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palavras -chave  
 

β-galactosidase, GST-tag, a solubilidade da proteína, misincorporation  do 
aminoácido, proteína recombinante 
 

resumo  
 
 

A síntese de proteínas de acordo com o código genético é essencial para 
manter proteoma estável e para a homeostase celular. No entanto, os erros 
podem ocorrer naturalmente durante a síntese da proteína a partir do seu 
mRNA, variando entre 10-3 a 10-4 erros por codão. Estes erros ocorrem com 
mais frequncia em proteínas recombinantes sobre-expressas em hospedeiros 
heterólogos. Quantidades crescentes de proteína não-funcional estão 
geralmente relacionados à tradução em condições de stress. Neste estudo 
utilizou-se Saccharomyces cerevisiae como um organismo hospedeiro para 
expressar o gene lacZ-GST para quantificar o erro de tradução. A levedura foi 
tratada com diversos agentes de stress tais como o etanol, o crómio (CrO3), e 
aminoglicósido antibiótico - geneticina (G418). A incorporação de erros foi 
estudada em proteína solúvel e insolúvel para  determiner  se os erros de 
tradução aumentam a agregação de proteína. Usando esta abordagem, 
verificou-se que o stress aumenta o erro de tradução para níveis de 5.6 × 10-3

a 8 × 10-3, 60 - 80 vezes mais que o nível normal. Esta taxa de erro 
inesperadamente elevada tem implicações para a utilização terapêutica de 
proteínas recombinantes. 
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abstract  
 

The synthesis of protein according to genetic code of a gene determines the  
basis of life and a stable proteome is necessary for cell homeostatis. Faithful 
translation of protein give gurantee of cell survival.  However, errors occur 
naturally during translation of protein from its mRNA, which varies  from 10-3  to   
10-4  per codon. These errors are more frequent in recombinant protein 
overexpressed in heterologous hosts and affect protein functionality.  The 
increasing amount of nonfunctional protein is often related to mistranslation of a 
gene under stress. In the present study, we used Saccharomyces cerevisiae as 
a host organism to overexpress E. coli lacZ gene fusion with GST to quantify 
misincorporation of amino acid in GST-β galactosidase recombinant protein. 
The yeast was treated with various stressors such as ethanol, chromium 
(CrO3), and aminoglycoside antibiotic - geneticin (G418) to induce protein 
aggregation. The misincorporation of amino acids was studied in both soluble 
and insoluble protein fractions by mass-spectrometry to determine how much 
misincorporation occur and whether this is associated with protein insolubility. 
We found that under experimental stress conditions the misincorporation of 
amino acids ranges from 5.6 × 10-3   to 8 × 10-3, which represents 60-80 fold 
higher than reported level. The unexpectedly high error rate has implications for 
the therapeutic use of the heterologous host derived recombinant proteins. 
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1. Introduction 

 

All three kingdoms of life from unicellular bacteria, archaea to multi cellular 

eukaryotes are built with protein, the fascinating molecules that perform a wide variety of 

functions in the cell, but different molecules such as carbohydrates, lipids, nucleotides, DNA, 

RNA also reside in the cell. Proteins are a diverse and abundant class of biomolecules, which 

constitute more than 50 % of the dry weight of cells. The central role of proteins in virtually 

all aspects of cell structure and function is reflected in their abundance and diversity. A 

protein can be made from a single polypeptide or several polypeptides. The three dimensional 

structure is the key to protein function that performs many vital functions of cells. Protein 

serves as important structural elements within the cell, can catalyze reactions for life of an 

organism, and can span cell membranes and control the import and export of molecules into 

and out of cells [1]. 

The central dogma of molecular biology was enunciated by Francis Crick in 1953 [2] 

which stated that the genetic information is transferred from DNA via RNA to the synthesis 

of proteins in all living organism. DNA plays a vital role in living cells. It contains the 

instructions for the assembly of proteins, which in turn organize the synthesis and breakdown 

of other molecules that form parts of the cell and living organisms. DNA and RNA works 

jointly to string together a different set of monomers that comprise proteins. The building 

blocks of proteins are the twenty naturally occurring amino acids which are joined together 

via a peptide bond to form the polypeptide chain. The size of protein may vary from just a 

few amino acids (e.g. peptide hormones) to several thousands of amino acids e.g. giant 

human protein, Titin have ~ 34,350 amino acids [3]. Proteins are key components of the 

machinery that determines which genes will express and whether mRNAs are translated into 

proteins. Nowadays a gene can be artificially synthesized in laboratories, which is the main 

focus of a new branch of biology known as synthetic biology. Using genetic engineering 

approaches it is also possible to produce novel proteins or combination of protein elements 

that can serve a specific function. However, proteins which have commercial and medical 

applications are very difficult to purify from the organism or cell in which they are produced 

naturally or they cannot be produced in economically viable amounts. Many pharmaceutical 
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and biotechnology industries turned to the production of relevant proteins in more favorable 

cellular factories, and this process is known as heterologous gene expression. A variety of 

hosts such as bacteria, mammalian cells, insect cells and yeasts are used in many instances. 

The development of the technology for DNA manipulation from transferring genes between 

organisms lead to efficient production of protein ultimately contributing to increase 

production of many enzymes. So far, no single expression system is suitable for universal 

protein expression, because there are various factors that determine the selection of the 

expression host, such as whether the protein to be expressed is a membrane protein or 

required in soluble form [4]. One of the main problems in recombinant protein production is 

the inability of the foreign polypeptides to reach their native conformation in heterologous 

host cells. This usually results in their prevalence in the insoluble cell fraction or pellets [5]. 

It is observed that many heterologously expressed proteins are insoluble and often 

solubilization is a trial and error process with relatively low success rate [6]. 

 

1.1 Protein synthesis mechanism in eukaryotes (from gene to 

protein) 

 

Transcription of genetic information is the first step in gene expression where DNA is 

transcribed into messenger ribonucleic acid (mRNA), and translation is the latter step which 

ensures that the mRNA is used as the source of information for protein synthesis. The 

mRNAs synthesized must be translated accurately into the corresponding proteins to ensure 

proper cell function. The fundamental events of translation in all kingdoms of life are divided 

into four stages namely initiation, elongation, termination and ribosome recycling [7]. 

1.1.1 Initiation: 

Translation initiation (figure 1) in eukaryotes is a complex process which is assisted 

by more than 25 polypeptides, whereas the elongation and termination phases are assisted by 

a limited set of dedicated factors [8]. The translation initiation involves the recognition and 

recruitment of mRNAs by the translation-initiation machinery. The 80S ribosome recognizes 

the initiation codon (AUG) of mRNAs. Many proteins that are known as eukaryotic initiation 
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factors (eIFs) mediate this process. The small (40S) ribosomal subunit initially binds to the 5′ 

end of the mRNA and scans in a 5′→3′ direction until the initiation codon is identified. The 

large 60S ribosomal subunit joins with the 40S subunit to form the 80S ribosome. The small 

ribosomal subunit, together with factors (eIFs) 3, 1, 1A and 5 and the ternary complex 

assemble the 43S pre-initiation complex, which comprises the methionine -loaded initiator 

tRNA, which recognizes the AUG codon initiations, and eIF2 coupled with GTP [7].  

In yeast, the eIF4G interacts with the poly (A) binding protein (PABP), and the 

simultaneous interaction of eIF4E and PABP with eIF4G seems to circularize the mRNA, 

which brings the 3′ UTR in close proximity to the 5′ end of the mRNA [11]. The 40S 

ribosomal subunit is bound to the mRNA, starts to scan mRNA in 5′→3′ direction until it 

finds the initiation codon (AUG) in a favorable sequence context, and joins with 60S 

ribosomal subunit then joins to form 80S initiation complex. The initiation factors are 

released after the formation of the 80S initiation complex and recycled for another round of 

initiation. The eIF5B is required for the joining of 60S subunit, at which point the 

polypeptide elongation step of translation commences [12, 13].  

 

Figure 1: Current model of eukaryotic translation initiation and the roles of the initiation 
factors. For clarity, the 5′  and 3′  ends of the mRNA are not shown interacting (reference. 7) 
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1.1.2 Elongation: 

The machinery used during the elongation step of translation is highly conserved 

across the three kingdoms of life in contrast to the initiation and termination steps [7]. During 

elongation three distinct steps are require to add one amino acid into growing polypeptide 

chains and 15-20 amino acids can be added per second [18].  Elongation of a peptide chain 

begins with selection of an aminoacyl -tRNA by the ribosomal A site (figure 2). Aminoacyl-

tRNA binding is facilitated by elongation factor eEF1A, which forms a ternary complex with 

GTP. After binding of correct aa-tRNA to the A site, eEF1A GTPase activity is initiated and 

eEF1A-GDP releases the aa-tRNA into the A site for peptide bond formation. The ribosome 

catalytic center (peptidyl transferase) catalyses the formation of the peptide bond between the 

peptidyl tRNA and the incoming aa-tRNA in the A site [14]. The A-site aa-tRNA is then 

translocated to the P site and the P site tRNA is translocated to the E site of a ribosome, 

leaving the A site free to accept a new incoming aa-tRNA.  A eukaryotic elongation factor 

(eEF2) hydrolyzes GTP during translocation [15] and this cycle repeats until a stop codon 

enters in the ribosomal A site and the termination process initiates. Accurate protein synthesis 

achieved in a two step process during elongation – first, it gets rid of ternary complexes 

bearing the wrong aminoacyl-tRNA before GTP hydrolysis occurs. Second, if this screening 

fails, it can still eliminate the incorrect aminoacyl-tRNA in a kinetic proofreading step before 

the wrong amino acid is incorporated into the growing polypeptide chain [16, 17]. A balance 

between speed and accuracy in the elongation step is necessary for successful protein 

synthesis. 
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Figure 2: Model of the elongation step of protein translation in eukaryotes. The lines between 
the UUU and UGA codons are not meant to represent mRNA, but are merely for clarity (reference. 7) 

1.1.3 Termination: 

 The step of termination of translation occurs when a stop codon reaches the 

ribosomal A site. This triggers dissociation of the polypeptide after the hydrolysis of the ester 

bond that links the polypeptide chain to the P site tRNA. The peptidyl transferase catalyzes 

the hydrolysis reaction in response by the release factor (RF1), which decode stop codons 

presented in the ribosomal A site. Another release factor RF2 is a GTPase that stimulate RF1 

activity regardless of the nature of the stop codon engaged by the RF (Figure 3). Eukaryotic 

translation is mediated by two release factors – one class 1 eRF, which recognizes all three 

stop codons (UAA, UAG and UGA), and another release factor, eRF3, a ribosome dependent 

GTPase that helps eRF1 to release the finished polypeptide. In yeast, the eRF1 and eRF3 

forms a complex in the absence of ribosomes which is required for optimal efficiency of 

termination. The ribosomal subunits are recycled after termination for another round of 

initiation. 
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Figure 3: Model of termination step of protein translation in eukaryote. The lines between the 
UUU and UGA codons are not meant to represent mRNA, but are merely for clarity (reference. 7) 
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1.2 Protein synthesis errors: 

Protein synthesis errors can be defined as any disruption in the conversion of a coding 

sequence into a functional protein. They arise at all steps of gene expression, from 

transcription to protein folding (Figure 4), and have many widespread phenotypic 

consequences. The fidelity of translation is an important problem in the production of 

pharmaceutical proteins because polypeptide chains containing incorrect amino acids are 

often difficult to remove from the product. Normally, translation is a remarkably accurate 

process. Cells have their own mechanism to control over translation. However, a variety of 

translational errors have been observed during overexpression of proteins in Escherichia coli, 

including frame shifts, premature truncation, read-through, and amino acid misincorporation 

[19-23]. Amino acid misincorporations during translation are estimated to occur once in 

every 10,000 codons translated [19]. However, amino acid misincorporation can occur at a 

much higher frequency in recombinant proteins that are overexpressed [24]. It was estimated 

that at this error rate, 18% of all average length protein (400 amino acids) molecules will 

contain at least one misincorporated amino acid [25]. For example, Bogosian et al., [26] 

found that overexpression of bovine somatotropin in E. coli caused up to 14 % of all the 

methionine residues to be substituted by norleucine.  

Translation errors arise because tRNA is mistakenly acylated to the wrong amino acid 

or because a codon is improperly paired with its cognate anticodon in tRNA.  The studies of 

norleucine incorporation in bovine somatotropin have shown that incorrect tRNA charging 

can be caused by limiting amounts of the respective amino acid in the cell and/or induction of 

pathways leading to the synthesis of unnatural amino acids [26]. Norleucine incorporation 

could be prevented by using a mutant strain that cannot synthesize norleucine and/or growing 

the cells in methionine-rich media. However, if there is reduced availability of the cognate 

aminoacyl-tRNA for a codon at the A site of a ribosome, other tRNAs whose anticodons 

differ by only one base are more likely to bind to the codon and cause errors by inserting their 

amino acids [28]. 

The other source of amino acid misincorporation, due to improper codon-anticodon 

pairing, depends upon the codons used by the organism. Evidence suggests that the fidelity of 

codon-anticodon pairing is higher for rare codons [29]. It was observed that the expression 

systems of yeast and E. coli are more or less similar in terms of fidelity but codon usage 
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patterns in the two species vary greatly for certain amino acids [30, 31]. In yeast, for instance, 

the preferred codon for Arginine is 5′-AGA-3′ with its corresponding tRNA accounting for 

over 50% of the total tRNAArg available in the cell. On the other hand, in E. coli, the 

preferred codon for the Arginine is 5′-CGC-3′ or 5′-CGU-3′. According to tRNA availability, 

the 5′-AGA-3′ codon is the rarest codon used by E. coli which accounts only 4% of the total 

tRNAArg population present in the cell [32]. Thus, expression of E. coli proteins in yeast 

might be constrained by codon usage. 

 

Figure 4: Sources of errors in eukaryotic protein synthesis (reference 3) 
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1.3 Mistranslation and heterologous protein production 

Mistranslation can be described as the misincorporation of erroneous amino acid 

during protein synthesis which may prevent a protein from reaching its native conformation 

and functional state, producing - misfolded protein aggregates. A variety of factors 

determined the accurate protein synthesis during translational stage such as codon usage, 

tRNA and amino acid pool, ribosome concentration, mRNA structure, availability of GTP 

etc. One of the most important factors that should reduce the level of mistranslation is the 

aminoacylation reaction, which is highly due to the existence of both pre- and post-transfer 

editing mechanisms, whenever these reactions are not working properly the level of 

mistranslation rises dramatically. In general, it is well accepted that during protein synthesis 

there is an average frequency of around 1 misincorporated amino acid per 104 codons. Higher 

degrees of mistranslation are usually associated with mutagenicity and toxicity in bacteria.  

In addition, heterologous overexpression of a foreign gene can increase cellular stress. 

This stress often leads to misincorporation of amino acids which is specially important during 

the production of proteins for clinical applications [85]. Although these proteins may be 

functional, misincorporated amino acids could potentially result in antigenic reactions, which 

can cause health problems. Current proteomic technologies are being used to identify and 

quantify amino acids misincorporated into proteins by analyzing theoretical and experimental 

mass spectrometry data. 
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1.4 Heterologous protein expression in yeast 

Recombinant DNA technology has opened the door to a new world of 

biotechnological products for the production of heterologous proteins in microorganisms, 

like, for instance, pharmaceutical products and industrial enzymes. It is possible now to 

produce large quantities of proteins in industrial scale at low price and with constant high 

quality by means of recombinant DNA technology. In 1982, the first product of recombinant 

DNA technology was produced by Eli Lilly [33], namely insulin, a life saving drug for 

diabetic patients. Since then many proteins and enzymes have been produced worldwide for 

food and medical purposes. Moreover, using recombinant technology proteins can be easily 

engineered according to specific necessity. The most commonly used and well studied 

organism for the heterologous expression of proteins is E. coli. However, a variety of 

alternative hosts have been developed as the nature of the recombinant proteins being 

expressed became more complex.  

In this context, yeasts are very useful hosts because they have several advantages over 

other microorganisms. Saccharomyces cerevisiae (figure 5) is a unicellular eukaryote which 

has many ideal properties for biological research, such as: rapid growth, nonpathogenic, 

discrete cells, ability for replica plating, an accommodating DNA transformation system [34], 

well defined genetics, cheap and commercially available mutants. Moreover, many human 

genes related to disease have orthologs in yeast [35], meaning that the same genes have been 

conserved through time in species, maintaining the same or similar function. Many scientific 

studies show that nearly 50% of human genes implicated in heritable diseases have yeast 

homologs [36] or at least 31% of proteins encoded by yeast genes have human homologs. 

Moreover, cell cycle mechanisms, signal transduction, and metabolic and regulatory 

mechanisms between yeast and other eukaryotic organisms are conserved. The close 

homology to higher order eukaryotes and simplicity of yeast genetics allows the introduction 

of mammalian genes into yeast and the analysis of their function [37]. S. cerevisiae was the 

first eukaryote with the genome completely sequenced, with the possibility of being 

transformed with plasmids and to have gene knockouts strains [35]. Yeast has shifted 

molecular genetics research to a systems level approach of functionally characterizing parts 

of the genome. S. cerevisiae has also been used for centuries in food production, especially in 

bakery and brewing industries, and is Generally Recognized As Safe (GRAS) by the 
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American Food and Drug Administration (FDA). By contrast, mammalian cells may contain 

oncogene or viral DNA, while other prokaryotic organisms may have toxic cell wall pyrogens 

(endotoxins). In addition, yeasts have the ability to perform eukaryotic processing steps 

during polypeptides synthesis. Post-translational processing and modification are required for 

the function of many proteins such as disulphide bond formation, N and O–linked 

glycosylation, proteolytic maturation of prohormones etc. Although yeast has many 

advantages, there are also some limitations. For example, protein product yield is normally 

low and the secretion system is often inefficient [35]. 

 

                

Figure 5: Picture of the budding yeast Saccharomyces cerevisiae (Retrieved from 
www.visualphotos.com) 

Foreign proteins can be expressed either extracellularly or intracellularly, for recovery 

from the cytosol, nucleus, mitochondria, or peroxisomes. However, there are several factors 

affecting each step of efficient protein production, such as DNA copy number, promoter 

strength, mRNA stability, codon usage pattern etc. Post-translational modifications are 

necessary for correctly folding of protein. If the protein is not folded properly, it is usually 

degraded and the building blocks are recycled. Most of the recombinant proteins produced in 

S. cerevisiae are intracellular, i.e., they are produced and retained within cell. These proteins 

may be produced in a soluble, biologically active form, or they can be insoluble and 

precipitate in the cell as inclusion bodies [38]. The recovery of both forms of proteins 
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requires the disruption of the yeast cells as an initial step in the extraction and purification of 

proteins. Some of the examples in which direct intracellular expression have been 

successfully used to express heterologous gene products include the hepatitis B virus surface 

antigen (HBsAg) [39], human superoxide dismutase (hSOD) [40], fibroblast growth factor 

[41], human immunodeficiency virus type-1 (HIV1) env and gag polypeptides [42, 43], 

surface antigens of malaria parasites [44], rat cytochrome C [45], α1-antitrypsin proteinase 

inhibitor [50] and human viral surface glycoproteins [47].   

   

Figure 6: Schematic drawing of the most important steps from DNA to secreted protein in 
Saccharomyces cerevisiae. 
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1.5 Protein production in S. cerevisiae under stress  

Protein translational accuracy depends on the growth conditions and energy 

availability. Under stress, cells induce heat shock proteins (Hsps)s and other molecules that 

confer stress protection. The molecular responses elicited by the cells dictate whether the 

organism adapts, survives, or, if injured beyond repair, undergoes death. In some instances, 

stress responses may eventually lead to stress tolerance as a long term defense mechanism 

toward damaging agents. The regulation of stress response includes transcriptional, 

posttranscriptional and posttranslational mechanisms. 

Growth and metabolic activity of yeast are functions not only of the genetic 

background of the cell but also of the composition of the growth medium and other physical 

growth parameters such as temperature, pH, oxygen supply, osmotic conditions, the absence 

of toxic compounds, nutrient limitation, exposure of various drugs and so on. Any condition 

deviating from normal can be defined as a stress condition, which invokes particular stress 

responses to meet the hazardous consequences of cell damage. Yeast has served as a versatile 

model to dissect different types of these responses. Yeast exhibits a large degree of 

phenotypic variation and altered gene expression due to stress. The study of Kvitek and 

coworkers [71] also showed that yeast isolated from diverse niches have a wide range of 

stress sensitivity and over 70% of its genes display significant alteration in expression. 

However, effects of stress resulting from misincorporation of amino acids are not clear.  It is 

assumed that if cells are exposed to stressful conditions, misincorporation of amino acids into 

de novo synthesized protein tends to rise [81]. In the present study three stressors, namely 

ethanol, chromium and geneticin (antibiotic) were chosen to examine the effect of stress on 

the solubility of β-galactosidase protein and on the misincorporation of amino acids.   

1.5.1 Effects of ethanol  

Ethyl alcohol frequently named as ethanol is well known as an inhibitor of growth and 

reproduction of many microorganisms including bacteria, fungi, protozoa and viruses. In 

yeast cells ethanol can damage mitochondrial DNA [48], and cause inactivation of some 

enzymes such as hexokinase and dehydrogenase. The yeast Saccharomyces cerevisiae is able 

to respire on ethanol and is considered one of the most ethanol resistant eukaryotes. For this 

reason it is widely used for the production of alcoholic beverages and leavened bread [49]. 

Ethanol influences cell metabolism, limits cells growth, denatures intracellular proteins and 
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glycolytic enzymes and reduces their activity [50], lowers the rate of mRNA and protein 

levels [53], reduces glycolytic enzyme activity and increases protein denaturation [54]. It also 

inhibits cell division and viability [52] and influences macromolecular biosynthesis by 

inducing the production of heat shock proteins [55]. Walker [51] mentioned that the major 

sites for ethanol action in yeast cells are the plasma membrane, hydrophobic proteins of cell 

and mitochondrial membranes, nuclear membrane, vacuolar membrane, endoplasmic 

reticulum and hydrophilic proteins of cytoplasm. Other works [83, 84] also suggesting that 

ethanol disruption of membrane function may affect the delivery of amino acids into the cell. 

Finally, ethanol has been observed to reduce the translation fidelity of poly (U) in rat brain 

extract [80]. Similarly a strong effect was observed in human cultured cells on read through 

of stop codon UGA than UAG [74]. 

1.5.2 Effects of chromium  

 Any metal at higher level of concentrations are toxic and harmful for an organism, 

although certain metals at moderate level are biologically essential [57]. Chromium has been 

linked to oncogenesis [56]. The underlying mechanisms of chromium toxicity remain 

unknown. In this regard, Saccharomyces cerevisiae provides an excellent model to 

elucidating biological questions related to metal toxicity [58]. Chromium (Cr) exists 

primarily in the Cr (III) and Cr (VI) oxidation states and Cr (VI) has been reported as being 

more toxic in the environment due to its higher solubility and mobility [59]. It was reported 

that chromium exposure tends to increase insoluble protein in yeast [60]. This study also 

suggested that mistranslation of mRNA is a primary cause of chromium toxicity, suggesting 

that protein aggregation may be related to chromium’s effect on the translational machinery.  

1.5.3 Effects of geneticin  

Geneticin sulphate (G418) is an aminoglycoside antibiotic similar in structure to 

gentamicin that has originally been derived from Micromonospora rhodorangea. 

Aminoglycoside antibiotics, such as paromomycin, act on the eukaryotic 80S ribosome and 

induce errors in translation. Geneticin can cause a bypass of nonsense mutations during 

translation and increases the misincorporation of amino acids into protein [70]. At high dose 

G418 can also block polypeptide synthesis by inhibiting the elongation step in both 

prokaryotic and eukaryotic cells [61]. 
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1.6 A brief overview of the β-galactosidase protein  

β-galactosidase is a hydrolase enzyme (EC 3.2.1.23) produced by the lacZ gene in E. 

coli and some other enteric bacteria. This protein specified by the first structural gene of  the 

lactose (lac) operon, which is activated in the presence of lactose when glucose level is low 

[62]. This enzyme hydrolyzes β 1→4 linkage of lactose to D-galactose and D-glucose [63, 

64]. The lac operon system consists of three structural genes (lac-Z, lac-Y and lac-A), a 

promoter, a terminator, a regulator and an operator. The lac-Y encodes β-galactoside 

permease, a membrane - bound transport protein pumps lactose into the cell. Both of the lac-

Z and lac-Y are necessary for lactose catabolism. The lac-A encodes thiogalactoside 

transacetylase which is an enzyme involved in detoxification. Another gene (lac-I) encodes a 

regulatory repressor protein, disaccharide allolactose which binds to the operator site and 

prevent the expression. Transcription is initiated when the repressor is removed from the 

operator by inducer [64, 65]. E. coli β-galactosidase was first sequenced in 1970 and its 

structure was determined in 1994. The β-galactosidase tetramer formed with four identical 

polypeptide chains (A to D) and each of the chain has 1023 amino acids. Each polypeptide 

(monomer) is made up of five domains and 50 residues at the N-terminal.  

To complete four functional active sites, domain 2 of different monomers extends into 

the neighboring active sites called activating interface. Monomer A donates its Domain 2 

loop to complete the active site of monomer D and the reciprocal monomer D donates its 

Domain 2 to complete the active site of monomer A (figure 7). Similar kind of contribution 

of domains happens between monomer B and C [63, 67]. The third domain contains the 

active site which is made up of elements from two subunits of the tetramer. The 

disassociation of the tetramer into dimmers removes the critical elements of the active site. 

The amino-terminal sequence of β-galactosidase, the α-peptide involved in α-

complementation, participates in a subunit interface. Its residues 22-31 help to stabilize a four 

– helix bundle which forms the major part of that interface, and residue 13 and 15 also 

contributing to the activating interface. These structural features provide a rationale for the 

phenomenon of α-complementation, where the deletion of the amino-terminal segment results 

in the formation of an inactive dimer. 
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Figure 7: β-galactosidase tetramer looking down one of the two-fold axes. Colour indicates 
different domain, orange- domain 1, blue- domain 2, yellow- domain 3, cyan- domain 4 and red- 
domain 5. Light and dark colour shades is to separate the same domain in different subunits [63]  

The β-galactosidase assay is frequently used in genetics, molecular biology, and other 

life sciences. Branscomb and Gallas [75] suggested that the thermostability of β-galactosidase 

affected due to sense codon misreading and the rate of thermoinactivation will give a relative 

measure of amino acid misincorporation.  This assay, for instance, may be used as a reporter 

system for monitoring amino acid misincorporations in β-galactosidase during translation. 

This enzyme is also used for α-complementation detected using X-gal, which forms an 

intense blue product after cleavage by β-galactosidase, and is easy to identify and quantify in 

blue white screens [68]. Its production may be induced by a non-hydrolyzable analog of 

allolactose, IPTG, which binds and releases the lac repressor from the lac operator, thereby 

allowing the initiation of transcription to proceed. Another chromogenic substrate o-

nitrophenyl-β-D-galactopyranoside (ONPG) is available to indicate the presence of β-

galactosidase during cell expression. ONPG hydrolyzed by β-galactosidase produce the 

glycoside and o-nitrophenol. Glycoside has no optical density at visible wave length while 

free o-nitrophenol gives yellow colour at 420nm [63, 69]. 
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2.  Objectives 

 

The objectives of this research work were the following: 

1) To study the solubility of E. coli β-galactosidase protein in yeast and to 

optimize its purification using affinity chromatography. 

2) To quantify amino acid misincorporation in a recombinant protein GST-β gal 

under environmental stress. 

3) A specific aim of the study was to establish a new protocol for the extraction 

and purification of heterologous proteins from Saccharomyces cerevisiae.  
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3. Materials and methods 

 

3.1 Strain, plasmid and growth condition  

3.1.1 Yeast strains 

The yeast Saccharomyces cerevisiae was used in this study for the heterologous over 

expression of β-galactosidase. Two different yeast strains were used: the diploid strain 

CEN.PK2 (MATa/MATα, ura3-52/ura3-52, trp1-289/trp1-289, leu2-3_112/leu2-3_112, 

his3∆1/his3∆1, MAL2-8C/MAL2-8C, SUC2/SUC2) and the haploid strain BY4742 (MATα, 

his3∆1, leu2∆0, lys2∆0 and ura3∆0). 

3.1.2 Plasmids 

The multicopy plasmid vector pGL-C1 carrying E. coli lacZ gene, producing β-

galactosidase protein, was transformed in S. cerevisiae in the diploid CEN.PK2 strain under 

the control of the GPD promoter as a fusion with glutathione S-transferase (GST- β gal). The 

pUKC815 plasmid containing the yeast phosphoglycerate kinase (PGK1) gene promoter and 

the N-terminal 33 amino acids fused in-frame to the E. coli lacZ gene coding for β-

galactosidase was expressed in the haploid BY4742 strain. The plasmid pUKC815 was 

constructed by cloning a 0.9 kb ClaI-BamHI fragment from pUKC350 [72] into the plasmid 

YCp50 [92] digested with ClaI and BamHI, thereby generating pUKC814. A 3.2-kb BamHI 

fragment from pUKC350 carrying the lacZ gene was then cloned into pUKC814 digested 

with BamHI, thereby generating pUKC815 [73]. 

3.1.3 Growth medium and growth conditions 

All strains carrying plasmids for the heterologous expression of β-galactosidase were 

grown at 30° C in minimal medium (0.67% bacto yeast nitrogen without amino acids, 100 

µg/ml of each of the required amino acids, 2% glucose and 2% bacto agar for solid medium). 

More specifically the diploid S. cerevisiae strain CEN.PK2 transformed with pGL-C1 

plasmid was grown in minimal media lacking tryptophan, while haploid strain BY 4742 

transformed with pUKC815 plasmid was grown in minimal medium lacking Uracil 

(Appendix A). All strains were preserved at -80° C in MM with 40% glycerol.  
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3.2 Sequencing and transformation of β-galactosidase (lacZ 

gene) 

3.2.1 Sequencing of the lacZ gene  

In order to confirm the correct sequence of the lacZ gene within the different 

constructs, two plasmids were extracted using a miniprep kit (Fermentas) and then sequenced 

using specific primers. Whole genome DNA of both strains carrying the two different 

plasmids was extracted and the lacZ gene was PCR amplified for sequencing using classic 

Sanger sequencing methods. 

3.2.2 Whole DNA extraction  

The whole DNA extraction was carried out from single colonies picked up from YPD 

agar plates. For this, one colony was inoculated into 10 ml of YPD broth and allowed to grow 

overnight (approximately 16h) at 30° C with agitation (180 rpm). The whole DNA was 

extracted according to instruction of the Wizard® Genomic DNA Purification Kit (Promega). 

Briefly, 1 mL of yeast cells was transferred to a 1.5 mL microcentrifuge tube and 

centrifugated at 13,000 X g for 2 minutes in order to pellet the cells. After removing the 

supernatant, the cells were resuspended thoroughly in 293 µl of 50 mM EDTA and 7.5 µl of 

20 mg/ml lyticase was added and gently pipet 4 times to mix properly. The sample was 

incubated at 37° C for 30 minutes to digest the cell wall and, successively, cooled down at 

room temperature. The samples were centrifuged at 13,000 X g for 2 minutes and the 

supernatant was discarded. Then, 300 µl of Nuclei Lysis solution was added to the cell pellet 

and gently pipeted to mix. A 100µl of Protein Precipitation Solution was added and vortexed 

vigorously at high speed for 20 seconds. The sample was placed on ice for 5 minutes and 

centrifuged at 13,000 X g for 3 minutes. The supernatant containing the DNA was transferred 

to a clean 1.5 ml microcentrifuge tube containing 300 µl of room temperature isopropanol. 

The sample was gently mixed by inversion until the thread-like strands of DNA formed a 

visible mass and then centrifuged at 13,000 X g for 2 minutes. The supernatant was carefully 

decanted and tubes were drained on clean absorbent paper. A 300 µl of 70% ethanol at room 

temperature was added and gently inverted the tube several times to wash the DNA pellet. 

Then centrifuged at 13,000–16,000 × g for 2 minutes and carefully aspirated all of the 

ethanol. The tube was drained on clean absorbent paper and allowed the pellet to air-dry for 



28 

 

10–15 minutes. Then 30 µl of sterile Milli-Q water was added to the sample. Then 1.5 µl of 

RNase Solution was added to the purified DNA sample. The sample was vortexed for 1 

second and Centrifuged briefly in a microcentrifuge for 5 seconds to collect the liquid and 

incubated at 37° C for 15 minutes in a thermomixer. Finally, the DNA was rehydrating by 

incubating at 65° C for 1 hour and store at 2–8°C. (See appendix A for protocol). 

3.2.3 Quantification of DNA 

After isolation of DNA, quantification and analysis of quality were necessary to 

ascertain the quantity of DNA obtained and the suitability of DNA sample for further 

analysis. The most commonly used methodologies for quantifying nucleic acids in a 

preparation are gel electrophoresis and spectrophotometric analysis.  

Analysis of UV absorption by the nucleotides provides a simple and accurate 

estimation of the concentration of nucleic acids in a sample. Purines and pyrmidines in 

nucleic acid show maximum absorption around 260nm (e.g., dATP: 259nm; dCTP: 272nm; 

dTTP: 247nm) if the DNA sample is pure without significant contamination from proteins or 

organic solvents. The ratio of OD260/OD280 is normally determined to assess the purity of the 

sample. This method is however limited by the quantity and purity of the DNA preparation. 

Accurate analysis of the DNA preparation may be impeded by the presence of impurities in 

the sample or if the amount of DNA is too little. In the estimation of total genomic DNA, for 

example, the presence of RNA, sheared DNA, could interfere with the accurate estimation of 

total high molecular weight genomic DNA. One disadvantage of the spectrophotometric 

analysis is that sheared or otherwise degraded DNA is indistinguishable from high quality 

DNA, since both have equal UV absorption. However, the amount of DNA can be quantified 

using the following formula: 

 

Spectrophotomteric Conversions for Nucleic Acids: 

1 A 260 of ds DNA          = 50 µg/ml   =  50 ng/µl 

1 A 260 of ss oligonucleotides      = 33 µg/ml   =  33 ng/µl 

1 A 260 of ss RNA          = 40 µg/ml   =  40 ng/µl 
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Good quality DNA will have an A260/A280 ratio of 1.7–2.0. An absorbance value of 

1.6 does not render the DNA unsuitable for any application, but lower ratios indicate that 

more contaminants are present. A ratio lower than 1.8 indicates the presence of proteins 

and/or molecules that absorb UV. On the other hand, a ratio higher than 2.0 indicates that the 

samples may be contaminated with chloroform or phenol. In either case (<1.8 or >2.0) it is 

advisable to re-precipitate the DNA. 

In the present study, DNA quantifications and quality were determined using a 

NanoDrop™ 1000 spectrophotometer (Thermo Scientific). This type of spectrophotometer 

allows the analysis of very small sample volumes (1-2 µl) and does not require cuvettes. 

Briefly, with the sampling arm open, 1 µL of milli-Q water was used as the blank sample. 

The same steps with each sample were repeated and the λ value and 260/280 ratios for purity 

analysis were recorded. 

3.2.4 Primer design and optimization 

The optimization is essential to maximize the specificity and efficiency of PCR. It 

includes primer sequences, appropriate primer and template DNA concentrations and 

annealing temperature. PCR primers are 15-30 bases long that do not contain bases 

complementary to each other to minimize formation of primer-dimers. A 40% - 60% G+C 

content is recommended for each primer, avoiding internal secondary structure and long 

stretches of repeated bases. Primers were designed using PerlPrimer v1.1.21 

(http://perlprimer.sourceforge.net) and purchased from STAB VIDA (Portugal). For a 

complete list of primers see Appendix C. 

3.2.5 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) is an in vitro method for the amplification of 

DNA that was introduced in 1985. Basic PCR consists of three steps: thermal denaturation of 

the target DNA, primer annealing of synthetic oligonucleotide primers, and extension of the 

annealed primers by a DNA polymerase. This three-step cycle is then repeated 30-40 cycles, 

each time doubling the number of product molecules. In the first step, the double-stranded 

DNA template is denatured by increasing the temperature to ~95º C. At this temperature, the 

hydrogen bonds between the complementary bases break up, yielding single DNA strands. 

Following this step, the annealing occurs at a temperature below the melting temperature 
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(Tm) of two oligonucleotide primers (usually 50–65° C, in this experiment 55° C works 

well), allowing them to bind to the complementary regions of the single-stranded DNA 

template. During the third step, extension or elongation, the Taq DNA polymerase recognizes 

the short double stranded sections of DNA created by the annealed primers and extends the 

primers in 5´ to 3´ direction by incorporating dNTPs. The optimal temperature for this 

enzymatic reaction is around 72º C. The newly created double stranded DNA molecules then 

serve as templates for the next cycle of denaturing, annealing and elongation. 

For the master mix, 0.125 µl Taq DNA polymerase (1 U/µl), 2.5 µl of 10 X Buffer 

(500 mM KCl, 100 mM Tris-HCl (pH 9.0), 1.0% Triton X 100), 0.5 µl of dNTPs (5 mM) and 

0.5 µl of each primer (10 mM) were combined and brought to a final volume of 25 µl per 

PCR reaction with sterile distilled water (milli-Q). The PCR protocol consisted of 30 cycles, 

of denaturing at 94º C for 60´, annealing at 55º C for 90´ and extension at 72º C for 60´ in a 

MyCyclerTM   thermal cycler (BIO-RAD).  

3.2.6 Agarose gel electrophoresis 

Agarose gel electrophoresis is a method for determining the size of DNA and RNA by 

length and to assess their quality and yield. In this method, DNA is forced to migrate through 

a highly cross-linked agarose matrix in response to an electric current. In solution, the 

phosphates on the DNA are negatively charged, and the molecule will therefore migrate to 

the positive pole. At neutral pH, DNA is negatively charged and in an electric field migrates 

from the negative to the positive pole. There are three factors that affect migration rate 

through a gel; size of the DNA, conformation of the DNA and ionic strength of the running 

buffer. 

The larger the fragments of DNA, the more easily will it become entangled in the 

matrix and, therefore, the more slowly it will migrate. Small fragments, therefore, run more 

quickly than large fragments at a rate proportional to their size. The relationship of size to 

migration rate is linear throughout most of the gel, except for the very largest fragments. 

Large fragments have a more difficult time penetrating the gel and their migration, therefore, 

does not have a linear relationship to size. The matrix can be adjusted by increasing the 

concentration of agarose (tighter matrix) or by decreasing it (looser matrix). A standard 1% 

agarose gel can resolve DNA from 0.2 - 30 kb in length. In the present study, 1.4% gel was 
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used successfully. The PCR products were separated for 30-35 minutes at a constant voltage 

of 100 V alongside a DNA ladder (GeneRulerTM 50 bp DNA ladder Plus, Fermentas). For gel 

preparation 0.70 g of agarose was dissolved in 50 ml TAE 1X buffer with 0.5 µl of ethidium 

bromide (EtBr) mixed carefully to avoid inhalation. 

In order to observe the DNA fractionated on gels, it must first stained with a dye 

fluoresces under ultraviolet light. Traditionally, ethidium bromide (EtBr) has been used for 

this purpose. Ethidium bromide is a fluorescent compound that binds strongly to double 

stranded DNA by intercalating between the bases. When intercalated, it strongly absorbs UV 

light and emits visible orange light. EtBr is mutagenic and must be handled as a hazardous 

waste. More recently, nontoxic dyes such as Gel Red have been introduced. The length of the 

DNA fragment of interest is then determined by comparison with a DNA marker of known 

fragment lengths. 

3.2.7 PCR product purification 

Enzyme contamination of DNA samples can interfere with subsequent downstream 

applications. In this study, QIAquick PCR Purification Kit from QIAGEN® to purify PCR 

amplicons were used. This kit is used for direct purification of double or single stranded PCR 

products (100 bp – 10 kb) from amplification reactions and DNA cleanup from other 

enzymatic reactions. The kit works on the basis of reversible adsorption of nucleic acids to 

silica-gel, in the presence of high concentrations of chaotropic salts and high pH. Chaotropic 

salts (e.g. urea, thiourea) disrupt hydrogen bond structures in water, affect the nucleic acids 

secondary structure and decrease the solubility of DNA in water.  

The first step of the protocol consisted in adding the binding buffer (PB; pH 7.5 and 

containing the chaotropic salt guanidine hydrochloride) to the samples. Then, the DNA 

solution was passed through the silica-gel membrane by centrifugation to bind the DNA, 

followed by a washing step with an ethanol-containing buffer (PE buffer) to remove salts. 

Finally, the DNA was eluted in a low-salt solution (EB buffer; 10 mM Tris·Cl, pH 8.5) 

(Detailed protocol in Appendix A). 
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3.2.8 Plasmids transformation 

Transformation of S. cerevisiae was done using the lithium acetate (LiAc) method 

[10]. Briefly, overnight cultures were diluted in 10mL (for 10 transformation reactions) of 

new and freshely prepared medium at an OD600 of 0.05. The cultures were grown at 30º C 

with 200rpm shaking until they reached to an OD600 of 0.4 – 0.5. Cells were then harvested 

by centrifugation for 5 minutes at 4000rpm. After washing with 5mL of sterile milli-Q water, 

the pellet was resuspended in 500µL of 0.1M LiAc solution. Around 50µL of cell suspension 

were transferred onto 1.5mL eppendorf tubes and cells were pelleted by centrifugation at 

maximum speed for 15 seconds. The supernatant was discarded and the transformation 

reagents were added to the pellet in the following order: 240 µL 50% (w/w) PEG, 36 µL 

1.0M LiAc, 25µL single-stranded carrier DNA (2mg/mL) previously denatured and 50µL of 

an aqueous solution of the plasmid of interest (containing 0.1 – 1µg of plasmid). The tubes 

were vortexed until a homogeneous suspension was obtained. The cells were then heat-

shocked in a water-bath at 42º C for 30 to 40 minutes. Cells were then harvested by 

centrifugation at 5000 rpm for 1 minute. The supernatant was discarded and the pellet was 

carefully resuspended in 100 µL of sterile milli-Q water. Each suspension was plated in 

selective media plates and incubated at 30º C, until transformant colonies were visible (about 

3 – 4 days). 
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3.3 Heterologous expression of the E. coli lacZ gene in yeast 

For the heterologous expression of the LacZ gene in S. cerevisiae under stress 

conditions two different constructs were transfected into strain CEN.PK2 and BY4742. The 

multi copy plasmid pGL-C1 under the control of the GPD promoter as a fusion with 

glutathione S-transferase (GST) was transformed into the diploid CEN.PK2 strain and the 

plasmid pUKC815 without the GST gene was transformed into the haploid BY4742 strain. 

3.3.1 Growth in presence of different stressors 

The above yeast strains transformed with the two different plasmids carrying the lacZ 

gene were grown at 30° C, 180 rpm until late exponential phase (between 0.6 and 0.8 OD600). 

The growth curves were obtained by inoculating the same amount of yeast coming from the 

same pre-inoculum at exponential phase (0.5-0.7 OD) into media with stressor and without 

stressor (control) to an initial OD600 of 0.02 in 50 ml Erlenmeyer flasks (Figure 8). The 

cultures were allowed to grow for the first 8 hours and then every hour aliquots of cultures 

were collected and the OD600 was measured during the first day (around 20 hours). Since the 

stressors affect the yeast growth rate OD600 was measured during three days (around 96 

hours) until the cultures reached stationary phase (OD600 around 2.5). Finally, the growth rate 

corresponding to the growth of yeast cells in exponential phase was calculated for cells 

growing with stressor relative to control cells without stressor. After several preliminary 

screens (data not shown) the sub lethal dose of each stressor was determined. The dose of the 

stressors tested in this experiment were ethanol (2% and 5%), CrO3 (1 mM, 0.5 mM, 0.25 

mM and 0.1 mM) and Geneticin 0.2 mg/L. The ethanol at 2% didn’t showed sufficient 

change of growth rate and CrO3 at higher concentration such as 1 mM, 0.5 mM, 0.25 mM 

were considered as lethal dose in contrast to control cells.  The final concentrations of the 

three different stressors are represented in the following table: 

Table 1: Experimental stressors 

Stressors Concentration 

EtOH 5% (v/v) 

CrO3 0.1 mM 

Geneticin®  (G418) 0.2 mg/L 
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 Figure 8: Schematic representation of the experimental design used in this study. 

Similarly β-galactosidase was prepared from 20 ml pre-cultures that were inoculated 

with single colonies of transformed S. cerevisae and grown overnight (OD ~ 1.0-1.2) at 30º C 

with shaking at 180 rpm. On the following day, new cultures were started in triplicates by 

inoculating exactly the same amount of yeast cells coming from the same pre-inoculum into 

media with stressor (experimental) and without stressor (control) to an initial OD600 of 0.02 in 

50 ml or 500 ml Erlenmeyer flasks. Cells were collected when the cultures reached an OD600 

of ~ 1.5. Then 45 ml of culture were transferred to a 50 ml Falcon tube, pelleted at 4000 rpm 

in a refrigerated centrifuge (5810R, Eppendorf) at 4º C, the medium was decanted and the 

pellet was washed with 5 mL of 1X PBS and immediately frozen at -80º C to avoid protein 

degradation. 
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3.3.2 β –galactosidase thermal stability assay 

Sense codon misreading affects the thermostability of β-galactosidase and the rate of 

thermoinactivation gives a relative measure of amino acid misincorporation [75]. For this 

reason, β-galactosidase was used as reporter protein to quantify mistranslation induced by 

amino acid misincorporation in the lacZ protein. The assay was adapted from [76] with some 

modifications.  

β-galactosidase catalyzes the breakdown of the substrate lactose, a disaccharide sugar 

found in milk into two monosaccharide sugars, galactose and glucose. The oxygen bridge 

connecting the two sides of the lactose molecule is cleaved through the addition of a water 

molecule. The addition of the water molecule is known as hydrolysis. Since it is difficult to 

assay for the activity of β-galactosidase when lactose is the substrate, a lactose analog ONPG 

(o-nitrophenyl β-D-galactopyranoside) is used due to the similarity in the structure of ONPG 

and lactose (Figure 9).  

 

     Figure 9: Similarities of structure and reaction of lactose and ONPG 

The enzyme does not distinguish between lactose and ONPG, and cleaves the oxygen 

bridge between the two sides of the molecule, resulting in the products galactose and the o-

nitrophenol. The advantage of using ONPG as the substrate is that the product ONP (o-

nitrophenol) is yellow, and can be quantified by visible spectrophotometry (OD420). By 

measuring the rate at which the color intensity increases we can calculate the activity of the 
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enzyme. The reaction is stopped by adding Na2CO3 which shifts the reaction mixture to pH 

11. At this pH most of the o-nitrophenol is converted to the yellow colored anionic form and 

β-galactosidase is inactivated.  

β-galactosidase activity was monitored as described by Sambrook and coworkers [66] 

with small modifications. Briefly, 10 ml of pre - culture were inoculated with a distinct yeast 

colony grown in solid agar and the cultures were grown over night at 30° C and 180 rpm. The 

cultures were then inoculated with different stressors into fresh 50 mL falcon tubes (3 

replicate for each stressor plus positive control). Yeast cells expressing the plasmids were 

selected on minimal medium (lacking the appropriate amino acid) and inoculated (starting 

OD600 ~ 0.02) with stressor. Cells were then collected when the cultures reached OD600 ~ 1.5, 

chilled on ice and span down at 4000 rpm for 5 minutes. Then the cells were washed twice 

with 1 ml of PBS and finally resuspended in 250 µL of PBS and frozen immediately at -80°C 

and assayed later. Cell suspensions were thawed on ice and resuspended with 300 µl PBS, 1/3 

volume of glass beads, 1mM PMSF and tablets of protease inhibitors (ROCHE)  were added 

and vortexed 1 minute for 5 times using Precellys® 24 bead-beating homogenizer and chilled 

on ice for 1 minute between bursts. The supernatant was then removed carefully avoiding 

foam and transferred to a new previously refrigerated Eppendorf tube. The protein extract 

was clarified by centrifugation for 15 minutes at 13000 rpm at 4° C. A 2.5 µl extract was 

transferred to another microtube and adjusted the total volume to 0.5 ml with Z buffer 

(Appendix B). β -mercaptoethanol was added just before use 270 µl/100 ml. For thermal 

inactivation the mixture was incubated at 54° C for different test times (0, 2, 4, 6, 10 and 15 

min) and then left on ice for 30 minute. The reaction tube was incubated at 37° C for 5 min 

and the reaction initiated by adding 0.1 mL of ONPG stock solution. The time lapse between 

two tubes was 10 seconds. Each reaction was then allowed to proceed for 5 minute. Finally 

the reaction was terminated by adding 0.25 ml of Na2CO3 stock solution (10 sec time lapse 

between tubes again). The optical density was measured at 420 nm using a Microplate 

Absorbance Reader (iMark, BIO-RAD). A 200 µL of reaction sample was loaded in 96 well 

plates and Z buffer was used as blank. 

The protein concentration was measured using Pierce® BCA Protein Assay Kit 

(Thermo scientific) following Microplate procedure. The protein mixture, whenever 

necessary, was diluted in 1X PBS at 1: 5 ratios and the absorbance was measured at 575 nm 
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on a plate reader. The activity of the β-galactosidase was expressed according to the 

following formula: 

   

 

 OD420 is the value of optical density of ο-nitrophenol measured at 420 nm. The factor 

0.85 corrects for the reaction volume. The factor 0.0045 is the optical density of a 1 nmole/ml 

solution of ο-nitrophenol. Protein concentration is expressed as mg/ml. Extract volume is the 

volume assayed in milliliters. Time is in minutes. Specific activity was expressed as 

nmoles/minute/mg protein.  

 

3.4 Protein extraction, purification and analysis  

Affinity chromatography is commonly used to purify a protein of interest from total 

protein preparations. For this, affinity tags are cloned into recombinant proteins for affinity 

purification and to improve protein solubility. A large number of tags have been developed 

for protein production. In the present study a GST tag was fused with the lacZ gene for 

expression in yeast strain CEN.PK2 (plasmid pGL-C1). This allowed for purification of β-

galactosidase protein with glutathione sepharose beads.  To exclude putative influences of the 

GST tag on the production and solubility of the recombinant β-gal, the strain BY4742 

carrying the plasmid pUKC815 expressing the lacZ gene alone was also tested. Two different 

approaches were used for the purification of the β-galactosidase, namely 

immunoprecipitation and direct gel extraction of the bands corresponding to β-galactosidase. 

3.4.1 Protein extraction 

For the extraction of protein (soluble and insoluble) from S. cerevisiae CEN.PK2 

carrying pGL-C1 plasmids, frozen cells were defrosted on ice and 5 mL of 1X PBS (recipe 

Appendix B ) was added and the pellets re-suspended by vortexing. Then 1mM PMSF and a 

Roche Protease Inhibitor cocktail were added. Around ~ 1/3 volume of glass beads (0.1mm) 

were added to the mixture and cells were lysed by vortexing at high speed, 8 times for 30 

seconds, with cooling on ice for 1 minute between each vortexing step. Then the cells were 

centrifuged at 3000 rpm for 5 minutes at 4° C. Supernatants (whole cell lysates) were 

                                OD420 X 0.85 

   (0.0045  X  Protein  X  Extract volume X  Time) 
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transferred to a new falcon tube and further fractioned by centrifugation at 11000 rpm for 20 

min at 4° C. The supernatants were collected and filtered with a 0.45 µm filter into a new 15 

mL falcon tube (“total soluble” protein) and a small fraction (100 µL) was saved for SDS-

PAGE and western blot analysis. The pellets (insoluble under native condition) were re-

suspended in 5 mL denaturing buffer (1X PBS with 8M urea) and centrifuged at 11000 rpm 

for 20 min at 4° C. The supernatants were collected and filtered with a 0.45 µm filter to a new 

50 mL falcon tube (“total insoluble” protein) and a small fraction (100 µL) was saved for 

SDS-PAGE and western blot analysis. 

3.4.2 Protein purification by affinity chromatography  

Efficient transcription of a gene and translation of the expressed mRNA into protein is 

important when working with proteins. Once high yield of the protein has been obtained, it 

has to be purified from all the other components of the cell, including all the other proteins. 

Protein purification is a complex process requiring a high degree of skill and experience, and 

most protocols rely on finding particular properties of the protein in question, which can be 

used to gradually enrich the protein away from all the other proteins and components of the 

cell. For example, proteins can be separated by size exclusion on columns containing gels of 

the right sort, or by charge by binding them to a column and then gradually washing them off 

in various solutions with increasing salt concentrations. Often, several of these procedures 

have to be done one after the other until the protein obtained is highly pure. More recently, a 

new range of techniques have come into general use which can speed up the process by 

cutting down the number of steps necessary, and which are broadly applicable to a range of 

proteins with very different properties. All these techniques involve adding extra amino acids 

to the protein that give it a new properties, namely to bind very tightly to a particular 

substrate. This specific binding can be used to isolate the protein away from all the other 

materials in the cell which do not bind this substance. The method is known as affinity 

chromatography. A common example is the use glutathione S- transferase (GST) tags. GST is 

an abundantly expressed 26 kDa eukaryotic protein, and GST cloned from Schistosoma 

japonicum promotes solubility and permits purification of  N-terminal fused proteins using 

glutathione sepharose [77](Figure 9). When applied to the affinity medium, fusion proteins 

bind to the ligand and impurities are removed by washing with binding buffer. Fusion 

proteins are then eluted from the Glutathione Sepharose under mild, non denaturing 



39 

 

conditions that preserve both protein antigenicity and function. In the present study the GST-

β galactosidase protein was purified using Glutathione Sepharose 4B (GE Healthcare, Bio-

Sciences AB, Sweden) medium. After the fusion protein is bound to the resin, it can be eluted 

under rather mild conditions using free reduced glutathione (between 10–40 mM) at neutral 

pH. 

                    

Figure 10: Terminal structure of Glutathione Sepharose. Glutathione is attached to Sepharose 
by coupling to the oxirane group using epoxy-activation. The structure of glutathione is 
complementary to the glutathione S -transferase binding site. (Source: GST Gene Fusion System 
Handbook, GE healthcare) 

The Glutathione Sepharose medium was prepared according to protocol (see details in 

Appendix A). About 400 µL of prepared Sepharose 4B resin (50% slurry) was incubated 

overnight with total soluble protein with gentle slurry mixing. The day after a Poly-Prep® 

Chromatography Column (Bio-rad) was washed with one column volume of milli-Q water 

and then equilibrated with one column volume of binding buffer (1X PBS). Then, the 

proteins were mixed overnight with Sepharose beads and poured into the column and the 

flow through was collected in a 15 mL falcon tube. The column was then washed with one 

column volume of 1X PBS (washing buffer) and the flow through was collected in another 15 

mL falcon tube. The bound protein was then eluted with 5 ml of elution buffer (see appendix 

B for recipe). The eluted protein fraction was collected into 5 Eppendorf tubes (1.5 ml each 

fraction) in order to identify the fraction which contained the higher amount of purified 

protein. The protein was then ready for SDS-PAGE and western blotting analysis. 
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3.4.3 Protein purification with Immunoprecipitation techn ique 

Another important technique for separation of protein is Immunoprecipitation (IP), 

which precipitates a protein antigen out of solution using an antibody that specifically binds 

to that particular protein. This process can be used to isolate and concentrate a particular 

protein from a sample containing many thousands of different proteins. Immunoprecipitation 

requires that the antibody couples to a solid substrate at some point in the procedure. In the 

present study, β-galactosidase protein produced in the yeast strain BY4742 was purified using 

Dynabeads® (invitrogen), a magnetic bead-based separation technology. The technology is 

designed for immunoprecipitation of proteins, protein complexes, protein-nucleic acid 

complexes and other antigens. Anti β-galactosidase -IgG fraction A-11132 raised in rabbit, 

(Molecular probes) was added to Dynabeads® Protein G. During a short incubation, the Ab 

binds to the Dynabeads® via their Fc- (fragment crystallizable) region. The tube was then 

placed on a magnet, where the beads migrate to the side of the tube facing the magnet and 

allow for easy removal of the supernatant. The bead-bound Ab may now be used for 

immunoprecipitation. Bound material was easily collected utilizing the unique magnetic 

properties of the Dynabeads®. Magnetic separation facilitates washing, buffer changes and 

elution. The detail protocol of immunoprecipitation of β-galactosidase protein is reported in 

Appendix A. 

3.4.4 SDS-PAGE analysis 

The purpose of this method is to separate proteins according to their size, and no other 

physical features. In order to get the protein in a linear form secondary, tertiary or quaternary 

structures are eliminated using a detergent and reducing agents. 

SDS (sodium dodecyl sulfate) is a detergent that can dissolve hydrophobic molecules, 

but also has a negative charge (sulfate) attached to it. Therefore, if a protein is incubated with 

SDS, it will be linearize by the detergent, moreover the proteins will be covered with 

negative charges. So a protein will migrate towards the positive pole when placed in an 

electric field. In addition the proteins should be put into an environment that will allow 

different sized proteins to move at different rates. The environment of choice is 

polyacrylamide, which is a mixture of two polymers, acrylamide and bisacrylamide. The first 

is a linear molecule whereas the second has a ‘T’ shape, and when mixed they form a matrix 

with different separation gradient, depending on the concentration of each polymer. When 
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this polymer is formed, it turns into a gel and electrical current pulls the proteins through the 

gel in a process called Polyacrylamide gel electrophoresis (PAGE). A polyacrylamide gel is 

not solid but is made of a labyrinth of tunnels through a meshwork of fibers. 

Each gel is composed by a resolving gel with a percentage of acrylamide adapted to 

the size of the target protein. The smaller the molecular weight of the protein(s) of interest, 

the higher is the percentage of acrylamide to be used. To improve the resolution, proteins first 

pass through a stacking gel polymerized on the top of the resolving gel. The stacking gel has 

lower pH and acrylamide concentration (4%) as well as different ionic strength, which allows 

the proteins to be concentrated during the first minutes (~30 min) of electrophoresis, before 

entering the resolving portion of the gel. Since the GST- β galactosidase protein has a MW of 

142 kDa and the β galactosidase alone has a MW of 116 kDa, 10% resolving gels were used. 

During gel preparation Tris-HCl was used as buffer to absorbs counter ions (H+ and OH-) 

keeping the solution in a stable pH level. For gel polymerization, APS (ammonium persulfate 

at 10 mg/100 ml), a source of free radicals was used as initiator of gel formation and TEMED 

(N, N, N', N'-tetramethylethylene diamine), a stabilizer of free radicals, was used to improve 

polymerization. The gel was prepared according to the recipe of Appendix B and Bio-Rad® 

SDS-PAGE gel apparatus were used. The Protein samples for SDS-PAGE were prepared by 

adding 6X loading buffer (appendix B) in a ratio of 1:6, followed by denaturing the samples 

for seven minute at 95º C. Around 15 µL of protein preparation were loaded into the gel 

pockets along with a pre-stained protein marker and the gels were run with 1X SDS running 

buffer (see recipe appendix B) at 80 V for the first 30 minutes until the samples reached the 

stacking gel. Then, the voltage was increased to 130 V and the gels were run for 2 hours until 

the dye front reached the bottom of the gel. The gel was then carefully removed and stained 

with Coomassie Brilliant Blue (see recipe appendix B) dye for 1-2 hours and destained 

overnight with destain solution (see recipe appendix B) 
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3.4.5 Western blot analysis 

Western blotting is a widely used technique for the detection and analysis of proteins. 

It was first described in 1979 [46] and has since become one of the most commonly used 

methods in life science. It uses gel electrophoresis (SDS-PAGE) to separate native proteins or 

denatured proteins, which are then transferred to a membrane (typically nitrocellulose or 

PVDF), where they are probed (detected) using antibodies specific to the target protein. In the 

present study, after electrophoresis, proteins were electro blotted onto nitrocellulose 

membranes (Amersham Hybond ECL) prior to immunodetection. Soluble and insoluble 

protein fractions were analyzed under reducing conditions using 10% SDS-PAGE, as 

described above, and blotted onto a nitrocellulose membrane. For this, six sheets of 3MM 

paper (Whatman) and blotting membranes were cut to gel dimensions. Membranes were 

prehydrated in distilled water and 3 sheets of 3 MM paper and hydrated in TGM buffer (see 

Appendix B). Then papers were placed above pads on the anode of the transfer system, and a 

“sandwich” was assembled by laying down the gel on top of the paper sheets. The blot was 

run for 100 min at 100V at 4° C in TGM buffer (see recipe appendix B) using a BIO-RAD® 

wet transferring system (assembled according to manufacturer’s instructions). The 

membranes were removed carefully and washed 2 times with 1X TBS and blocked in 1X 

TBS (Appendix B) with 3% non-fat milk for 30 minutes at room temperature with gentle 

agitation. After removing blocking agent, the membranes were washed two times for 5 

minutes with 1X TBS. Following the blocking and washing, the primary antibody (anti β-

galactosidase  IgG fraction A-11132 raised in rabbit, Molecular probes) was added (1:5000) 

to the membranes in a solution of 3% non-fat dry milk in 1X TBS. For this, the membranes 

were placed in heat sealable plastic bags, and each membrane was incubated overnight at 4º 

C with agitation. After the overnight incubation, the membranes were washed twice for 5 

minutes with 1X TBS to remove unbound primary antibody. 

Then, the membranes were incubated with the secondary antibody, a mouse anti-

rabbit antibody reactive against the primary antibody and coupled to a fluorochrome that 

allows subsequent visualization. A 1:10,000 dilution of mouse anti-rabbit antibody was 

prepared in 1X TBS and 3% non-fat dry milk. Again, incubations were performed in a plastic 

tray, which were then wrapped in aluminium foil (to avoid fluorochrome degradation by 

light) at room temperature for 2 hours with gentle agitation. Following, three washes were 

performed with 1X TBS-Tween (recipe Appendix B), for 15 minutes each time. The 
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membranes were then washed with distilled water and analyzed at 700 nm (anti rabbit) using 

an Odyssey Li-COR fluorescence imager (Bioscience). 

3.4.6 Sample preparation for mass spectrometry analysis 

The β-galactosidase protein was purified according to a protocol mentioned before 

and the sample was concentrated. The quality of the sample concentration is a critical step in 

protein biochemistry. In the present study, eluted GST-β galactosidase purified by glutathione 

sepharose were concentrated using an Amicon Ultra-15 mL filters (Millipore) of 3,000 

molecular weight cut-off (MWCO) ultra filtration membranes and sent for mass spectrometry 

analysis in the form of in-solution. For in-solution digestion the protein sample were mixed 

with an aqueous buffer (NH4HCO3) containing trypsin (5%).  

β-galactosidase expressed in yeast strain BY4742 was separated by SDS-PAGE, in 

gel digested and analysed directly by mass spectrometry. Protein bands were excised from 

stained polyacrylamide gels. Each gel band was cut into pieces (~1 mm2) using a scalpel, and 

placed into a 1.5 mL microcentrifuge tubes containing milli-Q water.  
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3.5 Mass spectrometry analysis 

Mass spectrometry is a high-throughput technology for protein identification and 

quantification with high-accuracy [78]. The misincorporation of specific amino acids can be 

identified by peptide mapping and LC-MS/MS analysis on proteolyzed peptides of the 

protein. The peptide is fragmented by collision-induced dissociation during MS/MS 

sequencing analysis, which breaks backbone amide bonds generating a series of fragment 

ions, mainly C-terminal y ions and N-terminal b ions in this case [79]. The identity of an 

amino acid at each position in a peptide can be determined by the difference in the m/z values 

of two adjacent y or b ions. For example, a difference of 71 atomic mass units between 

adjacent y ions (or b ions) indicates an Alanine at that position, and a difference of 57 atomic 

mass units indicates a Glycine. 

Another MS technique known as Matrix Assisted Laser Desorption Ionization 

(MALDI) –Time of Flight (ToF) has become a major ionization method for analysis of large 

biological samples and synthetic polymers [91]. Various matrices are used in this technique 

that assists in desorption and ionization of the analytes having molecular weight of up to 500 

kDa. The basic concept of MALDI-TOF mass spectrometer is that the ions are separated 

based on the time it takes for the ion to drift down the flight tube to the detector. Lighter ions 

have higher velocities than heavier ions and reach the detector first. Peptides with a high 

mass need longer flight time in the tube before they reach the detector at the end of flight 

tube. Flight times of ions are inversely proportional to the square root of their molecular 

mass. The m/z ratio of a peptide is calculated based on the energy equation E=½ mv2 (where 

E = kinetic energy of the ion, m = mass, and v = velocity) [91]. Therefore, the peptides are 

sorted due to the size of the individual peptides.  
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4. Results  

 

4.1 Transformations of β-galactosidase gene into Saccharomyces 

cerevisiae  

      Following transformation of pGL-C1 and pUKC815 plasmid into the yeast strains 

CEN.PK2 and BY4742 the presence of the lacZ gene in the plasmid was confirmed by 

amplification of the gene by polymerase chain reaction. The primers successfully amplified 

the GST-lacZ gene (1254 aa) mentioned in appendix D. In this sequence AA position from 5-

218 (214 AA) matched with the GST sequence (UniProt identifier accession no. P08515 and 

name GST26_SCHJA) isolated from Schistosoma japonicum. The lacZ sequence matched 

with the sequence of the E. coli lacZ gene (UniProt identifier accession no. Q8VNN2 and 

entry name BGAL_ECOLX) from AA position 240 to 1254 (1015AA). Moreover the Beta-

gal assay confirmed the presence of β-galactosidase protein in the yeast cell lysate.  

4.1.1 Effect of different stressors on the growth of Saccharomyces 

cerevisiae 

The effect of different stressors on the growth of S. cerevisiae strains CEN.PK2 and 

BY4742, transformed with plasmid pGL-C1 and pUKC815 respectively, was monitored by 

measuring the optical density at different time points at wavelength 600 nm. After several 

trials the right concentration of stressors were found (data not shown). Different stressors 

were applied with varying concentration such as ethyl alcohol 2% and 5% (v/v), chromium 

(CrO3) with 1 mM, 0.5 mM, 0.25 mM and 0.1 mM concentration and Geneticin (G418) at 0.2 

mg/L. The strain CEN.PK2 did not show any marked difference in growth with 2% (v/v) 

ethanol as compared to the control without stressor. While the chromium concentrations of 1 

mM, 0.5 mM and 0.25 mM were lethal.  

The presence of ethanol at 5% (v/v), chromium 0.1 mM and Geneticin 0.2 mg/L 

strongly reduced the growth rate of the CEN.PK2 strain relative to the untreated control cells 

(figure 10 A and B). The Geneticin had the strongest effect on the growth rate (OD600 0.018 

h-1) compared to other treatments and, at that concentration, appeared to be a limiting factor 

for the growth rate. Similarly, the cells treated with chromium were significantly affected. 
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Even ethanol appeared to affect the growth rate significantly (OD600 0.192 h-1 vs. 0.299 h-1) 

but after an initial phase the cells were able to reach the same OD values of the untreated 

cells.  

 

                        

Figure 11: Growth curves (A) and rate (B) of Saccharomyces cerevisiae strain CEN.PK2 
carrying pGL-C1 plasmid (student t-test: *** P > 0.05, ** P < 0.01) 

The yeast strain BY4742 carrying the plasmid pUKC815 (figure 12) treated with 

identical concentration of stressors as the strain CEN.PK2 carrying pGL-C1 plasmid showed 

different growth sensitivity. Nevertheless the 3 stressors clearly affected the growth rate of 

this strain, chromium affected strongly (OD600 0.056 h-1 vs. 0.303 h-1 in control cells) growth 

rate of this strain. Other treatments produced a slow growth phenotype (OD600 0.182 h-1 in 
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ethanol vs. 0.222 h-1 in geneticin treated cells) in the exponential phase, but cells were able to 

reach the stationary phase like the positive control.  

   

                                          

 

                        

Figure 12: Growth curve (A) and rate (B) of Saccharomyces cerevisiae strain BY4742 
carrying pUKC815 plasmid (student t-test: *** P < 0.05, * P < 0.01) 
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4.2 β-galactosidase assay 

The β-galactosidase (β-gal) reporter system was used to test the effects of the different 

stressors on the fidelity of protein synthesis. This test is based on the fact that if 

misincorporation of amino acids occurs in the β-gal protein then its thermostability will 

decrease. In the present study we observed a decrease in activity of the β-galactosidase over 

heat inactivation time, the strongest decrease of enzymatic activity was observed after 6 

minutes of heat inactivation. However, relative differences in thermal stability in the β-

galactosidase protein were observed in presence of different stressors. Geneticin affected the 

most β-galactosidase thermal stability. The effect of chromium (0.1mM) and ethanol (5%) 

was similar and not distinguishable from untreated control cells (Figure 13A). Similarly, in 

yeast strain BY4742 the effect of geneticin was stronger than that of the other stressors 

(Figure 13B).  

 

 

 

Figure 13 (A): β-galactosidase activity of yeast strain CEN.PK2 carrying pGL-C1 plasmid. 
β-galactosidase thermal inactivation profiles were determined by measuring β-galactosidase activity 
directly in S. cerevisiae transformed with pGL-Cl plasmid according to protocol described in 
materials and methods. 
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Figure 13(B): β -galactosidase activity of yeast strain BY4742 carrying plasmid pUKC815. 
β-galactosidase thermal inactivation profiles were determined by measuring β-galactosidase activity 
directly in S. cerevisiae transformed with pUKC815 plasmid according to protocol described in 
materials and methods. 
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4.2.1 Western Blot of β-galactosidase  

The β-galactosidase abundance was also quantified by western blot. After SDS-PAGE 

(figure 14A) analysis, intense bands in soluble protein were observed in the three different 

treatments as well as in the untreated cells. The intensity of bands in insoluble fraction was 

much weaker.  

 

 

Figure 14: SDS-PAGE analysis showing of whole protein extract from yeast strain CEN.PK2 
carrying plasmid pGL-C1 and BY4742 strain carrying plasmid pUKC815. [A]  CEN.PK2: lane M- 
marker, lane 1, 2, 3 and 4 indicates soluble protein extract from untreated control, Ethanol, CrO3 and 
Geneticin respectively. Lane 5, 6, 7, and 8 indicates insoluble protein extract from control, Ethanol, 
CrO3 and Geneticin respectively. The red rectangle indicates the position of GST-β galactosidase 
protein confirmed by western blotting [B]  BY4742: lane M- Protein marker, lane 1, 2, 3 and 4 
indicates soluble protein extract from untreated control, Ethanol, CrO3 and Geneticin respectively. 
Lane 5, 6, 7, and 8 indicates insoluble protein extract from control, Ethanol, CrO3 and Geneticin 
respectively.  

 

The presence of GST- β galactosidase protein was confirmed by western blotting and 

immuno detection (figure 15) with a rabbit monoclonal antibody raised against E. coli β-

galactosidase. The protein was detected both in the soluble and insoluble fractions (figures 

14, 15), the intensity of bands in insoluble fraction was very weak. The β-galactosidase 

protein was also detected in the yeast BY4742 carrying plasmid pUKC815 (figure 14B), 

which was also confirmed by western blotting (figure 15B). After western blotting the bands 

were only observed in the soluble fraction and were not detected in the insoluble whole 
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extract. The predicted MW of mistranslated GST- β galactosidase protein (Appendix D) was 

also calculated using the BioEdit (version 7.0.9) sequence alignment software, which 

predicted that expected mistranslated protein varies from 119 Daltons (Da) to maximum 475 

Da due to the amino acid misincorporations. This difference is not sufficient to produce 

distinct bands in SDS-PAGE, confirming our observation of a single band in the western blot.  

 

  

    Figure 15: [A]  Western blotting (WB) showing GST-β gal protein detected using 
an anti- β galactosidase antibody. Whole protein extract of yeast strain CEN.PK2 grows in 
presence of different stressors, where Lane M- Protein marker, Lane 1 - control, 2 - Ethanol, 
3 - CrO3 and 4 - Geneticin stressed soluble protein extract and from Lane 5 - control, 6 - 
Ethanol, 7- CrO3, and 8- Geneticin stressed insoluble protein extract. Red and yellow 
rectangle shows the GST- β-galactosidase bands in soluble and insoluble extract. [B] WB 
shows the β galactosidase present in the whole protein extract prepared from yeast strain 
BY4742. Lane M- Protein marker, Lane 1 - control, 2 - Ethanol, 3 - CrO3 and 4 - Geneticin 
stressed soluble protein extract and from Lane 5 - control, 6 - Ethanol, 7- CrO3, and 8- 
Geneticin stressed insoluble protein extract. Lane 9 indicates control whole soluble protein 
extract from CEN.PK2 strain loaded as a reference.  Red rectangles indicate the presence of 
β-galactosidase protein.  

 

 



52 

 

4.3 Purification of β-galactosidase protein from Saccharomyces 

cerevisiae  

The β-galactosidase protein produced from lacZ gene has a molecular weight of ~116 

kDa and the fusion with GST increase the molecular weight to ~ 142 kDa. The GST binds to 

resin immobilized glutathione, and this property was successfully used for affinity 

purification of GST tagged proteins. The fusion protein bound to the glutathione - sepharose 

beads, was eluted under mild conditions using free reduced glutathione (10 mM) at neutral 

pH. Most of the GST-β galactosidase protein was soluble (Figure 16A), the amount of protein 

extracted from the inclusion bodies was very little and could not be analyzed by Mass 

spectrometry. Different protocols have been applied for the solubilization of the inclusion 

bodies using high concentration of denaturant, such as urea or reducing agents such as 

Dithiothreitol (DTT) or detergent as Triton-X. Unfortunately none of these protocols 

produced the expected results. 

The other yeast strain BY4742 used in this study, carrying the low copy plasmid 

pUKC815, which expresses non tagged β-galactosidase protein was purified by 

immunoprecipitation with Dynabeads® (invitrogen). Unfortunately, after several trials, the 

immunoprecipitation of β-galactosidase was not successful (Figure 16B) and the protocol was 

not used for further studies. Purification of insoluble protein expressed from both constructs 

as well as the soluble protein without the GST tag was also done by cutting bands directly 

from SDS-PAGE gels.  

The purified GST-β galactosidase protein from the yeast strain CEN.PK2 was 

successively filtered and concentrated using Amicon® Ultra centrifugal (15 mL) 3000 

MWCO devices (Millipore). A small fraction of the protein was loaded on a SDS-PAGE to 

check the protein purity. SDS-PAGE analysis (Figure 17) shows the presence of β 

galactosidase protein in solution. The concentration of GST-β galactosidase protein was 

quantified using NanoDropTM spectrophotometer and was recorded 0.57, 0.38, 0.30 and 0.21 

mg/ml in control, ethanol, chromium and geneticin treated yeast respectively. 
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Figure 16: A) SDS-PAGE showing purified GST–β galactosidase protein from 
Saccharomyces cerevisiae strain CEN.PK2. Lanes (from left to right) showing : M- protein marker, 
WE – Whole extract, FT- Flow through, W- Wash with PBS and Elution fraction 1, 2, 3, 4 and 5. The 
red rectangle shows the band of GST- β galactosidase protein in the soluble eluted fraction. B) SDS-
PAGE showing immuneprecipitated β-gal protein from the yeast strain BY 4742. Lane M- protein 
marker, Lane 1, 2, 3, 4 denotes control soluble wash 1, wash 2, elution  and elution ( the same of lane 
3 ) respectively and Lane 5, 6, 7, 8 denotes control insoluble wash 1, wash 2, elution and elution (the 
same of lane 7) respectively. 

                                          

Figure 17: SDS-PAGE showing the concentrated protein centrifuged for 90 minutes (lane 1, 
3, 5 and 7) and 150 minutes (lane 2, 4, 6 and 8 respectively). 15 µl of sample was loaded in 10% 
PAGE gel whereas lane 1& 2 indicate β-galactosidase protein from control without stressor, lane 3 & 
4 with stressor 5% (v/v) Ethanol, lane 5 & 6 with stressor 0.1 mM CrO3 , and lane 7 & 8 indicate 
protein exposed with stressor  0.2 mg/L Geneticin. 
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4.4 Mass spectrometry analysis 

Mass spectrometry data confirmed the amino acids misincorporations in GST-β 

galactosidase protein in (table 2). Eight out of the twenty amino acids namely Ala, His, Pro, 

Ser, Asp, Arg, Met and Val were misincorporated in different positions of GST-β 

galactosidase protein treated with different stressors. However, the misincorporation of amino 

acid is not random, but depends on position and amino acids specificity. There were two 

substitutions of amino acids that were position specific, namely Ser → Ala in position 423 

(figure 18 B) and Arg → His in position 274 (figure 18A) and 1173 (figure 18C) in β- 

galactosidase treated with all stressors. The residues positions are mentioned here according 

to GST- β galactosidase protein (1-1254 aa) sequenced in this study (Appendix C).  Alanine 

may misincorporated at highest level [figure 19B]. The order of other amino acids 

misincorporations (%) were Ala > His > Ser and Pro >Arg and Asp > Met and Val. Some of 

the amino acids were substituted with a specific amino acid, for example Arg → His, Leu → 

Ser, Lys → Arg, Ser → Asp, His → Met and Trp → Val. Alanine was substituted for Trp / 

Ser / Tyr and Proline was substituted with Cys / Gln / Ser / Trp. These substitutions occurred 

in specific positions of the GST- β protein.  

The E. coli lacZ gene aligns with positions 240 to 1254 of the GST- β gal produced in 

CEN.PK2 strain. Therefore, the amino acids misincorporated in the position 242, 243, 247, 

267, 274, 422, 423, 662, 767, 771, 878, 1173, 1193 and 1194 are considered true 

misincorporations in β gal protein. The rest of the misincorporations in the position 4 and 47 

denotes GST protein. Further studies are needed to confirm these results.  
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Table 2: Amino acids misincorporation in GST –β galactosidase analyzed with MALDI-TOF 
mass spectrometry. 
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Figure 18: Misincorporation of amino acids in GST-β galactosidase protein (1254 aa) A) 
Histidine at arginine position, B) Alanine at tryptophan and serine position and C) Histidine at 
arginine position.  
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Figure 19: Bar charts showing A) Total number of amino acids misincorporation in GST-β 
galactosidase protein produced in presence of different stressors, B) Percentage of amino acids 
misincorporation in GST-β galactosidase protein and C) Number of different amino acids in GST-β 

galactosidase protein produced in presence of the stressors indicated. 
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5. Discussion 

 

5.1 Effect of environmental stressors on the growth of 

Saccharomyces cerevisiae 

Environmental stressors have a strong affect on yeast growth rate. Both the strains, 

CEN.PK2 to BY4742 strains were affected by geneticin as expected. A different pattern was 

observed in the case of chromium where the strain BY4742 showed reduced growth rate 

(18% vs. 40%) in contrast to CEN.PK2 strain. Both strains showed similar responses to 

ethanol. It is clear from many studies that yeast treated with ethanol initially struggle to 

maintain energy production, and various expression of genes related to energy-generating 

activities, namely glycolysis and mitochondrial function are up-regulated [82]. At the same 

time yeast down regulate expression of many genes associated with energy demanding 

processes, such as growth [82]. In the present study, 5% ethanol decreases the growth rate of 

the yeast strains CEN.PK2 and BY4742 by 40 %. After 64 hours both strains showed slight 

increase in OD, which could be explained by ethanol being metabolized. Regarding amino 

acid misincorporations, we are able to detect 10 amino acids misincorporated in GST-β gal 

protein produced in presence of 5% ethanol, which was higher than the levels of 

misincorporations in control cells (7 aa). 

In the present study geneticin reduced the yield of GST-β galactosidase protein at 

least 3 times (0.21 mg/ml vs. 0.57 mg/ml) relative to that of the control cells, likely due to the 

strong negative effect of geneticin on the growth rate of the CEN.PK2 strain. The number of 

amino acids misincorporated in GST- β gal was also higher (10 vs. 7 aa) in geneticin treated 

cells than in control cells.  

Chromium like other heavy metals also reduced the relative growth of both yeast 

strains studied and the concentration of GST-β galactosidase protein was also reduced to 50% 

(0.30 mg/ml vs. 0.57 mg/ml) in the chromium treated cells. Amino acids misincorporation 

into the GST-β gal increased (7 vs. 9 aa) relative to control cells.  
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5.2 β -gal assay 

The enzyme β–galactosidase (β-gal) has an active quaternary structure and it is an 

efficient reporter protein for sense codon misreading due to the negative effects of the 

misincorporation on the thermostability of the enzyme [75]. However, in the present study 

the misincorporation of amino acids in the GST- β gal purified from control, ethanol and 

chromium treated cells did not show visible effects on the heat stability of the expressed 

enzyme. Only geneticin treated CEN.PK2 strain showed a relative decrease in β-gal activity 

(%) during first twelve minutes of thermal inactivation. Therefore, the number of amino acids 

misincorporations in GST-β gal was not sufficient to cause a pronounced heat stability 

difference between control, ethanol and chromium treated yeast cell. Conversely, the 

geneticin treated sample showed misincorporation of amino acids at the position Arg662 (to 

His662) and His771 (to Met771). These misincorporations were not observed in GST- β gal 

protein purified from cells treated with the other environmental stressors. Therefore, the 

histidine and methionine substitutions may explain the decreased thermostability of the β-

galactosidase enzyme relative to the other samples. However, further tests are necessary to 

confirm these results.  

5.3 Purification of β- galactosidase protein from yeast   

One of the objectives of this study was to optimize the GST- β gal purification 

protocol. The 26-kD GST tag is short (218 aa) [27] and is frequently used as a fusion in 

molecular biology research. The study from Pawel and co-workers [86] defined soluble 

protein as the fraction that stayed in solution, did not oligomerize strongly and was stable (did 

not precipitate or aggregate), while insoluble proteins are defined as those that can not stay in 

solution without denaturing agents like urea. Our β-galactosidase protein was successfully 

purified from the soluble protein extracts of yeast strain CEN.PK2 lysates. However, the 

GST-β galactosidase protein purified from the insoluble fraction was not sufficient for SDS-

PAGE gel and western blotting analysis. Several trials following different protocols [9, 47] to 

solubilize and purify the GST-β gal from inclusion bodies were carried out using lysis buffers 

containing DTT, Triton-X (1%), N-lauroylsarcosine sodium salt (sarkosyl) or NaCl (1M), but 

they were not successful. A likely reason for these results is that the GST tag increases 

solubility of β-galactosidase. Indeed, a study from Kim and Lee [87] showed that GST can 

act as a solubility tag. Another study [88] suggests that the GST tag has to be folded properly 
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in order to bind glutathione and should be purified under non denaturing conditions. In the 

present study a very faint band was observed in the insoluble fraction β-galactosidase treated 

with 8M urea. Therefore, the GST tag may solubilize β-galactosidase and urea may prevent 

its purification by denaturing GST. Additional experiments are therefore needed to clarify 

this issue.   

5.4 Mass spectrometry analysis 

E. coli β-galactosidase protein produced in Saccharomyces cerevisiae showed various 

amino acids misincorporations. Indeed, at least 7 amino acids were misincorporated in the 

GST-β galactosidase protein produced in control cells and 9-10 amino acids were 

misincorporated under stress. The frequency of errors was    5.6 × 10-3 to 8 × 10-3 which 

represents the 60-80 fold increase relative to the typical errors 1×10-4 [19], under normal 

growth conditions. Two amino acids substitution, namely Alanine for Serine (AGU) at 

position 423 and histidine for arginine (CGC) at position 274 and 1173 in our GST- β gal 

sequence are common and may not be related with stressor. The lacZ gene has 9, 5′-AGU-3′ 

and 37, 5′-CGC-3′ codons, but misincorporation occurred only at the above mentioned 

positions. It is believed that misincorporation can be caused by either an anticodon-codon 

mismatch, i.e. misreading or the use of an erroneously charged tRNA, i.e. mischarging or 

misacylation [19]. The histidine was misincorporated at position [CGC662] in geneticin 

treated cells. The preferred codons for histidine residue in yeast cells are 5′-CAC-3′ 

(frequency 7.8/1000) or 5′-CAU -3′ (frequency 13.6/1000). So, in this case the codon for 

histidine differing by only one base at the second position might be misread. Many studies 

support that most misreadings occur at the third position of the codon due to a weaker 

interaction with its cognate base than do bases at the first and second positions [79].  

Although misreading at the second codon position is very rare [19, 89], misincorporations at 

this position have been reported in several studies. For example, G•U mismatches that 

include serine to asparagine mistranslation (AGC to AAC) [89] and arginine to asparagine 

mistranslations (CGG to CAG) [90] have been demonstrated. Some of the misincorporation 

such as proline for glutamine codon CAA243 (ethanol), serine for leucine codon UUA242 

(chromium), valine for tryptophan codon UGG267 (chromium) and methionine for histidine 

codon CAC771 (geneticin) occurred once in GST-β-galactosidase produced in presence of 

different stressors.  
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6. Conclusion 

 

Fidelity in protein synthesis is essential whether protein is produced in native or 

heterologous hosts. However, gene translation into corresponding amino acid sequences is 

not always accurate. This is also true during recombinant protein production in heterologous 

hosts which often gives rise to aberrant proteins. Faithful translation from messenger RNA 

(mRNA) to protein depends on many factors and is a crucial step during gene expression. 

With the aim of quantifying misincorporation of amino acids in recombinant proteins, GST-β 

galactosidase was expressed in yeast. Technological innovations, in mass spectrometry now 

allow for detection of errors with high precisions. Indeed, our data show that environmental 

stressors increase the misincorporation at least 60-80 folds relative to that observed in control 

cells. The misincorporation of amino acids was only studied in soluble protein extract and we 

faced technical hurdles during the purification of primarily insoluble proteins under non-

denaturing conditions. However, misincorporation in insoluble protein should also be 

determined in the future to determine whether such misincorporations increase protein 

aggregation. 
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APPENDIX A 

YPD agar plates  

 
1. YPD medium was dissolved at a concentration of 6.7 g/L, 2% Agar (20 g/L), 0.2% drop 
out mix (2 g/L) and 2% glucose (20 g/L) in distilled water.   

2. All the components was mix in a big flask and water was added until 1 L. The flask for 
sterilization of the medium was autoclaved;  

3. Once the medium reached to room temperature, it was kept stirred for spreading in the 
dishes before solidified. 

Note: The procedure for YPD liquid medium is equal without adding Agar  

 

• Isolating Genomic DNA from Yeast 
 

         Materials to Be Supplied by the User 

                         • 1.5ml microcentrifuge tubes 

                          • YPD broth 

                          • 50mM EDTA (pH 8.0) 

                          • 20mg/ml lyticase (Sigma Cat.# L2524) 

                          • Water bath, 37°C 

                          • Isopropanol, room temperature 

                          • 70% ethanol, room temperature 

                          • Water bath, 65°C (optional; for rapid DNA rehydration) 

 

1. Add 1ml of a culture grown for 20 hours in YPD broth to a 1.5ml microcentrifuge tube. 

2. Centrifuge at 13,000–16,000 × g for 2 minutes to pellet the cells. Remove the supernatant. 

3. Resuspend the cells thoroughly in 293µl of 50mM EDTA. 

4. Add 7.5µl of 20mg/ml lyticase and gently pipet 4 times to mix. 
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5. Incubate the sample at 37°C for 30–60 minutes to digest the cell wall. Cool to room 

temperature. 

6. Centrifuge the sample at 13,000–16,000 × g for 2 minutes and then remove the 

supernatant. 

7. Add 300µl of Nuclei Lysis Solution to the cell pellet and gently pipet to mix. 

8. Add 100µl of Protein Precipitation Solution and vortex vigorously at high speed for 20 

seconds. 

9. Let the sample sit on ice for 5 minutes. 

10. Centrifuge at 13,000–16,000 × g for 3 minutes. 

11. Transfer the supernatant containing the DNA to a clean 1.5ml microcentrifuge tube 

containing 300µl of room temperature isopropanol. 

Note: Some supernatant may remain in the original tube containing the protein pellet. Leave 

this residual liquid in the tube to avoid contaminating the DNA solution with the precipitated 

protein. 

12. Gently mix by inversion until the thread-like strands of DNA form a visible mass. 

13. Centrifuge at 13,000–16,000 × g for 2 minutes. 

14. Carefully decant the supernatant and drain the tube on clean absorbent paper. Add 300µl 

of room temperature 70% ethanol and gently invert the tube several times to wash the DNA 

pellet. 

15. Centrifuge at 13,000–16,000 × g for 2 minutes. Carefully aspirate all of the ethanol. 

16. Drain the tube on clean absorbent paper and allow the pellet to air-dry for 10–15 minutes. 

17. Add 50µl of DNA Rehydration Solution. 

18. Add 1.5µl of RNase Solution to the purified DNA sample. Vortex the sample for 1 

second. Centrifuge briefly in a microcentrifuge for 5 seconds to collect the liquid and 

incubate at 37°C for 15 minutes. 
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19. Rehydrate the DNA by incubating at 65°C for 1 hour. Periodically mix the solution by 

gently tapping the tube. Alternatively, rehydrate the DNA by incubating the solution 

overnight at room temperature or at 4°C. 

20. Store the DNA at 2–8°C. 

 

• QIAquick PCR Purification Kit Protocol (using a mic rocentrifuge) 
 

This protocol is designed to purify single- or double-stranded DNA fragments from 

PCR and other enzymatic reactions. Fragments ranging from 100 bp to 10 kb are purified 

from primers, nucleotides, polymerases, and salts using QIAquick spin columns in a 

microcentrifuge. 

Important points before starting 

■ Add ethanol (96–100%) to Buffer PE before use (see bottle label for volume). 

■ All centrifugation steps are carried out at 17,900 x g (13,000 rpm) in a conventional 

tabletop microcentrifuge at room temperature. 

■ Add 1:250 volume pH indicator I to Buffer PB (i.e., add 120 µl pH indicator I to 30 ml 

Buffer PB or add 600 µl pH indicator I to 150 ml Buffer PB). The yellow color of Buffer PB 

with pH indicator I indicates a pH of ≤7.5. 

■ Add pH indicator I to entire buffer contents. Do not add pH indicator I to buffer aliquots. 

Procedure 

1.   Add 5 volumes of Buffer PB to 1 volume of the PCR sample and mix. It is not necessary 

to remove mineral oil or kerosene. For example, add 500 µl of Buffer PB to 100 µl PCR 

samples (not including oil). 

2.   If pH indicator I has been added to Buffer PB, check that the color of the mixture 

isyellow. If the color of the mixture is orange or violet, add 10 µl of 3 M sodium acetate, pH 

5.0, and mix. The color of the mixture will turn to yellow. 



73 

 

3.   Place a QIAquick spin column in a provided 2 ml collection tube. 

4.   To bind DNA, apply the sample to the QIAquick column and centrifuge for 30 – 60 s. 

5.   Discard flow-through. Place the QIAquick column back into the same tube. Collection 

tubes are re-used to reduce plastic waste. 

6.   To wash, add 0.75 ml Buffer PE to the QIAquick column and centrifuge for 30 – 60 s. 

7.   Discard flow-through and place the QIAquick column back in the same tube. Centrifuge 

the column for an additional 1 min. 

IMPORTANT: Residual ethanol from Buffer PE will not be completely removed unless the 

flow-through is discarded before this additional centrifugation. 

8.   Place QIAquick column in a clean 1.5 ml microcentrifuge tube. 

9.   To elute DNA, add 50 µl Buffer EB (10 mM Tris·Cl, pH 8.5) or water (pH 7.0–8.5) to the 

center of the QIAquick membrane and centrifuge the column for 1 min. Alternatively, for 

increased DNA concentration, add 30 µl elution buffer to the center of the QIAquick 

membrane, let the column stand for 1 min, and then centrifuge. 

IMPORTANT: Ensure that the elution buffer is dispensed directly onto the QIAquick 

membrane for complete elution of bound DNA. The average eluate volume is 48 µl from 50 

µl elution buffer volumes, and 28 µl from 30 µl elution buffer. Elution efficiency is 

dependent on pH. The maximum elution efficiency is achieved between pH 7.0 and 8.5. 

When using water, make sure that the pH value is within this range, and store DNA at –20°C 

as DNA may degrade in the absence of a buffering agent. The purified DNA can also be 

eluted in TE buffer (10 mM Tris·Cl, 1 mM EDTA, pH 8.0), but the EDTA may inhibit 

subsequent enzymatic reactions. 

10.   If the purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye to 5 

volumes of purified DNA. Mix the solution by pipetting up and down before loading the gel. 

Loading dye contains 3 marker dyes (bromophenol blue, xylene cyanol, and orange G) that 

facilitate estimation of DNA migration distance and optimization of agarose gel run time.  
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• Preparation of Glutathione Sepharose media for use in batch 
purification: 
 

1. Gently shake the bottle to re-suspend the slurry. 

2. Collect 200 µL for each sample of bed volume of Glutathione Sepharose and transfer 

in a 15 mL falcon tube 

3. Sediment the chromatography medium by centrifugation at 500 g for 5 min.  

4. Carefully decant the supernatant (using a pipet!). 

5. Wash the Glutathione Sepharose 4B by adding 2 ml of 1X PBS for every 200 µL. 

6. Sediment the chromatography medium by centrifugation at 500 g for 5 min.  

7. Carefully decant the supernatant. 

8. Repeat steps 5 and 6 once for a total of two washes (to remove ethanol!). 

9. Re-suspend the washed slurry into 200 µL of 1X PBS (final slurry concentration of  

~ 50% - Ready to use!) 

 

� Immunoprecipitation Protocol Using Dynabeads® Protein A or 
Dynabeads® Protein G 

 
  Binding of Antibody (Ab) 

1. Completely resuspend Dynabeads by pipetting or rotating on a roller (5 min). 

2. Transfer 50 µl Dynabeads to a tube, place on magnet and remove supernatant. 

3. Remove tube from magnet and resuspend the Dynabeads in 200 µl Ab Binding & 

Washing Buffer containing Ab of choice. (Typically 1 - 10 µg Ab, the optimal amount needed 

will depend on the individual Ab used). Here, 1µl of anti–b-galactosidase rabbit IgG fraction 

was used. 

4. Incubate 10 minutes with rotation at room temperature. 

5. Place tube on magnet and remove supernatant. 

6. Remove tube from magnet and wash the Dynabeads-Ab complex by resuspending 

in 200 µl Ab Binding & Washing Buffer. 
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Immunoprecipitation of Antigen (Ag) 

7. Place tube on magnet and remove supernatant 

8. Add Ag-containing sample 100 µl (typical range 100 -1000 µl) to the Dynabeads-Ab 

complex and gently resuspend by pipetting. 

9. Incubate 10 minutes at room temperature with rotation. 

10. Place tube on magnet, transfer supernatant to a clean tube. 

11. Wash the Dynabeads-Ab-Ag complex 3 times, using 200 µl Washing Buffer for each 

wash. Mix gently by pipetting. 

12. Resuspend the Dynabeads-Ab-Ag complex in 100 µl Washing Buffer and transfer the 

suspension to a clean tube. Place tube on magnet and remove supernatant. 

 

Elution of Ab/Ag complex (alternatives A: denaturing or B: non-denaturing) 

A. Gently resuspend the Dynabeads-Ab-Ag complex in 20 µl Elution Buffer. Add 10 µl 

NuPAGE® LDS Sample Buffer / NuPAGE® Reducing Agent mix and incubate 10 minutes at 

70°C. Place tube on magnet and load supernatant/sample onto a gel. (Alternatively, the 

Dynabeads-Ab-Ag complex can be resuspended in the SDS sample buffer of your choice and 

heated as per your standard protocol prior to gel loading.) 

B. Gently resuspend the Dynabeads-Ab-Ag complex in 20 µl Elution Buffer. Incubate 2 

minutes at room-temperature. Place tube on magnet and transfer supernatant/sample 

 

 

 

 

 



76 

 

APPENDIX B 

 
         PBS 1x (1000 mL)  
                      8.2 g NaCl 

                      0. 2 g KCl 

                      1.41 g Na2HPO4;  

                      0.24 g KH2PO4;  

                      Volume adjusted to 1000 mL of distilled water and pH was adjusted to 7.4 with  

                      HCl and sterilized by autoclaving. 

 
        TGM 1x  
                       25mM Tris-Base (3.03 g/L)  

                      193 mM Glycine (14.4g/L)  

                      20 % Methanol (200 mL) and Volume adjusted to 1000 mL of distilled water 

 
        TBS 1X (1000ml)  
 
                      6.05 g Tris;  

                      8.76 g NaCl;  

                      800 ml of distilled water. The pH was adjusted to 7.5 with 1 M HCl and volume  

                      adjusted to 1 L with distilled water. 

 

         TBS-T (1000 ml)  

                      1 ml of  Tween-20 in 1L of 1X  TBS buffer. 

  
         Coomassie Brilliant Blue (R-250)  

                       40% Methanol  

                       10% Glacial Acetic Acid  

                       0.05% Coomassie Brilliant Blue R-250  
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           Elution Buffer (100 mL) 

           0.61 g Tris-Base (50 mM) 

          0.31 g Reduced Glutathione (10 mM), adjust volume and PH at 8 with HCl and   

           then sterilized by filtration (0.20 µm) 

 

           Destain solution (1L) 

          100 mL Absolute ethanol (10%) 

          75 mL Glacial acetic acid (7.5%) and the volume adjusted to 1 L with distilled 

          water. 

 

            SDS-PAGE gel recipe (for 2 gels): 

Components Resolving gel (10%) Stacking gel (4%) 

Distilled Water (Milli-Q) 3.6 ml 3.465 ml 

SDS (10% w/v) 100 µl 50 µl 

Tris-HCl 3.75 ml (1.0M pH 8) 1.0 ml (0.625M pH6.8) 

Acrilamide/ Bis acrilamide (40% stock) 2.5 ml 0.5 ml 

APS (10mg/100 µl) 50 µl 25 µl 

TEMED 20 µl 20 µl 

 

            Z Buffer (1 liter): 

                        16.1g Na2HPO4-7H2O 

                        5.5g NaH2PO4-H2O 

   0.75g KCl 

   0.246g MgSO4-7H2O 

   H2O to 1 liter (autoclave and store at 4°C) 

   2.7ml β-mercaptoethanol (add 270ul/100ml but only before use) 
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ONPG (stock solution) 

                       4 mg/ml in Z buffer, also known as 2-nitrophenyl β-D-galactopyranoside 

 

6x loading dye (10 ml) 

                        6 ml Glyercol 

                        1.2 ml EDTA (0.5M) 

                        2.8 ml ddH2O (sterile) 

                        pinch of bromophenol blue 

                        pinch of xylene cyanol 

    � Pour glycerol into a graduated 10-15ml tube (do not pipette). Add other  

                       ingredients and mix by vortex. Do not use too much dye and store at room  

                       temperature. 
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APPENDIX C 

Primer sequences: 5’ → 3’ 

Forward 1: TAATACGACTCACTATAGGG [Universal T7 promoter] 

Reverse 1: CGGATACTGACGAAACGCCT 

Forward 2: GATGAAGATCAGCCGTTTCC 

Reverse 2: CCTATTGCTATAACCGCACT 

Forward 3: TGGCAATTTAACCGCCAGTC 

 

GST-β Gal Sequence ( GST-LacZ )  

MAKLPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGDVKLTQSMAIIR

YIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKVDFLSKLPEMLKMFEDRLCHKTYLNGDHV

THPDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGDHPPKSDLVP

RGSGHHLEWLVPDPVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQQLRSLNGEWRFAWFPAPEAV

PESWLECDLPEADTVVVPSNWQMHGYDAPIYTNVTYPITVNPPFVPTENPTGCYSLTFNVDESWLQEGQTRIIFD

GVNSAFHLWCNGRWVGYGQDSRLPSEFDLSAFLRAGENRLAVMVLRWSDGSYLEDQDMWRMSGIFRDVSLLHKPT

TQISDFHVATRFNDDFSRAVLEAEVQMCGELRDYLRVTVSLWQGETQVASGTAPFGGEIIDERGGYADRVTLRLN

VENPKLWSAEIPNLYRAVVELHTADGTLIEAEACDVGFREVRIENGLLLLNGKPLLIRGVNRHEHHPLHGQVMDE

QTMVQDILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANIETHGMVPMNRLTDDPRWLPAMSERVTRMV

QRDRNHPSVIIWSLGNESGHGANHDALYRWIKSVDPSRPVQYEGGGADTTATDIICPMYARVDEDQPFPAVPKWS

IKKWLSLPGETRPLILCEYAHAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENGNPWSAYGGDFGD

TPNDRQFCMNGLVFADRTPHPALTEAKHQQQFFQFRLSGQTIEVTSEYLFRHSDNELLHWMVALDGKPLASGEVP

LDVAPQGKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISAWQQWRLAENLSVTLPAASHAIPHLTTSE

MDFCIELGNKRWQFNRQSGFLSQMWIGDKKQLLTPLRDQFTRAPLDNDIGVSEATRIDPNAWVERWKAAGHYQAE

AALLQCTADTLADAVLITTAHAWQHQGKTLFISRKTYRIDGSGQMAITVDVEVASDTPHPARIGLNCQLAQVAER

VNWLGLGPQENYPDRLTAACFDRWDLPLSDMYTPYVFPSENGLRCGTRELNYGPHQWRGDFQFNISRYSQQQLME

TSHRHLLHAEEGTWLNIDGFHMGIGGDDSWSPSVSAEFQLSAGRYHYQLVWCQK* = 1254 Amino acid 

Note: GST - (214 aa) matches from position 5 to 218 aa (UniProt identifier accession no. P08515 and 
entry name GST26_SCHJA) and LacZ - (1015 aa) matches from aa position 240 to 1254 (UniProt 
identifier accession no. Q8VNN2 and entry name BGAL_ECOLX). 
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APPENDIX D 

Difference of molecular weight with native GST-β gal protein: Control 119 Daltons (Da), 

Ethanol 265 Da, Geneticin 443 Da and chromium 475 Da. 

 

 

 

 

 

 

 

 

 

 

 

Protein: GST-β gal protein 
         
Length = 1254 amino acids 
MW = 143310.47 Daltons 
 
Amino Acid  Number   Mol% 
  Ala  A      87     6.93 
  Cys  C      20     1.59 
  Asp  D      82     6.53 
  Glu  E      79     6.29 
  Phe  F      47     3.75 
  Gly  G      87     6.93 
  His  H      42     3.35 
  Ile  I      51     4.06 
  Lys  K      42     3.35 
  Leu  L      126    10.04 
  Met  M      31     2.47 
  Asn  N      51     4.06 
  Pro  P      78     6.22 
  Gln  Q      63     5.02 
  Arg  R      76     6.06 
  Ser  S      68     5.42 
  Thr  T      60     4.78 
  Val  V      75     5.98 
  Trp  W      44     3.51 
  Tyr  Y      45     3.59 

 

Protein: GST-β gal from 
Control sample 
Length = 1254 amino acids 
MW = 143191.25 Daltons 
 
Amino Acid  Number   Mol% 
  Ala  A      89     7.09 
  Cys  C      19     1.51 
  Asp  D      83     6.61 
  Glu  E      79     6.29 
  Phe  F      47     3.75 
  Gly  G      87     6.93 
  His  H      44     3.51 
  Ile  I      51     4.06 
  Lys  K      41     3.27 
  Leu  L      126    10.04 
  Met  M      31     2.47 
  Asn  N      51     4.06 
  Pro  P      79     6.29 
  Gln  Q      63     5.02 
  Arg  R      75     5.98 
  Ser  S      66     5.26 
  Thr  T      60     4.78 
  Val  V      75     5.98 
  Trp  W      43     3.43 
  Tyr  Y      45     3.59 

 

Protein: GST-β gal from 
Etoh treated sample 
Length = 1254 amino acids 
MW  = 143045.06 Daltons 
 
Amino Acid  Number   Mol% 
  Ala  A      89     7.09 
  Cys  C      19     1.51 
  Asp  D      83     6.61 
  Glu  E      79     6.29 
  Phe  F      47     3.75 
  Gly  G      87     6.93 
  His  H      44     3.51 
  Ile  I      51     4.06 
  Lys  K      41     3.27 
  Leu  L      125    9.96 
  Met  M      31     2.47 
  Asn  N      51     4.06 
  Pro  P      81     6.45 
  Gln  Q      62     4.94 
  Arg  R      75     5.98 
  Ser  S      67     5.34 
  Thr  T      60     4.78 
  Val  V      75     5.98 
  Trp  W      42     3.35 
  Tyr  Y      45     3.59 

 

Protein: GST-β gal from 
GENETICIN treated sample 
Length = 1254 amino acids 
MW = 142866.96 Daltons 
 
Amino Acid  Number   Mol% 
  Ala  A      92     7.33 
  Cys  C      20     1.59 
  Asp  D      82     6.53 
  Glu  E      79     6.29 
  Phe  F      47     3.75 
  Gly  G      87     6.93 
  His  H      44     3.51 
  Ile  I      51     4.06 
  Lys  K      42     3.35 
  Leu  L      125    9.96 
  Met  M      32     2.55 
  Asn  N      51     4.06 
  Pro  P      78     6.22 
  Gln  Q      63     5.02 
  Arg  R      73     5.82 
  Ser  S      67     5.34 
  Thr  T      60     4.78 
  Val  V      75     5.98 
  Trp  W      42     3.35 
  Tyr  Y      44     3.51 

 

Protein: GST-β gal from 
CHROMIUM Treated sample 
Length = 1254 amino acids 
MW = 142834.86 Daltons 
 
Amino Acid  Number   Mol% 
  Ala  A      91     7.25 
  Cys  C      20     1.59 
  Asp  D      82     6.53 
  Glu  E      79     6.29 
  Phe  F      47     3.75 
  Gly  G      87     6.93 
  His  H      44     3.51 
  Ile  I      51     4.06 
  Lys  K      42     3.35 
  Leu  L      124    9.88 
  Met  M      31     2.47 
  Asn  N      51     4.06 
  Pro  P      79     6.29 
  Gln  Q      63     5.02 
  Arg  R      73     5.82 
  Ser  S      68     5.42 
  Thr  T      60     4.78 
  Val  V      76     6.06 
  Trp  W      42     3.35 
  Tyr  Y      44     3.51 
 


