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resumo Ao longo dos últimos anos, o agora onipresente protocolo Ethernet, 
embora não dotado de mecanismos eficazes de gestão de QoS, foi 
ganhando uma grande aceitação no campo das comunicações 
industriais. Esta crescente aceitação deveu-se, em grande parte,  a 
novos protocolos,  baseados em Ethernet (por exemplo, Profinet, 
Ethernet Industrial, etc), capazes de fornecer comunicações com 
garantias deterministas ou de tempo-real. 
 
O comutador Ethernet Hartes (Hard Real-Time Ethernet Switch), foi 
desenvolvido para disponibilizar uma infra-estrutura de comutação 
Ethernet capaz de fornecer garantias de pontualidade, de bom uso 
da largura de banda e para suportar, de modo eficiente, a 
flexibilidade operacional necessária em aplicações de tempo-real 
distribuídas, de sistemas embarcados dinâmicos. O   
desenvolvimento do comutador Hartes, foi baseado em trabalho 
anterior do paradigma de comunicação FTT (Flexible Time-
Triggered), e teve por objetivo o projeto de um comutador Ethernet 
com melhor controlo de transmissão, escalonamento do tráfego e 
integração transparente de nodos não tempo-real. 
 
NetConf é uma tecnologia recente de gestão de redes que tem vindo 
progressivamente a substituir a tecnologia SNMP (Simple Network 
Management Protocol), o standard de facto há muito adoptado pela 
indústria. A maior diferença entre NetConf e o SNMP é que o 
NetConf adopta um mecanismo de comunicação baseado em XML-
RPC, que, graças às ferramentas desenvolvidas no âmbito de outras 
tecnologias web, permite ciclos mais rápidos e mais simples de 
desenvolvimento e de gestão. 
 
O comutador Hartes não dispõe de uma plataforma de gestão com 
uma interface padronizada para os protocolos SNMP ou NetConf, de 
modo a permitir a sua gestão remota. Assim, o objetivo principal 
deste trabalho é o desenvolvimento de componentes-chave de apoio 
à gestão multiplataforma do comutador Ethernet Hartes, bem como 
a respectiva avaliação de desempenho dos componentes 
desenvolvidos.  
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abstract In recent years, the now ubiquitous Ethernet protocol that lacks 
effective QoS management functions, has gained momentum in the 
field of industrial communication, by means of novel, Ethernet-based 
protocols (e.g. Profinet, Industrial Ethernet, etc.), which are able to 
provide deterministic communications. 
 
HaRTES – Hard Real-Time Ethernet Switch, aimed to develop an 
Ethernet switching infrastructure, able to provide timeliness 
guarantees, efficient bandwidth usage and support for operational 
flexibility as required by dynamic real-time distributed embedded 
systems. The project was built upon previous work on the FTT 
(Flexible Time-Triggered) communication paradigm to develop 
Ethernet switches with enhanced transmission control, traffic 
scheduling, and transparent integration of non-real-time nodes. 
 
NetConf is a recent network management technology that is replacing 
the Simple Network Management Protocol (SNMP) – widely used and 
long adopted by industry standard. The biggest difference between 
NetConf and SNMP is that the former use a communication 
mechanism based on XML-RPC, which, thanks to the tools developed 
in the scope of other web technologies, allows a simpler and faster 
development and management cycle. 
 
The HaRTES project had not provided a management platform with a 
standardized interface for SNMP or NetConf protocols, enabling 
remote switch management. Thus the main objective of this work was 
to develop key components for the support of the standardized 
multiplatform management interfaces for the HaRTES switch and their 
performance assessment. 
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streszczenie 

 
W ostatnich latach wszechobecny protokół Ethernet, któremu brakuje 
efektywnych funkcji zarządzania gwarancją jakości usług (QoS), staje 
się coraz popularniejszy w dziedzinie komunikacji przemysłowej,  
za sprawą nowych protokołów opartych o standard Ethernet  
(np. Profinet, Industrial Ethernet, itp.), które są w stanie zapewnić 
deterministyczną komunikację. 
 
HaRTES - Hard Real-Time Ethernet Switch jest to projekt, który ma  
za zadanie pomóc w rozwinięciu infrastruktury pozwalającej  
na zapewnienie gwarancji terminowości wiadomości, efektywnego 
wykorzystania pasma oraz wsparcie dla dynamicznego 
przystosowywania się sieci, koniecznej przy zastosowaniu 
rozproszonych systemów wbudowanych czasu rzeczywistego. Projekt 
jest kontynuacją pracy traktującej o FTT (Flexible Time-Triggered), 
czyli modelu komunikacji rozproszonej, rozbudowującej przełącznik 
Ethernetowy o polepszoną kontrolę transmisji, harmonogramowanie 
ruchu oraz przezroczystą integrację węzłów nieobsługujących 
wiadomości czasu rzeczywistego. 
 
NetConf jest technologią zarządzania zasobami sieciowymi, która 
zastępuje Simple Network Management Protocol (SNMP) - 
powszechnie stosowany i długo przyjęty standard. Największą różnicą 
pomiędzy standardami NetConf oraz SNMP jest to, że NetConf 
stosuje mechanizm komunikacji oparty o XML-RPC, który dzięki 
narzędziom opracowanym w ramach technologii internetowych, 
umożliwia prostszy i szybszy cykl rozwoju narzędzia. 
 
Projekt HaRTES nie posiadał platformy, umożliwiającej zdalne 
zarządzanie jego parametrami, stosującej standardowe interfejsy  
do tego przeznaczone: SNMP lub NetConf. Celem tej pracy było 
opracowanie niezbędnych komponentów dla przełącznika HaRTES, 
wspierające niniejsze standardy internetowe, poparte testami 
wydajności. 
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Chapter 1 

Introduction 

Distributed Embedded Systems (DES) are widely used in many domains serving 

its purpose anywhere from industrial automation to vehicular system, managing both 

hard and soft real-time traffic. Instances of DES must follow strict timeliness, 

predictability and precedence constrains. In these cases, special-purpose real-time 

communication networks, known as fieldbuses, must be used to achieve the desired 

properties.  

In these systems, due to its omnipresence, important role began to play Ethernet 

protocol. However Ethernet standard was not originally developed to meet the 

predictability, timeliness and reliability, which are present in Network Embedded 

Systems (NES). Still, there are currently available technologies, that enable mechanisms 

of guaranteed Quality of Service (QoS), such as MPLS [1] and RSVP [2] especially 

combined with IntServ [3] and DiffServ [4] models, however they only provide static 

guarantees.  

Effective needs and a quality of service adaptation policy requires an on-line 

flexibility and admission control, which are not met if used previously mentioned 

solutions. This has motivated the development of a new generation of Ethernet 

switches, Hard Real-Time Ethernet Switch (HaRTES). 

Over the last decade, several Ethernet-based protocols have been developed, 

e.g.: Ethernet-Powerlink, Profinet, EtherCAT and Ethernet/IP, which take advantage of 

some of Ethernet’s appealing attributes e.g., large bandwidth, cheap silicon 

development and high availability, while removing or reducing the sources of non-
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determinism arising from its MAC protocol and/or from the current switched 

architecture. 

In this context, two research projects were founded by Fundação para a Ciência 

e a Tecnologia (FCT). The first one, HaRTES – Hard Real-Time Ethernet Switch [5], 

aimed to develop an Ethernet switching infrastructure, using FPGA technology, able to 

provide timeliness guarantees, efficient bandwidth usage and support for operational 

flexibility as required by dynamic real-time distributed embedded systems. The project 

was built upon previous local work on the Flexible Time-Triggered [6] communication 

paradigm to develop Ethernet switches with enhanced transmission control, traffic 

scheduling, service differentiation, transparent integration of non-real-time nodes and 

improved error confinement mechanisms, particularly with respect to temporal 

misbehaviours. 

The Serv-CPS project: Server-based Real-Time Ethernet Communication 

Architecture for Cyber-Physical Systems, evolves the Ethernet switch developed in the 

scope of the HaRTES project, which already supports enhanced traffic scheduling 

services. The objective of Serv-CPS is to develop a networking framework, based on 

switched Ethernet, suitable to support Cyber-Physical Systems (CPS), by including 

explicit and efficient support for component-oriented design methodologies. The 

framework shall support: heterogeneous traffic classes with temporal isolation, 

partitioning and virtualization mechanisms, hierarchical multi-level server composition, 

dynamic adaptation and reconfiguration of servers with temporal guarantees, analytical 

tools for supporting the design of Cyber-Physical Systems (CPS) and middleware for 

service management. 

The features of the Ethernet switch proposed in Serv-CPS represent a 

breakthrough in terms of the adequacy of complex Real-time protocols based on 

Ethernet technology [7], where flexibility and compensability in the time domain are 

design requirements. The technology proposed allows, in an innovative way,  using  the 

same network to dynamically handle multiple traffic sources (e.g. web access, file 

transfer, live video/audio, control data), making an efficient utilization of the resources, 

without compromising the performance of real-time applications. For the purpose of 

preforming QoS reservations, SRP [8] support was added. 

NetConf and SNMP are two management technologies that handle the 

communication aspect of network management. The latter one is long adopted, light, 
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and widely used standard for managing network elements. However, due to its security 

issues it is used mainly for monitoring purposes. NetConf is recent technology that uses 

more descriptive XML-RPC standard to communicate between server and client. It has 

more robust security authentication and encryption mechanism than SNMP, however it 

introduces accordingly greater overhead of management and configuration data. 

1.1 Motivation 

In the context of rapid growth of networks and new technologies, unique 

solutions for remote device managing are needed. However, the HaRTES switch lacked 

such standardized interface for remote management i.e., interface for parameterizing 

and monitoring the switch behaviour.  

Motivation for this thesis is to devise mechanisms for faster FTT-enabled switch 

development, and remote device testing in a real-life environment, without the need to 

change or monitor the switch parameters in a hardcoded way. This can reflect in new 

test applications of HaRTES technologies. 

Therefore, this work focuses its objective on developing multiplatform (SNMP 

[9] and NetConf [10]) management interface, implementation and evaluation for a 

HaRTES switch and presents validation of the two management approaches. 

As SNMP is widely adopted by most of the Real-Time Ethernet (RTE) 

equipment, it was also challenging to device mechanisms for managing HaRTES. 

Examples of RTE equipment supporting RTE protocols are: TT Ethernet (TTE), 

Ethernet Powerlink [11], Profinet [12], Industrial Ethernet, etc. 

The TTE A664 Pro Switch [13] has a built-in management module for network 

monitoring and supports secure network management and  allows data loading and 

querying of health and status information. Weidmuller IE-SWxx-M Industrial Ethernet 

switches [14] can also  be managed via SNMP. The IE-SWxx-M switches support traps 

for the link-up, link-down, confirmation error, cold restart and warm restart functions. 

Profinet [15], also uses SNMP for maintaining and monitoring network devices. 

Ethernet Powerlink adopts a proprietary protocol for the network management 

derived from CANopen, based on Process Data Objects (PDO), Service Data Objects 

(SDO), and Network Management Objects (NMO). According to [16] Ethernet 

Powerlink routers are managed by Powerlink SDO and optionally by the SNMP. 
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A common property of all previous mentioned RTE protocols is that they do not 

allow dynamic reconfiguration with real-time guarantees. They are fully static systems 

in which all operating conditions are completely defined at pre-runtime In these RTE 

protocols system reconfiguration involves stopping the system, apply the modifications 

and restart it. Since monitoring is not a time-critical activity and maintenance is 

performed offline, SNMP is well suited for these tasks in the case of the above 

mentioned RTE protocols. NetConf, a newer technology, is other valid alternative, 

however and to the best of our knowledge, it is not supported by current RTE 

equipment. 

For the specific case of FTT Ethernet networks based on the HaRTES switch 

and supporting timely operational flexibility, it is necessary to assess the performance of 

network management technologies. Notice that, both SNMP and NetConf do not 

provide real-time guarantees, however this is no impairment for HaRTES, since 

modifications  of  the communications requirements are not made directly by the 

management services. Online requests to modify communication requirements are 

processed by the admission control and, if accepted, their timeliness is secured by real-

time scheduling. 

1.2 Contribution 

The work developed in the scope of this thesis was oriented to the key 

components for the support of standardized management interfaces for the HaRTES 

switch, making it suitable for remote monitoring and available for currently existing 

management protocols, namely SNMP and NetConf. 

The HaRTES architecture has been proposed in the past to provide 

implementation of the FTT paradigm on a switched Ethernet communication 

framework, leading to the Flexible Time-Triggered over Switched Ethernet (FTT-SE) 

protocol. The work described in this dissertation extends previous work in the following 

points: 

o Support for remote enhanced real-time traffic monitoring capabilities for 

SNMP and NetConf; 

o Support for multiple Management Information Databases; 

o Novel protocol solutions for Remote Management Service; 
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o Performance assessment of HaRTES switch management with SNMP 

and NetConf. 

These contributions were summarized in a paper accepted for publication in a 

workshop: 

o Aleksander Pleszko, João Paulo Barraca, Joaquim Ferreira, and Pedro 

Gonçalves. Multiplatform Management of a Hard Real-Time Ethernet 

Switch. In Proceedings of the IEEE Globecom 2012 Workshop: The 4th 

IEEE International Workshop on Management of Emerging Networks 

and Services, Anaheim, California, December 3-7, 2012;  

1.3 Dissertation outline 

The rest of the dissertation is organized as follows. Chapter 2 presents overview 

of subject of the network managements as well as the two proposed management 

technologies enabled to cooperate with the HaRTES switch. Chapter 3 is dedicated to 

the architecture of the Real-Time Ethernet Switch and its two modules: the Master 

Module and the Switching Module. Chapter 4 describes the details of the 

implementation of management interface and the Remote Management Protocol in 

management agents and Master Module side. Chapter 5 presents and discusses results 

regarding the latency of two implemented management solutions. Chapter 7 concludes 

the thesis and proposes some future lines of work. 

 





 

Chapter 2 

Network management technology 

Network management may refer to a broad range of subjects. It is mostly agreed 

that this term is used in the context of the activities, methods, procedures, and tools that 

relate to the operation, administration, maintenance, and provisioning of networked 

systems [17]. The International Organization for Standardization (ISO) [18] created 

conceptual areas to help understand the major functions of network management 

system. It is called Fault Management, Configuration Management, Accounting 

Management, Performance Management, and Security Management (FCAPS). 

The Internet from its birth is constantly evolving. At the beginning there were 

only a couple university's devices connected to each other. Later, large company's 

networks began to join the web. As for now, with so many devices in the Internet 

responsible for forwarding, managing, and controlling traffic, it would be impossible to 

efficiently manage those devices and traffic, without consistent protocol for remote 

devices' management. 

Several key aspects must be taken under the consideration if designed 

management system is to be solid and fully operational at all possible time. A great 

amount of care must be taken to ensure full operational status of the network; is it 

running smoothly and without errors. In the event of error, provided the network is 

sufficiently monitored to quickly spot the problem and manage it, it is likely that small 

amount or no users will be affected by it. 
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Figure 1 – Network, Systems, and Application Management [17] 

Network management covers also areas of keeping network under control, i.e. 

keeping track of resources and the way how they are assigned in the network. This 

expands also to plain maintenance of the network, i.e. performing repairs and upgrades 

of connected devices, adding, removing devices, adjusting their parameters so that 

overall network performance is boosted. 

Network management likewise involves configuring resources and services that 

are available to the users connected without adversely affecting the rest of the network. 

Configuration should also be flexible so that new customers can be quickly added to the 

pool without laborious reconfiguration of many parts of the system. 

The term network management can be also narrowed to management of the 

networks themselves. If this is the case, the terms of system management and 

application management are also distinguished, as it is depicted in Figure 1. Sometimes 

special service can be bound to all of these three categories i.e. network, system and 

application, so then it is also distinguished and sum up in the term service management. 

In a broader sense these categories, though may have different management 

practices associated with them, have also very much in common, therefore they are 

gathered under one general term network management. 

Covering such a broad topic, even in a short run, requires several naming 

distinctions to be made, particularly what the network management comprises of. What 

is obvious, firstly we need the managed device or the network that is to be managed. 

Usually it is the latter, a network of interconnected devices that exchanges data amongst 

each other.  
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Figure 2 – Basic Components of Network Management [17] 

To have any impact on this network we also need the system and application 

that will be used to do so – Network Management Systems (NMS). These systems 

encompass the management logic helping to gather, process and present collected data 

from managed network or device. It can also be used to send management commands to 

start or stop services or interfaces. 

Maybe the least obvious part of the network management, that creates somewhat 

paradoxical situation, is the network management itself. The managing interface and 

network to be managed must be connected via management network, so the 

communication between them is even possible. That is why the ideal solution would be 

to have not one network, but two: one for the data traffic and one for management 

purposes. 

The last crucial element without which the network management would not 

work is the management personnel, responsible for changing it and maintaining the 

whole structure sound and solid, as shown in Figure 2. 

Closing to the topic of specific implementation of management solutions the 

point must be made concerning management parlance. Previously mentioned managed 

device can be also called network element (NE) or network node. If they are to be 

managed they must participate in management process. 



36 
Aleksander Pleszko 

Management of a Hard-QoS Switch  

 

There are also important distinctions that have to be drawn between 

manager/agent and client/server model alike. The communication between management 

interface and the managed network element is asymmetrical: the usual chain of 

command is that the manager (client) sends request and agent (server) responds to that 

plus sends asynchronous trap or notifications if selected event is triggered. 

The usual place of one server, which is serving many clients, is undermined in 

the network management world. Figure 3 depicts the situations in which many servers 

(which are called agents) are serving a small number of clients (managers). Moreover is 

imperative that network elements provide a way to manage them, usually by 

implementing a management interface. This middleware is supporting a dialogue 

between external network management software and the managed software. It is also 

commonly referred as management agent. 

 

Figure 3 – Manager/Agent Versus Client/Server [17] 

In general, management agent comprises three main parts: 

o Management interface; 

o Management Information Base; 

o Core agent logic. 

The management interface allows the managing application to communicate 

with the network elements. It allows opening and closing management sessions 

maintained in a specific management protocol, as well as make request, responses and 

traps. The management interface handles generally communication between servers and 

agents. 
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The Management Information Base (MIB) is virtual data store that represents a 

management view of the device being managed. It defines management information that 

can be retrieved and/or changed. The MIB is only a proxy for the managed parameter to 

be viewed by the managing application. However, it does not necessarily mean that 

MIB objects are defined in Structure of Management Information Version 2 (SMIv2) 

[19]  as it is a subset of Abstract Syntax Notation One (ASN.1) [20] which is commonly 

used in Simple Network Management Protocol (SNMP) [9]. It can also be defined by 

XML [21] or Command Line Parameters, depending on implementation details. 

The core agent logic is responsible for actual retrieval of the requested data from 

the managed device. It translates the information being encoded in the MIB to the actual 

register being present in the network element. It can also be infused with additional 

capabilities of pre-correlating raw events with each other or scheduling periodic test 

algorithm for validating proper functioning of the device . 

The last topic to mention is the protocol standard used to manage the network 

devices. It should be flexible, extensive and able to manage many layers of protocols. 

SNMP was designed to meet these requirements and has it became the standard protocol 

used to monitor network devices. The OSI model [18] is depicted in Figure 4. 

 

Figure 4 – The ISO/OSI reference model [22] 

As it turned out in the first years of the 21st century, the SNMP protocol was 

used mainly to monitor networks, rather than to completely manage them. In 2002, a 

meeting was held between the Internet Architecture Board, and leading members of the 

IETF Network operators to discuss this situation. It turned out that most of network 
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administrators were using Command Line Interfaces (CLI) to configure their boxes, but 

due to unpredictable output of this command new, more flexible solution was needed. 

Proposed solution involved XML standard for data transmission and included SSH [23] 

as transfer protocol for security reasons. This became the basis of a new protocol later 

introduced as NetConf [10]. 

2.1 Simple Network Management Protocol 

First version of Simple Network Management Protocol (SNMP) [9] was 

released in 1988. It was designed to remotely monitor and manage the network elements 

through the Internet Protocol (IP) [24] using sets of SNMP commands. 

SNMP uses the User Datagram Protocol (UDP) [25] to transmit its data, as 

opposed to Transmission Control Protocol (TCP) [26] because the former is 

connectionless. SNMP uses UDP port 161 for sending and receiving requests data and 

port 162 for receiving traps (notifications) from management enabled network elements. 

Using connectionless protocol means that transfer of packets is unreliable, but taken the 

low message overhead this is somewhat reasonable. 

The first version of SNMP (SNMPv1) was an overly simple solution. It provided 

a simple sets of operations transmitted to the agent. The operations types are presented 

in Table 1. 

Table 1 – Operations provided by the SNMPv1 

Operation Description 

get This operation is sent from NMS to the agent. Agent process this request and 

responses with get-response and values obtained from the network element. 

However the whole message has guaranteed deliver only if it has less than 484 

bytes. Most implementations allow greater size though. 

get-next The get-next operation allows retrieval of sequential OID values of the MIB 

tree. An OID is composed of integers, so it is easy for an agent to find next 

matching result. For each get-next request a separate get-response from the 

agent is generated. The NMS keep sending get-next operation until an error is 

returned, signifying the end of the MIB. 

set To change the value of an object or to create a new row in a table the set 

command is used. More than one object at a time can be changed. 

get-response This operation is send back to the NMS when the request is processed and 

requested information acquired. 

trap This is a notification message send to specific destination configured at the 

agent itself. Usually it is the IP address of the NMS. As UDP protocol is used 

the traps are prone to get lost in the network, as no backward notification is 

send back from the NMS that the notification was delivered. 
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SNMPv1 was faced with two major problems, namely: very week security and 

lack of tools to manage larger amount of management information data. SNMPv2 

addressed one of this issues: it introduced new operations that allowed for obtaining 

greater number of data OID than just one at a time. The security aspects were not 

addressed until version 3 of the SNMP protocol. To date, the most popular variation of 

the SNMPv2 is the SNMPv2c (c for “community”), indicating the community strings as 

a security authentication procedure. Also in version 2 of the SNMP protocol new 

notation was introduced, that was mostly backward compatible – SMIv2. SNMPv2 

introduced some new operations described in Table 2. 

Table 2 – Operations added to the SNMPv2 

Operation Description 

get-bulk-request This command is similar to get-next operation but unlike the former allows 

for retrieving more than one OID at a time. With this command, the agent 

sends as many information in one packet as it can. Previously mentioned 

message size limit is still applied. 

inform-request This command is similar to the trap mechanism introduced in SNMPv1, but 

adds support for the acknowledge response from the master node. The agent 

sending this command is notified if the message reaches its destination. 

response It is renamed version of get-response operation. It resembles the change in 

protocol that now response is not bound to only any of get- commands.. 

SNMPv3 is the newest and recommended version by the IETF. It may be 

considered as SNMPv2c extended to also support solid security. Strong authentication 

and encryption of the SNMP messages makes it less prone to security attacks. The 

architecture was also modularized which helped in SNMP agent implementations. 

However due to the increased complexity and ubiquitous use of SNMPv2c it is still 

unclear if this standard will have the same market acceptance as their previous versions. 

One final operation, which was introduced in the draft of SNMPv2, but only made it to 

SNMPv3 was snmp-report and is explained in Table 3. 

Table 3 – Operation added to the SNMPv3 

Operation Description 

snmp-report This command enables communication between SNMP engines to exchange 

processing problems.. 
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The SNMP manager, which operates on the machine called Network 

Management System (NMS), sends requests to the device being managed. The SNMP 

agent, which is located on the managed device, responds to the received requests. To 

establish the notion of trust between managers and agents, both SNMPv1 and SNMPv2c 

use community string. It is a text string that act as a authentication password between 

the management station and the SNMP agent. There are three configuration names that 

can be used to configure a SNMP agent: read-only, read-write and trap. The community 

string is included in every packet that is transmitted between the SNMP manager and 

the SNMP agent. The problem is that in the versions 1 and 2c of SNMP protocol 

community string (passwords) are sent in plain text. SNMPv3 addresses this issue by 

providing secure authentication and communication mechanisms, and that is why only 

version three is officially recommended by IETF, the rest are considered obsolete. 

To monitor network element, manager has to know what kind of information 

actually can be managed. The Structure of Management Information Version 1 (SMIv1) 

[27] defines managed objects in the context of SNMP. SMIv2 [19] expands and 

enhances this object descriptions. The description of managed object can be represented 

by the three attributes: 

o Name 

This field uniquely defines the managed object. It may appear in two 

forms: numerical (OID) and more “human readable.” It can be used 

interchangeable.  

o Type and syntax 

Objects and theirs types are described in referenced earlier ASN.1. 

Because of using this universal notation e.g. the bit order of the master and 

agent machine is not important. 

o Encoding 

During the transmission a single managed object is encoded into a string 

octets using Basic Encoding Rules [28] (BER). In this form it is 

transported over a transport medium like Ethernet. 
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A tree like hierarchy organizes the managed object according to the SNMP 

convention. Each managed object is explicitly identified by a series of integers 

separated by dots. Each node has its number and name by which can be referenced to, 

so two definition of managed object are equal: 1.3.6.1.2.1.6 or 

iso.org.dod.internet.mgmt.mib-2.tcp 

 

Figure 5 – SMI object tree [17] 

The Internet Assigned Numbers Authority (IANA) [29] is the organization that 

manages association of numbers to the private customers or enterprises. 

Identification information sent by SNMP is transmitted in SNMP message 

which is implemented at the Application Layer – Layer 7 of the OSI reference model. 

SNMP message structure is shown in Table – 4. 

Table – 4 Structure of the SNMP PDU 

IP 

header 

UDP 

header 
version community 

PDU-

type 

request-

id 

error-

status 

error-

index 

variable 

bindings 

IP frame containing SNMP PDU information can be divided into four main 

parts: 

o IP/UDP header information; 

o The SNMP version number; 

o A community string; 

o The SNMP protocol data unit (PDU). 



42 
Aleksander Pleszko 

Management of a Hard-QoS Switch  

 

Since most of the fields were described previously main focus will remain in the 

PDU type field. However some information about version restriction must be noted 

also. 

Because of the modular structure of SNMP agent, basic scope of supported 

MIBs in SNMP agent can be extended in three general ways: 

o Running external commands; 

o Loading new code dynamically; 

o Communicating with other agents. 

Each way of extending agent’s functionality, if it is to be used, must be enabled 

during the building time of  the SNMP executable file.  

The first of these options uses support for the ucd-snmp/extensible and agent/extend 

modules. This was the earliest extension mechanism added to the agent’s features. This 

allows for running arbitrary commands or shell scripts. Some problems may arise with more 

complex tasks, and with interpretation of the command output. 

Most of the standard MIB are C coded modules. Such modules are compiled and then 

linked to the SNMP application when it is first built. The shared module is located in a 

separate binary file, and is loaded by the agent at runtime. This improves flexibility of adding 

support for the new MIB file after the agent has been compiled. The memory space is shared 

with the entire agent and extension module has direct access to entire API provided by 

SNMP. Drawback of this solution is that, since the memory is shared with the agent, a 

programming mistake may affect the entire agent daemon causing it to crash. Another issue is 

that the code always executes as the same user as the agent daemon itself, which may lead to 

granting too extensive privileges to the system resources, or too less. Use of this mechanism 

requires that the agent being built with support for the ucd-snmp/dlmod module. 

The most flexible solution, which involves a communicating demon with other 

agents, is based on the idea of using Interprocess Communication (IPC). In this way, memory 

file descriptors are different from the ones of the master agent. The solution is flexible 

because the subagent can be started at any time, providing support for additional MIBs files. 

The code does not need to be changed regardless if it is to be used in dynamically loaded 

modules or in a separate subagent. To communicate between master agent and subagents the 

AgentX protocol [30] is used. To enable support for this solution, support for the AgentX 

module must be enabled during building time and also option enabling this must be explicitly 

enabled in the snmpd.conf file. 
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2.2 NetConf protocol 

NetConf is a new network management technology standardized by IETF in 

December 2006 [31] and then revised in June 2011 [10]. It was designed to replace 

SNMP – the widely used network management technology, long adopted by industry, 

and to overcome some of its shortcomings. The biggest difference between NetConf and 

SNMP is that NetConf uses a communication mechanism based on XML-RPC [32], 

which, thanks to the tools developed in the scope of other web technologies, allows a 

simpler and faster development and management cycle. It also provides mechanisms to 

install, manipulate, and delete the configuration of network devices. 

NetConf was designed to supports variety of transmission protocol standards 

and used data structure for management information. However a few are mandatory, 

namely SSH for transport layer, and YANG [33] data structures, which is used instead 

of SNMP’s MIB. These are also the standards that were used in the design and 

implementing of this thesis protocol implementation. 

NetConf server uses the IETF YANG Data Modelling Language. Its syntax and 

semantics are in a format that is human readable. The configuration information of the 

device containing the NetConf server is stored in a database in the YANG data 

structures. To prevent configuration loss between device reboots, these data structures 

are saved in non-volatile storage. 

 

Figure 6 – NetConf Protocol Layers [34] 

NetConf may be compared to XML-based, high-level version of previously 

discussed SNMP, and YANG module can be look at as more sophisticated counterpart 

of MIB file. Figure 6 shows protocol layers used by NetConf. The most widely used 
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protocol with NetConf connection is SSH. To work swiftly the  

“netconf SSH-subsystem” is used to listen on TCP port 80. After client-server 

connection NetConf is much like using CLI over SSH, but messages are exchanged in 

XML format, not in plain text. To authenticate and authorize session SSH user names, 

passwords and hosts keys are used, just as a standard SSH session would be. 

Contrary to the SNMP, NetConf is a connection-oriented protocol. This means 

that a persistent and reliable connection must be maintained. Moreover authentication, 

data integrity, confidentiality, and reply protection are assumed to be provided by 

appropriate levels of the OSI model. One way of doing this is using mentioned earlier 

and default Secure Shell (SSH) protocol. 

Figure 7 depicts connection handling by the NetConf application. Connection to 

the NetConf server can be done from any SSH compliant application. However, to 

simplify the management of NetConf server, clients instead of using raw SSH terminal 

application to direct communication with NetConf server, the NetConf client 

application called “yangcli” is used. It supports many automated features present in 

NetConf protocol. 

 

Figure 7 – NetConf input-output session [35] 

Strict limitations are imposed on messages exchanged between client and server. 

Each NetConf message must be well-formed XML, encoded in UTF-8 [36]. If one side 

of pending communication receives message that is not conforming to the standard it 
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should reply with a “malformed-message” error or, if reply is not possible, terminate the 

session. 

After starting the NetConf session clients sends commands to the server which 

processes them in order and returns results to the client. Asynchronous notification 

messages are also allowed, provided client requested in active session  

<create-subscription> operation. 

At the beginning of each session client and server exchange a <hello> 

message to learn about each other capabilities. Thanks to that applications became 

aware of which operations, notification events, and database contents are supported by 

the other side.  

Following the agreement of agent’s and server’s supported operations there are 

two types of data that can be transmitted: configuration and state data. The 

configuration data includes writable data that transforms a system from its current state 

into desired configuration. Statistical and read-only status information are transmitted as 

state data. A number of problems could arise if this distinction was not drawn. For each 

type distinct operation is provided, the <get> and the <get-config> respectively. 

 

Figure 8 – RPC validate phase [35] 

NetConf standard uses the RPC model to encapsulate its requests in transport 

protocol independent method. The client uses as a request the <rpc> element, servers 

responds with <rpc-reply> which is send after validation phase, as shown in Figure 

8. An important attribute send in these elements is the “message-id” which is an 

increasingly higher integer encoded as a string and chose by the sender. Server must 

return the same value in the <rpc-reply> operation. 

Important to mention are also <rpc-error> and <ok> elements. The latter is 

returned when no error or warning was encountered while processing the request. The 

<rpc-error> element has its own set of types and tags to indicate the location and 

severity of the problem. 
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Another extension compared with SNMP that NetConf supports is the notion of 

multiple datastores. A datastore holds the complete set of configuration data that takes 

the network element from its default state to the desired, configured state. The basic, 

most important and compulsory is the <running> configuration datastore. This 

element is always present on the device and can be only one copy of it. Other optional 

datastores, i.e. <candidate> and <startup> can be added to the device. 

Information regarding full support of these elements is sent in initial <hello> message 

exchanged by server and client specifying each peers’ capabilities. 

In Figure 9 the three-phase validation of datastore is depicted. In the first, 

validation phase the server determines the target nodes and database to be affected. 

Next, the validation of all incoming request against YANG language standard occurs. If 

everything checks, the node callback function is searched inside SIL libraries. If found 

the function is called. 

 

Figure 9 – NetConf database editing model [35] 

If validation phase goes smoothly without errors, next phase of apply or apply-

test follows. During this period, depending on configuration parameters sent with the 

edit-config operation the database or its copy is altered as requested. If the latter occurs, 

the test-apply phase is executed first, where, after altering the copy of internal data tree, 

it is further validated, including all cross-referential integrity tests. Then, provided no 

error occurs, the changes are made to the real target database. 
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If operations <commit>, <edit-config> or <copy-config> are 

requested, the server will search for SIL commit callback function for designated 

element(s). If earlier stages produce an error or user cancels or timeout the commit 

operation, the server will call a function to rollback the operation and a backup copy of 

database will be presumably restored. 

If additional operations are supported by the device, it should be announced 

during exchange of the <hello> message at the beginning of session. Basic messages 

supported by the default NetConf installation are described in Table – 5. 

Table – 5 NetConf basic protocol operations [10] 

Operation Description 

<get> Retrieves running configuration and device state information. 

<get-config> Retrieve all or part of a specified configuration datastore. 

<edit-config> Loads all or part of a specified configuration to the specified target 

configuration datastore. 

<copy-config> Create or replace an entire configuration datastore with the contents of another 

complete configuration datastore. 

<delete-config> Delete a configuration datastore.  The <running> configuration datastore cannot 

be deleted. 

<lock> The <lock> operation allows the client to lock, usually for short amount of 

time, the entire configuration datastore system of a device. 

<unlock> The <unlock> operation is used to release a configuration lock, previously 

obtained with the <lock> operation. 

<close-session> Request graceful termination of a NetConf session. Processing this request 

results in releasing any locks and resources associated with the session and 

gracefully close any associated connections. Requests received after a <close-

session> request will be ignored. If request is satisfied an <rpc-reply> with 

<ok> element is replied. Otherwise <rpc-error> with status information. 

<kill-session> Force the termination of a NetConf session, aborting any operations currently in 

process, releasing any locks and resources associated with the session, and 

closing any associated connections. If <commit> operation was issued the 

backup configuration must be restored. 

Figure 10 depicts the set of available Yuma tools which helps during the 

development process. It also shows possible course of action during developmental 

process. Presumably, if we are implementing functionality described previously in 

SMIv2 or other information database format “smidump” converts it to YANG 

modules. These files are very flexible and are interpreted directly without further 

translation by all Yuma applications and are parsed straight by “yangcli” and 
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NetConf executable. “Yangdump” translator renders them to C source files. For ease of 

implementation callback functions associated with modules and node names are 

automatically generated there. After implementation is ready files are compiled into its 

binary format called Server Instrumentation Library (SIL). Placed in an appropriate 

catalogue can be automatically loaded into the NetConf server at run-time. 

 

Figure 10 – Yuma Tools and Server Instrumentation Library [35] 



 

Chapter 3 

Hard Real–Time Ethernet Switch 

HaRTES is a modified Ethernet switch based on the FTT paradigm. The idea 

behind developing the FTT-compliant switch was to extend the structural limitations of 

the FTT-SE protocol, which cannot be resolved with standard Ethernet switches. The 

Flexible Time Trigger-Switched Ethernet (FTT-SE) [22] protocol needs all nodes to be 

completely respecting the EC-schedules provided by TM. To enable such system to 

work in each node must be present a specific network device driver. The driver might 

not be available in several operating systems. Moreover misbehaving or broken nodes 

which do not respects the timeliness strict traffic can introduce several communication 

problems including completely jeopardizing timing guarantees. Solution to this was to 

introduce temporal control to the switch. Therefore FTT master was inserted into the 

switch providing seamless support for synchronous and asynchronous traffic as depicted 

in Figure 11. 

 

Figure 11 – HaRTES, an FTT-enabled Ethernet switch [37] 
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Due to inclusion the FTT master into HaRTES switch several the most relevant 

features of FTT-SE were preserved, which fostered several facets. First of them is the 

handling of asynchronous traffic is simpler. The nodes can autonomously trigger the 

traffic instead of being polled by the master node, together with maintaining per-stream 

temporal isolation. Next, the system integrity is increased. The switch input ports can 

block unauthorized real-time transmissions, isolating it from the rest of the system. 

Seamless integration of non FTT-compliant nodes without threatening the real-time 

traffic was also fostered. Lastly, superior transmission parameters with TM higher 

precision, lower jitter and latency. Because of that overall network synchronization is 

improved. 

 

Figure 12 – Functional architecture of the server-based [38] 

The switch is split on two main components: the software component and the 

hardware component as depicted in Figure 12. These components of the system are: 

Master Module, and the Switching Module. The Switching Module units were modelled 

at register transfer level (RTL) with the Field-Programmable Gate Array (FPGA) and 
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written in VHDL hardware description language. In this configuration, it is easily 

reconfigurable for testing purposes and the overall cost of the system is greatly reduced. 

The Master Module and Switching Module are, in this implementation, 

connected using Ethernet port. This allows for fast and flexible communication between 

the two parts of the system. 

3.1 The Master Module 

Thanks to the modular implementation of the FTT-SE, the master and slave 

component can coexists in the same node, complementing each other and saving on the 

hardware platform costs. 

The Master Module implements the FTT master which is depicted in Figure 13. 

The shaded area represents management services responsible for the FTT traffic. This 

part of the switch is algorithmically complex and tends to use much of the available 

system resources. Sophisticated sets of operations included in the system requirements 

database, the scheduler, the admission control and the QoS manager included in this 

module make broad use of dynamic lists. Those elements are more resource demanding 

and needs more resources. Because of it, and mentioned earlier, potentially grater costs 

of the hardware the Master Module was, in this case, implemented in software. 

 

Figure 13 – HaRTES Functional architecture [22] 
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Running many services in many nodes as it take place in distributed systems, 

introduce a challenge to efficiently manage it. That is why the middleware between user 

application and the node service is introduced. It also makes efficient opportunity to 

introduce Stream Reservation Protocol (SRP) [8]. 

The FTT-SE middleware introduce a binding application interface common to 

all nodes, available at all of them, managing communication details and bringing forth 

seamless design composition. Thanks to the middleware synchronization mechanisms 

and a logical abstraction responsible for associating services with the nodes are assured 

to have consistent network loading accounting and resource allocation. This is 

especially essential in open and dynamic environments. An abstraction layer also fosters 

application development and its deployment in the field. Better application integration 

is based upon the middleware abstraction layer which is crucial for retrieving HaRTES 

data values thus several of its features are described next. 

 

Figure 14 – FTT-SE internal layering [22] 

Figure 14 presents several building blocks which detailed overview is depicted 

there. In the bottom of the stack is the Network Interface Card (NIC) controller which 

interacts with full-duplex Switched Ethernet network. Inside the FTT-SE core layer one 

can find basic protocols for communication mechanisms i.e. the traffic scheduling and 

the transmission control. The management layer performs a high level session control, 

which includes establishing connections and differentiation of the streams. This leads to 

decoupling the streams and endpoint threads and makes possible to register them 
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independent of their location in the network and regardless of their position as producer 

or consumer. Also in this layer a QoS management module guards proper distribution 

and adjustments of the network online capacity splitting it evenly between stream. The 

rules are set by the application based on the needs and importance of the streams. The 

last discussed part is the interface layer. In there rests the communication and 

management services available to the application allowing for sending, receiving, 

binding, resource reservation and de-registration in the FTT-SE protocol standard. 

 

Figure 15 – FTT-SE internal details [22] 

Figure 15 presents more detailed implementation of the internal services 

cooperation. As mentioned earlier, one of the most important parts of the whole switch 

is the System Requirements Database (SRDB) where information about synchronous 

and asynchronous messages (e.g. minimum/period inter-arrival time, deadline, priority, 

length) and running traffic properties are kept alike. Also information about global 

configuration (e.g. data rate, synchronous window duration, elementary cycle duration) 

and each traffic class allocated resources information (e.g. maximum amount of buffer 

memory, phase durations) are stored there. A scheduler is a module which periodically 

scans the SRDB in search for data necessary to build TM for synchronous traffic. Each 

sequential EC is built based on a list of synchronous messages (EC-Schedule) stored in 



54 
Aleksander Pleszko 

Management of a Hard-QoS Switch  

 

EC-register. Module responsible for this is the scheduler which monitors the SRDB and 

responds to the changes in it. The messages are pushed into the ready queue and 

transaction plan is created. Next the EC-schedule is broadcasted within the TM by the 

Dispatcher module. Independent scheduler for every traffic class and ready queue is 

present. Each of them follows different policies established by the length of the EC 

(LEC).  

Synchronous and asynchronous messages are activated differently depending on 

the model adherence. The synchronous are activated in a periodic basis. The 

asynchronous are triggered based on the triggering mechanism of the node. They are 

waiting for master to transmit permission order. Meanwhile, the signalling message is 

sent from node to the master node informing about the messages in the queue. The 

master during building following EC takes these information into account and, based on 

the traffic class, enforces the nodes triggering mechanism to send the messages. The 

asynchronous traffic without the real-time compliance is transmitted transparently in 

background in a best-effort basis. The nodes uses FIFO queues for handling this kind of 

traffic. The transmission frame is filled based on no schedulability polices or overflow-

free guarantees. The rest of the message operations are similar with no regards to the 

messaging model. 

In this type of communication it is very important to ensure that streams are 

registered consistently across the master and slave nodes. The mechanism ensuring that 

the master SRDB and the nodes NRDB are the same, must be present and sound. FTT-

SE protocol uses mechanism that transparently synchronizes every database which is 

bound e.g. the NRDB databank sores the model properties of all streams passing 

through that node, thus storing and sending to the master node the long-lasting 

information about it. On the other hand, if the SRDB is updated every bounded NRDB 

is also notified. Moreover, all configuration command that modify the network 

requirements are distributed from the master node in one EC. Therefore consistency and 

unity of configuration between all nodes in the network is guaranteed, suppressing the 

need for additional synchronization mechanism. 

Present synchronization mechanism uses the built-in slave component in the 

master to create an asynchronous broadcast channel between the master and the slaves. 
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Figure 16 – HaRTES elementary cycle (EC) structure [37] 

The SRDB with admission control and an optional QoS manager cope with the 

sustention of the continued real-time traffic timeliness. Admission control module 

ensures that request for a change in traffic flow will not jeopardise any of the timing 

guarantees previously negotiated between the master node and slaves. 

Also important issue to address, concerning HaRTES, is an Elementary Cycle 

(EC). It is used to communicate between nodes in a scheme of constant infinite 

sequence of windows. The FTT-SE protocol, in modules described previously, builds 

the EC frames respecting their class, streams and model. The frame, structure of which 

is presented in Figure 16, consist of synchronous and asynchronous windows which 

carry out synchronous and asynchronous traffic correspondingly. Due to simplicity sake 

the organization of the inside of the frame is fixed – the asynchronous window every 

time comes once the synchronous window period is over. 

Each EC frame starts with a control message, which is called Trigger Message 

(TM). It is broadcasted to all other slave nodes in the network. The objectives of this 

message is to synchronize all the network, because this message is always broadcasted 

in the precise intervals of time, with low jitter. The other objective is to transmit the EC-

schedule – time when the slaves can transmit and their identification data. Upon 

receiving the frame by slave internal algorithms checks if this node is the producer or 

consumer of any data, and act respectively during scheduled time interval. 

The communication structure is configurable in a way of changing several 

temporal parameters. The most prominent parameter is an Length of Elementary Cycle 

(LEC). This is de facto system working resolution, because all other parameters e.g. 

periods, deadlines, windows, are relative to this interval. 

In the EC structure three main slots are identified as depicted in Figure 16. The 

LTM and TAT form the time required to actually transmit the TM to all slaves and the 

time associated with different propagation and decoding time, which is essential by the 

nodes to prepare data to be sent. The first is known as transmission time of the TM 
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(LTM) and the other as Turn-Around Time (TAT). Next two time slots are the 

synchronous and the asynchronous windows correspondingly. The maximum duration 

of the synchronous window (LSW) can be defined be the FTT master scheduler. 

Because of that, a minimum duration can be guaranteed for the asynchronous window. 

The strict temporal isolation enforced by the schedulers, between these both 

types of traffic, imposes that no traffic which could end after the Synchronous or 

asynchronous time window limit is initialized. In the asynchronous window all the 

messages are transmitted before the next EC. In case of synchronous window the 

scheduler guards the temporal isolation in a way that messages each time fit inside the 

maximum time of synchronous window duration (LSW). 

3.2 The Switching Module 

The Switching Module is responsible for the reception, switching and 

transmission process. It also handles the memory management. For the HaRTES to 

work efficiently the switching logic require speed during the execution, determinism 

and predictability, hence hardware implementation of this component was carried out. 

 The implementation was based FPGA technology allowing an easy and flexible 

integration of all required components. Because of this design prototype of HaRTES 

switch is easy to parameterize giving the possibility of changing network 

communication speeds, number of ports, core operating frequency or width of internal 

databus. 

Figure 17 depicts the hardware architecture of the Switching Module with 

Master Module. Each of showed components is briefly described below. 

Ethernet PHY 

This device, known also as Ethernet physical receiver, operates at the lowest 

layer of the OSI model – the physical layer. It is connected directly to the Medium 

Access Controller (MAC). PHY purpose is to communicate through cable with other 

Ethernet PHY, exchanging data. Due to electrical characteristics and timing 

requirements this component is outside the main FPGA board. Each port has its own 

instance of this device. 
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Figure 17 – Switching Module hardware architecture [37] 

Medium access controller (MAC) 

The MAC Interface Unit is integration of two blocks, namely MAC Interface 

and MAC IP Core module. The firs one operates at data link layer of the OSI model and 

is responsible for handling and decoding physical Ethernet frames. The following 

module handles packets data flow and, in accordance with traffic class, redirects it to 

different modules of the witch: non real-time traffic is passed directly to the Rx 

Multiplexing unit, traffic with the commands of the Master Unit are passed there, and 

the rest of traffic is verified – real-time packets are checked for time constrains. If time 

requirements are not met, the packets are deleted. Because of strict verification of 

packets in this early stage of traffic management the switch and network integrity in the 

realm of timeliness guarantees in guaranteed. 

Rx Multiplexing Unit 

The Rx Multiplexing Unit is shared among all switch ports. It is a TDMA wheel 

which ensures that all packets from all ports, even if they arrive simultaneously, are 

delivered to the main Memory Unit with no packets drop. 
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Memory Pool 

The Memory Unit consist of a dual port static Synchronous Random Access 

Memory  (SRAM). Memory port is accessed by decoding signal of control, address and 

data bus data. It is important to note that one memory port is shared with all switch 

ports. 

As for the upcoming traffic, the memory leakage for synchronous packets is 

never the issue – the Master and MAC Interface Module ensures that by controlling the 

amount of information sent by slaves in EC-schedules. With non-real-time traffic no 

such guarantee can be provided and overfilled packages are deleted. 

Control and Switch Logic Unit 

The Control and Switching Logic Unit performs a crucial tasks of reception, 

switching and transmission packets to different destinations. It has a central role in the 

switch. It is controlled by the control and status signals of the MAC Interface Unit. This 

unit is also responsible for generating synchronization signals which coordinates all the 

switch and protocol operations. 

The Management Reception Unit is responsible for packets forwarding to the 

specified output port. To utilize that process real-time and non-real-time packets are 

placed in separate queues, waiting to be fitted into frame and send out. The TM supplies 

the synchronous packet list that is put into the queue. For asynchronous real-time traffic 

the validation of packets proceeds the insertion into its queue. As for non-real-time 

traffic first the memory overflow condition is checked. If no such error occurs the NRT 

packets are queued and send out in a FIFO policy. 

The Management Transmission Unit carries out, in any given EC, transmission 

of the packets gathered in queues. Special policies are applied to ensure that transmitted 

packets from asynchronous and NRT queues fit into the time windows they are 

provided, same not blocking TM and synchronous traffic. 

Tx Demultiplexing Unit –TDU 

The role of this module is somewhat similar to the Rx Multiplexing Unit. This 

module works as demultiplexer and is also shared among all switch ports. It reads flow 

of the packets data from the memory pool and redirects it to the corresponding output 

ports of the switch. 



Aleksander Pleszko 
59 Management of a Hard-QoS Switch 

 

3.3 Real-time management systems 

A real-time system is defined as a computation that responds to internal or 

external events within a dedicated periods of time [39]. There are two categories of a 

real-time system: hard and soft. If failing to meet a deadline is catastrophic to the 

functioning of the system it is called hard real-time system. Catastrophic in a sense that 

failing meeting the deadline may involve huge material losses or human lives. This 

systems need to be very predictable and carefully designed considering pessimistic 

scenarios. If missing the deadline causes non-catastrophic consequences e.g., 

multimedia streaming or interactive computer games, it is called soft real-time system. 

Networked Embedded Systems (NES) are widely disseminated in many 

application domains ranging from industrial automation to building automation and 

vehicular system, serving in both soft and hard real-time areas. Some application 

domains exhibit strict timeliness, predictability and precedence constraints. In these 

cases, special-purpose real-time communication networks, known as fieldbuses, must be 

used to achieve the desired properties.  

One network technology that became widely used in these systems is Ethernet, 

however, it was not originally developed to meet the requirements of NES, namely in 

what concerns key aspects such as predictability, timeliness and reliability. There are 

currently available technologies, that enable mechanisms of guaranteed Quality of 

Service (QoS), such as MPLS [1] and RSVP [2] especially combined with IntServ [3] 

and DiffServ [4] models, however they only provide statistical guarantees.  

The timeliness guarantees provided by those protocols are essentially static, 

based on pre-run-time analysis. On-line admission control is not generally available and 

neither is on-line adaptation of the communication requirements according to effective 

needs or to a quality-of-service (QoS) adaptation policy. This has motivated the 

development of a new generation of Ethernet switches, Hard Real-Time Ethernet 

Switch (HaRTES). For the purpose of preforming QoS reservations, SRP support was 

added. 

However, HaRTES new technology was lacking remote management support 

which in a context of extensible testing and constant development was a major 

disadvantage, making it hard to monitor its internal values in a real-life 

implementations. 
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Developed in scope of this dissertation management solution extends HaRTES 

capabilities providing an internal interface with use of the custom HaRTES 

Management Protocol to communicate with management clients. Additional Remote 

Management Service was added to the Master Module of the HaRTES device. Extra 

subagent and Server Instrumentation Library were also compiled as to enable support 

for the newly proposed HaRTES Management Information Database. 

 



 

Chapter 4 

Multiprotocol management interface 

To allow other application communicate with the Hard Real Time Ethernet 

Switch through network, capabilities of the SNMP and NetConf technology were 

extended. Integrating HaRTES monitoring functions to the management agents implied 

the design and incorporation of suitable subagent or additional Server Instrumentation 

Library. Extensions to the management tools were built with designed from the scratch 

Main, Coding and Retrieval Modules. Also during this work, the added module to the 

Master Module, the Remote Management Service, was designed from the ground. Its 

purpose was to expose internal values of the switch , by communicating with different 

modules already existing in the server, to the external world – in this case with subagent 

or SIL. A custom communication interface, the HaRTES Protocol, was developed to 

manage it. The HaRTES Protocol provides a convenient way to communicate with the 

Remote Management Service and to access the internal state variables, based on the 

existence of known data structures. Managing a given attribute (e.g. getting its value) 

starts by issuing a command with the module and the node name, explicitly indicating 

the attribute to be retrieved. Currently, it is supported manipulation of attributes, as well 

as support for the generation of events (i.e. traps, notifications). While this interface 

aims to provide an efficient way of communicating with the internal components of the 

HaRTES switch, it lacks standardization. Therefore, an architecture was devised to 

interface the HaRTES switch with standard management tools. 

Both of the management tools need to have their version of the management 

software installed on the machine running the Master Module. In case of SNMP it is the 
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agent, the latter uses NetConf server. To allow agent and server software to monitor the 

Master Module extensions to both applications must be provided. The HaRTES 

implementation of the remote management technologies is split between two main 

components: the extension to the SNMP subagent or the NetConf server, and the 

component running in the Master Module of the switch. 

As for SNMP agent an additional subagent application was developed. NetConf 

provides tools for developing the Server Instrumentation Library (SLI) which extends 

NetConf server capabilities for managing additional modules. The SNMP subagent and 

additional Server Instrumentation Library for NetConf are responsible for 

communication with the Remote Management Service module running in the Master 

Module. 

Figure 18 depicts the scenario which takes place during the retrieval of HaRTES 

data values. The main work was done in modules marked by the box. 
  

In this scenario remote administrator using SNMP or NetConf protocol 

compatible application communicates with the subagent or server correspondingly. The 

request is processed by the application. The SNMP daemon gets the request form Net-

SNMP transport and processing layers. Then the SNMP core based on which registered 

module it possesses indicates how it can respond to a particular OID sub-request and 

core suitable agent helper to handle request that request it called. The helper 

communicates through AgentX protocol and retrieves the data. 

 

Figure 18 – Scenario of remote access the HaRTES data 
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For NetConf sessions, NetConf application calls XML parsing components 

decoding request information. After verification by the access control module the 

permission is granted and using suitable mechanism, YANG database Server 

Instrumentation Library and suitable callback function is called. 

The SNMP handler and NetConf SLI runs custom module which sends the 

request to the Master Module of the switch. The request is coded in HaRTES Remote 

Management Protocol. In the Master Module custom module opens the server socket 

and listens for incoming request for data. 

Upon receiving the request the Remote Management Service checks it for 

validity and decodes it. Then adequate layer and function is called to retrieve the data. 

Providing no errors occurred the data are coded into the HaRTES Remote Management 

Protocol and sent back to the subagent or NetConf server. 

After receiving the coded frame, module is called to decode it and check for 

validity. If everything checks, the data are copied back to the memory of SNMP 

subagent or NetConf server. 

The data are then handled by the cashing mechanisms of the subagent and 

NetConf server. After gathering all of the requested values data are prepared, coded and 

send back to the Network Management System issuing the request. 

4.1 The SNMP subagent and the NetConf server module 

After the wrappers of management application (SNMP or NetConf) process the 

request, the custom build module is called to handle the retrieving of the HaRTES data. 

In case of SNMP, as described in section 2.1, additional subagent must be connected to 

fulfil request, which is depicted in Figure 19. NetConf uses its own Server 

Instrumentation Library, described in section 2.2, to retrieve HaRTES data, which is 

shown in Figure 20. Components of this system were design as modules so to ensure 

flexible programing solution and more stable functioning and error handling. 

The Main Module in the SNMP subagent and NetConf SIL, bind together other 

custom modules added to the applications. This allows for easy data flow control inside 

the extended SNMP and NetConf wrappers. It is responsible for invoking modules in 

control of  coding, decoding, setting, passing to and receiving from the HaRTES its data 

values. Most of the parameters are passed as addresses to save the resources and to limit 

the load of the system. 
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Figure 19 – SNMP Agent architecture with connected SNMP subagent 

The Main Module gets two most important parameters: the node name and the 

requested variable. The node name is the text identifier representing the OID being 

processed. That convention was used explicitly to be fully compatible with the NetConf 

server variable identification. The second parameter points to the address of memory to 

where the retrieved variable should be wrote to. The numbers of bytes to be wrote are 

defined in the Remote Management Service of the switch. This prevents the memory 

leaks during passing the values to the management application. The Main Module also 

statically reserves the memory for the frame being sent down to the switch and for the 

response frame being sent up to the waiting module. 

This parent module passes frame to the Coding Module to code the request info 

into the HaRTES Management Protocol. After the protocol frame is built, it is passed to 

the Retrieval Module which is responsible for sending and receiving data from the 

Remote Management Service. 

 

Figure 20 – NetConf server with Server Instrumentation Library implemented 
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The Main Module also compares the sent and received module and node names 

coded into HaRTES Management Protocol. If they are equal, the Decoding Module is 

called with received frame as parameter. There actual decoding of the FTT-Enabled 

switch values takes place. After translation of the protocol, the data are copied to the 

memory of the SNMP subagent or NetConf server. 

In case of receiving values for not this module or node name, the error is issued, 

passed to the SNMP agent or NetConf, and no data are copied. 

4.2 The Remote Management Service 

The Remote Management Service is part of the Master Module and it is the 

module that SNMP subagent and NetConf server SIL are interacting with.  

Communication starts in the management application. The SNMP subagent and 

the Server Instrumentation Library of the NetConf server are translating the request 

form agents core to the HaRTES Management Protocol. Then the data is sent to the 

server through internal socket interface (Figure 19 and Figure 20). The Remote 

Management Service, when initialized by the Master Module, opens the socket and 

listens to the requests for the switch data. The use of internal socked communication 

interface was devised due to several reasons. 

 

Figure 21 – Master Module architecture with the Remote Management Service 

Sock interfaces better isolates operation of the management application 

wrappers and the Remote Management Service. This aims at reducing the impact of 

management operations to the Master Module of the HaRTES switch. Isolation also 
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reduces the  number of exploits through the management interface, as if required, 

firewall characteristics can be added to the Remote Management Server. The second 

characteristic of this interface is that it allows reuse of the same management interface 

to several different management solutions. In this case the same interface can be easily 

used with both SNMP and  NetConf, while relying on components requiring a small 

number of modifications from the components auto-generated by the support tools. 

In Figure 21, the architecture of the Master Module with its submodules is 

depicted. Two main components of the Remote Management Service are 

Communication and Decoding submodule. The Communication submodule is 

responsible for opening the socked, listening to the incoming requests, accepting the 

HaRTES Protocol data and sending response back to the remote management 

application. The work of the Decoding submodule is twofold: first it decodes module 

and node name, and compares it with the names that it can handle. Next, if the module 

and node name is found, it calls appropriate method to get the value from the HaRTES 

corresponding layer.  

The Remote Management Service uses in internal data structure which provides 

improved handling, gathering, validation and coding of the data passed from one layer 

to another.  This structure holds information about the module and node name currently 

being processed. During the processing period it also gathers other information, such as: 

module name, node name, protocol data type, data length, HaRTES data value. 

Implementing internal data structure allowed for easier managing the parameters 

between the switch layers. Table 10 shows full listening of the values accepted by the 

structure. Worth noting is that data value uses union, which reduces use of memory 

space. This can become crucial during running this code in embedded system where 

memory resources are limited. 

The Communication submodule passes received protocol frame to the Decoding 

submodule. It is then checked for validity of the frame. If no protocol marks are found, 

an error code is returned. If the frame is valid, the module and node name are 

recognized and marked in the structure’s suitable variable. Next the protocol (and 

variable) data type are specified and also defined in the data structure, before adequate 

HaRTES layer is called. The structure passed as the argument. 

Depending on the implementation used for retrieving the data from FTT-

Enabled switch, the module in server layer uses that method to access the switch data. If 

no error is returned, the information held in the data structure are used to call the 
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Coding module. This module uses passed data to build protocol frame, respecting 

protocol data type previously defined. 

The structure of the protocol frame are shown in Table 6. For the most cases the 

frame is built as modification of Type-Length-Value [40] (TLV) data communication 

protocol. 

When the frame is built it is lastly validated and its length is determined based 

on the protocol data type used. After this, the frame is ready to be sent. 

After sending the frame and checking if the transmission commenced properly, 

the connection is closed. The management application receives the frame, checks for 

validity and writes it to the application core, ending the same the process of getting the 

data from FTT-Enabled switch. 

4.3 The HaRTES Management Protocol 

To ensure robust data exchange between the management applications and the 

Remote Management Service new HaRTES Management Protocol was developed. 

Basic structure of the HaRTES Management Protocol which is used to explicitly 

indicate the node of which the data value is needed is showed in Table 6. 

Table 6 – Structure of the basic HaRTES Management Protocol 

Size  8 bit  8 bit 

Field 

name 

Module 

name 

Separation 

Mark 

Node 

name 

End 

Mark 

To clearly indicate the module and node name the data frame containing these 

fields are sent to Remote Management Service in the Master Module of the FTT-

Enabled switch. To prevent any ambiguity during frame parsing, separation mark also 

has the length of 1 byte. The 8-bit code used to define marks are the ASCII codes of 058 

and 038 in octal number system. This corresponds to separation and ending mark being 

‘:’ and ‘$’ respectively. Symbols are taken from extended list of ASCII characters 

according to the “code page 437” standard introduced in 1981 by IBM corporation [41]. 

These 8-bit codes were chose due to low probability of node and module name 

containing these signs. 
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The second part (value or message) of the HaRTES Management Protocol which 

is used to transport the HaRTES data back to the management applications is based on 

Type-Length-Value. TLV is simple method used as data communication. However, 

HaRTES protocol most commonly uses for its internal communication a modified 

version of this protocol, skipping the Length value, therefore the Type field explicitly 

informs of the length of the variable. This reduces, even more, the size of protocol 

overhead, making it faster and less demanding. 

Table 7 – HaRTES Management Protocol return frame with modified version of TLV 

protocol  

Size  8 bits  8 bits 16 bits  

Field 

name 

Module 

name 

Separation 

Mark 

Node 

name 

End 

Mark 

Data 

Type 

Data 

Value 

The Data field consists of two bytes which is interpreted as unsigned short based 

on data type name of C language in most common implementations. This gives 

sufficient data types to choose from. Table 8 points out the currently supported data 

types which are compatible with the newest SMIv2 data types. HaRTES Management 

Protocol also defines types for referencing status information and error messages. 

Table 8 – Protocol data types supported by the HaRTES Management Protocol 

Variable transmitted Length of transmitted variable 

Integer 32 bits 

Octet String An array containing the characters and terminated with a null character 

Bits An array containing the characters and terminated with a null character 

OID Specified in the length field 

IP address 32bits (4 octets) 

Counter 32 32 bits 

Gauge 32 32 bits 

Unsigned 32 32 bits 

Time ticks 32 bits 

Counter 64 64 bits 

Float 32 bits 

Information An array containing the characters and terminated with a null character 
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Error An array containing the characters and terminated with a null character 

The scheme of communicating between modules of management applications 

was chose to be as presented, because in this way easy parsing as well as small 

overhead over the data transferred is introduced. 

Support for OID data type in HaRTES Management Protocol was developed by 

expanding TLV protocol to its full length. The protocol in this case passes additional 

information about the length of the OID being sent in the frame. The full frame in this 

case presents Table 9 below. 

Table 9 – HaRTES Management Protocol return frame with full version of TLV 

protocol 

Size  8 bit  8 bit 2 bit 2 bit  

Field 

name 

Module 

name 

Separation 

Mark 

Node 

name 

End 

Mark 

Data 

Type 

Data 

Length 

Data 

Value 

The protocol is built in the Coding Modules, which is present in all application 

and modules responsible for managing the FTT-Enabled switch namely: SNMP 

subagent module, NetConf Server Instrumentation Libraries and Remote Management 

Service in the Master Module. 

In the initialization phase of management application the request for status info 

is sent to the Master Module of the FTT-Enabled switch. The Remote Management 

Service then checks if all the supported layers are operational. If that checks the 

confirmation message is issued back to the management application. After that the 

initialization phase is over. 

When the request for values of the switch are obtained, the SNMP subagent 

internally transcodes that PDU into frame of HaRTES Management Protocol with the 

related module and node name. Upon receiving the protocol frame, suitable module in 

picked out level is chosen. The module responds providing value in question for node 

name. When no error is detected the protocol frame is generated with gathered HaRTES 

data and send back to the SNMP subagent. After the verification phase, data is copied to 

the memory of the SNMP Master Agent, and transmitted to the Network Management 

System (NMS). 
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In the case of having to shutdown management application, or the Remote 

Management Service, there is a possibility of sending graceful shutdown tag through the 

HaRTES protocol. This lets to know the other component that is working in parallel on 

the other side of socket interface that this instance is going to be shut down. 

 The trap tag source can be located in one of the switch layers. If the event 

occurs, the function is called that triggers the sending of HaRTES protocol with trap tag 

which is then received by SNMP subagent trap handler. The information regarding the 

event are transcoded and passed to the SNMP Master Agent which sends SNMP strap to 

the SNMP sink. Figure 23 depicts this process. 

 

Figure 22 – Sequence diagram of SNMP agent and the Master Module of the switch 
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The sequence diagram differs slightly in case of NetConf protocol. Although 

order and form of the HaRTES Management Protocol frames stays very similar to the 

one used in SNMP protocol case, there are differences concerning connecting to the 

NetConf server which are shown in Figure 23. Initialization and graceful shutdown 

phases may be concerned the same as of SNMP protocol in regards to message 

sequence. 

 

Figure 23 – Sequence diagram of NetConf protocol and Master Module of the switch 

Important distinction has to be made on the topic of notifications. Contrary to 

the previous case this time the yang client must first be subscribed to the notification 
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one wish to receive. This means previous connection and session establishment. Also 

after disconnection from server no further notifications will be acquired by the NetConf 

client. 

4.4 Proposed MIB and YANG module 

After analysis of the IF-MIB file and the FTT-Enabled switch parameters 

described in Chapter 3 it became clear that the new custom MIB file must be created.  

The ATNOG-HARTES-MIB file adds values that can be retrieved from HaRTES and 

that are not readily available in the IF-MIB or other MIBs files. Thanks to that, many 

internal values are gathered in one MIB file for ease of use and management. MIB data 

are showed in Table 10. 

Table 10 – MIB data names and corresponding FTT-Server data 

MIB data Corresponding value in FTT-Server and its explanation 

eCycleDuration  Elementary Cycle Duration 

Length of communication slots, determines the system periodic granularity. This 

time can be tailored to suit the needs of a specific application. EC contains two 

consecutive phases dedicated to synchronous and asynchronous traffic, carrying 

time-triggered and event-triggered packets.  

sWindowDuration Synchronous Window Duration 

Length of the window for slave’s synchronous messages. TM pools that 

information every EC.  

asWindowDuration Asynchronous Window Duration 

Length of the window for slave’s asynchronous messages. TM pools that 

information every EC. 

turnaroundTime Turnaround Time 

It is the time between the end transmission of a TM and the beginning of a 

asynchronous window. During this time the impact of a propagation delay is 

reduced and slaves prepare gathered data to be sent. 

switchingDelay Switching Delay 

In the FTT Enabled Switch, it is the delay that takes the packet to be switched from 

input queue from source node to the queue of destination node. 

transmissionTime Message Transmission Time 

It is the time from the beginning until the last bit of a message, that has left the 

source node. 

idleTime Idle time 

If a synchronous message cannot be transmitted within current periodic traffic 

window, it is rescheduled for the next window, and the gap filled with the idle time. 



Aleksander Pleszko 
73 Management of a Hard-QoS Switch 

 

qosType Scheduling (QoS) type 

Discriminating policy, determining the most important services (highest qos), and 

assigning free bandwidth to them. 

maxPeriodicMsg Maximum number of periodic message 

The maximum number of periodic message transmitted in periodic window of EC. 

maxAPeriodicMsg Maximum number of aperiodic message 

The maximum number of aperiodic message transmitted in aperiodic window of 

EC. 

mtu Maximum message size (fragmentation) 

It is the maximum transmission unit in bytes. It influences the memory 

fragmentation and the real message size. 

maxPckSize Maximum packet size 

The maximum size of packet sent in one EC. This reduces the probability of 

blocking the higher priority traffic by the lower one, but with greater size. Long 

messages can be broken in packets and send sequentially. 

bRate Link speed (baud rate) 

The number of periodic messages per second. 

The UA-HARTES-MIB file is described in the newest version of ASN, ASNv2 

language description. It is defined as follows: 

+--hartes(123321) 

   | 

   +--hartesObjects(1) 

   |  | 

   |  +-- -R-- Integer32 eCycleDuration(1) 

   |  +-- -R-- Integer32 sWindowDuration(2) 

   |  +-- -R-- Integer32 asWindowDuration(3) 

   |  | 

   |  +--gwTable(4) 

   |  |  | 

   |  |  +--gwEntry(1) 

   |  |     |  Index: turnaroundTime, switchingDelay, transmissionTime 

   |  |     | 

   |  |     +-- -R-- Integer32 turnaroundTime(1) 

   |  |     |        Range: 1..2147483647 

   |  |     +-- -R-- Integer32 switchingDelay(2) 

   |  |     |        Range: 1..2147483647 

   |  |     +-- -R-- Integer32 transmissionTime(3) 

   |  |              Range: 1..2147483647 

   |  | 

   |  +-- -R-- Integer32 idleTime(5) 

   |  +-- -R-- Integer32 qosType(6) 

   |  +-- -R-- Integer32 maxPeriodicMsg(7) 

   |  +-- -R-- Integer32 maxAPeriodicMsg(8) 

   |  +-- -R-- Integer32 mtu(9) 

   |  +-- -R-- Integer32 maxPckSize(10) 

   |  +-- -R-- Integer32 bRate(11) 

   | 

   +--hartesNotifs(2) 

      | 

      +--hartesTrap(1)  
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NetConf is newly introduced standard with different architecture to describe 

device capabilities, for this purpose it uses the YANG data modules. To convert MIB 

file described in SMIv2 directly to YANG language, Yuma Tools uses the “smidump” 

tool to ease these process. 

Once YANG module is created “yangdump” tool is used to parse created file 

and generate C program files. Files are directly modified to support the retrieval of 

FTT-Server values. Then modules are compiled into Server Instrumentation Libraries 

and loaded into NetConf server during startup. The main part of the generated YANG 

module is showed below.  

module UA-HARTES-MIB { 

 

  namespace "urn:ietf:params:xml:ns:yang:smiv2:ATNOG-HARTES-MIB"; 

  prefix "atnog-hartes"; 

 

  import ietf-yang-smiv2 { 

    prefix "smiv2"; 

  } 

 

  organization 

   "UA"; 

 

  contact 

   "Aveiro"; 

 

  description 

   "MIB for HARTES, developed in UA."; 

 

  revision 2012-07-20 { 

    description 

     "[Revision added by libsmi due to a LAST-UPDATED clause.]"; 

  } 

 

  revision 2012-05-25 { 

    description 

     "Initial version."; 

  } 

 

 

  container UA-HARTES-MIB { 

    config false; 

 

    container hartesObjects { 

      smiv2:oid "1.3.6.1.4.1.123321.1"; 

 

      leaf eCycleDuration { 

        type int32; 

        description 

         "Elementary Cycle Duration"; 

        smiv2:max-access "read-only"; 

        smiv2:oid "1.3.6.1.4.1.123321.1.1"; 

      } 

 

      leaf sWindowDuration { 
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        type int32; 

        description 

         "Synchronous Window Duration"; 

        smiv2:max-access "read-only"; 

        smiv2:oid "1.3.6.1.4.1.123321.1.2"; 

      } 

      … 

 

        leaf transmissionTime { 

          type int32 { 

            range "1..2147483647"; 

          } 

          description 

           ""; 

          smiv2:max-access "read-only"; 

          smiv2:oid "1.3.6.1.4.1.123321.1.4.1.3"; 

        } 

      } 

    } 

  } 

Due to properties of the FTT-SE layers described in chapter 3.2 the values of IF-

MIB and UA-ATNOG-MIB are assigned corresponding layer to which the Remote 

Management Server during the retrieval of the HaRTES information is calling. 





 

Chapter 5 

Performance assessment 

The management interface was evaluated to determine its suitability for the task 

of managing a distributed system with real time constrains. SNMP and NetConf 

protocols are not designed to be real time aware. However, the inherent latency and 

variations observed when using these management methods will have impact on the 

remaining systems of a distributed management infrastructure if used there. Performed 

tests gave a better comprehension of delays introduced by the designed protocol. 

Work and test were performed on a machine which consisted of a Pentium(R) 

Dual-Core CPU T4400 @ 2.20GHz and 2GB of RAM, running Ubuntu 12.04 LTS 32 

bits. Software modules included SNMP version 5.7.1, NetConf version 2.2-3 and FTT-

Server version 2.5.3-1. Also the Master Module clients were launched as a separate 

processes and the FTT-Server Remote Management Service was running on a separate 

thread. 

Evaluation focused in triggering a series of management commands as fast as 

possible, while a passive monitoring application was capturing all communications 

being made. In this way management traffic was monitored without causing much 

interference to the management process. Values of jitter and communication latency 

experienced by the client application were afterwards extracted from the log. All 

analysis was done offline after the experiments were completed. The aim was to 

minimize external delay factors. Therefore, no network was actually used and all 

communication was done to the localhost. If an Ethernet connection were to be 

considered, a fixed amount of latency would have been observed due to transmission 
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buffers, reception buffers, as well as transmission to the medium and other existing 

queues. Also, jitter would be added in non-easily deterministic way [42]. 

The main work was focused in the development of a protocol management 

interface, enabling the HaRTES switch to be managed both through SNMP (v2c and v3) 

and through NetConf. Therefore, the performance of both approaches were evaluated. 

In order to have a clear idea about the overhead introduced by each protocol, and the 

absolute minimum bounds we can expect to experience given SNMP the current 

hardware, the internal communication delay was also measured. 

Each management operation, for each protocol, was repeated 150 times. 

Afterwards, the top 10 values (roughly 6.67%) with higher difference from the average 

of the entire set of experiments were discarded. The remaining 140 values were 

considered for analysis, and consider a 95% confidence interval.  

As a reference for the analysis, we measured the internal latency from the time 

the request was received, until the switch management software was queried and a 

result was provided to the management protocol. The internal latency values obtained 

are depicted in Figure 24. Internal queries were always lower than 350µs, and presented 

an average of 205.45±31.31µs. In order to calculate the penalty of SNMP or NetConf, 

this average value should be deducted. While observing some jitter in internal 

communications, 95% of the results stayed within 15% of the average value. Because 

the delays from managements agents are in microseconds, and given the hardware 

available, we expect this jitter to have minimum impact in management.  

 

Figure 24 – Internal communication latency 



Aleksander Pleszko 
79 Management of a Hard-QoS Switch 

 

SNMP was evaluated using its two most used varieties: SNMP v2c and SNMP 

v3. First tests considered request time for all HaRTES database values. As for SNMP 

this involved using tool called “snmpwalk” which issues sequentially operation 

“get-next” until management agent jumps to another network node, then the tree is 

considered to be complete. 

Figure 25 presents scatter graph of all, SNMPv2c, SNMPv3 and NetConf, 

solutions. Earlier version of the SNMP presented lowest average query latency levelling 

at 19,43±4,11ms. The latest version presented lightly higher average query latency 

staying in range of 20.72±2.22ms. NetConf, presenting different management 

technologies as described in section 2.2, significantly stand out of SNMP two 

technologies average values, placing itself far above them at the level of 527±18ms. 

This value is over 25 times higher than corresponding SNMP values, but, again, 

substantial gains in management capabilities which this technology allows, makes it 

reasonably outcome anyway.  

 

Figure 25 – Time scatter of all management platforms during the retreival of all 

HaRTES values 

Next test focused at all management getting a single value. As described in 

section 2.1, SNMP considers UDP communications and small individual transactions 

following a request/response approach with two packets for each transaction. All 

information required in contained in the request, and the reply also takes a single UDP 

packet. SNMP v3 follows the same approach but introduces changes to messages in 
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order to add support for shared key authentication. Still, each management action is 

composed by a simple exchange of messages through UDP. 

Figure 26 depicts the values obtained for both SNMPv2c and SNMPv3. Due to 

the slightly higher complexity of SNMPv3, the management latency was also a little 

higher than SNMPv2c. The first presented an average query latency of 1.41±0.29ms, 

while SNMPv2c presented an average query latency of 0.95±0.16ms. It is interesting to 

observe that SNMPv2c presents lower average latency, but also less error. In part, the 

smaller number of packets of each transaction when using SNMPv2c can explain this 

behaviour. 

 

Figure 26 – Time scatter chart of SNMPv2 and SNMPv3 

The same methodology was followed in order to evaluate NetConf technology. 

Many transport methods are supported by this standard. As SSH is mandatory, and the 

one most commonly available, that is why it was decided to focus in evaluating 

NetConf over SSH. Because SSH is a secure protocol supporting both peer 

authentication and private communications, the overhead produced is expected to be 

much higher. Figure 27 depicts the latency observed for the best 140 queries for one and 

multi values queries. Query time of NetConf technology for one HaRTES value was 

almost the same (the average value differs only 0,6%), as for query time for all (muti) 

HaRTES values. As shown, NetConf introduces much higher latency into management 

functions, one and multi query times averaging at 525±18ms and 527±18ms, 

respectively. The added overhead is so high that the values obtained for internal latency 

are three orders of magnitude lower, and therefore negligible. The error margin itself is 
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two orders of magnitude higher, which reflects the high overhead of this management 

protocol. 

  

Figure 27 – Comparison of NetConf protocol time resolving one and multiple queries 

From the evaluation of these three management approaches, it is clear that the 

use of any standard compliant management protocol will introduce very high latency 

and variability in processes. Figure 28 compares gathered data with the pure internal 

latency. This picture also shows that the lightest solution is SNMPv2c, followed by 

SNMPv3, and then NetConf. However, the term lightest can be very misleading as it 

increases latency by a factor of 5. NetConf falls in a completely different bucket, 

increasing management latency by a factor of almost 4000. But the advantages of strong 

authentication of peers communication and secure management process which NetConf 

well supports, should be taken into consideration also. 

However, as mentioned in chapter 2, the best practices state that management 

traffic should be transported in networks completely isolated from clients (e.g. 

dedicated VLANs), these advantages become less clear. 

Nevertheless, considering Real-Time systems, with dependencies in remote 

managed systems, lower latency will result in higher scalability for the system, as well 

as higher levels of determinism. In scenarios where critical timings must be observed, 

such as automotive or industrial scenarios, SNMP still proves itself to be the best 

management approach if standards are to be respected. Custom developed solutions 
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show to provide higher performance, at the cost of interoperability and eventually future 

evolution. 

 

Figure 28 – Latency of the different management methods handling one and multi 

requests with respect to the internal latency



 

Chapter 6 

Conclusions and future research 

As the technical world become more expansive and sophisticated, new more 

reliable and effective solutions are required to be integrated. Ethernet standard became 

ubiquitous feature in many devices. To satisfy real-time requirements in switched 

Ethernet networks, several solutions were introduced, but most of them lacked 

operational flexibility. Managing network that guarantee the quality of service that is 

used in Embedded Systems and which allow for coexistence of Ethernet traffic requires 

a special approach. The Hard Real-Time Ethernet Switch (HaRTES) meet the task well, 

allows using the same network to handle multiple traffic flows, without compromising 

the performance of real-time applications. 

Network managers who had to efficiently manage large chunks of  networks, 

had to have a possibility to resourcefully handle these demands. Over past decades 

several solutions were introduced in service to resolve these problems. Long-adopted 

SNMP standard which turned out to be insufficient in facing the devices control needs 

is slowly being catch up by or even replaced with new NetConf technology, which 

although struggles with larger message overhead, as we have seen on chapter 5, is more 

flexible and technology advanced solution. 

The Hard Real-Time Ethernet Switch lacked a standard management interface to 

configure its parameters and view its status. The created interface was required to help 

monitor the switch performance and foster its further development. Now it is  easier  

and convenient to handle multiple traffic flows. Smaller delays introduced by SNMP 

system make this solution nearer to be able to monitor the switch in real-time. 
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6.1 Future research 

Presented in this thesis management solution extends the flexibility and 

capabilities of HaRTES switch. Future lines of research may include: 

Full support for Management of Stream Reservation Protocol. 

Technologies responsible for handling these types of protocols are now being 

developed to expand FTT-Enabled switch abilities. With convenient API provided, the 

remote management solutions can also be expanded, through adding new MIB and 

YANG module, to fully support this technology. 

Full management support. 

As for now HaRTES Remote Management Interface allows for monitoring and 

notification/trap issuing. Because of shaky FTT-SE support for managing states of its 

internal configuration this solution has been postponed until save and tested internal 

value manipulation is provided by FTT-SE API. 

Performance improvements. 

Remote Management Interface of HaRTES switch efficiently handles queries 

issued by the management applications. Steps may be taken to handle multiple queries 

at the same time by the Remote Management  Service. Cache mechanisms and HaRTES 

values configuration database can be developed. NetConf full capabilities of several 

datastores being managed on one device at the same time, could be supported. 
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