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resumo 
 

 

A integridade ecológica dos ecossistemas é na maior parte das vezes avaliada 
em termos de ocorrência de espécies e composição das comunidades e não 
em termos de relações tróficas entre espécies ou parâmetros funcionais. O 
processamento de detritos é um processo ecológico vital para os ecossistemas 
lóticos, mediado por microrganismos e invertebrados aquáticos. Nestas 
cadeias tróficas, os invertebrados fragmentadores contribuem para a ciclo de 
nutrientes através da transformação de matéria orgânica particulada grosseira 
em matéria orgânica particulada fina que serve de alimento para os 
invertebrados coletores. O nosso objetivo passou por avaliar os efeitos 
combinados do cádmio e da alteração na qualidade dos recursos (espécie de 
folha) na cadeia trófica de detritos e na interação entre fragmentadores – 
coletores.   
Em laboratório folhas de amieiro (espécie nativa) e de eucalipto (espécie 
exótica) foram condicionadas em diferentes concentrações de cádmio (0, 50 e 
200 µg/L). A comunidade microbiana presente nas folhas provenientes de 
diferentes tratamentos foi analisada através da técnica molecular DGGE e a 
taxa de respiração microbiana foi medida. Sericostoma vittatum (tricóptero 
fragmentador) e Chironomus riparius (um díptero coletor) foram expostos às 
mesmas concentrações de cádmio e alimentados com discos de folhas 
correspondentes. Foram avaliados, em microcosmos, o crescimento de C. 
riparius e a perda de peso das folhas.  
O cádmio afetou o condicionamento das folhas e provocou alterações na 
diversidade de fungos em ambas as espécies de folhas. A comunidade 
microbiana presente no amieiro e no eucalipto mostrou reagir de maneira 
diferente ao cádmio. Este apenas afetou a decomposição das folhas de 
amieiro através da redução da alimentação dos invertebrados e também afetou 
o crescimento larvar de C. riparius. Esta espécie mostrou não ser 
exclusivamente coletora sendo capaz de se alimentar de folhas de amieiro na 
ausência de invertebrados fragmentadores. Contudo os fragmentadores 
mostraram promover o crescimento dos coletores no tratamento com eucalipto 
como fonte de alimentação. Estes resultados levam-nos a crer que a hipótese 
de facilitação entre fragmentadores - coletores pode ser tida como verdadeira 
mas que depende da qualidade dos recursos bem como das espécies de 
detritívoros presentes. Os resultados sugerem ainda que as cadeias de 
processamento de detritos podem ser ferramentas valiosas em ecotoxicologia 
de comunidades. 
Mais estudos com a utilização de diferentes espécies de detritívoros e de 
outros stressores (naturais e antropogénicos) deverão continuar para melhor 
avaliar possíveis efeitos indiretos de contaminantes ao longo destas cadeias 
de processamento de detritos sob diferentes cenários ecológicos. 
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The ecological integrity of ecosystems is often evaluated in terms of species 
occurrence and composition of communities and not in terms of trophic 
relationships between species or functional parameters. The processing of 
detritus is a vital ecological process for freshwater ecosystems, mediated by 
microorganisms and aquatic invertebrates. Here, shredders contribute to the 
nutrient cycle, transforming coarse into fine particulate organic matter which 
serve as food for collectors. The aim of this work was to evaluate the combined 
effects of cadmium exposure and changes in resource quality (leaf species) on 
detritus trophic chain and on shredder–collector interactions. 
In the laboratory, alder leaves (native species) and eucalyptus (exotic species) 
were conditioned at different cadmium concentrations (0, 50 and 200 µg/L). 
The microbial community present in leaves from the different treatments was 
analyzed by molecular DGGE technique and microbial respiration rates were 
measured. Sericostoma vittatum (a caddisfly shredder) and Chironomus 
riparius (a midge collector) were exposed to the same concentrations of 
cadmium and fed the corresponding leaf discs. C. riparius growth and leaf 
weight loss were evaluated in these multispecies microcosms. 
Cadmium exposure affected the leaf conditioning and the reduction in fungal 
diversity in both leaf species was clear. Cadmium affected the decomposition of 
alder leaves through reductions in invertebrate feeding and also impaired C. 
riparius’ growth. 
C. riparius showed to be a non-exclusive collector and capable of feeding on 
alder leaf discs in the absence of shredders. However shredders appear to 
promote collectors growth in treatments with eucalyptus as food source.. The 
observed pattern suggest that shredder-collector facilitation hypothesis can 
hold true and also that it might be dependent on resource quality and detritivore 
species present.   
The results suggest that detritus processing chains can be valuable tools to 
community ecotoxicology. We advocate that these investigations should 
continue with the use of different detritivore species and stressors (natural and 
anthropogenic) to improve our current understanding of indirect effects of 
contaminants in detritus based food webs under different ecological scenarios. 
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General Introduction 

 

1. Trophic cascades and indirect effects of contaminants 

  

The ultimate goal for ecotoxicologists is to understand the effects of anthropogenic 

toxicants on the ecosystem structure and function. However, most ecotoxicological 

studies are focused on the direct effects of contaminants on single species in order to 

estimate permissible levels of contamination (Long et al. 1995; Rohr et al. 2006). These 

maximum accepted levels of contamination are usually derived from laboratory toxicity 

tests using a limited number of model species in single toxicant exposures (Fleeger et al. 

2003). The direct effects of toxicants are typically assessed in terms of changes in 

mortality or sub-lethal endpoints (e.g. physiology, fecundity, behavior) and there is a wide 

range of tolerances to a particular toxicant (Fleeger et al. 2003). Nevertheless, 

contaminants may exert effects on tolerant species through their interactions with other 

species that are directly affected by toxicity (Fleeger et al. 2003; Rohr et al. 2006). Such 

effects are called indirect effects of contaminants and may be difficult to predict (Pace et 

al. 1999; Rohr and Crumrine 2005; Rohr et al. 2006). For instance, toxicant-induced 

suppression of competition or predation may have a beneficial effect for a particular 

species (Pace et al. 1999), while on the other hand, a reduction in prey density can cause 

a decline in predator populations despite of their tolerance to the toxicant (Hanazato and 

Yasuno 1987).  

 

By definition, single species toxicity tests are unable to detect and evaluate indirect 

effects of contaminants since these result from complex ecological mechanisms such as 

interspecific interactions like predation or competition (Fleeger et al. 2003). 

 

Indirect effects of contaminants are now the focus of many ecotoxicology and 

ecological risk assessment studies and modern experimental ecotoxicology should be 

focused on characterizing common indirect effects resulting from ecosystem disturbances 

and quantifying the relative magnitude of direct and indirect effects of contaminants 

(Fleeger et al. 2003). Progress in this research field is urgent since investigations using a 

combination of organismal, population and community responses will enable scientists to 

evaluate how community context alters toxicity and a contribute to reliable predictions of 
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anthropogenic impacts on natural ecosystems (Fleeger et al. 2003; Clements and Rohr 

2009). 

 

Trophic cascades are examples of indirect effects mediated through consumer- 

resource interactions and are often considered in terms of "top-down" (influence of 

predators on lower trophic levels) and "bottom-up" (nutrient / food / prey influence on 

higher trophic levels) effects (Pace et al. 1999; Schmitz et al. 2004). Thus, integrating 

food-web ecology into the design and implementation of ecotoxicological research is 

essential for the understanding and prediction of indirect effects of contaminant within 

natural ecosystems (Relyea and Hoverman 2006; Rohr et al. 2006).  

Studies of trophic cascades have focused mainly on autochthonous resource-

based food webs, in which basal resources are derived from in situ primary production 

(Huryn 1998; Narwani and Mazumder 2012). However, many aquatic food webs receive 

energy from allochthonous matter which is vital for ecosystem functioning since terrestrial 

detritus derived mainly from leaves from riparian vegetation form the basis of secondary 

production in headwater streams (Vannote et al. 1980; Abelho 2001). 

Moreover, the decomposition of organic matter and detritivorous 

macroinvertebrates have been widely used to monitor the ecological status of freshwaters 

(Naddafi et al. 2007). As such, biotic interactions between detritivore species can mediate 

a large number of indirect effects of contaminants in freshwater ecosystems and are ideal 

for community ecotoxicological manipulative experiments. 

 

 

2. Detritus processing chains 

  

Autochthonous matter from primary production of the stream and allochthonous 

matter from the surrounding riparian vegetation are the two main sources of organic 

matter in freshwater ecosystems (Abelho 2001). When headwater streams are flanked by 

dense riparian vegetation, light penetration becomes which, together with low water 

temperatures, limit the primary production (Friberg et al. 1997) making allochthonous 

matter extremely important for this type of ecosystems. 
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The allochthonous organic matter supplied to headwater streams is variable and 

may include leaves and leaf fragments, floral parts, bark, wood (branches and twigs), 

cones and nuts, fruits, and other plant parts. Most of the litterfall that reaches streams is 

however composed of leaves (Abelho 2001). 

These leaves after entering the streams suffer decomposition by different physical, 

chemical and biological processes such as leaching, physical abrasion, microbial 

colonization (conditioning), and fragmentation by invertebrate shredding (fig.1) (Feio and 

Graça 2000; Abelho 2001; Allan and Castillo 2007).  

 

Figure 1 – Representation of different process involved in decomposition of leaf litter 

(adapted from Allan and Castillo 2007). 

 Leaching can be relatively fast (from 2 to 7 days) and can cause a substantial 

decrease in initial weight of the leaves. However, some soluble compounds are released 

over longer periods of time (Abelho 2001). The leaf litter is then colonized by 

microorganisms (conditioning). The conditioning is often considered one of the most 

important processes that determine organic matter degradation rates (Rader et al. 1994; 

Abelho 2001). Lastly the leaves suffer fragmentation. This process can occur by physical 

abrasion, by action of fungi, and by feeding activities of invertebrates, consisting on the 

transformation of the leaf litter into smaller particles (Gessner et al. 1999; Abelho 2001). 

Although shredders activity is important mechanism for the litter breakdown in low-order 
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streams (Graça et al. 2001),  their importance change according to the latitude and 

altitude of ecosystems in question (Irons III et al. 1994). 

All these processes are affected by several factors such as the structure and 

chemical composition of the leaf and the temperature and chemical composition of the 

water (i.e., alkalinity, pH and nutrient concentration) (Abelho 2001; Allan and Castillo 

2007).  

 

The processes involved are thus sequential being descrivbed as a processing 

chain (Heard 1994). During conditioning, the microbiota is an important mediator of 

detritus processing. The leaves that fall in the stream are quickly colonized by bacteria 

and fungi, especially aquatic hyphomycetes (Bärlocher and Kendrick 1975). These 

aquatic microorganisms are crucial in many biochemical processes, where they play an 

important role in the recycling of organic matter and also contribute to food web energy 

transfer (Duarte et al. 2012). During the conditioning stage, microorganisms have the 

ability to increase the palatability of the leaves since they excrete enzymes capable of 

degrading molecules such as cellulose and lignin into simpler compounds (Sinsabaugh 

and Linkins 1990). Thus microorganisms make the leaf litter more appropriate and 

nutritious for detritivores invertebrates (Abelho 2001; Krauss et al. 2011). Within 

microorganisms, fungi play the most important role in the degradation of leaf litter 

((Kaushik and Hynes 1968).  Detritivore invertebrates have a clear preference for leaves 

incubated under conditions which allow fungal colonization since fungi conditioned leaves 

are more palatable than the sterile leaves or leaves conditioned only with bacteria 

(Mackay and Kalff 1973). Moreover fungi increase the protein content of leaf litter. In fact, 

several studies have shown that the growth of fungi on recently fallen leaves generally 

improves the growth   of aquatic invertebrates (Krauss et al. 2011). The mycelium itself is 

usually more efficiently assimilated than the digested leaf material (Krauss et al. 2011).  

 

The fungal community present in leaf detritus may be evaluated by molecular 

techniques, such as Denaturing Gradient Gel Electrophoresis (DGGE) since traditional 

methods can leave gaps in our knowledge. The community of fungi present on the leaves 

has been traditionally evaluated by identification of their characteristic conidia, which were 

then stained and identified under a light microscope (Gessner et al. 2003; Bärlocher 

2005). Moreover the community of bacteria has been evaluated using methods of 

cultivation, or by staining bacterial cells with fluorescent dyes (Suberkropp and Klug 1976; 

Hieber and Gessner 2002). Thus a large part of the microbial biodiversity assessment 
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could be understimated since non-sporulating fungi as well as the non-cultivable bacteria 

were not addressed, thus showing that the conventional microscopy and the traditional 

culture-dependent techniques are not sufficient for the correct assessment of microbial 

communities (Duarte et al. 2012). Molecular approaches come fill such limitations since 

they are independent of the cultivation and do not require the presence of reproductive 

stages to evaluate microbial communities (Bärlocher 2007). For the evaluation of 

environmental samples various techniques based on 16S rRNA gene of bacteria and the 

18S rRNA gene and ITS region (Internal Transcribed Spacer) of fungi have been used. 

The DGGE technique has been applied to microbial ecology for almost 20 years. However 

only more recently this technique was applied to evaluate the diversity of microorganisms 

in decomposition of leaf-litter in freshwaters (Duarte et al. 2012). Used for this purpose, 

the DGGE has been shown to be a sensitive tool to discriminate microbial communities 

from reference and impacted sites (e. g. (Duarte et al. 2009; Sridhar et al. 2009)). 

Moreover, it has proven useful for detecting changes in the structure of aquatic microbial 

communities exposed to anthropogenic stressors in microcosms (Duarte et al. 2012). 

 

The technique consists in the separation of fragments that have the same size but 

have different nucleotide sequences. This separation of DNA fragments occurs in a 

denaturing gradient polyacrylamide gel and is based on their profile of denaturation 

(Fischer and Lerman 1983; Muyzer et al. 1993). During the process the DNA fragments 

will be denatured, i.e. the double chain will be separated until a determinate specific 

concentration of denaturant and stops its migration in the gel. The double chain do not 

denature completely, since in the 5' end it is connected to a GC clamp (DNA sequence of 

40 to 60 nucleotides) that has very high melting domain. At the end the fragments with 

different melting points will migrate in different ways and occupy different positions in the 

gel (Muyzer et al. 1993). Each gel band corresponds to a phylotype or operational 

taxonomic unit (OTU) or a unique "sequence type" and is treated as a group of fungal 

cells that belong to the same type (Duarte et al. 2012). This technique has the advantage 

of "taking a picture" of the diversity and structure of microbial communities in various 

environmental samples in only a few hours. Furthermore, the DGGE allows 

simultaneously to process and compare many samples facilitating the evaluation of 

locations with different environmental conditions. Moreover, the DGGE allows us to obtain 

taxonomic information, because bands can be excised, re-amplified, sequenced and 

specific bands can hybridize with specific oligonucleotides probes (Heuer et al. 1999; 

Riemann and Winding 2001). As other techniques based on DNA, this technique reveals 
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some limitations such as the separation of fragments that have only up to 500bp; different 

sequences can take identical positions in the gel due to the similarity in GC content and 

thereby a band may not represent a single species.  

 

The chemical composition and structure of the leaf itself cause variations in its 

breakdown rates (Allan and Castillo 2007). Therefore, in streams, the leaf processing is 

dependent of the leaf species. According to leaf species, the nutrient content, toughness 

and secondary compounds are different. These three factors are very important for the 

colonization of leaves by microorganisms and by invertebrates (Graça 2001). For 

example, the toughness of leaves can be a physical barrier for invertebrates, because 

tougher leaves are more difficult to break than softer leaves and consequently 

invertebrates have greater difficulty to feed on them. The nutrient content of leaves can 

also affect the leaf processing in streams. In general detritivores show preference for 

leaves with higher nutrient content (Irons et al. 1988). In laboratory conditions authors 

such as Canhoto and Graça (1995), Schulze and Walker (1997), and Graça and Cressa 

(2010) gave shredders a choice between different leaves types and observed that they 

preferred to feed on certain leaf types rejecting others. These preferences are usually 

related to nutrient content and with leaf colonization by microorganisms (Graça 2001). 

Feeding preference can also be dependent on the fungal species present (Arsuffi and 

Suberkropp 1989). On the other hand, secondary compounds present in leaves 

(polyphenolics, flavonoid pigments, saponins, others) can be toxic and interfere with 

organisms digestion (Graça 2001). For example, eucalyptus has been shown to be 

responsible for affecting macroinvertebrate communities as well as microbial 

communities, due to polyphenols, essential oils and surface waxes in its constitution 

(Graça et al. 2002). The polyphenols are considered important defense in the leaves 

against herbivores, since they bind to proteins, including enzymes, causing digestion 

blocking (Graça et al. 2002).  

 

Detritivore species richness and density also affect leaf processing in streams. 

Dangles and Malmqvist (2004) observed that “diversity– function relationship” is 

influenced by the composition of the shredders community and that decomposition rates 

are dependent on the identity of the dominant species (Dangles and Malmqvist 2004). 
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Due to the factors described above different types of leaves have different rates of 

degradation in streams (Canhoto and Graça 1996) and can affect detritivores growth 

(Abelho 2008; Graça and Cressa 2010).  

 

 

3. Shredders collector interactions and the facilitation hypothesis  

 

 The forest streams tend to be dominated by detritivorous organisms that feed on 

leaf litter derived organic matter. Within these organisms two large functional groups can 

be distinguished: shredders and collectors (Cummins 1974). Shredders consume coarse 

particulate organic matter (CPOM), turn it into fine particulate organic matter (FPOM) 

which serves as food for the collectors (Cummins 1974; Vannote et al. 1980). Shredders 

thus contribute to the processing of CPOM and by producing non-ingested particles and 

by faeces, promote the collectors’ performance. This shredder-collector facilitation 

hypothesis  (Heard and Richardson 1995) states that in the presence of shredders, growth 

or survival of collectors is favored either on site or downstream. This facilitation hypothesis 

can be formulated at the population level involving particular species of shredders and 

collectors, at the ecosystem level involving shredder and collector functional groups in the 

aggregate. It should be noted that the assumption of this connection as direct and positive 

although generally and theoretically accepted is not well founded, existing few studies 

focused on testing this hypothesis (Heard and Richardson 1995). 

 

4. Thesis objectives and Model trophic chain used 

 

 

The aim of this thesis was thus to evaluate the combined effects of cadmium and 

changes in resource quality (leaf species), on freshwater detritus based food-webs, and 

assess how these factors may compromise the leaf litter decomposition. Laboratory 

assays were done with a model detritus food chain were leaf species are manipulated to 

assess effects of cadmium on shredder-collector interactions under different ecological 

scenarios. 

Cadmium behavior and toxicity to aquatic life is well documented, so it was chosen 

as a model toxicant in this study (Planelló et al. 2010). Sources of cadmium are varied, for 
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example: mining, wastewaters discharges and agriculture runoffs (Eaton et al. 2001). 

Cadmium accumulates in sediment and may  therefore affect the benthic biota with 

potential consequences to higher levels of the food chain (Oskarsson et al. 2004). 

Exposure to cadmium has been reported to cause adverse effects on detritivore 

invertebrates (Vogt et al. 2010) and impair the processing of detritus in freshwaters (Giesy 

Jr 1978; Schaller et al. 2011). 

The proposed simplified detritivore food-web is composed of leaf detritus (Alnus 

glutinosa), one shredder species (Sericostoma vittatum) and a collector species 

(Chironomus riparius). Alder was chosen because is a native species common to many 

portuguese headwater streams (Canhoto and Graça 1996). Both organisms are detritivore 

macroinvertebrates common in portuguese streams and have been used to monitor the 

accumulation of metals (Vogt et al. 2010) and insecticide in freshwaters (Rasmussen et al. 

2012). Due to their behavior and characteristics, these organisms have an important 

influence on nutrient cycles, translocation of materials, decomposition and primary 

productivity (Wallace and Webster 1996). The caddisfly Sericostoma vittatum Rambur 

(Trichoptera: Sericostomatidae) is an endemic species of the Iberian Peninsula that 

occurs throughout the year, feeding on conditioned leaves and is among the most 

abundant consumers in many streams in the region (Feio and Graça 1997). These 

organisms have relatively long life-cycles with several aquatic stages (eggs, larvae and 

pupae) and an aerial phase (adult). These aquatic larvae may play an important role in the 

fragmentation of allochthonous matter of streams (González and Graça 2003). Caddisflies 

are important preys for many species of fish and were previously used in toxicological 

studies (Schulz and Liess 1999, 2000; Berra et al. 2006; Pestana et al. 2009). The midge 

Chironomus riparius Meigen (Diptera: Chironomidae) has a short life-cycle, contrary to the 

Sericostomatidae, and includes aquatic stages (eggs, four larval stages and pupa) and an 

aerial phase (adult), being the larval phase the most enduring. The Chironomidae are 

extremely important organisms in freshwater ecosystems, and they dominate the benthic 

communities of lotic and lentic environments both in number and in biomass (Merrit and 

Cummins 1996). Chironomids can be found in different aquatic environments due to their 

capacity to adapt to environments with extreme conditions of pH, temperature, depth and 

salinity (Armitage et al. 1995). Chironomids are easy to grow and maintain in the 

laboratory, and because of their direct contact with the sediment C. riparius larvae have 

been used as a model organism in many sediment toxicity studies both in the laboratory 

as in situ where endpoints such as larval behavior, growth, survival and emergency are 
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evaluated (Chappie and Burton Jr 1997; OECD 2001; Soares et al. 2005; Faria et al. 

2006; Domingues et al. 2007; Pestana et al. 2009).  

This simplified detritus based food web was also used to test the effects of 

changing resource quality. The introduction and spread of exotic species can cause 

impacts on native ecosystems, and this impact ranks second as a threat to biodiversity, 

being surpassed only by habitat loss (Sala et al. 2000). The chosen species was 

Eucalyptus globulus Labill. This exotic species from Australia was introduced in Portugal 

in 1829. Today vast areas of the Iberian Peninsula are covered with eucalyptus 

monocultures and this species is already part of the riparian vegetation. This species is 

known to adversely affect aquatic ecosystems causing problems to organic matter 

dynamics when replacing the native vegetation (Graça et al. 2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

References 

 

Abelho M (2001) From litterfall to breakdown in streams: a review. The Scientific World Journal 
1:656-680 

Abelho M (2008) Effects of Leaf Litter Species on Macroinvertebrate Colonization during 
Decomposition in a Portuguese Stream. International Review of Hydrobiology 93 (3):358-
371 

Allan JD, Castillo MM (2007) Stream Ecology-Structure and function of running waters. 2nd eds 
edn. Springer, Dordrecht 

Armitage PD, Cranston P, Pinder LCV (1995) The Chironomidae: biology and ecology of non-biting 
midges. Chapman & Hall, London 

Arsuffi TL, Suberkropp K (1989) Selective feeding by shredders on leaf-colonizing stream fungi: 
comparison of macroinvertebrate taxa. Oecologia 79 (1):30-37 

Bärlocher F (2005) Freshwater fungal communities, In: Dighton J, White JF, Oudemans P (3rd eds) 
The fungal community: its organization and role in the ecosystem. Taylor and Francis 
Group, Boca Raton Florida 39 - 59 

Bärlocher F (2007) Molecular approaches applied to aquatic hyphomycetes. Fungal Biology 
Reviews 21 (1):19-24 

Bärlocher F, Kendrick B (1975) Leaf-conditioning by microorganisms. Oecologia 20 (4):359-362 
Berra E, Forcella M, Giacchini R, Rossaro B, Parenti P (2006) Biomarkers in caddisfly larvae of the 

species Hydropsyche pellucidula (Curtis, 1834)(Trichoptera: Hydropsychidae) measured in 
natural populations and after short term exposure to fenitrothion. Bulletin of 
environmental contamination and toxicology 76 (5):863-870 

Canhoto C, Graça M (1995) Food value of introduced eucalypt leaves for a Mediterranean stream 
detritivore: Tipula lateralis. Freshwater Biology 34 (2):209-214 

Canhoto C, Graça MAS (1996) Decomposition of Eucalyptus globulus leaves and three native leaf 
species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order 
stream. Hydrobiologia 333 (2):79-85 

Chappie DJ, Burton Jr GA (1997) Optimization of in situ bioassays with Hyalella azteca and 
Chironomus tentans. Environmental Toxicology and Chemistry 16 (3):559-564 

Clements WH, Rohr JR (2009) Community responses to contaminants: Using basic ecological 
principles to predict ecotoxicological effects. Environmental Toxicology and Chemistry 28 
(9):1789-1800 

Cummins KW (1974) Structure and function of stream ecosystems. BioScience:631-641 
Dangles O, Malmqvist B (2004) Species richness–decomposition relationships depend on species 

dominance. Ecology Letters 7 (5):395-402 
Domingues I, Guilhermino L, Soares AMVM, Nogueira AJA (2007) Assessing dimethoate 

contamination in temperate and tropical climates: Potential use of biomarkers in 
bioassays with two chironomid species. Chemosphere 69 (1):145-154 

Duarte S, Cássio F, Pascoal C (2012) Denaturing Gradient Gel Electrophoresis (DGGE) in microbial 
ecology—Insights from freshwaters. In Magdeldin S (1st eds)  Gel electrophoresis—
principles and basics InTech, Rijeka, Croatia:173-195 

Duarte S, Pascoal C, Garabétian F, Cássio F, Charcosset JY (2009) Microbial decomposer 
communities are mainly structured by trophic status in circumneutral and alkaline 
streams. Applied and environmental microbiology 75 (19):6211-6221 

Eaton JG, Gentile JH, Stephan CE, Hansen DJ (2001) Update of ambient water quality criteria for 
cadmium. In: EPA-822-R-01-001, U.S.O.o.W., Agency, E.P. (Eds.). Office of Water, Office of 
Science and Technology, Washington D.C.  



13 
 

  .  
Faria MS, Ré A, Malcato J, Silva PCLD, Pestana J, Agra AR, Nogueira AJA, Soares AMVM (2006) 

Biological and functional responses of in situ bioassays with Chironomus riparius larvae to 
assess river water quality and contamination. Science of the total environment 371 
(1):125-137 

Feio M, Graça M (1997) Sericostoma vittatum: um detritívoro comum em rios do centro de 
Portugal. In: 2º Encontro Nacional de Ecologia, Coimbra 

Feio M, Graça M (2000) Food consumption by the larvae of Sericostoma vittatum (Trichoptera), an 
endemic species from the Iberian Peninsula. Hydrobiologia 439 (1):7-11 

Fischer S, Lerman L (1983) DNA fragments differing by single base-pair substitutions are separated 
in denaturing gradient gels: correspondence with melting theory. Proceedings of the 
National Academy of Sciences 80 (6):1579-1583 

Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. 
Science of the total environment 317 (1):207-233 

Friberg N, Winterbourn M, Shearer K, Larsen S (1997) Benthic communities of forest streams in 
the South Island, New Zealand: effects of forest type and location. Archiv für 
hydrobiologie 138 (3):289-306 

Gessner MO, Bärlocher F, Chauvet E (2003) Qualitative and quantitative analyses of aquatic 
hyphomycetes in streams. . Fungal Diversity Research Series 10:127-157  

Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. 
Oikos:377-384 

Giesy Jr JP (1978) Cadmium inhibition of leaf decomposition in an aquatic microcosm. 
Chemosphere 7 (6):467-475 

González J, Graça M (2003) Conversion of leaf litter to secondary production by a shredding 

caddis‐fly. Freshwater Biology 48 (9):1578-1592 
Graça M, Ferreira R, Coimbra C (2001) Litter processing along a stream gradient: the role of 

invertebrates and decomposers. Journal of the North American Benthological Society 20 
(3):408-420 

Graça MAS (2001) The role of invertebrates on leaf litter decomposition in streams–a review. 

International Review of Hydrobiology 86 (4‐5):383-393 
Graça MAS, Cressa C (2010) Leaf quality of some tropical and temperate tree species as food 

resource for stream shredders. International Review of Hydrobiology 95 (1):27-41 
Graça MAS, Pozo J, Canhoto C, Elosegi A (2002) Effects of Eucalyptus plantations on detritus, 

decomposers, and detritivores in streams. The Scientific World 2:1173-1185 
Hanazato T, Yasuno M (1987) Effects of a carbamate insecticide, carbaryl, on the summer phyto- 

and zooplankton communities in ponds. Environmental Pollution 48 (2):145-159 
Heard SB (1994) Processing chain ecology: resource condition and interspecific interactions. 

Journal of Animal Ecology:451-464 
Heard SB, Richardson JS (1995) Shredder-collector facilitation in stream detrital food webs: is 

there enough evidence? Oikos:359-366 
Heuer H, Hartung K, Wieland G, Kramer I, Smalla K (1999) Polynucleotide probes that target a 

hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to 
bands of community fingerprints. Applied and environmental microbiology 65 (3):1045-
1049 

Hieber M, Gessner MO (2002) Contribution of stream detrivores, fungi, and bacteria to leaf 
breakdown based on biomass estimates. Ecology 83 (4):1026-1038 

Huryn AD (1998) Ecosystem-level evidence for top-down and bottom-up control of production in 
a grassland stream system. Oecologia 115 (1):173-183 



14 
 

Irons III JG, Oswood MW, Stout R, Pringle CM (1994) Latitudinal patterns in leaf litter breakdown: 
is temperature really important? Freshwater Biology 32 (2):401-411 

Irons JG, Oswood MW, Bryant JP (1988) Consumption of leaf detritus by a stream shredder: 
influence of tree species and nutrient status. Hydrobiologia 160 (1):53-61 

Kaushik N, Hynes H (1968) Experimental study on the role of autumnshed leaves in aquatic 
environments. The Journal of Ecology:229-243 

Krauss GJ, Solé M, Krauss G, Schlosser D, Wesenberg D, Bärlocher F (2011) Fungi in freshwaters: 
ecology, physiology and biochemical potential. FEMS microbiology reviews 35 (4):620-651 

Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within 
ranges of chemical concentrations in marine and estuarine sediments. Environmental 
Management 19 (1):81-97 

Mackay RJ, Kalff J (1973) Ecology of two related species of caddis fly larvae in the organic 
substrates of a woodland stream. Ecology:499-511 

Merrit RW, Cummins KW (1996) Aquatic Insects of North America. 3rd eds. Kendall / Hunt 
Publishing Company, Dubuque.  

Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by 
denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified 
genes coding for 16S rRNA. Applied and environmental microbiology 59 (3):695-700 

Naddafi R, Eklöv P, Pettersson K (2007) Non-lethal predator effects on the feeding rate and prey 
selection of the exotic zebra mussel Dreissena polymorpha. Oikos 116 (8):1289-1298 

Narwani A, Mazumder A (2012) Bottom‐up effects of species diversity on the functioning and 
stability of food webs. Journal of Animal Ecology. doi:10.1111/j.1365-2656.2011.01949.x 

OECD (2001) Guideline 219 - Sediment-water chironomid toxicity test using spiked water.  21 
Oskarsson A, Widell A, Olsson I-M, Petersson Grawé K (2004) Cadmium in food chain and health 

effects in sensitive population groups. Biometals 17 (5):531-534 
Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. 

Trends in Ecology & Evolution 14 (12):483-488 
Pestana JLT, Alexander AC, Culp JM, Baird DJ, Cessna AJ, Soares AMVM (2009) Structural and 

functional responses of benthic invertebrates to imidacloprid in outdoor stream 
mesocosms. Environmental Pollution 157 (8–9):2328-2334 

Planelló R, Martínez-Guitarte JL, Morcillo G (2010) Effect of acute exposure to cadmium on the 
expression of heat-shock and hormone-nuclear receptor genes in the aquatic midge 
Chironomus riparius. Science of the total environment 408 (7):1598-1603 

Rader RB, McArthur JV, Aho JM (1994) Relative importance of mechanisms determining 
decomposition in a southeastern blackwater stream. American Midland Naturalist:19-31 

Rasmussen JJ, Monberg RJ, Baattrup-Pedersen A, Cedergreen N, Wiberg-Larsen P, Strobel B, 
Kronvang B (2012) Effects of a triazole fungicide and a pyrethroid insecticide on the 
decomposition of leaves in the presence or absence of macroinvertebrate shredders. 
Aquatic Toxicology 118–119 (0):54-61 

Relyea R, Hoverman J (2006) Assessing the ecology in ecotoxicology: a review and synthesis in 
freshwater systems. Ecology Letters 9 (10):1157-1171 

Riemann L, Winding A (2001) Community dynamics of free-living and particle-associated bacterial 
assemblages during a freshwater phytoplankton bloom. Microbial Ecology 42 (3):274-285 

Rohr JR, Crumrine PW (2005) Effects of an herbicide and an insecticide on pond community 
structure and processes. Ecological applications 15 (4):1135-1147 

Rohr JR, Kerby JL, Sih A (2006) Community ecology as a framework for predicting contaminant 
effects. Trends in Ecology & Evolution 21 (11):606-613 



15 
 

Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, 
Jackson RB, Kinzig A (2000) Global biodiversity scenarios for the year 2100. science 287 
(5459):1770-1774 

Schaller J, Brackhage C, Mkandawire M, Dudel EG (2011) Metal/metalloid 
accumulation/remobilization during aquatic litter decomposition in freshwater: A review. 
Science of the total environment 409 (23):4891-4898 

Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect 
interactions. Ecology Letters 7 (2):153-163 

Schulz R, Liess M (1999) Validity and ecological relevance of an active in situ bioassay using 
Gammarus pulex and Limnephilus lunatus. Environmental Toxicology and Chemistry 18 
(10):2243-2250 

Schulz R, Liess M (2000) Toxicity of fenvalerate to caddisfly larvae: chronic effects of 1-vs 10-h 
pulse-exposure with constant doses. Chemosphere 41 (10):1511-1517 

Schulze DJ, Walker KF (1997) Riparian eucalypts and willows and their significance for aquatic 
invertebrates in the River Murray, South Australia. Regulated Rivers: Research & 
Management 13 (6):557-577 

Sinsabaugh RL, Linkins AE (1990) Enzymic and chemical analysis of particulate organic matter from 
a boreal river. Freshwater Biology 23 (2):301-309 

Soares S, Cativa I, Moreira-Santos M, Soares AMVM, Ribeiro R (2005) A short-term sublethal in 
situ sediment assay with Chironomus riparius based on postexposure feeding. Archives of 
environmental contamination and toxicology 49 (2):163-172 

Sridhar KR, Duarte S, Cássio F, Pascoal C (2009) The Role of Early Fungal Colonizers in Leaf-Litter 
Decomposition in Portuguese Streams Impacted by Agricultural Runoff. International 
Review of Hydrobiology 94 (4):399-409 

Suberkropp K, Klug M (1976) Fungi and bacteria associated with leaves during processing in a 
woodland stream. Ecology:707-719 

Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum 
concept. Canadian journal of fisheries and aquatic sciences 37 (1):130-137 

Vogt C, Heß M, Nowak C, Diogo J, Oehlmann J, Oetken M (2010) Effects of cadmium on life-cycle 
parameters in a multi-generation study with Chironomus riparius following a pre-
exposure of populations to two different tributyltin concentrations for several 
generations. Ecotoxicology 19 (7):1174-1182 

Wallace JB, Webster JR (1996) The role of macroinvertebrates in stream ecosystem function. 
Annual review of entomology 41 (1):115-139 

 

 

 

 

 

 

 

 

 



16 
 

 

 



 

 

 

 

 

 

 

Chapter II: Effects of Cadmium and changes in resource quality 

(leaf species) on freshwater detritus based food webs 
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Abstract 

 

Detritus processing is a vital ecological process for freshwater ecosystems being 

dependent on the leaf litter from riparian vegetation and mediated by microorganisms and 

aquatic invertebrates. Detritivorous shredders contribute to the nutrient cycle, transforming 

coarse organic matter into fine particulated organic matter which serves as food for 

collectors. Direct and indirect effects of contaminants and natural stressors can impair the 

processing of detritus and affect the functioning of these ecosystems. The aim of this work 

was to evaluate the combined effects of cadmium exposure and changes in resource 

quality (leaf species) in detritus trophic chain and on shredder – collector interactions. In 

the laboratory, alder leaves (native species) and eucalyptus (exotic species) were 

conditioned at different cadmium concentrations (0, 50 and 200 µg/L). The microbial 

community present in leaves from the different treatments was analyzed by DGGE and 

microbial respiration rates were measured. Sericostoma vittatum (a caddisfly shredder) 

and Chironomus riparius (a midge collector) were exposed to the same concentrations of 

cadmium and fed the corresponding leaf discs. C. riparius growth and leaf weight loss 

were evaluated in these multispecies microcosms. Cadmium exposure affected the leaf 

conditioning and the reduction in fungal diversity in both leaf species was clear. Cadmium 

exposure affected the decomposition of alder leaves through reductions in shredder 

feeding and also impaired C. riparius growth. Chironomus riparius showed to be a non-

exclusive collector and capable of feeding on alder leaf discs in the absence of shredders. 

However, shredders appear to promote collectors growth in treatments with eucalyptus as 

food source. The observed results support the shredder-collector facilitation hypothesis 

but also that it is dependent on resource quality and detritivore species present.   

 

 

Key words: leaf decomposition, trophic cascades, indirect effects, exotic species, 

shredder-collector interactions 
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Introduction 

 

Trophic cascades resulting from predator-prey interactions result in inverse 

patterns of abundance, biomass or productivity of a population community or trophic level 

across trophic links in food webs, can have strong impacts on ecosystems (Pace et al. 

1999). Trophic cascades arise due to strong species interactions within food webs and are 

generally considered in terms of top-down (predator influence on lower trophic levels) and 

bottom-up effects (nutrient /food / prey influence on higher trophic levels). The majority of 

studies on trophic cascades have been based on autochthonous resource-based food 

webs with primary producers at the base of the food chain (Dieterich et al. 1997). 

However, one of the major energy sources in low order streams are detritus from the 

surrounding riparian vegetation (Wallace et al. 1997). Detritus, mainly leaf litter are of 

extreme importance since dense riparian corridors cause low water temperature (Friberg 

et al. 1997) and insufficient light penetration which compromises the primary production 

(Abelho 2001). Leaf litter constitute the primary source of food for many organisms in 

many stream and rivers (Graça 2001). These include microorganisms colonizing detritus 

and benthic detritivore macroinvertebrate species (Wallace et al. 1997; Graça 2001).  

The decomposition of this organic matter can be considered a processing chain 

since the resource (leaf litter) passes through a temporal sequence of condition or quality 

changes, that is used by different consumers (bacteria, fungi and invertebrate detritivores) 

(Heard 1994). Moreover, within the detritivore species two large functional groups can be 

distinguished in these chains: shredders and collectors (Heard and Richardson 1995). 

Shredders feed on conditioned leaf litter and convert coarse particulate organic matter 

(CPOM) into fine particulate organic matter (FPOM) that can be used by collector species 

which are particle limited (Cummins 1974; Vannote et al. 1980). Shredders can thus 

promote growth or survival of collector organisms within these detritus processing chains. 

This shredder-collector facilitation hypothesis may be placed at the population level or 

community levels and can be important on local and larger spatial scales in terms of 

stream food webs (Heard and Richardson 1995). 

 

Few studies have addressed trophic cascades on detritus based food webs and 

are focused on the effects of variation on the quality of resources and on performance of 

single detritivore species (Canhoto and Graça 1999; Campos and González 2009), or 

effects of predators on detritus processing (Ruetz et al. 2002). A small number of studies 

have considered possible indirect effects of contaminants or changes of detritus quality 
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along these processing chains with possible consequences for secondary production and 

ecosystem functioning (Narwani and Mazumder, 2012). 

 

Different leaf species have different decomposition rates  and nutritional value for 

invertebrate detritivores (Graça 2001; Graça and Cressa 2010).  For instance Eucalyptus 

globulus, an Australian species now occupies vast areas of the Iberian Peninsula and it is 

becoming a common riparian tree species (Graça et al. 2002; Larrañaga et al. 2009). The 

impact of these plantations on stream invertebrates has been the focus of ecological 

studies in recent years (see review (Graça et al. 2002)). However, to our knowledge there 

is no existing research concerning trophic cascades caused by this alteration of resource 

quality. The same can be said for effects of anthropogenic chemical stressors and their 

possible indirect effects on collectors along detritus processing chains. 

 

Based on these research gaps, with this work, the study of the possible effects of 

eucalyptus leaves and metal exposure along detritus processing chains is addressed. A 

simplified model detritus processing chain composed of alder leaves, a caddisfly shredder 

and a dipteran collector species was used. Sericostoma vittatum Rambur (Trichoptera: 

Sericostomatidae) was chosen as a model shredder detritivore since it is a endemic 

species of the Iberian Peninsula, and are among the most abundant detritivore consumers 

in many streams, playing an important role in the fragmentation of allochthonous organic 

matter (Feio and Graça 2000). Chironomus riparius Meigen (Diptera: Chironomidae) was 

chosen as the model collector species due to its high ecological relevance in terms of 

biomass within benthic communities in all freshwater systems (Stief and de Beer 2002). 

Moreover both species are already used in aquatic toxicology studies (OECD 2001; 

Soares et al. 2005; Faria et al. 2006).The main objective of this work was to assess the 

effects of metal exposure on detritus processing and shredder-collector interactions and 

evaluate how the change in leaf species can mediate these effects. Microcosms tests 

were performed where the effects of cadmium and leaf species were evaluated in terms of 

C. riparius growth and leaf processing with or without the presence of the caddisfly 

shredder.  
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Methods 

 

2.1 – Test Organisms  

 

Sericostoma vittatum Rambur (Trichoptera: Sericostomatidae) were collected at 

the S. João stream, Lousã, Portugal (40º06’N, 8º14’W). The organisms were acclimated in 

the laboratory for at least one week, in ASTM at 20ºC with light-dark regime/cycle of 16:8h 

and fed ad libitum with alder leaves (Alnus sp.). 

 

Egg masses of Chironomus riparius Meigen (Diptera: Chironomidae) used for the 

experiment were obtained from a laboratory culture at the University of Aveiro, Portugal, 

and established for more than 10 years. They were maintained under standard hard water 

ASTM (ASTM 2000) conditions, at a temperature of 20°C and with light-dark regime of 

16:8h and fed with a suspension of ground commercial fish food (TetraMin ®, Melle, 

Germany). Two-day-old larvae (1st stage) were used throughout the experiments. 

 

2.2 - Leaf Conditioning    

 

Eucalyptus and alder leaves were collected in autumn after abscission in reference 

locations, near Aveiro. Leaves were air dried and stored in the dark. Leaves were soaked 

in distilled water and leaf discs (Ø 10mm) were produced with a cork borer.  

 

For the conditioning we used an inoculum composed of 400mL of distilled water 

with 50 gr of grinded eucalyptus alder leaves collected in a reference stream. Conditioning 

was performed by adding 25 ml of inoculum to 1L of enriched water (Fuller 1978)  with 

200 leaf discs in separated batches during 15 days at 20°C with strong aeration. 

Cadmium chloride (technical grade, CASNo. 10108-64-2, Sigma–Aldrich, USA) was used 

to obtain three concentrations (0, 50 and 200 μg/ L). 

 

2.3 - Analysis of leaf microbial community 

 

2.3.1 – Microbial respiration (measure of oxygen consumption) 

 

From each conditioning treatment, four sets of five leaf discs were placed into 

gastight syringes (Hamilton Co., Reno, Nevada, USA) with 50 ml of previously oxygenated 
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ASTM at 20 ° C. Four sets of syringes without leaf discs were used as a control for each 

treatment to correct the oxygen depletions due to factors other than microbial conditioning 

of leaves. After one hour, the initial concentration of oxygen was measured with an 

oxygen meter (Model 782, Strathkelvin Instruments, Glasgow). The final concentration of 

oxygen was measured 6 hours after the beginning of the test following same procedure. 

The respiration rate is expressed in µg O2/ mg of leaf / hour/ ml using the results obtained 

in controls (no leaf discs) as correction factors in each treatment (leaf species and 

cadmium concentration).  

 

2.3.2 – DNA extraction, amplification and DGGE 

 

For DNA extraction, after conditioning, five leaf disks were frozen (-80°C), and 

DNA was isolated with the UltraClean® Soil DNA Isolation Kit (MoBio Laboratories, 

Carlsbad, CA) according to the manufacturer’s instructions. 

DNA isolated from each sample was amplified by PCR with primers ITS1F (5’- 

CTTGGTCATTTAGAGGAAGTAA-3’) and ITS2 (5’-GCTGCGTTCTTCATCGATGC-3’) 

directed to the ribosomal ITS region. A GC clamp (5’-

CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGG-3’) was attached to the 5’ 

end of the forward primer. PCR reactions were carried out with reagents supplied by 

Promega (Madison, WI USA). The PCR reaction mixture contained 1X GoTaq buffer, 3 

mM MgCl2, 0.2 mM of dNTPs, 5% DMSO (dimethylsulfoxide), 10 pmol of each primer, 1U 

of GoTaq polymerase and 1 µL of template DNA in a final volume of 25 µL. The PCR 

amplification was performed on a Mycycler (Bio-Rad, Laboratories, Hercules, CA, USA) 

under the following conditions: 95 ° C for 3 min, followed by 35 cylces of 94°C for 30 sec 

(denaturation), 50°C for 30 sec (annealing), 72°C for 30 sec (extension) and a final 

extension at 72°C for 30 min. In order to accomplish a suitable amount of amplicon it was 

necessary to perform a second round of PCR amplification using as template 1 µL of the 

first PCR amplification. 

 

DGGE was performed on a DCodeTM Universal Mutation Detection System (Bio-

Rad). The PCR amplicons were loaded on 8% polyacrylamide gel in 1 X Tris-acetate-

EDTA (TAE) with a denaturing gradient of 20-50% (100% denaturant corresponds to 40% 

formamide and 7 M urea). The electrophoresis was performed in 1X TAE at 20V for 15 

min and after at 75 V for 16h. The gel was stained 5 min with 1 µg/mL EtBr (ethidium 
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bromide) solution, then rinsed 20 min in distilled water and visualized under UV light using 

a Gel Doc imaging system (Bio- Rad Laboratories, Hercules, CA). DGGE banding profiles 

were analyzed with GelComparII software (Applied Maths). Gels were normalized using 

the same standard loaded at both sides. The ‘‘rolling disk’’ background subtraction option 

was applied. DNA bands detected by the software were carefully verified by visual 

examination to correct unsatisfactory detection. Variations in band intensity were not 

considered to be differences. Levels of similarity between the profiles were calculated with 

the band matching Dice coefficient. Cluster analysis of similarity matrices was performed 

by the unweighted pair group method using arithmetic averages (UPGMA). 

 

2.4 – Detritivore trials 

 

For the leaf processing experiments, testing for leaf species, cadmium exposure 

and the presence/ absence of shredders, seven replicates with one caddisfly and 10 C. 

riparius larvae (1st stage larvae) and seven replicates with only 10 C. riparius larvae were 

used. Animals were allocated to plastic vessels, containing a 1 cm layer of inorganic fine 

sediment (<1 mm), 150 mL of experimental medium (same Cd concentrations as in the 

conditioning) and food in the form of 10 alder or eucalyptus leaf discs (Ø 10mm). Leaf 

discs from the respective conditioning treatments in each replicate were dried at 50º C for 

2 days and weighed. They were soaked in the respective cadmium solutions for 96 h prior 

to use. The S. vittatum was placed one day before the C. riparius. After 10 days animals 

and the respective remaining food (leaf discs) were removed, dried at 50º C for 4 days 

and reweighed. Caddisflies were removed and C. riparius larvae were counted and kept in 

ethanol 70% for measurement. C. riparius growth was estimated by measuring the total 

length and head capsule width of each larva at day 10 with a stereo dissecting 

microscope fitted with a calibrated eye-piece micrometer. 

Leaf weight loss was calculated as the difference between the initial and final leaf disc dry 

mass (mg). Three control cages per treatment with leaf discs and no animals (shredders 

or collectors) were used to correct for weight change due to factors other than feeding. All 

tests were conducted at 20 ± 1º C with a photoperiod of 16 h light: 8 h dark.   

 

2.5 – Statistical analysis 

 

Two-way analysis of variance (ANOVA) with Holm-Sidak multiple comparison of 

group means was employed to determine significant differences relatively to control 
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treatment. Where applicable, results are presented as mean±SE. For all statistical tests 

the significance level was set at P≤0.05. All calculations were performed with SigmaStat 

(Systat Software Inc. 2006).  

 

Results  

 

3.1 Effects of cadmium on microbial conditioning.  

 

Microbial respiration in alder leaf discs was significantly different compared to 

eucalyptus leaf discs across all cadmium treatments (fig 1, table1) revealing higher 

microbial biomass conditioning alder leaf discs. However for each leaf species a clear 

trend in terms of effects of cadmium exposure on oxygen consumption rates was not 

observed. For alder, the lowest concentration of cadmium caused a significant increase in 

the rate of microbial respiration and for eucalyptus increasing cadmium concentrations 

reduced, although not significantly, microbial respiration of leaf discs.  
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Figure 1- Microbial respiration rate (mean +/- SE) in two different species of leaves (alder: 

black square and eucalyptus: white diamond) according with no (control), low (50 µg/L) or 

high (200 µg/L) cadmium concentration. 
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Asterisks denote statistically significant differences (P<0.05) compared to the control 

treatment (no cadmium). 

 

Table 1 - Two-Way ANOVA results testing for effects of leaf species, cadmium 

concentrations and their interaction on microbial respiration rates. 

Factor Df F P-value 

Species of leaf 1 144,672 <0,001 

[Cd] 2 5,002 0,019 

Species of leaf  ×  [Cd] 2 6,424 0,008 

 

DGGE profiles obtained from our conditioned leaf discs are represented in figure 2. 

Eucalyptus and alder showed different fungal communities, which were altered in the 

presence of cadmium (Fig 2).  By analysis of the dendrogram it can be observe that fungal 

communities of conditioned alder leaf discs under cadmium exposure are considerably 

different from fungal communities of control leaf discs (no cadmium exposure). In alder 

leaf discs, a clear reduction of the number of bands, from 39 in the control treatment 

(AC0) to 25 in the conditioning treatment with high cadmium concentrations is observed. 

In eucalyptus leaf discs a higher concentration of cadmium is necessary to significantly 

affect its fungal conditioning (figure 2).   

 

Figure 2-  Fungal ITS DGGE band profiles and cluster analysis of DGGE patterns of 

leaves (A- alder, E- eucalyptus) samples from different treatments (C0- control, C1- [50 

µg/L]  C2- [200 µg/L] cadmium concentration).  Similarities were calculated using Dice 

coefficient. 
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3.2 Effects of cadmium on leaf discs weight loss (leaf decomposition) 

 

A significant higher leaf decomposition rate was observed in the treatments with 

shredders both with alder and eucalyptus as food (figure 3 and 4, table 2 and 3) revealing 

the expected differences between shedders and collectors in term of feeding rates. 

Exposure to cadmium caused a significant reduction of leaf decomposition when 

detritivore organisms were fed alder leaves. This pattern is observed both in the presence 

and absence of shredders (figure 3, table 2). However, when eucalyptus leaf discs were 

offered as food, decomposition rates were not significantly affected by cadmium exposure 

(figure 4, table 3). As expected the decomposition rate of alder leaf discs was much higher 

compared to eucalyptus leaf discs revealing that alder leaves are preferred by detritivores. 
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Figure 3 - Alder weight loss of the leaves (mean +/- SE) when the organisms are exposed 

to a concentration gradient of cadmium according to presence (black triangle) or absence 

(white circle) of shredders. Asterisks denote statistically significant differences (P<0.05) 

compared to the control treatment (no cadmium). 
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Table 2- Two-Way ANOVA results testing for effects of presence/absence (P/A) of 

shredder, cadmium concentrations and their interaction for weight loss of the Alder leaves. 
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Figure 4 – Eucalyptus weight loss of the leaves (mean +/- SE) when the organisms are 

exposed to a concentration gradient of cadmium according to presence (black triangle) or 

absence (white circle) of shredders. 

 

Table 3- Two-Way ANOVA results testing for effects of presence/absence (P/A) of 

shredder, cadmium concentrations and their interaction for weight loss of the Eucalyptus 

leaves. 

 

 

 

 

 

Factor df F P-value LOEC for Cadmium 

P/A Shredder 1 1036,074 <0,001  

[Cd] 2 287,932 <0,001 50 µg/L 

P/A Shredder  ×[Cd] 2 123,354 <0,001  

Factor df F P-value LOEC for Cadmium 

P/A Shredder 1 53,732 <0,001  

[Cd] 2 0,282 0,756  

P/A Shredder  ×[Cd] 2 0,347 0,709  
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3.3 Chironomus riparius growth 

 

Cadmium exposure significantly reduced C. riparius’ growth both in the presence of alder 

and eucalyptus leaf discs (fig 5 and 6, table 4 and 5). The presence of shredders affected 

C. riparius only when they were fed eucalyptus (fig 6, table 5). However, this effect was 

only observed in control treatments where C. riparius growth was significantly higher in 

the presence of shredders and thus a significant interaction between both factors was 

observed. Moreover there was a significant effect of leaf species and eucalyptus fed C. 

riparius grew almost half of those fed with alder leaves (fig 5 and 6, table 4 and 5). 
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Figure 5 - Growth measurements (mean +/- SE) of C. riparius under exposure to a 

gradient of cadmium concentrations and feeding with alder leaves according to presence 

(black triangle) or absence (white circle) of shredders. Asterisks denote statistically 

significant differences (P<0.05) compared to the control treatment (no cadmium). 
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Table 4 - Two-Way ANOVA results testing for effects of presence/absence (P/A) of 

shredder, cadmium concentrations and their interaction for C. riparius growth when 

feeding on alder leaves. 

Factor Df F P-value LOEC for Cadmium 

P/A Shredder 1 4,098 0,050  

[Cd] 2 362,786 <0,001 50 µg/L 

P/A Shredder  ×[Cd] 2 0,101 0,904  
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Figure 6 - Growth measurements, (mean +/- SE) of C. riparius exposed to a gradient of 

cadmium concentrations and fed with eucalyptus leaves according to presence (black 

triangle) or absence (white circle) of shredders. Asterisks denote statistically significant 

differences (P<0.05) compared to the control treatment (no cadmium). 
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Table 5 - Two-Way ANOVA results testing for effects of presence/absence (P/A) of 

shredder, cadmium concentrations and their interaction for C. riparius growth when 

feeding with eucalyptus leaves. 

Factor Df F P-value LOEC for Cadmium 

P/A Shredder 1 22,235 <0,001  

[Cd] 2 89,891 <0,001 50 µg/L 

P/A Shredder  ×[Cd] 2 11,072 <0,001  

 

 

Discussion  

 

Detritus processing is vital for river ecosystems with shredders contributing for the 

decomposition of conditioned coarse particulate organic matter into fine particulate matter. 

Moreover it is also widely believed that shredders facilitate collectors as a result of this 

particle production (Heard and Richardson 1995). This shredder collector facilitation 

hypothesis can be posited at the population level, involving particular species of shredders 

and collectors, or at a systems level involving the shredder and collector functional groups 

in the community (Heard and Richardson 1995; Dieterich et al. 1997). This way, detritus 

processing chains and its intervenients (microbes, shredders and collectors) offer great 

potential to be used in the field of community ecotoxicology aiming to study how 

contaminants affect ecological integrity of river ecosystems. Here a simplified tri trophic 

detritivore food web was used, composed of leaf detritus, a caddisfly shredder and a 

dipteran collector species, all chosen based on their co-occurrence in Iberian streams, to 

study the effects of cadmium on these shredder collector interactions. By manipulating the 

presence and absence of shredders the effects of cadmium exposure on collectors growth 

was evaluated. Moreover, by using eucalyptus or alder leaves, it was assessed how the 

effects of metal exposure and strength of this interspecific interaction are mediated by 

environmental context in terms of changes of resource quality. 

 

Initially, the effects of cadmium exposure on fungal community structure 

conditioning was assessed for both types of leaves and also the respiration rates of these 

microbial communities. Results from DGGE showed that cadmium can, in fact, alter the 

fungal communities present in leaves and a decrease in the diversity of fungal species 

when leaves are conditioned under cadmium exposure was observed. Results are also in 
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accordance with previous studies showing different fungal communities in different leaf 

species (Canhoto and Graça 1996). In fact, alder leaves, a fast decomposition rate leaf 

species, showed much higher microbial respiration than the conditioned eucalyptus leaf 

discs. Eucalyptus leaves physical and chemical properties are known to limit fungal 

colonization and decomposition (Suberkropp 1992; Graça et al. 2002) Phenolic 

compounds and lipids (essential oils and waxes) as well as physical barriers, such as the 

cuticle, inhibit the enzymatic activity of fungi and retard their colonization in eucalyptus 

leaf litter (Canhoto and Graça 1996). 

 

In contrast, results from microbial respiration assays, used as a proxy for microbial 

biomass present, revealed no significant effects for cadmium exposure. This apparent 

contradiction can be explained by the different methods used. For the molecular analysis 

(DGGE) it was decided to target communities only since fungi and Hyphomycetes in 

particular, are considered the main leaf litter microbial decomposers in streams in terms of 

biomass and enzymatic potential (Abelho 2001). The oxygen consumption results show 

the respiration rates of microbial communities (fungi and bacteria) as a whole, and 

evidently bacterial communities could have had different responses to cadmium exposure. 

However, and due to the minimal contribution of bacteria on leaf decomposition, these 

differences are probably due to effects of some differential sensitivity to cadmium and 

functional redundancy between fungal species colonizing leaves in the different cadmium 

treatments. 

 

Concerning the leaf discs weight loss, results showed that cadmium exposure 

reduces alder leaf decomposition through toxic effects on shredder and collector larvae. In 

fact many investigations have already shown feeding inhibition of invertebrate detritivores 

under cadmium exposure (Pestana et al. 2007; Coulaud et al. 2011). Surprisingly 

cadmium exposure had no effects on eucalyptus leaf discs weight loss. Although 

detritivores generally show feeding preferences for different leaf species and even for 

different conditioning conditions (Arsuffi and Suberkropp 1989; Irons et al. 1988; Graça 

2001; Abelho 2008; Graça and Cressa 2010) probably the low feeding rates observed for 

eucalyptus leaves conditions even in the control (i.e. no cadmium) treatment, may have 

prevented the observation of any differences in leaf discs weight loss.  It is also clear in 

alder and eucalyptus treatments, that the higher decomposition rates of leaf discs occurs 

when in the presence of S. vittatum  known to be a very efficient shredder (Feio and 

Graça 2000).  
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Cadmium exposure also reduced significantly the growth of C. riparius larvae fed 

on alder or eucalyptus. Since no significant reductions of feeding (leaf weight loss) were 

observed for eucalyptus treatments these differences are also probably due to effects of 

cadmium on altered assimilation efficiencies or on energetic expenditure. Metals are 

known to increase metabolic expenditures on invertebrates and reductions of energetic 

reserves, which will ultimately affect growth (De Coen and Janssen 2003; Vandenbrouck 

et al. 2009). However, the possibility of differences of nutritional values of the different 

batches of leaves conditioned under different cadmium treatments cannot be excluded. 

This different conditioning could be a source of possible indirect effects of contaminants 

along detritus chains, but to test for that a refined analysis would be necessary with cross 

treatments where detritivores under different exposure conditions are offered leaves from 

different conditioning conditions. As expected C. riparius feeding on eucalyptus leaf discs 

grew much less that larvae fed on alder leaf discs. This was expected based on the lower 

nutritional value of eucalyptus leaves compared to alder (Pozo 1993; Graça et al. 2002) 

even if microbial conditioned leaves are used as in the present study.   

 

The growth of C. riparius was also used to evaluate shredder-collector facilitation 

hypothesis and assess possible indirect effects of cadmium along this simplified detritus 

processing chain. Results showed beneficial effects for the presence of shredders on 

collectors’ performance (C. riparius growth) but only in control treatment in the presence 

of eucaliptus leaves. This means that when fed with alder leaves S. vittatum presence 

does not promote C. riparius performance. It should be noted that C. riparius larvae 

feeding in the absence of the caddisfly shredder caused measurable effects on leaf discs 

weight revealing that they are not exclusive collectors and that even first stage midge 

larvae used in the present tests can feed and grow on coarse organic matter - even if they 

feed preferentially on the fungal communities colonizing the leaf. This is in accordance 

with previous studies on feeding plasticity of chironomidae (Callisto et al. 2007) and field 

collections of chironomids in streams where they are usually found on leaf litter 

depositional areas(Callisto et al. 2007). In fact, when alder is used as food, the effects of 

the presence of shredders were marginally statistically significant but contrary to the 

facilitation hypothesis C. riparius grew less with the presence of S. vittatum possibly an 

indication of competition for food. In the presence of eucalyptus, a much tougher leaf 

species (which has also less microbial biomass - see respiration results), the presence 

and feeding activity of S. vittatum significantly promoted C. riparius growth through FPOM 
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production. Moreover this positive effect was lost under cadmium exposure probably due 

to effects of cadmium on both species and meaning that indirect effects of contaminants 

can arise along detritus processing chains depending on the environmental context.   

 

The results presented indicate that it is advisable to consider the possibility of 

indirect effects of contaminants along these detritus processing chains through effects on 

shredder collector interactions. This will surely increase our knowledge on ecological 

effects of contaminants on secondary production and ecosystem functioning. In detritus 

processing chains, these effects are dependent on resource quality of detritus and 

sensitivity and feeding plasticity of detritivores involved. These characteristics will 

determine the strength of the interaction and thus the magnitude of trophic cascades 

arising from exposure to contaminants. Because these shredders collector interactions 

can be conjectured at the community level, an effort to study possible indirect effects of 

detritus processing should be placed on by using more complex detritus based food webs. 
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Chapter III: General Discussion 
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General Discussion 

 

Indirect effects of contaminants may be a significant factor influencing the manner 

in which the ecosystem structure and function respond to anthropogenic stressors. 

Subsequently, failure to incorporate indirect effects into risk assessment may be a 

significant source of uncertainty in risk estimates. Single species, laboratory-based toxicity 

tests cannot detect indirect contaminant effects; studies at the population, community or 

ecosystem level are thus required. 

Trophic cascades are a well-studied type of indirect effect and are generally 

considered in terms of ‘top–down’ (predator influence on lower trophic levels) and 

‘bottom–up’ (nutrient/ food/ prey influence on higher trophic levels) effects (Schmitz et al. 

2004). However, despite many aquatic food webs receiving considerable energy from 

allochthonous resources, investigations of trophic cascades have focused largely on 

autochthonous resource-based food webs (Schmitz et al. 2004; Naddafi et al. 2007). This 

is surprising since detritivore macroinvertebrates and organic matter decomposition have 

now been extensively used to monitor the ecological status of freshwaters (Pestana et al. 

2009). These heterotrophic food chains are vital for ecosystem functioning since 

allochthonous terrestrial detritus derived mainly from leaves from riparian vegetation form 

the basis of much secondary production in headwater streams. Moreover, shredder-

collector interactions can mediate a large number of indirect effects of contaminants in 

these ecosystems.  

Studying these interactions is of utmost importance, since it allows us to study the 

direct and indirect effects of chemical stressors on secondary production and ecosystem 

functioning. Largely overlooked, however, is the potential for alien species to play an 

important role in altering the community context and thus become themselves an 

important mediator of contaminant effects on natural communities (Mack et al. 2000). 

The work developed in this thesis focused on detritivore processing chains and 

studied the effects of cadmium and of changes of resource quality (leaf species) along 

these trophic chains, considering microbial conditioning and the action of detritivore 

invertebrates. Specifically this work intended to study how cadmium exposure mediated 

shredder-collector interactions and if this effect was in turn altered by resource quality - 

testing the presence of eucalyptus as leaf litter. For that it was decided to use a simplified 

food web composed of detritus (leaf discs), S. vittatum, an efficient caddisfly shredder, 
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and C. riparius larvae, a midge collector. The effects of cadmium were assessed in terms 

of microbial leaf conditioning, leaf weight loss and midge growth used as a measure of 

secondary production. To assess effects on leaf conditioning we chose the DGGE 

technique, widely used for similar purposes (Duarte et al. 2008; Batista et al. 2012), and 

respiration rates of conditioned leaf discs was used as a measure of microbial biomass  

(Bergfur and Friberg 2012). 

Cadmium exposure affected microbial conditioning altering the structure of fungal 

communities in leaves, reducing the decomposition of alder leaves, and also impairing C. 

riparius growth.  No significant effects of cadmium exposure were however observed on 

microbial respiration and weight loss in eucalyptus leaves. As expected, the effects of 

changing leaf species affected invertebrates detritivores in accordance with studies stating 

that the presence eucalyptus in riparian corridors may impair secondary production and 

stream ecosystem functioning.  It was also demonstrated here that C. riparius larvae can 

feed and grow on alder leaves easily, in the absence of shredders producing fine 

particulate matter. C. riparius is thus not an exclusive collector species, not even in the 

first larval stages, and so we can conclude that there is not a strong interaction between 

both species used in our feeding trials. Still, we managed to prove the existence of this 

interaction when detritivores were offered eucalyptus as leaf litter showing that in this case 

shredder activity promoted collector’s growth. Moreover we demonstrated that this 

interaction can be compromised with cadmium exposure. 

We provided evidence that sub-lethal concentrations of cadmium can have 

significant detrimental consequences not only because of their direct toxic effects but also 

through effects on shredder-collector interactions and that this effects is dependent on 

resource quality in detritus processing chains.   

To conclude, while we continue to gain a basic understanding of the indirect 

effects of contaminants on species interactions, future studies should incorporate field-

relevant scenarios such as different shredders and collector species, relevant contaminant 

concentrations tested in complex environments and varying in the level of resource quality 

and preferably accounting for long-term effects. This would be extremely valuable since 

the strength of shredder collector interaction is mediated itself by the different species and 

their sensitivity towards specific contaminants. 

The methodologies presented can be used to incorporate ecological complexity 

into experiments using detritus processing chains and address the indirect effects of 



43 
 

contaminants on relevant endpoints such as secondary production and leaf litter 

decomposition, and thus to better predict the potential ecological impacts that these 

compounds might be having in freshwater ecosystems. 
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