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palavras-chave 
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resumo 
 
 

A exigente inovação na área das aplicações biomédicas tem guiado a evolução 
das tecnologias de informação nas últimas décadas. Os desafios associados a 
uma gestão, integração, análise e interpretação eficientes dos dados 
provenientes das mais modernas tecnologias de hardware e software 
requerem um esforço concertado. Desde hardware para sequenciação de 
genes a registos electrónicos de paciente, passando por pesquisa de 
fármacos, a possibilidade de explorar com precisão os dados destes 
ambientes é vital para a compreensão da saúde humana. Esta tese engloba a 
discussão e o desenvolvimento de melhores estratégias informáticas para 
ultrapassar estes desafios, principalmente no contexto da composição de 
serviços, incluindo técnicas flexíveis de integração de dados, como 
warehousing ou federação, e técnicas avançadas de interoperabilidade, como 
serviços web ou LinkedData. 
A composição de serviços é apresentada como um ideal genérico, direcionado 
para a integração de dados e para a interoperabilidade de software. 
Relativamente a esta última, esta investigação debruçou-se sobre o campo da 
farmacovigilância, no contexto do projeto Europeu EU-ADR. As contribuições 
para este projeto, um novo standard de interoperabilidade e um motor de 
execução de workflows, sustentam a sucesso da EU-ADR Web Platform, uma 
plataforma para realizar estudos avançados de farmacovigilância. No contexto 
do projeto Europeu GEN2PHEN, esta investigação visou ultrapassar os 
desafios associados à integração de dados distribuídos e heterogéneos no 
campo do varíoma humano. Foi criada uma nova solução, WAVe - Web 
Analyses of the Variome, que fornece uma coleção rica de dados de variação 
genética através de uma interface Web inovadora e de uma API avançada. O 
desenvolvimento destas estratégias evidenciou duas oportunidades claras na 
área de software biomédico: melhorar o processo de implementação de 
software através do recurso a técnicas de desenvolvimento rápidas e 
aperfeiçoar a qualidade e disponibilidade dos dados através da adopção do 
paradigma de web semântica. 
A plataforma COEUS atravessa as fronteiras de integração e 
interoperabilidade, fornecendo metodologias para a aquisição e tradução 
flexíveis de dados, bem como uma camada de serviços interoperáveis para 
explorar semanticamente os dados agregados. Combinando as técnicas de 
desenvolvimento rápidas com a riqueza da perspectiva "Semantic Web in a 
box", a plataforma COEUS é uma aproximação pioneira, permitindo o 
desenvolvimento da próxima geração de aplicações biomédicas. 
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abstract 
 

The demand for innovation in the biomedical software domain has been an 
information technologies evolution driver over the last decades. The challenges 
associated with the effective management, integration, analyses and 
interpretation of the wealth of life sciences information stemming from modern 
hardware and software technologies require concerted efforts. From gene 
sequencing hardware to pharmacology research up to patient electronic health 
records, the ability to accurately explore data from these environments is vital 
to further improve our understanding of human health. This thesis encloses the 
discussion on building better informatics strategies to address these 
challenges, primarily in the context of service composition, including 
warehousing and federation strategies for resource integration, as well as web 
services or LinkedData for software interoperability. 
Service composition is introduced as a general principle, geared towards data 
integration and software interoperability. Concerning the latter, this research 
covers the service composition requirements within the pharmacovigilance 
field, namely on the European EU-ADR project. The contributions to this area, 
the definition of a new interoperability standard and the creation of a new 
workflow-wrapping engine, are behind the successful construction of the EU-
ADR Web Platform, a workspace for delivering advanced pharmacovigilance 
studies. In the context of the European GEN2PHEN project, this research 
tackles the challenges associated with the integration of heterogeneous and 
distributed data in the human variome field. For this matter, a new lightweight 
solution was created: WAVe, Web Analysis of the Variome, provides a rich 
collection of genetic variation data through an innovative portal and an 
advanced API. The development of the strategies underlying these products 
highlighted clear opportunities in the biomedical software field: enhancing the 
software implementation process with rapid application development 
approaches and improving the quality and availability of data with the adoption 
of the Semantic Web paradigm. 
COEUS crosses the boundaries of integration and interoperability as it provides 
a framework for the flexible acquisition and translation of data into a semantic 
knowledge base, as well as a comprehensive set of interoperability services, 
from REST to LinkedData, to fully exploit gathered data semantically. By 
combining the lightness of rapid application development strategies with the 
richness of its "Semantic Web in a box" approach, COEUS is a pioneering 
framework to enhance the development of the next generation of biomedical 
applications. 
 
 

 



  



  



 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“I think the biggest innovations of the twenty-first century will be the intersection of 
biology and technology.” 

- Steve Jobs 
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1.  INTRODUCTION 

“Words, so innocent and powerless as they are, as standing in a dictionary, how potent for good and evil 
they become in the hands of one who knows how to combine them.” 

- Nathaniel Hawthorne 

 

Computer science has been evolving vertiginously since the middle of the 20th century. 

Converging with these phenomena, especially in the last decades, the life sciences research 

field fosters this innovation through a constant demand of newer and more advanced 

computational tools. As the “omics” revolution unfolds, sophisticated biomedical 

applications require best-of-breed technologies to cope with more complex requirements 

from miscellaneous niche fields within the life sciences. 

Rather than being a simple auxiliary tool, bioinformatics software is essential for 

understanding disease aetiology. The completion of the draft human genome sequence [1, 

2] promptly started a new genomics era [3]. Where traditional genetics research focused on 

analysing genes as individual entities, modern genomics envisages a grander 

comprehension of all connections from our DNA sequence - the genotype - to the observable 

changes in our organism - the phenotype. Understanding the genotype-to-phenotype 

connections is the cornerstone to understanding ourselves as humans, and to decipher the 

“Book of Life”. 

The genotype-to-phenotype domain plays a key role in future visions for individualized 

healthcare. With computer science advances, clinicians’ strategies based on trial and error 

are being replaced by more precise treatments sustained by advanced software 

infrastructures. These approaches push forward the need for taking state-of-the-art 

technologies to a new level, through the better prediction, prevention, diagnostic and 

treatment of subtypes of diseases [4]. To achieve this, individualized healthcare must cross 

paths with custom drug design research and both will, in a long-term, realize the 

personalized medicine premise [5, 6]. 

It is up to computer science to deliver hardware and software to tackle the myriad of 

challenges emerging from the life sciences field. Genotype-to-phenotype investigations or 

pharmacology research involve high-throughput sequencing technologies and huge 
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numbers of biological samples, generating data in immeasurable quantity and diversity. 

These data need to be evaluated, interpreted and integrated with other data to generate 

new knowledge [7]. To ensure the effective exploitation of this wealth of data, which 

results in truly valuable research, new service composition technologies and strategies are 

essential. Hence, the thrust of this thesis is the vital role played by service composition 

strategies in bioinformatics data integration and biomedical software interoperability. 

The explosive evolution of biomedical and computational biology hardware and 

software technologies is making these fields the subject of extensive research projects. 

However, whereas in an initial stage, the adopted approaches consisted on the translation 

of state-of-the-art computer science technologies to the life sciences domain, nowadays, 

bioinformaticians demands are quickly surpassing available technologies, driving the 

development of more advanced systems. With these challenges in mind, this research 

endeavour seeks to bring innovation to the life sciences field once again, moving computer 

science technologies one-step ahead of biomedical applications’ demands. From ad hoc 

service composition in biomedical applications to general-purpose service composition 

frameworks, research conducted in this doctorate covers the evaluation of existing tools 

and introduces newly developed solutions that are vital to keep bioinformatics at the 

boundaries of computer science innovation. 

1.1  Thesis aims 
The research conducted in this doctorate and detailed in this thesis is focused on the 

service composition, data integration and software interoperability challenges brought 

about by biomedical applications’ evolution. The overall goals of this work are as follows. 

 To evaluate service composition strategies as data integration and software 

interoperability enablers in the life sciences. Focus is given to the inward data flow - 

from external, distributed and heterogeneous resources - complemented by the 

outward data flow - advanced methods to publish data from a knowledge base. 

These address the general need for new approaches in the field that help facilitate 

information integration and exchange. 

 To explore the potential role of state-of-the-art service composition technologies 

for biomedical applications. Particular areas include the tailored use of web services, 

the study of bioinformatics integration models and the assessment of strategies in 

place at widely used resources. 
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 To develop new service composition strategies geared towards enhancing how data 

can be collected and addressing how it can be easily accessible later. 

Notwithstanding the vast amount of techniques and technologies available, 

emphasis is pointed to the semantic web as a streamlined development paradigm to 

acquire, disseminate and reason over knowledge. 

These objectives can be summarized in an overarching research challenge: What are the 

best state-of-the-art strategies for service composition in biomedical applications? How can these 

approaches be explored to improve existing scenarios? What are the strengths and opportunities that 

should be embraced to enhance resource integration and software interoperability in bioinformatics 

and computational biology? 

1.2  Contributions 
With the biomedical software setting in the background, the research conducted in this 

doctorate originated a useful and advanced set of contributions towards both integration 

and interoperability.  

Regarding interoperability, modern computer science technologies exploit the growing 

number of application programming interfaces to enhance the development of new 

workflow management software. Continuing previous research on service composition for 

interoperability, namely on DynamicFlow [8, 9], we focus on the background strategies that 

enable the streamlined execution of workflows with the development of the EU-ADR Web 

Platform. 

Bioinformatics data integration environments were explored in this thesis with the 

development of WAVe [10, 11], an integrative platform for human variome information 

that uses innovative service composition strategies to collect and enrich data. 

With this exploratory research work, a clear need for a different kind of strategies 

arisen. To build future-proof software we need to facilitate the use of strategies that will 

become common in the next years, from rapid application development technologies to the 

semantic web paradigm. Hence, we started the development of COEUS, a next-generation 

rapid application development framework [12-14]. With a prominent semantic web nature, 

this framework features a unique package with the tools to enable the integration of a 

wealth of information using type-specific data connectors and foster interoperability with 

external systems through a comprehensive API collection. The legacy Diseasecard portal 
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was replaced with a new COEUS instance, validating and assessing COEUS role in a real-

world scenario. 

The aforementioned solutions were conceived after an evaluation of the challenges 

innate to the bioinformatics and computational biology fields as well as of the state-of-the-

art software engineering technologies in place to engineer modern software architectures. 

As show in Figure 1-1, and detailed in the following section, this thesis is organized to 

facilitate the reading and comprehension of the problems at hand and of the devised 

solutions. 

 

Figure 1-1. Thesis organization. Chapters 2 and 3 compose the state-of-the-art evaluation, introducing 
the bioinformatics field and its problems, and analysing, in depth, the vast set of computational 
technologies available to tackle bioinformatics challenges. Chapters 4 to 7 form the overarching 
contributions of this thesis, highlighting innovative research and software products. Chapter 8 
concludes this thesis. 

8. FUTURE PERSPECTIVES AND 
CONCLUSIONS

7. A COEUS INSTANCE

6. COEUS: AN APPLICATION 
FRAMEWORK FOR ENHANCED 

SERVICE COMPOSITION

4. CONTRIBUTIONS TO WORKFLOW-
BASED SERVICE COMPOSITION

5. WAVE: BUILDING AN INTEGRATIVE 
KNOWLEDGE BASE

STATE OF THE ART

CONTRIBUTIONS

3. SOFTWARE ENGINEERING FOR 
INTEGRATION AND 
INTEROPERABILITY

2. BIOMEDICINE AND ICT

1. INTRODUCTION
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1.3  Organization 
The overall structure of the thesis takes the form of eight chapters. In addition to this 

introductory section, the thesis is organized as follows: 

 Chapter 2 - Biomedicine and ICT. This chapter contextualizes the thesis research 

work and provides clear background information on the problem at hand. It 

includes a brief walkthrough of the bioinformatics software landscape, identifying 

the most important data sources, services and applications. This overview exposes 

the most important challenges being faced in the biomedical software research field. 

This chapter is targeted at readers unfamiliar with the bioinformatics domain 

evolution over the last decades. 

 Chapter 3 - Software Engineering for Integration and Interoperability. This chapter 

is composed of an in-depth survey of mainstream computer science technologies 

that support modern service composition strategies. Starting with an introduction 

of service composition requirements and challenges, we move on to cover the best 

strategies for data integration and software interoperability and finish discussing 

the Semantic Web paradigm. This technological evaluation underpins the vital role 

that this broad set of technologies will play in responding to biomedical innovation 

demands. This chapter is directed to readers less experienced with the computer 

science background sustaining bioinformatics and computational biology 

innovation. 

 Chapter 4 - Contributions to Workflow-based Service Composition. This section 

details the exploration of workflow-based approaches towards the improvement of 

service composition in bioinformatics. Introduced contributions were performed 

within the context of the European EU-ADR Project and were part of the 

development of an advanced pharmacovigilance tool, the EU-ADR Web Platform. 

The chapter finishes with a discussion surrounding the use of workflows in 

bioinformatics environments. 

 Chapter 5 - WAVe: Building an Integrative Knowledge Base. In this section, one of 

the key outcomes from this thesis’ research work is introduced: the Web Analysis of 

the Variome portal. Set within the human variome research and the European 

GEN2PHEN Project context, this discussion is centred on the produced technological 

advances that make WAVe an unique platform, from the innovative integration 

architecture to the exposed APIs. The final summary highlights how the 
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contributions from chapters 4 and 5 effectively bridge the gap between data and 

services within the life sciences domain. 

 Chapter 6 - COEUS: An Application Framework for Enhanced Service Composition. 

In this chapter another key contribution of this research work is reported, the 

COEUS framework. After a brief evaluation of existing tools for rapid application 

development in bioinformatics, we introduce the reasoning and developments 

underlying the creation of a new Semantic Web application framework. The COEUS 

platform is discussed in detail, covering all aspects surrounding the ability to create 

distributed knowledge networks. 

 Chapter 7 - A COEUS Instance. This section covers the deployment of the first 

COEUS instance. The reengineered Diseasecard is presented and its construction 

discussed as a sample for modern dynamic bioinformatics software, validating 

COEUS as a true enabler of rich knowledge ecosystems. 

 Chapter 8 - Future Perspectives and Conclusions. The final chapter of this thesis 

emphasizes the discussion surrounding future developments regarding the various 

developed strategies and exposes the conclusions of the conducted research work. 
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2.  BIOMEDICINE AND ICT 

“We said that once we had finished sequencing the genome we would make it available to the scientific 
community for free, ... And we will be doing that on Monday morning at 10am.” 

- J. Craig Venter 

 

Bioinformatics is emerging as one of the fastest growing scientific areas of computer 

science. This expansion is fostered by the computational requirements leveraged by 

unprecedented advances in life sciences hardware and software. 

This revolution kicked-off with the Human Genome Project (HGP) whose efforts 

resulted in the successful decode of the human genetic code [15]. HGP history starts in the 

middle of the 20th century with the involvement of the USA Department of Energy (DOE) in 

the first studies to analyse nuclear radiation effect in human beings. However, it took about 

30 years, circa 1986, to propel and initiate the Human Genome Project. The ultimate project 

goals were as bold, audacious and visionary as the NASA Apollo program: to decode the 

“Book of Life” in its entirety. Moreover, this knowledge would be the basis of a new 

generation of tools that can identify and analyse a single character change in the sentences 

that compose our genetic sequence. Although HGP was an ambitious project, results 

appeared sooner than expected. This was the outcome of a deep collaboration with 

computer scientists that leveraged the deployment of novel software and hardware tools, 

aiding biologists’ sequence decoding tasks. This joint effort between two large research 

areas, life and computer sciences, gave birth to a new discipline denominated 

bioinformatics.  

The Human Genome Project brought about a variety of benefits in several fields. 

Remarkable discoveries in sequence decoding fostered DNA forensics, genetic expression 

studies, drug advances, and improved several other fields like molecular medicine, energy 

and environment, risk assessment or evolution studies. At the positively premature ending 

of the Human Genome Project, the availability of the human genome and other genome 

sequences have revolutionized all biomedical research fields [16].  

Several projects started riding along HGP’s success, using scientific discoveries and 

technological advances from HGP in miscellaneous scenarios to obtain new relevant 
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information. On the one hand we have smaller projects, which are focused on specific 

genomic researches [17, 18]. On the other hand, we have larger projects that span through 

several institutions and cross various physical borders [19-21]. 

These projects originated a change on how everyone, from biologists to clinicians, 

assess and use computational tools. Information and communication technologies’ role is 

nowadays vital in any biomedicine project’s success. This happens to an extent where 

bioinformatics demands are constantly ahead of what computational technology has to 

offer, driving hardware and software innovation to new levels. 

The ever-growing bioinformatics research brought about an infinite number of 

resources: databases, applications, services and protocols. Whilst this interest is essential to 

keep the research field dynamic and alive, the consequences of having too many systems 

with competing models, formats and technologies resulted in an incredibly fragmented 

software landscape. Alas, modern bioinformatics has to deal with common heterogeneity 

issues resulting from an anarchical ecosystem. Considering simple services used daily by 

bioinformaticians, such as PubMed literature search or BLAST sequence alignments, they 

have a similar technological backbone and probably adopt identical design principles and 

architectures. However, the user and data interfaces are entirely different in terms of 

output format, style and content. Whilst this variety is irrelevant for each specific field 

requirement set, the answers to most biological questions imply that the users browse, 

access and filter a myriad of distinct services until they have tracked down all the 

information they need. Thinking about large-scale projects where the proliferation of data 

is a defining feature, it is imperative to automate the acquisition and interoperation of data 

from both hardware devices and software systems. 

Fortunately, important stakeholders are aware of these issues. Hence, current emphasis 

is given to converging synergies to produce much better outcomes. This is an area where 

the whole is more than the sum of its constituent parts, and this clear turn of events 

requires advanced computer science skills to revolutionize the way science is made, 

integrated and disseminated. 

2.1  The "omics" Revolution 
Genomic medicine evolution yielded great advances that reshaped how we generate, 

explore, evaluate and understand biomedical data. Likewise, the technological landscape 

was also reshaped with the breakthroughs of the last 20 years, originating an increased 
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awareness of the complex composition of our surrounding environment. The improvement 

of analytical technologies and the availability of greater computational power were of 

extreme importance for molecular biology dynamics, resulting in an increased mechanistic 

understanding of ourselves. This lead to the development of various highly detailed fields, 

each approaching this data wealth from a different standpoint: genomics, proteomics, 

variomics, metabolomics, transcriptomics or pharmacogenomics, among others. Moreover, 

instead of viewing datasets independently, analysing genes, enzymes or proteins with a 

reductionist strategy, systems biology aims to exploit knowledge over different levels of 

molecular biology at once, assessing data as a whole.  

As the “omics” revolution unfolds, with the rapid accumulation of data from a variety of 

distinct software and hardware bioinformatics tools, the simple standalone collection of 

these data does not suffice to understand the complete and dynamic system of life 

encrypted in our genetic material. Hence, this “omics” revolution demands a parallel 

technological paradigm revolution, promoting the evolution of independent closed legacy 

systems to futuristic open science integration and interoperability standards. 

2.1.1  From the Genotype to the Phenotype 
The genetic library that assembles life encrypts the heritability of gene-based disorders and 

defines our genotype. The complex relationship between our genetic features and 

environmental agents originates our phenotype. Despite the natural variability verified in 

human individuals, regarding weight, height, eye or hair colour, the human genome has a 

large common base [22]. In fact, most recent studies indicate that only 0.4% of our genetic 

sequence changes in 1% of the population [23]. Therefore, identifying and understanding 

individual or structural changes in our genotype is crucial to better explore the causes and 

consequences of the changes in our phenotype. Furthermore, the sequencing cost per 

genome is reducing drastically, faster than Moore’s law, as shown in Figure 2-1, enabling 

access to a wealth of data like never before. 

The collection of genetic mutations in the human genome is being researched in the 

Human Variome Project [19]. Similarly, the International HapMap Project looks to build the 

human haplotype map, describing human variation patterns [24, 25]. The 1000 Genomes 

Project adopts a distinct approach, focusing on the statistical analysis of multiple human 

genomes looking for correlations between common genotypes and phenotypes [26]. These 

projects, among others, influence decision-making in these research areas and provide the 

funding and opportunity to obtain further knowledge about us. 
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Nowadays the focus is divided in two parallel research lines, each with a distinct scope. 

On the one hand there is a broader perspective, directed to genome-wide association 

studies, analysing the genetic basis of complex traits like disease susceptibility and drug 

response through large statistical correlation studies. On the other hand there is a 

narrower approach, focusing on genetic mutations and their causes and effects on the 

human organism. Genome-wide association studies provide valuable insights over the 

genetic basis of some diseases, but lack the detail required for explaining disease 

heritability and propagation. Genetic variation studies generate large collections of 

granular data that in spite of being extremely precise, are missing richer connections for 

an overarching view. 

 

Figure 2-1. Sequencing cost per genome, the cost of sequencing a human-sized genome (logarithmic 
scale), from September 2001 (€76,210,457.6) to September 2011 (€6,194.4)1. 

Studying and understanding gene functions are essential steps to imply genes in human 

diseases. The Online Mendelian Inheritance in Man (OMIM) catalogue lists over 2000 

diseases with single-gene or Mendelian disorders (diseases with simple familial inheritance 

patterns) [27]. Cystic fibrosis was one of the first Mendelian disorders to be identified and is 

caused by mutations in the CFTR gene on chromosome 7 [28, 29]. This particular rare 

disease affects approximately one person in 3,000. To figure out the roles of all players 

involved in life, from genotypes to phenotypes, including genes, proteins, drugs, enzymes, 
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pathways, and their interactions, is a demanding interdisciplinary challenge crossing the 

frontiers of life and computer sciences. Despite this, apprehending the meaning of the 

interplay between genotypes and phenotypes is vital to enable a more individualized 

healthcare. 

2.1.2  Individualized Healthcare 
Uncovering the genotype-to-phenotype intertwined relationship has the ultimate goal of 

improving individualized healthcare. Humans are much more genetically similar than 

different and, despite the population-based distinctions on phenotypes and diseases, only 5 

to 10% of total human genetic variance occurs between populations and ethnic groups [30]. 

Nevertheless, most of worldwide population is being assaulted by similar conditions: 

cancer, obesity, diabetes or heart diseases are the main causes of death in first-world 

nations. 

Individualized healthcare, through personalized medicine and custom drug treatments, 

is in a pivotal position for improving global health. This demands a strategy update, 

moving from traditional palliation care to directed cures. New therapeutic methods are 

targeted to specific disease processes, which further reduce the chances that patients will 

suffer from adverse drug events. By aiming at subgroups of patients with common genetic 

ancestry, we will be able to deliver the “right treatment to the right patient at the right 

time, every time” [4]. 

It is clear that this individualized healthcare evolution requires a parallel information 

and communication technologies transformation. Biomedical software and hardware 

technologies evolution culminates in a new transparent layer connecting the clinician with 

genetics information. To foster research in these areas, the European Union is promoting 

large funding initiatives, targeting vertical and horizontal integration and interoperability 

of data. We need to connect data from digital health records distributed through multiple 

region, nation or continent wide repositories. Furthermore, we need to connect data 

coming from genetic diagnostic labs to these digital repositories and deliver this rich 

knowledge to pharmaceutical researchers and clinical practitioners. 

2.2  Connecting Life Sciences Data 
To fully extract knowledge from the immense amount of data coming from omics research 

we need to foster the development of novel strategies and technologies to connect existing 

data and, above all, make these data available for future connections.  
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Life sciences innate complexity and heterogeneity require the most advanced computer 

science expertise to tackle the challenges associated with the harmonization, integration, 

interoperability and correct accreditation of data. This domain is extremely rich in 

applications, standards for services and data sources. The downside of this richness is its 

consequent fragmentation and enormous entropy. Randomly picking any life sciences 

research domain we can easily find various databases, services and applications, each with 

its own internal structures and data integration and exploration strategies. 

Next, we detail our exploration of computational resources related to the multiple 

omics fields that drove this doctorate work and assess the challenges and demands arising 

for modern bioinformatics. 

2.2.1  The Landscape of Information Access in Biology 
The widespread availability of bioinformatics tools lead to an exponential increase in the 

amount of data available for researchers. Alas, the data-growing curve is steeper than the 

effective knowledge-growing curve. Being fairly easy to create new applications and 

services from scratch, anyone can launch new systems without taking in account any 

existing platform. 

For all stakeholders involved in life sciences field, from wet-lab researchers to EU 

policy-makers, the amount of available information is overwhelming. More information 

also results in more applications, more platforms and more services. Nowadays, the 

information access landscape is a fragmented view, sinking in its own entropy. 

The Nucleic Acids Research (NAR) journal keeps a collection of the most relevant 

biosciences databases, updated yearly. Figure 2-2 shows a graph showing the growth of this 

collection and the number of new databases. The 2012 edition adds 92 new databases to the 

2011 list [31]. A sample overview of these lists' evolution over the last few years reveals an 

increasing complexity and specialization. Genetic variation datasets and single organism 

databases are growing where the number of overarching resources is steadier. This idea is a 

deciding factor to the new bioinformatics software path. Where niche fields were seldom 

targeted in the past, they are gaining relevance with area-centric databases and scientific 

curation. 

This leverages a deeper background problem for connecting life sciences data. 

Fragmentation is increasing and these new focused systems are often built disregarding 

any integration or interoperability strategy. On the one hand, they do not integrate 

existing models or datasets, adding further entropy to the ecosystem. On the other hand, 
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data are locked due to the lack of interoperability interfaces, blocking its use in other 

systems. 

In summary, the access to and evolution of computer science technologies is a double-

edged sword. On the upside, improved availability means that data are more easily at 

researchers' fingertips. On the downside, this also means deeper fragmentation. This leads 

to the branching of existing systems to uncoordinated areas, further augmenting the 

bioinformatics software landscape granularity. 

 

 
Figure 2-2. NAR database list evolution, from 2004 to 2012, regarding the total number of databases 
(bars) and the number of new databases (line). 

2.2.2  Data Sources 
Biological databases play a central role in bioinformatics. They offer scientists the 

opportunity to access a wide variety of biologically relevant knowledge, from reference 

sequences to marketed drugs. In most cases, databases offer their data through web 

services or flat files that can be easily accessed or parsed. However, these databases do not 

follow a single model or notation, and, therefore, the same biological concept may be 

represented in several distinct models and with various identifiers. The task of establishing 

relationships from one data type to other is often quite complex due to the multitude of 

existing data types, structures and domains. 

Three large international players control the data sources landscape in bioinformatics 

in its majority: the United States of America National Centre for Biotechnology Information 

(NCBI), the partnership between the European Molecular Biology Laboratory and the 

European Bioinformatics Institute (EMBL-EBI), and the DNA Data Bank of Japan (DDBJ). 
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Notwithstanding the vital role played by the thousands of other data sources, registered in 

the aforementioned NAR registry, these three entities aggregate the funding and 

collaborations that enable the development of systems spanning the entire life sciences 

spectrum. Whilst the boundaries for each of these large data repositories are blurred, we 

can organize existing data sources according to their main controlling entity.  

NCBI, associated with the National Library of Medicine in the USA, is a resource for 

molecular biology information organized in various categories each containing several 

databases. From the extensive NCBI database list we can highlight some major databases: 

 dbSNP stores information about Single Nucleotide Polymorphisms (SNP), particular 

changes in our genetic sequence that are relevant for the detection of anomalies in 

our genes [32].  

 The Mendelian Inheritance in Man (MIM) is a library of known diseases that are 

mainly caused by genetic disorders. NCBI was initially responsible for the Online 

MIM [27], which is now under John Hopkins University supervision.  

 Medical Subject Headings (MeSH) is a thesaurus for medical terms, aggregating 

human health information in a tree-based ontology [33].  

 Medical Literature Analysis and Retrieval System (Medline®) is a huge bibliographic 

database of published material referred to life sciences and biomedicine that can be 

accessed through PubMed, an online search engine.  

 GenBank is an open sequence database that contains information from laboratories 

throughout the world and regarding a huge number of distinct species [34]. 

 The Entrez Global Query Cross-Database Search System (Entrez) offers online access 

to a multitude of NCBI databases through a single user interface [35]. Entrez is also a 

remarkable project on online resource integration, proving normalized data 

formats and coherency across databases and services.  

At an European level, coordinated efforts between EMBL, EBI and the Swiss Institute of 

Bioinformatics (SIB) are the frontline of wide scale repositories, and have already left their 

footprint in the bioinformatics community. From these, the following data sources must be 

highlighted: 

 UniProt is a universal protein resource, including a huge database of curated 

protein functional information [36]. In a smaller scale, InterPro is a competitor 

focused on proteins and the proteome [37]. 
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 ExPASy is a proteomics resource portal, providing an entry point to a vast collection 

of SIB resources focused on protein knowledge [38]. 

 PROSITE is a protein domain data source, focusing on annotating functional 

products and features [39]. 

 ArrayExpress archives public functional genomics data in two databases [40]: 1) 

Experiments Archive that stores results from conducted experiments submitted 

from the entire world. 2) The Gene Expression Atlas is a curated and re-annotated 

subset of the Experiments Archive that is directed to gene expression studies.  

 Ensembl is a genome database that contains information from a large number of 

species and is accessible through a large number of web services [41].  

 The European Genome-phenome Archive2 (EGA) and the 1000 Genomes Project 

collect datasets with complete sequence information from multiple individuals [26]. 

DDBJ cooperates with NCBI and EMBL-EBI to provide data replicas to the Asian market 

and to develop new tools and data sources. The most relevant outcome is the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG), collecting genomic information relevant to 

metabolic pathways and organism behaviours [42]. KEGG is composed of five main 

databases, each with a distinct focus: Pathways, Atlas, Genes, Ligand and BRITE. With all 

these databases, KEGG’s goal is to obtain a digital representation of the biological system 

[43]. 

Besides the data sources associated with these three corporations, there are many more 

high quality databases, often targeting niche-focused fields, from gene ontologies to 

phenotype information: 

 Gene Ontology is the most widely accepted ontology, aiming to unify the 

representation of gene-related terms across all species [44]. This is only possible by 

providing access to an annotated and very rich controlled vocabulary [45].  

 PhenoGO is a Gene Ontology centric database that intends to support high 

throughput mining of phenotypic and experimental data [46, 47]. 

 PhenomicDB is a database for comparative genomics regarding various species and 

genotype-to-phenotype association. Information is obtained from several public 

databases and merged in a single database schema improving database access 

performance and making several other features possible [48, 49].  

                                                        
2
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 PharmGKB is a data source aiming to bridge the gap between pharmacogenomics 

and bioinformatics through the establishment of curated association between genes 

and drugs [50]. 

 GWASCentral collects and summarizes genome wide association studies, making 

them more easily available for researchers [51].  

Semantic Web awareness has also been increasing within the life sciences community 

[52-54]. Hence, many existing knowledge bases are emerging, adopting new semantic web 

paradigms and looking for their space in a very competitive market: 

 Bio2RDF is the most relevant development [55]. Bio2RDF falls on the design of an 

enhanced strategy for semantic data warehousing, complete with a complex 

Extract-Transform-Load pipeline that enables the collection of millions of records 

from the most relevant life sciences databases.  

 Bioportal is a portal for the integration of ontologies in the life sciences domain, 

which has grown to become the de facto location for biomedical ontology 

exploration [56, 57]. 

 The LinkedData initiative is also strongly present in the life sciences field, where 

multiple computational biology datasets are already published according to the 

proposed guidelines [58-60]. 

On a broader field, DBPedia is a notable development, providing a semantic version of 

Wikipedia data available through a public SPARQL endpoint and with rich internal crossed 

relationships [61]. 

2.2.3  Services and Providers 
Data management in life sciences offers constant challenges to software engineers. Offering 

these data to end-users and researchers worldwide is an even bigger challenge. Web 

applications tend to be complex and cluttered with data resulting in non-usable interfaces 

and fragile workspaces. The possibility to offer data as a service is a valuable option that is 

being used more often. The greatest benefit of these remote services is that they allow 

static or real-time dynamic programmatic service composition. That is, developers can 

merge several distributed services in a single centralized application. 

Nowadays, most of the previously mentioned data sources provide access to their 

internal knowledge base through a rich set of services. On top of these, there are many 

other relevant web service standards and providers. Next we enclose a small revision of 

these tools, from service protocols to registries. 
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 The Distributed Annotation System (DAS) specifies a protocol for requesting and 

returning annotation data for genomic regions that has expanded to several life 

sciences areas, not only sequence annotation [62]. The main idea behind DAS is that 

distributed resources can be integrated in various environments without being 

aware of other intervenient. That is, resources can be replicated and integrated in 

several distinct systems, not only in a single static combination of resources. 

 BioMart consists of a generic framework for biological data storage and retrieval 

using a range of queries that allow users to group and refine data based upon many 

different criteria [63, 64]. Its main intention is to improve data mining tasks and it 

can be downloaded, installed and customized easily.  

 The European Molecular Biology Open Software Suite (EMBOSS) is a software 

analysis package that unifies a collection of tools related to molecular biology and 

includes external service access [65-67]. Applications are catalogued in about 30 

groups ranging several areas and operations related to the life sciences.  

 Soaplab was developed at the EBI and is another set of web services that provide 

remote programmatic access to several applications [68]. Included in the framework 

are a dynamic web service generator and powerful command-line programs, such as 

support for EMBOSS software.  

 BioMOBY is a web-service interoperability initiative that envisages the integration 

of web-based bioinformatics resources supported by the annotation of services and 

tools with term from well-known ontologies [69, 70]. The BioMOBY protocol stack 

defines every layer in the protocol from the ontology to the service discovery 

properties.  

 The Web API for Biology (WABI) is an extensive set of SOAP and REST web life 

sciences APIs, focused on data processing and conversion between multiple formats 

[71, 72]. WABI defines mainly a set of rules and good-practices that should be 

followed when the outcome of a research project is a set of web services. 

 Biocatalogue is an attempt to facilitate the discovery of existing web services [73]. In 

this library, users can register, discover and annotate bioinformatics web services. 

Taking advantage of this community-based approach, Biocatalogue complements its 

internal service monitoring system with crowdsources curation, improving the 

assessment of existing web services. 
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2.2.4  Applications & Frameworks 
Goble conveyed a “state of the nation” in bioinformatics study and her main conclusions 

were that there is still a long path to traverse, specially concerning integration and 

interoperability efficiency [74]. Nonetheless, there were remarkable developments in the 

last few years. These developments include novelties in data and services integration, 

semantic web developments and the implementation of mashups/workflows in 

bioinformatics. Moreover, as stated by Stein, integration strategies are vital to the creation 

of a large bioinformatics ecosystem [75, 76].  

The diversity of strategies results in a myriad of applications and frameworks that 

tackle similar challenges. We can group these approaches under three concepts, according 

to the basic functionality of each tool: integrative tools and applications; frameworks and 

development libraries; and workflow managers. 

First, the set of available software focusing on integration heterogeneous 

bioinformatics components is nearly immeasurable. Everyday new applications appear, 

targeted to distinct fields, end-users or operating environments. The following listing 

highlights some of the existing applications with particular focus on some in-house 

solutions: 

 GeneBrowser adopts a hybrid data integration approach, offering a web application 

focused on gene expression studies, which integrates data from several external 

databases as well as internal data [77, 78]. Collected data are stored in an in-house 

warehouse, the Genomic Name Server (GeNS) [79].  

 Biozon is a data warehouse implementation similar to GeNS, holding data from 

various large online resources like UniProt or KEGG and organized around a 

hierarchical ontology [80]. Biozon clever internal organization (graph model, 

document and relation hierarchy) confers a high degree of versatility to the system, 

allowing a correct classification of both the global structure of interrelated data and 

the nature of each data entity. 

 Reactome is a generic database of biology, mostly human biology, describing in 

detail operations that occur at a molecular level [81].  

 BioDASH is a semantic web initiative envisaging the creation of a platform that 

enables an association, similar to the one that exists in real world laboratories, 

between diseases, drugs and compounds in terms of molecular biology and pathway 

analysis [82]. 
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The development of bioinformatics applications has been enhanced greatly in the last 

decade. This was possible due to the appearance of multiple libraries and frameworks, 

targeting miscellaneous development environments, and enabling the creation of new 

software at a much faster rate. From the broad set of bioinformatics packages, we must 

highlight the following: 

 BioJava is an open-source framework that eases the development of bioinformatics 

applications by providing packages facilitating access to widely used databases and 

services [83]. Similar libraries are also available for other programming languages 

such as Ruby [84], Perl [85] or Python [86]. 

 Bioconductor is another open-source and open development software package 

providing tools for the analysis and comprehension of genomic data [87]. The 

software package is constantly evolving and can be downloaded and installed locally. 

The tools that compose the package are made available from several service 

providers, generally in R language.  

 Molgenis is a rapid application development framework enhancing the creation of 

new bioinformatics web information systems with only a couple configuration files 

[88]. Molgenis is introduced in detail in section 6.1.1. 

For service composition, mashups or workflows are among the hottest trends in 

bioinformatics application development. Service composition, which encompasses service 

orchestration and choreography, is already possible in various scenarios: 

 myGRID is a multi-institutional and multi-disciplinary consortium that intends to 

promote e-Science initiatives and projects [89]. More recently, GRID is giving place 

to cloud-computing strategies, a field that is still lacking interest in the 

bioinformatics community, though it will gain relevance in a near future [90, 91]. 

 Bio-jETI uses the Java Electronic Tool Integration (jETI) platform, which allows the 

combination of features from several tools in an interface that is intuitive and easy 

to new users [92]. jETI enables the integration of heterogeneous services from 

different providers or even from distinct application domains.  

 BioWMS is an attempt to create a Taverna-like web based workflow enactor. The set 

of features is not as complete as Taverna and the availability is very limited (unlike 

Taverna, which is available freely for the major operating systems) [93].  

 The Workflow Enactment Portal for Bioinformatics (BioWEP) consists of a simple 

web-based application that is able to execute workflows created in Taverna or in 
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BioWMS [94, 95]. Currently, it does not support workflow creation and the available 

workflow list is quite restricted.  

 The Bioinformatics Workflow Builder Interface (BioWBI) is another web-based 

workflow creator that connects to a Workflow Execution Engine (WEE) through 

web-services to offer complete web-based workflow enactment [96].  

 BioFlow [97, 98] is a new generative, declarative query language that permits the 

exploitation of services, databases or ontologies for data integration. 

 Taverna is the best state-of-the-art application regarding workflow enactment [99]. 

It is a desktop application that enables the creation of complex workflows allowing 

access to files and complex data manipulation. Additionally, Taverna also configures, 

automatically, the access to BioMOBY, Soaplab, KEGG and other services. Along with 

these predefined services, users can also dynamically add any web service through 

its WSDL configuration. 

 Galaxy is Taverna’s most competitive alternative [100, 101]. This web-based 

platform provides an online workspace for managing and executing workflows, 

enabling the tracking of provenance data and the reproducibility of bioinformatics 

research.  

 Tavaxy attempts to combine the best features from Taverna and Galaxy in a 

standalone bioinformatics integration and interoperability platform [102].  

2.2.5  Challenges for Modern Biomedical Software 
Many problems and requirements arise with life sciences research and technological 

evolution can only do so much. The bioinformatics advances we are witnessing require a 

strategy shift. We must tackle the overwhelming growth of data sources with novel 

strategies to synthesize, harmonize and (re) connect data. 

With an ever-growing data supply, researchers are given the task of assessing what is 

relevant and not. Therefore, summarizing the huge datasets traditionally available is a first 

step towards a better bioinformatics ecosystem. This also fosters the need for data curation. 

Whether through social crowdsourcing strategies or direct data analysis and validation, the 

wealth of life sciences data must be carefully curated to extract knowledge as precise and 

accurate as possible. Moreover, data selection is also hindered by the well-known 

researcher accreditation fear. The case with the majority of large-scale data sources is that 

original data authors are lost along the way. Content ownership and authorship is 

forgotten, removing credit from where it is due. Novel approaches such as micro-
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attribution and nano-publications try to adapt the publication of data to similar strategies 

as the ones with the publication of research literature, highlighting authors’ accreditation 

[103]. 

The harmonization of data relates directly to the “reuse instead of rewrite” principle. 

While innovation is achieved with new outstanding ideas, developers should first study 

what has been done previously in a specific domain. This incorrect assessment results in 

the key fragmentation issue: heterogeneity. Heterogeneity of data formats. Heterogeneity 

of data structures and models. Heterogeneity of data access methods.  

We can draw a linear path to wisdom. We acquire data then we translate it to 

information, which allows us to gain new knowledge. However, to make the most efficient 

transition from data to wisdom we need to fully explore the connections amongst 

independent data units. Only by interlinking all bits of data we can obtain a rich, holistic, 

overarching view of everything we have collected and, ultimately, to make sense of it. 

With the increasingly growing amount of data and increasingly growing amount of 

ways to deal with it, we are faced with the challenge of evaluating where the most relevant 

data are stored, who created it, how we can connect it with our research, and how we can 

make our results available to others in the future. Answering these questions will provide 

us the path to improving our wisdom regarding the life sciences fields, and to accomplish 

this we must seek the integration of our resources and foster interoperability amongst 

them. 

Integration 
Integrated data views are essential for a better understanding of existing datasets. In the 

majority of scenarios, the exploration of scientific results involves establishing connections 

between data from diverse domains. In his workspace, a clinician needs direct access to 

patients’ records, disease data and drug details. In the genetics wet lab, researchers require 

hardware sequencing tools with connections to data pipelines and sequence aligners or 

ontology browsers. In the office computer, researchers need the best set of tools to explore 

wet lab data, select publications or navigate through a myriad of related resources. 

In practical terms, analysing items individually results in poor quality views, which 

ultimately imply inaccurate and non-precise results. There is a demand for more 

comprehensive integrated data views, setting a wide number of resources at the users’ 

fingertips. For example, the in silico research scenario requires BLAST tools, protein data 

from UniProt and PDB, literature views from PubMed and gene information from HGNC 
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database. Despite being a simpler scenario than what occurs in a real lab, we already need 

access to 5 distinct resources, each with own independent data structures, exchange 

formats and access methods.  

Whether we are providing virtually centralized integration or replicating data or 

features in their entirety, integration deals with the strategies for getting something from 

an external, remote or distributed environment into a centralized tool - Figure 2-3. 

 
Figure 2-3. Integration of distributed and heterogeneous resources. The idea behind integration is to 
physically or logically move data from an external resource into a new virtually centralized location. 

With the ever-increasing heterogeneity of the bioinformatics domain, creating these 

integrated data views is especially difficult. Furthermore, considering the exploration of 

niche scenarios, separating the wheat from the chaff is worse than finding a needle in a 

haystack. Therefore, the most advanced resource integration strategies adopt service 

composition approaches. Considering each distributed component as an autonomous entity 

that can be connected with multiple others, with whatever software artefact, enables 

simplifying the overall integration algorithm view. 

Interoperability 
A key feature for the integration of resources is inward interoperability. Being it a 

straightforward process on a forced one, we need to make our centralized integrated 

environment interoperate with some kind of external player. In an ideal scenario, if the 

resources being integrated already account for modern outward interoperability features, 

the tasking of integrating its features and/or data are facilitated. 

In the previous integration scenario, the involved entities already provide a collection 

of web-based services enabling streamlined access to their data. Hence, it is fairly easy to 

develop a new static application to read and process RDF data from UniProt, XML data from 
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PDB and PubMed and CSV data from HGNC. In spite of being fairly easy to accomplish this, 

most data remains locked in independent closed data-silos or available through legacy 

methods. 

For this matter, we need to make a sure bet on improving existing systems’ 

interoperability features and on including the adequate interfaces in newly built software. 

This way, applications and services can be composed to form new dynamic software 

ecosystems, where data are easily exchanged from tool to tool - Figure 2-4. 

 
Figure 2-4. Interoperability amongst distinct resources. With autonomous software interoperability 
resources are able to dynamically exchange and accurately interpret data. 

Developers and researchers are already endowed with advanced interoperability 

frameworks. Whether through resource-specific data access or standardized service-based 

methods, developers are able to access and publish information easily. Nevertheless, in an 

ideal scenario with all data promptly available, the heterogeneity issue strikes again. Even 

when the data models are compatible, developing software to interoperate with multiple 

services is not trivial. Furthermore, researchers have a new set of demands that cannot be 

satisfied with the previously mentioned static application example. 

With more data and more services, it is of utmost importance to select the best 

alternatives for each field to enable the creation of dynamic interoperable software that 

not only allows the integration of heterogeneous remote data, but also promotes the future 

exploration of collected data through an advanced set of APIs. 
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2.3  Discussion 
2.3.1  Enabling Bioinformatics 
It is essential to grasp the true issue behind the bioinformatics software ecosystem to 

understand what needs to be done to overcome current challenges. Researchers demanded 

more data from their hardware and software platforms, resulting in an explosive data 

growth that has given more than they asked for. In a way, the problem of getting quality 

proof data is still present. Two decades ago it was cumbersome to get any data regarding 

any life sciences subject due to the lack of adequate databases and services. Nowadays, it is 

cumbersome to select the best resources from the overwhelming amount of data and 

services in most of cases providing similar content. 

In an ironic turn of events, the tools researchers proposed to solve a general problem 

are now causing an entire new kind of challenges. Researchers demand new tools for 

synthesizing, connecting and harmonizing available data. With this, the fields of software 

integration and interoperability appear as the most viable solution for enhancing access to 

life sciences knowledge, in a role that resembles the one played by scripting languages and 

relational databases in the early days of bioinformatics. 

Not only we need to improve how we collect, filter and select the best data in a given 

domain, we also need to make these acquired and enriched data available to other players 

through interoperable methods. To accomplish this we need to foster the development of a 

new generation of bioinformatics software. This requires us to devise new strategies and 

explore modern technologies that will enable the future of bioinformatics. 

This new generation of bioinformatics tools will involve efforts from all stakeholders in 

the life sciences domain. Wet-lab researchers, clinicians, principal investigators and policy 

makers must be aware of where this uncontrolled evolution is going. While in the early 21st 

century scientist could rely on the quality of existing databases without questioning their 

content, the overwhelming heterogeneity issues are leading us to an undisputable quality 

loss. 

To enable modern bioinformatics, life sciences researchers and enterprise stakeholders 

need to adopt new principles in their development process, rethinking how existing 

information can be reused, i.e. integrated, and how it can endure the force of time, i.e. 

made interoperable. For these matters, service composition strategies arise as the optimal 

solution to help the field of bioinformatics thrive in the future as it has in its recent past. 
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2.3.2  Standardizing Bioinformatics Services 
Despite the last decade’s bioinformatics evolution, the use of web services in the field 

remains rather primitive. On the one hand, web service use is pervasive and their actual 

execution has been largely facilitated on the last couple years. However, on the other hand, 

this growing amount of services also makes it cumbersome to select the fit service for a 

particular task. This results in an overwhelmingly chaotic services landscape. 

With a growing number of services, it easy to assess the struggle for building 

applications that routinely used distributed web services. In this context, several notable 

initiatives to standardize bioinformatics service composition emerged. Services and 

protocols highlighted in this chapter were the initial attempts to produce a broad web 

service standard for bioinformatics. However, these technologies never gained enough 

traction to become the mainstream de facto service standard. Whilst the standards 

themselves are actually good, they sit atop the traditional service protocols, adding a new 

complexity layer. Furthermore, the use of bioinformatics service standards hindered their 

adoption from new developers. When implementing new solutions from scratch, the lack of 

consensus regarding the best practice propelled most developers to create their own 

protocols, further fragmenting the field. 

With so many services from so many distinct providers to choose from, the 

bioinformatics developer community is faced with a daunting challenge in the form of 

choosing the best service for a given set of problems. This diversity arises in the form of 

standards, programming languages, independent packages and/or frameworks. This means 

that non-expert users have a though call to make when selecting an existing service 

standard to build upon. To tackle these challenges, new strategies started to look at original 

ways to enable service composition, namely through the adoption of workflow strategies 

served in high-end user interfaces. 

2.3.3  Service Composition for Biomedical Applications 
In this chapter we highlighted the multitude of solutions devised to overcome past 

bioinformatics and computational biology problems. However, a new set of demands arises 

from this technological evolution. Therefore, and to avoid this vicious circle in the future, 

we must adopt novel software integration and interoperability paradigms. 

From a computer science perspective, the composition of web services is essential to 

enhance the development of state-of-the-art bioinformatics software. Software 

engineering experts must endow bioinformatics developers with tools and reusable assets 
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to promote a new generation of biomedical applications. These will allow the deployment 

of software that will prevail over the multitude of drawbacks inherent to the need for 

synthesizing, connecting and harmonizing knowledge. 

To this end, service-oriented architectures and novel data integration and software 

interoperability strategies must be evaluated, allowing the creation of guidelines for 

delivering enhanced software to development partners. It is our belief that the pursuit of 

better integration and interoperability platforms should drive bioinformatics development 

in upcoming years. 
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3.  SOFTWARE ENGINEERING 
FOR INTEGRATION AND 

INTEROPERABILITY 

“Perhaps, I may get well if you will let me study engineering.” 
- Nikola Tesla 

 

In the middle of the 20th century the computational industry started to grow sustained by 

an evolution in hardware components. During almost 4 decades, until the birth of the 

modern PC, computers changed mostly in format and size. Only in the early 80s we 

witnessed a major leap in available software and user interactions, brought about by 

innovation from companies such as Apple, Microsoft or IBM and the advent of the Internet. 

From there on, in the PC era, we can safely assume that strategic changes were 

promoted by a software revolution despite the undeniable key role hardware has played. 

Software engineering has evolved to better use available hardware resources and 

transformed the way the world sees computers. At any given moment, all major sectors are 

using some kind of computer software tool. Whether it is to trade stocks, manage 

production factories or analyse sequencing data, computer science is essential to keep the 

world moving forward. 

Nowadays we are entering the post-PC era. Hardware advances have taken another leap, 

this time into our pockets. With the mobile device number already largely surpassing the 

number of desktop computers, software development paradigm changes are once again 

required to push available hardware to its limits, exploring all the new ways we can 

interact with machines and new ways machines can interact amongst themselves. Modern 

software development revolves around the concept of web services. In a broad sense, web 

services can be seen as any computational software feature available through a web-based 

interface.  
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Services are (should be) built to be composed, to play together in an ensemble of 

interactions amongst heterogeneous and distributed actors. Hence, the emergent relevance 

of service composition is vital. In a world replete with a growing number of data coming 

from all kinds of digital sensors, research labs, industry and entertainment products and, 

above all, ourselves, the idea of providing these data as a service that can be used to build 

new intelligent software ecosystems is deeply attractive. 

To achieve this, we need to be able to include a wide variety of features and data in any 

modern software system so that users’ demands can be fully satisfied. In a sense, users 

want to have everything at their fingertips, a couple touches or clicks away.  

This need is further highlighted in the life sciences research domain. The great 

computational hardware and software leaps are occurring now in bioinformatics as new 

technologies are generating more and more data, which in turn results in more and more 

services, which ultimately results in an overwhelmingly heterogeneous landscape. 

Researchers are now crushed beneath the house they have built due to the growing 

entropy in their fields and increasing difficulty in getting the best data. From the life 

sciences standpoint, this is the perfect opportunity to introduce state-of-the-art 

technologies in the bioinformatics domain: modern service composition strategies are 

perfect to satisfy integration and interoperability demands, widely common in the 

biomedical domain. 

This chapter covers in depth the technological requirements and state-of-the-art 

solutions regarding modern software engineering. Integration and interoperability 

strategies are discussed, leading the way to the introduction of Semantic Web technologies 

as the best-of-breed paradigm to employ when developing new systems. 

3.1  Rethinking Software Engineering 
Regarding software, new application development paradigms are being implemented with 

a more problem-oriented perspective. Instead of focusing on solving a single goal, modern 

software tries to tackle multiple challenges at once, providing new tools with incredibly 

wide feature sets. This demands a more integrative approach. We can no longer aim to 

build an entire data-rich and feature-rich ecosystem from scratch without considering 

what has been done before. We are not expected to build a social application without 

connections to Facebook or Twitter. Likewise, bioinformatics developers are not expected 
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to build a new proteomics resource without integrating data from the UniProt knowledge 

base, for example. 

Moreover, applications are no longer created solely for end users. There is a growing 

concern in providing tools that allow other developers to build upon the initial system. 

This implies that software interoperability features are essential for an application success 

and developers are now more prone to including them in their software.  

This “reuse instead of rewrite” phenomenon is also observed in the application 

development process. More often we now see applications build on top of existing 

frameworks and APIs. Rapid application development strategies are in place to reduce the 

time-to-market for new applications, leveraging on common features or data that will 

undoubtedly be required in a given domain. 

For computer scientists and, more specifically, software developers, this means that 

there is an entire new set of technologies and strategies to be explored. New applications 

are more connected with deeper integration features and broader interoperability tools. 

3.1.1  Development Paradigms 
We cannot assert that there are perfect strategies as the problems themselves change, 

especially in an area as dynamic as the life sciences. Whereas for reading data from a 

database a simple static shell script is enough to obtain the desired results, in complex data 

integration environments more robust and complex solutions are required. 

Service composition for biomedical applications can assume many forms, ranging from 

the mentioned simple ad hoc approaches to advanced software engineering projects. 

Whether we are building static applications or a modern workflow manager we need first 

to take in account what exists in the area and what are the real demands to make a correct 

assessment of the best strategy to use. 

Static Applications 
The simplest approach to use service composition strategies for the integration of 

heterogeneous components is to implement the entire application workflow directly. These 

applications combine a collection of methods to integrate each resource. As a result, a 

static application is composed of a set of wrappers that encapsulate the access to 

distributed data resources. At first sight, these applications do not represent a valuable 

solution for the integration of resources. Nonetheless, this solution is widely used specially 

due to the simplicity of the development and the speed of deployment. With static 

applications, developers do not need to program dynamic or generic components. On the 
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downside, static applications are not generic, flexible or robust. Anytime one wishes to add 

a new resource, developers must program the access to that particular service and add it to 

the application. Whilst this solution is feasible at a small level, when we are dealing with 

complex environments and a constantly evolving scenario it is not enough. 

Dynamic Applications 
The design and development of dynamic solutions requires a higher-level of computer 

science expertise and background on the research area to support the various iterations of 

the project execution. Dynamic applications are the expected evolution of static 

applications and are distinguished for being able to allow changes in its inputs and outputs 

as well as conveying distinct service combinations to reach a given goal [104, 105]. 

Dynamic access to external services or autonomous service composition requires the 

development of several focused, flexible and generic integrative middleware protocols 

[106]. Designing these protocols implies recurring to a multitude of distinct technologies 

and requires the adoption of advanced strategies to describe integrated resources and 

permit the interoperability with novel ones. Despite this new complexity layer, dynamic 

applications’ generality makes them a more suitable solution for complex software 

environments. 

Meta-applications & Workflows 
Metadata are data about data. Applying the same premise to applications, we conceive the 

paradigm of meta-applications: applications working over applications. Meta-applications 

are state-of-the-art systems that connect distributed applications enabling interoperability 

among heterogeneous systems. Recent developments have also promoted a concept 

described as “software-as-a-service”: any software can be provided as a remote service 

[107]. If software engineers follow this paradigm, any application could act as a service, 

easing the composition tasks.  

The mashup term characterizes hybrid web applications: applications that mesh 

applications. Their purpose is to combine data gathered from multiple services to offer a 

wider centralized feature [108, 109]. Mashups allow easy and fast integration relying on 

remote APIs and open data sources and services [110]. Mashups and meta-applications 

share a common basic purpose: to offer a new level of knowledge that was not possible by 

accessing each service independently. 

According to the Workflow Management Coalition [111], a workflow is a logical 

organization of a series of steps that automate business processes, in whole or part, and 
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where data or tasks are exchanged from one element to another for action. Adapting this 

concept to software, a workflow is a particular implementation of a mashup that consists 

on an ordered information flow that triggers the execution of several activities to deliver 

an output or achieve a goal (Figure 3-1) [112-116]. A crucial workflow requirement is that 

the inputs of each activity must match with the precedent activity outputs to maintain 

consistency. Dealing with workflow execution operations requires the implementation of 

workflow management systems [117]. 

 

Figure 3-1. Workflow example. Internal activities (independent tasks) are executed at distinct 
providers and can operate within various domains. 

A workflow management system allows designing, controlling and executing software 

that is driven by a computational representation of the workflow logic. Describing the 

workflow requires a complete description of its elements: task definition, interconnection 

structure, dependencies and relative order. The most common solution to store workflows 

is to use a description language, a configuration file or a database. 

Existing workflow systems can support complex operations and deal with large 

amounts of data. Though, there are emerging requirements that must be handled by 

workflow management systems, such as provenance, event-driven activities, streaming 
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data and collaboration between personnel in distinct parts of the globe. In research 

domains such as the life sciences, researchers prefer to design, execute and analyse the 

workflows in real-time. 

3.1.2  Promoting Rapid Application Development 
From an implementation perspective, Rapid Application Development strategies (RAD) are 

a software development method resembling high-level Agile, spiral, waterfall or SCRUM 

ideals [118, 119]. The grounding for RAD relies on its focus on quickly prototyping entire 

applications in opposition to having an intensive planning stage. This allows for a quicker 

time-to-market development process sustained by quickly developing an initial application 

version, shown to final clients, which is actively iterated until the final application is ready 

for prime time. 

At first, RAD strategies where used to deploy initial application prototypes with only 

the application skeleton build. However, with the advances in software engineering, RAD 

strategies become more prominent, enabling the use and combination of multiple skeleton 

components in the final software system. Based on a set of architecture configuration files, 

customizable components (databases, user interfaces, services…) are automatically 

generated and combined with other reusable assets. This pushed RAD as a serious 

development methodology, spreading its adoption to every software area. 

RAD strategies found wide use in web-based applications [120]. Programming 

environments such Ruby on Rails3 and web development frameworks such as Zend4, 

Symfony5, Django6 or Grails7, among many others, provide developers with the tools to 

quickly create new complex web information systems. These packages include database 

abstraction layers, MVC support, wrapping APIs and easy web service creation facilities. 

Once familiarized with these frameworks, developers are endowed with the minimal set of 

tools to create their applications almost instantly.  

The application of RAD strategies to user interface development is also witnessing an 

increased use. Frameworks such as Boostrap8, endFoundation9 or HTML5 Boilerplate10, 
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include a diverse set of predefined user interaction components. This reduces the amount 

of work required to build new interfaces and enables the creation of new integrative 

toolsets based on customizable components in a LEGO-like way. 

The entire software development process is changing in the post-PC era. Developers are 

now looking for solutions that deliver more features with the smaller cost, i.e. with less 

programming required. This is particularly evident in modern cross-platform application 

scenarios, where the server-side and client-side components are reused even when the 

final application targets distinct operating systems or working environments. 

3.2  Understanding Service Composition 
We have discussed the need for creating a more dynamic application ecosystem, fostered 

by all fronts demanding improved interactions, flexibility, robustness and performance in 

addition to the software fragmentation originating in a hardware market surrendered to 

mobile, tablets, TV and web alternatives to the traditional desktop box. The glue to 

maintain these rich architectures together is service composition. Service-oriented 

architectures allow accessing online resources to obtain integrative views and promote 

machine-to-machine interoperability through standardized data exchanges.  

Service composition comes in two flavours [121]. On the one hand there is service 

choreography, where each participant web service controls its own agenda. On the other 

hand there is service orchestration, where a master node controls the coordinated 

execution of distributed services.  

Choreography approaches require a higher level of intelligence from each web service. 

Services act autonomously based on a set of predefined rules to achieve the desired goal. 

This means that artificial intelligence measures must be in place to manage the interaction 

of multiple independent actors to yield an overall composition result. In a sense, service 

choreography operates like an artistic dance performance, with each element working 

together to deliver the best possible show. 

Orchestration is a more easy and therefore common approach, requiring a controller 

node to define the sequence of tasks within a workflow. These logic actions are 

traditionally static and defined by developers. It is a centralized approach in contrast to 

choreography’s distribution, resulting in the problematic of having a single point of failure. 

Orchestration, as the name says, is similar to an orchestra playing, where the maestro 

controls the arrangement and is able to predict or solve problems on demand. 



3. Software Engineering for Integration and Interoperability 

 

 34 

3.2.1  Accessing Resources 
Accessing online resources is no longer a challenging task for computer scientists. The set 

of tools available for every development environment is enough to allow the creation of 

advanced data access platforms. Online resource access services are responsible for 

encapsulating data or features and making them available to other systems. They allow 

access to databases, tools, file systems or any kind of external storage methods. The 

services encapsulation should be made using wrappers to enhance and ease integration and 

interoperability. With this in mind, it is important to take into account some generic 

concerns: 

 Performance is a crucial concern especially due to the fact that end-users want fast 

and responsive applications regardless of the operation they are executing. 

Performance can be optimized by reducing the amount of data that is sent across 

the network or by minimizing query interdependence, thus reducing latency. 

 Usability is also essential in any modern system. Expressiveness should be enough 

to allow application developers to pose almost any query to the system. Usability 

and expressiveness depend on metadata. Metadata should be carefully selected and 

constrained to the minimal information necessary to interpret what the wrapper is 

encapsulating. 

 Distribution is an everlasting challenge for researchers, who are constantly dealing 

with data that are located in distinct geographic locations and most of the times 

they are accessing these data from different computers. It is very important to 

prepare systems for future interoperability, enabling transparent access to 

distributed resources and easing remote access. 

3.2.2  Service-Oriented Architectures 
Web services are, nowadays, the most widely used technology for the development of 

distributed applications [122]. The World Wide Web Consortium (W3C) defines web services 

as “software system designed to support interoperable machine-to-machine interaction 

over a network” [123]. This wide definition allows us to consider a web service as any kind 

of Internet available service as long as it enables machine-to-machine interoperability.  

Service-Oriented Architectures (SOA) is a modern application deployment architectural 

style. The rationale behind these architectures is that what the applications are connecting 

are services and not other applications. Considering that every component that 

applications require can be seen as an independent service, we create an implementation 
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and deployment strategy based in this paradigm. In traditional web application 

architectures, the deployment can be decomposed in three generic layers: the presentation 

layer, the business logic layer and the data access layer. In SOA architectures, the idea of 

focused architecture layers does not exist. That is, each architecture component is 

independent from the remaining and by combining miscellaneous components we can 

compose multiple applications. This empowers two main concepts: reusable software, 

which are applications wrapped as services that can be used in a multitude of applications, 

and service composition, where applications can be built by combining sets of services. 

Various patterns have been exploited over the years to promote the creation of service-

oriented architectures. Natural selection left two key standards that act as the foundation 

for new applications with advanced service composition methods. SOAP is the strictest 

standard, involving a more complex set of technologies to control all steps of the 

composition. Unlike SOAP, REST is a more open alternative, leaving the standardization 

and data exchange validation to the superior application layer. 

SOAP 
Standardized web services have the main purpose of providing a unified data access 

interface and a constant data model of the data sources. Simple Object Access Protocol 

(SOAP) [124], Universal Description, Discovery and Integration (UDDI) [125] and Web 

Services Description Language (WSDL) [126] are the currently used standards and they 

define machine-to-machine interoperability at all levels, ranging from the data transport 

protocol to the query languages used. Web service interoperation occurs among three 

different entities: the service requester, the service broker and the service provider. 

SOAP standard defines a comprehensive architecture based on several layers where all 

the components required for a basic message exchange framework are defined. These 

components include message format, message exchange patterns, and message processing 

models, HTTP transport protocol bindings and protocol extensibility. 

WSDL standardizes the description of web service endpoints. This description enables 

automation of communication processes by documenting every element involved in the 

interaction (from the entities to the exchanged messages). The definition encompasses 

several components that are structured in order to facilitate communication with other 

machines and ease the readability of the web service by humans. Obviously, thinking of a 

complex web service, we realize that there are numerous data types that need to be 

described. Whether we are dealing with person’s names or protein interactions, each 
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scenario has its respective internal model, which must be exposed to make the system 

interoperable. WSDL recognizes this need and can use XML Schema Definition (XSD) as its 

canonical type system. Despite this, we cannot expect that this grammar will cover all 

possible data types and message formats in the future. To overcome this issue, WSDL is 

extensible, allowing the addition of novel protocols, data formats or structures to existing 

messages, operations or endpoints [127].  

UDDI allows describing, discovering and managing in the web services environment. 

UDDI usually offer a central registry with “publish and subscribe” features that allows the 

storage of service descriptions and detailed technical specifications about the web services. 

The storage mechanism relies once again on XML to define a metadata schema that can be 

easily searched by any discovery application 

REST 
REST service architecture styles are nowadays the most widely used solution for 

interoperable software. REST-based solutions are used in every modern application form, 

enabling streamlined data exchanges for all kinds of fields. REST stands for 

representational state transfer and this service architecture uses all valuable features 

inherent to the HTTP protocol [128]. Starting with the representation of resources with 

unique URLs, developers can employ the GET, POST, PUT and DELETE operations available 

in the HTTP protocol to enhance the access to remote data. Whereas normal web pages are 

designed for human consumption, meaning that browsers only use the GET command to 

load data in a closed window, the REST style uses all available operations to enable 

machine-to-machine communication. 

Developers can configure this page to respond with HTML, XML, JSON, CSV or, most 

simply, free text. Using REST web services it does not matter what is the response structure 

and its inner format, the essential requirement is that the exchanged messages are 

understood between both the intervenient in the exchange. This feature makes REST web 

services a lightweight and highly customizable approach for exchanges between machines 

[129]. In April 2012, the Programmable Web library11 contains 5551 web APIs, 3740 of which 

are REST-based, a staggering 78%. 

This steady use growth and its availability in all kinds of services, from Twitter to 

UniProt, is making REST the de facto solution for modern service oriented architectures, 

empowering a true web-as-a-platform environment. 
                                                        
11

 http://www.programmableweb.com 
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The Promise and Limits of SOA 
Service composition strategies are essential for achieving integration and interoperability. 

We need an architecture that delivers organic interactions. This means that the 

composition of services should be provided naturally, responding to project demands 

swiftly and enabling the continuous improvement of available software without disrupting 

existing systems. The resulting ecosystem, with greater flexibility, improved scalability and 

better responsiveness, can be tailored to any modern development scenario. 

However, these benefits came with a cost. In complex service composition scenarios, 

involving multiple interacting workflows or mashups, many distinct problems may arise. 

Distributed architectures may suffer from connectivity issues. With the Internet as the 

main communication line, it is vital that a web connection is present 24/7 in the client 

applications. For instance, developing mobile applications that rely on a remote service for 

their execution limits the application usability to realities where the Internet is available. 

Performance and robustness may also suffer. On the one hand, data exchanges can be 

lighter and therefore faster, due to the use of smaller objects. On the other hand, the 

parallelization of service execution is not straightforward, meaning that workflows’ 

services need to wait for the previous service completion before moving on. The lack of 

robustness is exemplified by taking down a single service in a service-oriented system. This 

can cause the entire system to fall apart, even if 99% of the involved components are 

operational. 

Managing a collection of distributed services is also challenging for SOA. These require 

additional metadata to maintain adequate governance and application ownership. SOA 

blurs the boundaries of where a self-contained application starts and ends. With the 

emergent domination of the mobile application market, it is fairly trivial to write 

applications that simply provide another view over a pre-existent service, without further 

added value. 

The limit of SOA tends to the concept of “everything-as-a-service”. This new paradigm 

requires efforts for both service consumers and producers. Whether we are simply 

requesting a listing from movies database, or delivering access to our oral cavity 

knowledge base, we need to reengineer existing systems and change the way we think 

about software systems’ architectures. 
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3.2.3  Heterogeneity 
Online resource heterogeneity issues are of growing relevance, triggered by the constant 

evolution of the Internet and the increased facility in publishing content online. We can 

classify online resource heterogeneity in five distinct groups, varying according to their 

complexity and their involvement at hardware/software levels (Table 3-1). 

Table 3-1. Content heterogeneity organization according to hardware/software dependencies and 
complexity, from physical data heterogeneity to the variety of access methods. 

PHYSICAL 
DATA 

LOGICAL 
STORING 

DATA 
FORMATS 

DATA 
MODELS 

ACCESS 
METHODS 

 Web Server 

 FTP Server 

 File Server 

 Backup Tape 

 Relational 

Database 

 OO Database 

 Text File 

 Binary File 

 HTML 

 CSV 

 XML 

 TXT 

 Excel 

 Structure 

 Ontology 

 Semantics 

 Local Access 

 Remote APIs 

 Web Services 

Hardware related issues arise when dealing with physical data storage. For instance, a 

medical imaging information system may require that image backups, stored in tapes, be 

integrated in the system as well as images in the main facility web server. In this scenario, 

the integration setup is considerably complex.  

When dealing with file access in any storage, we may have logical storing heterogeneity. 

Content can be stored in a relational database, a simple text file or a binary file, among 

others. Hence, these several formats are accessed with entirely different interfaces. For 

instance, integrating data from a Microsoft SQL Server 2008 database is a completely 

different process from reading a binary file from a FTP server.  

The next level where heterogeneity can be a problem is at data format levels. Data 

stored in the same physical format can be stored in a distinct syntax. Although 

programming languages’ evolution has improved access to distinct file formats, reading a 

simple text file or a HTML file are operations that require different strategies and methods. 

A simple scenario could be the integration of several accounting results, which are offered 

in CSV formats, Excel files and tabular text files. To successfully integrate these files, 

developers must implement distinct access methods to the three logical formats. 

Moving deeper in the software layer, we reach the data models level where 

heterogeneity issues arise when files are distinctly structured or do not obey to the same 

schema/ontology. Difficulties in solving this issue were greatly reduced with the 

appearance of the XML standard, and most of the modern applications rely on this 
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standard. Despite having normalized the process of reading and storing information, XML 

allows an infinite number of valid distinct structures, which are different from application 

to application. Once again, heterogeneity has to be solved with information and relation 

mappings that can correctly transpose information structured following ontology A to 

ontology B. These mappings are quite complex and traditionally require some kind of 

human effort for success. 

Finally there is access methods heterogeneity. Web services have evolved and are the 

primary method for remote data access with standard protocols and data exchange formats. 

Nevertheless, web services may be divided in HTTP-based (REST or SOAP) and XMPP web 

services, further increasing the complexity of managing distinct interoperability 

requirements within a single platform. 

Summarily, resource heterogeneity is the main challenge for the development of novel 

information integrative platforms. For the creation of novel knowledge and information 

management systems, the integration of distributed and heterogeneous data are a major 

drawback, reducing future interoperability features. 

3.3  Modern Data Integration 
As mentioned in Chapter 2, one of the great caveats for the successful integration of data in 

the life sciences domain is the constantly growing amount of data and, consequently, of 

ways to access those data. This is not true solely for bioinformatics. Whereas in the early 

21st century it was very difficult to find ways to publish our personal content online, the 

evolution and widespread availability of Internet access technologies has leveraged an 

explosive growth of data in all fields.  

3.3.1  Resource Integration Strategies 
To deal with resource heterogeneity issues or to simply centralize large amounts of 

distributed data in a single system, researchers have to develop state of the art resource 

integration architectures. The main goal of any integration architecture is to support a 

unified set of features working over disparate and heterogeneous applications. The 

heterogeneity may be located at the previously presented levels, which include software 

and hardware platforms, diversity of architectural styles and paradigms, content security 

issues or geographic location. In addition to these technical restrictions to integration, 

there are also other hindrances such as enterprise/academic boundaries or 

political/ethical issues. Whether we are simply dealing with the integration of a set of XML 
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files or with distributed instances of similar databases, the concept of resource integration 

will generically rely on hard-coded coordination methods to centralize the distributed 

information or to give the idea that the data are centralized. 

Several strategies for data integration can be used - Figure 3-2. These approaches differ 

mostly on the amount and kind of data that is merged in the central database. Different 

architectures will also generate a different impact on the application performance and 

efficiency. 

 

Figure 3-2. Data integration models categorized according to their relation with the integration 
application and the integrated online resources. 1) Warehouse integration replicates entire datasets 
from external resources in a new knowledge base. 2) Mediator-based solutions rely on a middleware 
layer to serve as a proxy for connections to a set of virtually integrated external resources. 3) 
Lightweight link-based integration is based on direct connections to the external distributed 
resources. 

Warehouse solutions (Figure 3-2.1) consist on the creation of a large database that 

contains data gathered from several resources. The central database – the warehouse – may 

consist of a mesh of connected repositories that the data access layer sees as a single 

database. In terms of implementation, this model requires that mappings are made from 

each data source to the central warehouse data model. Next, the content is moved entirely 

from its source to the new location. The final result is a new data warehouse where the 

content from the integrated data sources is completely replicated. 

This model raises several problems in terms of scalability and flexibility: warehouses’ 

size can grow exponentially and each database requires its own integration schema. This 

means that for each distinct database, developers have to create a new set of integration 

methods, resulting in a very rigid platform. Despite these issues, this technique is very 
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mature and a considerable amount of work has already been done to improve warehouse 

architectures. Nowadays, the debate is focused on enhancing warehouse integration 

techniques [130] and solving old problems with state-of-the-art technologies [131, 132].  

Another widespread strategy involves the development of mediators – a middleware 

layer – connecting the application to the data sources - Figure 3-2.2. This middleware layer 

enables a dynamic customization of user queries performed in the centralized entry point, 

extending their scope to several databases previously modelled in a new virtually larger 

database. Kiani and Shiri describe these solutions [133] and a good example can be 

DiscoveryLink [134]. Mediator-based solutions are usually constrained by data processing 

delays: they require real-time data gathering, which can be bottlenecked by the original 

data source. Additionally, the gathered content also has to be processed to fit in the 

presentation model, hence, compromising even more the overall efficiency of the system. 

Finally, link-based resource integration consists of aggregating in a single platform 

links to several relevant resources throughout the Web (Figure 3-2.3). This is the most 

widely used integration model due to the simplicity of collecting and showing links related 

to a certain subject. However, inherent in this simplicity are several drawbacks, especially 

regarding the limitations imposed by the fact that there is no real access to data, only to 

their public URLs. Most of the modern resources are dynamic which means that access to 

content may be generated in real-time. Also, in the scientific research area, there are new 

data emerging daily. Therefore, the system requires constant maintenance in order to keep 

the system updated with the area novelties. 

Despite the fact that these approaches cover almost all possible solutions for data 

integration, there are many problems that have not yet been solved. After a careful analysis 

of these models we can conclude that, for the majority of life sciences resource integration 

scenarios, the best option is to create a hybrid solution that is capable of coping with the 

main disadvantages of the three strategies and take advantage of their main benefits as 

well. The development of hybrid approaches has gained momentum in the recent years 

especially with the introduction of novel data access techniques like remote and web 

services.  

In spite of the strategy chosen to integrate a collection of heterogeneous resources, 

there are several concerns that should be taken in account: application coupling, 

intrusiveness, technology selection, data format and remote communication [135]: 
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 Application coupling enforces the good software development practice of “low 

coupling, high cohesion”, an ideal that is also applicable to integration strategies 

[136]. High coupling results in high application dependencies on each other, 

reducing the possibilities of the applications evolving individually without 

affecting other applications. The optimal results would be resource integration 

interfaces that are specific enough to implement the desired features and 

generic enough to allow the implementation of changes as needed. 

 Intrusiveness should be one of the main concerns when developing integration 

applications. The integration process should not impose any modifications in 

the constituent applications. That is, the integration strategy should operate 

without any interference in the existing applications and both the integrator 

and the integrated application should be completely independent.  

 Technology selection is cumbersome when combining environments where 

multiple distinct applications interact with each other. Despite being 

dissimulated as local interactions by the integration engine, these remote 

interactions, available in the majority of programming languages, are very 

different due to the resort to network capabilities. Remote communication 

concerns are reduced with the adoption of asynchronous communication 

techniques and the support for communication error solving, thus reducing 

network error susceptibility.   

 Data formats must be unified in integrative applications. Traditionally, this 

requirement is impossible to fulfil due to the fact that some of the integrated 

data sources are closed or considered legacy. In these scenarios, the solution 

consists in creating a translator that maps the distinct data formats to a single 

model. In this case, issues may arise when data formats evolve or are extended. 

The implicit complexities that arise when dealing with online resource integration 

require large efforts and expertise to be overcome. Like any other issue, integration is 

firmly related with the scientific area in question and, with this in mind, the adopted 

strategy or model must take in account several variables present in the environment where 

it will be implemented. 
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3.4  Towards Software Interoperability 
Interoperable software is the main enabler of modern informatics systems. Whereas in 

integration we deal with the development of a unified system that includes the features of 

its constituent parts, interoperability deals with single software entities that can be easily 

deployed in future environments. This means that interoperability is a software feature 

that facilitates integration and collaboration with other applications. The ISO/IEC 2382-01 

defines interoperability as follows: “The capability to communicate, execute programs, or 

transfer data among various functional units in a manner that requires the user to have 

little or no knowledge of the unique characteristics of those units”12. 

In a sense, developing interoperable software means developing open and future-proof 

applications. Nowadays, stakeholders are no longer interested in creating closed tools. 

They are geared towards the creation of an open application ecosystem where any external 

developer is able to connect to and exchange data with the central system.  

3.4.1  The axioms of Interoperability in Informatics 
Interoperable systems can access and use parts of other systems, exchange content with 

other systems and communicate using predefined protocols that are common to both 

systems. This interoperability can be achieved at several distinct levels as pointed by Tolk’s 

work (Figure 3-3). For our research work, the essential levels are the ones that encompass 

syntactic and semantic interoperability. 

 

Figure 3-3. Levels of conceptual interoperability model defined by Tolk [137]. Each level (from 0 to 6) 
increases the available interoperability features, from no interoperability to full software 
composability. 
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Software syntactic interoperability can be defined as the characteristic that defines 

where multiple software components can interact regardless of their implementation 

language or software/hardware platform. Syntactic software interoperability may be 

achieved with data type and specification level interoperability. Data type interoperability 

consists in distributed and distinct programs supporting structured content exchanges 

whether through indirect methods – writing in the same file – or direct methods – API 

invoked inside a computer or through a network. Specification level interoperability 

encapsulates knowledge representation differences when dealing with abstract data types, 

thus, enabling programs to communicate at higher levels of abstraction – web service level 

for instance. 

Semantics is a term that usually refers to the meaning of things. In practice, semantic 

metadata are used to specify the concrete description of entities. These descriptions and 

their relevance are detailed further in this document. Summarily, they intend to provide 

contextual details about entities: their nature, their purpose or their behaviour among 

others. Hence, semantic software interoperability represents the ability for two or more 

distinct software applications to exchange information and understand the meaning of that 

information accurately, automatically and dynamically. Semantic interoperability must be 

prepared in advance, in design time and with the purpose of predicting behaviour and 

structure of the interoperable entities. 

3.4.2  Foundations for Software Interoperability 
When working with service composition we are required to enforce interoperability. 

Composing services that already support some high degree of interoperability eases 

developments but it is not a mandatory requirement. As long as there is an open door to 

share data or features, it is up to the interested party to implement some kind of wrapping 

middleware layer. 

Integration and interoperability are directly tied together. There is no integration 

without interoperability and interoperability is driven by the need to integrate. From a 

centralized perspective, we can define integration as inward interoperability, to get 

resources from an external physical or logical location into our own unifying resource. 

Nevertheless, true software interoperability is only present when there is also outward 

interoperability. This means that our system should not only integrate data, but should also 

expose it for external usage. Assessing service composition as a whole, we want our 
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resources to be interoperable so that others can integrate them, enabling a 

multidimensional data flow. 

This focus on the interoperability of data and software has leveraged the birth of novel 

development paradigms. Semantic Web technologies emerge as a modern solution tailored 

to solve interoperability issues in any research field. With new standards for describing, 

publishing and accessing data, the semantic web paradigm appears as the most viable 

alternative for implementing best-of-breed service composition strategies towards a better 

integration of resources and the improved interoperability amongst distributed 

autonomous knowledge bases. 

3.5  The Semantic Web 
The dramatic growth in content promoted by recent web developments like Web2.0 and 

social tools, combined with the ease in the publication of online content, have the major 

drawback of increasing the complexity of resource description tasks. Standard web 

technologies cannot support this exponential increase.  

Tim Berners-Lee, the self-proclaimed inventor of the modern Internet and director of 

W3C, promoted semantic Web developments in 2001 [138]. His futuristic initiative 

envisaged to smoothly link personal information management, enterprise application 

integration and worldwide sharing of knowledge. Therefore, tools and protocols were 

developed to facilitate the creation of machine-understandable resources and to publish 

this new semantically described resources online. The long-term purpose was to make the 

Web a place where resources are shared and processed by both humans and machines, 

enabling computers to comprehend, navigate, manipulate and infer reasoning from the 

Web of data. The W3C Semantic Web Activity group has already launched a series of 

protocols to promote the developments in this area – Figure 3-4.  

Adding semantic features to existing content involves the creation of a new level of 

metadata about the resource [139, 140]. This new layer will allow an effective use of 

described data by machines based on the semantic information that describes it. These 

metadata must identify, describe and represent the original data in a universal and 

machine understandable way.  

In order to make the semantic web possible, developers and researchers need to 

cooperate. It is important to create and broadcast centralized ontologies for several public 

interest areas and to empower the adoption of these ontologies by research groups and 
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private companies. Nevertheless, this crucial step can only be given if the cooperation 

efforts originate enhanced semantic technologies that ease the complex task of describing 

content. Research groups working with state-of-the-art technologies must promote this 

difficult step that will require deep changes in the developed applications. Only promoting 

this use we can foster the development of a new, cleverer, Internet [141, 142]. 

 
Figure 3-4. Semantic Web Stack, from URI resource identification to the top-level applications. 

3.5.1  Expressing Knowledge 
The fundamental building block of semantic web knowledge is a statement. Whilst this may 

be an oversimplification, it opens many possibilities for setting the semantic web as a 

standard for integration and interoperability. Whereas traditional WWW content is built 

for human consumption, semantic web content consists primarily of statements for 

application consumption. Whereas in traditional WWW it was up to users to decide and 

acknowledge the connections amongst data bits, semantic web statements are linked 

together through constructs that form the meaning of a link. 

It is in these relationships that resides the semantic web’s added value. By connecting 

millions of statements together we can form a rich knowledge base, even if the information 

remains distributed. Semantic web relationships may be definitions, associations, 

aggregations, and restrictions, amongst other hybrid custom connections. These 

relationships are better understood as a graph, as shown in Figure 3-5, listing a small set of 

statements. 
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Statements and established relationships define concepts, for example a Person has a 

name, and instances, such as “Alice is a friend of Bob” (p:hasFriend). The set of statements 

defining concept relationship form the ontology. Likewise, the ones referring to unique 

individuals form the data. Any statement can be asserted, created by a direct connection, or 

inferred, discovered by using additional logic. 

 

Figure 3-5. Example RDF graph, highlight direct and inferred relationships within a common object-
oriented Person ontology. 

From Figure 3-5 graph we can extract a set of statements formed by three elementary 

components - subject, predicate, and object. These individual triples are what forms 

knowledge in the semantic web. The subject is the element of what we are saying 

something new, the predicate is the meaning of the relationship we are establishing, and 

the object is what we are explicitly stating about the subject. To express these statement 

sets, we need to identify resources uniquely and rely on a group of technologies to 

integrate information and explore acquired knowledge. This is achieved through the 

combination of four web protocols: URI [143], RDF [144], OWL [145] and SPARQL [146, 147]. 

Identifying Resources 
The Uniform Resource Identifier (URI) is a simple and generic standard that proposes a 

sequence of characters to enable the uniform identification of any resource across the 

entire Internet. The “Resource” term is used in a general sense as it can identify any kind of 

component. URIs can identify electronic documents, services, data sources and other 

resources that cannot be access via Internet like humans or corporations. Identifier refers 
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to the operation of unequivocally distinguish what is being identified from any other 

element in the scope of identification. This means that we are able to distinguish one 

resource from all other resources regardless the working area or resource purpose.  

Using URIs allows the definition of namespaces that can be expanded to accommodate 

new data or features, enabling a scalable access to objects. In a trivial example, 

http://www.facebook.com/ can be reserved as a generic namespace for Facebook data 

and, in this case, http://www.facebook.com/<username> uniquely identifies a user 

within Facebook’s context. Similarly, we can identify a protein in UniProt’s knowledge base 

through the combination of UniProt’s namespace with the protein accession number, 

resulting in http://www.uniprot.org/uniprot/P51587.  

Describing Resources 
The description of resources should provide details about its nature, intent or behaviour as 

well as being, generically, “data about data”. The Resource Description Format (RDF) is 

designed as a protocol to enable the description of web resources in a simple fashion [148]. 

The syntax neutral data model is based on the representation of predicates and their values. 

A resource can be anything that is correctly referenced by an URI and is currently, like the 

latter, not limited to describing web resources.  

A major advantage for using RDF as a knowledge storage facility is its proneness to 

sharing. The simple triple/graph structure is optimal for data exchanges. RDF has no 

default data format and is not restricted to constrained data models. When all standards 

are respected, combining two RDF graphs is easier than integrating two databases or 

merging a couple XML files. 

The basic idea of storing data as triples is by itself a powerful tool for the integration of 

data. RDF data does not require any translation, mapping or contextual information to be 

used. That is, by storing data in our knowledge base as triples, we are limitless to explore 

that data and connect it with external resources without the traditional integration and 

interoperability problems we face while integrating information from relational databases, 

CSV or XML files. 

Ontologies 
Any scientific research field deals with specific terminology that is associated with a 

particular area. Ontology defines the collection of terms and relations between terms that 

are more adequate for a given topic [149]. These relationships, often designated axioms, 

establish connections between terms in the thesaurus that mimic the real world.  
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Ontology is the collection of consensual and shared models in an executable form of 

concepts, relations and their constraints tied to a scaffold of taxonomies. In practical terms, 

we use ontologies to assert facts about resources described in RDF and referenced by an URI. 

The Web Ontology Language (OWL) is the de facto ontology standard, extending the RDF 

schema. 

Querying Resources 
To query RDF files and, in a larger scale, the Semantic Web, W3C developed the SPARQL 

Protocol and RDF Query Language syntax. SPARQL is an SQL-like query language that acts 

as a friendly interface to RDF information. SPARQL queries are directed to an endpoint, a 

service that accepts queries and outputs the results in different formats. Besides being the 

semantic web query language, SPARQL is also the protocol for setting up HTTP connections 

from SPARQL clients to SPARQL endpoints. 

SPARQL syntax is very similar to SQL and enables four distinct five types: SELECT, 

CONSTRUCT, ASK, UPDATE and DESCRIBE. SELECT statements are similar to SQL 

selections where we bind variables in our query to the results we expect to obtain from the 

knowledge base. CONSTRUCT queries enable the addition of new graphs or the 

transformation of existing triple graphs into new datasets. ASK queries are used to 

evaluate the existence of a particular resource or relationship. The result for ASK queries is 

always a boolean value, true or false. UPDATE queries are used to issue updates to data 

already existing in a knowledge base graph. At last, the DESCRIBE query, limited to a single 

resource, returns all known relationships for the given resource. This is an essential feature 

for the automated discovery of new data without any awareness of existing structures. 

DESCRIBE queries power up the LinkedData guidelines. 

The SPARQL language is complete with advanced data access features just like SQL. 

Filters, sorting, limits or modifiers are all present and are complemented with a clean 

variable binding schema, making SPARQL an advanced query language. 

3.5.2  LinkedData 
Despite the increased awareness regarding semantic web potential for integration and 

interoperability, its adoption has been painfully slow. “Semantic creep” is the new term for 

this late adoption, sustained mostly by social obstacles and the proverbial chicken and egg 

problem: the lack of immediate advantages after adopting the semantic web paradigm is 

only resolved when a critical mass of cross-linked knowledge bases also does so [53]. 
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The overarching goal of the semantic web is to enable a truly distributed knowledge 

network. To connect the wealth of ontologies and data widespread in this web of 

structured data, a set of best practices - LinkedData - were proposed by Tim Berners-Lee 

more recently [58]. By adopting these guidelines, knowledge bases are exposed in a 

standard, well-defined fashion, enabling a richer semantic web-based navigation [60]. 

LinkedData imposes four key rules: 

 Use URIs as names for things 

 Use HTTP URIs so that people can look up those names. 

 When someone looks up a URI, provide useful information, using the standards 

(RDF*, SPARQL) 

 Include links to other URIs so that they can discover more things. 

Despite being somewhat vague, obeying these rules empowers an easily navigable 

distributed data graph. With the increased awareness surrounding semantic web 

technologies, the LinkedData space already accounts for billions of assertions, all in a single 

open data space (Figure 3-6) [59]. This openness is a defining feature for LinkedData. With 

an adequate exploitation of semantic web’s strategies, we can correlate and connect data 

from entirely distinct fields, from media, publications, geography, life sciences or the 

corporate domain. 

LinkedData obeys the semantic web principles and whilst most of the data navigation 

should be made autonomously by intelligent software systems, we can also query 

LinkedData using SPARQL [150]. This is federated query processing at its best, where data to 

complete each query is dynamically discovered and virtually integrated in real-time. 
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Figure 3-6. LinkedData cloud evolution, from 2007 (1) to 2011 (2)13. 

3.6  Discussion 
3.6.1  Shortcomings and Challenges 
Researchers’ daily work is getting more complex as traditional simple tasks like locating 

necessary information, gathering it and working with tools to process it get more difficult. 

The growing number of software tools is not helpful as well. Despite their quantity, their 

quality is questionable; each tool works differently and requires distinct end-user skills. 

Along with application complexity, there is also the immense number of data formats. In a 

single scientific area there are numerous resources, applications, services, data formats, 

data models and data types to consider. This imposes time consuming tasks, like manual 

data transformations or development of custom wrappers and converters, which are far 

beyond scientific researchers’ scope. 
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Whilst there are already various notable efforts to overcome these issues, there is still a 

clear lack of service depth. New tools and knowledge bases are starting to include web 

services by default. However, this is causing further problems as these are shallow APIs, 

they are not normalized and do not adhere to any previous guideline. The problem itself is 

not the absence of standardization formats for data exchanges and services, but their lack 

of use. 

3.6.2  An Emerging Architecture Trend 
As trivial as it may seem, there is no denying that the complex service architectures at play 

in existing software systems occupy a determinant role. The mobile web itself, especially 

with the omnipresent "apps", relies on service-based technologies to operate. Whether we 

are checking our emails, sharing a photo with our friends or reading the latest news, 

services empower our connections to the online world. 

With these strategies, modern software engineering trends emerged. Nowadays, 

developers do not think about building applications for single use or targeting a unique 

scenario, developers must build entire platforms. In fact, more important than being a 

unique popular application, the success of novel systems resides in the ability to provide 

platforms that others can explore, enabling the appearance of a new controlled ecosystem. 

The most widely used modern trend is to deploy a central logical ICT infrastructure to 

support a multitude of applications, targeting distinct operating systems, hardware 

platforms and users (Figure 3-7).  

 

Figure 3-7. Modern software platform architecture trend with a centralized (cloud-based) source 
providing data and features to miscellaneous client applications, each targeting a distinct market 
segment, hardware device or operating system. 
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A quick overview on the approaches adopted by Apple, Amazon, Evernote, Facebook, 

Google or Twitter, highlights this strategy. The idea of creating a platform that any 

developer can rely on to build new applications is as enticing as writing HTML was in the 

early WWW days. These companies adopted a cross-product API strategy that changes the 

way new applications are built. Not only do they provide a collection of APIs to external 

developers, but they also promote the use of these services internally in their products. 

Completed with a rich documentation set, these companies build their brands capitalizing 

on the community interest in their products and the community skills to improve the 

existing ecosystem.  

For software engineers, these new architectures push forward new demands for the 

integration of existing resources and the interoperability with new external systems. 

3.6.3  The Next Step for Service Composition 
This chapter provides an overview over the various technologies and paradigms used to 

empower a new software engineering age supported by service composition strategies. 

Along with this description, there is also the highlight of where we can go in the future 

using integration and interoperability demands as a driving guideline for software 

development. 

Software engineering dynamics and adaptability are remarkable. Using similar 

architectures we can devise new platforms for controlling car manufacturing pipelines or 

next-generation sequencing hardware, for entertainment or bioinformatics. This latter 

field is definitely an innovation driver, demanding the employment of best-of-breed 

techniques to solve computational biology problems. Whether re-engineering existing 

technologies or using modern semantic web developments, state-of-the-art solutions must 

be transposed from the general computer science field to bioinformatics. 

For this matter, we need to go beyond service composition in bioinformatics, taking it 

one step further. Integration and interoperability requirements define architectures for 

novel biomedical applications and all stakeholders should promote the adoption of these 

ideals. As active players in the biomedical software community, we introduce a set of 

contributions aiming to enhance the wide field of service composition for biomedical 

applications, and to thrive under the immense bioinformatics opportunities. 
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4.  CONTRIBUTIONS TO 
WORKFLOW-BASED SERVICE 

COMPOSITION 

“I do not fear computers. I fear the lack of them.” 
- Isaac Asimov 

 

With the latest advances in software architectures, modern service composition strategies 

empower new tactics for interoperability. Emerging service-oriented architectures and 

software-as-a-service trends bring new approaches that are more scalable, flexible and 

efficient. Therefore, new applications and services ease researchers’ investigation tasks, 

enabling advanced interactions amongst remote applications through distributed 

workflows. 

This chapter introduces our contributions to the research on workflow-based service 

composition within the context of the European EU-ADR Project14. The goals behind this 

project concern the improvement of post-marketing pharmacovigilance strategies and 

technologies. Contemporary disease treatment and prevention revolves around a dynamic 

medication market, where a myriad of pharmaceutical companies research, develop and 

introduce numerous drugs in the international health marketplace. Hence, drug safety 

continues to be a major concern for worldwide policy stakeholders as it continues to injure 

patient’s health and, in many cases, lead to increased mortality risk. 

Within the EU-ADR scenario, several features and research results are provided through 

web services. This propelled the creation of a new platform, the EU-ADR Web Platform, 

where services play together to form a set of innovative pharmacovigilance workflows. The 

development of this platform leveraged miscellaneous service composition challenges, 

namely on defining interoperability standards and wrapping Taverna workflows. From the 

creation of custom drug studies to the remote execution of signal analysis workflows up to 
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cross-analysis against millions of anonymous electronic health records [151, 152], the EU-

ADR Web Platform enables an insightful exploration of pharmacovigilance signals’ 

evolution resulting in a superior risk evaluation. The EU-ADR Web Platform is available 

online at http://bioinformatics.ua.pt/euadr/. 

4.1  Delivering Advanced Pharmacovigilance 
Workflows 
The traditional pharmacovigilance approach tackles the problem from a pre-market 

perspective, conditioning drug approval. Both the European Medicines Agency (EMA) and 

the US Food and Drug Association (FDA) established rigorous guidelines for new medicine 

approval, requiring intense testing, which results in a long and complex lab-to-market 

development cycle. Along with these guidelines, pharmaceutical companies must also 

define thorough risk management plans for post-market drug stages.  

Consequently, the relevance of post-market pharmacovigilance in the health domain 

has been growing steadily over the last four decades. Research in this area involves the 

exploration and assessment of signals, defined by the World Health Organization as 

undisclosed assertions on direct relationships between adverse events, such as gastro-

intestinal bleeding, and a drug, like rofecoxib [153]. Clinicians use spontaneous reporting 

systems to identify adverse drug reactions [154]. Despite this, there is high-demand for 

novel software tools capable of improving the post-marketing drug monitoring workflow 

[155]. By taking advantage of modern knowledge engineering technologies, developers are 

able to overcome the limitations associated with insufficient clinical trial data, complex 

monitoring statistics and closed general practice data silos. Text- and data-mining tools, 

combined with service composition strategies, pave the way for enhanced in silico signal 

identification and adverse drug reaction assessment [156]. 

Whilst these software products are already available, their use is limited to a small 

group of technologically skilled research experts. Hence, the creation of the EU-ADR Web 

Platform to tackle these challenges, extending existing tools availability to every 

researcher, clinician or stakeholder, through a web-based pharmacovigilance suite.  

4.1.1  21st Century Pharmacovigilance 
Hårmark and Grootheest research explains pharmacovigilance underlying concerns with 

current drug evaluation approaches [157]. Whilst drug safety concerns are becoming more 
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prominent, the lack of adequate software to correctly understand drug adverse reactions 

continues to challenge the pharmaceutical industry and research community. 

The risk associated with any marketed drug triggers critical safety concerns, which, in 

their turn, leverage a constant revision and update of medical products’ information. For 

these tasks, modern adverse drug reaction (ADR) monitoring becomes essential. Despite the 

complex set of drug trials, including the famous final randomized double blind evaluation, 

clinical trials data are in most scenarios insufficient to assess drug risk. Rare ADRs, ADRs 

identified in particular population cohorts or ADRs with long latency, require intensive 

post-marketing drug analysis. 

At this stage, spontaneous drug reporting systems (SRS) come to play. These systems 

empower physician with the tools to report suspicions on certain drugs to a 

pharmacovigilance centre. Latest advances take these tools even further, completing the 

drug loop by providing a complete reporting infrastructure to pharmacists, clinicians and 

patients. Pharmacovigilance centres task is to collect these reports, generating enough 

data to inform stakeholders of potential risks as soon as they appear in the system. Despite 

the invaluable data coming from SRS, their data alone are meaningless in most scenarios. 

Viewing SRS as independent entities makes it nigh impossible to establish direct 

relationships between the causes (a drug, or drug interaction) and consequences (a 

phenotype). Hence, to extract meaningful insights from these SRS records, one needs to 

rely on advanced data mining techniques. These will provide distinct perspectives over 

acquired data and their connections to other information topics. 

Another strategy was put in place to complement spontaneous reporting systems. 

Intensive monitoring systems rely on prescription data, forcing drug prescribers to ask 

about any adverse reaction during the drug intake cycle. Once these data are collected, 

they are processed for signal evaluation. Unlike SRS, which is based on monitoring specific 

drugs over a controlled time period, intensive reporting relies on a non-interventional 

observational cohort. Hence, generated data are much nearer real-world scenarios than 

data provided obtained through SRS. Intensive reporting also renewed the interest in and 

importance of health information systems and general practice research databases.  

Modern regional and national health information systems tend to store miscellaneous 

information regarding patients’ clinical history, including drug prescriptions, vaccinations, 

height, weight or laboratory test results, among others. These wide collections of data are 

traditionally a good general representation of region demographics. Furthermore, 
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collected data are already used for pharmacoepidemiology, disease epidemiology and, to a 

lesser extent, drug usage or pharmacoeconomics [158, 159]. From a pharmacovigilance 

perspective and in a European or worldwide scale, the amount and type of data collected in 

these databases is of tremendous importance for an improved post-market drug evaluation.  

Despite the myriad of international developments in these fronts, most efforts 

approach this problem from a pre-market approach, focusing on conditioning drug 

approval and defining guidelines for risk management plans. Hence, modern projects such 

as the EU-ADR project, define a proactive strategy for post-marketing drug assessment. The 

foundation for this strategy is doing an in-depth data mining of the wealth of electronic 

health records to generate filtered data that can be easily substantiated through 

distributed computational tools. The final output, a ranked signal list, provides a broad look 

over identified signals and their significance in health risk. 

4.1.2  The European EU-ADR Project 
The European EU-ADR Project exploits partner data from national electronic healthcare 

records (EHR) and health information systems (HIS) of about 20 million European patients, 

channelling it through state-of-the-art distributed computing software and enriching 

signal detection. This large-scale drug safety monitoring relies in various mining, 

epidemiological, statistical and computing techniques to assess acquired data and generate 

a ranked signal list (Figure 4-1). 

 

Figure 4-1. EU-ADR data flow. 1) Semantic harmonization methods prepare data from millions of 
records originated from distributed electronic health records and general practitioners databases. 2) 
Data are extracted from harmonized resources and mined for signals. 3) An initial signal evaluation 
generated a ranked signal list. 4) Signals are re-ranked after further processing in workflows and 
evidence combination services. 5) The EU-ADR Web Platform delivers the results to pharmacovigilance 
researchers for the final system validation. 
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This innovative approach for the early detection of adverse drug reactions is available 

to end-users through an online drug assessment tool: the EU-ADR Web Platform. In this 

tool, project web services and workflows are composed to test drug-event data against 

known literature or related protein-drug interactions, for example. With anonymous 

access to EU-ADR data, any user can evaluate any represented drug within the entire 

project scope, making this platform a unique tool for advanced drug studies. 

4.1.3  Drug Safety Signal Substantiation 
To coordinate efforts at a European level, EU-ADR project partners decided to distribute 

data extraction, signal filtering, signal substantiation, and evidence combination tasks 

through independent web services. These services are then composed using Taverna 

workflows, and the standardized input/output can be analysed in customizable graph 

visualization tools, such as Cytoscape [160]. 

Adoption of Workflow-based approaches  
Within the EU-ADR context, the search for meaningful relationships amongst drugs and 

clinical adverse reactions must be supported by the publicly available knowledge regarding 

the involved drugs and phenotypes. In this pharmacovigilance effort, a better 

understanding of drug-event pairs is obtained through two approaches. On the one hand, 

the signal filtering process searches for drug-event association previously reported in 

biomedical literature and biomedical knowledge bases. On the other hand, the signal 

substantiation process looks for signals’ causal inferences. That is, drug and event protein 

profiles are explored for common ancestry, which establishes indirect relationships 

between drugs, events and proteins. 

In general, these data exploration tasks could be accomplished in a single informatics 

infrastructure. However, due to the distributed nature of the EU-ADR project, the 

consortium opted for building web services. These web services must be interoperable 

within the EU-ADR partnership, but also independent. With the former, services must obey 

to strict software interoperability guidelines amongst the various EU-ADR software 

modules. Nevertheless, with the latter, services should be designed in a way that enables its 

standalone use, beyond the EU-ADR scenario. 

With this distributed service architecture, the EU-ADR data analysis framework requires 

the adoption of advanced service composition techniques to attain the expected results. 

Hence, the adoptions of workflow-based approaches to integrate each independent module 

in a high-level analysis pipeline. Web services can be executed independently or combined 
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with other services in Taverna. This required the definition of a “service communication 

language”, the EU-ADR schema, discussed further in this chapter. 

The workflow approach also enables accessing and executing services in a very 

straightforward fashion, with no programming required. By wrapping each service in its 

own Taverna workflow, and making it available for download, anyone can use it in a local 

Taverna instance. With a set of well-documented and simplified workflows, EU-ADR signal 

filtering and substations tools are available for use in any software infrastructure, inside 

and outside the EU-ADR project scope. 

Workflows for Automated Data Analysis 
EU-ADR workflows are grouped according to two areas of work: signal substantiation and 

signal filtering. For signal filtering, two workflows have been developed by project partners.  

The ADR-FM workflow uses the MeSH® annotations associated with Medline® literature 

to automate the search of publications related to given drug-event connections. By 

analysing the chemically induced, adverse effects and pharmacological action subheadings, this 

method determines if the adverse drug reaction (or a similar one) has been previously 

published. One should not ignore the caveats of this automated mechanism. In spite of the 

algorithm theoretical quality, expert reading of highlighted articles is advisable. Therefore, 

in the EU-ADR framework, only signals matching at least 3 published elements are 

considered risky. 

The ADR-FD workflow explores associations between drugs and phenotypes that have 

been previously reported in the literature (Medline®) or in drug databases (DailyMed® or 

DrugBank). The algorithm behind this service identifies drug and side effects co-

occurrences in an indexed data warehouse, customized for EU-ADR’s information demands. 

At last, the ADR-SS workflow performs the signal substantiation generating the protein 

interaction graphs from the drug-event pairing. This involves searching for proteins 

targeted by the drug and associated with the clinical event, and for biological pathways. 

The algorithm generates Drug-Target and Event-Protein profiles that are searched for 

common sets of proteins, the intersecting portion of the graph. 

These three workflows accept a similar input, a drug-event pair, and produce a similar 

output, standardized XML. This way they can be easily integrated in a single applications, 

fulfilling the EU-ADR project initial goals. The EU-ADR Web Platform enacts these 

workflows, using custom data inputs and displaying custom data views over output data. 
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4.1.4  Requirements Analysis and Design Issues 
From the deep evaluation of pharmacovigilance state-of-the-art and the interactions with 

various EU-ADR project partners, we uncovered a set of high-level requirements, which 

drove the development of a new pharmacovigilance strategy and resulted in the creation of 

the EU-ADR Web Platform. These general requirements are the following: (R1) support for 

complex pharmacovigilance workflows, (R2) data mining results integration, (R3) data 

sharing, (R4) signal substantiation, (R5) availability and (R6) exchange with software tools. 

The requirements are detailed next: 

 (R1) Support for complex pharmacovigilance workflows. The EU-ADR Web 

Platform must support complex pharmacovigilance studies, which require 

interactions amongst multiple players. 

- (R1.1) Service/workflow interoperability. Software interoperability 

must be assured for workflows and services within and beyond the EU-

ADR project. 

- (R1.2) Taverna workflow integration and execution. The EU-ADR Web 

Platform must allow the straightforward integration and execution of the 

project partner’s workflows for data analysis. 

 (R2) Data mining results integration. With the EU-ADR project collecting 

harmonized data from millions of patients, new methods must be developed to 

enable the correct display and assessment of acquired data. 

- (R2.1) Suitable treatment of data files. The majority of the EU-ADR 

Web Platform’s users will submit their private data in Excel or CSV files. 

 (R3) Data sharing. Adequate data sharing features are essential for performing 

successful research endeavours in any context. Hence, the EU-ADR Web 

Platform must include data sharing functionalities to enable the reproducibility 

and validation of results for any selected researcher. 

- (R3.1) Promote collaborative research. Users must be able to share 

submitted data with selected associates or within the context of a larger 

user group. 

- (R3.2) Research reproducibility. Collected data must be constantly 

available for analysis, substantiation and exploration. 
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 (R4) Signal substantiation. The substantiation of submitted signals, which 

includes the processing of these signals in all the project’s workflows, must be 

facilitated and the analysis of results streamlined. 

- (R1.1) Signal risk evaluation. New interfaces must be setup to display 

signal risk evaluation results from the multiple workflow executions, 

enabling a clear view regarding the importance of a relationship between 

a drug and an adverse event. 

- (R4.1) Combined risk assessment. EU-ADR workflow results must be 

combined, using an independent evidence combination algorithm, into a 

summary risk classification of high risk (H), medium risk (M) or low risk 

(L). 

 (R5) Availability. The EU-ADR Web Platform must be publicly available at all 

times for all registered users. 

- (R5.1) Highly interactive web-based workspace. A web-based 

workspace must be implemented to support new analysis, the 

visualization of results and the sharing of data. Highly interactive 

interfaces should be used to facilitate access to the wealth of EU-ADR 

data. 

 (R6) Exchange with software tools. In addition to (R5), external data 

evaluations must also be supported. 

- (R6.1) Export results. Exporting direct results from Taverna executions 

should be possible. 

These requirements match the challenges brought about by various authors in the 

pharmacovigilance research field over the last few years, as highlighted in Table 4-1. 

Table 4-1. Match between published literature challenges and the requirements devised for the EU-
ADR Web Platform development. 

 R1 R2 R3 R4 R5 R6 
Meyboom et al. [154]       

Wadman et al. [155]       

Bauer-Mehren et al. [156]       

Harmark et al. [157]       

Wood et al. [158]       

Shannon et al. [160]       
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 R1 R2 R3 R4 R5 R6 
Coloma et al. [161]       

Trifirò et al. [162]       

 

4.2  The EU-ADR Web Platform 
Workflow enactment within the EU-ADR project is essential to combine the variety of 

deployed web services in a single integrative data analysis pipeline. To tackle this challenge, 

the workflows were designed using the Taverna workbench. This approach permits both 

the local standalone execution of workflows, using Taverna, as well as the inclusion of 

workflows in existing applications, through Taverna’s command line interface, which 

required the development of a new workflow execution engine. With a standard service 

data exchange language and a customized workflow execution tool, all pieces were in place 

to build the EU-ADR Web Platform. 

4.2.1  Exploring Service Composition for Interoperability 
Computational biology evolution has also greatly improved in silico experimentation and, 

consequently, research reproducibility. This is fostered by the growing number of 

organizations offering some kind of programmatic access to their knowledge bases and 

applications. Web services offer straightforward, published, application programming 

interfaces for interaction with and within other systems.  

From a bioinformatics perspective, the tasks for analyzing and exploring in silico 

experiments data are traditionally linked in a way that can be easily mapped to a software 

workflow. By creating autonomous data flows between multiple services, the use of 

scientific workflows greatly improves the clinicians and researchers computational tasks. 

In section 2.2  we detailed a large number of data sources, services and applications, most 

of which provide services that can be easily composed into new meta-applications. 

DynamicFlow 
With the Internet gaining momentum as a development platform, we are assisting a shift in 

the computational paradigm: moving from desktop applications to web and mobile. 

Therefore, we designed DynamicFlow (Figure 4-2), a solution to promote autonomous 

dynamic service composition in a web-based environment, requiring nothing else than an 

Internet browser [8, 9]. 
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DynamicFlow’s goal is to offer access to a collection of visual components that bind 

public web service as wrappers described following a predefined ontology. This description 

contains essential information about the service execution. The content of each service 

may vary but it has to follow a set of minimal mandatory elements: 

 DisplayName, defines the name that will appear in the component list; 

 Description, small description and relevant information that will be shown 

within the Help section; 

 Input and Output, the Type and the Value of the service inputs and outputs; 

these elements are essential in the workflow execution process. Each workflow 

is validated by checking the consistency of each component inputs against the 

previous component outputs; 

 Specie, list of the species where this component can be used; 

 XmlString, XPath query used to select the correct objects from each service 

output.  

 

Figure 4-2. DynamicFlow workspace interface. Central area for workflow edition and right sidebar 
with available task listing. 

These services semantics are a primitive version of later developments described in 

WAVe and COEUS. Despite this, the principle behind its use is the same: provide a content 

description that enhances information queries and promotes automated interactions 

among distinct resources. 
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Interoperability research in DynamicFlow platform was focused around three key areas: 

the web-oriented architecture dividing processing workload between the web server and 

the browser; the semantic description of web services and the agile web interface for 

workflow composition. 

First, client-side processing enables the creation of new features and increases 

application performance by reducing client-server data exchanges. With more advanced 

client-side development frameworks appearing daily, web clients’ data handling 

capabilities are evolving, enabling intensive data processing tasks on the browser. 

 Second, we designed an ontology with comprehensive semantics to describe the 

services that are part of the workflow. In addition to making the framework generic and 

enhancing the application flexibility, it was an initial endeavour on the description of 

remote services for data exchanges.  

At last, continuing with the modern client-side capabilities, the interface relies 

completely on the browser, does not require any special plug-in, and adopts a traditional 

desktop metaphor to create a richer environment for the design and execution of 

workflows. 

Taverna 
The main goal of workflow management applications is to abstract the programming side 

of the application, enabling the creation of comprehensive workflows without writing a 

single line of code. 

From the various software platforms for combining services, Taverna emerged as the de 

facto standard for desktop-based workflow management in the life sciences [163].  

Taverna’s success is mostly due to its flexibility and variety of available processors. In this 

context, a processor is an activity that can be a part of workflow (Figure 4-3). Taverna’s 

processors can be web services, XML splitters, file system handling tools, string 

manipulation, Excel spreadsheet readers or custom Java code, among others. These allow 

researchers to create complex service composition environment just by dragging and 

dropping boxes in Taverna’s workbench. 
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Figure 4-3. EU-ADR’s signal substantiation workflow: the inputs, a drug (an ATC code) and an adverse 
event, are processed through multiple activities, including UniProt and SMILE services, to generate 
multiple outputs, including drug targets, protein interaction networks and genes. 

4.2.2  Application Setup 
The EU-ADR Web Platform is sustained by a distributed computerized system combining 

multiple components in a single software ecosystem. The platform can be logically divided 

in five key areas: the client application, the application engine, the workflow execution 

engine, the evidence combination engine, and the external workflows – Figure 4-4.   

As mentioned before, the EU-ADR project has deployed 3 workflows for drug-event pair 

data exploration and assessment. These workflows play an active role in the EU-ADR Web 

Platform, as they are required for the data analysis features. The challenging tasks of 

accessing and executing these Taverna workflows required the development of a new 

workflow execution engine, enabling real-time web-based communication with Taverna 

workflows. 

The server software includes the workflow execution and evidence combination 

engines, the platform database and the application engine. The latter is the main EU-ADR 

Web Platform controller, coordinating all involved components. Using the Model-View-

Presenter architecture, we rely on Google Web Toolkit15 (GWT) as application engine. 

                                                        
15

 https://developers.google.com/web-toolkit/  
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Figure 4-4. EU-ADR Web Platform architecture. 1) External distributed workflows are integrated with 
the workflow engine. 2) The created workflow execution engine interacts with Taverna, launching new 
workflow runs and processing results. 3) The evidence combination engine processes the signal list, 
once all workflows have been executed, to generate a final ranked list. 4) The application engine, 
developed with Google Web Toolkit and served trough Apache Tomcat, controls the entire application 
execution, from triggering workflow execution to data persistence in the MySQL database. 5) The EU-
ADR Web Platform online application is a unique entry point to advanced pharmacovigilance features. 

The client application uses a myriad of advanced user interaction components to 

provide a clean perspective over the huge drug datasets and easy access to data exploration 

features. The EU-ADR Web Platform server-side is controlled by GWT and implemented in 
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Java, with Apache Tomcat serving the application. Data are stored in a MySQL database, 

assuring the persistence of the application business model. 

For an improved data handling, Hibernate16 was used for the data abstraction layer and 

object/relational mappings, thus reducing undesirable database coupling with the 

application. This shields the development from future changes in the domain model 

storage system and eases the use within the Java object-oriented environment. 

Miscellaneous additional components were also used, such as Spring Security for 

improved security features, Apache POI17 for enhanced data import and export, Google 

Guice18 for dependency injection, Log4j for logging purposes and Apache Maven19 for an 

enhanced project dependency management, building and deployment. 

To improve on GWT’s user interactions library, we adopted the richer Ext GWT package 

(GXT)20. This extends widgets bundled with GWT core distribution to provide a more 

complete set of user interaction features required by the Web Platform’s interface. 

The combination of GWT’s basic widgets with GXT ones was further improved with 

Google Gin21 for dependency injection, achieving a truly decoupled architecture. 

Investigation of any drug-event pair does not end after the primary workflow relative 

risk assessment, as evidence needs to be combined to reach a final score to help separate 

spurious signals from potential adverse drug reactions. 

To perform these new combinations, the evidence combination engine uses the 

Dempster-Shafer theory to reach a conclusion about the belief that a drug-event pair is 

potentially an adverse reaction [164]. This combination process takes in account the results 

of all workflows and any additional relevant data provided in the drug-event dataset. 

4.2.3  Data Exchanges 
The EU-ADR project web services required setting up a common data description and 

exchange language. All workflows and web services had the same input data types and it 

was adamant that the service outputs should be as similar as possible. Consequently, the 

need for this “communication language” pushed forward the study and evaluation of 

miscellaneous standardization technologies. Since we were dealing with distributed 

                                                        
16

 http://www.hibernate.org/  
17

 http://poi.apache.org/  
18

 http://code.google.com/p/google-guice/  
19

 http://maven.apache.org/  
20

 http://www.sencha.com/products/gxt  
21

 http://code.google.com/p/google-gin/  
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services and were looking for the best way to exchange data in a format that could be easily 

read and parsed in any programming language, we opted for modelling a custom XML 

schema using XSD. 

The EU-ADR schema is divided in two files. The first, Common Types22, describes 

general data types used within the project and can be easily adapted for scenarios beyond 

EU-ADR. The second, EU-ADR Types23, defines the structure for signal filtering and 

substantiation data exchanges within the EU-ADR project context. These schemas allow for 

a smooth integration of the different modules in Taverna workflows and in other 

application development environments. Furthermore, using XSD enables both content and 

structure validation for EU-ADR services’ input and output data. 

Figure 4-5 displays the overall EU-ADR Types structure. The document is rooted in 

relationships, which possess globalScore and relationships elements. A relationship is a 

drug-event combination, using ATC codes for drugs, sourceId, and internal event 

identifiers, targetId. Global score represents the mean score for all relationships in the 

input/output data flow, detailed individually in the partialScore element. Additional 

service metadata are included in the creator, observationDateTime and 

informationSources elements. The latter is further divided in multiple elements, 

comprising the justification for the relationship score. These include database identifiers, 

relationship types, discovered interactions and evidence types, among others. 

With these schemas available online, web service developers are able to formally 

represent their services’ input and output in a way that every partner understands and 

enabling the required service-to-service and workflow-to-workflow interactions. 

                                                        
22

 http://bioinformatics.ua.pt/euadr/common_types.xsd  
23

 http://bioinformatics.ua.pt/euadr/euadr_types.xsd  
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Figure 4-5. Relationship diagram overview for EU-ADR’s interoperability schema. 
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4.2.4  Wrapping Taverna Workflows 
Integrating EU-ADR workflows within the Web Platform was not a trivial task. Taverna 2 

workflows are stored in a XML file with the SCUFL 1.2 specification schema, making the 

read/parse tasks very cumbersome to implement. Moreover, we need to feed the services 

with input data, manipulate intermediate results and extract the resulting output 

documents.  

To perform these tasks, a new workflow execution engine was developed. This Java tool 

is included within EU-ADR Web Platform’s code and enables the execution of Taverna’s 

command line interface with custom input arguments. These parameterized system calls 

run in their own independent OS process, increasing the overall platform performance and 

scalability. Workflow executions are also a background non-blocking asynchronous process. 

For EU-ADR Web Platform users, this means that they can use the application and their 

data whilst workflows are running in the background. 

Figure 4-6 illustrates the steps required to execute the workflow in the web platform 

server. From user input to system output the platform executes the following actions in 

order: 

1. Signal substantiation for one or more drug-event pairs is triggered by users in 

the Web Platform interface. 

2. An XML file with the relationship set is generated and its path supplied to the 

workflow execution engine along with the selected workflows path. The 

workflow is then launched by a system call. 

3. The EU-ADR Web Platform internal workflow reads and translates the XML 

input, invoking the remote web service with the transformed input. 

4. The external web service processes data and sends it back (XML) to Taverna’s 

command line interface. 

5. Additional intermediate processing takes place within the workflow 

execution engine before the following service is contacted. 

6. The service processes data and replies with its XML output. 

7. The workflow execution engine assembles all retrieved data into one or more 

XML files: the final output. 

8. Taverna’s command line interface finalizes the system call and the web 

platform scans the provided output directory for the workflow output XML 

files. 
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9. Workflow results are parsed and stored in the web platform’s database and 

the XML files moved to a local repository for permanent storage and future 

reference. 

10. The browser interface is updated with the substantiation results, displaying 

new information views with collected evidence. 

 

Figure 4-6. EU-ADR Web Platform workflow iterative execution process. 

Once data have passed through the workflow execution engine, it is promptly available 

for user assessment and for further statistical analysis. The evidence combination 

algorithm, which is outside this document’s scope, performs a Dempster-Shafer analysis to 

improve the final score precision and help separate spurious signals from potential adverse 

drug reactions. 

4.2.5  Features and Usability 
Service-to-Service and Workflow-to-Workflow Data Exchanges 
Fully automated web service interoperability requires the creation of a common data 

exchange language, allowing for environment-independent machine-to-machine 

communication. This basic need, discussed with detail in section 3.2, was a top priority 

within the EU-ADR project. Moreover, considering the distributed nature of modern 

software and common large-scale consortiums promoting research, one can easily identify 

this requirement as an overarching demand. The developed schema set, divided in 

common and project-specific data types, leveraged a faster development of new services 

within the EU-ADR project.  

The definition of these kinds of standards is the initial step towards fully interoperable 
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problem of exchanging data. Transferred data must also be read and understood by all 

software involved in the process. With the EU-ADR schema, and others alike, we can 

exchange data between distributed systems and easily apprehend the meaning of shared 

data. The true value behind advanced service composition strategies only surfaces with the 

adoption of data exchange standards or shared data models. 

Advanced Drug Studies 
EU-ADR Web Platform’s key feature is the execution of advanced post-marketing adverse 

drug reaction studies. Registered users are able to upload and analyse drug-event datasets, 

create targeted drug studies and collaborate with their research peers through the 

available sharing features. 

The invite-based registration system allows selected researchers to join the web 

platform by giving them access to a personal closed workspace. In this area they can 

browse existing datasets (personal or shared); upload custom drug-event pair datasets; or 

create drug-specific datasets, based on the overall web platform data. Since this application 

was built as a response to EU-ADR’s project needs, the system is pre-filled with data mined 

from over 30 million European patient records. Whilst these data are not directly available, 

they can be used to evaluate specific drug adverse reactions on the project workflows. 

Next, EU-ADR Web Platform’s features are highlighted in a traditional custom drug 

study scenario. The initial workspace (Figure 4-7) offers access to each user’s datasets, 

organized in two distinct sections.  

 

Figure 4-7. EU-ADR Web Platform view for personal dataset listings. 
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As the name suggests, My Datasets contains the datasets created by the user and 

Shared by Others lists datasets shared between users. For users identified as a part of the 

EU-ADR project, a third section with project datasets appears on top. Within this view, 

users can access various dataset features: the Create, Import, Export, Open, Sharing or 

Delete options are enabled for all datasets in the My Datasets tab. For testing purpose, we 

create a new dataset targeting a specific drug.  

Following the reports on rofecoxib and its withdrawal from the market, we test this 

drug to validate the system. This drug for treating osteoarthritis, acute pain conditions, 

and dysmenorrhoea, is well known for causing severe cardiac problems. Using the Create 

button we just need to start typing the drug name and the type-ahead system will provide 

the matching drugs with respective ATC code. 

Once we select the drug, the system generates a new dataset matching the selected drug 

with all EU-ADR events in the system, as shown in Figure 4-8. Then, we move to the 

substantiation of all signals. During this process, the multiple drug-event combinations 

will be provided to EU-ADR workflows, which will analyse them individually and provide 

evidence to support the drug risk or to mark the pair as a non-valid signal. The drug-event 

pair, a relationship, will traverse the 5 workflows and the evidence combination service, 

generating data to help identify rofecoxib risk in multiple events. These data are visually 

marked as red Y or green N for workflows, when data for adverse reaction was found or 

not, respectively. The evidence combination service performs the final statistical analysis, 

classifying each pair risk as high (H), medium (M) or low (L).   

Once the processing finishes, users can explore evidences for each pair individually. In 

this pane (Figure 4-9), the wealth of data provided by each workflow can be easily exploited. 

Furthermore, evidence data includes connections to external applications supporting the 

evidence, including UniProt proteins and Medline literature.  

Once the processing finishes, users can explore evidences for each pair individually. In 

this pane (Figure 4-9), the wealth of data provided by each workflow can be easily exploited. 

Furthermore, evidence data includes connections to external applications supporting the 

evidence, including UniProt proteins and Medline literature. 
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Figure 4-8. EU-ADR Web Platform view for a personal dataset created for the Rofecoxib drug (ATC code 
M01AH02). 

 

 

Figure 4-9. EU-ADR Web Platform view for signal substantiation results for the signal combining the 
Bromocriptine drug (ATC: G02CB01) with the Acute Myocardial Infarction (AMI) group of adverse drug 
reactions. The list of relevant publication from the Medline ADR workflow is the highlight of this 
particular interface. 
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4.3  Discussion 
4.3.1  Service Composition for Interoperability in Bioinformatics 
As discussed in this chapter, the use of service composition strategies for interoperability is 

gaining relevance amidst the bioinformatics community. With an ever-growing number of 

services, from data mapping services to semantic data enrichers, there is untapped 

potential for exploring service-oriented architectures in bioinformatics. Mashups and 

workflows built around the wealth of existing services allow developers to quickly connect 

data and features, without relying on local computational power. 

Nowadays, planning and implementing service-based workflows are integral parts of 

the bioinformatics software development process. This way, entire applications simply 

wrap a set of composed services behind an advanced user interface. Workflow managers 

have also evolved, originating new tools to quickly manage, develop, update or execute 

complex service-based workflows. Taverna is the pinnacle of this evolution, providing the 

set of tools to create almost any kind of dynamic workflow in a visual-oriented fashion.  

Despite its quality, Taverna is limited to desktop-based use and web-based solutions, 

such as DynamicFlow, are far away from the capabilities of a desktop workbench. Whilst 

this is not a problem for traditional lab users, developers are faced with these challenges in 

projects where using a workflow management tool is essential. This is the case for the EU-

ADR Web Platform: Taverna workflows enable cross-project service composition for 

interoperability and these workflows can now be executed locally or online by any 

researcher. 

4.3.2  Fostering Pharmacovigilance Innovation through Service 
Composition 
The EU-ADR project embraces sophisticated pharmacovigilance research methods in an 

online platform providing advanced drug data exploration and assessment features. 

Whereas in the past post-marketing drug assessment required intense validation tasks, the 

in silico pharmacology community is now endowed with the tools to quickly analyse specific 

adverse drug reactions, further improving drug safety monitoring. 

The computational strategies created to fulfil the initial set of requirements originated 

a new platform for delivering advanced pharmacovigilance studies. The EU-ADR Web 

Platform enables streamlined access to drug dataset analysis features, including the 

evaluation of results from EU-ADR workflows and the sharing of data amongst ad hoc 
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research partners. All this is possible due to an architecture sustained by four outstanding 

innovations, highlighted next. 

 The project-wide interoperability standard enables automated data exchanges 

amongst the various partners' web services. This new schema standardizes the 

services' input and output, making the creation of complex EU-ADR workflows 

possible. 

 The set of EU-ADR workflows comprises interactions between heterogeneous 

services provided by distributed partners throughout Europe. With each service 

focusing on a particular data evaluation, the drug-event pair analysis is distributed 

through the service set and combined in the EU-ADR Web Platform. 

 The new workflow execution engine provides a streamlined way to include 

Taverna workflows within Java applications. This makes the ad hoc execution of 

workflows in the EU-ADR Web Platform possible, allowing real-time drug-event pair 

data processing. 

 At last, the GWT-powered web-based workspace makes it very easy to create 

custom drug-event evaluations, upload big datasets, substantiate data on-demand 

and evaluate the relative risk for drug-event associations crossed against a 

background with data mined from millions of electronic health records, 

publications and drug-protein interactions. 

The EU-ADR Web Platform is available online, at http://bioinformatics.ua.pt/euadr/. 

  



4. Contributions to Workflow-based Service Composition 

 

 78 

 

  



Pedro Lopes 
Service Composition for Biomedical Applications 

79 

5.  WAVE: BUILDING AN 
INTEGRATIVE KNOWLEDGE BASE 

“Quality in a service or product is not what you put into it. It is what the client or customer gets out of it.” 
- Peter F. Drucker 

 

Modern computer science technologies are essential elements to handle the growing 

volume of biomedical and biological data being generated everywhere, from research labs 

to clinical centres. Traditionally, researchers require very specific data analysis and 

transformation skills, ranging from the interrogation of data sources to the management 

and reorganization of information so it is available for input to distinct software. With 

more integrative tools we can enable the next generation of bioinformatics software, 

sustained by advanced service composition for data integration strategies. 

This chapter encloses our developments towards the creation of a unique human 

variome portal, within the European GEN2PHEN Project context. The WAVe platform is 

introduced as our initial concerted effort towards solving a pertinent bioinformatics 

challenge with service composition strategies [11]. Collecting human variome information 

is essential to grasp the meaning of our genetic sequence variations and their effects. In 

WAVe, service composition techniques are used for the integration of data and to provide 

the collection of acquired data through a REST API. WAVe is publicly available online at 

http://bioinformatics.ua.pt/WAVe/. 

From the combination of our initial assessment and our contributions to the field, 

including the previous chapter, we identified a clear need for more dynamic life sciences 

software. With so many common problems surfacing in miscellaneous large-scale research 

projects, it is essential to reuse and recombine components to streamline the software 

development process. These conclusions finish this chapter and open the discussion for the 

contributions detailed in chapter 6. 
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5.1  Human Variome Research 
Human variome research has flourished over the last decade, triggered by the explosive 

growth of available genetic data emerging from the completion of the human genome 

sequence [15, 165]. The discovery of novel relationships between simple sequence changes 

and diseases is essential to underpin the future prospect of custom drug design and 

personalized patient care [166-168]. Furthermore, datasets are growing at such rate, and 

with such diversity of data, that they often demand custom software solutions. The correct 

description, publication, and enrichment of disease-causing gene variants, requires new 

approaches and expertise from genetic data integration developers [169-172]. Produced 

solutions often fail to take into account similar counterparts in the domain, reengineering 

everything from scratch and closing the system to future data exchanges. Consequently, 

the genetic variation research field lacks standardization in both interoperability and 

integration. 

Locus-specific databases (LSDBs) are gene-centric, closed systems, designed for direct 

interaction with curators and focused on the linear tasks of storing and publishing 

discovered variants online. The software provides comprehensive variant details and their 

phenotypic consequences for one or a few genes of relevance to one or a few specific 

diseases. Despite a steady evolution in this field [173], including new genetic variation 

description standards [174, 175] and enhanced reference sequence formats [176], the lack of 

quality control and strict scope has hindered progress in this area: online data dumps and 

legacy systems without any scientific coherence are still widely used, hampering the 

process of accessing and understanding all available information through a single access 

point. Additionally, existing systems’ available data and interfaces are limited to standalone 

gene analysis. 

Despite LSDB completeness, researchers need access to miscellaneous resources and 

features while browsing gene variants: gene loci and variant information should be 

complemented with related proteins, pathways, or published literature, among others. 

Currently, this is not possible without a complex data analysis workflow involving 

interactions with various distinct applications. 

To overcome current deficiencies in the genetic variation research field we devised a 

new application entitled Web Analysis of the Variome (WAVe), which empowers the 

extraction of LSDBs’ true added value through their connection with both similar platforms 

and diverse external resources. WAVe’s development was based on a new holistic approach 
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detailed further in this article. The adopted strategy enables the setup of a platform for the 

integration of genetic variation datasets and the enrichment of the latter with connections 

to external resources and state-of-the-art user interaction features. 

WAVe enables centralized access to existing LSDBs, aggregates genes and their variants, 

and integrates a multitude of scientifically relevant resources, without damaging the 

original work conducted by researchers in this domain. WAVe then publishes collected 

data through an API and a comprehensive and agile workspace, focused on the transparent 

access to the miscellaneous integrated applications and data sources in the human variome 

research field. 

5.1.1  Integrating Human Variome Information 
Available LSDBs fall into two main categories. On the one hand, there are several legacy 

systems, which are often just data dumps in HTML or PDF format, listing variants in an 

unstructured fashion. Such systems generally display variants in tables or include them in 

free-text summaries and, consequently, it is difficult or impossible to extract specific 

mutation information. On the other hand, sophisticated LSDB software packages emerge, 

including MUTbase [177], Universal Mutation Database (UMD) [178], and Leiden Open 

Variation Database (LOVD) [179, 180]. 

On a distinct perspective, another caveat is the political obstacle to data integration 

created by the reluctance in the LSDB community to share data [181]. LSDB curators have 

major concerns regarding data sharing, especially with respect to issues such as data 

quality, authorship, and ownership. Particularly, curators fear that by aggregating their 

data they will lose control over it: central repositories will be able to display it without 

proper attribution, use it for commercial purposes, or misrepresent clinical information 

leading to inappropriate interpretations. 

Various projects have recently started to address these problems, through both the 

development of integrative software tools and the creation of recommendations and 

standards for LSDB data sharing. BioGPS is an example of the former, collecting data from 

gene-related resources and presenting it in a customizable workspace [182]. Despite 

displaying resources in a modern approach, BioGPS lacks detailed access to genetic 

variation datasets. Another tool in this domain is DRUMS, which provides access to variants 

from multiple genes gathered from a wide array of databases [183]. Although genetic 

variation information is very complete, DRUMS suffers from the recurring common issues 
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in the LSDB software domain, in that the available information is deep with respect to the 

variome, though narrow in a holistic life sciences perspective. 

This domain is also the subject for several larger initiatives such as MutaDATABASE24, 

PhenCODE25, or GEN2PHEN26. However, these are on-going projects whose results are still 

gaining traction in the LSDB research community, as each of them still requires some 

technology learning and development effort. Adhering to new standards will entail deep 

revisions in current systems: integrative data models must be changed and new 

interoperability features must be added, resulting in a need for architectural revisions in 

already stable systems. Furthermore, legacy systems that lack funding or curator interest 

will be lost within this necessary evolution. 

5.1.2  The European GEN2PHEN Project 
The “Genotype-to-Phenotype: A Holistic Solution” project (GEN2PHEN) is focused on the 

development of tools that will connect online life sciences resources containing 

information spanning from the genotype – the human genetic sequences – to the 

phenotype – the human visible traits such as hair colour or penchant for a specific disease. 

Research in this project touches miscellaneous areas like gene sequencing and expression, 

genotyping, SNP mapping and pharmacogenomics. These are essential for realizing the 

individualized healthcare premise, delivering the most effective treatment for a patient 

according to his clinical history, physiology and genetic profile and the molecular biology 

of the disease [184]. 

In the future, personal electronic health records (EHR) will be enriched with genetic 

information required for more personalized treatments. Two research fields are essential 

to complete EHR datasets: pharmacogenomics and genetics. Pharmacogenomics studies 

variability in drug response, which comprises drug absorption and disposition, drug effects, 

drug efficiency and adverse drug reactions [185]. Genetics profiling of diseases provides 

new insights on the classification and prognostic stratification of diseases based on 

molecular profiling originated in microarray research [186]. Both these fields will generate 

a tremendous amount of heterogeneous data that needs to be integrated accurately in 

diverse systems. These data are made available through various types of online resources. 

Connecting these online resources, public databases, services or simply static files, 

                                                        
24

 http://www.mutadatabase.org/  
25

 http://globin.bx.psu.edu/phencode/  
26

 http://www.gen2phen.org/   



Pedro Lopes 
Service Composition for Biomedical Applications 

83 

leverages a complexity increase in the implicit integration tasks. New problems revolve 

around integration and interoperability. Solving these problems is not trivial and, despite 

the fact that there are several on-going research projects in this area, computer science 

researchers have not yet discovered an optimal solution.  

5.1.3  Locus-specific Databases 
MUTbase27 is the oldest of these tools and encompasses several Web databases for advanced 

genetic variation studies. The focus is toward mutation structural organization and 

availability to the community of both database curators and generic life scientists. 

Similarly, UMD28 defines a structure and back-office for the management of variants. 

Although variants are usually publicly available, access to some genes is limited. Unlike 

these systems, LOVD29 innovates with the ‘‘LSDB-in-a-box’’ approach. It is offered as a 

downloadable software package containing the full set of tools required for the deployment 

of a local locus-specific database. 

This LSDB software diversity results in an extremely heterogeneous and fragmented 

network of independent data-rich silos, each with its own format and structure, with no 

interactions with other LSDBs or with any central systems. Consequently, this is a major 

drawback for data exchanges, aggregation in external systems or integration of resources. 

Available LSDB software frequently lacks semantic and contextual layers, resulting in 

datasets with no connections with external resources such as associated proteins or related 

metabolic pathways. Additionally, these systems were developed with specific gene 

curators in mind, meaning that the set of available features and included data are of 

specific relevance to curators, but neglects possible interested scientists, whether they are 

clinicians or biologists. 

A need for distinct software tools, capable of tackling the combination of problems in 

both modern and legacy LSDBs, arises. A new approach must be adopted, accommodating 

not only gene and variant information, but also connections to external resources like 

proteins, diseases, publications or drugs. Furthermore, the aggregation of all available 

LSDBs (and their datasets) in a single central system should also be accomplished, 

providing a general vision over the entire genomic variation landscape. 

                                                        
27

 http://bioinf.uta.fi/MUTbase/  
28

 http://www.umd.be/  
29

 http://www.lovd.nl/  
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5.1.4  Gathering G2P Data 
Considering the current status of the human variome research field, available systems, and 

what users expect from next- generation applications, four major challenges can be 

highlighted. 

1. The aggregation of genetic variation datasets available in distributed and 

heterogeneous LSDBs is a critical step to improve the human variome research 

field. 

2. Integration and interoperability of LSDBs should not be neglected and will play a 

key role in future systems. Therefore, any new approach must be prepared for 

further developments in the LSDB ecosystem. 

3. Although current LSDBs are extremely rich data sources for curators, their limited 

scope undermines their adoption in the life sciences community, whose users 

expect additional extensive information alongside genes and their variants. 

4. Accreditation, including authorship, ownership, and appropriate attribution are 

curators’ major concerns. Hence, developments in this domain must take this into 

account, by displaying external content without devaluing the original systems 

from which the content has been aggregated. 

These challenges require the need for an application like WAVe, based on an innovative 

strategy that is able to break with existing application design concepts and focus on 

extensibility, lightweight data integration, interoperability, and agile user interactions. 

From a computer science perspective, this represents a standard data integration problem. 

Available data are scattered through distributed and heterogeneous data sources, each with 

its own internal data collection strategies and severely lacking interoperability features or 

services.  

5.1.5  Requirements Analysis and Design Issues 
With high-demand for innovative human variome research software solutions and the 

challenges for gathering genotype-to-phenotype data, a set of general requirements and 

design strategies to determine WAVe’s shape and structure were identified. This study 

resulted in six broad requirements, which include (R1) genetic dataset aggregation, (R2) 

genotype-to-phenotype integration, (R3) content accreditation, (R4) genetic data visual 

exploration, (R5) availability and (R6) exchange with software tools, each introduced next: 
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 (R1) Genetic dataset aggregation. The new WAVe platform must encompass 

new strategies for the aggregation of genetic variation datasets into a single 

centralized knowledge base. 

- (R1.1) LSDB data extraction. Considering the LSDBs landscape, WAVe 

must include methods for extracting variation data from MUTbase, UMD 

and LOVD, as well as from a variety of legacy systems. 

 (R2) Genotype-to-phenotype integration. Innovative algorithms must be 

devised to integrate information regarding the genotype and the phenotype in a 

unique knowledge base. 

- (R2.1) Data enrichment. Aggregated genetic datasets must be enriched 

with direct pointers to a set of external applications relevant for the 

human variome field. 

 (R3) Content accreditation. Original external applications must be displayed to 

users whenever possible. This will enforce the correct accreditation of content 

integrated within WAVe. 

- (R3.1) Promote authorship, ownership and attribution. Genetic 

variation data must always be linked to the original source, maintaining 

the gene curators’ relevance within the research workflow. 

 (R4) Genetic data visual exploration. Data for genes and variants must be 

presented in an easy-to-use interface, facilitating data navigation. 

- (R4.1) Gene listing and browsing. Access to genes must be direct 

through advanced searches or listings.  

- (R4.2) Variation listing and browsing. Access to aggregated variants 

must be provided in a unique summary, integrating all variants for a 

single gene in the same view. 

 (R5) Availability. WAVe must be publicly available at all times for all users 

within and beyond the GEN2PHEN project context. 

- (R5.1) Highly interactive web-based workspace. WAVe’s web interface 

must adopt modern user interaction strategies to deliver a highly 

interactive gene data exploration experience. 

 (R6) Exchange with software tools. In addition (R5), acquired data should be 

made available to external software tools through a set of programming 

interfaces. 
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- (R6.1) Interoperability API. WAVe must include an interoperability API 

to enable access to rich gene and variant data for both software 

developers and skilled researchers. 

This set of broad requirements drives the development of a new strategy to tackle the 

combination of miscellaneous challenges highlighted in past literature and summarized in 

Table 5-1. 

Table 5-1. Mapping for the identified requirements with the challenges highlighted in relevant past 
publications on the human variome research field. 

 R1 R2 R3 R4 R5 R6 
Thorisson et al. [170]       

Hawkins et al. [171]       

Muers et al. [172]       

Mitropoulou et al. [173]       

den Dunnen et al. [174]       

den Dunnen et al. [181]       

Wu et al. [182]       

Li et al. [183]       

 

5.2  WAVe: Web Analysis of the Variome 
5.2.1  Application Setup 
Database Design 
The WAVe platform is supported by a model centred on genes and their variants, which 

can be further extended with connections to miscellaneous resources, as shown in Figure 

5-1. Starting with the general Entity concept, we specialize the Gene and Variant concepts. 

Taking in account the needs for external connections, one could also specify a concept for 

each integrated resource. However, this approach would lead to a static system, troubling 

future updates or the addition of novel relationships. With Gene and Variant concepts at 

the core of the model, and a dynamic relationship model, extensions can be added through 

the creation of new relationship types. As such, the model requires additional concepts: 

relationship type, entity and relationship. The relationship type indicates the type of 

additional information developers want to include in the application; the entity concept is 

used to store the values obtained from external resources, defining its main attributes 
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along with the default Gene and Variant information; and the relationship concept is used 

to map elements from the core system to the new entities. 

The main outcome of this approach is an extremely scalable model: it enables the 

configuration of any kind of relationship type, such as user mappings, external identifiers, 

gene properties or other required data type. Considering that the relationship values will 

be interpreted by the application, defining the entity values as strings maintains the 

system consistency, regardless of the inherent data type: string, integer, float or even 

boolean. Currently, this scheme is enough to support the inclusion of a broad range and 

large number of extensions including links to external applications or mappings to data 

types associated with genes, such as proteins, pathways or diseases. Moreover, new 

extensions can be added to the core concepts without breaking the platform workflow. 

 

Figure 5-1. 1) Core (Gene and Variant) abstraction used for WAVe’s database backend. 2) Extensions 
(Entity, Relationship and Relationship Type). 

Application User Interface 
Along with the various modelling considerations, WAVe also required designing the user 

interface. For this, miscellaneous mock-up interfaces were constructed focusing on several 

key interactions such as the gene navigation tree or the gene workspace. Independent 

users evaluated the initial mock-ups (Figure 5-2) and the resulting feedback was used to 

improve the final application interface, removing some real estate clutter and simplify the 

interface. 
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Figure 5-2. Initial WAVe mock-up for the gene workspace, showing the GeneCards application for the 
human DMD gene. 

Architecture 
WAVe’s architecture is built around five components: a configuration file, the build engine, 

resource connectors, a database, and client applications. A diagram for component 

descriptions and interactions is shown in Figure 5-3. 

The XML configuration file is composed of two parts: a static section, to store the 

relationship types and a modular section, to define the sources from where content for 

each relationship type will be extracted. This division is required to enable two database 

population moments: one to populate the relationship types, and another to add the 

relationship individuals, which can be replicated multiple times on distinct setups, 

enriching the original variation dataset. Relationship type configuration requires the 

name, description and identification of the primary and secondary connected concepts. 

Some sample configurations are shown further in this chapter. 
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Figure 5-3. WAVe’s architecture relies on five components. (1) The XML configuration file containing 
the system setup and the settings used to load genes, variants, and extensions data into WAVe’s 
database. (2) Multiple resource connectors, used to wrap and read information for the build engine; 
these connectors enable loading data from CSV, XML, SQL, or REST Web services. (3) The build engine 
is responsible for processing the configuration file, reading WAVe’s settings and loading data for the 
core and extensions according to the defined data sources. (4) WAVe’s application engine includes the 
server-side code and the database, which is populated by the build engine and accessed by client 
applications. The database replicates Gene and Variant information while extensions are loaded as 
simple pointers to external applications. (5) Client applications are WAVe’s entry point. 

Each relationship type can have several associated data sources and each data source 

may have its own data gathering methods. Therefore, and to increase even further the 

platform extensibility, the configuration file can accommodate four distinct methods to 

extract data from the sources. Each of these methods is associated with a specific type of 

extraction, thus requiring different configuration features. The CSV method allows the 
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extraction of data from CSV files, and therefore requires definition of the file location, the 

column that should be read and the line where the reading process will start. The XML 

method requires a similar configuration: file location and an XPath expression to query the 

content from the file. Next, the SQL data extraction method requires a database connection 

string, a SQL query to select the content and the name of the column where the desired 

content will be included. At last, the REST connector requires the service address and an 

additional parameter defining the service reply format, XML or CSV. To parse web service 

replies, the build engine combines the required method, CSV or XML, with the web service 

method. Relying on these four data gathering methods improves the platform extensibility. 

In addition to the data gathering methods, configuring a data source requires a name and 

description plus the concept that will be passed as a variable to the build engine. The latter 

is required because the extraction is made based on the primary relationship concept. The 

configuration flexibility allows the system to be adapted to multiple contexts, applications 

and usage scenarios. 

Finally, the build engine, implemented in Java, is responsible for reading the 

configuration file and loading the data to populate the platform database. The build engine 

comprises a set of tools for processing each of the possible loading methods. These 

integrative wrappers enable independent data replication from SQL, XML, CSV or REST 

services, and are WAVe’s bridge from the external data sources to the internal database. 

The latter is a MySQL database, which was designed to include miscellaneous dataset 

versions, allowing for streamlined application and data updates. 

For the application engine, the Java Stripes web framework was chosen. This library 

enhances the deployment of web applications, by adding an abstraction layer to Java’s 

default web system. For example, with it, it is much easier to create custom application 

URLs and perform the binding to the desired Java bean. The application engine serves 

WAVe’s web interface and API, which are detailed further in this chapter. 

LSDB Data Extraction 
Reading data from the myriad of existing LSDBs triggered various issues. Despite the 

majority of available LSDBs being built on top of the LOVD platform, other systems are still 

widely used. While access to UMD and Mutbase data could be streamlined, a couple 

hundred LSDBs remained out of the reach and required a custom variant import tool. The 

variant extraction workflow is overviewed in Figure 5-4. 
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At first, an empirical study was conducted to assess what variant data should in fact be 

extracted from each locus-specific database. After this, it was clear that WAVe needs to 

read HGVS-compliant variant descriptions. Since WAVe is gene-centric, when variants are 

being imported we know exactly to which gene they belong. Furthermore, from a complete 

variant description we can infer the analysed reference sequence, the type of variant and 

what/where the change has occurred. The following examples were obtained from COL3A1 

LSDB and demonstrate this characteristic: 

 NM_000090.3:c.413delC matches a single base-pair deletion, cytosine, at position 

413 in the coding region defined at reference sequence NM_000090.3; 

 NM_000090.3:c.2708G>A signals a single base-pair substitution, from guanine to 

adenine, at position 2708 in the coding region defined at reference sequence 

NM_000090.3. 

As one can easily extrapolate, with the gene, the LSDB location and the variant 

description, there is enough information to organize a unique variation dataset and enable 

the browsing of collected data from multiple perspectives.   

 

Figure 5-4. Variant import workflow. 1) Each gene from WAVe’s gene list is processed iteratively. 2) 
The LSDB list for each gene is obtained and processed iteratively in the build engine. 3) The build 
engine launches the appropriate data import method for each LSDB type. 4) Data are read using a 
middleware feed reader for LOVD instances and using Arabella web crawler for the remaining LSDBs. 
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By having a well-defined description schema, variants can be easily understood and, 

more importantly, read using a set of regular expressions. Since there is no streamlined 

process of reading variants from legacy LSDBs, our variant import strategy revolves around 

using a targeted web crawler, directed at finding variants in HTML pages. Arabella [187], an 

in-house web crawler, was modified to identify variants in web pages and included in 

WAVe. This tool is injected with a list of LSDB URLs for each gene and retrieves a XML 

container with the found variants. With UMD and IDbases lacking web services, Arabella is 

also used to read variants from the public LSDBs built on top of these platforms. 

Extracting data from LOVD systems revealed to be an easier process. Starting with 

version 2.0, LOVD includes a public API composed of a public web service that lists variants 

from each LSDB instance in Atom feed format30. This LOVD interoperability feature meant 

that to integrate all variants from LOVD systems a simple feed reader and respective parser 

was required. 

Enriching G2P Data 
WAVe’s data integration pipeline completes with the data enrichment process. Once genes, 

LSDBs and variants are loaded into WAVe’s knowledge base, the build engine starts loading 

data from external resources, according to their descriptions in the configuration file. As 

mentioned in the application setup, this data integration process is done using a WAVe-

specific middleware wrapper. As WAVe is a gene-centric platform, the build engine uses 

the gene HGNC symbol to identify external identifiers and load them into WAVe’s 

knowledge base. Next, we describe the usage of these integration wrappers within WAVe. 

The first scenario involves loading relationships to UniProt identifiers. UniProt data are 

available in various formats; hence, CSV was chosen to select the UniProt identifiers 

associated with the gene WAVe is reading. The configuration for this integrative wrapper is 

as follows: 

<!—UniProt+CSV+wrapper+configuration+77>+
<value>(

<name>UniProt/SwissProt</name>(
<description>Information(regarding(available,(active(and(reviewed(proteins(

in(UniProt.</description>(
<shortname>SwissProt</shortname>(
<source>(

<method>cache</method>(
<type>csv</type>(
<connection>http://www.uniprot.org/uniprot/?query=gene_exact:#replac

eme#+AND+active:yes+AND+reviewed:yes+AND+organism:9606&amp;format=tab&amp;c
olumns=id</connection>(

                                                        
30

 Sample feed URL for COL3A1 gene variants: https://eds.gene.le.ac.uk/api/rest.php/variants/COL3A1  
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<query>\t</query>(
<result>0</result>(

</source>(
<value>http://www.uniprot.org/uniprot/#replaceme#</value>(
<parent></parent>(
<type>protein</type>(
<ua>uniprot</ua>(

</value>(
(
The configuration includes all fields required by both WAVe’s build engine and 

application engine. The name, description and shortname properties are used in WAVe’s 

web interface to fill in each external concept metadata. Next, the source property set 

includes information for WAVe’s build engine: method defines the data loading method 

being used; type defines the external data type and is used to select the proper wrapper 

during the build process; connection states the data connection string or, in this case, the 

CSV file location; query defines the CSV delimiter and result configures the CSV starting 

line. Note that the #replaceme# string component in the connection property is replaced 

with the gene HGNC symbol. This last substitution is what filters UniProt web service 

results, listing only the identifiers associated with one particular gene. The application 

engine uses the value property to compose the external resource URL. This process creates 

a valid URL combining the identifiers loaded in the data import process with the value 

property content. The type property defines to which entity, in the web interface, these 

data will belong to. At last, the ua value defines the UniversalAccess identifier keyword to 

be used in WAVe’s API, detailed further in this document. 

GeNS is an in-house data warehouse that contains more than 100 million identifiers and 

mappings for life sciences databases [79]. With such a huge in-house resource, we decided 

to use it as a supplier for most of external resources relationships. Next is a sample GeNS 

resource configuration to load KEGG database mappings to a specific gene HGNC symbol. 

<!77+KEGG+SQL+wrapper+configuration+77>+
<value>(

<name>KEGG</name>(
<description>Information( from( metabolic( pathways( available( in( Kyoto(

Encyclopedia(of(Genes(and(Genomes(database.</description>(
<shortname>KEGG</shortname>(
(<source>(

<method>cache</method>(
<type>sql</type>(
<connection>jdbc:sqlserver://sql2k8X

ua.servers.ua.pt;database=GeNS;user=*****;password=*****</connection>(
<query>SELECT( DISTINCT( I.Alias( AS( result( FROM( Identifier( ( I( WHERE(

I.DataTypeId( =( 11( AND( I.ProteinId( IN( (SELECT( P.ProteinId( FROM( Protein( P(
INNER(JOIN(Identifier(I(ON(I.ProteinId(=(P.ProteinId(WHERE(P.TaxonomicId(=(
9606(AND(I.DataTypeId(=(1(AND(I.Alias(LIKE('#replaceme#')</query>(

<result>result</result>(
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</source>(
<value>http://www.genome.jp/dbgetXbin/www_bget?#replaceme#</value>(
<type>pathway</type>(
<ua>kegg</ua>(

</value>(
(
As one can easily assess, most configuration properties are very similar between CSV 

and SQL data resources. The type property is, obviously, set to sql and the connection 

property contains an actual Java JDBC connection string. The main difference to the 

UniProt CSV scenario distinctions lie in the query property, which now contains a full SQL 

query, and in the new result property, stating the column name from where results will be 

read. Whereas in the CSV definition, the gene symbol replacement took place in the 

connection property, in the SQL wrapper this substitution occurs in the query property. 

In some cases, a particular connection to an external resource is obtained directly using 

the gene HGNC symbol. The next configuration sample details the integration of 

GeneCard’s resource. 

<!77+GeneCards+direct+method+configuration+77>+
<value>(

<name>Gene(Cards</name>(
<description>Information(from(Gene(Cards.</description>(
<shortname>GeneCards</shortname>(
<source>(

<method>direct</method>(
</source>(
<value>http://www.genecards.org/cgiX
bin/carddisp.pl?gene=#replaceme#</value>(
<type>locus</type>(
<ua>genecard</ua>(

</value>(
(
In these configuration properties, we have to highlight the lighter source property set. 

In these cases, just defining the method property as direct is enough to inform the build 

engine that no information should be imported. Therefore, only the application engine will 

use these configuration properties to full effect. 

The strategy of having abstract integration middleware wrappers enables a more 

general and streamlined data integration process. With a few configuration settings, one 

can easily establish connections to external resources and replicate specific data to a core 

data warehouse. This is a leap forward from the proposal introduced with DynamicFlow, 

where the description were simpler and, consequently, less powerful. 

5.2.2  Data Content and Usefulness 
WAVe delivers integrated access to miscellaneous online resources. To cope with the 

immense resource diversity, WAVe’s lightweight integration mechanism plays a key role. 
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In a simple hypothetical scenario, a need to establish relations between genes and clinical 

trials is identified. The United States National Institutes of Health Clinical Trials31 database 

is defined as the main data source, and identifiers are quickly loaded into WAVe’s database, 

creating new relations between a gene and its available clinical trials. WAVe will store the 

unique clinical trial identifiers and a dynamic URL to access each clinical trial web page 

within WAVe. This approach allows WAVe to store both clinical trials data and pointers to 

gathered Clinical Trials web pages. Consequently, one can identify clinical trials associated 

with each gene and access each Clinical Trial in WAVe’s gene workspace.  

Core Genetics Datasets 
The LSDB list used in WAVe is maintained in cooperation with GEN2PHEN project 

partners32. This list can be integrated in any application or downloaded for personal use. 

Figure 5-5 shows the distribution of LSDBs according to their type. Clearly, LOVD is the 

most widely used LSDB and the greater contributor to WAVe’s dataset. 

 

Figure 5-5. Locus-specific database distribution in WAVe and GEN2PHEN’s list. LOVD 83%, Unknown 
13%, IDBases 3%, UMD 1%. 

The HGNC gene list33 can be downloaded and used in various ways. This list is 

maintained by the US National Human Genome Research Institute (NHGRI) and the 

Wellcome Trust and represents the most up to date list of valid and known gene symbols 

and names, along with other miscellaneous identifiers. 

                                                        
31

 http://www.clinicaltrials.gov/ 
32

 http://www.gen2phen.org/data/lsdbs/ 
33

 http://www.genenames.org/  
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Table 5-2 lists WAVe’s extensions and respective data sources. WAVe currently features 

10 data types, linking 20 distinct resources through more than 500,000 pointers and 

identifiers. 

Table 5-2. WAVe’s extensions and corresponding external resources with their respective base 
URLs. 

EXTENSION RESOURCE ORIGINAL URL 

LSDB 

UMD http://www.umd.be/  

IDBases http://bioinf.uta.fi/ 

LOVD http://www.lovd.nl/ 

Gene 

GeneCards http://www.genecards.org/  

HGNC http://www.hgnc.org/  

Entrez http://www.ncbi.nlm.nih.gov/gene/ 

Publication 
QuExT http://bioinformatics.ua.pt/quext/ 

Pubmed http://www.ncbi.nlm.nih.gov/pubmed/ 

Disease OMIM http://www.ncbi.nlm.nih.gov/omim/ 

Pharmacogenomics PharmGKB http://www.pharmgkb.org/ 

Locus 
MapViewer http://www.ncbi.nlm.nih.gov/projects/mapview/ 

Ensembl http://www.ensembl.org/ 

Pathway 
KEGG http://www.genome.jp/kegg/ 

REACTOME http://www.reactome.org/ 

Protein 

UniProt/SwissProt http://www.uniprot.org/ 

UniProt/TrEMBL http://www.uniprot.org/ 

PDB http://www.pdb.org/ 

Expasy http://expasy.org/ 

InterPro http://www.ebi.ac.uk/interpro/ 

Ontology GO http://amigo.geneontology.org/  

5.2.3  Case Study 
To assess WAVe’s applicability in a research workflow, a data-mining scenario was studied. 

A biologist searching for information regarding the COL3A1 (collagen, type III, alpha 1) 

gene might need to answer the following questions: 

1. Are there any LSDBs for the human COL3A1 gene? Where can they be accessed, 

and who are the curators? 

2. If such LSDBs exist, what are the known variants for COL3A1 and where were they 

published? 
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3. What are the diseases associated with COL3A1 and what are the most relevant 

publications regarding these diseases? 

4. Has anybody developed drugs for diseases associated with COL3A1 variants? 

5. What protein information is there for COL3A1? 

6. What are the metabolic pathways related to COL3A1? 

7. Does any genome browser provide information about COL3A1?  

8. Are there specific Gene Ontology terms that relate to COL3A1? 

Without an integrated query environment such as WAVe, the solution relies on the 

biologist accessing multiple applications, in an ad hoc fashion, until all the questions are 

answered. The starting point might be the GEN2PHEN-maintained list of locus specific 

mutation databases: searching for ‘‘COL3A1’’ yields two databases links, either of which 

must be followed to access the recorded variants. Next, to find COL3A1-related protein 

information, the biologist needs to access UniProt, query the database for ‘‘COL3A1’’ human 

information, filter the results and then access the ‘reviewed proteins. For pathways, the 

required steps are similar: access the KEGG website, query for ‘‘COL3A1’’ and filter for the 

human species. The iterative process continues until a large number of applications have 

been accessed, resulting in multiple open browser windows or tabs, each involving some 

manner of querying and filtering until the data are finally accessed. The total number of 

individual user actions is large. 

Using WAVe, a biologist simply searches for the ‘‘COL3A1’’ gene and the workspace 

immediately displays all of the required information34. The answers to the initial set of 

questions are: 

1. There are two LSDBs for COL3A1. A publicly accessible LOVD instance 

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/lsdb:726) and a UMD instance 

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/lsdb:725), which is protected 

by a username and password. 

2. Variants for COL3A1 can be found under the ‘Variation’ node of WAVe’s 

navigation tree 

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/variantall:COL3A1) or in the 

Variants tab of the available LOVD LSDB. 

3. WAVe’s Disease node shows three NCBI OMIM entries associated with COL3A1: 

MIM 120180 (Collagen, Type III, Alpha-1; COL3A1), MIM 130020 (Ehlers-Danlos 

                                                        
34

 http://bioinformatics.ua.pt/WAVe/gene/COL3A1/ 
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Syndrome, Type III) and MIM 130050 (Ehlers-Danlos Syndrome, Type IV, 

Autosomal Dominant). The most relevant publications are accessed through 

QuExT [188] (http://bioinformatics.ua.pt/WAVe/gene/COL3A1/quext:COL3A1) 

and PubMed 

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/pubmed:COL3A1), under the 

Publication node. 

4. The Pharmacogenomics node shows that PharmGKB has one entry associated 

with the COL3A1 gene, where letrozole and orbofiban are mentioned 

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/pharmgkb:PA26716). 

5. The Protein node provides access to UniProt/SwissProt leading directly to the 

COL3A1 entry 

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/uniprot:P02461). 

6. WAVe integrates metabolic pathways from both KEGG and Reactome. For COL3A1, 

only KEGG has information for four pathways: focal adhesion, ECM-receptor 

interaction, protein digestion and absorption, and amoebiasis 

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/kegg:hsa:1281). 

7. COL3A1 is available in the Genome node in NCBI’s MapViewer 

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/mapview:COL3A1) and 

Ensembl 

(http://bioinformatics.ua.pt/WAVe/gene/COL3A1/ensembl:ENSG00000168542). 

8. The results displayed in the Ontology node indicate that COL3A1 is involved in 

two distinct molecular functions, 12 biological processes, and two cellular 

components. 

WAVe provides much more information than might be achieved by ad hoc searching, 

but does so with much less user interaction and in less time. In summary, using standalone 

applications is an inefficient approach to address the initial data-mining problem, although 

WAVe proves its efficacy by offering integrated access to curated and distributed data, 

irrespective of type or location. 
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5.2.4  Features and Usability 
Search and Browse 
Searching on the homepage or in the top search box triggers the automatic suggestion 

engine, displaying results matching users’ input. In addition to gene searches, based on 

HGNC gene symbols, genes can be obtained through their association with a set of common 

and well-known identifiers. Users can search for UniProt, OMIM, GWASCentral, KEGG, 

Reactome, PharmGKB, or Gene Ontology identifiers, and WAVe displays the list of genes 

related with the queried entity. Search results are displayed in the browse interface 

(Figure 5-6).   

 

Figure 5-6. WAVe browse interface with search results for the P515 query. The result set originates a 
Gene Mesh that is used to keep users in context of their queries in the gene workspace. 

This interface lists all genes having known associations with the queried term. This 

associated genes list, the Gene Mesh, is further available in the gene workspace toolbox. 

Browsing results can be further filtered through the Filter box. This performs another 

search within the page scope, that is, within the Gene Mesh. At last, searching for ‘‘*’’ lists 

all available genes and their respective LSDB and variant count. At this interface, users can 

remove genes without LSDB through the top toggle button. 
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Workspace 
The gene workspace is the main data exploration area. This is where users can access 

collected LSDBs and respective variants or navigate through WAVe’s rich relationship 

dataset. WAVe provides a holistic view over the human variome research domain, 

connecting a multitude of distinct data types and resources, in a coherent interface, 

without limiting application usability (Figure 5-7).  

 

Figure 5-7. WAVe gene analysis workspace interface for the human COL3A1 (collagen, type III, alpha 1) 
gene. Sidebar with the COL3A1 gene navigation tree: direct access to relevant gene-related 
information. Central area with WAVe’s Live View mode: external applications (in this case, LOVD 
installation for COL3A1) are loaded within WAVe’s interface. 

WAVe is based on a directory navigation tree metaphor. The rationale behind this 

approach is that one can organize all available information in a dynamic tree, where each 

type of external resource corresponds to a principal node in the tree. Consequently, each 

child node in the tree will be linked to resources made available for a specific resource type, 

and each tree leaf will be the direct pointer to a resource instance. This results in a 

dynamic and extensible resource directory. For example, the Locus node includes access to 

three resources: GeneCards, HGNC’s Gene Names and NCBI’s Entrez Gene, each containing a 
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leaf pointing to the connected resource: a Web application with gene information for the 

gene being analysed. 

Along with the gene navigation tree, the left sidebar also includes a toolbox displaying 

action items for each gene. Their actions are, from top to bottom: expand the Live View 

mode to full screen, open the external resource in a new window, view other genes in the 

Gene Mesh, view WAVe’s gene summary, and open the gene feed. 

 Live View 
Each click on a leaf in WAVe’s gene tree triggers the Live View mode, loading external 

resources in the workspace’s central area (Figure 5-8).  

 
Figure 5-8. WAVe gene analysis workspace interface for the human COL3A1 (collagen, type III, alpha 1) 
gene, highlighting the UniProt entry P0246135. 

This feature enables loading external applications, such as UniProt, Entrez Gene, or any 

LSDB, inside WAVe’s interface. A primary consequence is that WAVe users never lose the 

context of their ongoing search and are able to browse multiple distributed and 

heterogeneous resources without leaving WAVe. Furthermore, content authorship and 

ownership is also assured. Where most widely used applications collect content for custom 

                                                        
35
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interface display, WAVe directs the user to the original application, without compromising 

any of its features. 

Variant Browser 
WAVe’s variant browser is a unique tool that provides direct access to distributed variation 

datasets in a single list view. These datasets are collected by WAVe from a multitude of 

LSDBs. Through the gene navigation tree (Figure 5-9), users can browse variations by 

change type (Substitution, Deletion, Inversion, Insertion, Duplication or Deletion/Insertion) or list 

all variants. Only change types with matching variants are displayed. For example, if no 

deletions are collected for a given gene, the deletion link is not displayed.  

 

Figure 5-9. WAVe’s variant listing interface. The Variation node in the sidebar provides quick access to 
the collected variant lists, sorted by available mutation change types. Variants are listed in a dynamic 
table in the central content area. 

By clicking these leafs, the Live View features loads the variant browsing interface. This 

view displays a table including: the variant description in HGVS-compliant format; the used 

reference sequence, where available; the variant type, such as Substitution or Deletion; 

the number of LSDBs where the variant is listed; and the total number of variant copies. 

Clicking the variant description link leads to the original LSDB page or, in cases where 

there is more than one source, to the list of LSDBs containing the variant. Variants can also 

be searched through the Filter box. This allows searching for particular variants, locations 

of variant types. 

WAVe API 
Whilst WAVe’s web user interface is its central access point, it also has an API. 

Interoperability was always a main concern during WAVe development and making 

integrated data available for further usage was a top priority. Therefore, WAVe’s API 



Pedro Lopes 
Service Composition for Biomedical Applications 

103 

provides aggregated data in Atom or JSON data-exchange formats. There was emphasis on 

providing content feeds, which are easily usable in any software development framework 

or readable in any feed reader. Currently, WAVe’s API allows access to integrated resources 

listed in the gene navigation tree and to gene variants listing. With the latter, WAVe was 

the first platform to provide programmable access to variants aggregated from multiple, 

distributed, and heterogeneous locus-specific databases. Next, some of these methods are 

detailed. 

 Accessing Gene Data: http://bioinformatics.ua.pt/WAVe/gene/<gene>/<format> 

- This method outputs the list of rich dataset links collected by WAVe. The 

gene keyword should be replaced by a valid HGNC symbol and format may 

be replaced by atom or json, for Atom feeds or JSON objects respectively.  

- http://bioinformatics.ua.pt/WAVe/gene/COL3A1/json: COL3A1 data in JSON 

format. 

 Accessing Variant Data: http://bioinformatics.ua.pt/WAVe/variant/<gene>/atom 

- This methods output a list of all variants for the given gene. The gene 

keyword should be replaced by a valid HGNC symbol.  

- http://bioinformatics.ua.pt/WAVe/variant/COL3A1/atom: COL3A1 data in 

Atom format. 

 UniversalAccess: http://bioinformatics.ua.pt/WAVe/gene/<gene>/<key>:<identifier> 

- WAVe’s gene data feeds provide access to all data collected in WAVe. To 

access these data, users are redirected to WAVe, and the external resource is 

automatically loaded on arrival. This way, when WAVe’s API is used the 

application always sends users to the original WAVe resource context. This 

method can also be used to build custom URLs to load specific identifier 

within WAVe’s interface. The gene keyword should be replaced by a valid 

HGNC symbol, the key keyword must be replaced with a valid WAVe 

relationship keyword (the ua property in the configuration file) and a valid 

identifier. If the key parameter is not valid, WAVe displays the default gene 

page. Alas, it is impossible to track invalid identifier values when the key is 

correct, and this results in an error in the external resource page.  

- http://bioinformatics.ua.pt/WAVe/gene/COL3A1/omim:130020: loads the 

OMIM page for 130020 (Ehlers-Danlos Syndrome, Type III) within COL3A1 

workspace. 
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The most successful scenario for WAVe’s API use is its inclusion in the GEN2PHEN 

project Knowledge Centre [189]. At this portal, when searching for genes, WAVe’s API is 

contacted in realtime to retrieve information regarding available gene relationships. For 

instance, the GEN2PHEN Knowledge Centre displays links from WAVe’s Locus, Publication, 

Disease, Genome and Gene Ontology nodes36. 

5.3  Discussion 
5.3.1  Service Composition for Integration in Bioinformatics 
An assessment of the bioinformatics research field from a computational science 

standpoint reveals the lack of integration infrastructures as a common denominator for 

various bioinformatics challenges. The fact that data are heterogeneous, scattered and 

divided is true whether the data are coming from sequencing hardware, like in most 

bioinformatics research laboratories, or from a distributed collection of repositories, such 

as in WAVe. Whatever the case, new strategies must be devised to reduce the complexity of 

publishing acquired data for exploitation in external systems. 

In modern integration architectures, the boundaries between the studied data 

integration strategies are squandered, resulting in implementations combining the 

features that better suit the problems at hand. At this stage, factors such as scalability, 

flexibility, efficiency and performance are weighted against the constraints of adopting a 

unique approach. This hybrid integration strategy defined WAVe’s architecture, data 

model and implementation. 

DynamicFlow started the assessment of the best methods to describe external services 

for use in a composition scenario. This pursuit is continued in WAVe, with a resource 

description schema to enable the accurate integration of data from external sources. The 

technological contributions detailed in this chapter effectively bridge the gap from data 

and services in bioinformatics. Nevertheless, with them as also arisen the need for a more 

streamlined integration and interoperability development workflow, an endeavor further 

discussed in the next chapter. 

5.3.2  A Unique Resource for Human Variome Data 
Establishing relations between the genotype and the phenotype provides a sound basis for 

significant advances in individualized healthcare. Consequently, this domain is the subject 
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of several large-scale research projects, each proposing distinct strategies to obtain new 

knowledge regarding the human variome. 

From these projects arises the challenge of how to integrate human variome datasets 

from miscellaneous locus-specific databases and how to enrich available data with 

meaningful relationships to the most relevant life sciences resources. Hence, a new 

streamlined integration solution, sustained by a holistic and lightweight architecture, was 

introduced to complete a comprehensive set of requirements. The designed algorithms 

were then put together to build the WAVe platform, where the true value of locus-specific 

databases is at researchers' fingertips through four key facets: 

 The lightweight integration engine collects a core genetics dataset, gathered from a 

myriad of locus-specific databases, which is connected to several external resources, 

making the data richer and more meaningful. 

 The extensibility of WAVe's data model enables the easy addition of new 

connections to external resources [10]. Updating the integrated relationship set is as 

simple as configuring a couple properties: the build engine will take care of the 

actual import process. 

 Interoperability is not neglected in WAVe. The REST API allows any developer to 

get genetic variation datasets or rich gene data through simple and direct methods. 

The GEN2PHEN project Knowledge Centre already uses these APIs to load gene data 

in real-time. 

 WAVe's innovative interface, with the gene navigation tree, Gene Mesh and Live 

View, streamlines the exploration of integrated data and wraps external 

applications within WAVe, thereby establishing a set of connections between 

disparate systems that would not be possible otherwise. 

WAVe delivers a unique perspective over the human variome research domain, 

providing rich integrated access to genetic variation datasets through an agile workspace 

publicly available online at http://bioinformatics.ua.pt/WAVe/ [11]. 
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6.  COEUS: AN APPLICATION 
FRAMEWORK FOR ENHANCED 

SERVICE COMPOSITION 

“All truths are easy to understand once they are discovered; the point is to discover them.” 
—Galileo Galilei 

 

The Semantic Web has provided bioinformatics developers with better paradigms, 

standards and technologies to solve common problems such as data heterogeneity, 

diversity or distribution. The Bio2RDF warehouse [55] or the Biocatalogue library [73], 

amongst other systems, have shown how valuable semantic web technologies can be for 

the general life sciences software field [190]. However, semantic web’s potential is still out 

of reach of the bioinformatics developers’ community. There is a clear absence of tools to 

enhance the migration of existing platforms to new environments, to ease the 

development of information systems from scratch or to disrupt with past strategies by 

deploying fully interoperable software.  

Hence the introduction of COEUS, a framework to tackle these challenges by 

empowering developers with a “Semantic Web in a box” software stack, and ensuing a 

more agile development workflow for new semantic web systems [14]. The COEUS open-

source project is available at http://bioinformatics.ua.pt/coeus/. 

This chapter discusses the devised strategies and their implementation, leading to 

COEUS development. Starting with the demand for more modular and dynamic software 

packages in the life sciences, we move on to a brief assessment of semantic web use in 

bioinformatics, highlighting the opportunities for a new kind of application development 

strategy that can empower the next generation of bioinformatics software.  
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6.1  Dynamic Software Infrastructures for Life 
Sciences 
6.1.1  Reusable Assets 
The cornerstone of current software development is the idea of “reusing instead of 

rewriting”. This rather basic proposition is applied not only to the construction of data 

models, where defining new schemas or entire structures is a complex research practice, 

but also to the set of programming toolkits being used. Regarding the latter, the vast 

number of applications, libraries, services or packages, makes it very easy for developers to 

find a solution to an implementation problem. Even when they end up implementing the 

desired feature from scratch, they do so acknowledging the already existing algorithms, 

their limitations and their strengths. 

Common modeling, service access, knowledge acquisition or data exploitation problems 

have been solved before. Associated with the facility in finding existing solutions, 

developers are now endowed with tools to quickly integrate miscellaneous libraries in their 

projects, such as Maven 37 , Node.JS NPM 38  or Ruby’s Gems 39 . Hence, the software 

development process is streamlined to a three-stage identify-assess-reuse practice. 

As stated in section 3.1, this is leveraging the use of rapid application development 

frameworks. Likewise, the bioinformatics field is also becoming aware of these quicker 

application deployment strategies, and new toolkits are starting to emerge.  

Evaluating Rapid Application Development in Bioinformatics 
Rapid Application Development (RAD) is a strategy for generating entire application, 

including databases, code and services, from a set of configuration files. This permits 

launching new tools much faster than otherwise, thus reducing the “time-to-market” cost. 

When assessing RAD strategies, the major conclusion is the traditional poor component 

availability. Available frameworks either generate one or two good components (going 

feature-deep in each one) or generate multiple components with basic functionality (going 

for a wider coverage breadth). Nevertheless, these frameworks permit creating complete 

application stubs in no time, making them suitable for initial prototypes or low-end 

solutions. 
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The Molgenis framework is a “generic, open source, software toolkit” to quickly 

produce bioinformatics user-friendly and scalable software [88, 191, 192]. This toolkit 

provides developers with a simple modelling language to design data structures and user 

interfaces. From two valid configuration files, Molgenis’ generator creates a "feature-rich, 

ready-to-use web application including database, user interfaces, exchange formats, and 

scriptable interfaces". 

The automatic code generation tools are one of Molgenis’ highlights. They reduce the 

amount of code one has to write by hand. The template-based nature of available methods 

leverages a straightforward generation process, easing the transformation from the 

configuration file to SQL, Java, R or HTML code.  

Molgenis’ use has been growing over the last few years. Biomedical applications for 

miscellaneous areas, including genome-wide association studies, proteomics, biobanking or 

next-generation sequencing, have already been launched using this toolkit. 

Bioinformaticians usually seek Molgenis’ great adaptability. This allows them to generate 

entire application structures much faster when the resulting skeleton can be optimized or 

to iteratively generate solutions until the final system is ready.  

ProteoWizard, BioJava and AIBench are some of Molgenis competitors. ProteoWizard is 

a C++ framework very similar to Molgenis in the sense that it provides a comprehensive set 

of features to speed up the development of applications requiring some kind of proteomics 

data manipulation [193]. As the name states, BioJava is a set of libraries that can be used in 

any Java application project and that reduce the complexity of dealing with biological data 

[83]. This widely used package facilitates reading and parsing data, performing simple 

statistical and analytical tasks and accessing common bioinformatics features such as 

sequence alignment or protein structure exploration. At last, AIBench was initially built as 

a rapid application development framework for data mining, but its use is being extended 

to biomedicine [194]. Also in Java, AIBench enables code annotations, scripting and custom 

plugins to be included in a predefined application skeleton, reducing the huge effort of 

implementing desktop application interfaces from scratch. 

Combining rapid service development with semantic technologies is SADI’s framework 

goal, which promotes guidelines and ontologies to exploit the composition of semantic web 

services, through a straightforward strategy [195, 196]. Input and output interfaces accept 

and expose data in RDF format: service data are OWL class instances. Inward data are 

enriched with new relationships until they match the desired output, they are then sent as 
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the service reply, streamlining the web service dataflow. SADI includes patterns for 

describing the service interfaces and enables the creation of client applications with 

“strikingly rich semantic behaviours”. Henceforth, it is clear that rapid application 

development strategies must be mixed with the semantic web paradigm to deploy richer 

bioinformatics application frameworks. 

6.1.2  Towards a Semantics-enabled Architecture 
Research from Slater et al. [197] and Kozhenkov et al. [198], among others, analyses current 

software development strategies, concluding that there is a clear need for new approaches 

adopting distinct ideals and based on a different set of skills. Like next-generation 

sequencing hardware improves genetic reads in a multitude of ways, the Semantic Web 

may be seen as a next-generation software development paradigm, capable of breeding a 

new wave of biomedical software solutions. However, despite its growing momentum, 

semantic web strategies are still subject of a slow adoption process. 

Taking in account the need for novel bioinformatics software with improved 

integration and interoperability features [199], the use of semantic web technologies to 

tackle innate life sciences challenges will permit that entirely different computational 

systems exchange and accurately interpret knowledge. With an ever-increasing amount of 

data, produced in both novel software and hardware platforms, and a prolific research 

community constantly demanding best-of-breed tools, this field is evolving exponentially 

and reaching user types far beyond the traditional wet-lab biologist [200-202]. Semantic 

knowledge discovery, reasoning and inference are now a part of state-of-the-art research. 

Despite the key role that bioinformatics software and hardware developments have 

played over the last three decades, the life sciences technological ecosystem is still 

fragmented and characterized by immeasurable entropy. The majority of data are scattered 

through closed independent systems, disregarding any good-practice for integration and 

interoperability features. Furthermore, even in notable state-of-the-art tools, the 

overwhelming scale and complexity of collected data and features generates an 

information overload, making it impossible for researchers to grasp any deep insights from 

available knowledge [203, 204]. 

Interoperable bioscience data are essential to keep up with the bioinformatics evolution 

momentum and extract the added value from the vast swathes of digital life sciences data 

[205]. This demands new strategies for getting the data out of primitive systems, using 
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independent formats and non-standard terminologies, into a state-of-the-art open 

knowledge federation environment [13]. 

Furthermore, reusable data and reusable components are key for reproducible research 

and easily accessible knowledge. Making new systems part of a bigger network, such as the 

Linked Open Data cloud, will ultimately result in better access to data, promoting research 

collaboration and further increasing community buy-in. 

To overcome these challenges we envisaged a new application development paradigm 

that boosts the integration of distributed and heterogeneous data and promotes 

interoperability through multiple application programming interfaces. Tying all this with 

semantic web developments results in a powerful methodology for improving existing 

biomedical software and streamlines the deployment workflow.  

An Architecture for Knowledge Federation 
Combining biomedical software engineering with semantic web ideals, we can pinpoint two 

broad and distinct approaches for enriching existing datasets with integrated connections 

amongst resources [206]. On the one hand, there are strategies based on data warehousing 

techniques, centralizing content from heterogeneous resources. On the other hand, there 

are solutions involving integrated access to distributed data sources, federating available 

content through a middleware layer. Both approaches are shown in Figure 6-1. 

In opposition to warehousing, federation strategies acknowledge the distinct setup of 

each specialized instance. The integration of distributed resources requires some kind of 

middleware, a federation layer, to connect data available in each federated instance. Once 

this layer is deployed, data access becomes transparent. Even though performance may be 

poorer than in warehousing solutions, federation strategies can easily scale to 

accommodate distinct ontologies, regular data updates in each independent node and long-

term improvements. Federation is hidden from end-users as they can access data in the 

same way as with warehousing repositories. Moreover, the federation layer handles query 

distribution and deals directly with each repository native API. 

Furthermore, federation is innate to Semantic Web technologies and fits well within the 

biomedical applications domain [207]. The SPARQL specification was designed from scratch 

to ease this process. Publishing data through SPARQL endpoint enables access to data in 

more advanced ways than traditional SQL. Not only does this permit development of 

general federation tools, but it also promotes the creation of more complex software 

frameworks, sustained by native Semantic Web federation [12]. 
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Figure 6-1. 1) Warehouse integration strategy, multiple resources are replicated in a central 
warehouse for prompt access to knowledge. 2) Federation strategy based on SPARQL endpoints 
providing direct access to each resource. 

6.1.3  Semantic Web State of the Art in Bioinformatics 
The semantic web migration process, moving systems from flat-file or relational 

environments to semantic infrastructures, has been the subject of extensive research [208-

210]. The major emphasis is given to the development of translation languages, enabling 

the mapping from relational connections to the semantic web graph. On the one hand, 

basic languages map tables and columns to a new model following a proposed ontology. On 

the other hand, more innovative systems permit the extension of existing data connections, 

enriching their meaning and expressiveness. In this topic, two approaches are common. 

Some mappings are dedicated to forming new triple sets from existing relational databases 

whereas other languages enable publishing semantic views over relational data. 

These languages are complemented with translation applications, using the newly 

mapped model to provide a semantic data version. Triplify [211], Virtuoso40 and D2R server 

[212] have managed to employ new techniques that allow for semantic views and provide 
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access to existing relational data. Instances with DBLP41, SIDER42, DrugBank43, DailyMed44 

and Diseasome45 data were created using D2R, enabling SPARQL data integration endpoints. 

Despite these advances in migration technology, the resulting systems are just a 

semantic version of pre-existing relational data. Thus, there is a lack of data insertion and 

triplification features, which are challenging tasks being backed by large-scale research 

projects. 

Bio2RDF or DBPedia collect a gigantic amount of data in outsized triplestores. With the 

same decision-support goals as traditional warehouse systems, these applications adopt 

advanced extract-transform-load techniques to triplify existing data into a semantic 

format, storing them in triplestores. DBPedia offers a triplified Wikipedia version, 

containing its entire dataset, along with multilanguage support and category organization. 

Bio2RDF’s focused biology environment enables it to be a remarkable life sciences semantic 

database, collecting data pointers from a wide array of domains, from genes to proteins up 

to pathways and publications.  

Despite these large semantic systems’ quality, they are not fit for common niche fields. 

Whilst Bio2RDF diversity and size will expand its use to the level of systems like UniProt or 

BioMART, these features also make it less suitable for smaller and restricted environments 

such as specific gene, disease or model organism information systems. Even if new software 

includes connections to Bio2RDF data, the system’s core will be composed of small datasets 

and other precise information bits gathered from external databases or wet-lab file systems. 

S3DB proposes a new data management model for integrating biomedical knowledge 

capable of helping in miscellaneous niche environments [213]. S3DB provides developers 

with tools to construct their own ad-hoc Semantic Web applications, instead of beginning 

the development with an empty box. The proposed solutions for managing ontologies or 

locked data repositories make it adequate for closed environments. Data integration 

features are still very primitive, though. In these areas, it is imperative to provide 

mechanisms for importing data in various formats into the triple store, a process essential 

for obtaining enhanced collections of data. 
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6.1.4  Opportunities for Building a Semantic Web Framework 
Evolving current applications to the semantic web ecosystem is a necessary leap in 

upcoming years. With the currently available tools, successful migrations are limited to a 

below-reasonable level. Moreover, developers must take in account the needs of future 

software: the integration and interoperability challenge must be tackled from the start. The 

combination of these factors with biomedical software requirements demands a new kind 

of application framework, thriving under the vast potential and opportunities brought 

about by semantic web technologies. The reasoning for developing COEUS is summarized 

next, in four overarching integration and interoperability opportunities. 

 As previously stated, the principles for rapid application development practices, 

already common in the general computer science field, are gaining traction within 

the bioinformatics community. With this methodology, the opportunity arises to 

promote the use of streamlined development packages, libraries and frameworks. 

 The adoption of semantic web integration strategies, based on advanced 

knowledge triplification procedures, is a vital opportunity to improve existing 

Extract-Transform-Load tasks in data warehousing. Easing the transition process 

from CSV files or relational databases into semantic web triplestores is the 

cornerstone for publishing knowledge online. 

 With data being generated at a very high throughput rate, connecting it and making 

it available is essential to fully explore and understand its inner wisdom. Hence, 

there is a clear opportunity to employ new semantic interoperability standards, 

like SPARQL or LinkedData, to enhance knowledge sharing, broadcasting, reasoning 

and inference. 

 Federated data networks will play a key role in the future dissemination of 

knowledge from any science field. The demand of more integrative and 

interoperable data leverages the opportunity to build new systems where these 

features are standard and available by default. 

With COEUS we introduce a solution that embraces these opportunities, being able to 

scale and adapt to future unforeseen scenarios. The COEUS framework offers flexible 

schema mappings for data integration and future-proof interoperability, making it the 

ideal candidate for improving the complex process of developing new semantic web 

application ecosystems. 
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6.1.5  Requirements Analysis and Design Issues 
Leveraging on the aforementioned opportunities to build a new semantic web-based 

environment, we conducted a careful analysis of the requirements behind such system. 

These requirements are generically entailed in the following guidelines: (R1) enhanced 

rapid application development, (R2) suitable integrative ontology, (R3) semantic data 

management, (R4) flexible integration, (R5) customizable web applications, (R6) 

interoperability with software tools, (R7) federation architectures and (R8) open-source 

availability. Next, a lightweight overview of these requirements is introduced: 

 (R1) Enhanced rapid application development. The COEUS framework must 

bring rapid application development in bioinformatics one step further. This 

should be particularly evident in the adoption of semantic web technologies and 

in the bioinformatics-driven platform design. 

- (R1.1) Streamlined instance configuration. The configuration of new 

COEUS instances must be streamlined to require a minimal set of 

instructions. 

- (R1.2) Simple instance boot. COEUS instance creation process must be 

simplified and the majority of tasks automated to enable the quick 

launch of new applications. 

- (R1.3) Usable in any programming environment. The resulting 

framework must make data available for any client-side development 

environment. 

 (R2) Suitable integrative ontology. COEUS’ development must include the 

design of a new integration ontology, tailored to the devised integration 

strategies. 

- (R2.1) Rich resource description. The description of integrated 

resources must be as rich as possible to allow for a flexible integration 

environment. 

- (R2.2) Ontology-based data mappings. COEUS’ ontology for resource 

description must enable the mapping of non-semantic data into any 

ontology from any field. 

 (R3) Semantic data management. COEUS must be supported by a semantic 

knowledge base, thus enabling data management through a semantic layer. 
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- (R3.1) Triplestore knowledge base. COEUS’ knowledge base should be 

supported by a semantic triplestore, whether through in-memory, file-

based on relational-based strategies. 

- (R3.2) Semantic data translation. COEUS must enable the translation of 

data from existing non-semantic environments into its internal semantic 

knowledge base. 

- (R3.3) Knowledge reasoning and inference. As an integral part of any 

semantic web system, features must be available in COEUS to permit the 

effective reasoning over acquired knowledge and the inference of new 

data relationships. 

 (R4) Flexible integration. Resource integration in COEUS must be a flexible 

process to allow the integration of data from distributed and heterogeneous 

sources. 

- (R4.1) Data loading from SQL, CSV, XML or SPARQL sources. 

Automated integration of data from CSV or XML files, or from SQL or 

SPARQL query results is mandatory. 

- (R4.2) Extensible integration architecture. In addition to (R4.1), COEUS 

must support the creation of custom integration plugins. 

 (R5) Customizable web applications. COEUS must empower the eased creation 

of client-side web applications, through normalized infrastructures. 

- (R5.1) Internal API. An internal Java API must be available to enable the 

creation of client-side Java applications. 

- (R5.2) JavaScript API. Modern web applications rely on advanced 

JavaScript interactions. Therefore, COEUS must also include a direct 

JavaScript interface to its knowledge base. 

 (R6) Interoperability with software tools. The COEUS framework must assure 

interoperability with any external system. 

-  (R6.1) REST API. A generic REST API must be made available to permit 

the use of data from COEUS’ knowledge base within any external system. 

  (R7) Federation architectures. COEUS’ setup must support the creation of 

intelligent knowledge networks through the federation of data collected in each 

instance. 



Pedro Lopes 
Service Composition for Biomedical Applications 

117 

- (R7.1) SPARQL API. A SPARQL endpoint must be accessible to allow 

direct queries to each COEUS instance knowledge base. 

- (R7.2) LinkedData API. A view adopting the LinkedData principles must 

be publicly available. 

 (R8) Open-source availability. All developed COEUS components must be 

provided through open-source licensing schemes. 

Table 6-1 summarizes the relationships between these requirements and the problems 

encountered during our investigative literature analysis. 

Table 6-1. Summary of relationships between the defined requirements and the issues overviewed in 
the researched scientific literature. 

 R1 R2 R3 R4 R5 R6 R7 R8 
Swertz et al. [88]           

Wilkinson et al. [195]         

Cannata et al. [190]         

Slater et al. [197]         

Kozhenkov et al. [198]         

Hepp et al. [199]         

Cannata et al. [200]         

Marx et al. [205]         

Cheung et al. [207]         

Hazber et al. [210]         

6.2  COEUS: A Semantic Web Application 
Framework 
Semantic Web tools enable translucent relationships amongst data. The semantic web itself 

is a truly intelligent data network, with rich connections allowing for a better 

understanding of available knowledge. However, despite the immense possibilities 

surrounding semantic web technologies, its adoption has been dimmer than anticipated. 

Whilst stakeholders from all domains acknowledge the benefits of having a fully semantic 

information system, the difficult transition from traditional flat-file or relational database 

supported systems to the semantic web is a challenging roadblock [214]. 
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6.2.1  Framework Setup 
COEUS’ “Semantic Web in a box” strategy envisages the inclusion, in a single package, of all 

the tools required to launch a new Semantic Web based application. In addition to this, 

COEUS’ setup must also account for a flexible and scalable deployment environment. Many 

of the architectural decisions observed when implementing this framework had these 

ideals in mind. Hence, various tools and platforms were evaluated in the search for the 

optimal combination of components and integration/interoperability strategies that could 

transform semantic web rapid application deployment. 

To better explain COEUS’ strategy we employ a naming strategy that adopts a gardening 

metaphor. A single COEUS instance is entitled as Knowledge Seed, or simply seed. In 

scenarios with multiple seeds deployed in a true application ecosystem, this federated 

structure is envisaged as a Knowledge Garden. 

Knowledge Representation 
As mentioned in chapter 3, data in the Semantic Web are stored in formal triple statements: 

Subject-Predicate-Object. These statements employ different vocabularies and languages to 

identify each component. We can make a simple analogy to basic sentences with a subject, 

a verb representing action or meaning - the predicate, and what relates to the subject - 

the object. One last thing to consider is that predicates relate to object or data properties.  

Figure 6-2 highlights this division in a common sentence matched to a single statement. 

 

Figure 6-2. Sample triple statement, subject – predicate – object. 

Taking in account the multitude of data models we can integrate within a single COEUS 

instance, the general semantic web knowledge representation strategy is more than fit. 

This allows us to map any content from CSV columns or SQL query results into a set o RDF 

statements. 

For the knowledge storage framework component we identified and assessed various 

RDF management tools, as briefly covered in Table 6-2. The Jena framework is the most 

suitable alternative for COEUS’ knowledge base. Its Java-based nature, easy integration with 

other tools and extensibility, make it ideal for use in a component-based framework. Jena's 
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API has basic support for reading and writing triple statements in Java in an in-memory or 

database-supported triplestore.  

Table 6-2. Knowledge storage and representation technologies comparison. 

FRAMEWORK DESCRIPTION 

Jena46 

Widely used semantic web package for Java. Includes several features to easily 

deploy new applications, including support for SPARQL queries, RDF and OWL 

APIs, and inference. Provides multiple storage and reasoning mechanisms and 

also allows the integration of custom data processing mechanisms. 

Sesame47 

Widely used RDF framework and server. Includes support for SPARQL queries 

and an HTTP server interface. It is packaged with multiple storage and reasoning 

mechanisms and also allows the integration of custom mechanisms. 

Virtuoso48 

Widely used commercial solution for semantic web development. Includes a 

platform agnostic solution to access data through SPARQL queries, manage 

knowledge bases and integrate heterogeneous resources. 

Redland49 
Collection of RDF libraries for C, with bindings for various other languages. 

Provides RDF API, parsers, and query interfaces. 

LinqToRDF 

Semantic Web framework for .NET built on the Microsoft Language-Integrated 

Query (LINQ) Framework (language-independent query and data processing 

system). 

OWL API50 

OWL API and implementation for Java. Includes an OWL API that is built on the 

functional syntax of OWL 2 and contains a common interface for many other 

reasoners. 

 
Components 
The basic COEUS setup requires a Java application server (Tomcat is recommended) and a 

relational database (for the triplestore backend). All the other necessary components are 

included in COEUS package, further facilitating the creation of new systems from scratch. 

Figure 6-3 highlights the component interactions in each standalone instance and Table 

6-3 describes all used components and their purpose within the framework. 

                                                        
46

 http://jena.apache.org/  
47

 http://www.openrdf.org  
48

 http://virtuoso.openlinksw.com/  
49

 http://librdf.org/  
50

 http://owlapi.sourceforge.net/  



6. COEUS: An Application Framework for Enhanced Service Composition 

 

 120 

 

Figure 6-3. COEUS seed component interactions diagram. 1) External data are integrated from 
multiple sources using the available CSV, XML, SQL or SPARQL connectors. 2) The abstraction engine 
translates read data into the seed knowledge base. 3) COEUS internal triplestore is supported by Jena 
with a MySQL relational database backend. 4) Data in the knowledge base are accessed through the 
application engine for the Java and REST APIs. 5) The SPARQL endpoint, provided by Joseki, allows 
direct access to the knowledge base and is used by pubby to enable the LinkedData views. 
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Table 6-3. COEUS’ framework libraries listing and descriptions. 

LIBRARY DESCRIPTION 

Jena 

Jena is used as the core semantic web package within COEUS, mediating input 

access to the knowledge base when building the triplestore and output access 

to the Java API. 

Joseki51 Provides the SPARQL endpoint functionality. 

Pubby52 Provides the LinkedData interface. 

Sparql.js JavaScript library to query remote SPARQL endpoints. 

Tomcat Java application server. 

MySQL Backend support to the Jena SDB triplestore. 

Architectures 
COEUS’ application models and internal seed architecture can be combined in a single view, 

highlighting the knowledge flow from the data integration connectors to the 

interoperability API, detailed further in this chapter. The architecture for a single seed is 

show in Figure 6-4. 

 

Figure 6-4. COEUS architecture for a single seed. 1) Data integration connectors for CSV, XML, SQL and 
SPARQL enable the triplification of data into each seed’s semantic storage. 2) Data are selected from 
each external resource to match specific ontology predicates, generating a rich knowledge base. 3) 
COEUS central knowledge base includes the triplestore data repository and respective data access 
methods. 4) Acquired data are available through COEUS API, using Java methods, REST services, a 
SPARQL endpoint and the LinkedData view. 

                                                        
51

 http://www.joseki.org/  
52

 http://www4.wiwiss.fu-berlin.de/pubby/  

API

DATA INTEGRATION CONNECTORS

dc:title rdfs:label
owl:imports

KNOWLEDGE BASE

CSV XML SQL SPARQL

REST JAVA LDATA SPARQL

foaf:name

3

1

2

4



6. COEUS: An Application Framework for Enhanced Service Composition 

 

 122 

To further increase COEUS’ innate flexibility, multiple seeds can be combined in a 

knowledge garden, providing a virtual holistic access layer to collected knowledge, 

regardless of its original location (Figure 6-5). 

 

Figure 6-5. COEUS’ garden architecture overview. 1) With one or more seeds in place, the COEUS 
platform enables a knowledge federation layer. 2) The distributed knowledge federation layer is 
capable of answering specific research questions. 3) This distributed entry point enables the 
deployment of multiple applications to web, desktop or mobile environments. 

Application Models 
The COEUS framework can be used to deploy distinct application models (Figure 6-6). On 

the one hand, a seed can accommodate multiple end-user applications, on distinct devices 

for instance. This permits that a single centralized data source can be built to support any 

number of web, desktop or mobile applications. On the other hand, multiple specialized 

seeds can be connected to supply a single holistic application. In this strategy all seeds 

work independently, and can be seen as nodes in a data sources network, providing access 

to an overarching tool. Along with these opposite strategies, hybrid architectures are also 

possible, combining multiple applications and seeds in a distributed data and applications 

ecosystem.  
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Figure 6-6. Basic COEUS application models. 1) One to many: one seed provides data to multiple client 
applications. 2) Many to one: using SPARQL federation multiple seeds are dynamically interlinked and 
accessed through a single application platform. 3) Many to many: hybrid model where multiple seeds 
are accessed by multiple client applications through a distributed federation layer. 

Internal Ontology 
To achieve the desired COEUS’ scalability and flexibility, the basic platform model is 

organized in a tree-based structure. Data relationships are mapped to Entity-Concept-Item 

structures, which are connected to Resources and Bridges, supporting integration and 

exploration settings, respectively (Figure 6-7). This ontology is available online53 and must 

be used in COEUS’ configuration files. Describing COEUS entire ontology is out of this thesis 

scope. For further information regarding all classes, data and object properties or the 

entire structure, refer to COEUS’ online documentation at 

http://bioinformatics.ua.pt/coeus/documentation/. A short description for each core class 

in the ontology follows. 

 A Seed is a single framework instance. In COEUS’ model, Seed individuals are used 

to store a variety of application settings, such as component information, 

application descriptions, versioning or authors. Seed individuals are also connected 

to included entities through the :includes property (inverse: :isIncludedIn). This 

                                                        
53

 http://bioinformatics.ua.pt/coeus/ontology/coeus_1.0b.owl 
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permits access to all data available in the seed, providing an overarching entry 

point to the system information.  

 Entity individuals match the general data terms. These are “umbrella” elements, 

grouping concepts with a common set of properties. For example, to gather 

proteomics information, the model has a “Protein” entity or for disease information 

there is also a general “Disease” entity. To better understand this organization, 

object-oriented structures, their inheritance and variable subtypes must be 

remembered. 

 Concept individuals are area-specific terms, aggregating any number of items 

(the :isConceptOf property) and belonging to a unique entity (the :hasEntity 

property). Continuing the previous scenario, “UniProt”, “PDB” and “InterPro” 

databases are concepts within the “Protein” entity. Note that an Entity may have 

any number of concepts, but a Concept belongs to a single Entity. 

 Item individuals are the basic terms, with no further granularity and representing 

unique identifiers from integrated datasets. In the above proteomics scenario, 

“P51587”, “P02461” are items under the “UniProt” concept, each matching a unique 

term from the original UniProt database. For the disease entity, the “104300” 

individual is a match for Alzheimer’s disease entry in the OMIM database concept. 

In the knowledge base, items can be associated to other items directly 

(predicate :isAssociatedTo) or through connections from their parent concepts. 

Entities are also connected to concepts, and these to items, making Seed individuals 

a central registry for COEUS’ seeds. 

 Resource individuals are used to store external resource integration properties. 

The configuration is further specialized with CSV, XML, SQL and SPARQL classes, 

mapping precise dataset results to the application model, through direct concept 

relationships. In the proteomics scenario, a Resource individual contains 

information for the “UniProt” concept original data source, including its location 

and how to extract each item. This resource is connected to several XML individuals 

(predicate :loadsFrom), each containing an XPath query whose results will map to 

application model properties. With the :hasResource property, the framework 

knows exactly what resources are connected to each concept and, subsequently, 

how to load data for each independent concept, generating new items. 
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 Brigde individuals are also mapped to concepts, storing concept visualization and 

exploration features. That is, bridges tell the system how concept items can be 

shown to users. This configuration permits any number of internal properties as 

long as they are understood by the final client application. This means that we can 

include parameters for advanced data visualizations, triggering web service calls or 

composing simple links. An example of the latter is a bridge for the “UniProt” 

concept, declaring a structure for building valid UniProt links, replacing  #replace# in 

http://www.uniprot.org/uniprot/#replace# with individual item identifiers. 

 

Figure 6-7. COEUS’ ontology model for the internal tree-based structure highlighting relationships 
amongst the various individual classes. A seed can have multiple entities, and each entity can be 
related to one or more concepts. Concepts aggregate unique items and are connected to resource and 
bridge information. The data import process uses resources’ properties (1) and custom methods can 
be defined to display data (2). Sample seed data for a “Diseasecard” seed is shown at each element, 
listing “UniProt” items belonging to a “Protein” entity. 

One of the great advantages of using semantic web technologies is that any external 

ontology can be used to complement or extend COEUS’ internal model. As long as new 

properties are understood by the seed applications, any number of properties can be added, 

mapping concepts or entities to existing ontologies or adding further properties to 

describe resources or bridges.  
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Data Flow 
The COEUS framework gives developers total control over the data flow, from distributed 

repositories to the internal semantic knowledge base and from this to any end-user 

application. From a data input perspective, the goal behind this strategy is to provide 

developers with advanced methods to load precisely what they want, how they want it and 

from where they want it. Furthermore, on a data output perspective, we also want to 

provide enough flexibility for developers to build their own applications in any 

programming environment. To summarize, the inwards data flow establishes COEUS as a 

data integration platform (Figure 6-8) and the outwards data flow demonstrates its 

advanced interoperability features (Figure 6-9). 

 

Figure 6-8. COEUS’ inward data flow, from external distributed and heterogeneous resources (1) into a 
centralized knowledge base (2). 

 

Figure 6-9. COEUS’ outward data flow. Knowledge collected in the centralized knowledge base (1) is 
accessible through an interoperability API composed of four key interfaces: REST, Java, LinkedData 
and SPARQL (2). 3) The API enables the creation of miscellaneous client applications, target at 
multiple environments. 
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6.2.2  Extract-Transform-Load 
Data integration is a perennial challenge in modern bioinformatics. As discussed in 

previous chapters, caveats such as resource distribution and heterogeneity transform 

integration into a demanding computer science challenge. One of COEUS’ goals is to tackle 

this challenge. This framework provides features to facilitate the integration of 

heterogeneous data from distributed resources in an elegant fashion. Traditional 

warehousing techniques revolve around advanced algorithms for extracting data from a 

specific source, transforming it into the warehouse model and actually replicating the data 

in the new integrated dataset. In COEUS, this Extract-Transform-Load process is 

specialized to a semantic web environment, enhancing the inwards data flow from CSV, 

XML, SQL or SPARQL data to sets of triple statements. 

Heterogeneity also appears in the distinct data models of each integrated resource. 

COEUS tackles this issue with a semantic web translation process. Due to COEUS roots, the 

internal knowledge base is model-agnostic, liberating integrated data from the restrictions 

of CSV tables or relational databases. Since all data are stored as triple sets, the limitations 

adjacent to foreign keys or table columns are replaced by meaningful relationships.  

In most cases, the various properties stored in object-oriented models or XML 

structures can be re-engineered through the adoption of existing ontologies or the creation 

of new ones. As mentioned before, the usage of controlled ontologies augments the 

flexibility of internal data models, enabling the creation of tightly integrated datasets. 

The physical and logical content heterogeneity issues impose the development of a 

generic data-loading tool. For simplicity purposes, a seed’s configuration file includes the 

type of resource being loaded and the URI to access it. This way, all COEUS needs is an 

Internet connection to access REST or SOAP services, SQL databases or SPARQL endpoints. 

Furthermore, the URI naming scheme also permits the identification of local resources and 

SQL database connections can be made to a local host. This results in having the same 

structure in COEUS for importing local or remote data. 

This immense amount of variables and configuration properties for integrating data 

lead to the appearance of the connector and selector concepts, explained further in this 

chapter.  

Collecting Distributed Data 
The initial problem that arises when building new warehouses or integrated datasets 

relates to the diversity of formats involved in the data import process. Whether we are 



6. COEUS: An Application Framework for Enhanced Service Composition 

 

 128 

accessing a REST web service or a MySQL database, most programming technologies allow 

configuring this access through a simple URI. For instance, a sample JDBC connection string 

to a MySQL database is 

jdbc:mysql://thedbhost.com:3306/thedbname?user=thedbuser&password=thedbuserpwd((
and a sample URL for accessing Twitter’s API is  

https://twitter.com/#!/search/%40term.(
The similarities are clear and enable the simplification of the external resources 

configuration. All resources will have a URI property for instance.  

If data format heterogeneity poses the initial threat for a linear data integration process, 

the data model heterogeneity further heightens it. We know from the start that data will 

come through in all sorts of formats and models. To overcome these caveats, COEUS adds 

an intermediate abstraction layer between the external resources and the internal 

knowledge base - Figure 6-10. 

The idea behind this abstraction layer is to convert the data being integrated to a 

general model-independent format. In practice, the implemented method simply generates 

a network graph for each new item, mapping the configured predicates to the values from 

external resources. With this data abstraction, the triplification process can take place, 

enabling the generation of triple statements from the abstracted data model for further 

storage in COEUS’ knowledge base. 

 

Figure 6-10. COEUS’ data abstraction process. 1) Data from external, distributed and heterogeneous 
resources is prepared for triplification. 2) COEUS connectors initiate the semantic translation using 
the abstraction engine. 3) Generate triples are stored in the seed knowledge base, a fully integrated 
triplestore. 
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Connectors and Selectors 
The integration task consists in the acquisition of data from heterogeneous and distributed 

resources to populate a seed. This complex strategy required the construction of purpose-

specific wrappers. These methods access external resources and process data, using the 

connectors, based on a set of configuration properties, the selectors. 

Selectors are property sets defining the data location in a specific resource and what 

predicate will be added to the knowledge base during the integration process.  Connectors 

control these particular data mappings: independent and generic modules to load 

information from external resources in CSV, XML, SQL or SPARQL formats. They possess a 

common set of configuration properties defining the data type, where the data are located, 

the relationships to existing data, and other module-specific definitions. This information 

is stored in the seed configuration files, exemplified in the following chapter. For instance, 

XML module configuration must include the original data source address and a collection 

of selector properties, XPath queries, which will be performed against the read XML, 

corresponding to the data being mapped. Likewise, SQL query column names, CSV column 

numbers, or SPARQL variables are used as selectors in their respective modules.  

The data loading process uses connectors to initiate a data triplification process. Data 

are enriched through the dynamic generation of new triples based on specified 

configuration properties. With this Semantic Web-based Extract-Transform-Load we are 

augmenting the scope of data in one-dimensional CSV files or bi-dimensional SQL tables to 

a multi-dimensional triplestore.  

The richness of this triplification process resides on connector’s flexibility. The 

selectors within a given connector allows us to match any content into our semantic graph 

using a primary key for the subject, any property mapped from the seed ontology as 

predicate, and selection results as objects. These are then used to generate each new item 

map on-the-fly, which is then converted into a set of statements and inserted into the 

knowledge base. 

Triplifying Content 
The triplification process highlighted in Figure 6-11 may proceed in two modes: explicit 

and implicit. Explicit translations are required when data are read from CSV, XML or SQL 

resources. As data does not possess any related semantics (only columns or objects), 

explicit descriptions for the new predicates need to be set up. Since we can map data in 

XML, CSV or SQL to any predicate in any ontology and to more than one predicate at once, 
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we can expand the meaning of non-semantic data by explicitly declaring it as the object of 

a specific statement.  

SPARQL resources provide implicit semantics; data are already in the same semantic 

format (triple statements) as required by the storage engine. While loading data with the 

SPARQL connector, the selector can match data into new predicates or the original 

predicate. This way, COEUS can simply replicate triples or expand them to richer entities. 

 

Figure 6-11. Triplification process overview. 1) Subjects, new Item individuals, are generated at 
runtime. 2) Predicates are read from the configuration file to match any predicate from any ontology. 
3) Objects read from the external heterogeneous resources finish the triple statement. 

In addition to these two triplification modes, data integration can also be performed 

using three distinct approaches according to the seed needs or to how data are provided by 

each service. These methods are defined by the :method property in a resource 

configuration. Cache is the default method and enables standard data loadings from 

external resources, generating new items and triplifying all data. The complete method adds 

new triples to items already in the seed triplestore. At last, the map integration method 

enables the creation of custom direct relationships amongst individuals. With this, we can 

create entire sets of new mappings amongst items after the data are loaded. Both the map 

and complete integration methods use the :extends configuration predicate from COEUS’ 

internal ontology to define the Concept whose individual item list will be enriched. 

With COEUS’ triplification strategy, the data integration approach is abstracted from 

the data itself. Since there is ground for one or more common underlying ontologies, new 

axioms can be established disregarding traditional software constraints. Data can be 

collected and connected using distinct methods and miscellaneous import formats. This is 
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ideal for optimizing all kinds of new data-powered applications, namely on the life sciences 

field, where heterogeneous data models with limited relationships are common. 

Configuring a New Seed 
The seed configuration controls the entire instance operability. At the moment, three 

separate files are used to set up application properties, the application model and resource 

integration properties.  

 The config.js file stores volatile application properties. These include the application 

name, version, short description, deployment environment and the list of 

ontologies used in the seed. Using a JSON object for the configuration permits faster 

reads when compared to XML, while maintaining a good object-oriented structure, 

in comparison to simple properties files. 

 The information system ontology. In most scenarios, the “reuse instead of rewrite” 

principle does not suffice for the entire application ecosystem. As such, COEUS 

allows the creation of custom ontologies to use in one or various seeds. Developers 

are able to organize their own applications models, taking full advantage of 

RDF/OWL’s modelling flexibility. 

 The application setup file includes the data integration and exploration 

configurations. In this file we define the individuals for each class, configuring 

entities, concepts, bridges and resources. Summarily, content in this file is used to 

guide the entire framework instance setup, from the handling of external resources 

in the connectors to the labelling rules for each Item individual. 

COEUS’ future developments include the addition of a user-friendly GUI to configure 

new seeds. In the meanwhile, and considering the setup files OWL/RDF nature, relying on 

Protégé is advisable to ease the configuration process. In this widely used ontology-

modelling tool, the configuration can be written, tested and visually organized.  

The amount and variety of configuration options is even greater than WAVe’s. Hence, 

the best option is to look at the examples and online documentation at 

http://bioinformatics.ua.pt/coeus/documentation/. For mere descriptive purposes, a 

subsection from a real configuration file is included next. This code sample configures the 

loading of known human genes into a seed. This list, mentioned in WAVe’s integration 

description, is maintained by the HUGO Gene Nomenclature Committee, which provides a 

REST service for getting the list in CSV format. This resource loads the list into our seed, 

populating a HGNC Concept under the Gene Entity. The resource_HGNC individual is 
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configured to load the data from the selected :endpoint object, send it for processing using 

the CSV connector, property dc:publisher, and map the results from two :CSV individuals, 

property :loadsFrom. In these, the :query predicate defines which column object will map 

to the predicates listed in :property. Hence, in the csv_HGNC_id individual, data obtained 

from column 0 of the HGNC CSV file, property :query, will be mapped into two triple 

statements with the same subject, the dc:source and dc:identifier predicates and with the 

same object, property :query. 

#+HGNC+Resource+configuration+
:resource_HGNC(rdf:type(:Resource(,(owl:NamedIndividual(;(

rdfs:label("resource_hgnc"^^xsd:string(;((
dc:title("HGNC"^^xsd:string(;(
:method("cache"^^xsd:string(;((
dc:publisher("csv"^^xsd:string(;((
:endpoint("http://www.genenames.org/cgiX(
bin/hgnc_downloads.cgi?title=HGNC+output+data(

&hgnc_dbtag=onlevel=pri&=on&order_by=gd_app_s(
ym_sort&limit=&format=text&.cgifields=&.cgifi(
elds=level&.cgifields=chr&.cgifields=status&.(
cgifields=hgnc_dbtag&&where=&status=Approved&(
status_opt=1&submit=submit&col=gd_hgnc_id&col(
=gd_app_sym&col=gd_app_name&col=gd_status&col(
=gd_prev_sym&col=gd_aliases&col=gd_pub_chrom_(
map&col=gd_pub_acc_ids&col=gd_pub_refseq_ids"(^^xsd:string(;(

:extends(:concept_HGNC(;(
:isResourceOf(:concept_HGNC(;(
:hasKey(:csv_HGNC_id(;(
:loadsFrom(:csv_HGNC_id,:csv_HGNC_symbol.(

(
#+HGNC+CSV+connector+configuration+for+HGNC+identifier+
:csv_HGNC_id(rdf:type(:CSV(,(owl:NamedIndividual(;(

rdfs:label("csv_hgnc_id"^^xsd:string(;((
:query("0"^^xsd:string(;((
dc:title("HGNC_id"^^xsd:string(;((
:property("dc:source|dc:identifier"^^xsd:string(;((
:loadsFor(:resource_HGNC(;(
:isKeyOf(:resource_HGNC(.(

(
#+HGNC+CSV+connector+configuration+for+HGNC+name+
:csv_HGNC_name(rdf:type(:CSV(,(owl:NamedIndividual(;(

rdfs:label("csv_hgnc_name"^^xsd:string(;((
:query("2"^^xsd:string(;(
dc:title("HGNC_name"^^xsd:string(;((
:property("rdfs:comment|dc:description"^^xsd:string(;((
:loadsFor(:resource_HGNC(.(

(
For improved dependency management, seed configurations are organized as graphs. 

That is, developers can implement dependencies amongst resources, enabling the loading 

of data based on previously collected individuals, selected with the :extends property. This 

allows for the creation of advanced data integration workflows, combining multiple 

concepts, thus enabling the aggregation of millions of triples in the seed’s knowledge base. 
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6.2.3  APIs 
COEUS tackles the lack of interoperability in existing life sciences information systems. 

Drawbacks such as poor web service availability, complex and closed data models, or 

vendor-specific formats are common in bioinformatics. To overcome these clear issues in 

semantic interoperability, COEUS includes, by default, a comprehensive API to explore 

collected data. 

Available methods were developed with two goals in mind. On the one hand, data must 

be easily available for the creation of new applications within a COEUS seed. On the other 

hand, integrated data must also be published externally, making it available for any 

external system. Hence, COEUS’ API is organized in two sections: internal and external, 

despite their natural promiscuity. 

The internal API comprises the Java methods and Javascript libraries. The former 

provides an abstraction over Jena’s basic data access functions and are adequate for 

scenarios where the seed client-side application is also being developed in Java. These 

methods permit data access in both ways, allowing for streamlined data access and 

traditional data insertions. The available Javascript library simplifies the process of 

accessing a SPARQL endpoint using Javascript. Combining this tool with modern user 

interface frameworks (such as jQuery) makes it very easy to query a seed’s knowledge base 

and use the response data in the application. Consequently, developers can create highly 

interactive user interfaces, in any development framework. Moreover, custom endpoints 

can be configured in the JavaScript library to access data from external SPARQL endpoints. 

This enables the creation of modern semantic data mashups on the client-side. 

The external API comprises a set of REST services, a SPARQL endpoint and a LinkedData 

viewer. The available REST services allow accessing content in multiple formats (CSV, JSON, 

RDF/XML or HTML). Likewise, the SPARQL endpoint is open for querying. With this 

endpoint, any query can be performed to exploit the wealth of integrated data. At last, the 

LinkedData perspective makes the knowledge base content available to any LinkedData 

browser, delivering an advanced structured interface to access data. 

Java and Jena 
While Jena provides a developer-friendly API for adding and retrieving data in Java, COEUS 

includes an additional set of methods to ease these tasks and facilitate data access. 

COEUS Java API is an abstraction over Jena’s internal methods, providing a more direct 

way to access COEUS data structures. Hence, accessing items, concepts or entities, or 
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adding new statements actions are more straightforward. Next, there are the signatures for 

functions to add new statements and retrieving the result set of a SPARQL query. More 

examples and full documentation can be found online in the Java documentation at 

http://bioinformatics.ua.pt/coeus/javadoc/. 

REST 
COEUS’ RESTful services API provides a set of methods to access data in the knowledge base 

through simple GET requests. REST services are currently the most widely used strategy for 

systems interoperability. Modern service-oriented architectures rely on these types of 

services due to their flexibility in regard of formats and operation types. The trade-off 

between having a more standardized (though constrained) services platform using SOAP 

and a more “open” alternative with REST was acceptable for COEUS, promptly pushing the 

latter as the only viable solution for supported services in COEUS. 

Furthermore, in spite of the relatively low number of REST services available by default, 

more services can be easily added through the combination of internal Java methods with 

Stripes’ powerful URL binding mechanisms. The Stripes framework has a very light 

learning curve, enabling the addition of new actions and services an easy job even for non-

experienced Java web developers. 

The highlight from the REST service set is the triple request method. This service 

enables building custom statements with specific subject, predicate or object properties, 

which are mapped into a SPARQL query to an instance’s knowledge base (Figure 6-12). For 

example, http://bioinformatics.ua.pt/coeus/api/triple/coeus:hgnc_COL3A1/pred/obj/js 

returns a JSON object with all statements where the item coeus:hgnc_COL3A1 (human 

gene COL3A1) is the subject from COEUS sample dataset. Similarly, 

http://bioinformatics.ua.pt/coeus/api/triple/sub/coeus:hasEntity/obj/xml returns XML 

detailing all subjects and objects related with a coeus:hasEntity predicate. In COEUS’ 

ontology, this lists all concepts and respective entities.  
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Figure 6-12. COEUS REST API summary. 1) Various wildcards can be combined to form valid requests 
and access all data in the knowledge base. 2) Sample REST requests highlighting the different output 
formats and wildcard use. 

At last, the major advantage of using the available REST services is the access of data in 

multiple formats. Whereas requesting data in JSON format is optimal for lightweight web 

application development, one might need to import data in CSV format into an Excel sheet 

or transform XML content into a new database. This variety further increases COEUS’ 

overall flexibility, improving its usage in modern application platform environments. 

SPARQL 
Another COEUS’ API feature is the default SPARQL endpoint. With an open SPARQL 

endpoint, users or developers have full access to a seed’s knowledge base, enabling 

complex queries and more insightful data retrieval operations. 

Much like the set of REST services, the SPARQL endpoint also enables getting data in 

multiple formats, promoting its easier integration with client-side applications (discussed 

in the Advanced User Interactions section next). A form for querying each seed triplestore 

is available by default in all seeds at ../sparqler. This form allows developers to test their 

SPARQL queries before including them in the application code. 

LinkedData 
Nowadays, the hottest topic in data sharing and interoperability is LinkedData. Through its 

multiple subdivisions, the LinkedData guidelines empower a completely interoperable 

knowledge ecosystem, where resources are directly accessible through their URIs and their 

semantic descriptions establish meaningful connections to other miscellaneous data types. 

COEUS uses the pubby package to publish the knowledge base as LinkedData. A simple 

configuration file defines the connection properties to access the seed SPARQL endpoint 

and retrieve data. For each resource being browsed, the application issues a DESCRIBE to 

obtain all object relationships. 
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<rdf:RDF(
((((xmlns:rdf="http://www.w3.org/1999/02/22XrdfXsyntaxXns#"(
((((xmlns:owl="http://www.w3.org/2002/07/owl#"(
((((xmlns:dc="http://purl.org/dc/elements/1.1/"(
((((xmlns:owl2xml="http://www.w3.org/2006/12/owl2Xxml#"(
((((xmlns:xsd="http://www.w3.org/2001/XMLSchema#"(
((((xmlns="http://bioinformatics.ua.pt/coeus/"(
((((xmlns:rdfs="http://www.w3.org/2000/01/rdfXschema#">(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/prosite_PS50138"/>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/mesh_D010051"/>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/interpro_IPR015525"/>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/pdb_3EU7"/>(
((((<dc:identifier>P51587</dc:identifier>(
((((<dc:source>P51587</dc:source>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/pdb_1N0W"/>(
((((<hasConcept(

rdf:resource="http://bioinformatics.ua.pt/coeus/concept_UniProt"/>(
((((<rdfs:label>item_P51587</rdfs:label>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/hgnc_BRCA2"/>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/mesh_D001943"/>(
((((<dc:title>P51587</dc:title>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/mesh_D010190"/>(
((((<isAssociatedTo(

rdf:resource="http://bioinformatics.ua.pt/coeus/mesh_D005910"/>(
((</rdf:Description>(
</rdf:RDF>(
(
When these data are delivered through the web interface, users can explore LinkedData 

innate connections, which allow users to jump from object to object within the same seed, 

in an external seed or accessible through a normalized URI. 

With the LinkedData interface, COEUS completes the interoperability features required 

to enhance modern service composition ecosystems. This ability to make the integrated 

and enriched data available in the Linked Open Cloud without complex configuration tasks 

or tricky deployment processes is a defining feature for COEUS, taking it further in 

semantic web for life sciences innovation. 

Advanced User Interactions 
Modern application development relies on advanced browser-based capabilities to deliver 

more compelling user interactions. The latest versions of all major browsers include 

powerful JavaScript processing engines, like Google’s V854 or Mozilla’s JagerMonkey55, with 
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outstanding performances on the client-side. This triggered an evolution on web-based 

application, making them able to deal with larger amounts of data and increasing their 

processing capabilities. 

In addition, JavaScript development frameworks such as jQuery 56 , MooTools 57  or 

SproutCore58, include methods to further rival server-side data handling and computational 

capabilities. This allows for the development of increasingly interactive web applications, 

reducing the thin line that separates them from desktop-based applications. 

It is important for COEUS to also take part in this emerging and fast-growing 

application trend. Therefore, COEUS includes a JavaScript library (available under 

assets/js/sparqler.js) that enables direct connections to each seed’s SPARQL endpoint. With 

this, it is possible to ask queries to and process data directly from the knowledge base with 

a powerful querying language. Data are retrieved as a JSON object easily handled in 

JavaScript. This library further increases rapid application prototyping and interface 

development in COEUS.  

6.2.4  Case Studies 
Exploring Collected Data 
A trivial case study can be setup to test the various elements composing COEUS APIs. For 

this matter, knowledge regarding the breast cancer type 2 susceptibility protein 

(UniProt accession number P51587) will be collected from COEUS sample dataset. 

These results are obtained from the graph of relationships where a representation of 

this individual, mapped in COEUS’ sample knowledge base as coeus:uniprot_P51587, is an 

active subject. The methods for accessing these data are detailed next. 

 Java. To obtain these data in Java, the getTriple() API method must be invoked, 

defining what filter to use and the desired XML output format. 

/*+Invoke+getTriple(“coeus:uniprot_P51587”,+”p”,+”o”,+“xml”);+*/+
pt.ua.bioinformatics.API.getTriple(…);(

 REST. The desired protein data can be obtained, in CSV format for example, 

through a direct GET request to the public REST interface at 

http://bioinformatics.ua.pt/coeus/api/triple/coeus:uniprot_P51587/p/o/csv. 
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 SPARQL. UniProt P51587 data can be queried from COEUS’ SPARQL endpoint, 

available at http://bioinformatics.ua.pt/coeus/sparql, with the following query.  

#+SPARQL+query+to+issue+
PREFIX(coeus:(<http://bioinformatics.ua.pt/coeus/>(
SELECT(?p(?o({coeus:uniprot_P51587(?p(?o}(
Any query can be tested at http://bioinformatics.ua.pt/coeus/sparqler/. 

 LinkedData. The requested protein data can be explored through a LinkedData 

browser pointed to http://bioinformatics.ua.pt/coeus/resource/uniprot_P51587. 

Additionally, the same address provides a summary view for regular web browsers. 

Promoting a Federated Knowledge Ecosystem 
The execution of federated SPARQL queries enables access to data across multiple sources 

in a single transaction. Whether data are locally stored or in a remote location, the query 

engine uses the SERVICE property to acknowledge where a specific question should be 

asked. 

Every COEUS seed includes a SPARQL endpoint by default. With multiple seeds in place, 

it is fairly easy to perform queries across the various COEUS instances, inferring results on 

the fly. This virtual distributed knowledge network, the aforementioned knowledge garden, 

opens up immense data integration and interoperability possibilities. In modern national 

health information systems scenarios, launching multiple seeds with similar data models 

and targeted at regional subsets, originates a federated knowledge ecosystem. Applications 

can access each seed individually, cross data between two or more seeds, or have an holistic 

perspective over the entire knowledge garden. 

A case study for COEUS’ federation support regards the answers for following scientific 

question: What are the PDB identifiers for the protein structures and the MeSH term identifiers 

associated with the human BRCA2 gene? 

To answer the proposed question, the federated query shown next links four distinct 

services, i.e. SPARQL endpoints. COEUS’ default SPARQL is replicated three time to virtually 

simulate the query distribution. The query is processed in real time through the SPARQL 

endpoint, with the following steps: 

1. The Diseasome SPARQL endpoint is queried to obtain the label for the human 

BRCA2 gene (?label). 

2. The ?label variable is passed to the first COEUS seed, acting as the selection 

clause for the gene and enabling access to a set of UniProt proteins associated 

with it (?uniprot). 
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3. The ?uniprot variable is shared with the third and fourth SPARQL endpoints, 

where data regarding PDB identifiers (?pdb) and MeSH term identifiers (?mesh) 

is selected. This last request could be executed in a single query, but is divided to 

further demonstrate COEUS’ federation capabilities. 

#+Federated+SPARQL+query+
PREFIX(dc:(<http://purl.org/dc/elements/1.1/>(
PREFIX( diseasome:( <http://www4.wiwiss.fuX

berlin.de/diseasome/resource/diseasome/>(
PREFIX(rdfs:(<http://www.w3.org/2000/01/rdfXschema#>(
PREFIX(coeus:(<http://bioinformatics.ua.pt/coeus/>(
(
SELECT(?pdb(?mesh(
WHERE{(
(((({(
((((((((SERVICE(<http://www4.wiwiss.fuXberlin.de/diseasome/sparql>((
(((((((({((
((((((((((((((((<http://www4.wiwiss.fuX

berlin.de/diseasome/resource/genes/BRCA2>(rdfs:label(?label(
((((((((}(
((((}(
(((({(
((((((((SERVICE(<http://bioinformatics.ua.pt/coeus/sparql>((
(((((((({((
((((((((((((((((_:gene(dc:title(?label(.(
((((((((((((((((_:gene(coeus:isAssociatedTo(?uniprot(
((((((((}(
((((}(
(((({((
((((((((SERVICE(<http://bioinformatics.ua.pt/coeus/sparql>(
(((((((({((
((((((((((((((((?uniprot(coeus:isAssociatedTo(?pdb(.(
((((((((((((((((?pdb(coeus:hasConcept(coeus:concept_PDB(
((((((((}(
((((}(
(((({((
((((((((SERVICE(<http://bioinformatics.ua.pt/coeus/sparql>(
(((((((({((
((((((((((((((((?uniprot(coeus:isAssociatedTo(?mesh(.(
((((((((((((((((?mesh(coeus:hasConcept(coeus:concept_MeSH(
((((((((}(
((((}(
}(
This, and any other federated queries, can be tested online at 

http://bioinformatics.ua.pt/coeus/sparqler/. Additionally, more complex queries can be 

built combining these data with any other SPARQL endpoint. 

Despite being targeted at life sciences developers, COEUS can be used in various other 

real world settings. In either the corporate domain or TV networks, data are generated in 

large quantities and with complex innate relationships. While we do not envisage COEUS 

replacing already setup infrastructures in these areas, the framework is suitable for quickly 

deploying ad-hoc knowledge bases. 
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For example, a news channel web application can be built to aggregate information on a 

selected topic, from various media sources, in a single environment. With COEUS, content 

from Twitter, Facebook or any modern news site (using RSS/Atom feeds) can be quickly 

pulled into a new repository, enabling the creation of semantically richer applications for 

both web and mobile environments. Furthermore, the resulting dataset can be also used to 

improve existing applications. A new semantic layer can be incorporated in the client-side 

of modern web applications by querying and loading data in JSON format 

Pharmaceutical companies can also use COEUS. A virtual scenario uses the COEUS 

platform with a well-designed ontology to create a Semantic Web-powered infrastructure 

to manage specific in-house datasets. Managing marketing results or large clinical trials 

data can be improved by establishing COEUS seeds, each with its own goals and needs, and 

allowing for future connections amongst these initially disparate data through COEUS' 

knowledge federation features. 

6.2.5  Features and Usability 
Rapid Application Development 
COEUS’ “Semantic Web in a box” approach streamlines the creation of new Semantic Web 

applications. The development of new semantic systems is highly associated with a steep 

learning curve and a myriad of technologies and tools to chose from. Although this variety 

is beneficial, it is also a characteristic of a still immature deployment environment. Unlike 

traditional relational database applications where the “technology path” is clearly outlined, 

with semantic web applications the adequate set of technologies and strategies continues 

to be chosen in ad hoc fashion. 

COEUS provides the means for semantic web rapid application deployment by offering a 

single package comprising the set of tools required to develop a new application from 

scratch. Moreover, the application backend, the knowledge base, can be populated through 

advanced data integration wrappers that use flexible configuration ontology. 

Incorporating the interoperability API with the integration features results in a 

framework that highly reduces the application “time-to-market”. It is easy to get the data 

in the system. Likewise, it is easy to get the data out the system. This facilitates the creation 

of independent application platforms, supported by a comprehensive backend knowledge 

base that enables deploying to desktop, web or mobile systems. The API also permits coding 

client-side applications in any programming environment and using any framework, 

further improving COEUS flexibility and robustness. 
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Data Integration Platform 
Data integration is the initial cornerstone for the COEUS framework. Its powerful resource 

integration capabilities enable the creation of customized niche-based data warehouses, 

powered by a semantic knowledge base. Distributed and heterogeneous data can be 

replicated or linked, taking advantage of semantic web’s advanced data modelling 

capabilities to overcome schema mappings and internal wrappers for general data retrieval. 

Data in CSV, SQL, XML or SPARQL formats are easily configured for integration, 

smoothing the transition from traditional data storage approaches to a modern semantic 

web reality. This migration is further improved through the advanced extract-transform-

load warehousing features, providing a simple strategy for generating triple sets from any 

kind of data type. Moreover, custom plugins can be developed to match scenarios that do 

not fit COEUS’ capabilities yet. 

COEUS aids in the publishing of semantic web-powered knowledge bases, moving one 

step further to the envisaged view of the Internet as a semantically rich distributed 

knowledge network. 

LinkedData & Semantic Services 
Once data are integrated into a seed’s knowledge base they are promptly available through 

various APIs. Firstly, the internal Java API layer hides away all complexities regarding 

semantic triple stores and data structures, offering a set of methods to retrieve data 

directly as an iterable result set. 

Next, the REST services API encompasses simple GET-based methods to access data. The 

triple service offers a quick way to iteratively load all data into any application 

development environment.  

The SPARQL endpoint is the most powerful interoperability feature. Besides supporting 

the LinkedData infrastructure and the client-side JavaScript library, it makes all data 

available through a standardized and efficient query engine. Complex queries can be asked 

and processed in command-line tools, web clients or desktop applications, further 

increasing the wide scope of COEUS’ use. The SPARQL endpoint is also the underlying entry 

point for knowledge reasoning and inference features. 

The LinkedData interface empowers the availability of integrated data in the most 

advanced data interoperability scenarios. With URLs uniquely and precisely identifying 

data descriptions numerous possibilities for service composition arise, taking the most out 

of connected, i.e. linked, data. 
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At last, the included JavaScript library enables creating best-of-breed user interactions, 

handling all data access and processing on the client-side. From the web application 

development perspective, this is the most interesting feature, as it enables the 

development of more responsive interactions in desktop- or mobile-based systems, taking 

web applications to the next usability level. 

Knowledge Federation Framework 
The challenge of federating knowledge scattered through multiple independent databases 

is also tackled in this framework. New seeds automatically launch SPARQL endpoints and 

LinkedData views, endowing developers with multiple ways to access and federate data. 

Whether we are dealing with SPARQL-based federation or virtual LinkedData networks, 

data are inherently distributed and connected. With these technologies, anyone can launch 

his own customized and focused application ecosystem. In a COEUS’ knowledge garden, the 

holistic view over all data empowers the sharing of knowledge amongst a scalable of 

numbers of peers, improving the federation of and facilitating access to data. 

6.2.6  Future Developments 
COEUS is an active project, published as open source with the purpose of captivating 

interest in new developments, thus creating a community surrounding the framework. 

Foreseen developments are focused on three main areas: improve the transition from 

monolithic systems to a semantic web environment, simplify the configuration of new 

seeds and provide new methods to input and output data from a seed. 

Firstly, a migration assistant tool will be developed to smooth the transition from 

relational databases, CSV or XML structures into the semantic web paradigm. Leveraging 

on tools such as D2R we aim to create algorithms that read database structures and 

generate COEUS configuration models dynamically. For instance, automated processes to 

discover Entity-Concept organizations or internal data/object properties and import 

content on the fly will ease the creation of new seeds. Consequently, it will be much easier 

for bioinformaticians to transform their platforms and access all COEUS’ integration and 

interoperability features. 

The migration assistant will also feature simplified configuration interfaces. While 

now developers need to configure new seeds in Protégé or text-editor, a GUI-based setup & 

installation tool will be available in the future. This is aimed at non-expert bioinformatics 

developers that would rather fill in forms and click buttons than edit configuration settings 

by hand. Another step towards the simplification of seeds creation is the creation of a 
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COEUS virtual machine image pre-build with all required tools. In this case, the goal is to 

use a solution like TurnKey59 to offer a disk image with the required application server, 

database and COEUS seed ready for deployment in a real-world scenario. Furthermore, this 

will also empower future COEUS integration with cloud-based developments. 

Next, the API will also be augmented with new applications and tools. OS-specific 

applications and command-line tools for accessing COEUS’ endpoints will be created. These 

will be an even better fit for a bioinformaticians research workflow. For instance, old-

school biologists traditionally use basic shell scripts to perform data filtering and enriching 

operations. These can be enhanced with access to a COEUS knowledge base allowing the 

integration of state-of-the-art integrative datasets with legacy tools. Another opportunity 

concerns COEUS service composition. REST services will be improved and new ones 

developed to ease the process of combining COEUS services in Taverna workflows. With 

Taverna as the de facto workflow platform, it is advisable to foster COEUS use in this service 

composition environment. 

6.3  Discussion 
6.3.1  Ad-hoc Software Solutions VS Rapid Application 
Development 
Developing tailored ad hoc solutions is the current practice in bioinformatics. Solutions like 

the ones highlighted in chapters 4 and 5 (EU-ADR Web Platform and WAVe) play a 

fundamental role in the evolution of the way bioinformatics software is developed. In spite 

of the recent turn of events in the innovative technologies side, where previously built 

packages are preferred over deployment from scratch, we must realize that 

bioinformaticians are not "regular" developers. The traditional bioinformatician’s 

background usually lacks computer science skills, such as database management, modelling 

or object-oriented programming. Since most stakeholders fit this profile, it is easy to 

understand the biased focus on building new systems from scratch, paying little to no 

consideration to existing platforms, frameworks or programming libraries. 

On the other end of the spectrum is the use of rapid application development strategies. 

By considering RAD ideals in a very broad sense, we observe that its practices are already 

being used in the majority of innovative technological platforms. Reusable assets are being 

used more often whether in the form of fully-fledged application frameworks, user 

                                                        
59

 http://www.turnkeylinux.org/  



6. COEUS: An Application Framework for Enhanced Service Composition 

 

 144 

interface bootstrapping packages or simple external libraries. Over time, the inclusion of 

these components in new systems became easier, empowering the creation of new tools 

and disseminating the adoption of RAD ideals. The created strategies that empower COEUS 

build on this growing use of RAD principles, aiming at its use to create innovative 

biomedical applications.  

6.3.2  Enhancing Rapid Application Development 
The overall concept of RAD strategies for bioinformatics is still in its infancy. Molgenis is 

one successful case in the area, with a robust framework for launching new bioinformatics 

applications very quickly. The room for improvements over general RAD and 

bioinformatics-specific RAD is tied to two domains: integration & interoperability research 

and the semantic web paradigm. 

RAD frameworks are not prone to facilitating the integration of data from external 

resources. Whereas the ability to quickly deploy data stores is omnipresent, RAD 

frameworks lack the features required to easily populate those data stores. The multiple 

challenges associated with the integration of data in any field, detailed along this thesis, 

are cumbersome for bioinformatics developers. Hence, the inclusion of integration features 

is deemed vital for bioinformatics RAD frameworks. Collecting and transforming data from 

CSV, SQL or XML files into a centralized knowledge base is a must-have feature in a field 

riddled with data heterogeneity and distribution. COEUS achieves this through a flexible 

integration engine, allowing the mapping of existing content into any ontology, and 

storing generated triples in a centralized knowledge base. Continuing DynamicFlow and 

WAVe’s pursuit of the best service description strategy for data integration, COEUS uses an 

adaptive ontology to organize and configure a set of integrated resources. 

As previously mentioned, the semantic web paradigm adoption and acceptance by the 

life sciences community is growing and it emerges as a viable alternative to lead biomedical 

software to a new level with tighter integration and better interoperability. The 

applicability of semantic web's ideals fits perfectly the complex life sciences challenges set. 

However, the steep learning curve associated with semantic web technologies is drawing 

users away from this new world. As such, the opportunity arises for the inclusion of 

semantic web technologies and features within a rapid application development package. 

For this matter, bioinformaticians must think about triplestores instead of relational 

databases, about SPARQL endpoints instead of SQL hosts or about LinkedData instead of 

SOAP-based data exchanges. The semantic web empowers a new services layer that allows 
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the creation of truly federated intelligent data networks. Combining LinkedData with 

SPARQL endpoints we can connect and exploit the wealth of data from miscellaneous data 

stores. As stated in the initial requirements, COEUS includes, by default, a SPARQL endpoint 

and support for LinkedData views, enabling truly semantic access to data collected in a 

single seed or federated from multiple COEUS instances. 

6.3.3  A Framework for Semantic Bioinformatics Software 
The next-generation of bioinformatics software will be empowered by the combination of 

two grand innovations that are diluting the boundaries between computer and life sciences.  

On the computer science standpoint, the adoption of agile strategies to develop new 

applications is pushing forward the adoption of generic rapid application development 

methods, from reusable programming packages to user interface prototype building. For 

life sciences, enhanced biomedical semantics are the cornerstone for a better 

understanding of our human condition. While it will not solve all problems in 

bioinformatics, the semantic web emerges as the most viable alternative to build the next-

generation of biomedical knowledge. 

The COEUS framework is our approach to tackle these challenges and produce a next-

generation semantic web rapid application development framework. The innovative 

"Semantic Web in a Box" approach encloses four major pioneering roles. 

 The adoption of rapid application development strategies in COEUS endows 

developers with the tools to quickly build new application ecosystems targeting any 

deployment environment. 

 COEUS is a semantic data integration platform enabling the acquisition and 

translation of heterogeneous data from distributed resources intro a centralized 

knowledge base. 

 COEUS provides Semantic Web and LinkedData services by default. This ensures 

the interoperability of integrated data with any external system through open 

standard methods [13]. Moreover, with a semantic knowledge base in place, support 

for reasoning and inference strategies is facilitated. 

 COEUS enables the federation of gathered knowledge through comprehensive APIs 

[12]. The SPARQL endpoint and LinkedData interfaces empower querying and 

reasoning over multiple COEUS instances. 

The COEUS framework is an open-source project. Documentation and code samples are 

available online at http://bioinformatics.ua.pt/coeus/ [14]. 
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7.  A COEUS INSTANCE 

“But my intellectual development was retarded, as a result of which I began to wonder about space and 
time only when I had already grown up.” 

- Albert Einstein 

 

Many bioinformatics platforms are emerging within the constantly evolving life sciences 

field that satisfy most integration and interoperability requirements. The main advantage 

of this evolution is that developers do not need to rebuild entire knowledge systems and 

data infrastructures from scratch. It is possible to reuse and recombine existing 

components to form entirely new software systems as an answer to the latest challenges. 

Furthermore, with the COEUS framework in place, we have the tools required to launch a 

new semantic web application with minimal effort.  

Continuing our research within the individualized healthcare field, we tackle the study 

of rare diseases with the development of a new version for the Diseasecard platform. The 

personal health implications behind rare diseases are seldom considered in widespread 

medical care. The low incidence rate and complex treatment process makes rare disease 

research an underrated field in the life sciences. Diseasecard, an online portal containing 

thousands of pointers to rare disease resources, was developed to aid rare disease 

investigators. However, the uncontrollable evolution of data and services in the field, 

united with an aging legacy code, triggers the need for a new release. 

Not only was Diseasecard's server-side code dated, the user interface was also in the 

need of a facelift to better suit the current generation of web applications. Hence, 

Diseasecard appeared as the perfect benchmark for COEUS’ developments. An initial 

prototype of the new Diseasecard, COEUS first public instance, is available at 

http://bioinformatics.ua.pt/dc4/.  

In this chapter we introduce the new Diseasecard platform and discuss the details 

behind its development. Starting with a brief analysis of the legacy Diseasecard portal, we 

cover the easy process of creating a new COEUS seed, from the construction of a rare 

disease knowledge base to the details of Diseasecard's new user interface. 
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7.1  Improving Rare Diseases Research 
Rare diseases’ particular conditions hold the strongest relations between genotypes and 

phenotypes. Understanding gene-disease associations is a fundamental goal for 

bioinformatics research, especially at rare disease level, where the genotype-phenotype 

connections are limited to a small set of genes. Rare diseases are particular conditions that 

affect at most 1 in 2000 patients [215]. The European Organization for Rare Diseases 

(EURORDIS) estimates that there are approximately 6000 to 8000 rare diseases, affecting 

about 6% to 8% of the population. Within these, about 80% are caused by genetic disorders. 

Due to the reduced incidence of each individual disease, it is difficult for patients to find 

support, both at clinical and psychological levels [216]. Some of these chronic diseases 

hinder the patients’ quality of life and cause serious damage or disability in social terms. 

The existence of a small number of patients for each rare disease also delays the creation of 

adequate research studies, as it is difficult to identify and coordinate a relevant cohort [168, 

217]. Despite the low statistic impact regarding these diseases, the combined amount of 

patients suffering from one of these rare diseases is considerably high.  

7.1.1  Diseasecard’s Legacy 
Diseasecard was developed to improve rare disease research and education. It is a web 

portal that uses link integration strategies to establish connections to a myriad of external 

resources. The goal is to provide a central workspace where users can explore available 

connections to assess rare diseases underlying genotype, associated proteins or pathways, 

known drugs, ongoing clinical trials or relevant literature (Figure 7-1). 

Initial Diseasecard developments date back to 2004. At that stage, the data acquisition 

strategy relied on web crawling to discover links for the various data types integrated in 

the database, and static HTML pages contained most of the Internet content. The idea of 

providing services to access data was not mature enough yet and most data was still 

published in CSV files or similar text-based tabular formats. Diseasecard’s platform uses a 

link integration engine, pre-configured with a navigation map that teaches the system 

what links to collect and what links to follow for further crawling. Whilst this strategy 

worked for the 2004 timeline, it is currently totally inadequate.  
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Figure 7-1. Diseasecard workspace for Alzheimer’s Disease, OMIM code 104300 (from legacy 
Diseasecard60). 

7.1.2  Collecting Rare Disease Information 
Much like the human variome scenario, rare disease information is scattered through 

multiple non-exchangeable data sources. In a sense, Diseasecard development is a common 

“by the books” service composition problem. With heterogeneous rare disease data 

fragmented through multiple independent resources, new strategies must be devised to 

collect it and make it available for other tools. 

In a world with personalized medicine and individual healthcare as primary research 

topics, advanced integration and interoperability tools are essential. The huge amounts of 

data are meaningless unless they are interconnected with rich relationships. Moreover, 

data integration in bioinformatics has been mostly focused on genotype data. Nowadays, 
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the goal is to balance the scale. We need to access the increasing quantity of clinical 

phenotype data and combine it with existing rich genotype resources, empowering a new 

knowledge reasoning level. 

Despite dated, Diseasecard’s initial approach already preconceived this much-needed 

integration from genotypes to phenotypes. However, with the appearance of WAVe we 

already provide an alternative geared towards genotype data. Hence, the new Diseasecard 

is much more directed towards phenotype information. This demands establishing a new 

rare disease relationship network that in spite of being based on the original Diseasecard, 

further specializes it with another filtering layer. 

7.2  The New Diseasecard 
Developing a new Diseasecard version was an entirely different task from developing a new 

application from scratch. The complex requirements analysis or data modelling tasks were 

already executed and documented for the original portal. Likewise, mock-ups were not 

required for the interface design as the idea was to improve on existing interactions and to 

make the lower number of changes as possible, always without disrupting the tree-based 

and map-based navigation metaphors. 

Supported by previous requirements’ comprehension, we only needed to update 

Diseasecard’s internal data model to fit the COEUS seed configuration. This requires 

organizing data in the Entity-Concept-Item tree structure and defining the integration 

properties. Whereas the original Diseasecard used a map-based navigation model to crawl 

for identifiers, parsing HTML content from webpages dynamically, the new COEUS-based 

integration engine uses web services and databases to load data and generate a similar, yet 

richer, rare disease knowledge network.  

In addition, this rare disease knowledge network is available for reasoning and 

inference. The new data relationships allow denser knowledge connections, further 

enabling the success and availability of reasoning features, which may result in deeper rare 

diseases insights. Through these new connections we can also infer new knowledge. As 

such, by semantically integrating data from miscellaneous heterogeneous resources, we are 

empowering the discovery of new direct links from genotypes to phenotypes in rare 

diseases. 

Regarding the web application, we tried to maintain the user interactions already 

present in the legacy Diseasecard. Using the same metaphor, the new Diseasecard delivers 
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an improved user experience. The navigation tree is smoother and more complete and leaf 

links trigger the Live View feature. The latter promotes accreditation and ownership of 

original work, loading the external resource directly within Diseasecard’s workspace, just 

like in WAVe. 

At last, the legacy Diseasecard included a navigation map. In this map, users could 

identify which data types were available for each specific disease. In the new Diseasecard, 

this key static interaction component was replaced by a dynamic identifier map. Besides 

being a more interactive tool, the new navigation map enables accessing the external 

resources directly, without additional navigation tree mouse clicks. 

7.2.1  Application Setup 
Data Model 
Following COEUS “reuse instead of rewrite” motto, the new Diseasecard’s data model 

reuses existing schemas internally. Using COEUS seed configuration and taking advantage 

of existing ontologies and models for internal usage is enough to organize collected data.  

For each individual item, such as a UniProt protein or an OMIM disease, we only need to 

store its identifier. Hence, we can reuse the identifier term from the Dublin Core ontology 

[218]. In Diseasecard, each Item individual has a dc:identifier data property, matching a 

string with the external identifier. COEUS enables reusing any kind of property, liberating 

our knowledge base from strict data models. Another example is the rdfs:label property, 

obtained from the RDF schema ontology that is used to label each individual object in 

Diseasecard, whether it is an Entity, an Item or a Resource. 

This “reuse instead of rewrite” fits most required properties. Nevertheless, to further 

enhance user interactions new relationships were required. Diseases may have multiple 

names and OMIM’s internal structure makes distinctions from phenotype and genotype 

identifiers. To this end, new data and object predicates were created, as listed in Table 7-1. 

With the set of integrated resources in place and the new model designed, Diseasecard was 

ready to be launched as a new COEUS seed. 

 

 

 

 



7. A COEUS Instance 

 

 152 

Table 7-1. List of new predicates in Diseasecard ontology. 

PREDICATE RELATIONSHIP DESCRIPTION 
Object Properties 

hasGenotype Disease to Disease 
Connects a Disease phenotype entry with its 

associated genotypes. 

hasPhenotype Disease to Disease 
Connects a Disease genotype entry with its 

associated phenotypes. 

Data Properties 

chromossomalLocation to Str ing 
Chromossomal location information (read from 

MorbidMap). 

genotype to Boolean True if Disease is a genotype. 

name to Str ing Disease name. 

omim to Str ing Disease OMIM accession number. 

phenotype to Boolean True if Disease is a phenotype. 

A New COEUS Seed 
As mentioned, Diseasecard is the first COEUS seed. To launch a new COEUS the initial step is 

to download or clone COEUS’ source code into a new development workspace. Java, an 

Apache Tomcat server and a MySQL database must be in place to set up the new system. As 

mentioned in the previous chapter, the configuration involves three files:  

 The Diseasecard model is transposed to a new ontology61, including the new data 

and object properties. This file can be created and managed using Protégé. 

 Config.js, the seed configuration file, contains the details for the new Diseasecard 

application properties. These basic properties define where further configurations, 

such as the seed ontology, the setup files or MySQL database connections are stored. 

#+Diseasecard+application+properties+file+
{(
(((("config":({(
(((((((("name":("Diseasecard",(
(((((((("description":("Diseasecard(v4",(
(((((((("keyprefix":"coeus",(
(((((((("version":("4.0",(
(((((((("ontology":(“http://bioinformatics.ua.pt/dc4/diseasecard.owl",(
(((((((("setup":("dc4_setup.rdf",(
(((((((("sdb":"dc4_sdb.ttl",(
(((((((("predicates":"dc4_predicates.csv",(
(((((((("built":(true,(
(((((((("debug":(false,(
(((((((("environment":("testing"(
((((},(…(}(

                                                        
61
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 The seed setup file, dc4_setup.rdf, includes the internal data structure and resource 

configurations, defining how to connect to and exploit resources in Diseasecard’s 

network.  

Additionally, three files must be updated with knowledge base connection properties: 

one for Jena, a second for Joseki and a third for pubby. Jena and Joseki definitions are 

similar and include the seed’s MySQL database connection properties. The third file, for 

pubby, includes the LinkedData configurations such as the system SPARQL endpoint and 

internal ontology base URIs.  

Resource Configuration 
COEUS allows collecting data in miscellaneous formats from local or remote data sources. 

For Diseasecard’s seed, we are looking to build a semantically powerful data network. 

Hence, we need to obtain a huge amount of identifier mappings. These mappings are 

usually available as CSV or XML files in some sort of FTP file server.  

Figure 7-2 shows Diseasecard’s data integration graph, detailing how COEUS integration 

engine moves from one resource to the next. The starting resource uses a custom 

connector plugin, processing OMIM’s morbid and gene maps. 

 

Figure 7-2. Subset of Diseasecard’s integration graph. This seed uses COEUS’s flexible integration 
engine to acquire data from heterogeneous and distributed CSV, XML, SQL and SPARQL resources. The 
integration process generates a rich data network. For example, starting with Breast cancer in OMIM 
(114480) we obtain multiple genes from HGNC database (BRCA2, TP53...), which are used individually 
next to obtain a list of UniProt identifiers (P51587, P12830...). From UniProt data we also extract 
PharmGKB (PA30196, PA26282...) and PDB (2PCX, 1YCR...) identifiers, among others. This process 
continues until data are fully integrated for all resources in Diseasecard’s configuration. 
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Each resource is configured individually in the local setup file. Once again, Protégé use 

is advised to build this file, making it fairly easy to edit COEUS setup. In this case, each 

concept corresponds to an external resource, being it a database or application. The 

following simplified code snippets highlight the Protein Entity, the UniProt Concept and its 

respective Resource. 

<!77+Protein+Entity+configuration+77>+
<owl:NamedIndividual(rdf:about="http://bioinformatics.ua.pt/coeus/entity_Protein">(

<rdf:type(rdf:resource="http://bioinformatics.ua.pt/coeus/Entity"/>(
<rdfs:label(rdf:datatype="&xsd;string">entity_protein</rdfs:label>(
<dc:title(rdf:datatype="&xsd;string">Protein</dc:title>(
<isEntityOf(

rdf:resource="http://bioinformatics.ua.pt/coeus/concept_InterPro"/>(
<isEntityOf(rdf:resource="http://bioinformatics.ua.pt/coeus/concept_PDB"/>(
<isEntityOf(rdf:resource="http://bioinformatics.ua.pt/coeus/concept_PROSITE"/>(
<isEntityOf(rdf:resource="http://bioinformatics.ua.pt/coeus/concept_UniProt"/>(
<isIncludedIn(

rdf:resource="http://bioinformatics.ua.pt/coeus/seed_Diseasecard4"/>(
</owl:NamedIndividual>(
 
<!77+UniProt+Concept+configuration+77>+
<owl:NamedIndividual(
rdf:about="http://bioinformatics.ua.pt/coeus/concept_UniProt">(

<rdf:type(rdf:resource="http://bioinformatics.ua.pt/coeus/Concept"/>(
<rdfs:label(rdf:datatype="&xsd;string">concept_uniprot</rdfs:label>(
<dc:title(rdf:datatype="&xsd;string">UniProt</dc:title>(
<hasEntity(rdf:resource="http://bioinformatics.ua.pt/coeus/entity_Protein"/>(
<isExtendedBy(

rdf:resource="http://bioinformatics.ua.pt/coeus/resource_DrugBank"/>(
<isExtendedBy(

rdf:resource="http://bioinformatics.ua.pt/coeus/resource_InterPro"/>(
<isExtendedBy(rdf:resource="http://bioinformatics.ua.pt/coeus/resource_MeSH"/>(
<isExtendedBy(rdf:resource="http://bioinformatics.ua.pt/coeus/resource_PDB"/>(
<isExtendedBy(

rdf:resource="http://bioinformatics.ua.pt/coeus/resource_PROSITE"/>(
<hasResource(

rdf:resource="http://bioinformatics.ua.pt/coeus/resource_UniProt"/>(
</owl:NamedIndividual>(
(
<!77+UniProt+Resource+configuration+77>+
<owl:NamedIndividual(
rdf:about="http://bioinformatics.ua.pt/coeus/resource_UniProt">(

<rdf:type(rdf:resource="http://bioinformatics.ua.pt/coeus/Resource"/>(
<rdfs:label>resource_uniprot</rdfs:label>(
<order(rdf:datatype="&xsd;integer">2</order>(
<dc:title(rdf:datatype="&xsd;string">UniProt</dc:title>(
<method(rdf:datatype="&xsd;string">cache</method>(
<dc:publisher(rdf:datatype="&xsd;string">csv</dc:publisher>(
<endpoint( rdf:datatype="&xsd;string">http://www.genenames.org/cgiX

bin/hgnc_downloads.cgi?title=HGNC+output+data&amp;hgnc_dbtag=on&amp;col=md_prot_id
&amp;status=Approved&amp;status=Entry+Withdrawn&amp;status_opt=2&amp;level=pri&amp
;where=gd_app_sym+LIKE+%27#replace#%27&amp;order_by=gd_app_sym_sort&amp;limit=&amp
;format=text&amp;submit=submit&amp;.cgifields=&amp;.cgifields=level&amp;.cgifields
=chr&amp;.cgifields=status&amp;.cgifields=hgnc_dbtag</endpoint>(

(<extends(rdf:resource="http://bioinformatics.ua.pt/coeus/concept_HGNC"/>(
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(<isResourceOf(
rdf:resource="http://bioinformatics.ua.pt/coeus/concept_UniProt"/>(

(<hasKey(rdf:resource="http://bioinformatics.ua.pt/coeus/csv_UniProt_id"/>(
(<loadsFrom(rdf:resource="http://bioinformatics.ua.pt/coeus/csv_UniProt_id"/>(

</owl:NamedIndividual>(
 

Once all resources are configured correctly, the actual integration process starts, 

populating Diseasecard’s knowledge base. This is envisaged as a spiralled iterative process, 

where each iteration fine-tunes the previous one.  

From OMIM's MorbidMap to 5 Million Triples 
Diseasecard adopts a targeted warehousing strategy. This means that data are integrated 

once and stays static until the following build process. Accordingly, the data import and 

translation process gathers all data from external resources in a single centralized 

Diseasecard knowledge base. In Diseasecard, this process starts with a custom connector 

plugin to process OMIM’s data, traversing the dependency graph for all configured 

resources iteratively. 

During this data import process triples are generated from external data. Adding a new 

semantic layer on top of existing data results in an augmented dataset. COEUS adds several 

metadata relationships to each item along with the configured resource properties. 

Moreover, connections are established from items to concepts, from concepts to items and 

amongst items. These rich relationships are what make semantic knowledge bases so 

powerful. Whereas in a CSV file we have a set of columns with text, with the move to a 

semantic environment all data are interconnected, generating a richer dataset. The same is 

true for SQL databases, where foreign key relationships or table/column names are mapped 

to new properties, resulting in more metadata, more relationships and more triples. 

OMIM’s morbid map has around 5600 entries related to a gene map with about 12800 

entries. From these maps, the graph proceeds to link multiple entities and concepts, 

increasing the amount of data exponentially. The current Diseasecard build accounts for 

almost 5 million triples. Leveraging on the big data network and the additional metadata, 

this number grows constantly as each new resource is integrated. Despite the 5 million 

triples, the knowledge base only stores around 1.5 million distinct individuals. This is 

further proof that collected data are deeply intertwined, resulting in a very dense graph. 

Building Diseasecard’s knowledge base highlighted some issues with COEUS building 

process. The performance is severely hindered by the repetitive connections to external 

web services or by complex SQL queries. Executing the build process as a single task in a 
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single thread takes to long to be acceptable. This fostered the development of a basic 

multithreaded integration solution. The multithreaded strategy involves processing the 

various resources at different levels based on the configured dependency graph - Figure 7-3. 

Diseasecard’s multithread integration solution was promptly integrated within COEUS. 

Nevertheless, foreseen developments will focus on improving the code implementation for 

this feature. 

 

Figure 7-3. Diseasecard build process levels. The multiple stages use a multithreaded approach to load 
data from external resources, significantly improving the process efficiency and performance. 

Building the New Diseasecard’s User Interface 
With Diseasecard’s triplestore populated, interoperability services are enabled. This means 

that the default API methods (Java, SPARQL, REST, LinkedData, JavaScript) are ready for us. 

Miscellaneous services were created to access and retrieve data required by the client-side 

application (Figure 7-4). 

Modern web applications employ new user interaction approaches that require flexible 

server-side code and intelligent client-side code. On the server-side, the application 

controller must offer easy access points to all data and, if possible, in custom formats ready 

for use in the web application. The client-side should handle most of the payload for 

processing data. This does not mean that browsers will perform intensive data processing 

or transformation activities, but should rely more on asynchronous data exchanges. 
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Figure 7-4. The new Diseasecard workspace for Alzheimer’s Disease, OMIM code 10430062. 

Diseasecard implementation uses COEUS API to apply these modern data access 

paradigms. Relying on internal Java methods, Diseasecard includes multiple actions to 

mediate data access from the client application to the seed’s knowledge base. For instance, 

a method for retrieving a data network associated with a single OMIM code (104300, 

Alzheimer’s Disease) is available at http://bioinformatics.ua.pt/dc4/content/104300.js. 

This returns a JSON object with the disease information that is used to generate, on the 

browser, both the sidebar navigation tree and central navigation map. Similarly, data 

requests to the REST triple service are used to load disease synonyms 

(http://bioinformatics.ua.pt/dc4/api/triple/coeus:omim_104300/dc:description/obj/js). 

These interactions use COEUS API and enable a faster web application, with smaller data 

requests and improved responsiveness. Comparing the sidebar navigation tree in the 

legacy Diseasecard with the new one, users had to wait for the entire page to be processed 

on the server and then sent to the browser before the webpage actually appears. In the new 

version, the page loads completely and provides adequate feedback to users while the 

navigation tree and map are being loaded. 

Another welcome addition is the inclusion of an easier bookmarking tool. In the current 

version, when Live View is triggered, the page URL is updated in the browser, enabling the 

creation of bookmarks pointing directly to an external resource within a disease context in 

Diseasecard (similar to WAVe’s UniversalAccess). 

                                                        
62
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With a re-engineered server side it was also essential to revamp Diseasecard’s interface. 

With a sleeker design, the new Diseasecard has improved usability and delivers a more 

fulfilling experience to end-users. 

7.2.2  Features and Usability 
Context-based Navigation 
Diseasecard is a unique alternative for browsing biomedical rare disease information in a 

centralized environment. The context-based navigation approach enables exploring a 

variety of resources associated to a single disease and also browsing disease synonyms. 

With these two complimentary perspectives all significantly relevant resources associated 

to one or more diseases are a couple clicks away. 

The workspace includes two disease data network navigation alternatives. The left 

sidebar includes a tree to quickly access all links with a familiar metaphor. The central area 

displays a circular navigation map, pointing to all individual identifiers. This map is an 

outstanding improvement from what was previously available, making it one of 

Diseasecard’s key features. Both the navigation tree and map trigger the Live View feature 

(Figure 7-5).  

 

Figure 7-5. Diseasecard’s workspace for Alzheimer’s Disease, OMIM code 104300, highlighting Entrez 
Gene entry A2M for Homo sapiens63 in LiveView. 
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This approach was used initially in the legacy Diseasecard and was enhanced for WAVe. 

The newest Diseasecard version further improves WAVe’s approach, making Live View 

more interactive, responsive and usable. 

Resources Relationship Graph 
To correctly explore Diseasecard’s huge amount of data and relationships we could not rely 

on a static navigation system or a non-scalable navigation tree. This rich rare disease 

resource relationship graph provides a unique wealth of direct and indirect connections. 

Hence, a suitable approach for displaying these relationships was required. Our choice set 

on the JavaScript InfoVis Toolkit64 framework (JIT). This framework combines the power of 

client-side data handling with a collection of visualization approaches based on JavaScript 

JSON objects and manipulations on the DOM canvas. Figure 7-6 shows Diseasecard using JIT 

to expose a disease map to users in a simple aesthetically pleasing way. 

 

Figure 7-6. Diseasecard’s entry navigation graph for Alzheimer’s Disease, OMIM code 104300. A 
circular navigation map was created, using the JIT visualization library, to facilitate the access to the 
huge amount of linked resources. 

                                                        
64
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The navigation map starts with the selected disease and connections to the set of 

entities in the knowledge base. Clicking each entity name, Protein for example, centres the 

map on the Protein node, highlighting its connections to its various internal concepts. 

Likewise, clicking on a concept, UniProt for instance, centres the node and shows links to 

each individual concept Item. 

Rich Data 
Selecting the adequate set of resources for phenotype-oriented information was a crucial 

step towards the new Diseasecard. As expected, each resource features its own domain, 

architecture and interface standards, i.e., resources are heterogeneous and distributed. 

Table 7-2 list the resources and pointers integrated in the new Diseasecard. 

Table 7-2. Diseasecard integrated resources. 

NODE RESOURCE DESCRIPTION 

Disease 
NORD http://www.rarediseases.org/  

OMIM http://www.omim.org/ 

Drug PharmGKB http://www.pharmgkb.org/ 

Literature Pubmed http://www.ncbi.nlm.nih.gov/pubmed/ 

Locus 

Ensembl http://www.ensembl.org/ 

Entrez http://www.ncbi.nlm.nih.gov/gene/  

GeneCards http://www.genecards.org/  

HGNC http://www.genenames.org/  

Ontology GO http://amigo.geneontology.org/  

Protein 

UniProt/SwissProt http://www.uniprot.org/ 

UniProt/TrEMBL http://www.uniprot.org/ 

PDB http://www.pdb.org/ 

Expasy http://expasy.org/ 

InterPro http://www.ebi.ac.uk/interpro/ 

Variome WAVe http://bioinformatics.ua.pt/WAVe 

One of COEUS major features is the prompt availability of interoperability services. In 

Diseasecard, the services required for accessing data are enabled by default.  

The wealth of data collected during the data integration process is available through 

REST services, a SPARQL endpoint and a LinkedData view. Furthermore, the REST services 

and SPARQL endpoint are already used within Diseasecard client-side application. 
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Considering the constructed knowledge base a single platform without Diseasecard’s 

web application, it is, per se, a single unique resource for the rare disease community. Life 

sciences developers can exploit this data collection to build or extend existing applications. 

From a modern application perspective, Diseasecard can also be seen as platform with 

multiple applications. While for now only a web information system is available, COEUS 

robustness permits deploying applications targeted at the desktop or mobile devices, using 

the same set of APIs and accessing the original knowledge base. 

The rare diseases dataset build using COEUS flexible integration engine results in a 

strikingly rich semantic knowledge base. This opens the room for further exploratory 

endeavours, namely using reasoning and inference. Whilst these features are not yet a part 

of the new Diseasecard, they will be made available through innovative user interactions in 

Diseasecard’s web workspace. 

7.3  Discussion 
7.3.1  A Suitable Software Infrastructure for each 
Bioinformatician 
As the miscellaneous "omics" fields branch new domains and research specializations, the 

technological needs for each field revolve around a common set of problems. Managing 

data, accessing and integrating information from other laboratories, or providing recently 

discovered knowledge to others are essential steps in the path of making science. 

While it is nearly impossible to satisfy the requirements from all life sciences research 

fields, we can promote the use of technologies and tools that facilitate accomplishing all of 

the project's software-related goals. In a broad sense, this is our main objective with the 

COEUS framework. 

The COEUS platform is a powerful development environment. Its scalability and 

flexibility make it ideal for highly heterogeneous scenarios and apt for the challenging 

requirements associated with particular "omics" fields. In fact, COEUS targets the 

improvement of niche fields, empowering amateur and professional developers with the 

tools to quickly model, integrate and publish data. Furthermore, the semantic web ideals 

span through all framework's components, from the integration of data to the 

interoperability with other tools. This provides limitless resource integration architectures 

with advanced data exploration features. With the former we are able to triplify almost all 

existing data into a new richer knowledge base and, complementarily, with the latter, we 
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are able to access collected data by multiple means. This enables the creation of custom 

application ecosystems with comprehensive architectures. Bioinformaticians can program 

interfaces in any language and easily target web, desktop or mobile environments. 

Furthermore, by publishing data through the SPARQL and LinkedData interfaces, new 

systems will be part of the global web of knowledge. With the widespread use of COEUS and 

other similar tools, we expect that each bioinformatician can create its own technological 

infrastructure that goes beyond the boundaries of project-specific internal use. 

Whereas the strategies adopted in the EU-ADR Web Platform and WAVe consisted in the 

adoption of traditional relational databases, COEUS empowers the creation of semantic 

knowledge bases. This enables a whole new level of knowledge exploration through the 

aforementioned SPARQL and LinkedData interfaces that allow the creation of complex 

knowledge reasoning and inference features. Diseasecard’s dataset has innate semantics; 

collected data has an undisclosed meaning that can be explored to obtain new vital 

connections between genes and diseases. Likewise, COEUS brings this semantic web layer, 

and its underlying semantic features, to all bioinformaticians in any life sciences field. 

7.3.2  Applying COEUS to the Rare Diseases Research Field 
Research on rare diseases is of growing importance in the last couple of years. Uncovering 

the underlying genetic causes of rare diseases is the first step towards a better 

comprehension of our health, making us one step closer of the individualized healthcare 

panacea. Moreover, the funding and interest in large-scale rare disease projects has been 

renewed, namely within the European Union. 

Since 2004, Diseasecard has been contributing to this research field by providing a 

portal with information regarding rare diseases and connections to a myriad of resources 

contextualized to each disease. Despite its quality, the legacy Diseasecard is an out-dated 

system, with an architecture that is no longer efficient for the current bioinformatics 

landscape. With COEUS, we have the opportunity to overcome the original Diseasecard's 

caveats, deploying a richer application, with a reengineered architecture and re-designed 

user interface. As previously mentioned, the combination of rapid application development 

with biomedical semantics is a key enabler of the next-generation of bioinformatics and 

the new Diseasecard is the first step towards this bright future. 

The new Diseasecard, powered by COEUS, improves on the legacy version in three 

distinct aspects, discussed next. 
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 With a semantic knowledge base supporting the application, collected and 

connected data are richer and more meaningful. Whilst these capabilities are not 

yet fully explored, the open possibilities are immense. Establishing new 

relationships between OMIM's disease data and multiple ontologies or external 

resources generates a comprehensive rare disease dataset, enabling the inference of 

unique connections that would not be possible to obtain otherwise. 

 Data in the knowledge base are now interoperable using COEUS default API. REST 

services, a SPARQL endpoint and a LinkedData interface are available for others to 

explore the dense rare disease data graph compiled in the new Diseasecard. 

 The new Diseasecard web workspace is a significant improvement over the legacy 

version. Disease synonyms, the navigation tree and the new navigation graph 

present a more interactive and usable interface. 

Diseasecard is the first COEUS instance and represents our initial endeavour towards 

the future of web-based biomedical applications. The new Diseasecard is available online at 

http://bioinformatics.ua.pt/dc4/. 
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8.  FUTURE PERSPECTIVES AND 
CONCLUSIONS 

“When it comes to the future, there are three kinds of people: those who let it happen, those who make it 
happen, and those who wonder what happened.” 

- John M. Richardson, Jr. 

 

This thesis is set against the backdrop of a number of challenges to effectively enhance the 

use of service composition strategies within the biomedical software domain. The most 

prominent of these issues regards the explosive growth of data size and complexity 

generated in large-scale life sciences research projects, smaller laboratories or general 

practitioners databases. This evolution is pushing forward new demands regarding the 

scope expansion from multiple “omics” branches to holistic systems biology visions. 

Addressing these issues, whilst bridging the gap from data acquisition to data publishing, is 

a huge problem for the bioinformatics domain, whose last decade was characterized by 

unrestricted developments. In parallel, other drawbacks such as the discovery of data, the 

semantic exploration of knowledge or the requirements from policy makers allows us to 

encompass and organize these demands in the area of service composition for integration 

and interoperability. 

The work detailed in the preceding six chapters reports our efforts to understand 

service composition in the biomedical software domain and to introduce new solutions that 

leverage on innovative strategies to enhance the process of developing biomedical 

applications. This final chapter highlights the produced results, introduces future lines of 

work in various research and business areas, and discusses the open path for the next 

generation of bioinformatics software. 

8.1  Results 
The overarching objectives of this doctorate work revolved around three general goals: the 

evaluation of existing service composition strategies for biomedical applications, the 

exploration of state-of-the-art service composition technologies for use in the 
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bioinformatics research domain, and the development of innovative service composition 

solutions to tackle the broad set of challenges behind the bioinformatics revolution.  

Chapter 2 includes a detailed analysis of the biomedical applications domain. From this 

evaluation it is clear that the bioinformatics software landscape is fragmented and highly 

heterogeneous. Despite multiple efforts towards the standardization of data models and 

services, the uncanny relationships amongst these elements highlight the demand for 

innovative solutions.  

Advanced service composition strategies are required to enable bioinformatics for the 

21st century. Adequate integration and interoperability methods must be created and 

applied to assure the continuous evolution of this field, thus making the personalized 

medicine panacea a reality. 

From the deep exploration of state-of-the-art strategies and technologies for service 

composition, discussed in chapter 3, three ideas arise to overcome biomedical software 

challenges: the use of rapid application development methods, the emergence of platform-

centric architectures, and the semantic web paradigm. 

Rapid application development ideals define a set of principles to foster the faster 

creation and re-creation of applications from scratch, aiming at a speedier software 

delivery rate. Platform-centric architectures are an emerging trend with growing relevance. 

Focused on a centralized knowledge base accessible through multiple APIs, this model is 

being used in major modern systems, from Evernote to GitHub. With this model validated 

in large-scale real-world scenarios, it must be moved to the biomedical software domain. At 

last, the semantic web paradigm, with its standards for describing, managing and exploring 

knowledge, is the perfect solution for fundamental life sciences challenges. Content 

heterogeneity, information distribution, data integration, software interoperability or 

reasoning and inference issues, among others, can be solved with the adoption of semantic 

web technologies and guidelines. 

As a consequence of these evaluation and exploratory research, new strategies were 

developed to endow the life sciences community with innovative technologies for service 

composition in biomedical applications: the EU-ADR Web Platform, WAVe and COEUS. 

These contributions add real value to the service composition for integration and 

interoperability state-of-the-art. 
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The EU-ADR Web Platform introduces four major scientific advances for the research 

community, namely on the field of software interoperability: 

 a new interoperability standard was created to empower the interdisciplinary 

communication amongst the various EU-ADR project services;  

 a strategy based on Taverna workflows was devised to enable the combination of 

results from the various EU-ADR project services; 

 a strategy for a new Taverna-based workflow execution engine was 

implemented to facilitate the inclusion of Taverna workflows into generic Java 

applications; 

 a web-based workspace was designed to deliver advanced pharmacovigilance 

studies to any stakeholder in pharmacogenomics and drug safety. 

WAVe is an unique resource for human variome data, supported by a set of new service 

composition strategies for resource integration: 

 the lightweight data integration strategy enables the easy gathering of data 

from miscellaneous heterogeneous resources; 

 the extensible data model permits the dynamic addition of new data 

relationships without breaking the application setup; 

 the REST API is a unique resource for querying genetic variation datasets; 

 the web interface introduces new features essential for in-context gene analysis 

and to ensure content accreditation. 

Crossing the boundaries of integration and interoperability is COEUS. Combining the 

three identified strategies for groundbreaking service composition, our efforts were 

concerted towards conceiving innovative approaches to support a new semantic web rapid 

application development framework, sustained by a platform-centric application 

architecture. 

The resulting framework, COEUS, encloses four essential breakthroughs for the 

biomedical software and semantic web communities: 

 the set of new algorithms created to enhance rapid application development, 

further fostering the adoption of semantic web ; 

 the flexible integration strategies designed and implemented to enable the 

semantic acquisition of data from heterogeneous resources; 

 the semantic web strategies envisaged to permit future-proof software 

interoperability and facilitate reasoning and inference over acquired knowledge; 
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 the innovative approaches for distributed knowledge federation. 

These results highlight the successful accomplishment of this thesis’ aims, effectively 

replying to the initial research challenge. 

8.2  Future Perspectives 
8.2.1  Beyond Service Composition 
With computer science evolution we changed the way we evaluate and use web services. A 

couple decades ago, thinking about services was directly related with intelligent agents. 

Then came the understanding of web services as essential software architecture elements, 

optimal for event-driven scenarios or large distributed ICT infrastructures. These 

approaches leveraged new requirements and the standardization of web services appeared 

naturally. Nowadays, this legacy use of web services is in decay. 

When standards appeared, their imposed limitations were seen as beneficial for the 

progression of service composition strategies. The reasoning behind SOAP, WSDL and UDDI 

was clearly focused on controlling all interactions and data exchanges between a set of 

services. These constraints increase the system architecture robustness but severely hinder 

its flexibility and efficiency. This is the major cause for REST's success. Being based strictly 

on the open HTTP protocol, REST is becoming increasingly popular amongst developers 

mostly due to its unrestricted approach. Using REST, the data model validation is passed on 

to the application level where it can be controlled more freely. Notwithstanding, SOAP is 

still the best solution for tightly controlled scenarios, as shown with the EU-ADR Web 

Platform. 

Without the format and standard limitations, REST enables the exchanges of much 

richer data, at both ends of the spectrum. On the one hand, we can easily exchange heavy 

RDF data represented in any format and adhering to any ontology. On the other hand, we 

can exchange light JSON objects through really fast APIs. Hence, the adoption of REST 

guidelines in both WAVe and COEUS. 

Within the various strategies developed in this thesis’ work, the state-of-the-art is 

covered and future enhancements to this field are proposed. The strategies supporting the 

EU-ADR Web Platform, WAVe and COEUS actively go beyond service composition, 

delivering advanced algorithms for data integration and software interoperability. 

The future withholds many developments in cloud computing and these architectures 

are the pinnacle of software-as-a-service. For instance, in Amazon's offer, everything can 
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be consumed as a service, from data storage to processing power. With these cloud-centric 

approaches, data are always online and always available through and for miscellaneous 

web services. Whether we are posting something on Twitter or performing BLAST sequence 

alignments, web services will be intrinsically and transparently used in these operations. 

With the combination of cloud-based architectures and software-as-a-service ideals, the 

future of research goes beyond simple service compositions to completely new 

reproducible research environments, where data, features and services act as one entity 

available to everybody. 

8.2.2  Linked Data and the Semantic Web 
The future of the Internet lies in its evolution to more semantic environments. The 

ongoing transition from a Web of documents to a Web of data will lead to a new Internet, 

where anyone can easily query and reason over data (and its inner relationships) that are 

distributed and disjoint by nature. With current technologies we can already implement 

systems that automatically generate service composition workflows based on a set of rules 

predefined in an ontology. Internet 3.0, the intelligent Internet is already here. 

The Linked Data Cloud is growing exponentially with data from the most diverse 

disciplines. The W3C recently approved a new interest group focused on understanding and 

promoting the use of Linked Data as a platform65. Moreover, semantic features are already 

intrinsically inside everyday tools, such as Google66 or Facebook67. In addition, the power of 

semantics is also being harvested for applications in the industry for mobile scenarios, 

health care environments or media campaigns. 

While the life sciences are definitive innovation driver in this field, there are challenges 

ahead to fill in the gaps surrounding this immense technological potential. COEUS is a 

suitable tool to tackle these challenges, with its combination of semantic web ideals and 

rapid application development principles. To build the Internet as a worldwide knowledge 

network will require efforts from all stakeholders involved in the life sciences community 

and, to be a part of this network, bioinformatics developers must embrace the change to a 

new semantic web paradigm, a change actively facilitated by COEUS. 

                                                        
65

 http://www.w3.org/2012/ldp/  
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8.2.3  Worldwide Knowledge Networks 
With a more intelligent Internet, we can explore and reason over data that are scattered 

everywhere. With data represented according to LinkedData guidelines, it will be easier to 

access data without a database: the Internet is the actual knowledge base. The new Web of 

Data will be the source for miscellaneous semantic integration systems that are capable of 

accurately understand and interpret heterogeneous data whilst hiding the complexities of 

the underlying semantic technologies. 

Nowadays, most available tools are highly sophisticated platforms completely out of the 

general developers’ reach. With new frameworks like COEUS, the transitions from a legacy 

environment to the modern Web of Data are eased. To be a part of this worldwide 

knowledge network, existing data must be translated into new semantic formats. Work on 

data triplification enables the production of rich knowledge bases. Continuing this effort to 

create semantic versions that replace existing resources is essential to reveal the true 

knowledge behind them, through advanced reasoning and knowledge inference strategies. 

Even if the adoption of these strategies is only tangible and focused on niche fields, there 

are already technologies to connect these highly specialized systems to the Web of Data, 

making them an active part of a truly intelligent, worldwide, distributed, knowledge 

network. 

The data behind this network foster the creation of more modern software platforms, 

using richer datasets and, consequently, providing richer user features. The most recent 

success case is the 2012 Olympics sports site built by BBC68. The BBC’s sports knowledge 

base contains linked information for all athletes, teams, nations and modalities, among 

others, occurring during the event. This huge semantic knowledge base powers up the 

entire news infrastructure. In addition to allowing reporters to write richer news, BBC’s 

architecture allows the dynamic creation of semantically rich applications, targeting 

mobile or web environments, containing all the relevant information for a given topic or 

domain. 

8.2.4  Modern Software Platforms 
In the post-PC era mobile devices are gaining relevance in our daily lives and work. 

Smartphones and tablets are no longer simple communication devices; they are an open 

door to the information highway that can be use for learning, leisure or work. Along with 

                                                        
68
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the evolution of our conception of the personal computer came the democratization of 

technology. Everyone is familiar with a computer and, most notably, the software 

development process is now fairly trivial. With the latter came a new wave of technologies 

and frameworks that allow almost anyone to build a new application. Likewise, this also 

prompted many experts from miscellaneous domains to start developing software. The 

outcome of this evolution can be assessed in two ways. On the one hand, there are many 

more high-quality applications using all the richness provided by our devices. However, on 

the other hand, the overall quality standard of the applications has also been lowered. 

New applications are built from scratch to interact with multiple ecosystems or to 

create new ones. We cannot imagine any developer launching a social application without 

including Facebook connections. Similarly, crafting new user and data ecosystems can 

leverage on existing semantics to provide deeper and meaningful interactions with other 

networks. Whether we are building a new protein interaction network or a social network, 

the relationship semantics and the demands to interact with external environments are 

omnipresent. 

With virtually centralized cloud-based data stores and software-as-a-service ideals, the 

door is open for rapid application development frameworks. Creating a modern software 

platform is nowadays a task of "code once, build to many" where the service-based 

implementations are shared through desktop, web, TV and mobile clients. COEUS 

underlying architecture enables the adoption of this trend by bioinformatics developers, 

tackling the challenge of moving innovative technologies to the life sciences. The 

principles and ideals behind modern software architectures are common to bioinformatics 

systems and the overall life sciences community, from wet-lab researchers to clinicians, 

will be tremendously benefited from embracing them. 

8.2.5  Business Value 
Nowadays, research and enterprise can no longer afford to live in separate worlds. 

Research requires private funding and interest to be sustainable and enterprises rely on 

advanced research to continue the pursuit of innovation. For this matter, it is our belief 

that every research work should be envisaged as a commercial product. From the various 

contributions discussed in this thesis, the COEUS framework is the one with the biggest 

business value. 

COEUS tackles not only the challenges regarding the use of semantic web technologies, 

but also the ones inherent to deploying a modern software platform. Whilst the first case 
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study, Diseasecard, is built for the biomedical applications domain, many other scenarios 

can be explored with COEUS. The comprehensive integration connectors, the flexible 

triplification engine and the set of data exploration APIs, make COEUS suitable for adoption 

in pharmaceutical industry solutions, news aggregations, multimedia datasets or education. 

From a marketing perspective, the advanced client-side development features allow the 

creation of multiple applications sharing the same codebase. In a sense, COEUS permits the 

creation of our own custom data and services cloud, enabling the introduction of several 

applications tailored to different market segments. With COEUS, the gap from research to 

business is actively reduced, allowing future endeavours in building a commercial product. 

8.3  Conclusion 
The time has come to take bioinformatics software development to a whole new level. 

Computer sciences’ advances over the last decade have launched a series of transitions in 

the way we understand and use technologies. Service composition strategies have matured 

and play a vital role in the evolution of modern software platforms. In parallel, the quest 

for knowledge is also improved by the emergence of the semantic web paradigm. 

Stemming from artificial intelligence, the semantic web principles are revolutionizing the 

way we store, share, reason and explore available data. All these innovative technological 

advances must find their way into biomedical applications. 

The various solutions reported in this thesis are a remarkable evolution over the 

current practices for service composition strategies in biomedical software, especially the 

new proposed methods that better suit bioinformatics’ demands. In this field, service 

composition revolves around integration and interoperability. This means that we must 

identify the best algorithms to combine the many pieces for the integration of resources or 

for the publication of the content in a knowledge base through interoperable interfaces. 

Where WAVe is focused on the former and the EU-ADR Web Platform on the latter, COEUS 

covers both ends with a unique approach to combine semantic web technologies with the 

need for integration and interoperability. The practicality of COEUS resides in its 

streamlined development process. By adopting rapid application development principles, 

the framework offers control over a set of reusable assets that can be quickly mixed to 

build modern, dynamic and intelligent software ecosystems. 

The combination of all contributions described in this thesis accomplishes the initial 

objectives. We have individually assessed multiple service composition strategies for 
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integration and interoperability and created products using new innovative solutions. 

Moreover, we have successfully introduced a new software package that goes beyond what 

has been done before, effectively fulfilling this doctorate research goals and contributing to 

the advance of the biomedical applications state-of-the-art. 
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