

Universidade de Aveiro

2012

Departamento de Electrónica, Telecomunicações
e Informática

Aleksander Lechosław
Pleszko

Gestão Multiplataforma de um Comutador Ethernet
de Tempo-Real

Multiplatform Management of a Hard

Real-Time Ethernet Switch

Universidade de Aveiro

2012

Departamento de Electrónica, Telecomunicações
e Informática

Aleksander Lechosław
Pleszko

Gestão Multiplataforma de um Comutador Ethernet
de Tempo-Real

Multiplatform Management of a Hard

Real-Time Ethernet Switch

Wieloplatformowy system zarządzania
przełącznikiem Ethernetowym czasu rzeczwistego

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos

requisitos necessários à obtenção do grau de Mestre em Engenharia
Electrónica e Telecomunicações, realizada sob a orientação científica do
Mestre João Paulo Silva Barraca, Assistente Convidado do Departamento
de Electrónica ,Telecomunicações e Informática da Universidade de Aveiro
e co-orientação científica do Doutor Joaquim José de Castro Ferreira,
Professor Adjunto da Escola Superior de Tecnologia e Gestão de Águeda
da Universidade de Aveiro.

Universidade de Aveiro

2012

Departamento de Electrónica, Telecomunicações
e Informática

Aleksander Lechosław
Pleszko

Gestão Multiplataforma de um Comutador Ethernet
de Tempo-Real

Multiplatform Management of a Hard

Real-Time Ethernet Switch

Wieloplatformowy system zarządzania
przełącznikiem Ethernetowym czasu rzeczwistego

 Dissertation submitted to the University of Aveiro as part of its Master’s in
Electronics and Telecommunications Engineering Degree. The work was
carried out under the scientific supervision of Professor João Paulo Barraca
from the Department of Electronics, Telecommunications and Informatics of
the University of Aveiro, and Professor Joaquim José de Castro Ferreira
from the Superior School of Technology and Management of Águeda from
the University of Aveiro.

Mr. Aleksander Pleszko is a registered student of Lodz University of
Technology, Lodz, Poland and carried out his work at University of Aveiro
under a joint Campus Europae program agreement. The work was followed
by Assistant Professor Marcin Janicki at Lodz University of Technology as
the local Campus Europae Coordinator.

o júri

Presidente Alexandre Manuel Moutela Nunes da Mota,

 Professor Associado do Departamento de Electrónica,
Telecomunicações e Informática da Universidade de Aveirorca,
Telecomunicações e Informática da Universidade de Aveiro

 José Carlos Meireles Monteiro Metrôlho,asques de Carvalho,

 Professor Adjunto da Escola Superior de Tecnologia do Instituto
Politécnico de Castelo Branco

 João Paulo Silva Barraca,

 Assistente Convidado do Departamento de Electrónica,
Telecomunicações e Informática da Universidade de Aveiro

 Joaquim José de Castro Ferreira,

 Professor Adjunto da Escola Superior de Tecnologia e Gestão de
Águeda da Universidade de Aveiro

 Marcin Janicki,

 Assistant Professor of Faculty of Electrical, Electronic, Computer and
Control Engineering of Lodz University of Technology

acknowledgements I address my sincere thanks to my parents, friends, and
supervisors – Professor João Paulo Barraca, Professor Joaquim
José de Castro Ferreira, and Professor Marcin Janicki – for all
the support and guidance I received from them. I especially
want to thank for much appreciated and valuable contributions
of Professor Pedro Gonçalves, and support from University of
Aveiro, mainly Professor Carlos Alberto da Costa Bastos.

Stay in Portugal and the master degree was one of a kind
experience and without all the people mentioned, it certainly
would not be so rich. Thank you!

palavras-chave Real-Time Systems, Real-Time Communications, Switched Ethernet,
Real-Time Scheduling, Network Management, SNMP, NetConf

resumo Ao longo dos últimos anos, o agora onipresente protocolo Ethernet,
embora não dotado de mecanismos eficazes de gestão de QoS, foi
ganhando uma grande aceitação no campo das comunicações
industriais. Esta crescente aceitação deveu-se, em grande parte, a
novos protocolos, baseados em Ethernet (por exemplo, Profinet,
Ethernet Industrial, etc), capazes de fornecer comunicações com
garantias deterministas ou de tempo-real.

O comutador Ethernet Hartes (Hard Real-Time Ethernet Switch), foi
desenvolvido para disponibilizar uma infra-estrutura de comutação
Ethernet capaz de fornecer garantias de pontualidade, de bom uso
da largura de banda e para suportar, de modo eficiente, a
flexibilidade operacional necessária em aplicações de tempo-real
distribuídas, de sistemas embarcados dinâmicos. O
desenvolvimento do comutador Hartes, foi baseado em trabalho
anterior do paradigma de comunicação FTT (Flexible Time-
Triggered), e teve por objetivo o projeto de um comutador Ethernet
com melhor controlo de transmissão, escalonamento do tráfego e
integração transparente de nodos não tempo-real.

NetConf é uma tecnologia recente de gestão de redes que tem vindo
progressivamente a substituir a tecnologia SNMP (Simple Network
Management Protocol), o standard de facto há muito adoptado pela
indústria. A maior diferença entre NetConf e o SNMP é que o
NetConf adopta um mecanismo de comunicação baseado em XML-
RPC, que, graças às ferramentas desenvolvidas no âmbito de outras
tecnologias web, permite ciclos mais rápidos e mais simples de
desenvolvimento e de gestão.

O comutador Hartes não dispõe de uma plataforma de gestão com
uma interface padronizada para os protocolos SNMP ou NetConf, de
modo a permitir a sua gestão remota. Assim, o objetivo principal
deste trabalho é o desenvolvimento de componentes-chave de apoio
à gestão multiplataforma do comutador Ethernet Hartes, bem como
a respectiva avaliação de desempenho dos componentes
desenvolvidos.

keywords Real-Time Systems, Real-Time Communications, Switched Ethernet,
Real-Time Scheduling, Network Management, SNMP, NetConf

abstract In recent years, the now ubiquitous Ethernet protocol that lacks
effective QoS management functions, has gained momentum in the
field of industrial communication, by means of novel, Ethernet-based
protocols (e.g. Profinet, Industrial Ethernet, etc.), which are able to
provide deterministic communications.

HaRTES – Hard Real-Time Ethernet Switch, aimed to develop an
Ethernet switching infrastructure, able to provide timeliness
guarantees, efficient bandwidth usage and support for operational
flexibility as required by dynamic real-time distributed embedded
systems. The project was built upon previous work on the FTT
(Flexible Time-Triggered) communication paradigm to develop
Ethernet switches with enhanced transmission control, traffic
scheduling, and transparent integration of non-real-time nodes.

NetConf is a recent network management technology that is replacing
the Simple Network Management Protocol (SNMP) – widely used and
long adopted by industry standard. The biggest difference between
NetConf and SNMP is that the former use a communication
mechanism based on XML-RPC, which, thanks to the tools developed
in the scope of other web technologies, allows a simpler and faster
development and management cycle.

The HaRTES project had not provided a management platform with a
standardized interface for SNMP or NetConf protocols, enabling
remote switch management. Thus the main objective of this work was
to develop key components for the support of the standardized
multiplatform management interfaces for the HaRTES switch and their
performance assessment.

słowa kluczowe Systemy czasu rzeczywistego, komunikacja czasu rzeczywistego,
Switched Ethernet, Real-Time Scheduling, zarządzanie siecią,
zarządzanie zasobami sieciowymi, SNMP, NetConf

streszczenie

W ostatnich latach wszechobecny protokół Ethernet, któremu brakuje
efektywnych funkcji zarządzania gwarancją jakości usług (QoS), staje
się coraz popularniejszy w dziedzinie komunikacji przemysłowej,
za sprawą nowych protokołów opartych o standard Ethernet
(np. Profinet, Industrial Ethernet, itp.), które są w stanie zapewnić
deterministyczną komunikację.

HaRTES - Hard Real-Time Ethernet Switch jest to projekt, który ma
za zadanie pomóc w rozwinięciu infrastruktury pozwalającej
na zapewnienie gwarancji terminowości wiadomości, efektywnego
wykorzystania pasma oraz wsparcie dla dynamicznego
przystosowywania się sieci, koniecznej przy zastosowaniu
rozproszonych systemów wbudowanych czasu rzeczywistego. Projekt
jest kontynuacją pracy traktującej o FTT (Flexible Time-Triggered),
czyli modelu komunikacji rozproszonej, rozbudowującej przełącznik
Ethernetowy o polepszoną kontrolę transmisji, harmonogramowanie
ruchu oraz przezroczystą integrację węzłów nieobsługujących
wiadomości czasu rzeczywistego.

NetConf jest technologią zarządzania zasobami sieciowymi, która
zastępuje Simple Network Management Protocol (SNMP) -
powszechnie stosowany i długo przyjęty standard. Największą różnicą
pomiędzy standardami NetConf oraz SNMP jest to, że NetConf
stosuje mechanizm komunikacji oparty o XML-RPC, który dzięki
narzędziom opracowanym w ramach technologii internetowych,
umożliwia prostszy i szybszy cykl rozwoju narzędzia.

Projekt HaRTES nie posiadał platformy, umożliwiającej zdalne
zarządzanie jego parametrami, stosującej standardowe interfejsy
do tego przeznaczone: SNMP lub NetConf. Celem tej pracy było
opracowanie niezbędnych komponentów dla przełącznika HaRTES,
wspierające niniejsze standardy internetowe, poparte testami
wydajności.

Contents

1 Introduction ... 27

1.1 Motivation ... 29

1.2 Contribution ... 30

1.3 Dissertation outline .. 31

2 Network management technology ... 33

2.1 Simple Network Management Protocol ... 38

2.2 NetConf protocol ... 43

3 Hard Real–Time Ethernet Switch ... 49

3.1 The Master Module ... 51

3.2 The Switching Module .. 56

3.3 Real-time management systems .. 59

4 Multiprotocol management interface .. 61

4.1 The SNMP subagent and the NetConf server module ... 63

4.2 The Remote Management Service ... 65

4.3 The HaRTES Management Protocol ... 67

4.4 Proposed MIB and YANG module .. 72

5 Performance assessment.. 77

6 Conclusions and future research ... 83

6.1 Future research .. 84

List of Figures

Figure 1 – Network, Systems, and Application Management [17] .. 34

Figure 2 – Basic Components of Network Management [17] ... 35

Figure 3 – Manager/Agent Versus Client/Server [17] ... 36

Figure 4 – The ISO/OSI reference model [22]... 37

Figure 5 – SMI object tree [17].. 41

Figure 6 – NetConf Protocol Layers [33] .. 43

Figure 7 – NetConf input-output session [34] ... 44

Figure 8 – RPC validate phase [34] ... 45

Figure 9 – NetConf database editing model [34] ... 46

Figure 10 – Yuma Tools and Server Instrumentation Library [34] ... 48

Figure 11 – HaRTES, an FTT-enabled Ethernet switch [36] ... 49

Figure 12 – Functional architecture of the server-based [37] .. 50

Figure 13 – HaRTES Functional architecture [22] .. 51

Figure 14 – FTT-SE internal layering [22] .. 52

Figure 15 – FTT-SE internal details [22] ... 53

Figure 16 – HaRTES elementary cycle (EC) structure [36] .. 55

Figure 17 – Switching Module hardware architecture [36] ... 57

Figure 18 – Scenario of remote access the HaRTES data .. 62

Figure 19 – SNMP Agent architecture with connected SNMP subagent ... 64

Figure 20 – NetConf server with Server Instrumentation Library implemented 64

Figure 21 – Master Module architecture with the Remote Management Service 65

Figure 22 – Sequence diagram of SNMP agent and the Master Module of the switch 70

Figure 23 – Sequence diagram of NetConf protocol and Master Module of the switch 71

Figure 24 – Internal communication latency ... 78

Figure 25 – Time scatter of all management platforms during the retreival of all HaRTES values 79

Figure 26 – Time scatter chart of SNMPv2 and SNMPv3 ... 80

Figure 27 – Comparison of NetConf protocol time resolving one and multiple queries 81

Figure 28 – Latency of the different management methods handling one and multi requests with respect to

the internal latency ... 82

List of tables

Table 1 – Operations provided by the SNMPv1 .. 38

Table 2 – Operations added to the SNMPv2 .. 39

Table 3 – Operation added to the SNMPv3 ... 39

Table – 4 Structure of the SNMP PDU .. 41

Table – 5 NetConf basic protocol operations [10] ... 47

Table 6 – Structure of the basic HaRTES Management Protocol .. 67

Table 7 – HaRTES Management Protocol return frame with modified version of TLV protocol 68

Table 8 – Protocol data types supported by the HaRTES Management Protocol 68

Table 9 – HaRTES Management Protocol return frame with full version of TLV protocol...................... 69

Table 10 – MIB data names and corresponding FTT-Server data ... 72

Acronyms

API Application Programming Interface

ASN Abstract Syntax Notation

ASW Asynchronous Window

BAG Bandwidth Allocation Gap

BE Best-Effort

BS Background Scheduling

CAN Controller Area Network

CPU Central Processing Unit

CPS Cyber-Physical Systems

DES Distributed Embedded Systems

DNS Domain Name System

DS Deferrable Server

EC Elementary Cycle

EDF Earliest Deadline First

ET Event-Triggered

FCAPS Fault, Configuration, Accounting, Performance, Security Management

FCS Frame Check Sequence

FCT Fundação para a Ciência e a Tecnologia

FIFO First-Come-First-Served

FPGA Field-Programmable Gate Array

FTP File Transfer Protocol

FTT Flexible Time-Triggered

FTT-SE Flexible Time-Triggered - Switched Ethernet

HaRTES Hard Real-Time Ethernet Switch

HTTP Hypertext Transfer Protocol

24
Aleksander Pleszko

Management of a Hard-QoS Switch

IANA Internet Assigned Numbers Authority

IFG Inter-Frame Gap

IP Internet Protocol

IPC Interprocess Communication

ISO International Organization for Standardization

LAN Local Area Network

LEC Length of the Elementary Cycle

LSW Length of the Synchronous Window

MAC Medium Access Control

MIB Management Information Base

NE Network Element

NetConf Network Configuration Protocol

NMO Network Management Objects

NRT Non Real-Time

OID Object Identifier

PDO Process Data Objects

PDU Protocol Data Unit

PHY Physical Layer

PS Polling Server

QoS Quality-of-Service

RFC Requests for Comments

RT-L Real-Time Layer

RT-VBR Real-Time Variable Bit Rate

RTCD Real-Time Communication Daemon

RTE Real-Time Ethernet

SDO Service Data Objects

SIL Server Instrumentation Library

SMI Structure of Management Information

SNMP Simple Network Management Protocol

SOF Start-of-Frame

SRDB System Requirements Database

SRP Stream Reservation Protocol

SSH Secure Shell

Aleksander Pleszko
25 Management of a Hard-QoS Switch

SSL Secure Sockets Layer

SW Synchronous Window

TAT Turn-Around Time

TCP Transmission Control Protocol

TLS Transport Layer Security

TLV Type-Length-Value

TM Trigger Message

TT Time-Triggered

TTE TT Ethernet

TTP Time-Triggered Protocol

UDP User Datagram Protocol

UTP Unshielded Twisted Pair

WCET Worst-Case Execution Time

WLAN Wireless Local Area Network

XML Extensible Markup Language

Chapter 1

Introduction

Distributed Embedded Systems (DES) are widely used in many domains serving

its purpose anywhere from industrial automation to vehicular system, managing both

hard and soft real-time traffic. Instances of DES must follow strict timeliness,

predictability and precedence constrains. In these cases, special-purpose real-time

communication networks, known as fieldbuses, must be used to achieve the desired

properties.

In these systems, due to its omnipresence, important role began to play Ethernet

protocol. However Ethernet standard was not originally developed to meet the

predictability, timeliness and reliability, which are present in Network Embedded

Systems (NES). Still, there are currently available technologies, that enable mechanisms

of guaranteed Quality of Service (QoS), such as MPLS [1] and RSVP [2] especially

combined with IntServ [3] and DiffServ [4] models, however they only provide static

guarantees.

Effective needs and a quality of service adaptation policy requires an on-line

flexibility and admission control, which are not met if used previously mentioned

solutions. This has motivated the development of a new generation of Ethernet

switches, Hard Real-Time Ethernet Switch (HaRTES).

Over the last decade, several Ethernet-based protocols have been developed,

e.g.: Ethernet-Powerlink, Profinet, EtherCAT and Ethernet/IP, which take advantage of

some of Ethernet’s appealing attributes e.g., large bandwidth, cheap silicon

development and high availability, while removing or reducing the sources of non-

28
Aleksander Pleszko

Management of a Hard-QoS Switch

determinism arising from its MAC protocol and/or from the current switched

architecture.

In this context, two research projects were founded by Fundação para a Ciência

e a Tecnologia (FCT). The first one, HaRTES – Hard Real-Time Ethernet Switch [5],

aimed to develop an Ethernet switching infrastructure, using FPGA technology, able to

provide timeliness guarantees, efficient bandwidth usage and support for operational

flexibility as required by dynamic real-time distributed embedded systems. The project

was built upon previous local work on the Flexible Time-Triggered [6] communication

paradigm to develop Ethernet switches with enhanced transmission control, traffic

scheduling, service differentiation, transparent integration of non-real-time nodes and

improved error confinement mechanisms, particularly with respect to temporal

misbehaviours.

The Serv-CPS project: Server-based Real-Time Ethernet Communication

Architecture for Cyber-Physical Systems, evolves the Ethernet switch developed in the

scope of the HaRTES project, which already supports enhanced traffic scheduling

services. The objective of Serv-CPS is to develop a networking framework, based on

switched Ethernet, suitable to support Cyber-Physical Systems (CPS), by including

explicit and efficient support for component-oriented design methodologies. The

framework shall support: heterogeneous traffic classes with temporal isolation,

partitioning and virtualization mechanisms, hierarchical multi-level server composition,

dynamic adaptation and reconfiguration of servers with temporal guarantees, analytical

tools for supporting the design of Cyber-Physical Systems (CPS) and middleware for

service management.

The features of the Ethernet switch proposed in Serv-CPS represent a

breakthrough in terms of the adequacy of complex Real-time protocols based on

Ethernet technology [7], where flexibility and compensability in the time domain are

design requirements. The technology proposed allows, in an innovative way, using the

same network to dynamically handle multiple traffic sources (e.g. web access, file

transfer, live video/audio, control data), making an efficient utilization of the resources,

without compromising the performance of real-time applications. For the purpose of

preforming QoS reservations, SRP [8] support was added.

NetConf and SNMP are two management technologies that handle the

communication aspect of network management. The latter one is long adopted, light,

Aleksander Pleszko
29 Management of a Hard-QoS Switch

and widely used standard for managing network elements. However, due to its security

issues it is used mainly for monitoring purposes. NetConf is recent technology that uses

more descriptive XML-RPC standard to communicate between server and client. It has

more robust security authentication and encryption mechanism than SNMP, however it

introduces accordingly greater overhead of management and configuration data.

1.1 Motivation

In the context of rapid growth of networks and new technologies, unique

solutions for remote device managing are needed. However, the HaRTES switch lacked

such standardized interface for remote management i.e., interface for parameterizing

and monitoring the switch behaviour.

Motivation for this thesis is to devise mechanisms for faster FTT-enabled switch

development, and remote device testing in a real-life environment, without the need to

change or monitor the switch parameters in a hardcoded way. This can reflect in new

test applications of HaRTES technologies.

Therefore, this work focuses its objective on developing multiplatform (SNMP

[9] and NetConf [10]) management interface, implementation and evaluation for a

HaRTES switch and presents validation of the two management approaches.

As SNMP is widely adopted by most of the Real-Time Ethernet (RTE)

equipment, it was also challenging to device mechanisms for managing HaRTES.

Examples of RTE equipment supporting RTE protocols are: TT Ethernet (TTE),

Ethernet Powerlink [11], Profinet [12], Industrial Ethernet, etc.

The TTE A664 Pro Switch [13] has a built-in management module for network

monitoring and supports secure network management and allows data loading and

querying of health and status information. Weidmuller IE-SWxx-M Industrial Ethernet

switches [14] can also be managed via SNMP. The IE-SWxx-M switches support traps

for the link-up, link-down, confirmation error, cold restart and warm restart functions.

Profinet [15], also uses SNMP for maintaining and monitoring network devices.

Ethernet Powerlink adopts a proprietary protocol for the network management

derived from CANopen, based on Process Data Objects (PDO), Service Data Objects

(SDO), and Network Management Objects (NMO). According to [16] Ethernet

Powerlink routers are managed by Powerlink SDO and optionally by the SNMP.

30
Aleksander Pleszko

Management of a Hard-QoS Switch

A common property of all previous mentioned RTE protocols is that they do not

allow dynamic reconfiguration with real-time guarantees. They are fully static systems

in which all operating conditions are completely defined at pre-runtime In these RTE

protocols system reconfiguration involves stopping the system, apply the modifications

and restart it. Since monitoring is not a time-critical activity and maintenance is

performed offline, SNMP is well suited for these tasks in the case of the above

mentioned RTE protocols. NetConf, a newer technology, is other valid alternative,

however and to the best of our knowledge, it is not supported by current RTE

equipment.

For the specific case of FTT Ethernet networks based on the HaRTES switch

and supporting timely operational flexibility, it is necessary to assess the performance of

network management technologies. Notice that, both SNMP and NetConf do not

provide real-time guarantees, however this is no impairment for HaRTES, since

modifications of the communications requirements are not made directly by the

management services. Online requests to modify communication requirements are

processed by the admission control and, if accepted, their timeliness is secured by real-

time scheduling.

1.2 Contribution

The work developed in the scope of this thesis was oriented to the key

components for the support of standardized management interfaces for the HaRTES

switch, making it suitable for remote monitoring and available for currently existing

management protocols, namely SNMP and NetConf.

The HaRTES architecture has been proposed in the past to provide

implementation of the FTT paradigm on a switched Ethernet communication

framework, leading to the Flexible Time-Triggered over Switched Ethernet (FTT-SE)

protocol. The work described in this dissertation extends previous work in the following

points:

o Support for remote enhanced real-time traffic monitoring capabilities for

SNMP and NetConf;

o Support for multiple Management Information Databases;

o Novel protocol solutions for Remote Management Service;

Aleksander Pleszko
31 Management of a Hard-QoS Switch

o Performance assessment of HaRTES switch management with SNMP

and NetConf.

These contributions were summarized in a paper accepted for publication in a

workshop:

o Aleksander Pleszko, João Paulo Barraca, Joaquim Ferreira, and Pedro

Gonçalves. Multiplatform Management of a Hard Real-Time Ethernet

Switch. In Proceedings of the IEEE Globecom 2012 Workshop: The 4th

IEEE International Workshop on Management of Emerging Networks

and Services, Anaheim, California, December 3-7, 2012;

1.3 Dissertation outline

The rest of the dissertation is organized as follows. Chapter 2 presents overview

of subject of the network managements as well as the two proposed management

technologies enabled to cooperate with the HaRTES switch. Chapter 3 is dedicated to

the architecture of the Real-Time Ethernet Switch and its two modules: the Master

Module and the Switching Module. Chapter 4 describes the details of the

implementation of management interface and the Remote Management Protocol in

management agents and Master Module side. Chapter 5 presents and discusses results

regarding the latency of two implemented management solutions. Chapter 7 concludes

the thesis and proposes some future lines of work.

Chapter 2

Network management technology

Network management may refer to a broad range of subjects. It is mostly agreed

that this term is used in the context of the activities, methods, procedures, and tools that

relate to the operation, administration, maintenance, and provisioning of networked

systems [17]. The International Organization for Standardization (ISO) [18] created

conceptual areas to help understand the major functions of network management

system. It is called Fault Management, Configuration Management, Accounting

Management, Performance Management, and Security Management (FCAPS).

The Internet from its birth is constantly evolving. At the beginning there were

only a couple university's devices connected to each other. Later, large company's

networks began to join the web. As for now, with so many devices in the Internet

responsible for forwarding, managing, and controlling traffic, it would be impossible to

efficiently manage those devices and traffic, without consistent protocol for remote

devices' management.

Several key aspects must be taken under the consideration if designed

management system is to be solid and fully operational at all possible time. A great

amount of care must be taken to ensure full operational status of the network; is it

running smoothly and without errors. In the event of error, provided the network is

sufficiently monitored to quickly spot the problem and manage it, it is likely that small

amount or no users will be affected by it.

34
Aleksander Pleszko

Management of a Hard-QoS Switch

Figure 1 – Network, Systems, and Application Management [17]

Network management covers also areas of keeping network under control, i.e.

keeping track of resources and the way how they are assigned in the network. This

expands also to plain maintenance of the network, i.e. performing repairs and upgrades

of connected devices, adding, removing devices, adjusting their parameters so that

overall network performance is boosted.

Network management likewise involves configuring resources and services that

are available to the users connected without adversely affecting the rest of the network.

Configuration should also be flexible so that new customers can be quickly added to the

pool without laborious reconfiguration of many parts of the system.

The term network management can be also narrowed to management of the

networks themselves. If this is the case, the terms of system management and

application management are also distinguished, as it is depicted in Figure 1. Sometimes

special service can be bound to all of these three categories i.e. network, system and

application, so then it is also distinguished and sum up in the term service management.

In a broader sense these categories, though may have different management

practices associated with them, have also very much in common, therefore they are

gathered under one general term network management.

Covering such a broad topic, even in a short run, requires several naming

distinctions to be made, particularly what the network management comprises of. What

is obvious, firstly we need the managed device or the network that is to be managed.

Usually it is the latter, a network of interconnected devices that exchanges data amongst

each other.

Aleksander Pleszko
35 Management of a Hard-QoS Switch

Figure 2 – Basic Components of Network Management [17]

To have any impact on this network we also need the system and application

that will be used to do so – Network Management Systems (NMS). These systems

encompass the management logic helping to gather, process and present collected data

from managed network or device. It can also be used to send management commands to

start or stop services or interfaces.

Maybe the least obvious part of the network management, that creates somewhat

paradoxical situation, is the network management itself. The managing interface and

network to be managed must be connected via management network, so the

communication between them is even possible. That is why the ideal solution would be

to have not one network, but two: one for the data traffic and one for management

purposes.

The last crucial element without which the network management would not

work is the management personnel, responsible for changing it and maintaining the

whole structure sound and solid, as shown in Figure 2.

Closing to the topic of specific implementation of management solutions the

point must be made concerning management parlance. Previously mentioned managed

device can be also called network element (NE) or network node. If they are to be

managed they must participate in management process.

36
Aleksander Pleszko

Management of a Hard-QoS Switch

There are also important distinctions that have to be drawn between

manager/agent and client/server model alike. The communication between management

interface and the managed network element is asymmetrical: the usual chain of

command is that the manager (client) sends request and agent (server) responds to that

plus sends asynchronous trap or notifications if selected event is triggered.

The usual place of one server, which is serving many clients, is undermined in

the network management world. Figure 3 depicts the situations in which many servers

(which are called agents) are serving a small number of clients (managers). Moreover is

imperative that network elements provide a way to manage them, usually by

implementing a management interface. This middleware is supporting a dialogue

between external network management software and the managed software. It is also

commonly referred as management agent.

Figure 3 – Manager/Agent Versus Client/Server [17]

In general, management agent comprises three main parts:

o Management interface;

o Management Information Base;

o Core agent logic.

The management interface allows the managing application to communicate

with the network elements. It allows opening and closing management sessions

maintained in a specific management protocol, as well as make request, responses and

traps. The management interface handles generally communication between servers and

agents.

Aleksander Pleszko
37 Management of a Hard-QoS Switch

The Management Information Base (MIB) is virtual data store that represents a

management view of the device being managed. It defines management information that

can be retrieved and/or changed. The MIB is only a proxy for the managed parameter to

be viewed by the managing application. However, it does not necessarily mean that

MIB objects are defined in Structure of Management Information Version 2 (SMIv2)

[19] as it is a subset of Abstract Syntax Notation One (ASN.1) [20] which is commonly

used in Simple Network Management Protocol (SNMP) [9]. It can also be defined by

XML [21] or Command Line Parameters, depending on implementation details.

The core agent logic is responsible for actual retrieval of the requested data from

the managed device. It translates the information being encoded in the MIB to the actual

register being present in the network element. It can also be infused with additional

capabilities of pre-correlating raw events with each other or scheduling periodic test

algorithm for validating proper functioning of the device .

The last topic to mention is the protocol standard used to manage the network

devices. It should be flexible, extensive and able to manage many layers of protocols.

SNMP was designed to meet these requirements and has it became the standard protocol

used to monitor network devices. The OSI model [18] is depicted in Figure 4.

Figure 4 – The ISO/OSI reference model [22]

As it turned out in the first years of the 21st century, the SNMP protocol was

used mainly to monitor networks, rather than to completely manage them. In 2002, a

meeting was held between the Internet Architecture Board, and leading members of the

IETF Network operators to discuss this situation. It turned out that most of network

38
Aleksander Pleszko

Management of a Hard-QoS Switch

administrators were using Command Line Interfaces (CLI) to configure their boxes, but

due to unpredictable output of this command new, more flexible solution was needed.

Proposed solution involved XML standard for data transmission and included SSH [23]

as transfer protocol for security reasons. This became the basis of a new protocol later

introduced as NetConf [10].

2.1 Simple Network Management Protocol

First version of Simple Network Management Protocol (SNMP) [9] was

released in 1988. It was designed to remotely monitor and manage the network elements

through the Internet Protocol (IP) [24] using sets of SNMP commands.

SNMP uses the User Datagram Protocol (UDP) [25] to transmit its data, as

opposed to Transmission Control Protocol (TCP) [26] because the former is

connectionless. SNMP uses UDP port 161 for sending and receiving requests data and

port 162 for receiving traps (notifications) from management enabled network elements.

Using connectionless protocol means that transfer of packets is unreliable, but taken the

low message overhead this is somewhat reasonable.

The first version of SNMP (SNMPv1) was an overly simple solution. It provided

a simple sets of operations transmitted to the agent. The operations types are presented

in Table 1.

Table 1 – Operations provided by the SNMPv1

Operation Description

get This operation is sent from NMS to the agent. Agent process this request and

responses with get-response and values obtained from the network element.

However the whole message has guaranteed deliver only if it has less than 484

bytes. Most implementations allow greater size though.

get-next The get-next operation allows retrieval of sequential OID values of the MIB

tree. An OID is composed of integers, so it is easy for an agent to find next

matching result. For each get-next request a separate get-response from the

agent is generated. The NMS keep sending get-next operation until an error is

returned, signifying the end of the MIB.

set To change the value of an object or to create a new row in a table the set

command is used. More than one object at a time can be changed.

get-response This operation is send back to the NMS when the request is processed and

requested information acquired.

trap This is a notification message send to specific destination configured at the

agent itself. Usually it is the IP address of the NMS. As UDP protocol is used

the traps are prone to get lost in the network, as no backward notification is

send back from the NMS that the notification was delivered.

Aleksander Pleszko
39 Management of a Hard-QoS Switch

SNMPv1 was faced with two major problems, namely: very week security and

lack of tools to manage larger amount of management information data. SNMPv2

addressed one of this issues: it introduced new operations that allowed for obtaining

greater number of data OID than just one at a time. The security aspects were not

addressed until version 3 of the SNMP protocol. To date, the most popular variation of

the SNMPv2 is the SNMPv2c (c for “community”), indicating the community strings as

a security authentication procedure. Also in version 2 of the SNMP protocol new

notation was introduced, that was mostly backward compatible – SMIv2. SNMPv2

introduced some new operations described in Table 2.

Table 2 – Operations added to the SNMPv2

Operation Description

get-bulk-request This command is similar to get-next operation but unlike the former allows

for retrieving more than one OID at a time. With this command, the agent

sends as many information in one packet as it can. Previously mentioned

message size limit is still applied.

inform-request This command is similar to the trap mechanism introduced in SNMPv1, but

adds support for the acknowledge response from the master node. The agent

sending this command is notified if the message reaches its destination.

response It is renamed version of get-response operation. It resembles the change in

protocol that now response is not bound to only any of get- commands..

SNMPv3 is the newest and recommended version by the IETF. It may be

considered as SNMPv2c extended to also support solid security. Strong authentication

and encryption of the SNMP messages makes it less prone to security attacks. The

architecture was also modularized which helped in SNMP agent implementations.

However due to the increased complexity and ubiquitous use of SNMPv2c it is still

unclear if this standard will have the same market acceptance as their previous versions.

One final operation, which was introduced in the draft of SNMPv2, but only made it to

SNMPv3 was snmp-report and is explained in Table 3.

Table 3 – Operation added to the SNMPv3

Operation Description

snmp-report This command enables communication between SNMP engines to exchange

processing problems..

40
Aleksander Pleszko

Management of a Hard-QoS Switch

The SNMP manager, which operates on the machine called Network

Management System (NMS), sends requests to the device being managed. The SNMP

agent, which is located on the managed device, responds to the received requests. To

establish the notion of trust between managers and agents, both SNMPv1 and SNMPv2c

use community string. It is a text string that act as a authentication password between

the management station and the SNMP agent. There are three configuration names that

can be used to configure a SNMP agent: read-only, read-write and trap. The community

string is included in every packet that is transmitted between the SNMP manager and

the SNMP agent. The problem is that in the versions 1 and 2c of SNMP protocol

community string (passwords) are sent in plain text. SNMPv3 addresses this issue by

providing secure authentication and communication mechanisms, and that is why only

version three is officially recommended by IETF, the rest are considered obsolete.

To monitor network element, manager has to know what kind of information

actually can be managed. The Structure of Management Information Version 1 (SMIv1)

[27] defines managed objects in the context of SNMP. SMIv2 [19] expands and

enhances this object descriptions. The description of managed object can be represented

by the three attributes:

o Name

This field uniquely defines the managed object. It may appear in two

forms: numerical (OID) and more “human readable.” It can be used

interchangeable.

o Type and syntax

Objects and theirs types are described in referenced earlier ASN.1.

Because of using this universal notation e.g. the bit order of the master and

agent machine is not important.

o Encoding

During the transmission a single managed object is encoded into a string

octets using Basic Encoding Rules [28] (BER). In this form it is

transported over a transport medium like Ethernet.

Aleksander Pleszko
41 Management of a Hard-QoS Switch

A tree like hierarchy organizes the managed object according to the SNMP

convention. Each managed object is explicitly identified by a series of integers

separated by dots. Each node has its number and name by which can be referenced to,

so two definition of managed object are equal: 1.3.6.1.2.1.6 or

iso.org.dod.internet.mgmt.mib-2.tcp

Figure 5 – SMI object tree [17]

The Internet Assigned Numbers Authority (IANA) [29] is the organization that

manages association of numbers to the private customers or enterprises.

Identification information sent by SNMP is transmitted in SNMP message

which is implemented at the Application Layer – Layer 7 of the OSI reference model.

SNMP message structure is shown in Table – 4.

Table – 4 Structure of the SNMP PDU

IP

header

UDP

header
version community

PDU-

type

request-

id

error-

status

error-

index

variable

bindings

IP frame containing SNMP PDU information can be divided into four main

parts:

o IP/UDP header information;

o The SNMP version number;

o A community string;

o The SNMP protocol data unit (PDU).

42
Aleksander Pleszko

Management of a Hard-QoS Switch

Since most of the fields were described previously main focus will remain in the

PDU type field. However some information about version restriction must be noted

also.

Because of the modular structure of SNMP agent, basic scope of supported

MIBs in SNMP agent can be extended in three general ways:

o Running external commands;

o Loading new code dynamically;

o Communicating with other agents.

Each way of extending agent’s functionality, if it is to be used, must be enabled

during the building time of the SNMP executable file.

The first of these options uses support for the ucd-snmp/extensible and agent/extend

modules. This was the earliest extension mechanism added to the agent’s features. This

allows for running arbitrary commands or shell scripts. Some problems may arise with more

complex tasks, and with interpretation of the command output.

Most of the standard MIB are C coded modules. Such modules are compiled and then

linked to the SNMP application when it is first built. The shared module is located in a

separate binary file, and is loaded by the agent at runtime. This improves flexibility of adding

support for the new MIB file after the agent has been compiled. The memory space is shared

with the entire agent and extension module has direct access to entire API provided by

SNMP. Drawback of this solution is that, since the memory is shared with the agent, a

programming mistake may affect the entire agent daemon causing it to crash. Another issue is

that the code always executes as the same user as the agent daemon itself, which may lead to

granting too extensive privileges to the system resources, or too less. Use of this mechanism

requires that the agent being built with support for the ucd-snmp/dlmod module.

The most flexible solution, which involves a communicating demon with other

agents, is based on the idea of using Interprocess Communication (IPC). In this way, memory

file descriptors are different from the ones of the master agent. The solution is flexible

because the subagent can be started at any time, providing support for additional MIBs files.

The code does not need to be changed regardless if it is to be used in dynamically loaded

modules or in a separate subagent. To communicate between master agent and subagents the

AgentX protocol [30] is used. To enable support for this solution, support for the AgentX

module must be enabled during building time and also option enabling this must be explicitly

enabled in the snmpd.conf file.

Aleksander Pleszko
43 Management of a Hard-QoS Switch

2.2 NetConf protocol

NetConf is a new network management technology standardized by IETF in

December 2006 [31] and then revised in June 2011 [10]. It was designed to replace

SNMP – the widely used network management technology, long adopted by industry,

and to overcome some of its shortcomings. The biggest difference between NetConf and

SNMP is that NetConf uses a communication mechanism based on XML-RPC [32],

which, thanks to the tools developed in the scope of other web technologies, allows a

simpler and faster development and management cycle. It also provides mechanisms to

install, manipulate, and delete the configuration of network devices.

NetConf was designed to supports variety of transmission protocol standards

and used data structure for management information. However a few are mandatory,

namely SSH for transport layer, and YANG [33] data structures, which is used instead

of SNMP’s MIB. These are also the standards that were used in the design and

implementing of this thesis protocol implementation.

NetConf server uses the IETF YANG Data Modelling Language. Its syntax and

semantics are in a format that is human readable. The configuration information of the

device containing the NetConf server is stored in a database in the YANG data

structures. To prevent configuration loss between device reboots, these data structures

are saved in non-volatile storage.

Figure 6 – NetConf Protocol Layers [34]

NetConf may be compared to XML-based, high-level version of previously

discussed SNMP, and YANG module can be look at as more sophisticated counterpart

of MIB file. Figure 6 shows protocol layers used by NetConf. The most widely used

44
Aleksander Pleszko

Management of a Hard-QoS Switch

protocol with NetConf connection is SSH. To work swiftly the

“netconf SSH-subsystem” is used to listen on TCP port 80. After client-server

connection NetConf is much like using CLI over SSH, but messages are exchanged in

XML format, not in plain text. To authenticate and authorize session SSH user names,

passwords and hosts keys are used, just as a standard SSH session would be.

Contrary to the SNMP, NetConf is a connection-oriented protocol. This means

that a persistent and reliable connection must be maintained. Moreover authentication,

data integrity, confidentiality, and reply protection are assumed to be provided by

appropriate levels of the OSI model. One way of doing this is using mentioned earlier

and default Secure Shell (SSH) protocol.

Figure 7 depicts connection handling by the NetConf application. Connection to

the NetConf server can be done from any SSH compliant application. However, to

simplify the management of NetConf server, clients instead of using raw SSH terminal

application to direct communication with NetConf server, the NetConf client

application called “yangcli” is used. It supports many automated features present in

NetConf protocol.

Figure 7 – NetConf input-output session [35]

Strict limitations are imposed on messages exchanged between client and server.

Each NetConf message must be well-formed XML, encoded in UTF-8 [36]. If one side

of pending communication receives message that is not conforming to the standard it

Aleksander Pleszko
45 Management of a Hard-QoS Switch

should reply with a “malformed-message” error or, if reply is not possible, terminate the

session.

After starting the NetConf session clients sends commands to the server which

processes them in order and returns results to the client. Asynchronous notification

messages are also allowed, provided client requested in active session

<create-subscription> operation.

At the beginning of each session client and server exchange a <hello>

message to learn about each other capabilities. Thanks to that applications became

aware of which operations, notification events, and database contents are supported by

the other side.

Following the agreement of agent’s and server’s supported operations there are

two types of data that can be transmitted: configuration and state data. The

configuration data includes writable data that transforms a system from its current state

into desired configuration. Statistical and read-only status information are transmitted as

state data. A number of problems could arise if this distinction was not drawn. For each

type distinct operation is provided, the <get> and the <get-config> respectively.

Figure 8 – RPC validate phase [35]

NetConf standard uses the RPC model to encapsulate its requests in transport

protocol independent method. The client uses as a request the <rpc> element, servers

responds with <rpc-reply> which is send after validation phase, as shown in Figure

8. An important attribute send in these elements is the “message-id” which is an

increasingly higher integer encoded as a string and chose by the sender. Server must

return the same value in the <rpc-reply> operation.

Important to mention are also <rpc-error> and <ok> elements. The latter is

returned when no error or warning was encountered while processing the request. The

<rpc-error> element has its own set of types and tags to indicate the location and

severity of the problem.

46
Aleksander Pleszko

Management of a Hard-QoS Switch

Another extension compared with SNMP that NetConf supports is the notion of

multiple datastores. A datastore holds the complete set of configuration data that takes

the network element from its default state to the desired, configured state. The basic,

most important and compulsory is the <running> configuration datastore. This

element is always present on the device and can be only one copy of it. Other optional

datastores, i.e. <candidate> and <startup> can be added to the device.

Information regarding full support of these elements is sent in initial <hello> message

exchanged by server and client specifying each peers’ capabilities.

In Figure 9 the three-phase validation of datastore is depicted. In the first,

validation phase the server determines the target nodes and database to be affected.

Next, the validation of all incoming request against YANG language standard occurs. If

everything checks, the node callback function is searched inside SIL libraries. If found

the function is called.

Figure 9 – NetConf database editing model [35]

If validation phase goes smoothly without errors, next phase of apply or apply-

test follows. During this period, depending on configuration parameters sent with the

edit-config operation the database or its copy is altered as requested. If the latter occurs,

the test-apply phase is executed first, where, after altering the copy of internal data tree,

it is further validated, including all cross-referential integrity tests. Then, provided no

error occurs, the changes are made to the real target database.

Aleksander Pleszko
47 Management of a Hard-QoS Switch

If operations <commit>, <edit-config> or <copy-config> are

requested, the server will search for SIL commit callback function for designated

element(s). If earlier stages produce an error or user cancels or timeout the commit

operation, the server will call a function to rollback the operation and a backup copy of

database will be presumably restored.

If additional operations are supported by the device, it should be announced

during exchange of the <hello> message at the beginning of session. Basic messages

supported by the default NetConf installation are described in Table – 5.

Table – 5 NetConf basic protocol operations [10]

Operation Description

<get> Retrieves running configuration and device state information.

<get-config> Retrieve all or part of a specified configuration datastore.

<edit-config> Loads all or part of a specified configuration to the specified target

configuration datastore.

<copy-config> Create or replace an entire configuration datastore with the contents of another

complete configuration datastore.

<delete-config> Delete a configuration datastore. The <running> configuration datastore cannot

be deleted.

<lock> The <lock> operation allows the client to lock, usually for short amount of

time, the entire configuration datastore system of a device.

<unlock> The <unlock> operation is used to release a configuration lock, previously

obtained with the <lock> operation.

<close-session> Request graceful termination of a NetConf session. Processing this request

results in releasing any locks and resources associated with the session and

gracefully close any associated connections. Requests received after a <close-

session> request will be ignored. If request is satisfied an <rpc-reply> with

<ok> element is replied. Otherwise <rpc-error> with status information.

<kill-session> Force the termination of a NetConf session, aborting any operations currently in

process, releasing any locks and resources associated with the session, and

closing any associated connections. If <commit> operation was issued the

backup configuration must be restored.

Figure 10 depicts the set of available Yuma tools which helps during the

development process. It also shows possible course of action during developmental

process. Presumably, if we are implementing functionality described previously in

SMIv2 or other information database format “smidump” converts it to YANG

modules. These files are very flexible and are interpreted directly without further

translation by all Yuma applications and are parsed straight by “yangcli” and

48
Aleksander Pleszko

Management of a Hard-QoS Switch

NetConf executable. “Yangdump” translator renders them to C source files. For ease of

implementation callback functions associated with modules and node names are

automatically generated there. After implementation is ready files are compiled into its

binary format called Server Instrumentation Library (SIL). Placed in an appropriate

catalogue can be automatically loaded into the NetConf server at run-time.

Figure 10 – Yuma Tools and Server Instrumentation Library [35]

Chapter 3

Hard Real–Time Ethernet Switch

HaRTES is a modified Ethernet switch based on the FTT paradigm. The idea

behind developing the FTT-compliant switch was to extend the structural limitations of

the FTT-SE protocol, which cannot be resolved with standard Ethernet switches. The

Flexible Time Trigger-Switched Ethernet (FTT-SE) [22] protocol needs all nodes to be

completely respecting the EC-schedules provided by TM. To enable such system to

work in each node must be present a specific network device driver. The driver might

not be available in several operating systems. Moreover misbehaving or broken nodes

which do not respects the timeliness strict traffic can introduce several communication

problems including completely jeopardizing timing guarantees. Solution to this was to

introduce temporal control to the switch. Therefore FTT master was inserted into the

switch providing seamless support for synchronous and asynchronous traffic as depicted

in Figure 11.

Figure 11 – HaRTES, an FTT-enabled Ethernet switch [37]

50
Aleksander Pleszko

Management of a Hard-QoS Switch

Due to inclusion the FTT master into HaRTES switch several the most relevant

features of FTT-SE were preserved, which fostered several facets. First of them is the

handling of asynchronous traffic is simpler. The nodes can autonomously trigger the

traffic instead of being polled by the master node, together with maintaining per-stream

temporal isolation. Next, the system integrity is increased. The switch input ports can

block unauthorized real-time transmissions, isolating it from the rest of the system.

Seamless integration of non FTT-compliant nodes without threatening the real-time

traffic was also fostered. Lastly, superior transmission parameters with TM higher

precision, lower jitter and latency. Because of that overall network synchronization is

improved.

Figure 12 – Functional architecture of the server-based [38]

The switch is split on two main components: the software component and the

hardware component as depicted in Figure 12. These components of the system are:

Master Module, and the Switching Module. The Switching Module units were modelled

at register transfer level (RTL) with the Field-Programmable Gate Array (FPGA) and

Aleksander Pleszko
51 Management of a Hard-QoS Switch

written in VHDL hardware description language. In this configuration, it is easily

reconfigurable for testing purposes and the overall cost of the system is greatly reduced.

The Master Module and Switching Module are, in this implementation,

connected using Ethernet port. This allows for fast and flexible communication between

the two parts of the system.

3.1 The Master Module

Thanks to the modular implementation of the FTT-SE, the master and slave

component can coexists in the same node, complementing each other and saving on the

hardware platform costs.

The Master Module implements the FTT master which is depicted in Figure 13.

The shaded area represents management services responsible for the FTT traffic. This

part of the switch is algorithmically complex and tends to use much of the available

system resources. Sophisticated sets of operations included in the system requirements

database, the scheduler, the admission control and the QoS manager included in this

module make broad use of dynamic lists. Those elements are more resource demanding

and needs more resources. Because of it, and mentioned earlier, potentially grater costs

of the hardware the Master Module was, in this case, implemented in software.

Figure 13 – HaRTES Functional architecture [22]

52
Aleksander Pleszko

Management of a Hard-QoS Switch

Running many services in many nodes as it take place in distributed systems,

introduce a challenge to efficiently manage it. That is why the middleware between user

application and the node service is introduced. It also makes efficient opportunity to

introduce Stream Reservation Protocol (SRP) [8].

The FTT-SE middleware introduce a binding application interface common to

all nodes, available at all of them, managing communication details and bringing forth

seamless design composition. Thanks to the middleware synchronization mechanisms

and a logical abstraction responsible for associating services with the nodes are assured

to have consistent network loading accounting and resource allocation. This is

especially essential in open and dynamic environments. An abstraction layer also fosters

application development and its deployment in the field. Better application integration

is based upon the middleware abstraction layer which is crucial for retrieving HaRTES

data values thus several of its features are described next.

Figure 14 – FTT-SE internal layering [22]

Figure 14 presents several building blocks which detailed overview is depicted

there. In the bottom of the stack is the Network Interface Card (NIC) controller which

interacts with full-duplex Switched Ethernet network. Inside the FTT-SE core layer one

can find basic protocols for communication mechanisms i.e. the traffic scheduling and

the transmission control. The management layer performs a high level session control,

which includes establishing connections and differentiation of the streams. This leads to

decoupling the streams and endpoint threads and makes possible to register them

Aleksander Pleszko
53 Management of a Hard-QoS Switch

independent of their location in the network and regardless of their position as producer

or consumer. Also in this layer a QoS management module guards proper distribution

and adjustments of the network online capacity splitting it evenly between stream. The

rules are set by the application based on the needs and importance of the streams. The

last discussed part is the interface layer. In there rests the communication and

management services available to the application allowing for sending, receiving,

binding, resource reservation and de-registration in the FTT-SE protocol standard.

Figure 15 – FTT-SE internal details [22]

Figure 15 presents more detailed implementation of the internal services

cooperation. As mentioned earlier, one of the most important parts of the whole switch

is the System Requirements Database (SRDB) where information about synchronous

and asynchronous messages (e.g. minimum/period inter-arrival time, deadline, priority,

length) and running traffic properties are kept alike. Also information about global

configuration (e.g. data rate, synchronous window duration, elementary cycle duration)

and each traffic class allocated resources information (e.g. maximum amount of buffer

memory, phase durations) are stored there. A scheduler is a module which periodically

scans the SRDB in search for data necessary to build TM for synchronous traffic. Each

sequential EC is built based on a list of synchronous messages (EC-Schedule) stored in

54
Aleksander Pleszko

Management of a Hard-QoS Switch

EC-register. Module responsible for this is the scheduler which monitors the SRDB and

responds to the changes in it. The messages are pushed into the ready queue and

transaction plan is created. Next the EC-schedule is broadcasted within the TM by the

Dispatcher module. Independent scheduler for every traffic class and ready queue is

present. Each of them follows different policies established by the length of the EC

(LEC).

Synchronous and asynchronous messages are activated differently depending on

the model adherence. The synchronous are activated in a periodic basis. The

asynchronous are triggered based on the triggering mechanism of the node. They are

waiting for master to transmit permission order. Meanwhile, the signalling message is

sent from node to the master node informing about the messages in the queue. The

master during building following EC takes these information into account and, based on

the traffic class, enforces the nodes triggering mechanism to send the messages. The

asynchronous traffic without the real-time compliance is transmitted transparently in

background in a best-effort basis. The nodes uses FIFO queues for handling this kind of

traffic. The transmission frame is filled based on no schedulability polices or overflow-

free guarantees. The rest of the message operations are similar with no regards to the

messaging model.

In this type of communication it is very important to ensure that streams are

registered consistently across the master and slave nodes. The mechanism ensuring that

the master SRDB and the nodes NRDB are the same, must be present and sound. FTT-

SE protocol uses mechanism that transparently synchronizes every database which is

bound e.g. the NRDB databank sores the model properties of all streams passing

through that node, thus storing and sending to the master node the long-lasting

information about it. On the other hand, if the SRDB is updated every bounded NRDB

is also notified. Moreover, all configuration command that modify the network

requirements are distributed from the master node in one EC. Therefore consistency and

unity of configuration between all nodes in the network is guaranteed, suppressing the

need for additional synchronization mechanism.

Present synchronization mechanism uses the built-in slave component in the

master to create an asynchronous broadcast channel between the master and the slaves.

Aleksander Pleszko
55 Management of a Hard-QoS Switch

Figure 16 – HaRTES elementary cycle (EC) structure [37]

The SRDB with admission control and an optional QoS manager cope with the

sustention of the continued real-time traffic timeliness. Admission control module

ensures that request for a change in traffic flow will not jeopardise any of the timing

guarantees previously negotiated between the master node and slaves.

Also important issue to address, concerning HaRTES, is an Elementary Cycle

(EC). It is used to communicate between nodes in a scheme of constant infinite

sequence of windows. The FTT-SE protocol, in modules described previously, builds

the EC frames respecting their class, streams and model. The frame, structure of which

is presented in Figure 16, consist of synchronous and asynchronous windows which

carry out synchronous and asynchronous traffic correspondingly. Due to simplicity sake

the organization of the inside of the frame is fixed – the asynchronous window every

time comes once the synchronous window period is over.

Each EC frame starts with a control message, which is called Trigger Message

(TM). It is broadcasted to all other slave nodes in the network. The objectives of this

message is to synchronize all the network, because this message is always broadcasted

in the precise intervals of time, with low jitter. The other objective is to transmit the EC-

schedule – time when the slaves can transmit and their identification data. Upon

receiving the frame by slave internal algorithms checks if this node is the producer or

consumer of any data, and act respectively during scheduled time interval.

The communication structure is configurable in a way of changing several

temporal parameters. The most prominent parameter is an Length of Elementary Cycle

(LEC). This is de facto system working resolution, because all other parameters e.g.

periods, deadlines, windows, are relative to this interval.

In the EC structure three main slots are identified as depicted in Figure 16. The

LTM and TAT form the time required to actually transmit the TM to all slaves and the

time associated with different propagation and decoding time, which is essential by the

nodes to prepare data to be sent. The first is known as transmission time of the TM

56
Aleksander Pleszko

Management of a Hard-QoS Switch

(LTM) and the other as Turn-Around Time (TAT). Next two time slots are the

synchronous and the asynchronous windows correspondingly. The maximum duration

of the synchronous window (LSW) can be defined be the FTT master scheduler.

Because of that, a minimum duration can be guaranteed for the asynchronous window.

The strict temporal isolation enforced by the schedulers, between these both

types of traffic, imposes that no traffic which could end after the Synchronous or

asynchronous time window limit is initialized. In the asynchronous window all the

messages are transmitted before the next EC. In case of synchronous window the

scheduler guards the temporal isolation in a way that messages each time fit inside the

maximum time of synchronous window duration (LSW).

3.2 The Switching Module

The Switching Module is responsible for the reception, switching and

transmission process. It also handles the memory management. For the HaRTES to

work efficiently the switching logic require speed during the execution, determinism

and predictability, hence hardware implementation of this component was carried out.

 The implementation was based FPGA technology allowing an easy and flexible

integration of all required components. Because of this design prototype of HaRTES

switch is easy to parameterize giving the possibility of changing network

communication speeds, number of ports, core operating frequency or width of internal

databus.

Figure 17 depicts the hardware architecture of the Switching Module with

Master Module. Each of showed components is briefly described below.

Ethernet PHY

This device, known also as Ethernet physical receiver, operates at the lowest

layer of the OSI model – the physical layer. It is connected directly to the Medium

Access Controller (MAC). PHY purpose is to communicate through cable with other

Ethernet PHY, exchanging data. Due to electrical characteristics and timing

requirements this component is outside the main FPGA board. Each port has its own

instance of this device.

Aleksander Pleszko
57 Management of a Hard-QoS Switch

Figure 17 – Switching Module hardware architecture [37]

Medium access controller (MAC)

The MAC Interface Unit is integration of two blocks, namely MAC Interface

and MAC IP Core module. The firs one operates at data link layer of the OSI model and

is responsible for handling and decoding physical Ethernet frames. The following

module handles packets data flow and, in accordance with traffic class, redirects it to

different modules of the witch: non real-time traffic is passed directly to the Rx

Multiplexing unit, traffic with the commands of the Master Unit are passed there, and

the rest of traffic is verified – real-time packets are checked for time constrains. If time

requirements are not met, the packets are deleted. Because of strict verification of

packets in this early stage of traffic management the switch and network integrity in the

realm of timeliness guarantees in guaranteed.

Rx Multiplexing Unit

The Rx Multiplexing Unit is shared among all switch ports. It is a TDMA wheel

which ensures that all packets from all ports, even if they arrive simultaneously, are

delivered to the main Memory Unit with no packets drop.

58
Aleksander Pleszko

Management of a Hard-QoS Switch

Memory Pool

The Memory Unit consist of a dual port static Synchronous Random Access

Memory (SRAM). Memory port is accessed by decoding signal of control, address and

data bus data. It is important to note that one memory port is shared with all switch

ports.

As for the upcoming traffic, the memory leakage for synchronous packets is

never the issue – the Master and MAC Interface Module ensures that by controlling the

amount of information sent by slaves in EC-schedules. With non-real-time traffic no

such guarantee can be provided and overfilled packages are deleted.

Control and Switch Logic Unit

The Control and Switching Logic Unit performs a crucial tasks of reception,

switching and transmission packets to different destinations. It has a central role in the

switch. It is controlled by the control and status signals of the MAC Interface Unit. This

unit is also responsible for generating synchronization signals which coordinates all the

switch and protocol operations.

The Management Reception Unit is responsible for packets forwarding to the

specified output port. To utilize that process real-time and non-real-time packets are

placed in separate queues, waiting to be fitted into frame and send out. The TM supplies

the synchronous packet list that is put into the queue. For asynchronous real-time traffic

the validation of packets proceeds the insertion into its queue. As for non-real-time

traffic first the memory overflow condition is checked. If no such error occurs the NRT

packets are queued and send out in a FIFO policy.

The Management Transmission Unit carries out, in any given EC, transmission

of the packets gathered in queues. Special policies are applied to ensure that transmitted

packets from asynchronous and NRT queues fit into the time windows they are

provided, same not blocking TM and synchronous traffic.

Tx Demultiplexing Unit –TDU

The role of this module is somewhat similar to the Rx Multiplexing Unit. This

module works as demultiplexer and is also shared among all switch ports. It reads flow

of the packets data from the memory pool and redirects it to the corresponding output

ports of the switch.

Aleksander Pleszko
59 Management of a Hard-QoS Switch

3.3 Real-time management systems

A real-time system is defined as a computation that responds to internal or

external events within a dedicated periods of time [39]. There are two categories of a

real-time system: hard and soft. If failing to meet a deadline is catastrophic to the

functioning of the system it is called hard real-time system. Catastrophic in a sense that

failing meeting the deadline may involve huge material losses or human lives. This

systems need to be very predictable and carefully designed considering pessimistic

scenarios. If missing the deadline causes non-catastrophic consequences e.g.,

multimedia streaming or interactive computer games, it is called soft real-time system.

Networked Embedded Systems (NES) are widely disseminated in many

application domains ranging from industrial automation to building automation and

vehicular system, serving in both soft and hard real-time areas. Some application

domains exhibit strict timeliness, predictability and precedence constraints. In these

cases, special-purpose real-time communication networks, known as fieldbuses, must be

used to achieve the desired properties.

One network technology that became widely used in these systems is Ethernet,

however, it was not originally developed to meet the requirements of NES, namely in

what concerns key aspects such as predictability, timeliness and reliability. There are

currently available technologies, that enable mechanisms of guaranteed Quality of

Service (QoS), such as MPLS [1] and RSVP [2] especially combined with IntServ [3]

and DiffServ [4] models, however they only provide statistical guarantees.

The timeliness guarantees provided by those protocols are essentially static,

based on pre-run-time analysis. On-line admission control is not generally available and

neither is on-line adaptation of the communication requirements according to effective

needs or to a quality-of-service (QoS) adaptation policy. This has motivated the

development of a new generation of Ethernet switches, Hard Real-Time Ethernet

Switch (HaRTES). For the purpose of preforming QoS reservations, SRP support was

added.

However, HaRTES new technology was lacking remote management support

which in a context of extensible testing and constant development was a major

disadvantage, making it hard to monitor its internal values in a real-life

implementations.

60
Aleksander Pleszko

Management of a Hard-QoS Switch

Developed in scope of this dissertation management solution extends HaRTES

capabilities providing an internal interface with use of the custom HaRTES

Management Protocol to communicate with management clients. Additional Remote

Management Service was added to the Master Module of the HaRTES device. Extra

subagent and Server Instrumentation Library were also compiled as to enable support

for the newly proposed HaRTES Management Information Database.

Chapter 4

Multiprotocol management interface

To allow other application communicate with the Hard Real Time Ethernet

Switch through network, capabilities of the SNMP and NetConf technology were

extended. Integrating HaRTES monitoring functions to the management agents implied

the design and incorporation of suitable subagent or additional Server Instrumentation

Library. Extensions to the management tools were built with designed from the scratch

Main, Coding and Retrieval Modules. Also during this work, the added module to the

Master Module, the Remote Management Service, was designed from the ground. Its

purpose was to expose internal values of the switch , by communicating with different

modules already existing in the server, to the external world – in this case with subagent

or SIL. A custom communication interface, the HaRTES Protocol, was developed to

manage it. The HaRTES Protocol provides a convenient way to communicate with the

Remote Management Service and to access the internal state variables, based on the

existence of known data structures. Managing a given attribute (e.g. getting its value)

starts by issuing a command with the module and the node name, explicitly indicating

the attribute to be retrieved. Currently, it is supported manipulation of attributes, as well

as support for the generation of events (i.e. traps, notifications). While this interface

aims to provide an efficient way of communicating with the internal components of the

HaRTES switch, it lacks standardization. Therefore, an architecture was devised to

interface the HaRTES switch with standard management tools.

Both of the management tools need to have their version of the management

software installed on the machine running the Master Module. In case of SNMP it is the

62
Aleksander Pleszko

Management of a Hard-QoS Switch

agent, the latter uses NetConf server. To allow agent and server software to monitor the

Master Module extensions to both applications must be provided. The HaRTES

implementation of the remote management technologies is split between two main

components: the extension to the SNMP subagent or the NetConf server, and the

component running in the Master Module of the switch.

As for SNMP agent an additional subagent application was developed. NetConf

provides tools for developing the Server Instrumentation Library (SLI) which extends

NetConf server capabilities for managing additional modules. The SNMP subagent and

additional Server Instrumentation Library for NetConf are responsible for

communication with the Remote Management Service module running in the Master

Module.

Figure 18 depicts the scenario which takes place during the retrieval of HaRTES

data values. The main work was done in modules marked by the box.

In this scenario remote administrator using SNMP or NetConf protocol

compatible application communicates with the subagent or server correspondingly. The

request is processed by the application. The SNMP daemon gets the request form Net-

SNMP transport and processing layers. Then the SNMP core based on which registered

module it possesses indicates how it can respond to a particular OID sub-request and

core suitable agent helper to handle request that request it called. The helper

communicates through AgentX protocol and retrieves the data.

Figure 18 – Scenario of remote access the HaRTES data

Aleksander Pleszko
63 Management of a Hard-QoS Switch

For NetConf sessions, NetConf application calls XML parsing components

decoding request information. After verification by the access control module the

permission is granted and using suitable mechanism, YANG database Server

Instrumentation Library and suitable callback function is called.

The SNMP handler and NetConf SLI runs custom module which sends the

request to the Master Module of the switch. The request is coded in HaRTES Remote

Management Protocol. In the Master Module custom module opens the server socket

and listens for incoming request for data.

Upon receiving the request the Remote Management Service checks it for

validity and decodes it. Then adequate layer and function is called to retrieve the data.

Providing no errors occurred the data are coded into the HaRTES Remote Management

Protocol and sent back to the subagent or NetConf server.

After receiving the coded frame, module is called to decode it and check for

validity. If everything checks, the data are copied back to the memory of SNMP

subagent or NetConf server.

The data are then handled by the cashing mechanisms of the subagent and

NetConf server. After gathering all of the requested values data are prepared, coded and

send back to the Network Management System issuing the request.

4.1 The SNMP subagent and the NetConf server module

After the wrappers of management application (SNMP or NetConf) process the

request, the custom build module is called to handle the retrieving of the HaRTES data.

In case of SNMP, as described in section 2.1, additional subagent must be connected to

fulfil request, which is depicted in Figure 19. NetConf uses its own Server

Instrumentation Library, described in section 2.2, to retrieve HaRTES data, which is

shown in Figure 20. Components of this system were design as modules so to ensure

flexible programing solution and more stable functioning and error handling.

The Main Module in the SNMP subagent and NetConf SIL, bind together other

custom modules added to the applications. This allows for easy data flow control inside

the extended SNMP and NetConf wrappers. It is responsible for invoking modules in

control of coding, decoding, setting, passing to and receiving from the HaRTES its data

values. Most of the parameters are passed as addresses to save the resources and to limit

the load of the system.

64
Aleksander Pleszko

Management of a Hard-QoS Switch

Figure 19 – SNMP Agent architecture with connected SNMP subagent

The Main Module gets two most important parameters: the node name and the

requested variable. The node name is the text identifier representing the OID being

processed. That convention was used explicitly to be fully compatible with the NetConf

server variable identification. The second parameter points to the address of memory to

where the retrieved variable should be wrote to. The numbers of bytes to be wrote are

defined in the Remote Management Service of the switch. This prevents the memory

leaks during passing the values to the management application. The Main Module also

statically reserves the memory for the frame being sent down to the switch and for the

response frame being sent up to the waiting module.

This parent module passes frame to the Coding Module to code the request info

into the HaRTES Management Protocol. After the protocol frame is built, it is passed to

the Retrieval Module which is responsible for sending and receiving data from the

Remote Management Service.

Figure 20 – NetConf server with Server Instrumentation Library implemented

Aleksander Pleszko
65 Management of a Hard-QoS Switch

The Main Module also compares the sent and received module and node names

coded into HaRTES Management Protocol. If they are equal, the Decoding Module is

called with received frame as parameter. There actual decoding of the FTT-Enabled

switch values takes place. After translation of the protocol, the data are copied to the

memory of the SNMP subagent or NetConf server.

In case of receiving values for not this module or node name, the error is issued,

passed to the SNMP agent or NetConf, and no data are copied.

4.2 The Remote Management Service

The Remote Management Service is part of the Master Module and it is the

module that SNMP subagent and NetConf server SIL are interacting with.

Communication starts in the management application. The SNMP subagent and

the Server Instrumentation Library of the NetConf server are translating the request

form agents core to the HaRTES Management Protocol. Then the data is sent to the

server through internal socket interface (Figure 19 and Figure 20). The Remote

Management Service, when initialized by the Master Module, opens the socket and

listens to the requests for the switch data. The use of internal socked communication

interface was devised due to several reasons.

Figure 21 – Master Module architecture with the Remote Management Service

Sock interfaces better isolates operation of the management application

wrappers and the Remote Management Service. This aims at reducing the impact of

management operations to the Master Module of the HaRTES switch. Isolation also

66
Aleksander Pleszko

Management of a Hard-QoS Switch

reduces the number of exploits through the management interface, as if required,

firewall characteristics can be added to the Remote Management Server. The second

characteristic of this interface is that it allows reuse of the same management interface

to several different management solutions. In this case the same interface can be easily

used with both SNMP and NetConf, while relying on components requiring a small

number of modifications from the components auto-generated by the support tools.

In Figure 21, the architecture of the Master Module with its submodules is

depicted. Two main components of the Remote Management Service are

Communication and Decoding submodule. The Communication submodule is

responsible for opening the socked, listening to the incoming requests, accepting the

HaRTES Protocol data and sending response back to the remote management

application. The work of the Decoding submodule is twofold: first it decodes module

and node name, and compares it with the names that it can handle. Next, if the module

and node name is found, it calls appropriate method to get the value from the HaRTES

corresponding layer.

The Remote Management Service uses in internal data structure which provides

improved handling, gathering, validation and coding of the data passed from one layer

to another. This structure holds information about the module and node name currently

being processed. During the processing period it also gathers other information, such as:

module name, node name, protocol data type, data length, HaRTES data value.

Implementing internal data structure allowed for easier managing the parameters

between the switch layers. Table 10 shows full listening of the values accepted by the

structure. Worth noting is that data value uses union, which reduces use of memory

space. This can become crucial during running this code in embedded system where

memory resources are limited.

The Communication submodule passes received protocol frame to the Decoding

submodule. It is then checked for validity of the frame. If no protocol marks are found,

an error code is returned. If the frame is valid, the module and node name are

recognized and marked in the structure’s suitable variable. Next the protocol (and

variable) data type are specified and also defined in the data structure, before adequate

HaRTES layer is called. The structure passed as the argument.

Depending on the implementation used for retrieving the data from FTT-

Enabled switch, the module in server layer uses that method to access the switch data. If

no error is returned, the information held in the data structure are used to call the

Aleksander Pleszko
67 Management of a Hard-QoS Switch

Coding module. This module uses passed data to build protocol frame, respecting

protocol data type previously defined.

The structure of the protocol frame are shown in Table 6. For the most cases the

frame is built as modification of Type-Length-Value [40] (TLV) data communication

protocol.

When the frame is built it is lastly validated and its length is determined based

on the protocol data type used. After this, the frame is ready to be sent.

After sending the frame and checking if the transmission commenced properly,

the connection is closed. The management application receives the frame, checks for

validity and writes it to the application core, ending the same the process of getting the

data from FTT-Enabled switch.

4.3 The HaRTES Management Protocol

To ensure robust data exchange between the management applications and the

Remote Management Service new HaRTES Management Protocol was developed.

Basic structure of the HaRTES Management Protocol which is used to explicitly

indicate the node of which the data value is needed is showed in Table 6.

Table 6 – Structure of the basic HaRTES Management Protocol

Size 8 bit 8 bit

Field

name

Module

name

Separation

Mark

Node

name

End

Mark

To clearly indicate the module and node name the data frame containing these

fields are sent to Remote Management Service in the Master Module of the FTT-

Enabled switch. To prevent any ambiguity during frame parsing, separation mark also

has the length of 1 byte. The 8-bit code used to define marks are the ASCII codes of 058

and 038 in octal number system. This corresponds to separation and ending mark being

‘:’ and ‘$’ respectively. Symbols are taken from extended list of ASCII characters

according to the “code page 437” standard introduced in 1981 by IBM corporation [41].

These 8-bit codes were chose due to low probability of node and module name

containing these signs.

68
Aleksander Pleszko

Management of a Hard-QoS Switch

The second part (value or message) of the HaRTES Management Protocol which

is used to transport the HaRTES data back to the management applications is based on

Type-Length-Value. TLV is simple method used as data communication. However,

HaRTES protocol most commonly uses for its internal communication a modified

version of this protocol, skipping the Length value, therefore the Type field explicitly

informs of the length of the variable. This reduces, even more, the size of protocol

overhead, making it faster and less demanding.

Table 7 – HaRTES Management Protocol return frame with modified version of TLV

protocol

Size 8 bits 8 bits 16 bits

Field

name

Module

name

Separation

Mark

Node

name

End

Mark

Data

Type

Data

Value

The Data field consists of two bytes which is interpreted as unsigned short based

on data type name of C language in most common implementations. This gives

sufficient data types to choose from. Table 8 points out the currently supported data

types which are compatible with the newest SMIv2 data types. HaRTES Management

Protocol also defines types for referencing status information and error messages.

Table 8 – Protocol data types supported by the HaRTES Management Protocol

Variable transmitted Length of transmitted variable

Integer 32 bits

Octet String An array containing the characters and terminated with a null character

Bits An array containing the characters and terminated with a null character

OID Specified in the length field

IP address 32bits (4 octets)

Counter 32 32 bits

Gauge 32 32 bits

Unsigned 32 32 bits

Time ticks 32 bits

Counter 64 64 bits

Float 32 bits

Information An array containing the characters and terminated with a null character

Aleksander Pleszko
69 Management of a Hard-QoS Switch

Error An array containing the characters and terminated with a null character

The scheme of communicating between modules of management applications

was chose to be as presented, because in this way easy parsing as well as small

overhead over the data transferred is introduced.

Support for OID data type in HaRTES Management Protocol was developed by

expanding TLV protocol to its full length. The protocol in this case passes additional

information about the length of the OID being sent in the frame. The full frame in this

case presents Table 9 below.

Table 9 – HaRTES Management Protocol return frame with full version of TLV

protocol

Size 8 bit 8 bit 2 bit 2 bit

Field

name

Module

name

Separation

Mark

Node

name

End

Mark

Data

Type

Data

Length

Data

Value

The protocol is built in the Coding Modules, which is present in all application

and modules responsible for managing the FTT-Enabled switch namely: SNMP

subagent module, NetConf Server Instrumentation Libraries and Remote Management

Service in the Master Module.

In the initialization phase of management application the request for status info

is sent to the Master Module of the FTT-Enabled switch. The Remote Management

Service then checks if all the supported layers are operational. If that checks the

confirmation message is issued back to the management application. After that the

initialization phase is over.

When the request for values of the switch are obtained, the SNMP subagent

internally transcodes that PDU into frame of HaRTES Management Protocol with the

related module and node name. Upon receiving the protocol frame, suitable module in

picked out level is chosen. The module responds providing value in question for node

name. When no error is detected the protocol frame is generated with gathered HaRTES

data and send back to the SNMP subagent. After the verification phase, data is copied to

the memory of the SNMP Master Agent, and transmitted to the Network Management

System (NMS).

70
Aleksander Pleszko

Management of a Hard-QoS Switch

In the case of having to shutdown management application, or the Remote

Management Service, there is a possibility of sending graceful shutdown tag through the

HaRTES protocol. This lets to know the other component that is working in parallel on

the other side of socket interface that this instance is going to be shut down.

 The trap tag source can be located in one of the switch layers. If the event

occurs, the function is called that triggers the sending of HaRTES protocol with trap tag

which is then received by SNMP subagent trap handler. The information regarding the

event are transcoded and passed to the SNMP Master Agent which sends SNMP strap to

the SNMP sink. Figure 23 depicts this process.

Figure 22 – Sequence diagram of SNMP agent and the Master Module of the switch

Aleksander Pleszko
71 Management of a Hard-QoS Switch

The sequence diagram differs slightly in case of NetConf protocol. Although

order and form of the HaRTES Management Protocol frames stays very similar to the

one used in SNMP protocol case, there are differences concerning connecting to the

NetConf server which are shown in Figure 23. Initialization and graceful shutdown

phases may be concerned the same as of SNMP protocol in regards to message

sequence.

Figure 23 – Sequence diagram of NetConf protocol and Master Module of the switch

Important distinction has to be made on the topic of notifications. Contrary to

the previous case this time the yang client must first be subscribed to the notification

72
Aleksander Pleszko

Management of a Hard-QoS Switch

one wish to receive. This means previous connection and session establishment. Also

after disconnection from server no further notifications will be acquired by the NetConf

client.

4.4 Proposed MIB and YANG module

After analysis of the IF-MIB file and the FTT-Enabled switch parameters

described in Chapter 3 it became clear that the new custom MIB file must be created.

The ATNOG-HARTES-MIB file adds values that can be retrieved from HaRTES and

that are not readily available in the IF-MIB or other MIBs files. Thanks to that, many

internal values are gathered in one MIB file for ease of use and management. MIB data

are showed in Table 10.

Table 10 – MIB data names and corresponding FTT-Server data

MIB data Corresponding value in FTT-Server and its explanation

eCycleDuration Elementary Cycle Duration

Length of communication slots, determines the system periodic granularity. This

time can be tailored to suit the needs of a specific application. EC contains two

consecutive phases dedicated to synchronous and asynchronous traffic, carrying

time-triggered and event-triggered packets.

sWindowDuration Synchronous Window Duration

Length of the window for slave’s synchronous messages. TM pools that

information every EC.

asWindowDuration Asynchronous Window Duration

Length of the window for slave’s asynchronous messages. TM pools that

information every EC.

turnaroundTime Turnaround Time

It is the time between the end transmission of a TM and the beginning of a

asynchronous window. During this time the impact of a propagation delay is

reduced and slaves prepare gathered data to be sent.

switchingDelay Switching Delay

In the FTT Enabled Switch, it is the delay that takes the packet to be switched from

input queue from source node to the queue of destination node.

transmissionTime Message Transmission Time

It is the time from the beginning until the last bit of a message, that has left the

source node.

idleTime Idle time

If a synchronous message cannot be transmitted within current periodic traffic

window, it is rescheduled for the next window, and the gap filled with the idle time.

Aleksander Pleszko
73 Management of a Hard-QoS Switch

qosType Scheduling (QoS) type

Discriminating policy, determining the most important services (highest qos), and

assigning free bandwidth to them.

maxPeriodicMsg Maximum number of periodic message

The maximum number of periodic message transmitted in periodic window of EC.

maxAPeriodicMsg Maximum number of aperiodic message

The maximum number of aperiodic message transmitted in aperiodic window of

EC.

mtu Maximum message size (fragmentation)

It is the maximum transmission unit in bytes. It influences the memory

fragmentation and the real message size.

maxPckSize Maximum packet size

The maximum size of packet sent in one EC. This reduces the probability of

blocking the higher priority traffic by the lower one, but with greater size. Long

messages can be broken in packets and send sequentially.

bRate Link speed (baud rate)

The number of periodic messages per second.

The UA-HARTES-MIB file is described in the newest version of ASN, ASNv2

language description. It is defined as follows:

+--hartes(123321)

 |

 +--hartesObjects(1)

 | |

 | +-- -R-- Integer32 eCycleDuration(1)

 | +-- -R-- Integer32 sWindowDuration(2)

 | +-- -R-- Integer32 asWindowDuration(3)

 | |

 | +--gwTable(4)

 | | |

 | | +--gwEntry(1)

 | | | Index: turnaroundTime, switchingDelay, transmissionTime

 | | |

 | | +-- -R-- Integer32 turnaroundTime(1)

 | | | Range: 1..2147483647

 | | +-- -R-- Integer32 switchingDelay(2)

 | | | Range: 1..2147483647

 | | +-- -R-- Integer32 transmissionTime(3)

 | | Range: 1..2147483647

 | |

 | +-- -R-- Integer32 idleTime(5)

 | +-- -R-- Integer32 qosType(6)

 | +-- -R-- Integer32 maxPeriodicMsg(7)

 | +-- -R-- Integer32 maxAPeriodicMsg(8)

 | +-- -R-- Integer32 mtu(9)

 | +-- -R-- Integer32 maxPckSize(10)

 | +-- -R-- Integer32 bRate(11)

 |

 +--hartesNotifs(2)

 |

 +--hartesTrap(1)

74
Aleksander Pleszko

Management of a Hard-QoS Switch

NetConf is newly introduced standard with different architecture to describe

device capabilities, for this purpose it uses the YANG data modules. To convert MIB

file described in SMIv2 directly to YANG language, Yuma Tools uses the “smidump”

tool to ease these process.

Once YANG module is created “yangdump” tool is used to parse created file

and generate C program files. Files are directly modified to support the retrieval of

FTT-Server values. Then modules are compiled into Server Instrumentation Libraries

and loaded into NetConf server during startup. The main part of the generated YANG

module is showed below.

module UA-HARTES-MIB {

 namespace "urn:ietf:params:xml:ns:yang:smiv2:ATNOG-HARTES-MIB";

 prefix "atnog-hartes";

 import ietf-yang-smiv2 {

 prefix "smiv2";

 }

 organization

 "UA";

 contact

 "Aveiro";

 description

 "MIB for HARTES, developed in UA.";

 revision 2012-07-20 {

 description

 "[Revision added by libsmi due to a LAST-UPDATED clause.]";

 }

 revision 2012-05-25 {

 description

 "Initial version.";

 }

 container UA-HARTES-MIB {

 config false;

 container hartesObjects {

 smiv2:oid "1.3.6.1.4.1.123321.1";

 leaf eCycleDuration {

 type int32;

 description

 "Elementary Cycle Duration";

 smiv2:max-access "read-only";

 smiv2:oid "1.3.6.1.4.1.123321.1.1";

 }

 leaf sWindowDuration {

Aleksander Pleszko
75 Management of a Hard-QoS Switch

 type int32;

 description

 "Synchronous Window Duration";

 smiv2:max-access "read-only";

 smiv2:oid "1.3.6.1.4.1.123321.1.2";

 }

 …

 leaf transmissionTime {

 type int32 {

 range "1..2147483647";

 }

 description

 "";

 smiv2:max-access "read-only";

 smiv2:oid "1.3.6.1.4.1.123321.1.4.1.3";

 }

 }

 }

 }

Due to properties of the FTT-SE layers described in chapter 3.2 the values of IF-

MIB and UA-ATNOG-MIB are assigned corresponding layer to which the Remote

Management Server during the retrieval of the HaRTES information is calling.

Chapter 5

Performance assessment

The management interface was evaluated to determine its suitability for the task

of managing a distributed system with real time constrains. SNMP and NetConf

protocols are not designed to be real time aware. However, the inherent latency and

variations observed when using these management methods will have impact on the

remaining systems of a distributed management infrastructure if used there. Performed

tests gave a better comprehension of delays introduced by the designed protocol.

Work and test were performed on a machine which consisted of a Pentium(R)

Dual-Core CPU T4400 @ 2.20GHz and 2GB of RAM, running Ubuntu 12.04 LTS 32

bits. Software modules included SNMP version 5.7.1, NetConf version 2.2-3 and FTT-

Server version 2.5.3-1. Also the Master Module clients were launched as a separate

processes and the FTT-Server Remote Management Service was running on a separate

thread.

Evaluation focused in triggering a series of management commands as fast as

possible, while a passive monitoring application was capturing all communications

being made. In this way management traffic was monitored without causing much

interference to the management process. Values of jitter and communication latency

experienced by the client application were afterwards extracted from the log. All

analysis was done offline after the experiments were completed. The aim was to

minimize external delay factors. Therefore, no network was actually used and all

communication was done to the localhost. If an Ethernet connection were to be

considered, a fixed amount of latency would have been observed due to transmission

78
Aleksander Pleszko

Management of a Hard-QoS Switch

buffers, reception buffers, as well as transmission to the medium and other existing

queues. Also, jitter would be added in non-easily deterministic way [42].

The main work was focused in the development of a protocol management

interface, enabling the HaRTES switch to be managed both through SNMP (v2c and v3)

and through NetConf. Therefore, the performance of both approaches were evaluated.

In order to have a clear idea about the overhead introduced by each protocol, and the

absolute minimum bounds we can expect to experience given SNMP the current

hardware, the internal communication delay was also measured.

Each management operation, for each protocol, was repeated 150 times.

Afterwards, the top 10 values (roughly 6.67%) with higher difference from the average

of the entire set of experiments were discarded. The remaining 140 values were

considered for analysis, and consider a 95% confidence interval.

As a reference for the analysis, we measured the internal latency from the time

the request was received, until the switch management software was queried and a

result was provided to the management protocol. The internal latency values obtained

are depicted in Figure 24. Internal queries were always lower than 350µs, and presented

an average of 205.45±31.31µs. In order to calculate the penalty of SNMP or NetConf,

this average value should be deducted. While observing some jitter in internal

communications, 95% of the results stayed within 15% of the average value. Because

the delays from managements agents are in microseconds, and given the hardware

available, we expect this jitter to have minimum impact in management.

Figure 24 – Internal communication latency

Aleksander Pleszko
79 Management of a Hard-QoS Switch

SNMP was evaluated using its two most used varieties: SNMP v2c and SNMP

v3. First tests considered request time for all HaRTES database values. As for SNMP

this involved using tool called “snmpwalk” which issues sequentially operation

“get-next” until management agent jumps to another network node, then the tree is

considered to be complete.

Figure 25 presents scatter graph of all, SNMPv2c, SNMPv3 and NetConf,

solutions. Earlier version of the SNMP presented lowest average query latency levelling

at 19,43±4,11ms. The latest version presented lightly higher average query latency

staying in range of 20.72±2.22ms. NetConf, presenting different management

technologies as described in section 2.2, significantly stand out of SNMP two

technologies average values, placing itself far above them at the level of 527±18ms.

This value is over 25 times higher than corresponding SNMP values, but, again,

substantial gains in management capabilities which this technology allows, makes it

reasonably outcome anyway.

Figure 25 – Time scatter of all management platforms during the retreival of all

HaRTES values

Next test focused at all management getting a single value. As described in

section 2.1, SNMP considers UDP communications and small individual transactions

following a request/response approach with two packets for each transaction. All

information required in contained in the request, and the reply also takes a single UDP

packet. SNMP v3 follows the same approach but introduces changes to messages in

80
Aleksander Pleszko

Management of a Hard-QoS Switch

order to add support for shared key authentication. Still, each management action is

composed by a simple exchange of messages through UDP.

Figure 26 depicts the values obtained for both SNMPv2c and SNMPv3. Due to

the slightly higher complexity of SNMPv3, the management latency was also a little

higher than SNMPv2c. The first presented an average query latency of 1.41±0.29ms,

while SNMPv2c presented an average query latency of 0.95±0.16ms. It is interesting to

observe that SNMPv2c presents lower average latency, but also less error. In part, the

smaller number of packets of each transaction when using SNMPv2c can explain this

behaviour.

Figure 26 – Time scatter chart of SNMPv2 and SNMPv3

The same methodology was followed in order to evaluate NetConf technology.

Many transport methods are supported by this standard. As SSH is mandatory, and the

one most commonly available, that is why it was decided to focus in evaluating

NetConf over SSH. Because SSH is a secure protocol supporting both peer

authentication and private communications, the overhead produced is expected to be

much higher. Figure 27 depicts the latency observed for the best 140 queries for one and

multi values queries. Query time of NetConf technology for one HaRTES value was

almost the same (the average value differs only 0,6%), as for query time for all (muti)

HaRTES values. As shown, NetConf introduces much higher latency into management

functions, one and multi query times averaging at 525±18ms and 527±18ms,

respectively. The added overhead is so high that the values obtained for internal latency

are three orders of magnitude lower, and therefore negligible. The error margin itself is

Aleksander Pleszko
81 Management of a Hard-QoS Switch

two orders of magnitude higher, which reflects the high overhead of this management

protocol.

Figure 27 – Comparison of NetConf protocol time resolving one and multiple queries

From the evaluation of these three management approaches, it is clear that the

use of any standard compliant management protocol will introduce very high latency

and variability in processes. Figure 28 compares gathered data with the pure internal

latency. This picture also shows that the lightest solution is SNMPv2c, followed by

SNMPv3, and then NetConf. However, the term lightest can be very misleading as it

increases latency by a factor of 5. NetConf falls in a completely different bucket,

increasing management latency by a factor of almost 4000. But the advantages of strong

authentication of peers communication and secure management process which NetConf

well supports, should be taken into consideration also.

However, as mentioned in chapter 2, the best practices state that management

traffic should be transported in networks completely isolated from clients (e.g.

dedicated VLANs), these advantages become less clear.

Nevertheless, considering Real-Time systems, with dependencies in remote

managed systems, lower latency will result in higher scalability for the system, as well

as higher levels of determinism. In scenarios where critical timings must be observed,

such as automotive or industrial scenarios, SNMP still proves itself to be the best

management approach if standards are to be respected. Custom developed solutions

82
Aleksander Pleszko

Management of a Hard-QoS Switch

show to provide higher performance, at the cost of interoperability and eventually future

evolution.

Figure 28 – Latency of the different management methods handling one and multi

requests with respect to the internal latency

Chapter 6

Conclusions and future research

As the technical world become more expansive and sophisticated, new more

reliable and effective solutions are required to be integrated. Ethernet standard became

ubiquitous feature in many devices. To satisfy real-time requirements in switched

Ethernet networks, several solutions were introduced, but most of them lacked

operational flexibility. Managing network that guarantee the quality of service that is

used in Embedded Systems and which allow for coexistence of Ethernet traffic requires

a special approach. The Hard Real-Time Ethernet Switch (HaRTES) meet the task well,

allows using the same network to handle multiple traffic flows, without compromising

the performance of real-time applications.

Network managers who had to efficiently manage large chunks of networks,

had to have a possibility to resourcefully handle these demands. Over past decades

several solutions were introduced in service to resolve these problems. Long-adopted

SNMP standard which turned out to be insufficient in facing the devices control needs

is slowly being catch up by or even replaced with new NetConf technology, which

although struggles with larger message overhead, as we have seen on chapter 5, is more

flexible and technology advanced solution.

The Hard Real-Time Ethernet Switch lacked a standard management interface to

configure its parameters and view its status. The created interface was required to help

monitor the switch performance and foster its further development. Now it is easier

and convenient to handle multiple traffic flows. Smaller delays introduced by SNMP

system make this solution nearer to be able to monitor the switch in real-time.

84
Aleksander Pleszko

Management of a Hard-QoS Switch

6.1 Future research

Presented in this thesis management solution extends the flexibility and

capabilities of HaRTES switch. Future lines of research may include:

Full support for Management of Stream Reservation Protocol.

Technologies responsible for handling these types of protocols are now being

developed to expand FTT-Enabled switch abilities. With convenient API provided, the

remote management solutions can also be expanded, through adding new MIB and

YANG module, to fully support this technology.

Full management support.

As for now HaRTES Remote Management Interface allows for monitoring and

notification/trap issuing. Because of shaky FTT-SE support for managing states of its

internal configuration this solution has been postponed until save and tested internal

value manipulation is provided by FTT-SE API.

Performance improvements.

Remote Management Interface of HaRTES switch efficiently handles queries

issued by the management applications. Steps may be taken to handle multiple queries

at the same time by the Remote Management Service. Cache mechanisms and HaRTES

values configuration database can be developed. NetConf full capabilities of several

datastores being managed on one device at the same time, could be supported.

Bibliography

[1] E. C. Rosen, A. Viswanathan, and R. Callon, "Multiprotocol Label Switching

Architecture", RFC 3031, 2001.

[2] B. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, "Resource

ReSerVation Protocol (RSVP) -- Version 1 Functional Specification", RFC

2205, 1997.

[3] B. Braden, D. Clark, and S. Shenker, "Integrated Services in the Internet

Architecture: an Overview", RFC 1633, 1994.

[4] Y. Bernet, R. Yavatkar, P. Ford, F. Baker, L. Zhang, M. Speer, B. Braden, B.

Davie, E. Felstaine, and J. Wroclawski, "A Framework for Integrated Services

Operation over Diffserv Networks", RFC 2998, 2000.

[5] R. Santos, "Enhanced Ethernet Switching Technology for Adaptable Hard Real-

Time Applications", PhD Thesis, Department of Electronics

Telecommunications and Informatics University of Aveiro, 2011.

[6] R. Marau, P. Pedreiras, and L. Almeida. "Enhancing Real-Time Communication

over COTS Ethernet Switches", In Proceedings of the 6th IEEE International

Workshop on Factory Communication Systems (WFCS’06), pages 295–302,

June 2006.

[7] W. W. Diab. (2012). Available: http://www.ieee802.org/3/

[8] IEEE Standard for Local and Metropolitan Area Networks--Virtual Bridged

Local Area Networks Amendment 14: "Stream Reservation Protocol (SRP)",

IEEE Std 802.1Qat-2010 (Revision of IEEE Std 802.1Q-2005), vol., no., pp.1-

119, Sept. 30

[9] J. Case, M. Fedor, M. Schoffstall, and J. Davin, Simple Network Management

Protocol (SNMP), RFC 1157, 1990.

[10] R. Enns, M. Bjorklund, T.-f. Systems, J. Schoenwaelde, and A. Bierman,

"Network Configuration Protocol (NetConf)", RFC6241, 2011

[11] Ethernet Powerlink - online information. http://www.ethernet-powerlink.org/,

May 2012.

[12] PROFInetIRT. Real-Time PROFInet IRT. http://www.profibus.com/pn, May

2012.

[13] TTESwitch A664 Pro 24. TTTech Computertechnik AG.

http://www.tttech.com/en/products/ttethernet/flight-and-rugged-hardware/switch-

a664-pro-24/- Accessed June 29, 2012

[14] Industrial Ethernet. Weidmüller. http://www.weidmuller.ru/news/pi_ie_en.pdf -

Accessed June 27, 2012.

[15] PROFIBUS International: PROFINET Specification, Profinet IO Application

Layer Service Definition

http://www.ieee802.org/3/
http://www.ethernet-powerlink.org/
http://www.profibus.com/pn
http://www.tttech.com/en/products/ttethernet/flight-and-rugged-hardware/switch-a664-pro-24/-
http://www.tttech.com/en/products/ttethernet/flight-and-rugged-hardware/switch-a664-pro-24/-
http://www.weidmuller.ru/news/pi_ie_en.pdf

86
Aleksander Pleszko

Management of a Hard-QoS Switch

[16] EPSG Draft Standard 301, Ethernet POWERLINK Communication Profile

Specification Version 1.1.0, EPSG 2008.

[17] A. Clemm, Network Management Fundamentals. United States of America:

Cisco Press, 2006.

[18] H. Zimmermann. "OSI reference model: The ISO model of architecture for open

systems interconnection", IEEE Transactions on Communications, 28(4):425–

432, 1980.

[19] K. McCloghrie, D. Perkins, J. Schoenwaelder, J. Case, M. Rose, and S.

Waldbusser, "Structure of Management Information Version 2", RFC2578, 1999

[20] Telecommunication Standarization Sector of ITU, "OSI networking and system

aspects – Abstract Syntax Notation One (ASN.1)" in Series X: Data Networks

and Open Systems Communications, Published as ISO/IEC 8824-1, 2002

[21] T. Bray, J. Paol, C. M. Sperberg-McQueen, S. M. Eve Maler, and F. Yergeau.

Extensible Markup Language (XML) 1.0. (2008). Available:

http://www.w3.org/TR/REC-xml/

[22] R. R. D. Marau, "Real-time communications over switched Ethernet supporting

dynamic QoS management," Ph.D., Departamento de Electrónica,

Telecomunicações e Informática, Universidade de Aveiro, Portugal, 2009.

[23] T. Ylonen and C. Lonvick, "The Secure Shell (SSH) Transport Layer Protocol",

RFC4253, 2006

[24] Information Sciences Institute University of Southern California, "Internet

Protocol", RFC791, 1981

[25] J. Postel, "User Datagram Protocol", RFC 768, 1980

[26] Information Sciences Institute University of Southern California, "Transmission

Control Protocol", RFC793, 1981

[27] M. Rose and K. McCloghrie, "Structure and Identification of Management

Information for TCP/IP-based Internets", RFC1155, 1990

[28] S. Legg, "Abstract Syntax Notation X (ASN.X) Representation of Encoding

Instructions for the Generic String Encoding Rules (GSER)", RFC4913, 2007

[29] The Internet Assigned Numbers Authority. (2012). Available:

http://www.iana.org/

[30] M. Daniele, B. Wijnen, M. Ellison, and D. Francisco, "Agent Extensibility

(AgentX) Protocol", RFC 2741, 2000

[31] R. Enns, "NetConf Configuration Protocol", RFC4741, 2006

[32] Sperberg-McQueen, C., Bray, T., Paoli, J., and E. Maler, "Extensible Markup

Language (XML) 1.0 (Second Edition)", World Wide Web Consortium REC-

xml-20001006, October 2000.

[33] M. Bjorklund, "YANG - A Data Modeling Language for the Network

Configuration Protocol", 2010

[34] tail-f. What is YANG. Available: http://www.tail-f.com/what-is-yang

[35] YumaWorks, "Yuma Developer Manual," 2.2 ed, 2012.

[36] F. Yergeau, "UTF-8, a transformation format of ISO 10646", RFC3629, 2003

[37] R. G. V. d. Santos, "Enhanced Ethernet Switching Tecnology for Adaptibe Hard

Real-Time Applications," Master, Departamento de Electrónica,

Telecomunicações e Informática, Universidade de Aveiro, Portugal, 2010.

[38] R. Santos, R. Marau, A. Oliveira, P. Pedreiras, and L. Almeida, "Designing a

costumized Ethernet switch for safe hard real-time communication", Factory

Communication Systems, 2008. WFCS 2008. IEEE International Workshop on,

2008, pp. 169-177.

http://www.w3.org/TR/REC-xml/
http://www.iana.org/
http://www.tail-f.com/what-is-yang

Aleksander Pleszko
87 Management of a Hard-QoS Switch

[39] H. Kopetz. "Real-Time Systems: Design Principles for Distributed Embedded

Applications". Kluwer Academic Publishers, 1997.

[40] T. Przygienda, "Reserved Type, Length and Value (TLV) Codepoints in

Intermediate System to Intermediate System", RFC3359, 2002

[41] IBM Corporate Specification, "Graphic Character Sets and Code Pages",

Avaliable (2012):

ftp://ftp.software.ibm.com/software/globalization/gcoc/attachments/CP00437.pdf

[42] G. Cena, I. C. Bertolotti, and A. Valenzano, "Experimental analysis of latencies

in ethernet communications", Factory Communication Systems, 2006 IEEE

International Workshop on, 2006, pp. 303-312.

ftp://ftp.software.ibm.com/software/globalization/gcoc/attachments/CP00437.pdf

