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Produção de som, xarroco, Halobatrachus didactylus, fadiga músculo sónico, 
comunicação acústica, variação sazonal.  

resumo 
 

 

O Sucesso reprodutivo dos machos territoriais do xarroco dependem da sua 
capacidade vocal. Para a produção de vocalizações são utilizados músculos 
sónicos intrínsecos à parede da bexiga-natatória, cuja frequência de contração 
pode atingir valores superiores a 100 Hz e são por isso conhecidos como os 
músculos mais rápidos entre todos os vertebrados. Com este estudo pretende-
se averiguar se a capacidade fisiológica de produção de som é diferente no 
inverno e na época reprodutiva, assim como entre juvenis e adultos. Para este 
efeito estimulámos o nervo sónico de indivíduos jovens e adultos, no inverno e 
na época reprodutiva, com uma sequência de sirenes artificiais simulando a 
frequência, duração e taxa de vocalizações naturais. O movimento de 
contração do músculo sónico foi registado recorrendo a um transdutor de força 
e, simultaneamente foi registado o som produzido. Esperávamos que machos 
adultos de verão produzissem sons de maior amplitude e fossem mais 
resistentes à fadiga do que machos adultos de Inverno. Não esperávamos 
encontrar estas diferenças sazonais em juvenis pré-reprodutivos. No entanto, 
esperávamos que machos juvenis no geral produzissem sons de menor 
amplitude e fossem menos resistentes à fadiga. Em paralelo à estimulação do 
nervo sónico para produção de som, foi realizada a caracterização histológica 
e histoquímica das fibras do músculo sónico para cada um destes grupos de 
modo a procurar eventuais diferenças estruturais que justificassem as 
diferenças esperadas. Machos de verão, tanto adultos como juvenis 
demonstraram ter uma melhor performance vocal em termos amplitude de 
som. A fadiga muscular parece não variar com a estação do ano mas é, no 
entanto, mais acentuada em juvenis. Os resultados referentes ao movimento 
de contração do músculo sónico mostram que, para além da contração rápida 
correspondente à frequência de estimulação, este músculo apresenta uma 
contração lenta e sustida não descrita para outras espécies deste género. Os 
cortes histológicos apresentam uma distribuição heterogénea das fibras. 
Machos de verão apresentam mais sarcoplasma na época reprodutiva que os 
indivíduos de inverno, fêmeas e juvenis. Machos de inverno e verão 
apresentam fibras de maior diâmetro que juvenis. As fibras do músculo sónico 
têm uma forma poligonal e um centro de sarcoplasma rodeado de miofibrilhas. 
A presença de fibras em remodelação e possível divisão em xarrocos adultos 
nunca tinha sido descrita nesta espécie. Machos adultos de inverno, assim 
como machos adultos de verão que não apresentam uma alta taxa de 
vocalizações naturais, aparentam ter fibras mais lentas que machos adultos de 
verão com grande performance vocal. Não foi possível determinar o 
mecanismo responsável pela contração lenta e sustida do músculo sónico. No 
entanto, postulamos que este fenómeno terá um papel importante na 
ampliação e radiação do som produzido. 
  
 
 



  

 



 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

keywords 

 

Sound production, lusitanian toadfish, Halobatrachus didactylus, sonic muscle 
fatigue, acoustical communication, seasonal variation. 
 

abstract 

 
Male territorial Lusitanian toadfish depend on their vocal capability for 
reproductive success. Sound is produced by a pair of sonic muscles intrinsic to 
the swimbladder walls, which contract as fast as 100Hz. and are therefore 
considerate to be among the fastest muscles in vertebrates. In this study we 
aimed to investigate if the physiological ability for sound production is different 
in the winter and in the breeding season, as well as in juveniles and adults. In 
that vein we have stimulated the sonic nerve of both adults and juveniles, 
during the winter and breading season, with sequences of artificial boatwhistles 
simulating the frequency, duration and rate of natural calls. The sonic muscle 
contraction movement was recorded using a force transducer. Simultaneously, 
we have recorded the produced sound. We expected that the breading adult 
males would be able to produce sound of higher amplitude and to be more 
resistant to fatigue then the non reproductive winter adult males, however we 
didn’t expect to find seasonal differences in pre-reproductive juveniles males. 
However, it was expected for juvenile males to produce sounds of lower 
amplitude and to be less resistant to fatigue than adult males in general. We 
have also examined the histology and histochemistry of sonic muscle fibers to 
search for eventual morphological differences between these groups in order to 
justify the expected differences in physiological ability for muscle contractions. 
Summer males, both adults and juveniles, showed a better performance in 
terms of a higher sound amplitude. The muscle fatigue didn’t seem to change 
between seasons but is more pronounced in juveniles than adults. The 
contraction movement of the sonic muscle results shows the expected fast 
contractions that follow the stimulation frequency and also a slow and 
sustained contraction that hasn’t been described in any other toadfish specie. 
Histological sections of the sonic muscle show fibers that are arranged in 
several orientations. Summer males sonic muscle fibers have higher 
sarcoplasm area than winter individuals, females and juveniles. Winter and 
summer males showed a larger sonic muscle fibers diameter than juveniles. 
The fibers were found to have a polygonal shape and a central core of 
sarcoplasm surrounded by myofibrils. The presence of remodeling and possible 
division fibers in sonic muscle in adult males has never been described in this 
species. The sonic muscle of both winter and summer adult males that did not 
vocalize at high rates in a natural environment presented slower fibers than 
summer adult males that were previously found to be strongly vocal. It was not 
possible to determinate the mechanism responsible for the slow and sustained 
contraction of the sonic muscle but we postulate that this phenomenon has an 
important role in sound amplitude and radiation.  
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1. Introduction 

1.1. Acoustic communication 

Communication plays a central role in animal behavior (Kumar, 2003). 

Receivers engaging in acoustic communication must be able to detect and 

discriminate differences among signals (Wiley & Richards, 1978) that may 

encode diverse information such as species identity, motivation, individual 

condition, etc.  Vocal signals may play an important role in mate choice if 

females can use acoustic cues to select mates associated with increased 

holding potential, better parental care, good territory or genetic quality 

(Andersson, 1994). These cues can be encoded in different acoustic signal 

parameters such as repetition rate or intensity (Bradbury & Vehrencamp 2011). 

Just like in other taxa, sound production appears to be widespread in fish. Fish 

sounds are typically low-frequency, pulsed signals that mainly differ in duration, 

number of pulses and repetition rate (Winn, 1964; Myrberg et al., 1978). There 

are mainly three different mechanisms used to produce sound in sonic fishes: 1) 

the contraction of sonic muscles (SM), that may be intrinsic or extrinsic to the 

swimbladder (SB); 2) stridulation by rubbing together certain structures, and 3) 

hydrodynamic sounds that are produced by quickly changing speed and 

direction while swimming (Tavolga, 1971; Demsky et al., 1973; Fine et al., 1977; 

Kasumyan, 2008). 

Several fish species produce sounds for social communication in contexts such 

as courtship (Lugli et al., 1997), agonistic interactions (Ladich, 1997), warning 

alarms (Matos, 1997), distress (Vasconcelos & Ladich 2008) and competitive 

feeding (Amorim & Hawkins, 2000; Ladich & Fine, 2006), and vocalizations can 

be related to particular activities (Amorim 2006). A variety of behaviors 

associated with vocalizations was observed in a few species. For example, in 

the Mozambique tilapia (Oreochromis mossambicus, Peters, 1852) 

vocalizations can be used to advertise an individual’s presence and are 

produced by a male to inform the female about its readiness for reproduction 

and the release of gametes (Amorim et al., 2003). Also, territorial fish of several 
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species use vocalizations in territorial defense (Ladich et al., 1992) and mate 

attraction (Myrberg et al., 1986). Despite the importance of acoustic 

communication in fish daily activities, information about the auditory capabilities 

is still scarce as only a few species have been investigated (Vasconcelos et al., 

2010a). 

Batrachoidids, such as the Lusitanian toadfish (Halobatrachus didactylus, Bloch 

& Schneider, 1801), gulf toadfish (Opsanus beta, Goode & Bean, 1880), 

midshipman fish (Porichthys spp.) and oyster toadfish (Opsanus tau, Linnaeus, 

1766) produce sound by fast contraction of a pair of sonic muscles embedded 

on the swimbladder walls. Each contraction pushes the swimbladder wall 

inwards, leading to a rise of the inside pressure, followed by relaxation and 

consequent pressure decrease. These oscillations of the swimbladder wall and 

following pressure variations are transmitted to the surrounding water in 

the form of sound waves (Skoglund, 1961; Fine et al., 2001).   

According to Tavolga (1964) the SB behaves like an air bubble and its natural 

vibration frequency is around the contraction frequency of the SM which 

contributes to the efficiency of the system. 

The sounds produced by this family include boatwhistles, grunts, moans, growls 

boops, trains, croaks, double croaks, long grunt trains and a mixed grunt–croak 

call (Amorim, 2006). This entire set of sounds is not produced by all 

batrachoidids and the same sound type can differ between species. For 

example the boatwhistle lasts several hundred milliseconds in the O. tau and 

presents only one note, while in O. beta it has several notes (Fine, 1978; 

Thorson & Fine, 2002).  

The H. didactylus boatwhistle is similar to the one emitted by O. tau. This 

species can produce several other sound types like grunts, croaks and double 

croaks (Amorim et al., 2008). The courtship sound of O. beta is very complex: it 

may initiate with one up to three grunts that are followed by one (long tonal) to 

three (short) boops and lasts more than a second (Thorson & Fine, 2002).  

Scarecrow toadfish (O. phobetron) is another toadfish that produces single 

boatwhistles comparable to the ones of O. tau, but longer (Fine et al., 1977). 
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Also, in the plainfin midshipman (Porichthys notatus, Girard, 1854), territorial 

males make short (50–200 ms) broadband agonistic grunts that are produced 

singly or in long trains at rates of 1–2 Hz (Brantley & Bass, 1994). During 

courtship, these males communicate through hums (a long duration sound that 

can last from a few second to over an hour) (Ibara et al., 1983; Brantley & Bass, 

1994). 

 

1.2. The Lusitanian toadfish, Halobatrachus didactylus 

The Lusitanian toadfish, Halobatrachus didactylus, is a benthic, solitary and 

relatively sedentary batrachoidid specie (Costa, 2004). Like most batrachoidids, 

H. didactylus has a very robust body, dorsoventrally flattened at the 

anterior region and compressed laterally in the posterior zone (Albuquerque, 

1954). The head is very large, with a big slightly protractile mouth (Bertin & 

Arambourg, 1958). The body is usually covered by mucus (Bauchot & Pras, 

1980; Costa, 2004), which has antimicrobial properties to protect the fish from 

fungus and other infections (Knouft et al., 2003). This specie can be up to 50 

cm long, although most of the specimens do not exceed 35 cm (Roux, 1986; 

Bauchot, 1987). Average and maximum sizes are population dependent. In 

Portugal, the Tagus estuary population has the largest individuals (Costa, 

2004).  

It is a voracious predator, feeding from a wide range of prey (Cárdenas, 1977; 

Sobral, 1981; Costa et al., 2000), and occupying the top position in estuarine 

and coastal lagoons trophic webs, where it plays an important role in the 

structure and balance of the existing biological communities (Costa, 2004).  

 

1.2.1. Distribution 

H. didactylus occurs in the continental shelf from the Gulf of Guinea to the Gulf 

of Biscay, including the western Mediterranean (Roux, 1981, 1986; Bauchot, 

1987), and in The Atlantic Islands of Madeira (dos Santos et al., 2000), 

Canaries (Fowler, 1936) and Cape Verde islands (Reiner, 1996). Considerable 
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populations are only found between the Liberian coast and the south of Portugal 

(Costa, 2004).  It is a marine species adapted to brackish environments. In the 

Portuguese coast it occurs in estuaries (Tagus, Sado, Mira, Arade and 

Guadiana) south of Cape Carvoeiro, in lagoons and in coastal environments 

(Ria de Alvor and Ria Formosa) (Costa, 1993; Sobral & Gomes, 1997; Costa & 

Costa, 2002; Costa et al., 2003).  

These fish are usually associated with soft sand, muddy substrates, but can 

also be found in hard substrates, under stones or sheltered in rocky crevices 

(Roux, 1986; Bauchot, 1987; dos Santos et al., 2000). 

 

1.2.2. Reproduction 

The reproductive season of H. didactylus, in the Tagus estuary, occurs from 

February to June (Pereira, 2006). This reproduction window depends on 

climate conditions and may differ from year to year. Fish reproductive behavior 

and nests with eggs have been found in the Tagus estuary between late April 

and July (Amorim, personal communication, 2012). This species is gonocoric 

(Costa, 2004) with external fertilization.  

The males may belong to one of two morphotypes. Type I males are territorial 

and use boatwhistles to attract the females into their nests. Upon female 

spawning the eggs attach to the nests ceiling and are then fertilized by the 

male. The females leave the parental care exclusively to males until the 

offspring become free-swimmers (Roux, 1986; dos Santos et al., 2000).  

Another male morphotype exists, presenting different morphometric and 

endocrine characteristics adjusted to their alternative mating strategy (type II 

males or sneakers). Type II males are satellite males that approach type I 

males’ nests and sneak spawn stealing fertilizations from territorial males 

(Brantley & Bass, 1994; Bass, 1996, Bass & McKibben 2003). Type II males 

present large testes, produce large quantities of sperm and try to reproduce as 

many times as possible during the reproductive season (Modesto & Canário, 

2003a). On the other hand, type I males have larger accessory glands. These 

structures have an important role on the production of substances that reduce 
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sperm dispersion, thus increasing sperm active life span in the nest (Barni et al., 

2001). Sneakers also have smaller sonic muscle volume than type I males 

(Modesto & Canário, 2003a). 

The abundance and proportion of morphotypes of H. didactylus males has been 

studied in the Mira (Costa, 2004) and Tagus (Pereira, 2006) estuaries. Results 

showed a significant predominance of type II males in the Mira estuary and 

of type I males in the Tagus estuary. According to Pereira (2006) the fact that 

the Tagus estuary ecosystem offers a high number of habitats and nesting 

places, leads to a decrease in competition for those places. This condition 

makes it less favorable to the development of alternative morphotypes. 

 

1.2.2.1. Maturation scale of the gonads of H. didactylus 

Costa (2004) created a scale of sexual maturation for both males and females 

based on histological observations of fresh gonads. The Gonadosomatic index 

(GSI) is used to analyze the development level of the ovary and testicles. 

Immature or stage I gonads characterize small and virgin individuals. Females 

and males in this state have a very low GSI. The second stage (II) is called 

resting/recovery stage and occurs in individuals that have never reproduced 

before and in those that are between breeding seasons. On stage III 

(developing stage) the gonads prepare to reproduction and start to grow. 

Especially in females, the oocytes occupy 1/5 of the abdominal cavity. On the 

next stage (IV), maturing state, GSI is higher than in the previous stages. In 

males the growing testicles occupy 1/5 of the abdominal cavity. After that, the 

mature stage (V) is when the gonads present their largest size and GSI is at its 

highest value in the cycle. The last state, spent (VI), occurs after spawning and 

the GSI values decrease again. 

 

1.2.3. Vocal repertoire 

H. didactylus has a particularly large vocal repertoire for teleost fishes. Type I 

males produce at least five different sounds depending on social context: 
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boatwhistles, grunt trains, croaks, double croaks, long grunt trains and also a 

mixed grunt–croak call (Amorim & Vasconcelos, 2006; Amorim et al., 2008). 

The fundamental frequency of the sound depends on muscle contraction rate 

(Skoglund, 1961; Edds-Walton et al., 2002). 

Boatwhistles are tonal courtship sounds produced by type I  males to attract 

females into their nests on shallow waters in the rocky intertidal zone 

(Skoglund, 1961; Edds-Walton et al., 2002; Thorson & Fine, 2002, Vasconcelos 

et al., 2012). Boatwhistles are multi-harmonic sounds lasting c. 800 ms with a 

fundamental frequency of c. 60 Hz (Amorim et al., 2006). Grunts are short 

pulsed sounds emitted in trains with fundamental frequency around 100 Hz. 

Grunts are produced throughout the year and are generally associated to 

distress or to agonistic contexts (Amorim, 2006).  

Croaks are low frequency pulsed sounds emitted in isolation (Amorim et al., 

2006).  Double croaks are composed by two croak-like elements that present 

both amplitude and frequency modulation (dos Santos et al., 2000; Amorim et 

al., 2006). 

 

1.3. Muscle structure and contraction 

The skeletal muscle produces movements of the limbs or jaws and is the most 

abundant tissue in the vertebrate body (Keeton & Gould, 1993). This type of 

muscle is formed by bundles of cylindrical and elongated cells, known as 

muscle fibers or myofibers which are multinucleated (with peripheral nucleus in 

some vertebrates) and exhibit transverse striations. It is responsible for a 

vigorous and fast contraction subjected to voluntary control (Junqueira, 2010).  

The muscular tissue contains a big amount of cytoplasmic filaments composed 

of contractile proteins. These proteins are responsible for the forces 

necessary to generate muscle contraction, using ATP molecules for fuel 

(Junqueira, 2010). The myofibrils present four important proteins: actin, myosin, 

tropomyosin and troponin. The thick filaments are constituted by myosin and the 

thin filaments are composed by the three other proteins (Junqueira, 2010).   
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1.3.1. Types of muscle fibers  

Muscular tissue growth can happen by two different mechanisms protein 

retention (hypertrophy – characterized by the increase in muscle mass and size 

or the cross-sectional area of the myofibers) and cell proliferation (hyperplasia). 

These mechanisms can have different contributions to muscle growth in teleost 

fish of different species (Veggetti at al., 1993; Lin et al., 2011). In fish, the 

precursor cells (or blast cells) can be responsible for the proliferation and 

synthesis of new fibers that continue to play a key role in muscle growth after 

the juvenile states (Johnston, 2001). 

The skeletal muscle fibers do not all have the same structure or function. They 

differ in color, myoglobin levels, vascularization, contraction speed (depends on 

their ability for ATP usage), fatigue resistance, localization and metabolic 

processes (oxidative or glycolytic) (Kelly & Rubinstein, 1994; Purves et al., 

(2001). 

 According to Kelly & Rubinstein (1994), Chen at al. (1998), Johnston (2001) 

and Junqueira (2010), depending on the structure and molecular composition, 

there are slow fibers and fast fibers known has type I and type II fibers 

respectively.  

Type I fibers are dark red, have higher sarcoplasm content, myoglobin (which is 

responsible for oxygen storage in the muscle) and mitochondria. They are 

enriched with blood vessels, its contraction rate is slow and present minor 

fatigue on long-term activities. Fatty acids are the primary source of energy. In 

terms of metabolic processes, the oxidative capacity is higher than in type II 

fibers (Chen at al., 1998; Johnston, 2001; Junqueira, 2010).  

Type II fibers are specialized on fast and discontinuous contractions with 

consequent rapid fatigue in a short period of time, have less myoglobin and 

therefore they are pink or white. These cells use anaerobic breakdown of 

glycogen for energy and have a fast contraction (Kelly & Rubinstein, 1994; 

Junqueira, 2010). 

These fibers are subdivided in at least 5 types (IIA, IIB, IIC, IIAC, and IIAB) 

according to functional and biochemical features, but we will only focus on IIA 
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and IIB fibers type (Kelly & Rubinstein, 1994; Chen at al., 1998; Scott et al., 

2001).  

The first group, IIA, has faster fibers than type I but have equal mitochondria 

content as well as oxidative capacity (Johnston, 2001). 

Type IIB fibers are the fastest, they are white and depend on glycolysis to 

obtain energy but are the ones that fatigue faster. These fibers are the ones 

with less mitochondria, vascularization (due to this fact they are called white) 

and oxidative capacity. The glycolytic capacity is the highest among all fibers 

(Johnston, 2001; Junqueira, 2010). 

The different types of fibers can be identified by histochemical methods, such 

as ATPase activity of the myosin (higher in type II fibers) and Succinate 

Dehydrogenase (SDH) (higher in type I fibers).  SDH is a very important 

enzyme in the Kreb’s cycle indicating aerobic metabolism. This enzyme is used 

to distinguish between oxidative and nonoxidative (in fact, “less” oxidative) 

fibers. High oxidative capacity fibers generate ATP using oxidative 

phosphorylation in the mitochondria, so cells that contain more mitochondria 

have a higher oxidative capacity (Chen et al., 1998; Holmes et al., 2007; Lieber, 

2010). 

 

1.3.2.  Sonic muscle 

Not much is known about the SM fibers in H. didactylus. Following the thought 

of Tavolga (1964) that compared several sonic muscles of different fishes 

(squirrelfish, toadfish, sea robin red hind) and based on dissections, stimulation 

experiments and serial cross sections, we can conclude that all these muscles 

must be homologous structures, despite the differences in appearance and 

location. We therefore assume some similarity between the SM structure 

among the toadfish family.  

At very fast contraction frequencies, independent contractions are not possible 

to produce, leading to fused contractions, with no relaxation period between 

them (e.g. tetanization of the muscle). But in some batrachoidids there is no 
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tetanization until 300 Hz at 25ºC and each contraction is seen despite the high 

contraction rate. For this reason, the sonic muscles in this family 

(Batrachoididae) are known as the faster muscle in vertebrates (Rome et al., 

1996). 

In O. tau sonic muscles are very fast and tetanize at 340 Hz (Fine et al., 2001) 

corresponding to a contraction period of only about 3 ms. This is exceptionally 

fast when compared to the contraction frequency of the swimming muscles that 

in this family is around 1-5 Hz (Rome, 2006) with a twitch lasting 500 ms (Rome 

et al., 1996). To achieve this exceptional performance, the fibers of the sonic 

muscle have several morphological and biochemical adaptations, such as a 

very abundant sarcoplasmic reticulum that represents one third of the fiber 

volume (Appelt et al., 1991; Franzini-Armstrong et al., 1983) with numerous 

Ca2+ pumps (Appelt et al., 1991) that allow the faster calcium transportation 

ever recorded in vertebrates (Rome et al., 1999).  

Several batrachoidids show sexual dimorphism and hypertrophy of the sonic 

muscles during the mating season (Fine et al., 1990; Brantley et al., 1993; 

Connaughton et al., 2000; Modesto & Canário 2003b). Furthermore during the 

breeding season type I males present a considerable increase in the SM mass 

compared to females and type II males that do not show changes throughout 

the year (Modesto & Canário, 2003a). 

In P. notatus the SM is made of a group of specialized muscle fibers controlled 

by the central nervous system (Bass 1989; Bass & Baker, 1990). These fibers 

have an interesting radial morphology exhibiting a polygonal shape with a 

sarcoplasm center surrounded by a contractile tube of alternating streams of 

sarcoplasmic reticulum and myofibrils (Fine et al., 1993; Nahirney et al., 2006). 

Fine et al. (1990) postulate that this arrangement results from the need for fast 

muscle contraction. The cylinders’ organization allows for the minimization of 

the distance, and therefore time, for calcium transportation between the 

sarcoplasmic reticulum and the myofibrils. At the periphery of these cells there 

are multiple nucleus and below the sarcolemma glycogen granules and 

mitochondria are present (Fine et al., 1990).  
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In P. notatus type I males have abundant mitochondria surrounding the tubes 

that can occupy approximately 53% of the myofiber volume (Lewis et al., 2003). 

During the breeding season, besides the higher development of the SM 

previously described, territorial males have a higher storage of glycogen 

(Mitchell et al., 2008) and more mitochondria (Appelt et al., 1991) due the a 

supplementary demand for vocal activity. Another interesting feature in the 

Porichthys genus is that the SM fibers of type I males have the myofibrils’ 

largest Z band, which can reach a width of 1.2 μm (Bass & Marchaterre, 1989; 

Lewis et al., 2003), 20 times wider than comparable Z bands of type II males 

and females, or of typical vertebrate skeletal muscle (Bass & Marchaterre, 

1989).  

 

1.4. Objectives  

In the present work we have evoked muscle contractions by electrical 

stimulation of the sonic nerve and studied the movement changes induced at 

the swimbladder wall and the resulting sound produced by toadfish collected 

both during and outside the reproductive season. We expected to find seasonal 

differences in the sonic muscles fatigue resistance, force upon contraction and 

sound production amplitude in adult type I males but not in juvenile pre-

reproductive males. 

Furthermore we have examined sonic muscle histology and histochemistry and 

have searched for possible morphological differences between winter and 

summer individuals that might explain differences in physiological ability for 

muscle contractions. We also inspected the muscle fibers for possible 

differences associated with fast and slow muscle contraction types. 



 

 

 

MATERIALS AND METHODS 
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2. Materials and methods 

2.1. Fish collection and maintenance 

H. didactylus type I males and females were caught in the Tagus estuary by 

fisherman, with nets or beam trawl, or collected from artificial nests between 

January and July of 2012. Fish obtained at the artificial nests in the summer had 

their vocal activity previously monitored for a period of about two weeks for 

another project. Vocal activity in the field was recorded as in Jordão et al. 

(2012). The fish might be temporarily kept in the field in tanks (3 m in diameter 

and 0.5 m deep) but were always transported in the same day to sea water 

stock tanks (80 l) kept at room temperature until recordings. The tanks were 

provided with aeration and filters (for suspended particles and protein). All fish 

were used within 15 days of capture.  

 

2.2. Electrical stimulation of the sonic nerve 

In a preliminary study the electrical stimulation was delivered, via a stimulus 

insulating unit (Grass, Model SIU-V; West Warwick, U.S.A.), to the double hook 

electrodes positioned at the sonic nerve and electrically insulated from the fish 

tissues with a mixture of vaseline (DAB 9; Hagen, Germany) and mineral oil.  

The electrical stimuli were generated by a Phipps and Bird Isolated Square 

Wave Stimulator (Model 7092-611; Richmond, U.S.A.). The stimuli consisted of 

a 0.5 ms square wave, with amplitude large enough to elicit clear muscle 

contractions delivered at increasing frequencies, starting at 1 Hz and manually 

adjusted up to about 120 Hz, a rate corresponding to the maximum contraction 

frequencies measured in grunt sounds of vocalizing fish. In the subsequent 

experiments an electrical stimulus was prepared to mimic the contraction 

frequency and duration observed on an average natural boatwhistle. Each 

“artificial boatwhistle” (AB) stimulus, created by a Digital Stimulator (Cygnus 

Technology Inc., model PG4000; Pennsylvania, U.S.A.), consisted of 0,5 ms 

square wave pulses of 9 V delivered at 50 Hz for 700 ms (i.e. 35 pulses per AB)  
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and were repeated every 3 seconds for a total 5 min. This protocol resulted in a 

5 min stimulation program at 20 boatwhistles/min, a rate observed in natural 

vocalizations of highly motivated fish (Amorim et al., 2010), producing a total of 

100 AB. 

 

2.3. Anesthesia and surgical procedure 

The subjects were anesthetized in a saltwater bath with benzocaine (Sigma-

Aldrich) (300 mg/litre) for c. 15 minutes. Subsequently they were moved from 

the anaesthetizing container to a foam holder, and positioned with the ventral 

side upwards.   

The subjects were kept breeding but anaesthetized during the entire experiment 

by perfusing the gills with water containing the anesthetics through a T-shaped 

tube positioned in the fish mouth. The tube was continuously fed by a small 

pump (Hailea, HX-800; Raoping County) in a water closed circuit (Fig.1). 

 

Figure 1 - Diagram of the water system used during the surgical procedure and Sonic Nerve 

(SN) stimulation. 

An incision was made on the ventral surface of the fish to expose the 

swimbladder and the sonic muscles. The abdominal wall and the intestines 

were pushed aside. One of the sonic nerves was exposed with a needle, 

involved using a double hook silver electrode and isolated with vaseline (DAB 9; 

Hagen, Germany). The sonic nerve (SN) was then stimulated with the AB 
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stimulus described in the previous section. The experiments were performed at 

room temperature (approx. 22ºC). 

 

2.4. Recordings 

Sonic muscle electrical activity was recorded by inserting one stainless steel 

electrode, insulated for its extension but the tip, in the sonic muscle, while a 

silver reference electrode was positioned into the abdominal cavity. This 

allowed for electromyogram (EMG) recording of the SM during the contractions 

elicited by electrical stimulation of the SN.  

The EMG signal was monitored with an oscilloscope (EZ Digital, OS-5020; Long 

Branch, New Jersey, U.S.A.), amplified (single ended; 1000 times; homemade 

amplifier MPIV Nr.20905476), digitized (50 kHz) by an Axon Instruments A/D 

converter board (Digital data 1200; Union City, California, U.S.A) and recorded 

to a PC running Axoscope 9.0 (Axon Instruments Inc.; Union city, California, 

U.S.A.). 

Upon contraction of the sonic muscles the pressure increased inside the 

swimbladder and this change pulled out the blade of a force transducer (UFI, 9 

mV/g, 0-15g, UFI 1030; California, U.S.A.) previously made to contact with the 

ventral surface of the relaxed swimbladder. Thus, the movement/force exerted 

on the sensor by the swimbladder wall (SBM) and due to the SM contraction 

was recorded. The sound generated by SM contraction was captured by a 

condenser microphone (Beyerdynamic, CK 703 7200, frequency response 

20Hz - 20kHz, +/-3 dB; Farmingdale, New York, U.S.A.) positioned 5 cm from 

the swimbladder. The microphone signal was conditioned by an audio pre-

amplifier (Edirol UA 25 EX; Roland, Los Angeles, U.S.A.) and simultaneously 

digitized and recorded through the same Axon Instruments device (see above). 

After the procedure, the subjects were euthanized with an excess dose of 

anesthesia. They were measured (total length, TL and standard length, SL) and 

weighed (total weight, TW and eviscerated weight, EW). The swimbladder was 

removed, measured (volume, length and width) and weighed (SW). The gonads 
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were weighed (GW) and their state of maturity was determined (see table I). 

The GSI and the swimbladder index (SBI) were calculated as 100 x GW/WE 

(Modesto & Canário 2003a) and 100 x SW x (EW) -1, respectively. Eighteen 

swimbladders were fixed in formaldehyde for further histological work.  

 

2.5. Histology of the sonic muscle 

For histological work 17 toadfish were used. From those, two were winter adults 

males (WAM), three were summer vocal adult males (SVAM) and three were 

silent summer adult males (SSAM) (see data analysis). Regarding juveniles, 

two were winter males (WJM) and 3 were summer males (SJM). We have also 

used one winter adult female (WAF) and three summer adult female (SAF).  

SM were isolated and fixed in formaldehyde (10%) for a period of 30 days. After 

a month in fixative, the SM were prepared for stereological analysis by a 

method adapted from Emerson et al. (1990).  

 

 

 

Figure 2 - (a) Lateral view of the SB of the H. didactylus. The purple line depicts a SM.; (b) 

Transversal (P1, P2, P3) and longitudinal (P4) section of the sonic muscle.  

 

After SM from adults fishes were removed from the fixative, four slices with        

1 cm2 were dissected, each one corresponding to the P1, P2, P3 and P4 

sections, as depicted in Figure 2. In the case of juveniles it was only possible to 

take P2 and P4 due to sonic muscle size. The small fragments were placed in 

biopsy cassettes and transferred to 70% ethyl alcohol and dehydrated until 95% 

ethanol. The muscles were embedded in 2-hydroxyethyl-methacrylate (GMA) 

resin (Heraeus Kulzer Products, Technovit 7100; South Bend, Indiana, U.S.A.) 

a b 
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to produce the blocks. Using a microtome (Leica Biosystems, RM 2155) three 

sections with 3 μm were made from each block. The sections were stained with 

toluidine blue, after which the preparations were cleaned with Neo-Clear 

(Merck; Darmstadt, Germany), and mounted in Neo-Mount (Merck; Darmstadt, 

Germany).  

Six histological sections with transversal fibers from P1, P2, P3 and/or P4 (see 

table I) of each fish were photographed in an Olympus BX60 light microscope 

(Japan) equipped with a with an Olympys DP50 camera (Japan).  

 

Table I – Number of sections and division used on each fish. 

Fish 
No of 

sections 

Divisions 

used 
 Fish 

No of 

sections 

Divisions 

used 

       

WAM 1 3 P2, P3, P4  WJM 2 1 P4 

WAM 2 3 P2, P3, P4  SJM 1 1 P4 

SVAM 1 2 P1, P3  SJM 2 1 P4 

SVAM 2 1 P4  SJM 3 1 P4 

SVAM 3 1 P4  WAF 1 2 P3, P4 

SSAM 1 1 P4  SAF 1 1 P1 

SSAM 2 1 P1  SAF 2 1 P4 

SSAM 3 1 P4  SAF 3 1 P4 

WJM 1 1 P4     
 

 

2.6. Histochemistry 

Some small fragments from SM from one Winter Adult Male (WAM), Summer 

Vocal Adult Male (SVAM) and Summer Silent Adult male (SSAM) were 

collected, covered with free bubble air Tissue-Tek (Bioplus OCT Compound; 

Korea), frozen in isopentane (VWR; Radnor, Pennsylvania, U.S.A.) over dry ice 

and stored at -80ºC.  

Eight micrometers sections were made from each muscle pieces in the cryostat 

(Bright, Model OTF Cryostat; Huntingdon, England) dried at room temperature 
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and stored again at -80ºC. The sections were washed with distilled water and 

incubated at 37ºC with an incubation solution (0.2 M phosphate buffer with a  

7.4 pH, 0.2 M sodium Succinate (Sigma Aldrich)  and 1 mg/ml Nitro Blue 

Tetrazolium (Sigma Aldrich) for 1:15 hour. A new wash of the sections was 

made and the preparations were mounted in glycerol. The results were 

photographed in an Olympus BX60 light microscope equipped with a with an 

Olympys DP50 camera.  

 

2.7. Data analysis  

The test subjects were divided in summer (caught in the breading season) and 

winter (caught out of the breading season) fish according to date of capture and 

gonads maturity stage (see table II). Summer adult males were also divided as 

vocal and silent according to the amount of monitored vocal activity during the 

previous 15 days. Fish that produced a significant vocal activity were classified 

as vocal. Silent toadfish were fish that either did not produce any sound or only 

vocalized for very short periods. Sound and swimbladder movement data from 

singing and silent summer adult fish were pooled together to increase sampling 

size for analysis. It was not possible to determine the morphotype of juvenile 

individuals. 

In the case of artificial boatwhistle sounds we have measured the pulse 

amplitude of the first 4 pulses of all identifiable sounds. We have then 

calculated the maximum amplitude and the mean amplitude of each 

boatwhistle. After a variable amount of time, depending on the subject, no 

sounds were produced in spite of the continuing stimulation of the sonic nerve. 

We have counted, for each subject, the number of artificial boatwhistles with 4 

identifiable pulses and used this as a sound fatigue index (SFI) (Fig. 3).  
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1 (v) 

Sound  

   

 

 

 

10 (v) 

Stimulus 

Figure 3 – Sound waveform (top) created by the stimuli (bottom). The dotted red line represents 

the sound amplitude. 

 

Regarding the swimbladder movement, we have applied two different filters 

(created using Adobe Audition 3.0 - Adobe Systems, San Jose, California, 

U.S.A.) to the SBM recorded signal. The low pass filter had a 20 Hz frequency 

of cut, Fast Fourier Transform base with 2048 point and a Blackman Window. 

The other filter differs only in the cut off frequency, 14 Hz.  

The first one was a high pass filter were the mean amplitude and the time since 

the stimuli until the maximum amplitude of the first 4 and last 4 pulses of the 1th, 

2th, 3th, 28th,29th and 30th artificial boatwhistles were recorded.  

After the SBM signal was filtered with the low pass we noticed that there were 

different patterns of movement (see table III).  

http://en.wikipedia.org/wiki/San_Jose,_California
http://www.google.com.br/url?sa=t&rct=j&q=fft%20fourier%20transform&source=web&cd=1&ved=0CCEQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFast_Fourier_transform&ei=szqiUPirNYTLhAf-zYC4Cw&usg=AFQjCNG4CRtY8aUnfktzpT3UnZcnkTStuA
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Table II – Morphometric measurements of the individuals used on each procedure. 

 

 

 

 

Category 

Gonads 

Maturation 

State 

Sound SBM Histology 

n 

Standard 

Length 

(cm) 

Body 

mass (g) 
n 

Standard 

Length 

(cm) 

Body mass 

(g) 
n 

Standard 

Length 

(cm) 

Body 

mass (g) 

Winter Adult Male (WAM) II 5 28.4-43.8 604-2485 9 24.7-43.8 408-2485 2 28.3 704 

Winter Adult Female (WAF) II 0 n.a. n.a. 0 n.a. n.a. 1 25.4 505 

Winter Juvenile Male (WJM) I 3 9.3-10.5 16 -28 3 9-10 16-28 2 9.7-10.5 16-23 

Summer 

Adult Male 

(SAM) 

Vocal (SVAM) IV;V;VI 4 29.5-37 624-1495 4 29.5-37.0 624-1495 3 29.5-39.1 
624-

1147 

Silent (SSAM) IV;V;VI 4 35.4-39.1 1102-1390 5 32.0-39.1 814-1390 3 32.6-37.2 
804-

1495 

Summer Adult Female (SAF) V 0 n.a. n.a. 0 n.a. n.a. 3 21.4-25.6 334-425 

Summer Juvenile Male (SJM) I 5 8.0-10.7 14-20 6 8-10 14 -36 3 6.8-14.1 13 -17 
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Table III – SBM patterns (a, b, c and d) in toadfish in the 1
th
, 30

th
 and 100

th
 artificial 

boatwhistles. 

 

Due the diverse force/movement patterns exhibited by the AB along time we 

integrated (custom made program by Paulo Fonseca) the area under each 

recording of an AB (which can be regarded as a proxy for the total work 

developed by the SM during the time of one AB) for all 100 ABs produced 

during an experiment. From this integration data we measured the maximum 

shown by an AB recording within the 100 repetitions and the mean per fish. As 

a measure of fatigue we determined movement fatigue index (MFI) where the 

AB in an experimental sequence corresponded to 50% of the maximum. 

 Boatwhistle no. 1 Boatwhistle no. 30 Boatwhistle no. 100 

a 

 

 

 

 

 

 

 

b 

 

 

  

c 

 

 

 
 

 

 

d 
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Regarding the histological cuts, we have quantified the number of normal and 

remodeling fibers percentage per fascicule (%RF), as well as the diameters of 

10 fibers in each SM fascicle using a random grid from Image J Software 

(National Institutes of Health, U.S.A). This grid had two different sizes: 500 μm 

for adults and 200 μm for juvenile’s fascicules. The density of the fibers (number 

of fibers/fascicle area) was also estimated. 

To determine the myofibrils and sarcoplasm areas we used Image J. This 

software measures the area based on color intensity but some histological 

structures such as blood vessels and erythrocytes had similar intensities 

comparing to the myofibrils area. In order to exclude those structures, we 

assessed manually case by case their diameters range and their morphology. 

 Only elements between 45 μm - 4500 μm were analyzed. The myofibrils 

area/sarcoplasm area ratio (MSR) was then calculated. 

 

2.7.1. Statistical analyses 

Statistical analyses were conducted with Statistica 10 (Statsoft Inc.; Tulsa, 

U.S.A.) and all data was transformed when necessary to meet assumptions of 

the used parametric tests (Zar, 2009). 

2.7.1.1. Sound 

To test the effect of season (summer vs winter) and ontogenetic stage (adult vs 

juvenile) on both the mean and maximum amplitude of AB we used factorial 

ANOVAs. Similarly, we tested the effect of the above factors on the SFI with a 

factorial ANOVA.  

2.7.1.2. Swimbladder movement  

To test the effect of season (summer vs winter) and ontogenetic stage (adult vs 

juvenile) on the high-pass filtered mean amplitude and mean time (of 100 AB of 

al fish within each category) of the SBM we used ANCOVAs using male SL, 

GSI, and SBI as covariates. As none of the covariates has a significant effect 

we removed them from the analysis and carried out a factorial ANOVA instead. 
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Regarding the low pass filtered amplitude of the SBM we have tested the effect 

of season (summer vs winter) and ontogenetic stage (adult vs juvenile) both 

maximum and mean amplitude and MFI with a factorial ANOVA. Both amplitude 

data were log-transformed. 

2.7.1.3. Histology 

We tested the effect of the factor 'vocal activity' (two levels 0 = silent, 1= vocal) 

on each the following dependent variables: the myofibrils/sarcoplasm ratio 

(MSR), the percentage of remodeled fibers of each fascicle (% RF) and fibers 

density,  with ANCOVAs using male SL, GSI, and SBI as covariates. On the 

fibers test only SL was included in the analyses, because it was the sole 

significant covariate. 

We also tested the effect of the factor “gender” (two levels M = male, F = 

female) on MSR, Remodeling fibers percentage (% RF) and the fibers density 

with an ANCOVA using SL and GSI as covariables. 

To test the “season” factor (two levels W = winter, S = summer) effect on MSR, 

% RF and the fibers density we tried to use an ANCOVA with two factors but 

there was no homogeneity of variances. We had to test each factor using 

separate T-tests. To correct for multiple testing we used Bonferroni corrections 

for probability levels. 

To analyze the effect of the “Ontogenic state” (two levels A = adult and J = 

juvenile) on “fibers diameter” we used T-tests individually for winter and summer 

data. Since the homogeneity of variances was not achieved with data 

transformations we did not use ANOVA. To correct for multiple testing we used 

Bonferroni corrections for probability levels. 

 

2.8. Ethical note 

All efforts were made to maximize animal welfare. The performed procedures 

respect all the current Portuguese animal welfare laws, guidelines and policies. 
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3. Results 

3.1. Sound 

50 Hz stimulation of the sonic nerve generated boatwhistles (Fig. 4) with an 

initial vigorous response that decreased over the stimulation period. At the end 

of stimuli bout only a single weak pulse was generated.  

 

Figure 4 – sound waveform (top) and Stimuli (bottom) evoked by 700 ms trains of stimuli (50Hz) 

applied to the sonic nerve. 

 

Artificial boatwhistles with maximum amplitudes were produced in the beginning 

of the stimuli (Fig. 5). Summer males (both adults and juveniles) produce 

significantly higher amplitude boatwhistles compared to winter individuals 

(Table IV, Fig. 6b).  

AB mean amplitudes were higher in summer specimen than in winter ones but 

there was no difference between adult and juvenile fish (Table IV, Fig. 6a). At 

Artificial 

 Boatwhistle  No. 1 

Artificial  

Boatwhistle  No. 100 

 

3.2.  

3.3.  

 

3.4.  3.5.  

Sound 

Stimulus 

    0            Time (ms)            700        0               Time (ms)           700 
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the 30th artificial boatwhistle all toadfish presented little sound amplitude, except 

for the summer adults (Fig. 5). 

Adult fish fatigues significantly less as the first four pulses could be measured 

until a higher order of artificial boatwhistles (Table IV; Fig. 7).   

 

Table IV - Results of Factorial ANOVA showing the effects of season and ontogenic state on 

sound amplitude and fatigue on sound. All data was log-transformed and square root 

transformed when necessary to meet the ANOVA assumptions. 

Variables   

Log Maximum Amplitude F1,17 p 

Season  9.9 ** 

Ontogenic stage 1.1 0.3 

Season x Ontogenic stage 0.8 0.4 

Interception 54.4 *** 

   

Log Mean Amplitude  F1,17 p 

Season  6.3 ** 

Ontogenic state 2.6 0.1 

Season x Ontogenic stage 17.3 *** 

Interception 54.4 *** 
   

Log Sound Fatigue Index F1,17 p 

Season 0.0 0.9 

Ontogenic state 6.0 ** 

Season x Ontogenic state 1.5 0.3 

Interception 1210.9 *** 

*** p<0.001; ** p<0.01; * p<0.05. 
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Figure 6 – Comparison of the mean (a) and maximum (b) sound amplitude between winter (W) 

and summer (S) males. All the differences are significant. Dots and error bars are means and 

95% confidence intervals, respectively. All data was log-transformed to the ANOVA 

assumptions.  
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Figure 5 – Sound amplitude mean in winter adult males (dark blue), winter juvenile males 

(light blue), summer adult males (dark green) and summer juvenile males (light green). 
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3.2. Swimbladder Movement  

Stimulation at 1Hz (Fig. 8a) and 50 Hz (Fig. 8b) allowed us to see that the 

swimbladder movement has two different components. A fast twitch contraction 

follows the stimulus pattern. The other component is a sustained slow 

contraction of the sonic muscle during the entire stimulation lingering until after 

the stimulus end until muscle relaxation. At 1 Hz and 50 Hz there is a latent 

period of 6 ms.   

Figure 8a shows the contraction and relaxation of the two components. The 

black full arrow indicates the contraction of the fast component whereas the 

dotted arrow shows the relaxation. The full grey line illustrates the contraction of 

the slow component and the relaxation is marked with the dotted grey line. 
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Figure 7 – Comparison of sonic muscle fatigue resistance in winter adult males (dark blue), 

winter juvenile males (light blue), summer adult males (dark green) and summer juvenile 

males (light green). Different letters indicate statistically significant differences (factorial 

ANOVA) (p<0.01). Vertical bars represent standard deviation. 
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Figure 8 – SBM (top) at the beginning of stimulation (1
st
 stimulus – bottom) with 1 Hz (a) 50 Hz 

(b) frequency with 12.5 ms and 700 ms trains respectively of electrical stimuli. 

 

 

When stimulated at 50Hz (Table V) the muscle response in adults is robust until 

the 30th AB, just like in sound production, but the movement amplitude 

decreases towards the end of the stimulus (100th AB), where the SM does not 

contract in spite of the action potentials measured by the EMG following the 

stimuli pattern. 
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Table V – Slow component swimbladder movement on the first, thirtieth and hundredth artificial 

boatwhistles in summer adult males. 
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The SBM at 100th AB is low or inexistent compared to the first or 30th AB (Table 

VI). The high pass filter analysis was made using the 1th, 2th, 3th, 28th, 29th and 

30th AB. The amplitude of each AB results from the mean of 1th, 2th, 3th, 33th, 

34th, 35th pulses.  
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Table VI – Observed swimbladder movement (Low pass filter) on the first, thirty and hundredth 

artificial boatwhistle in winter and summer males.  
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The mean amplitude with high pass filter is higher in the summer (Table VII, Fig. 

9a), but doesn’t differ between ontogenic state (Table VII). The time of 

contraction is smaller in summer adult individuals (Table VII, Fig. 9b). There are 

no differences between seasons (Table VII). 
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Table VII - Effects of season and ontogenic state (factorial ANOVA) on mean amplitude SBM, 

and duration of swimbladder movement (700 ms) in the fast component of the muscle 

movement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 – Comparison of the mean amplitude (a) of fast contraction SBM in males from winter 

(W). Comparison of the mean time (b) of fast contraction SBM in adult and juvenile males from 

winter (W) and summer (S). All differences are significant. Dots and error bars are means and 

95% confidence intervals, respectively. Data was log or square root -transformed when 

necessary.    

Variables  Fast contraction 

Sqrt Mean Amplitude   F1,16 p 

Season   7.8 * 

Ontogenic stage  0.8 0.4 

Season x  Ontogenic stage  5.1 * 

Interception  41.6 0 

    

Log Mean Time  F1,16 p 

Season  0.4 0.5 

Ontogenic stage  5.1 * 

Season x  Ontogenic stage  0.2 0.6 

Interception  323.7 0 
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The maximum area as well as the mean area of the integration is higher during 

the summer (Table VIII, Fig. 10a, 10b and 11), there are no differences in the 

ontogenic state for both of this variables. The fatigue index doesn’t show 

differences between seasons or ontogenic stages. 

 

Table VIII - Effects of season and ontogenic state (factorial ANOVA) on maximum and mean 

amplitude SBM and fatigue in the slow component of the muscle movement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables  Slow contraction 

Log Maximum Amplitude  F1,19 p 

Season   6.23 * 

Ontogenic stage  0.002 0.97 

Season x  Ontogenic stage  1.72 0.2 

Interception  277.3 0.0 

    

Sqrt Mean Amplitude   F1,19 p 

Season   7.2 * 

Ontogenic stage  0.6 0.5 

Season x  Ontogenic stage  0.3 0.6 

Interception  93.0 *** 

    

Movement Fatigue Index  F1,19 p 

Season  0.14 0.72 

Ontogenic stage  0.01 0.92 

Season x  Ontogenic stage  0.8 0.4 

Interception  88.9 *** 
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Figure 10 - Comparison of the maximum and mean amplitude of the slow contractions 

movement from winter (W) and summer (S). Dots and error bars are means and 95% 

confidence intervals, respectively. All data was log-transformed to meet ANOVA assumptions.  

 

 

Figure 11 – Integrated mean amplitude displacement observed in winter adult (dark blue) and 

juvenile (light blue) males as well as in summer adult (dark green) and juvenile (light green) 

males. 

 

When the last peak of sound occurs the slow component of the SBM starts to 

relax (dotted grey line in Figure 12).  
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               0                         Time (ms)                       700 

Figure 12 – Stimulus, sound waveform and SBM (movement if the swimbladder) evoked by 700 

ms trains of stimuli (50Hz) applied to the sonic nerve. 

 

3.3. Histology  

The mapping of fibers orientation in the sonic muscle is presented in figure 13. 

Using four sections (Fig. 2b), transversal (P1, P2, P3) and longitudinal (P4), it is 

possible to observe that there are fibers in three different directions on the 

transversal sections (P1, P2 and P3): some are longitudinal, others transversal 

or oblique.  In contrast, the fibers presented on the P4 cuts are all transversely 

arranged. 

Based on these results the samples used on the following histological analysis 

(Fig.13) were collected from the middle (P2 and P4) or edge (P1 and P4) of the 

SM as being representative of the entire muscle. 

 

SBM 

Sound 
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Figure 13 – SM sections of H. didactylus dyed with blue toluidine:  (a) P1 section with 

transversal and longitudinal fibers. (b) P2 section with transversal and longitudinal fibers. (c) P3 

section with transversal and longitudinal fibers. (d) Transversal fibers in the P4 section. Scale 

bar: (a)100 μm, (b) 200 μm, (c) 150 μm, (d) 200 μm. 

  

The sonic nerve is surrounded by connective tissue and it has the same 

orientations of the fibers around (Fig. 14).    

a) b) 

c) d) 
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Figure 14 - The sonic nerve is surrounded by connective tissue with the same orientations of 

the fibers around it.    

 

The fibers have a sarcoplasm core around and in the middle of the myofibrils. 

The same fascicle can have fibers with a single and multiple sarcoplasmic cores 

of sarcoplasm as is demonstrated in Figure15a. Adult males in the breading 

season appear to present promptly small fibers (Fig. 15). 

 

  

Figure 15 – SM sections of a Summer Adult Male H. didactylus SM stained with blue toluidine. 

a) The sarcoplasmic core (SC) that’s light blue and myofibrils (M) that are dark blue in the 

middle and in the periphery of the SM myofibrils. Normal fiber (inside the yellow broken line) 

and remodel fiber with multiple core of sarcoplasm (inside the full yellow line). b) Smaller fibers 

near remodeling fibers (inside the red line).  Scale Bar a) 40 μm; b) 50 μm. 

 

S 

a) b) 

SC M 
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The sarcoplasmic central core of juveniles is nonexistent or very small (Fig. 

16e, 16f and 16g).   

  

  

  

Figure 16 – Sonic muscle sections of H. didactylus dyed with blue toluidine: a) Winter adult 

male; b) Summer vocal adult male; c) Summer silent adult male; d) Summer adult female; e) 

Winter juvenile male; f) Summer juvenile male. Scale bar a) 200 μm; b) 200 μm; c) 200 μm; d) 

200 μm; e) 250 μm; f) 120 μm. 

a) 

c) 

b) 

d) 

e) f) 
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Vocal males had marginally non-significant larger MSR than silent males (Table 

IX, Fig. 17a) and also presented higher fiber density (Table IX, Fig. 17b). 

However the % RF did not differ between vocal and silent males (Table IX). 

Females have higher MSR than males during all year round, and don’t show 

seasonal changes (Table IX, Fig.16d and 18a). Males MSR decrease in the 

summer (Table IX, Fig. 16a, 15b, 16c and 18a). The remodeling fiber 

percentage is higher in females (Table IX, Fig.18b). In the winter there are more 

remodeling fibers (Table IX, Fig.19c). Females have higher fiber density than 

males all year round and show an increase in the summer (Table IX, Fig.18d). 

On the contrary, males have lower fiber density during the breading season 

(Table IX, Fig.18d). 
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Table IX - Effects of season and gender on histological measurements (MSR - myofibrils 

area/sarcoplasm area ratio, % RF – Remodeling fibers percentage and fibers density). Standard 

length (SL), gonadosomatic index (GSI) and swimbladder index (SBI) were used as covariates 

The gender data ware log-transformed and square root transformed when necessary to meet 

the ANCOVA assumptions.  

 

Winter toadfish had higher MSR than summer individuals (Table X, Fig. 15a, 

15b, 15c and 19a), but no differences were found in % RF and fiber density 

(Table X).  

When we compared the MSR between juveniles and adults, juveniles have a 

higher ratio in the summer (Table XI, Fig.19a). No differences were found in 

MSR during the winter (Table XI) although, during the summer, adults have 

more remodeling fibers than juveniles (Table XI, Fig.19c). Adults have higher 

fiber density then juveniles during the summer (Table XI, Fig.19b).  

  MSR  % RF  Fibers density 

  F1,32 p  F1,31 p  F1,33 p 

Vocal activity  4.1 0.052  0.4 0.055  7.1 * 

SL  - -  6.6 *  19.9 *** 

GSI  17.1 ***  9.2 **  - - 

SBI  8.9 **  12.9 **  - - 

Intercept  11.6 *  1.0 0.33  3.9 0.06 

   .  

  F1,68 p  F1,60 p  F1,60 p 

Gender  224.3 ***  22.0 ***  15.0 *** 

Season  7.9 **  15.8 **  7.2 ** 

Gender x Season  7.1 **  0.2 0.66  15.6 *** 

SL  - -  28.4 ***  4.4 * 

GSI  - -  - -  11.2 ** 

SBI  - -  5.0 *  - - 

Intercept   76.1 0  12.9 ***  15.5 *** 

*** p<0.001; ** p<0.01; * p<0.05 
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The diameter of the fibers does not change from winter to summer in males 

(Table XII). In the summer juveniles have tight fibers (Table XII, Fig. 20a).   

Adult males have larger fibers than juveniles especially in the summer (Table 

XII, Fig. 20b and 20c). Males show fibers with larger diameter than females 

(Table XII, Fig. 20d).  

 

Table X - Effect (T-test) of ontogenic stage on histological measurements (MSR - myofibrils 

area/sarcoplasm area ratio, % RF – Remodeling fibers percentage and fibers density).  

 

Table XI - Effect of season on histological measurements (MSR - myofibrils area/sarcoplasm 

area ratio, % RF – percentage of remodeling fibers and fibers density). Tested with T-tests. 

 

Table XII - Effect of season, ontogenic state and gender on fibers diameter. All data was log-

transformed and square root transformed when necessary to meet the T-test assumptions. 

Ontogenic state MSR % RF Fibers density 

 df T p df T p df T p 

Winter 12.2 -2.5 0.02 22 2.1 0.05 16.4 -4.3 * 

Summer 18.4 -8.8 *** 47.7 4.9 *** 18.6 -11.6 *** 

usual levels of significance after Bonferroni correction *** p<0.0002; ** p<0.002; * p<0.008 

 MSR  % RF  Fibers density 

 df T p  df T p  df T p 

Season 46 5.67 ***  32 -1.45 0.16  13 -1.83 0.09 

usual levels of significance after Bonferroni correction *** p<0.0003; ** p<0.003; * p<0.017 

Fibers diameter Adult Male Juvenile Male 

 df T p df T p 

Season 478 0.12 0.90 123.5 12.02 *** 

       

 Winter Summer 

Ontogenic state 232.2 7.7 *** 410.3 41.5 *** 

Gender - - - 460.0 34.6 *** 

usual levels of significance after Bonferroni correction *** p<0.0003; ** p<0.003; * p<0.013 
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Figure 17 – Comparison of the MSR (myofibrils area/sarcoplasm area ratio) (a) and fibers density (b) 

depending on the vocal activity (0 = silent and 1 = vocal) on summer males. Dots and error bars are 

means computed for the covariates GSI (gonadosomatic index), SBI (swimbladder index) and SL 

(standard length) means and 95% confidence intervals, respectively.  

 
 

  

Figure 18 – Comparison of the MSR (myofibrils area/sarcoplasm area ratio) (a) and fibers density (d) 

in males and females during in winter (W) and summer (S). Comparison of % RF (Remodeling fibers 

percentage) between males and females (b) during in winter (W) and summer (S) (c). Dots and error 

bars are means computed for the covariates GSI (gonadosomatic index), SBI (swimbladder index) 

and SL (standard length) means and 95% confidence intervals, respectively. All data was log or 

square root -transformed to meet ANCOVA assumptions.  
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Figure 19 – Comparison of the MSR (myofibrils area/sarcoplasm area ratio) on winter (W) and 

summer (S) males. Dots and error bars are means and 95% confidence intervals, respectively. The 

differences are significant. 

 

  

  

  

Figure 20 – Comparison of the MSR (myofibrils area/sarcoplasm area ratio) of adults (A) and 

juveniles (J) in summer (a). Evaluation of %RF (Remodeling fibers percentage) on the adult 

males (A) and juveniles (J) during summer (b). Comparison of fibers density during winter (c) 

and summer (d), between adults and juveniles. All differences are significant.  Dots and error 

bars are means and 95% confidence intervals, respectively.  
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Figure 21 – Comparison of diameter in juveniles during winter (W) and summer (S) (a). 

Comparison of diameter in adult and juveniles during Winter (b) and summer (c). Comparison of 

fibers diameter between males and females (d). All differences are significant. Dots and error 

bars are means and 95% confidence intervals, respectively.  

 

Summer vocal adult males (Fig. 22a) show a less accentuated SDH activity 

compared to both winter’s adult males (Fig. 22b) and summer’s silent males 

(Fig. 22c). Some individuals show different SDH activity in the same section of 

the muscle (Fig. 22a and 22d). 
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Figure 22 – SDH activity in SM sections of H. didactylus:  a) Winter Adult male; b) Summer 

vocal adult male; c) Summer silent adult male; d) Fibers with different SDH activity. Scale bar: 

a) 60 μm; b) 100 μm; c) 160 μm; d) 100 μm. 

 

 

a b 

c d 





 

 

DISCUSSION 



 

 

 

 

 



 

65 

 

4. Discussion 

The sonic muscle fibers orientation is arranged in several directions. Of all the 

different sections examined only the P4 (longitudinal) sections sowed mostly 

transversal fibbers. Despite differences in organization all fibers have a similar 

general morphology. The fibers were found to have a polygonal shape and a 

central core of sarcoplasm surrounded by myofibrils which is in accordance with 

the descriptions from Fawcett & Revel (1961), Fine et al. (1993), Loesser et al.  

(1997) and Nahirney et al. (2006) for other toadfish species. Unlike Modesto & 

Canário (2003b) we found a sarcoplasmic central core on the SM fibers in H. 

didactylus. We did use a different histological dye but both were general dyes. 

As Modesto & Canário (2003b), we used fibers from different locations in the 

muscle. However, Modesto & Canário (2003b) used a different histological 

methodology and this might be the one explanation for the differences 

morphological. Modesto & Canário (2003b) used a different fixative and the 

muscles were extended before sectioned which may alter the myofibrils’ 

structure. However, in an ongoing study using different histological methods we 

have extended the sonic muscle of some of our subjects resulting in a 

morphological alteration of the sonic muscle myofibrils structure but different 

from the observations of Modesto & Canário (2003b). Our sections of extended 

sonic muscles showed only longitudinal fibers, but no transversal fibers as 

those found by Modesto & Canário (2003b). We also found that the central core 

was present in most fibers of all fascicules on juveniles but it was smaller than 

in adults. These results are slightly different from the ones described by Fine et 

al. (1990), which only found the central core in a few fibers.  

Our stimulation experiment results show that, besides the individual 

contractions following the stimuli frequency (50 Hz), there is also a sustained 

contraction of the SM during sound production. This may be due to muscle tone 

(or tonus) where a different group of fibers maintain the muscle in a partially 

contracted state (Keeton & Gould, 1993). So we postulated that there may exist 

two different types of fibers, some responsible for the fast muscle contraction 

and others responsible for the slow and sustained muscle contraction. This has 
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been described in carapid fish (Parmentier et al., 2003) and verified once in O. 

tau by Appelt et al., (1991) that found a histological sample from one 

swimbladder which contained two types of fibers. These authors refer the 

presence of a few slow fibers that could be tonic and that were probably related 

to sound modulation.  

Rome et al., 1996 stimulated the sonic muscle of a different but not specified 

toadfish specie at a rate of 200 Hz, which they claim to be the frequency of the 

boatwhistle call in that specie, as well as red slow muscle at a much slower rate 

of 3.5 Hz. Like us, they also measured the force/movement of both these 

muscles with a force transducer. They did find a sustained muscle contraction in 

the slow red muscle while the results from the swimbladder muscle only show 

fast contractions (not only at 200 Hz but also at 67 Hz, a similar frequency to 

ours). Although they did not explore the idea of this sustained contraction in the 

slow red muscle they conclude that toadfish do not need sonic muscle fibers to 

produce movement that is both fast and sustained at the same time due the fact 

that sonic muscles contract synchronously during sound production enhancing 

sound amplitude by this mechanism. However, since no antagonist muscular 

mechanism exists, the swimbladder wall must regain its initial position by only 

elastic forces upon muscle relaxation. It is conceivable that an increased 

internal pressure caused by a sustained contraction of putative slow fibers 

would reduce the time needed for the swimbladder wall to resume its position, 

therefore allowing an increased efficiency at high SM muscle contraction rates.  

To confirm the presence of two fiber types, fast and slow, we tried a 

histochemical SDH approach. We found some fibers with different color 

intensity in these assays that may indicate the presence of fibers with different 

contraction speeds as found by Appelt et al., (1991). However, we did not find 

structural differences between those fibers, such as shape, distribution or 

myofibrils length like in the study with O. tau (Appelt et al., 1991). Summer 

males apparently showed less SDH activity (thus indicating the
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presence of faster fibers). However, despite the difference in color between 

summer and winter individuals, the SM fibers of all males (winter and summer) 

appear to be mostly like Type IIa fibers (fast oxidative glicolytic) which is in 

accordance with the results of Fine et al. (1986) with O. tau. Determination of 

glycogen content would confirm this. Fine & Pennypacker (1988) described that 

energy depletion in stimulated sonic muscle is expected since all the fibers in 

this muscle are Type IIa, i.e. fibers that use glycogen as a major energy 

substrate (Hoyle, 1983). Whatever the mechanism responsible for this slow 

sustained contraction, its probable role is enhancing muscle recovery upon 

relaxation and possibly sound amplitude. 

Mitchell et al. (2008) stimulated O. tau’s sonic muscle with 100 ms trains at   

200 Hz every 4 s for 5 min. They obtained a robust sound during 2 minutes but 

with some decrease in amplitude towards the end of each stimulus train       

(100 ms). The authors refer that, after 3 minutes, sound amplitude was 

markedly reduced even though the action potentials were still vigorous in the 

EMG’s. This same event happened in our experiments. Therefore, it is not 

surprising that the maximum sound amplitude is reached during the early 

boatwhistles after which the muscle starts to fatigue and consequently the 

sound amplitude reduces. In our study, at the 30th evoked boatwhistle 

(approximately after 1.5 minutes) all toadfish sounds exhibited a very small 

amplitude, except for the breading (summer) adults that showed a decrease in 

sound amplitudes a bit later, starting at the 40th evoked boatwhistle 

(approximately 2 minutes into the stimulation train). Summer males also 

presented higher mean and maximum sound amplitudes compared to winter 

males. This increased ability in sound production shown by summer males 

(both in sound amplitude and fatigue resistance) is in accordance with our 

expectations since, during the breading season males have additional vocal 

tasks such as the attraction of females (Vasconcelos et al., 2012) and 

defending their nests from other males (Vasconcelos et al., 2010b). 

We must take into consideration that to access the sonic nerves the fish had to 

be surgically opened and the swimbladder exposed to air instead of the more 
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dense water (Fine et al., 2001).  Although this certainly affects the sound 

produced due to acoustic impedance changes, the comparison of sound 

amplitudes among fishes subjected to the same procedures shall still be valid 

However, one factor that we could not control for was possible gas pressure 

differences in the swimbladder among individuals and this might have affected 

the sound amplitude (Skoglung, 1961). 

Modesto & Canário (2003b) showed that summer males have larger sonic 

muscles, resulting from larger, and possibly also increased numbers of fibers. In 

accordance top this, our data shows that winter males have a higher MSR than 

summer individuals indicating a larger sarcoplasm area in summer fish, since 

the myofibrils area do not present seasonal changes (data not showed). This 

explains why the sound production fatigue is lower in summer adults. The 

sarcoplasm area (area surrounding the fiber and its central core) contains 

mitochondria, responsible for making energy available to the muscle cells. More 

sarcoplasm area is a proxy for a higher number of mitochondria and, 

consequently, more energy availability and a higher fatigue resistance (Fine et 

al., 1977; Connaughton et al., 1997).  Strangely, we did not find seasonal 

differences in fiber density (hyperplasia, or increase in fibers quantity during the 

breading season) described by Loesser et al. (1997) in O. tau. 

The fast component of the SBM has higher amplitude in summer and the time 

of contraction is smaller in adults, indicating that sonic muscle fibers contract 

with greater force and shorter duration. A similar observation was described in 

the Weakfish (Cynoscion regalis) sonic muscle fibers by Connaughton et al. 

(1997). We found that adult summer males present a higher rate of remodeling 

fibers than juveniles. Fragmented multiple cores appear to result from larger 

postmitotic sonic fibers fragmentation (possible division) into smaller units 

energetically more efficient (Fine et al., 1993; Loesser et al. 1997). This should 

indicate a larger amount of multiple cores in summer males probably related to 

vocal activity, since this is a very energy demanding action in these animals 

(Prestwich, 1994).    
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The small fibers in the summer adult male, found only once by us, appear to be 

related to Fine et al. (1993) findings. Those authors postulate that the 

hyperplasia recorded during the breading season is not only originated from 

satellite cells proliferation and differentiation (Kelly & Rubinstein, 1994). Fine et 

al. (1993) claim that sonic fibers divide and that this division is essential 

because mitochondria only occur on the fiber’s cylinder. Furthermore, these 

authors advocate that fiber fragmentation, possible division, and the presence 

of these smaller fibers with minor diameter contractile cylinders in males are 

seen as adaptations for repeated rapid contraction and fatigue. That idea is also 

claimed by Connaughton et al. (1997). This fibers division hypothesis has been 

described by Calve et al., (2010) on fragmentation of myofibers that contribute 

to the regeneration blastema (cells capable of growth 

and regeneration into organs or body parts) in adult red spotted newts. 

Fine et al. (1990) found that toadfish SM fibers increase in diameter during life.  

In accordance to this, our data shows that adult males have larger fibers than 

juveniles. Although SM fiber sizes increased with fish size, small fibers were still 

present in adults. The same authors showed that the toadfish in O. tau presents 

an increased number of SM fibers during the breading season which shall assist 

the large increase in vocal activity. We have also found higher density of fibers 

in Lusitanian toadfish vocal males compared to silent ones. This may explain 

the superior vocal activity recorded in the natural environment.   

The SDH processing on SM fiber sections of both winter and silent summer 

adults show higher enzyme activity when compared to vocal summer adult 

males. These differences seem to indicate that winter and silent summer males 

may have slower SM fibers. However, we couldn’t link this observation with any 

physiological results (sound amplitude, fatigue or SBM) due to the low number 

of vocal and silent summer fishes. Besides the small histological differences 

observed in vocal fish (compared to silent and winter males), these individuals 

seem to be more motivated to perform (at least in a natural environment). This 

suggests that hormonal variations may play a significant role in sound 

production ability. 
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According to the Von Bertalanffy growth model for the reproductive specimens 

of H. didactylus in the Tagus estuary created by Pereira et al. (2011), the 

juveniles that we used were one to two years old and their gonads were at 

stage I, corresponding to an immature condition based on Costa (2004) 

maturation scale. In other words, those fish were not sexually active. However, 

they showed similar mean amplitude sound to adult males, both in the winter 

and in the summer. This suggests that juvenile summer males had better sound 

amplitude performance that winter adult males. We did not expect such result 

because the juveniles have sonic muscles much smaller them the adults and, 

like winter males, non-reproductive juveniles do not vocalize as to attract 

females, although they interact acoustically with other toadfish. Ours results 

suggest that juveniles may undergo through some early morphological or 

hormonal seasonal adaptation that allows them to vocalize at high rates, as 

much as adults during the reproductive season. The slow component of the 

SBM shows similar results to de sound amplitude values. Likewise, we did not 

obtain any ontogenic differences which corroborate Fine et al. (2009) previous 

assumptions about lack of differences on sound amplitude between different 

sized fish.  

On the other hand, the histological results point to another direction. Juveniles 

did not have the morphological features that supposedly allow for an 

extraordinary vocal performance. The MSR was higher in juveniles than adults 

which indicate less sarcoplasm in the fiber than those of adults. This suggests 

that morphological and structural changes are not enough to explain seasonal 

differences in vocal performance and that some hormonal alterations may be at 

play both in adults and juveniles during this period. Juveniles might have some 

seasonal changes that allow them have similar performance to adults, however 

they don’t show changes in others structures like gonads due to energy costs 

associated. 

We have used some females as control in histological assays. During breading 

season only males must increase vocal activity. We have hypothesized that 

females would show sonic muscle morphology similar to winter males. We have 

found that adult males have larger fibers than females, an observation also 
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made by Loesser et al. (1997). In contrast, Fine et al. (1990) found that in O. tau 

female sonic muscles are composed by larger fibers. We only observed one 

female and so our observations need to be extended. 

Modesto & Canário (2003a) found that females did not change the SM mass 

along the year. Our results corroborate this statement. Indeed we did not find 

seasonal variation in the myofibrils/sarcoplasm ratio and we assume that this is 

possibly related to no changes in the females vocal activity during the year 

(Brantley & Bass, 1994). It is therefore normal that females exhibit, during the 

breading season, higher MSR than males, since females do not experience SM 

hypertrophy during the breeding season (Modesto & Canário, 2003b). 
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5. Conclusion 

Summer males present better sound production performance than winter 

individuals, exhibiting increased sound amplitude, muscle contraction velocity 

(as evaluated from EMGs) and amplitude of swimbladder displacement. This is 

likely due to the need of increasing vocal activity in this period. 

Using electrical stimulation to induce SM muscle contractions that produced 

artificial boatwhistles we demonstrated that duration of vocalizations activity is 

limited by fatigue. Juvenile males have shown higher vocal fatigue that adults, 

but exhibited similar swimbladder movement compared to adults from the same 

season. We found that during the production of boatwhistles the sonic muscle 

contraction of H. didactylus presents two components: a slow sustained 

component that likely increases the overall gas pressure in the swimbladder, 

and fast contractions that generate the sound pulses. We suggest that these 

different contraction modes can be related to different muscle fiber types. At 

least rapid contraction and fatigue resistant fibers of type IIa seem to be 

present. It remains to determine if another slow contraction muscle fiber type 

exists in the sonic muscles of this species. Therefore this issue deserves further 

investigation and we have now refined the tools to tackle this question. 

Histological sections of the sonic muscles showed fibers arranged in several 

orientations. Breeding males have bigger fibers and more sarcoplasm than 

winter individuals, females and juveniles, allowing increased vocal activity 

during the breeding season. The presence of fibers in a remodeling state and 

possible fiber division (hyperplasia) in adults is reported for the first time in this 

specie. The SDH assays proved to be a useful tool to determine the oxidative 

status of muscle fibers but this approach needs to be complemented with other 

histochemical analyses. 
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6. Future Perspectives 

Our experiments should be extended to increase the sample size and thus 

allowing for more robust results. We should also add to the analysis breeding 

toadfish males studied immediately after capture, since we only used animals 

that were confined in a nest during two weeks for monitoring acoustic activity.  

We should also extend the SDH assays to more sections of the same sonic 

muscle in order to understand the distribution of fiber types within the muscle 

(Rome et al., 1996). 

Further research may allow detection of different types of sonic muscle fibers 

responsible for the slow and fast components observed in this muscle 

contraction. To confirm this we will have to expand the histochemical methods 

beyond the succinate dehydrogenase (SDH) assays. Other methods can 

include the detection of ATPases and enzymes catalyzing oxidative reactions 

(e.g. nicotinamide adenine dinucleotide dehydrogenase - NADH and lactate 

dehydrogenase - LDH) (Chen et al., 1998). In addition, since faster fibers are 

described as having a fast myosin and a greater concentration of parvalbumin 

when compared to slow twitch fibers, the quantification of this protein could be a 

suitable method to identify the two fiber types (Rome et al., 1996). Other 

approaches such as the use of specific antibodies can be helpful to answer this 

question.  
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