, among others.

With these schemas available online, web service developers are able to formally

represent their services’ input and output in a way that every partner understands and

enabling the required service-to-service and workflow-to-workflow interactions.

22

 http://bioinformatics.ua.pt/euadr/common_types.xsd
23

 http://bioinformatics.ua.pt/euadr/euadr_types.xsd

4. Contributions to Workflow-based Service Composition

 70

Figure 4-5. Relationship diagram overview for EU-ADR’s interoperability schema.

Pedro Lopes
Service Composition for Biomedical Applications

71

4.2.4 Wrapping Taverna Workflows
Integrating EU-ADR workflows within the Web Platform was not a trivial task. Taverna 2

workflows are stored in a XML file with the SCUFL 1.2 specification schema, making the

read/parse tasks very cumbersome to implement. Moreover, we need to feed the services

with input data, manipulate intermediate results and extract the resulting output

documents.

To perform these tasks, a new workflow execution engine was developed. This Java tool

is included within EU-ADR Web Platform’s code and enables the execution of Taverna’s

command line interface with custom input arguments. These parameterized system calls

run in their own independent OS process, increasing the overall platform performance and

scalability. Workflow executions are also a background non-blocking asynchronous process.

For EU-ADR Web Platform users, this means that they can use the application and their

data whilst workflows are running in the background.

Figure 4-6 illustrates the steps required to execute the workflow in the web platform

server. From user input to system output the platform executes the following actions in

order:

1. Signal substantiation for one or more drug-event pairs is triggered by users in

the Web Platform interface.

2. An XML file with the relationship set is generated and its path supplied to the

workflow execution engine along with the selected workflows path. The

workflow is then launched by a system call.

3. The EU-ADR Web Platform internal workflow reads and translates the XML

input, invoking the remote web service with the transformed input.

4. The external web service processes data and sends it back (XML) to Taverna’s

command line interface.

5. Additional intermediate processing takes place within the workflow

execution engine before the following service is contacted.

6. The service processes data and replies with its XML output.

7. The workflow execution engine assembles all retrieved data into one or more

XML files: the final output.

8. Taverna’s command line interface finalizes the system call and the web

platform scans the provided output directory for the workflow output XML

files.

4. Contributions to Workflow-based Service Composition

 72

9. Workflow results are parsed and stored in the web platform’s database and

the XML files moved to a local repository for permanent storage and future

reference.

10. The browser interface is updated with the substantiation results, displaying

new information views with collected evidence.

Figure 4-6. EU-ADR Web Platform workflow iterative execution process.

Once data have passed through the workflow execution engine, it is promptly available

for user assessment and for further statistical analysis. The evidence combination

algorithm, which is outside this document’s scope, performs a Dempster-Shafer analysis to

improve the final score precision and help separate spurious signals from potential adverse

drug reactions.

4.2.5 Features and Usability
Service-to-Service and Workflow-to-Workflow Data Exchanges
Fully automated web service interoperability requires the creation of a common data

exchange language, allowing for environment-independent machine-to-machine

communication. This basic need, discussed with detail in section 3.2, was a top priority

within the EU-ADR project. Moreover, considering the distributed nature of modern

software and common large-scale consortiums promoting research, one can easily identify

this requirement as an overarching demand. The developed schema set, divided in

common and project-specific data types, leveraged a faster development of new services

within the EU-ADR project.

The definition of these kinds of standards is the initial step towards fully interoperable

software. The usage of SOAP for service communication only solves the technological

Medline Co-occurrence

Substantiation

DailyMed

Medline ADR

DrugBank

WEB PLATFORM
SERVER

1

2
3

87
10

4
5

6

9

Pedro Lopes
Service Composition for Biomedical Applications

73

problem of exchanging data. Transferred data must also be read and understood by all

software involved in the process. With the EU-ADR schema, and others alike, we can

exchange data between distributed systems and easily apprehend the meaning of shared

data. The true value behind advanced service composition strategies only surfaces with the

adoption of data exchange standards or shared data models.

Advanced Drug Studies
EU-ADR Web Platform’s key feature is the execution of advanced post-marketing adverse

drug reaction studies. Registered users are able to upload and analyse drug-event datasets,

create targeted drug studies and collaborate with their research peers through the

available sharing features.

The invite-based registration system allows selected researchers to join the web

platform by giving them access to a personal closed workspace. In this area they can

browse existing datasets (personal or shared); upload custom drug-event pair datasets; or

create drug-specific datasets, based on the overall web platform data. Since this application

was built as a response to EU-ADR’s project needs, the system is pre-filled with data mined

from over 30 million European patient records. Whilst these data are not directly available,

they can be used to evaluate specific drug adverse reactions on the project workflows.

Next, EU-ADR Web Platform’s features are highlighted in a traditional custom drug

study scenario. The initial workspace (Figure 4-7) offers access to each user’s datasets,

organized in two distinct sections.

Figure 4-7. EU-ADR Web Platform view for personal dataset listings.

4. Contributions to Workflow-based Service Composition

 74

As the name suggests, My Datasets contains the datasets created by the user and

Shared by Others lists datasets shared between users. For users identified as a part of the

EU-ADR project, a third section with project datasets appears on top. Within this view,

users can access various dataset features: the Create, Import, Export, Open, Sharing or

Delete options are enabled for all datasets in the My Datasets tab. For testing purpose, we

create a new dataset targeting a specific drug.

Following the reports on rofecoxib and its withdrawal from the market, we test this

drug to validate the system. This drug for treating osteoarthritis, acute pain conditions,

and dysmenorrhoea, is well known for causing severe cardiac problems. Using the Create

button we just need to start typing the drug name and the type-ahead system will provide

the matching drugs with respective ATC code.

Once we select the drug, the system generates a new dataset matching the selected drug

with all EU-ADR events in the system, as shown in Figure 4-8. Then, we move to the

substantiation of all signals. During this process, the multiple drug-event combinations

will be provided to EU-ADR workflows, which will analyse them individually and provide

evidence to support the drug risk or to mark the pair as a non-valid signal. The drug-event

pair, a relationship, will traverse the 5 workflows and the evidence combination service,

generating data to help identify rofecoxib risk in multiple events. These data are visually

marked as red Y or green N for workflows, when data for adverse reaction was found or

not, respectively. The evidence combination service performs the final statistical analysis,

classifying each pair risk as high (H), medium (M) or low (L).

Once the processing finishes, users can explore evidences for each pair individually. In

this pane (Figure 4-9), the wealth of data provided by each workflow can be easily exploited.

Furthermore, evidence data includes connections to external applications supporting the

evidence, including UniProt proteins and Medline literature.

Once the processing finishes, users can explore evidences for each pair individually. In

this pane (Figure 4-9), the wealth of data provided by each workflow can be easily exploited.

Furthermore, evidence data includes connections to external applications supporting the

evidence, including UniProt proteins and Medline literature.

Pedro Lopes
Service Composition for Biomedical Applications

75

Figure 4-8. EU-ADR Web Platform view for a personal dataset created for the Rofecoxib drug (ATC code
M01AH02).

Figure 4-9. EU-ADR Web Platform view for signal substantiation results for the signal combining the
Bromocriptine drug (ATC: G02CB01) with the Acute Myocardial Infarction (AMI) group of adverse drug
reactions. The list of relevant publication from the Medline ADR workflow is the highlight of this
particular interface.

4. Contributions to Workflow-based Service Composition

 76

4.3 Discussion
4.3.1 Service Composition for Interoperability in Bioinformatics
As discussed in this chapter, the use of service composition strategies for interoperability is

gaining relevance amidst the bioinformatics community. With an ever-growing number of

services, from data mapping services to semantic data enrichers, there is untapped

potential for exploring service-oriented architectures in bioinformatics. Mashups and

workflows built around the wealth of existing services allow developers to quickly connect

data and features, without relying on local computational power.

Nowadays, planning and implementing service-based workflows are integral parts of

the bioinformatics software development process. This way, entire applications simply

wrap a set of composed services behind an advanced user interface. Workflow managers

have also evolved, originating new tools to quickly manage, develop, update or execute

complex service-based workflows. Taverna is the pinnacle of this evolution, providing the

set of tools to create almost any kind of dynamic workflow in a visual-oriented fashion.

Despite its quality, Taverna is limited to desktop-based use and web-based solutions,

such as DynamicFlow, are far away from the capabilities of a desktop workbench. Whilst

this is not a problem for traditional lab users, developers are faced with these challenges in

projects where using a workflow management tool is essential. This is the case for the EU-

ADR Web Platform: Taverna workflows enable cross-project service composition for

interoperability and these workflows can now be executed locally or online by any

researcher.

4.3.2 Fostering Pharmacovigilance Innovation through Service
Composition
The EU-ADR project embraces sophisticated pharmacovigilance research methods in an

online platform providing advanced drug data exploration and assessment features.

Whereas in the past post-marketing drug assessment required intense validation tasks, the

in silico pharmacology community is now endowed with the tools to quickly analyse specific

adverse drug reactions, further improving drug safety monitoring.

The computational strategies created to fulfil the initial set of requirements originated

a new platform for delivering advanced pharmacovigilance studies. The EU-ADR Web

Platform enables streamlined access to drug dataset analysis features, including the

evaluation of results from EU-ADR workflows and the sharing of data amongst ad hoc

Pedro Lopes
Service Composition for Biomedical Applications

77

research partners. All this is possible due to an architecture sustained by four outstanding

innovations, highlighted next.

 The project-wide interoperability standard enables automated data exchanges

amongst the various partners' web services. This new schema standardizes the

services' input and output, making the creation of complex EU-ADR workflows

possible.

 The set of EU-ADR workflows comprises interactions between heterogeneous

services provided by distributed partners throughout Europe. With each service

focusing on a particular data evaluation, the drug-event pair analysis is distributed

through the service set and combined in the EU-ADR Web Platform.

 The new workflow execution engine provides a streamlined way to include

Taverna workflows within Java applications. This makes the ad hoc execution of

workflows in the EU-ADR Web Platform possible, allowing real-time drug-event pair

data processing.

 At last, the GWT-powered web-based workspace makes it very easy to create

custom drug-event evaluations, upload big datasets, substantiate data on-demand

and evaluate the relative risk for drug-event associations crossed against a

background with data mined from millions of electronic health records,

publications and drug-protein interactions.

The EU-ADR Web Platform is available online, at http://bioinformatics.ua.pt/euadr/.

4. Contributions to Workflow-based Service Composition

 78

Pedro Lopes
Service Composition for Biomedical Applications

79

5. WAVE: BUILDING AN
INTEGRATIVE KNOWLEDGE BASE

“Quality in a service or product is not what you put into it. It is what the client or customer gets out of it.”
- Peter F. Drucker

Modern computer science technologies are essential elements to handle the growing

volume of biomedical and biological data being generated everywhere, from research labs

to clinical centres. Traditionally, researchers require very specific data analysis and

transformation skills, ranging from the interrogation of data sources to the management

and reorganization of information so it is available for input to distinct software. With

more integrative tools we can enable the next generation of bioinformatics software,

sustained by advanced service composition for data integration strategies.

This chapter encloses our developments towards the creation of a unique human

variome portal, within the European GEN2PHEN Project context. The WAVe platform is

introduced as our initial concerted effort towards solving a pertinent bioinformatics

challenge with service composition strategies [11]. Collecting human variome information

is essential to grasp the meaning of our genetic sequence variations and their effects. In

WAVe, service composition techniques are used for the integration of data and to provide

the collection of acquired data through a REST API. WAVe is publicly available online at

http://bioinformatics.ua.pt/WAVe/.

From the combination of our initial assessment and our contributions to the field,

including the previous chapter, we identified a clear need for more dynamic life sciences

software. With so many common problems surfacing in miscellaneous large-scale research

projects, it is essential to reuse and recombine components to streamline the software

development process. These conclusions finish this chapter and open the discussion for the

contributions detailed in chapter 6.

5. WAVe: Building an Integrative Knowledge Base

 80

5.1 Human Variome Research
Human variome research has flourished over the last decade, triggered by the explosive

growth of available genetic data emerging from the completion of the human genome

sequence [15, 165]. The discovery of novel relationships between simple sequence changes

and diseases is essential to underpin the future prospect of custom drug design and

personalized patient care [166-168]. Furthermore, datasets are growing at such rate, and

with such diversity of data, that they often demand custom software solutions. The correct

description, publication, and enrichment of disease-causing gene variants, requires new

approaches and expertise from genetic data integration developers [169-172]. Produced

solutions often fail to take into account similar counterparts in the domain, reengineering

everything from scratch and closing the system to future data exchanges. Consequently,

the genetic variation research field lacks standardization in both interoperability and

integration.

Locus-specific databases (LSDBs) are gene-centric, closed systems, designed for direct

interaction with curators and focused on the linear tasks of storing and publishing

discovered variants online. The software provides comprehensive variant details and their

phenotypic consequences for one or a few genes of relevance to one or a few specific

diseases. Despite a steady evolution in this field [173], including new genetic variation

description standards [174, 175] and enhanced reference sequence formats [176], the lack of

quality control and strict scope has hindered progress in this area: online data dumps and

legacy systems without any scientific coherence are still widely used, hampering the

process of accessing and understanding all available information through a single access

point. Additionally, existing systems’ available data and interfaces are limited to standalone

gene analysis.

Despite LSDB completeness, researchers need access to miscellaneous resources and

features while browsing gene variants: gene loci and variant information should be

complemented with related proteins, pathways, or published literature, among others.

Currently, this is not possible without a complex data analysis workflow involving

interactions with various distinct applications.

To overcome current deficiencies in the genetic variation research field we devised a

new application entitled Web Analysis of the Variome (WAVe), which empowers the

extraction of LSDBs’ true added value through their connection with both similar platforms

and diverse external resources. WAVe’s development was based on a new holistic approach

Pedro Lopes
Service Composition for Biomedical Applications

81

detailed further in this article. The adopted strategy enables the setup of a platform for the

integration of genetic variation datasets and the enrichment of the latter with connections

to external resources and state-of-the-art user interaction features.

WAVe enables centralized access to existing LSDBs, aggregates genes and their variants,

and integrates a multitude of scientifically relevant resources, without damaging the

original work conducted by researchers in this domain. WAVe then publishes collected

data through an API and a comprehensive and agile workspace, focused on the transparent

access to the miscellaneous integrated applications and data sources in the human variome

research field.

5.1.1 Integrating Human Variome Information
Available LSDBs fall into two main categories. On the one hand, there are several legacy

systems, which are often just data dumps in HTML or PDF format, listing variants in an

unstructured fashion. Such systems generally display variants in tables or include them in

free-text summaries and, consequently, it is difficult or impossible to extract specific

mutation information. On the other hand, sophisticated LSDB software packages emerge,

including MUTbase [177], Universal Mutation Database (UMD) [178], and Leiden Open

Variation Database (LOVD) [179, 180].

On a distinct perspective, another caveat is the political obstacle to data integration

created by the reluctance in the LSDB community to share data [181]. LSDB curators have

major concerns regarding data sharing, especially with respect to issues such as data

quality, authorship, and ownership. Particularly, curators fear that by aggregating their

data they will lose control over it: central repositories will be able to display it without

proper attribution, use it for commercial purposes, or misrepresent clinical information

leading to inappropriate interpretations.

Various projects have recently started to address these problems, through both the

development of integrative software tools and the creation of recommendations and

standards for LSDB data sharing. BioGPS is an example of the former, collecting data from

gene-related resources and presenting it in a customizable workspace [182]. Despite

displaying resources in a modern approach, BioGPS lacks detailed access to genetic

variation datasets. Another tool in this domain is DRUMS, which provides access to variants

from multiple genes gathered from a wide array of databases [183]. Although genetic

variation information is very complete, DRUMS suffers from the recurring common issues

5. WAVe: Building an Integrative Knowledge Base

 82

in the LSDB software domain, in that the available information is deep with respect to the

variome, though narrow in a holistic life sciences perspective.

This domain is also the subject for several larger initiatives such as MutaDATABASE24,

PhenCODE25, or GEN2PHEN26. However, these are on-going projects whose results are still

gaining traction in the LSDB research community, as each of them still requires some

technology learning and development effort. Adhering to new standards will entail deep

revisions in current systems: integrative data models must be changed and new

interoperability features must be added, resulting in a need for architectural revisions in

already stable systems. Furthermore, legacy systems that lack funding or curator interest

will be lost within this necessary evolution.

5.1.2 The European GEN2PHEN Project
The “Genotype-to-Phenotype: A Holistic Solution” project (GEN2PHEN) is focused on the

development of tools that will connect online life sciences resources containing

information spanning from the genotype – the human genetic sequences – to the

phenotype – the human visible traits such as hair colour or penchant for a specific disease.

Research in this project touches miscellaneous areas like gene sequencing and expression,

genotyping, SNP mapping and pharmacogenomics. These are essential for realizing the

individualized healthcare premise, delivering the most effective treatment for a patient

according to his clinical history, physiology and genetic profile and the molecular biology

of the disease [184].

In the future, personal electronic health records (EHR) will be enriched with genetic

information required for more personalized treatments. Two research fields are essential

to complete EHR datasets: pharmacogenomics and genetics. Pharmacogenomics studies

variability in drug response, which comprises drug absorption and disposition, drug effects,

drug efficiency and adverse drug reactions [185]. Genetics profiling of diseases provides

new insights on the classification and prognostic stratification of diseases based on

molecular profiling originated in microarray research [186]. Both these fields will generate

a tremendous amount of heterogeneous data that needs to be integrated accurately in

diverse systems. These data are made available through various types of online resources.

Connecting these online resources, public databases, services or simply static files,

24

 http://www.mutadatabase.org/
25

 http://globin.bx.psu.edu/phencode/
26

 http://www.gen2phen.org/

Pedro Lopes
Service Composition for Biomedical Applications

83

leverages a complexity increase in the implicit integration tasks. New problems revolve

around integration and interoperability. Solving these problems is not trivial and, despite

the fact that there are several on-going research projects in this area, computer science

researchers have not yet discovered an optimal solution.

5.1.3 Locus-specific Databases
MUTbase27 is the oldest of these tools and encompasses several Web databases for advanced

genetic variation studies. The focus is toward mutation structural organization and

availability to the community of both database curators and generic life scientists.

Similarly, UMD28 defines a structure and back-office for the management of variants.

Although variants are usually publicly available, access to some genes is limited. Unlike

these systems, LOVD29 innovates with the ‘‘LSDB-in-a-box’’ approach. It is offered as a

downloadable software package containing the full set of tools required for the deployment

of a local locus-specific database.

This LSDB software diversity results in an extremely heterogeneous and fragmented

network of independent data-rich silos, each with its own format and structure, with no

interactions with other LSDBs or with any central systems. Consequently, this is a major

drawback for data exchanges, aggregation in external systems or integration of resources.

Available LSDB software frequently lacks semantic and contextual layers, resulting in

datasets with no connections with external resources such as associated proteins or related

metabolic pathways. Additionally, these systems were developed with specific gene

curators in mind, meaning that the set of available features and included data are of

specific relevance to curators, but neglects possible interested scientists, whether they are

clinicians or biologists.

A need for distinct software tools, capable of tackling the combination of problems in

both modern and legacy LSDBs, arises. A new approach must be adopted, accommodating

not only gene and variant information, but also connections to external resources like

proteins, diseases, publications or drugs. Furthermore, the aggregation of all available

LSDBs (and their datasets) in a single central system should also be accomplished,

providing a general vision over the entire genomic variation landscape.

27

 http://bioinf.uta.fi/MUTbase/
28

 http://www.umd.be/
29

 http://www.lovd.nl/

5. WAVe: Building an Integrative Knowledge Base

 84

5.1.4 Gathering G2P Data
Considering the current status of the human variome research field, available systems, and

what users expect from next- generation applications, four major challenges can be

highlighted.

1. The aggregation of genetic variation datasets available in distributed and

heterogeneous LSDBs is a critical step to improve the human variome research

field.

2. Integration and interoperability of LSDBs should not be neglected and will play a

key role in future systems. Therefore, any new approach must be prepared for

further developments in the LSDB ecosystem.

3. Although current LSDBs are extremely rich data sources for curators, their limited

scope undermines their adoption in the life sciences community, whose users

expect additional extensive information alongside genes and their variants.

4. Accreditation, including authorship, ownership, and appropriate attribution are

curators’ major concerns. Hence, developments in this domain must take this into

account, by displaying external content without devaluing the original systems

from which the content has been aggregated.

These challenges require the need for an application like WAVe, based on an innovative

strategy that is able to break with existing application design concepts and focus on

extensibility, lightweight data integration, interoperability, and agile user interactions.

From a computer science perspective, this represents a standard data integration problem.

Available data are scattered through distributed and heterogeneous data sources, each with

its own internal data collection strategies and severely lacking interoperability features or

services.

5.1.5 Requirements Analysis and Design Issues
With high-demand for innovative human variome research software solutions and the

challenges for gathering genotype-to-phenotype data, a set of general requirements and

design strategies to determine WAVe’s shape and structure were identified. This study

resulted in six broad requirements, which include (R1) genetic dataset aggregation, (R2)

genotype-to-phenotype integration, (R3) content accreditation, (R4) genetic data visual

exploration, (R5) availability and (R6) exchange with software tools, each introduced next:

Pedro Lopes
Service Composition for Biomedical Applications

85

 (R1) Genetic dataset aggregation. The new WAVe platform must encompass

new strategies for the aggregation of genetic variation datasets into a single

centralized knowledge base.

- (R1.1) LSDB data extraction. Considering the LSDBs landscape, WAVe

must include methods for extracting variation data from MUTbase, UMD

and LOVD, as well as from a variety of legacy systems.

 (R2) Genotype-to-phenotype integration. Innovative algorithms must be

devised to integrate information regarding the genotype and the phenotype in a

unique knowledge base.

- (R2.1) Data enrichment. Aggregated genetic datasets must be enriched

with direct pointers to a set of external applications relevant for the

human variome field.

 (R3) Content accreditation. Original external applications must be displayed to

users whenever possible. This will enforce the correct accreditation of content

integrated within WAVe.

- (R3.1) Promote authorship, ownership and attribution. Genetic

variation data must always be linked to the original source, maintaining

the gene curators’ relevance within the research workflow.

 (R4) Genetic data visual exploration. Data for genes and variants must be

presented in an easy-to-use interface, facilitating data navigation.

- (R4.1) Gene listing and browsing. Access to genes must be direct

through advanced searches or listings.

- (R4.2) Variation listing and browsing. Access to aggregated variants

must be provided in a unique summary, integrating all variants for a

single gene in the same view.

 (R5) Availability. WAVe must be publicly available at all times for all users

within and beyond the GEN2PHEN project context.

- (R5.1) Highly interactive web-based workspace. WAVe’s web interface

must adopt modern user interaction strategies to deliver a highly

interactive gene data exploration experience.

 (R6) Exchange with software tools. In addition (R5), acquired data should be

made available to external software tools through a set of programming

interfaces.

5. WAVe: Building an Integrative Knowledge Base

 86

- (R6.1) Interoperability API. WAVe must include an interoperability API

to enable access to rich gene and variant data for both software

developers and skilled researchers.

This set of broad requirements drives the development of a new strategy to tackle the

combination of miscellaneous challenges highlighted in past literature and summarized in

Table 5-1.

Table 5-1. Mapping for the identified requirements with the challenges highlighted in relevant past
publications on the human variome research field.

 R1 R2 R3 R4 R5 R6
Thorisson et al. [170]    

Hawkins et al. [171]   

Muers et al. [172]   

Mitropoulou et al. [173]    

den Dunnen et al. [174]  

den Dunnen et al. [181]   

Wu et al. [182]    

Li et al. [183]   

5.2 WAVe: Web Analysis of the Variome
5.2.1 Application Setup
Database Design
The WAVe platform is supported by a model centred on genes and their variants, which

can be further extended with connections to miscellaneous resources, as shown in Figure

5-1. Starting with the general Entity concept, we specialize the Gene and Variant concepts.

Taking in account the needs for external connections, one could also specify a concept for

each integrated resource. However, this approach would lead to a static system, troubling

future updates or the addition of novel relationships. With Gene and Variant concepts at

the core of the model, and a dynamic relationship model, extensions can be added through

the creation of new relationship types. As such, the model requires additional concepts:

relationship type, entity and relationship. The relationship type indicates the type of

additional information developers want to include in the application; the entity concept is

used to store the values obtained from external resources, defining its main attributes

Pedro Lopes
Service Composition for Biomedical Applications

87

along with the default Gene and Variant information; and the relationship concept is used

to map elements from the core system to the new entities.

The main outcome of this approach is an extremely scalable model: it enables the

configuration of any kind of relationship type, such as user mappings, external identifiers,

gene properties or other required data type. Considering that the relationship values will

be interpreted by the application, defining the entity values as strings maintains the

system consistency, regardless of the inherent data type: string, integer, float or even

boolean. Currently, this scheme is enough to support the inclusion of a broad range and

large number of extensions including links to external applications or mappings to data

types associated with genes, such as proteins, pathways or diseases. Moreover, new

extensions can be added to the core concepts without breaking the platform workflow.

Figure 5-1. 1) Core (Gene and Variant) abstraction used for WAVe’s database backend. 2) Extensions
(Entity, Relationship and Relationship Type).

Application User Interface
Along with the various modelling considerations, WAVe also required designing the user

interface. For this, miscellaneous mock-up interfaces were constructed focusing on several

key interactions such as the gene navigation tree or the gene workspace. Independent

users evaluated the initial mock-ups (Figure 5-2) and the resulting feedback was used to

improve the final application interface, removing some real estate clutter and simplify the

interface.

Type
Name
Value
...

ENTITY

Name
Description
Primary Concept
Secondary Concept
...

RELATIONSHIP TYPE
Entity A
Entity B
Relationship Type
...

RELATIONSHIP
1 *

Full Name
Locus
...

GENE
Description
Variant Type
...

VARIANT

2
EXTENSIONS

1
CORE

*
*

5. WAVe: Building an Integrative Knowledge Base

 88

Figure 5-2. Initial WAVe mock-up for the gene workspace, showing the GeneCards application for the
human DMD gene.

Architecture
WAVe’s architecture is built around five components: a configuration file, the build engine,

resource connectors, a database, and client applications. A diagram for component

descriptions and interactions is shown in Figure 5-3.

The XML configuration file is composed of two parts: a static section, to store the

relationship types and a modular section, to define the sources from where content for

each relationship type will be extracted. This division is required to enable two database

population moments: one to populate the relationship types, and another to add the

relationship individuals, which can be replicated multiple times on distinct setups,

enriching the original variation dataset. Relationship type configuration requires the

name, description and identification of the primary and secondary connected concepts.

Some sample configurations are shown further in this chapter.

Pedro Lopes
Service Composition for Biomedical Applications

89

Figure 5-3. WAVe’s architecture relies on five components. (1) The XML configuration file containing
the system setup and the settings used to load genes, variants, and extensions data into WAVe’s
database. (2) Multiple resource connectors, used to wrap and read information for the build engine;
these connectors enable loading data from CSV, XML, SQL, or REST Web services. (3) The build engine
is responsible for processing the configuration file, reading WAVe’s settings and loading data for the
core and extensions according to the defined data sources. (4) WAVe’s application engine includes the
server-side code and the database, which is populated by the build engine and accessed by client
applications. The database replicates Gene and Variant information while extensions are loaded as
simple pointers to external applications. (5) Client applications are WAVe’s entry point.

Each relationship type can have several associated data sources and each data source

may have its own data gathering methods. Therefore, and to increase even further the

platform extensibility, the configuration file can accommodate four distinct methods to

extract data from the sources. Each of these methods is associated with a specific type of

extraction, thus requiring different configuration features. The CSV method allows the

API

CSV XML SQL REST

5
CLIENT APPLICATIONS

4
APPLICATION ENGINE

3
BUILD ENGINE

2
INTEGRATION MIDDLEWARE

1
CONFIGURATION

WAVe BUILD ENGINE

5. WAVe: Building an Integrative Knowledge Base

 90

extraction of data from CSV files, and therefore requires definition of the file location, the

column that should be read and the line where the reading process will start. The XML

method requires a similar configuration: file location and an XPath expression to query the

content from the file. Next, the SQL data extraction method requires a database connection

string, a SQL query to select the content and the name of the column where the desired

content will be included. At last, the REST connector requires the service address and an

additional parameter defining the service reply format, XML or CSV. To parse web service

replies, the build engine combines the required method, CSV or XML, with the web service

method. Relying on these four data gathering methods improves the platform extensibility.

In addition to the data gathering methods, configuring a data source requires a name and

description plus the concept that will be passed as a variable to the build engine. The latter

is required because the extraction is made based on the primary relationship concept. The

configuration flexibility allows the system to be adapted to multiple contexts, applications

and usage scenarios.

Finally, the build engine, implemented in Java, is responsible for reading the

configuration file and loading the data to populate the platform database. The build engine

comprises a set of tools for processing each of the possible loading methods. These

integrative wrappers enable independent data replication from SQL, XML, CSV or REST

services, and are WAVe’s bridge from the external data sources to the internal database.

The latter is a MySQL database, which was designed to include miscellaneous dataset

versions, allowing for streamlined application and data updates.

For the application engine, the Java Stripes web framework was chosen. This library

enhances the deployment of web applications, by adding an abstraction layer to Java’s

default web system. For example, with it, it is much easier to create custom application

URLs and perform the binding to the desired Java bean. The application engine serves

WAVe’s web interface and API, which are detailed further in this chapter.

LSDB Data Extraction
Reading data from the myriad of existing LSDBs triggered various issues. Despite the

majority of available LSDBs being built on top of the LOVD platform, other systems are still

widely used. While access to UMD and Mutbase data could be streamlined, a couple

hundred LSDBs remained out of the reach and required a custom variant import tool. The

variant extraction workflow is overviewed in Figure 5-4.

Pedro Lopes
Service Composition for Biomedical Applications

91

At first, an empirical study was conducted to assess what variant data should in fact be

extracted from each locus-specific database. After this, it was clear that WAVe needs to

read HGVS-compliant variant descriptions. Since WAVe is gene-centric, when variants are

being imported we know exactly to which gene they belong. Furthermore, from a complete

variant description we can infer the analysed reference sequence, the type of variant and

what/where the change has occurred. The following examples were obtained from COL3A1

LSDB and demonstrate this characteristic:

 NM_000090.3:c.413delC matches a single base-pair deletion, cytosine, at position

413 in the coding region defined at reference sequence NM_000090.3;

 NM_000090.3:c.2708G>A signals a single base-pair substitution, from guanine to

adenine, at position 2708 in the coding region defined at reference sequence

NM_000090.3.

As one can easily extrapolate, with the gene, the LSDB location and the variant

description, there is enough information to organize a unique variation dataset and enable

the browsing of collected data from multiple perspectives.

Figure 5-4. Variant import workflow. 1) Each gene from WAVe’s gene list is processed iteratively. 2)
The LSDB list for each gene is obtained and processed iteratively in the build engine. 3) The build
engine launches the appropriate data import method for each LSDB type. 4) Data are read using a
middleware feed reader for LOVD instances and using Arabella web crawler for the remaining LSDBs.

LOVD

GENE LIST

LSDB LIST

BUILD ENGINE

UMD IDB Other

ARABELLAFEED READER
4

3

2

1

4

5. WAVe: Building an Integrative Knowledge Base

 92

By having a well-defined description schema, variants can be easily understood and,

more importantly, read using a set of regular expressions. Since there is no streamlined

process of reading variants from legacy LSDBs, our variant import strategy revolves around

using a targeted web crawler, directed at finding variants in HTML pages. Arabella [187], an

in-house web crawler, was modified to identify variants in web pages and included in

WAVe. This tool is injected with a list of LSDB URLs for each gene and retrieves a XML

container with the found variants. With UMD and IDbases lacking web services, Arabella is

also used to read variants from the public LSDBs built on top of these platforms.

Extracting data from LOVD systems revealed to be an easier process. Starting with

version 2.0, LOVD includes a public API composed of a public web service that lists variants

from each LSDB instance in Atom feed format30. This LOVD interoperability feature meant

that to integrate all variants from LOVD systems a simple feed reader and respective parser

was required.

Enriching G2P Data
WAVe’s data integration pipeline completes with the data enrichment process. Once genes,

LSDBs and variants are loaded into WAVe’s knowledge base, the build engine starts loading

data from external resources, according to their descriptions in the configuration file. As

mentioned in the application setup, this data integration process is done using a WAVe-

specific middleware wrapper. As WAVe is a gene-centric platform, the build engine uses

the gene HGNC symbol to identify external identifiers and load them into WAVe’s

knowledge base. Next, we describe the usage of these integration wrappers within WAVe.

The first scenario involves loading relationships to UniProt identifiers. UniProt data are

available in various formats; hence, CSV was chosen to select the UniProt identifiers

associated with the gene WAVe is reading. The configuration for this integrative wrapper is

as follows:

<!—UniProt+CSV+wrapper+configuration+77>+
<value>(

<name>UniProt/SwissProt</name>(
<description>Information(regarding(available,(active(and(reviewed(proteins(

in(UniProt.</description>(
<shortname>SwissProt</shortname>(
<source>(

<method>cache</method>(
<type>csv</type>(
<connection>http://www.uniprot.org/uniprot/?query=gene_exact:#replac

eme#+AND+active:yes+AND+reviewed:yes+AND+organism:9606&format=tab&c
olumns=id</connection>(

30

 Sample feed URL for COL3A1 gene variants: https://eds.gene.le.ac.uk/api/rest.php/variants/COL3A1

Pedro Lopes
Service Composition for Biomedical Applications

93

<query>\t</query>(
<result>0</result>(

</source>(
<value>http://www.uniprot.org/uniprot/#replaceme#</value>(
<parent></parent>(
<type>protein</type>(
<ua>uniprot</ua>(

</value>(
(
The configuration includes all fields required by both WAVe’s build engine and

application engine. The name, description and shortname properties are used in WAVe’s

web interface to fill in each external concept metadata. Next, the source property set

includes information for WAVe’s build engine: method defines the data loading method

being used; type defines the external data type and is used to select the proper wrapper

during the build process; connection states the data connection string or, in this case, the

CSV file location; query defines the CSV delimiter and result configures the CSV starting

line. Note that the #replaceme# string component in the connection property is replaced

with the gene HGNC symbol. This last substitution is what filters UniProt web service

results, listing only the identifiers associated with one particular gene. The application

engine uses the value property to compose the external resource URL. This process creates

a valid URL combining the identifiers loaded in the data import process with the value

property content. The type property defines to which entity, in the web interface, these

data will belong to. At last, the ua value defines the UniversalAccess identifier keyword to

be used in WAVe’s API, detailed further in this document.

GeNS is an in-house data warehouse that contains more than 100 million identifiers and

mappings for life sciences databases [79]. With such a huge in-house resource, we decided

to use it as a supplier for most of external resources relationships. Next is a sample GeNS

resource configuration to load KEGG database mappings to a specific gene HGNC symbol.

<!77+KEGG+SQL+wrapper+configuration+77>+
<value>(

<name>KEGG</name>(
<description>Information(from(metabolic(pathways(available(in(Kyoto(

Encyclopedia(of(Genes(and(Genomes(database.</description>(
<shortname>KEGG</shortname>(
(<source>(

<method>cache</method>(
<type>sql</type>(
<connection>jdbc:sqlserver://sql2k8X

ua.servers.ua.pt;database=GeNS;user=*****;password=*****</connection>(
<query>SELECT(DISTINCT(I.Alias(AS(result(FROM(Identifier((I(WHERE(

I.DataTypeId(=(11(AND(I.ProteinId(IN((SELECT(P.ProteinId(FROM(Protein(P(
INNER(JOIN(Identifier(I(ON(I.ProteinId(=(P.ProteinId(WHERE(P.TaxonomicId(=(
9606(AND(I.DataTypeId(=(1(AND(I.Alias(LIKE('#replaceme#')</query>(

<result>result</result>(

5. WAVe: Building an Integrative Knowledge Base

 94

</source>(
<value>http://www.genome.jp/dbgetXbin/www_bget?#replaceme#</value>(
<type>pathway</type>(
<ua>kegg</ua>(

</value>(
(
As one can easily assess, most configuration properties are very similar between CSV

and SQL data resources. The type property is, obviously, set to sql and the connection

property contains an actual Java JDBC connection string. The main difference to the

UniProt CSV scenario distinctions lie in the query property, which now contains a full SQL

query, and in the new result property, stating the column name from where results will be

read. Whereas in the CSV definition, the gene symbol replacement took place in the

connection property, in the SQL wrapper this substitution occurs in the query property.

In some cases, a particular connection to an external resource is obtained directly using

the gene HGNC symbol. The next configuration sample details the integration of

GeneCard’s resource.

<!77+GeneCards+direct+method+configuration+77>+
<value>(

<name>Gene(Cards</name>(
<description>Information(from(Gene(Cards.</description>(
<shortname>GeneCards</shortname>(
<source>(

<method>direct</method>(
</source>(
<value>http://www.genecards.org/cgiX
bin/carddisp.pl?gene=#replaceme#</value>(
<type>locus</type>(
<ua>genecard</ua>(

</value>(
(
In these configuration properties, we have to highlight the lighter source property set.

In these cases, just defining the method property as direct is enough to inform the build

engine that no information should be imported. Therefore, only the application engine will

use these configuration properties to full effect.

The strategy of having abstract integration middleware wrappers enables a more

general and streamlined data integration process. With a few configuration settings, one

can easily establish connections to external resources and replicate specific data to a core

data warehouse. This is a leap forward from the proposal introduced with DynamicFlow,

where the description were simpler and, consequently, less powerful.

5.2.2 Data Content and Usefulness
WAVe delivers integrated access to miscellaneous online resources. To cope with the

immense resource diversity, WAVe’s lightweight integration mechanism plays a key role.

Pedro Lopes
Service Composition for Biomedical Applications

95

In a simple hypothetical scenario, a need to establish relations between genes and clinical

trials is identified. The United States National Institutes of Health Clinical Trials31 database

is defined as the main data source, and identifiers are quickly loaded into WAVe’s database,

creating new relations between a gene and its available clinical trials. WAVe will store the

unique clinical trial identifiers and a dynamic URL to access each clinical trial web page

within WAVe. This approach allows WAVe to store both clinical trials data and pointers to

gathered Clinical Trials web pages. Consequently, one can identify clinical trials associated

with each gene and access each Clinical Trial in WAVe’s gene workspace.

Core Genetics Datasets
The LSDB list used in WAVe is maintained in cooperation with GEN2PHEN project

partners32. This list can be integrated in any application or downloaded for personal use.

Figure 5-5 shows the distribution of LSDBs according to their type. Clearly, LOVD is the

most widely used LSDB and the greater contributor to WAVe’s dataset.

Figure 5-5. Locus-specific database distribution in WAVe and GEN2PHEN’s list. LOVD 83%, Unknown
13%, IDBases 3%, UMD 1%.

The HGNC gene list33 can be downloaded and used in various ways. This list is

maintained by the US National Human Genome Research Institute (NHGRI) and the

Wellcome Trust and represents the most up to date list of valid and known gene symbols

and names, along with other miscellaneous identifiers.

31

 http://www.clinicaltrials.gov/
32

 http://www.gen2phen.org/data/lsdbs/
33

 http://www.genenames.org/

13%

3%
1%

83%

LOVD UMD IDBases Unknown

5. WAVe: Building an Integrative Knowledge Base

 96

Table 5-2 lists WAVe’s extensions and respective data sources. WAVe currently features

10 data types, linking 20 distinct resources through more than 500,000 pointers and

identifiers.

Table 5-2. WAVe’s extensions and corresponding external resources with their respective base
URLs.

EXTENSION RESOURCE ORIGINAL URL

LSDB

UMD http://www.umd.be/

IDBases http://bioinf.uta.fi/

LOVD http://www.lovd.nl/

Gene

GeneCards http://www.genecards.org/

HGNC http://www.hgnc.org/

Entrez http://www.ncbi.nlm.nih.gov/gene/

Publication
QuExT http://bioinformatics.ua.pt/quext/

Pubmed http://www.ncbi.nlm.nih.gov/pubmed/

Disease OMIM http://www.ncbi.nlm.nih.gov/omim/

Pharmacogenomics PharmGKB http://www.pharmgkb.org/

Locus
MapViewer http://www.ncbi.nlm.nih.gov/projects/mapview/

Ensembl http://www.ensembl.org/

Pathway
KEGG http://www.genome.jp/kegg/

REACTOME http://www.reactome.org/

Protein

UniProt/SwissProt http://www.uniprot.org/

UniProt/TrEMBL http://www.uniprot.org/

PDB http://www.pdb.org/

Expasy http://expasy.org/

InterPro http://www.ebi.ac.uk/interpro/

Ontology GO http://amigo.geneontology.org/

5.2.3 Case Study
To assess WAVe’s applicability in a research workflow, a data-mining scenario was studied.

A biologist searching for information regarding the COL3A1 (collagen, type III, alpha 1)

gene might need to answer the following questions:

1. Are there any LSDBs for the human COL3A1 gene? Where can they be accessed,

and who are the curators?

2. If such LSDBs exist, what are the known variants for COL3A1 and where were they

published?

Pedro Lopes
Service Composition for Biomedical Applications

97

3. What are the diseases associated with COL3A1 and what are the most relevant

publications regarding these diseases?

4. Has anybody developed drugs for diseases associated with COL3A1 variants?

5. What protein information is there for COL3A1?

6. What are the metabolic pathways related to COL3A1?

7. Does any genome browser provide information about COL3A1?

8. Are there specific Gene Ontology terms that relate to COL3A1?

Without an integrated query environment such as WAVe, the solution relies on the

biologist accessing multiple applications, in an ad hoc fashion, until all the questions are

answered. The starting point might be the GEN2PHEN-maintained list of locus specific

mutation databases: searching for ‘‘COL3A1’’ yields two databases links, either of which

must be followed to access the recorded variants. Next, to find COL3A1-related protein

information, the biologist needs to access UniProt, query the database for ‘‘COL3A1’’ human

information, filter the results and then access the ‘reviewed proteins. For pathways, the

required steps are similar: access the KEGG website, query for ‘‘COL3A1’’ and filter for the

human species. The iterative process continues until a large number of applications have

been accessed, resulting in multiple open browser windows or tabs, each involving some

manner of querying and filtering until the data are finally accessed. The total number of

individual user actions is large.

Using WAVe, a biologist simply searches for the ‘‘COL3A1’’ gene and the workspace

immediately displays all of the required information34. The answers to the initial set of

questions are:

1. There are two LSDBs for COL3A1. A publicly accessible LOVD instance

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/lsdb:726) and a UMD instance

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/lsdb:725), which is protected

by a username and password.

2. Variants for COL3A1 can be found under the ‘Variation’ node of WAVe’s

navigation tree

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/variantall:COL3A1) or in the

Variants tab of the available LOVD LSDB.

3. WAVe’s Disease node shows three NCBI OMIM entries associated with COL3A1:

MIM 120180 (Collagen, Type III, Alpha-1; COL3A1), MIM 130020 (Ehlers-Danlos

34

 http://bioinformatics.ua.pt/WAVe/gene/COL3A1/

5. WAVe: Building an Integrative Knowledge Base

 98

Syndrome, Type III) and MIM 130050 (Ehlers-Danlos Syndrome, Type IV,

Autosomal Dominant). The most relevant publications are accessed through

QuExT [188] (http://bioinformatics.ua.pt/WAVe/gene/COL3A1/quext:COL3A1)

and PubMed

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/pubmed:COL3A1), under the

Publication node.

4. The Pharmacogenomics node shows that PharmGKB has one entry associated

with the COL3A1 gene, where letrozole and orbofiban are mentioned

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/pharmgkb:PA26716).

5. The Protein node provides access to UniProt/SwissProt leading directly to the

COL3A1 entry

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/uniprot:P02461).

6. WAVe integrates metabolic pathways from both KEGG and Reactome. For COL3A1,

only KEGG has information for four pathways: focal adhesion, ECM-receptor

interaction, protein digestion and absorption, and amoebiasis

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/kegg:hsa:1281).

7. COL3A1 is available in the Genome node in NCBI’s MapViewer

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/mapview:COL3A1) and

Ensembl

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/ensembl:ENSG00000168542).

8. The results displayed in the Ontology node indicate that COL3A1 is involved in

two distinct molecular functions, 12 biological processes, and two cellular

components.

WAVe provides much more information than might be achieved by ad hoc searching,

but does so with much less user interaction and in less time. In summary, using standalone

applications is an inefficient approach to address the initial data-mining problem, although

WAVe proves its efficacy by offering integrated access to curated and distributed data,

irrespective of type or location.

Pedro Lopes
Service Composition for Biomedical Applications

99

5.2.4 Features and Usability
Search and Browse
Searching on the homepage or in the top search box triggers the automatic suggestion

engine, displaying results matching users’ input. In addition to gene searches, based on

HGNC gene symbols, genes can be obtained through their association with a set of common

and well-known identifiers. Users can search for UniProt, OMIM, GWASCentral, KEGG,

Reactome, PharmGKB, or Gene Ontology identifiers, and WAVe displays the list of genes

related with the queried entity. Search results are displayed in the browse interface

(Figure 5-6).

Figure 5-6. WAVe browse interface with search results for the P515 query. The result set originates a
Gene Mesh that is used to keep users in context of their queries in the gene workspace.

This interface lists all genes having known associations with the queried term. This

associated genes list, the Gene Mesh, is further available in the gene workspace toolbox.

Browsing results can be further filtered through the Filter box. This performs another

search within the page scope, that is, within the Gene Mesh. At last, searching for ‘‘*’’ lists

all available genes and their respective LSDB and variant count. At this interface, users can

remove genes without LSDB through the top toggle button.

5. WAVe: Building an Integrative Knowledge Base

 100

Workspace
The gene workspace is the main data exploration area. This is where users can access

collected LSDBs and respective variants or navigate through WAVe’s rich relationship

dataset. WAVe provides a holistic view over the human variome research domain,

connecting a multitude of distinct data types and resources, in a coherent interface,

without limiting application usability (Figure 5-7).

Figure 5-7. WAVe gene analysis workspace interface for the human COL3A1 (collagen, type III, alpha 1)
gene. Sidebar with the COL3A1 gene navigation tree: direct access to relevant gene-related
information. Central area with WAVe’s Live View mode: external applications (in this case, LOVD
installation for COL3A1) are loaded within WAVe’s interface.

WAVe is based on a directory navigation tree metaphor. The rationale behind this

approach is that one can organize all available information in a dynamic tree, where each

type of external resource corresponds to a principal node in the tree. Consequently, each

child node in the tree will be linked to resources made available for a specific resource type,

and each tree leaf will be the direct pointer to a resource instance. This results in a

dynamic and extensible resource directory. For example, the Locus node includes access to

three resources: GeneCards, HGNC’s Gene Names and NCBI’s Entrez Gene, each containing a

Pedro Lopes
Service Composition for Biomedical Applications

101

leaf pointing to the connected resource: a Web application with gene information for the

gene being analysed.

Along with the gene navigation tree, the left sidebar also includes a toolbox displaying

action items for each gene. Their actions are, from top to bottom: expand the Live View

mode to full screen, open the external resource in a new window, view other genes in the

Gene Mesh, view WAVe’s gene summary, and open the gene feed.

 Live View
Each click on a leaf in WAVe’s gene tree triggers the Live View mode, loading external

resources in the workspace’s central area (Figure 5-8).

Figure 5-8. WAVe gene analysis workspace interface for the human COL3A1 (collagen, type III, alpha 1)
gene, highlighting the UniProt entry P0246135.

This feature enables loading external applications, such as UniProt, Entrez Gene, or any

LSDB, inside WAVe’s interface. A primary consequence is that WAVe users never lose the

context of their ongoing search and are able to browse multiple distributed and

heterogeneous resources without leaving WAVe. Furthermore, content authorship and

ownership is also assured. Where most widely used applications collect content for custom

35

 http://www.uniprot.org/uniprot/P02461

5. WAVe: Building an Integrative Knowledge Base

 102

interface display, WAVe directs the user to the original application, without compromising

any of its features.

Variant Browser
WAVe’s variant browser is a unique tool that provides direct access to distributed variation

datasets in a single list view. These datasets are collected by WAVe from a multitude of

LSDBs. Through the gene navigation tree (Figure 5-9), users can browse variations by

change type (Substitution, Deletion, Inversion, Insertion, Duplication or Deletion/Insertion) or list

all variants. Only change types with matching variants are displayed. For example, if no

deletions are collected for a given gene, the deletion link is not displayed.

Figure 5-9. WAVe’s variant listing interface. The Variation node in the sidebar provides quick access to
the collected variant lists, sorted by available mutation change types. Variants are listed in a dynamic
table in the central content area.

By clicking these leafs, the Live View features loads the variant browsing interface. This

view displays a table including: the variant description in HGVS-compliant format; the used

reference sequence, where available; the variant type, such as Substitution or Deletion;

the number of LSDBs where the variant is listed; and the total number of variant copies.

Clicking the variant description link leads to the original LSDB page or, in cases where

there is more than one source, to the list of LSDBs containing the variant. Variants can also

be searched through the Filter box. This allows searching for particular variants, locations

of variant types.

WAVe API
Whilst WAVe’s web user interface is its central access point, it also has an API.

Interoperability was always a main concern during WAVe development and making

integrated data available for further usage was a top priority. Therefore, WAVe’s API

Pedro Lopes
Service Composition for Biomedical Applications

103

provides aggregated data in Atom or JSON data-exchange formats. There was emphasis on

providing content feeds, which are easily usable in any software development framework

or readable in any feed reader. Currently, WAVe’s API allows access to integrated resources

listed in the gene navigation tree and to gene variants listing. With the latter, WAVe was

the first platform to provide programmable access to variants aggregated from multiple,

distributed, and heterogeneous locus-specific databases. Next, some of these methods are

detailed.

 Accessing Gene Data: http://bioinformatics.ua.pt/WAVe/gene/<gene>/<format>

- This method outputs the list of rich dataset links collected by WAVe. The

gene keyword should be replaced by a valid HGNC symbol and format may

be replaced by atom or json, for Atom feeds or JSON objects respectively.

- http://bioinformatics.ua.pt/WAVe/gene/COL3A1/json: COL3A1 data in JSON

format.

 Accessing Variant Data: http://bioinformatics.ua.pt/WAVe/variant/<gene>/atom

- This methods output a list of all variants for the given gene. The gene

keyword should be replaced by a valid HGNC symbol.

- http://bioinformatics.ua.pt/WAVe/variant/COL3A1/atom: COL3A1 data in

Atom format.

 UniversalAccess: http://bioinformatics.ua.pt/WAVe/gene/<gene>/<key>:<identifier>

- WAVe’s gene data feeds provide access to all data collected in WAVe. To

access these data, users are redirected to WAVe, and the external resource is

automatically loaded on arrival. This way, when WAVe’s API is used the

application always sends users to the original WAVe resource context. This

method can also be used to build custom URLs to load specific identifier

within WAVe’s interface. The gene keyword should be replaced by a valid

HGNC symbol, the key keyword must be replaced with a valid WAVe

relationship keyword (the ua property in the configuration file) and a valid

identifier. If the key parameter is not valid, WAVe displays the default gene

page. Alas, it is impossible to track invalid identifier values when the key is

correct, and this results in an error in the external resource page.

- http://bioinformatics.ua.pt/WAVe/gene/COL3A1/omim:130020: loads the

OMIM page for 130020 (Ehlers-Danlos Syndrome, Type III) within COL3A1

workspace.

5. WAVe: Building an Integrative Knowledge Base

 104

The most successful scenario for WAVe’s API use is its inclusion in the GEN2PHEN

project Knowledge Centre [189]. At this portal, when searching for genes, WAVe’s API is

contacted in realtime to retrieve information regarding available gene relationships. For

instance, the GEN2PHEN Knowledge Centre displays links from WAVe’s Locus, Publication,

Disease, Genome and Gene Ontology nodes36.

5.3 Discussion
5.3.1 Service Composition for Integration in Bioinformatics
An assessment of the bioinformatics research field from a computational science

standpoint reveals the lack of integration infrastructures as a common denominator for

various bioinformatics challenges. The fact that data are heterogeneous, scattered and

divided is true whether the data are coming from sequencing hardware, like in most

bioinformatics research laboratories, or from a distributed collection of repositories, such

as in WAVe. Whatever the case, new strategies must be devised to reduce the complexity of

publishing acquired data for exploitation in external systems.

In modern integration architectures, the boundaries between the studied data

integration strategies are squandered, resulting in implementations combining the

features that better suit the problems at hand. At this stage, factors such as scalability,

flexibility, efficiency and performance are weighted against the constraints of adopting a

unique approach. This hybrid integration strategy defined WAVe’s architecture, data

model and implementation.

DynamicFlow started the assessment of the best methods to describe external services

for use in a composition scenario. This pursuit is continued in WAVe, with a resource

description schema to enable the accurate integration of data from external sources. The

technological contributions detailed in this chapter effectively bridge the gap from data

and services in bioinformatics. Nevertheless, with them as also arisen the need for a more

streamlined integration and interoperability development workflow, an endeavor further

discussed in the next chapter.

5.3.2 A Unique Resource for Human Variome Data
Establishing relations between the genotype and the phenotype provides a sound basis for

significant advances in individualized healthcare. Consequently, this domain is the subject

36

 http://www.gen2phen.org/gene/col3a1

Pedro Lopes
Service Composition for Biomedical Applications

105

of several large-scale research projects, each proposing distinct strategies to obtain new

knowledge regarding the human variome.

From these projects arises the challenge of how to integrate human variome datasets

from miscellaneous locus-specific databases and how to enrich available data with

meaningful relationships to the most relevant life sciences resources. Hence, a new

streamlined integration solution, sustained by a holistic and lightweight architecture, was

introduced to complete a comprehensive set of requirements. The designed algorithms

were then put together to build the WAVe platform, where the true value of locus-specific

databases is at researchers' fingertips through four key facets:

 The lightweight integration engine collects a core genetics dataset, gathered from a

myriad of locus-specific databases, which is connected to several external resources,

making the data richer and more meaningful.

 The extensibility of WAVe's data model enables the easy addition of new

connections to external resources [10]. Updating the integrated relationship set is as

simple as configuring a couple properties: the build engine will take care of the

actual import process.

 Interoperability is not neglected in WAVe. The REST API allows any developer to

get genetic variation datasets or rich gene data through simple and direct methods.

The GEN2PHEN project Knowledge Centre already uses these APIs to load gene data

in real-time.

 WAVe's innovative interface, with the gene navigation tree, Gene Mesh and Live

View, streamlines the exploration of integrated data and wraps external

applications within WAVe, thereby establishing a set of connections between

disparate systems that would not be possible otherwise.

WAVe delivers a unique perspective over the human variome research domain,

providing rich integrated access to genetic variation datasets through an agile workspace

publicly available online at http://bioinformatics.ua.pt/WAVe/ [11].

5. WAVe: Building an Integrative Knowledge Base

 106

Pedro Lopes
Service Composition for Biomedical Applications

107

6. COEUS: AN APPLICATION
FRAMEWORK FOR ENHANCED

SERVICE COMPOSITION

“All truths are easy to understand once they are discovered; the point is to discover them.”
—Galileo Galilei

The Semantic Web has provided bioinformatics developers with better paradigms,

standards and technologies to solve common problems such as data heterogeneity,

diversity or distribution. The Bio2RDF warehouse [55] or the Biocatalogue library [73],

amongst other systems, have shown how valuable semantic web technologies can be for

the general life sciences software field [190]. However, semantic web’s potential is still out

of reach of the bioinformatics developers’ community. There is a clear absence of tools to

enhance the migration of existing platforms to new environments, to ease the

development of information systems from scratch or to disrupt with past strategies by

deploying fully interoperable software.

Hence the introduction of COEUS, a framework to tackle these challenges by

empowering developers with a “Semantic Web in a box” software stack, and ensuing a

more agile development workflow for new semantic web systems [14]. The COEUS open-

source project is available at http://bioinformatics.ua.pt/coeus/.

This chapter discusses the devised strategies and their implementation, leading to

COEUS development. Starting with the demand for more modular and dynamic software

packages in the life sciences, we move on to a brief assessment of semantic web use in

bioinformatics, highlighting the opportunities for a new kind of application development

strategy that can empower the next generation of bioinformatics software.

6. COEUS: An Application Framework for Enhanced Service Composition

 108

6.1 Dynamic Software Infrastructures for Life
Sciences
6.1.1 Reusable Assets
The cornerstone of current software development is the idea of “reusing instead of

rewriting”. This rather basic proposition is applied not only to the construction of data

models, where defining new schemas or entire structures is a complex research practice,

but also to the set of programming toolkits being used. Regarding the latter, the vast

number of applications, libraries, services or packages, makes it very easy for developers to

find a solution to an implementation problem. Even when they end up implementing the

desired feature from scratch, they do so acknowledging the already existing algorithms,

their limitations and their strengths.

Common modeling, service access, knowledge acquisition or data exploitation problems

have been solved before. Associated with the facility in finding existing solutions,

developers are now endowed with tools to quickly integrate miscellaneous libraries in their

projects, such as Maven 37 , Node.JS NPM 38 or Ruby’s Gems 39 . Hence, the software

development process is streamlined to a three-stage identify-assess-reuse practice.

As stated in section 3.1, this is leveraging the use of rapid application development

frameworks. Likewise, the bioinformatics field is also becoming aware of these quicker

application deployment strategies, and new toolkits are starting to emerge.

Evaluating Rapid Application Development in Bioinformatics
Rapid Application Development (RAD) is a strategy for generating entire application,

including databases, code and services, from a set of configuration files. This permits

launching new tools much faster than otherwise, thus reducing the “time-to-market” cost.

When assessing RAD strategies, the major conclusion is the traditional poor component

availability. Available frameworks either generate one or two good components (going

feature-deep in each one) or generate multiple components with basic functionality (going

for a wider coverage breadth). Nevertheless, these frameworks permit creating complete

application stubs in no time, making them suitable for initial prototypes or low-end

solutions.

37

 http://maven.apache.org/
38

 http://npmjs.org/
39

 http://rubygems.org/

Pedro Lopes
Service Composition for Biomedical Applications

109

The Molgenis framework is a “generic, open source, software toolkit” to quickly

produce bioinformatics user-friendly and scalable software [88, 191, 192]. This toolkit

provides developers with a simple modelling language to design data structures and user

interfaces. From two valid configuration files, Molgenis’ generator creates a "feature-rich,

ready-to-use web application including database, user interfaces, exchange formats, and

scriptable interfaces".

The automatic code generation tools are one of Molgenis’ highlights. They reduce the

amount of code one has to write by hand. The template-based nature of available methods

leverages a straightforward generation process, easing the transformation from the

configuration file to SQL, Java, R or HTML code.

Molgenis’ use has been growing over the last few years. Biomedical applications for

miscellaneous areas, including genome-wide association studies, proteomics, biobanking or

next-generation sequencing, have already been launched using this toolkit.

Bioinformaticians usually seek Molgenis’ great adaptability. This allows them to generate

entire application structures much faster when the resulting skeleton can be optimized or

to iteratively generate solutions until the final system is ready.

ProteoWizard, BioJava and AIBench are some of Molgenis competitors. ProteoWizard is

a C++ framework very similar to Molgenis in the sense that it provides a comprehensive set

of features to speed up the development of applications requiring some kind of proteomics

data manipulation [193]. As the name states, BioJava is a set of libraries that can be used in

any Java application project and that reduce the complexity of dealing with biological data

[83]. This widely used package facilitates reading and parsing data, performing simple

statistical and analytical tasks and accessing common bioinformatics features such as

sequence alignment or protein structure exploration. At last, AIBench was initially built as

a rapid application development framework for data mining, but its use is being extended

to biomedicine [194]. Also in Java, AIBench enables code annotations, scripting and custom

plugins to be included in a predefined application skeleton, reducing the huge effort of

implementing desktop application interfaces from scratch.

Combining rapid service development with semantic technologies is SADI’s framework

goal, which promotes guidelines and ontologies to exploit the composition of semantic web

services, through a straightforward strategy [195, 196]. Input and output interfaces accept

and expose data in RDF format: service data are OWL class instances. Inward data are

enriched with new relationships until they match the desired output, they are then sent as

6. COEUS: An Application Framework for Enhanced Service Composition

 110

the service reply, streamlining the web service dataflow. SADI includes patterns for

describing the service interfaces and enables the creation of client applications with

“strikingly rich semantic behaviours”. Henceforth, it is clear that rapid application

development strategies must be mixed with the semantic web paradigm to deploy richer

bioinformatics application frameworks.

6.1.2 Towards a Semantics-enabled Architecture
Research from Slater et al. [197] and Kozhenkov et al. [198], among others, analyses current

software development strategies, concluding that there is a clear need for new approaches

adopting distinct ideals and based on a different set of skills. Like next-generation

sequencing hardware improves genetic reads in a multitude of ways, the Semantic Web

may be seen as a next-generation software development paradigm, capable of breeding a

new wave of biomedical software solutions. However, despite its growing momentum,

semantic web strategies are still subject of a slow adoption process.

Taking in account the need for novel bioinformatics software with improved

integration and interoperability features [199], the use of semantic web technologies to

tackle innate life sciences challenges will permit that entirely different computational

systems exchange and accurately interpret knowledge. With an ever-increasing amount of

data, produced in both novel software and hardware platforms, and a prolific research

community constantly demanding best-of-breed tools, this field is evolving exponentially

and reaching user types far beyond the traditional wet-lab biologist [200-202]. Semantic

knowledge discovery, reasoning and inference are now a part of state-of-the-art research.

Despite the key role that bioinformatics software and hardware developments have

played over the last three decades, the life sciences technological ecosystem is still

fragmented and characterized by immeasurable entropy. The majority of data are scattered

through closed independent systems, disregarding any good-practice for integration and

interoperability features. Furthermore, even in notable state-of-the-art tools, the

overwhelming scale and complexity of collected data and features generates an

information overload, making it impossible for researchers to grasp any deep insights from

available knowledge [203, 204].

Interoperable bioscience data are essential to keep up with the bioinformatics evolution

momentum and extract the added value from the vast swathes of digital life sciences data

[205]. This demands new strategies for getting the data out of primitive systems, using

Pedro Lopes
Service Composition for Biomedical Applications

111

independent formats and non-standard terminologies, into a state-of-the-art open

knowledge federation environment [13].

Furthermore, reusable data and reusable components are key for reproducible research

and easily accessible knowledge. Making new systems part of a bigger network, such as the

Linked Open Data cloud, will ultimately result in better access to data, promoting research

collaboration and further increasing community buy-in.

To overcome these challenges we envisaged a new application development paradigm

that boosts the integration of distributed and heterogeneous data and promotes

interoperability through multiple application programming interfaces. Tying all this with

semantic web developments results in a powerful methodology for improving existing

biomedical software and streamlines the deployment workflow.

An Architecture for Knowledge Federation
Combining biomedical software engineering with semantic web ideals, we can pinpoint two

broad and distinct approaches for enriching existing datasets with integrated connections

amongst resources [206]. On the one hand, there are strategies based on data warehousing

techniques, centralizing content from heterogeneous resources. On the other hand, there

are solutions involving integrated access to distributed data sources, federating available

content through a middleware layer. Both approaches are shown in Figure 6-1.

In opposition to warehousing, federation strategies acknowledge the distinct setup of

each specialized instance. The integration of distributed resources requires some kind of

middleware, a federation layer, to connect data available in each federated instance. Once

this layer is deployed, data access becomes transparent. Even though performance may be

poorer than in warehousing solutions, federation strategies can easily scale to

accommodate distinct ontologies, regular data updates in each independent node and long-

term improvements. Federation is hidden from end-users as they can access data in the

same way as with warehousing repositories. Moreover, the federation layer handles query

distribution and deals directly with each repository native API.

Furthermore, federation is innate to Semantic Web technologies and fits well within the

biomedical applications domain [207]. The SPARQL specification was designed from scratch

to ease this process. Publishing data through SPARQL endpoint enables access to data in

more advanced ways than traditional SQL. Not only does this permit development of

general federation tools, but it also promotes the creation of more complex software

frameworks, sustained by native Semantic Web federation [12].

6. COEUS: An Application Framework for Enhanced Service Composition

 112

Figure 6-1. 1) Warehouse integration strategy, multiple resources are replicated in a central
warehouse for prompt access to knowledge. 2) Federation strategy based on SPARQL endpoints
providing direct access to each resource.

6.1.3 Semantic Web State of the Art in Bioinformatics
The semantic web migration process, moving systems from flat-file or relational

environments to semantic infrastructures, has been the subject of extensive research [208-

210]. The major emphasis is given to the development of translation languages, enabling

the mapping from relational connections to the semantic web graph. On the one hand,

basic languages map tables and columns to a new model following a proposed ontology. On

the other hand, more innovative systems permit the extension of existing data connections,

enriching their meaning and expressiveness. In this topic, two approaches are common.

Some mappings are dedicated to forming new triple sets from existing relational databases

whereas other languages enable publishing semantic views over relational data.

These languages are complemented with translation applications, using the newly

mapped model to provide a semantic data version. Triplify [211], Virtuoso40 and D2R server

[212] have managed to employ new techniques that allow for semantic views and provide

40

 http://virtuoso.openlinksw.com/

SPARQL FEDERATION

1
WAREHOUSE

2
FEDERATION

KNOWLEDGE KNOWLEDGE

Pedro Lopes
Service Composition for Biomedical Applications

113

access to existing relational data. Instances with DBLP41, SIDER42, DrugBank43, DailyMed44

and Diseasome45 data were created using D2R, enabling SPARQL data integration endpoints.

Despite these advances in migration technology, the resulting systems are just a

semantic version of pre-existing relational data. Thus, there is a lack of data insertion and

triplification features, which are challenging tasks being backed by large-scale research

projects.

Bio2RDF or DBPedia collect a gigantic amount of data in outsized triplestores. With the

same decision-support goals as traditional warehouse systems, these applications adopt

advanced extract-transform-load techniques to triplify existing data into a semantic

format, storing them in triplestores. DBPedia offers a triplified Wikipedia version,

containing its entire dataset, along with multilanguage support and category organization.

Bio2RDF’s focused biology environment enables it to be a remarkable life sciences semantic

database, collecting data pointers from a wide array of domains, from genes to proteins up

to pathways and publications.

Despite these large semantic systems’ quality, they are not fit for common niche fields.

Whilst Bio2RDF diversity and size will expand its use to the level of systems like UniProt or

BioMART, these features also make it less suitable for smaller and restricted environments

such as specific gene, disease or model organism information systems. Even if new software

includes connections to Bio2RDF data, the system’s core will be composed of small datasets

and other precise information bits gathered from external databases or wet-lab file systems.

S3DB proposes a new data management model for integrating biomedical knowledge

capable of helping in miscellaneous niche environments [213]. S3DB provides developers

with tools to construct their own ad-hoc Semantic Web applications, instead of beginning

the development with an empty box. The proposed solutions for managing ontologies or

locked data repositories make it adequate for closed environments. Data integration

features are still very primitive, though. In these areas, it is imperative to provide

mechanisms for importing data in various formats into the triple store, a process essential

for obtaining enhanced collections of data.

41

 http://www4.wiwiss.fu-berlin.de/dblp/
42

 http://www4.wiwiss.fu-berlin.de/sider/
43

 http://www4.wiwiss.fu-berlin.de/drugbank/
44

 http://www4.wiwiss.fu-berlin.de/dailymed/
45

 http://www4.wiwiss.fu-berlin.de/diseasome/

6. COEUS: An Application Framework for Enhanced Service Composition

 114

6.1.4 Opportunities for Building a Semantic Web Framework
Evolving current applications to the semantic web ecosystem is a necessary leap in

upcoming years. With the currently available tools, successful migrations are limited to a

below-reasonable level. Moreover, developers must take in account the needs of future

software: the integration and interoperability challenge must be tackled from the start. The

combination of these factors with biomedical software requirements demands a new kind

of application framework, thriving under the vast potential and opportunities brought

about by semantic web technologies. The reasoning for developing COEUS is summarized

next, in four overarching integration and interoperability opportunities.

 As previously stated, the principles for rapid application development practices,

already common in the general computer science field, are gaining traction within

the bioinformatics community. With this methodology, the opportunity arises to

promote the use of streamlined development packages, libraries and frameworks.

 The adoption of semantic web integration strategies, based on advanced

knowledge triplification procedures, is a vital opportunity to improve existing

Extract-Transform-Load tasks in data warehousing. Easing the transition process

from CSV files or relational databases into semantic web triplestores is the

cornerstone for publishing knowledge online.

 With data being generated at a very high throughput rate, connecting it and making

it available is essential to fully explore and understand its inner wisdom. Hence,

there is a clear opportunity to employ new semantic interoperability standards,

like SPARQL or LinkedData, to enhance knowledge sharing, broadcasting, reasoning

and inference.

 Federated data networks will play a key role in the future dissemination of

knowledge from any science field. The demand of more integrative and

interoperable data leverages the opportunity to build new systems where these

features are standard and available by default.

With COEUS we introduce a solution that embraces these opportunities, being able to

scale and adapt to future unforeseen scenarios. The COEUS framework offers flexible

schema mappings for data integration and future-proof interoperability, making it the

ideal candidate for improving the complex process of developing new semantic web

application ecosystems.

Pedro Lopes
Service Composition for Biomedical Applications

115

6.1.5 Requirements Analysis and Design Issues
Leveraging on the aforementioned opportunities to build a new semantic web-based

environment, we conducted a careful analysis of the requirements behind such system.

These requirements are generically entailed in the following guidelines: (R1) enhanced

rapid application development, (R2) suitable integrative ontology, (R3) semantic data

management, (R4) flexible integration, (R5) customizable web applications, (R6)

interoperability with software tools, (R7) federation architectures and (R8) open-source

availability. Next, a lightweight overview of these requirements is introduced:

 (R1) Enhanced rapid application development. The COEUS framework must

bring rapid application development in bioinformatics one step further. This

should be particularly evident in the adoption of semantic web technologies and

in the bioinformatics-driven platform design.

- (R1.1) Streamlined instance configuration. The configuration of new

COEUS instances must be streamlined to require a minimal set of

instructions.

- (R1.2) Simple instance boot. COEUS instance creation process must be

simplified and the majority of tasks automated to enable the quick

launch of new applications.

- (R1.3) Usable in any programming environment. The resulting

framework must make data available for any client-side development

environment.

 (R2) Suitable integrative ontology. COEUS’ development must include the

design of a new integration ontology, tailored to the devised integration

strategies.

- (R2.1) Rich resource description. The description of integrated

resources must be as rich as possible to allow for a flexible integration

environment.

- (R2.2) Ontology-based data mappings. COEUS’ ontology for resource

description must enable the mapping of non-semantic data into any

ontology from any field.

 (R3) Semantic data management. COEUS must be supported by a semantic

knowledge base, thus enabling data management through a semantic layer.

6. COEUS: An Application Framework for Enhanced Service Composition

 116

- (R3.1) Triplestore knowledge base. COEUS’ knowledge base should be

supported by a semantic triplestore, whether through in-memory, file-

based on relational-based strategies.

- (R3.2) Semantic data translation. COEUS must enable the translation of

data from existing non-semantic environments into its internal semantic

knowledge base.

- (R3.3) Knowledge reasoning and inference. As an integral part of any

semantic web system, features must be available in COEUS to permit the

effective reasoning over acquired knowledge and the inference of new

data relationships.

 (R4) Flexible integration. Resource integration in COEUS must be a flexible

process to allow the integration of data from distributed and heterogeneous

sources.

- (R4.1) Data loading from SQL, CSV, XML or SPARQL sources.

Automated integration of data from CSV or XML files, or from SQL or

SPARQL query results is mandatory.

- (R4.2) Extensible integration architecture. In addition to (R4.1), COEUS

must support the creation of custom integration plugins.

 (R5) Customizable web applications. COEUS must empower the eased creation

of client-side web applications, through normalized infrastructures.

- (R5.1) Internal API. An internal Java API must be available to enable the

creation of client-side Java applications.

- (R5.2) JavaScript API. Modern web applications rely on advanced

JavaScript interactions. Therefore, COEUS must also include a direct

JavaScript interface to its knowledge base.

 (R6) Interoperability with software tools. The COEUS framework must assure

interoperability with any external system.

- (R6.1) REST API. A generic REST API must be made available to permit

the use of data from COEUS’ knowledge base within any external system.

 (R7) Federation architectures. COEUS’ setup must support the creation of

intelligent knowledge networks through the federation of data collected in each

instance.

Pedro Lopes
Service Composition for Biomedical Applications

117

- (R7.1) SPARQL API. A SPARQL endpoint must be accessible to allow

direct queries to each COEUS instance knowledge base.

- (R7.2) LinkedData API. A view adopting the LinkedData principles must

be publicly available.

 (R8) Open-source availability. All developed COEUS components must be

provided through open-source licensing schemes.

Table 6-1 summarizes the relationships between these requirements and the problems

encountered during our investigative literature analysis.

Table 6-1. Summary of relationships between the defined requirements and the issues overviewed in
the researched scientific literature.

 R1 R2 R3 R4 R5 R6 R7 R8
Swertz et al. [88]  

Wilkinson et al. [195]   

Cannata et al. [190]     

Slater et al. [197]   

Kozhenkov et al. [198]  

Hepp et al. [199]  

Cannata et al. [200]  

Marx et al. [205]   

Cheung et al. [207]  

Hazber et al. [210]  

6.2 COEUS: A Semantic Web Application
Framework
Semantic Web tools enable translucent relationships amongst data. The semantic web itself

is a truly intelligent data network, with rich connections allowing for a better

understanding of available knowledge. However, despite the immense possibilities

surrounding semantic web technologies, its adoption has been dimmer than anticipated.

Whilst stakeholders from all domains acknowledge the benefits of having a fully semantic

information system, the difficult transition from traditional flat-file or relational database

supported systems to the semantic web is a challenging roadblock [214].

6. COEUS: An Application Framework for Enhanced Service Composition

 118

6.2.1 Framework Setup
COEUS’ “Semantic Web in a box” strategy envisages the inclusion, in a single package, of all

the tools required to launch a new Semantic Web based application. In addition to this,

COEUS’ setup must also account for a flexible and scalable deployment environment. Many

of the architectural decisions observed when implementing this framework had these

ideals in mind. Hence, various tools and platforms were evaluated in the search for the

optimal combination of components and integration/interoperability strategies that could

transform semantic web rapid application deployment.

To better explain COEUS’ strategy we employ a naming strategy that adopts a gardening

metaphor. A single COEUS instance is entitled as Knowledge Seed, or simply seed. In

scenarios with multiple seeds deployed in a true application ecosystem, this federated

structure is envisaged as a Knowledge Garden.

Knowledge Representation
As mentioned in chapter 3, data in the Semantic Web are stored in formal triple statements:

Subject-Predicate-Object. These statements employ different vocabularies and languages to

identify each component. We can make a simple analogy to basic sentences with a subject,

a verb representing action or meaning - the predicate, and what relates to the subject -

the object. One last thing to consider is that predicates relate to object or data properties.

Figure 6-2 highlights this division in a common sentence matched to a single statement.

Figure 6-2. Sample triple statement, subject – predicate – object.

Taking in account the multitude of data models we can integrate within a single COEUS

instance, the general semantic web knowledge representation strategy is more than fit.

This allows us to map any content from CSV columns or SQL query results into a set o RDF

statements.

For the knowledge storage framework component we identified and assessed various

RDF management tools, as briefly covered in Table 6-2. The Jena framework is the most

suitable alternative for COEUS’ knowledge base. Its Java-based nature, easy integration with

other tools and extensibility, make it ideal for use in a component-based framework. Jena's

SUBJECT

BACK TO THE FUTURE HAS DIRECTOR ROBERT ZEMECKIS
PREDICATE OBJECT

Pedro Lopes
Service Composition for Biomedical Applications

119

API has basic support for reading and writing triple statements in Java in an in-memory or

database-supported triplestore.

Table 6-2. Knowledge storage and representation technologies comparison.

FRAMEWORK DESCRIPTION

Jena46

Widely used semantic web package for Java. Includes several features to easily

deploy new applications, including support for SPARQL queries, RDF and OWL

APIs, and inference. Provides multiple storage and reasoning mechanisms and

also allows the integration of custom data processing mechanisms.

Sesame47

Widely used RDF framework and server. Includes support for SPARQL queries

and an HTTP server interface. It is packaged with multiple storage and reasoning

mechanisms and also allows the integration of custom mechanisms.

Virtuoso48

Widely used commercial solution for semantic web development. Includes a

platform agnostic solution to access data through SPARQL queries, manage

knowledge bases and integrate heterogeneous resources.

Redland49
Collection of RDF libraries for C, with bindings for various other languages.

Provides RDF API, parsers, and query interfaces.

LinqToRDF

Semantic Web framework for .NET built on the Microsoft Language-Integrated

Query (LINQ) Framework (language-independent query and data processing

system).

OWL API50

OWL API and implementation for Java. Includes an OWL API that is built on the

functional syntax of OWL 2 and contains a common interface for many other

reasoners.

Components
The basic COEUS setup requires a Java application server (Tomcat is recommended) and a

relational database (for the triplestore backend). All the other necessary components are

included in COEUS package, further facilitating the creation of new systems from scratch.

Figure 6-3 highlights the component interactions in each standalone instance and Table

6-3 describes all used components and their purpose within the framework.

46

 http://jena.apache.org/
47

 http://www.openrdf.org
48

 http://virtuoso.openlinksw.com/
49

 http://librdf.org/
50

 http://owlapi.sourceforge.net/

6. COEUS: An Application Framework for Enhanced Service Composition

 120

Figure 6-3. COEUS seed component interactions diagram. 1) External data are integrated from
multiple sources using the available CSV, XML, SQL or SPARQL connectors. 2) The abstraction engine
translates read data into the seed knowledge base. 3) COEUS internal triplestore is supported by Jena
with a MySQL relational database backend. 4) Data in the knowledge base are accessed through the
application engine for the Java and REST APIs. 5) The SPARQL endpoint, provided by Joseki, allows
direct access to the knowledge base and is used by pubby to enable the LinkedData views.

JavaREST
pubby

LinkedData
Joseki
SPARQL

ABSTRACTION ENGINE

6
CLIENT APPLICATIONS

5
API

4
APPLICATION ENGINE

3
KNOWLEDGE BASE

2
INTEGRATION ENGINE

1
EXTERNAL SOURCES

CSV SQLXML SPARQL

Pedro Lopes
Service Composition for Biomedical Applications

121

Table 6-3. COEUS’ framework libraries listing and descriptions.

LIBRARY DESCRIPTION

Jena

Jena is used as the core semantic web package within COEUS, mediating input

access to the knowledge base when building the triplestore and output access

to the Java API.

Joseki51 Provides the SPARQL endpoint functionality.

Pubby52 Provides the LinkedData interface.

Sparql.js JavaScript library to query remote SPARQL endpoints.

Tomcat Java application server.

MySQL Backend support to the Jena SDB triplestore.

Architectures
COEUS’ application models and internal seed architecture can be combined in a single view,

highlighting the knowledge flow from the data integration connectors to the

interoperability API, detailed further in this chapter. The architecture for a single seed is

show in Figure 6-4.

Figure 6-4. COEUS architecture for a single seed. 1) Data integration connectors for CSV, XML, SQL and
SPARQL enable the triplification of data into each seed’s semantic storage. 2) Data are selected from
each external resource to match specific ontology predicates, generating a rich knowledge base. 3)
COEUS central knowledge base includes the triplestore data repository and respective data access
methods. 4) Acquired data are available through COEUS API, using Java methods, REST services, a
SPARQL endpoint and the LinkedData view.

51

 http://www.joseki.org/
52

 http://www4.wiwiss.fu-berlin.de/pubby/

API

DATA INTEGRATION CONNECTORS

dc:title rdfs:label
owl:imports

KNOWLEDGE BASE

CSV XML SQL SPARQL

REST JAVA LDATA SPARQL

foaf:name

3

1

2

4

6. COEUS: An Application Framework for Enhanced Service Composition

 122

To further increase COEUS’ innate flexibility, multiple seeds can be combined in a

knowledge garden, providing a virtual holistic access layer to collected knowledge,

regardless of its original location (Figure 6-5).

Figure 6-5. COEUS’ garden architecture overview. 1) With one or more seeds in place, the COEUS
platform enables a knowledge federation layer. 2) The distributed knowledge federation layer is
capable of answering specific research questions. 3) This distributed entry point enables the
deployment of multiple applications to web, desktop or mobile environments.

Application Models
The COEUS framework can be used to deploy distinct application models (Figure 6-6). On

the one hand, a seed can accommodate multiple end-user applications, on distinct devices

for instance. This permits that a single centralized data source can be built to support any

number of web, desktop or mobile applications. On the other hand, multiple specialized

seeds can be connected to supply a single holistic application. In this strategy all seeds

work independently, and can be seen as nodes in a data sources network, providing access

to an overarching tool. Along with these opposite strategies, hybrid architectures are also

possible, combining multiple applications and seeds in a distributed data and applications

ecosystem.

1

KNOWLEDGE FEDERATION LAYER
2

3

API

DATA INTEGRATION CONNECTORS

KNOWLEDGE BASE

CSV XML SQL SPARQL

REST JAVA LDATA SPARQL

API

DATA INTEGRATION CONNECTORS

KNOWLEDGE
BASE

CSV XML SQL SPARQL

REST JAVA LDATA SPARQL API

DATA INTEGRATION CONNECTORS

KNOWLEDGE BASE

CSV XML SQL SPARQL

REST JAVA LDATA SPARQL

Pedro Lopes
Service Composition for Biomedical Applications

123

Figure 6-6. Basic COEUS application models. 1) One to many: one seed provides data to multiple client
applications. 2) Many to one: using SPARQL federation multiple seeds are dynamically interlinked and
accessed through a single application platform. 3) Many to many: hybrid model where multiple seeds
are accessed by multiple client applications through a distributed federation layer.

Internal Ontology
To achieve the desired COEUS’ scalability and flexibility, the basic platform model is

organized in a tree-based structure. Data relationships are mapped to Entity-Concept-Item

structures, which are connected to Resources and Bridges, supporting integration and

exploration settings, respectively (Figure 6-7). This ontology is available online53 and must

be used in COEUS’ configuration files. Describing COEUS entire ontology is out of this thesis

scope. For further information regarding all classes, data and object properties or the

entire structure, refer to COEUS’ online documentation at

http://bioinformatics.ua.pt/coeus/documentation/. A short description for each core class

in the ontology follows.

 A Seed is a single framework instance. In COEUS’ model, Seed individuals are used

to store a variety of application settings, such as component information,

application descriptions, versioning or authors. Seed individuals are also connected

to included entities through the :includes property (inverse: :isIncludedIn). This

53

 http://bioinformatics.ua.pt/coeus/ontology/coeus_1.0b.owl

FEDERATION ENGINE

1
ONE TO MANY

2
MANY TO ONE

KNOWLEDGE

KNOWLEDGE

3
MANY TO MANY

FEDERATION ENGINE

KNOWLEDGE

6. COEUS: An Application Framework for Enhanced Service Composition

 124

permits access to all data available in the seed, providing an overarching entry

point to the system information.

 Entity individuals match the general data terms. These are “umbrella” elements,

grouping concepts with a common set of properties. For example, to gather

proteomics information, the model has a “Protein” entity or for disease information

there is also a general “Disease” entity. To better understand this organization,

object-oriented structures, their inheritance and variable subtypes must be

remembered.

 Concept individuals are area-specific terms, aggregating any number of items

(the :isConceptOf property) and belonging to a unique entity (the :hasEntity

property). Continuing the previous scenario, “UniProt”, “PDB” and “InterPro”

databases are concepts within the “Protein” entity. Note that an Entity may have

any number of concepts, but a Concept belongs to a single Entity.

 Item individuals are the basic terms, with no further granularity and representing

unique identifiers from integrated datasets. In the above proteomics scenario,

“P51587”, “P02461” are items under the “UniProt” concept, each matching a unique

term from the original UniProt database. For the disease entity, the “104300”

individual is a match for Alzheimer’s disease entry in the OMIM database concept.

In the knowledge base, items can be associated to other items directly

(predicate :isAssociatedTo) or through connections from their parent concepts.

Entities are also connected to concepts, and these to items, making Seed individuals

a central registry for COEUS’ seeds.

 Resource individuals are used to store external resource integration properties.

The configuration is further specialized with CSV, XML, SQL and SPARQL classes,

mapping precise dataset results to the application model, through direct concept

relationships. In the proteomics scenario, a Resource individual contains

information for the “UniProt” concept original data source, including its location

and how to extract each item. This resource is connected to several XML individuals

(predicate :loadsFrom), each containing an XPath query whose results will map to

application model properties. With the :hasResource property, the framework

knows exactly what resources are connected to each concept and, subsequently,

how to load data for each independent concept, generating new items.

Pedro Lopes
Service Composition for Biomedical Applications

125

 Brigde individuals are also mapped to concepts, storing concept visualization and

exploration features. That is, bridges tell the system how concept items can be

shown to users. This configuration permits any number of internal properties as

long as they are understood by the final client application. This means that we can

include parameters for advanced data visualizations, triggering web service calls or

composing simple links. An example of the latter is a bridge for the “UniProt”

concept, declaring a structure for building valid UniProt links, replacing #replace# in

http://www.uniprot.org/uniprot/#replace# with individual item identifiers.

Figure 6-7. COEUS’ ontology model for the internal tree-based structure highlighting relationships
amongst the various individual classes. A seed can have multiple entities, and each entity can be
related to one or more concepts. Concepts aggregate unique items and are connected to resource and
bridge information. The data import process uses resources’ properties (1) and custom methods can
be defined to display data (2). Sample seed data for a “Diseasecard” seed is shown at each element,
listing “UniProt” items belonging to a “Protein” entity.

One of the great advantages of using semantic web technologies is that any external

ontology can be used to complement or extend COEUS’ internal model. As long as new

properties are understood by the seed applications, any number of properties can be added,

mapping concepts or entities to existing ontologies or adding further properties to

describe resources or bridges.

SPARQL
SQL

CSV
XML

1
DATA IN

RESOURCE
res_uniprot

BRIDGE
link_uniprot

Item
P51587

Item
P01116

Item
P16083

Item
P12830

SEED
Diseasecard

ENTITY
Protein

CONCEPT
UniProt

*

1

*

1

...

1 *1*

*

1

2
DATA OUT

6. COEUS: An Application Framework for Enhanced Service Composition

 126

Data Flow
The COEUS framework gives developers total control over the data flow, from distributed

repositories to the internal semantic knowledge base and from this to any end-user

application. From a data input perspective, the goal behind this strategy is to provide

developers with advanced methods to load precisely what they want, how they want it and

from where they want it. Furthermore, on a data output perspective, we also want to

provide enough flexibility for developers to build their own applications in any

programming environment. To summarize, the inwards data flow establishes COEUS as a

data integration platform (Figure 6-8) and the outwards data flow demonstrates its

advanced interoperability features (Figure 6-9).

Figure 6-8. COEUS’ inward data flow, from external distributed and heterogeneous resources (1) into a
centralized knowledge base (2).

Figure 6-9. COEUS’ outward data flow. Knowledge collected in the centralized knowledge base (1) is
accessible through an interoperability API composed of four key interfaces: REST, Java, LinkedData
and SPARQL (2). 3) The API enables the creation of miscellaneous client applications, target at
multiple environments.

KNOWLEDGE BASE

CSV XML SQL SPARQL

1
DISTRIBUTED
RESOURCES

2
CENTRALIZED
KNOWLEDGE

KNOWLEDGE BASE

REST JAVA LDATA

1
CENTRALIZED
KNOWLEDGE

2
INTEROPERABILITY
API

3
HETEROGENEOUS
CLIENT APPLICATIONS

SPARQL

Pedro Lopes
Service Composition for Biomedical Applications

127

6.2.2 Extract-Transform-Load
Data integration is a perennial challenge in modern bioinformatics. As discussed in

previous chapters, caveats such as resource distribution and heterogeneity transform

integration into a demanding computer science challenge. One of COEUS’ goals is to tackle

this challenge. This framework provides features to facilitate the integration of

heterogeneous data from distributed resources in an elegant fashion. Traditional

warehousing techniques revolve around advanced algorithms for extracting data from a

specific source, transforming it into the warehouse model and actually replicating the data

in the new integrated dataset. In COEUS, this Extract-Transform-Load process is

specialized to a semantic web environment, enhancing the inwards data flow from CSV,

XML, SQL or SPARQL data to sets of triple statements.

Heterogeneity also appears in the distinct data models of each integrated resource.

COEUS tackles this issue with a semantic web translation process. Due to COEUS roots, the

internal knowledge base is model-agnostic, liberating integrated data from the restrictions

of CSV tables or relational databases. Since all data are stored as triple sets, the limitations

adjacent to foreign keys or table columns are replaced by meaningful relationships.

In most cases, the various properties stored in object-oriented models or XML

structures can be re-engineered through the adoption of existing ontologies or the creation

of new ones. As mentioned before, the usage of controlled ontologies augments the

flexibility of internal data models, enabling the creation of tightly integrated datasets.

The physical and logical content heterogeneity issues impose the development of a

generic data-loading tool. For simplicity purposes, a seed’s configuration file includes the

type of resource being loaded and the URI to access it. This way, all COEUS needs is an

Internet connection to access REST or SOAP services, SQL databases or SPARQL endpoints.

Furthermore, the URI naming scheme also permits the identification of local resources and

SQL database connections can be made to a local host. This results in having the same

structure in COEUS for importing local or remote data.

This immense amount of variables and configuration properties for integrating data

lead to the appearance of the connector and selector concepts, explained further in this

chapter.

Collecting Distributed Data
The initial problem that arises when building new warehouses or integrated datasets

relates to the diversity of formats involved in the data import process. Whether we are

6. COEUS: An Application Framework for Enhanced Service Composition

 128

accessing a REST web service or a MySQL database, most programming technologies allow

configuring this access through a simple URI. For instance, a sample JDBC connection string

to a MySQL database is

jdbc:mysql://thedbhost.com:3306/thedbname?user=thedbuser&password=thedbuserpwd((
and a sample URL for accessing Twitter’s API is

https://twitter.com/#!/search/%40term.(
The similarities are clear and enable the simplification of the external resources

configuration. All resources will have a URI property for instance.

If data format heterogeneity poses the initial threat for a linear data integration process,

the data model heterogeneity further heightens it. We know from the start that data will

come through in all sorts of formats and models. To overcome these caveats, COEUS adds

an intermediate abstraction layer between the external resources and the internal

knowledge base - Figure 6-10.

The idea behind this abstraction layer is to convert the data being integrated to a

general model-independent format. In practice, the implemented method simply generates

a network graph for each new item, mapping the configured predicates to the values from

external resources. With this data abstraction, the triplification process can take place,

enabling the generation of triple statements from the abstracted data model for further

storage in COEUS’ knowledge base.

Figure 6-10. COEUS’ data abstraction process. 1) Data from external, distributed and heterogeneous
resources is prepared for triplification. 2) COEUS connectors initiate the semantic translation using
the abstraction engine. 3) Generate triples are stored in the seed knowledge base, a fully integrated
triplestore.

ABSTRACTION ENGINE

1
HETEROGENEOUS
RESOURCES

john@mail.com

bob@mail.com

alice@mail.com

Bob

John

Alice

3

2

1

@toddmoy

@hellokv

@Twitter

@elliottmunoz

Kevin

Todd

Elliott

FirstName

3

2

1

#

@toddmoy

@hellokv

@Twitter

@elliottmunoz

Kevin

Todd

Elliott

FirstName

3

2

1

#
p : Person

s : Alice s : Bob

p : Date

CSV XML SQL SPARQL

2
SEMANTIC
TRANSLATION

bob@mail.com

...

OBJECT

Alice

foaf:contact

...

PREDICATE

rdfs:label

...

Bob

Alice

SUBJECT

3
INTEGRATED
TRIPLESTORE

Pedro Lopes
Service Composition for Biomedical Applications

129

Connectors and Selectors
The integration task consists in the acquisition of data from heterogeneous and distributed

resources to populate a seed. This complex strategy required the construction of purpose-

specific wrappers. These methods access external resources and process data, using the

connectors, based on a set of configuration properties, the selectors.

Selectors are property sets defining the data location in a specific resource and what

predicate will be added to the knowledge base during the integration process. Connectors

control these particular data mappings: independent and generic modules to load

information from external resources in CSV, XML, SQL or SPARQL formats. They possess a

common set of configuration properties defining the data type, where the data are located,

the relationships to existing data, and other module-specific definitions. This information

is stored in the seed configuration files, exemplified in the following chapter. For instance,

XML module configuration must include the original data source address and a collection

of selector properties, XPath queries, which will be performed against the read XML,

corresponding to the data being mapped. Likewise, SQL query column names, CSV column

numbers, or SPARQL variables are used as selectors in their respective modules.

The data loading process uses connectors to initiate a data triplification process. Data

are enriched through the dynamic generation of new triples based on specified

configuration properties. With this Semantic Web-based Extract-Transform-Load we are

augmenting the scope of data in one-dimensional CSV files or bi-dimensional SQL tables to

a multi-dimensional triplestore.

The richness of this triplification process resides on connector’s flexibility. The

selectors within a given connector allows us to match any content into our semantic graph

using a primary key for the subject, any property mapped from the seed ontology as

predicate, and selection results as objects. These are then used to generate each new item

map on-the-fly, which is then converted into a set of statements and inserted into the

knowledge base.

Triplifying Content
The triplification process highlighted in Figure 6-11 may proceed in two modes: explicit

and implicit. Explicit translations are required when data are read from CSV, XML or SQL

resources. As data does not possess any related semantics (only columns or objects),

explicit descriptions for the new predicates need to be set up. Since we can map data in

XML, CSV or SQL to any predicate in any ontology and to more than one predicate at once,

6. COEUS: An Application Framework for Enhanced Service Composition

 130

we can expand the meaning of non-semantic data by explicitly declaring it as the object of

a specific statement.

SPARQL resources provide implicit semantics; data are already in the same semantic

format (triple statements) as required by the storage engine. While loading data with the

SPARQL connector, the selector can match data into new predicates or the original

predicate. This way, COEUS can simply replicate triples or expand them to richer entities.

Figure 6-11. Triplification process overview. 1) Subjects, new Item individuals, are generated at
runtime. 2) Predicates are read from the configuration file to match any predicate from any ontology.
3) Objects read from the external heterogeneous resources finish the triple statement.

In addition to these two triplification modes, data integration can also be performed

using three distinct approaches according to the seed needs or to how data are provided by

each service. These methods are defined by the :method property in a resource

configuration. Cache is the default method and enables standard data loadings from

external resources, generating new items and triplifying all data. The complete method adds

new triples to items already in the seed triplestore. At last, the map integration method

enables the creation of custom direct relationships amongst individuals. With this, we can

create entire sets of new mappings amongst items after the data are loaded. Both the map

and complete integration methods use the :extends configuration predicate from COEUS’

internal ontology to define the Concept whose individual item list will be enriched.

With COEUS’ triplification strategy, the data integration approach is abstracted from

the data itself. Since there is ground for one or more common underlying ontologies, new

axioms can be established disregarding traditional software constraints. Data can be

collected and connected using distinct methods and miscellaneous import formats. This is

1
SUBJECT

2
PREDICATE

3
OBJECT

new ITEM individual

CSV columnfoaf:name

dc:title

rdfs:label

...

owl:versionInfo

SQL table column

XML XPath

SPARQL variable

custom Plugin

Pedro Lopes
Service Composition for Biomedical Applications

131

ideal for optimizing all kinds of new data-powered applications, namely on the life sciences

field, where heterogeneous data models with limited relationships are common.

Configuring a New Seed
The seed configuration controls the entire instance operability. At the moment, three

separate files are used to set up application properties, the application model and resource

integration properties.

 The config.js file stores volatile application properties. These include the application

name, version, short description, deployment environment and the list of

ontologies used in the seed. Using a JSON object for the configuration permits faster

reads when compared to XML, while maintaining a good object-oriented structure,

in comparison to simple properties files.

 The information system ontology. In most scenarios, the “reuse instead of rewrite”

principle does not suffice for the entire application ecosystem. As such, COEUS

allows the creation of custom ontologies to use in one or various seeds. Developers

are able to organize their own applications models, taking full advantage of

RDF/OWL’s modelling flexibility.

 The application setup file includes the data integration and exploration

configurations. In this file we define the individuals for each class, configuring

entities, concepts, bridges and resources. Summarily, content in this file is used to

guide the entire framework instance setup, from the handling of external resources

in the connectors to the labelling rules for each Item individual.

COEUS’ future developments include the addition of a user-friendly GUI to configure

new seeds. In the meanwhile, and considering the setup files OWL/RDF nature, relying on

Protégé is advisable to ease the configuration process. In this widely used ontology-

modelling tool, the configuration can be written, tested and visually organized.

The amount and variety of configuration options is even greater than WAVe’s. Hence,

the best option is to look at the examples and online documentation at

http://bioinformatics.ua.pt/coeus/documentation/. For mere descriptive purposes, a

subsection from a real configuration file is included next. This code sample configures the

loading of known human genes into a seed. This list, mentioned in WAVe’s integration

description, is maintained by the HUGO Gene Nomenclature Committee, which provides a

REST service for getting the list in CSV format. This resource loads the list into our seed,

populating a HGNC Concept under the Gene Entity. The resource_HGNC individual is

6. COEUS: An Application Framework for Enhanced Service Composition

 132

configured to load the data from the selected :endpoint object, send it for processing using

the CSV connector, property dc:publisher, and map the results from two :CSV individuals,

property :loadsFrom. In these, the :query predicate defines which column object will map

to the predicates listed in :property. Hence, in the csv_HGNC_id individual, data obtained

from column 0 of the HGNC CSV file, property :query, will be mapped into two triple

statements with the same subject, the dc:source and dc:identifier predicates and with the

same object, property :query.

#+HGNC+Resource+configuration+
:resource_HGNC(rdf:type(:Resource(,(owl:NamedIndividual(;(

rdfs:label("resource_hgnc"^^xsd:string(;((
dc:title("HGNC"^^xsd:string(;(
:method("cache"^^xsd:string(;((
dc:publisher("csv"^^xsd:string(;((
:endpoint("http://www.genenames.org/cgiX(
bin/hgnc_downloads.cgi?title=HGNC+output+data(

&hgnc_dbtag=onlevel=pri&=on&order_by=gd_app_s(
ym_sort&limit=&format=text&.cgifields=&.cgifi(
elds=level&.cgifields=chr&.cgifields=status&.(
cgifields=hgnc_dbtag&&where=&status=Approved&(
status_opt=1&submit=submit&col=gd_hgnc_id&col(
=gd_app_sym&col=gd_app_name&col=gd_status&col(
=gd_prev_sym&col=gd_aliases&col=gd_pub_chrom_(
map&col=gd_pub_acc_ids&col=gd_pub_refseq_ids"(^^xsd:string(;(

:extends(:concept_HGNC(;(
:isResourceOf(:concept_HGNC(;(
:hasKey(:csv_HGNC_id(;(
:loadsFrom(:csv_HGNC_id,:csv_HGNC_symbol.(

(
#+HGNC+CSV+connector+configuration+for+HGNC+identifier+
:csv_HGNC_id(rdf:type(:CSV(,(owl:NamedIndividual(;(

rdfs:label("csv_hgnc_id"^^xsd:string(;((
:query("0"^^xsd:string(;((
dc:title("HGNC_id"^^xsd:string(;((
:property("dc:source|dc:identifier"^^xsd:string(;((
:loadsFor(:resource_HGNC(;(
:isKeyOf(:resource_HGNC(.(

(
#+HGNC+CSV+connector+configuration+for+HGNC+name+
:csv_HGNC_name(rdf:type(:CSV(,(owl:NamedIndividual(;(

rdfs:label("csv_hgnc_name"^^xsd:string(;((
:query("2"^^xsd:string(;(
dc:title("HGNC_name"^^xsd:string(;((
:property("rdfs:comment|dc:description"^^xsd:string(;((
:loadsFor(:resource_HGNC(.(

(
For improved dependency management, seed configurations are organized as graphs.

That is, developers can implement dependencies amongst resources, enabling the loading

of data based on previously collected individuals, selected with the :extends property. This

allows for the creation of advanced data integration workflows, combining multiple

concepts, thus enabling the aggregation of millions of triples in the seed’s knowledge base.

Pedro Lopes
Service Composition for Biomedical Applications

133

6.2.3 APIs
COEUS tackles the lack of interoperability in existing life sciences information systems.

Drawbacks such as poor web service availability, complex and closed data models, or

vendor-specific formats are common in bioinformatics. To overcome these clear issues in

semantic interoperability, COEUS includes, by default, a comprehensive API to explore

collected data.

Available methods were developed with two goals in mind. On the one hand, data must

be easily available for the creation of new applications within a COEUS seed. On the other

hand, integrated data must also be published externally, making it available for any

external system. Hence, COEUS’ API is organized in two sections: internal and external,

despite their natural promiscuity.

The internal API comprises the Java methods and Javascript libraries. The former

provides an abstraction over Jena’s basic data access functions and are adequate for

scenarios where the seed client-side application is also being developed in Java. These

methods permit data access in both ways, allowing for streamlined data access and

traditional data insertions. The available Javascript library simplifies the process of

accessing a SPARQL endpoint using Javascript. Combining this tool with modern user

interface frameworks (such as jQuery) makes it very easy to query a seed’s knowledge base

and use the response data in the application. Consequently, developers can create highly

interactive user interfaces, in any development framework. Moreover, custom endpoints

can be configured in the JavaScript library to access data from external SPARQL endpoints.

This enables the creation of modern semantic data mashups on the client-side.

The external API comprises a set of REST services, a SPARQL endpoint and a LinkedData

viewer. The available REST services allow accessing content in multiple formats (CSV, JSON,

RDF/XML or HTML). Likewise, the SPARQL endpoint is open for querying. With this

endpoint, any query can be performed to exploit the wealth of integrated data. At last, the

LinkedData perspective makes the knowledge base content available to any LinkedData

browser, delivering an advanced structured interface to access data.

Java and Jena
While Jena provides a developer-friendly API for adding and retrieving data in Java, COEUS

includes an additional set of methods to ease these tasks and facilitate data access.

COEUS Java API is an abstraction over Jena’s internal methods, providing a more direct

way to access COEUS data structures. Hence, accessing items, concepts or entities, or

6. COEUS: An Application Framework for Enhanced Service Composition

 134

adding new statements actions are more straightforward. Next, there are the signatures for

functions to add new statements and retrieving the result set of a SPARQL query. More

examples and full documentation can be found online in the Java documentation at

http://bioinformatics.ua.pt/coeus/javadoc/.

REST
COEUS’ RESTful services API provides a set of methods to access data in the knowledge base

through simple GET requests. REST services are currently the most widely used strategy for

systems interoperability. Modern service-oriented architectures rely on these types of

services due to their flexibility in regard of formats and operation types. The trade-off

between having a more standardized (though constrained) services platform using SOAP

and a more “open” alternative with REST was acceptable for COEUS, promptly pushing the

latter as the only viable solution for supported services in COEUS.

Furthermore, in spite of the relatively low number of REST services available by default,

more services can be easily added through the combination of internal Java methods with

Stripes’ powerful URL binding mechanisms. The Stripes framework has a very light

learning curve, enabling the addition of new actions and services an easy job even for non-

experienced Java web developers.

The highlight from the REST service set is the triple request method. This service

enables building custom statements with specific subject, predicate or object properties,

which are mapped into a SPARQL query to an instance’s knowledge base (Figure 6-12). For

example, http://bioinformatics.ua.pt/coeus/api/triple/coeus:hgnc_COL3A1/pred/obj/js

returns a JSON object with all statements where the item coeus:hgnc_COL3A1 (human

gene COL3A1) is the subject from COEUS sample dataset. Similarly,

http://bioinformatics.ua.pt/coeus/api/triple/sub/coeus:hasEntity/obj/xml returns XML

detailing all subjects and objects related with a coeus:hasEntity predicate. In COEUS’

ontology, this lists all concepts and respective entities.

Pedro Lopes
Service Composition for Biomedical Applications

135

Figure 6-12. COEUS REST API summary. 1) Various wildcards can be combined to form valid requests
and access all data in the knowledge base. 2) Sample REST requests highlighting the different output
formats and wildcard use.

At last, the major advantage of using the available REST services is the access of data in

multiple formats. Whereas requesting data in JSON format is optimal for lightweight web

application development, one might need to import data in CSV format into an Excel sheet

or transform XML content into a new database. This variety further increases COEUS’

overall flexibility, improving its usage in modern application platform environments.

SPARQL
Another COEUS’ API feature is the default SPARQL endpoint. With an open SPARQL

endpoint, users or developers have full access to a seed’s knowledge base, enabling

complex queries and more insightful data retrieval operations.

Much like the set of REST services, the SPARQL endpoint also enables getting data in

multiple formats, promoting its easier integration with client-side applications (discussed

in the Advanced User Interactions section next). A form for querying each seed triplestore

is available by default in all seeds at ../sparqler. This form allows developers to test their

SPARQL queries before including them in the application code.

LinkedData
Nowadays, the hottest topic in data sharing and interoperability is LinkedData. Through its

multiple subdivisions, the LinkedData guidelines empower a completely interoperable

knowledge ecosystem, where resources are directly accessible through their URIs and their

semantic descriptions establish meaningful connections to other miscellaneous data types.

COEUS uses the pubby package to publish the knowledge base as LinkedData. A simple

configuration file defines the connection properties to access the seed SPARQL endpoint

and retrieve data. For each resource being browsed, the application issues a DESCRIBE to

obtain all object relationships.

<!77+DESCRIBE+<http://bioinformatics.ua.pt/coeus/resource/uniprot_P51587>+77>+
<?xml(version="1.0"?>(

.../api/triple/<subject>/<predicate>/<object>/<format>

1
URL
WILDCARDS

SAMPLE
REQUESTS
2

p

pred

predicatesubject

sub

s

object

obj

o

obj

coeus:Protein

obj

coeus:isAssociated

coeus:hasEntity

rdfs:label

coeus:hgnc_BRCA1

sub

coeus:Disease

json

xml

csv

6. COEUS: An Application Framework for Enhanced Service Composition

 136

<rdf:RDF(
((((xmlns:rdf="http://www.w3.org/1999/02/22XrdfXsyntaxXns#"(
((((xmlns:owl="http://www.w3.org/2002/07/owl#"(
((((xmlns:dc="http://purl.org/dc/elements/1.1/"(
((((xmlns:owl2xml="http://www.w3.org/2006/12/owl2Xxml#"(
((((xmlns:xsd="http://www.w3.org/2001/XMLSchema#"(
((((xmlns="http://bioinformatics.ua.pt/coeus/"(
((((xmlns:rdfs="http://www.w3.org/2000/01/rdfXschema#">(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/prosite_PS50138"/>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/mesh_D010051"/>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/interpro_IPR015525"/>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/pdb_3EU7"/>(
((((<dc:identifier>P51587</dc:identifier>(
((((<dc:source>P51587</dc:source>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/pdb_1N0W"/>(
((((<hasConcept(

rdf:resource="http://bioinformatics.ua.pt/coeus/concept_UniProt"/>(
((((<rdfs:label>item_P51587</rdfs:label>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/hgnc_BRCA2"/>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/mesh_D001943"/>(
((((<dc:title>P51587</dc:title>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/mesh_D010190"/>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/mesh_D005910"/>(
((</rdf:Description>(
</rdf:RDF>(
(
When these data are delivered through the web interface, users can explore LinkedData

innate connections, which allow users to jump from object to object within the same seed,

in an external seed or accessible through a normalized URI.

With the LinkedData interface, COEUS completes the interoperability features required

to enhance modern service composition ecosystems. This ability to make the integrated

and enriched data available in the Linked Open Cloud without complex configuration tasks

or tricky deployment processes is a defining feature for COEUS, taking it further in

semantic web for life sciences innovation.

Advanced User Interactions
Modern application development relies on advanced browser-based capabilities to deliver

more compelling user interactions. The latest versions of all major browsers include

powerful JavaScript processing engines, like Google’s V854 or Mozilla’s JagerMonkey55, with

54

 http://code.google.com/p/v8/

Pedro Lopes
Service Composition for Biomedical Applications

137

outstanding performances on the client-side. This triggered an evolution on web-based

application, making them able to deal with larger amounts of data and increasing their

processing capabilities.

In addition, JavaScript development frameworks such as jQuery 56 , MooTools 57 or

SproutCore58, include methods to further rival server-side data handling and computational

capabilities. This allows for the development of increasingly interactive web applications,

reducing the thin line that separates them from desktop-based applications.

It is important for COEUS to also take part in this emerging and fast-growing

application trend. Therefore, COEUS includes a JavaScript library (available under

assets/js/sparqler.js) that enables direct connections to each seed’s SPARQL endpoint. With

this, it is possible to ask queries to and process data directly from the knowledge base with

a powerful querying language. Data are retrieved as a JSON object easily handled in

JavaScript. This library further increases rapid application prototyping and interface

development in COEUS.

6.2.4 Case Studies
Exploring Collected Data
A trivial case study can be setup to test the various elements composing COEUS APIs. For

this matter, knowledge regarding the breast cancer type 2 susceptibility protein

(UniProt accession number P51587) will be collected from COEUS sample dataset.

These results are obtained from the graph of relationships where a representation of

this individual, mapped in COEUS’ sample knowledge base as coeus:uniprot_P51587, is an

active subject. The methods for accessing these data are detailed next.

 Java. To obtain these data in Java, the getTriple() API method must be invoked,

defining what filter to use and the desired XML output format.

/*+Invoke+getTriple(“coeus:uniprot_P51587”,+”p”,+”o”,+“xml”);+*/+
pt.ua.bioinformatics.API.getTriple(…);(

 REST. The desired protein data can be obtained, in CSV format for example,

through a direct GET request to the public REST interface at

http://bioinformatics.ua.pt/coeus/api/triple/coeus:uniprot_P51587/p/o/csv.

55

 https://wiki.mozilla.org/JaegerMonkey
56

 http://jquery.com/
57

 http://mootools.net/
58

 http://sproutcore.com/

6. COEUS: An Application Framework for Enhanced Service Composition

 138

 SPARQL. UniProt P51587 data can be queried from COEUS’ SPARQL endpoint,

available at http://bioinformatics.ua.pt/coeus/sparql, with the following query.

#+SPARQL+query+to+issue+
PREFIX(coeus:(<http://bioinformatics.ua.pt/coeus/>(
SELECT(?p(?o({coeus:uniprot_P51587(?p(?o}(
Any query can be tested at http://bioinformatics.ua.pt/coeus/sparqler/.

 LinkedData. The requested protein data can be explored through a LinkedData

browser pointed to http://bioinformatics.ua.pt/coeus/resource/uniprot_P51587.

Additionally, the same address provides a summary view for regular web browsers.

Promoting a Federated Knowledge Ecosystem
The execution of federated SPARQL queries enables access to data across multiple sources

in a single transaction. Whether data are locally stored or in a remote location, the query

engine uses the SERVICE property to acknowledge where a specific question should be

asked.

Every COEUS seed includes a SPARQL endpoint by default. With multiple seeds in place,

it is fairly easy to perform queries across the various COEUS instances, inferring results on

the fly. This virtual distributed knowledge network, the aforementioned knowledge garden,

opens up immense data integration and interoperability possibilities. In modern national

health information systems scenarios, launching multiple seeds with similar data models

and targeted at regional subsets, originates a federated knowledge ecosystem. Applications

can access each seed individually, cross data between two or more seeds, or have an holistic

perspective over the entire knowledge garden.

A case study for COEUS’ federation support regards the answers for following scientific

question: What are the PDB identifiers for the protein structures and the MeSH term identifiers

associated with the human BRCA2 gene?

To answer the proposed question, the federated query shown next links four distinct

services, i.e. SPARQL endpoints. COEUS’ default SPARQL is replicated three time to virtually

simulate the query distribution. The query is processed in real time through the SPARQL

endpoint, with the following steps:

1. The Diseasome SPARQL endpoint is queried to obtain the label for the human

BRCA2 gene (?label).

2. The ?label variable is passed to the first COEUS seed, acting as the selection

clause for the gene and enabling access to a set of UniProt proteins associated

with it (?uniprot).

Pedro Lopes
Service Composition for Biomedical Applications

139

3. The ?uniprot variable is shared with the third and fourth SPARQL endpoints,

where data regarding PDB identifiers (?pdb) and MeSH term identifiers (?mesh)

is selected. This last request could be executed in a single query, but is divided to

further demonstrate COEUS’ federation capabilities.

#+Federated+SPARQL+query+
PREFIX(dc:(<http://purl.org/dc/elements/1.1/>(
PREFIX(diseasome:(<http://www4.wiwiss.fuX

berlin.de/diseasome/resource/diseasome/>(
PREFIX(rdfs:(<http://www.w3.org/2000/01/rdfXschema#>(
PREFIX(coeus:(<http://bioinformatics.ua.pt/coeus/>(
(
SELECT(?pdb(?mesh(
WHERE{(
(((({(
((((((((SERVICE(<http://www4.wiwiss.fuXberlin.de/diseasome/sparql>((
(((((((({((
((((((((((((((((<http://www4.wiwiss.fuX

berlin.de/diseasome/resource/genes/BRCA2>(rdfs:label(?label(
((((((((}(
((((}(
(((({(
((((((((SERVICE(<http://bioinformatics.ua.pt/coeus/sparql>((
(((((((({((
((((((((((((((((_:gene(dc:title(?label(.(
((((((((((((((((_:gene(coeus:isAssociatedTo(?uniprot(
((((((((}(
((((}(
(((({((
((((((((SERVICE(<http://bioinformatics.ua.pt/coeus/sparql>(
(((((((({((
((((((((((((((((?uniprot(coeus:isAssociatedTo(?pdb(.(
((((((((((((((((?pdb(coeus:hasConcept(coeus:concept_PDB(
((((((((}(
((((}(
(((({((
((((((((SERVICE(<http://bioinformatics.ua.pt/coeus/sparql>(
(((((((({((
((((((((((((((((?uniprot(coeus:isAssociatedTo(?mesh(.(
((((((((((((((((?mesh(coeus:hasConcept(coeus:concept_MeSH(
((((((((}(
((((}(
}(
This, and any other federated queries, can be tested online at

http://bioinformatics.ua.pt/coeus/sparqler/. Additionally, more complex queries can be

built combining these data with any other SPARQL endpoint.

Despite being targeted at life sciences developers, COEUS can be used in various other

real world settings. In either the corporate domain or TV networks, data are generated in

large quantities and with complex innate relationships. While we do not envisage COEUS

replacing already setup infrastructures in these areas, the framework is suitable for quickly

deploying ad-hoc knowledge bases.

6. COEUS: An Application Framework for Enhanced Service Composition

 140

For example, a news channel web application can be built to aggregate information on a

selected topic, from various media sources, in a single environment. With COEUS, content

from Twitter, Facebook or any modern news site (using RSS/Atom feeds) can be quickly

pulled into a new repository, enabling the creation of semantically richer applications for

both web and mobile environments. Furthermore, the resulting dataset can be also used to

improve existing applications. A new semantic layer can be incorporated in the client-side

of modern web applications by querying and loading data in JSON format

Pharmaceutical companies can also use COEUS. A virtual scenario uses the COEUS

platform with a well-designed ontology to create a Semantic Web-powered infrastructure

to manage specific in-house datasets. Managing marketing results or large clinical trials

data can be improved by establishing COEUS seeds, each with its own goals and needs, and

allowing for future connections amongst these initially disparate data through COEUS'

knowledge federation features.

6.2.5 Features and Usability
Rapid Application Development
COEUS’ “Semantic Web in a box” approach streamlines the creation of new Semantic Web

applications. The development of new semantic systems is highly associated with a steep

learning curve and a myriad of technologies and tools to chose from. Although this variety

is beneficial, it is also a characteristic of a still immature deployment environment. Unlike

traditional relational database applications where the “technology path” is clearly outlined,

with semantic web applications the adequate set of technologies and strategies continues

to be chosen in ad hoc fashion.

COEUS provides the means for semantic web rapid application deployment by offering a

single package comprising the set of tools required to develop a new application from

scratch. Moreover, the application backend, the knowledge base, can be populated through

advanced data integration wrappers that use flexible configuration ontology.

Incorporating the interoperability API with the integration features results in a

framework that highly reduces the application “time-to-market”. It is easy to get the data

in the system. Likewise, it is easy to get the data out the system. This facilitates the creation

of independent application platforms, supported by a comprehensive backend knowledge

base that enables deploying to desktop, web or mobile systems. The API also permits coding

client-side applications in any programming environment and using any framework,

further improving COEUS flexibility and robustness.

Pedro Lopes
Service Composition for Biomedical Applications

141

Data Integration Platform
Data integration is the initial cornerstone for the COEUS framework. Its powerful resource

integration capabilities enable the creation of customized niche-based data warehouses,

powered by a semantic knowledge base. Distributed and heterogeneous data can be

replicated or linked, taking advantage of semantic web’s advanced data modelling

capabilities to overcome schema mappings and internal wrappers for general data retrieval.

Data in CSV, SQL, XML or SPARQL formats are easily configured for integration,

smoothing the transition from traditional data storage approaches to a modern semantic

web reality. This migration is further improved through the advanced extract-transform-

load warehousing features, providing a simple strategy for generating triple sets from any

kind of data type. Moreover, custom plugins can be developed to match scenarios that do

not fit COEUS’ capabilities yet.

COEUS aids in the publishing of semantic web-powered knowledge bases, moving one

step further to the envisaged view of the Internet as a semantically rich distributed

knowledge network.

LinkedData & Semantic Services
Once data are integrated into a seed’s knowledge base they are promptly available through

various APIs. Firstly, the internal Java API layer hides away all complexities regarding

semantic triple stores and data structures, offering a set of methods to retrieve data

directly as an iterable result set.

Next, the REST services API encompasses simple GET-based methods to access data. The

triple service offers a quick way to iteratively load all data into any application

development environment.

The SPARQL endpoint is the most powerful interoperability feature. Besides supporting

the LinkedData infrastructure and the client-side JavaScript library, it makes all data

available through a standardized and efficient query engine. Complex queries can be asked

and processed in command-line tools, web clients or desktop applications, further

increasing the wide scope of COEUS’ use. The SPARQL endpoint is also the underlying entry

point for knowledge reasoning and inference features.

The LinkedData interface empowers the availability of integrated data in the most

advanced data interoperability scenarios. With URLs uniquely and precisely identifying

data descriptions numerous possibilities for service composition arise, taking the most out

of connected, i.e. linked, data.

6. COEUS: An Application Framework for Enhanced Service Composition

 142

At last, the included JavaScript library enables creating best-of-breed user interactions,

handling all data access and processing on the client-side. From the web application

development perspective, this is the most interesting feature, as it enables the

development of more responsive interactions in desktop- or mobile-based systems, taking

web applications to the next usability level.

Knowledge Federation Framework
The challenge of federating knowledge scattered through multiple independent databases

is also tackled in this framework. New seeds automatically launch SPARQL endpoints and

LinkedData views, endowing developers with multiple ways to access and federate data.

Whether we are dealing with SPARQL-based federation or virtual LinkedData networks,

data are inherently distributed and connected. With these technologies, anyone can launch

his own customized and focused application ecosystem. In a COEUS’ knowledge garden, the

holistic view over all data empowers the sharing of knowledge amongst a scalable of

numbers of peers, improving the federation of and facilitating access to data.

6.2.6 Future Developments
COEUS is an active project, published as open source with the purpose of captivating

interest in new developments, thus creating a community surrounding the framework.

Foreseen developments are focused on three main areas: improve the transition from

monolithic systems to a semantic web environment, simplify the configuration of new

seeds and provide new methods to input and output data from a seed.

Firstly, a migration assistant tool will be developed to smooth the transition from

relational databases, CSV or XML structures into the semantic web paradigm. Leveraging

on tools such as D2R we aim to create algorithms that read database structures and

generate COEUS configuration models dynamically. For instance, automated processes to

discover Entity-Concept organizations or internal data/object properties and import

content on the fly will ease the creation of new seeds. Consequently, it will be much easier

for bioinformaticians to transform their platforms and access all COEUS’ integration and

interoperability features.

The migration assistant will also feature simplified configuration interfaces. While

now developers need to configure new seeds in Protégé or text-editor, a GUI-based setup &

installation tool will be available in the future. This is aimed at non-expert bioinformatics

developers that would rather fill in forms and click buttons than edit configuration settings

by hand. Another step towards the simplification of seeds creation is the creation of a

Pedro Lopes
Service Composition for Biomedical Applications

143

COEUS virtual machine image pre-build with all required tools. In this case, the goal is to

use a solution like TurnKey59 to offer a disk image with the required application server,

database and COEUS seed ready for deployment in a real-world scenario. Furthermore, this

will also empower future COEUS integration with cloud-based developments.

Next, the API will also be augmented with new applications and tools. OS-specific

applications and command-line tools for accessing COEUS’ endpoints will be created. These

will be an even better fit for a bioinformaticians research workflow. For instance, old-

school biologists traditionally use basic shell scripts to perform data filtering and enriching

operations. These can be enhanced with access to a COEUS knowledge base allowing the

integration of state-of-the-art integrative datasets with legacy tools. Another opportunity

concerns COEUS service composition. REST services will be improved and new ones

developed to ease the process of combining COEUS services in Taverna workflows. With

Taverna as the de facto workflow platform, it is advisable to foster COEUS use in this service

composition environment.

6.3 Discussion
6.3.1 Ad-hoc Software Solutions VS Rapid Application
Development
Developing tailored ad hoc solutions is the current practice in bioinformatics. Solutions like

the ones highlighted in chapters 4 and 5 (EU-ADR Web Platform and WAVe) play a

fundamental role in the evolution of the way bioinformatics software is developed. In spite

of the recent turn of events in the innovative technologies side, where previously built

packages are preferred over deployment from scratch, we must realize that

bioinformaticians are not "regular" developers. The traditional bioinformatician’s

background usually lacks computer science skills, such as database management, modelling

or object-oriented programming. Since most stakeholders fit this profile, it is easy to

understand the biased focus on building new systems from scratch, paying little to no

consideration to existing platforms, frameworks or programming libraries.

On the other end of the spectrum is the use of rapid application development strategies.

By considering RAD ideals in a very broad sense, we observe that its practices are already

being used in the majority of innovative technological platforms. Reusable assets are being

used more often whether in the form of fully-fledged application frameworks, user

59

 http://www.turnkeylinux.org/

6. COEUS: An Application Framework for Enhanced Service Composition

 144

interface bootstrapping packages or simple external libraries. Over time, the inclusion of

these components in new systems became easier, empowering the creation of new tools

and disseminating the adoption of RAD ideals. The created strategies that empower COEUS

build on this growing use of RAD principles, aiming at its use to create innovative

biomedical applications.

6.3.2 Enhancing Rapid Application Development
The overall concept of RAD strategies for bioinformatics is still in its infancy. Molgenis is

one successful case in the area, with a robust framework for launching new bioinformatics

applications very quickly. The room for improvements over general RAD and

bioinformatics-specific RAD is tied to two domains: integration & interoperability research

and the semantic web paradigm.

RAD frameworks are not prone to facilitating the integration of data from external

resources. Whereas the ability to quickly deploy data stores is omnipresent, RAD

frameworks lack the features required to easily populate those data stores. The multiple

challenges associated with the integration of data in any field, detailed along this thesis,

are cumbersome for bioinformatics developers. Hence, the inclusion of integration features

is deemed vital for bioinformatics RAD frameworks. Collecting and transforming data from

CSV, SQL or XML files into a centralized knowledge base is a must-have feature in a field

riddled with data heterogeneity and distribution. COEUS achieves this through a flexible

integration engine, allowing the mapping of existing content into any ontology, and

storing generated triples in a centralized knowledge base. Continuing DynamicFlow and

WAVe’s pursuit of the best service description strategy for data integration, COEUS uses an

adaptive ontology to organize and configure a set of integrated resources.

As previously mentioned, the semantic web paradigm adoption and acceptance by the

life sciences community is growing and it emerges as a viable alternative to lead biomedical

software to a new level with tighter integration and better interoperability. The

applicability of semantic web's ideals fits perfectly the complex life sciences challenges set.

However, the steep learning curve associated with semantic web technologies is drawing

users away from this new world. As such, the opportunity arises for the inclusion of

semantic web technologies and features within a rapid application development package.

For this matter, bioinformaticians must think about triplestores instead of relational

databases, about SPARQL endpoints instead of SQL hosts or about LinkedData instead of

SOAP-based data exchanges. The semantic web empowers a new services layer that allows

Pedro Lopes
Service Composition for Biomedical Applications

145

the creation of truly federated intelligent data networks. Combining LinkedData with

SPARQL endpoints we can connect and exploit the wealth of data from miscellaneous data

stores. As stated in the initial requirements, COEUS includes, by default, a SPARQL endpoint

and support for LinkedData views, enabling truly semantic access to data collected in a

single seed or federated from multiple COEUS instances.

6.3.3 A Framework for Semantic Bioinformatics Software
The next-generation of bioinformatics software will be empowered by the combination of

two grand innovations that are diluting the boundaries between computer and life sciences.

On the computer science standpoint, the adoption of agile strategies to develop new

applications is pushing forward the adoption of generic rapid application development

methods, from reusable programming packages to user interface prototype building. For

life sciences, enhanced biomedical semantics are the cornerstone for a better

understanding of our human condition. While it will not solve all problems in

bioinformatics, the semantic web emerges as the most viable alternative to build the next-

generation of biomedical knowledge.

The COEUS framework is our approach to tackle these challenges and produce a next-

generation semantic web rapid application development framework. The innovative

"Semantic Web in a Box" approach encloses four major pioneering roles.

 The adoption of rapid application development strategies in COEUS endows

developers with the tools to quickly build new application ecosystems targeting any

deployment environment.

 COEUS is a semantic data integration platform enabling the acquisition and

translation of heterogeneous data from distributed resources intro a centralized

knowledge base.

 COEUS provides Semantic Web and LinkedData services by default. This ensures

the interoperability of integrated data with any external system through open

standard methods [13]. Moreover, with a semantic knowledge base in place, support

for reasoning and inference strategies is facilitated.

 COEUS enables the federation of gathered knowledge through comprehensive APIs

[12]. The SPARQL endpoint and LinkedData interfaces empower querying and

reasoning over multiple COEUS instances.

The COEUS framework is an open-source project. Documentation and code samples are

available online at http://bioinformatics.ua.pt/coeus/ [14].

7. A COEUS Instance

 146

Pedro Lopes
Service Composition for Biomedical Applications

147

7. A COEUS INSTANCE

“But my intellectual development was retarded, as a result of which I began to wonder about space and
time only when I had already grown up.”

- Albert Einstein

Many bioinformatics platforms are emerging within the constantly evolving life sciences

field that satisfy most integration and interoperability requirements. The main advantage

of this evolution is that developers do not need to rebuild entire knowledge systems and

data infrastructures from scratch. It is possible to reuse and recombine existing

components to form entirely new software systems as an answer to the latest challenges.

Furthermore, with the COEUS framework in place, we have the tools required to launch a

new semantic web application with minimal effort.

Continuing our research within the individualized healthcare field, we tackle the study

of rare diseases with the development of a new version for the Diseasecard platform. The

personal health implications behind rare diseases are seldom considered in widespread

medical care. The low incidence rate and complex treatment process makes rare disease

research an underrated field in the life sciences. Diseasecard, an online portal containing

thousands of pointers to rare disease resources, was developed to aid rare disease

investigators. However, the uncontrollable evolution of data and services in the field,

united with an aging legacy code, triggers the need for a new release.

Not only was Diseasecard's server-side code dated, the user interface was also in the

need of a facelift to better suit the current generation of web applications. Hence,

Diseasecard appeared as the perfect benchmark for COEUS’ developments. An initial

prototype of the new Diseasecard, COEUS first public instance, is available at

http://bioinformatics.ua.pt/dc4/.

In this chapter we introduce the new Diseasecard platform and discuss the details

behind its development. Starting with a brief analysis of the legacy Diseasecard portal, we

cover the easy process of creating a new COEUS seed, from the construction of a rare

disease knowledge base to the details of Diseasecard's new user interface.

7. A COEUS Instance

 148

7.1 Improving Rare Diseases Research
Rare diseases’ particular conditions hold the strongest relations between genotypes and

phenotypes. Understanding gene-disease associations is a fundamental goal for

bioinformatics research, especially at rare disease level, where the genotype-phenotype

connections are limited to a small set of genes. Rare diseases are particular conditions that

affect at most 1 in 2000 patients [215]. The European Organization for Rare Diseases

(EURORDIS) estimates that there are approximately 6000 to 8000 rare diseases, affecting

about 6% to 8% of the population. Within these, about 80% are caused by genetic disorders.

Due to the reduced incidence of each individual disease, it is difficult for patients to find

support, both at clinical and psychological levels [216]. Some of these chronic diseases

hinder the patients’ quality of life and cause serious damage or disability in social terms.

The existence of a small number of patients for each rare disease also delays the creation of

adequate research studies, as it is difficult to identify and coordinate a relevant cohort [168,

217]. Despite the low statistic impact regarding these diseases, the combined amount of

patients suffering from one of these rare diseases is considerably high.

7.1.1 Diseasecard’s Legacy
Diseasecard was developed to improve rare disease research and education. It is a web

portal that uses link integration strategies to establish connections to a myriad of external

resources. The goal is to provide a central workspace where users can explore available

connections to assess rare diseases underlying genotype, associated proteins or pathways,

known drugs, ongoing clinical trials or relevant literature (Figure 7-1).

Initial Diseasecard developments date back to 2004. At that stage, the data acquisition

strategy relied on web crawling to discover links for the various data types integrated in

the database, and static HTML pages contained most of the Internet content. The idea of

providing services to access data was not mature enough yet and most data was still

published in CSV files or similar text-based tabular formats. Diseasecard’s platform uses a

link integration engine, pre-configured with a navigation map that teaches the system

what links to collect and what links to follow for further crawling. Whilst this strategy

worked for the 2004 timeline, it is currently totally inadequate.

Pedro Lopes
Service Composition for Biomedical Applications

149

Figure 7-1. Diseasecard workspace for Alzheimer’s Disease, OMIM code 104300 (from legacy
Diseasecard60).

7.1.2 Collecting Rare Disease Information
Much like the human variome scenario, rare disease information is scattered through

multiple non-exchangeable data sources. In a sense, Diseasecard development is a common

“by the books” service composition problem. With heterogeneous rare disease data

fragmented through multiple independent resources, new strategies must be devised to

collect it and make it available for other tools.

In a world with personalized medicine and individual healthcare as primary research

topics, advanced integration and interoperability tools are essential. The huge amounts of

data are meaningless unless they are interconnected with rich relationships. Moreover,

data integration in bioinformatics has been mostly focused on genotype data. Nowadays,

60

 http://bioinformatics.ua.pt/diseasecard/evaluateCard.do?diseaseid=104300

7. A COEUS Instance

 150

the goal is to balance the scale. We need to access the increasing quantity of clinical

phenotype data and combine it with existing rich genotype resources, empowering a new

knowledge reasoning level.

Despite dated, Diseasecard’s initial approach already preconceived this much-needed

integration from genotypes to phenotypes. However, with the appearance of WAVe we

already provide an alternative geared towards genotype data. Hence, the new Diseasecard

is much more directed towards phenotype information. This demands establishing a new

rare disease relationship network that in spite of being based on the original Diseasecard,

further specializes it with another filtering layer.

7.2 The New Diseasecard
Developing a new Diseasecard version was an entirely different task from developing a new

application from scratch. The complex requirements analysis or data modelling tasks were

already executed and documented for the original portal. Likewise, mock-ups were not

required for the interface design as the idea was to improve on existing interactions and to

make the lower number of changes as possible, always without disrupting the tree-based

and map-based navigation metaphors.

Supported by previous requirements’ comprehension, we only needed to update

Diseasecard’s internal data model to fit the COEUS seed configuration. This requires

organizing data in the Entity-Concept-Item tree structure and defining the integration

properties. Whereas the original Diseasecard used a map-based navigation model to crawl

for identifiers, parsing HTML content from webpages dynamically, the new COEUS-based

integration engine uses web services and databases to load data and generate a similar, yet

richer, rare disease knowledge network.

In addition, this rare disease knowledge network is available for reasoning and

inference. The new data relationships allow denser knowledge connections, further

enabling the success and availability of reasoning features, which may result in deeper rare

diseases insights. Through these new connections we can also infer new knowledge. As

such, by semantically integrating data from miscellaneous heterogeneous resources, we are

empowering the discovery of new direct links from genotypes to phenotypes in rare

diseases.

Regarding the web application, we tried to maintain the user interactions already

present in the legacy Diseasecard. Using the same metaphor, the new Diseasecard delivers

Pedro Lopes
Service Composition for Biomedical Applications

151

an improved user experience. The navigation tree is smoother and more complete and leaf

links trigger the Live View feature. The latter promotes accreditation and ownership of

original work, loading the external resource directly within Diseasecard’s workspace, just

like in WAVe.

At last, the legacy Diseasecard included a navigation map. In this map, users could

identify which data types were available for each specific disease. In the new Diseasecard,

this key static interaction component was replaced by a dynamic identifier map. Besides

being a more interactive tool, the new navigation map enables accessing the external

resources directly, without additional navigation tree mouse clicks.

7.2.1 Application Setup
Data Model
Following COEUS “reuse instead of rewrite” motto, the new Diseasecard’s data model

reuses existing schemas internally. Using COEUS seed configuration and taking advantage

of existing ontologies and models for internal usage is enough to organize collected data.

For each individual item, such as a UniProt protein or an OMIM disease, we only need to

store its identifier. Hence, we can reuse the identifier term from the Dublin Core ontology

[218]. In Diseasecard, each Item individual has a dc:identifier data property, matching a

string with the external identifier. COEUS enables reusing any kind of property, liberating

our knowledge base from strict data models. Another example is the rdfs:label property,

obtained from the RDF schema ontology that is used to label each individual object in

Diseasecard, whether it is an Entity, an Item or a Resource.

This “reuse instead of rewrite” fits most required properties. Nevertheless, to further

enhance user interactions new relationships were required. Diseases may have multiple

names and OMIM’s internal structure makes distinctions from phenotype and genotype

identifiers. To this end, new data and object predicates were created, as listed in Table 7-1.

With the set of integrated resources in place and the new model designed, Diseasecard was

ready to be launched as a new COEUS seed.

7. A COEUS Instance

 152

Table 7-1. List of new predicates in Diseasecard ontology.

PREDICATE RELATIONSHIP DESCRIPTION
Object Properties

hasGenotype Disease to Disease
Connects a Disease phenotype entry with its

associated genotypes.

hasPhenotype Disease to Disease
Connects a Disease genotype entry with its

associated phenotypes.

Data Properties

chromossomalLocation to Str ing
Chromossomal location information (read from

MorbidMap).

genotype to Boolean True if Disease is a genotype.

name to Str ing Disease name.

omim to Str ing Disease OMIM accession number.

phenotype to Boolean True if Disease is a phenotype.

A New COEUS Seed
As mentioned, Diseasecard is the first COEUS seed. To launch a new COEUS the initial step is

to download or clone COEUS’ source code into a new development workspace. Java, an

Apache Tomcat server and a MySQL database must be in place to set up the new system. As

mentioned in the previous chapter, the configuration involves three files:

 The Diseasecard model is transposed to a new ontology61, including the new data

and object properties. This file can be created and managed using Protégé.

 Config.js, the seed configuration file, contains the details for the new Diseasecard

application properties. These basic properties define where further configurations,

such as the seed ontology, the setup files or MySQL database connections are stored.

#+Diseasecard+application+properties+file+
{(
(((("config":({(
(((((((("name":("Diseasecard",(
(((((((("description":("Diseasecard(v4",(
(((((((("keyprefix":"coeus",(
(((((((("version":("4.0",(
(((((((("ontology":(“http://bioinformatics.ua.pt/dc4/diseasecard.owl",(
(((((((("setup":("dc4_setup.rdf",(
(((((((("sdb":"dc4_sdb.ttl",(
(((((((("predicates":"dc4_predicates.csv",(
(((((((("built":(true,(
(((((((("debug":(false,(
(((((((("environment":("testing"(
((((},(…(}(

61

 http://bioinformatics.ua.pt/dc4/diseasecard.owl

Pedro Lopes
Service Composition for Biomedical Applications

153

 The seed setup file, dc4_setup.rdf, includes the internal data structure and resource

configurations, defining how to connect to and exploit resources in Diseasecard’s

network.

Additionally, three files must be updated with knowledge base connection properties:

one for Jena, a second for Joseki and a third for pubby. Jena and Joseki definitions are

similar and include the seed’s MySQL database connection properties. The third file, for

pubby, includes the LinkedData configurations such as the system SPARQL endpoint and

internal ontology base URIs.

Resource Configuration
COEUS allows collecting data in miscellaneous formats from local or remote data sources.

For Diseasecard’s seed, we are looking to build a semantically powerful data network.

Hence, we need to obtain a huge amount of identifier mappings. These mappings are

usually available as CSV or XML files in some sort of FTP file server.

Figure 7-2 shows Diseasecard’s data integration graph, detailing how COEUS integration

engine moves from one resource to the next. The starting resource uses a custom

connector plugin, processing OMIM’s morbid and gene maps.

Figure 7-2. Subset of Diseasecard’s integration graph. This seed uses COEUS’s flexible integration
engine to acquire data from heterogeneous and distributed CSV, XML, SQL and SPARQL resources. The
integration process generates a rich data network. For example, starting with Breast cancer in OMIM
(114480) we obtain multiple genes from HGNC database (BRCA2, TP53...), which are used individually
next to obtain a list of UniProt identifiers (P51587, P12830...). From UniProt data we also extract
PharmGKB (PA30196, PA26282...) and PDB (2PCX, 1YCR...) identifiers, among others. This process
continues until data are fully integrated for all resources in Diseasecard’s configuration.

LITERATURE

PubMed

pubmed:"Breast Cancer"

DISEASE

OMIM

omim:114480

LOCUS

HGNC

hgnc:BRCA2
hgnc:ECAD

...
hgnc:TP53

LOCUS

Entrez

entrez:8438

entrez:472
...

entrez:675

PROTEIN

UniProt

uniprot:P12830
...

uniprot:P01116
uniprot:P51587 DRUG

PharmGKB

pharmgkb:PA25411
...

pharmgkb:PA26282
pharmgkb:PA30196

PROTEIN

PDB

pdb:3MVH
...

pdb:1YCR
pdb:2PCX

CSV

CSV

SQL

SPARQL

XML

XML

XML

7. A COEUS Instance

 154

Each resource is configured individually in the local setup file. Once again, Protégé use

is advised to build this file, making it fairly easy to edit COEUS setup. In this case, each

concept corresponds to an external resource, being it a database or application. The

following simplified code snippets highlight the Protein Entity, the UniProt Concept and its

respective Resource.

<!77+Protein+Entity+configuration+77>+
<owl:NamedIndividual(rdf:about="http://bioinformatics.ua.pt/coeus/entity_Protein">(

<rdf:type(rdf:resource="http://bioinformatics.ua.pt/coeus/Entity"/>(
<rdfs:label(rdf:datatype="&xsd;string">entity_protein</rdfs:label>(
<dc:title(rdf:datatype="&xsd;string">Protein</dc:title>(
<isEntityOf(

rdf:resource="http://bioinformatics.ua.pt/coeus/concept_InterPro"/>(
<isEntityOf(rdf:resource="http://bioinformatics.ua.pt/coeus/concept_PDB"/>(
<isEntityOf(rdf:resource="http://bioinformatics.ua.pt/coeus/concept_PROSITE"/>(
<isEntityOf(rdf:resource="http://bioinformatics.ua.pt/coeus/concept_UniProt"/>(
<isIncludedIn(

rdf:resource="http://bioinformatics.ua.pt/coeus/seed_Diseasecard4"/>(
</owl:NamedIndividual>(

<!77+UniProt+Concept+configuration+77>+
<owl:NamedIndividual(
rdf:about="http://bioinformatics.ua.pt/coeus/concept_UniProt">(

<rdf:type(rdf:resource="http://bioinformatics.ua.pt/coeus/Concept"/>(
<rdfs:label(rdf:datatype="&xsd;string">concept_uniprot</rdfs:label>(
<dc:title(rdf:datatype="&xsd;string">UniProt</dc:title>(
<hasEntity(rdf:resource="http://bioinformatics.ua.pt/coeus/entity_Protein"/>(
<isExtendedBy(

rdf:resource="http://bioinformatics.ua.pt/coeus/resource_DrugBank"/>(
<isExtendedBy(

rdf:resource="http://bioinformatics.ua.pt/coeus/resource_InterPro"/>(
<isExtendedBy(rdf:resource="http://bioinformatics.ua.pt/coeus/resource_MeSH"/>(
<isExtendedBy(rdf:resource="http://bioinformatics.ua.pt/coeus/resource_PDB"/>(
<isExtendedBy(

rdf:resource="http://bioinformatics.ua.pt/coeus/resource_PROSITE"/>(
<hasResource(

rdf:resource="http://bioinformatics.ua.pt/coeus/resource_UniProt"/>(
</owl:NamedIndividual>(
(
<!77+UniProt+Resource+configuration+77>+
<owl:NamedIndividual(
rdf:about="http://bioinformatics.ua.pt/coeus/resource_UniProt">(

<rdf:type(rdf:resource="http://bioinformatics.ua.pt/coeus/Resource"/>(
<rdfs:label>resource_uniprot</rdfs:label>(
<order(rdf:datatype="&xsd;integer">2</order>(
<dc:title(rdf:datatype="&xsd;string">UniProt</dc:title>(
<method(rdf:datatype="&xsd;string">cache</method>(
<dc:publisher(rdf:datatype="&xsd;string">csv</dc:publisher>(
<endpoint(rdf:datatype="&xsd;string">http://www.genenames.org/cgiX

bin/hgnc_downloads.cgi?title=HGNC+output+data&hgnc_dbtag=on&col=md_prot_id
&status=Approved&status=Entry+Withdrawn&status_opt=2&level=pri&
;where=gd_app_sym+LIKE+%27#replace#%27&order_by=gd_app_sym_sort&limit=&
;format=text&submit=submit&.cgifields=&.cgifields=level&.cgifields
=chr&.cgifields=status&.cgifields=hgnc_dbtag</endpoint>(

(<extends(rdf:resource="http://bioinformatics.ua.pt/coeus/concept_HGNC"/>(

Pedro Lopes
Service Composition for Biomedical Applications

155

(<isResourceOf(
rdf:resource="http://bioinformatics.ua.pt/coeus/concept_UniProt"/>(

(<hasKey(rdf:resource="http://bioinformatics.ua.pt/coeus/csv_UniProt_id"/>(
(<loadsFrom(rdf:resource="http://bioinformatics.ua.pt/coeus/csv_UniProt_id"/>(

</owl:NamedIndividual>(

Once all resources are configured correctly, the actual integration process starts,

populating Diseasecard’s knowledge base. This is envisaged as a spiralled iterative process,

where each iteration fine-tunes the previous one.

From OMIM's MorbidMap to 5 Million Triples
Diseasecard adopts a targeted warehousing strategy. This means that data are integrated

once and stays static until the following build process. Accordingly, the data import and

translation process gathers all data from external resources in a single centralized

Diseasecard knowledge base. In Diseasecard, this process starts with a custom connector

plugin to process OMIM’s data, traversing the dependency graph for all configured

resources iteratively.

During this data import process triples are generated from external data. Adding a new

semantic layer on top of existing data results in an augmented dataset. COEUS adds several

metadata relationships to each item along with the configured resource properties.

Moreover, connections are established from items to concepts, from concepts to items and

amongst items. These rich relationships are what make semantic knowledge bases so

powerful. Whereas in a CSV file we have a set of columns with text, with the move to a

semantic environment all data are interconnected, generating a richer dataset. The same is

true for SQL databases, where foreign key relationships or table/column names are mapped

to new properties, resulting in more metadata, more relationships and more triples.

OMIM’s morbid map has around 5600 entries related to a gene map with about 12800

entries. From these maps, the graph proceeds to link multiple entities and concepts,

increasing the amount of data exponentially. The current Diseasecard build accounts for

almost 5 million triples. Leveraging on the big data network and the additional metadata,

this number grows constantly as each new resource is integrated. Despite the 5 million

triples, the knowledge base only stores around 1.5 million distinct individuals. This is

further proof that collected data are deeply intertwined, resulting in a very dense graph.

Building Diseasecard’s knowledge base highlighted some issues with COEUS building

process. The performance is severely hindered by the repetitive connections to external

web services or by complex SQL queries. Executing the build process as a single task in a

7. A COEUS Instance

 156

single thread takes to long to be acceptable. This fostered the development of a basic

multithreaded integration solution. The multithreaded strategy involves processing the

various resources at different levels based on the configured dependency graph - Figure 7-3.

Diseasecard’s multithread integration solution was promptly integrated within COEUS.

Nevertheless, foreseen developments will focus on improving the code implementation for

this feature.

Figure 7-3. Diseasecard build process levels. The multiple stages use a multithreaded approach to load
data from external resources, significantly improving the process efficiency and performance.

Building the New Diseasecard’s User Interface
With Diseasecard’s triplestore populated, interoperability services are enabled. This means

that the default API methods (Java, SPARQL, REST, LinkedData, JavaScript) are ready for us.

Miscellaneous services were created to access and retrieve data required by the client-side

application (Figure 7-4).

Modern web applications employ new user interaction approaches that require flexible

server-side code and intelligent client-side code. On the server-side, the application

controller must offer easy access points to all data and, if possible, in custom formats ready

for use in the web application. The client-side should handle most of the payload for

processing data. This does not mean that browsers will perform intensive data processing

or transformation activities, but should rely more on asynchronous data exchanges.

0

GENE

HGNCOMIM

DISEASE

 GENE

EntrezUniProt

PROTEIN

HPO

ONTOLOGY

DRUG

DrugBank

PDB

InterPro

PROTEIN

MeSH

ONTOLOGY

GENE

EnsemblProsite

PROTEIN

UMLS

ONTOLOGY

PharmGKB

DRUG

Pubmed

LITERATURE

3

2

1

Pedro Lopes
Service Composition for Biomedical Applications

157

Figure 7-4. The new Diseasecard workspace for Alzheimer’s Disease, OMIM code 10430062.

Diseasecard implementation uses COEUS API to apply these modern data access

paradigms. Relying on internal Java methods, Diseasecard includes multiple actions to

mediate data access from the client application to the seed’s knowledge base. For instance,

a method for retrieving a data network associated with a single OMIM code (104300,

Alzheimer’s Disease) is available at http://bioinformatics.ua.pt/dc4/content/104300.js.

This returns a JSON object with the disease information that is used to generate, on the

browser, both the sidebar navigation tree and central navigation map. Similarly, data

requests to the REST triple service are used to load disease synonyms

(http://bioinformatics.ua.pt/dc4/api/triple/coeus:omim_104300/dc:description/obj/js).

These interactions use COEUS API and enable a faster web application, with smaller data

requests and improved responsiveness. Comparing the sidebar navigation tree in the

legacy Diseasecard with the new one, users had to wait for the entire page to be processed

on the server and then sent to the browser before the webpage actually appears. In the new

version, the page loads completely and provides adequate feedback to users while the

navigation tree and map are being loaded.

Another welcome addition is the inclusion of an easier bookmarking tool. In the current

version, when Live View is triggered, the page URL is updated in the browser, enabling the

creation of bookmarks pointing directly to an external resource within a disease context in

Diseasecard (similar to WAVe’s UniversalAccess).

62

 http://bioinformatics.ua.pt/dc4/disease/104300

7. A COEUS Instance

 158

With a re-engineered server side it was also essential to revamp Diseasecard’s interface.

With a sleeker design, the new Diseasecard has improved usability and delivers a more

fulfilling experience to end-users.

7.2.2 Features and Usability
Context-based Navigation
Diseasecard is a unique alternative for browsing biomedical rare disease information in a

centralized environment. The context-based navigation approach enables exploring a

variety of resources associated to a single disease and also browsing disease synonyms.

With these two complimentary perspectives all significantly relevant resources associated

to one or more diseases are a couple clicks away.

The workspace includes two disease data network navigation alternatives. The left

sidebar includes a tree to quickly access all links with a familiar metaphor. The central area

displays a circular navigation map, pointing to all individual identifiers. This map is an

outstanding improvement from what was previously available, making it one of

Diseasecard’s key features. Both the navigation tree and map trigger the Live View feature

(Figure 7-5).

Figure 7-5. Diseasecard’s workspace for Alzheimer’s Disease, OMIM code 104300, highlighting Entrez
Gene entry A2M for Homo sapiens63 in LiveView.

63

 http://bioinformatics.ua.pt/dc4/disease/104300#entrez:2

Pedro Lopes
Service Composition for Biomedical Applications

159

This approach was used initially in the legacy Diseasecard and was enhanced for WAVe.

The newest Diseasecard version further improves WAVe’s approach, making Live View

more interactive, responsive and usable.

Resources Relationship Graph
To correctly explore Diseasecard’s huge amount of data and relationships we could not rely

on a static navigation system or a non-scalable navigation tree. This rich rare disease

resource relationship graph provides a unique wealth of direct and indirect connections.

Hence, a suitable approach for displaying these relationships was required. Our choice set

on the JavaScript InfoVis Toolkit64 framework (JIT). This framework combines the power of

client-side data handling with a collection of visualization approaches based on JavaScript

JSON objects and manipulations on the DOM canvas. Figure 7-6 shows Diseasecard using JIT

to expose a disease map to users in a simple aesthetically pleasing way.

Figure 7-6. Diseasecard’s entry navigation graph for Alzheimer’s Disease, OMIM code 104300. A
circular navigation map was created, using the JIT visualization library, to facilitate the access to the
huge amount of linked resources.

64

 http://thejit.org/

7. A COEUS Instance

 160

The navigation map starts with the selected disease and connections to the set of

entities in the knowledge base. Clicking each entity name, Protein for example, centres the

map on the Protein node, highlighting its connections to its various internal concepts.

Likewise, clicking on a concept, UniProt for instance, centres the node and shows links to

each individual concept Item.

Rich Data
Selecting the adequate set of resources for phenotype-oriented information was a crucial

step towards the new Diseasecard. As expected, each resource features its own domain,

architecture and interface standards, i.e., resources are heterogeneous and distributed.

Table 7-2 list the resources and pointers integrated in the new Diseasecard.

Table 7-2. Diseasecard integrated resources.

NODE RESOURCE DESCRIPTION

Disease
NORD http://www.rarediseases.org/

OMIM http://www.omim.org/

Drug PharmGKB http://www.pharmgkb.org/

Literature Pubmed http://www.ncbi.nlm.nih.gov/pubmed/

Locus

Ensembl http://www.ensembl.org/

Entrez http://www.ncbi.nlm.nih.gov/gene/

GeneCards http://www.genecards.org/

HGNC http://www.genenames.org/

Ontology GO http://amigo.geneontology.org/

Protein

UniProt/SwissProt http://www.uniprot.org/

UniProt/TrEMBL http://www.uniprot.org/

PDB http://www.pdb.org/

Expasy http://expasy.org/

InterPro http://www.ebi.ac.uk/interpro/

Variome WAVe http://bioinformatics.ua.pt/WAVe

One of COEUS major features is the prompt availability of interoperability services. In

Diseasecard, the services required for accessing data are enabled by default.

The wealth of data collected during the data integration process is available through

REST services, a SPARQL endpoint and a LinkedData view. Furthermore, the REST services

and SPARQL endpoint are already used within Diseasecard client-side application.

Pedro Lopes
Service Composition for Biomedical Applications

161

Considering the constructed knowledge base a single platform without Diseasecard’s

web application, it is, per se, a single unique resource for the rare disease community. Life

sciences developers can exploit this data collection to build or extend existing applications.

From a modern application perspective, Diseasecard can also be seen as platform with

multiple applications. While for now only a web information system is available, COEUS

robustness permits deploying applications targeted at the desktop or mobile devices, using

the same set of APIs and accessing the original knowledge base.

The rare diseases dataset build using COEUS flexible integration engine results in a

strikingly rich semantic knowledge base. This opens the room for further exploratory

endeavours, namely using reasoning and inference. Whilst these features are not yet a part

of the new Diseasecard, they will be made available through innovative user interactions in

Diseasecard’s web workspace.

7.3 Discussion
7.3.1 A Suitable Software Infrastructure for each
Bioinformatician
As the miscellaneous "omics" fields branch new domains and research specializations, the

technological needs for each field revolve around a common set of problems. Managing

data, accessing and integrating information from other laboratories, or providing recently

discovered knowledge to others are essential steps in the path of making science.

While it is nearly impossible to satisfy the requirements from all life sciences research

fields, we can promote the use of technologies and tools that facilitate accomplishing all of

the project's software-related goals. In a broad sense, this is our main objective with the

COEUS framework.

The COEUS platform is a powerful development environment. Its scalability and

flexibility make it ideal for highly heterogeneous scenarios and apt for the challenging

requirements associated with particular "omics" fields. In fact, COEUS targets the

improvement of niche fields, empowering amateur and professional developers with the

tools to quickly model, integrate and publish data. Furthermore, the semantic web ideals

span through all framework's components, from the integration of data to the

interoperability with other tools. This provides limitless resource integration architectures

with advanced data exploration features. With the former we are able to triplify almost all

existing data into a new richer knowledge base and, complementarily, with the latter, we

7. A COEUS Instance

 162

are able to access collected data by multiple means. This enables the creation of custom

application ecosystems with comprehensive architectures. Bioinformaticians can program

interfaces in any language and easily target web, desktop or mobile environments.

Furthermore, by publishing data through the SPARQL and LinkedData interfaces, new

systems will be part of the global web of knowledge. With the widespread use of COEUS and

other similar tools, we expect that each bioinformatician can create its own technological

infrastructure that goes beyond the boundaries of project-specific internal use.

Whereas the strategies adopted in the EU-ADR Web Platform and WAVe consisted in the

adoption of traditional relational databases, COEUS empowers the creation of semantic

knowledge bases. This enables a whole new level of knowledge exploration through the

aforementioned SPARQL and LinkedData interfaces that allow the creation of complex

knowledge reasoning and inference features. Diseasecard’s dataset has innate semantics;

collected data has an undisclosed meaning that can be explored to obtain new vital

connections between genes and diseases. Likewise, COEUS brings this semantic web layer,

and its underlying semantic features, to all bioinformaticians in any life sciences field.

7.3.2 Applying COEUS to the Rare Diseases Research Field
Research on rare diseases is of growing importance in the last couple of years. Uncovering

the underlying genetic causes of rare diseases is the first step towards a better

comprehension of our health, making us one step closer of the individualized healthcare

panacea. Moreover, the funding and interest in large-scale rare disease projects has been

renewed, namely within the European Union.

Since 2004, Diseasecard has been contributing to this research field by providing a

portal with information regarding rare diseases and connections to a myriad of resources

contextualized to each disease. Despite its quality, the legacy Diseasecard is an out-dated

system, with an architecture that is no longer efficient for the current bioinformatics

landscape. With COEUS, we have the opportunity to overcome the original Diseasecard's

caveats, deploying a richer application, with a reengineered architecture and re-designed

user interface. As previously mentioned, the combination of rapid application development

with biomedical semantics is a key enabler of the next-generation of bioinformatics and

the new Diseasecard is the first step towards this bright future.

The new Diseasecard, powered by COEUS, improves on the legacy version in three

distinct aspects, discussed next.

Pedro Lopes
Service Composition for Biomedical Applications

163

 With a semantic knowledge base supporting the application, collected and

connected data are richer and more meaningful. Whilst these capabilities are not

yet fully explored, the open possibilities are immense. Establishing new

relationships between OMIM's disease data and multiple ontologies or external

resources generates a comprehensive rare disease dataset, enabling the inference of

unique connections that would not be possible to obtain otherwise.

 Data in the knowledge base are now interoperable using COEUS default API. REST

services, a SPARQL endpoint and a LinkedData interface are available for others to

explore the dense rare disease data graph compiled in the new Diseasecard.

 The new Diseasecard web workspace is a significant improvement over the legacy

version. Disease synonyms, the navigation tree and the new navigation graph

present a more interactive and usable interface.

Diseasecard is the first COEUS instance and represents our initial endeavour towards

the future of web-based biomedical applications. The new Diseasecard is available online at

http://bioinformatics.ua.pt/dc4/.

7. A COEUS Instance

 164

Pedro Lopes
Service Composition for Biomedical Applications

165

8. FUTURE PERSPECTIVES AND
CONCLUSIONS

“When it comes to the future, there are three kinds of people: those who let it happen, those who make it
happen, and those who wonder what happened.”

- John M. Richardson, Jr.

This thesis is set against the backdrop of a number of challenges to effectively enhance the

use of service composition strategies within the biomedical software domain. The most

prominent of these issues regards the explosive growth of data size and complexity

generated in large-scale life sciences research projects, smaller laboratories or general

practitioners databases. This evolution is pushing forward new demands regarding the

scope expansion from multiple “omics” branches to holistic systems biology visions.

Addressing these issues, whilst bridging the gap from data acquisition to data publishing, is

a huge problem for the bioinformatics domain, whose last decade was characterized by

unrestricted developments. In parallel, other drawbacks such as the discovery of data, the

semantic exploration of knowledge or the requirements from policy makers allows us to

encompass and organize these demands in the area of service composition for integration

and interoperability.

The work detailed in the preceding six chapters reports our efforts to understand

service composition in the biomedical software domain and to introduce new solutions that

leverage on innovative strategies to enhance the process of developing biomedical

applications. This final chapter highlights the produced results, introduces future lines of

work in various research and business areas, and discusses the open path for the next

generation of bioinformatics software.

8.1 Results
The overarching objectives of this doctorate work revolved around three general goals: the

evaluation of existing service composition strategies for biomedical applications, the

exploration of state-of-the-art service composition technologies for use in the

8. Future Perspectives and Conclusions

 166

bioinformatics research domain, and the development of innovative service composition

solutions to tackle the broad set of challenges behind the bioinformatics revolution.

Chapter 2 includes a detailed analysis of the biomedical applications domain. From this

evaluation it is clear that the bioinformatics software landscape is fragmented and highly

heterogeneous. Despite multiple efforts towards the standardization of data models and

services, the uncanny relationships amongst these elements highlight the demand for

innovative solutions.

Advanced service composition strategies are required to enable bioinformatics for the

21st century. Adequate integration and interoperability methods must be created and

applied to assure the continuous evolution of this field, thus making the personalized

medicine panacea a reality.

From the deep exploration of state-of-the-art strategies and technologies for service

composition, discussed in chapter 3, three ideas arise to overcome biomedical software

challenges: the use of rapid application development methods, the emergence of platform-

centric architectures, and the semantic web paradigm.

Rapid application development ideals define a set of principles to foster the faster

creation and re-creation of applications from scratch, aiming at a speedier software

delivery rate. Platform-centric architectures are an emerging trend with growing relevance.

Focused on a centralized knowledge base accessible through multiple APIs, this model is

being used in major modern systems, from Evernote to GitHub. With this model validated

in large-scale real-world scenarios, it must be moved to the biomedical software domain. At

last, the semantic web paradigm, with its standards for describing, managing and exploring

knowledge, is the perfect solution for fundamental life sciences challenges. Content

heterogeneity, information distribution, data integration, software interoperability or

reasoning and inference issues, among others, can be solved with the adoption of semantic

web technologies and guidelines.

As a consequence of these evaluation and exploratory research, new strategies were

developed to endow the life sciences community with innovative technologies for service

composition in biomedical applications: the EU-ADR Web Platform, WAVe and COEUS.

These contributions add real value to the service composition for integration and

interoperability state-of-the-art.

Pedro Lopes
Service Composition for Biomedical Applications

167

The EU-ADR Web Platform introduces four major scientific advances for the research

community, namely on the field of software interoperability:

 a new interoperability standard was created to empower the interdisciplinary

communication amongst the various EU-ADR project services;

 a strategy based on Taverna workflows was devised to enable the combination of

results from the various EU-ADR project services;

 a strategy for a new Taverna-based workflow execution engine was

implemented to facilitate the inclusion of Taverna workflows into generic Java

applications;

 a web-based workspace was designed to deliver advanced pharmacovigilance

studies to any stakeholder in pharmacogenomics and drug safety.

WAVe is an unique resource for human variome data, supported by a set of new service

composition strategies for resource integration:

 the lightweight data integration strategy enables the easy gathering of data

from miscellaneous heterogeneous resources;

 the extensible data model permits the dynamic addition of new data

relationships without breaking the application setup;

 the REST API is a unique resource for querying genetic variation datasets;

 the web interface introduces new features essential for in-context gene analysis

and to ensure content accreditation.

Crossing the boundaries of integration and interoperability is COEUS. Combining the

three identified strategies for groundbreaking service composition, our efforts were

concerted towards conceiving innovative approaches to support a new semantic web rapid

application development framework, sustained by a platform-centric application

architecture.

The resulting framework, COEUS, encloses four essential breakthroughs for the

biomedical software and semantic web communities:

 the set of new algorithms created to enhance rapid application development,

further fostering the adoption of semantic web ;

 the flexible integration strategies designed and implemented to enable the

semantic acquisition of data from heterogeneous resources;

 the semantic web strategies envisaged to permit future-proof software

interoperability and facilitate reasoning and inference over acquired knowledge;

8. Future Perspectives and Conclusions

 168

 the innovative approaches for distributed knowledge federation.

These results highlight the successful accomplishment of this thesis’ aims, effectively

replying to the initial research challenge.

8.2 Future Perspectives
8.2.1 Beyond Service Composition
With computer science evolution we changed the way we evaluate and use web services. A

couple decades ago, thinking about services was directly related with intelligent agents.

Then came the understanding of web services as essential software architecture elements,

optimal for event-driven scenarios or large distributed ICT infrastructures. These

approaches leveraged new requirements and the standardization of web services appeared

naturally. Nowadays, this legacy use of web services is in decay.

When standards appeared, their imposed limitations were seen as beneficial for the

progression of service composition strategies. The reasoning behind SOAP, WSDL and UDDI

was clearly focused on controlling all interactions and data exchanges between a set of

services. These constraints increase the system architecture robustness but severely hinder

its flexibility and efficiency. This is the major cause for REST's success. Being based strictly

on the open HTTP protocol, REST is becoming increasingly popular amongst developers

mostly due to its unrestricted approach. Using REST, the data model validation is passed on

to the application level where it can be controlled more freely. Notwithstanding, SOAP is

still the best solution for tightly controlled scenarios, as shown with the EU-ADR Web

Platform.

Without the format and standard limitations, REST enables the exchanges of much

richer data, at both ends of the spectrum. On the one hand, we can easily exchange heavy

RDF data represented in any format and adhering to any ontology. On the other hand, we

can exchange light JSON objects through really fast APIs. Hence, the adoption of REST

guidelines in both WAVe and COEUS.

Within the various strategies developed in this thesis’ work, the state-of-the-art is

covered and future enhancements to this field are proposed. The strategies supporting the

EU-ADR Web Platform, WAVe and COEUS actively go beyond service composition,

delivering advanced algorithms for data integration and software interoperability.

The future withholds many developments in cloud computing and these architectures

are the pinnacle of software-as-a-service. For instance, in Amazon's offer, everything can

Pedro Lopes
Service Composition for Biomedical Applications

169

be consumed as a service, from data storage to processing power. With these cloud-centric

approaches, data are always online and always available through and for miscellaneous

web services. Whether we are posting something on Twitter or performing BLAST sequence

alignments, web services will be intrinsically and transparently used in these operations.

With the combination of cloud-based architectures and software-as-a-service ideals, the

future of research goes beyond simple service compositions to completely new

reproducible research environments, where data, features and services act as one entity

available to everybody.

8.2.2 Linked Data and the Semantic Web
The future of the Internet lies in its evolution to more semantic environments. The

ongoing transition from a Web of documents to a Web of data will lead to a new Internet,

where anyone can easily query and reason over data (and its inner relationships) that are

distributed and disjoint by nature. With current technologies we can already implement

systems that automatically generate service composition workflows based on a set of rules

predefined in an ontology. Internet 3.0, the intelligent Internet is already here.

The Linked Data Cloud is growing exponentially with data from the most diverse

disciplines. The W3C recently approved a new interest group focused on understanding and

promoting the use of Linked Data as a platform65. Moreover, semantic features are already

intrinsically inside everyday tools, such as Google66 or Facebook67. In addition, the power of

semantics is also being harvested for applications in the industry for mobile scenarios,

health care environments or media campaigns.

While the life sciences are definitive innovation driver in this field, there are challenges

ahead to fill in the gaps surrounding this immense technological potential. COEUS is a

suitable tool to tackle these challenges, with its combination of semantic web ideals and

rapid application development principles. To build the Internet as a worldwide knowledge

network will require efforts from all stakeholders involved in the life sciences community

and, to be a part of this network, bioinformatics developers must embrace the change to a

new semantic web paradigm, a change actively facilitated by COEUS.

65

 http://www.w3.org/2012/ldp/
66

 http://www.google.com/insidesearch/features/search/knowledge.html
67

 https://developers.facebook.com/docs/opengraph/

8. Future Perspectives and Conclusions

 170

8.2.3 Worldwide Knowledge Networks
With a more intelligent Internet, we can explore and reason over data that are scattered

everywhere. With data represented according to LinkedData guidelines, it will be easier to

access data without a database: the Internet is the actual knowledge base. The new Web of

Data will be the source for miscellaneous semantic integration systems that are capable of

accurately understand and interpret heterogeneous data whilst hiding the complexities of

the underlying semantic technologies.

Nowadays, most available tools are highly sophisticated platforms completely out of the

general developers’ reach. With new frameworks like COEUS, the transitions from a legacy

environment to the modern Web of Data are eased. To be a part of this worldwide

knowledge network, existing data must be translated into new semantic formats. Work on

data triplification enables the production of rich knowledge bases. Continuing this effort to

create semantic versions that replace existing resources is essential to reveal the true

knowledge behind them, through advanced reasoning and knowledge inference strategies.

Even if the adoption of these strategies is only tangible and focused on niche fields, there

are already technologies to connect these highly specialized systems to the Web of Data,

making them an active part of a truly intelligent, worldwide, distributed, knowledge

network.

The data behind this network foster the creation of more modern software platforms,

using richer datasets and, consequently, providing richer user features. The most recent

success case is the 2012 Olympics sports site built by BBC68. The BBC’s sports knowledge

base contains linked information for all athletes, teams, nations and modalities, among

others, occurring during the event. This huge semantic knowledge base powers up the

entire news infrastructure. In addition to allowing reporters to write richer news, BBC’s

architecture allows the dynamic creation of semantically rich applications, targeting

mobile or web environments, containing all the relevant information for a given topic or

domain.

8.2.4 Modern Software Platforms
In the post-PC era mobile devices are gaining relevance in our daily lives and work.

Smartphones and tablets are no longer simple communication devices; they are an open

door to the information highway that can be use for learning, leisure or work. Along with

68

 http://www.bbc.co.uk/blogs/bbcinternet/2012/04/sports_dynamic_semantic.html

Pedro Lopes
Service Composition for Biomedical Applications

171

the evolution of our conception of the personal computer came the democratization of

technology. Everyone is familiar with a computer and, most notably, the software

development process is now fairly trivial. With the latter came a new wave of technologies

and frameworks that allow almost anyone to build a new application. Likewise, this also

prompted many experts from miscellaneous domains to start developing software. The

outcome of this evolution can be assessed in two ways. On the one hand, there are many

more high-quality applications using all the richness provided by our devices. However, on

the other hand, the overall quality standard of the applications has also been lowered.

New applications are built from scratch to interact with multiple ecosystems or to

create new ones. We cannot imagine any developer launching a social application without

including Facebook connections. Similarly, crafting new user and data ecosystems can

leverage on existing semantics to provide deeper and meaningful interactions with other

networks. Whether we are building a new protein interaction network or a social network,

the relationship semantics and the demands to interact with external environments are

omnipresent.

With virtually centralized cloud-based data stores and software-as-a-service ideals, the

door is open for rapid application development frameworks. Creating a modern software

platform is nowadays a task of "code once, build to many" where the service-based

implementations are shared through desktop, web, TV and mobile clients. COEUS

underlying architecture enables the adoption of this trend by bioinformatics developers,

tackling the challenge of moving innovative technologies to the life sciences. The

principles and ideals behind modern software architectures are common to bioinformatics

systems and the overall life sciences community, from wet-lab researchers to clinicians,

will be tremendously benefited from embracing them.

8.2.5 Business Value
Nowadays, research and enterprise can no longer afford to live in separate worlds.

Research requires private funding and interest to be sustainable and enterprises rely on

advanced research to continue the pursuit of innovation. For this matter, it is our belief

that every research work should be envisaged as a commercial product. From the various

contributions discussed in this thesis, the COEUS framework is the one with the biggest

business value.

COEUS tackles not only the challenges regarding the use of semantic web technologies,

but also the ones inherent to deploying a modern software platform. Whilst the first case

8. Future Perspectives and Conclusions

 172

study, Diseasecard, is built for the biomedical applications domain, many other scenarios

can be explored with COEUS. The comprehensive integration connectors, the flexible

triplification engine and the set of data exploration APIs, make COEUS suitable for adoption

in pharmaceutical industry solutions, news aggregations, multimedia datasets or education.

From a marketing perspective, the advanced client-side development features allow the

creation of multiple applications sharing the same codebase. In a sense, COEUS permits the

creation of our own custom data and services cloud, enabling the introduction of several

applications tailored to different market segments. With COEUS, the gap from research to

business is actively reduced, allowing future endeavours in building a commercial product.

8.3 Conclusion
The time has come to take bioinformatics software development to a whole new level.

Computer sciences’ advances over the last decade have launched a series of transitions in

the way we understand and use technologies. Service composition strategies have matured

and play a vital role in the evolution of modern software platforms. In parallel, the quest

for knowledge is also improved by the emergence of the semantic web paradigm.

Stemming from artificial intelligence, the semantic web principles are revolutionizing the

way we store, share, reason and explore available data. All these innovative technological

advances must find their way into biomedical applications.

The various solutions reported in this thesis are a remarkable evolution over the

current practices for service composition strategies in biomedical software, especially the

new proposed methods that better suit bioinformatics’ demands. In this field, service

composition revolves around integration and interoperability. This means that we must

identify the best algorithms to combine the many pieces for the integration of resources or

for the publication of the content in a knowledge base through interoperable interfaces.

Where WAVe is focused on the former and the EU-ADR Web Platform on the latter, COEUS

covers both ends with a unique approach to combine semantic web technologies with the

need for integration and interoperability. The practicality of COEUS resides in its

streamlined development process. By adopting rapid application development principles,

the framework offers control over a set of reusable assets that can be quickly mixed to

build modern, dynamic and intelligent software ecosystems.

The combination of all contributions described in this thesis accomplishes the initial

objectives. We have individually assessed multiple service composition strategies for

Pedro Lopes
Service Composition for Biomedical Applications

173

integration and interoperability and created products using new innovative solutions.

Moreover, we have successfully introduced a new software package that goes beyond what

has been done before, effectively fulfilling this doctorate research goals and contributing to

the advance of the biomedical applications state-of-the-art.

8. Future Perspectives and Conclusions

 174

Pedro Lopes
Service Composition for Biomedical Applications

175

REFERENCES

[1] R. Sachidanandam, D. Weissman, et al., "A map of human genome sequence variation containing 1.42

million single nucleotide polymorphisms", Nature, vol. 409, pp. 928-933, 2001. [doi:10.1038/35057149]
[2] J. C. Venter, M. D. Adams, et al., "The sequence of the human genome", Science's STKE, vol. 291, p. 1304,

2001.
[3] F. S. Collins, E. D. Green, et al., "A vision for the future of genomics research", Nature, vol. 422, pp. 835-

847, 2003.
[4] D. Cortese, "A vision of individualized medicine in the context of global health", Clinical Pharmacology

& Therapeutics, vol. 82, pp. 491-493, 2007.
[5] C. Sander, "Genomic medicine and the future of health care", Science, vol. 287, pp. 1977-1978, 2000.
[6] A. E. Guttmacher and F. S. Collins, "Realizing the promise of genomics in biomedical research", JAMA:

The Journal of the American Medical Association, vol. 294, pp. 1399-1402, 2005.
[7] B. Louie, P. Mork, et al., "Data integration and genomic medicine", Journal of Biomedical Informatics, vol.

40, pp. 5-16, 2007.
[8] P. Lopes, J. Arrais, and J. L. Oliveira, "Dynamic Service Integration using Web-based Workflows", in

10th International Conference on Information Integration and Web Applications & Services, Linz, Austria, 2008,
pp. 622-625. [doi:10.1145/1497308.1497426]

[9] P. Lopes, J. Arrais, and J. Oliveira, "DynamicFlow: A Client-Side Workflow Management System", in
Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living,
2009, pp. 1101-1108.

[10] P. Lopes and J. L. Oliveira, "An extensible platform for variome data integration", in 10th IEEE
International Conference on Information Technology and Applications in Biomedicine (ITAB), Corfu, Greece,
2010, pp. 1-4. [doi:10.1109/ITAB.2010.5687784]

[11] P. Lopes, R. Dalgleish, and J. L. Oliveira, "WAVe: Web Analysis of the Variome", Human Mutation, vol.
32, Mar 10 2011. [doi:10.1002/humu.21499]

[12] P. Lopes and J. L. Oliveira, "Towards knowledge federation in biomedical applications", in 7th
International Conference on Semantic Systems (I-SEMANTICS), Graz, Austria, 2011, pp. 87-94.
[doi:10.1145/2063518.2063530]

[13] P. Lopes, José, and L. Oliveira, "A semantic web application framework for health systems
interoperability", in First International Workshop on Managing Interoperability and Complexity in Health
Systems (MIX-HS), Glasgow, Scotland, UK, 2011, pp. 87-90. [doi:10.1145/2064747.2064768]

[14] P. Lopes and J. L. Oliveira, "COEUS: A Semantic Web Application Framework", in 4th International
Workshop on Semantic Web Applications and Tools for the Life Sciences (SWAT4LS), London, United
Kingdom, 2012, pp. 66-73. [doi:10.1145/2166896.2166915]

[15] J. D. Watson, "The human genome project: past, present, and future", Science, vol. 248, pp. 44-49, April
6, 1990 1990. [doi:10.1126/science.2181665]

[16] R. Tupler, G. Perini, and M. R. Green, "Expressing the human genome", Nature, vol. 409, pp. 832-833,
2001.

[17] D. Primorac, "Human Genome Project-based Applications in Forensic Science, Anthropology, and
Individualized Medicine", Croat Med J, vol. 50, pp. 205-6, Jun 2009 2009. [doi:10.3325/cmj.2009.50.205]

[18] L. G. Biesecker, J. C. Mullikin, et al., "The ClinSeq Project: Piloting large-scale genome sequencing for
research in genomic medicine", Genome Research, vol. 19, pp. 1665-1674, 2009.
[doi:10.1101/gr.092841.109]

[19] H. Z. Ring, P.-Y. Kwok, and R. G. Cotton, "Human Variome Project: an international collaboration to
catalogue human genetic variation", Pharmacogenomics, vol. 7, pp. 969-972, 2006.
[doi:doi:10.2217/14622416.7.7.969]

[20] B. Giardine, C. Riemer, et al., "PhenCode: connecting ENCODE data with mutations and phenotype",
Human Mutation, vol. 28, pp. 554-562, 2007.

[21] G. Trifiro, A. Fourrier-Reglat, et al., "The EU-ADR project: preliminary results and perspective", Studies
In Health Technology And Informatics, vol. 148, pp. 43-49, 2009.

References

 176

[22] D. E. Reich and D. B. Goldstein, "Genetic evidence for a Paleolithic human population expansion in
Africa", Proceedings of the National Academy of Sciences, vol. 95, pp. 8119-8123, July 7, 1998 1998.

[23] L. Kruglyak and D. A. Nickerson, "Variation is the spice of life", Nature Genetics, vol. 27, pp. 234-236,
2001.

[24] R. A. Gibbs, J. W. Belmont, et al., "The international HapMap project", Nature, vol. 426, pp. 789-796,
2003.

[25] G. A. Thorisson, A. V. Smith, et al., "The international HapMap project web site", Genome Research, vol.
15, pp. 1592-1593, 2005.

[26] M. Via, C. Gignoux, and E. G. Burchard, "The 1000 Genomes Project: new opportunities for research
and social challenges", Genome Medicine, vol. 2, pp. 1-3, 2010.

[27] A. Hamosh, A. F. Scott, et al., "Online Mendelian Inheritance in Man (OMIM), a knowledgebase of
human genes and genetic disorders", Nucleic Acids Research, vol. 33, pp. D514-D517, January 1, 2005
2005. [doi:10.1093/nar/gki033]

[28] J. R. Riordan, J. M. Rommens, et al., "Identification of the cystic fibrosis gene: cloning and
characterization of complementary DNA", Science, vol. 245, pp. 1066-1073, 1989.

[29] B. Kerem, J. M. Rommens, et al., "Identification of the cystic fibrosis gene: genetic analysis", Science,
vol. 245, pp. 1073-1080, 1989.

[30] L. L. Cavalli-Sforza and M. W. Feldman, "The application of molecular genetic approaches to the
study of human evolution", Nature Genetics, vol. 33, pp. 266-275, 2003.

[31] M. Y. Galperin and X. M. Fernández-Suárez, "The 2012 Nucleic Acids Research Database Issue and the
online Molecular Biology Database Collection", Nucleic Acids Research, vol. 40, pp. D1-D8, January 1,
2012 2012. [doi:10.1093/nar/gkr1196]

[32] S. T. Sherry, M.-H. Ward, et al., "dbSNP: the NCBI database of genetic variation", Nucleic Acids Research,
vol. 29, pp. 308-311, January 1, 2001 2001. [doi:10.1093/nar/29.1.308]

[33] C. E. Lipscomb, "Medical Subject Headings (MeSH)", Bulletin of the Medical Library Association, vol. 88,
pp. 265-6, Jul 2000.

[34] D. A. Benson, I. Karsch-Mizrachi, et al., "GenBank", Nucleic Acids Research, vol. 38, pp. D46-51, January 1,
2010 2010. [doi:10.1093/nar/gkp1024]

[35] D. Maglott, J. Ostell, et al., "Entrez Gene: gene-centered information at NCBI", Nucleic Acids Research,
vol. 35, 2007.

[36] A. Bairoch, R. Apweiler, et al., "The Universal Protein Resource (UniProt)", Nucleic Acids Research, vol.
33, pp. D154-159, January 1, 2005 2005. [doi:10.1093/nar/gki070]

[37] N. J. Mulder, R. Apweiler, et al., "New developments in the InterPro database", Nucleic Acids Research,
vol. 35, pp. D224-228, January 12, 2007 2007. [doi:10.1093/nar/gkl841]

[38] E. Gasteiger, A. Gattiker, et al., "ExPASy: the proteomics server for in-depth protein knowledge and
analysis", Nucleic Acids Research, vol. 31, pp. 3784-3788, 2003.

[39] C. J. A. Sigrist, L. Cerutti, et al., "PROSITE, a protein domain database for functional characterization
and annotation", Nucleic Acids Research, vol. 38, pp. D161-D166, 2010.

[40] H. Parkinson, U. Sarkans, et al., "ArrayExpress--a public repository for microarray gene expression
data at the EBI", Nucleic Acids Research, vol. 33, pp. D553-555, January 1, 2005 2005.
[doi:10.1093/nar/gki056]

[41] T. Margaria, M. G. Hinchey, et al., "Ensembl Database: Completing and Adapting Models of Biological
Processes", Proceedings of the Conference on Biologically Inspired Cooperative Computing (BiCC IFIP): 20-25
August 2006; Santiago (Chile), pp. 43 - 54, 2006.

[42] M. Kanehisa and S. Goto, "KEGG: Kyoto Encyclopedia of Genes and Genomes", Nucleic Acids Research,
vol. 28, pp. 27-30, January 1, 2000 2000. [doi:10.1093/nar/28.1.27]

[43] M. Kanehisa, S. Goto, et al., "From genomics to chemical genomics: new developments in KEGG",
Nucleic Acids Research, vol. 34, pp. D354-357, January 1, 2006 2006. [doi:10.1093/nar/gkj102]

[44] M. Ashburner, C. A. Ball, et al., "Gene Ontology: tool for the unification of biology", Nature Genetics, vol.
25, pp. 25 - 9, 2000.

[45] R. Stevens, C. A. Goble, and S. Bechhofer, "Ontology-based knowledge representation for
bioinformatics", Briefings in Bioinformatics, vol. 1, pp. 398-414, January 1, 2000 2000.
[doi:10.1093/bib/1.4.398]

[46] Y. Lussier, T. Borlawsky, et al., "PhenoGO: assigning phenotypic context to gene ontology annotations
with natural language processing", Pac Symp Biocomput, pp. 64-75, 2006.

[47] L. Sam, E. Mendonca, et al., "PhenoGO: an integrated resource for the multiscale mining of clinical
and biological data", BMC Bioinformatics, vol. 10, p. S8, 2009.

[48] A. Kahraman, A. Avramov, et al., "PhenomicDB: a multi-species genotype/phenotype database for
comparative phenomics", Bioinformatics, vol. 21, pp. 418-420, February 1, 2005 2005.
[doi:10.1093/bioinformatics/bti010]

Pedro Lopes
Service Composition for Biomedical Applications

177

[49] P. Groth, N. Pavlova, et al., "PhenomicDB: a new cross-species genotype/phenotype resource", Nucleic
Acids Research, vol. 35, pp. D696-699, January 12, 2007 2007. [doi:10.1093/nar/gkl662]

[50] C. F. Thorn, T. E. Klein, and R. B. Altman, "Pharmacogenomics and bioinformatics: PharmGKB",
Pharmacogenomics, vol. 11, pp. 501-505, 2010.

[51] G. A. Thorisson, O. Lancaster, et al., "HGVbaseG2P: a central genetic association database", Nucleic
Acids Research, vol. 37, pp. D797-802, January 1, 2009 2009. [doi:10.1093/nar/gkn748]

[52] E. Neumann, "A life science Semantic Web: are we there yet?", Science's STKE, vol. 2005, p. pe22, 2005.
[53] B. M. Good and M. D. Wilkinson, "The life sciences semantic web is full of creeps!", Briefings in

Bioinformatics, vol. 7, pp. 275-286, 2006.
[54] A. Ruttenberg, J. A. Rees, et al., "Life sciences on the Semantic Web: the Neurocommons and beyond",

Briefings in Bioinformatics, vol. 10, pp. 193-204, 2009.
[55] F. Belleau, M.-A. Nolin, et al., "Bio2RDF: Towards a mashup to build bioinformatics knowledge

systems", Journal of Biomedical Informatics, vol. 41, pp. 706-716, 2008.
[56] N. F. Noy, N. H. Shah, et al., "BioPortal: ontologies and integrated data resources at the click of a

mouse", Nucleic Acids Research, vol. 37, pp. W170-W173, 2009.
[57] P. L. Whetzel, N. F. Noy, et al., "BioPortal: enhanced functionality via new Web services from the

National Center for Biomedical Ontology to access and use ontologies in software applications",
Nucleic Acids Research, vol. 39, pp. W541-W545, 2011. [doi:10.1093/nar/gkr469]

[58] T. Berners-Lee, "Linked data-design issues", W3C, vol. 2009, 2006.
[59] C. Bizer, "The Emerging Web of Linked Data", Intelligent Systems, IEEE, vol. 24, pp. 87-92, 2009.

[doi:10.1109/mis.2009.102]
[60] C. Bizer, T. Heath, and T. Berners-Lee, "Linked Data - The Story So Far", ed: IGI Global, 2009, pp. 1-22.

[doi:10.4018/jswis.2009081901]
[61] C. Bizer, J. Lehmann, et al., "DBpedia - A crystallization point for the Web of Data", Web Semantics:

Science, Services and Agents on the World Wide Web, vol. 7, pp. 154-165, 2009.
[doi:10.1016/j.websem.2009.07.002]

[62] A. Jenkinson, M. Albrecht, et al., "Integrating biological data - the Distributed Annotation System",
BMC Bioinformatics, vol. 9, p. S3, 2008.

[63] D. Smedley, S. Haider, et al., "BioMart - biological queries made easy", BMC Genomics, vol. 10, p. 22,
2009.

[64] S. Haider, B. Ballester, et al., "BioMart Central Portal--unified access to biological data", Nucleic Acids
Research, vol. 37, pp. W23-27, July 1, 2009 2009. [doi:10.1093/nar/gkp265]

[65] P. Rice, I. Longden, and A. Bleasby, "EMBOSS: the European Molecular Biology Open Software Suite",
Trends Genet, vol. 16, pp. 276-7, Jun 2000. [doi:S0168-9525(00)02024-2 [pii]]

[66] S. A. Olson, "EMBOSS opens up sequence analysis. European Molecular Biology Open Software Suite",
Briefings in Bioinformatics, vol. 3, pp. 87-91, Mar 2002.

[67] M. Sarachu and M. Colet, "wEMBOSS: a web interface for EMBOSS", Bioinformatics, vol. 21, pp. 540-1,
Feb 15 2005. [doi:10.1093/bioinformatics/bti031]

[68] S. Pillai, V. Silventoinen, et al., "SOAP-based services provided by the European Bioinformatics
Institute", Nucleic Acids Research, vol. 33, pp. W25-28, July 1, 2005 2005. [doi:10.1093/nar/gki491]

[69] M. Wilkinson and M. Links, "BioMoby: An open source biological web services proposal", Briefings in
Bioinformatics, vol. 3, pp. 331 - 341, 2002.

[70] M. DiBernardo, R. Pottinger, and M. Wilkinson, "Semi-automatic web service composition for the life
sciences using the BioMoby semantic web framework", Journal of Biomedical Informatics, vol. 41, pp.
837-847, 2008.

[71] H. Sugawara and S. Miyazaki, "Biological SOAP servers and web services provided by the public
sequence data bank", Nucleic Acids Research, vol. 31, pp. 3836-3839, July 1, 2003 2003.
[doi:10.1093/nar/gkg558]

[72] Y. Kwon, Y. Shigemoto, et al., "Web API for biology with a workflow navigation system", Nucleic Acids
Research, vol. 37, pp. W11-16, July 1, 2009 2009. [doi:10.1093/nar/gkp300]

[73] J. Bhagat, F. Tanoh, et al., "BioCatalogue: a universal catalogue of web services for the life sciences",
Nucleic Acids Research, vol. 38, pp. W689-W694, July 1, 2010 2010. [doi:10.1093/nar/gkq394]

[74] C. Goble and R. Stevens, "State of the nation in data integration for bioinformatics", Journal of
Biomedical Informatics, vol. 41, pp. 687-693, 2008. [doi:10.1016/j.jbi.2008.01.008]

[75] L. D. Stein, "Creating a Bioinformatics Nation", Nature, vol. 417, pp. 119 - 120, 2002.
[76] L. D. Stein, "Integrating biological databases", Nature Genetics, vol. 4, pp. 337-345, 2003.
[77] J. Arrais, B. Santos, et al., "GeneBrowser: an approach for integration and functional classification of

genomic data", Journal of Integrative Bioinformatics, vol. 4, 2007. [doi:10.2390/biecoll-jib-2007-82]

References

 178

[78] J. Arrais, J. Fernandes, et al., "GeneBrowser 2: an application to explore and identify common
biological traits in a set of genes", BMC Bioinformatics, vol. 11, p. 389, 2010. [doi:10.1186/1471-2105-11-
389]

[79] J. Arrais, J. Pereira, and J. L. Oliveira, "GeNS: A biological data integration platform", in ICBB 2009,
International Conference on Bioinformatics and Biomedicine, Venice, 2009.

[80] A. Birkland and G. Yona, "BIOZON: a system for unification, management and analysis of
heterogeneous biological data", BMC Bioinformatics, vol. 7, 2006.

[81] I. Vastrik, P. D'Eustachio, et al., "Reactome: a knowledge base of biologic pathways and processes",
Genome Biolology, vol. 8, p. R39, 2007.

[82] E. K. Neumann and D. Quan, "BioDASH: a Semantic Web dashboard for drug development", Pac Symp
Biocomput, pp. 176 - 187, 2006.

[83] R. C. G. Holland, T. A. Down, et al., "BioJava: an open-source framework for bioinformatics",
Bioinformatics, vol. 24, pp. 2096-2097, 2008.

[84] N. Goto, P. Prins, et al., "BioRuby: Bioinformatics software for the Ruby programming language",
Bioinformatics, vol. 26, pp. 2617-2619, 2010.

[85] J. E. Stajich, D. Block, et al., "The Bioperl toolkit: Perl modules for the life sciences", Genome Research,
vol. 12, pp. 1611-1618, 2002.

[86] P. J. A. Cock, T. Antao, et al., "Biopython: freely available Python tools for computational molecular
biology and bioinformatics", Bioinformatics, vol. 25, pp. 1422-1423, 2009.

[87] T. Margaria, R. Nagel, and B. Steffen, "Bioconductor-jETI: A Tool for Remote Tool Integration",
Proceedings of the 11th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS): 4-8 April 2005; Edinburgh, U.K., pp. 557 - 562, 2005.

[88] M. Swertz, M. Dijkstra, et al., "The MOLGENIS toolkit: rapid prototyping of biosoftware at the push of
a button", BMC Bioinformatics, vol. 11, p. S12, 2010.

[89] R. Stevens, A. Robinson, and C. Goble, "myGrid: personalized bioinformatics on the information grid",
Bioinformatics, vol. 19, pp. I302 - I304, 2003.

[90] M. A. Vouk, "Cloud computing - Issues, research and implementations", in Information Technology
Interfaces, 2008. ITI 2008. 30th International Conference on, 2008, pp. 31-40.

[91] J. T. Dudley and A. J. Butte, "In silico research in the era of cloud computing", Nat Biotech, vol. 28, pp.
1181-1185, 2010.

[92] T. Margaria, C. Kubczak, and B. Steffen, "Bio-jETI: a service integration, design, and provisioning
platform for orchestrated bioinformatics processes", BMC Bioinformatics, vol. 9, p. S12, 2008.

[93] E. Bartocci, F. Corradini, et al., "BioWMS: a web-based Workflow Managemt System for
bioinformatics", BMC Bioinformatics, vol. 8, p. 14, 2007.

[94] P. Romano, D. Marra, and L. Milanesi, "Web services and workflow management for biological
resources", BMC Bioinformatics, vol. 6, p. S24, 2005.

[95] P. Romano, E. Bartocci, et al., "Biowep: a workflow enactment portal for bioinformatic applications",
BMC Bioinformatics, vol. 8, 2007.

[96] T. Life Sciences Practice, "BioWBI and WEE: Tools for Bioinformatics Analysis Workflows", 2004.
[97] Z. Guan and H. M. Jamil, "Streamlining biological data analysis using BioFlow", in Third IEEE

Symposium on Bioinformatics and Bioengineering, 2003, pp. 258-262.
[98] H. Jamil and B. El-Hajj-Diab, "BioFlow: A Web-Based Declarative Workflow Language for Life

Sciences", in IEEE Congress on Services - Part I, 2008, pp. 453 - 460. [doi:10.1109/SERVICES-1.2008.73]
[99] B. Ludascher, I. Altintas, et al., "Taverna: Scientific Workflow Management and the Kepler System",

Research Articles, Concurrency and Computation: Practice & Experience, vol. 18, pp. 1039 - 1065, 2006.
[100] B. Giardine, C. Riemer, et al., "Galaxy: a platform for interactive large-scale genome analysis", Genome

Research, vol. 15, pp. 1451-1455, 2005.
[101] J. Goecks, A. Nekrutenko, and J. Taylor, "Galaxy: a comprehensive approach for supporting accessible,

reproducible, and transparent computational research in the life sciences", Genome Biology, vol. 11, p.
R86, 2010.

[102] M. Abouelhoda, S. Issa, and M. Ghanem, "Tavaxy: Integrating Taverna and Galaxy workflows with
cloud computing support", BMC Bioinformatics, vol. 13, p. 77, 2012.

[103] P. Groth, A. Gibson, and J. Velterop, "The anatomy of a nanopublication", Information Services and Use,
vol. 30, pp. 51-56, 2010. [doi:10.3233/isu-2010-0613]

[104] H. M. Sneed, "Software evolution. A road map", in Software Maintenance, 2001. Proceedings. IEEE
International Conference on, 2001, p. 7.

[105] Z. Zou, Z. Duan, and J. Wang, "A Comprehensive Framework for Dynamic Web Services Integration",
in European Conference on Web Services (ECOWS'06), 2006.

[106] G. O. H. Chong Minsk, L. E. E. Siew Poh, et al., "Web 2.0 Concepts and Technologies for Dynamic B2B
Integration", IEEE, pp. 315-321, 2007.

Pedro Lopes
Service Composition for Biomedical Applications

179

[107] M. Turner, D. Budgen, and P. Brereton, "Turning software into a service", Computer, vol. 36, pp. 38-44,
2003.

[108] L. Xuanzhe, H. Yi, et al., "Towards Service Composition Based on Mashup", in IEEE Congress on Services,
2007, pp. 332-339.

[109] N. Yan, "Build Your Mashup with Web Services", in IEEE International Conference on Services Computing,
Salt Lake City, UT, USA, 2007. [doi:10.1109/SCC.2007.34]

[110] Q. Zhao, G. Huang, et al., "A Web-Based Mashup Environment for On-the-Fly Service Composition", in
Service-Oriented System Engineering, 2008. SOSE '08. IEEE International Symposium on, 2008, pp. 32-37.

[111] D. Hollingsworth, The Workflow Reference Model, 1995.
[112] G. Preuner and M. Schrefl, "Integration of Web Services into Workflows through a Multi-Level

Schema Architecture", in 4th IEEE Int’l Workshop on Advanced Issues of E-Commerce and Web-Based
Information Systems (WECWIS 2002), 2002.

[113] J. Cardoso and A. Sheth, "Semantic E-Workflow Composition", Journal of Intelligent Information Systems,
2003.

[114] P. C. K. Hung and D. K. W. Chiu, "Developing Workflow-based Information Integration (WII) with
Exception Support in a Web Services Environment", in 37th Hawaii International Conference on System
Sciences - 2004, 2004.

[115] Y. Gil, E. Deelman, et al., "Examining the Challenges of Scientific Workflows", Computer, vol. 40, pp. 24-
32, 2007.

[116] T. McPhillips, S. Bowers, et al., "Scientific workflow design for mere mortals", Future Generation
Computer Systems, vol. 25, pp. 541-551, 2009. [doi:10.1016/j.future.2008.06.013]

[117] S. Petkov, E. Oren, and A. Haller. (2005). Aspects in Workflow Management.
[118] P. Beynon-Davies, C. Carne, et al., "Rapid application development (RAD): an empirical review",

European Journal of Information Systems, vol. 8, pp. 211-223, 1999.
[119] R. Agarwal, J. Prasad, et al., "Risks of rapid application development", Commun. ACM, vol. 43, p. 1, 2000.

[doi:10.1145/352515.352516]
[120] T. Inoue, H. Asakura, et al., "Rapid Development of Web Applications by Introducing Database

Systems with Web APIs", in Database Systems for Advanced Applications. vol. 5982, H. Kitagawa, Y.
Ishikawa, et al., Eds., ed: Springer Berlin / Heidelberg, 2010, pp. 327-336. [doi:10.1007/978-3-642-
12098-5_27]

[121] C. Peltz, "Web services orchestration and choreography", Computer, vol. 36, pp. 46-52, 2003.
[122] S. Staab, "Web Services: Been there, Done That?", IEEE Intelligent Systems, pp. 72-85, 2003.
[123] W3C, "Web Services", ed: World Wide Web Consortium, 2002.
[124] W3C, "Simple Object Access Protocol", ed: World Wide Web Consortium, 2007.
[125] OASIS, "Universal Description, Discovery and Integration", ed: OASIS, 2005.
[126] W3C, "Web Service Description Language", ed: World Wide Web Consortium, 2001.
[127] J. Kopecky, T. Vitvar, et al., "SAWSDL: Semantic Annotations for WSDL and XML Schema", Internet

Computing, IEEE, vol. 11, pp. 60-67, 2007.
[128] R. T. Fielding and R. N. Taylor, "Principled design of the modern Web architecture", ACM Trans.

Internet Technol., vol. 2, pp. 115-150, 2002. [doi:10.1145/514183.514185]
[129] F. Rosenberg, F. Curbera, et al., "Composing RESTful Services and Collaborative Workflows: A

Lightweight Approach", Internet Computing, IEEE, vol. 12, pp. 24-31, 2008.
[130] S. S. S. Reddy, L. S. S. Reddy, et al., "Advanced Techniques for Scientific Data Warehouses", in

International Conference on Advanced Computer Control, ICACC, 2009, pp. 576-580.
[131] N. Polyzotis, S. Skiadopoulos, et al., "Meshing Streaming Updates with Persistent Data in an Active

Data Warehouse", Knowledge and Data Engineering, IEEE Transactions on, vol. 20, pp. 976-991, 2008.
[132] Y. Zhu, L. An, and S. Liu, "Data Updating and Query in Real-Time Data Warehouse System", in

Computer Science and Software Engineering, 2008 International Conference on, 2008, pp. 1295-1297.
[133] A. Kiani and N. Shiri, "A Generalized Model for Mediator Based Information Integration", in 11th

International Database Engineering and Applications Symposium, 2007, pp. 268-272.
[134] L. M. Haas, P. M. Schwarz, et al., "DiscoveryLink: A system for integrated access to life sciences data

sources", IBM Systems Journal, vol. 40, pp. 489-511, 2001.
[135] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying Messaging

Solutions: Addison-Wesley, 2004.
[136] R. Kazman, G. Abowd, et al., "Scenario-based analysis of software architecture", Software, IEEE, vol. 13,

pp. 47-55, 1996.
[137] A. Tolk and J. A. Muguira, "Levels of Conceptual Interoperability Model", in Fall Simulation

Interoperability Workshop, Orlando, Florida, USA, 2003, pp. 14-19.
[138] T. Berners-Lee, J. Hendler, and O. Lassila, "The Semantic Web", Sci Am, vol. 284, pp. 34 - 43, 2001.

References

 180

[139] M. Burstein, C. Bussler, et al., "A semantic Web services architecture", Internet Computing, IEEE, vol. 9,
pp. 72-81, 2005.

[140] M. Stollberg and A. Haller, "Semantic Web services tutorial", in IEEE International Conference on Services
Computing, 2005. [doi:10.1109/SCC.2005.81]

[141] J. Hendler, "Enhanced: Science and the Semantic Web", Science, vol. 299, pp. 520-521, January 24, 2003
2003. [doi:10.1126/science.1078874]

[142] E. Neumann, "A Life Science Semantic Web: Are We There Yet?", Science's STKE, vol. 2005, pp. pe22-,
May 10, 2005 2005. [doi:10.1126/stke.2832005pe22]

[143] L. Masinter, T. Berners-Lee, and R. T. Fielding, "Uniform resource identifier (URI): Generic syntax",
2005.

[144] W3C, "Resource Description Framework", ed: World Wide Web Consortium, 2004.
[145] W3C, "Web Ontology Language", ed: World Wide Web Consortium, 2007.
[146] S. Harris and N. Shadbolt, "SPARQL Query Processing with Conventional Relational Database

Systems", in Web Information Systems Engineering – WISE 2005 Workshops, ed, 2005, pp. 235-244.
[147] A. Ruttenberg, T. Clark, et al., "SPARQL: Advancing translational research with the Semantic Web",

BMC Bioinformatics, vol. 8, p. S2, 2007.
[148] E. J. Miller, "An Introduction to the Resource Description Framework", Journal of Library

Administration, vol. 34, pp. 245-255, 2001.
[149] M. Uschold and M. Gruninger, "Ontologies: Principles, Methods and Applications", Knowledge

Engineering Review, vol. 11, pp. 93-155, 1996.
[150] O. Hartig, C. Bizer, and J.-C. Freytag, "Executing SPARQL Queries over the Web of Linked Data", in The

Semantic Web - ISWC 2009, 2009, pp. 293-309. [doi:10.1007/978-3-642-04930-9_19]
[151] P. Avillach, F. Mougin, et al., "A semantic approach for the homogeneous identification of events in

eight patient databases: a contribution to the European eu-ADR project", Medical Informatics, vol. 160,
pp. 1085-1089, 2009.

[152] P. Avillach, M. Joubert, et al., "Design and evaluation of a semantic approach for the homogeneous
identification of events in eight patient databases: a contribution to the European EU-ADR project",
Studies In Health Technology And Informatics, vol. 160, pp. 1085-9, 2010.

[153] M. Stahl, I. R. Edwards, et al., "Assessing the Impact of Drug Safety Signals from the WHO Database
Presented inSIGNAL': Results from a Questionnaire of National Pharmacovigilance Centres", Drug
safety, vol. 26, pp. 721-727, 2003.

[154] R. H. B. Meyboom, M. Lindquist, et al., "Signal Selection and Follow-Up in Pharmacovigilance", Drug
safety, vol. 25, pp. 459-465, 2002.

[155] M. Wadman, "Experts call for active surveillance of drug safety", Nature, vol. 446, pp. 358-359, 2007.
[doi:10.1038/446358b]

[156] A. Bauer-Mehren, E. M. van Mullingen, et al., "Automatic Filtering and Substantiation of Drug Safety
Signals", PLoS Comput Biology, vol. 8, p. e1002457, 2012. [doi:10.1371/journal.pcbi.1002457]

[157] L. Härmark and A. C. Van Grootheest, "Pharmacovigilance: methods, recent developments and future
perspectives", European Journal of Clinical Pharmacology, vol. 64, pp. 743-752, 2008.

[158] L. Wood and C. Martinez, "The General Practice Research Database: Role in Pharmacovigilance", Drug
safety, vol. 27, pp. 871-881, 2004.

[159] J. Parkinson, S. Davis, and T. v. Staa, "The General Practice Research Database: Now and the Future",
in Pharmacovigilance, ed: John Wiley & Sons, Ltd, 2006, pp. 341-348.

[160] P. Shannon, A. Markiel, et al., "Cytoscape: a software environment for integrated models of
biomolecular interaction networks", Genome Research, vol. 13, pp. 2498 - 504, 2003.

[161] P. M. Coloma, G. Trifirò, et al., "Electronic healthcare databases for active drug safety surveillance: is
there enough leverage?", Pharmacoepidemiology and Drug Safety, vol. 21, pp. 611-621, June 2012 2012.
[doi:10.1002/pds.3197]

[162] G. Trifirò, V. Patadia, et al., "EU-ADR healthcare database network vs. spontaneous reporting system
database: preliminary comparison of signal detection", Studies In Health Technology And Informatics, vol.
166, pp. 25-30, 2011.

[163] T. Oinn, M. Addis, et al., "Taverna: a tool for the composition and enactment of bioinformatics
workflows", Bioinformatics, vol. 20, pp. 3045 - 3054, 2004.

[164] L. A. Zadeh, "A simple view of the Dempster-Shafer theory of evidence and its implication for the
rule of combination", AI magazine, vol. 7, p. 85, 1986.

[165] E. Heard, S. Tishkoff, et al., "Ten years of genetics and genomics: what have we achieved and where
are we heading?", Nat Rev Genet, vol. 11, pp. 723-733, 2010.

[166] G. S. Ginsburg and J. J. McCarthy, "Personalized medicine: revolutionizing drug discovery and patient
care", Trends in Biotechnology, vol. 19, pp. 491-496, 2001.

Pedro Lopes
Service Composition for Biomedical Applications

181

[167] A. D. Weston and L. Hood, "Systems Biology, Proteomics, and the Future of Health Care: Toward
Predictive, Preventative, and Personalized Medicine", Journal of Proteome Research, vol. 3, pp. 179-196,
2004. [doi:10.1021/pr0499693]

[168] D. N. Cooper, J. M. Chen, et al., "Genes, mutations, and human inherited disease at the dawn of the age
of personalized genomics", Human Mutation, vol. 31, pp. 631-655, 2010. [doi:10.1002/humu.21260]

[169] T. I. H. Consortium, "A second generation human haplotype map of over 3.1 million SNPs", K. A.
Frazer, D. G. Ballinger, et al., Eds., ed: Nature Publishing Group, 2007.

[170] G. A. Thorisson, J. Muilu, and A. J. Brookes, "Genotype-phenotype databases: challenges and solutions
for the post-genomic era", Nat Rev Genet, vol. 10, pp. 9-18, 2009.

[171] R. D. Hawkins, G. C. Hon, and B. Ren, "Next-generation genomics: an integrative approach", Nat Rev
Genet, vol. 11, pp. 476-486, 2010.

[172] M. Muers, "Human genomics: Filling gaps and finding variants", Nat Rev Genet, vol. 11, p. 387, Jun 2010.
[doi:10.1038/nrg2800]

[173] C. Mitropoulou, A. J. Webb, et al., "Locus-specific database domain and data content analysis:
evolution and content maturation toward clinical usea", Human Mutation, vol. 31, pp. 1109-1116, 2010.
[doi:10.1002/humu.21332]

[174] J. T. den Dunnen and M. H. Paalman, "Standardizing mutation nomenclature: why bother?", Human
Mutation, vol. 22, pp. 181-2, Sep 2003. [doi:10.1002/humu.10262]

[175] M. Wildeman, E. van Ophuizen, et al., "Improving sequence variant descriptions in mutation
databases and literature using the Mutalyzer sequence variation nomenclature checker", Human
Mutation, vol. 29, pp. 6-13, Jan 2008. [doi:10.1002/humu.20654]

[176] R. Dalgleish, P. Flicek, et al., "Locus Reference Genomic sequences: an improved basis for describing
human DNA variants", Genome Medicine, vol. 2, p. 24, 2010.

[177] P. Riikonen and M. Vihinen, "MUTbase: maintenance and analysis of distributed mutation databases",
Bioinformatics, vol. 15, pp. 852-859, October 1, 1999 1999. [doi:10.1093/bioinformatics/15.10.852]

[178] Christophe Béroud, Gwenaîlle Collod-Béroud, et al., "UMD (Universal Mutation Database): A generic
software to build and analyze locus-specific databases", Human Mutation, vol. 15, pp. 86-94, 2000.

[179] Ivo F.A.C. Fokkema, Johan T. den Dunnen, and Peter E.M. Taschner, "LOVD: Easy creation of a locus-
specific sequence variation database using an ldquoLSDB-in-a-boxrdquo approach", Human Mutation,
vol. 26, pp. 63-68, 2005.

[180] I. F. A. C. Fokkema, P. E. M. Taschner, et al., "LOVD v.2.0: the next generation in gene variant
databases", Human Mutation, vol. 32, pp. 557-563, 2011.

[181] J. T. den Dunnen, R. H. Sijmons, et al., "Sharing data between LSDBs and central repositories", Human
Mutation, vol. 30, pp. 493-495, 2009.

[182] C. Wu, C. Orozco, et al., "BioGPS: an extensible and customizable portal for querying and organizing
gene annotation resources", Genome Biology, vol. 10, p. R130, 2009. [doi:citeulike-article-id:6131194]

[183] Z. Li, X. Liu, et al., "DRUMS: A human disease related unique gene mutation search engine", Human
Mutation, vol. 32, pp. E2259-E2265, 2011.

[184] M. G. Aspinall and R. G. Hamermesh, "Realizing the promise of personalized medicine", Harv Bus Rev,
vol. 85, pp. 108-17, 165, Oct 2007.

[185] W. Kalow, "Pharmacogenetics and personalised medicine", Fundamental & Clinical Pharmacology, vol.
16, pp. 337-342, 2002.

[186] J. N. Hirschhorn and M. J. Daly, "Genome-wide association studies for common diseases and complex
traits", Nat Rev Genet, vol. 6, pp. 95-108, Feb 2005. [doi:10.1038/nrg1521]

[187] P. Lopes, D. Pinto, et al., "Arabella - A Directed Web Crawler", in International Conference on Knowledge
Discovery and Information Retrieval, Funchal - Madeira, Portugal, 2009, pp. 270-273.

[188] S. Matos, J. Arrais, et al., "Concept-based query expansion for retrieving gene related publications
from MEDLINE", BMC Bioinformatics, vol. 11, p. 212, 2010.

[189] A. J. Webb, G. A. Thorisson, and A. J. Brookes, "An informatics project and online "Knowledge Centre"
supporting modern genotype-to-phenotype research", Human Mutation, vol. 32, pp. 543-550, May
2011. [doi:10.1002/humu.21469]

[190] N. Cannata, M. Schroder, et al., "A Semantic Web for bioinformatics: goals, tools, systems,
applications", BMC Bioinformatics, vol. 9, p. S1, 2008. [doi:10.1186/1471-2105-9-s4-s1]

[191] M. Swertz, E. de Brock, et al., "Molecular Genetics Information System (MOLGENIS): alternatives in
developing local experimental genomics databases", Bioinformatics, vol. 20, pp. 2075 - 2083, 2004.

[192] M. A. Swertz, K. J. Velde, et al., "XGAP: a uniform and extensible data model and software platform for
genotype and phenotype experiments", Genome Biology, vol. 11, p. R27, 2010. [doi:10.1186/gb-2010-11-
3-r27]

[193] D. Kessner, M. Chambers, et al., "ProteoWizard: open source software for rapid proteomics tools
development", Bioinformatics, vol. 24, pp. 2534-2536, 2008.

References

 182

[194] D. Glez-Peña, M. Reboiro-Jato, et al., "AIBench: A rapid application development framework for
translational research in biomedicine", Computer Methods and Programs in Biomedicine, vol. 98, pp. 191-
203, 2010. [doi:10.1016/j.cmpb.2009.12.003]

[195] M. D. Wilkinson, B. Vandervalk, and L. McCarthy, "SADI Semantic Web Services - 'cause you can't
always GET what you want!", in IEEE Asia-Pacific Services Computing Conference, 2009, pp. 13-18.

[196] M. Wilkinson, B. Vandervalk, and L. McCarthy, "The Semantic Automated Discovery and Integration
(SADI) Web service Design-Pattern, API and Reference Implementation", Journal of Biomedical
Semantics, vol. 2, p. 8, 2011.

[197] T. Slater, C. Bouton, and E. S. Huang, "Beyond data integration", Drug Discovery Today, vol. 13, pp. 584-
589, 2008. [doi:10.1016/j.drudis.2008.01.008]

[198] S. Kozhenkov, Y. Dubinina, et al., "BiologicalNetworks 2.0 - an integrative view of genome biology
data", BMC Bioinformatics, vol. 11, p. 610, 2010.

[199] M. Hepp, "Semantic Web and semantic Web services: father and son or indivisible twins?", Internet
Computing, IEEE, vol. 10, pp. 85-88, 2006.

[200] N. Cannata, E. Merelli, and R. B. Altman, "Time to Organize the Bioinformatics Resourceome", PLoS
Comput Biology, vol. 1, p. e76, 2005.

[201] V. Maojo and F. Martin Sanchez, "Bioinformatics: Towards New Directions for Public Health",
Methods Inf Med, vol. 43, pp. 208-214, 2004.

[202] J. Arrais, P. Lopes, and J. Oliveira, "Challenges Storing and Representing Biomedical Data", Information
Quality in e-Health, pp. 53-62, 2011. [doi:10.1007/978-3-642-25364-5_6]

[203] J. H. Moore, F. W. Asselbergs, and S. M. Williams, "Bioinformatics challenges for genome-wide
association studies", Bioinformatics, vol. 26, pp. 445-455, February 15, 2010 2010.
[doi:10.1093/bioinformatics/btp713]

[204] G. H. Fernald, E. Capriotti, et al., "Bioinformatics challenges for personalized medicine", Bioinformatics,
vol. 27, pp. 1741-1748, July 1, 2011 2011. [doi:10.1093/bioinformatics/btr295]

[205] V. Marx, "My data are your data", Nat Biotech, vol. 30, pp. 509-511, 2012. [doi:10.1038/nbt.2243]
[206] Peter Haase, et al., "An evaluation of approaches to federated query processing over linked data" in
[207] K.-H. Cheung, H. R. Frost, et al., "A journey to Semantic Web query federation in the life sciences", in

6th International Conference on Semantic Systems, Graz, Austria, 2010BMC Bioinformatics, vol. 10, 2009.
[doi:10.1145/1839707.1839713]

[208] S. S. Sahoo, W. Halb, et al., "A Survey of Current Approaches for Mapping of Relational Databases to
RDF", W3C, 2009.

[209] G. Bumans and K. Cerans, "RDB2OWL: a practical approach for transforming RDB data into RDF/OWL",
in 6th International Conference on Semantic Systems, Graz, Austria, 2010, pp. 1-3.
[doi:10.1145/1839707.1839739]

[210] M. Hazber, J. Yang, and Q. Jin, "Towards Integration Rules of Mapping from Relational Databases to
Semantic Web Ontology", in 2010 International Conference on Web Information Systems and Mining, 2010,
pp. 335-339. [doi:10.1109/wism.2010.21]

[211] S. o. Auer, S. Dietzold, et al., "Triplify: light-weight linked data publication from relational databases",
in 18th international conference on World Wide Web, Madrid, Spain, 2009, pp. 621-630.
[doi:10.1145/1526709.1526793]

[212] C. Bizer and R. Cyganiak, "D2R Server - Publishing Relational Databases on the Semantic Web", 2006.
[213] J. Almeida, H. Deus, and W. Maass, "S3DB core: a framework for RDF generation and management in

bioinformatics infrastructures", BMC Bioinformatics, vol. 11, p. 387, 2010.
[214] A. Shaban-Nejad, C. Baker, et al., "The FungalWeb Ontology: Semantic Web Challenges in

Bioinformatics and Genomics", in The Semantic Web - ISWC 2005, Galway, Ireland, 2005, pp. 1063-1066.
[doi:10.1007/11574620_78]

[215] H. Nabarette, D. Oziel, et al., "Use of a directory of specialized services and guidance in the healthcare
system: the example of the Orphanet database for rare diseases", Revue d'épidémiologie et de santé
publique, vol. 54, p. 41, 2006.

[216] E. Seoane-Vazquez, R. Rodriguez-Monguio, et al., "Orphanet Journal of Rare Diseases", Orphanet
journal of rare diseases, vol. 3, p. 33, 2008.

[217] A. Schieppati, J. I. Henter, et al., "Why rare diseases are an important medical and social issue", The
Lancet, vol. 371, pp. 2039-2041, 2008.

[218] S. Weibel, "The Dublin Core: A Simple Content Description Model for Electronic Resources", Bulletin of
the American Society for Information Science and Technology, vol. 24, pp. 9-11, 1997. [doi:10.1002/bult.70]

