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resumo 
 

 

Os organismos aquáticos podem estar constantemente expostos a 
cianotoxinas e contaminantes antropogénicos provenientes das florescências 
de cianobactérias e das atividades humanas, respetivamente. A microcistina-
LR (MC-LR) e a cilindrospermopsina (CYN) são as cianotoxinas mais 
frequentemente detetadas nas florescências de cianobactérias e têm sido 
encontradas simultaneamente na água. Os metais e pesticidas são 
contaminantes antropogénicos normalmente encontrados no ambiente 
aquático como resultado da intensificação das atividades agrícolas e 
industriais. O cádmio (Cd) e a terbutilazina (TBA) foram selecionados como 
exemplos de metais e pesticidas que podem co-ocorrer com cianotoxinas no 
ambiente. No entanto, o risco ecotoxicológico combinado de cianotoxinas e/ou 
contaminantes antropogénicos existentes no ambiente aquático é ainda pouco 
conhecido. O presente trabalho teve como objetivo identificar alguns padrões e 
comportamentos biológicos relativamente a este tipo de combinações. Os 
efeitos de misturas binárias de MC-LR, CYN, Cd e TBA foram avaliados nas 
taxas de crescimento da alga Chlorella vulgaris após 4 e 7 dias de exposição, 
usando o modelo de referência de ação independente (AI). A ferramenta 
MIXTOX foi usada para avaliar possíveis desvios ao modelo de referência 
(devido a interações entre compostos), tais como sinergismo/antagonismo, 
dependência da dose ou do rácio da mistura. Os resultados demonstraram 
vários padrões de resposta, dependendo da mistura binária testada. Foi 
detetado sinergismo na mistura de MC-LR e CYN em ambos os períodos de 
exposição. Na mistura de MC-LR e TBA, houve um desvio dependente do 
nível da dose entre os componentes para ambos os períodos de exposição, 
onde se observou antagonismo e sinergismo para concentrações baixas e 
elevadas de ambos os compostos, respetivamente. Na mistura de MC-LR e 
Cd, registou-se antagonismo após 4 dias de exposição e um desvio 
dependente do nível da dose entre os componentes após 7 dias de exposição, 
observando-se sinergismo e antagonismo para concentrações baixas e 
elevadas de ambos os compostos, respetivamente. Embora na mistura de 
CYN e TBA se tenha observado um desvio dependente do rácio entre os 
componentes, com um padrão de antagonismo perante a dominância da CYN, 
na mistura de CYN e Cd observou-se antagonismo após 4 dias de exposição. 
Após 7 dias de exposição foi observado um padrão semelhante de resposta 
em ambas as misturas contendo CYN, ou seja, um desvio dependente do nível 
da dose entre os componentes na qual se observou sinergismo para as 
concentrações baixas e antagonismo para as concentrações elevadas 
testadas de ambos os compostos. 

 



 

  

 

 

 

 

 

 

 

 

 

 

  

  

 Para a mistura de TBA e Cd, registou-se antagonismo após 4 dias de 
exposição e um desvio dependente do nível das doses entre os 
componentes (antagonismo para concentrações baixas e sinergismo para 
concentrações elevadas de ambos os componentes) após 7 dias de 
exposição. Devido à diversidade de efeitos e comportamentos que podem 
resultar da combinação de tóxicos bastante comuns, este estudo mostra a 
importância de avaliar os efeitos combinados de cianotoxinas e/ou 
contaminantes antropogénicos. 
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abstract 

 
Aquatic organisms may be exposed to cyanotoxins and anthropogenic 
contaminants originated from harmful cyanobacterial blooms and human 
activities, respectively. Microcystin-LR (MC-LR) and cylindrospermopsin (CYN) 
are the most frequently detected cyanotoxins in harmful cyanobacterial blooms 
and have been simultaneously reported in the water. Metals and pesticides are 
anthropogenic contaminants commonly found in the aquatic environment as a 
result of the intensification of agricultural and industrial activities. Cadmium 
(Cd) and terbuthylazine (TBA) were chosen as an example of the possible 
metals and pesticides that can co-occurr with cyanotoxins in the environment. 
However, the ecotoxicological risk of combinations of cyanotoxins and/or 
anthropogenic contaminants in the aquatic environment needs more studies. 
The present work aimed to elucidate some biological behaviours and patterns 
regarding these combinations. The effects of binary mixtures of MC-LR, CYN, 
Cd and TBA on the growth rate of the freshwater algae Chlorella vulgaris were 
assessed after 4 and 7 days of exposure using the reference model of 
independent action (IA). The MIXTOX tool was used to detect possible 
deviations (due to the interaction between compounds) from the reference 
model such as synergism/antagonism, dose ratio and dose level dependency. 
The results demonstrated that several patterns of response were obtained 
depending on the binary mixture. Synergism was detected in the mixture of 
MC-LR and CYN for the two exposure periods. In the MC-LR and TBA mixture, 
a dose-level deviation was observed for the two exposure periods indicating 
antagonism at low dose levels and synergism at high dose levels. In the MC-LR 
and Cd mixture, deviations for antagonism were found for a 4-day exposure 
period while a dose-level deviation was observed for a 7-day exposure period 
showing synergism at low dose levels and antagonism at high dose levels. A 
dose-ratio deviation was observed in the CYN and TBA mixture, with a pattern 
for antagonism when CYN was the compound dominant, while deviations for 
antagonism were observed in the CYN and Cd mixture for a 4-day exposure 
period. Similar patterns of response were obtained for both mixtures involving 
CYN after 7 days of exposure, namely dose-level deviation indicating 
synergism at low dose levels and antagonism at high dose levels. For TBA and 
Cd mixture, antagonism was found for a 4-day exposure period and a dose-
level deviation (antagonism at low dose levels and synergism at high dose 
levels) was observed for a 7-day exposure period. Due to the diversity of 
effects and behaviours that can result from the combination of very common 
toxicants, this study shows the importance of evaluating the combined effects 
of cyanotoxins and/or anthropogenic contaminants. 
 



 
i 

 

Contents 

 

 

List of Figures………………………………………………………………………….. vii 

List of Tables…………………………………………………………………………... xiii 

Abbreviations………………………………………………………………………….. xvii 

  

Chapter I……………………………………………………………………………… 1 

1. General introduction……………………………………………………………... 3 

1.1. Cyanobacteria………………………………………………………………… 3 

1.2. Cyanotoxins…………………………………………………………………... 4 

1.2.1. Microcystins………………………………………………………….... 7 

1.2.2. Cylindrospermopsin…………………………………………………… 10 

1.3. Cyanobacterial blooms……………………………………………………….. 13 

1.4. Toxic metals and pesticides in aquatic environment…………………………. 20 

1.4.1. Cadmium……………………………………………………………… 20 

1.4.2. Terbuthylazine………………………………………………………… 25 

1.5. Models used in mixture toxicity assessment…………………………………. 29 

1.6. Rationale and aims…………………………………………………………… 32 

1.7. Relevance of the study………………………………………………………. 33 

1.8. Dissertation organization…………………………………………………….. 34 

References………………………………………………………………………... 35 

  

  

Chapter II…………………………………………………………………………….. 51 

2. The interactive effects of microcystin-LR and cylindrospermopsin on the 

growth of the freshwater algae Chlorella vulgaris……………………………… 53 

Abstract…………………………………………………………………………… 54 

2.1. Introduction…………………………………………………………………... 55 

2.2. Material and Methods………………………………………………………… 57 

2.2.1. Test organism, cyanobacterial strains and culture conditions…………. 57 

2.2.2. MC-LR extraction, purification and quantification……………………. 58 



 
ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
iii 

 

2.2.3. CYN extraction, purification and quantification………………………. 59 

2.2.4. Experimental design…………………………………………………… 60 

2.2.5. Growth inhibition test with C. vulgaris………………………………... 62 

2.2.6. Data analysis…………………………………………………………… 63 

2.3. Results………………………………………………………………………… 66 

2.3.1. Chemical analysis……………………………………………………… 66 

2.3.2. Single exposures……………………………………………………….. 66 

2.3.3. Mixture exposures……………………………………………………... 68 

2.4. Discussion…………………………………………………………………….. 71 

2.4.1. Single exposures……………………………………………………….. 71 

2.4.2. Mixture exposures……………………………………………………... 75 

2.5. Conclusion…………………………………………………………………….. 78 

References………………………………………………………………………… 79 

  

  

Chapter III……………………………………………………………………………. 87 

3. Effects of binary mixtures of cyanotoxins and anthropogenic contaminants 

on the growth rate of the freshwater algae Chlorella vulgaris…………………. 89 

Abstract…………………………………………………………………………… 90 

3.1. Introduction…………………………………………………………………… 91 

3.2. Material and Methods…………………………………………………………. 93 

3.2.1. Test chemicals…………………………………………………………. 93 

3.2.2. Test organism and cyanobacterial strains……………………………… 94 

3.2.3. MC-LR extraction, purification and quantification……………………. 95 

3.2.4. CYN extraction, purification and quantification………………………. 96 

3.2.5. Experimental design…………………………………………………… 97 

3.2.5.1. Single-chemical exposures…………………………………….. 97 

3.2.5.2. Binary mixture exposures……………………………………… 99 

3.2.6. Data analysis…………………………………………………………… 101 

3.3. Results………………………………………………………………………… 104 

3.3.1. Chemical analysis……………………………………………………… 104 

3.3.2. Single-chemical exposures…………………………………………….. 104 



 
iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
v 

 

3.3.3. Binary mixture exposures……………………………………………… 107 

3.4. Discussion…………………………………………………………………….. 114 

3.4.1. Single-chemical exposures…………………………………………….. 114 

3.4.2. Binary mixture exposures……………………………………………… 116 

3.5. Conclusion…………………………………………………………………….. 123 

References………………………………………………………………………… 124 

  

  

Chapter IV……………………………………………………………………………. 135 

4. General discussion and final considerations……………………………………. 137 

References………………………………………………………………………… 142 

 



 
vi 

 

 

 

 

 

 

 

 

 

 



 
vii 

 

List of Figures 

 

 

Chapter I 

Figure 1 – General chemical structure of microcystins. In microcystin-LR, X represents L-

leucine, Z L-arginine and R1 and R2 CH3………………………………………………...…7 

 

Figure 2 – Chemical structure of cylindrospermopsin. In cylindrospermopsin, R represents 

OH group while in 7-epicylindrospermopsin R represents OH epimer group. In the other 

structural variant, 7-deoxycylindrospermopsin, R is H........................................................11 

 

Figure 3 – Conceptual diagram, illustrating the multiple interacting environmental factors 

controlling harmful cyanobacterial bloom formation and proliferation along the freshwater-

marine continuum. Key factors controlling cyanobacterial growth and dominance such as 

nutrient inputs/availability, water column transparency, mixing conditions, water residence 

times, temperature and grazing are shown. From Paerl & Paul (2012) …...………….…..15 

 

Figure 4 – Source-pathway model for general cadmium flow. From Pan et al. (2010)…..21 

 

Figure 5 – Chemical structure of terbuthylazine………………………………...………..26 

 

Figure 6 – Major degradation pathways (biotic and abiotic) of terbuthylazine. From Gikas 

et al. (2012) ………………………………………………………………………………..28 

 

 

Chapter II 

Figure 1 – A schematic ray design of the combinations used for the microcystin-LR and 

cylindrospermopsin mixture……………………………………………………………….64 

 



 
viii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
ix 

 

Figure 2 – Growth rate of the microalgae Chlorella vulgaris after 4 (black bars) and 7 

(grey bars) days of exposure to pure MC-LR (right side) and CYN (left side) in the single 

exposures of the mixture experiment. Results are expressed as average ± standard error. (*) 

and () Denotes data significantly different from control at the fourth and seventh day of 

exposure (Dunnett’s method, P < 0.05)………………………………………………...…67 

 

Figure 3 – Concentration-response relationship for the binary mixture of microcystin-LR 

and cylindrospermopsin showing a synergist pattern after IA model for the growth rate of 

C. vulgaris on the 4
th

 and 7
th

 day of exposure (2D isobolic surface). Concentrations of 

cyanotoxins reported as effective values……………………………………………….…70 

 

 

Chapter III 

Figure 1 – A schematic ray design of the combinations used for the microcystin-LR and 

terbuthylazine, microcystin-LR and cadmium, cylindrospermopsin and terbuthylazine, 

cylindrospermopsin and cadmium……………………………………………………….100 

 

Figure 2 – A schematic full factorial design of the combinations used for the 

therbuthylazine and cadmium mixture…………………………………………………...101 

 

Figure 3 – Concentration-response relationship for the binary mixtures of microcystin-LR 

and terbuthylazine and microcystin-LR and cadmium tested on the growth rate of C. 

vulgaris after 4 and 7 days of exposure (2D isobolic surface). A, B and D show a dose 

level deviation from the IA model; C shows an antagonistic pattern after IA model fit. 

Concentrations of microcystin-LR reported as effective values and concentrations of 

terbuthylazine and cadmium reported as nominal concentrations……………………….109 

 



 
x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
xi 

 

Figure 4 – Concentration-response relationship for the binary mixtures of 

cylindrospermopsin and terbuthylazine and cylindrospermopsin and cadmium tested on the 

growth rate of C. vulgaris after 4 and 7 days of exposure (2D isobolic surface). A shows a 

dose ratio deviation from the IA model; B and D show a dose level deviation from the IA 

model; and C shows an antagonistic pattern after IA model fit. Concentrations of 

cylindrospermopsin reported as effective values and concentrations of terbuthylazine and 

cadmium reported as nominal concentrations……………………………………………111 

 

Figure 5 – Concentration-response relationship for the binary mixture of terbuthylazine 

and cadmium tested on the growth rate of C. vulgaris after 4 and 7 days of exposure (2D 

isobolic surface). A shows an antagonistic pattern after IA model fit and B show a dose 

level deviation from the IA model. Concentrations of terbuthylazine and cadmium reported 

as nominal concentrations………………………………………………………………..112 

 



 
xii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
xiii 

 

List of Tables 

 

 

Chapter I 

Table 1 – Cyanotoxins and their classifications based on the chemical structure and the 

mechanism of action on vertebrates including a brief description of their representative 

producers, the molecule mode of action, the causative residue of the toxin molecule and the 

detoxification pathways. GST is glutathione S-transferase, CYP450 is cytochrome P450. 

Adapted from Wiegand & Pflugmacher (2005)…………………………………………….6 

 

Table 2 – Review on the studies investigating the effects of MCs on aquatic microalgae 

from literature……………………………………………………………………………...17 

 

 

Chapter II 

Table 1 – Interpretation of additional parameters (a and b) that define the functional form 

of deviation patterns from independent action. EC50 is the median effect 

concentration………………………………………………………………………………65 

 

Table 2 – Summary of the analysis done for the effects on the growth rate of C. vulgaris 

exposed for 4 days to the binary mixture of MC-LR and CYN…………………………..68 

 

Table 3 – Summary of the analysis done for the effects on the growth rate of C. vulgaris 

exposed for 7 days to the binary mixture of MC-LR and CYN…………………………..69 

 

Table 4 – EC50 values (with the standard errors, in mg.L
-1

) and synergistic ratios (SRs) 

estimated and calculated, respectively, for cylindrospermopsin when co-occurring with 

each concentration of microcystin-LR in the mixture experiments……………………….71 

 



 
xiv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
xv 

 

 

Chapter III 

 

Table 1 – Interpretation of additional parameters (a and b) that define the functional form 

of deviation patterns from independent action. EC50 is the median effect 

concentration……………………………………………………………………………..103 

 

Table 2 – NOEC, LOEC and EC50 values (with corresponding standard errors), in mg.L
-1

, 

for the effect of selected chemical substances on the growth rate of Chlorella vulgaris 

exposed for 4 and 7 days in Z8 medium. NOEC is the no observed effects concentration, 

LOEC the lowest observed effect concentration and EC50 the median effect 

concentration……………………………………………………………………………..106 

 

Table 3 – Summary of the analysis done for the effects on the growth rate of C. vulgaris 

exposed for 4 and 7 days to the binary mixture of microcystin-LR and terbuthylazine, 

microcystin-LR and cadmium, cylindrospermopsin and terbuthylazine, cylindrospermopsin 

and cadmium and finally terbuthylazine and cadmium (Chem 1 × Chem 2, 

respectively)……………………………………………………………………………...108 

 

Table 4 – EC50 values (with the standard errors, in mg.L
-1

) and synergistic ratios (SRs) 

estimated and calculated, respectively, for terbuthylazine (TBA) and cadmium (Cd) when 

co-occurring with each concentration of microcystin-LR in the mixture 

experiments………………………………………………………………………………113 

 

 



 
xvi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
xvii 

 

Abbreviations 

 

Listed alphabetically 

 

Ar  Relative atomic mass 

Ala  Alanine 

Adda  (2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-

trimethyl-10-phenyldeca-4,6-dienoic acid 

ANOVA  One-way analysis of variance 

ATP  Adenosine triphosphate 

BBB  Blood brain barrier 

CA  Concentration addition 

CCE  Cyanobacterial crude extract 

CYN  Cylindrospermopsin 

CYP450  Cytochrome P450 

D-MeAsp  D-erythro-β-methylaspartic acid 

DL  Dose level dependency 

DNA  Deoxyribonucleic acid 

DR  Dose ratio dependency 

ECx  Effect concentration of the chemical i that 

provoke x% of the effect 

EU  European Union 

GJIC  Gap junctional intercellular communication 

Glu  Glutamate 

GPx  Glutathione peroxidase 

GR  Glutathione redutase 

GSH  Glutathione 

GST  Glutathione S-transferase 

HAB  Harmful cyanobacterial bloom 

HPLC  High performance liquid chromatography 

IA  Independent action 

IARC  International Agency for Research on Cancer 



 
xviii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
xix 

 

LOEC  Lowest observed effect concentration 

LPS  Lipopolysaccharide 

MCs  Microcystins 

Mdha  N-methyldehydroalanine 

MoA  Mode of action 

MW  Molecular weight 

NOEC  No observed effect concentration 

OATP  Organic anion transport protein 

OECD  Organization for Economic Co-operation and 

Development 

OD  Optical density 

PDA  Photo diode array 

POD  Peroxidase 

PP  Protein phosphatases 

PPP  Plant protection products 

PSII  Photosystem II 

PVC  Polyvinyl chloride 

ROS  Reactive oxygen species 

SOD  Superoxidase dismutase 

SR  Synergistic ratio 

TBA  Terbuthylazine 

TDI  Tolerated daily intake 

TFA  Trifluoracetic acid 

TU  Toxic unit 

U.S.EPA  US Environmental Protection Agency 

WHO  World Health Organization 

 



 
xx 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter I 
 

 

 

 

 

 



Chapter I 

 

 

 
2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter I 

 

 

 
3 

 

1. General introduction 

 

 

1.1. Cyanobacteria 

 

 

Cyanobacteria are ubiquitous prokaryotic photoautotrophs that used to be referred 

to as blue-green algae. Their geographic distribution ranges from polar to tropical regions 

in northern and southern hemispheres, where they are able to dominate planktonic and 

benthic primary production (Paerl & Paul 2012). They may be found in the most diverse 

environments, including terrestrial, marine, brackish and freshwater, occupying all kinds of 

habitats, including extreme habitats such as Antarctic lakes, thermal springs, arid deserts 

and tropical acidic soils (Kaebernick & Neilan 2001). The global distribution of 

cyanobacteria is related to their morphological, physiological and chemical diversity 

(Wiegand & Pflugmacher 2005). 

 

Cyanobacteria are the Earth’s oldest known oxygen-producing life forms 

(Kaebernick & Neilan 2001; Paerl & Paul 2012). Stromatolites provide proof of 

cyanobacterial presence in our planet dating back to ~3.5 billion years ago (Lazcano & 

Miller 1994). As cyanobacteria were the first organisms to carry out the oxygenic 

photosynthesis, cyanobacterial proliferation during the Precambrian period was largely 

responsible for the reductive to oxidative shift in our atmosphere and subsequent evolution 

of eukaryotic life (Kaebernick & Neilan 2001; Paerl & Paul 2012; Schopf 1994). Their 

long evolutionary history on Earth has enabled them to develop diverse and highly 

effective ecophysiological adaptations and strategies for ensuring survival and dominance 

in different environments undergoing natural and anthropogenic pressures and tolerance 

under a wide range of ecological conditions (Paerl & Paul 2012; Schopf 1994). Some 

adaptations and strategies are as follows (Kaebernick & Neilan 2001; Paerl & Paul 2012): 

 

 Highly efficient nutrient (N, P, Fe and trace metal) uptake and storage capabilities; 

 Light harvesting pigments (chlorophyll and phycocyanin); 

 Nitrogen fixation in specialized cells (heterocysts); 
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 Formation of stress resistant cells (akinetes); 

 Ability to regulate buoyancy through gas vesicles (vertical migration); 

 Ability to form symbiotic (as endosymbionts) and mutualistic associations with several 

organisms (diatoms, fungi, protists, sponges, corals, lichens, plants). 

 

At present, cyanobacteria display a great morphological diversity. They may 

present unicellular forms and more complex colonial and filamentous forms, with sizes 

ranging from less than 2 µm to 40 µm in diameter (Kaebernick & Neilan 2001). 

Additionally, they may live as free-living organisms or in symbiotic associations with a 

broad spectrum of other living organisms, such as plants, fungi, protists and sponges 

(Smith & Doan 1999). However, the most intriguing characteristic of cyanobacteria is their 

ability to produce cyanotoxins (Carmichael 1992). 

 

 

1.2. Cyanotoxins 

 

 

Cyanobacteria are able to produce a great variety of chemically unique secondary 

metabolites, many of which with powerful bioactivities (e.g. cytotoxicity towards tumor 

cells) (Carmichael 1992; Namikoshi & Rinehart 1996). The discovery of these biological 

and biochemical activities has led to a growing awareness on the biotechnological potential 

of these organisms (Abed et al. 2009; Tan 2007; Tan 2010). Of these secondary 

metabolites, cyanotoxins or cyanobacterial toxins are the most prominent group and the 

most studied (Namikoshi & Rinehart 1996). 

 

The cyanotoxins are a diverse group of compounds, both from the chemical and the 

toxicological points of view. According to their chemical structure, cyanotoxins may be 

classified as cyclic peptides, alkaloids and lipopolysaccharides (Kaebernick & Neilan 

2001). However, they are more commonly divided in terms of their mechanism of action 

on terrestrial vertebrates, especially mammals, as hepatotoxins, neurotoxins, cytotoxins 

and dermatotoxins and irritant toxins (Codd et al. 2005; Kaebernick & Neilan 2001; 

Prasanna et al. 2010). Table 1. shows the main cyanotoxins produced by cyanobacteria and 

their classification based on the previous criteria as well as the main producing genera, 
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their mechanisms of action and main detoxication mechanisms involved in the 

biotransformation of these compounds. The hepatotoxin microcystins and the cytotoxin 

cylindrospermopsin are the most frequently detected toxins in cyanobacterial blooms in 

fresh and brackish waters (Zurawell et al. 2005). 
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Table 1 – Cyanotoxins and their classifications based on the chemical structure and the mechanism of action on vertebrates including a brief description of their 

representative producers, the molecule mode of action, the causative residue of the toxin molecule and the detoxification pathways. GST is glutathione S-transferase, 

CYP450 is cytochrome P450. Adapted from Wiegand & Pflugmacher (2005). 

Cyanotoxins Type of toxin Chemical structure Producer (genera) 
Toxic structure in 

the molecule 
Mechanism of action Detoxification 

Microcystins Hepatotoxins Cyclic peptides Microcystis 

Anabaena 

Anabaenopsis 

Plankthotrix 

Nostoc 

Radiocystis 

Hapalosiphon 

Adda moiety Inhibition of protein 

phosphatases (PP1 and PP2A) 

GST 

Nodularins Hepatotoxins Cyclic peptides Nodularia Adda moiety Inhibition of protein 

phosphatases (PP1 and PP2A) 

GST 

Saxitoxins Neurotoxins Carbamate alkaloids Anabaena 

Aphanizomenon 

Cylindrospermopsis 

Lyngbya 

 Binding and blocking the 

sodium channels in neural cells 

GST 

Anatoxin-a Neurotoxin Secondary amine alkaloid Anabaena 

Aphanizomenon 

Cylindrospermopsis 

Plankthotrix 

Oscillatoria 

Microcystis 

 Binding irreversibly to the 

nicotinic acetylcholine 

receptorss 

CYP450 

GST 

Anatoxin-a(s) Neurotoxin Guanidine methyl 

phosphate ester (alkaloid) 

Anabaena  Inhibition of Ach-esterase 

activity 

CYP450 

GST 

Cylindrospermopsin Cytotoxin Guanidine alkaloid Cylindrospermopsis 

Aphanizomenon 

Umezakia 

Raphidiopsis 

Anabaena 

Trichodesmium 

The presence of the 

hydroxyl on the 

uracil bridge or the 

keto-enol status of 

the uracil moiety 

Inhibitior of protein 

biosynthesis 

Cytogenetic damage on DNA 

CYP450 

Lipopolysaccharides Dermatotoxins 

and irritant toxins 

Lipopolysaccharides Cyanobacteria in 

general 

Fatty acid component Irritant; cause inflammation in 

exposed tissues 

Deacylation via 

lysossomal pathway 
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1.2.1. Microcystins 

 

 

The hepatotoxic microcystins (MCs), produced by members of several 

cyanobacterial genera (Table 1), are the largest and the most structurally diverse group of 

cyanotoxins, consisting of over 75 congeners (Amado & Monserrat 2010; Rinehart et al. 

1994). Collectively, MCs (Figure 1) are described as small produced non-ribosomally 

monocyclic heptapeptides (MW between 900 and 1100 Daltons) and share the general 

chemical structure: 

cyclo-D-Ala-X-D-MeAsp-Z-Adda-D-Glu-Mdha 

where X and Z are variable L-amino acids, Ala and Glu are alanine and glutamate 

respectively, D-MeAsp is D-erythro-β-methylaspartic acid, Adda is the unusual amino acid 

(2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid and 

Mdha is N-methyldehydroalanine (van Apeldoorn et al. 2007; Zurawell et al. 2005). The 

most common and the best studied congener among MCs is MC-LR (994 Daltons, Figure 

1), characterized by the presence of leucine (L) and arginine (R) as the variable L-amino 

acids (Amado & Monserrat 2010; Zurawell et al. 2005). Other variants that also occur 

frequently are MC-RR, MC-YR and MC-LA (de Figueiredo et al. 2004). However, all of 

these structurally related compounds differ in toxicity under different experimental 

conditions, being the MC-LR variant the most potent cyanotoxin followed by MC-YR and 

MC-RR (Gupta et al. 2003; Luukkainen et al. 1993). 

 

NH

Z

H
N

H
N

COOH

R1

O

O
CH3CH3

OCH3

H3C

(5) Adda

(6) D-Glu (iso)

O

X

O

NH

OR2

O

COOH

O

HN

(4)

(1) D-Ala

(2)

(7) Mdha

(3) D-MeAsp  

Figure 1 – General chemical structure of microcystis. In microcystin-LR, 

X represents L-leucine, Z L-arginine and R1 and R2 CH3. 
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The hydrophobic amino acid Adda (Table 1), unique to cyanobacteria, is thought to 

be responsible for the toxic properties of MCs (Rudolph-Böhner et al. 1994; Vasconcelos 

2001; Zurawell et al. 2005). Cleavage of the Adda amino acid from the cyclic peptide 

seems to render MCs inactive with regard to their mechanism of toxicity (Harada et al. 

1990a; Harada et al. 1990b). Nevertheless, the Adda amino acid by itself shows no 

inhibitory activity even at high concentrations of 10 µM and no toxicity to mice at 

intraperitoneal doses of up to 10 mg.kg
-1

 body weight (Harada et al. 2004). The cyclic 

structure of MCs appears to be also linked with their biological activity, since linear 

peptides which have the same amino acids as the cyclic peptides did not show apparently 

toxicity to mice (Choi et al. 1993; Rinehart et al. 1994). 

 

MCs have been involved in many cases of intoxications of wild and domestic 

animals and humans (Azevedo et al. 2002; Carmichael et al. 2001; Codd 1995; Miller et al. 

2010; Oberholster et al. 2009; Wood et al. 2010; Zurawell et al. 2005). The most famous 

fatal human intoxication occurred in 1996, when an acute poisoning caused the death of 52 

people in Caruaru, Brazil, as a result of the usage of MC contaminated water from a nearby 

water reservoir without treatment in a haemodialysis centre (Azevedo et al. 2002). 

 

The majority of MC-related research has extensively focused on mammalian 

toxicity. The degree of severity of MC-induced toxicity depends on the level and duration 

of exposure, determined by the balance between MC absorption, detoxification and 

excretion (Funari & Testai 2008). MCs are water soluble and hydrophilic and therefore 

most of them are incapable of penetrating the lipid membranes of animals and plants by 

passive transport (Campos & Vasconcelos 2010; Funari & Testai 2008; van Apeldoorn et 

al. 2007). In animals and humans, MCs are actively transported into cells by the organic 

anion transport proteins (Oatps; OATPs in humans) (Campos & Vasconcelos 2010; van 

Apeldoorn et al. 2007). These active transporters are expressed in organs such as intestines, 

kidneys, heart, lungs, spleen, pancreas, brain and blood brain barrier (BBB) (Campos & 

Vasconcelos 2010; Funari & Testai 2008; van Apeldoorn et al. 2007). Thus, the toxicity of 

MCs is only restricted to organs expressing Oatps/OATPs on their cell membranes. In 

plant cell, there is no active MC transport system identified so far (Yin et al. 2005). MCs 

are conjugated with reduced glutathione (GSH) in aquatic organisms (Pflugmacher et al. 
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1999; Pflugmacher et al. 1998) and mammals (Kondo et al. 1992), process mediated by 

soluble glutathione S-transferase (GST). The MC-LR-GSH conjugate appears to be the 

first step in the detoxification of a cyanotoxin in aquatic organisms (Pflugmacher et al. 

1998). The reaction of conjugation occurs through the methyl group of Mhda (Figure 1) 

(Kondo et al. 1992). The binding to GSH enhances the water solubility of MCs, facilitating 

their excretion from the cells (Wiegand & Pflugmacher 2005). Although it is known that 

the detoxification process occurs in many organisms, the underlying mechanism of MC 

biotransformation/excretion remains unknown (Campos & Vasconcelos 2010). 

 

Acute toxicity of MCs may result not only in severe liver damage (main target 

organ) but also in injury to other organs such as heart, kidney, intestines and brain 

(Campos & Vasconcelos 2010; van Apeldoorn et al. 2007). The main mechanism of 

toxicity is the irreversible inhibition of eukaryotic protein phosphatases types 1 and 2A 

(PP1 and PP2A, respectively) both in vitro and in vivo from both animals and higher plants 

(Mackintosh et al. 1990). PP1 and PP2A are key regulatory enzymes responsible for 

catalyzing the dephosphorylation of serine and threonine residues of phosphoproteins (e.g. 

structural proteins, enzymes, regulators) (Bláha et al. 2009). These enzymes are involved 

in a number of important molecular and physiological processes to maintain the cell’s 

homeostasis such as gene expression, protein synthesis, cell growth and differentiation and 

carbon and nitrogen metabolism (Babica et al. 2006). Inhibition of protein phosphatases is 

followed by loss of cytoskeletal integrity, cytolysis or apoptosis (primarily of hepatocytes) 

and ultimately death by intrahepatic haemorrhage and hypovolaemic shock and heart 

failure (Bláha et al. 2009; van Apeldoorn et al. 2007; Wiegand & Pflugmacher 2005). 

 

Chronic exposure to low concentrations of MCs may also be a serious problem to 

the public health, since MC-LR may act as a tumour promoter (Nishiwakimatsushima et al. 

1992). Due to their cyclic structure, MCs are chemically stable and may persist in the 

environment for extend periods of time leading to long-term exposures for humans (Tsuji 

et al. 1994; van Apeldoorn et al. 2007). The danger of tumour promotion by chronic 

exposure of MC-LR led World Health Organization (WHO) in 1998 to establish a 

provisional guideline value of 1 µg.L
-1

 for MC-LR in drinking water based on tolerated 

daily intake (TDI) of 0.04 mg.kg
-1

 body weight (Dietrich & Hoeger 2005; Žegura et al. 
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2011). The International Agency for Research on Cancer (IARC) recently reviewed 

available data on MC-LR carcinogenicity and classified MC-LR as possibly carcinogenic 

to humans (Group 2B), whereas there is not enough available information for the 

classification of other MCs (IARC 2010). Moreover, U.S. Environmental Protection 

Agency (U.S.EPA) classified MC on the list of compounds with high priority for hazard 

characterization (U.S.EPA 2010). 

 

Oxidative stress seems to be another important biochemical mechanism of MC 

toxicity (Amado & Monserrat 2010; Bláha et al. 2009). MCs have been shown to induce 

formation of reactive oxygen species (ROS) in different terrestrial and aquatic organisms 

that might cause serious cellular damage such as lipid peroxidation, genotoxicity, 

mitochondrial damage, alterations in the antioxidant defence system and modulation of 

apoptosis (Amado & Monserrat 2010; Bláha et al. 2009; Ding & Ong 2003). The formation 

of ROS is the most likely the mechanism responsible for oxidative damage of DNA, 

genotoxic and clastogenic effects of MCs (Humpage & Falconer 1999; Humpage et al. 

2000). However, the underlying mechanism of oxidative stress induced by MCs is still not 

known (Bláha et al. 2009; Campos & Vasconcelos 2010). 

 

 

1.2.2. Cylindrospermopsin 

 

 

The cytotoxic CYN (MW 415 Daltons; Figure 2), produced by a larger number of 

cyanobacterial species (Table 1), consists of an uracil combined with a tricyclic guanidine 

group through a hydroxyl bridge, both critical to its biological activity (Banker et al. 2001; 

Ohtani et al. 1992). Only two natural structural variants, 7-epiCYN (Banker et al. 2000) 

and 7-deoxyCYN (Li et al. 2001; Norris et al. 1999; Seifert et al. 2007), have been 

identified so far with variations occurring at the hydroxyl group (Figure 2). The first 

variant appears to have similar toxicity as CYN (Banker et al. 2000), whereas the second 

variant is devoid of toxicity (Norris et al. 2002). However, 7-deoxyCYN was recently 

reported to have toxic potency similar to CYN, suggesting that the toxicological studies on 

this structural variant are controversial and the potential risks should be clarified 
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(Neumann et al. 2007). CYN is zwitterionic and highly water soluble because of the 

negatively charged sulphate group and the positively charged guanidine group (Falconer & 

Humpage 2006). It is chemically stable when exposed to sunlight, high temperature and a 

wide range of pH conditions (Chiswell et al. 1999). Due to its stability, CYN may persist 

in the environment for extend periods of time. 

 

 

N NH N NH

O

OH

R

HH
-O3SO

H
NH  

Figure 2 – Chemical structure of cylindrospermopsin. In cylindrospermopsin, R represents OH group while 

in 7-epicylindrospermopsin R represents OH epimer group. In the other structural variant, 7-

deoxycylindrospermopsin, R is H. 

 

 

CYN has been implicated in a considerable number of animal and human 

poisonings (Griffiths & Saker 2003; Shaw et al. 1999). One of the most known and serious 

episodes of human intoxication occurred in 1979 at Palm Island, Queensland, Australia, 

where over 100 children of Aboriginal families had to be hospitalized with several 

symptoms of gastroenteritis as a consequence of the usage of CYN contaminated water 

from a water reservoir (Solomon Dam) treated with copper sulphate to control the CYN-

producing Cylindrospermopsis raciborskii bloom (Griffiths & Saker 2003). 

 

In comparison with MCs, substantially less attention has been given to CYN, 

especially from the ecotoxicological point of view. Nevertheless, CYN seems to be gaining 

some importance taking in consideration the increased number of published reports about 

its occurrence in Europe (Bláhová et al. 2009; Bogialli et al. 2006; Fastner et al. 2003; 

Mankiewicz-Boczek et al. 2012; Preussel et al. 2006; Rücker et al. 2007; Spoof et al. 

2006). 
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As for MCs, the toxic effects of CYN have been studied in mammals. More recent 

CYN-related studies have expanded their focus to other organisms such as invertebrates, 

fish and plants (Berry et al. 2009; Beyer et al. 2009; Kinnear et al. 2007; Kinnear et al. 

2008; Nogueira et al. 2006; Silva & Vasconcelos 2010; Soares et al. 2009; White et al. 

2007). However, this expansion is still not enough and the need to more closely study the 

toxic effects of CYN on a wide range of organisms including microalgae is clearly evident. 

In mammals, CYN has been discovered to interfere with several metabolic pathways 

(Kinnear 2010). The main target of CYN toxicity is the liver, although other organs may be 

damaged following exposure to the cytotoxin such as kidneys, lungs, thymus, spleen, heart, 

adrenal glands, stomach, intestinal tract and immune system (Falconer & Humpage 2006; 

Terao et al. 1994). This widespread CYN-induced toxicity depends on the levels and 

duration of exposure, balanced by CYN absorption, detoxification and excretion. There is 

evidence that CYN is more toxic in the short term repeated dosing exposure (1-2 weeks) 

than in the long-term exposure (Shaw et al. 2000). The pathway of CYN uptake is still 

poorly understood and further investigations with respect to this issue are necessary 

(Kinnear 2010). CYN is highly hydrophilic and cannot cross the cell membranes, requiring 

therefore active transport systems to its absorption as MCs (Funari & Testai 2008; Kinnear 

2010). Nevertheless, the small size and weight of the molecule (415 Daltons) makes 

passive diffusion, albeit limited, a real possibility (Funari & Testai 2008; Kinnear 2010). 

 

The principal mechanism of CYN toxicity is the irreversible inhibition of protein 

synthesis; process most likely mediated by cytochrome P450 (CYP450)-generated 

metabolites (Froscio et al. 2001; Froscio et al. 2008; Humpage et al. 2005; Terao et al. 

1994). Evidence is given that activation of CYN by CYP450 is an important factor for its 

cytotoxicity but not for its protein synthesis (Froscio et al. 2003; Norris et al. 2002; 

Runnegar et al. 1995). Thus there appear to be two toxic responses. The first one – acute 

toxicity – seems to be mediated by CYP450-generated metabolites (probably more toxic 

than the parent compound) while the second one – longer-term toxicity – is due to protein 

synthesis inhibition (Froscio et al. 2003; Humpage et al. 2005; Norris et al. 2002; 

Runnegar et al. 1995). CYN also inhibits GSH synthesis (Humpage et al. 2005; Runnegar 

et al. 1995; Runnegar et al. 2002). 
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Moreover, CYN has demonstrated genotoxic effects in mammals both in vitro and 

in vivo (Humpage et al. 2005; Shen et al. 2002). The depletion of GSH could lead to an 

increase in oxidative stress that could contribute to its genotoxicity. Nevertheless, 

oxidative stress and ROS formation were found not to be likely involved in its 

genotoxicity, as no changes in lipid peroxidation were observed after exposure to CYN 

(Humpage et al. 2005). Genotoxicity seems to be caused by the ability of CYN itself or 

CYP450-generated metabolites to induce DNA strand breaks and chromosome loss 

(aneuploidy) (Humpage et al. 2000; Shen et al. 2002). 

 

In addition, there are still preliminary evidences indicating that CYN may act as a 

carcinogen in vivo (Falconer & Humpage 2001). The uracil group could possibly interact 

with adenine groups in RNA and DNA, interfere  with DNA synthesis, induce mutations 

and consequently cause carcinogenicity (Žegura et al. 2011). Studies related to CYN-

mediated carcinogenesis are scarce and the underlying mechanisms of carcinogenicity are 

not well understood (Žegura et al. 2011). Although there are not enough data available to 

assess the potential of CYN for carcinogenicity, U.S.EPA has classified it on the list of 

compounds with high priority for hazard characterization (U.S.EPA 2010). 

Taken into account the CYN-related toxicity and the evidence for carcinogenicity, 

Humpage & Falconer (2003) proposed a provisional guideline value of 1 µg.L
-1

 for CYN 

in drinking water. Despite the available literature on the CYN toxicity, WHO believes its 

adequacy for toxicological assessment is questionable and therefore do not propose any 

guideline value. 

 

 

1.3. Cyanobacterial blooms 

 

 

Cyanobacterial blooms in freshwater, brackish and coastal marine ecosystems have 

become a major environmental problem worldwide (Bláha et al. 2009). Since the 60’s, the 

number of publications and reports about cyanobacterial blooms has globally increased, 

primarily in freshwater and estuarine environments, in part due to the increased monitoring 

efforts (Carey et al. 2012). 
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Blooms of cyanobacteria have been generally associated with eutrophication 

processes (i.e. increased input of nutrients, especially phosphorous but also nitrogen). The 

increase of human population and the consequent intensification of urban, agricultural and 

industrial activities have promoted the enhancement of eutrophication in aquatic 

ecosystems. Anthropogenic induced eutrophication in many freshwater and brackish 

ecosystems along with specific and favorable environmental conditions such as high 

temperatures, elevated light intensity and low turbulence, may favor periodic proliferation 

and dominance of cyanobacteria, both in planktonic and benthic environments (Figure 3). 

Mass development of cyanobacteria often gives rise to harmful cyanobacterial blooms 

(HABs) which may create significant water quality and aesthetics problems and severe 

impacts on aquatic communities (Bláha et al. 2009; Lindholm et al. 1989; Naselli-Flores et 

al. 2007; Sukenik et al. 1998; Zurawell et al. 2005). Although the massive proliferation of 

cyanobacteria might be a natural event, the notable nutrient over-enrichment associated 

with the increasing levels of human activity has been leading to higher HAB frequencies. 

Climatic changes, especially the predicted rise of global temperatures and the changes in 

the global hydrological cycle (expressed as changes in precipitation and drought) are 

thought to benefit such HAB occurrence in fresh and brackish water systems by increasing 

not only its frequency and intensity but also its dominance, duration, persistence and 

geographic distribution (El-Shehawy et al. 2012; Elliott 2012; Paerl & Huisman 2008; 

Paerl & Huisman 2009; Paerl & Paul 2012). Some studies suggest that eutrophication and 

global warming may act synergistically in promoting proliferation, dominance and 

persistence of HABs (El-Shehawy et al. 2012; Elliott 2010; Elliott 2012; Paerl & Paul 

2012; Wagner & Adrian 2009). However, the relative importance of global warming 

versus eutrophication in freshwater was questioned, since decreasing phosphorus and 

nitrogen inputs can counteract the direct positive effect of warming temperatures on bloom 

proliferation (Brookes & Carey 2011). 
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Figure 3 – Conceptual diagram, illustrating the multiple interacting environmental factors controlling 

harmful cyanobacterial bloom formation and proliferation along the freshwater-marine continuum. Key 

factors controlling cyanobacterial growth and dominance such as nutrient inputs/availability, water column 

transparency, mixing conditions, water residence times, temperature and grazing are shown. From Paerl & 

Paul (2012). 

 

 

HABs may have numerous consequences. The first consequence of HAB 

occurrence is the water quality reduction, which may lead to negative economical, 

ecological and public health implications (Lindholm et al. 1989; Naselli-Flores et al. 2007; 

Sukenik et al. 1998). From an ecological point of view, HABs may impact ecosystem 

functioning by disturbing the relationships among organisms, declining biodiversity at all 

trophic levels and deteriorating habitats (Bláha et al. 2009; de Figueiredo et al. 2006). As 

high densities of cyanobacteria may concentrate at the water surface forming scums, HBAs 

increase the turbidity and hence block light penetration in the water column in impacted 

ecosystems. This, in turn, reduces the phytoplankton growth and suppresses the 

establishment and growth of aquatic macrophytes and benthic microalgae, negatively 

affecting planktonic and benthic flora and fauna (Paerl & Huisman 2009; Paerl & Paul 

2012; Vasconcelos 1995). On the other hand, HABs cause nighttime oxygen depletion and 

production of substances such as ammonia resulting from respiration and bacterial 

decomposition of dense blooms. The anoxic conditions and ammonia release may lead to 

the death of many fish populations and loss of benthic infauna and flora (Paerl & Paul 

2012; Vasconcelos 1995). In addition, HABs may also cause aesthetic problems as well as 

changes in organoleptic properties of the water by the production of noxious substances 

that gives an unpleasant and intense taste and a characteristic earthy-musty odour such as 
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geosmin and 2-methylisoborneol (Vasconcelos 1995). Lastly, HABs may become 

dangerous due to the ability of many cyanobacteria species to produce potent cyanotoxins, 

which are a major threat for several organisms, mainly aquatic organism, and human 

drinking and irrigation water supplies, fisheries and recreational resources (Paerl & 

Huisman 2009; Paerl & Paul 2012). 

 

During HAB development, cyanotoxins such as MCs and nodularins are largely 

retained within the cyanobacterial cells (Wiegand & Pflugmacher 2005). Cyanotoxins such 

as CYN may be continuously liberated to the water due to its hydrophilic nature and 

apparent membrane permeability (Shaw et al. 1999; Wiegand & Pflugmacher 2005; 

Wormer et al. 2008). However, high concentrations of cyanotoxins are released into the 

surrounding medium upon senescence and/or cell lyses. Concentration of dissolved MCs 

between 10-50 µg.L
-1

 and 350 µg.L
-1

 have been reported, but much higher levels (up to 

25000 µg.L
-1

) can occur in the water after collapse of HABs (Fastner et al. 1999; Kemp & 

John 2006; Máthé et al. 2007; Nagata et al. 1997). On the contrary, CYN may be found at 

concentrations between 11.8 and 800 µg.L
-1

 (Bogialli et al. 2006; Gallo et al. 2009; 

Griffiths & Saker 2003; Rücker et al. 2007). Nevertheless, these high levels are usually not 

long-lasting due to strong dilution in the water body, wind mixing, adsorption to the 

sediment and (bio)degradation (Funari & Testai 2008). 

Once released in the water, cyanotoxins may persist in the aquatic environment 

depending on local environmental conditions and endemic bacterial population (Jones & 

Orr 1994). MCs may persist in water for relatively long time, ranging between 21 days and 

2-3 months (Funari & Testai 2008; Jones & Orr 1994), while CYN may persist until 40 

days with no degradation by co-occurring natural bacterial communities (Wormer et al. 

2008). In surface waters, a half-life of 11-15 days was reported for CYN (Chiswell et al. 

1999). Considering the stability and persistence of cyanotoxins, a wide range of aquatic 

organisms including microalgae and aquatic plants may be directly exposed to cyanotoxins 

via food and/or dissolved in the water during long periods of time, which may cause 

diverse toxic effects. Some toxic effects of MCs on aquatic microalgae are shown in Table 

2. Ingestion and accumulation of these cyanotoxins may subsequently be transferred 

possibility along the food chain and cause serious animal and human health concerns. 
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Table 2 – Review on the studies investigating the effects of MCs on aquatic microalgae from literature. 

Species 
Investigated 

variant of MC 

Exposure 

concentrations 

(mg.L
-1

) 

Exposure 

duration 
Observed effects Reference 

OCHROPHYTA      

Poterioochromonas sp. MC-LR, -RR 0.1-4 16 days Growth stimulation (≥ 1 mg.L
-1

) Ou et al. (2005) 

Poterioochromonas sp. MC-LR 0.5 3 days Increase in SOD activity, enhanced lipid peroxidation, non-

significant changes in GSH pool 

Ou et al. (2005) 

Poterioochromonas sp. MC-LR 1 15 days Changes in cell ultrastructure (vacuolization, chloroplast swelling), 

low cellular viability (similar to programmed cell death) 

Ou et al. (2005) 

Poterioochromonas sp. MC-LR 1.05-2.5 5-10 days Biodegradation of MC-LR (most probably due to activity of 

extracellular substances), no accumulation of MC-LR in the cells 

observed 

Ou et al. (2005) 

CRYPTOPHYTA 
     

Cryptomonas erosa MC-RR 0.519 12 days Growth stimulation (after 6 days) followed by the growth inhibition 

(after 10 days) accompained by the cell degradation in low-light 

conditions 

Sedmak & Kosi (1998) 

Cryptomonas ovata Pure MC-LR 0.02-1.06 14 days Growth inhibition (at least in the first 4-6 days) B-Béres et al. (2012) 

Cryptomonas ovata CCEs containing 

MCs 

0.02-1.06 14 days Growth stimulation (at 0.09 and 0.53 mg.L
-1

), growth inhibition (at 

1.06 mg.L
-1

) 

B-Béres et al. (2012) 

Cryptomonas ovata MC-LR 2.5-50 3 days Growth inhibition B-Béres et al. (2012) 

DINOFLAGELLATA 

     

Peridinium galunense MC-LR 0.05 24h Increased formation of ROS (within 24h), effects on activity of 

protein kinases (0.5-22h), no inhibition of photosynthesis 

Sukenik et al. (2002), 

Vardi et al. (2002) 

CHLOROPHYTA 

     

Chlamydomonas reinhardtii CCEs containing 

semi-purified MCs 

0.01 12 days Growth inhibition Kearns & Hunter (2000) 

Chlamydomonas reinhardtii MC-LR 0.01  Inhibition of motility (12 days of exposure); enhanced settling rate 

(1h exposure) 

Kearns & Hunter (2001) 

Chlamydomonas reinhardtii Pure MC-LR, -RR 0.001-25 11 days Growth inhibition (at 25 mg.L
-1

) Babica et al. (2007) 

Chlorella kesslerii Pure MC-LR, -RR 0.001-25 11 days Growth inhibition (at 25 mg.L
-1

) Babica et al. (2007) 
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Table 2 (continued) 

Species 
Investigated 

variant of MC 

Exposure 

concentrations 

(mg.L
-1

) 

Exposure 

duration 
Observed effects Reference 

Chlorella vulgaris Pure MC-LR, CCE 

containing MC-LR 

0.001-0.1 14 days Growth inhibition (only at 3
rd

 day), decrease of pigment content 

(chlorophyll a and b and carotenoids), accumulation of MC-LR in 

the cells observed (only at the 3
rd

 day), overproduction of 

intracellular polysaccharides, great amounts of extracellular 

polysaccharides in the medium, enhanced lipid peroxidation (only 

at 3
rd

 day), decrease of GSH content (only at 3
rd

 day), increase in 

GST and GPx activity (only at 3
rd

 day). 

Mohamed (2008) 

Coelastrum microporum MC-RR 0.104 and 0.519 14 days Growth stimulation (after 8/10 and 10 days at lower and higher 

concentrations) followed by the growth inhibition (after 12 days) 

under low-light conditions 

Sedmak & Kosi (1998) 

Dunaliella tertiolecta MC-LR 0.0001-0.1 24h Inhibition of chlorophyll a accumulation under low-light 

conditions, no growth inhibition 

Escoubas et al. (1995) 

Monoraphidium contortum  MC-RR 0.104 and 0.519 16 days Growth stimulation (after 10 days) under low-light conditions Sedmak & Kosi (1998) 

Nephroselmis olivacea MC-LR 0.157 10 day Weak growth inhibition Christoffersen (1996) 

Pediastrum duplex Pure MC-LR, -RR 0.001-25 11 days Growth inhibition (≥ 5 mg.L
-1

 for MC-LR, at 25 mg.L
-1

 for MC-

RR) 

Babica et al. (2007) 

Pseudokirchneriella 

subcapitata 

Pure MC-LR, -RR 0.001-25 11 days Growth inhibition (≥ 1 mg.L
-1

) Babica et al. (2007) 

Pseudokirchneriella 

subcapitata 

Pure MC-LR, -RR 0.3 10 days No growth alteration (10 days of exposure), increase in GR activity 

after 3 and 24h (168h exposure), non-significant changes in GSH 

pool and GST and GPx activity (168h exposure) 

Bartova et al. (2011) 

Pseudokirchneriella 

subcapitata 

CCE containing 

MCs 

0.3 10 days No growth alteration (10 days of exposure), non-significant 

changes in GSH pool and GR, GST and GPx activity (168h 

exposure) 

Bartova et al. (2011) 

Scenedesmus armatu Pure MC-LR, -RR; 

CCE 

0.00025 1h Pure MCs increased POD and sGST activities and had no effect on 

photosynthesis; exposure to CCE elevated POD activity but 

inhibited sGST and photosynthesis 

Pietsch et al. (2001) 

Scenedesmus quadricauda MC-RR 0.104 and 0.519 16 days Growth stimulation (after 10 days) under low-light conditions Sedmak & Kosi (1998) 

Scenedesmus quadricauda MC-LR, -RR, -YR 0.5 14 days Induction of cell aggregation, increase of cell volumes and 

overproduction of chlorophyll a 

Sedmak & Elersek (2006) 

Scenedesmus quadricauda Pure MC-LR, -RR 0.001-25 11 days Growth inhibition (at 25 mg.L
-1

) Babica et al. (2007) 
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Table 2 (continued) 

Species 
Investigated 

variant of MC 

Exposure 

concentrations 

(mg.L
-1

) 

Exposure 

duration 
Observed effects Reference 

Scenedesmus quadricauda Pure MC-LR, CCE 

containing MC-LR 

0.001-0.1 14 days Growth inhibition (only at the 3
rd

 day), decrease of pigment content 

(chlorophyll a and b and carotenoids), accumulation of MC-LR in 

the cells observed (only at the 3
rd

 day), overproduction of 

intracellular polysaccharides, great amounts of extracellular 

polysaccharides in the medium, enhanced lipid peroxidation (only 

at 3
rd

 day), decrease of GSH content (only at 3
rd

 day), increase in 

GST and GPx activity (only at 3
rd

 day) 

Mohamed (2008) 

CHAROPHYTA 
     

Klebsormidium sp. Pure MC-LR, -RR, 

-YR 

2.5-50 14 days No growth alteration Valdor & Aboal (2007) 

Klebsormidium sp. CCEs 1.33-30.78 (total 

MCs) 

14 days No growth alteration, cell deformation, thylakoidal disaggregation Valdor & Aboal (2007) 

MC, microcystin; L, leucine; R, arginine; Y, tyrosine; CCE, cyanobacterial crude extract; SOD, superoxide dismutase; GSH, glutathione; ROS, reactive oxygen 

species; sGST, soluble glutathione S-transferase; GPx, glutathione peroxidase; GR, glutathione reductase; POD, peroxidase. 
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1.4. Toxic metals and pesticides in aquatic environments 

 

 

Pollution by metals and pesticides is another major problem in aquatic ecosystems. 

The intensive use of pesticides in agricultural practices may lead to the contamination of 

surface and ground waters by drift, runoff, drainage and leaching. In recent years, the 

pollution of water by pesticides has been of great concern due to the increasing number of 

pesticides used and detected in water as well as to their persistence, mobility and toxicity 

as well as their metabolites. On the other hand, the development of human activities and 

industrialization has led to an increased accumulation of metals in the aquatic environment 

over the last century. Unlike pesticides, metal compounds cannot be degraded or 

destroyed; instead, they can be bioaccumulated by aquatic organisms and also take part in 

the process of biomagnification. Metal compounds are also one of the most persistent 

pollutants in the aquatic environment, thus constituting a worldwide problem. Some of the 

most common toxic metals and pesticides that can be found in the environment and 

therefore be used as chemical substance models in ecotoxicology are the cadmium and the 

terbuthylazine, respectively. 

 

 

1.4.1. Cadmium 

 

 

Cadmium (Cd) is a metallic element (Ar 112.4) which is widely distributed in the 

Earth’s crust in very small amounts (IHCP 2007; OECD 1994). In nature, this metal 

always occurs as a minor constituent in most of zinc (Zn), lead (Pb) and copper (Cu) ores, 

the main deposits of Cd, and hence is closely linked to the production of these non-ferrous 

metals (OECD 1994; OSPAR 2002). Consequently, Cd is obtained mainly as a by-product 

from mining, smelting and refining sulphide ores of Zn and, to a lesser degree, Pb and Cu 

(OECD 1994; OSPAR 2002). 

 

Cd exhibits excellent resistance to corrosion processes to low melting temperatures 

and it has both high electrical and thermal conductivity (Marcano et al. 2009). Due to this 
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great variety of unique properties, this element is used in the manufacture of pigments, 

stabilizers of PVC, alloys, metallic coatings, electronic components and rechargeable 

nickel-cadmium (Ni-Cd) batteries. Ni-Cd batteries are by far the most significant 

application of Cd (OECD 1994). Direct releases of Cd to the environment or significant 

exposures of populations to Cd are unlikely from the use of these products. The 

manufacture and disposal of these products, however, have the potential for releasing Cd to 

the environment (OECD 1994). During the 1990s, Cd usage has decreased considerably in 

European countries, mainly due to the gradual phase-out of Cd products other than Ni-Cd 

batteries and the implementation of more stringent environmental legislation in the EU 

(Jarup 2003). However, Cd production, consumption and emissions to the environment 

have increased worldwide dramatically during the 20
th

 century, since Cd containing 

products are rarely recycled but frequently dumped together with household waste, thereby 

contaminating the environment (Jarup 2003). 

 

 

Figure 4 – Source-pathway model for general cadmium flow. From Pan et al. (2010). 

 

 

Cd is released by several natural and anthropogenic sources to the atmosphere, 

aquatic environments (fresh and salt water environments) and terrestrial environments, 
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thereby existing fluxes between these compartments (Figure 4). The most significant 

releases to the aquatic environment arise from the volcanic activity and weathering of 

rocks – natural sources – and production of non-ferrous metals (Zn, Pb and Cu), 

production of iron and steel, atmospheric deposition, direct discharges from industrial 

operations, domestic wastewaters, leakage from landfills and contaminated sites, 

production and use of phosphate fertilizers, application of manure and sewage sludge in 

agriculture – anthropogenic sources (OECD 1994). Anthropogenic sources account for 

more than 90% of Cd in the surface environments (Pan et al. 2010). 

 

Once released to the aquatic environment, much of Cd is rapidly adsorbed by 

particulate matter, which may remain suspended or settle down depending on natural or 

man-induced physic-chemical conditions (e.g. pH, water hardness, suspended matter 

levels, redox potential, salinity) and on man-made interventions (e.g. dredging) (OECD 

1994; OSPAR 2002). Levels of dissolved Cd may hence be low even in rivers receiving 

and transporting large quantities of the metal (Pan et al. 2010). 

 

Generally, Cd may be present in aquatic environmental as the hydrated ion 

(Cd
2+

.6H20), as inorganic complexes with CO3
2-

, OH
-
, Cl

-
 or SO4

2-
, or as organic 

complexes with humic acids (OSPAR 2002). The free metal ion Cd
2+

 is considered the 

most toxic species (IHCP 2007). The bioavailability and potential for toxic effects depends 

to a great extent on the form of Cd. For example, CdSO4 (cadmium sulphate) and CdCl2 

(cadmium chloride) are quite soluble in water, whereas CdCO3 (cadmium carbonate) is 

practically insoluble in water (OECD 1994; OSPAR 2002). Cd is persistent (it cannot be 

broken down into less toxic substances) in the environment (Robards & Worsfold 1991) 

and tend to bioaccumulate throughout the food chain (McLaughlin et al. 1999). 

 

Cd is considered to be a non-essential metal for animal or plant life, even though 

Cd has showed nutritional beneficial effects to the growth-inhibited marine diatom 

Thalassiosira weissflogii under conditions of Zn limitation (Lee et al. 1995; Stohs & 

Bagchi 1995). In this case, growth recovery resulted from formation of a specific Cd-

carbonic anhydrase, a zinc-dependent enzyme involved in carbon acquisition (Cullen et al. 

1999; Lee et al. 1995). 
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Cd in the environment has been a concern since 1960s, when a painful bone disease 

(a combination of osteomalacia and osteoroporis) called “itai-itai” (ouch-ouch) was 

reported to have been caused by Cd-contaminated water used for irrigation of local rice 

fields in an area in Japan (Jarup 2003; Pan et al. 2010). Since then, an increasing number of 

studies have reported adverse health effects of Cd exposure in general population, even at 

much lower levels than previously anticipated (Jarup & Åkesson 2009). 

 

Cd is one of the most toxic metals to aquatic organisms, even at low concentrations, 

and may cause long-term adverse effects in the aquatic environment (Deckert 2005; OECD 

1994; Simon et al. 2008). According to the European commission, some Cd compounds 

were classified as dangerous for the environment (R50-53) (Annex 1 of Directive 

67/548/EEE, 2004). The toxicity of Cd to aquatic organisms depends on the exposure 

duration, species and life-stage, being the early-stages and the reproductive system the 

most vulnerable (OECD 1994). In aquatic systems, Cd is most readily absorbed by 

organisms directly from the water in its free ionic form (OSPAR 2002) and hence high 

concentrations may bioaccumulate in aquatic vertebrates and invertebrates and algae. The 

rate of uptake and the toxic impact of Cd on aquatic organisms vary considerably even 

between closely related species, and are greatly related to physic-chemical factors of the 

water such as free ionic concentration of the metal, temperature, pH, hardness and organic 

matter content (OECD 1994). Cd interacts with calcium metabolism of aquatic organisms. 

In fish, Cd may cause hypocalcaemia (low calcium levels), probably by inhibiting calcium 

uptake from the water (OECD 1994). Effects of long-term exposure may include mortality 

and temporary reduction in growth (OSPAR 2002). 

 

Effects of Cd on algae have been extensively studied over the last years at the level 

of growth processes (Bišová et al. 2003; Huang et al. 2009; Lam et al. 1999; Marcano et al. 

2009; Monteiro et al. 2011; Pereira et al. 2005; Qian et al. 2009; Visviki & Rachlin 1994a), 

photosynthesis (Awasthi & Das 2005), chlorophyll content (Marcano et al. 2009; Qian et 

al. 2009; Vymazal 1987) and ultrastructural changes (Torres et al. 2000; Visviki & Rachlin 

1992; Visviki & Rachlin 1994b). However, the molecular mechanism underlying Cd 

toxicity are still not completely understood (Faller et al. 2005). Cd can interfere with a 

great number of metabolic processes, altering enzymatic activities by nonspecific binding 



Chapter I 

 

 

 
24 

 

to functional groups necessary for catalytic activity such as sulphydryl (-SH) and carboxyl 

(-COOH) or by replacing some essential metallic elements with similar molecular size and 

charge such as Ca and Zn that play a key role in active sites of enzymes, thus resulting in 

inhibition of photosynthesis, respiration, biosynthesis of photosynthetic pigments and cell 

growth (Aravind & Prasad 2004; Báscik-Remisiewicz et al. 2011; di Toppi & Gabbrielli 

1999; Prasad et al. 1998). It has been demonstrated that Cd may arrest the photosynthetic 

electron flow (Voigt & Nagel 2002), inhibit the water-splitting complex of the oxidizing 

site of photosystem II (PSII) (Mallick & Mohn 2003) or competitively bind to the essential 

Ca
2+

 site in PSII during photoactivation (Faller et al. 2005). 

 

Oxidative stress seems to be another molecular mechanism of Cd toxicity (Leonard 

et al. 2004; Pinto et al. 2003; Valko et al. 2005). In contrast with other metallic elements 

such as Cu and Cr, Cd is not a redox-active metal and therefore cannot itself generate 

directly ROS through the Fenton type-reaction (Benavides et al. 2005; Bertin & Averbeck 

2006; Pinto et al. 2003; Valko et al. 2005). However, Cd may indirectly produce ROS by 

affecting the cellular antioxidant capacity and general enzyme function through binding to 

thiols such as GSH (Pinto et al. 2003). This, in turn, results in DNA damage, lipid 

peroxidation, depletion of GSH, change in calcium and sulphydryl homeostasis, membrane 

depolarization and acidification of the cytoplasm (Badisa et al. 2007; Conner & Schmid 

2003; Valko et al. 2005) that may generate cell death. 

 

As detoxification mechanisms, documented responses to Cd exposure for a great 

number of organisms involve, beside the production of oxidative stress responses proteins, 

the synthesis of molecular chaperones (heat shock proteins) to cope with the damaged and 

misfolded proteins, the activation of membrane transporters that export Cd from the cell or 

transport it into vacuoles, the production of enzymes in sulphate assimilation, the 

biosynthesis of GSH, metallothioneins and phytochelatins (Bertin & Averbeck 2006; 

Clemens 2001; Deckert 2005; Perales-Vela et al. 2006; Robinson 1989). 

 

Cd is also a potent carcinogen and has been associated with cancers of the lung, 

prostate, kidney and probably with liver, pancreas and stomach, but this evidence is 

controversial (Bertin & Averbeck 2006; Jarup 2003; Jarup & Åkesson 2009; Valko et al. 
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2005). Because of its carcinogenic properties, Cd has been classified as a #1 category 

human carcinogen by the IARC of USA (1997), while the European Commission has 

classified some Cd compounds as possibly carcinogenic (Carcinogen category 2) (Annex 1 

of Directive 67/548/EEE, 2004). Cd has also recently been listed as an endocrine-

disrupting substance because of its ability to bind to cellular estrogen receptors and to 

hence mimic the actions of estrogens (act as an agonist) (Darbre 2006). Furthermore, Cd 

has been identified as a priority hazardous substance in the field of water quality and 

therefore extensively included in environmental monitoring programmes (European 

Commission 2001) as well as a metal of primary interest in the framework for metals risk 

assessment (U.S.EPA 2007). Cd was also included in 1998 on the OSPAR List of 

Chemicals for Priority Action (OSPAR 2011) as well as on the HELCOM 

Recommendation 19/5 List of Substances for Immediate Priority Action (HELCOM 1998). 

In addition, Cd was chosen by OECD as one of the five chemical to be included in the risk 

reduction programme (OECD 1994). 

 

 

1.4.2. Terbuthylazine 

 

 

Terbuthylazine (TBA) is a relatively widespread triazine selective systemic 

herbicide with increasing agricultural significance, since it has gradually replaced the 

better know and longer studied atrazine (another triazine herbicide) which has been banned 

in the European Union (Dezfuli et al. 2006; Gikas et al. 2012; Steinberg et al. 1994). 

Chemically, TBA belongs to the cloro-s-triazine family with the following structure: N
2
-

tert-butyl-6-chloro-N
4
-ethyl-1,3,5-triazine-2,4-diamine (Figure 5). 
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Figure 5 – Chemical structure of terbuthylazine. 

 

 

TBA has been used as a broad spectrum herbicide for the control of both grasses 

and broadleaf weeds in agricultural crops such as maize, wheat, sorghum, potatoes, citrus, 

vines, coffee, olives and forestry, being particularly effective against annual dicotyledons 

(Gikas et al. 2012; Singh et al. 2001; WHO 2003). It is taken up through the roots and 

leaves and is distributed throughout the plant after the uptake, which enables it to be used 

in both pre- and post-emergence treatment (WHO 2003). 

 

The triazine TBA is one of the most used plant protection products (PPPs) in 

Europe territory in agricultural fields, especially maize (Eurostat 2007). PPPs are defined 

by plant protection products directive as “active substances and preparations containing 

one or more active substances, put up in the form in which they are supplied to the user, 

intended to: a) protect plants or plants products against all harmful organisms or prevent 

the action of such organisms (…); b) influence the life processes of plants, other than as a 

nutrient (e.g. growth regulators); c) prevent plant products (…); d) destroy undesired plants 

and e) destroy parts of plants, check or prevent undesired growth of plants” (article 2 of 

91/414/ECC). In 2010, TBA was the second most sold herbicide in Portugal (DGADR 

2011). 

 

s-Triazine herbicides including TBA may be directly or indirectly released into the 

aquatic environment through effluents discharges from manufacturing facilities and 

through runoff and accidental spillage during and/or after their application in both 

agriculture and forestry (Navarro et al. 2004b; Tchounwou et al. 2000). Among s-triazines, 
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TBA is considered to be one of the most persistent in water (Carafa et al. 2007; Guzzella et 

al. 2006), representing a potential risk to aquatic ecosystems; in riverwater and 

groundwater, its half-life is 196 and 263-366 days, respectively (Navarro et al. 2004a; 

Navarro et al. 2004b). Monitoring studies carried out in Europe have been shown that TBA 

is frequently detected in surface water (Azevedo et al. 2001; de Almeida Azevedo et al. 

2000; Lacorte et al. 1998; Loos et al. 2010b; Loos et al. 2007; Palma et al. 2009; Pérez et 

al. 2010) and groundwater (Guzzella et al. 2006; Hernández et al. 2008; Hildebrandt et al. 

2008; Loos et al. 2010a; Mansilha et al. 2011). 

 

Degradation of TBA in aquatic environment depends on bacterial activity and on 

abiotic factors such as organic matter content, pH and, above all, temperature that directly 

or indirectly influence the degradation rate (Barra Caracciolo et al. 2010). The main 

degradation pathways of TBA are dechlorination with concominant hydroxylation and/or 

dealkylation of amine groups (Gikas et al. 2012) and are summarized in Figure 6. 

Hydroxy-TBA is the main degradation product in water from an abiotic process while 

deethyl-TBA and deisopropyl-atrazine result from biotic mechanisms (Gikas et al. 2012). 

The combination of the two mechanisms (dealkylation and subsequent hydroxylation) 

gives rise to deethyl-hydroxy-TBA and deisopropyl-hydroxy-TBA (Figure 5). Another 

major degradation product of TBA, namely N
2
-tert-buthyl-N

4
-ethyl-6-methoxy-1,3,5-

triazine-2,4-diamine, was recently identified (Gikas et al. 2012). However, little is known 

about the toxicological effects of TBA degradation products and how their toxicity 

compares to that of the parent compound. 
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Figure 6 – Major degradation pathways (biotic and abiotic) of terbuthylazine. From Gikas et al. (2012). 

 

 

The toxic effects of TBA have been primarily studied in terrestrial animals. Once 

ingested, TBA is quickly absorbed, metabolized and excreted via urine and faeces with a 

half-life of 16-17h (WHO 2003). Several CYP450 enzymes are involved in the hepatic 

oxidative phase-I metabolism of TBA in exposed humans and animals (Hodgson 2003; 

Lang et al. 1996; Lang et al. 1997). However, CYP450 1A2 enzyme alone is probably the 

most important in the metabolism of TBA, since it is active at low substrate concentrations 

whereas the other enzymes (e.g. CYP450 3A4 and 2C19) appear to be active at high 

substrate concentration only (Hodgson 2003; Lang et al. 1997). 

 

Toxicity data involving aquatic organisms, specially algae, and TBA are still 

limited (Cedergreen & Streibig 2005; Faust et al. 2001; Munkegaard et al. 2008; Pérez et 

al. 2011). TBA is a specific inhibitor of the photosynthetic electron transport. Its mode of 

action is through the competitive and reversible binding to the domain of the D1 protein of 

the PSII reaction center, thus displacing the electron acceptor plastoquinone QB from this 

site (Faust et al. 2001). The interruption of photosynthetic electron transport leads to the 

concomitant inhibition of ATP production and carbon fixation (van Rensen et al. 1999). 
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Due to this specific mechanism of action and taken into account that s-triazines are 

designed to kill unwanted plants, aquatic plants and algae are expected to be the most 

sensitive group of aquatic non-target organisms. 

 

 

1.5. Models used in mixture toxicity assessment 

 

 

Aquatic organisms are constantly exposed to a cocktail of different environmental 

contaminants. However, most of the knowledge and comprehension of chemical 

contamination effects in aquatic organisms is based upon the effects of single toxicant 

exposure, instead of exposure to complex environmental mixtures. Exposure to chemical 

mixtures is a reality and, fortunately, the interest of scientists and regulatory policies in the 

toxicology and potential risk of combined exposures is growing. As a consequence of this 

awareness, it is now widely recognized that the adverse effects caused by exposure to 

chemical mixtures must be an integral part of environmental and human health risk 

assessment (Groten 2000). 

 

In order to describe and assess the chemical mixture toxicity, two theoretical 

reference models based on the mode of action (MoA) of single chemicals have been widely 

used: concentration addition (CA) and independent action (IA). Both models assume no 

interaction between toxicants in the mixture (meaning that each component does not 

influence the biological action of the other component present in the mixture) and allow 

the calculation of expected mixture toxicity on the basis of known individual toxicities of 

the mixture components. 

 

The CA model assumes that individual toxicants have the same MoA and hence act 

upon the same molecular target inside the organism (Konemann & Pieters 1996; Loewe & 

Muischnek 1926). This reference model is defined as a summation of the relative toxicities 

of each individual component in the mixture (Groten 2000). Mathematically, the CA model 

may be expressed as: 
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where ci is the concentration of the chemical i in the mixture and ECxi is the effect 

concentration of chemical i that provoked x% if applied singly. The quotient ci/ECxi is also 

referred as the dimensionless toxic units (TU), which quantifies the contribution of the 

toxicity of chemical i in the mixture of n chemicals (Jonker et al. 2005). TU gives the 

contribution of concentration of a component in the mixture scaled for its relative toxicity. 

This means that given an example where EC50 value for a chemical X is 0.5 mg.L
-1

 1 TU 

will correspond to the concentration of 0.5 mg X.L
-1

 and 2 and 0.5 TU will correspond to 

the concentration of 1 mg X.L
-1

 and 0.25 mg X.L
-1

, respectively. If the sum of the TUs of 

the mixture components equals 1 at a mixture concentration provoking x% effect, CA 

holds. Consequently, CA stipulates that one mixture component can be substituted by 

another chemical with the same mechanism of action, without changing the overall mixture 

toxicity, as long as its concentration expressed in TU remains the same (van Gestel et al. 

2006). The effect concentration (ECx) can be chosen, albeit the level where 50% of effect 

is observed (EC50) is normally the most relevant, since it is in the middle of the dose 

response curve and thus less prone to variability. 

 

The CA reference model has predicted successfully the effects of mixtures of 

similar acting compounds in a large number of toxicological and ecotoxicological studies 

(Altenburger et al. 2000; Cleuvers 2004; Faust et al. 2001; Junghans et al. 2003; 

Munkegaard et al. 2008; Pérez et al. 2011; Porsbring et al. 2010). CA has been also 

proposed as a reasonable model for the worst mixture toxicity assessment scenarios, due to 

its predictability power even in mixtures with dissimilar compounds (Backhaus et al. 2004; 

Boedeker et al. 1993; Lock & Janssen 2002). 

 

Alternatively, the IA model assumes that individual toxicants have different MoA 

and hence acts upon different molecular targets in the organisms (Bliss 1939; Konemann & 

Pieters 1996). It is based on chemicals working independently, meaning that the relative 

effect of a toxicant remains unchanged in the presence of another chemical. This reference 

model calculates the joint effects by multiplying the probabilities of responses of 
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individual mixture components. Contrary to the CA model, under the IA concept only the 

components that cause an effect are considered, meaning that components present at doses 

or concentrations below effect threshold (i.e. EC0) will not contribute to the toxicity of the 

mixture and if this condition is fulfilled for all components there will be no combination 

effect (van Gestel et al. 2006). Mathematically, the IA model may be formulated as: 

 

 
 

where Y denotes the biological response, ci is the concentration of chemical i in the 

mixture, qi(ci) the probability of non-response, umax the control response for endpoints and 

∏ the multiplication function (Jonker et al. 2005). 

 

The IA model has been able to predict the effects of mixtures of dissimilarly acting 

chemicals in a large number of toxicological and ecotoxicological studies (Backhaus et al. 

2000; Faust et al. 2003; Jonker et al. 2004; Pérez et al. 2011; Syberg et al. 2008; VanGestel 

& Hensbergen 1997; Walter et al. 2002). IA has been also reported to predict the effects of 

similar acting compounds (Cedergreen et al. 2008; Syberg et al. 2009). 

 

However, the application of the theoretical reference models is not always linear. 

Chemical mixtures may also be composed by chemicals whose MoA is unknown or 

ambiguous. In such cases, both CA and IA models may be used for toxicity prediction and 

then the one showing the best fit on the data is chosen over the other. MoA ambiguity may 

be explained by the toxicodynamic properties, i.e., individual toxicants in a mixture may 

act in the same targets (e.g. enzyme, cell or organ), but they may impair different 

physiological processes (Loureiro et al. 2010). 

 

Deviations from the reference models may also occur when chemicals affect the 

bioavailability of one another (related to the environmental conditions), their MoA and 

their behavior after uptake (e.g. bioaccumulation) (Loureiro et al. 2010). In a mixture, 

some compounds may interact synergistically or antagonistically becoming more or lower 

toxic than expected, respectively, by the CA and IA models from the toxicity of single 
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compounds. More complex interactions between different compounds may also take place 

depending on the mixture dose level (DL, deviations from the reference models are 

different at low and high dose levels) or on the dose ratio (DR, deviations from the 

reference models is dependent of the mixture composition, i.e., which chemical is mainly 

responsible for toxicity) (Jonker et al. 2005). 

 

 

1.6. Rationale and aims 

 

 

The idea for the present work came from the following: 

 

i. Ecotoxicological risk of chemical mixtures of cyanotoxins in aquatic 

environments is still unknown; 

ii. Ecotoxicological risk of chemical mixtures of cyanotoxins with 

anthropogenic environmental contaminants in aquatic environments is still 

poorly investigated. 

 

Taken into consideration the topics pointed out above, the present work was 

undertaken with three main objectives: 

 

1. Evaluation of the toxicity of the cyclic peptide MC-LR and the alkaloid 

CYN and their respective combination for the growth rate of the freshwater 

algae Chlorella vulgaris; 

2. Evaluation of the joint effects of MC-LR and CYN with anthropogenic 

environmental contaminants representatively present in aquatic systems on 

the growth rate of the freshwater algae C. vulgaris. The anthropogenic 

environmental contaminants selected were: pesticides, in this case s-triazine 

herbicide TBA, and metals, in this case Cd; 

3. Evaluation of the effects of the s-triazine TBA and the metal Cd in both 

single and combined exposures on the growth rate of C. vulgaris. 
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1.7. Relevance of the study 

 

 

The growing massive proliferations of cyanobacteria (HABs) in freshwater, 

brackish and coastal marine waters pose an environment and public health risk because of 

the ability of some cyanobacterial species to produce cyanotoxins. Among these 

cyanotoxins, CYN is of increasing concern due to its potent cytotoxic effects and the 

growing number of worldwide locations in which CYN has been reported during the last 

years. However, not much is known about the toxic effects of CYN on microalgae, an 

ecologically important group which plays an essential role as primary producers in aquatic 

food chains. 

 

Since massive proliferations of cyanobacteria are quite often characterized by the 

presence of a mixture of cyanotoxins, aquatic organism may likely be exposed to 

combinations of different cyanotoxins. Nevertheless, this issue has not received much 

scientific attention so far. To our knowledge, there is only one paper published on the 

study of the effects of simultaneous exposure to cyanobacterial extracts containing CYN 

and MC-LR on the aquatic plant Oryza sativa (Prieto et al. 2011). 

Cyanotoxins may also occur simultaneously with other stressors in a cyanobacterial 

bloom, e.g., anthropogenic environmental toxicant such as metals and pesticides. However, 

the interaction between cyanotoxins and anthropogenic environmental contaminants has 

not been sufficiently investigated until now. 

 

Given the number of studies which have been reported the occurrence of TBA in 

surface waters, it is also important to understand the toxic effects of TBA on non-target 

aquatic organisms, especially aquatic plants and algae. However, few studies have 

investigated the TBA effects on aquatic plants and algae (Faust et al. 2001; Munkegaard et 

al. 2008; Nitschke et al. 1999; Pérez et al. 2011). So far, TBA toxicity on the freshwater 

algae Chlorella vulgaris has not been investigated. 
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1.8. Dissertation organization 

 

 

The present dissertation was organized in four chapters: 

 

 Chapter 1: current “General Introduction” to the themes of cyanobacterial 

ecology and secondary metabolites, cyanobacterial blooms, pollution of 

aquatic environment by pesticides and metals as well as mixture toxicity 

assessment; 

 Chapter 2: “The interactive effects of microcystin-LR and 

cylindrospermopsin on the growth rate of the freshwater algae Chlorella 

vulgaris”, where the effects of MC-LR and CYN on the growth rate of C. 

vulgaris after 4 and 7 days of exposure were assessed in both single and 

binary combinations using Z8 medium as exposure medium. For the 

assessment of cyanotoxins’ combination, the MIXTOX tool was used to 

evaluate if the reference model IA described the data obtained or if 

deviations (interactions) between cyanotoxins occurred in the mixture. 

 Chapter 3: “Effects of binary mixtures of cyanotoxins and xenobiotics on 

the growth rate of Chlorella vulgaris”, where the growth response of C. 

vulgaris exposed to four single compounds (MC-LR, CYN, TBA and Cd) 

and five binary mixtures (MC-LR + TBA; MC-LR + Cd; CYN + TBA; 

CYN + Cd; TBA + Cd) was investigated at 4
th

 and 7
th

 days using Z8 

medium as exposure medium. Again, for the evaluation of the joint effects, 

the MIXTOX tool was used in order to see if the reference model IA 

described the data or if deviations (interactions) between the compounds 

occurred in the binary mixtures. 

 Chapter 4: “General discussion and final considerations”, where the main 

results were discussed in terms of biological mechanisms underlying the 

combined effects of the several mixtures performed. In conclusion, an 

encompassing perspective of the suitability of assessing chemical mixtures 

instead of the single exposure approach usually followed in ecotoxicological 

studies was accomplished. 
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Abtract 

 

 

Microcystin-LR (MC-LR) and cylindrospermopsin (CYN) are the most representative 

cyanobacterial toxins. They have been simultaneously detected in water, but their 

combined ecotoxicological risk to aquatic organisms, especially microalgae, is unknown. 

In the present study, we examined the effects of these cyanotoxins individually and as a 

binary mixture on the growth rate of the freshwater algae Chlorella vulgaris. Using the 

MIXTOX tool, the reference model independent action (IA) was selected to evaluate the 

combined effects of MC-LR and CYN on the growth of the freshwater algae due to their 

dissimilar modes of action. Deviations from the IA model such as synergism/antagonism, 

dose ratio and dose level dependency were also assessed. In single exposures, our results 

demonstrated that MC-LR and CYN had different impacts on the growth rate of C. 

vulgaris at the highest tested concentrations, being CYN the most toxic. In mixture 

exposure trial, MC-LR and CYN showed a synergistic deviation from the conceptual 

model IA as the best descriptive model. From these results, the combined exposure of MC-

LR and CYN should be considered for risk assessment as this study has shown that more 

severe effects than expected by single cyanotoxin exposure might be observed. This study 

also represents an important step to understand the interactions among MC-LR and CYN 

detected previously in aquatic systems. 

 

 

Keywords: Cyanotoxin, Microcystin-LR, Cylindrospermopsin, Chlorella vulgaris, 

Combined toxicity, Independent action 
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2.1. Introduction 

 

 

Cyanobacterial blooms in eutrophic water bodies have become a serious 

environmental problem worldwide, as many genera of bloom-forming cyanobacteria are 

able to produce potent cyanotoxins that are released in significantly high concentrations 

into the aquatic environment when cell ruptures (Bláha et al. 2009; Codd 1995; Codd et al. 

2005; Prasanna et al. 2010; Wiegand & Pflugmacher 2005). These cyanotoxins include 

hepatotoxins, neurotoxins, cytotoxins and dermatotoxins and irritant toxins, representing a 

major health hazard for animals and humans (Codd et al. 1999; Falconer 1999; van 

Apeldoorn et al. 2007). Furthermore, there is a prediction that such cyanobacterial blooms 

are likely to increase in prevalence and magnitude in the future with climate changes, 

especially with the predicted rise of global temperatures (Paerl & Huisman 2008; Paerl & 

Huisman 2009; Paerl & Paul 2012). With this predicted rising of cyanobacterial bloom 

occurrence, the release of high cyanotoxin concentrations could considerably become more 

common in the aquatic environment, and therefore instigating the evaluation of a wide 

range of concentrations which include extremely high concentrations. 

 

The majority of cyanotoxin poisoning reports have been directly related to two 

toxin groups, microcystins (MCs) and cylindrospermopsin (CYN) (Falconer & Humpage 

2005). Both cyanotoxins are produced by a larger number of cyanobacterial species around 

the world (Prasanna et al. 2010; Wiegand & Pflugmacher 2005). MCs are the most 

common and ubiquitous cyanotoxin in brackish and freshwater blooms (Zurawell et al. 

2005) and to date more than 80 MC variants have been isolated and identified, being MC-

LR the most common and toxic variant (Dittmann & Wiegand 2006; Hoeger et al. 2005). 

They are stable cyclic heptapeptides (Duy et al. 2000; Tsuji et al. 1994; van Apeldoorn et 

al. 2007), whose mechanism of toxicity is mainly based on the induction of oxidative stress 

(Amado & Monserrat 2010) and inhibition of protein phosphatases 1 and 2A (Gulledge et 

al. 2002; Mackintosh et al. 1990; Mezhoud et al. 2008; Runnegar et al. 1995a) in aquatic 

animals and higher plants. CYN is a widespread (Falconer & Humpage 2006; Fastner et al. 

2007; Quesada et al. 2006; Spoof et al. 2006) and stable (Chiswell et al. 1999; Wormer et 

al. 2008) tricyclic alkaloid. Only two CYN variants have been reported: 7-epiCYN, with 
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similar toxicity to CYN (Banker et al. 2000), and 7-deoxyCYN, whose toxicity is well 

recognized by some authors (Neumann et al. 2007), but was questioned by others (Norris 

et al. 1999; Norris et al. 2002). It is established that CYN may act through the glutathione 

and protein synthesis inhibition in mammals (Froscio et al. 2001; Froscio et al. 2008; 

Runnegar et al. 1995b; Terao et al. 1994), a process likely mediated by cytochrome P450 

(CYP450)-generated metabolites (Humpage et al. 2005). 

 

Individual blooms may contain multiple cyanobacterial species in the same water 

body and many cyanobacterial strains may produce more than one type of cyanotoxin as 

well as different congeners of the same type of cyanotoxin (e.g. MC congeners). Some 

studies have reported the concurrent presence of MC-LR and CYN in water (Bogialli et al. 

2006; Brient et al. 2009; Oehrle et al. 2010) as well as the coexistence of potentially MC-

LR and CYN-producing cyanobacteria (Bláhová et al. 2009; Kokociński et al. 2009; Vasas 

et al. 2004). Therefore, it might be expected that when MC-LR and CYN occur 

simultaneously in the water, and persist for days in the region as blooms (Eaglesham et al. 

1999; Lahti et al. 1997), they have serious combined impacts on aquatic organisms, 

including microalgae. Although the single toxic effects of MC-LR and CYN on aquatic 

invertebrates, fish, plants and algae have been widely investigated as pure cyanotoxins 

(Babica et al. 2007; Beyer et al. 2009; Chen et al. 2005; Lindsay et al. 2006; Máthé et al. 

2009; Metcalf et al. 2002; Ortiz-Rodríguez & Wiegand 2010; Wiegand et al. 2002) and/or 

MC-LR- and CYN-containing crude extracts (Dao et al. 2010; Kinnear et al. 2008; 

Oberemm et al. 1997; Pflugmacher et al. 1999; Prieto et al. 2011), information available on 

their combined effects is still scarce. To date, there is only one study on plants, showing 

that the exposure of the rice plant Oryza sativa to a mixture of MC-LR and CYN-

containing crude extracts induced a synergistic effect on the anti-oxidative enzyme 

activities (Prieto et al. 2011). Given the co-occurrence, stability and persistence of MC-LR 

and CYN, it is important to assess the extent to which synergism is a concern. 

 

The aim of this study was thus to examine the effects of MC-LR and CYN, 

independently and in combination, on the growth of the freshwater Chlorella vulgaris. To 

predict the combined effects of both cyanotoxins on C. vulgaris, the non-interaction 

conceptual model of independent action (IA) was used in this study (Jonker et al. 2005). 
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The theory behind the IA model is that the components in a mixture of chemicals have 

dissimilar modes of action (MoA) and do not interfere with each other during exposure, 

uptake and toxic action (Olmstead & LeBlanc 2005). Hence the IA model is usually used if 

the question asked is whether the probability of toxicity to one chemical is independent 

from the probability of toxicity exposure to another chemical (Garcia et al. 2010; Jonker et 

al. 2004; Jonker et al. 2005). However, deviations from the IA model may occur and 

therefore a different behaviour may be expected. These deviations are those where a given 

mixture causes a more severe (synergism) or less severe (antagonism) effect than the 

predicted by the IA model. These deviations can be constant throughout the concentrations 

used or vary and follow a dose-level dependency (i.e. different effects at high and low 

concentrations) and a dose-ratio dependency (i.e. effects differ depending on the mixture 

composition) (Jonker et al. 2005). 

Specifically, we tested the following hypothesis: (1) dissolved CYN and MC-LR 

will have a similar impact on the growth response of the freshwater microalgae and (2) 

there will be an additivity of effects between these two cyanotoxins regarding the IA 

model. We tested these hypotheses by determining the growth rate of freshwater 

microalgae C. vulgaris after 4 and 7 days of exposure over a range of high pure toxin 

levels. 

 

 

2.2. Materials and methods 

 

 

2.2.1. Test organism, cyanobacterial strains and culture conditions 

 

 

C. vulgaris is normally used for algal toxicity tests and being from freshwater 

environments may co-occur with MC-LR and CYN-producing cyanobacteria. Therefore it 

is a relevant species to provide further insights on the effects of cyanotoxin mixtures in 

freshwater phytoplankton. C. vulgaris LEGE Z-001 was cultivated non-axenically in Z8 

medium (Kotai 1972), incubated at 25 ± 2ºC under a cool-white light intensity of 10 

µmol.m
-2

.s
-1

 photon irradiance with a photoperiod of 14h light and 10h dark. For the 
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maintenance of the laboratorial cultures, and the start of new cultures, an aliquot of C. 

vulgaris culture in exponential growth rate were harvested every 7-8 days and inoculated 

in fresh culture medium. Cultures were aerated with ambient air filtered through 0.22 µm. 

 

Microcystis aeruginosa LEGE 91094 and Aphanizomenon ovalisporum LEGE X-

001 were grown in non-axenic cultures in Z8 medium (Kotai 1972) with the same 

conditions described above for C. vulgaris. After 3-4 weeks of growth, biomass was 

collected and concentrated by centrifugation (4495 g, 15 min) in case of M. aeruginosa 

culture and by filtration (20 µm pore plankton net) of A. ovalisporum culture. The 

concentrated biomass was frozen at -80ºC and freeze-dried. Lyophilized material was 

stored at room temperature and in the dark until cyanotoxin extraction and purification 

procedure. The strain M. aeruginasa LEGE 91094 was reported to produce mainly the 

MC-LR variant, accounting for approximately 95% of the total intracellular MCs (Pereira 

et al. 2009). The strain A. ovalisporum LEGE X-001 was verified by high performance 

liquid chromatography (HPLC) Water Alliance e2695 coupled with a photo diode array 

(PDA) 2998 to produce only CYN (data of our lab). 

 

 

2.2.2. MC-LR extraction, purification and quantification 

 

 

MC-LR was extracted according to the method described by Ramanan et al. (2000), 

with some modifications. Briefly, the lyophilized M. aeruginosa biomass (0.5 g) was 

mixed with 15 mL of MeOH 75% (v/v) by continuous stirring at room temperature. After 

20 min, the sample was sonicated in a bath for 15 min and then ultrasonicated on ice at 60 

Hz with 5 cycles of 1 min (VibraCell 50 sonics & Material Inc. Danbury, CT, USA). The 

homogenate was centrifuged at 10000 g for 15 min to remove cell debris. The extraction 

procedure was repeated with the same volume of MeOH 75% (v/v). The supernatants 

resulting from both extraction steps were then pooled together and applied to a solid-phase 

extraction with a Water Sep-Pak
®
 Vac 6 mL C18 cartridge at 1 mL.min

-1
, which had been 

preconditioned with MeOH 100% and distilled water. The loaded column was washed with 

MeOH 20% (v/v) and then the MC-LR was eluted using MeOH 80% (v/v). The MC-LR 
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fraction was evaporated by rotary evaporation at 35ºC to remove the entire MeOH portion. 

The concentrated MC-LR fraction was thereafter purified and quantified by HPLC-PDA 

following modified versions (Ramanan et al. 2000; Xie & Park 2007). The limit of 

detection of this cyanotoxin in the HPLC-PDA system is 0.2 mg.L
-1

. A reversed phase 

column (Phenomenex Luna RP-18, 25 cm × 10 mm, 10 µm) kept at 40ºC were used for 

MC-LR purification. The gradient elution used MeOH and water both acidified with 0.1% 

trifluoracetic acid (TFA) with a flow rate of 2.5 mL.min
-1

. The injected volume was 500 

µL. Peak purity and percentage of purified MC-LR was calculated at 214 nm and 238 nm. 

The fractions containing purified MC-LR were then combined and evaporated with air 

nitrogen for 1 day until removing all the solvent. The residue was resuspendend in culture 

medium to the desired concentration. For purified MC-LR quantification, a reversed phase 

column (Merck Lichrospher RP-18 endcapped, 25 cm × 4.6 mm, 5 µm) equipped with a 

guard column (Merck Lichrospher RP-18 endcapped, 4 × 4 mm, 5 µm) both kept at 45ºC 

were used. The gradient elution consisted of (A) MeOH + TFA 0.1% and (B) H2O + TFA 

0.1% (55% A and 45% B at 0 min, 65% A and 35% B at 5 min, 80% A and 20% B at 10 

min, 100% A at 15 min, 55% A and 45% B at 15.1 and 20 min) with a flow rate of 0.9 

mL.min
-1

. The injected volume was 20 µL. The PDA range was 210-400 nm, with a fixed 

wavelength at 238 nm. The linearity method was achieved between 0.5 and 20 mg.L
-1

. The 

MC-LR was identified by comparison of spectra and retention time with a standard of MC-

LR (≥ 95% purity, Sigma-Aldrich). All HPLC solvents were filtered (Pall GH Polypro 47 

mm, 0.2 µm) and degassed by ultrasound bath. 

After analysis, the final concentration of the MC-LR stock solution was 308.5 

mg.L
-1

 and its chromatographic purity was 97%. The purified MC-LR was then diluted in 

Z8 medium to the concentration range used in experiments. 

 

 

2.2.3. CYN extraction, purification and quantification 

 

 

CYN was extracted from A. ovalisporum following a modified version of the 

method described by Welker et al. (2002). Briefly, freeze-dried cells (0.7 g) were mixed 

with 5 mL of distilled water acidified with TFA 0.1% (v/v) by continuous stirring for 1h at 
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room temperature. The homogenate was then sonicated in bath for 15 min followed by 5 

cycles of 1 min of ultrasonication on ice. After the extraction step, the homogenate was 

centrifuged (20000 g, 20 min) and the supernatant collected. A second extraction step was 

performed to the pellet. The supernatants were pooled together and stored at -20ºC. 

 

CYN was thereafter purified by the same HPLC system using a Gemini C18 column 

(250 mm × 10 mm, 5 µm) from Phenomenex, kept at 40ºC. The isocratic elution was with 

MeOH 5% (v/v) containing 2 mM of sodium 1-heptanesulfonate monohydrate (99%) with 

a flow rate of 3 mL.min
-1

. The injection volume was 500 µL. Peak purity and percentage of 

purified CYN was calculated at 262 nm. The fractions containing purified CYN were 

combined and then evaporated by speed-vac at 30ºC. The residue was resuspended in 

culture medium to the desired concentration. The solution containing the purified CYN 

was also quantified in the same HPLC system on an Atlantis® HILLIC phase column (250 

mm × 10 mm, 5 µm) from Waters kept at 40ºC. The isocratic elution was a solution of 

MeOH 5% (v/v) containing 2 mM of sodium 1-heptanesulfonate monohydrate (99%) with 

a flow rate of 0.9 mL.min
-1

 and a injected volume of 10 µL. the PDA range was 210-400 

nm with a fixed wavelength of 262 nm. The linearity method was achieved between 0.3 

and 25 mg.L
-1

. The CYN was identified by comparison of spectra and retention time with a 

standard of CYN (100% purity, Cork University, Ireland). The limit of detection of this 

cyanotoxin in the HPLC-PDA system is 0.3 mg.L
-1

. All HPLC solvents were filtered (Pall 

GH Polypro 47 mm, 0.2 µm) and degassed by ultrasound bath. 

After analysis, the final concentration of CYN stock solution was 325.1 mg.L
-1

 and 

its chromatographic purity was 98%. The purified CYN was diluted in Z8 medium to the 

concentration range used in experiments. 

 

 

2.2.4. Experimental design 

 

 

An experimental design which includes simultaneously single exposures of each 

cyanotoxin and a set of 25 binary combinations was chosen for the mixture testing. A ray 

design was chosen to assess the mixtures of MC-LR and CYN (Figure 1). 
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Figure 1 – A schematic ray design of the combinations used for the microcystin-LR and cylindrospermopsin 

mixture. 

 

 

Nominal concentrations of MC-LR used in single exposures were 1, 5, 10, 20 and 

40 mg.L
-1

 and in combined exposures were 0.5, 2.5, 5, 10 and 20 mg.L
-1

. For CYN 

nominal concentrations were 10, 20, 40 and 80 mg.L
-1

 in single exposures and 0.5, 2.5, 5, 

10 and 20 mg.L
-1

 in combined exposures. This concentration range was selected based on 

our previous work (Pinheiro et al. in press). As the toxicity prediction of binary mixture 

exposures is based on the dose-response curve of each of the cyanotoxins independently 

and the previous single exposures to high concentrations of MC-LR and CYN did not 

cause 50% response in the growth rate of C. vulgaris, a high concentration range of CYN 

was used for the single exposures in the mixture experiment in order to obtain a EC50 

value. For MC-LR, concentrations higher than 40 mg.L
-1

 were not used. Each 

concentration in single and combined experiments was tested in three replicates. In 

addition, a negative control with Z8 medium was also tested in triplicate. The single and 

mixture exposures were carried out at the same time so that differences in organisms 

responses, due to the sensitivity variations, could be controlled and not invalidate the 

analysis. 
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All the samples of the MC-LR and CYN-containing exposure medium were 

quantified by HPLC-PDA. The stability of MC-LR and CYN was also monitored during 

the exposure period by HPLC-PDA using samples with the same concentrations in the 

same conditions used for the experiments. 

 

Validity of the experiments was controlled using the reference substance potassium 

dichromate in three concentrations (5, 10 and 20 mg.L
-1

) with 5 replicates each. 

 

 

2.2.5. Growth inhibition test with C. vulgaris 

 

 

The growth inhibition test with the freshwater algae C. vulgaris was performed in 

96-well polystyrene microplates based on the method described by Gantar et al. (2008) due 

to the experimental design used and the amount of cyanotoxins necessary for the 

concentration range selected for the experiments. Each well consisted of 200 µL of test 

solution (with or without cyanotoxin). The log-phase growing microalgae was exposed for 

7 days to each cyanotoxin singly and in mixture and the algae growth was determined in 

accordance with the OECD 201 Guideline (2006). The Z8 medium was used as control. 

The pH values was recorded in the beginning (range, 7.3-7.4) and at the end (range, 9.1-

9.4) of the experiments. 

 

Microplates were sealed with perforated parafilm (to reduce evaporation and allow 

gas exchanges) and incubated for 7 days under the conditions described above for C. 

vulgaris cultures. The initial cell concentration of C. vulgaris was of approximately 5 × 10
5
 

cell.mL
-1

. At the beginning of the experiments and after 4 and 7 days the algae 

concentration was measured by optical density (OD) using microplate reader (PowerWave, 

Biotek, Vermont, USA) at a wavelength of 750 nm. Before the measurement of OD (on 

day 4 and 7), the well content was ressuspended with a pipette. The OD values were 

converted in cell.mL
-1

 using the equation: 
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C = 3.00 × 10
7
 × Abs + 2.17 × 10

5
 (R

2
 = 0.99) 

where C is the algae concentration (cell.mL
-1

) and Abs is the absorbance obtained at 750 

nm. 

 

The average specific growth rate was calculated as the logarithmic increase in cell 

concentration for the period of 4 and 7 days from the equation: 

 

 

 

where µi-j is the average specific growth rate from time i to j; ti is the time for the start of 

the exposure period; tj is the time for the end of the exposure period; Bi is the cell 

concentration at time i and Bj is the cell concentration at time j. 

 

 

2.2.6. Data analysis 

 

 

Significant differences in the growth rate of C. vulgaris between the control and the 

treatments were analyzed using a one-way analysis of variance (ANOVA), followed by 

Dunnett’s multiple comparisons test. Results were considered significant at P < 0.05. The 

EC50 values for C. vulgaris single exposures to cyanotoxins at 4 and 7 days were, when 

possible, calculated through a three-parameter logistic regression curve, the same dose-

response regression curve used within the MIXTOX tool. When the dose-response curve 

could not be obtained, the analysis in the MIXTOX tool were conducted with fixed EC50 

and slope parameters according to Loureiro et al. (2006). 

 

In addition, estimation of EC50 values for CYN was also obtained for each MC-LR 

concentration used in the mixture experiment using, where feasible, the same three-

parameter logistic regression curve. Synergistic ratios (SRs) were calculated by dividing 

the EC50 value for CYN (without MC-LR) by the EC50 value for each of the MC-LR and 

CYN treatments. SR values was used to give an indication of how strong was the 
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synergistic pattern on the growth rate of C. vulgaris exerted by the cyanotoxin binary 

mixture. SRs of 1.0 indicate no effects of the MC-LR on CYN toxicity (or an additive 

response), whereas values of > 1.0 and < 1.0 indicate greater and less effects than 

expected, respectively. 

 

The mixture data were analyzed using the MIXTOX tool described by Jonker et al. 

(2005) which allowed comparing the observed combined toxic effect and the expected 

combined effect calculated from the single cyanotoxin exposures. Growth rates from 

exposure to mixtures with the cyanotoxins were firstly fit to the IA model as cyanotoxins 

have dissimilar MoA. In a second step of the data analysis, IA model was extended to test 

the interactions between the two cyanotoxins with deviation functions describing 

synergism/antagonism (S/A), dose ratio dependent deviation (DR) and dose level 

dependent deviations (DL). 

 

The S/A deviations are extensions of the IA model and the DR and DL deviations 

are further extensions of the S/A function (see details in Jonker et al. (2005). These 

deviations are obtained with the addition of the parameters a and b forming a nested 

framework. The extra parameter a in the S/A deviations model can become negative or 

positive for IA. If the value of parameter a is positive, this means that a smaller effect than 

expected (antagonism) was observed; if the referred parameter a is negative, thus it 

expresses a higher effect than expected (synergism). When the value of parameter a is 

zero, the S/A model reduces to the IA reference model. For DR dependency, a second 

parameter bDR is included in addition to a, to generate the DR deviation model. In this 

deviation function, the parameter bDR allows the deviation from IA model to depend on the 

composition of the mixture. If the bDR value is positive, antagonism may be observed 

where the toxicity of the mixture is caused mainly by one of the toxicants; if the bDR value 

is negative, synergism may be observed where the toxicity of the mixture is caused mainly 

by the other one. To describe deviations of DL dependency, again a second parameter bDL 

is included in addition to a. DL describes synergism/antagonism depending on the doses of 

each toxicant in the mixture. In this case a value allows to observe whether synergism 

occurs at low doses and antagonism at high doses (parameter a smaller than zero) or 

whether antagonism occurs at low doses and synergism at high doses (parameter a higher 
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than zero). The parameter bDL indicates at what dose level the change between the two 

deviations occurs (i.e. from antagonism to synergism or vice versa); e.g., at the EC50, 

below the EC50 or above the EC50 level. The biological interpretations of the additional 

parameters are described in more detail in Table 1. 

 

The IA model and their deviations were fitted to the data using the method of 

maximum likelihood and statistically compared through likelihood testing. The best fit was 

chosen at the significance level of 0.05 using the Chi-square test which implies a decrease 

in the residuals of the sum of squares (SS) and an increase in the description of the 

variation of the data (R
2
). When a deviation from IA model was obtained, the effects 

pattern was deduced directly from the parameter values as described in Table 1. 

 

 

Table 1 – Interpretation of additional parameters (a and b) that define the functional form of deviation 

patterns from independent action. EC50 is the median effect concentration. 

Deviation pattern 
Independent action 

Parameter a Parameter b 

Synergism/Antagonism (S/A) a > 0: antagonism  

a < 0: synergism  

Dose ratio dependent (DR) a > 0: antagonism except for those 

mixture ratios where negative b 

value indicate synergism 

bi > 0: antagonism where the 

toxicity of the mixture is caused 

mainly by toxicant i 

a < 0: synergism except for those 

mixture ratios where positive b 

value indicate antagonism 

bi < 0: synergism where the 

toxicity of the mixture is caused 

mainly by toxicant i 

Dose level dependent (DL) a > 0: antagonism low dose level 

and synergism high dose level 

bDL > 2: change at lower EC50 

level 

 bDL = 2: change at EC50 level 

a < 0: synergism low dose level 

and antagonism high dose level 

1 < bDL < 2: change at higher EC50 

level 

 bDL < 1: no change, but the 

magnitude of S/A is effect level 

dependent 

Adapted from Jonker et al. (2005) 
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2.3. Results 

 

 

2.3.1. Chemical analysis 

 

 

To assess contamination accuracy, MC-LR and CYN analyzes were made by 

HPLC-PDA and the results showed that some measured concentrations varied generally 

more than 20% from the nominal concentrations. So, all calculations were based on 

effective concentrations. 

 

Stability analyzes for MC-LR and CYN were also made by HPLC-PDA and the 

results showed no toxin degradation throughout the 7 days of exposure. No significant 

changes in the pH were observed during the exposure period, indicating that this parameter 

was not interfering with C. vulgaris response to the cyanotoxin treatments. 

 

 

2.3.2. Single exposures 

 

 

The growth of C. vulgaris was assessed after 4 and 7 days of exposure to each 

cyanotoxin alone in the mixture experiment according to the OECD 201 Guideline (2006). 

The growth was expressed as the logarithmic increase in cell concentration after exposure. 

 

C. vulgaris growth rates were slightly increased at the highest tested concentrations 

of pure MC-LR after 7 days of exposure (Figure 2, one-way ANOVA, F5,12=4.901, 

P=0.011); the no observed effect concentration (NOEC) and the lowest observed effect 

concentration (LOEC) values of 1.2 and 6.5 mg.L
-1

 were obtained for pure MC-LR, 

respectively (Figure 2). No significant differences compared to control were observed in C. 

vulgaris growth rates after 4 days of exposure to pure MC-LR (Figure 2, one-way 

ANOVA, F5,12=2.511, P=0.089). 
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Figure 2 – Growth rate of the microalgae Chlorella vulgaris after 4 (black bars) and 7 (grey bars) days of 

exposure to pure MC-LR (left side) and CYN (right side) in the single exposures of the mixture experiment. 

Results are expressed as average ± standard error. (*) and () Denotes data significantly different from 

control at the fourth and seventh day of exposure (Dunnett’s method, P < 0.05). 

 

 

The growth response of C. vulgaris over the 4 and 7 days’ exposure to pure CYN 

followed a dose-response relationship as the growth rates decreased significantly with 

increasing pure CYN concentrations (Figure 2). The effects became more pronounced 

within prolonged exposure time. Significant differences compared to control were found at 

the highest concentrations (38.7 and 76.1 mg.L
-1

) for both exposure periods (one-way 

ANOVA, F4,10=104.362, P≤0.001 for 4
th

 day; one-way ANOVA, F4,10=123.527, P≤0.001 

for 7
th

 day). At the concentrations of 38.7 and 76.1 mg.L
-1

 of pure CYN, the growth rate 

values were about 3.14- and 3.58-fold lower than the control after 4 days of exposure, and 

2.84- and 4.15-fold lower than the control after 7 days of exposure, respectively. A 

significant increase in the growth rate of C. vulgaris was observed at 9.6 mg.L
-1

 of pure 

CYN after 7 days of exposure (Figure 2, Dunnett’s method, P<0.05) but it was only 0.86-

fold higher than the value found for the control. The NOEC and LOEC values of 17.3 and 

38.7 mg.L
-1

 were obtained for pure CYN on the 4
th

 day of exposure, respectively. For the 

7
th

 day of exposure, the LOEC value for pure CYN was 9.6 mg.L
-1

. 

 

The EC50 values obtained when C. vulgaris was exposed to pure CYN were 32.66 

mg.L
-1

 (SE = 3.91, R
2
 = 0.90) and 33.24 mg.L

-1
 (SE = 3.47, R

2
 = 0.91) for the 4

th
 and 7

th
 

days of exposure, respectively. For MC-LR exposure, it was impossible to calculate a valid 
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EC50 value for C. vulgaris growth rate and further analysis in the MIXTOX tool had to be 

undertaken with fixed EC50 and slope parameters. 

 

 

2.3.3. Mixture exposures 

 

 

The toxicity of the binary mixture of pure MC-LR and CYN on the 4
th

 and 7
th

 days 

of exposure was predicted by using the MIXTOX tool to fit the data set and generate the 

best description of the biological response of C. vulgaris to the combination of these 

cyanotoxins. For that, the IA model was basically the only conceptual model used to fit our 

data set, considering that MC-LR and CYN have different MoA on the organism. All 

parameters and significance test results obtained from data fitted with the MIXTOX tool 

are presented in Table 2 and 3. 

 

 

Table 2 – Summary of the analysis done for the effects on the growth rate of C. vulgaris exposed for 4 days 

to the binary mixture of MC-LR and CYN. 

  Independent action 

  Reference S/A DR DL 

Max  0.63 0.63 0.63 0.62 

βMC-LR  30 30 30 30 

βCYN  2.07 2.37 2.43 2.30 

EC50 MC-LR  83 83 83 83 

EC50 CYN  27.84 28.83 29.35 30.54 

a  - -1.76 -3.20 -0.01 

bDR/DL  - - 4.34 -1220.30 

SS  0.26 0.24 0.24 0.22 

R
2
  0.79 0.80 0.81 0.82 

p(χ
2
)  - 5.75 × 10

-03
 0.26 3.90 × 10

-03
 

S/A is synergism/antagonism, DR is dose ratio deviation and DL is dose level deviation from the reference 

model; Max is the maximum response value obtained for the given endpoint; β is the slope of the individual 

dose-response curve; EC50 is the median effect concentration value; a and bDR/DL are parameters of the 

deviation functions; SS is the sum of squared residuals; R
2
 is the coefficient of determination; χ

2
 is the Chi-

squared test and p(χ
2
) indicates the outcome of the likelihood ratio test (significance level p < 0.05). Fixed 

EC50 and β parameters are indicated in italics. 
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On the 4
th

 day, the fit of the IA model to the binary mixture data of pure MC-LR 

and CYN exposure yielded a SS value of 0.26, explaining 79% of our data. After adding 

parameter a to the IA model in order to describe synergism or antagonism, the SS value 

decreased slightly to 0.24 (p(χ
2
) < 0.001, Table 2), explaining 80% of the data. Parameter a 

had a value of -1.76, which indicates synergism (Table 1 and 2). Continuing in testing for 

deviations for DR dependency, no significant improvement was obtained on the data fit 

(p(χ
2
) = 0.26). However, when adding parameter a and bDL to the DL deviation, the SS 

value decreased significantly to 0.22 (p(χ
2
) < 0.001) explaining 82% of the data. Parameter 

a had a value of -0.01, which indicates synergism at low dose levels and antagonism at 

high dose levels, and the parameter bDL had a value of -1220.30, which indicates that the 

magnitude of synergism/antagonism became effect level dependent, i.e, suggesting that 

antagonism would be observed at concentrations much higher than the concentrations 

tested in the experimental design (see Figure 1, Table 1 and 2). Although a DL dependency 

was observed for the binary mixture data, nothing can be concluded due to the inaccurate 

value obtained for the parameter bDL. Therefore, a synergism deviation from IA model was 

shown to be the best description for our data set (SS = 0.24, R
2
 = 0.80 and p(χ

2
) < 0.001, 

Figure 3). 

 

 

Table 3 – Summary of the analysis done for the effects on the growth rate of C. vulgaris exposed for 7 days 

to the binary mixture of MC-LR and CYN. 

  Independent action 

  Reference S/A DR DL 

Max  0.48 0.48 0.48 0.48 

βMC-LR  35 35 35 35 

βCYN  2.26 2.66 2.76 2.64 

EC50 MC-LR  85 85 85 85 

EC50 CYN  30.27 31.44 31.84 32.54 

a  - -2.32 -4.03 -0.02 

bDR/DL  - - 4.94 -956.82 

SS  0.14 0.13 0.13 0.12 

R
2
  0.80 0.82 0.83 0.84 

p(χ
2
)  - 6.23 × 10

-04
 0.19 7.54 × 10

-03
 

S/A is synergism/antagonism, DR is dose ratio deviation and DL is dose level deviation from the reference 

model; Max is the maximum response value obtained for the given endpoint; β is the slope of the individual 

dose-response curve; EC50 is the median effect concentration value; a and bDR/DL are parameters of the 

deviation functions; SS is the sum of squared residuals; R
2
 is the coefficient of determination; χ

2
 is the Chi-

squared test and p(χ
2
) indicates the outcome of the likelihood ratio test (significance level p < 0.05). Fixed 

EC50 and β parameters are indicated in italics. 
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For data on the 7
th

 day of exposure, a significant fit was observed, explaining 80% 

of the data (SS = 0.14, p < 0.05). After adding parameter a to the IA equation the SS value 

decreased slightly to 0.13 and the R
2
 increased significantly to 0.82 and a synergistic 

pattern was suggested for the binary mixture of cyanotoxins (a = -2.32, p(χ
2
) < 0.001, 

Table 1 and 3). No significance decrease to the SS value was observed when adding 

parameter a and bDR to the DR deviation (SS = 0.13, p(χ
2
) = 0.19, Table 3). However, 

when adding parameter a and bDL to the DL deviation, the SS value decreased slightly to 

0.12 (p(χ
2
) < 0.001). The DL deviation fit explained 84% of the data. Parameter a had a 

value of -0.02, which indicates synergism at low dose levels and antagonism at high dose 

levels, and the parameter bDL had a value of -956.82, which indicates that the magnitude of 

synergism/antagonism became effect level dependent (Table 1 and 2). Again a DL 

dependency was observed for the binary mixture data, but nothing can be concluded due to 

the inaccurate value obtained for the parameter bDL. Therefore, a synergism deviation from 

IA model, which was achieved by adding parameter a to the equation, was shown to be the 

best description for our data set (SS = 0.13, R
2
 = 0.82 and p(χ

2
) < 0.001, Figure 3). 
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Figure 3 – Concentration-response relationship for the binary mixture of microcystin-LR and 

cylindrospermopsin showing a synergist pattern after IA model for the growth rate of C. vulgaris on the 4
th
 

and 7
th

 day of exposure (2D isobolic surface). Concentrations of cyanotoxins reported as effective values. 
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For both exposure periods, a significant synergistic interaction was found between 

MC-LR and CYN in the mixture. Although MC-LR has not caused any inhibitory effect on 

the growth rate of C. vulgaris at high concentrations when tested individually either on the 

4
th

 or 7
th

 day of exposure, the presence of MC-LR at levels lower than 20 mg.L
-1

 in the 

mixture significantly increased the toxicity of CYN. In order to provide information on the 

magnitude of the synergistic effect on the growth rate of C. vulgaris, the EC50 values for 

CYN in all MC-LR levels were estimated and the SRs calculated. The EC50 values and 

standard errors are provided in Table 4 with the corresponding SRs. From Table 4, it is 

clear that MC-LR had an effect on CYN toxicity with SRs of almost 2 at concentrations 

between 0.4 and 19.7 mg.L
-1

. This means that independently of MC-LR concentration 

present in the mixture, CYN toxicity was increased by about a factor of 2 when combined 

with MC-LR. 

 

 

Table 4 – EC50 values (with the standard errors, in mg.L
-1

) and synergistic ratios (SRs) estimated and 

calculated, respectively, for cylindrospermopsin when co-occurring with each concentration of microcystin-

LR in the mixture experiments. 

Exposure 

time (days) 

  Microcystin-LR (mg.L
-1

) 

  0 0.4 2.3 5.1 8.7 19.7 

4 

EC50 

(± SE) 

 32.66 

(± 3.91) 

19.64 

(± 5.41) 

17.53 

(n.d.) 

17.22 

(n.d.) 

17.26 

(n.d.) 

18.27 

(± 0.99) 

SR
a
  - 1.66 1.86 1.90 1.89 1.87 

7 

EC50 

(± SE) 

 33.24 

(± 3.47) 

17.40 

(n.d.) 

17.38 

(n.d.) 

17.08 

(± 0.15) 

17.28 

(± 0.28) 

16.94 

(± 0.13) 

SR
a
  - 1.91 1.91 1.95 1.92 1.96 

SE is the standard error; n.d. is not determined 
a
 SR = EC50 CYN without MC-LR / EC50 CYN and MC-LR treatments 

 

 

2.4. Discussion 

 

 

2.4.1. Single exposures 

 

 

In this study, the log-phase growing freshwater algae C. vulgaris was exposed to 

extremely high concentrations of pure MC-LR and CYN for 7 days aiming to estimate the 
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EC50 values for each of the cyanotoxins and then predict their combined toxicity in the 

MIXTOX tool. Our experiments demonstrate that pure CYN at higher concentrations (≥ 

38.7 mg.L
-1

) could strongly affect the growth of C. vulgaris, inhibiting their growth rates 

by a factor higher or similar to 3 after 4 and 7 days of exposure. In our previous work, pure 

CYN slightly inhibited the growth rate of C. vulgaris (< 10% of inhibition) after 4 days of 

exposure at concentrations of 8.5 and 16.7 mg.L
-1

, but no growth rate inhibition was 

observed on the 7
th

 day of exposure (Pinheiro et al. in press). However, concentrations 

corresponding to 9.6 and 17.3 mg.L
-1

 in our experiments were found to be either 

completely ineffective or causing a weak growth stimulation (0.86-fold higher than 

control) in C. vulgaris during the exposure period. Moreover, our experiments also 

demonstrated that pure MC-LR at higher concentrations (≥ 6.5 mg.L
-1

) could stimulate the 

growth rates of C. vulgaris only after 7 days of exposure. Growth rate of C. vulgaris was 

also previously found to be increased after the same prolonged exposure time, but only at 

pure MC-LR concentration of 37.3 mg.L
-1

 (Pinheiro et al. in press). Similarly to our 

results, a few studies have reported significant stimulations on microalgae growth when 

exposed to MC concentrations lower or similar to 4 mg.L
-1

. Ou et al. (2005) showed that 

the growth of the grazing chrysophyte Posterioochromonas sp. increased remarkably with 

the presence of MC-LR and MC-RR at concentrations between 0.1 and 4 mg.L
-1

 within 17 

days of exposure. Sedmak & Kosi (1998) observed an early growth stimulation of the 

green alga Coelastrum microporum when exposed to pure MC-RR concentrations of 0.1 

and 0.5 mg.L
-1

 in the first 10 days and a subsequent growth inhibition in the last 4 days. In 

a similar experiment with pure MC-RR and a different exposure time (16 days of 

exposure), the authors also observed an increase on the growth of the green algae 

Monoraphidium contortum at a concentration of 0.104 mg.L
-1

 (Sedmak & Kosi 1998). In 

addition, we can notice a slight difference between the growth rates assessed on the 4
th

 and 

7
th

 days of exposure which, in the case of pure CYN, tend to disappear with increasing 

concentrations. Since no cyanotoxin degradation was observed and C. vulgaris was in log-

phase at the end of 7 days, the expressive decreasing of growth rates between the 4
th

 and 

7
th

 days may possibly be a result of nutrient depletion. 

 

Previous works have shown that pure MCs may have detrimental effects on the 

microalgae growth at concentrations as high as those used in the present work. For 
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example, Babica et al. (2007) demonstrated that the growth of five planktonic microalgae 

representatives of Chlorophyta (Chlamydomonas reinhardtii, Chlorella kesslerii, 

Pediastrum duplex, Pseudokirchneriella subcapitata and Scenedesmus quadricauda) was 

strongly inhibited by pure MC-LR and MC-RR at a concentration of 25 mg.L
-1

 after 11 

days of exposure. P. subcapitata showed to be the most sensitive microalgae, being highly 

affected by both MC variants at even low concentrations (1 and 5 mg.L
-1

). In our study, we 

did not observe any growth inhibition at C. vulgaris exposed to pure MC-LR at 

concentrations below 25 mg.L
-1

. It is possible that green algae species display differential 

susceptibility to MCs. Moreover, the responses of microalgae to MCs seem to be also 

influenced by physic-chemical and environment factors. Some of these features are 

reported by Sedmak & Kosi (1998) that found that MC-RR at 0.104 and 0.519 mg.L
-1

 

inhibited the growth of C. microporum, but induced the growth of M. contortum and S. 

quadricauda under low light conditions. 

 

Data obtained in the present study for single exposures to cyanotoxin in the mixture 

experiment do not corroborate our hypothesis that dissolved CYN and MC-LR have a 

similar impact on the growth response of C. vulgaris, since at approximately equivalent 

concentrations pure CYN inhibited the growth rates of the freshwater algae while pure 

MC-LR did not have any negative effect on their growth rates. In the present study, 

concentrations of 32.66 and 33.24 mg.L
-1

 CYN decreased the growth rate of C. vulgaris by 

50% in a 4- and 7-day exposure period, respectively. However, CYN toxicity is considered 

not ecologically relevant because toxic effects on microalgae growth in aquatic systems are 

likely caused by high CYN concentrations (again, such high concentrations were used to 

estimate the EC50 values for CYN in order to further analysis in MIXTOX tool), and 

probably not found in the environment. In most water bodies, the presence of CYN is 

characterized by a high dissolved fraction (Wormer et al. 2009). In Europe, concentrations 

of dissolved CYN associated with cyanobacterial blooms range from 0.08 to 18.4 µg.L
-1

 

(Bogialli et al. 2006; Gallo et al. 2009; Messineo et al. 2010; Quesada et al. 2006; Rücker 

et al. 2007), and up to 0.8 mg.L
-1

 in Australia (Griffiths & Saker 2003; Shaw et al. 1999). 

Although it was agreed that CYN toxicity only occurs at high concentrations (here EC50 = 

33 mg.L
-1

 on the 4
th

 and 7
th

 days of exposure), toxicity at low concentrations of CYN may 

not be excluded in even longer-term exposures. Unlike MCs, dissolved CYN tends to 
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accumulate in the aquatic systems because of elevated extracellular release by CYN-

producing cyanobacteria (Preussel et al. 2009) and, considering its limited 

photodegradation (Wörmer et al. 2010) and biodegradation (Wormer et al. 2008), CYN 

may impair the environment and aquatic organisms. 

 

For pure MC-LR, it was not possible to observe a dose-response curve for the 

growth rate in C. vulgaris and estimate the EC50 value, thus limiting the toxicity prediction 

for this endpoint in the binary mixture of MC-LR and CYN. Although high pure MC-LR 

concentrations were not toxic to C. vulgaris, the fact cannot be disregarded that low 

concentrations of MC-LR may affect aquatic organism, especially microalgae, in longer-

term exposures. There are some studies that have reported toxic effects of MC-LR on 

microalgae at concentrations below 1.1 mg.L
-1

 in a 12- and 14-day exposure period (B-

Béres et al. 2012; Kearns & Hunter 2000; Kearns & Hunter 2001; Sedmak & Eleršek 

2006), suggesting that for longer exposures periods, low concentrations may have a 

negative impact. Concentrations of dissolved MCs in natural waters are generally reported 

below 10 µg.L
-1

 because they are mainly retained within healthy cyanobacterial cells 

(Babica et al. 2006; Babica et al. 2007; Lahti et al. 1997; Wiegand & Pflugmacher 2005). 

However, concentrations of MCs above 10 µg.L
-1

 in the environment can occur 

immediately after the collapse of a cyanobacterial bloom or the application of algicides. 

Jones and Orr (1994) measured 1.3-1.8 mg.L
-1

 MCs following algicide treatment of a M. 

aeruginosa bloom in a recreational lake. Furthermore, in a few cases, accumulation of 

cyanobacterial cells in surface scum may raise MC concentrations to levels higher than 1.8 

mg.L
-1

. In addition, concentrations of total MCs up to 8.4-25 mg.L
-1

 have been reported in 

natural bloom samples (Fastner et al. 1999; Kemp & John 2006; Máthé et al. 2007; Nagata 

et al. 1997). High concentrations of MC-LR in addition to longer exposure periods may 

also cause severe impact on aquatic ecosystems. Evidence supporting this is shown in the 

work of Sedmak & Kosi (1998). These authors studied the relationship between the species 

diversity and the development of toxic cyanobacterial blooms and MC content in natural 

water bodies in which it was found a negative correlation between high cyanobacterial cell 

densities and high MC values (> 0.01 mg.L
-1

) and the number of phytoplankton species 

present. 
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2.4.2. Mixture exposures 

 

 

Considering the growth response of C. vulgaris submitted to the combined 

exposure of pure MC-LR and CYN, the MIXTOX analysis showed a synergistic deviation 

from the conceptual model of IA for the growth rate endpoint in both exposure periods. 

The choice of IA to fit the data set from this binary mixture was mainly based on the 

assumption of different MoA of MC-LR and CYN, which means that they act in different 

target sites on the biological systems and/or follow different pathways to cause any 

observed effects. At the molecular level, MC-LR mainly inhibits protein phosphatases 1 

and 2A in mammals and higher plants (Mackintosh et al. 1990), which cause intracellular 

problems with cell growth, differentiation and osmoregulation (Gulledge et al. 2002; 

Monserrat et al. 2003; Runnegar et al. 1995a). MC-LR can also cause oxidative stress in 

aquatic animals, plants and algae, leading to an increase in lipid peroxidation, DNA 

damage, mitochondrial damage and alteration of the antioxidant defense system (Amado & 

Monserrat 2010; Bártová et al. 2011; Mohamed 2008; Pflugmacher 2004). CYN, on the 

other hand, inhibits glutathione and protein synthesis in mammals (Froscio et al. 2001; 

Froscio et al. 2008; Runnegar et al. 1995b; Terao et al. 1994) interfering with several 

metabolic pathways. Studies performed with dissimilar acting chemicals generally show 

that the IA model demonstrates a good ability in predicting the combined toxicity of those 

chemicals, but there have been cases where deviations from this model have occurred 

when those chemical were tested (Ferreira et al. 2008; Loureiro et al. 2010; Munkegaard et 

al. 2008). 

 

Interpretation of modeled data for the endpoint of growth rate in both exposure 

periods suggested a synergistic interaction of pure MC-LR and CYN on C. vulgaris. It 

indicates that observed growth rates of C. vulgaris were impaired by the MC-LR and CYN 

mixture exposure, with toxic effects being higher than those predicted by IA model. 

Therefore, IA model underestimated the mixture toxicity and the synergistic pattern was 

established for that endpoint. This result does not corroborate our hypothesis that pure MC-

LR and CYN could have an additive response on the microalgae growth. As far as we 

know, until now there is no published data on response patterns of C. vulgaris to the same 
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cyanotoxin mixture, but there are data from other species, O. sativa, where the joint effects 

of MC-LR- and CYN-containing crude extracts were evaluated (Prieto et al. 2011). In a 

48h-experiment, Prieto et al. (2011) showed higher activity of GST in the roots and leaves 

of the rice plant O. sativa exposed to the mixture of MC-LR and CYN-containing 

cyanobacterial extracts compared to that of the plant exposure to the individual 

cyanobacterial extracts, suggesting a synergistic interaction between both cyanotoxins. It 

should be noted that both cyanobacterial extracts are complex mixtures of cyanobacterial 

metabolites (including cyanotoxins) and potential interactions among the components of 

these complex mixtures cannot be neglected. As an example, Nováková et al. (2012) 

studied the combined effects of crude extracts from two non-producing cyanobacteria, 

Aphanizomenon gracile and Cylindrospermopsis raciborskii, on gap junctional 

intercellular communication (GJIC) and showed that both extracts (without cyanotoxins) 

when mixed caused an additive response on GJIC, suggesting that unknown metabolites 

are responsible for the inhibitory activity of both combined extracts on GJIC. Recent 

studies also demonstrated synergistic effects between cyanobacterial metabolites such as 

portoamide A and B (Leão et al. 2010), lobocyclamides A and B (MacMillan et al. 2002) 

or laxaphycins A and B (Bonnard et al. 2007). Therefore, the effect of mixtures of 

cyanobacterial extracts containing cyanotoxins should be analyzed with more reflection 

and prudency. 

 

In the current study, high concentrations of MC-LR (0.4-19.7 mg.L
-1

) and CYN 

(0.4-16.7 mg.L
-1

) were used in order to assess their combined effects on the growth rate of 

C. vulgaris. Pure MC-LR at 0.4-19.7 mg.L
-1

 increased the toxicity of pure CYN by about a 

factor of 2. This is a substantial increase when considering that levels of 2-10 times this 

amount of pure MC-LR did not cause toxicity by itself. The most likely explanation for 

this increased toxicity is that CYN inhibits the GSH synthesis and prevent the GST 

catalyzed conjugation of MC-LR to GSH, which represents the first step in detoxification 

of MCs (Pflugmacher et al. 1998), prolonging thereby the residence time of MC-LR in C. 

vulgaris and resulting in a much higher toxicity. Best et al. (2002), who investigated the 

combined effect of MC-LR and lipopolysaccharides (LPS) on the activity of microsomal 

and soluble GST of zebra fish Danio rerio, also reported that LPS (0.5 µg.L
-1

) may exert a 

synergistic effects on MC-LR-induced toxicity (0.5 µg.L
-1

), since LPS seem to potentially 
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decrease the GST activity (microsomal and soluble), thus reducing MC detoxification. In 

contrast to the previous study, Lindsay et al. (2006) showed antagonistic effects between 

MC-LR or CYN and LPS in invertebrates (Artemia salina, Daphnia magna and Daphnia 

galeata); pre-exposure with a sublethal level of LPS (2 µg.L
-1

) protect the invertebrates 

against the toxicity of MC-LR (1000 ng.L
-1

-20 mg.L
-1

) and CYN (1000 ng.L
-1

-20 mg.L
-1

). 

This protective effect was also found for the co-exposure of LPS and MC-LR, but was less 

pronounced than the conferred by pre-exposure with LPS. The mechanism involved in the 

antagonistic effects is not fully understood yet, but appears to involve effects of LPS on 

detoxification pathways other than GST, including suppression of the invertebrates 

CYP450 system (Lindsay et al. 2006). On the other hand, Pires et al. (2011) did not found 

clear evidences for synergistic effects of MCs and LPS, but the interaction between 

Microcystis strain type (non-producing and MC-producing), concentration of MC-

producing cells and LPS (absence or presence) was significant, indicating composition 

dependent effects of MCs and LPS, i.e., dose ratio dependency. The variety of responses 

produced by cyanotoxin mixtures indicates that the observed toxic effects are likely 

dependent on the species, cyanotoxin mixture, exposure type and levels of cyanotoxins 

used. 

 

The combined toxicity of pure MC-LR and CYN has not been reported and our 

experiments confirmed a synergistic MC-LR-CYN interaction on C. vulgaris growth rate. 

Although the synergistic interaction between MC-LR and CYN occurred at high 

concentrations, negative impacts of these cyanotoxins in combination on microalgae 

community should not be ignored. The impact to the microalgae community can be 

increased if we consider that MC-LR and CYN are relatively stable compounds (Chiswell 

et al. 1999; Duy et al. 2000; Tsuji et al. 1994; Wormer et al. 2008; Wörmer et al. 2010), 

persisting in the water after cyanobacterial senescence and/or cell lyses (Eaglesham et al. 

1999). Given predictions that cyanobacterial blooms will increase in frequency and 

magnitude in the future (Paerl & Huisman 2008; Paerl & Huisman 2009; Paerl & Paul 

2012), we might anticipate that synergistic effects on growth responses of microalgae, 

which will influence exponential population growth, may have pronounced effects on 

populations and communities of zooplankton. 
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Given the importance of microalgae such as C. vulgaris in the food webs and the 

growing concerns regarding cyanobacterial blooms, we suggest that there is a need to 

carefully assess the mechanism behind this synergistic effect. We also emphasize that 

similar experiments with other freshwater microalgae and even with environmentally 

relevant concentrations should be undertaken, as differential susceptibilities will 

undoubtedly occur between genera and species. Revealing such sensitivities in the 

microalgae growth response to MC-LR and CYN mixtures may indicate the consequences 

to the microalgae communities and in turn to the zooplankton communities. 

 

 

2.5. Conclusions 

 

 

In the present study, C. vulgaris was chosen as a test species to discuss the toxic 

effects of individual and mixture exposure of pure MC-LR and CYN. Our results showed 

that the interaction between MC-LR and CYN was synergistic and MC-LR enhanced the 

CYN toxicity on the growth rate of C. vulgaris. Although the synergistic interaction 

between MC-LR and CYN occurred at high concentrations, the possibility of interaction 

between these two cyanotoxins in aquatic environment cannot be excluded. Thus, when 

aquatic organisms, especially microalgae, are simultaneously exposed to both cyanotoxins, 

the increased environmental risks should not be ignored. To the best of our knowledge, this 

is the first study concerning combined toxicity of MC-LR and CYN as pure cyanotoxins. 

Considering the predicted expansion of cyanobacterial blooms on a global scale, this report 

is also an important contribution to our understanding of an increasing potential 

environmental risk between MC-LR and CYN and of how both cyanotoxins interact with 

each other in microalgae. Moreover, our results demonstrated that high concentrations of 

pure CYN applied as single cyanotoxin caused impairments on growth rates of C. vulgaris 

while pure MC-LR can lead generally to an increase of the growth rates. 

As a final conclusion, this work emphasize that more research needs to be done 

regarding the effects of binary mixtures of cyanotoxins on several microalgae species at 

different combinations of concentrations, including environmentally relevant 

concentrations. 
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Abstract 

 

 

Aquatic organisms are constantly exposed to several natural and anthropogenic 

contaminants such as cyanotoxins, metals and pesticides in eutrophic brackish and 

freshwaters mainly due to toxic cyanobacterial blooms and human activities. However, the 

ecotoxicological risk of their combinations in the aquatic environment is unknown. The 

aim of the present study was to investigate the growth responses of Chlorella vulgaris 

exposed to four single chemical compounds (microcystin-LR, cylindrospermopsin, 

terbuthylazine and cadmium) and five binary mixtures. In the growth inhibition tests, 

terbuthylazine was the most toxic to C. vulgaris, followed by cadmium, 

cylindrospermopsin and microcystin-LR, which was the less toxic. The MIXTOX tool was 

used to evaluate mixture toxicity. Observed data was compared with the expected mixture 

effects predicted by independent action model; deviations for synergistic/antagonistic 

interactions, dose ratio and dose level dependency were also assessed. In the mixture 

toxicity assessment, several patterns of response were obtained depending on the mixture. 

Antagonism was the prevailing type of interaction between the chemical compounds in a 

4-day exposure period while dose level dependency was the only deviation obtained in a 7-

day exposure period. In the case of dose level dependency, synergism at low doses of each 

chemical compound involved in the mixture was observed in three of the five binary 

mixtures. This synergistic effect represents a significant risk for aquatic organisms co-

exposed to cyanotoxins and anthropogenic contaminants in the environment. Toxicokinetic 

and toxicodynamic studies should be made in the future as a way to understand the 

toxicological mechanisms involved in complex mixture exposures. 

 

 

Keywords: Cyanotoxin, Microcystin-LR, Cylindrospermopsin, Terbuthylazine, Cadmium, 

Chlorella vulgaris, Mixture toxicity, Independent action 
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3.1. Introduction 

 

 

The global intensification of agricultural and industrial activities has enhanced 

eutrophication in brackish and freshwaters, which has led to the increasing worldwide 

frequency of harmful cyanobacterial blooms (HABs) (Paerl et al. 2001). Climate changes, 

specially the predicted rise of global temperatures and the changes in the global 

hydrological cycle (precipitation and drought), are thought to favour the HAB occurrence 

in the future not only in frequency and intensity but also in dominance, duration, 

persistence and geographic distribution (El-Shehawy et al. 2012; Elliott 2012; Paerl & 

Huisman 2008; Paerl & Huisman 2009; Paerl & Paul 2012). Such blooms are of great 

ecological and human health concern mainly because of the ability of many bloom-forming 

cyanobacterial species to produce potent cyanotoxins (Codd et al. 1999; Falconer 1999; 

van Apeldoorn et al. 2007; Zurawell et al. 2005). Among these cyanotoxins, the 

hepatotoxin microcystins (MCs) and the cytotoxin cylindrospermopsin (CYN) are the most 

frequently detected in HABs in brackish and freshwaters (Codd et al. 2005; Prasanna et al. 

2010; van Apeldoorn et al. 2007). 

 

During HAB development, MCs are mainly retained within the cyanobacterial cells 

while CYN may be continuously released to the water due to its hydrophilic properties and 

apparent membrane permeability (Shaw et al. 1999; Wiegand & Pflugmacher 2005; 

Wormer et al. 2008). After senescence and/or lysis of cyanobacterial cells, high 

concentrations of both cyanotoxins may be released into the aquatic environment during 

the collapse of HABs. Concentrations of dissolved MCs may reach levels as high as 25 

mg.L
-1

 (Kemp & John 2006; Máthé et al. 2007; Nagata et al. 1997) while concentrations of 

dissolved CYN may attain 0.8 mg.L
-1

 (Griffiths & Saker 2003). These high levels, which 

may become more common with the HAB increase in prevalence and magnitude (Paerl & 

Huisman 2008; Paerl & Huisman 2009; Paerl & Paul 2012), inspired us to examine a range 

of concentrations that include extremely high concentrations. As MCs and CYN are highly 

stable and persist for days under conditions found in most natural water bodies (Chiswell et 

al. 1999; Duy et al. 2000; Eaglesham et al. 1999; Lahti et al. 1997; Tsuji et al. 1994; 

Wormer et al. 2008), the released cyanotoxins might come into contact direct with a range 
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of aquatic organisms, including microalgae, and cause adverse effects on them (Babica et 

al. 2007; Berry et al. 2009; Beyer et al. 2009; Pflugmacher 2004; Pflugmacher et al. 1999). 

 

MCs and CYN may seriously affect important cellular processes such as growth 

(B-Béres et al. 2012; Babica et al. 2007; Beyer et al. 2009), photosynthesis (Pietsch et al. 

2001; Weiss et al. 2000; Wiegand et al. 2002), detoxification pathways (Mohamed 2008; 

Wiegand et al. 2002) and reproduction (Kinnear et al. 2007). MCs act as potent inhibitors 

of protein phosphates 1 and 2A in mammals and higher plants (Gulledge et al. 2002; 

Mackintosh et al. 1990; Pereira et al. 2011; Runnegar et al. 1995a). Moreover, many 

studies have indicated that oxidative stress may play a significant role in the toxicity 

mechanism of MCs in aquatic animals, plants and algae (Amado & Monserrat 2010; 

Bártová et al. 2011; Mohamed 2008; Pflugmacher 2004). CYN inhibits glutathione and 

protein synthesis (Froscio et al. 2001; Froscio et al. 2008; Runnegar et al. 1995b; Terao et 

al. 1994) and potentially interferes with DNA structure (Shaw et al. 2000) in mammals. Its 

toxicity mechanism is likely mediated by cytochrome P450-generated metabolites 

(Humpage et al. 2005). 

 

Concomitant with the eutrophication of brackish and freshwaters and massive 

proliferation of cyanobacteria, the development of agriculture and industrialization has also 

led to the release of high amounts of persistent anthropogenic contaminants such as metals 

and pesticides to the aquatic systems. Such high levels may be toxic to a range of aquatic 

organisms, including microalgae (Bišová et al. 2003; Chalifour & Juneau 2011; Fairchild 

et al. 1997; Huang et al. 2009; Pérez et al. 2011; Visviki & Rachlin 1994; Weiner et al. 

2007). 

 

Aquatic organisms may therefore be simultaneously exposed to several natural and 

anthropogenic environmental contaminants originating from different sources that may 

have more deleterious effects on aquatic communities than those induced by the 

contaminants individually. The combined effects of cyanotoxins (especially MC-LR) and 

anthropogenic contaminants have been reported on invertebrates (Cerbin et al. 2010; Yang 

et al. 2012; Yang et al. 2011), fish (Notch et al. 2011; Sun et al. 2012), birds (Wang et al. 

2012) and plants (Ge et al. 2012; Wang et al. 2012). However, such combined effects on 
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freshwater microalgae are unknown so far. Although there is an increasing concern about 

the combined exposure to both natural and anthropogenic contaminants on aquatic 

organisms, the ecotoxicological risks of their combinations on aquatic ecosystems is still 

limited. 

 

In the present study, the growth responses of the freshwater unicellular algae 

Chlorella vulgaris exposed to several chemical substances, singly and in binary mixture, 

were investigated. For that, the following four chemicals with dissimilar modes of action 

(MoA) were chosen: 1) cyclic heptapeptide MC-LR as the most common and toxic variant 

of MCs (Dittmann & Wiegand 2006; Hoeger et al. 2005); 2) tricyclic alkaloid CYN due to 

its worldwide occurrence (Falconer & Humpage 2006; Fastner et al. 2007; Quesada et al. 

2006; Spoof et al. 2006); 3) triazine-ring herbicide terbuthylazine (TBA) which acts at the 

photosystem II (PSII) of photoautotroph organisms inhibiting the photosynthetic electron 

transport (Faust et al. 2001) and is frequently detected in surface waters (Azevedo et al. 

2001; de Almeida Azevedo et al. 2000; Lacorte et al. 1998; Loos et al. 2010; Loos et al. 

2007; Palma et al. 2009; Pérez et al. 2010); and 4) the non-essential metal cadmium (Cd), 

commonly found in the aquatic environment due to a variety of anthropogenic and natural 

sources, is known as an oxidative stress inductor, causing lipid peroxidation (Badisa et al. 

2007; Leonard et al. 2004; Pinto et al. 2003; Valko et al. 2005), and a competitor by the 

essential Ca
2+

 site in PSII during photoactivation (Faller et al. 2005). We hypothesized that 

growth responses of C. vulgaris will not only be adversely affected by these four chemical 

substances independently, but also interactive effects between them will occur. 

 

 

3.2. Material and methods 

 

 

3.2.1. Test chemicals 

 

 

Chemical substances used in this study were cadmium chloride anhydrous (CdCl2, 

99% purity, FLUKA, Sigma-Aldrich), TBA (formula: C9H16ClN5, molecular weight: 229.7 
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Daltons) tested as a commercial formulation (SAPEC with 500 g active ingredient.L
-1

), 

pure MC-LR (formula: C49H74N10O12, molecular weight: 994 Daltons, 97% purity) and 

pure CYN (formula: C15H21N5O7S, molecular weight: 415 Daltons, 98.7% purity). The 

cyanotoxins were purified by high performance liquid chromatography (HPLC) Water 

Alliance e2695 coupled with a photo diode array (PDA) 2998. All the TBA concentrations 

in the experiments are given as active ingredient per L Z8 medium. 

 

Exposure medium contamination was controlled by chemical analysis by HPLC-

PDA for MC-LR and CYN. To control medium contamination, chemical analysis were 

performed to two samples of the stock solutions and 32 and 29 samples of both single and 

combined exposures for MC-LR and CYN, respectively. For Cd and TBA, actual 

concentrations were not checked. The stability of MC-LR and CYN was also monitored 

during the exposure period by HPLC-PDA using samples with the same concentrations in 

the same conditions used for the experiments. 

 

 

3.2.2. Test organism and cyanobacterial strains 

 

 

All experiments were carried out with the freshwater unicellular algae C. vulgaris 

LEGE-Z001 as test organism. Non-axenic cultures of C. vulgaris were maintained in Z8 

medium (Kotai 1972) and incubated at 25 ± 2ºC under a cool-white light intensity of 10 

µmol.m
-2

.s
-1

 photon irradiance with a photoperiod of 14h light and 10h dark. Cultures were 

aerated with ambient air sterilized by passing through 0.22 µm filter. For the maintenance 

of the laboratory cultures, and start of new cultures, C. vulgaris were harvested while still 

in the exponential growth phase (7-8 days old) and inoculated in fresh Z8 medium. 

 

The MC-LR and CYN-producing cyanobacterial strains used in this study were 

Microcystis aeruginosa LEGE 91094 and Aphanizomenon ovalisporum LEGE X-001. In 

the strain LEGE 91094, the most produced MC variant MC-LR was reported to account for 

approximately 95% of the total intracellular MCs (Pereira et al. 2009b). The strain LEGE 

X-001 produces only CYN as assessed by HPLC-PDA (data not shown). Non-axenic 
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cultures of both cyanobacterial species were maintained in Z8 medium (Kotai 1972) at the 

same conditions described above for C. vulgaris culture. After 3-4 weeks of growth, M. 

aeruginosa biomass was harvested by centrifugation (4495 g, 15 min) and A. ovalisporum 

biomass was collected by filtration through 20 µm pore plankton net. The harvested 

biomass was frozen at -80ºC and freeze-dried. Lyophilized material was stored at room 

temperature and in the dark until cyanotoxin extraction and purification procedures. 

 

 

3.2.3. MC-LR extraction, purification and quantification 

 

 

MC-LR was extracted from lyophilized M. aeruginosa biomass based on the 

method described by Ramanan et al. (2000) with some modifications. Briefly, the freeze-

dried cells (0.5 g) were mixed with 15 mL of MeOH 75% (v/v). The homogenate was 

continuously stirred for 20 min at room temperature, sonicated in a bath for 15 min and 

then ultrasonicated on ice at 60 Hz with 5 cycles of 1 min (VibraCell 50 sonics & Material 

Inc. Danbury, CT, USA). Cell debris was separated by centrifugation (10000 g, 15 min) 

after the extraction step. The pellet was thereafter re-extracted with the same volume of 

MeOH 75% (v/v). The supernatants resulting from both extraction steps were combined 

and passed through a Water Sep-Pak
®
 Vac 6 mL C18 cartridge (solid-phase extraction), 

preconditioned with MeOH 100% and distilled water before. The flow rate was of 1 

mL.min
-1

. MeOH 20% (v/v) was used to wash the loaded cartridge and MeOH 80% (v/v) 

was used for MC-LR elution. After elution, the MC-LR containing fraction was evaporated 

by rotary evaporation at 35ºC to completely remove MeOH. The concentrated MC-LR 

fraction was subsequently purified and quantified by HPLC-PDA following modified 

versions (Ramanan et al. 2000; Xie & Park 2007). The limit of detection of this compound 

in the HPLC-PDA system is 0.2 mg.L
-1

. A reversed phase column (Phenomenex Luna RP-

18, 25 cm × 10 mm, 10 µm) kept at 40ºC were used for MC-LR purification. The gradient 

elution utilized MeOH and water both acidified with 0.1% trifluoracetic acid (TFA) with a 

flow rate of 2.5 mL.min
-1

. The injected volume was 500 µL. Peak purity and percentage of 

purified MC-LR was calculated at 214 and 238 nm. The fractions containing purified MC-

LR were then combined, evaporated to dryness with air nitrogen for 1 day and redissolved 
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in culture medium. For purified MC-LR quantification, a reversed phase column (Merck 

Lichrospher RP-18 endcapped, 25 cm × 4.6 mm, 5 µm) equipped with a guard column 

(Merck Lichrospher RP-18 endcapped, 4 × 4 mm, 5 µm) both kept at 45ºC were used. The 

binary gradient of elution consisted of (A) MeOH + TFA 0.1% and (B) H2O + TFA 0.1% 

(55% A and 45% B at 0 min, 65% A and 35% B at 5 min, 80% A and 20% B at 10 min, 

100% A at 15 min, 55% A and 45% B at 15.1 and 20 min) with a flow rate of 0.9 mL.min
-

1
. The injected volume was 20 µL. The PDA range was 210-400 nm, with a fixed 

wavelength at 238 nm. The linearity method was achieved between 0.5 and 20 mg.L
-1

. 

MC-LR was identified by comparison of spectra and retention time with a standard of MC-

LR (≥ 95% purity, Sigma-Aldrich). All HPLC solvents were filtered (Pall GH Polypro 47 

mm, 0.2 µm) and degassed by ultrasound bath. 

After analysis, the final concentration of the MC-LR stock solution was 673.3 

mg.L
-1

 and its purity was 97% according to HPLC chromatograms. Purified MC-LR was 

then diluted in Z8 medium to the concentration range used in experiments. 

 

 

3.2.4. CYN extraction, purification and quantification 

 

 

CYN was extracted from lyophilized A. ovalisporum biomass according to the 

method described by Welker et al. (2002), with some modifications. Briefly, freeze-dried 

cells (0.7 g) were mixed with 5 mL of distilled water acidified with TFA 0.1% (v/v). The 

homogenate was then stirred for 1h at room temperature, sonicated in bath for 15 min and 

ultrasonicated on ice at 60 Hz with 5 cycles of 1 min (VibraCell 50 sonics & Material Inc. 

Danbury, CT, USA). Cell debris was separated by centrifugation (20000 g, 20 min) after 

the extraction step. The pellet was thereafter re-extracted with the same volume of distilled 

water acidified with TFA. The supernatants resulting from both extraction steps were 

pooled together and stored at -20ºC. 

 

The same HPLC system was used to purify and quantify the CYN content in the 

extract. The limit of detection of this compound in the HPLC-PDA system is 0.3 mg.L
-1

. A 

reversed phase column (Phenomenex Gemini C18, 250 cm × 10 mm, 5 µm) kept at 40ºC 
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were used for CYN purification. The isocratic elution utilized MeOH 5% (v/v) containing 

2 mM of sodium 1-heptanesulfonate monohydrate (99%) with a flow rate of 3 mL.min
-1

. 

The injection volume was 500 µL. Peak purity and percentage of purified CYN was 

calculated at 262 nm. The fractions containing purified CYN were then combined, 

evaporated by speed-vac at 30ºC and redissolved in culture medium to the desired 

concentration. For purified CYN quantification, a reversed phase column (Waters Atlantis
®
 

HILLIC, 250 mm × 10 mm, 5 µm) kept at 40ºC were used. The isocratic elution utilized 

MeOH 5% (v/v) containing 2 mM of sodium 1-heptanesulfonate monohydrate (99%) with 

a flow rate of 0.9 mL.min
-1

 and an injected volume of 10 µL. The PDA range was 210-400 

nm with a fixed wavelength of 262 nm. The linearity method was achieved between 0.3 

and 25 mg.L
-1

. The CYN was identified by comparison of spectra and retention time with a 

standard of CYN (100% purity, Cork University, Ireland). All HPLC solvents were filtered 

(Pall GH Polypro 47 mm, 0.2 µm) and degassed by ultrasound bath. 

After analysis, the final concentration of CYN stock solution was 608.7 mg.L
-1

 and 

its purity exceeded 98% according to HPLC chromatograms. Purified CYN was diluted in 

Z8 medium to the concentration range used in experiments. 

 

 

3.2.5. Experimental design 

 

 

3.2.5.1. Single-chemical exposures 

 

 

The growth inhibition tests with the freshwater algae C. vulgaris were performed in 

96-well polystyrene microplates based on the method described by Gantar et al. (2008) due 

to the experimental design used and the amount of cyanotoxins necessary for the 

concentration range selected for the experiments. 

 

The log-phase growing microalgae at a cell concentration of approximately 5 × 10
5
 

cell.mL
-1

 was exposed for 7 days to the chemical compounds and the algae growth was 

determined based on the OECD 201 Guideline (2006). Nine concentrations of Cd and TBA 
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plus a negative control (Z8 medium only) with 5 replicates each were used for the 

experimental setup. Nominal concentrations for Cd ranged from 0.25 to 64 mg.L
-1

 and for 

TBA from 0.001 to 0.5 mg.L
-1

. Five effective concentrations of pure MC-LR (range, 1.2-

37.3 mg.L
-1

) and pure CYN (range, 0.4-16.7 mg.L
-1

) with 3 replicates each were 

previously used in our study (Pinheiro et al. in press). Each well consisted of 200 µL of test 

solution (with or without chemical) prepared in fresh culture medium. The pH values was 

recorded in the beginning and at the end of the experiments. 

 

Microplates were sealed with perforated parafilm (to reduce evaporation and allow 

gas exchanges) and incubated for 7 days at the same temperature and luminosity conditions 

mentioned above for microalgae culture. Algal growth was measured indirectly by optical 

density (OD) using microplate reader (PowerWave, Biotek, Vermont, USA) at a 

wavelength of 750 nm. The first reading was taken at the beginning of each experiment 

and subsequent readings were taken 4 and 7 days later. Before the measurement of OD (on 

day 4 and 7), the well content was ressuspended with a pipette. All the OD values were 

converted in cell.mL
-1

 using the equation: 

 

C = 3.00 × 10
7
 × Abs + 2.17 × 10

5
 (R

2
 = 0.99) 

 

where C is the algae concentration (cell.mL
-1

) and Abs is the absorbance obtained at 750 

nm. 

 

The average specific growth rate was calculated as the logarithmic increase in cell 

concentration for the period of 4 and 7 days from the equation: 

 

 

 

where µi-j is the average specific growth rate from time i to j; ti is the time for the start of 

the exposure period; tj is the time for the end of the exposure period; Bi is the cell 

concentration at time i and Bj is the cell concentration at time j. 
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In order to meet the validity of the experiments, the reference substance potassium 

dichromate was used in three concentrations (5, 10 and 20 mg.L
-1

) with 5 replicates each. 

 

 

3.2.5.2. Binary mixture exposures 

 

 

The growth inhibition test with the freshwater algae C. vulgaris were conducted 

using the same methodology as the single-chemical tests. 

 

The following binary combinations were tested: MC-LR and TBA, MC-LR and Cd, 

CYN and TBA, CYN and Cd and TBA and Cd. A ray experimental design was used with 

the exception of the mixture of Cd and TBA where a full factorial experimental design was 

applied. 

For the MC-LR and TBA and MC-LR and Cd combinations, the experimental 

design consisted of single exposures to 7 concentrations of MC-LR and 5 concentrations of 

TBA and Cd and to 25 combinations of substances for each case (Figure 1). The nominal 

concentrations that were used for MC-LR single exposures ranged from 0.5 to 80 mg.L
-1

 

and for combined exposures from 0.5 to 20 mg.L
-1

. As the toxicity prediction of binary 

mixture exposures is based on the dose-response curve of each of the chemicals 

independently, a high concentration range of MC-LR was used in each single exposure in 

order to calculate the EC50 value since in our previous study no growth inhibition was 

observed for the growth rate of C. vulgaris at the tested concentrations, thereby preventing 

the calculation of the IC50 value (Pinheiro et al. in press). For TBA and Cd nominal 

concentrations ranged from 0.03 to 0.48 and 0.05 to 5 mg.L
-1

 in single and combined 

exposures, respectively. 

For the CYN and TBA and CYN and Cd combinations, the experimental design 

consisted of single exposures to 4 concentrations of CYN and 5 concentration of TBA and 

Cd and to 25 combinations of substances for each case (Figure 1). The nominal 

concentrations that were used for CYN single exposures ranged from 10 to 80 mg.L
-1

 and 

for combined exposures from 0.5 to 20 mg.L
-1

. Again, for the same reason, a high 

concentration range of CYN was used in each single exposure in order to get reliable EC50 
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estimates, because in our previous study only weak growth inhibitions were registered for 

the growth rate of C. vulgaris after 4 days of exposure to CYN, overestimating the 

calculation of the IC50 value (Pinheiro et al. in press). For TBA and Cd nominal 

concentrations ranged from 0.03 to 0.48 and 0.05 to 5 mg.L
-1

 in single and combined 

exposures, respectively. 
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Figure 1 – A schematic ray design of the combinations used for the microcystin-LR and terbuthylazine, 

microcystin-LR and cadmium, cylindrospermopsin and terbuthylazine, cylindrospermopsin and cadmium. 

 

 

For TBA and Cd combination, the experimental design consisted of single 

exposures to 6 concentrations of each chemical and to 36 combinations of both chemicals 

(Figure 2). Nominal concentration of TBA and Cd ranged from 0.03 to 0.48 and 0.05 to 5 

mg.L
-1

 in single and combined exposures, respectively. 
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In the binary mixture experiments, individual and mixture exposures were carried 

out simultaneously so that differences in organisms’ responses, due to the sensitivity 

variations, could be controlled and not invalidate the analysis. Three replicates were used 

for single and mixture experiments. 
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Figure 2 – A schematic full factorial design of the combinations used for the terbuthylazine and cadmium 

mixtures. 

 

 

3.2.6. Data analysis 

 

 

In order to determine the no observed effect concentration (NOEC, i.e. the highest 

concentration to cause no significant effect on algal growth) and the lowest observed effect 

concentration (LOEC, i.e. the lowest concentration to cause a significant effect on algal 

growth), a one-way analysis of variance (ANOVA) was performed using the SigmaPlot 

software (SPSS, 2002), followed by the multiple comparisons Dunnett’s method to detect 

differences between the data that followed a normal distribution and homogeneity of 

variances. When the normality test and data transformation procedures failed, a non-

parametric Kruskal-Wallis one-way ANOVA test was used and the multiple comparisons 

Dunn’s method conducted. All significant differences were established at P ≤ 0.05. 
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The EC50 values for each chemical compound in the single exposures were, when 

possible, calculated using the following three parameter logistic curve (the same dose-

response curve used within the MIXTOX tool): 

 

 

 

where Yci is the response of a given parameter at a concentration ci of a chemical, Ymax is 

the maximum response value for the parameter, EC50 is the effect concentration that 

provoke 50% of the response and β is the slope. When it was not possible to fit this curve 

to get reliable EC50 estimates, the analysis in the MIXTOX tool were conducted with fixed 

EC50 and slope parameters according to Loureiro et al. (2010). 

 

Whenever it was not possible to observe a full dose response curve for a particular 

component of a binary mixture, synergistic ratios (SR) were calculated to estimate how 

strong was the synergistic inhibition of the growth rates of C. vulgaris exerted by that 

binary mixture. For this, the EC50 values were estimated for the component of the binary 

mixture where a full dose response curve was observed (e.g. Chem1), in the presence of 

each concentration of the other component where a full dose response curve was not 

obtained (e.g. Chem2). The estimation of EC50 values was obtained using, when feasible, 

the same three parameter logistic curve described above. After that, SRs were calculated 

by dividing the EC50 value for the Chem1 (without the presence of the Chem2) by EC50 

value for each of Chem1 and Chem2 treatments. SRs of 1.0 indicate no effects of the 

Chem2 on Chem1 toxicity (or an additive response), whereas values of > 1.0 and < 1.0 

indicate greater and less effects than expected, respectively. 

 

To predict the toxic effects in the binary mixture experiments, the observed effect 

was compared to the expected effect of mixtures calculated from the single chemical 

exposure, using the conceptual model of independent action (IA) described by Jonker et al. 

(2005). This conceptual model assumes that both components in the mixture have 

dissimilar modes of action, acting at different target sites, which is the case of the selected 

chemical substances. However, the toxic behaviour of a mixture may deviate from this 
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conceptual model, thereby being more or less severe than expected. Deviations from the IA 

model such as synergism/antagonism (S/A), dose ratio (DR) dependency and dose level 

(DL) dependency were obtained by the addition of two parameter (a and b) to the 

mathematical model that describe IA [see in more detail in Jonker et al. (2005)]. The 

biological interpretation of these additional deviation parameters are summarized in Table 

1 and may be found in more detail in Jonker et al. (2005). The tool used to analyze and 

compare the data in the present study was the MIXTOX already described by Jonker et al. 

(2005), which allowed to fit the IA model to the data and also to extend it to test for 

deviations. The data fitted to the IA model or their deviations was compared using the 

method of maximum likelihood and the best fit chosen using the Chi-square test at the 

significance level of 0.05. When a deviation from IA model was obtained, the effects 

pattern was deduced directly from the parameter values described in Table 1. 

 

 

Table 1 – Interpretation of additional parameters (a and b) that define the functional form of deviation 

patterns from independent action. EC50 is the median effect concentration. 

Deviation pattern 
Independent action 

Parameter a Parameter b 

Synergism/Antagonism (S/A) a > 0: antagonism  

a < 0: synergism  

Dose ratio dependent (DR) a > 0: antagonism except for those 

mixture ratios where negative b 

value indicate synergism 

bi > 0: antagonism where the 

toxicity of the mixture is caused 

mainly by toxicant i 

a < 0: synergism except for those 

mixture ratios where positive b 

value indicate antagonism 

bi < 0: synergism where the 

toxicity of the mixture is caused 

mainly by toxicant i 

Dose level dependent (DL) a > 0: antagonism low dose level 

and synergism high dose level 

bDL > 2: change at lower EC50 

level 

 bDL = 2: change at EC50 level 

a < 0: synergism low dose level 

and antagonism high dose level 

1 < bDL < 2: change at higher EC50 

level 

 bDL < 1: no change, but the 

magnitude of S/A is effect level 

dependent 

Adapted from Jonker et al. (2005) 
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3.3. Results 

 

 

3.3.1. Chemical analysis 

 

 

In all tests performed, pH ranged between 7.3-7.6 and 9.1-9.5 for MC-LR and 

CYN, and between 7.8-8.2 and 9.6-10.5 for Cd and TBA in the beginning and at the end of 

the experiments. In the highest tested Cd concentration, pH measured at the end of the 

experiments ranged between 7.3-7.5. 

 

In order to assess contamination accuracy, MC-LR and CYN analyzes were made 

by HPLC-PDA and the results showed that measured concentrations varied generally more 

than 20% from the nominal concentrations. So, all calculations were based on effective 

concentrations. Stability analyzes for MC-LR and CYN were also made by HPLC-PDA 

and the results showed no toxin degradation throughout the 7 days of exposure. 

 

 

3.3.2. Single chemical exposures 

 

 

The NOEC, LOEC and EC50 values obtained from each of the four single chemical 

exposures are reported in Table 2, along with the data obtained in the single-chemical 

exposures from the binary mixture experiments. After 4 days of exposure, it is clear that 

TBA was the most toxic to C. vulgaris, being approximately 5 times more toxic than Cd, 

which in turn is approximately 28 times more toxic than CYN. After 7 days of exposure, 

the toxicity difference between TBA and Cd is much smaller, with TBA being only 2.5 

times more toxic than Cd. On the other hand, the toxicity difference between Cd and CYN 

is much higher, being CYN approximately 46 times less toxic than Cd. MC-LR was clearly 

the less toxic to C. vulgaris, differing approximately 2 times from CYN toxicity on the 4
th

 

and 7
th

 days of exposure. 
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In general, the NOEC and LOEC for pure MC-LR after 4 and 7 days of exposure 

was 40.4 and 78.9 mg.L
-1

 (run in the binary mixture set up), respectively. In mixture 

experimental set ups, growth rate of C. vulgaris exposed to single pure MC-LR showed a 

maximum reduction of 23% and 44% on the 4
th

 and 7
th

 days of exposure, respectively, 

when compared to the control. It was therefore not possible to calculate a valid EC50 value 

for pure MC-LR in both single chemical exposures, and further analysis in the MIXTOX 

tool had to be undertaken with fixed EC50 and slope parameters. The same situation was 

also observed to single TBA exposure from the binary mixture with CYN. In spite of the 

LOEC value for TBA was 0.24 mg.L
-1

 for 4 days of exposure and 0.12 mg.L
-1

 for 7 days of 

exposure, a maximum inhibition of 37% and 47% was registered for the growth rate of C. 

vulgaris exposed to single TBA at 0.48 mg.L
-1

. Again, it was not possible to obtain a valid 

EC50 value for TBA, and further analysis in the MIXTOX tool were made by fixing the 

EC50 and slope parameters. 

 

The EC50 values between the experiments were similar, showing reproducibility on 

the methodology, with the best belonging to TBA and the most variable belonging to Cd 

(Table 2). 
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Table 2 – NOEC, LOEC and EC50 values (with corresponding standard errors), in mg.L
-1

, for the effect of selected chemical substances on the growth rate of Chlorella 

vulgaris exposed for 4 and 7 days in Z8 medium. NOEC is the no observed effects concentration, LOEC the lowest observed effect concentration and EC50 the median 

effect concentration. 

Substances 
 NOEC  LOEC  EC50 (± SE)  

Experiment 
 Day 4 Day 7  Day 4 Day 7  Day 4 Day 7  

Microcystin-LR 

(MC-LR) 

 > 37.3 23.9  > 37.3 37.3  > 37.30 > 37.30  Single exposure experiments
a
 

 40.4 40.4  78.9 78.9  > 78.9 > 78.9  Mixture experiment with TBA 

 19.6 40.4  40.4 78.9  > 78.9 > 78.9  Mixture experiment with Cd 

Cylindrospermopsin 

(CYN) 

 4.4 > 16.7  8.5 > 16.7  > 16.70 (n.d.) > 16.70 (n.d.)  Single exposure experiments
a
 

 17.3 9.6  38.7 17.3  49.21 (± 3.29) 47.67 (± 2.98)  Mixture experiment with TBA 

 17.3 9.6  38.7 17.3  56.34 (± 2.73) 51.26 (± 1.72)  Mixture experiment with Cd 

Terbuthylazine 

(TBA) 

 0.01 0.025  0.025 0.05  0.39 (± 0.03) 0.39 (± 0.02)  Single exposure experiments 

 0.12 0.03  0.24 0.06  0.37 (± 0.03) 0.46 (± 0.03)  Mixture experiment with MC-LR 

 0.12 0.06  0.24 0.12  > 0.48 > 0.48  Mixture experiment with CYN 

 < 0.03 0.03  0.03 0.06  0.35 (± 0.01) 0.46 (± 0.02)  Mixture experiment with Cd 

Cadmium 

(Cd) 

 1 < 0.25  2 0.25  1.17 (± 0.19) 0.88 (± 0.08)  Single exposure experiments 

 0.1 0.1  0.5 0.5  0.92 (± 0.08) 0.76 (± 0.04)  Mixture experiment with MC-LR 

 1 0,1  5 0.5  4.15 (n.d.) 1.80 (± 0.14)  Mixture experiment with CYN 

 0.1 < 0.05  0.5 0.05  1.27 (± 0.08) 0.88 (± 0.03)  Mixture experiment with TBA 

a
 Results for C. vulgaris from Pinheiro et al. (in press). 
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3.3.3. Binary mixture exposures 

 

 

To understand growth responses of C. vulgaris to several binary mixture exposures, 

the reference model of IA was used to evaluate the combined effects of the chemical 

substances on the growth rate of this microalga in accordance with the mode of action of 

each chemical. The toxicity of each binary mixture was predicted through the MIXTOX 

tool. The best descriptive model and the parameters obtained from data fitted with the 

MIXTOX tool are shown in Table 3. 

 

Comparing the effects of MC-LR and TBA mixture on the growth rates of C. 

vulgaris, after 4 days of exposure, to the IA model a SS value of 0.37 was obtained 

explaining 67% of the data set. However, adding parameters a and bDL the SS value 

decreased significantly (SS = 0.15, r
2
 = 0.85, p(χ

2
) < 0.05) and a DL dependent deviation 

from IA model was observed (Table 3). Parameter a was positive (a = 1.59) indicating 

antagonism at low dose levels and synergism at high dose levels (Figure 3A) and 

parameter bDL was negative (bDL = -5.87) indicating that the magnitude of 

antagonism/synergism became effect level dependent, which means that synergism is 

predicted to occur at concentrations much higher than the ones tested in the experimental 

design (see Figure 1, Table 1 and 3). The same behaviour was observed after 7 days of 

exposure to the MC-LR and TBA mixture (Table 3, Figure 3B). 

 

Exposure to mixtures of MC-LR and Cd showed a different trend of toxicity on the 

growth rates of C. vulgaris. After 4 days of exposure, a significant antagonistic effect (SS 

= 0.83, r
2
 = 0.63, p(χ

2
) < 0.05, a = 4.49) was detected when compared to the IA model 

(Table 3, Figure 3C). After 7 days of exposure, a significant DL dependent deviation from 

the IA model (SS = 0.49, r
2
 = 0.77, p(χ

2
) < 0.001) was observed with the deviation 

parameters a (a = -7.30) indicating synergism at low dose levels and antagonism at high 

dose levels (Figure 3D). The switch between synergism and antagonism may be calculated 

from 1/ bDL × EC50 (Jonker et al. 2005). Thus, the change occurred at (1/2.96 = 0.34 × 

EC50) doses lower than the EC50 level (Table 1 and 3). 
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Table 3 – Summary of the analysis done for the effects on the growth rate of C. vulgaris exposed for 4 and 7 days to the binary mixture of microcystin-LR and 

terbuthylazine, microcystin-LR and cadmium, cylindrospermopsin and terbuthylazine, cylindrospermopsin and cadmium and finally terbuthylazine and cadmium 

(Chem 1 × Chem 2, respectively). 

Mixture 
Exposure 

time (days) 
Fit method

a
 

 Independent action
b
 

 Reference  Deviation 

 SS r
2
  Type p(χ2) SS r

2
 a bDR/bDR 

Microcystin-LR and terbuthylazine 4 MC-LR drc fix  0.37 0.67  DL 3.46 × 10
-03

 0.15 0.85 1.59 -5.87 

7 MC-LR drc fix  0.07 0.88  DL 4.62 × 10
-03

 0.04 0.93 0.51 -8.52 

Microcystin-LR and cadmium 4 MC-LR drc fix  0.91 0.59  A 1.25 × 10
-03

 0.83 0.63 4.49 - 

7 MC-LR drc fix  0.66 0.69  DL 3.05 × 10
-08

 0.49 0.77 -7.30 2.96 

Cylindrospermopsin and terbuthylazine 4 TBA drc fix  0.26 0.66  DR 6.64 × 10
-03

 0.15 0.81 0.98 4.99 

7 TBA drc fix  0.10 0.82  DL 7.36 × 10
-07

 0.07 0.88 -0.998 5.45 

Cylindrospermopsin and cadmium 4 Free  1.34 0.58  A 4.89 × 10
-07

 1.06 0.67 15.75 - 

7 Free  0.73 0.62  DL 1.50 × 10
-06

 0.57 0.70 -14.53 6.86 

Terbuthylazine and cadmium 4 Free  0.24 0.93  A 9.20 × 10
-04

 0.23 0.94 0.73 - 

7 Free  0.12 0.96  DL 1.69 × 10
-03

 0.11 0.96 1.51 2.26 

a
 The fit method indicates if any parameter had to be fixed during fitting due to the poor single chemical effect data, followed for statistics for the reference model of 

independent action and their best deviation function. 
b
 The model parameters given are: a and bDR/bDL are the parameters obtained from the deviation functions; SS is the sum of squared residuals; r

2
 is the coefficient of 

determination; χ
2
 is the Chi-squared test and p(χ

2
) indicates the outcome of the likelihood ratio test (significance level p < 0.05). 

c
 A is antagonism; DR is dose ratio deviation and DL is dose level deviation. 
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Figure 3 – Concentration-response relationship for the binary mixtures of microcystin-LR and terbuthylazine 

and microcystin-LR and cadmium tested on the growth rate of C. vulgaris after 4 and 7 days of exposure (2D 

isobolic surface). A, B and D show a dose level deviation from the IA model; C shows an antagonistic 

pattern after IA model fit. Concentrations of microcystin-LR reported as effective values and concentrations 

of terbuthylazine and cadmium reported as nominal concentrations. 

 

 

Comparing the effects of CYN and TBA mixture on the growth rates of C. vulgaris, 

after 4 days of exposure, to the IA model a SS value of 0.26 was obtained explaining 66% 

of the data set. Nevertheless, adding the parameters a and bDr the SS value decreased 

significantly (SS = 0.15, r
2
 = 0.81, p(χ

2
) < 0.05) and a DR dependent deviation from IA 

model was obtained (Table 3). In this case, an antagonistic effect was observed and 

explained mostly when CYN was the dominant chemical in the mixture (a = 0.98 and bDR 
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= 4.99, Table 1 and 3, Figure 4A). On the 7
th

 day of exposure, a significant DL dependent 

deviation (SS = 0.07, r
2
 = 0.88, p(χ

2
) < 0.001) was detected as the deviation that explained 

better the data after fitting the data to the IA model, showing synergism at low dose levels 

and antagonism at high dose levels (a = -0.998, Table 1 and 3, Figure 4B). The change 

between synergism and antagonism occurred at (1/5.45 = 0.18 × EC50) doses lower than 

the EC50 level (Table 1 and 3). 

 

Relatively to the CYN and Cd mixture exposure, when data was modeled using IA 

a significant fit was observed and the SS value of 1.34 was obtained, explaining 58% of the 

data set (p < 0.05). Adding the parameter a to the IA model to achieve a S/A, the SS value 

decreased significantly (SS = 1.06, r
2
 = 0.67, p(χ

2
) < 0.001, Table 3). Parameter a was 

positive (a = 15.75), indicating antagonism (Figure 4C). On the 7
th

 days of exposure to the 

binary mixture, data fitted the IA model (SS = 0.73, r
2
 = 0.62) but significantly better fit 

was obtained after adding parameter a and bDL (SS = 0.57, r
2
 = 0.70, p(χ

2
) < 0.001, Table 

3), revealing a DL dependent deviation from the IA model. Parameter a had a negative 

value (a = -14.53) indicating synergism at low dose levels and antagonism at high dose 

levels (Figure 4D), and the parameter bDL was higher than 2 (bDL = 6.86) indicating that the 

change from synergism to antagonism occurred at (1/6.86 = 0.15 × EC50) doses lower than 

the EC50 level (Table 1 and 3). 
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Figure 4 – Concentration-response relationship for the binary mixtures of cylindrospermopsin and 

terbuthylazine and cylindrospermopsin and cadmium tested on the growth rate of C. vulgaris after 4 and 7 

days of exposure (2D isobolic surface). A shows a dose ratio deviation from the IA model; B and D show a 

dose level deviation from the IA model; and C shows an antagonistic pattern after IA model fit. 

Concentrations of cylindrospermopsin reported as effective values and concentrations of terbuthylazine and 

cadmium reported as nominal concentrations. 

 

 

Results on the effects of TBA and Cd mixture on the growth rate of C. vulgaris 

after 4 days of exposure fitted significantly the IA model (SS = 0.24, p < 0.05), explaining 

93% of the data set. However, while changing the function to assess S/A, a small decreased 

of the SS value was verified (SS = 0.24, r
2
 = 0.94, a = 0.73, Table 3) with significant 

differences at p(χ
2
) < 0.001, indicating antagonism on growth response (Figure 5A). After 
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7 days of exposure, a significant DL dependent deviation from the IA model (SS = 0.11, r
2
 

= 0.96, p(χ
2
) < 0.05) was observed with the deviation parameters a (a = 1.51) indicating 

antagonism at low dose levels and synergism at high dose levels (Figure 5B). The change 

between antagonism and synergism occurred at (1/2.26 = 0.44 × EC50) doses lower than 

the EC50 level (Table 1 and 3). 
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Figure 5 – Concentration-response relationship for the binary mixture of terbuthylazine and cadmium tested 

on the growth rate of C. vulgaris after 4 and 7 days of exposure (2D isobolic surface). A shows an 

antagonistic pattern after IA model fit and B show a dose level deviation from the IA model. Concentrations 

of terbuthylazine and cadmium reported as nominal concentrations. 

 

 

The EC50 values and standard errors are provided in Table 4 with the corresponding 

SRs. After 4 days of exposure, MC-LR decreased the toxic effects of TBA with SRs of 

0.46 at 8.7 mg.L
-1

 and 0.33 at 19.7 mg.L
-1

. The antagonistic effect of MC-LR and TBA 

mixture was less pronounced after 7 days of exposure with SRs of 0.62 at 8.7 mg.L
-1

 and 

0.51 at 19.7 mg.L
-1

. MC-LR also decreased the Cd toxicity with SR of 0.46 at 19.7 mg.L
-1

 

on the 4
th

 day of exposure. However, no obvious effect of MC-LR on the Cd toxicity was 

found after 7 days of exposure (Table 4), even though the MIXTOX tool fitting has 

revealed a significant synergism at low dose levels and a significant antagonism at high 

dose level with the change occurring at dose lower than the EC50 value (Table 3). In the 
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case of CYN and TBA mixture, it was not possible to calculate the SRs. Growth rates of C. 

vulgaris were significantly inhibited by CYN in the single exposure as the concentration 

were increased, following a dose-response relationship (see Table 2). But when co-

occurring with TBA, the growth rate inhibition was completely eliminated and there was 

an increase of the growth rates at values compared with those of control or even a growth 

stimulus, justifying somehow the antagonism observed mainly when CYN was the 

dominant component in the mixture after 4 days of exposure. On the 7
th

 day of exposure, 

there was a weak inhibition of the growth rates of C. vulgaris when CYN co-occurred with 

TBA at 0.03-0.12 mg.L
-1

, contrasting with the increase of the growth rates to the level of 

control or even with the growth stimulation at concentration of TBA higher or similar to 

0.24 mg.L
-1

. This explains somehow the significant synergism at low dose levels and the 

significant antagonism at high dose level suggested by MIXTOX tool, with the change 

occurring at dose lower than the EC50 value (Table 3). 

 

 

Table 4 – EC50 values (with the standard errors, in mg.L
-1

) and synergistic ratios (SRs) estimated and 

calculated, respectively, for terbuthylazine (TBA) and cadmium (Cd) when co-occurring with each 

concentration of microcystin-LR in the mixture experiments. 

Compound 
Exposure 

time (days) 

  Microcystin-LR (mg.L
-1

) 

  0 0.4 2.3 5.1 8.7 19.7 

TBA 4 EC50 

(± SE) 

 0.37 

(± 0.03) 

0.37 

(± 0.03) 

0.48 

(± 0.05) 

0.67 

(± 0.10) 

0.80 

(± 0.17) 

1.14 

(± 0.48) 

SR
a
  - 1.00 0.77 0.55 0.46 0.32 

7 EC50 

(± SE) 

 0.46 

(± 0.03) 

0.42 

(± 0.03) 

0.48 

(± 0.03) 

0.61 

(± 0.05) 

0.74 

(± 0.10) 

0.90 

(± 0.17) 

SR
a
  - 1.10 0.96 0.75 0.62 0.51 

          

Cd 4 EC50 

(± SE) 

 0.92 

(± 0.08) 

0.75 

(± 0.04) 

1.76 

(± 0.15) 

0.96 

(n.d.) 

0.97 

(± 0.25) 

2.02 

(± 1.13) 

SR
a
  - 1.23 0.52 0.96 0.95 0.46 

7 EC50 

(± SE) 

 0.76 

(± 0.04) 

0.72 

(± 0.02) 

1.08 

(± 0.06) 

0.76 

(± 0.02) 

0.86 

(± 0.04) 

0.92 

(± 0.67) 

SR
a
  - 1.06 0.70 1.00 0.88 0.83 

SE is the standard error; n.d. is not determined 
a
 SR = EC50 TBA or Cd without MC-LR / EC50 TBA or Cd and MC-LR treatments 
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3.4. Discussion 

 

 

3.4.1. Single chemical exposures 

 

 

The 7-day growth inhibition tests with the single cyanotoxins showed that pure 

MC-LR and CYN were toxic at the highest concentrations to the freshwater algae C. 

vulgaris (Table 2). In the present study, concentrations of 49.21 and 56.34 mg.L
-1

 CYN 

decreased the growth rate of C. vulgaris by 50% in a 4-day exposure period. After 7 days 

of exposure, 50% of growth rate inhibition was observed at concentrations around 50 

mg.L
-1

, suggesting that CYN is more toxic with increasing exposure periods. The LOEC 

values found for MC-LR, in general, were 40.4 and 78.9 mg.L
-1

 with a maximum growth 

rate inhibition of 23% and 44% on the 4
th

 and 7
th

 days of exposure, respectively. However, 

MC-LR and CYN toxicity to the C. vulgaris growth is considered not ecologically relevant 

because toxic effects on microalgae growth in aquatic environments are likely caused by 

high concentrations and probably not found in the water. Although, in a few cases, 

concentrations of dissolved MCs can reach 1.8 mg.L
-1

 (Jones & Orr 1994) or higher (up to 

25 mg.L
-1

) (Fastner et al. 1999; Kemp & John 2006; Máthé et al. 2007; Nagata et al. 1997) 

in natural waters during the collapse of cyanobacterial blooms, they commnonly do not 

exceed 0.1 mg.L
-1

 (Vasconcelos et al. 2011; Vasconcelos & Pereira 2001) and 

concentrations between 0.05 and 5 µg.L
-1

 are considered to be typical for aquatic 

ecosystems with cyanobacterial massive development (Babica et al. 2006; Babica et al. 

2007; Lahti et al. 1997). Relatively to CYN, cyanobacterial blooms are concurrent with 

0.08-18 µg.L
-1

 CYN in Europe (Bogialli et al. 2006; Gallo et al. 2009; Messineo et al. 

2010; Quesada et al. 2006; Rücker et al. 2007) and up to 0.8 mg.L
-1

 CYN in Australia 

(Griffiths & Saker 2003; Shaw et al. 1999). It is important to remember that such high 

concentrations of pure MC-LR and CYN were used to estimate the EC50 values for both 

cyanotoxins so that further analysis in MIXTOX tool were possible to perform. 

 

For TBA (as a commercial formulation), there are no available toxicity data for 

microalgae. To our knowledge, this study provides for the first time evidence that a 
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commercial formulation containing TBA (SAPEC with 500 g a.i.L
-1

) is highly toxic to C. 

vulgaris, reducing their growth rates by 50% at concentrations 0.35-0.39 mg.L
-1

 in a 4-day 

exposure period. On the 7
th

 day of exposure, slightly higher EC50 values, 0.39-0.46 mg.L
-1

, 

were registered in our study, indicating recovery of the growth rates. Although the toxicity 

of TBA as a commercial formulation has not received any scientific attention until now, 

information about the toxicity of TBA as a pure compound on microalgae is already 

known. Perez et al. (2011) studied the toxic effects of the s-triazine herbicide TBA on the 

growth rate of Pseudokirchneriella subcapitata and found 72-h EC50 value of 0.024 mg.L
-

1
. Okamura et al. (2000) found that P. subcapitata was also sensitive to TBA with 72-h 

EC50 value of 0.036 mg.L
-1

 which is a value comparable to that determined in the previous 

study. In a 48-h exposure period, Munkegaard et al. (2008) investigated whether 

interactions between organophosphorous insecticides and herbicides can take place in the 

algae P. subcapitata and a EC50 value of 0.60 mg.L
-1

 for TBA was found. Compared with 

previous studies, TBA used in our study as a commercial formulation seem to be less toxic 

to microalgae, even though different microalgae species (with different susceptibilities), 

exposure periods and exposure mediums have been used to observe toxic effects. This is 

not in accordance with some studies available in the literature that clearly demonstrated 

that commercial formulations exhibit higher toxicity to non-target organisms than the 

corresponding active ingredients (Cedergreen & Streibig 2005; Pereira et al. 2009a; Pereira 

et al. 2000). Commercial formulations are composed of the active ingredient and a number 

of other chemicals (generally called inert ingredients) that support its mixing, dilution, 

application and stability (Cox & Surgan 2006). The inert ingredients are not supposed to be 

toxic, but some authors have shown that they can contribute to the overall toxicity of the 

formulation, either by exerting toxic activity on their own, or by interacting with the active 

ingredient (Oakes & Pollak 2000; Solomon & Thompson 2003). 

 

Cd was also highly toxic towards C. vulgaris cells, with EC50 values ranging from 

0.92 to 4.15 mg.L
-1

 for 4-day exposure period and 0.76 to 1.80 mg.L
-1

 for 7-day exposure 

period. Literature data suggest a great variability in the values of EC50 obtained for 

microalgae (Báscik-Remisiewicz et al. 2011; Lin et al. 2007; Magdaleno et al. 1997; 

Pereira et al. 2005; Yap et al. 2004). In a comparative study of single and mixture toxicities 

of Cd and Cu on the growth response of C. vulgaris, Lam et al. (1999) observed a 4-day 
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EC50 value for Cd of 4.01 mg.L
-1

 from population density, which is in the same range of 

one EC50 value obtained in this study (Table 2). In contrast to our study, Rachin & Grosso 

(1993), who studied the growth response of the algae C. vulgaris to combined exposure of 

different metals (Cd, Cu and Co), obtained a lower EC50 value from population density, 

0.10 mg.L
-1

, for a 4-day exposure period, although close to our EC50 range. The differences 

in microalgae responses to Cd may result from chemical speciation of this metal in the 

culture medium. The chemical form of Cd in water strongly depends on the composition of 

this medium. It has been well documented that free Cd
2+

 ions are the most toxic form of Cd 

to organisms and that concentration of free metal ions can vary in the presence of 

complexing agents (Fernandezpinas et al. 1991). 

 

 

3.4.2. Binary mixture exposures 

 

 

According to the MIXTOX analysis, all the mixture exposures undertaken deviated 

from the non-interactive conceptual model of IA. Such deviations from the IA model may 

occur when compounds affect the bioavailability of one another, their modes of action and 

their behaviour after uptake (e.g. bioaccumulation) (Loureiro et al. 2010). In other words, 

interactions between compounds may be linked to toxicokinetic or toxicodymanic phases. 

 

Fitting the IA model to the growth rate data from C. vulgaris species exposed to the 

MC-LR and TBA mixture resulted in a DL dependent deviation, indicating antagonism at 

low dose levels and synergism at doses above the concentrations tested in this experiment. 

The most likely explanation for the antagonistic response is that MC-LR affects C. vulgaris 

in a way that decreases the toxic action of TBA. Therefore, a specific mechanism is likely 

responsible for the decreased toxicity. TBA is a specific inhibitor of the photosynthetic 

electron transport in plants and algae (Faust et al. 2001), disturbing thereby the 

photosynthesis. It acts by the competitive and reversible binding to the domain of the D1 

protein of the PSII reaction center, thus displacing the electron acceptor plastoquinone QB 

from this site (Faust et al. 2001; Giardi et al. 1995). MCs were also shown to affect 

photosynthesis in several photosynthetic organisms (Perron et al. 2012; Singh et al. 2001; 
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Weiss et al. 2000; Wiegand et al. 2002), but the detailed mode of action and pathways 

leading to the observed adverse effects in photosynthesis remain to be elucidated. It is well 

established that MCs induce the production of reactive oxygen species (ROS) leading to 

oxidative stress as well as the enhancement of antioxidant enzymes production (Amado & 

Monserrat 2010; Mohamed 2008; Pflugmacher 2004; Wiegand et al. 2002; Yin et al. 2005) 

in aquatic invertebrates, plants and algae. The intracellular increase of ROS, exceeding the 

cellular detoxification capability, may lead to the oxidation of biomolecules and induce 

preferential damage to PSII, with an irreversible oxidation of D1 protein causing its 

degradation (Drábková et al. 2007; Kim & Lee 2005; Krieger-Liszkay et al. 2008; Okada 

et al. 1996). TBA would be thus unable to bind to the domain of D1 protein and prevent 

the energy flow within PSII. Therefore, the antagonistic effects of MC-LR on the TBA 

toxicity are likely due to the oxidative changes in the PSII reaction center. 

 

When the IA model was fitted to the growth rate data from C. vulgaris exposed to 

the MC-LR and Cd mixture for 4 days, an antagonism deviation was revealed probably due 

to a reduction on Cd toxicity caused by the induction of metallothioneins (MT) and 

phytochelatins (PCs), i.e., proteins of detoxification in algae (Perales-Vela et al. 2006; 

Robinson 1989), by cell’s defensive mechanisms. The induction of PCs can also be linked 

to the presence of MC-LR in the mixture, since PCs are small metal-binding polypeptides 

enzymatically synthesized from glutathione (GSH) and Wang et al. (2012; 2011) found 

that combined exposure to the cyclic peptide MC-LR and linear alkylbenzene sulfonate 

increased the GSH content. Another plausible reason might be the fact that during the 4-

day exposure period MC-LR-Cd complexes have been formed leading to smaller 

bioavailability of both compounds to the microalgae C. vulgaris, inside or outside the cells. 

Some studies have already documented the formation of these MC-metal complexes which 

could potentially arise from the coexistence of metals and cyanotoxins in aquatic systems 

(Humble et al. 1997; Saito et al. 2008; Yan et al. 2000). Humble et al. (1997) studied the 

interactions of Cu and Zn with three variants of MCs (MC-LR, -LW and -LF) at 

environmentally relevant pH values by differential pulse polarography and clearly 

demonstrated complexation between MC-LR and Cu in a pH dependent manner, with the 

extent of binding decreasing with decreasing pH values. Complex formation between MC-

LR and Zn, however, was not influenced as strongly by pH (Humble et al. 1997). 
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Similarly, Yan et al. (2000) characterized the complexation of MC-LR with many metals 

(Hg, Pb, Cd, Cu and Zn) by using cyclic voltammetry and anodic stripping voltammetry. 

These authors demonstrated that MC-LR is able to form a stable complex with metal ions 

by accommodating them within its cavity region and complex formation was strongly 

dependent on the concentration of MCs. More recently, complexes of MC-LR and metals 

such as Fe (II), Zn, Cu and Mg were detected using cryospray ionization-Fourier transform 

ion cyclotron resonance mass spectrometry (Saito et al. 2008). 

When the IA model was fitted to the growth rate data of the MC-LR and Cd 

mixture corresponding to the 7
th

 days of exposure, a DL dependent deviation was observed 

showing synergism at low dose levels and antagonism at high dose levels. Although the 

synergism/antagonism at different dose levels was not confirmed by the calculation of the 

EC50 values of Cd at different MC-LR concentrations in the mixture, the DL dependent 

deviation that resulted from the IA model was not rejected (p(χ
2
) < 0.001). The synergistic 

effect at low doses might be probably related to the production of ROS induced by both 

compounds culminating in oxidative stress (Amado & Monserrat 2010; Pinto et al. 2003) 

and consequently a reduction on cellular detoxification processes. Although it is not 

relevant at environmentally relevant concentrations, the antagonism observed at high dose 

levels may be associated with the interactions between MC-LR and Cd in the exposure 

medium or in the cytoplasmatic matrix or with the induction of extra detoxification 

proteins, which could be the explanation for the reduced toxicity in the MC-LR and Cd 

mixture. 

 

The fit of the IA model to the binary mixture data of CYN and TBA exposure in the 

first four days resulted in a DR dependent deviation where a decrease of the mixture 

toxicity (antagonism) was observed and explained mainly when CYN was the dominant 

component in the mixture. One possible explanation for the antagonism detected in this 

mixture after 4 days of exposure is the activation of cellular detoxification mechanisms 

induced by CYN and TBA, causing a decrease of their toxicity and leading to the observed 

recovery of the C. vulgaris growth rates at levels close to those of control or even growth 

stimulation. It is well established that GST is an important enzyme responsible for the 

metabolism and detoxification of several classes of herbicides in plants, including 

members of the chloro-s-triazine group such as TBA and atrazine (Cummins et al. 2011; 
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Edwards & Dixon 2005; Edwards et al. 2000). The work of Tang et al. (1998) also 

provided evidence for the involvement of GST in atrazine metabolism in freshwater algae 

(Chlamydomonas sp., Chlorella sp., Pediastrum sp. and Scenedesmus quadricauda) based 

on the GSH-dependent formation of water soluble metabolites. It is therefore likely that the 

metabolism and detoxification of TBA follow similar paths in C. vulgaris as those 

expressed in atrazine metabolism in other microalgae species (Tang et al. 1998). Despite 

glutathione-CYN conjugate has not been identified so far, it is possible that the 

detoxification and biotransformation of CYN by microalgae occurs through the activity of 

GST as demonstrated for MC-LR (Kondo et al. 1992; Pflugmacher et al. 1999; 

Pflugmacher et al. 1998). An evidence supporting this issue is the fact that CYN at 2.5 and 

12.5 mg.L
-1

 increased the reduced GSH content by 50% and 80%, respectively, in the 

protest Euglena gracilis exposed to pure CYN for 7 days (Duval et al. 2005). Furthermore, 

CYP450 monooxygenases may also be involved in the detoxification of TBA in C. 

vulgaris, contributing thereby to the reduction of TBA toxicity in the mixture. There is 

evidence suggesting that CYP450 monooxygenases play a crucial role in the detoxification 

of herbicides in higher plants (Munkegaard et al. 2008). Similarly, scientists have 

concluded that the green algae Chlorella fusca had a wide range of CYP450 enzymes and 

that the degradation of metflurazone was CYP450 dependent (Thies et al. 1996). It is 

therefore likely that the degradation of TBA follow similar paths in algae as in higher 

plants. 

When the IA model was fitted to the growth rate data of the same binary mixture 

but after 7 days of exposure, a different trend was observed. In this case a DL dependent 

deviation was obtained, showing synergism at low dose levels and antagonism at high dose 

levels. The increase of mixture toxicity (synergism) provided by low doses of CYN and 

TBA may be due to effects of CYN on detoxification enzyme pathways. CYN is able to 

directly affect TBA metabolism by inhibition of GSH synthesis (Humpage et al. 2005; 

Runnegar et al. 1995b; Runnegar et al. 2002). Thus, the intracellular decrease of the GSH 

content may lead to a limited conjugation of TBA to GSH by enzymatic activity of GST 

and subsequently to the increase of the residence time of TBA in C. vulgaris, resulting in a 

higher toxicity. The change in the response pattern in this mixture as a function of time is 

of great importance, suggesting that long-term exposures to CYN and TBA might cause an 

increase in toxicity. The decrease of mixture toxicity (antagonism) at higher doses, even 
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though not significant at environmentally relevant concentrations, may be explained by a 

possible increase of the CYP450 monooxygenases mediated degradation of TBA as well as 

the conjugation reaction of CYN and TBA with GSH. 

 

In the case of the mixture of CYN and Cd, an antagonistic deviation from the IA 

model was observed after 4 days of exposure. As stressed before, a reduction on Cd 

toxicity could be due to the induction of MT and PCs by cell’s defensive mechanisms. 

Along with the induction of MT and PCs caused by Cd, a possible increase of the 

enzymatic activity of GST in the detoxification of CYN could help to explain the reduction 

of mixture toxicity. In the present study, we cannot exclude the possibility of chemical 

interaction between these two compounds in the exposure medium and in the 

cytoplasmatic matrix similar to what happens with MC-LR and Cd. After 7 days of 

exposure, a DL dependent deviation from the IA model was obtained, showing synergism 

at low dose levels and antagonism at high dose levels. The synergistic pattern at lower 

exposure levels may be explained by the interference of Cd in several metabolic processes 

that leads to disruption of cellular homeostasis, such as oxidative stress (Leonard et al. 

2004; Pinto et al. 2003; Valko et al. 2005), DNA damages (Badisa et al. 2007), membrane 

depolarization and acidification of the cytoplasm (Conner & Schmid 2003). Although there 

is a lack of information concerning the effects of CYN in freshwater algae, it act by 

inhibiting the protein synthesis (Froscio et al. 2001; Froscio et al. 2008; Metcalf et al. 

2004; Terao et al. 1994) and potentially interfering with the microtubular organization 

(Beyer et al. 2009) and DNA structure (Shaw et al. 2000). Here it is important to note that 

CYN is only toxic after metabolic activation by the CYP450 system (Humpage et al. 2005; 

Runnegar et al. 1995b; Shaw et al. 2000). It is possible that CYN need to be activated by 

CYP450 system to act on its molecular target. In this mixture, it is also relevant to stress 

the temporal variation of the response pattern of C. vulgaris, indicating that long-term 

exposures to CYN and Cd might cause an increase in toxicity. The antagonistic effect at 

higher dose levels of CYN and Cd might be explained by a possible increase of the cellular 

detoxification processes in order to compensate the stress caused by both compounds, thus 

decreasing the mixture toxicity. However, the antagonism reported herein for higher 

exposure levels is likely unreal at concentrations of CYN and Cd found in the aquatic 

environment. 
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After fitting the IA model to the growth rates of C. vulgaris exposed to TBA and 

Cd mixture for 4 days, antagonism was the deviation that better explained the data, but 

when this model was fitted to the growth rate of C. vulgaris exposed to the same mixture 

for 7 days a DL dependent deviation indicating antagonism at low dose levels and 

synergism at high dose levels was observed. Again, the antagonistic patterns obtained in 

both exposure periods may be due to the reduction on TBA and Cd toxicity caused by the 

increase of MT and PC levels, in the case of Cd, and GSH and GST levels, in the case of 

TBA, by cell’s defensive mechanisms together with the possible increase of the CYP450 

monooxygenases mediated degradation of TBA. Antagonism was also detected in a work 

dealing with the combined effects of TBA and the chloroacetanilide herbicide metolachlor 

on the growth rate of the green alga P. subcapitata (Pérez et al. 2011). On the other hand, 

the synergistic effect observed at higher levels of TBA and Cd after 7 days of exposure 

may be related to the intracellular increase of ROS, exceeding the cellular detoxification 

capability, caused by Cd and the inhibition of the photosynthetic electron transport caused 

by TBA. Moreover, the increase on mixture toxicity could also be related to the ability of 

Cd to inhibit photoactivation (the last step in the assembly of PSII before it becomes 

functional) mostly by binding to the essential Ca
2+

 site (Faller et al. 2005; Vrettos et al. 

2001). Faller et al. (2005) proposed that Cd binds competitively to the essential Ca
2+

 site in 

PSII during photoactivation and that this mechanism is likely to be important for Cd 

toxicity towards photosynthetic organisms. In contrast, Qian et al. (2009) demonstrated 

that Cd is able to inhibit the abundance of psbA in C. vulgaris, a gene that codes for an 

integral membrane protein D1 of PSII. The inhibition of psbA mRNA transcripts may 

decrease the activity of PSII and electron transfer rates in C. vulgaris. 

 

In this study, antagonism was the common deviation from IA model for 4-day 

exposure period while DL dependency was the main deviation obtained when testing the 

IA model for 7-day exposure period. In the case of DL dependent deviation, a decrease of 

the mixture toxicity (antagonism) at low dose levels (environmentally relevant levels) was 

observed for the binary mixtures between MC-LR/TBA and TBA/Cd. For the binary 

mixtures between MC-LR/Cd and the binary mixtures involving CYN the opposite trend 

was obtained, i.e., an increase of the mixture toxicity (synergism) at low dose levels. As in 

our study, other authors have found synergistic effects between MC-LR or LPS and other 
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anthropogenic pollutants (Cerbin et al. 2010; Notch et al. 2011; Wang et al. 2012; Wang et 

al. 2011). In contrast to our study, no antagonistic response between MC-LR and other 

anthropogenic contaminants was reported to date. To our knowledge, our study is the first 

report observing antagonistic effects of MC-LR and TBA or Cd. The combined toxicity of 

CYN and other anthropogenic pollutants has not been reported, and our study confirmed an 

antagonistic effect between CYN and TBA or Cd on C. vulgaris growth rate for 4-day 

exposure period and a synergistic interaction at low dose levels of CYN and TBA or Cd for 

7-day exposure period. Information about the combined effects of TBA and Cd is not also 

available as far as we know, although combined toxicity of TBA or Cd and other 

anthropogenic contaminants such as the s-triazine herbicides atrazine and simazine (Pérez 

et al. 2011), the organophosphorous insecticides malathion, endosulfan and chlorpyrifos 

(Munkegaard et al. 2008), the imidazole fungicide prochloraz (Cedergreen et al. 2006), and 

the metals Zn and Cu (Franklin et al. 2002; Lam et al. 1999; Qian et al. 2009; Rachlin & 

Grosso 1993) have been investigated. 

The antagonism observed in all tested binary mixtures in shorter exposure period (4 

days) demonstrate that the simultaneous presence of several toxics in the aquatic 

environment may lead to less toxic effects than expected by the single-chemical exposures 

and therefore cause more protective effects on ecosystems. On the other hand, the 

synergisms obtained in this study at low dose levels in almost all binary mixtures in longer 

exposure periods demonstrate that the simultaneous presence of several toxics in the 

aquatic environment may lead to more toxic effects than expected by the single-chemical 

exposures and therefore cause more devastating effects on ecosystems. As a result, more 

research is required in the area of interactions between different compounds in order to 

elucidate the response mechanisms involved. 

 

The increasing anthropogenic eutrophication of the aquatic ecosystems (i.e., 

increased input of nutrients, especially phosphorous but also nitrogen) has created ideal 

conditions for the development of HABs (Bláha et al. 2009; Heisler et al. 2008). These 

aquatic ecosystems impacted by anthropogenic pollution frequently have increased 

concentrations of other contaminants, including metals such as Cd and pesticides such as 

TBA, making coexposure of cyanotoxins and anthropogenic contaminants likely to occur. 

Here, we show that the co-exposure of cyanotoxins and anthropogenic contaminants 
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resulted, in most of the cases, in a toxicity evolution over time (from antagonism to 

synergism). Given the predictions of the increase of HABs in frequency and magnitude in 

the future and the prevalence of co-exposure to cyanotoxins and anthropogenic 

contaminants, this toxicity evolution over time represents a real concern for aquatic 

organisms in contaminated habitats. 

 

 

3.5. Conclusion 

 

 

The first highlight that can be addressed from our results is that deviations from the 

IA model were found in all combinations studied (antagonism and also patterns that are 

dependent from the mixture composition and doses used). Antagonism was the prevailing 

type of interaction between dissimilar acting compounds in a 4-day exposure period while 

DL dependency was the only deviation obtained in a 7-day exposure period. The study of 

complex interactions between cyanotoxins and anthropogenic contaminants and how these 

compounds react simultaneously inside organisms needs further development in order to 

understand the underlying mechanisms and better predict mixture effects. Toxicokinetic 

and toxicodynamic studies can contribute significantly to the understanding of the main 

toxicological mechanisms behind a particular response of a complex mixture. The measure 

of antioxidative enzymes such as catalase, superodixade dismutase, glutathione peroxidase 

and GST and antioxidant molecules such as GSH, are examples of biomarkers that could 

help to better understand mixture exposure responses. To our knowledge, this is the first 

report concerning combined toxicity of CYN and other anthropogenic contaminants. 

 

Another feature observed from analysis of our results was the switch from 

antagonism to synergism (at low dose levels) revealed by almost all binary mixture, 

respectively, from 4-day exposure period to 7-day exposure period. Concerning these 

results, synergistic patterns at low dose levels are a major concern for aquatic organisms 

exposed to combinations of cyanotoxins and anthropogenic contaminants in the 

environment. 
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4. General discussion and final considerations 

 

 

The main purpose of this study was to assess the effects of cyanotoxins and 

anthropogenic environmental contaminants as binary mixtures on the growth rate of 

Chlorella vulgaris. The cyclic heptapeptide microcystin-LR (MC-LR) and the alkaloid 

cylindrospermopsin (CYN) were the cyanotoxins selected for this study because they are 

the most frequently detected cyanotoxins in harmful cyanobacterial blooms in brackish and 

freshwaters (van Apeldoorn et al. 2007). The non-essential metal cadmium (Cd) and the s-

triazine herbicide terbuthylazine (TBA) were chosen as anthropogenic environmental 

contaminants representatively present in aquatic systems. Cd is commonly found in the 

aquatic environment due to a variety of anthropogenic and natural sources (Notch et al. 

2011). TBA is frequently detected in surface waters (Loos et al. 2010; Loos et al. 2007; 

Palma et al. 2009; Pérez et al. 2010) because of its wide use as herbicide in agricultural 

fields. C. vulgaris was exposed to several binary mixtures for 4 and 7 days and then the 

results were analyzed using the reference model of independent action (IA) within the 

MIXTOX tool. 

 

When C. vulgaris was exposed to MC-LR and CYN mixture, a synergistic 

deviation from IA model was obtained in both exposure periods, clearly demonstrating that 

the simultaneous presence of these cyanotoxins in the aquatic environment may lead to 

more toxic effects than expected by the single exposures to MC-LR and CYN. Best et al. 

(2002) also found synergistic effects of MC-LR and lipopolysaccharides (LPS) on the GST 

activity of Danio rerio. In contrast, Lindsay et al. (2006) found antagonistic effects when 

Artemia salina, Daphnia magna and Daphnia galeata were pre-exposed to LPS before 

MC-LR or CYN. This antagonism was also found for simultaneous exposure of LPS and 

MC-LR, but it was less pronounced than that conferred by the pre-exposure to LPS 

(Lindsay et al. 2006). The synergism observed in this study may be explained by the 

inhibition of the GSH synthesis  caused by CYN (Runnegar et al. 1995) and subsequent 

absence of detoxification of MC-LR by GST activity (Pflugmacher et al. 1998), resulting 

in a much higher toxicity. 

 



Chapter IV 

 

 

 
138 

 

In the MC-LR and TBA mixture, a DL dependent deviation from the IA model was 

observed for 4- and 7-day exposure periods, indicating antagonism unless the doses of the 

two compounds were above the concentrations tested in this experiment where synergism 

would be expected to occur according to the MIXTOX tool. The antagonistic effect might 

be related to the production of reactive oxygen species (ROS) induced by MC-LR (Amado 

& Monserrat 2010) and the oxidation of D1 protein of the photosystem II (PSII) reaction 

center (Drábková et al. 2007; Kim & Lee 2005; Krieger-Liszkay et al. 2008; Okada et al. 

1996), blocking the binding of TBA its target site. 

 

In the case of MC-LR and Cd mixture, an antagonism deviation was observed for a 

4-day exposure period while a DL dependent deviation indicating synergism at low dose 

levels and antagonism at high dose levels was obtained for a 7-day exposure period. The 

antagonism may be probably related to the induction of metallothioneins (MT) and 

phytochelatins (PCs) by cell’s defensive mechanisms (Perales-Vela et al. 2006; Robinson 

1989). The induction of PCs can also be linked to the presence of MC-LR in the mixture. 

Previous works demonstrated that the exposure of Lemna minor and Lactuta sativa to MC-

LR and alkylbenzene sulfonate (LAS) mixtures, especially at high concentrations, 

increased GSH contents (Wang et al. 2012; Wang et al. 2011). As a precursor of PCs, the 

increase in the GSH pool may consequently lead to increased synthesis of PCs. Another 

possible explanation for the antagonism might be the reduction of the bioavailability of 

MC-LR and Cd inside or outside the cells by the formation of stable complexes as 

previously demonstrated for MCs and several metals, including Cd (Humble et al. 1997; 

Saito et al. 2008; Yan et al. 2000). The synergistic effect observed at low doses of MC-LR 

and Cd after 7 days of exposure may be possibly due to the increase of time of exposure 

and the production of ROS induced by both compounds (Amado & Monserrat 2010; Pinto 

et al. 2003) and the reduction on cellular detoxification processes. As in our study, 

synergistic interactions were also found between MC-LR/LAS (Wang et al. 2012; Wang et 

al. 2011), LPS/Cd (Notch et al. 2011), and carbaryl/MC-LR (as particulate MC-LR bound 

to Microcystis aeruginosa) (Cerbin et al. 2010), even though in the latter combination the 

synergism was not predicted from the effects of the single stressors. 
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In the binary mixtures involving CYN, the same pattern of response was obtained 

for a 7-day exposure period, i.e., DL dependent deviation showing synergism at low dose 

levels and antagonism at high dose levels. The synergism observed at low doses of CYN 

and TBA may be explained due to the inhibition of the GSH synthesis caused by CYN 

(Runnegar et al. 1995) and subsequent reduction of detoxification mechanism of TBA by 

GST activity, resulting in a much higher toxicity. Tang et al. (1998) provided evidence for 

the involvement of GST in atrazine metabolism in several microalgae species based on the 

GSH-dependent formation of water soluble metabolites. Therefore, it is likely that the 

metabolism and detoxification of TBA follow similar paths in C. vulgaris. In the case of 

CYN and Cd mixture, the synergistic pattern at lower exposure levels may be probably due 

to the cellular damage inflicted by the two compounds. Cd may cause oxidative stress 

(Pinto et al. 2003), DNA damage (Badisa et al. 2007), membrane depolarization and 

acidification of the cytoplasm (Conner & Schmid 2003). CYN, on the other hand, inhibit 

the protein synthesis (Froscio et al. 2001; Froscio et al. 2008; Metcalf et al. 2004; Terao et 

al. 1994) and may interfere with the microtubular organization (Beyer et al. 2009) and 

DNA structure (Shaw et al. 2000). 

However, difference patterns of responses were registered after 4 day of exposure. 

For CYN and TBA mixture, a DR dependent deviation from the IA model was observed 

and the antagonism was mainly due to CYN. One possible explanation for this antagonism 

is the induction of cellular detoxification mechanisms generated by CYN and TBA, 

resulting in a reduction of the mixture toxicity. GST and cytochrome P450 monoxygenases 

are probably involved in the detoxification of TBA in C. vulgaris (Munkegaard et al. 2008; 

Tang et al. 1998; Thies et al. 1996). Duval et al. (2005) showed that CYN at 2.5 and 12.5 

mg.L
-1

 increased the reduced GSH content by 50% and 80%, respectively, in the protist 

Euglena gracilis after 7 days of exposure. Thus, it is likely that GST may also participate 

in the detoxification of CYN in C. vulgaris, even though no GSH-CYN conjugate has been 

identified so far. For CYN and Cd mixture, antagonism was the best descriptive deviation 

following IA model. A possible reason for this antagonism is the induction of MT and PCs, 

in the case of Cd, and possibly of GST activity, in the case of CYN, by cell’s defensive 

mechanisms. In the present study, the possibility of chemical interaction between CYN and 

Cd in the exposure medium and/or in the cytoplasmatic matrix should not be neglected. 
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Relatively to the TBA and Cd mixture, antagonism deviation was observed for a 4-

day exposure period while a DL deviation indicating antagonism at low dose levels and 

synergism at high dose levels was obtained for a 7-day exposure period. Again, the 

antagonistic patterns obtained for both exposure periods may be due to the increase of MT 

and PC levels, in the case of Cd, and GST levels, in the case of TBA, by cell’s defensive 

mechanisms. As stated before, the increase of the CYP450 monooxygenases mediated 

degradation of TBA may also contribute to the reduction of TBA toxicity till a certain dose 

level. The synergistic effect observed at higher doses of TBA and Cd after 7 days of 

exposure may be associated to the oxidative stress caused by Cd (Pinto et al. 2003) and the 

inhibition of the photosynthetic electron transport caused by TBA (Faust et al. 2001). 

Moreover, the increase on mixture toxicity could also be related to the fact that Cd is able 

to inhibit photoactivation in algae and consequently decrease the activity of PSII (Faller et 

al. 2005; Qian et al. 2009; Vrettos et al. 2001). 

 

Discussing the results of the combined toxicity of mixtures should be made 

alongside with the knowledge of the precise mode of toxic action of the cyanotoxins and 

the anthropogenic environmental contaminants inside the organisms, in order to make 

more assertive assumptions about the mechanisms involved in possible interactions 

between them. Due to the general lack of the systematic mechanisms underlying the 

specific toxic effects of cyanotoxins and anthropogenic contaminants, only some 

considerations could be made about the effects of the mixtures tested here. 

 

An encompassing perspective should be made regarding the several binary mixtures 

tested with the two cyanotoxins and the two anthropogenic contaminants on the growth 

rate of C. vulgaris. All combinations tested deviated from the conceptual model of IA, 

suggesting that additive patterns are not always valid for binary mixtures. Indeed, this 

study demonstrate that a great variety of effects and behaviours can arise from the 

combination of toxicants commonly found in the aquatic environment, since all possible 

deviations from the IA model occurred (antagonism, synergism, DR and DL dependency). 

Antagonism was the interaction described in the majority of the binary mixtures in a 4-day 

exposure period; in 5 of the 6 binary mixtures (including the antagonism at low doses of 

MC-LR and TBA) the effects observed were below the effects predicted by the responses 



Chapter IV 

 

 

 
141 

 

observed in the single exposures. Synergism at lower exposure levels, on the other hand, 

was the prevailing type of interaction described in the majority of binary mixtures in a 7-

day exposure period; in 4 of the 6 binary mixtures (including the synergism between MC-

LR and CYN) the effects observed were much higher than expected from the single 

exposures. Synergism observed between MC-LR and CYN after 4 and 7 days of exposure 

is of particular interest since independently of concentration MC-LR increased the CYN 

toxicity by a factor of 2. From the analysis of our results, it is still possible to observe the 

switch from antagonism to synergism revealed by almost all binary mixture (with the 

exception of the binary mixture of MC-LR/CYN, MC-LR/TBA and TBA/Cd), 

respectively, from 4 to 7 days of exposure. Concerning these results, synergistic patterns at 

low dose levels are a major concern for aquatic organisms exposed to combinations of 

cyanotoxins and anthropogenic contaminants in the environment. 
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