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resumo 
 

 

O presente trabalho tem como objetivo a otimização do funcionamento de uma 
ETAR industrial, para tratamento de águas residuais resultantes da produção 
de biodiesel. A ETAR industrial em estudo engloba dois processos de 
tratamento: tratamento físico-químico através da utilização de uma unidade 
DAF e, tratamento biológico aeróbio por lamas ativadas. 
Ao longo deste estudo vários parâmetros físico-químicos foram analisados em 
particular sólidos totais, sólidos suspensos voláteis, carência química de 
oxigénio, teor em azoto amoniacal e fósforo total para além do pH e 
temperatura. Conseguiu-se optimizar a metodologia de análise dos sólidos 
totais reduzindo o tempo total da análise. Implementou-se a técnica de 
monitorização microbiológica das lamas activadas tendo-se identificado e 
quantificado alguns grupos de microrganismos característicos dos processos 
de lamas ativadas: ciliados nadadores, ciliados sésseis, ciliados móveis de 
fundo, amebas com teca, pequenos flagelados, ciliados carnívoros, 
Opercularia sp. e pequenos metazoários. Após a recolha destes dados físico-
químicos e biológicos, diários e/ou periódicos, fez-se a avaliação do 
desempenho da ETAR. Foram identificadas as variáveis de controlo físico-
químico que apresentavam maior variabilidade, nomeadamente o rácio 
alimentação/microrganismo (F/M) e o tempo de retenção de sólidos (SRT). 
Verificou-se que a instabilidade do F/M tem origem no facto da ETAR ter sido 
projetada para tratamento de um maior caudal de efluente ou de um efluente 
mais poluído. No caso do SRT a causa é o ineficiente sistema de purga de 
lamas. Concluiu-se que determinados parâmetros operacionais devem ser 
alterados por forma a otimizar-se o processo: o volume útil dos bioreactores 
deve ser reduzido de 110 m

3
 para 80 m

3
, a concentração de sólidos suspensos 

presente nos bioreactores deve reduzir-se em 20% e a purga de lamas deve 
ser cerca de 2 m

3
 por dia controlada de modo a poder manter a concentração 

de biomassa constante nos reatores. 
Relacionou-se ainda o efeito da alteração dos parâmetros físico-químicos na 
estrutura da comunidade da microfauna, através do teste de correlação não 
paramétrico de Spearman’rho. Esta análise estatística multivariada permitiu a 
identificação de bioindicadores do desempenho do sistema de lamas ativadas, 
e a criação de grupos de controlo positivo e negativo que tornam possível 
avaliar rapidamente o desempenho da ETAR através da monitorização das 
suas lamas.Com este estudo a empresa ficou dotada de mecanismos rápidos 
de avaliação do desempenho da ETAR de modo a que o seu funcionamento 
possa ser muito mais controlado. 
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abstract 

 
The main goal of the present work is the optimization of the operation of an 
industrial wastewater treatment plant to treat biodiesel wastewater. The 
industrial WWTP in study comprises two treatment processes: physicochemical 
treatment through the use of a DAF unit and, biological treatment by activated 
sludge. 
During the study several physicochemical parameters were analyzed, namely 
total solids, volatile suspended solids, chemical oxygen demand, ammoniacal 
nitrogen and phosphorus content, besides pH and temperature. The 
methodology of total solids determination was optimized, reducing the analysis 
time. Microbiologic motorization of the activated sludge was implemented, with 
the identification and quantification of groups of microorganisms characteristics 
of the activated sludge process: free-swimming ciliates, sessile ciliates, 
crawling ciliates, testate amoebae, small flagellates, carnivorous ciliates, 
Opercularia sp. and small metazoan. After collecting these physicochemical 
and biological data, daily or periodically, the performance of the plant was 
evaluated. Therefore the physicochemical control variables that presents 
greatest variation were identified, namely food to microorganism ratio (F/M) and 
solids retention time (SRT). It was verified that the F/M instability is originated 
by the fact that the WWTP was designed to treat a larger amount of effluent or 
a more polluted one. On the other hand, SRT variability is caused by the 
inefficient sludge removal system. It was concluded that certain operational 
parameters should be changed in order to optimize the process: the useful 
volume of each bioreactor must be reduce from 110 m

3
 to 80 m

3
, the amount of 

suspended solids present in the bioreactors must be reduced in 20% and the 
amount of sludge purged from the system must be around 2 m

3 
per day, in 

order to maintain the biomass concentration constant in the reactors. 
It was also investigated the effect of the modification of the physicochemical 
parameters on the microfauna community, through the nonparametric 
correlation test of Spearman’rho. This multivariate statistical analysis allowed 
the identification of biological biomarkers of the activated sludge system 
performance, and the establishment of groups of positive and negative control, 
that make possible to quickly evaluate the performance of the WWTP by 
monitoring their sludge. With this study the company was provided with 
methodologies of rapid assessment of the performance of the WWTP so that its 
operation may be much more controlled. 
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1.1. Wastewater 

Wastewater can be defined as the flow of water that has been used by a community and is 

discharged into a receiving water body with altered physical and/or chemical parameters 

(Jördening and Winter, 2005). Wastewater are mainly constituted by water (about 99,94%) 

and a small fraction of dissolved or suspended materials (0,006%) (Lin and Lee, 2007). 

Wastewater is typically classified according to their origin in domestic when derived from 

residential areas, industrial when resulting from human activities associated with the 

processing and manufacturing of raw material, and commercial when originated from 

offices, shops, hotels and others. In large urban areas is inevitable the combination between 

the three types of wastewater, appearing the concept of municipal or urban wastewater 

(Gray, 2004; Jern, 2006; Wiesmann et al., 2007; Lofrano and Brown, 2010).  

Industrial wastewater, in focus in this work, has characteristics slightly different from 

domestic wastewater and thus is important a brief definition of the two types. Domestic 

wastewater is a complex mixture of water (approximately 99%) and organic and inorganic 

constituents. The inorganic components include chlorides and sulfates, nitrogen in various 

forms and phosphorus, as well as carbonates and bicarbonates. Proteins and carbohydrates 

constitute about 90% of the organic matter present in domestic sewage. Since domestic 

wastewater include human wastes, also contains large number of microorganisms and 

some of them can be pathogenic, causing diseases such as cholera, typhoid and 

tuberculosis. On the other hand, industrial wastewaters have very diverse compositions 

depending on the type of industry and materials processed. Some industrial wastewaters 

can present values of total suspended solids (TSS), biochemical oxygen demand (BOD) 

and chemical oxygen demand (COD) around thousands of mg/L (Jern, 2006). Due to the 

high organic concentration, industrial wastewater may be also nutrient deficient, namely in 

terms of nitrogen and phosphorus that are used by microorganism in biological wastewater 

treatment systems (e.g., activated sludge) (Gerardi, 2006; Jern, 2006). In contrast to 

domestic wastewater, pH values well beyond the range of 6-7 are usually found. Industrial 

wastewaters can have different characteristics even from the same type of industry, but in 

different geographical locations. The cause of these differences is related to the operating 

procedures adopted and the raw materials used, starting with the origin of the water used. 
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Moreover, the characteristics of the wastewater can vary within the same industry over 

time, for instance due to unusual discharges (Jern, 2006). 

 

1.2. Wastewater characteristics 

An understanding of wastewater characteristics is very important in design, operation and 

management of collection and treatment of wastewater. Since there are legal requirements 

restricting the discharge of wastewater, it is also fundamental to know the water 

characteristics after treatment. Wastewater is characterized in terms of its physical, 

chemical and biological composition (Tchobanoglous et al., 2003; Jern, 2006; Lin and Lee, 

2007). 

 

1.2.1. Physical characteristics 

Physical characteristics include solids content, temperature, particle size distribution, 

turbidity, color, odor, transmittance, gravity and specific weight (Tchobanoglous et al., 

2003). 

Temperature and solids content are the most important factors in the treatment of sewage. 

Temperature affects the chemical reactions, biological activity and the concentration of 

dissolved gases. In turn, solids, that comprise matter suspended or dissolved, affect the 

operation and design of treatment units. They are divided into various fractions (Figure 

1.1) and their concentration provides useful information for characterization and control of 

wastewater treatment process (Tchobanoglous et al., 2003).  

The total solids (TS) are quantified by evaporating a water sample to dryness and 

measuring the mass of the residue left in a vessel. The division of these pollutants into 

dissolved (TDS) and suspended solids (TSS) is essential as many of the treatment 

processes are only effective against one of these. As can be observed in Figure 1.1, this 

division is achieved by filtration, thus is not well defined since the pore size of the filter 

used is not universal (0,45 – 2,0 μm) (Henze et al., 1997; Tchobanoglous et al., 2003; 

Jördening and Winter, 2005). When the evaporation residue obtained in total, suspended or 
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dissolved solids determination is subjected to ignition at 550 °C, fixed and volatile solids 

are quantified. The weigh lost in ignition is reported as volatile solids (VS) and 

corresponds to the organic fraction present in a water sample. Volatile solids test indicates 

the amount of the total solids that can potentially be destroyed chemically or biologically, 

volatilized or adsorbed. On the other hand, fixed solids (FS) are indicators of the inorganic 

fraction of the sample as they relate to the residue that remains after ignition. This residue 

cannot be destroyed and these solids must be converted or removed by some physical or 

chemical method. Finally, the standard test for quantifying the settleable solids (SS) 

consists of placing a sample in a 1 liter Imhoff cone and verifying the amount that settles 

(ml) after a specific period of time (American Public Health Association, 1999; 

Tchobanoglous et al., 2003; Alley, 2007).  

 

1.2.2. Chemical characteristics 

The chemical constituents of wastewater are typically classified as inorganic and organic 

(Tchobanoglous et al., 2003). Organic matter may include carbohydrates, oil, grease, 

surfactants, proteins, pesticides, volatile organic compounds and toxic chemicals. 

Inorganics include heavy metals, nutrients (nitrogen and phosphorus), chlorides, sulfur and 

gases (Lin and Lee, 2007). 

Since wastewater contains a large variety of organic constituents, the individual 

determination of each one requires the use of sophisticated instrumentation capable of 

Sample Filter

Imhoff cone Settleable solids – SS

Total suspended solids – TSS

Total dissolved solids – TDS

Total solids – TS

Residue

Filtrated

103 - 105º C

Volatile solids – VS

Fixed solids – FS

550º C

Figure 1.1: Relation between the different solids found in water and wastewater, adapted from Henze et 

al.(1997) and Tchobanoglous et al.(2003). 
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measuring trace concentrations, as gas chromatograph (GC) and high-performance liquid 

chromatograph (HPLC) (American Public Health Association, 1999; Tchobanoglous et al., 

2003). Thus, collective analysis that measures aggregate organic matter comprising a 

number of organic constituents with common characteristics is used, and can be 

represented by the equation of oxidation of the organic matter: 

                                  
  (1.1) 

Collective analyses relies on the base that if organic matter is oxidized, the amount of 

oxygen consumed (BOD, COD) or the amount of carbon dioxide produced (total organic 

carbon –TOC) can be measured (Henze et al., 1997). So, the organic content of wastewater 

is usually measured as a 5-days biochemical oxygen demand (BOD5), chemical oxygen 

demand (COD) and total organic carbon (TOC). The BOD5 test measures the amount of 

oxygen required to a biological oxidation of the organic matter in the sample during 5 days 

at 20ºC. Since the BOD5 test is time consuming, COD is routinely performed after 

establishing the relationship between BOD5 and COD for a specific wastewater treatment 

plant (Lin and Lee, 2007). 

The chemical oxygen demand indicates the organic content present in a sample that is 

susceptible of being oxidised by a strong chemical oxidant, under controlled conditions 

(Wiesmann et al., 2007). The quantity of oxidant consumed is expressed in terms of its 

oxygen equivalent. So, COD represents the amount of oxygen needed for the complete 

chemical oxidation of both organic and inorganic compounds, susceptible to oxidation, 

presents in water (Cheremisinoff, 2006; Amjad, 2010). COD is often used as a measure of 

pollutants in wastewater and natural waters, and expresses the organic charge of the 

effluent (Tchobanoglous et al., 2003). 

Besides organic content, is also given special attention to nitrogen and phosphorus 

concentration (Wiesmann et al., 2007). These are naturally present in the receiving water 

bodies and are essential to the life cycle of the microorganisms. However, the discharge of 

nitrogenous and phosphorous compounds into receiving water bodies may alter their 

fertility that lead to excessive plant growth, phenomenon known as eutrophication. The 

subsequent impacts of such growth include increased turbidity, oxygen depletion and 

toxicity issues. Thus, the wastewater treatment must comprise the nutrient removal to 
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ensure that the nutrient limiting conditions is maintained in the receiving water body 

(Ribeiro et al., 2005; Jern, 2006). Nitrogen has several oxidation states, but the more 

common forms in wastewater are ammonia (NH3), ammonium (NH4
+
), nitrogen gas (N2), 

nitrite ion (NO2
-
) and nitrate ion (NO3). The usual forms of phosphorus, found in aqueous 

solutions include orthophosphate (e.g.,   4
3-

,    4
 -

 and     4
-
), polyphosphate and 

organic phosphate (Tchobanoglous et al., 2003).  

 

1.2.3. Biological characteristics 

The biological characteristics of wastewater are fundamental and very important in the 

control of diseases caused by pathogenic organisms, and because of the essential role 

played by bacteria and other microorganisms in the decomposition and stabilization of 

organic matter (Tchobanoglous et al., 2003; Vesilind, 2003) 

Organisms found in wastewater include bacteria, fungi, algae, protozoa, plants, animals 

and viruses (Tchobanoglous et al., 2003). Many microorganisms, namely bacteria and 

protozoa, are responsible and beneficial for biological treatment processes of wastewater. 

However, some pathogenic bacteria, fungi, protozoa and viruses found in wastewater can 

be the cause of public contamination (Gerardi, 2006; Lin and Lee, 2007). Thus, there are 

legal requirements that define the maximum value acceptable to various microbiological 

parameters, in order to not endanger the public health. In Portugal, this information is 

present in the Decree-Law no. 236/98 of August 1
st
 that establishes water quality standards 

in order to protect, preserve and improve water resources. 

 

1.3. Wastewater treatment 

Wastewater treatment plants (WWTP) consist of a combination of unit process arranged in 

a sequence, such that each would support the performance of the downstream unit process 

or processes as wastewater progresses through the plant. The amount of treatments, and 

thus the complexity of the plant, is dependent on the treated effluent quality objectives and 

the nature of the raw wastewater. However, the unit processes can be classified into five 
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groups: preliminary treatment, primary treatment, secondary treatment, tertiary treatment 

and sludge treatment, Figure 1.2 (Jern, 2006; Shon et al., 2006).  

 

1.3.1. Preliminary treatment 

Preliminary systems are designed to physically remove larger suspended and floating 

material, heavy inorganic solids and excessive amounts of oil and grease. The aim of this 

treatment is to improve the performance of the downstream processes through protection of 

Preliminary

Raw wastewater

Screening

Grit removal

O&G removal

Removal of large solids (e.g., plastic bags, paper, rags)

Removal of inorganic material

Removal of oil and grease

Primary sedimentation Removal of SS, BOD, phosphorus and O&GPrimary

Biological oxidation

Secondary 

sedimentation

Secondary

S
lu

d
g
e

Tertiary treatment

Sludge digestion

Tertiary

Sludge 

treatment

Treated effluent

Removal of soluble and colloidal organic matter and 

nutrients

Additional treatment to improve effluent quality

Reduce the amount of organic matter and pathogenic 

microorganisms found in the sludge

Sludge dehydration Reduce the water content and volume

Treated sludge

Figure 1.2: Typical stages in the conventional treatment of wastewater, adapted from Lin and Lee (2007). 
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equipment and flow equalization (Lin and Lee, 2007). Preliminary treatment operations 

typically include coarse screening to remove large materials, and grit removal. Grit is inert 

inorganic material such as sand particles, eggshells or metal fragments, and their removal 

process consists in reducing the flow rate of the effluent to permit the deposition of the 

particles. In some larger plants with effluents rich in oil and grease, these are likewise 

removed avoiding interference with the oxygen transfer in the biological treatment process. 

Usually they rise to the surface during the retention time of the effluent in the tank, being 

then removed manually or by mechanical skimmers (Ebel, 1994; Jern, 2006).  

 

1.3.2. Primary treatment 

The purpose of primary treatment is to reduce the flow velocity of the wastewater 

sufficiently to permit suspended solids to settle, but floating materials are also removed by 

skimming (Lin and Lee, 2007). Usually, in clarifiers, quiescent conditions, combined with 

processes such as flocculation and physical adsorption, allows the solids to settle in the 

bottom of the tank, by gravity, forming a sludge layer (Gray, 2005; Jern, 2006). In large 

clarifiers a scrapper located near the base of the clarifier moves the sludge into a collector 

from where is pumped into the sludge treatment stage (Chatzakis et al., 2006; Jern, 2006). 

This treatment removes approximately 50% to 70% of suspended solids and consequently 

30-40% of BOD5 is also eliminated, since organic matter settles with suspended solids 

(Tchobanoglous et al., 2003; Jern, 2006; Shon et al., 2006; Eurostat, 2010). The use of a 

coagulant (chemical, organic or semi-organic), in this treatment stage, allows increasing 

the removal of suspended solids and BOD5 to values of 90% and 70%, respectively 

(Chatzakis et al., 2006; Jern, 2006). Approximately 10% of the phosphorus is also 

removed by primary sedimentation, and oil and grease along with other floating matter are 

skimmed off from the basin surface (Lin and Lee, 2007). 

 

1.3.3. Secondary treatment – Biological treatment 

The objective of secondary treatment is the removal of soluble and colloidal organic matter 

remaining after the first stages of treatment. Thus, wastewater is exposed to a microbial 
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population, essentially bacteria, which convert the organic matter in new cells, energy, and 

also carbon dioxide and water (Gray, 2005; Jern, 2006; Shon et al., 2006). The biological 

treatment removes more than 90% of suspended solids and a considerable part of the 

nutrients (Eurostat, 2010). 

The biological treatment involves the transformation (i.e., oxidation) of dissolved and 

particulate biodegradable constituents into acceptable end products, capture and 

incorporation of suspended and colloidal solids into a biological floc or biofilm, 

transformation or removal of nutrients such as nitrogen and phosphorus, and in some cases, 

removal of specific trace organic constituents and compounds. In particular, for industrial 

wastewater the objective is to remove or reduce the concentration of organic and inorganic 

compounds. The biological processes used for wastewater treatment can be divided into 

two main categories: suspended growth and immobilised growth processes. In suspended 

growth processes, the microorganisms responsible for treatment are maintained in liquid 

suspension by appropriate mixing methods, and can operate in aerobic or anaerobic 

conditions. The most common suspended growth process used is the activated sludge 

system. On the other hand, in attached growth processes the microorganism are adsorbed 

to an inert material, such as rock, gravel, sand, plastic and other synthetic materials. 

Adsorbed growth processes can also be operated as aerobic or anaerobic processes 

(Tchobanoglous et al., 2003). 

 

1.3.4. Tertiary treatment 

After the secondary treatment, the effluent only contains about 5-20% of the initial amount 

of organic matter. However, this effluent may still be rich in phosphates and nitrates, 

responsible for the phenomenon of eutrophication discussed above. Tertiary treatment is an 

expensive process, which involves physical, chemical and biological methods. The 

processes used include chemical coagulation, granular media filters, diatomaceous earth 

filters, and ultra- and nanofiltration. For nitrogen control, techniques such as biological 

assimilation, nitrification and denitrification, besides ion exchange are used. Soluble 

phosphorus may be removed by chemical precipitation or biological uptake for cell 

growth. Membrane physical processes such as reverse osmosis and ultrafiltration also help 

to achieve phosphorus decrease, but these are primarily employed for decrease of dissolved 
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inorganic solids. Finally, chlorine compounds are used for disinfection or destruction of 

organisms. However, the effluents containing chlorine when released into rivers and lakes 

can react, producing carcinogenic compounds which in turn may enter the food chain or be 

directly ingested by human beings. So, prior removal of chlorine compounds is necessary. 

As an alternative to chlorine, ultraviolet light or ozone treatment can be used to destroy the 

microorganisms without the addition of carcinogenic compounds (Black, 2002; Lin and 

Lee, 2007; Eurostat, 2010). 

 

1.3.5. Sludge treatment 

The by-product of treating wastewater is sludge: accumulated settled solids either humid or 

mixed with a liquid component as a result of natural or artificial processes. This sludge 

cannot be simply disposed due to its microbiological and chemical characteristics. In fact, 

according to their origin, they tend to concentrate heavy metals and poorly biodegradable 

organic compounds as well as potentially pathogenic organisms (e.g., viruses and bacteria). 

According to the Decree-Law no. 73/2011 of July 17
th 

, they are classified as infectious 

waste and must be forwarded to a licensed operator for appropriate treatment in order to 

protect public health and the environment, as established in article 6 of the referred 

Decree-Law. The characteristics of the sludge depend on the source, i.e., the sector that 

produced it. For example, industrial sludge will be more contaminated by 

non­biodegradable compounds while agricultural sludge can contain more potentially 

pathogenic organisms. Sludge composition determines the type of treatment required and 

defines disposal options (Eurostat, 2010). 

Anaerobic digesters are usually used to reduce the amount of solids. The products of this 

reaction are simple organic molecules and gases such as carbon dioxide and methane. 

Methane can be used for heating the anaerobic reactor and as energy supply to the WWTP 

(Black, 2002). The digested sludge is then dehydrated to reduce water content and 

therefore their volume. Methods used include drying beds, filter presses, and centrifuges. 

Finally, sludge is normally used in agriculture as a fertilizer, since they contain organic 

matter and nutrients. However, if the sludge is severely contaminated, for instance with 

heavy metals, has to be incinerated (Jern, 2006; Eurostat, 2010).  
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1.4. Activated sludge 

The most frequently used process for the purification of wastewater through aerobic 

biodegradation is the activated sludge system. This is a suspended growth system that 

appeared in the early twentieth century in England, and has since been globally adopted as 

a secondarybiological treatment in wastewater treatment processes. This process consists 

essentially in oxidizing the organic matter to CO2, H2O, NH3, and new cells by aerobic 

treatment. An important feature of this process is the ability of the microbial cells to form 

flocs, which allows their sedimentation in a solid/liquid separator, and subsequent 

separation from the treated effluent (Eckenfelder and Grau, 1992; Tchobanoglous et al., 

2003; Gray, 2004; Bitton, 2005; Ratledge and Kristiansen, 2006). The biochemical 

processes occur in two stages: the first corresponds to the synthesis of cellular material 

from the initial organic fraction, where nutrients as nitrogen and phosphorus are used, 

equation 1.2. At this stage the energy needed is obtained by the oxidation of organic 

matter. The second phase relates to the endogenous respiration/metabolism of the cellular 

material in accordance with equation 1.3. 

                  
        
→                     

     
        

 (1.2) 

           

        
→                          (1.3) 

The organic matter in wastewater is represented by COHNS, which serves as the electron 

donor while oxygen serves as the electron acceptor. The endogenous respiration reaction 

(equation 1.3) only shows relatively simple end products and energy, since it represents a 

complete oxidation. Sometimes the oxidation of organic matter is not complete and stable 

organic products are also produced (Tchobanoglous et al., 2003).  

The activated sludge process comprises two basic treatment steps: the first occurs in the 

aeration tank and the second in a secondary sedimentation tank, Figure 1.3. In the aeration 

tank, contact time is provided for mixing and aerating influent wastewater with the 

suspension of microorganisms, typically referred as the mixed liquor suspended solids 

(MLSS) or mixed liquor volatile suspended solids (MLVSS). Mechanical equipment is 

used to keep the flocs, particles and microorganisms in suspension in the liquid phase to 

avoid the formation of anaerobic zones in the deeper layers of the aeration tank, and to 

ensure the necessary oxygen transfer. The mixed liquor then flows to a clarifier where the 
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microbial suspension settles and is separated from the treated effluent. The settled biomass, 

described as activated sludge because of the presence of active microorganisms, is 

reintroduced in the aeration tank to continue the biodegradation of the influent organic 

material. However, a portion of biomass is removed from the system daily or periodically, 

since the process produces excess biomass that would accumulate along with the non-

biodegradable solids present in the influent wastewater (Ganczarczyk, 1983; 

Tchobanoglous et al., 2003). The recirculation of a large portion of biomass is another 

important feature of the activated sludge process. This allows the mean cell residence time 

(sludge age) to be much greater than the hydraulic retention time. In practice, helps to 

maintain a large number of microorganisms in the system that efficiently oxidizes organic 

compounds in a relatively short time (Bitton, 2005). 

 

Legend of Figure 1.3: 

 MLVSS0 –Volatile suspended solids in influent (mg/L) 

 MLVSS –Volatile suspended solids in aeration tank (mg/L) 

 MLVSSe – Volatile suspended solids in effluent (mg/L) 

 MLVSSr – Volatile suspended solids in the return line from clarifier (mg/L) 

 Q – Influent flowrate (m
3
/d) 

 Qw –Waste sludge flowrate (m
3
/d) 

 Qr –Recirculation flowrate (m
3
/d) 

 S0 –Influent substrate concentration, BOD or COD (mg/L) 

EffluentInfluent

Aeration tank

Effluent

+ 

Activated 

sludge

Activated 

sludge

CO2, H2O, NO3
-

SO4
2-, PO4

3-

Return activated sludge

Qr, S, MLVSSr

Clarifier

Q, S0, MLVSS0

S, MLVSS, 

V

(Q-Qw), S, MLVSSe

Waste activated 

sludge

Qw, S, MLVSSr

System Boundary

Figure 1.3: Schematic diagram of the activated sludge process, adapted from Tchobanoglous et al. (2003). 
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 S –Effluent substrate concentration, BOD or COD (mg/L) 

 V – Aeration tank volume (m
3
) 

 

1.4.1. Operational parameters of the process 

Certain operational parameters must be monitored periodically for the correct operation of 

the activated sludge process (Ouano, 1983).  

 

1.4.1.1. Dissolved Oxygen 

Since the wastewater treatment by activated sludge is an aerobic process it is necessary to 

ensure that dissolved oxygen is always present in the aeration tank. The amount of oxygen 

required depends on the organic load of the influent and the degree of treatment desired 

(Cheremisinoff, 2006). Taking into account the equation 1.3is possible to conclude that if 

all the cells were completely oxidized, the COD produced would be equivalent to 1,42 

times the concentration of cells as MLVSS: 

       

          
 

          

        
                   (1.4) 

Thus, the theoretical oxygen requirement can be calculated by the following equation, 

where R0 is the amount of oxygen needed, and Px the amount of biomass in excess as 

MLVSS as explained in section 1.4.1.9. 

                (                )            (1.5) 

When the process includes a nitrification step is also necessary to consider the oxygen 

required for oxidation of ammonia to nitrate and nitrite. N0 and N represent the total 

concentration of nitrogen in the influent and effluent, respectively (Lin and Lee, 2007). 

                (                )                           

          

(1.6) 
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1.4.1.2. pH 

Most microorganisms grow at a pH range close to neutrality (Csuros and Csuros, 1999). 

Thus, pH of the mixed liquor should be maintained within the range of 6.5 to 9.0 (ideally 

6.0 to 8.0). Gradual fluctuations within this range will normally not upset the process. But 

rapid fluctuations or fluctuations outside this range can reduce organism activity 

(Spellman, 2003). Consequently, this is an important parameter that must be controlled in 

order to avoid a decrease in cell viability (Cheremisinoff, 2006).  

 

1.4.1.3. Mixed liquor suspended solids 

As mentioned above, MLSS concentration can be used to express, roughly, the amount of 

biomass present in the aeration tank (Cheremisinoff, 2006). In theory, the higher the MLSS 

concentration the greater the efficiency of the process, however high values of MLSS are 

limited by the availability of oxygen in the aeration tank, and by the capacity of the 

sedimentation unit. Once the MLSS measurement does not discriminate between organic 

and inorganic matter, the organic fraction may be estimated by the determination of mixed 

liquor volatile suspended solids. However MLVSS also does not distinguish between the 

biochemically active and the inert material. Therefore, a more complex technique must be 

employed to measure the biochemical sludge activity (Gray, 2004), like the measurement 

of the protein content of the biomass (Yücesoy et al., 2012). For daily operational control 

of the system, MLSS is adequate. The MLVSS and other measures of sludge activity are 

mainly used in research and development work (Gray, 2004). 

 

1.4.1.4. Temperature 

Microorganisms can be classified into three groups according to their response to 

temperature: thermophiles, mesophiles and psychrophiles. 

Since ambient temperature usually ranges from 15 to 37°C, mesophilic microorganisms are 

the most important group in the wastewater treatment. This group grows when temperature 

ranges from 20 to 40 °C, and shows a peak of growth at 35-37 °C (Henze et al., 1997). 
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The biological process can also occur in thermophilic range, 50-60 °C. The psychrophilic 

microorganisms group, with optimal growth below 20 °C, is only important in the 

treatment plants in cold climates (Ouano, 1983; Henze et al., 1997). 

 

1.4.1.5. Food to microorganism ratio – F/M 

The F/M ratio is defined as the rate of BOD or COD applied per unit volume of mixed 

liquor (Tchobanoglous et al., 2003). This means that the F/M ratio represents the amount 

of substrate available for the biomass in the aeration tank. F/M can be calculated from the 

following expression (Lin and Lee, 2007). 

    
                 

                  
 (1.7) 

When the F/M ratio is high, the microorganisms are in the exponential growth phase. With 

excess food, the rate of metabolism is at a maximum with large BOD removals achieved. 

However, under these conditions the microorganisms do not form flocs and are generally 

dispersed, making the sedimentation process less efficient. In contrast, a low F/M ratio put 

the microorganisms into a food limited environment, which causes a rapid decrease in 

metabolic rate until the endogenous respiration phase starts, with cell lysis and resynthesis 

taking place (Gray, 2004). This parameter can be controlled by the adjustment of the waste 

activated sludge (WAS) flowrate, i.e., amount of sludge periodically removed from the 

system, since it is related to the concentration of suspended solids in the aeration tank 

(Bitton, 2005). 

 

1.4.1.6. Organic load 

Organic load is the amount of organic matter entering the treatment plant. As referred 

above is usually measured as BOD, COD or TOC. Considering the influent flowrate is 

possible to determine the organic load entering the plant, daily (Spellman, 2003). 

                                    (1.8) 

 



Introduction 

17 
 

1.4.1.7. Solids retention time 

Solids retention time (SRT) can be defined as the average time that the sludge remains in 

the system, i.e., sludge age. By definition the SRT is the ratio between solids in the system 

and the mass of solids removed daily (Tchobanoglous et al., 2003). 

       
                  

                                               
 (1.9) 

An activated sludge system usually has a SRT in the range of 15 to 20 days, and like the 

F/M ratio this parameter is also controlled by the WAS flowrate (Tchobanoglous et al., 

2003; Lin and Lee, 2007). When the solids retention time is too long biological 

deterioration of the flocs may occur, providing very small flocs and imposing a higher 

turbidity to the effluent. This phenomenon is known as pinpoint floc (Tchobanoglous et al., 

2003). 

 

1.4.1.8. Sludge volume index 

The sludge volume index is a measure of the activated sludge settling ability, and is 

expressed as the volume in milliliters occupied by one gram of suspended solids that settles 

after 30 minutes. 

           
                                    

            
 (1.10) 

A high SVI value indicates a poor settleability. Usually a SVI > 120 indicates ineffective 

sedimentation properties, and a SVI < 80 is characteristic of a good sludge (Gray, 2004). 

 

1.4.1.9. Solids production 

This parameter represents the amount of sludge produced per day, i.e., the amount of solids 

that must be removed daily to maintain a constant biomass concentration in the bioreactor. 

It can be calculated through a mass balance of the process, considering the amount of 

suspended solids in the influent wastewater, the amount of suspended solids wasted daily 

and the contribution of the substrate for the biomass growth. In equation 1.11, Y is a 
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kinetic constant that represents the amount of organic material that is used for biomass 

growth; the theoretical value is between 40-80% (Tchobanoglous et al., 2003). 

                                                          

       
(1.11) 

 

1.4.1.10. Nutrients 

In addition to carbon compounds, the microorganisms involved in the activated sludge 

process need nitrogen, phosphorus and trace amounts of iron, calcium, sodium and other 

minerals. These nutrients can be supplied to the system in the form of salts and minerals, 

and not necessarily as proteins or organometallic compounds. Thus, commercial fertilizers 

such as urea, ammonium phosphate, ammonium sulfate and ammonium nitrate are 

commonly used additives to suppress the nitrogen requirements. Ammonium phosphate 

can also be used to eliminate the phosphorus lack. Elements that are needed in trace 

amounts occur naturally in effluents, and thus it is not necessary to add additives. Cells are 

composed, approximately, of 50% carbon, 10% nitrogen and 2% of phosphorus, so the 

carbon, nitrogen and phosphorus ratio (C:N:P) usually acceptable for biological treatment 

is 100:5:1 (Ouano, 1983; Bitton, 2005). However, in literature other relations are found: 

100:20:1, 100:10:1 and 250:7:1 (Jefferson et al., 2001) 

 

1.4.2. Microfauna in activated sludge 

Activated sludge systems form an ecosystem with a complex trophic web where the 

different populations establish relations of competition, predation and even cannibalism, 

Figure 1.4. 

Biotic components are represented by decomposers or primary producers (bacteria and 

fungi) that utilize the dissolved organic matter in the wastewater, and by consumers or 

predators (protozoa and small metazoan) that feed on dispersed bacteria and other 

organisms (Madoni, 1994; Lee et al., 2004; Ginoris et al., 2007a).  
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Yiannakopoulou (2010) also identified three trophic levels: the first consists of bacteria 

and accounts for practically 90% of the total community population, the second level 

includes bacterivorous protozoa and metazoan (rotifers and nematodes) and the third 

comprises carnivorous protozoa, Figure 1.5. 

Bacteria dominate over all groups in number and biomass, and clearly play a vital role in 

the conversion of the wide diversity of organic compounds and in the biological removal of 

nitrogen and phosphorus (Bento et al., 2005; Moussa et al., 2005; Madoni, 2011). 

 

1.4.2.1. Bacteria 

The most important microorganisms in a biological treatment process are bacteria, since 

they are responsible for the degradation of the organic matter and the structuring of the 

Bacteria

Wasted Sludge

Metazoan

Bacterivorous 

Protozoa

Carnivorous 

Protozoa

1st Trophic Level 2nd Trophic Level 3rd Trophic Level

Figure 1.5: Ecological trophic network of a microbial community developed in 

an activated sludge process, adapted from Yiannakopoulou (2010). 

Substrate

Organic matter

Bacteria

Protozoa

Metazoan

Decomposers

Predators

Figure 1.4: Trophic network present in the aeration tank, adapted from Gray 

(2004). 
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flocs (Tchobanoglous et al., 2003; Bitton, 2005). Bacteria are prokaryotic unicellular 

microorganisms that occur in three basic shapes: spheres (coccus), rods (bacillus), and 

spiral forms (spirillum) (Csuros and Csuros, 1999; Bitton, 2005). 

Only a minor fraction (5-20%) of the organic matter in the sludge floc is made up of 

bacteria. The rest consists mainly of gelatinous extracellular material that is segregated by 

bloc-forming bacteria and surrounds the outer membrane: extracellular polymeric 

substances (EPS). Only a small number of bacteria are floc formers, namely 

Achromobacter, Aerobacter, Citromonas, Flavobacterium, Pseudomonas, and Zoogloea 

(Gerardi, 2006; Wilén et al., 2008). EPS are defined as extracellular polymeric substances 

produced by some fungi and bacteria, with a diversified chemical composition. EPS 

compounds belong to different classes of macromolecules and not only to carbohydrates 

(Czaczyk and Myszka, 2007). These organic polymers form a cell protective layer for 

against the harmful external environment, for instance biocides and sudden changes of pH 

(Liu and Fang, 2003; Li et al., 2011). On the other hand, such molecules can be the support 

of the flocs, since bioflocculation can be defined as the interaction, of the exopolymer of 

individual floc-forming cells, to form a three-dimensional matrix. The EPS holds the 

various microorganisms together in a matrix onto which organic fibers, organic and 

inorganic particles as well as various colloids can be adsorbed. So it is a micro-

environment that allows a close proximity between microorganisms, and where organic 

material can be trapped and digested by extracellular enzymes. EPS segregation is an 

important process since they are essential for the floc structure and stability, as well as for 

determination of their physico-chemical and biological properties. The use electron 

microscopy confirmed that microbial cells inside the flocs are cross-linked by EPS, 

forming a polymeric network with pores and channels. Such a polymeric network has a 

vast surface area, capable of adsorbing organic and inorganic particles, facilitating their 

removal from the system and increasing the weight of the flocs, which improves the 

sedimentation process (Gray, 2004; Bitton, 2005; Shon et al., 2006; Wilén et al., 2008). 

Thus an effective bioflocculation is the key for an efficient solid-liquid separation of 

activated sludge from the treated water (Wilén et al., 2008). 
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a) b) 

  

Figure 1.6: Filamentous bacteria that can be found in the mixed liquor a) 

Beggiatoa e b) Nocardia sp., Black (2002). 

Filamentous bacteria are resistant to grazing and multiply quickly (Yiannakopoulou, 2010). 

When they occur in excess in the treatment process do not allow the sedimentation of the 

sludge in the secondary sedimentation tank, resulting in a phenomenon known as bulking. 

Bulking results in the contamination of the treated effluent with floating matter, namely 

biomass that should have settled (Black, 2002). Excessive filaments result in flocs with 

entrapped air, and, these less dense flocs rise to the surface of the tank causing foaming 

problems (Chua et al., 2000). The presence and dominance of filamentous bacteria may be 

due to the presence of particular substrates that favor their growth (Yiannakopoulou, 

2010). 

 

1.4.2.2. Protozoa 

In modern systems, with low loading and high sludge retention time the presence of 

protozoa such as ciliates, flagellates and amoebae is very common. Protozoa are unicellular 

eukaryotic organisms that have a crucial role in obtaining a good effluent quality with low 

suspended solids (Moussa et al., 2005; Ginoris et al., 2007b; Madoni, 2011). 

Protozoans comprise a large diverse assortment of microscopic organisms that live as 

single cells or in colonies (Papadimitriou et al., 2010). Lists of protozoa species found in 

activated sludge plants have been reported by several authors and a complete list of 228 

species has been published by Curds (1975). Of the 228 protozoa species listed for the 

activated sludge plants about 160 belong to the phylum Ciliophora, and only a limited 

number of these has been observed frequently (Madoni, 2011). Most protozoa are strict 

a) b)a) b)
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aerobes, but some including amoebae and 

flagellates can survive in anaerobic conditions 

(Gerardi, 2006). It has been estimated that the 

protozoa biomass can reach values of 250 mg/L 

(dry weigh), constituting over 9% of the 

volatile solids (Madoni, 2011). 

Protozoan predation, via phagocytosis, of both 

dispersed bacteria and peripheral cells of the 

flocs improves sludge sedimentation and 

effluent quality by reducing effluent turbidity, 

biological oxygen demand and suspended 

solids, and decreases the risk of potential bacterial pathogens as they contribute to the 

reduction of coliforms (Miller and Miller, 2000; Papadimitriou et al., 2010; Ntougias et al., 

2011). Even though some protozoa can eat flocculated bacteria, most protozoa can only 

graze on suspended bacteria and particles. In this way they have a significant effect on the 

effluent quality, being generally assumed that the primary role of protozoa in wastewater 

treatment is the clarification of the effluent (Madoni, 2011). 

Protozoa also release inorganic and organic products into their surroundings. These 

products are mainly recycled nutrients, such as nitrogen and phosphorus, and organic 

carbon, but might also include stimulatory compounds that contribute to the dissolved 

organic carbon pool and affect the growth of bacteria. Thus, among indirect effects of 

protozoa on bacteria can be pointed out the excretion of mineral nutrients that result in an 

accelerated usage of the carbon source, and the excretion of growth-stimulating 

compounds that can enhance bacterial activity. Nevertheless, these indirect effects cannot 

increase carbon mineralization under carbon limitation conditions. Therefore, in 

wastewater systems with low substrate concentration, this process is of little importance 

(Madoni, 2011). 

As previously described, protozoa are usually aerobic and bacterivorous, but carnivorous 

protozoa, which feed on other protozoa, are also observed (Jenkins, 1993; Ginoris et al., 

2007b). The bacterivorous ciliates in activated sludge can be subdivide into three groups 

on the basis of their behavior: 1) free swimmers, swim in the liquor fraction and remain 

Figure 1.7: A common protozoa found in activated 

sludge, Vorticella, Ni et al. (2010). 
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suspended in the sedimentation tank; 2) crawlers, move on the surface of the sludge flocs; 

and 3) sessile or attached that are firmly attached by a stalk to the flocs and precipitate with 

them during sedimentation. All bacterivorous ciliates depend on ciliary currents to force 

suspended bacteria to enter the oral cavity. So, while free-swimming and attached ciliates 

are in competition for the bacteria dispersed in the liquid phase, crawling forms feed upon 

particles that only lightly adhere to the sludge and that are dislodged by the feeding 

currents easily. Therefore these biological systems consist of populations in constant 

competition with each other for foodstuff (Madoni, 1994). 

 

1.4.2.3. Metazoan 

Metazoans are multicellular organisms that may be microscopic or macroscopic in size 

(Gerardi, 2006). They have a slow growth rate and most of them are predators that feed 

upon bacteria and protozoa (Bento et al., 2005). The most commonly observed metazoan 

in the activated sludge process include free-living nematodes and rotifers (Gerardi, 2006).  

Metazoans usually are present in highly variable numbers. Unless the SRT of the activated 

sludge process is > 20 days, most metazoan are not provided with sufficient time to 

reproduce and usually are present in relatively small numbers (< 200 individuals per 

milliliter) (Gerardi, 2006). Rotifers were shown to have two distinct effects on suspended 

particles: consumption of dispersed bacteria and improvement of settling and aggregation 

a) b) 

 
 

 

Figure 1.8: Metazoans found in activated sludge, a) rotifer and b) nematode, Ni et al. (2010). 
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of the flocs. Nematode abundance in activated sludge systems generally represents less 

than 1% of the microfauna and their presence is limited by the short residence time of the 

biomass in the system. Tardigrades, gastrotrichs and oligochaetes were rarely recorded in 

daily microscopic examinations of the activated sludge (Zhou et al., 2008).  

 

1.4.3. Protozoa as indicators of activated sludge performance 

Studies on the dynamics and succession of protozoa in activated sludge have suggested 

that flagellates predominate in the early stages only because of their low energy 

requirements. As the flagellates decrease, they are replaced by free-swimming ciliates and 

then by crawling and attached ciliates. Three stages in the time span can be identified from 

the beginning to the stabilization of the system. The plant start-up is characterized by the 

presence of species typical of raw sewage: free swimming bacterivorous ciliates and small 

heterotrophic flagellates. With the stabilization of the sludge they are replaced by other 

functional groups. The second phase is characterized by the proliferation of ciliates typical 

of the activated sludge habitat: crawling and attached ciliates. In this stage the species 

structure changes with the progressive formation of activated sludge. The third phase, 

stabilization, is characterized by a protozoa community whose structure reflects the stable 

condition of the aeration tank environment, with a balance between the organic loading and 

the sludge that is produced, removed and recycled (Madoni, 2011). Food availability is 

decisive on the species succession during these stages. Small flagellates and small free-

swimming ciliates require a higher amount of bacteria due to their inefficient food capture 

ability. Thus during the star-up, when there is a low hydraulic residence time (HRT) and a 

high F/M ratio, these protozoa dominate. On the opposite, sessile ciliates and metazoan 

increase when HRT is higher and F/M ratio is lower due to their ability of floc adhesion or 

more efficient food capture mechanism (Ginoris et al., 2007b). In the third stage species 

characteristic of the colonization phases are not observed, unless any dysfunction causes a 

regression in the environmental conditions. Protozoa are sensitive to environmental change 

caused by variations in influent quality or operating conditions, for instance sludge age, 

organic loading rate, F/M ratio and aeration intensity (Dubber and Gray, 2009). In 

particular, ciliates are proposed to be representative indicators of the operation of the 
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wastewater treatment plants because of their rapid response to changes in wastewater 

composition and plant operating conditions (Ntougias et al., 2011).  

The main factors influencing the biotic community of activated sludge are organic sludge 

loading and sludge retention time. These parameters determine both the time required for 

the growth of organisms and the amount of food available to them. Low organic loading 

rate is associated with long sludge retention time, stable aerobic conditions and poor 

feeding substrate. These factors result in a smaller number of dispersed bacteria, a high 

abundance of species with a small diversity, predominance of a group of protozoa 

consisting of testate amoebae, crawling and attached ciliates and the presence of small 

metazoan. Because of the lower abundance of dispersed bacteria, these groups are able to 

obtain enough food to prosper through high efficiency wastewater clarification (attached 

ciliates with a wide peristome and rotifers), feeding within sludge flocs (rotifers, 

nematodes and amoebae) and feeding on the lightly adherent bacteria on the flocs surface 

(crawling ciliates). Long sludge retention time also provides adequate time for the growth 

of the organisms. On the other hand, the increase of organic load improves feeding 

condition but is associated with the reduction of sludge retention time and often with 

obstacles related to aerobic conditions. It is also observed a faster growth of dispersed 

bacteria, increases in the overall size of the microfauna, the decline of species diversity and 

the domination of taxa characterized by low feeding efficiency: small flagellates, free 

swimming ciliates and/or attached ciliates with a narrow peristome. These organisms 

require a high concentration of dispersed bacteria and are able to tolerate oxygen 

deficiency. A high rate of proliferation (flagellates and swimming ciliates) and a sedentary 

way of living (attached ciliates) protect them against leaching from the system, which 

would be expected due to the reduced sludge retention time (Drzewicki and Kulikowska, 

2011).  

Since the species and functional groups of protozoa depend on the environmental 

conditions and most of the protozoa found in activated sludge systems have ubiquitous 

distribution in all continents, the structure of the protozoa community can be considered a 

valid indicator of the purification plant performance. Any major variations in the plant 

performance are thus indicated by the dominant group of protozoa. So, the routine analysis 

of these eukaryotic microorganisms community is becoming increasingly common to 
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determine activated sludge plant performance (Madoni, 1994; Zhou et al., 2008; Madoni, 

2011). 

Curds and Cockburn (1970) were probably the first to use protozoa as indicators. They 

carried out a comprehensive study of the protozoa population in activated sludge plants in 

the UK, and found that a rich protozoa community was related to effluents of high quality 

while a community with only few species in small number was associated with low quality 

effluent. Since then a series of plant studies has been conducted to further explore the 

relationship between the protozoa community structure, effluent quality and plant 

operation conditions (Esteban et al., 1991; Madoni, 1994; Dubber and Gray, 2011). 

Several researchers developed methods for biological monitoring of the process. 

Performance indexes have also been developed based on ciliate diversity and abundance as 

indicators of activated sludge performance (Drzewicki and Kulikowska, 2011; Dubber and 

Gray, 2011). In 1994, Madoni summarized the knowledge on the ecology of activated 

sludge grouping microfauna organisms into positive and negative keygroups. The positive 

keygroups consist of testate amoebae and crawling and attached ciliates; negative 

keygroups comprises small flagellates, swimming bacterivorous ciliates and the peritrichs 

ciliates Vorticella microstoma and Opercularia sp.. In addition, this study revealed that in 

order to take place an efficient treatment a high protozoa density (> 10
3
 organisms/mL) 

with a well-diversified community, where no overwhelming predomination species or 

group of species are observed, should be present in the aeration tank. When such is not the 

case, the identification of the dominant group(s) allows diagnosis of the particular state of 

functionality of the plant. Madoni also developed the sludge biotic index (SBI) to display 

the results of the microscopic analysis of the activated sludge into numerical values that 

translate the biological quality of the sludge. The method proposed is based on the 

assumption that the dominance of key groups, and the abundance and number of 

microfauna species in activated sludge vary depending on the physicochemical parameters 

and on the efficiency of the treatment process (Madoni, 1994). Although the SBI method 

may not be used for all systems because has limitations. For instance, Drzewicki and 

Kulikowska (2011) conclude that the method does not apply in WWTP working with 

shock loadings of organic substances and nitrogen. Pérez-Uz et al. (2010) also stated that 

protist communities are different in N-removal systems and, pointed out that bioindicator 

indexes must be adapted to the type of treatment process. Furthermore some correlations 
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between protozoa populations and specific physicochemical characteristics, reported in 

several studies, are often influenced by the plant type examined and by the operating 

conditions used, so examination of protozoa microfauna in other types of WWTP may 

reveal new associations (Ntougias et al., 2011). In recent years the improvement of the 

biotechnology of the activated sludge processes, with important innovations (i.e., tertiary 

treatment or advanced process such as biological nutrient removal), also affects the use of 

protozoa as indicators of the performance of the system (Madoni, 2011). So, these findings 

support that results from previous studies cannot be directly extrapolated to new 

wastewater treatment plant, and therefore each case must be studied individually, since 

species and abundance of protozoa vary specifically with the type of process used 

(Yiannakopoulou, 2010; Dubber and Gray, 2011). 

Table 1.1 resumes the indicator value of each group of protozoa as described in literature, 

adapted from Jenkins (1993), Madoni (1994), Bento et al. (2005), Serrano et al. (2008) and 

Madoni (2011). 

 

Table 1.1: Relation between the dominant protozoa group and the process characteristics. 

Dominant group Performance Indicator value 

P
ro

to
zo

a
 

Flagellates   

 Small Low 

 Poorly aerated sludge 

 Overloading 

 Fermenting substances involved 

 Low SRT 

 Very high F/M (> 0,9) 

 High bacteria concentration 

 Presents during start-up or recovery from upset conditions 

 May occur bulking 

 Sludge with low sedimentation characteristics (dispersed 

biomass) 

 Large  
 Rarely observed 

 Very diluted organic matter 

Amoebae   

 (Overall)  
 Presents during start-up or recovery from upset conditions 

 High numbers may indicate low DO 

 
Small naked 

amoebae 
Mediocre 

 Transient phenomena (discontinuous load, recent sludge 

extraction) 

 High load 

 
Large naked 

amoebae 
Low 

 Transient phenomena (discontinuous load, recent sludge 

extraction) 

 Low effluent quality 
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P
ro

to
zo

a
 

 Testate amoebae High 

 Low and/or diluted loading 

 High SRT 

 High DO 

 Associated to biological removal of nitrogen 

 Low ammoniacal-N concentrations 

 Low SVI values 

 Excellent effluent quality 

Ciliates   

 (Overall) Good 

 Moderate to low organic load 

 High F/M 

 High bacteria concentration 

 Low hydraulic retention time 

 Free Swimming   

  (Overall)  

 Absence of other ciliates: aeration rate too high (not the 

dissolved oxygen concentration) 

 Presence of other ciliates: mature or stabilized sludge 

  Small Mediocre 

 Low SRT 

 High F/M (0,6-0,9) 

 Poorly aerated sludge 

  Large Mediocre 
 Overloading 

 Poorly aerated sludge 

 Crawling Moderate to good 

 Moderate to low organic load 

 Decrease with increasing organic load (not observed in sludge 

above 0,6 kgBOD/kgMLSS.d) 

 High hydraulic retention time 

 Low F/M (< 0,6) 

 High numbers may indicate good oxygen conditions 

 Inversely related to SVI: high numbers associated to SVI 

values smaller than 200 

 Sessile In decline 

 Low organic load 

 Transient phenomena (discontinuous load, recent sludge 

extraction) 

 Washout conditions – rapid increase of F/M 

 Mature or stabilized sludge 

 High numbers may indicate good oxygen conditions 

 0,3 < F/M < 0,6 

  
Vorticella 

microstoma(1) 
Low 

 Present during the first phase of colonization 

 Poor oxygen conditions 

 High F/M 

 Low values of MLSS 

 High SVI 

  
Operculária 

spp. (1) 
Low 

 High final effluent BOD concentration 

 High loading 

 Presence of toxic substances 

 High ammoniacal-N concentration 

 Lack of oxygen 

 Suctorids(2) Good 
 High quality effluent 

 Lightly loaded 

 
Sessile and 

crawling 
Good  

Rotifers  
 Only presents when DO is at least several mg/L 

 Increasing stabilization of organic wastes 

(1) When this group is present in high numbers it must be considered as separate keygroup 

(2) Carnivorous ciliates 
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1.4.4. Sampling and counting of microfauna populations 

Protozoa abundance in the biological treatment is normally over 10
4 

cells/mL, and ranges 

from 10
5
-10

6 
cells/mL depending on the type of process. In consequence, sample volume 

does not need to be large and 25-100 mL would be enough to carry out the study of the 

protozoa populations. To preserve the populations in a similar state to the natural 

conditions, containers should be large enough to keep an air chamber on the top of the 

sample and samples should be kept cool and away from direct sunlight until processing in 

the laboratory (Serrano et al., 2008). Samples must be kept in living conditions and should 

be processed as soon as possible, according to literature within 3-5 h of collection, or 

within 8 h as proposed by Dubber and Gray (2009) who found that significant changes in 

community structure occur beyond this period (Madoni, 1994; Dubber and Gray, 2009; 

Pérez-Uz et al., 2010). Oxygen depletions can be avoid, once in the lab, using mechanical 

agitation with a magnetic stirrer, a shaker or an aquarium air pump, this will avoid the 

death of those most oxygen sensitive protozoa (Serrano et al., 2008).  

Activated sludge population composition and diversity have been investigated by several 

new molecular techniques including fluorescent in situ hybridization (FISH), restriction 

fragment length polymorphism (RFLP), microautoradiography and polymerase chain 

reaction (PCR) Denaturing gradient gel electrophoresis (DGGE), that permit direct 

visualization and rapid comparison of the structure of bacterial communities, has also been 

used (Burgess et al., 2002; Tchobanoglous et al., 2003; Lopez et al., 2005; Wilén et al., 

2008; Abdi and Williams, 2010; Li et al., 2011). These molecular techniques can provide 

an accurate and detailed identification of protozoan diversity in sewage wastewater 

treatment (Ntougias et al., 2011). However, as the information regarding population 

composition and diversity is a good indicator of the process performance, and can be used 

to change operating parameters for the maintenance of process performance, it has to be 

quick, cheap and easy to acquire. So far, such molecular techniques are rarely available on 

wastewater treatment plant sites (Burgess et al., 2002). Therefore, the methodology most 

used is the direct counting. Enumeration of living cells is done by direct microscopy on 

aliquots of unfixed samples. Since ciliate numbers are usually not very large in the 

biological process, counting chambers are generally not necessary, and small aliquots 

taken with a calibrated pipette are mounted and counted on a slide under a coverslip 
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(Serrano et al., 2008). Estimation of small flagellate population, however, is normally done 

in Fuchs Rosenthal chambers due to their reduced size and high density, often reaching 

10
7
-10

8
 individual/L (Madoni, 1994; Dubber and Gray, 2009). When the number of ciliates 

is quite large and counting time is foreseen to take longer, a chamber can be prepared 

sealing the borders of the coverslip with a fine line of vaseline before mounting it on the 

calibrated sub-sample volume. This would avoid drying out of the sample, result of the 

heating caused by longer observation time under the microscope. The counting area is 

defined by the coverslip and counting should be done with 100x or 200x microscope 

magnifications. Differences in the sub-sample volume to be counted can be found in 

literature (Table 1.2), so decisions on volume and replicates should be a balance between 

degree of precision and time spending (Serrano et al., 2008). Nevertheless, a recent study 

conclude that the analysis of six replicate of 25 μL sub-samples provide good species 

recovery and estimation of abundance of protozoa community (Dubber and Gray, 2009). 

Live observation is important because some characteristics are only observed in this state, 

although staining is necessary to identify ciliates to species level. The classic techniques 

involve the use of different silver salts that generally precipitate specifically on 

microtubular structures. Live cell observation is important in the identification of ciliates to 

genus level, since characteristics such as shape, movement, color or certain structures (e.g., 

nuclei, oral area and contractile vacuoles) are only visible when the organism is alive 

(Serrano et al., 2008).  

 

Table 1.2: Sub-sample counting methodology used by previous authors in wastewater studies on activated sludge. 

Volume (μL) Replicates Reference 

50 4-5 Jenkins (1993) 

25 1-2 Madoni (1994) 

5 2 Lee et al. (2004) 

25 3 Zhou et al. (2008) 

25 6 Dubber and Gray (2009) 

25 2 Pérez-Uz et al. (2010) 

25 6 Ntougias et al. (2011) 

25 2 Tocchi et al. (2012) 
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1.5. Case study: IWWTP PrioBiocombustíveis 

1.5.1. Biodiesel production 

PrioBiocombustíveis is a subholding of Martifer group that operates in the biofuels sector. 

The biodiesel plant located in Gafanha da Narazé uses as raw material vegetable oils, 

mainly soybean, rapeseed and palm oil. The biodiesel production (Figure 1.9) initiates with 

the neutralization/degumming of the crude oil that comprises two stages: treatment and 

neutralization followed by washing. The aim of this process is the neutralization of free 

fatty acids, and soapstock (sodium soaps of the free fatty acids) is obtained as a by-product 

(Martifer and Prio, 2008a). The next stage is the transesterification that implies the 

chemical reaction between triglycerides and methanol to produce fatty acid methylesters 

(FAME) and glycerin, in the presence of the catalyst, sodium methoxide. The products are 

then separated and the methylester phase is submitted to a washing and drying process, to 

reduce the water and methanol content to the European standard values for biodiesel. 

Glycerin and wash water are forwarded to a distillation column in order to recuperate the 

methanol excess. After dehydration, glycerin is also commercialized (Martifer and Prio, 

2008b). 

Transesterification
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Neutralization/ 

degumming

Biodiesel 
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Figure 1.9: Schematic representation of the biodiesel production at PrioBiocombustíveis. 
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1.5.2. Operation of the industrial wastewater treatment plant 

The schematic representation of the industrial wastewater treatment plant (IWWTP) 

operation is present in Figure 1.10. The process is divided in different stages; in general 

four steps are identified.  

 

1.5.2.1. Buffering/equalization 

The effluent produced by the factory, mainly from the neutralization/degumming of the 

neutral oil, is collected in an equalization tank. The aim of the equalization/buffer tank is 

the reduction of costs by stabilization of peaks in pollution, pH and flow, creating an 

effluent with quite constant flow and composition for the wastewater treatment system. 

This tank is equipped with a mixer and a pH measurement. The first must be always 
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Figure 1.10: Schematic representation of the operation of the IWWTP, course of the wastewater in bold. 
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submersed and can operate continuously or in a pulse/pause mode, to limit the 

accumulation of sediment on the bottom and create a homogenous mixture. The pH 

controller sends a signal to the NaOH dosing pump to automatic adjustment of pH, which 

must be kept around 5 to an efficient coagulation step (Redox, 2010). 

 

1.5.2.2. Physicochemical treatment 

The objective of the physicochemical treatment is the removal of most of the suspended 

and emulsified solids and insoluble COD, mainly residual oil. Wastewater is pumped from 

the equalization tank to a DAF unit (dissolved air flotation) with an adjustable flow. In the 

effluent compartment of the DAF unit the amount of TSS of the effluent is measured. 

When the amount of TSS is too high indicates that the DAF unit is not working correctly 

and too much polluted water can be sent to the biological treatment system. Thus, when the 

effluent turbidity is higher than aloud, the wastewater is sent back to the buffer tank, to be 

reprocessed. The sludge produced in this treatment stage, which can be denominated as 

chemical sludge, is directed to a sludge tank and later to a licensed operator (Redox, 2010). 

DAF is a clarification process that can be used to remove low density particles in 

suspension. DAF functioning is based on the natural fluctuation tendency of some 

particles. This means that after a chemical pretreatment where flocs are formed, micro air 

bubbles attach to flocs causing them to float to the surface, and making clarification of the 

EffluentSeparation zoneInfluent

Recirculation

Pressurized 

recycle
Skimmer

Contact 

zone

Figure 1.11: Schematic representation of a DAF unit where it is observed the contact zone and 

separation zone, adapted from Edzwald et al.(2010). 
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water below the flotation zone (Al-Shamrani et al., 2002a; Crossley and Valade, 2006; Han 

et al., 2007; Edzwald, 2010; Edzwald and W.W.A.A., 2011; Rattanapan et al., 2011).  

The chemical pretreatment in PRIO is a coagulation process. This involves the addition of 

chemicals that cause aggregation of particles not settleable to form large masses of solid 

material, flocs, which are easily removed (Spellman, 2003; Cheremisinoff, 2006; Adlan et 

al., 2011). The addition of a coagulating agent is important since most of the small 

suspended and colloidal material in wastewater have a negative electrostatic charge. Thus 

in stable conditions the Brownian motion (random movement) keeps the particles disperse 

almost indefinitely as a result of the natural repulsion of similar charges, and due to small 

particle sizes (0,01 to 1,0 μm). The attractive forces of Van der Waals become 

considerably small when compared with the electric charge repulsion. This means that the 

negative electrostatic charge has to be neutralized by the action of the coagulant to allow 

agglomeration of the particles (Tchobanoglous et al., 2003; Cheremisinoff, 2006; Lin and 

Lee, 2007). There are several coagulants on the market that can be grouped into three main 

categories: chemical, semi-organic and organic. In this IWWTP is used a semi-organic 

coagulant, Ambifloc BIO 865 F, a polymer with high cationic density and molecular 

weight, with chemical formula (C8H16ClN)n (SNF Ambientagua, 2008).  

The coagulating agent, which is prepared in a separate unit from a powder or concentrated 

liquid, is added to the flow of water passing through the flocculator in the influent side, 

point B from Figure 1.12. There are two sampling sites in the flocculator: point A1 for 

sampling of the effluent prior to the addition of chemical additives and point A2 for 

sampling wastewater after the addition of chemicals, to check whether the coagulant is in 

the optimal dose (Redox, 2010). 

effluent

influent

Figure 1.12: Representation of the flocculator, adapted from the manual of operation of the FBR, 

Redox (2010). 
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After the coagulation step the effluent enters the DAF 1 unit, where two zones are 

observed, Figure 1.11. The former corresponds to the contact zone that is delimited from 

the separation zone (Edzwald, 2010). In the contact zone, the water is exposed to micro-

bubbles. The micro-bubbles are produced by the saturation of air in a pressurizing device, 

of a portion of the clarified or filtered water (recirculation of DAF) and sudden pressure 

reduction, followed by injection in the contact zone (Crossley and Valade, 2006). The 

bubbles attach to the flocs increasing its buoyancy, allowing them to rise to the surface. 

This can occur by trapping or chemical adsorption of air bubbles in the insoluble solids or 

inside the structure of the flocs (Al-Shamrani et al., 2002b; Hanafy and Nabih, 2007). The 

water carrying the suspension of floc–bubble aggregates, free bubbles, and unattached floc 

particles flows to the second part of the tank, the separation zone. Here free bubbles and 

floc–bubble-aggregates rise to the surface of the tank forming a floating sludge layer. 

Periodically, the sludge is removed by a skimming or hydraulic flooding. Clarified or 

treated water exits the separation zone by a collection manifolds or, more simply, by an 

opening at the end of the tank (Crossley and Valade, 2006; Edzwald, 2010). The purpose 

of the recirculation system is the minimization of the energy used, maximization of the air 

content in the recirculation flow and the creation of micro bubbles with suitable size and 

distribution. The diameter of the bubbles are typically between 10 and 120 μm (Al-

Shamrani et al., 2002b; Rubio et al., 2002; Crossley and Valade, 2006; Dafnopatidou and 

Lazaridis, 2008). The recirculation flow is saturated at pressures of 1,70 to 4,80 atm by a 

pressurizing pump. This flow is maintained under pressure for about 0,5 to 3,0 min to 

ensure dissolution of the air in water, then the pressure is released and returns to 1,0 atm. 

Since, according to Henry's law, the solubility of air in an aqueous solution increases with 

increasing pressure, likewise the pressure reduction causes a decrease in solubility of the 

air in solution, and consequently the formation of air bubbles of microscopic dimension 

(Rubio et al., 2002; Hanafy and Nabih, 2007). Saturated water is normally introduced in 

the main flow through a series of manifolds located in the contact zone. The injection of 

the recycle flow must be diffused to minimize floc damage caused by excessive shear 

forces in the contact zone. Thus, the pressure reduction device is a key component for 

achieving an efficient performance of the DAF process (Crossley and Valade, 2006).  
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1.5.2.3. Biological treatment 

The biological treatment is an activated sludge system that removes the dissolved pollution 

from the DAF 1 effluent.  

 

1.5.2.3.1. Aeration tanks  

The water flows out of the DAF 1 to the contact tank (Figure 1.11), where it is mixed with 

the biomass and then pumped to the aeration tank 2. The contact tank has a blower that 

should work continuously to provide air for the mixture of biomass and effluent and the pH 

should be maintained neutral. When needed, urea (CH4N2O) is added as a nutrient source 

of nitrogen for biomass growth. In the aeration tanks biomass metabolizes the 

biodegradable pollution that is the organic carbon. The aeration tank 2 has four mixer 

aerator pumps for mixing and aerating the water. Two of these mixer aerators get water 

from aeration tank 2 and the other two get water from aeration tank 1. This creates a 

difference in levels between the two aeration tanks and an open connection between these 

tanks cause a gravity flow to aeration tank 1. In aeration tank 1 a mixer is installed in the 

bottom part that must be always submerged and work continuously. On the top of the tank 

a dissolved air measurement device is responsible for the star and stop of the aerating 

system (Redox, 2010).  

 

1.5.2.3.2. Biomass separation 

Another DAF unit is used to separate the effluent water from the biomass. The water 

mixed with biomass flows from the aeration tank 1 to DAF 2 and is mixed with another 

cationic polymer to create stable flocs. In the flotation unit small air bubbles give 

buoyancy to the flocs. These flocs from a sludge layer on the top of the unit from where it 

will be skimmed of the water into the sludge compartment. After this separation, cleaned 

water leaves the flotation unit and the biomass is partially reintroduced in the system, in 

the contact tank, while the remaining is removed out of the system. 
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Taking into account Figure 1.3 and the information derived from the literature, in Figure 

1.13 is present a schematic representation of the activated sludge system in study, that 

enables a mass balance of the process. The two aeration tanks are considered as one since 

there are no significant differences between them. And the contact tank volume is 

neglected since the useful volume of the aeration tanks is not 100% as considered in 

calculations. 

 

1.6. Objectives of the study 

1.6.1. Main objective 

Considering the information provided, the work developed at PrioBiocombustíveis during 

the internship had as main objective the optimization of the operation of the IWWTP.  

 

1.6.2. Specific objectives 

1. Understanding the processes and knowing the performance of each unitary process; 

2. Evaluation and optimization of the daily control analysis; 

DAF 1 DAF 2

Sludge tank

Activated sludge system

Effluent
Influent

Q, S0, 

MLVSS0

(Q-Qw), S, 

MLVSSe

Waste activated 

sludge

Qw, S, MLVSSr

Return activated sludge

Qr, S, MLVSSr

S, MLVSS, V

Aeration tank 2 Aeration tank 1

Figure 1.13: Schematic representation of the activated sludge system in study with 

identification of the main flows and control variables. 
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3. Physiochemical treatment: 

3.1. Evaluation of the total solids and COD removal efficiency; 

3.2. Evaluation of the operation conditions, i.e., pH and coagulant in use; 

4. Biological treatment: 

4.1. Evaluation of the COD removal efficiency; 

4.2. Study of control parameters to identify those with high variations over time in 

order to be optimized; 

4.3. Establishment of a microbiological monitoring protocol; 

4.4. Evaluation of the influence of physicochemical parameters changes in microfauna 

community; 

4.5. Establishment of microbial positive and negative control groups. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.  EXPERIMENTAL SECTION 
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2.1. Sampling procedures 

Samples were collected daily during the study period by operators of PrioBiocombustíveis 

in 1,0 L plastic vessels. Activated sludge samples for microscopic examination were 

collected from the biological reactors immediately before microscopic observation, and 

containers with these mixed liquor samples were allowed half empty to avoid oxygen 

limitation. Samples for analysis of physicochemical parameters were also taken at five 

different treatment stages: before and after physicochemical treatment (S1 and S2), 

aeration tank 1 and 2 (S3 and S4), and at the end of the entire treatment process (S5), 

Figure 2.1. 

 

2.2. Physicochemical analysis 

Physicochemical analyses of the samples collected at the five treatment stages were 

performed daily, with exception for the phosphorus analysis that were performed weekly. 

 

2.2.1. Total solids 

Total solids were determined according to the Standard Methods, section 2540 B. Initially 

clean Petri dishes were prepared according to the following procedure: Petri dishes were 

heated to 103-105 ºC for 1 hour in a drying oven (MMM Medcenter, Munich, Germany), 

and cooled in a desiccator. The weight of a prepared Petri dish was determined in an 

Aeration Tank 2

Aeration Tank 1

Influent Dissolved Air 

Flotation unity 1

Sludge tank Dissolved Air 

Flotation unity 2

Waste activated 

sludge

Return activated sludge

Effluent

S1 S2 S3

S4 S5

Figure 2.1: Sampling sites. 
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analytical balance (Sartorius AG, Göttingen, Germany), and 5000 μL of well-mixed 

sample was pipetted to the dish. The sample was then evaporated to dryness in the oven for 

9 hours at 103-105 ºC and cooled in a desiccator. Finally the dried sample was weighted 

and total solids calculated according to equation 2.1, were A represents the weight of dried 

residue and Petri dish (g) and B the weight of Petri dish (g). All samples were analysed in 

duplicate. 

                   
     

           
 (2.1) 

 

2.2.2. Volatile suspended solids 

Volatile suspended solids of mixed liquor samples (S3 and S4) were also determined 

according to the Standard Methods, sections 2540 D and E. For this analysis porcelain 

dishes containing glass fiber filter disks of porosity of 1,2 μm (Whatman, Kent, United 

Kingdom) were ignited at 550 ºC for 1 hour in a muffle (Nabertherm, Lilienthal, 

Germany), and cooled in a desiccator. After assembly of the filtration apparatus and filter, 

a homogeneous sample volume of 5000 μL was pipetted onto the glass fiber filter with 

applied vacuum. The filter was removed from the filtration apparatus, transferred to the 

porcelain dish and dried for 2 hours at 103-105 ºC in the oven. After cooling in a 

desiccator the weight was determined. The residue produced was then ignited at 550 ºC for 

2 hours in the muffle and transferred to a desiccator for cooling. Finally the dish and filter 

was weighted and volatile suspended solids were determined according to equation 2.2, 

where C represents the weight of residue, dish and filter before ignition (g) and D the 

weight of residue, dish and filter after ignition (g). All samples were analysed in duplicate. 

                                
     

           
 (2.2) 

 

2.2.3. Chemical oxygen demand 

Chemical oxygen demand was determined using a commercial kit (Hanna Instruments, 

Rhode Island, USA) with adaption of EPA method 410.4. Samples from the aeration tanks 

and effluent at the end of the treatment (S3, S4 and S5) were analysed at medium range 
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(150-1500 ± 1 mg/L) and the two remaining samples (S1 and S2) were analysed at high 

range (1500-15000 ± 10 mg/L). 

For this analysis a reactor, HI 839800 COD Reactor 2008 Series (Hanna Instruments, 

Rhode Island, USA), was pre-heated to 150 ºC and the reaction time was programed to 2 

hours. Samples from the two aeration tanks (S3 and S4) were first centrifuged for 5 

minutes at 4000 rpm in a centrifuge angle rotor, Cencom II (JP Selecta, Barcelona, Spain). 

Effluent sample collect before the physicochemical treatment (S1) was diluted by an 

appropriate dilution factor, according to the result from the previous day, usually a 1:10 

factor was applied. An appropriate volume of sample was added to a reaction vial with a 

micropipette: 2000 μL for mid-range and 200,0 μL for high range. The blank vial, prepared 

with distilled water, is stable for several months at room temperature thus it was only 

prepared when the lot of reagents was changed. The vials were then inserted into the 

reactor, where samples were digested in the presence of dichromate at 150 ºC for 2 hours, 

followed by cooling at room temperature. After cooling the absorbances were measured in 

a multiparameter photometer HI 83214 Bench Photometer for Wastewater Treatment 

Application (Hanna Instruments, Rhode Island, USA), after calibration with the blank vial. 

The instrument directly displayed the concentration in mg COD/L for mid-range and for 

high range the result was multiplied by a 10 factor. 

Occasionally, due to a malfunction in the reactor, COD was determined according to 

Standard Methods, section 5220 C, closed reflux titrimetric method. Initially the reagent 

solutions were prepared: standard potassium dichromate digestion solution (0,01667 M), 

sulfuric acid-silver sulfate solution (5,5 g Ag2SO4/kg H2SO4) and standard ferrous 

ammonium sulphate titrant (FAS) (0,100 M). The ferroin indicator solution was acquired 

from Sigma-Aldrich (Madrid, Spain). FAS solution was standardized against digestion 

solution, since is a secondary standard: 10,00 mL of distilled water was added to 5,000 mL 

of digestion solution and after the addition of 1 to 2 drops of ferroin indicator the solution 

was titrated with FAS. The molarity of FAS solution was calculated according to the 

equation 2.3. 

             
                                          

                                    
        (2.3) 
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A sample volume of 2,500 mL, 1,500 mL of digestion solution and 3,500 mL of sulfuric 

acid reagent were added to culture tubes, which were closed with caps and placed in the 

oven at 150 ºC for 2 hours. After cooling to room temperature and the addition of 1-2 

drops of ferroin indicator, the solution was titrated with standardized FAS, until a color 

change from blue-green to reddish brown was observed. The same protocol was applied to 

a blank containing the reagents and a volume of distilled water equal to the sample volume. 

Finally COD was calculated according to equation 2.4, where E represents the volume of 

FAS used for blank titration (mL), B the volume of FAS used for sample titration (mL) and 

M the molarity of FAS. Samples were analysed in duplicate. Since this procedure is 

applicable to COD values between 40 and 400 mg/L, appropriate dilution was used 

(American Public Health Association, 1999). 

           
            

                     
 (2.4) 

 

2.2.4. Ammonia nitrogen  

Ammonia nitrogen of mixed liquor samples and sample at the end of the treatment system 

(S3, S4 and S5) were determined using a commercial kit (Hanna Instruments, Rhode 

Island, USA) with adaption of Nessler method. Samples were usually analysed at low 

range (0,00-3,00 ± 0,01 mg/L) and occasionally at high range (0-100 ± 1 mg/L).  

An appropriate volume of sample was added to reaction vials, 5,000 mL for low range and 

1,000 mL for high range, to make the blank solution. After calibration of the photometer 

with the blank, 4 drops of HI 93764-0 Nessler reagent was added to the vials and the 

concentration of ammonia nitrogen were measured after approximately 3 minutes of 

reaction. The instrument directly displayed the concentration in mg/L. 

Once a multiparameter meter was purchased, MultiMeter MM 41 (Crison Instruments, 

Barcelona, Spain), this parameter was determined with an ammonium ion selective 

electrode. 
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2.2.5. Total phosphorus 

Total phosphorus of the sample collected after the physicochemical treatment and of the 

samples from the aeration tanks (S2, S3 and S4) were determined using a commercial kit 

(Hanna Instruments, Rhode Island, USA) with an adaptation of Standard Methods, section 

4500-P C, vanadomolybdophosphoric acid method. All samples were analysed at high 

range (0,0-100,0 ± 0,1 mg/L). 

The COD Reactor was pre-heated to 150 ºC and the reaction time programed to 30 

minutes. Samples were diluted in distillate water with a dilution factor of 1:10. A volume 

of 5,000 mL of diluted sample was added to the reaction vials, followed by the addition of 

one packet of potassium persulfate for phosphorus analysis to each vial. The vials were 

then inserted into the reactor, where samples were digested for 30 minutes at 150ºC, 

followed by cooling at room temperature. A volume of 2,000 mL of sodium hydroxide and 

500,0 μL of molybdovanadate reagent was added to each vial. After 7 minutes of reaction 

the photometer was calibrated with the blank solution, and the total phosphorus 

concentration was measured. The instrument displayed the concentration of phosphate in 

mg/L, so in order to convert to total phosphorus concentration the result was multiplied by 

a factor of 0,326. Since the blank solution is only stable for one day at room temperature, 

and this analysis was only performed weekly, a new blank vial was always prepared with 

distillate water. 

 

2.2.6. pH 

pH of all samples collected was determined with an microprocessor pH meter (Hanna 

Instruments, Rhode Island, USA). Once a multiparameter meter was purchased, 

MultiMeter MM 41, this parameter was determined with this instrument. 

 

2.3. Enumeration of protozoa and metazoan 

Enumeration of the microfauna present in the mixed liquor of the two aeration tanks (S3 

and S4) was carried out daily by microscopic examination within 1 hour of collection, in 
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order to avoid changes in community structure and to ensure living conditions. Microfauna 

abundance was determined with a sub-sampling technique: a 25,0 μL volume of the mixed 

liquor was taken with a micropipette and samples were examined in duplicated using an 

optical microscope, MBL2000S (A. Krüss Optronic, Hamburg, Germany), at 100x or 400x 

magnification depending on species size. Protozoa was identified to genus level and 

metazoan to phylum level (rotifera and nematoda) “in vivo” using several identification 

keys (Bick, 1972; Jenkins, 1993; Bento et al., 2005; Serrano et al., 2008; Madoni, 2011). 

When colonial species was observed (e.g., Epistylis and Opercularia), all individuals of the 

colony were counted. The flagellate abundances in the mixed liquor samples were assessed 

by qualitative analysis only, and were not quantified by counting using a Fuchs-Rosenthal 

chamber as recommend, since the counting method is time consuming and was intended to 

establish a method easy and fast to be used periodically by the wastewater operators. This 

qualitative analysis considers 5 levels of abundance, Table 2.1. The same analysis was 

employed to the filamentous bacteria abundance Figure 2.2. 

Table 2.1: Subjective scoring system for the evaluation of the abundance of small flagellates and filamentous bacteria. 

Symbol Abundance 

- Absent 

+ Present 

++ Uncommon 

+++ Frequent 

++++ Very frequent 

+++++ Highly frequent 

 

The microorganisms identified were then grouped into functional groups according to 

literature and the indicator value of each group as described in Table 1.1, introduction 

section (Jenkins, 1993; Madoni, 1994; Bento et al., 2005; Serrano et al., 2008; Madoni, 

2011). These groups are small flagellates, large flagellates, testate amoebae, free 

swimming ciliates, crawling ciliates, sessile ciliates, Opercularia sp. and metazoans. Since, 

as described by Madoni (1994) only bacterivorous ciliates belong to the three ciliate 

groups, carnivorous attached ciliates as the suctorians Podophrya and Tokophrya are 

excluded by the “sessile ciliates” group thus a “carnivorous ciliates” keygroup was created.  
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To avoid possible false identifications of microorganisms, substantial practice with several 

references was required and conducted before proceeding. 

   

   

Figure 2.2: Filament abundance categories using subjective scoring system: a) absent; b) present; c) uncommon; d) 

frequent; e) very frequent; f) highly frequent. Photographs taken using phase contrast at 100x magnification; the bar 

indicates 100 μm, Jenkins (1993) and Gray (2004). 

 

2.4. Multivariate statistical analysis 

In order to show the role of the protozoa and metazoan communities in activated sludge, 

and which variables measured at the IWWTP can affect the structure of the microfauna 

communities, the results were explored with a multivariate statistical analysis.  

Large magnitude differences in absolute abundances of some of the counts were solved 

using relative abundances as a percentage of total microorganisms present, as described in 

literature (Pérez-Uz et al., 2010). The data analysis was performed using IBM SPSS v. 

20.0 (IBM Corporation, New York, USA) and Matlab v. 7.11 (MathWorks, Massachusetts, 

USA). A non-parametric correlation coefficient test of Spearman’s Rank was used to 

obtain a correlation matrix of all physicochemical parameters versus relative abundance of 

functional groups. The principal component analysis (PCA) was used to reveal clusters 
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among the observations, and to enable the visualization of the correlations between the 

parameters in study in a correlation circle. 

Correlation analysis examines the strength with which two sets of measurements show 

positive or negative linear association, by calculating a correlation coefficient. The 

Spearman’s Rank correlation is used when the data are not normally distributed and is not 

even possible to transform it to be normally distributed (Ennos, 2007). 

PCA is a technique for reducing the amount of data when there is correlation present 

(Miller and Miller, 2000). PCA computes new variables called principal components that 

are obtained as linear combinations of the original variables. The first principal component 

is required to have the largest possible variance (i.e., this component will explain the 

largest variance of the data). The second component is computed under the constraint of 

being orthogonal to the first component and to have the largest possible variance, the other 

components are computed likewise. The values of these new variables are called factor 

scores, and a graphic representation of them indicates the pattern of similarity of the 

observations by displaying them as points in maps. The correlation between a component 

and a variable estimates the information they share. This correlation is called loading, and 

the graphic representation of the variables by their loadings constitute the circle of 

correlation (Abdi and Williams, 2010). In the correlation circle only parameters far from 

the biplot center are statistically well explained by the two components represented. The 

parameters that are close to each other are in normal correlation, those related to others by 

180º rotation are inversely correlated, while the parameters related by 90º rotation are 

independent (Avella et al., 2011). 

 

2.5. Waste treatment 

At the end of the analyses all samples from the IWWTP were collected to a common 

container and subsequently redirected to the IWWTP, except for the sample of the effluent 

at the end of the treatment process (S5) that has been eliminated by the domestic sewage 

system, as already obeyed the admission parameters of SIMRIA. The collection vessels 

were washed and reused. 
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Lastly, the reaction vials were collected in a suitable vessel and sent to a licensed operator 

in order to be safely discarded because they contained different waste pollutants. 
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3.1. Preliminary studies 

3.1.1. Total solids determination 

Daily, total solids determination was made in Prio using 9 hours of oven evaporation. In 

order to optimize the time of analyses a comparative study using 9 hours and 2 hours of 

evaporation was carried out. The results of this study are shown in Table 3.1. 

Table 3.1: Results of the TS (g/L) for 9 hours and 2 hours of oven evaporation. 

Sample 

Aeration tank 1 Aeration tank 2 Final treatment effluent 

9 hours 2 hours 9 hours 2 hours 9 hours 2 hours 

1 10,10 ± 0,021 11,70 ± 0,018 10,39 ± 0,022 12,02 ± 0,021 0,690 ± 0,021 1,640 ± 0,020 

2 11,63 ± 0,020 12,07 ± 0,021 11,74 ± 0,020 12,28 ± 0,021 1,140 ± 0,020 0,980 ± 0,021 

3 12,15 ± 0,022 11,94 ± 0,022 12,36 ± 0,021 12,18 ± 0,020 1,820 ± 0,021 1,780 ± 0,023 

4 11,23 ± 0,019 11,30 ± 0,021 10,38 ± 0,021 11,52 ± 0,022 1,360 ± 0,021 1,420 ± 0,020 

5 11,38 ± 0,023 10,98 ± 0,020 11,14 ± 0,022 11,34 ± 0,022 1,340 ± 0,020 1,780 ± 0,023 

6 11,16 ± 0,021 11,12 ± 0,021 11,10 ± 0,019 11,18 ± 0,021 1,270 ± 0,020 1,420 ± 0,022 

7 7,820 ± 0,020 7,800 ± 0,021 7,800 ± 0,020 7,780 ± 0,019 0,990 ± 0,022 1,020 ± 0,020 

8 8,820 ± 0,022 8,830 ± 0,020 8,890 ± 0,021 8,930 ± 0,020 1,400 ± 0,020 1,510 ± 0,021 

9 9,050 ± 0,022 9,320 ± 0,022 9,000 ± 0,022 9,240 ± 0,021 1,310 ± 0,020 1,250 ± 0,019 

10 13,07 ± 0,024 12,12 ± 0,020 13,25 ± 0,020 12,16 ± 0,020 1,880 ± 0,021 1,300 ± 0,021 

 

A two-sample Student’s t-test showed that the mean of the total solids concentration, when 

two different evaporation times were used is not significantly different for a     0,05 level 

of significance. This observation is valid since the p-value obtain is greater than 0,05 using 

a Student’s t distribution with 58 degrees of freedom,   (5 )   - 0,11 ,      0,90 . 

Consequently optimization was made reducing the oven evaporation time for 2 hours. This 

change allows the possibility of making actions in the IWWTP in the proper day, 

according to results obtained and during the administrative schedule of the company (9:00h 

to 18:30h). 

 

3.1.2. Relation between volatile suspended solids and total solids 

In literature is reported that the volatile suspended solids are about 80% of total solids, and 

this value is usually used in daily calculations (Lin and Lee, 2007). In order to find out if in 
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this IWWTP there is also a relation between these two parameters and its magnitude VSS 

were analysed and compared to TS. Results in Table 3.2. 

Table 3.2: Results of TS (g/L) and VSS (g/L) determined for both aeration tanks and relation between TS and VSS (%). 

Sample TS (g/L) VSS (g/L) 
Relation between VSS 

and TS (%) 

1 11,21 ± 0,020 8,600 ± 0,021 76,72 ± 0,26 

2 9,460 ± 0,021 7,860 ± 0,021 83,09 ± 0,32 

3 9,700 ± 0,021 8,110 ± 0,021 83,61 ± 0,31 

4 7,820 ± 0,022 6,580 ± 0,020 84,14 ± 0,38 

5 7,800 ± 0,020 6,520 ± 0,022 83,59 ± 0,38 

6 9,050 ± 0,022 7,230 ± 0,021 79,89 ± 0,34 

7 9,000 ± 0,022 7,100 ± 0,020 78,89 ± 0,33 

8 7,500 ± 0,020 6,210 ± 0,020 82,80 ± 0,38 

9 7,850 ± 0,021 6,240 ± 0,022 79,49 ± 0,39 

10 8,260 ± 0,020 6,490 ± 0,021 78,57 ± 0,36 

11 8,300 ± 0,020 6,520 ± 0,020 78,55 ± 0,34 

12 8,320 ± 0,019 7,010 ± 0,020 84,26 ± 0,33 

13 8,030 ± 0,020 6,570 ± 0,020 81,82 ± 0,36 
    

  Mean (%) 81,19 

 

A relation between VSS and TS was obtained around 81,19 %. A one-sample Student’s t-

test confirms that the mean relation value (mean    1,19,      2,5 ,     13) is not 

significantly different from the hypothesized value of 80%,   (12)   - 1,  ,      0,12. Thus 

in further analysis the 80% value was assumed and only total solids were determined, since 

TS determination involves less experimental work and results are provided faster. 

 

3.1.3. Total solids concentration of WAS 

Total solids concentration of waste activated sludge (WAS) is one of the variables used in 

the determination of the solids retention time (SRT). As this value tends to be constant 

(mean = 29,66), it was not determined daily. In the beginning of this study this variable 

was determined for a few samples collected in different days and then a medium value of 

30 mg/L was considered in the calculation of SRT. 
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Table 3.3: Total solids concentration of waste activated sludge. 

Sample TS (g/L) 

1 30,91 ± 0,02 

2 28,38 ± 0,02 

3 29,04 ± 0,02 

4 29,08 ± 0,02 

5 29,35 ± 0,02 

6 28,96 ± 0,02 

7 29,36 ± 0,02 

8 29,42 ± 0,02 

9 29,08 ± 0,02 

10 29,29 ± 0,02 

11 29,29 ± 0,02 

12 29,25 ± 0,02 

13 29,21 ± 0,02 

14 32,27 ± 0,02 

15 30,18 ± 0,02 

16 30,41 ± 0,02 

17 30,71 ± 0,02 
  

Mean 29,66 

 

3.2. Physicochemical treatment  

Influent and effluent of the DAF 1 were analysed in terms of COD concentration and 

solids content daily during the study period. Results show that the influent COD is very 

variable (52126 ± 44359 mg/L). This is due to start/stop of biodiesel production and 

maintenance operations such as cleaning, which loads the effluent with soluble and 

insoluble COD, glycerine and oil respectively. These maintenance operations were 

performed when the biodiesel production was stopped, and correspond to the peaks found 

in the influent COD concentration, Figure 3.1. After this treatment the COD in DAF 1 

effluent is usually below 15000 mg/L. Analysing the evolution in influent and effluent 

COD concentration during the experimental period, Figure 3.1, is clear that the increase in 

influent COD does not imposes an increase in effluent COD. This means that the DAF 

process is efficient in COD removal. 
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Since the dissolved air flotation is a clarification process that relies on the removal of 

suspend matter as solids and oil, it is very important to know the efficiency of solids 

removal in order to evaluate the process performance.  

 

 

TSS removal 

Mean 75,65 

Std. Deviation 21,64 

Median 87,44 

Minimum 30,32 

Maximum 97,30 

 

 

 

 

 

 

Figure 3.2: Performance of TSS removal and pH variation. 

Figure 3.2 presents the performance of solids removal during the study period. As 

observed, the efficiency of the physicochemical treatment was not constant, with a 

minimum of 30,32% and a maximum of 97,30%. The results also show that the efficiency 

of solids removal is usually above 70%. This value agrees with the values found in 

literature since according to other studies over 70% of suspended solids removal is 

typically achieved using a DAF system (de Nardi et al., 2008; Koivunen and Heinonen-

Tanski, 2008; Rojas et al., 2008). Thus, these results suggest that the physicochemical 

treatment is working correctly and the coagulant used is adequate. 
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Figure 3.1: Variation of the influent and effluent COD concentration during the experimental period. 
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The relationship between the efficiency of COD removal and the efficiency of total 

suspended solids removal is given in Figure 3.3. Correlation analysis shows that there is a 

strong association between the two variables, r(68) = 0,891, p < 0,001. Thus the COD 

removed in this stage of treatment is essentially insoluble COD (e.g., oil) and is strongly 

dependent of solids elimination. According to Rattanapan et al. (2011) when the 

wastewater contains oil, solids elimination is influenced by the pH of the medium. 

 

 

Pearson correlation test 

Correlation coefficient 0,891** 

Sig. (2-tailed) 0,000 

N 70 

 

** correlation is significant at the 0.01 level 

(2-tailed) 

 

 

 

 

Figure 3.3: Graph showing the relationship between TSS and COD removal efficiency, and table with Pearson 

correlation analysis results. 

In these conditions, Rattanapan et al. (2011) found that the pH is more important for the 

proper operation of the process than the coagulant concentration, since oil drop 

coalescence is greater when the medium is acidified, resulting in the formation of larger 

droplets (Al-Shamrani et al., 2002a; 

Rattanapan et al., 2011). A low pH 

value affects the carboxyl function (N-

COO
-
) on the surface of the oil drops 

allowing them to approximate and 

flocculate. The big oil droplets, result of 

flocculation, can then rise to the surface 

of DAF unit and are removed by the 

skimmer system (Rattanapan et al., 

2011). According to Fujii et al. (2007) 

this phenomenon is classified as 

demulsification. The emulsification-
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Figure 3.4: Relation between COD removal efficiency and 

influent COD concentration. 
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demulsification cycle is reversible and related to pH. This means that at pH values above 

7.7 the emulsion is stable but when the pH decreases to values between 5.0 to 6.1 the 

emulsion destabilizes, and large drops of oil on the surface of the effluent are observed 

when the pH reaches a value lower than 4.0 (Fujii et al., 2007).  

It was also observed that the efficiency of COD removal is correlated with the influent 

COD, Figure 3.4. The performance of physicochemical treatment improves when the 

influent COD increases, even without significant variations in the pH, Figure 3.2. A 

possible explanation is related to the oil concentration, once when oil concentration 

increases in the influent the COD value is greater. The operational conditions of the DAF 

lead to the formation of large oil drops that arise to the surface of the unit, dragging 

suspended solids that are removed by the skimmer. This is observation is supported by 

studies that reveals that when a combination of solid particles and oil droplets are present, 

solid-oil attachment particles are formed (Deng et al., 2009; Ali et al., 2011). This means 

that when the unit operates correctly the presence of oil improves the solids removal and 

consequently the COD removal. 

In short, pH control is critical to ensure a correct physicochemical treatment providing the 

maximum insoluble COD removal. The coagulant in use also seems to be the correct one 

since it seems be allowing solids flocculation. However COD removal efficiency is greater 

when the influent COD concentration increases. 

 

3.3. Activated sludge process 

Before presenting and explaining the results is important to refer that during the study 

period it was necessary to make a re-inoculation of the mixed liquor with activated sludge 

from a municipal WWTP. This re-inoculation was needed due to a decrease in the viable 

biomass concentration, confirmed by microscopic observation. 
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3.3.1. Operational parameters  

3.3.1.1. Temperature and pH  

The pH was maintained at biological level, around 7.0 with little variation during the 

experimental period. In other hand, temperature suffered some fluctuations, arising from 

the weather conditions, which had impact on the microfaunal community. At the beginning 

of the study period the temperature was low, about 19 ºC, resulting of both, the low 

environmental temperature experienced during the winter and of the low microbial activity. 

As the environmental temperature increased, the temperature of the bioreactors also 

increased, to a value closed to the growth peak of mesophilic organisms, 35 – 37ºC (Henze 

et al., 1997). 

 

3.3.1.2. Nutrients 

As previously described, the microorganisms involved in the activated sludge process need 

nutrients, mainly nitrogen and phosphorus. The effluent produced by the biodiesel 

production unit has phosphorus in excess, since phosphoric acid (H3PO4) is used in the 

degumming/neutralization of the crude oil, Figure 1.9. This explains why phosphorus is 

always in excess in the mixed liquor, with a concentration usually above 60 mg/L, Figure 

3.6a. In relation to nitrogen, the effluent produced has no nitrogen in composition, thus 

urea was added in order to suppress the need of this nutrient. The ammoniacal nitrogen 

concentration was kept around 2,0 mg/L, Figure 3.6b. The amount of urea added was 
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Figure 3.5: Variation of the temperature and pH in aeration tank 1 and 2 during the experimental period. 
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determined considering a C:N:P ratio of 200:5:1 (design value) and a nitrogen 

concentration in urea of 8,4% (Foresa, 2010), according to equation 3.1 where S2 and S3 

represent the sampling sites and Q the influent feed rate (m
3
/d).  

         

                
    

      
          

   
 (3.1) 

The results also show a peak in ammoniacal nitrogen concentration that reached values 

around 40 mg/L, due to a urea dosage problem. 

a) b) 

 

 

Figure 3.6: Variation of the a) total phosphorous concentration in aeration tank 1 and b) N-ammoniacal concentration in 

aeration tank 1 and 2, during the experimental period. 

In Table 3.4 can be observed that the real C:N:P ratio is very different from the theoretical 

of 200:5:1, or from the others found in literature, 100:5:1 (Ouano, 1983), 100:20:1, 250:7:1 

e 100:10:1 (Jefferson et al., 2001; Bitton, 2005). In fact the phosphorous concentration is 

always in excess. The system is not prepared to biologically remove phosphorous because 

it involves an anaerobic stage before the activated sludge process, in order to provide 

competitive advantage to polyphosphate accumulating organisms (PAO) (Tchobanoglous 

et al., 2003). In this case it would be viable to remove phosphorus chemically, by adding a 

coagulant (e.g., aluminium or iron salts) in DAF 1 (Henze et al., 1997). Therefore the 

physicochemical treatment should remove phosphorus along with suspended solids, and 

the relation between organic matter, nitrogen and phosphorus concentration would be more 

adequate.  
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Table 3.4: C:N:P ratios observed during the experimental period. 

Sample Date C:N:P 

1 23-01-2012 825:1:23 

2 15-02-2012 236:1:19 

3 22-02-2012 135:1:149 

4 27-02-2012 220:1:39 

5 05-03-2012 205:1:34 

6 12-03-2012 190:0:35 

7 19-03-2012 212:21:39 

8 26-03-2012 164:1:34 

9 02-04-2012 122:1:29 

10 10-04-2012 165:1:60 

11 16-04-2012 128:1:38 

 

3.3.1.3. COD removal 

The COD removal efficiency of the activated sludge process is present in Figure 3.7. The 

average COD concentration of the influent was 8715 mg/L, with high variability (    

       ) and a maximum of 17220 mg/L. The effluent COD concentration had a medium 

value of 541,69 mg/L. This results into a COD removal performance of 92,84% in average. 

Value that agrees with literature since COD removal efficiencies of over 80%, in activated 

sludge systems, are reported in other studies (Pérez-Uz et al., 2010; Cui et al., 2012). 

It can also be noticed that the COD removal efficiency improved in 16,89% after the re-

inoculation,  (4 )   - 19, 2 ,      0,000, Figure 3.8a, even with no significant change 
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Figure 3.7: Variation of the COD removal efficiency and influent and effluent COD concentration, green arrow indicates 

the re-inoculation. 
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observed in the influent COD,  (4 )   - 0,  9,      0,500. This shows a COD decrease of 

86,95% on the final effluent,  (4 )   - 49,439,      0,000, Figure 3.8b. 

a) b) 

 

 

 Before re-inoculation    After re-inoculation 

Figure 3.8: Bar chart showing the means with standard error bars of the a) COD removal efficiency and b) influent and 

effluent COD concentration, before and after the re-inoculation. 

 

3.3.1.4. Mixed liquor volatile suspended solids 

As described the mixed liquor volatile solids are used to estimate the microorganisms 

concentration. In this study the MLVSS where determined using a relation between TS and 

VSS.  

Figure 3.9 presents the MLVSS variation during the experimental period. The MLVSS 

concentration was usually kept between 7,0 and 8,0 g/L, with some oscillations that can be 

explained by the inefficient waste activated sludge removal system. The system used for 

the sludge removal is not adequate and do not allow an accurate sludge extraction. This 

means that the operators cannot be sure of the amount of sludge removed. This creates a 

system destabilization since sometimes the amount of sludge removed is higher than 

needed, removing a large number of microorganisms, and on the other hand, occasionally 

the sludge amount removed is lower than needed, increasing the sludge age.  
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3.3.1.5. Solids retention time 

The solids retention time, sludge age, was determined according to equation 3.2, which is 

the adaptation of the equation 1.9 to the system in study. In this case SRT was calculated 

using the medium value of the MLVSS concentration of both aeration tanks. And, the 

suspended solids in the waste activated sludge (WAS) flow was considered constant and 

30,00 mg/L. Also, in equation 3.2, Qw represents the WAS flowrate (m
3
/d), 110 is the 

volume of each bioreactor (m
3
) and 0,80 the relation between VSS and TS. 

       

             
            

                                
 (3.2) 

As can be observed in Figure 3.11a the SRT was not constant during the experimental 

period, and even not considering the outlier values the SRT is far from uniformity, Figure 

3.11b. In some days the results indicate an old sludge, with a SRT higher than 20 days. 

However this was not coherent with the microscopic observations, since the microfauna 

found in these days was not indicator of an old sludge. With these SRT values it was 

expected the detection of plenty metazoans, as they have a long life cycle and thus only 

proliferate in systems with a high SRT, but this was not observed at all. Further on, the 

structure of the biological floc also indicated that the SRT values determined were not 

corresponding to reality. An old sludge is characterized by large flocs mainly composed of 

dead cells surrounded by a viable bacterial layer. In lightly loaded plants like this with low 
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Figure 3.9: Variation in mixed liquor volatile suspended solids concentration in aeration tank 1 and 2 during the 

experimental period. 
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F/M values, old sludge presents flocs 

with a darker central core or inclusions, 

which are made up primarily of inorganic 

material (e.g., iron hydroxide, calcium 

phosphate) along with non-biodegradable 

organic material. The central core is 

surrounded by a lighter, less dense region 

that is composed of active 

microorganisms. This is effect of 

repeated periods of active growth and 

subsequent starvation undergone by the flocs, results in compact flocs with the older non-

degraded material in the centre (Gray, 2004), Figure 3.10. 

a) b) 

  

Figure 3.11: Variation observed in solids retention time, a) considering outlier values and b) excluding outlier values. 

Once again these inconsistent results are consequence of the ineffective removal system 

and of the impossibility of purging out of the system a pre-determined amount of sludge. 

Improvement of the purge system would be useful in order to create a more uniform SRT 

and MLVSS. The amount of sludge to be removed can be determined rearranging the 

equation 3.2 and considering a constant value for SRT for instance 15 days. 
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Figure 3.10: Compact floc with a dark central inclusion and 

secondary colonisation of sessile ciliates (x200), Gray 2004. 
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Figure 3.12: Graphical representation of the amount of sludge removed and the theoretical value calculated according to 

equation 3.3. 

         

(             )            
  

             

             
 

(3.3) 

The theoretical value calculated according to equation 3.3 revels that the amount of sludge 

to be removed is more uniform than the real quantity removed, and is around 2,0 m
3
/day, 

Figure 3.12. 

 

3.3.1.6. Food to microorganism ratio 

The food to microorganism ratio was daily calculated according to equation 3.4, coming 

from equation 1.7. Once again was considered the medium value of the MLVSS 

concentration of both aeration tanks. 

    

       
      

             
           

 (3.4) 

The results, Figure 3.13, showed that the F/M value is very variable and usually very low, 

below 0,25. Consequently, the microorganisms are under substrate limiting conditions, 

which cause a rapid decrease in metabolic rate until an endogenous respiration phase 

begins with cellular lysis. This is the main explanation for the decrease in microorganisms 

density observed in January/February that conducted to a re-inoculation of the mixed 

liquor. 
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The F/M variability is associated with the organic loading,   (4 )   0,991,     0,001, Figure 

3.14. Thus the feed rate is vital to maintain the activated sludge system in balance, since 

the organic loading is defined as the organic matter per m
3
 per day and is calculated 

according to equation 1.8, as discussed before. 

 

   

 Pearson correlation test  

 Correlation coefficient 0,991**  

 Sig. (2-tailed) 0,000  

 N 48  

 
** correlation is significant at the 0.01 level (2-

tailed)  

   

 

Figure 3.14: Graph showing the relationship between F/M and organic loading and table with Pearson correlation test 

results. 

 

3.3.1.7. Feed rate 

As previously identified the feed rate is an important parameter, and the optimal value can 

be calculated rearranging the equation 3.4: 
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Figure 3.13: F/M values observed during the experimental period, green arrow indicates the re-inoculation. 
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Considering a fixed value of 0,3 for F/M, since for a conventional activated sludge system 

the F/M ratio ranges from 0,2 to 0,5 (Spellman, 2003), a theoretical value (Value 1) was 

calculated. As can be observed in Figure 3.15, this value does not agree with the real feed 

rate value. In other words, the project design for the activated sludge system is not 

adequate to the amount of effluent produced daily by the unit production of biodiesel. 

Possibly, the project considered a larger amount of effluent produced or a more polluted 

one with higher COD value. Another theoretical value (Value 2) was determined reducing 

the useful volume of the two aeration tanks from 110 m
3
 to 80 m

3
 and the MLVSS value in 

20%. In Figure 3.15 can be verified that this value is more close to the real feed rate.  

Thus these new conditions: volume of 80 m
3
 and MLVSS between 5,0 and 7,0 g/L, allow 

the activated sludge system to operate with a feed rate more close to a theoretical value, 

which enables the F/M ratio to be maintained constant, F/M = 0,3.  

 

3.3.2. Biological parameters  

3.3.2.1. Floc structure 

During the experimental period the structural characteristics of the biological flocs showed 

no significant variations. The flocs remained small and weak, and a dispersed growth of 

bacteria was also observed. Filamentous bacteria were abundant in the beginning of the 

study and then decreased in abundance to a negligible level.  
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Figure 3.15: Graphical representation of the feed rate and two theoretical values calculated considering F/M=0,3, value 

1 for 110 m3 of useful volume of the aeration tanks and MLVSS concentration between 7,0 and 8,0 g/mL and value 2 for 

80 m3 of useful volume of the aeration tanks and MLVSS concentration between 5,0 and 7,0 g/mL. 
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These observations are supported by the results of two external evaluations, conducted in 

two different periods, 17
th

 December 2011 and 28
th

 May 2012. The first report indicates 

small (  150 μm in diameter), irregular and weak flocs, and dispersed growth of unicellular 

bacteria Figure 3.16a. The filamentous bacteria population was dominated by a filament 

belonging to the Type 0041 morphgroup, Figure 3.16b (GE, 2011). The second report also 

indicates a dispersed growth of bacteria, Figure 3.16c and d. In this case the filamentous 

bacteria concentration was reduced, and the filaments were bellowing to Type 021N 

morphgroup. The report also identified a nutritional imbalance in the bioreactors (Ematsa, 

2012), confirming what was previously discussed in section 3.3.1.2. 

a) b) 

  

c) d) 

  

 

Figure 3.16: Photomicrographs of the activated sludge from the external reports, a) and b) from report 1 (Nov 2011), c) 

and d) from report 2 (Apr 2012). a) overview of the activated sludge sample from AE 1, 400x; b) detail of the sample 

from AE 1 showing Type 0041 with attached growth of unicellular bacteria, Neisser staining, 1000x; c) overview of the 

activated sludge sample, 100x; d) dispersed growth of bacteria, 1000x; GE (2011) and Ematsa (2012). 
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3.3.2.2. Microfauna community 

Occurrence and abundance of each microfauna group in the activated sludge system is 

shown in Table A.3 (annexes). A total of 49 samples were analysed, where 9 protozoa 

genera and 2 metazoa phyla were identified, showing high variability in abundance during 

the study period. The protist community associated to the biological reactor was organized 

in three main groups: flagellates, amoebae and ciliates.  

During the study period the ciliates group was 

the most important part of the community, 

representing about 91,5% of the total 

microfauna abundance, followed by the 

flagellates group with 6,0% of relative 

abundance and finally amoebae and metazoan 

with 1,9% and 0,5% respectively, Figure 3.17.  

As previously referred the ciliates group are 

subdivide into three groups according to their 

behaviour, and in this work a carnivorous 

ciliate group was also considered. As can be observed in Figure 3.18, the dynamics of the 

ciliates changed with the re-inoculation. Before the re-inoculation (Figure 3.18a) the ciliate 

group was dominated by free swimming ciliates and occasionally sessile ciliates were 

observed. After the re-inoculation (Figure 3.18b) sessile ciliates were the dominant ciliate 

group and the relative abundance of the free swimming decreases severely. Also, 

carnivorous ciliates started to occur in daily observations. 

a) b)  

  

 Free-swimming 

 Sessile 

 Carnivorous 

Figure 3.18: Relative abundance of the subgroups of ciliates; a) before re-inoculation and b) after re-inoculation. 
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Figure 3.17: Relative abundance of microfauna 

groups during the experimental period. 
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In Figure 3.19, the plot of the density (microorganism/mL) of the microfauna groups 

during the experimental period reveals three distinct phases. In the first stage the 

microfauna was dominated by free-swimming ciliates. This stage corresponds with the 

phase where COD removal was low, Figure 3.7. Then the total density of microfauna 

decreased until the need for a new activated sludge has been recognised and a re-

inoculation made. After the re-inoculation an adaption stage was observed, of 

approximately 2 weeks. Here oscillation and succession of populations, created by the 

relationships of competition and predation, were observed until a dynamic stability was 

reached in stage 3. In stage 3, the stable phase, the microfauna were dominated by sessile 

ciliates, with free-swimming ciliates and testate amoebae usually observed in the mixed 

liquor. Carnivorous ciliates and metazoan were also occasionally detected. In the last 

weeks of the experimental period a large flagellate, Peranema sp., started to be noticed. 

a) 

 

b) 

 

 
 

Figure 3.19: Succession of microorganism during the experimental period; a) aeration tank 1 and b) aeration tank 2, 

green arrow indicates the re-inoculation. 
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A PCA analysis was computed and the results support the existence of 3 distinct phases in 

the activated sludge system operation, identified in Figure 3.19. The two first principal 

components, which account for 48% and 49% of accumulated variance for the results from 

aeration tank 1 and aeration tank 2 respectively, are represented in Figure 3.20. As can be 

observed the PCA analysis placed the observations in three groups: a) observation 1 to 

observation 13; b) observation 15 to observation 20; and c) observation 21 to observation 

49. The first group is equivalent to the first stage identified before and corresponds to a 

phase of a poor operation of the activated sludge. Observation 14 is placed alone and is 

representative of an extreme malfunction, since it corresponds to the day where the lower 

density of total microfauna and the lower COD removal (38,37%) values were noticed. 

The second group encloses the samples from the adaptation phase after the re-inoculation, 

and finally the third group represents a period of proper functioning of the activated sludge 

system experienced after the adaptation phase. This period is characterized by a 

microfauna community diversified, where sessile ciliates were the most important part of 

the community, total microfauna density usually around 8000 individuals/mL and excellent 

performance of COD removal (mean = 98,07 %).  
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b) 

 

Figure 3.20: Schematic presentation of the two principal components which covered 48% and 49% of the total 

variability for AE 1 and AE 2, respectively; a) results obtained for samples from AE 1 and b) results obtained for samples 

from AE 2. 

 

3.3.3. Correlation between physicochemical and biological parameters 

To investigate the relation between biological and physicochemical parameters, the non-

parametric correlation coefficient test of Spearman’s rho was used to obtain a correlation 

matrix of all physicochemical parameters versus relative abundance of functional groups. 

The results are presented in Tables 3.5 and 3.6 and will be discussed in section 3.3.3. 

Table 3.5: Correlation coefficients between functional groups and physiochemical parameters for aeration tank 1.  
** correlation is significant at the 0.01 level (2-tailed); * correlation is significant at the 0.05 level (2-tailed). 

 
% COD 

removed 

Effluent 

COD 
MLVSS AN TP F/M SRT SVI 

Temp 

(ºC) 

Testate amoebae 0,775** -0,678** -0,202 -0,396** -0,294 0,194 -0,207 0,000 0,526** 

Small flagellates -0,568** 0,622** 0,414** 0,310* -0,472 -0,150 0,413** 0,000 -0,482** 

Large flagellates 0,055 -0,258 -0,190 0,144 0,324 -0,147 0,011 -0,612 -0,054 

Free-swimming ciliates -0,613** 0,592** 0,082 0,381** -0,179 -0,193 0,327* 0,342 -0,675** 

Sessile ciliates 0,600** -0,622** -0,164 -0,203 0,074 -0,121 -0,503** -0,039 0,447** 

Crawling ciliates 0,174 -0,235 -0,174 -0,175 0,100 0,125 0,098 0,204 0,152 

Opercularia sp. 0,701** -0,475** -0,111 -0,127 -0,092 -0,010 -0,192 -0,607 0,208 

Carnivorous ciliates 0,489** -0,560** -0,132 -0,597** 0,019 0,415** -0,184 0,414 0,371* 

Metazoa 0,252 -0,139 0,106 -0,221 -0,017 -0,075 -0,370* -0,445 0,392* 

Diversity (No of genera) 0,604** -0,550** -0,037 -0,357* -0,108 0,038 -0,403** -0,869* 0,322 

Total microfauna density 0,384** -0,163 0,143 -0,228 -0,318 0,151 -0,368* -0,500 0,570** 
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Table 3.6: Correlation coefficients between functional groups and physiochemical parameters for aeration tank 2.  
** correlation is significant at the 0.01 level (2-tailed); * correlation is significant at the 0.05 level (2-tailed); a not 

observed in aeration tank 2. 

 
% COD 

removed 

Effluent 

COD 
MLVSS AN TP F/M SRT SVI 

Temp 

(ºC) 

Testate amoebae 0,735** -0,711** -0,326* -0,265 -0,193 0,253 -0,198 -0,126 0,361* 

Small flagellates -0,433** 0,485** 0,218 0,229 -0,472 -0,062 0,394** 0,134 -0,464** 

Large flagellates 0,164 -0,265 -0,234 -0,006 0,000 -0,093 -0,304* 0,000 -0,114 

Free-swimming ciliates -0,617** 0,582** 0,123 0,266 -0,055 -0,220 0,345* 0,143 -0,632** 

Sessile ciliates 0,612** -0,626** -0,231 -0,266 0,074 -0,095 -0,478** 0,039 0,447** 

Crawling ciliates a -- -- -- -- -- -- -- -- -- 

Opercularia sp. 0,589** -0,331* -0,030 -0,214 -0,146 -0,088 -0,289* -0,559 0,463** 

Carnivorous ciliates 0,523** -0,516** -0,143 -0,264 0,210 0,362* -0,115 0,786* 0,349* 

Metazoa 0,552** -0,446** -0,227 -0,191 -0,496 -0,140 -0,314* -0,355 0,201 

Diversity (No of genera) 0,692** -0,534** -0,163 -0,199 -0,266 0,011 -0,388** -0,964** 0,343 

Total microfauna 

density 
0,368** -0,139 0,220 -0,326* -0,527 0,161 -0,324* -0,500 0,550** 

 

3.3.3.1. Testate amoebae 

Testate amoebae showed a strong positive association with the efficiency of COD removal, 

with a correlation coefficient value of 0,775 and 0,735 for AE 1 and AE 2, respectively. 

Consequently, this keygroup also have a strong negative correlation with the effluent COD. 

The results also indicate that testate amoebae increase in density with increasing 

temperature (ρ = 0,526 and 0,361, for AE 1 and AE 2) and when N-ammoniacal 

concentration is low (ρ   -0,396 for AE 1). Although for AE 2 this last observation is not 

statistically significant. 

These results agree with previous studies once testate amoebae are associated with systems 

with very low sludge load and with N-removal plants, as they are possible predators of 

nitrifying bacterial aggregates (Madoni, 1994; Pérez-Uz et al., 2010). This group is also 

often seasonal being more common in summer when the temperature and growth rate 

increase (Madoni, 1994; Zhou et al., 2008). Literature indicates that they are associated 

with plants with high SRT (Madoni, 1994), although in this case the results obtained are 

contradictory. As explained before the SRT values calculated are inaccurate since is not 

known the correct value of sludge purged out of the system. This may be the reason for the 

results obtained.  
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The correlations found suggest that this group can be used as bioindicators of the 

performance of the activated sludge process. They are associated with high quality of the 

final effluent and high efficiency of the plant. 

 

3.3.3.2. Small flagellates 

Small flagellates are associated with high effluent COD (ρ = 0,622 and 0,485) and low 

COD removal (ρ   -0,568 and -0,433), thus poor operation of the plant. The results also 

indicate that they increase in number when temperature decreases (ρ = -0,482 and -0,464). 

And according to results from AE 1, small flagellates are indicators of high MLSS 

concentration (ρ = 0,414). 

Previous studies demonstrate that small heterotrophic flagellates presence in a mature 

activated sludge is associated with bad performance of the biological depuration due to (a) 

poorly aerated sludge, (b) over loading and/or (c) fermenting substances involved. They 

become the only protozoan present when the sludge is strongly loaded (F/M > 0,9). In a 

normally functioning plant these protozoa are strongly subjected to predacious activity of 

other protozoa and then their presence are limited to few individuals. This means that the 

increasing number of small flagellates indicates a dysfunction of the plant (Madoni, 1994). 

Bento et al. (2005) identified this group as the main indicator of an effluent with high 

suspended solids. 

In summary, the presence of small flagellates is related with bad performance of the plant 

and low quality of the effluent. Thus this group can be used as a negative control group. 

 

3.3.3.3. Large flagellates 

Large flagellates only occurred in mixed liquor on the last samples analysed thus the 

results obtain are not conclusive. However, published studies reveal that large flagellates, 

such as Peramena sp., are infrequently observed and hardly in large numbers (Madoni, 

1994). They are also related to good performance of N-elimination, very diluted organic 

matter and good performance of the depuration system (Madoni, 1994; Bento et al., 2005; 

Pérez-Uz et al., 2010).  
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The results of this study, although inclusive, tend to corroborate the hypothesis of using 

this group as good performance indicator since the correlation coefficient found to COD 

removal is positive and for effluent COD is negative. 

 

3.3.3.4. Free-swimming ciliates 

Usually free-swimming ciliates are more abundant in the early stages of a developing 

plant, when sludge flocs are still rare and consequently sessile ciliates are absent. They 

appear in a mature sludge if there are problems with the process (Madoni, 1994; Dubber 

and Gray, 2011). They dominate the microfauna of plants operating at low SRT or at high 

sludge loading (0,6 < F/M < 0,9) combined with lack of oxygen. These bacterivorous 

protozoans require high concentrations of dispersed bacteria and survive better than other 

components of the microfauna to the toxicity of the influent and to the lack of oxygen. This 

last observation can be attributed to the microaerophilic character of some species 

(Madoni, 1994; Papadimitriou et al., 2010). This group of protozoa are also sometimes 

associated with heterotrophic flagellates and these two keygroups occasionally co-

dominate the microfauna (Madoni, 1994). Free-swimming ciliates dominate when lower 

effluent quality is obtained, and are indicators of poor settling proprieties of the activated 

sludge and bad performance of the treatment (Lee et al., 2004). 

For the activated sludge system in study, free swimming ciliates are associated with poor 

COD removal (ρ = -0,613 and -0,617) and final effluent with high organic matter (ρ = 

0,592 and 0,582). Once again the results obtained for the correlation with SRT are 

inconsistent with what would be expected (ρ   0,32  and 0,345). This keygroup is also 

correlated with low temperature (ρ = -0,675 and -0,632), what is explained by the presence 

of ciliates bellowing to Tetrahymena genus (Serrano et al., 2008). In particular 

Tetrahymena thermophila abundance increases when BOD increases in biological reactors 

and when low water temperatures are experienced in the aeration tanks (Esteban et al., 

1991).   

Thus, free-swimming ciliates group can be used as a bioindicator of malfunction of the 

activated sludge process. 
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3.3.3.5. Sessile ciliates 

Peritrich ciliates are normally co-dominant in the activated sludge along with crawling 

ciliates. A massive increase in their number occurs in occasion of transient conditions, 

which reduces the plant performance. Sessile ciliates are able to grow through a large 

range of sludge loadings, nevertheless at F/M values ranging from 0,3 to 0,6 they dominate 

and for F/M values of 0,6 – 0,9 sessile ciliates and flagellates co-dominate (Madoni, 1994). 

Sessile ciliates are one of the most representative groups in a stable aeration tank, since 

they are best adapted to the activated sludge environment through their ability to associate 

to the flocs (Zhou et al., 2008). Bento et al. (2005) identified this group of ciliates as 

indicator of low organic matter concentration in the effluent and high BOD removal.  

The result of the correlation analysis shows that for this system sessile ciliates presence is 

indicative of high performance of the plant. This group increases in number when the COD 

removal increases (ρ = 0,600 and 0,612) and consequently the effluent produced is of 

higher quality (ρ = -0,622 and -0,626). Contrary to results reported in literature, in this 

system the dominance of sessile ciliates does not suggest transient conditions that reduce 

the plant performance. Moreover when the higher performance of the plant was achieved, 

sessile ciliates were the dominant microfaunal group. However it must bear in mind that 

sessile ciliates were the dominant group, but not the only one observed in these conditions. 

For this activated sludge system, this group of ciliates can be used as a bioindicator of high 

depuration efficiency. 

 

3.3.3.6. Crawling ciliates  

Crawling ciliates were never observed in aeration tank 2 and only observed once in the 

aeration tank 1. So, nothing can be concluded concerning the influence of the 

physicochemical parameters in the crawling ciliates population for this system. 

Dubber and Gray (2011) concluded that T. cucullulus, a specie of crawling ciliates, only 

occurs in high abundances in plants where ammonium and phosphate concentrations are 

lower than 3 mg/L NH4-N and 2 mg/L PO4-P respectively. Thus the absence of this group 

can be, possibly, related to the phosphorous concentration, Figure 3.6a. 
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3.3.3.7. Opercularia sp. 

According to literature the genus Opercularia must be excluded by the sessile keygroup. 

These ciliates are often observed in low number in the activated sludge, nevertheless they 

have association with the variables concerned with the quality of the activated sludge. 

Their numbers increase when the activated sludge is of bad quality. Opercularia sp. are 

associated with high final effluent BOD concentration and high N-ammoniacal 

concentration. These species are among the most abundant forms at high loadings and are 

able to survive to severe lack of oxygen (Madoni, 1994; Lee et al., 2004).  

Although Opercularia sp. are suggested as indicators of a bad performance, the results of 

this study tend to point in the opposite direction. This can be explained by the fact that 

Opercularia sp. only appeared in the system after re-inoculation, when the higher COD 

removal values were noticed, and always with low abundance. Before the re-inoculation, 

peritrich ciliates were almost absent. 

 

3.3.3.8. Carnivorous ciliates 

Carnivorous ciliates as the suctorids Podophrya and Tokophrya are common in WWTP but 

with low abundances. They are associated with a high effluent quality and low F/M (Lee et 

al., 2004; Serrano et al., 2008). 

The results obtained reveal that these ciliates are related with high COD removal (ρ = 

0,489 and 0,523) and high effluent quality (ρ = -0,560 and -0,516). In relation to F/M ratio 

the results are contradictory to what would be expected (ρ = 0,415 and 0,362). Once again 

this can be explained by the re-inoculation. Before re-inoculation, when the F/M ratio was 

very low, carnivorous ciliates was not observed because they are associated with process 

with well-functioning and before re-inoculation the system was not working properly. 

Therefor this group can also be used as an indicator of good performance of the system. 
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3.3.3.9. Metazoan 

Metazoan density was always low, thus the results obtained do not allow a correlation 

between the physiochemical parameters and the metazoan population. Although they only 

appeared in the system after the re-inoculation and the results from the aeration tank 2 

suggest that they are associated with high COD removal. So, this group can possibly be 

used as an indicator of proper functioning. Metazoans are associated with high SRT, unless 

they do not have enough time to reproduce (Bento et al., 2005; Gerardi, 2006). However 

the results show a negative association with SRT, which can be explained by the 

inaccuracy of the SRT determination, as explained for testate amoebae. 

 

3.3.3.10. Diversity and density 

The determination of sludge biotic index (SBI), discussed before, considers both density 

and diversity of the microfauna. In other words, the density and diversity of the microfauna 

are highly correlated with the plant performance (Madoni, 2011). The activated sludge 

system can be categorized in three classes according to microfaunal abundance, 

specifically protozoa density: (a) inefficient systems, with approximately 10 

individuals/mL; (b) systems with low efficiency, densities between 10 – 10
3
 

individuals/mL; and (c) efficient systems with more than 10
3
 individuals/mL (Madoni, 

1994; Bento et al., 2005). A normally functioning system has a microfauna highly 

diversified, namely composed by different groups of organisms. By the other side, a 

microfauna that is dominated by one group is almost indicative of trophic imbalance, due 

to the existence of limiting factors impeding the development of other species (Madoni, 

2011).  

In summary, an activated sludge system with good functioning must have highly 

diversified and abundant microfauna. The results of this study supports this conclusion, 

since the correlation coefficients found to both diversity and density shows positive 

correlation with COD removal efficiency and negative correlation with effluent COD.  
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3.3.3.11. Correlation circles 

The correlation circle enables a graphic visualization of the correlations between 

microfauna groups and physicochemical parameters discussed. In Figure X can be 

observed that small flagellates and free-swimming ciliates are related to effluent COD and 

MLVSS. Testate amoebae, sessile ciliates and carnivorous ciliates are correlated with high 

COD removal and inversely associated to MLVSS and effluent COD. Also, diversity and 

density of total microfauna appears to be temperature dependent. The circle of correlations 

also shows that the first component contrast COD removal efficiency (1) with effluent 

COD (2), and bioindicators of good performance (a and e) with bioindicators of poor 

performance (b and d). This means that the first component is related to process 

performance and thus confirms that the groups identified in Figure 3.20 are also related to 

process efficiency.  

a) b) 

  

Legend: 

1 % COD removed a Testate amoebae 

2 Effluent COD b Small flagellates 

3 MLVSS c Large flagellates 

4 N-ammoniacal d Free-swimming ciliates 

5 Phosphorous e Sessile ciliates 

6 F/M f Crawling ciliates 

7 SRT g Opercularia sp. 

8 SVI h Carnivorous ciliates 

9 Temperature i Metazoans 

  j Diversity (Number of genera identified) 

  k Density 
Figure 3.21: Correlation circles of measured parameters obtained by PCA (PC1 and PC2). 
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One of the features of industrial wastewater is the change in effluent characteristics over 

time, due to unusual discharges for instance. This feature was observed in the wastewater 

treated in the IWWTP in study, since the results revealed that the effluent produced by the 

biodiesel production unit has COD values very variable over time. This has impact in the 

physicochemical treatment performance. Usually this stage of treatment removes over 70% 

of suspended solids and consequently the majority of the insoluble COD present in 

wastewater. Although when the influent COD is low, the performance of the treatment 

decreases. Possibly this is related with the oil concentration present in the influent. Also, 

pH control is crucial to ensure maximum efficiency of the physicochemical treatment. 

The biological treatment is more complex and has more variables that must be controlled. 

This treatment generally removes over 80% of the influent soluble COD, and the removal 

efficiency was improved after re-inoculation. The results showed a nutrient imbalance that 

can be softened with the introduction of a chemical coagulant in DAF 1, which would 

precipitate a percentage of the phosphorous present in water. Furthermore, the purge or 

waste sludge removal system is ineffective, causing a fluctuation in MLVSS concentration 

and in SRT. An improvement of the waste sludge removal system and determination of the 

desired sludge purge considering a standard SRT value is recommended. The F/M ratio 

shows instability over time. In some cases this ratio value was so low that caused cell lysis. 

The results indicate that the activated sludge system was designed taking into account a 

higher flow of effluent to be treated. Thus, it is suggested to reduce the useful volume of 

the bioreactors to 80 m
3
 and to work with a MLVSS concentration between 5,0 and 7,0 

g/L. These new conditions allow maintaining the F/M ratio more constant and around 0,3. 

Three distinct phases were identified in the functioning of the activated sludge. The first 

corresponds to the beginning of the study and is characterized by a malfunction of the 

system. In this stage the microfauna was dominated by free-swimming ciliates and small 

flagellates were found very frequently. The second phase refers to a stabilization period 

after the re-inoculation, where oscillation and succession of microorganisms population 

were observed until a dynamic equilibrium was reached. The last phase is the equilibrium 

and is characterized by a proper operation of the system. The microfauna in this phase is 

diversified and dominated by sessile ciliates. A correlation analysis between 

physiochemical operation parameters and the relative abundance of microfauna groups 
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enabled the establishment of positive and negative control groups. The negative control 

group is composed by free-swimming ciliates and small flagellates and the positive control 

group comprises sessile ciliates, testate amoebae and carnivorous ciliates. Although 

inconclusive, the results suggest the inclusion of large flagellates in the positive control 

group.  

The microscopic observation of the activated sludge, using the control groups found, for 

the evaluation of the efficiency of the system, should be included in the daily control of the 

IWWTP. This analysis allows a quick and easy classification of the process performance 

and allows anticipation of future problems.  
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6.1. Physicochemical analysis 

Table A.1: Results of the physicochemical analysis of the influent and effluent from DAF 1. 

Sample Date COD in (mg/L) COD out (mg/L) % COD removed TS in (g/L) TS out (g/L) % TS removed pH in pH out 

1 03-01-2012 13970 ± 10 12130 ± 10 13,17 ± 0,10 2,778 ± 0,023 1,930 ± 0,020 30,32 ± 1,13 4,80 ± 0,01 4,79 ± 0,01 

2 04-01-2012 12980 ± 10 10420 ± 10 19,72 ± 0,11 2,513 ± 0,021 1,701 ± 0,020 32,27 ± 1,19 4,90 ± 0,01 4,90 ± 0,01 

3 05-01-2012 11000 ± 10 9930 ± 10 9,730 ± 0,13 2,435 ± 0,017 1,690 ± 0,020 30,45 ± 1,10 4,87 ± 0,01 4,82 ± 0,01 

4 09-01-2012 11330 ± 10 8780 ± 10 22,51 ± 0,13 2,256 ± 0,016 1,410 ± 0,020 37,33 ± 1,17 4,86 ± 0,01 4,89 ± 0,01 

5 10-01-2012 9900 ± 10 8240 ± 10 16,77 ± 0,14 2,016 ± 0,025 1,150 ± 0,020 43,07 ± 1,68 4,81 ± 0,01 4,85 ± 0,01 

6 11-01-2012 17930 ± 10 14160 ± 10 21,03 ± 0,08 1,989 ± 0,013 1,160 ± 0,021 41,71 ± 1,27 5,01 ± 0,01 5,08 ± 0,01 

7 12-01-2012 18810 ± 10 12100 ± 10 35,67 ± 0,08 2,984 ± 0,026 1,350 ± 0,020 54,70 ± 1,20 5,45 ± 0,01 5,43 ± 0,01 

8 13-01-2012 25800 ± 10 9800 ± 10 62,02 ± 0,06 2,312 ± 0,023 1,410 ± 0,020 38,96 ± 1,37 6,64 ± 0,01 6,67 ± 0,01 

9 16-01-2012 19580 ± 10 7270 ± 10 62,87 ± 0,08 4,075 ± 0,022 1,630 ± 0,021 60,05 ± 0,81 5,92 ± 0,01 5,79 ± 0,01 

10 17-01-2012 15180 ± 10 6490 ± 10 57,25 ± 0,10 3,584 ± 0,027 1,310 ± 0,021 63,41 ± 1,07 6,03 ± 0,01 5,91 ± 0,01 

11 18-01-2012 14410 ± 10 5990 ± 10 58,43 ± 0,11 3,791 ± 0,012 1,360 ± 0,021 64,12 ± 0,67 6,24 ± 0,01 6,09 ± 0,01 

12 19-01-2012 16940 ± 10 6400 ± 10 62,22 ± 0,09 3,875 ± 0,015 1,640 ± 0,022 57,73 ± 0,72 5,78 ± 0,01 5,71 ± 0,01 

13 20-01-2012 20020 ± 10 6990 ± 10 65,08 ± 0,08 3,834 ± 0,022 1,490 ± 0,020 61,10 ± 0,85 5,53 ± 0,01 5,60 ± 0,01 

14 21-01-2012 9240 ± 10 5520 ± 10 40,26 ± 0,16 3,832 ± 0,028 1,430 ± 0,020 62,66 ± 1,01 5,53 ± 0,01 5,60 ± 0,01 

15 22-01-2012 17160 ± 10 7280 ± 10 57,58 ± 0,09 3,287 ± 0,023 1,430 ± 0,022 56,53 ± 1,05 5,48 ± 0,01 5,42 ± 0,01 

16 23-01-2012 12430 ± 10 5910 ± 10 52,45 ± 0,12 2,133 ± 0,023 1,230 ± 0,021 42,25 ± 1,53 5,53 ± 0,01 5,48 ± 0,01 

17 24-01-2012 9020 ± 10 5640 ± 10 37,47 ± 0,16 1,846 ± 0,024 1,020 ± 0,019 44,86 ± 1,76 5,50 ± 0,01 5,42 ± 0,01 

18 25-01-2012 8800 ± 10 5700 ± 10 35,23 ± 0,17 1,614 ± 0,021 1,080 ± 0,020 32,92 ± 1,85 5,12 ± 0,01 5,23 ± 0,01 

19 26-01-2012 13200 ± 10 6300 ± 10 52,27 ± 0,11 2,631 ± 0,017 1,650 ± 0,020 37,26 ± 1,03 5,08 ± 0,01 5,02 ± 0,01 

20 27-01-2012 15950 ± 10 8140 ± 10 48,97 ± 0,09 2,059 ± 0,018 1,250 ± 0,020 39,32 ± 1,35 5,01 ± 0,01 5,08 ± 0,01 

21 29-01-2012 16490 ± 10 6660 ± 10 59,61 ± 0,09 2,057 ± 0,023 1,250 ± 0,020 39,32 ± 1,55 5,77 ± 0,01 5,83 ± 0,01 

22 30-01-2012 16490 ± 10 6660 ± 10 59,61 ± 0,09 8,144 ± 0,025 2,210 ± 0,019 72,85 ± 0,45 5,54 ± 0,01 5,45 ± 0,01 

23 31-01-2012 16490 ± 10 7598 ± 10 53,92 ± 0,09 6,612 ± 0,025 1,110 ± 0,020 83,18 ± 0,58 5,72 ± 0,01 5,63 ± 0,01 
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24 01-02-2012 16490 ± 10 9683 ± 10 41,28 ± 0,09 6,085 ± 0,029 1,310 ± 0,020 78,65 ± 0,69 5,49 ± 0,01 5,46 ± 0,01 

25 02-02-2012 16490 ± 10 10500 ± 10 36,33 ± 0,09 5,487 ± 0,009 1,640 ± 0,019 70,13 ± 0,40 5,95 ± 0,01 5,65 ± 0,01 

26 08-02-2012 16490 ± 10 7190 ± 10 56,40 ± 0,09 14,61 ± 0,012 3,520 ± 0,020 75,91 ± 0,17 6,06 ± 0,01 6,62 ± 0,01 

27 09-02-2012 16490 ± 10 8200 ± 10 50,27 ± 0,09 26,26 ± 0,020 3,190 ± 0,020 87,85 ± 0,13 6,71 ± 0,01 6,54 ± 0,01 

28 10-02-2012 16490 ± 10 7610 ± 10 53,85 ± 0,09 20,44 ± 0,031 3,190 ± 0,020 84,39 ± 0,22 6,58 ± 0,01 6,40 ± 0,01 

29 11-02-2012 16490 ± 10 7610 ± 10 53,85 ± 0,09 20,44 ± 0,009 3,190 ± 0,021 84,39 ± 0,12 5,27 ± 0,01 5,34 ± 0,01 

30 12-02-2012 16490 ± 10 7610 ± 10 53,85 ± 0,09 20,44 ± 0,013 3,190 ± 0,021 84,39 ± 0,13 5,25 ± 0,01 5,21 ± 0,01 

31 13-02-2012 16490 ± 10 7108 ± 10 56,89 ± 0,09 15,93 ± 0,023 1,710 ± 0,020 89,33 ± 0,23 5,14 ± 0,01 5,11 ± 0,01 

32 20-02-2012 44990 ± 10 3210 ± 10 92,87 ± 0,04 18,93 ± 0,027 1,390 ± 0,021 92,66 ± 0,22 5,30 ± 0,01 5,23 ± 0,01 

33 22-02-2012 40040 ± 10 3440 ± 10 91,41 ± 0,04 14,39 ± 0,028 1,260 ± 0,022 91,24 ± 0,30 5,26 ± 0,01 5,20 ± 0,01 

34 23-02-2012 65780 ± 10 3530 ± 10 94,63 ± 0,03 22,29 ± 0,022 1,310 ± 0,020 94,12 ± 0,16 5,11 ± 0,01 5,08 ± 0,01 

35 24-02-2012 82060 ± 10 3890 ± 10 95,26 ± 0,02 22,29 ± 0,024 1,310 ± 0,020 94,12 ± 0,17 5,15 ± 0,01 5,08 ± 0,01 

36 26-02-2012 146300 ± 10 5640 ± 10 96,14 ± 0,01 22,29 ± 0,023 1,310 ± 0,021 94,12 ± 0,17 5,12 ± 0,01 5,07 ± 0,01 

37 27-02-2012 50050 ± 10 5710 ± 10 88,59 ± 0,03 15,04 ± 0,020 1,090 ± 0,021 92,75 ± 0,23 5,09 ± 0,01 5,05 ± 0,01 

38 28-02-2012 43340 ± 10 6780 ± 10 84,36 ± 0,04 15,44 ± 0,020 1,440 ± 0,020 90,67 ± 0,22 5,01 ± 0,01 4,98 ± 0,01 

39 29-02-2012 75900 ± 10 8250 ± 10 89,13 ± 0,02 20,30 ± 0,018 1,580 ± 0,020 92,22 ± 0,16 5,21 ± 0,01 5,09 ± 0,01 

40 01-03-2012 58190 ± 10 7850 ± 10 86,51 ± 0,03 16,06 ± 0,015 1,310 ± 0,020 91,91 ± 0,18 5,13 ± 0,01 5,09 ± 0,01 

41 02-03-2012 63030 ± 10 8550 ± 10 86,44 ± 0,03 16,06 ± 0,018 1,320 ± 0,019 91,91 ± 0,19 5,19 ± 0,01 5,07 ± 0,01 

42 05-03-2012 69410 ± 10 6790 ± 10 90,22 ± 0,02 18,07 ± 0,019 1,030 ± 0,021 94,30 ± 0,19 5,27 ± 0,01 5,14 ± 0,01 

43 06-03-2012 77110 ± 10 7350 ± 10 90,47 ± 0,02 21,47 ± 0,032 1,390 ± 0,020 93,53 ± 0,22 5,20 ± 0,01 5,30 ± 0,01 

44 07-03-2012 181390 ± 10 15920 ± 10 91,22 ± 0,01 34,71 ± 0,028 1,720 ± 0,020 95,04 ± 0,13 5,14 ± 0,01 5,23 ± 0,01 

45 08-03-2012 182080 ± 10 13700 ± 10 92,48 ± 0,01 30,52 ± 0,023 1,540 ± 0,021 94,95 ± 0,12 4,90 ± 0,01 4,93 ± 0,01 

46 12-03-2012 89100 ± 10 8340 ± 10 90,64 ± 0,02 24,74 ± 0,024 1,910 ± 0,020 92,28 ± 0,15 5,37 ± 0,01 5,38 ± 0,01 

47 13-03-2012 85030 ± 10 12320 ± 10 85,51 ± 0,02 19,67 ± 0,027 2,450 ± 0,020 87,54 ± 0,21 4,71 ± 0,01 4,75 ± 0,01 

48 14-03-2012 66330 ± 10 14360 ± 10 78,35 ± 0,02 17,36 ± 0,023 2,160 ± 0,021 87,56 ± 0,21 4,67 ± 0,01 4,65 ± 0,01 

49 15-03-2012 59840 ± 10 15260 ± 10 74,50 ± 0,03 16,43 ± 0,023 2,830 ± 0,022 82,78 ± 0,23 4,95 ± 0,01 4,89 ± 0,01 

50 19-03-2012 64130 ± 10 13740 ± 10 78,57 ± 0,03 17,34 ± 0,022 2,060 ± 0,022 88,12 ± 0,21 5,11 ± 0,01 4,98 ± 0,01 

51 20-03-2012 72380 ± 10 14040 ± 10 80,60 ± 0,02 18,25 ± 0,022 2,310 ± 0,022 87,34 ± 0,20 4,99 ± 0,01 4,95 ± 0,01 
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52 21-03-2012 74470 ± 10 15780 ± 10 78,81 ± 0,02 19,53 ± 0,021 2,070 ± 0,020 89,40 ± 0,18 4,99 ± 0,01 4,96 ± 0,01 

53 26-03-2012 124190 ± 10 14900 ± 10 88,00 ± 0,01 30,56 ± 0,026 2,330 ± 0,020 92,38 ± 0,13 5,22 ± 0,01 5,05 ± 0,01 

54 27-03-2012 109340 ± 10 12900 ± 10 88,20 ± 0,02 38,58 ± 0,025 1,210 ± 0,020 96,86 ± 0,10 5,08 ± 0,01 5,07 ± 0,01 

55 28-03-2012 127270 ± 10 10460 ± 10 91,78 ± 0,01 33,84 ± 0,025 2,450 ± 0,020 92,76 ± 0,12 5,23 ± 0,01 5,20 ± 0,01 

56 29-03-2012 181390 ± 10 5810 ± 10 96,80 ± 0,01 35,24 ± 0,017 2,610 ± 0,020 92,62 ± 0,09 5,95 ± 0,01 5,99 ± 0,01 

57 02-04-2012 100320 ± 10 5040 ± 10 94,98 ± 0,02 31,76 ± 0,018 1,080 ± 0,020 96,60 ± 0,10 6,25 ± 0,01 6,12 ± 0,01 

58 03-04-2012 86790 ± 10 4560 ± 10 94,75 ± 0,02 27,64 ± 0,018 1,220 ± 0,020 95,59 ± 0,12 6,31 ± 0,01 6,19 ± 0,01 

59 04-04-2012 118250 ± 10 4740 ± 10 95,99 ± 0,01 37,13 ± 0,015 1,030 ± 0,020 97,23 ± 0,08 6,22 ± 0,01 6,38 ± 0,01 

60 05-04-2012 109450 ± 10 4210 ± 10 96,15 ± 0,02 38,51 ± 0,008 1,040 ± 0,019 97,30 ± 0,06 6,72 ± 0,01 6,61 ± 0,01 

61 10-04-2012 70950 ± 10 377 ± 100 94,69 ± 0,02 23,87 ± 0,021 1,320 ± 0,019 94,47 ± 0,14 5,98 ± 0,01 5,96 ± 0,01 

62 11-04-2012 72710 ± 10 4480 ± 10 93,84 ± 0,02 21,57 ± 0,022 1,080 ± 0,020 94,99 ± 0,17 5,94 ± 0,01 5,85 ± 0,01 

63 12-04-2012 75020 ± 10 5020 ± 10 93,31 ± 0,02 22,82 ± 0,023 1,30 ± 0,020 94,30 ± 0,16 6,14 ± 0,01 6,28 ± 0,01 

64 16-04-2012 56100 ± 10 6720 ± 10 88,02 ± 0,03 14,75 ± 0,024 0,930 ± 0,020 93,69 ± 0,26 5,92 ± 0,01 5,95 ± 0,01 

65 17-04-2012 48510 ± 10 7120 ± 10 85,32 ± 0,03 10,69 ± 0,024 1,140 ± 0,022 89,34 ± 0,36 5,88 ± 0,01 5,84 ± 0,01 

66 18-04-2012 43670 ± 10 7500 ± 10 82,83 ± 0,04 10,53 ± 0,026 1,090 ± 0,020 89,65 ± 0,38 5,72 ± 0,01 5,63 ± 0,01 

67 19-04-2012 38720 ± 10 6760 ± 10 82,54 ± 0,04 12,98 ± 0,021 2,90 ± 0,020 77,66 ± 0,26 4,66 ± 0,01 4,66 ± 0,01 

68 20-04-2012 47630 ± 10 8710 ± 10 81,71 ± 0,03 12,16 ± 0,022 3,120 ± 0,020 74,51 ± 0,28 4,16 ± 0,01 4,24 ± 0,01 

69 24-04-2012 41030 ± 10 14330 ± 10 65,07 ± 0,04 8,540 ± 0,024 3,150 ± 0,020 63,11 ± 0,41 4,88 ± 0,01 4,81 ± 0,01 

70 26-04-2012 31460 ± 10 13240 ± 10 57,91 ± 0,05 7,380 ± 0,021 2,790 ± 0,022 62,20 ± 0,45 5,36 ± 0,01 5,34 ± 0,01 
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Table A.2.1: Results of the physicochemical analysis of the influent, effluent and mixed liquor from the activated sludge system. 

a) WWTP without loading 

Sample Date COD in (mg/L) COD AE 1 (mg/L) COD AE 2 (mg/L) COD out (mg/L) % COD removed MLVSS AE 1 (g/L) MLVSS AE 2 (g/L) 

1 19-01-2012 6400 ± 10 2040 ± 10 2450 ± 10 1611 ± 1 74,83 ± 0,20 8,512 ± 0,018 8,304 ± 0,019 

2 20-01-2012 6990 ± 10 2380 ± 10 2200 ± 10 1589 ± 1 77,27 ± 0,18 8,000 ± 0,019 7,904 ± 0,019 

3 23-01-2012 5910 ± 10 1650 ± 10 1780 ± 10 1296 ± 1 78,07 ± 0,22 8,120 ± 0,020 8,072 ± 0,018 

4 24-01-2012 5640 ± 10 1390 ± 10 1570 ± 10 1276 ± 1 77,38 ± 0,22 7,992 ± 0,021 8,064 ± 0,018 

5 25-01-2012 5700 ± 10 1470 ± 10 1610 ± 10 1460 ± 1 74,39 ± 0,22 8,392 ± 0,020 8,232 ± 0,020 

6 30-01-2012 6660 ± 10 1680 ± 10 1760 ± 10 1420 ± 1 78,68 ± 0,19 7,536 ± 0,018 7,144 ± 0,018 

7 02-02-2012 10500 ± 10 1680 ± 10 2420 ± 10 1420 ± 1 86,48 ± 0,13 6,560 ± 0,020 7,224 ± 0,021 

8 06-02-2012 17220 ± 10 1680 ± 10 1980 ± 10 1420 ± 1 91,75 ± 0,08 7,920 ± 0,020 8,168 ± 0,020 

9 07-02-2012 11250 ± 10 1844,3 ± 10,1 2075,5 ± 12,1 1420 ± 1 87,38 ± 0,12 7,920 ± 0,019 8,168 ± 0,020 

10 08-02-2012 7190 ± 10 1393,2 ± 9,2 942,3 ± 9,1 1420 ± 1 80,25 ± 0,18 7,872 ± 0,019 7,888 ± 0,020 

11 09-02-2012 8200 ± 10 1393,6 ± 12,4 704,6 ± 10,1 1420 ± 1 82,68 ± 0,16 7,008 ± 0,018 8,080 ± 0,020 

12 13-02-2012 7108 ± 10 1393,5 ± 9,1 2500,4 ± 10,1 1420 ± 1 80,02 ± 0,18 7,664 ± 0,020 7,400 ± 0,019 

13 14-02-2012 7422 ± 10 2304,0 ± 9,1 2816,2 ± 9,1 1420 ± 1 80,87 ± 0,17 8,408 ± 0,021 8,136 ± 0,018 

14 15-02-2012 0 a 2359,0 ± 10,1 2731,5 ± 11,1 1420 ± 1 38,37 ± 0,47 6,432 ± 0,021 5,400 ± 0,018 

15 22-02-2012 3440 ± 10 270 ± 10 320 ± 10 147 ± 1 95,73 ± 0,40 6,480 ± 0,022 6,536 ± 0,018 

16 23-02-2012 3530 ± 10 320 ± 10 430 ± 10 103 ± 1 97,08 ± 0,40 6,600 ± 0,018 6,680 ± 0,021 

17 27-02-2012 5710 ± 10 440 ± 10 510 ± 10 86 ± 1 98,49 ± 0,25 6,904 ± 0,019 6,704 ± 0,018 

18 28-02-2012 6780 ± 10 460 ± 10 530 ± 10 77 ± 1 98,86 ± 0,21 7,008 ± 0,019 7,128 ± 0,018 

19 29-02-2012 8250 ± 10 340 ± 10 430 ± 10 118 ± 1 98,57 ± 0,17 7,280 ± 0,018 7,096 ± 0,018 

20 01-03-2012 7850 ± 10 380 ± 10 520 ± 10 113 ± 1 98,56 ± 0,18 7,368 ± 0,017 7,600 ± 0,022 

21 05-03-2012 6790 ± 10 410 ± 10 660 ± 10 146 ± 1 97,85 ± 0,21 7,584 ± 0,023 7,632 ± 0,018 

22 06-03-2012 7350 ± 10 350 ± 10 530 ± 10 145 ± 1 98,03 ± 0,19 7,488 ± 0,022 7,848 ± 0,019 

23 07-03-2012 15920 ± 10 860 ± 10 1310 ± 10 210 ± 1 98,68 ± 0,09 7,952 ± 0,021 8,056 ± 0,018 
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24 08-03-2012 13700 ± 10 640 ± 10 980 ± 10 257 ± 1 98,12 ± 0,10 7,584 ± 0,020 7,784 ± 0,018 

25 12-03-2012 8340 ± 10 380 ± 10 740 ± 10 259 ± 1 96,89 ± 0,17 8,008 ± 0,020 8,056 ± 0,021 

26 13-03-2012 12320 ± 10 420 ± 10 570 ± 10 393 ± 1 96,81 ± 0,11 7,304 ± 0,021 9,024 ± 0,020 

27 14-03-2012 14360 ± 10 500 ± 10 560 ± 10 249 ± 1 98,27 ± 0,10 8,504 ± 0,018 8,704 ± 0,018 

28 15-03-2012 15260 ± 10 870 ± 10 1270 ± 10 371 ± 1 97,57 ± 0,09 8,600 ± 0,019 8,416 ± 0,018 

29 19-03-2012 13740 ± 10 423 ± 1 516 ± 1 338 ± 1 97,54 ± 0,10 7,448 ± 0,019 7,392 ± 0,021 

30 20-03-2012 14040 ± 10 395 ± 1 426 ± 1 185 ± 1 98,68 ± 0,10 7,720 ± 0,018 7,872 ± 0,018 

31 21-03-2012 15780 ± 10 352 ± 1 405 ± 1 260 ± 1 98,35 ± 0,09 7,160 ± 0,021 7,864 ± 0,022 

32 26-03-2012 14900 ± 10 327 ± 1 501 ± 1 178 ± 1 98,81 ± 0,09 6,712 ± 0,022 7,816 ± 0,018 

33 27-03-2012 12900 ± 10 322 ± 1 861 ± 1 211 ± 1 98,36 ± 0,11 7,872 ± 0,023 8,024 ± 0,019 

34 28-03-2012 10460 ± 10 312 ± 1 572 ± 1 160 ± 1 98,47 ± 0,13 8,080 ± 0,021 8,008 ± 0,018 

35 29-03-2012 5810 ± 10 244 ± 1 421 ± 1 261 ± 1 95,51 ± 0,24 8,456 ± 0,023 8,288 ± 0,019 

36 02-04-2012 5040 ± 10 244 ± 1 482 ± 1 140 ± 1 97,22 ± 0,28 7,040 ± 0,019 6,800 ± 0,019 

37 03-04-2012 4560 ± 10 210 ± 1 410 ± 1 162 ± 1 96,45 ± 0,31 6,960 ± 0,019 7,144 ± 0,019 

38 04-04-2012 4740 ± 10 224 ± 1 447 ± 1 182 ± 1 96,16 ± 0,29 6,976 ± 0,019 7,112 ± 0,018 

39 05-04-2012 4210 ± 10 225 ± 1 412 ± 1 133 ± 1 96,84 ± 0,33 6,864 ± 0,020 6,848 ± 0,018 

40 10-04-2012 3770 ± 10 329 ± 1 434 ± 1 128 ± 1 96,60 ± 0,37 7,008 ± 0,020 6,800 ± 0,021 

41 11-04-2012 4480 ± 10 265 ± 1 469 ± 1 132 ± 1 97,05 ± 0,31 6,992 ± 0,021 7,088 ± 0,020 

42 12-04-2012 5020 ± 10 262 ± 1 526 ± 1 155 ± 1 96,91 ± 0,28 7,336 ± 0,018 7,160 ± 0,018 

43 16-04-2012 6720 ± 10 255 ± 1 975 ± 1 137 ± 1 97,96 ± 0,21 6,920 ± 0,018 6,992 ± 0,020 

44 17-04-2012 7120 ± 10 245 ± 1 685 ± 1 168 ± 1 97,64 ± 0,20 7,056 ± 0,018 6,520 ± 0,018 

45 18-04-2012 7500 ± 10 267 ± 1 697 ± 1 199 ± 1 97,35 ± 0,19 6,656 ± 0,020 6,880 ± 0,017 

46 19-04-2012 6760 ± 10 355 ± 1 459 ± 1 133 ± 1 98,03 ± 0,21 7,752 ± 0,018 7,824 ± 0,019 

47 20-04-2012 8710 ± 10 364 ± 1 637 ± 1 169 ± 1 98,06 ± 0,16 7,272 ± 0,018 7,064 ± 0,018 

48 24-04-2012 14330 ± 10 779 ± 1 847 ± 1 167 ± 1 98,83 ± 0,10 7,792 ± 0,019 7,808 ± 0,020 

49 26-04-2012 13240 ± 10 732 ± 1 1210 ± 1 259 ± 1 98,04 ± 0,11 7,664 ± 0,019 7,536 ± 0,020 
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Table A.2.2: Results of the physicochemical analysis of the influent, effluent and mixed liquor from the activated sludge system. 

b) Without results 

Sample Date pH AE 1 pH AE 2 
N-ammoniacal AE 

1 (mg/L) 

N-ammoniacal 

AE 2 (mg/L) 

Phosphorus 

(mg/L) 
Temp. (ºC) SRT (d) F/M  

Organic 

loading 

(kg/d) 

1 19-01-2012 7,54 ± 0,01 7,48 ± 0,01 2,43 ± 0,01 b b 18,0 ± 0,5 16 ± 0,13 0,22 ± 0,0008 407,36 ± 0,64 

2 20-01-2012 6,94 ± 0,01 6,91 ± 0,01 b b b 19,0 ± 0,5 58 ± 1,62 0,22 ± 0,0008 389,48 ± 0,56 

3 23-01-2012 7,54 ± 0,01 5,52 ± 0,01 1,21 ± 0,01 1,21 ± 0,01 45,9 ± 0,1 19,0 ± 0,5 31 ± 0,51 0,19 ± 0,0007 344,49 ± 0,58 

4 24-01-2012 7,49 ± 0,01 7,45 ± 0,01 1,21 ± 0,01 1,21 ± 0,01 b 19,0 ± 0,5 42 ± 1,04 0,20 ± 0,0008 351,88 ± 0,62 

5 25-01-2012 7,37 ± 0,01 7,39 ± 0,01 2,43 ± 0,01 2,43 ± 0,01 b 20,0 ± 0,5 17 ± 0,15 0,17 ± 0,0007 310,59 ± 0,54 

6 30-01-2012 7,19 ± 0,01 7,30 ± 0,01 3,64 ± 0,01 3,64 ± 0,01 b 25,0 ± 0,5 46 ± 0,78 0,17 ± 0,0006 268,46 ± 0,40 

7 02-02-2012 7,36 ± 0,01 7,41 ± 0,01 2,43 ± 0,01 2,43 ± 0,01 b 28,0 ± 0,5 250 ± 5,02 0,05 ± 0,0002 77,91 ± 0,07 

8 06-02-2012 7,39 ± 0,01 7,44 ± 0,01 b b b 28,0 ± 0,5 1033 ± 20,57 0,02 ± 0,0001 36,16 ± 0,02 

9 07-02-2012 7,45 ± 0,01 7,47 ± 0,01 3,64 ± 0,01 3,64 ± 0,01 b 28,0 ± 0,5 70 ± 1,32 0,20 ± 0,0007 350,21 ± 0,31 

10 08-02-2012 7,47 ± 0,01 7,43 ± 0,01 3,64 ± 0,01 3,64 ± 0,01 b 28,0 ± 0,5 20 ± 0,11 0,10 ± 0,0004 181,19 ± 0,25 

11 09-02-2012 7,41 ± 0,01 7,44 ± 0,01 2,43 ± 0,01 2,43 ± 0,01 b 28,0 ± 0,5 13 ± 0,09 0,24 ± 0,0009 404,75 ± 0,49 

12 13-02-2012 6,78 ± 0,01 6,76 ± 0,01 4,86 ± 0,01 4,86 ± 0,01 b 21,0 ± 0,5 23 ± 0,24 0,20 ± 0,0008 323,56 ± 0,46 

13 14-02-2012 7,02 ± 0,01 7,04 ± 0,01 4,44 ± 0,01 5,61 ± 0,01 b 22,0 ± 0,5 1047 ± 14,79 0,01 ± 0,0000 10,54 ± 0,01 

14 15-02-2012 7,26 ± 0,01 7,12 ± 0,01 5,24 ± 0,01 5,54 ± 0,01 191,1 ± 0,1 24,5 ± 0,5 b b b 

15 22-02-2012 7,40 ± 0,01 7,35 ± 0,01 1,87 ± 0,01 1,95 ± 0,01 98,3 ± 0,1 27,6 ± 0,5 19 ± 0,30 0,16 ± 0,0009 232,85 ± 0,68 

16 23-02-2012 7,40 ± 0,01 7,42 ± 0,01 1,82 ± 0,01 1,91 ± 0,01 b 25,0 ± 0,5 23 ± 0,34 0,15 ± 0,0008 222,67 ± 0,63 

17 27-02-2012 7,52 ± 0,01 7,46 ± 0,01 1,08 ± 0,01 1,91 ± 0,01 77,1 ± 0,1 25,0 ± 0,5 25 ± 0,37 0,22 ± 0,0009 334,04 ± 0,59 

18 28-02-2012 7,44 ± 0,01 7,41 ± 0,01 1,17 ± 0,01 1,94 ± 0,01 b 25,0 ± 0,5 25 ± 0,43 0,29 ± 0,0012 455,89 ± 0,67 

19 29-02-2012 7,37 ± 0,01 7,35 ± 0,01 0,87 ± 0,01 1,99 ± 0,01 b 28,0 ± 0,5 11 ± 0,07 0,32 ± 0,0012 508,70 ± 0,62 

20 01-03-2012 7,33 ± 0,01 7,25 ± 0,01 0,95 ± 0,01 1,88 ± 0,01 b 30,5 ± 0,5 10 ± 0,06 0,26 ± 0,0010 424,76 ± 0,54 

21 05-03-2012 7,46 ± 0,01 7,47 ± 0,01 1,21 ± 0,01 1,35 ± 0,01 68,9 ± 0,1 30,5 ± 0,5 14 ± 0,15 0,26 ± 0,0011 442,71 ± 0,65 

22 06-03-2012 7,59 ± 0,01 7,41 ± 0,01 1,02 ± 0,01 1,78 ± 0,01 b 29,8 ± 0,5 11 ± 0,06 0,16 ± 0,0007 277,02 ± 0,38 

23 07-03-2012 7,42 ± 0,01 7,39 ± 0,01 1,26 ± 0,01 2,06 ± 0,01 b 28,0 ± 0,5 14 ± 0,10 0,43 ± 0,0015 760,50 ± 0,48 
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24 08-03-2012 7,42 ± 0,01 7,39 ± 0,01 1,23 ± 0,01 1,69 ± 0,01 b 36,0 ± 0,5 15 ± 0,11 0,37 ± 0,0013 632,53 ± 0,46 

25 12-03-2012 7,45 ± 0,01 7,51 ± 0,01 0,87 ± 0,01 0,36 ± 0,01 69,9 ± 0,1 36,2 ± 0,5 12 ± 0,12 0,41 ± 0,0016 725,00 ± 0,87 

26 13-03-2012 7,42 ± 0,01 7,37 ± 0,01 0,33 ± 0,01 0,33 ± 0,01 b 34,0 ± 0,5 9 ± 0,03 0,17 ± 0,0006 308,49 ± 0,25 

27 14-03-2012 7,35 ± 0,01 7,38 ± 0,01 0,14 ± 0,01 0,14 ± 0,01 b 25,5 ± 0,5 12 ± 0,04 0,17 ± 0,0005 327,98 ± 0,23 

28 15-03-2012 7,45 ± 0,01 7,46 ± 0,01 0,43 ± 0,01 0,46 ± 0,01 b 28,0 ± 0,5 12 ± 0,04 0,12 ± 0,0004 221,73 ± 0,15 

29 19-03-2012 7,50 ± 0,01 7,56 ± 0,01 41 ± 1 39 ± 1 78,5 ± 0,1 24,6 ± 0,5 269 ± 3,03 0,04 ± 0,0001 58,26 ± 0,04 

30 20-03-2012 7,57 ± 0,01 7,58 ± 0,01 38 ± 1 39 ± 1 b 28,0 ± 0,5 33 ± 0,17 0,13 ± 0,0004 225,76 ± 0,16 

31 21-03-2012 7,53 ± 0,01 7,54 ± 0,01 29 ± 1 29 ± 1 b 28,0 ± 0,5 b 0,21 ± 0,0009 343,69 ± 0,22 

32 26-03-2012 7,49 ± 0,01 7,54 ± 0,01 1,21 ± 0,01 1,31 ± 0,01 67,1 ± 0,1 28,0 ± 0,5 15 ± 0,11 0,37 ± 0,0015 587,95 ± 0,39 

33 27-03-2012 7,61 ± 0,01 7,61 ± 0,01 1,51 ± 0,01 2,48 ± 0,01 b 28,0 ± 0,5 19 ± 0,11 0,20 ± 0,0008 348,04 ± 0,27 

34 28-03-2012 7,61 ± 0,01 7,55 ± 0,01 1,21 ± 0,01 1,21 ± 0,01 b 28,0 ± 0,5 7 ± 0,03 0,22 ± 0,0008 394,34 ± 0,38 

35 29-03-2012 7,60 ± 0,01 7,51 ± 0,01 1,21 ± 0,01 1,21 ± 0,01 b 28,0 ± 0,5 8 ± 0,03 0,09 ± 0,0004 167,97 ± 0,29 

36 02-04-2012 7,56 ± 0,01 7,43 ± 0,01 1,21 ± 0,01 1,21 ± 0,01 58,5 ± 0,1 28,0 ± 0,5 9 ± 0,04 0,12 ± 0,0005 181,29 ± 0,36 

37 03-04-2012 7,45 ± 0,01 7,48 ± 0,01 1,21 ± 0,01 1,21 ± 0,01 b 28,0 ± 0,5 6 ± 0,02 0,12 ± 0,0005 181,35 ± 0,40 

38 04-04-2012 7,45 ± 0,01 7,41 ± 0,01 2,43 ± 0,01 2,43 ± 0,01 b 28,0 ± 0,5 4 ± 0,02 0,15 ± 0,0007 238,56 ± 0,50 

39 05-04-2012 7,46 ± 0,01 7,35 ± 0,01 1,21 ± 0,01 1,21 ± 0,01 b 28,0 ± 0,5 6 ± 0,02 0,13 ± 0,0006 193,53 ± 0,46 

40 10-04-2012 7,06 ± 0,01 7,16 ± 0,01 2,43 ± 0,01 2,43 ± 0,01 120,8 ± 0,1 28,0 ± 0,5 6 ± 0,03 0,10 ± 0,0005 149,78 ± 0,40 

41 11-04-2012 7,23 ± 0,01 7,16 ± 0,01 2,43 ± 0,01 2,43 ± 0,01 b 25,0 ± 0,5 6 ± 0,03 0,16 ± 0,0007 247,74 ± 0,55 

42 12-04-2012 7,25 ± 0,01 7,16 ± 0,01 2,43 ± 0,01 2,43 ± 0,01 b 25,0 ± 0,5 7 ± 0,04 0,21 ± 0,0008 332,32 ± 0,66 

43 16-04-2012 7,27 ± 0,01 7,22 ± 0,01 2,43 ± 0,01 2,43 ± 0,01 75,7 ± 0,1 25,0 ± 0,5 57 ± 1,18 0,17 ± 0,0007 256,84 ± 0,38 

44 17-04-2012 7,30 ± 0,01 7,21 ± 0,01 2,43 ± 0,01 2,43 ± 0,01 b 25,0 ± 0,5 3 ± 0,01 0,19 ± 0,0008 284,30 ± 0,40 

45 18-04-2012 7,15 ± 0,01 7,18 ± 0,01 1,21 ± 0,01 1,21 ± 0,01 b 30,0 ± 0,5 18 ± 0,09 0,10 ± 0,0004 143,10 ± 0,19 

46 19-04-2012 7,23 ± 0,01 7,12 ± 0,01 1,77 ± 0,01 1,72 ± 0,01 b 30,0 ± 0,5 13 ± 0,08 0,18 ± 0,0006 301,56 ± 0,45 

47 20-04-2012 7,12 ± 0,01 7,00 ± 0,01 1,34 ± 0,01 2,45 ± 0,01 b 25,0 ± 0,5 116 ± 1,70 0,07 ± 0,0003 117,93 ± 0,14 

48 24-04-2012 7,20 ± 0,01 7,18 ± 0,01 4,27 ± 0,01 1,99 ± 0,01 b 30,0 ± 0,5 12 ± 0,04 0,10 ± 0,0004 171,96 ± 0,12 

49 26-04-2012 7,04 ± 0,01 6,95 ± 0,01 2,66 ± 0,01 3,50 ± 0,01 b 30,0 ± 0,5 15 ± 0,06 0,09 ± 0,0003 153,05 ± 0,12 
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6.2. Microfauna analysis 

Table A.3: Results of the microfauna analysis for aeration tank 1, small flagellates abundance evaluated through a subjective scoring and the others in individuals/mL. 

Sample Date 
Testate 

amoebae 

Small 

flagellates 

Large 

flagellates 

Free 

swimming 

ciliates 

Sessile ciliates Crawling 
Opercularia 

sp. 

Carnivorous 

ciliates 
Metazoa 

1 19-01-2012 0 ++++ 0 1100 0 0 0 0 5 

2 20-01-2012 5 ++++ 0 6050 0 0 0 0 5 

3 23-01-2012 0 +++ 0 1105 0 0 0 0 0 

4 24-01-2012 0 +++ 0 1092 0 0 0 0 0 

5 25-01-2012 0 +++ 0 1191 5 0 0 0 0 

6 30-01-2012 0 ++++ 0 6102 0 0 0 0 0 

7 02-02-2012 0 ++ 0 605 0 0 0 0 0 

8 06-02-2012 0 ++ 0 604 0 0 0 0 0 

9 07-02-2012 0 ++ 0 554 0 0 0 0 0 

10 08-02-2012 0 ++ 0 548 5 0 0 0 0 

11 09-02-2012 0 + 0 605 0 0 0 0 0 

12 13-02-2012 0 + 0 5 0 0 0 0 0 

13 14-02-2012 0 + 0 8 0 0 0 0 0 

14 15-02-2012 0 - 0 5 0 0 0 0 0 

15 22-02-2012 0 - 0 60 543 0 5 370 0 

16 23-02-2012 58 - 0 5 498 0 5 57 0 

17 27-02-2012 606 - 0 0 54 5 5 190 0 

18 28-02-2012 304 - 0 23 54 0 5 350 0 

19 29-02-2012 107 - 0 5 69 0 5 570 5 

20 01-03-2012 3 - 0 7 605 0 5 245 0 

21 05-03-2012 550 - 0 0 2098 0 0 43 5 

22 06-03-2012 240 - 0 0 4680 0 280 320 40 
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23 07-03-2012 600 - 0 0 13040 0 160 280 40 

24 08-03-2012 240 - 0 0 10680 0 240 200 40 

25 12-03-2012 240 + 0 80 11280 0 40 160 40 

26 13-03-2012 350 - 0 50 10600 0 300 100 50 

27 14-03-2012 200 - 0 0 9300 0 600 100 50 

28 15-03-2012 200 - 0 100 10300 0 600 100 0 

29 19-03-2012 100 - 0 100 9650 0 450 0 50 

30 20-03-2012 300 - 0 50 16100 0 1100 0 0 

31 21-03-2012 50 - 0 150 8750 0 650 50 0 

32 26-03-2012 100 - 0 4000 3600 0 4000 0 0 

33 27-03-2012 150 - 0 900 7050 0 2850 0 100 

34 28-03-2012 100 - 0 1050 7750 0 1700 1 50 

35 29-03-2012 100 - 0 550 9100 0 400 1 50 

36 02-04-2012 100 - 0 950 5150 0 400 1 0 

37 03-04-2012 150 - 0 1450 7750 0 0 0 100 

38 04-04-2012 50 - 0 1400 10200 0 0 1 50 

39 05-04-2012 50 - 0 1050 7450 0 1 0 50 

40 10-04-2012 50 - 50 50 6900 0 150 0 0 

41 11-04-2012 50 - 0 0 6100 0 100 0 50 

42 12-04-2012 100 - 1 100 4900 0 100 50 0 

43 16-04-2012 100 - 1 100 1900 0 150 1 0 

44 17-04-2012 50 ++ 0 200 1400 0 100 0 0 

45 18-04-2012 50 ++ 0 400 1450 0 150 1 50 

46 19-04-2012 50 ++ 0 750 1800 0 100 1 0 

47 20-04-2012 50 ++ 50 650 1850 0 100 0 0 

48 24-04-2012 100 ++ 0 450 1300 0 100 0 50 

49 26-04-2012 100 ++ 0 50 2050 0 0 0 100 
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Table A.4: Results of the microfauna analysis for aeration tank 2, small flagellates abundance evaluated through a subjective scoring and the others in individuals/mL. 

Sample Date 
Testate 

amoebae 

Small 

flagellates 

Large 

flagellates 

Free 

swimming 

ciliates 

Sessile ciliates Crawling 
Opercularia 

sp. 

Carnivorous 

ciliates 
Metazoa 

1 19-01-2012 0 ++ 0 1108 0 0 0 0 0 

2 20-01-2012 0 ++++ 0 1003 0 0 0 0 0 

3 23-01-2012 0 +++ 0 6082 0 0 0 0 0 

4 24-01-2012 0 +++ 0 6021 0 0 0 0 0 

5 25-01-2012 0 +++ 0 1067 0 0 0 0 0 

6 30-01-2012 0 ++++ 0 6201 0 0 0 0 0 

7 02-02-2012 0 ++ 0 610 0 0 0 0 0 

8 06-02-2012 0 + 0 398 0 0 0 0 0 

9 07-02-2012 0 + 0 902 5 0 0 0 0 

10 08-02-2012 0 ++ 0 551 0 0 0 0 0 

11 09-02-2012 0 + 0 609 5 0 0 0 0 

12 13-02-2012 0 + 0 7 0 0 0 0 0 

13 14-02-2012 0 + 0 4 0 0 0 0 0 

14 15-02-2012 0 - 0 6 0 0 0 0 0 

15 22-02-2012 0 - 0 5 560 0 5 478 0 

16 23-02-2012 56 - 0 0 501 0 5 108 5 

17 27-02-2012 597 - 0 5 55 0 8 55 5 

18 28-02-2012 506 ++ 0 5 59 0 0 205 0 

19 29-02-2012 205 + 0 5 58 0 0 604 0 

20 01-03-2012 23 + 0 5 634 0 6 134 0 

21 05-03-2012 550 - 0 5 1790 0 5 36 5 

22 06-03-2012 280 - 0 40 6240 0 160 160 80 

23 07-03-2012 280 - 0 0 10840 0 320 160 80 

24 08-03-2012 360 - 0 40 10040 0 320 200 80 
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25 12-03-2012 200 + 0 0 11250 0 100 200 50 

26 13-03-2012 150 - 0 0 9750 0 650 150 0 

27 14-03-2012 100 - 0 50 10500 0 350 200 50 

28 15-03-2012 100 - 0 100 9600 0 800 100 0 

29 19-03-2012 150 - 0 50 10300 0 450 50 50 

30 20-03-2012 150 - 0 100 12450 0 900 50 50 

31 21-03-2012 50 - 0 100 10350 0 500 50 50 

32 26-03-2012 100 - 0 2800 3600 0 4700 0 50 

33 27-03-2012 50 - 0 800 5350 0 2800 0 100 

34 28-03-2012 100 - 0 500 7850 0 2650 1 150 

35 29-03-2012 50 - 0 500 8250 0 450 1 50 

36 02-04-2012 50 - 0 550 5600 0 500 0 100 

37 03-04-2012 150 - 0 900 8100 0 300 0 100 

38 04-04-2012 50 - 0 950 8450 0 0 0 50 

39 05-04-2012 50 - 0 950 8350 0 1 0 50 

40 10-04-2012 50 - 0 50 5150 0 150 0 0 

41 11-04-2012 50 - 50 50 5850 0 100 1 50 

42 12-04-2012 50 - 1 50 5550 0 50 50 1 

43 16-04-2012 50 - 0 150 2350 0 100 1 0 

44 17-04-2012 50 ++ 1 100 1550 0 100 1 1 

45 18-04-2012 50 ++ 1 300 1700 0 100 1 100 

46 19-04-2012 50 ++ 50 500 1650 0 0 0 50 

47 20-04-2012 50 ++ 0 500 1450 0 0 0 50 

48 24-04-2012 0 ++ 1 250 1200 0 100 0 50 

49 26-04-2012 100 ++ 0 50 2650 0 150 0 100 
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Table A.5: Identification key of the microorganism found in the activated sludge samples. 

Groups Subclass Genera Identification key Reference 

Sessile 

ciliates 
 

(overall)  
 Firmly attached to the sludge flocs by a stalk which may be either rigid or contractile 

 Cilia in the anterior region of the body near oral cavity 

Jenkins (1993) 

Bento et al. (2005) 

Madoni (2010) 

Peritrichia 

 

Vorticella 

 Sessile bell-like ciliates 

 Single zooids with a contractile peduncle (with internal spasmoneme) 

 One long macronucleus extending more or less along the longitudinal axis of the cell 

 Contractile vacuole located near the buccal cavity 

 Buccal ciliation that winds counterclockwise to the buccal cavity 

Bick (1972) 

Serrano et al. 

(2008) 

Carchesium 

 Colonial species with branched stalk with self-contained discontinuous spasmonemes 

 Myonemes in stalk not continuous  therefore each stalked member of the colony 

contracts independently 

 One long band-like macronucleus that extends along the longitudinal axis of the cell 

Bick (1972) 

Serrano et al. 

(2008) 

Zoothamnium 

 Colonial species with branched stalk with continuous spasmonemes 

 All the zooids of the colony contract simultaneously 

 Myomenes of all stalks of the colony are continuous 

Serrano et al. 

(2008) 

Epistylis 

 Colonial species 

 Stalk without myonemes, thus not contractile 

 Contracted individuals with characteristic folds at posterior end 

 With a large peristomial lip 

 Rigid stalks 

Bick (1972) 

Serrano et al. 

(2008) 

Opercularia 

 Colonial species 

 Stalk without myonemes, thus not contractile 

 Without peristomial lip 

 With opercula 

 Body elongated 

Bick (1972) 

Serrano et al. 

(2008) 
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Suctoria (1) 

 

Podophrya 

 Spherical ciliate  

 Tentacles homogenously distributed 

 Spherical macronucleus 

 One contractile vacuole 

Bick (1972) 

Serrano et al. 

(2008) 

Tokophrya 
 Triangular shaped cells 

 Two clusters of tentacles 

Serrano et al. 

(2008) 

Free 

swimming 

ciliates 
 

(overall)  

 Round to oval shape 

 Cilia evenly distributed through the cell 

 Actively motile by rows of short, hair-like cilia 

 Swim in the liquor phase 

Jenkins (1993) 

Bento et al. (2005) 

Madoni (2010) 

Tetrahymena 

 

Tetrahymena 
 Pyriform swimming cells 

 Posterior contractile vacuole 

Serrano et al. 

(2008) 

Dexiostoma / 

Colpidium 

 Ovoid cells with a torsion at the anterior body end 

 Uniform ciliation except for a group of longer cilia at the posterior pole 

 One spherical macronucleus and one micronucleus 

 One contractile vacuole 

Bick (1972) 

Serrano et al. 

(2008) 

Peniculida 

 

Paramecium 

 Fast swimming cells 

 Oval or elongated foot-shaped cells 

 Equatorial torsion where the oral cavity is clearly distinguished 

 Caudal cilia 

 One ellipsoid macronucleus and one compact micronucleus 

 Two contractile vacuoles 

Bick (1972) 

Serrano et al. 

(2008) 
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Crawling 

ciliates 
 

(overall)  

 Move on the surface of the sludge flocs 

 Flattened body 

 Cilia grouped on the body part that contact the sludge flocs 

Jenkins (1993) 

Bento et al. (2005) 

Madoni (2010) 

Hypotrichia

 

Euplotes 

 Ciliates with a well-developed anterior oral opening 

 Well-developed adoral zone of membranes (numerous membranelles consecutively 

arranged from the anterior part of the oral cavity to the left side) 

 Long fronto-ventral and transverse cilia that moves as a unit (cirri) 

 Macronucleus C-shaped 

Serrano et al. 

(2008) 

Apidisca 

 Small adoral zone of membranes 

 Long frontal and transverse cirri 

 Small, ovoid 

 Macronucleus horseshoe-shaped 

Bick (1972) 

Serrano et al. 

(2008) 

Testate 

Amoeba 
 

 

Arcella 
 Motile by pseudopodia 

 External shell 

Jenkins (1993) 

Bento et al. (2005) 

Large 

Flagellates 
 

 

Peranema 
 Long, thick flagellum 

 The cell is usually 20-30 μm long 
Eikelboom (2000) 

Small 

Flagellates 
 

 

Bodo (2) 

Polytoma (2) 

Tetramitus (2) 

 Small (5-20 μm) 

 Oval or elongated forms 

 Actively motile by one or more long flagellate 

Jenkins (1993) 

Bento et al. 

(2005) 
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Metazoan 

 

 

  Multicellular organisms of various phyla 
Bento et al. 

(2005) 

(1) Carnivorous ciliates, that must be excluded by the “sessile ciliates” keygroups 

(2) Small flagellates commonly found in activated sludge 

 

 

6.3. Statistical analysis 

 

Table A.6: Two-sample Student’s t-test for the comparison between 9 hours and 2 hours of oven evaporation for total solids determination. 

Group Statistics 

 Group N Mean Std. Deviation Std. Error Mean 

Results 
9 hours 30 7,5220 4,65308 0,84953 

2 hours 30 7,6637 4,66718 0,85211 

 

Independent Samples Test 

 

Levene's Test for Equality of 

Variances 
t-test for Equality of Means 

F Sig. t df 
Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the Difference 

Lower Upper 

Results 

Equal variances 

assumed 
0,005 0,946 -0,118 58 0,907 -,14167 1,20324 -2,55022 2,26688 

Equal variances not 

assumed 
  -0,118 57,999 0,907 -,14167 1,20324 -2,55022 2,26688 
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Table A.7: One-sample Student’s t-test for the comparison between the experimental value found for the relation between TS and VSS and the hypothesized value of 80%. 

One-Sample Statistics 

 N Mean Std. Deviation Std. Error Mean 

Relation (%) 13 81,1854 2,58144 0,71596 

 

One-Sample Test 

 

Test Value = 80 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

Relation (%) 1,656 12 0,124 1,18538 -0,3746 2,7453 

 

 

Table A.8: Two-sample Student’s t-test for the comparison between the COD removal efficiency before and after the re-inoculation. 

Group Statistics 

 Group N Mean Std. Deviation Std. Error Mean 

% COD removed 
before re-inoculation 14 80,7800 4,90482 1,31087 

after re-inoculation 35 97,6677 0,91078 0,15395 
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Independent Samples Test 

 

Levene's Test for Equality of 

Variances 
t-test for Equality of Means 

F Sig. t df 
Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the Difference 

Lower Upper 

% COD 

removed 

Equal variances 

assumed 
28,047 0,000 -19,828 47 0,000 -16,88771 0,85172 -18,60115 -15,17428 

Equal variances not 

assumed 
  -12,795 13,360 0,000 -16,88771 1,31988 -19,73134 -14,04409 

 

 

Table A.9: Two-sample Student’s t-test for the comparison between the influent COD concentration before and after the re-inoculation. 

Group Statistics 

 
Group N Mean Std. Deviation Std. Error Mean 

Influent COD 
before re-inoculation 14 8115,1429 3093,40019 826,74598 

after re-inoculation 35 8955,1429 4180,15858 706,57576 

 

Independent Samples Test 

 

Levene's Test for Equality of 

Variances 
t-test for Equality of Means 

F Sig. t df 
Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the Difference 

Lower Upper 

Influent 

COD 

Equal variances 

assumed 6,543 0,014 -0,679 47 0,500 -840,00000 1236,42010 -3327,35641 1647,35641 

Equal variances not 

assumed 
  -0,772 32,331 0,445 -840,00000 1087,54688 -3054,37048 1374,37048 
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Table A.10: Two-sample Student’s t-test for the comparison between the effluent COD concentration before and after the re-inoculation. 

Group Statistics 

 Group N Mean Std. Deviation Std. Error Mean 

Effluent COD 
before re-inoculation 14 1429,4286 88,36525 23,61661 

after re-inoculation 35 186,6000 75,83116 12,81781 

 

Independent Samples Test 

 

Levene's Test for Equality of 

Variances 
t-test for Equality of Means 

F Sig. t df 
Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the Difference 

Lower Upper 

Effluent 

COD 

Equal variances 

assumed 0,109 0,743 49,439 47 0,000 1242,82857 25,13884 1192,25575 1293,40140 

Equal variances not 

assumed 
  46,252 21,087 0,000 1242,82857 26,87081 1186,96175 1298,69539 

 

Table A.11: Pearson correlation analysis for the evaluation of the relation between F/M and 

organic loading. 

Correlations 

 F/M Organic loading 

F/M 

Pearson Correlation 1 0,991** 

Sig. (2-tailed)  0,000 

N 47 48 

Organic 

loading 

Pearson Correlation 0,9991** 1 

Sig. (2-tailed) 0,000  
N 48 49 

**. Correlation is significant at the 0.01 level (2-tailed). 

Table A.12: Pearson correlation analysis for the evaluation of the relation between COD 

removal efficiency and TS removal efficiency. 

Correlations 

 % COD removed % TS removed 

% COD 

removed 

Pearson Correlation 1 ,851** 

Sig. (2-tailed)  ,000 

N 70 70 

% TS 

removed 

Pearson Correlation ,851** 1 

Sig. (2-tailed) ,000  
N 70 70 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table A.13:  Spearmans’rho correlation analysis for the evaluation of the relation between functional groups and 

physiochemical parameters for aeration tank 1. 

Correlations 

 

% COD 

removed 

Effluent 

COD 
MLSS N-NH4+ 

Total 

Phosphorous 
pH F/M SRT SVI 

Temp 

(ºC) 

Testate 

amoebae 

Corr. Coef. 0,775** -0,678** -0,202 -0,396** -0,294 0,022 0,194 -0,207 0,000 0,526** 

Sig. (2-tailed) 0,000 0,000 0,163 0,007 0,381 0,883 0,191 0,163 1,000 0,002 

N 49 49 49 45 11 49 47 47 7 33 

Small 

flagellates 

Corr. Coef. -0,568** 0,622** 0,414** 0,310* -0,472 -0,389** -0,150 0,413** 
 

-0,482** 

Sig. (2-tailed) 0,000 0,000 0,003 0,039 0,143 0,006 0,314 0,004 
 

0,005 

N 49 49 49 45 11 49 47 47 7 33 

Large 

flagellates 

Corr. Coef. 0,055 -0,258 -0,190 0,144 0,324 -0,335* -0,147 0,011 -0,612 -0,054 

Sig. (2-tailed) 0,705 0,074 0,191 0,346 0,332 0,019 0,325 0,941 0,144 0,763 

N 49 49 49 45 11 49 47 47 7 33 

Free-

swimming 

ciliates 

Corr. Coef. -0,613** 0,592** 0,082 0,381** -0,179 -0,185 -0,193 0,327* 0,342 -0,675** 

Sig. (2-tailed) 0,000 0,000 0,575 0,010 0,598 0,204 0,195 0,025 0,452 0,000 

N 49 49 49 45 11 49 47 47 7 33 

Sessile 

ciliates 

Corr. Coef. 0,600** -0,622** -0,164 -0,203 0,074 0,122 -0,121 -0,503** -0,039 0,447** 

Sig. (2-tailed) 0,000 0,000 0,260 0,182 0,829 0,402 0,416 0,000 0,933 0,009 

N 49 49 49 45 11 49 47 47 7 33 

Crawling 

ciliates 

Corr. Coef. 0,174 -0,235 -0,174 -0,175 0,100 0,153 0,125 0,098 0,204 0,152 

Sig. (2-tailed) 0,233 0,103 0,233 0,251 0,770 0,293 0,402 0,513 0,661 0,397 

N 49 49 49 45 11 49 47 47 7 33 

Opercularia 

sp. 

Corr. Coef. 0,701** -0,475** -0,111 -0,127 -0,092 0,210 -0,010 -0,192 -0,607 0,208 

Sig. (2-tailed) 0,000 0,001 0,447 0,404 0,788 0,148 0,948 0,197 0,148 0,246 

N 49 49 49 45 11 49 47 47 7 33 

Carnivorous 

ciliates 

Corr. Coef. 0,489** -0,560** -0,132 -0,597** 0,019 0,144 0,415** -0,184 0,414 0,371* 

Sig. (2-tailed) 0,000 0,000 0,368 0,000 0,956 0,322 0,004 0,215 0,355 0,033 

N 49 49 49 45 11 49 47 47 7 33 

Metazoa 

Corr. Coef. 0,252 -0,139 0,106 -0,221 -0,017 0,114 -0,075 -0,370* -0,445 0,392* 

Sig. (2-tailed) 0,081 0,342 0,469 0,145 0,960 0,437 0,615 0,011 0,317 0,024 

N 49 49 49 45 11 49 47 47 7 33 

Diversity (No 

of genera) 

Corr. Coef. 0,604** -0,550** -0,037 -0,357* -0,108 0,025 0,038 -0,403** -0,869* 0,322 

Sig. (2-tailed) 0,000 0,000 0,801 0,016 0,751 0,863 0,800 0,005 0,011 0,068 

N 49 49 49 45 11 49 47 47 7 33 

Total 

microfauna 

density 

Corr. Coef. 0,384** -0,163 0,143 -0,228 -0,318 0,352* 0,151 -0,368* -0,500 0,570** 

Sig. (2-tailed) 0,007 0,264 0,326 0,132 0,340 0,013 0,310 0,011 0,253 0,001 

N 49 49 49 45 11 49 47 47 7 33 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

 



Annexes 

116 
 

Table A.14: Spearmans’rho correlation analysis for the evaluation of the relation between functional groups and 

physiochemical parameters for aeration tank 2. 

Correlations 

 

% COD 

removed 

Effluent 

COD 
MLSS N-NH4+ 

Total 

Phosphorous 
pH F/M SRT SVI 

Temp 

(ºC) 

Testate 

amoebae 

Corr. Coef. 0,735** -0,711** -0,326* -0,265 -0,193 0,083 0,253 -0,198 -0,126 0,361* 

Sig. (2-tailed) 0,000 0,000 0,022 0,078 0,570 0,570 0,087 0,182 0,788 0,039 

N 49 49 49 45 11 49 47 47 7 33 

Small 

flagellates 

Corr. Coef. -0,433** 0,485** 0,218 0,229 -0,472 -0,422** -0,062 0,394** 0,134 -0,464** 

Sig. (2-tailed) 0,002 0,000 0,133 0,130 0,143 0,003 0,678 0,006 0,775 0,007 

N 49 49 49 45 11 49 47 47 7 33 

Large 

flagellates 

Corr. Coef. 0,164 -0,265 -0,234 -0,006  -0,369** -0,093 -0,304*  -0,114 

Sig. (2-tailed) 0,261 0,066 0,106 0,970  0,009 0,533 0,038  0,528 

N 49 49 49 45 11 49 47 47 7 33 

Free-

swimming 

ciliates 

Corr. Coef. -0,617** 0,582** 0,123 0,266 -0,055 -0,231 -0,220 0,345* 0,143 -0,632** 

Sig. (2-tailed) 0,000 0,000 0,399 0,078 0,873 0,110 0,136 0,018 0,760 0,000 

N 49 49 49 45 11 49 47 47 7 33 

Sessile 

ciliates 

Corr. Coef. 0,612** -0,626** -0,231 -0,266 0,074 0,125 -0,095 -0,478** 0,039 0,447** 

Sig. (2-tailed) 0,000 0,000 0,110 0,077 0,829 0,392 0,526 0,001 0,933 0,009 

N 49 49 49 45 11 49 47 47 7 33 

Crawling 

ciliates 

Corr. Coef.           

Sig. (2-tailed)           

N 49 49 49 45 11 49 47 47 7 33 

Opercularia 

sp. 

Corr. Coef. 0,589** -0,331* -0,030 -0,214 -0,146 0,333* -0,088 -0,289* -0,559 0,463** 

Sig. (2-tailed) 0,000 0,020 0,836 0,159 0,669 0,019 0,556 0,049 0,192 0,007 

N 49 49 49 45 11 49 47 47 7 33 

Carnivorous 

ciliates 

Corr. Coef. 0,523** -0,516** -0,143 -0,264 0,210 0,168 0,362* -0,115 0,786* 0,349* 

Sig. (2-tailed) 0,000 0,000 0,327 0,079 0,536 0,249 0,012 0,441 0,036 0,046 

N 49 49 49 45 11 49 47 47 7 33 

Metazoa 

Corr. Coef. 0,552** -0,446** -0,227 -0,191 -0,496 0,128 -0,140 -0,314* -0,355 0,201 

Sig. (2-tailed) 0,000 0,001 0,117 0,209 0,121 0,381 0,349 0,032 0,435 0,261 

N 49 49 49 45 11 49 47 47 7 33 

Diversity (No 

of genera) 

Corr. Coef. 0,692** -0,534** -0,163 -0,199 -0,266 0,110 0,011 -0,388** -0,964** 0,343 

Sig. (2-tailed) 0,000 0,000 0,263 0,189 0,429 0,452 0,943 0,007 0,000 0,051 

N 49 49 49 45 11 49 47 47 7 33 

Total 

microfauna 

density 

Corr. Coef. 0,368** -0,139 0,220 -0,326* -0,527 0,411** 0,161 -0,324* -0,500 0,550** 

Sig. (2-tailed) 0,009 0,341 0,128 0,029 0,096 0,003 0,280 0,026 0,253 0,001 

N 49 49 49 45 11 49 47 47 7 33 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 


