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resumo 
 

 

A dispersão biológica das espécies sempre foi um tema importante em vários 

estudos em ecologia de populações. Sabe-se que diferentes espécies de borboletas 

apresentam diferentes tipos de comportamentos: migratório ou sedentário. São 

conhecidos vários estudos genéticos que dizem respeito à estrutura populacional e 

aos problemas de isolamento. No entanto, são geralmente desconhecidos estudos de 

comportamento de dispersão das espécies para a análise populacional. 

Seleccionaram-se, por isso, dois métodos distintos, microssatélites e marcação e 

recaptura, para caracterizar a mobilidade de borboletas.  

Para o método genético foram selecionadas 16 populações (634 indivíduos) de 

Brenthis ino (Rottemburg, 1775), recolhidas em Rheinland-Pfalz, Alemanha e Alsace, 

França, a fim de identificar a estrutura genética das populações em estudo. Através da 

análise por microssatélites de onze loci polimórficos, foi possível identificar a sua 

variabilidade e a estrutura genética entre populações. A diferenciação genética entre 

as populações (FST = 0.040) foi significativa. A média da heterozigosidade observada e 

o erro padrão foi de 0.64±0.013, enquanto a heterozigosidade esperada foi 

0.73±0.008. Oito dos onze loci estavam em equilíbrio de Hardy-Weinberg, mas a 

presença de alelos nulos é provável para três loci. Foi encontrado um sistema de 

isolamento por distância, que é significativo ao ponto de explicar quase 42% da 

diversidade genética entre as populações. Nenhum sistema de isolamento por 

distância foi encontrado nas montanhas de Hunsrück, indicando que ocorre um grande 

fluxo genético entre populações da região. 

O segundo método utilizado foi o de marcação e recaptura. Em Trier, Rheinland-

Pfalz, Alemanha, foram marcados 1.210 indivíduos de cinco espécies diferentes, 

Anthocharis cardamines, Pieris napi, Pieris rapae, Leptidea reali e Araschnia levana, a 

fim de examinar o comportamento de dispersão. A baixa taxa de recaptura indicou que 

se está perante grandes populações de Pieris napi; Pieris rapae e Leptidea reali. A 

função exponencial negativa (NEF) mostrou ser o melhor modelo para prever os 

movimentos de longa distância dos indivíduos por captura/recaptura para as espécies 

Pieris napi, Pieris rapae e Leptidea reali. Os resultados desta previsão indicam que 

estas três espécies poderão voar longas distâncias, apresentando uma grande 

mobilidade.  

Os resultados obtidos para B. ino são importantes uma vez que esta apresenta um 

estatuto vulnerável em Rheinland-Pflaz. Programas de monitorização poderão ser 

aplicados para as cinco espécies do estudo de marcação e recaptura para se 

caracterizar as tendências populacionais de mobilidade. 
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abstract 

 
Biological dispersal has always been an important topic in several studies in population 

ecology. It is known that different butterfly species present a sedentary or migratory 

behaviour. While the genetic analysis intends to respond to population structure and 

isolation issues that are mostly well studied, the effects of different dispersal behaviours of 

species are widely unknown. Therefore, we selected two different methods, a genetic and 

an ecological, to characterise butterfly mobility. For the genetic method we selected 16 

populations (634 individuals) of Brenthis ino (Rottemburg, 1775), collected in Rhineland-

Palatinate, Germany and Alsace, France in order to identify the genetic structure of the 

study populations. Through analysing eleven polymorphic microsatellite loci, we could 

identify the genetic variability and structure among populations.  

The genetic differentiations among populations (FST = 0.040) was highly significant. The 

mean value of observed heterozygosity and the standard error was 0.64±0.013, while the 

one of the expected heterozygosity was 0.73±0.008. Eight of the eleven loci were in 

Hardy-Weinberg equilibrium, but presence of null alleles is likely for three loci. A system of 

isolation-by-distance was found and it explains almost 42% of the genetic differentiation 

among populations. No system of isolation-by-distance was found in the Hunsrück 

mountains leading to a large gene-flow among populations occurring in this region. 

The mark-release recapture was the second method used. In Trier, Rhineland-

Palatinate, Germany, we marked 1.210 individuals of five different species, Anthocharis 

cardamines, Pieris napi, Pieris rapae, Leptidea reali and Araschnia levana in order to 

examine their dispersal behaviour. The Negative Exponential Function (NEF) was the best 

model to predict long distance movements of the capture/recapture individuals for the 

species Pieris rapae, Pieris napi and Lepdtidea reali. The results of this prediction show 

that they can move large distances, therefore, we can assume that these three species 

have a large mobility.  

The results obtained for the genetic structure seems to guarantee a genetic long-term 

survival for most of our 16 populations of B. ino. This is an important result once it has a 

vulnerable status for Rheinland-Pflaz. All five species have a least concern status for the 

same region, although conservative measures should not be forgotten. Butterfly monitoring 

programs are an option that describes large-scale population trends. 
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Preface 

For an easy comprehension and organization of the two methods that we selected for 

the analyses of butterfly mobility, the introduction was separated into four main parts. The 

first part gives an overview on the concept of metapopulations, the different factors that 

can affect them and why this concept is so important for ecological studies. In the second 

part we described the ecology of the study species. Once we choose two different 

analyses for our study, representing the third part based on population genetics, we 

described the use of the microsatellites method. For population ecology, we used the 

mark-release-recapture method, representing the fourth and last part of the introduction. 

 

1. Introduction 

1.1 Metapopulation Ecology – an overview 

According to Levins (1970), a metapopulation is a population consisting of many local 

populations. Later, Harrison (1994) identified several different types of metapopulations, 

e.g., the classical metapopulations (Levins, 1970), mainland-island metapopulations (Mac 

Arthur and Wilson, 1967), or the non-equilibrium population (Harrison, 1991, 1994). 

Furthermore, Hanski (1998) described two different terms for metapopulations, the first 

one is “metapopulation” that has been used for any spatially structured population, while 

the second term is “metapopulation dynamics”, used to refer to any population dynamics 

involving spatial patterns. 

The metapopulation described by Levins (1970) assumed that all local populations 

have a finite probability of extinction, and Hanski (1999) added that, in a long-term, 

survival of a species is at the regional or metapopulation level. The survival probability of 

such a population network is determined by many factors like the ratio of habitat edge to 

interior (Chen et al., 1995; Radeloff et al., 2000), the isolation of habitat fragments 

(Collinge, 2000), patch area (Kruess and Tscharntke, 2000), patch quality (Dennis and 

Eales, 1997; Kuussaari et al.,2000; Hanski and Singer, 2001), microclimate (Braman et 

al., 2000) and the type of matrix between patches (Maes et al., 2004). These factors are 
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responsible for the abundance of organisms in a landscape and therefore, influence the 

turn-over equilibrium of colonizations, extinctions and recolonizations. 

Since the 90´s, several theoretical and experimental studies have analysed the effects 

of fragmentation and habitat size on the survival probability of populations (Peacock and 

Smith, 1997; Hanski, 1999; Knutsen et al., 2000), leading to a reduced gene-flow and thus 

increasing genetic drift with the subsequent loss of genetic diversity (Holzhauer et al., 

2005), often correlated with severe reductions of the fitness of the individuals (Taylor et 

al., 1993; Frankham et al., 2002; Hansson and Westerberg, 2002; Reed and Frankham, 

2003). 

 

Concluding, we can describe the concept of metapopulation ecology as the regional 

assemblages of many organisms guaranteeing the long-term survival of a species 

depending on a shifting balance between local extinctions and re-colonisations in a 

network of more or less interconnected local habitats (Hanski, 1991, 1999; Hanski and 

Gyllenberg, 1993; Rockwood, 2006; Habel and Schmitt, 2009).  

 

1.2 Description of study species 

In this study, we handled six species of butterflies. Brenthis ino for the microsatellite 

analyses, and the five species - Anthocharis cardamines; Pieris napi; Pieris rapae; 

Leptidea reali and Araschnia levana - for the mark-released-recaptured study. 

 

 

1.2.1 Brenthis ino Rottemburg, 1775 

The butterfly family Nymphalidae includes the genus Brenthis, and is represented by 

the following three species in Europe: Brenthis daphne (Denis and Schiffermüller, 1775), 

Brenthis hecate (Denis and Schiffermüller, 1775) and Brenthis ino (Rottemburg, 1775), in 

Germany only B. daphne and B. ino (Figure 1) occur, according to Tolman and Lewington 

(1997). 
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Figure 1 - Forewing and hindwing a) upper- and b) under-sides of I. Brenthis ino and II. Brenthis 
daphne, male and female, respectively (Adapted from Lepidoptera.pl) 

The average forewing length of adult male butterflies is 17 to 20 mm in B. ino (Higgins 

and Riley, 1970). B. daphne and B. ino are morphologically very similar and the main 

distinguishing feature of these two species is in the hind-wing underside base of the cell 

s4 (adjacent to the cell-end), which is wholly yellow and visible as a discrete, rectilinear 

spot separating the cell from the dark postdiscal area (Mihoci and Šašić, 2005). 

Furthermore, Matsuoka et al. (1983) investigated the allozyme data of B. ino and B. 

daphne which showed lack of genetic differentiation between them, indicating that their 

divergence might be a relatively recent event in evolutionary history. B. daphne and B. ino 

are both Palaearctic species. B. ino or the common name Lesser Marbled Fritillary has an 

extensive range and can be found almost all over Europe including major parts of northern 

Europe (Danish mainland, Norway, Sweden and Finland) (http://www.faunaeur.org/), all 

the way until the Ussuri region, North China and Japan (Tolman and Lewington, 1997). 

Although, this species has disappeared in the Netherlands through habitat loss, probably 

land drainage (Chinery, 1989). B. ino is also not present in some South European 

countries like in the northern and middle part of Italy and southern part of Spain and in 

Portugal is described as one of the rarest species (Maravalhas et al., 2004). In Central 

and West Europe, the typical biotopes include humid to wet grasslands, riverine marshes, 

bogs, clearings in wet forests, mountain valleys and subalpine tall herb formations 

(Zimmermann et al., 2005). 

The Lesser Marbled Fritillary is a univoltine butterfly. According to Lepidopterologen-

Arbeitsgruppe (1987), adults fly from mid-June to the end of July and until August at the 

highest altitudes. Males are generally patrolling to search for females, while females 

spend most of their time flying and searching for nectar. The nectar plants most used by 

males are Cirsium spp. and Centaurea jacea L. and by females are Sanguisorba 

officinalis L. and Knautia arvensis L. Coult. (Zimmermann et al., 2005). Mostly females lay 

a

) 

b

) 
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eggs singly at the underside of plant leaves and larvae live solitarily. The information in 

literature about host plant use is incongruous. The most frequently reported plant species 

is Filipendula ulmaria, but also Sanguisorba officinalis and Rubus spp., but some authors 

also mention Aruncus vulgaris, Potentilla palustris, Sanguisorba minor, and a few other 

plant species (e.g., Hrubý, 1964; Henriksen and Kreutzer, 1982; SBN, 1987; Ebert and 

Rennwald, 1991; Lepidoptera Specialist Group, 1991; Tolman and Lewington, 1997; 

Settele et al., 1999; Agnes, 2000; Sawchik et al., 2003). Thus, it seems that B. ino is 

associated with various Rosaceae, perhaps with a trophic range varying with geographic 

locality (Zimmermann et al., 2005). The imagines show a preference for violet flowering 

nectar plants like knapweeds (Centaurea spec.) and thistles (Cirsium spec.) (Ebert and 

Rennwald, 1991). 

The conservation status of B. ino is controversially discussed: while some authors (e.g. 

Zimmermann et al., 2005) argue for increasing populations, its habitats (wet grasslands) 

are declining in many parts of Europe (Gibbs, 2000; Brinson and Malvárez, 2002; 

Öckinger et al., 2006). Most importantly, the drainage of wetlands and the conversion into 

arable fields are responsible for the decline of suitable habitats, especially in Central 

Europe. However, Brenthis ino is a rare example of a successful wetland butterfly 

(Zimmermann et al., 2005). Van Swaay and Warren (1999) reported that the Lesser 

Marbled Fritillary populations are increased in countries like Hungary, Slovenia, and 

Croatia, as well as in Luxembourg and the Czech Republic. However B. ino has 

decreasing in Austria, where a decrease of 75-100% has been observed over the last 25 

years, and a decrease of 15-25% as been reported in Germany, Denmark and Romania 

(Swaay and Warren, 1999), as well as in Bulgaria (Ganev, 1985) and Serbia (Jakšić, 

2003). 

According to the IUCN 2010 classification, the Lesser Marbled Fritillary has been 

categorised as least concern (LC) in Europe and specifically as not threatened (NT) in 

Germany (Van Swaay and Warren, 1999). According to Schmidt (2010) in the region of 

Rheinland-Pfalz, B. ino has a vulnerable status.  

 

1.2.2 Anthocharis cardamines Linnaeus, 1758 

Anthocharis cardamines belongs to the family Pieridae. This species is widespread 

from the Iberian Peninsula through nearly all Europe, except in the northernmost parts of 

Scandinavia, and extends through temperate Asia to China (Tshikolovets, 2011; Kudrna 

et al., 2011). Anthocharis cardamines can be found in a variety of moderately damp 

meadows, woodland margins, rides and clearings (Buszko and Mastowski, 2008), open 
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grassy slopes, steppes, rivers valleys, roadsides and gardens (Tshikolovets, 2011). 

During the dispersal period, butterflies also visit dry open habitats (Buszko and 

Mastowski, 2008). 

The Orange-tip butterfly is a univoltine butterfly. According to Courtney and Duggan 

(1987) and Asher et al. (2001), adults normally fly between mid-April and mid-June, they 

may also be seen as early as mid-March in southern countries, and occasionally until 

August in mountains (Tshikolovets, 2003; 2011). 

Males have vivid orange tips, whereas female have no orange coloration and are 

predominantly white on the uppersides. On the underside wings, they have a mottled 

pattern of yellow-greenish and black scales (Figure 2) (Dempster, 1997; Asher et al., 

2001). Females lay eggs at the base of flower heads on plants growing in the full sun. It is 

unusual that more than one egg is laid on a single flower head (Asher et al., 2001). The 

pupae overwinter in tall vegetation close to the larval food plants (Tshikolovets, 2003). 

 

Figure 2 - Forewing and hindwing upper- and under-sides of Anthochardis cardamines, female and 
male, respectively (Adapted from Lepidoptera.pl) 

The average forewing length of adult male butterflies is 33-48 mm and 29-49 mm in 

females (Tshikolovets, 2011). As host main plants, several crucifers are used, especially 

Cardamine pratensis. Other plants like Alliaria petiolata, Sisymbrium officinalis, Barbarea 

vulgaris, Brassicae rapa, Sinapis arvensis, Cardamine amara, Arabis hirsutam, Lunaria 

annua and Hesperis matronalis can also be used (Wiklung and Åhrberg, 1979, Asher et 

al., 2001). The plant species Allaria officinalis, Arabis turrita, A. alpine, Biscutella mollis, 

Brassicae campestris, Cardaminopsis arenosa, Hesperis lacinata and Isatis tinctoria have 

been also described as food plants for Anthocharis cardamines (Tshikolovets, 2003; 

2011). 

Orange-tip butterfly have a European status as NT and with a low butterfly 

conservation priority (Swaay and Warren, 1999). According to IUCN 2010, it is classified 

in Europe as LC. This status also applies to the region of Rheinland-Pfalz (Schmidt, 

2010). 

 

 



 

6 

1.2.3 Pieris rapae Linnaeus, 1758 

Pieris rapae belongs to the family Pieridae. This species has a range from North Africa 

and Macaronesia through nearly all Europe and temperate Asia to Japan (Kudrna et al., 

2011). It was introduced in the 19th century and now is a resident and widespread species 

in North America and Australia (Baker, 1978; Asher et al., 2001; Tshikolovets, 2011). As 

an ubiquitous species, it inhabits open habitats on farmland and woodland (Buszko and 

Mastowski, 2008), these habitats include cultivated land from sea level up to 3000 m 

(Tshikolovets, 2011), gardens, hedgerows and wood edges where wild crucifers occur 

(Asher et al., 2001). The species, sometimes is regarded a pest in gardens and cabbage 

fields. 

The Small White is a multivoltine butterfly from February to October (November) in 

more southern regions (Asher et al., 2001; Tshikolovets, 2003; 2011), but it’s a univoltine 

butterfly, from May – August, in the North and in high mountains. Imagos fly throughout 

the year in the extreme south of Europe and the Canary Islands (Tshikolovets, 2003; 

2011).  

Males have one black spot on top of the upperside forewings, whereas females present 

two black spots, and usually have a more pallid colour (Figure 3). The bottle-shaped eggs 

are laid only in warm weather, singly on the underside of leaves of host-plants, although 

there may be several eggs on each plant (Courtney, 1986; Asher et al., 2001). Pupation 

takes place in a variety of situations: the spring generation may remain on the foodplant or 

nearby vegetation, while the overwintering pupae are generally attached to a surface of a 

wall, post or tree trunk (Courtney, 1986; Asher et al., 2001). 

 

Figure 3 - Forewing and hindwing upper- and under-sides of Pieris rapae, male and female, 
respectively (Adapted from Lepidoptera.pl) 
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The wingspan of males and females are from 39-50 mm (Tshikolovets, 2011). The 

main host-plants are cultivated Brassicaceae, specially cabbages and Tropaeoleum 

majus. The species Brassica oleracea, Sinapis arvensis, Sisymbrium officinale, Alliaria 

petiolata, Lepidium draba, Reseda lutea are used to a lesser extent (Asher et al., 2001) 

and many species of Brassicaceae, Resedaceae, Tropaeoloceae and Capparaceae, can 

also be used (Tshikolovets, 2011). 

The Small White is considered of low conservation priority and presents a European 

status as not threatherned (NT) (Swaay and Warren, 1999). The IUCN 2010 refers to this 

butterfly as LC in Europe, and according to Schmidt (2010), this species has also a LC 

status in the region of Rheinland-Pfalz. 

 

1.2.4 Pieris napi Linnaeus, 1758 

Pieris napi belong to the family Pieridae. This species occurs in the temperate and 

subtropical parts of the Paleartic (Tshikolovets, 2011), so it is distributed from North-West 

Africa through Europe, throughout the temperate parts of North Asia eastwards to Japan 

(Kudrna et al., 2011). According to Asher et al. (2001), this species also occurs in North 

America and has a stable range in most of the European countries. It inhabits a variety of 

open habitats and open woodlands (Buszko and Mastowski, 2008; Tshikolovets, 2003; 

2011). Adults occur widely but tend to gathers in damp, lush vegetation where their 

foodplants are found, especially in hedgerows, ditches, bank rivers, lakes and ponds, 

damp meadows and moorland, woodland rides and edges (Asher et al., 2001; 

Tshikolovets, 2003; 2011). Butterflies can be observed in cultivated areas from sea level 

up to 2000 m or more (Tshikolovets, 2011). 

The Green-veined White presents a voltinism that depends on the locality and altitude. 

Therefore, it is univoltine from June to July in colder climates, represented by higher 

latitudes and altitudes, and is bivoltine or trivoltine from March to November in the south 

(Courtney, 1986; Tshikolovets, 2003; Tshikolovets, 2011; Asher et al., 2001). 

Males have one black spot on top of the upperside forewings, whereas females present 

two black spots. At the underside hindwings, both have veins distinct by dark streaks 

(Figure 4). Females usually deposit their eggs on small plants, laying them singly on the 

undersides of leaves. The pupae, in the northern populations remain in well-hidden 

positions, among the surrounding vegetation while, in the southern populations, the 

second or the third generation overwinters as pupae (Dennis, 1985; Asher et al., 2001). 
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Figure 4 - Forewing and hindwing upper- and under-sides of Pieris napi, male and female, respectively 
(Adapted from Lepidoptera.pl) 

The average forewing length of adult male butterflies is 34-50 mm, while females show 

an average length of 32-48 mm (Tshikolovets, 2011). The main host plants are normally 

wild crucifers such as Alliaria petiolata, Cardamine pratensis, C. amara, Sisymbrium 

officinale, Rorippa nasturtium-aquaticum, Sinapis arvensis, Brassica oleracea and 

Raphanus raphanistrum. Occasionally they can also be found in cultivated crucifers as 

Tropaeolum majus (Asher et al., 2001). Tshikolovets (2011) even add Arabis turrita, A. 

sagittata, Brassica campestris and Cardamine palustris to the list of species. 

The Green-veined White is presently of low butterfly conservation priority and it ranks 

with a European status as NT (Swaay and Warren, 1999). According to IUCN 2010, it is 

rated in Europe as LC, and also considered LC by Schmidt (2010) for the region of 

Rheinland-Pfalz. 

Agreeing with the comment made by Tshikolovets (2011), the geographical variations 

and relationships between plain and mountain, northern and southern populations are not 

well understood and consequently require further study. 

 

1.2.5 Leptidea reali Reissinger, 1989 

Leptidea reali belongs to the family Pieridae. In some countries, it overlaps with a very 

similar species, Leptidea sinapis (Asher et al., 2001; Buszko and Mastowski, 2008; 

Tshikolovets, 2011; Kudrna et al., 2011). In recent years, it was reported from almost all 

European countries, except Great Britain and northernmost Scandinavia, Caucasus and 

Transcaucasia, but its true distribution requires further clarification (Tshikolovets, 2011). 

The species inhabits dry or wet half-open woodland clearings and margins (Buszko and 

Mastowski, 2008), open and bushy flowery meadows, margins of cultivated areas, 

sometimes also open grassy areas up to 2000 m (Tshikolovets, 2011). 
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Reál’s Wood White is univoltine from end of May until August in the North and 

mountains, bivoltine from May to June and July to August in the central countries of its 

distribution, and is trivoltine from Mach to October in the South (Tshikolovets, 2011). 

Identification of the two Wood Whites requires examination of genitalia. Both species 

have rounded white wings, with dark wing tips on the forewing on the upperside, present 

in males, while females have more pallid coloration or even do not have the dark wing tips 

(Figure 5). On the underside of hindwing, they are usually greenish with grey markings 

(Asher et al., 2001; Tshikolovets, 2011). The eggs are similar in both species and are laid 

singly on the upper parts of foodplants. Identical with L. sinapis, this butterfly overwinters 

in the pupae (Asher et al., 2001; Tshikolovets, 2011). 

 

Figure 5 - Forewing and hindwing upper- and under-sides of Leptidea reali, male and female, 
respectively (Adapted from Lepidoptera.pl) 

The wingspan of males is from 32 to 41 mm and the females are slightly bigger from 33 

to 43 mm (Tshikolovets, 2011). The main host-plant is Lathyrus pratensis (Tshikolovets, 

2011). 

According to IUCN 2010, Reál’s wood white is rated in Europe as LC and is also 

described as a LC status butterfly by Schmidt (2010) for the region of Rheinland-Pfalz. 

1.2.6 Araschnia levana Linnaeus, 1758 

Araschnia levana belongs to the family Nymphalidae and presents a range from the 

Pyrenees to the Ural Mountains, through most of Europe (absent in the North and most of 

the Mediterranean region) and across the woodland belt of temperate Asia eastwards to 

Japan (Kudrna et al., 2011), but also in the Caucasus and Transcaucasia (Tshikolovets, 

2003; Tshikolovets, 2011). It inhabits meadows and various open places with nettles in 

light or mixed woodland, bushy margins, grassy gorges and small rivers and clearings in 
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damp broad-leaved forests (Asher et al., 2001; Tshikolovets, 2003; 2011). It is also found 

in neglected parks and ruderal habitats (Buszko and Mastowski, 2008).  

Araschnia levana on the one hand is a univoltine butterfly at higher altitudes and in 

northern areas, from June to early August, but on the other hand generally bivoltine in 

warmer regions from late April until May and late June to August (Asher et al., 2001). 

Occasionally it is trivoltine in the southern areas and in particularly warm years (Fric and 

Konvička, 2000; Tshikolovets, 2003, 2011). When presenting bivoltine phenology, the 

brood named levana (Linnaeus, 1758) and prorsa (Linnaeus, 1758) represent the spring 

and summer broods, respectively. When occurring in a trivoltine phenology, the third 

brood named porima (Ochsenheimer, 1808) (Tshikolovets, 2003; 2011).  

The Map, the common name for Araschnia levana, demonstrates a big different 

appearance between the adult butterflies of the first and the second generation (Asher et 

al., 2001). The forewings of the first brood have a reddish-orange background colour with 

a black standard pattern and black margins, while the second brood is black, with one 

intermittently white list, followed for orange lists and with white markings in the margins of 

the hindwings (Figure 6), the third brood have brownish background with listed orange 

colour. On the undersides, the wings have a colourful pattern in males and a bit different 

one in females. 

 

Figure 6 - Forewing and hindwing upper- and under-sides of Araschnia levana, male and female, 
respectively, with the identification of the form prorsa, the summer generation (second brood). 
(Adapted from Lepidoptera.pl) 

Eggs are laid in a long string that resemble nettle flowers, and are fixed to the 

undersides of the leaves of its foodplants (Asher et al., 2001). The Map butterfly 

overwinters in the pupal stage (Asher et al., 2001; Tshikolovets, 2011). The average 

forewing length of the adult butterflies is from 28 to 39 mm (Tshikolovets, 2003; 2011). 
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The main host plants are Urtica dioica and in rare cases U. urens (Asher et al., 2001; 

Tshikolovets, 2003; 2011).  

According to IUCN 2010, it has the status of LC in Europe. The Butterfly conservation 

priority is not assessed (Swaay and Warren, 1999), and it also considered with the status 

LC by Schmidt (2010) in the region of Rheinland-Pfalz. 

1.3 Why Microsatellites? 

The recent and strong decline of biodiversity caused by anthropogenic impacts is a 

phenomenon of world-wide implications (Ostfeld and Logiudice, 2003; O’Connor and 

Crowe, 2005; Brooks et al., 2006; Junker and Schmitt, 2010). This deterioration of 

biodiversity is not only occurring in the observed global biodiversity hotspots like tropical 

rainforests and coral reefs, but the European continent is also suffering a high rate of 

biodiversity loss (Greuter, 1994; Thomas et al., 2004; Schmitt and Rákosy, 2007). 

Consequently, member states of the European Union established the NATURA 2000 

program aimed to counteract the biological depletion of Europe and to conserve the 

emblematic diversity in all of its regions (Commision of the European Communities, 2002; 

Mehtälä and Vuorisalo, 2007). To reach this goal, a high number of animal and plant 

species along with their specific habitats are strictly protected and listed in several 

Annexes of the Habitat Directive (Kudrna, 2000). 

The increasing destruction, degradation and fragmentation of habitats are the main 

reasons for such a strong species loss during the last few decades (e.g. Abbitt et al., 

2000; Fahrig, 2003; Henle et al., 2004). According to Kraus et al. (2004), the habitat 

fragmentation is one of the major threats to biodiversity leading to the extinction of species 

(Reed, 2004). The two main components of habitat fragmentation, reduced fragment size 

and reduced connectivity, produce different population effects (Krebs, 2001).  

This process of habitat fragmentation creates dispersal barriers, leads to isolation of 

populations (Gerlach and Muslof, 2000), and results in a decrease of genetic variation 

within populations and an increase of genetic differentiation among populations 

(Frankham et al., 2002; Marsh et al., 2008). Consequently, increased risks of inbreeding, 

resulting in negative effects on the respective populations and also increase the 

probability of population extinctions. Hence, smaller habitats cause smaller populations 

and increased isolation leading to reduced colonisation rates, hereby enhancing the risk of 

extinction (Rosenzweig, 1995). Therefore, the genetic diversity of populations decreases 
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with increasing habitat fragmentation (e.g. Young et al., 1996; Buza et al., 2000; Pedersen 

and Loeschcke, 2001; Keller and Largiadèr, 2003; Williams et al., 2003).  

Beside actual anthropogenic habitat fragmentation, species are often naturally isolated 

because of biotic and abiotic (geological and microclimatical) conditions and evoke long 

term species specific abundance patterns (Habel et al., 2009b). Consequently, it is 

important that the population genetic studies take the different factors like the historical 

level of isolation and recent differentiations among populations into account (e.g. 

Bermingham and Avise, 1986; Cunningham and Moritz, 1998). 

 

The decrease of genetic diversity, used as an indicator of inbreeding, will increase the 

extinction risk of populations due to the decline in fitness of individuals (Saccheri et. al., 

1998; Reed and Frankham, 2003). Therefore, conservation biologists have to pay 

attention on the effects of habitat fragmentation on genetic diversity (Krauss et al., 2004). 

Typically, conservation genetic studies have analysed fragmentation effects by 

documenting patterns of genetic differentiation among populations and the differing levels 

of genetic diversity of these populations (Harrison and Hastings, 1996; Oostermeijer et al., 

1996; Young et al., 1996, Habel et al., 2009b). 

Due to the decline of its habitats in Central Europe, we selected the butterfly species 

Brenthis ino that might be affected by anthropogenic landscape changes. Therefore, the 

knowledge of the genetic structure, diversity and differentiation of populations as well as 

gene-flow among populations can be helpful for understanding the effects of increasing 

landscape fragmentation. Thus, we analysed fifteen populations situated in the region of 

Rheinland-Pfalz (south-western Germany) and one in the region Alsace (north-eastern 

France) to address these questions. The use of microsatellites as analytical tool is 

explained by their high variability making them useful for the detection of genetic diversity 

and differentiation in isolated and fragmented populations, since they show more often 

polymorphisms than other molecular markers (Selkoe and Toonen, 2006). Thus, 

microsatellites will be suitable to answer our population genetic questions (Frankham et 

al., 2002). To our knowledge, no microsatellite primers have been available for the Lesser 

Marbled Fritillary prior to this study (Molecular Ecology Resources Primer Development et 

al., 2012). 

In the near future, the increasing fragmentation of the landscape and the progressive 

habitat loss caused e.g. by the intensification of agriculture and infrastructural 

developments may therefore become the most important issues for conservation biology 
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in these areas (Junker and Schmitt, 2010). Hence, it will be of essential importance to 

obtain knowledge about specific indicator organisms to analyse their potential to adapt to 

these new circumstances and to minimize the negative consequences for the biodiversity 

as a whole. This may help to avoid similar developments as those being responsible for 

the critical situation of many species groups in Central Europe (Junker and Schmitt, 

2010). 

1.4 Biology of Dispersal 

The biology of dispersal is essential to many areas of ecology and evolutionary biology, 

from issues of population regulation, through community dynamics, to gene-flow and 

speciation (Clobert et al., 2001; Bullock et al., 2002; Bowler and Benton, 2005; Kokko and 

Lopez-Sepulcre, 200). Furthermore, in the perspective of habitat loss, fragmentation and 

global climate change, understanding dispersal is crucial. According to Stevens et al. 

(2010), the ecological and evolutionary functioning of natural populations affected by 

habitat fragmentation, alterations of their climatic envelopes, or a mixture of both, depends 

on (i) the availability of functionally connected networks of habitats, and (ii) sufficient 

dispersal ability of the affected species to track these changes. Dispersal also drives the 

spatial and temporal redistribution of genotypes being inseparable from the evolution of 

life-history traits (Ronce, 2007).  

It is important to identify the three different types of movements (mobility, dispersal and 

migration - Figure 7.) that are presented by butterflies (Stevens et al., 2010). For example, 

dispersal can be defined as the spreading of individuals away from each other (Begon et 

al., 2006), or as the movement of an organism away from its birth place or from centres of 

population density (Ricklefs and Miller, 1999). The term ‘mobility’ is often used to 

described types of butterfly movement, including foraging movements, vagrancy or 

migration propensity. However, in turn the term ‘migration’ normally refers to directional 

and periodically reversed mass movements (even if these movements are not performed 

by the same individual) (Stevens et al., 2010). Commonly, dispersal studies are separated 

according to their methodology into direct and indirect investigations. On the one hand, 

direct investigations take into consideration mark-release-recapture (MRR) or point-

release experiments, the dynamics of patch colonisation and extinctions, data on range 

expansions, occupancy of islands, or results obtained from cage experiments. On the 

other hand, indirect methods rely on the description of the distribution of genetic diversity 
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among local populations from which gene-flow and inter-population genetic distances are 

inferred (Stevens et al., 2010). 

 

Figure 7 - Schematic representation of the meta-analysis according to Stevens et al. (2010) on 
dispersal, mobility and migration in butterflies. MRR = mark-release-recapture studies; XPs = 
experimental studies; FST = measure of genetic differentiation among populations: FSTA from 
allozymes, FSTμ from microsatellites, are some of the studies that can provide an understanding on 
butterfly mobility 

According to Stevens et al. (2010), butterflies have long been recognized as ideal 

models for the study of fragmented populations for two main reasons. First, the 

specialization makes the habitats relatively easy to map in heterogeneous landscapes for 

most species (Baguette and Mennechez, 2004), and second, the natural history of most 

species is well known (e.g. Dennis, 1992; Ehrlich and Hanski, 2004; Dover and Settele, 

2009; Boggs, 2009). The amount of literature presenting butterflies as models for different 

types of studies is vast. They have been used as models for studies focusing either on 

molecular adaptation leading to energetic optimization (Watt and Boggs, 2003), or on 

orientation processes (e.g. Rutowski, 2003). Even more, they are commonly used as 

biological models in integrated studies of dispersal (Hanski and Kuussaari, 1995; Ehrlich 

and Hanski, 2004; Hovestadt and Nieminen, 2009) and several recent reviews report on 

butterfly dispersal in the context of climate change (Dennis, 1992; Parmesan et al., 1999; 

Hill, Thomas and Huntley, 1999; Hill et al., 2002; Nilsson et al., 2008; Settele et al., 2008; 

Poyry et al., 2009), habitat fragmentation (Heikkinen et al., 2005; Dover and Settele, 

2009) and habitat deterioration (Ockinger et al., 2006).  

Adult butterflies usually move for foraging, egg laying or looking for mates, however, 

there is not so much literature describing how the nature of movements affect the 

distribution of butterflies at scales beyond that of a single habitat patch. It is expected that 

different species will show different ways of such movements (Norberg et al., 2002). 
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According to the same author, some species may be more willing to cross the patch 

borders into unsuitable habitat and thereby have a greater chance of finding neighbouring 

patches and utilizing a larger habitat area. Consequently, much species will have a more 

extensive local distribution than less explorative species. A large variation in mobility is 

found among adults of different butterfly species (Norberg et al., 2002). Some migratory 

species, for instance, can move several dozens of kilometres a day (Baker, 1978) while 

other species rarely move more than a few metres (e.g., Thomas, 1985; Thomas and 

Harrison, 1992). Apart from true migratory behaviour, considerable variation in mobility 

exists among species, both in terms of distance moved and in the frequency of inter-patch 

movements (e.g., Shreeve, 1995). This last type of mobility can be described as a result 

of habitat exploration (also referred to as ranging, Dingle, 1996). 

According to Ehrlich (1961), some unsuitable areas (not only depending on geography, 

but also on habitat characteristics) occasionally are hard to pass through and a butterfly 

may “decide” to stay within a certain area; this can be explain by the term ‘intrinsic 

barriers’ affecting dispersal. Later, Gilbert and Singer (1973) affirm that such intrinsic 

barriers can be seen by different ways between populations of the same species. 

Studies on mobility in butterflies are often based on mark–release–recapture methods. 

According to Norberg et al. (2002) not knowing what happened to butterflies that were 

never recaptured is a possible disadvantage of this method, and when the recapture 

frequency is low, it can become particularly troublesome. 

For all this, we can affirm that dispersal behaviour (i.e. movements of individuals from 

their place of birth to another one; Nathan, 2003; Trakhtenbrot, et al., 2005) is becoming a 

more and more significant key to the correct comprehension of the life-history for many 

species, especially when the main subjects are foraging and reproduction. This movement 

of individuals will lead to gene-flow among populations, and that is why dispersal is vital 

for the connectivity of populations, resulting in different consequences for the fitness of the 

individuals on population dynamics and on population genetics. Furthermore, dispersal 

allows adaptation to the changing environmental conditions (that actually are happening 

so fast) and influences the distribution and abundance of species in different types of 

habitats. However, dispersal is a very sensitive and complex ecological process, which is 

influenced by intraspecific densities (Lidicker, 1975), habitat quality (Wolf and Lidicker, 

1980; Lurtz et al., 1997), landscape structure (Hill et al., 1996; Bennett, 1999; Poethke 

and Hovestadt, 2002), resource allocation in the surrounding landscape (Root and 

Kareiva, 1984; Munguria et al.1997) and climatic conditions (Parmesan, 1996). Therefore, 

Sutherland and Dolman (1994) emphasize the great importance of behaviour that can 
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leads to a better understanding of all dispersal processes that do occur in some groups of 

animals. 

According to Baguette (2003), the long-term survival of butterflies in fragmented 

landscapes will depend on different ecological key-factors enabling the persistence of 

stable metapopulation systems. Therefore, we selected a study site in south-western 

Germany, and established a transect that as predominant habitats consists of vineyards 

and grasslands. The study site was located in the Avelertal, a valley in Trier. We 

performed a mark-release-recapture study almost over the entire flight period of five 

species: Anthocharis cardamines, Pieris napi, Pieris rapae, Leptidea reali and Araschnia 

levana to set a deeper understanding of the ecology and the adult behaviour of these 

species. Dispersal distances define the spatial scale of the population and determine the 

range of recolonisation after extinction events (Hanski ,1998; 2004) and that is why they 

will have a central importance in this study. Finally, and although these species do not 

specifically need a conservation programme on this area, we will try to identify some 

general conservation applications to the five study species. 

1.5 Objectives 

Our main aim was to identify mobility differences among populations in different areas 

using two different types of approaches, microsatellites and mark-release recapture. 

Therefore we selected study places where the populations of the target species, Brenthis 

ino, Anthocharis cardamines, Pieris napi, Pieris rapae, Leptidea reali and Araschnia 

levana were well represented as well as was/were their host plant(s). 

1.5.1 Microsatellites 

The aim of this part of our study was to determine the genetic structure and genetic 

diversity of Brenthis ino in sixteen populations, distributed in Rhineland-Palatinate 

(Germany) and Alsace (France). We intend to answer the following questions: 

i) Has Brenthis ino significant genetic structure among the studied populations? 

ii) If so, how is the genetic differentiation at an interregional level among the five 

different areas? 

iii) Has a system of isolation-by-distance established in this species?  
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iv) Does the Brenthis ino population from Ballon d’Alsace (France) show reduced 

genetic variability? 

v) Do populations from the Hunsrück mountains represent one major genetic unit 

without further substructures? 

vi) What are the conservation consequences of these results?  

1.5.2 Mark Released Recapture 

The main aim of this part of the study was to investigate: 

i) Resource use strategies, the influence of behaviour on movement and 

dispersal patterns within a mostly homogenous habitat for species with a little 

known mobility potential. 

ii) We also try to compare the tendency towards habitat exploration among these 

species that differ in their distribution patterns. 

iii) Furthermore, we intend to examine the dispersal behaviour by applying the 

best prediction model for long distance movements of individuals, once this 

may directly influence the functioning of the population system.  

 

2. Materials and methods 

2.1 Study region and study sites 

2.1.1 Microsatellites analysis 

The 16 populations of our study are located in the western part or the region 

Rheinland-Pfalz in Germany, in different locations, Westerwald, Pfalz, Eifel and Hunsrück, 

only one populations was from Ballon d’Alsace, identified as an outgroup (Figure 8). This 

last population is from the region Alsace in north-eastern France, close to the border with 

Baden-Württemberg, Germany. The samples were collected in the summer of 2010 and 

2011 and were immediately stored in liquid nitrogen. This study sites were chosen 

because (i) pre-studies indicated suitable Brenthis ino populations and (ii) they all 

presented a high abundance of the larval food plant Filipendula ulmaria. 
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Figure 8 - Geographical location of the study populations. All populations are marked in yellow in the 
map, Morbach 1 and Morbach 2 are marked as Morbach in the map due to their geographical 
proximity. The main cities, Trier, Mainz and Kaiserslautern from the region Rheinland-Pfalz, Germany, 
are marked in white. ® Google Earth 2012 

 

 

2.1.2 Mark Release Recapture analysis 

The study area for the MRR is located in the valley named Avelertal in Trier 

(Rhineland-Palatinate, Germany: 49°45'N, 6°40'E) at an altitude between 100 and 150 m 

a.s.l. situated between the city centre and the Trier University Campus (Figure 9). 
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Figure 9 - Map of the mark-release-recapture study site in Avelertal - Trier, Rhineland-Palatinate, 
Germany. The transect path is marked in yellow. ® Google Earth 2012 

The transect’s main habitats are vineyards surrounded and interspersed by meadows. 

The main plants are Vitis vinifera, Trifolium pratense, Trifolium repens, Clinopodium 

vulgare, Echium vulgare, Lythrum salicaria and some trees for example Fagus sylvatica, 

Acer pseudoplatanus, Acer platanoides, Acer campestris and Corylus avellana. For an 

easier comprehension, the 4 km transect was divided into seven sections (seen Figure 

10) depending on different characteristic like different habitats and contact with different 

anthropogenic factors. 

 

Figure 10 - The seven different sections of the Avelertal transect. ® Fernandes, C. 
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This study area was chosen because (i) a pre-studies indicated a suitable population 

for all species, Anthocharis cardamines, Pieris napi, Pieris rapae, Leptidea reali and 

Araschnia levana in the MRR study and (ii) the abundant presence of all of their host-

plant. 

2.2 Sampling and genetic analysis 

2.2.1 Microsatellites analysis 

The samples were collected in July 2010 and 2011 (Table 1), and stored in liquid 

nitrogen. DNA was extracted from thorax muscle tissue using the Qiagen DNeasyTM 

Tissue Extraction Kit (QUIAGEN, Hilden, Germany 2004) following the manufacturer’s 

protocol. The gut tissue inside the chitin was used and it was digested during two hours 

with the “Proteinase K” at 56°C. After incubation, the DNA was purified with different 

washing buffers and then eluted as recommended in 100 μl ddH20 (double distilled water).  

The resulting DNA was stored in a freezer at -20°C. 

 

Table 1. Sampling localities and their regions as well as the number of sampled Brenthis ino 
individuals 

Population Location (Lat./Long.) Number of Individuals 

Alsace, France   

Ballon d’Alsace 47°49’N, 6°50E 40 

Westerwald   

Himburg 50°34'N, 7°53'E 40 

Eifel   

Heyroth  50°17’N, 6°48’E 40 

Holzmaar 50°07’N, 6°52’E 29 

Wascheid 50°15’N, 6°24’E 42 

Pfalz   

Fischbach 49°24’N, 7°55’E 40 

Rodalben 49°14’N, 7°38’E 43 

Hunsrück   

Birkenfeld 49°39’N, 7°09’E 40 

Grimburg 49°37’N, 6°53’E 40 

Heddert 49°38’N, 6°45’E 40 

Lampaden 49°38’N, 6°42’E 40 

Morbach 1 49°48’N, 7°07’E 40 

Morbach 2 49°48’N, 7°07’E 40 

Niederkell 49°35’N, 6°42’E 40 

Reinsfeld 49°40´N, 6°52’E 40 

Wawern 49°39’N, 6°32’E 40 

Total - 634 
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We first tested unlabeled primer pairs in three individuals using gradient PCRs on a 

MultigeneTM OptiMax Thermal Cycler (Labnet) to search for the best annealing 

temperature. The concentrations for a 10 µl PCR reaction were: 4.4 µl 5PRIME 

HotMasterMix (0.2 U Taq polymerase, 45 mM KCl, 2.5 mM Mg2+, 200 µM of each dNTP), 

5.7 µl H2Obidest, 0.0625 pmol forward and reverse primer and 10-20 ng template DNA. 

PCR conditions were as follows: initial denaturation of 2 min at 94°C followed by 33 cycles 

(denaturation: 30 sec at 94°C, annealing: 30 sec with a gradient of 50-60°C, elongation: 

60 sec at 72°C) and final elongation of 10 min at 60°C. For all eleven primer pairs, we 

achieved reliable PCR conditions, which were combined in four multiplex PCR reactions 

(Table 2). For each multiplex reaction, we prepared 10 µM primer stock solutions (forward 

and reverse primers of each locus included). 

The multiplex stock solutions contained 4 µl of each primer (see Table 2). Water was 

added up to 100 µl total volume. For each reaction, we used 1.1 µl of the primer mixture, 

5.5 µl Type-it 2x Multiplex PCR Master Mix (Qiagen) and 0.7 µl template DNA. PCR 

conditions were as follows: initial denaturation of 5 min at 95°C followed by 33 cycles with 

denaturation of 30 sec at 95°C, annealing of 90 sec at primer-specific temperatures (Table 

2), elongation of 30 sec at 72°C and terminated with an elongation of 20 min at 60°C. 

MegaBACE Fragment Profiler 1.2 (Amersham Biosciences) was used for scoring. 
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Table 2. Characterization of eleven polymorphic microsatellite primers for Brenthis ino with GenBank 
accession numbers; locus name; repeat motif; primer sequence of forward (F) and reverse (R) primer; 
fluorescence dye name (Tag); multiplex reaction (MPR); allele size range and annealing temperature 
(Ta) 

Accession 

no. 
Locus 

Repeat 

motif 
Primer Sequence (5‘-3‘) Tag MPR 

Allele 

size 

range 

(bp) 

Ta 

Q688092 Bi3 (AC)11 

F:GAGATGATACTCTTACACTGCT 

R:ATAGTATGTTTGTTATTTCATGGTG 

FAM 1 255-287 53°C 

JQ688093 Bi8 (AC)13 

F:ATTTGTAACGCGTCTTCCCAC 

R:GATTGACGACTAGAACTGGC 

HEX 1 359-415 53°C 

JQ688094 Bi19 (AC)11(AT)7 

F:TCCTTTGGATCTTCTTAGCCGA 

R:ATGTGTATTTGTCTAGTCTCATTG 

TAMRA 2 234-308 53°C 

JQ688095 Bi24 (AC)18 

F:GTTGACTTTCGACCGCATAC 

RAAGACGCACACGCGCACT 

HEX 2 205-225 53°C 

JQ688096 Bi29 (AC)9 

F:TAAGCCTCAACCTGGTGCTG 

R:CACGAATGTTTGTACTCCAGTC 

HEX 3 274-292 55°C 

JQ688098 Bi33 (TA)4(TG)14 

F:TTTTATAGAACCAAGACCACGTC 

R:CTACTAATTCACAGGTTGCTAC 

FAM 2 280-290 53°C 

JQ688099 Bi36 (AC)23 

F:CGAATCTCGTCATAGACTGAAG 

R: ACAATGGCTACGATGATACTGC 

TAMRA 4 271-309 55°C 

JQ688100 Bi38 (AC)11 

F: AAGGAGTCATTCGACCGCGA 

R:CACCGTTAGCGCTATCGAG: 

FAM 4 319-325 55°C 

JQ688101 Bi39 (TG)8 

F:AGTTGTTAAAGAACGGCAAGTATG 

R:TATTCTCACTTCGCTCGGATG 

HEX 4 304-312 55°C 

JQ688102 Bi41 (AT)21(GT)10 

F:ACAATGCGTCTCCTAGACCG 

R:ACTGGAGTACAAACATTCATGC 

HEX 2 331-403 53°C 

JQ688103 Bi44 (CT)11 

F:AATCGAATGAGCCCAAACTCG 

R:TACCCTTGCTTCGCTCGTG 

FAM 3 182-200 55°C 

 

2.2.1.1 Statistic Microsatellites 

To prevent possible miscoding of results like possible scoring errors (e.g. stutter bands, 

large allele dropout or null alleles) (cf. Selkoe and Toonen, 2006), our data was analysed 

with the program Micro-Checker 2.2.1 (van Oosterhout et al., 2004). Allelic richness and 
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the test for linkage disequilibrium were calculated using FSTAT 2.9.3.2 (Goudet, 1995). 

Allelic richness was preferred over allele diversity (mean number of alleles per locus) as it 

takes into account differences in sample size among sample location. 

Hierarchical genetic variance analyses (AMOVA), number of alleles, observed and 

expected heterozygosities, tests on Hardy Weinberg equilibrium (HWE) and F Statistics 

(FST) were calculated using the GenAlEx 6.4 software (Peakall and Smouse, 2006). 

HWE can be calculated by: 

p2+2pq+q2 = 1 

with p and q being the allele frequencies from the different regarded alleles. 

Concerning this context, it is important to know that the observed heterozygosity (Ho) is 

the real heterozygosity of all individuals over all samples. The expected heterozygosity 

(He) equates to the possibility that two random samples have got different alleles. He is 

calculated from the observed allele frequencies with the expression: 

He =1-Σx2
i (Grauer and Li, 2000) 

with xi being the frequency of the allele i. 

AMOVAs were calculated using conventional F-statistics based on allele frequencies 

and the infinite alleles model (IAM) (Slatkin, 1995). This approached included three 

hierarchical levels: among populations, among individuals within populations and within 

individuals. Pairwise differentiation between populations was tested for with pairwise FST 

using the GenAlEx 6.4 software (Peakall and Smouse, 2006). With the same software, 

isolation by distance was tested. We tested by means of a Mantel test to infer about the 

correlations between the geographical distances and the genetic distances (pairwise FST 

values) (Nei, 1978) for (i) all populations and (ii) combining only the populations of the 

Hunsrück region.  

Assignment tests for all individuals were done with the program STRUCTURE 2.2 

(Falush et al., 2003). This software was used to infer the most probable number of genetic 

clusters without a priori definition of populations. We used the batch run function to carry 

out a total of 100 runs – ten each for one to ten clusters, i.e. K=1 to K=10. The repetitions 

were run to see if there were deviations among the different runs for a fixed K and to 

calculate means and standard deviations. Each burn-in and simulation length was 

100,000 and 1,000,000, respectively. Since the log probability values for different K values 

have been shown to be little reliable in some cases, we used the more refined and ad hoc 

statistic ΔK based on the rate of changing the probability of data between successive K 

values (Evanno et al., 2005), which has been shown to better unveil the correct number of 
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genetic clusters, to infer the most likely number of groups (Finger et al., 2009). ΔK is 

express as 

ΔK= (|mL(K+1) – 2mL (K) + mL(K-1)| / sdL (K) 

with L(K) being the logarithm of the probability that K is the correct number of clusters, 

m the mean and sd the standard deviation. 

The output file of STRUCTURE was analyzed on-line with STRUCTURE HARVESTER 

(Web version: v0.6.92 March 2012), which is a program for visualizing STRUCTURE 

outputs and implementing the Evanno method (Earl and vonHoldt, 2012). 

 

2.2.2 Mark Release Recapture analysis 

The samples were collected between 16th of May and 18th of August 2012. On each 

day with suitable weather condition (less than 50% clouds, temperatures ≥ 20°C, weak or 

moderate wind), one or two persons passed once through the whole study area (11:00 

a.m. – 6:00 p.m) and netted all available individuals for Anthocharis cardamines, Pieris 

rapae, Pieris napi, Leptidea reali and Araschnia levana. Each captured individual was 

marked with an individual code at the underside of the wings using a waterproof pen 

(Steadtler, Lumicolor S). The code consisted of one letter (A-Z) for the capture day and a 

respective running number. The following information was noted before release 

additionally to the individual code: weather, sex, GPS (eXplorist reciver 100) data of the 

capture point (Magellan Meridian Platinum, measuring accuracy: <3 m), vegetation type at 

capture point, exact time of capture, wing wear (1–4 scale: with 1 being fresh and 4 being 

heavily damaged cf. Munguira et al., 1997; Zimmermann et al., 2005), and the behaviour 

prior to capture (i.e. flying, fighting, mating, feeding, resting). 

2.2.2.1 Mobility 

The detailed GPS data set of capture/recapture events obtained in this MRR study was 

used to analyse the movement behaviour of Anthocharis cardamines, Pieris rapae, Pieris 

napi, Leptidea reali and Araschnia levana. We calculated the total distances between all 

capture/recapture events to get insights into the sedentariness of the individuals. These 

distances were used to fit our data to two different mathematical models commonly 

applied to find the best prediction of rare long distance movements (Baguette, 2003; 

Kuras et al., 2003; Fric and Konvicka, 2007): the negative exponential function (NEF) and 

the inverse power function (IPF). We calculated the inverse cumulative proportion of 

individuals moving certain distance classes while each distance class represented a 50 m 

interval. These data were fitted to the NEF and the IPF function separately for each 
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species using linear regression analyses. Additionally, we performed the same analyses 

with 100 m intervals separately for each species to exclude artefacts based on the 

selected interval size. For the NEF, the relative proportion of individuals moving to 

distance D is 

INEF = ae –kD, respective ln I = ln a –kD. 

The parameter a represents a scaling constant while k is the dispersal constant 

describing the shape of the exponential curve. Under the IPF, the proportion I is 

expressed as  

IIPF = cD-n, respective ln I = ln c –n (ln D), 

where c is a scaling constant and n a variable describing the effect of the distance on 

the dispersal (Baguette, 2003). We applied F-statistics (SPSS 10.1, curve estimation) to 

determine the significance of the curve fitting for the NEF and the IPF. Comparing the 

results of both analyses, we used the best-fit-model to predict the proportion of individuals 

moving to distances beyond those covered by our MRR study. 

3. Results 

3.1 Microsatellites 

All analysed populations were strongly affected by the presence of excessive numbers 

of homozygotes. This indicates the existence of null alleles, but three loci (Bi8, Bi 19 and 

Bi 41) were particularly affected as revealed with Micro-checker. The analysis with 

GenAlEx showed that all the eleven loci were polymorphic for all 16 populations. The 

eleven loci yielded between four and 21 alleles (for details see ANNEXE I - Table I. 1). 

Allelic richness was calculated with the software FSTAT, and was based on the 

minimum sample size of 26 diploid individuals. Allelic richness was lowest for the locus 

Bi38 of population Himburg with a value of 3.0 alleles, and the maximum value was 

observed in the locus Bi19 of the population Niederkell with a value of 19.49 alleles. The 

locus Bi38 was also the one that presented the lowest allelic richness over all studied 

populations (ANNEXE I - Table I. 1). 

The numbers of alleles, expected heterozygosity, observed heterozygosity and fixation 

index (F), over populations for each locus are represented in Table 3. The results showed 

that Bi19 had 15.81±1.41 alleles being the locus with the higher mean number or alleles. 

The loci Bi38 and Bi39 presented the mean number of alleles 4.13±0.13 and 4.13±0.25 

respectively, thus representing the lowest allele numbers of all analysed loci. The relation 
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between the observed (Ho) and the expected (He) heterozygosity showed that loci Bi24, 

Bi29 and Bi38 had similar mean values; the locus Bi3 showed only a small difference 

between Ho and He. All remaining loci had high differences between Ho and He. 

 

Table 3. Mean values and standard errors (SE) of the parameters of genetic diversity: number of 
alleles (Na), expected heterozygosity (He), observed heterozygosity (Ho) and fixation index (F), over all 
populations for each locus analysed for 16 populations of Brenthis ino from Rhineland-Palatine and 
Alsace 

 Bi3 Bi8 Bi19 Bi24 Bi29 Bi33 Bi36 Bi38 Bi39 Bi41 Bi44 

Na 10.69 14.19 15.81 6.94 6.31 6.94 6.81 4.13 4.13 12.81 7.88 

SE 0.53 0.94 1.41 0.36 0.22 0.34 0.42 0.13 0.25 0.79 0.43 

He 0.83 0.85 0.72 0.71 0.73 0.71 0.65 0.53 0.72 0.80 0.72 

SE 0.01 0.01 0.03 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.02 

Ho 0.82 0.38 0.61 0.71 0.73 0.57 0.58 0.53 0.54 0.47 0.53 

SE 0.02 0.04 0.06 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.07 

F 0.01 0.55 0.17 0.00 0.00 0.18 0.11 0.01 0.25 0.41 0.29 

SE 0.02 0.05 0.05 0.03 0.03 0.05 0.05 0.03 0.03 0.05 0.08 

 

The locus specific fixation indices showed that the loci Bi24 and Bi29 had a mean value 

of zero, reflecting a complete panmixis among populations. The loci Bi3 (0.01±0.02) and 

Bi38 (0.01±0.03) presented mean values close to zero, leading to the same assumption. 

All of the remains loci showed a variation of mean values from 0.11±0.05 to 0.55±0.05. 

Significant deviations from Hardy Weinberg Equilibrium (HWE) due to a heterozygote 

deficit were detected in the loci Bi41, Bi 8, and Bi19, respectively; Bi41 showed the most 

significant deviation, followed by Bi8 and finally by Bi19; all the other loci showed no 

significant deviation from the HWE and all populations did not show a significant deviation 

from HWE.  

The overall FST value was 0.040 (p < 0.001), meaning that 4% of total molecular 

variance was on the level among populations; 21% was found among individuals and 75% 

was found within individuals (Figure 11). The pairwise population analysis with 999 

permutations showed that Himburg had the maximum mean value of 0.060 for genetic 

distances, when compared to all populations, followed by Ballon d’Alsace that presents a 

mean value of 0.058, and Heyroth with a mean value of 0.040. The remaining populations 

present genetic distances ranging from 0.027 to 0.039, where the population Wawern 

(0.026) showed the smallest genetic distances (ANNEXE I - Table I. 2). 
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Figure 11 - FSTAT results of Analysis of Molecular Variance (p < 0.001) of 16 Brenthis ino populations 
from Rhineland-Palatinate and Alsace based on the analysis of eleven microsatellite loci 

 

The results for the parameters of genetic diversity, Na, Ho, He and fixation index, over 

loci for each Population can be seen in Table 4. The population from Niederkell had the 

highest mean value for the number of alleles (Na = 11.82±1.99 SE). The relation between 

the observed (Ho) and the expected (He) heterozygosity showed a big difference where 

the mean value of the observed heterozygosity was always lower than the expected 

heterozygosity, leading, once again, to the assumption of discrepancy forces like 

inbreeding. Only the populations Niederkell and Reinsfeld had a small difference between 

the values of Ho and He. The fixation value (F) had a mean value above zero in all 

populations, the population Heddert had the lowest value of 0.03±0.05. 
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Table 4. Mean values and standard error (SE) of the parameters of genetic diversity: number of alleles 
(Na), expected heterozygosity (He), observed heterozygosity (Ho) and fixation index (F), over all loci for 
each population of Brenthis ino from Rhineland-Palatinate and Alsace 

Pop  Na Ho He F 

Ballon d'Alsace Mean±SE 7.27±0.68 0.65±0.05 0.74±0.02 0.12±0.07 

Birkenfeld Mean±SE 9.82±1.71 0.48±0.06 0.71±0.04 0.30±0.08 

Fischbach Mean±SE 9.73±1.73 0.48±0.06 0.74±0.03 0.33±0.08 

Grimburg Mean±SE 7.910.79 0.61±0.04 0.70±0.03 0.13±0.06 

Heddert Mean±SE 7.64±0.66 0.69±0.04 0.72±0.03 0.03±0.05 

Heyroth Mean±SE 10.00±1.73 0.54±0.07 0.74±0.03 0.27±0.09 

Himburg  Mean±SE 8.73±1.44 0.69±0.04 0.73±0.03 0.05±0.06 

Holzmaar Mean±SE 8.55±1.11 0.49±0.08 0.73±0.04 0.32±0.10 

Lampaden Mean±SE 10.18±1.57 0.64±0.05 0.75±0.04 0.13±0.06 

Morbach 1 Mean±SE 7.82±0.95 0.55±0.06 0.67±0.04 0.17±0.08 

Morbach 2  Mean±SE 8.55±0.84 0.56±0.05 0.72±0.02 0.21±0.07 

Niederkell Mean±SE 11.82±1.99 0.70±0.06 0.75±0.03 0.07±0.07 

Reinsfeld Mean±SE 7.00±0.57 0.63±0.05 0.69±0.04 0.09±0.05 

Rodalben Mean±SE 9.55±1.62 0.50±0.06 0.70±0.03 0.29±0.08 

Wascheid Mean±SE 10.55±1.62 0.55±0.07 0.75±0.03 0.27±0.08 

Wawern Mean±SE 8.55±0.86 0.66±0.05 0.75±0.03 0.11±0.07 

 

The results of population assignment revealed that 20% of the individuals assembled to 

other populations and 80% of the overall value assembled to itself population as it is 

summarised in the Table 5. These “misassigned” individuals might represent immigrants 

from the other population, or the descendants of such immigrants. Himburg had only one 

individual assembled to “other” populations, and Niederkell was the population that 

showed more “misassigned” individuals, a total of 17. 
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Table 5. Summary of population assignment outcomes to 'self' or 'other' population, with a zero 
frequency of 0.01, observed in our study of Brenthis ino from Rhineland-Palatinate and Alsace 

Population Self Pop. Other Pop 

Ballon d'Alsace 36 4 

Birkenfeld 30 10 

Fischbach 33 7 

Grimburg 28 12 

Heddert 31 9 

Heyroth 36 4 

Himburg  39 1 

Holzmaar 25 4 

Lampaden 32 8 

Morbach 1 30 10 

Morbach 2  32 8 

Niederkell 23 17 

Reinsfeld 30 10 

Rodalben 37 6 

Wascheid 32 10 

Wawern 31 9 

   Total 505 129 

   Percentage 80% 20% 

 

Using the values of the F-statistic and the geographic coordinates, we correlated 

geographic distance and the respective genetic distance among populations. A first 

correlation was done for all 16 studied populations (Figure 12a). We found a highly 

significant correlation indicating isolation-by-distance. In a second correlation, we 

restricted our samples to the ones samples in the Hunsrück region (Figure 12b), where no 

isolation-by-distance was found. 

 

 

 

 

a) All populations of Brenthis ino 
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Figure 12 - Correlation between the geographical distances and the respective genetic distances (Nei, 
1978) of Brenthis ino populations. (a) Correlation between all the populations of the study (r

2
=0.4197; 

Mantel test: p ≥ 0.001), and (b) correlation including only the populations of Hunsrück mountains 
(r

2
=2e

-05
; Mantel test: p ≥ 0.474) 

 

3.1.1 Population Genetic Structure 

Bayesian structure analysis of Brenthis ino individuals of 16 populations were 

performed in the software STRUCTURE. We used the pooled data for microsatellites to 

infer the genetic clustering of the populations. The highest marginal likelihood 

(corresponding to maximizing the posterior probability) was obtained for seven clusters 

(Figure 13). 

 

Figure 13 - Graphical representation of the relationship between Delta K (ΔK) and the numbers of 
clusters (K) based on STRUCTURE analysis of eleven microsatellite loci of 16 Brenthis ino 
populations from Rhineland-Palatinate and Alsace 

b) Hunsrük populations of Brenthis 

ino 
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The stability of this solution was investigated by running the stochastic estimation many 

times and observing where the algorithm converged. The solution with k = 7 was obtained 

in most cases (see Table 6). 

 

Table 6. Results of the STRUCTURE analysis of Brenthis ino populations from Rhineland-Palatinate 
and Alsace. Ln(Pr) is the natural logarithm of the probability calculated by the Structure software that 
K is the correct number of populations. SD is the standard deviation calculated from ten independent 
runs. The ad hoc statistic ΔK is not applicable for K=1, and from the equation given in the methods 
section it is obvious that it cannot be calculated for the highest K either (because data for K+1 are 
needed) 

K mean LN (Pr) ± SD ΔK 

1 -26489.29 ±1.44 - 

2 -25989.05 ±1116.07 5.15 

3 -26087.42 ±746.58 0.85 

4 -25547.50 ±849.23 0.59 

5 -25515.99 ±691.08 0.96 

6 -26149.84 ±1682.91.09 1.14 

7 -24854.27 ±78.51 20.97 

8 -25205.80 ±1267.27 0.84 

9 -24489.75 ±123.61 5.60 

10 -24466.86 ±30.22 - 

 

The results of the barplot can be seen in Figure 14. If the population has a large 

amount of different colours, it shows that it has large gene pool. 

 

Figure 14 - Bayesian stucture analysis of Brenthis ino with the STRUCTURE software (Pritchard et al. 
2000). Analysis performed for all individuals in all populations with K=7 

 

3.2 Mark Release Recapture 

We marked 1.210 individuals, of which eight butterflies were from Anthocharis 

cardamines, 854 from Pieris rapae, 279 from Pieris napi, 63 from Leptidea reali and six 

from Araschnia levana (Table 7). The longest move was observed for the species Pieris 

rapae and it was almost about 2km. We obtained recaptures only for three species. No 

recaptures were obtained for the species Anthocharis cardamines and Araschnia levana. 

We registered 141 recaptures with 117 recaptures of 77 individuals of Pieris rapae, 18 
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recaptures of 15 individuals of Pieris napi and six recaptures of five individuals of Leptidea 

reali. 

 

Table 7. Results of the mark-release-recapture study of Anthocharis cardamines, Pieris rapae, Pieris 
napi, Leptidea reali and Araschnia levana in Avelertal, Trier, Germany, separately for each species: 
number and portion of marked and recaptured individuals, longest distance moved and maximum 
residence time 

Species 
Marked 

individual
s 

Recaptured 
individuals 

Recapture 
events 

Recapture 
ratio (%) 

Longest 
move (m) 

Maximum 
residence (days) 

A. 
cardamines 

8 0 0 0 na na 

P. rapae 854 77 117 9.02 1932 24 

P. napi 279 15 18 5.38 1193 18 

L. reali 63 5 6 7.94 459 14 

A. levana 6 0 0 0 na na 

na = not applicable 

 

In the species Pieris rapae, one male individual, survived for at least 24 days, and 

another different individual was recaptured after 20 days. It was not possible to estimate 

demography and population size for any of the species due to the low recapture 

frequencies. 

 

3.2.1 Mobility 

We obtained no registers on the mobility of the species Anthocharis cardamines and 

Araschnia levana. However, the recaptured individuals of the species Pieris rapae, Pieris 

napi and Leptidea reali presented a high level of mobility. Figure 15 shows the 

presentation of the mobility of the recaptures individuals of Pieris rapae. Most of the 

individuals moved at least 100 meters or more. The majority of the individuals moved in 

the range from 100 to 400 metres. The longest observed distance was almost 2 km (Table 

7) and was travelled by a male individual. 
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Figure 15 - Number of recaptured individuals of Pieris rapae in dependence of the distance moved 
between capture and following recapture, based on GPS data 

 

According to the Figure 16 for Pieris napi, the longest move was from 1193 metres 

travelled by one individual, and about half of the individuals moved more than 200 metres 

between recapture events. 

 

Figure 16 - Number of recaptured individuals of Pieris napi in dependence of the distance moved 
between capture and following recapture, based on GPS data 

 

As seen from Figure 17, Leptidea reali apparently moved less than the two other 

species. All of the recapture individuals did not move for more than 500 metres, and one 

of the recaptured female only moved 45 meters. Due to the low recapture frequency the 

comparison against the two other species is problematic and we cannot say that Leptidea 

reali is per se less mobile than the two other species as no statistical test can be applied. 
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Figure 17 - Number of recaptured individuals of Leptidea reali in dependence of the distance moved 
between capture and following recapture, based on GPS data 

 

The results of fitting the inverse cumulative portions values of the individuals moving a 

certain distance classes to the negative exponential function (NEF) and the inverse power 

function (IPF) based on 50 meters and 100 meters intervals are shown in Table 8 and in 

Table 9 respectively. 

 

Table 8. Results of the fitting of the inverse cumulative proportions of individuals moving certain 
distance classes to the negative exponential function (NEF) and the inverse power function (IPF): 
formulas, stability indices and F-statistic for the species Pieris napi and Pieris rapae. The estimated 
proportion of the individuals (I) is calculated for distance classes (D) of 50 m intervals 

Species Funtion Formula Stability index (R²) F-statistic for fitting 

Pieris napi NEF I = 15.81 (± 1.935) e
-0.157 (±0.010) D

 0.93 
F=260.619 

df=19; p<0.0001 

 IPF I = 18.549 (±2.481) D 
-1.352 (±0.684)

 0.75 
F=55.917 

df=19; p<0.0001 

Pieris rapae NEF I = 49.603(±5.007) e
-0.100(±0.004 )D

 0.94 
F=527.89 

df=37; p<0.0001 

 IPF I = 97.441(±7.381)D
-3.202(±1.504)

 0.83 
F=174.26 

df=37; p<0.0001 

 

The fit of most of all curves was high significant for both distance classes of 50 and 100 

metres, respectively (Table 8 and Table 9). 

  

0

1

2

3

4

5

6

0_100 100_200 200_300 300_400 400_500

In
d

iv
id

u
al

s 

Distance (m) 



 

35 

Table 9. Results of the fitting of the inverse cumulative proportions of individuals moving certain 
distance classes to the negative exponential function (NEF) and the inverse power function (IPF): 
formulas, stability indices and F-statistic for the species Pieris napi, Pieris rapae and Leptidea reali. 
The estimated proportion of the individuals (I) is calculated for distance classes (D) of 100m intervals 

 

Comparing the R2 values in Table 8 and Table 9 suggests better fit of the NEF than the 

IPF. Following the NEF function for distance classes of 50 metres, the estimate proportion 

of individuals, for the species Pieris napi and Pieris rapae, moving different distances are 

showed in Table 10.  

 

Table 10. The results of individuals and the estimate portion of individuals following the NEF formula 
for distance classes of 50 meter, for the species Pieris napi and Pieris rapae 

Species Distance (m) Individuals % of Individuals 

Pieris napi 500 7.21 48.067 

 1000 3.289 21.927 

 2000 0.684 4.562 

 5000 6.161x10
-3
 0.041 

 10000 2.401x10
-6
 1.601x10

-5
 

Pieris rapae 500 30.08 39.07 

 1000 18.247 23.698 

 2000 6.713 8.718 

 5000 0.334 0.434 

 10000 2.251x10
-3
 2.924x10

-3
 

 

For distance classes of 100 meters, for the species Leptidea reali, Pieris napi and 

Pieris rapae and following the NEF function, the number of individuals and the estimate 

proportion of individuals moving different distances are showed in Table 11. 

 

  

Species Funtion Formula Stability index (R²) F-statistic for fitting 

Lepidea reali NEF I = 8.4242 (±1.488) e
-0.391 (± 0.053) D

 0.95 
F=13.057 

df=3; p<0.036 

 IPF I = 4.395 (±1.216) D
-0.993 (±0.658)

 0.81 
F=53.953 

df=3; p<0.005 

Pieris napi NEF I = 15.08 (±3.890) e
-0.278 (±0.035) D

 0.86 
F=62.728 

df=10; p<0.0001 

 IPF I = 17.604 (±2.061) D
-2.19 (±0.744)

 0.88 
F=72.981 

df=10; p<0.0001 

Pieris rapae NEF I = 58.658 (±8.156) e
-0.209 (±0.012) D

 0.95 
F=324.819 

df=18; p<0.001 

 IPF I = 87.77 (±4.880) D
-1.388 (±1.379)

 0.94 
F=323.402 

df=18; p<0.001 
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Table 11. The results of individuals and the estimate portion of individuals following the NEF formula 
for distance classes of 100 meter, for the species Leptidea reali, Pieris napi and Pieris rapae 

Species Distance (m) Individuals % of Individuals 

Lepidea reali 500 1.193 23.86 

 1000 0.169 3.38 

 2000 3.383x10
-3
 0.0676 

 5000 2.723x10
-8
 5.446x10

-7
 

 10000 8.806x10
-17

 1.761x10
-15

 

Pieris napi 500 3.756 25.04 

 1000 0.935 6.24 

 2000 0.058 0.387 

 5000 1.385x10
-5
 9.239x10

-5
 

 10000 1.274x10
-11

 8.490x10
-11

 

Pieris rapae 500 20.629 26.79 

 1000 7.255 9.42 

 2000 0.438 0.569 

 5000 1.698x10
-3
 2.205x10

-3
 

 10000 4.915x10
-8
 6.384x10

-8
 

 

Analysing the NEF formulas for each species comparing the two distance classes, we 

can affirm that Pieris napi showed a better fit for 50 m (R2= 0.93) than for 100 meters (R2= 

0.86). For the species Pieris rapae, the distance classes does not show a difference for 

the NEF function, and it represents a really good fit in both cases R2= 0.94, R2= 0.95, 

respectively for 50 m and 100 m. 

3.2.2 Behaviour 

Focusing on the behaviour of the five different species, we can say that “flying” was the 

most frequently registered behaviour before capture for almost all species (Figure 18). 

With the number of captured individuals for each species, we can affirm that Anthocharis 

cardamines showed a value of 87.5% of flying individuals, in Araschnia levana, the value 

is about 50.0%. Leptidea reali presented a value of 92.8%, Pieris rapae of 82.5% and for 

Pieris napi the value of individuals with this type of behaviour is 80.5%. The rarest 

observed behaviour was “mating” (0.21%) and “heating” (0.21%) and was observed in 

only one species, Pieris rapae. The types of behaviour “fighting” and “feeding” were more 

frequently observed in three of the species, Pieris rapae, Pieris napi and Leptidea reali. 

The behaviour type “resting” was observed in all five species. 
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Figure 18 - Percentage of the individuals and their observed behaviour in our mark-release-recapture 
study for the species Pieris rapae (n=854), Pieris napi (n=297), Leptidea reali (n=69), Anthocharis 
cardamines (n=8) and Araschnia levana (n=6) 

 

The degree of wing damage did not show increase for the species Anthocharis 

cardamines, Leptidea reali and Araschnia levana, but increased over the flying season for 

the species Pieris rapae and Pieris napi. 

The part of the transect with the most recapture events was vineyard 2 with 89 events, 

the wineyard 1 plus the meadow 1 had 27 events, meadow 2a and 3 had 8 events, 

meadow 2b with 7 events and in meadow 4  was only observed 2 events. On the meadow 

5 no recapture event was observed. 

With the results of the recaptured individuals for the species Pieris rapae, we can 

analysed more in detail the mobility by days. If we take into account the seven individuals 

recaptured at least four times or more (Figure 19), we can show that there is no specific 

pattern involving the movements of the butterflies. For example, in map A of the Figure 

19, the distance travelled between 24.06 and 28.06 was 169 m, from 28.06 to 30.06 just 

31 m, from 30.05 to 05.07 only 6 m and from 05.07 to 07.07 again 62 m. So, the distance 

is not influenced by the recapture day. It showed that butterflies can move large distances 

in a short period of time, or they can just stay in the same place for days. 

This type of analysis was not able to be performed for the other four species, because 

most of the individuals were only recaptured one, two or three times. 
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Figure 19 - Maps of movements between recapture days 
for some recaptured individuals of Pieris rapae. Each 
map corresponds to one individual that was recaptured 
at least four times or more during our study period 
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3.2.3 Temperature Effects on recapture events 

Along our 4 km transect, we exposed three temperature data loggers, Avel 1, Avel 2 

and Avel 3 to measure the differences in the temperature along the transect. Hereby, we 

can correlate temperature to recapture events. In the ANNEXE II - Figure II. 1, Figure II. 2 

and Figure II. 3, we can see the three graphs with the variation of the temperatures along 

the moths May, June, July, August and September of the year 2012. 

The first logger, Avel 1, was located in the first part of the transect, vineyard 1 and 

meadow 1. The values registered were lower compared to the same date in the last years 

(AccuWeather.com). In the third week of May there is a large drop of the temperature 

values. Minimum values reached down to nearly -1°C, and maximum were only around 

12°C to 14°C. This light frost was the lowest temperate registered for the entire period of 

our study. In June and July, the temperatures were stable, but still too low if compared 

with the same period of time of the last years. In the third week of August, we observed a 

value of 36°C, being the maximum temperature measured by Avel 1. Until the end of 

August/September, the temperature showed a minimum of 4°C and a maximum of almost 

30°C. 

The second logger, Avel 2, was located in the central part of the transect, between 

vineyard 2 and meadow 3. The values registered were similar to the ones registered with 

Avel 1. The large drop in the values of the temperature also occurred for this data logger, 

but the temperature did not drop below zero. Between the months June and July, we 

observe a case of 8°C difference between the values of maximum and minimum observed 

temperature. In the middle of June, we observed a larger difference between the values of 

maximum (22°C) and minimum (8°C) showing a difference of 14°C. The maximum 

temperature, 32°C, was also observed in the middle of August. 

The third and last logger, was located in the upper part of the transect, meadow 5 

(Figure 20). The same patterns of temperatures were observed for this data logger, the 

main difference was the minimum and maximum values of temperatures. In June, a large 

drop of temperature was observed, but only reaching 0°C, and the maximum temperature 

was about 34°C registered in the middle of August. 

All of the temperature data loggers were located with the same shadow/sun cover and 

all of them were north facing so that the sun never was directly shining on them. 

Therefore, the variation of temperatures along the study period is higher the Avel 1 with 

a maximum observed value of 36°C and a minimum temperature of almost -1°C. Avel 3 

showed a maximum value of 34% and a minimum of 0°C, and Avel 2 had a maximum 

value of 32°C and a minimum of 1 °C. The number of captured butterflies grows as the 
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temperatures gets higher, but particularly high temperatures, as 36°C, did not infer to a 

larger amount of captured individuals. 

 

 

Figure 20 - Temperature data logger, Avel 3, located in the last part of the transect, meadow 5 

  

3.2.4 Effects of vegetation and management 

The changes in the vegetation were monitored along the transect. During the mark-

release-recapture time, some severe changes occurred in the transect that may have 

caused some influence on the number of observed and recaptured individuals. The 

transect main habitats are vineyards and grasslands. In ANNEXE II - Table II. 1, the most 

common plants in the different sections of the transect are given (determined using Fitter 

et al., 1986; Rothmaler et al., 1988). Although there were no applications of pesticides in 

the vineyards, the constantly cutting off the lower vegetation between the vineyards 

(mostly composed of Gramineae species) showed an effect on the number of observed 

individuals. In the meadows, the cutting frequency was moderate. Every four weeks, the 

vegetation was cut off in the meadow, where there was a high number of mostly common 

herbaceous plants, a lot of which used by the individuals as food source and/or resting 

spot. After such events, almost no individuals were observed flying in the next days for all 

species. Not so frequent, but also representing a strong effect on the number of observed 

butterflies, was pasture with intensive grazing. Occasionally, a large number of sheep was 

feed on the meadows of the transect, most of their time spending on the meadow 1, 2a 

and 2b (Figure 21). After this event, no butterflies were observed flying throw that area for 

at least five or even more days. 
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Figure 21 - Sheep grazing observed at the meadow 2b, August 14
th

 while waking the transect for the 
mark-release-recapture study 

 

Meadow 3 was the only one not suffering for any anthropogenic factors. The meadows 

4 and 5 (Figure 22) were suffering for any anthropogenic factors constantly. 

 

 

  

Figure 22 - Differences observed at meadow 5. In A we see the meadow in 07.07.2012 coved by 
different flowering plants. In B we see the same meadow in 14.08.2012, ten days after being cut 

  

A B 
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4. Discussion 

According to McNeely et al. (1990) genetic diversity, besides species and ecosystem 

diversity, is one of the criteria considered worthy of protection by the IUCN. It is expected 

that genetic diversity contributes to species survival leading to an improved reproductive 

fitness (Frankham, 2005) and therefore conservation studies should not ignore genetic 

components (Finger et al., 2009). Actually, genetics are capable to detect population 

structures, changes in demography on regional and spatial scales, kinship, levels of 

genetic variability and differentiation assisting enormously in evaluating conservation 

implications (Finger et al., 2009).  

For a better understanding of the discussed results, this last part will be presented in 

two main parts. First we will discuss our results about the microsatellite analysis. The 

main objective was to analyse the genetic structure and diversity of Brenthis ino in sixteen 

populations, distributed over five different regions. Secondly, we will discuss the results on 

the mark-release-recaptured study; the main objective was to identify the movement 

distances and the behaviour types of five different species: Anthocharis cardamines, 

Pieris rapae, Pieris napi, Leptidea reali and Araschnia levana. In the end of each part we 

comment the conservation implications according to the two approaches of mobility 

analysis. 

4.1 Microsatellites 

i) Has Brenthis ino a significant genetic structure among populations? 

The genetic diversity observed for Brenthis ino was not differing compared to the last 

studies on the same species (Molecular Ecology Resources Primer Development et al., 

2012). The mean value and the standard error of observed heterozygosity was 

0.641±0.013, while the one of the expected heterozygosity was 0.730±0.008, 

corresponding to the values presented in the mentioned publication on the same species 

including a much smaller data set (Molecular Ecology Resources Primer Development et 

al., 2012). Eight of the eleven loci were in Hardy-Weinberg equilibrium, but presence of 

null alleles is likely for three loci. Significant departure from Hardy-Weinberg equilibrium 

was found at loci Bi 41, Bi8 and Bi 19, respectively. All pairwise tests for linkage 

disequilibrium were not significant. No evidence for stutter bands was detected, but the 

existence of null alleles was suggested at the following loci: Bi 8, Bi 19 and Bi 41 and the 



 

43 

population Ballon d’Alsace presented a large heterozygote deficit leading to several loci 

showing evidences for null alleles (Bi 8, Bi 19, Bi 24, Bi 39 and Bi 41).  

A common cause of heterozygote deficit is amplification failure of certain alleles at a 

single locus. Null alleles are those that fail to amplify in a PCR, either because the PCR 

conditions are not ideal or the primer–binding region contains mutations that inhibit 

binding. As a result, some heterozygotes are genotyped as homozygotes and a few 

individuals may fail to amplify any alleles (Selkole and Toonen, 2006). Often, the 

mutations that cause null alleles will only occur in one or a few populations, as observed 

in our results, so a heterozygote deficit might not be apparent across all populations. 

The presence of a large allele dropout effect in our results may be another explanation 

for the deficit of heterozygotes in our data set. According to Wattier et al. (1998) large 

allele dropout is a way that alleles can be missed – the longer allele in a heterozygote 

does not amplify as well as the shorter one and appears too faint to be detected in the 

genotype scoring process. This occurs because the replication process in the PCR is 

more efficient for shorter than longer sequences, and so it will be most pronounced when 

alleles in a heterozygote are very different in size. A solution for this problem can be re-

amplifying individuals homozygous for small alleles and increasing their DNA 

concentration per sample in the sequencer run (Selkole and Toonen, 2006). Hence, the 

interpretation of the heterozygosity deficit and deviations from Hardy-Weinberg 

expectations should be interpreted with caution as null alleles might have pervaded our 

data set, this has also been described for other studies (e.g. Finger et al., 2009). 

According to Zhang (2004), the suitability of microsatellites in population genetic studies of 

butterflies is limited due to low cloning efficiency and lacking specificity due to the 

similarities in the flanking regions important for the primer annealing.  

Therefore, this problem is widely known in microsatellite studies, particularly in 

lepidopterans (Meglécz and Solignac, 1998; Ji and Zhang, 2004; Meglécz et al., 2007; 

Habel et al., 2008). However, as the presence of null alleles primarily leads to an 

underestimation of genetic variability with respect to both allelic diversity and 

heterozygosity, the comparative values of variability found in this study are valid. 

Hierarchical analyses of molecular variance (AMOVA) showed that 75% of the variation 

was within individuals, leading to the high values of expected heterozygosity. The value of 

21% in AMOVA represents the variance among individuals, showing that this percentage 

is important to understand the differentiation among individuals in all populations, most 

probably heavily being influences by the observed strong heterozygote deficiency. A value 

of 4% was representing the molecular variance among populations. This low value shows 
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that the populations were not strongly isolated among each other. However, the genetic 

differentiation among population belonging to different regions was clearly observed in the 

pairwise FST values, where one of the highest FST values (0.080) was observed between 

Ballon d’Alsace and Himburg. This high value was consistent with the large geographic 

distance between these two sites. The population Himburg was the one showing the 

highest value for the FST when compared to the others; and the value 0.082 (between 

Himburg and Lampaden) was the highest value observed. In this context, it is worth noting 

that Himburg is the only population representing the region of Westerwald, which is 

located in the North of Rhineland-Palatinate at the right side of the river Rhine. 

Misassignments did occur, in particular for the populations Niederkell (17 

individuals) and Grimburg (12 individuals), these two close populations belong to the 

Hunsrück region, and in some populations (Birkenfeld, Morbach1 and Reinsfeld) located 

in this regions, we observed values of around 10 individuals assembling to other 

populations. This might indicate a strong gene-flow among the populations of this region. 

Otherwise, misassignments may occur due to 1) stochastic processes, 2) survival of old 

genetic structures of more interconnected populations or 3) recent long-distance dispersal 

(Finger et al., 2009). Of these, stochastic processes might be the most likely one as the 

number of loci analyzed (eleven) is relatively low. Therefore, we can affirm the existence 

of a significant genetic structure between the sixteen studied populations, but not if we 

look at the regional structures like in the Hunsrück where such a structure is largely 

missing. 

 

ii) If there is a significant genetic structure, how is the genetic differentiation at an 

interregional level among the five different areas? 

To an easier understanding of the geographic localization of the five analysed regions, 

we described their distribution in the federal state (Figure 23). Hunsrück and Eifel are 

located in the northern part of Rhineland-Palatinate, they are at the west bank of the river 

Rhine, while Westerwald is located at the east bank. The region Pfalz is located in the 

southern part and is continued in the South in the Vosges Moutains (belonging to France), 

in whose southern part the population Ballon d’Alsace is located.  
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Figure 23 – Esquematic location of the study population and their regions for Brenthis ino. Adapted 
from Google Earth 2012 

The Bayesian structure analysis clearly reflected seven groups (K=7). Ballon d’Alsace, 

the French population, that is considered as outgroup, assembles alone in one group. 

Himburg assembles also as an independent group, representing the region Westerwald 

These two populations are largely prevented from gene-flow with all the other populations 

analysed and thus represent the genetically most differentiated regions observed, and 

they are also the most isolated populations in our study. It would have been interesting to 

analyse more populations in region Westerwald to compare how this region is actually 

connected or not with all of the other sampled populations. 

Lampaden, is another populations that assembles alone in one group. This population 

is located in the region Hunsrück, although most of the populations within this region are 

located at the upland of these mountains, Lampaden is located in a valley between 

Heddert (Fst=0.061) and Wawern (Fst=0.045), the Fst values reflect that it is not genetically 

close to any of the surrounding populations. Consequently, the genetic make-up in 

Lampaden should have evolved differently. One possible explanation this population has 

evolved laterally due to the geographically situation in the valley and the different patterns 

in geography (within a river valley delimited by mountains) surrounding it. If we look 

carefully, it seems that Lampaden is sharing some of its gene-pool with Fischbach 

(Fst=0.043) and Birkenfeld (Fst=0.040), as the Fst values between populations proved, in 

part, this assertion. External and unknown factors could explain this genetic connectivity 

among these three populations. 

Birkenfeld and Fischbach are from two different regions and showed a low pairwise Fst 

value of 0.023, supporting an important gene-flow between both populations. Birkenfeld is 
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still part of the Hunsrück region, but the population is located more to the south-east part 

of this region. These mountains are surrounded by the rivers Mosel, in the North, Nahe in 

the South and the Rhine in the East. Fischbach is located in the northern part of the Pfalz 

region. This region, Pfalz, did not assemble as a specific group, but assemble always with 

specific populations of the Hunsrück mountains. In this case we might be observing the 

occurrence of isolation by distance. The population Fischbach also has some genetic 

similarities with the population Morbach 2 supported by low Fst value of 0.030. 

The population Morbach 2 assembles in a group formed mainly by populations of the 

Hunsrück region, Morbach 1, Morbach 2, Wawern, Niederkell and Rodalben from Pfalz. 

Between Rodalben and all of these populations the Fst is about 0.027, a low value that 

could demonstrate the occurrence of some genetic connection between Rodalben and the 

populations from another region. The Rodalben population also presents a different 

genetic pattern, but all of the gene-pool is consistent with the gene-pool present in 

Morbach 2. In a case like this, where both populations are completely distant 

geographically one from the other, but genetically close, supported by the low value of 

Fst=0.026, one has to assume a large mobility of the individuals, to lead to a large gene 

flow between these two populations. 

The populations Grimburg, Heddert and Reinsfled, from the Hunsrück mountains also 

presented the same pattern in gene flow. Grimburg and Reinsfeld even had an Fst value of 

zero, and Heddert and Reinsfeld a value of 0.008 demonstrated how genetically close 

they were. They are located in the eastern part of the mountains and are geographically 

close, and they show some genetic similarities with Morbach 1 and Morbach 2, from the 

latter group. Therefore, we can say that there is a large group existing from the Hunsrück 

mountains with complete genetic homogenity. 

The Eifel region clearly represents a group of its own. This group includes the 

populations Heyroth, Holzmaar and Wascheid, once again the low values of FST were 

consistent with the genetic structure observed. 

The region of Pfalz did not assemble in one single group. In fact, there is a large 

genetic differentiation of the two populations (Fischbach and Rodalben) from the Pfalz 

region. The populations in the Pfalz region were “recently” colonized (Schulte et al., 2007), 

and around 100 years ago there were no populations in that area and maybe until now 

they were not able to stabilize an efficient genetic population pattern. According to all of 

the geographical barriers, we can affirm that the river Mosel is a barrier that influences the 

dispersion of Brenthis ino, and the effects of the river Rhine on the distribution and the 

variability of the genetic differentiation should be even larger. 



 

47 

iii) Has a system of isolation-by-distance established in this species? 

Two systems of isolation-by-distance were testes for our results. The first correlation 

included all the sixteen populations and the second correlation was restricted to the 

populations of the Hunsrück mountains, i.e. the populations Birkenfeld, Grimburg, 

Heddert, Lampaden, Morbach 1 and Morbach 2, Niederkell, Reinsfeld and Wawern. 

In our study, we could find a system of isolation-by-distance occurring among all 

populations. In Figure 12a, we find a highly significant correlation (p<0.001), and the r2 

(0.4197) value is high. 

Although the r2 value presented in our study is high, higher r2 values for isolation-by-

distance have also been reported in other studies, and it seems that the phenomenon of 

isolation-by-distance tend to be more expressed in Lycaenid butterflies (Schmitt et al., 

2004; Finger et al., 2009). For example, in the study of Finger et al. (2009) on Lycaena 

helle, the Mantel test was significant for populations from the Eifel and Ardennes (r2=0.75, 

p<0.0001). The second study, from Schmitt et al. (2003) on Polyommatus icarus, also a 

Lycaenid butterfly, showed again that the Mantel test was significant (r=0.826, p<0.05). 

Consequently, enhanced gene-flow might be responsible for the establishment and 

stabilization of a continental isolation-by-distance system (Wright, 1943) that alone 

explains 68% of the pan-European differentiation seen in this particular study. Results 

quite similar to those for P. icarus were reported for the generalist green-veined white 

Pieris napi meridionalis, for which as much as 64% of the observed genetic structure 

could be explained by isolation-by-distance (Geiger and Shapiro, 1992). Therefore, the 

values seen in our study, lead us to infer that about 42% of the genetic differentiation 

present for Brenthis ino is explained by a system of isolation-by-distance at a regional 

scale, showing that distance is an important factor for the genetic differentiation among 

populations of this species at this geographical scale. 

Analysing the populations of the Hunsrück mountains, no evidence of isolation-by-

distance is revealed. The correlation was not significant and the value of r2 is extremely 

low (r2=2e-0.5). These values showed that the populations analysed in the Hunsrück 

mountains combined with an FST value of 0.01 for this region clearly underlines strong 

gene-flow all over this mountain area without any remarkable differentiation among 

populations. Therefore, we can assume a mostly panmictic system for the Hunsrück 

mountains, and the absence of larger geographic obstacles between these large 

Hunsrück populations. Consequently, in the Hunsrück mountains, the genetic diversity in 

the populations without remarkable differentiation among them is most probably 

maintained by large and stable populations with continuous gene-flow among them. 
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iv) Do Brenthis ino populations from France show a reduced genetic variability? 

The French population, Ballon d’Alsace, showed the same genetic variability compared 

to the other populations of this study. The parameters number of alleles (Na), expected 

heterozygosity (He) and observed heterozygosity (Ho) did not show a reduced variability 

for this population. However, the gene pool itself is different when compared to the other 

populations, as explained by the system of isolation-by-distance. Although in some cases, 

alleles might be lost through genetic drift and significantly reduce genetic variability in 

isolated populations, as showed for some relict population of the Apollo butterfly 

Parnassius apollo in central Europe (Habel et al., 2009a), it may be possible that the 

present genetic status of Brenthis ino still reflects a more interconnected distribution 

pattern of the past, as it was not exclusively restricted to these mountain islands 

(Ramann, 1880; Möbius, 1905; Urbahn and Urbahn, 1939). Consequently, it is difficult to 

predict tendencies or future developments of fitness for this specif ic population, as the 

same can be affirmed for the population Himburg in the Westerwald. The relatively high 

FST value (0.080) between these sites indicates a limited exchange rate and strong 

genetic differentiation. Other butterfly species like Thymelicus acteon (Louy et al., 2007), 

Speyeria idalia (Williams et al., 2003) or Lycaena helle (Finger et al., 2009) are also 

confined to isolated local populations, but still show unexpectedly high genetic diversity. 

 

 

v) Do populations from the Hunsrück mountains represent a major genetic unit 

without further substructures? 

Due to the strong gene-flow that occurs among all of the populations from the 

Hunsrück, we can affirm that this region is represented by one major genetic unit without 

further substructures. 

Genetic diversity is known to be an indicator for population fitness (Reed and 

Frankham, 2003). Accordingly, the high genetic diversity might argue for a high fitness of 

the populations. As this diversity is similar in the other populations too, these also should 

be similarly fit. Additionally, the lack of an isolation-by-distance system and generally low 

genetic diversity let us argue that gene-flow is so high up to 50 km that genetic 

differentiation is mostly outweighted and not explained by geographic distance. Therefore, 

we even may say, genetically, of one completely homogenised large Hunsrück population. 

So, we can conclude that there is a large and stable population with sub-populations in 

the Hunsrück mountains that inhabit different patches. This overall differentiation pattern, 

observed in this study, has been found using different statistical approaches adding to this 
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study credibility, even though, it is observed the presence of null alleles, and that the null 

alleles might have blurring effects in some calculations, as it was seen by Chapuis and 

Estoup (2006), in particular for F-statistics. The presence of null alleles, seen in our study, 

is a constant in this type of studies, and it was also observed in similar recent studies as 

Finger et al., (2009). 

 

vi) What are the conservation consequences of these results? 

According to Schmidt (2010), Brenthis ino has a vulnerable status in the region of 

Rheinland-Pfalz. The genetic structure detected for this species in our study area seems 

to guarantee the genetic long-term survival for most of our sixteen populations. This 

observation applies best to the populations from the Hunsrück mountains, due to the 

missing genetic differentiation among them combined with high genetic diversity of the 

single populations, thus indicating a strong connectivity all over this area. 

It is widely accepted that a species-specific level of genetic diversity is necessary for 

the viability of its populations (Frankham et al., 2002; Hansson and Westerberg, 2002; 

Reed and Frankham, 2003; Schmitt and Hewitt, 2004) with many examples offered (e.g., 

Saccheri et al., 1998; Westermeier et al., 1998; Bryantetal., 1999; Madsen et al., 1999; 

Meagher, 1999; Rowe et al., 1999; Buza et al., 2000; Luijten et al., 2000; Újvári et al., 

2002). Therefore, it is necessary to continue the conservation efforts for the habitats 

present in the Hunsrück mountains for this species. 

For the other populations in other study, low population size and population isolation 

might lead to inbreeding and later, to extinction (Frankham, 2005). Thus, the most 

immediate goal in our study should be to increase population sizes and to enhance gene-

flow between populations of all regions (Finger et al., 2009). Therefore, it is hard to predict 

the evolution of the genetic make-up for populations in our study, such as Ballon d’ Alsace 

or Himburg. The survival of each single population might completely dependent on the 

habitat management, and management mistakes might decrease biodiversity without 

realistic perspectives of rapid recovery by re-colonisation. A strict conservation of all 

mountain habitats is therefore necessary for this species’ survival and the development of 

new or the restoration of former Brenthis ino locations would further safeguard its 

populations and the ones of other rare and endangered animal and plant species that live 

together with this butterfly species. As the lowland populations of Brenthis ino, the 

mountain populations show an important ecological role as an indicator organisms of 

specific habitat structures, therefore, this data are highly relevant for the conservation of 



 

50 

this species, but also for other species linked to the same habitat, or those who face the 

same conservations issues. These facts indicate that a more careful analysis of the 

ecological requirements and population genetic studies are necessary for sustainable 

conservation of general biodiversity. 

4.2 Mark Release Recapture 

i) Population densities and habitat conditions 

Our mark-release-recapture study revealed large population densities for the species 

Pieris rapae, Pieris napi and possibly for Leptidea reali. The recapture ratios for all 

species (9.02%; 5.38% and 7.94%, respectively) was low compared to other studies 

(Junker and Schmitt, 2010), where values of 29.6% and 25.8% were calculated for both 

male and female individuals of the species Euphydrias aurinia beckeri.  

For the species Anthocharis cardamines and Araschnia levana, the number of captured 

individuals was so low (8 and 6 individuals, respectively) that none of these individual was 

recaptured and therefore no estimation could be done about their ecology, population 

density or behaviour. 

In vineyard 2, the 89 events observed in recaptured individuals might be explained in 

part because of abundance of flowering plants, water, and some shadow places for 

resting in that part of the transect. The temperature data logger Avel 2 indicated not such 

a large variance, when compared to the other two, between the maximum and minimum 

values of temperatures observed in the transect. With some high temperatures along the 

transect during some days of the study period, the records of Avel 2, and the numbers of 

recaptured individuals at vineyard 2, possibly indicates that butterflies seems to prefer 

some hided or shadow parts of the transect. 

The main reason for the observed low values in the recapture ratio was because these 

species are generally very mobile so they simply fly away, and butterflies might have 

patrolled a large area that surrounds the transect. Another reason, although not so 

strongly observed like the one presented before, could be seen as a consequence from 

weather conditions, seen by the high temperature fluctuations registered by the 

temperature data logger placed in the different locations along the transect (see ANNEXE 

II). This last reason has more meaning for the small values on captured individuals for the 

species Araschnia levana and Anthocharis cardamines. 

As it is known, adult butterflies are highly mobile and flight is one of the most essential 

keys for the maintenance of the existence of populations and the formation of new 
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colonies (Shreeve, 1981). There are several factors that may affect flight activity. Baker 

(1969), Gilbert and Singer (1975), and Southwood (1962) suggests that mobility is related 

to the special characteristics of habitat, and Ehrlich and Gilbert (1973) and Keller et al. 

(1966) have observed that flight activity may be influenced by the learning of the location 

of resources. Population density can also influence flight according to Dethier and 

MacArthur (1964) and Shapiro (1970). Consequently, all of these factors can influence the 

numbers of captures and recaptures of the study species. 

Another possible explanation for the low values in recaptures and captures in some 

particularly species may be the habitat surrounding of our study area. The continuous 

presence of anthropogenic factors, such as human activity, as by working with vineyards, 

or working along the small stream, or even by cut off the meadows, or the grazing done by 

sheep, in almost all the parts of our transect, may have some influence on such low 

values. 

The example of excessive grazing of the meadows can cause major problems for 

butterflies, because many species lay their eggs on herbaceous plants that grow around 

the base of bushes. If they laid their eggs on plants in open areas away from bushes, the 

resulting caterpillars would perish - either through desiccation in bright sunshine, or 

because sheep would eat the plants on which they are. Therefore, grassland butterflies 

will succeed best, both in diversity and abundance, at locations where a well-considered 

grazing or cutting with a controlled regime will be able to produce a mosaic habitat in 

which simple meadows, short herbaceous plants and natural vegetation, on which they 

are, among other, essential elements for the butterfly’s survival. 

 

ii) Large Mobility 

a) Prediction of long distance movements: NEF versus IPF 

We applied the classification of species as sedentary, intermediate or mobile according 

to Pollard and Yates (1993). This classification has been used successfully in previous 

studies (e.g., Thomas, 2000). According to Öckinger et al. (2006), the species P. rapae is 

described as mobile and P. napi is described by having an intermediate mobility and 

Leptidea sinapis, a closely related species to Leptidea reali, is also described as 

intermediate. Our predictions for NEF and IPF showed that those three species have a 

mobile behaviour. 

According to Junker and Schmitt (2010), the estimation of long distance movements is 

one central goal in conservation biology. These movement events are of high importance 

to build functional metapopulation structures and to ensure long-term survival in a 
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fragmented landscape (Hanski, 1998; Schtickzelle and Baguette, 2003; Baguette and 

Mennechez, 2004). However, there are no formations of metapopulations of the five study 

species mentioned in our MRR study. Nonetheless, the effective dispersal behaviour of a 

species is difficult to determine and may also depend on the habitat quality as well as the 

spatial scale of the respective study area (Schneider, 2003). Therefore, using predefined 

models like the negative exponential function (NEF) and the inverse power function (IPF) 

only yield approximations to predict the probability of long distance movements. In this 

context, some authors suggest that the IPF in general provides better estimates of the real 

dispersal capability of a species than the NEF, which may underestimate the probability of 

long distance movements (Baguette, 2003; Zimmermann et al., 2005). However, the 

results of our analyses (R2 values of calculations based on 50 or 100 m intervals) give 

evidence that the NEF model more accurately describes the movement behaviour of 

Pieris rapae, Pieris napi and Leptidea reali in our study site. In one particular case, 

general predictions for the probability of long–distance movements of Pieris rapae, we can 

argue that about three (2.9) of 100.000 individuals of this species will be able to travel at 

least a distance of 10 km (see Table 10). Only for Pieris napi applying the 100 m distance 

classes, IPF showed a better fit instead of NEF. Even though, taking into account the NEF 

formula, we can argue that at least four of 10.000 individuals of P. napi will be able to 

travel a distance of 5 km or more (see Table 10). Our data analyses show the same line of 

movement for the species Leptidea reali. According to the NEF formula, at least six of 

10,000 individuals of this species will be able to travel at least a distance of 2 km (Table 

11). 

 

b) Emigration versus Dismigration 

According to Back et al. (1991), all members of Deutsche Forschungzentrale für 

Schmetterlingswanderungen - DFZS (1964) presented a list for the classifications of 

butterflies. In this list, they included P. rapae and P. napi in the group of “Emigrants”. This 

group is explained as species that normally migrate within their area of occurrence and do 

not return to the original areas from which they came. The same authors refers that the 

potential for migration is present and can in certain populations be induced by external 

factors. It is more likely that high population density is the decisive factor which causes 

migration to occur. However, migration is not a prerequisite for the maintenance of their 

populations because all emigrants are in a position to exist in their birth place at any 

particular developmental stage. Furthermore, their behaviour in that migration is neither 

yearly nor periodic. 
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Our results on the recaptured individuals form the species P. rapae and P. napi 

showed a different type of behaviour, being close to the group that Back et al. (1991) 

described as dismigrants. Dismigrants are those species which are suspected of being 

migratory, also known as area expanders. This movements leads to a population 

fluctuations, and hence the population spreads. Their behaviour is described to tend to be 

of an irregular nature. The breeding areas are left due to various (unknown) factors, and 

another area is reached without any particular aim. This second type of behaviour, known 

as dismigrantion, is confirmed for our recaptured species, Lepidea reali, P. rapae and P. 

napi by the estimations on the values of the NEF and IPF functions. 

In accordance with the perdition values of NEF and IPF in our MRR study, we had 

showed that this species of butterflies could fly long distances; although some studies 

described this method as not suitable to observe such results. Studies made by Roer 

(1962) and Knight et al. (1999) argue that direct methods, such as MRR, are poorly suited 

for detecting long-distance dispersers. Studying successive generations, like our study 

species Araschnia levana, requires more time than studying monovoltine species, as 

Anthocharis cardamines. 

Back et al. (1991) even distinguished two forms of migration: the active and the passive 

migration. The main differences between both are that on the one hand, passive migration 

is understood as the portion of butterflies or even other insects that moved with the aid of 

the air. Usually, they do not attempt to resist this movement, even though being able to do 

so. In this case, the main “force” for passive migration is activated by external factors. On 

the other hand, active migration is explained as “directed” flight. This flight may be caused 

by more than one factor (i.e. ecological, climatic or even a factor of genetic nature). In this 

case of active migration, the target area is prefixed and occasionally this means that the 

butterflies may have to fly against the wind. These facts lead us to infer that for the three 

species with obtained recaptures, L. reali, .P rape and P. napi, showed a migration pattern 

that has to be included in the active forms. 

In our results, the largest moved distance was registered for the species P. rapae, 

almost 2 km in our almost 4 km transect. In other studies, this species is described as 

exploiting rich supplies of their host plants at crop fields in summer (Fric et al., 2006). This 

species has also been described to behave as classical migrants in parts of their range 

(Courtney, 1986), and their migrations tend to occur in summer (Asher et al., 2001). The 

species Pieris napi and Leptidea reali tend to show the same mobility as seen for Pieris 

rapae. This leads us to affirm that they can be patrolling the entire area of the transect 

searching for food, water, matting partner and the host plant for laying eggs. 
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According to A. Shapiro (personal communication seen in Fric et al., 2006), spring 

individuals of P. rapae avoid wind-exposed locations (which might contribute to lower 

dispersal), whereas summer individuals utilize ascending thermal currents (consistent with 

a higher wing area and higher dispersal). Certainly, the existence of this pattern does not 

prove a connection with dispersal, and alternative explanations are possible (Fric et al., 

2006). We have to take into account that a species’ mobility is not a static trait, but a 

multiple trait, the components of which may evolve rather rapidly in interaction with the 

actual spread of resources and other meaningful landscape features (Clobert et al., 2004). 

 

c) Conservation implications 

According to Schmidt (2010), the five species in our study area have a LC status in the 

region of Rheinland-Pfalz. Although this status described for our study species, 

conservative implications should not be forgotten. The type of habitats in this MRR study 

is also a habitat for other living beings. Large changes in habitats should be avoided and 

the species should be in a regular butterfly monitoring program for collecting more data to 

define carefully the mobility observed of these five species.  

Change of land use, which has serious consequences for the conservation of 

Lepidoptera and other wildlife, and consequent loss of habitats, has led to major declines 

of Lepidoptera in all European countries (Warren et al., 1993). In Europe, the main threats 

reported are from agricultural improvements, which affect 90% of the threatened species, 

building developments (affecting 83%), increasing use of herbicides and pesticides 

(affecting 80%), and abandonment of agricultural land and changing habitat management 

(65%). The widespread loss and reduction in size of breeding habitats is affecting 83% of 

threatened species (van Swaay and Warren, 1999). 

A regular monitoring program at sites surrounding the transect can be representative of 

several different habitat types, such as the programs in Great Britain (Pollard and Yates, 

1993) and The Netherlands (van Swaay et al., 1997) could give indications of general, 

large-scale population trends. 
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5. Conclusions 

In conclusion, we can affirm that a significant genetic structure exists among the 

populations of Brenthis ino analysed in this study. The system of isolation-by-distance, 

present over all sixteen analyzed populations, might explain part of that differentiation. 

The French population Ballon d’Alsace and the population Himburg from Westerwald are 

geographically the most isolated ones, a fact also underlined by their genetic distinctness. 

Therefore, both show a low gene-flow with the other populations, but not a reduced 

genetic variability. The Eifel region was clearly identified by the specific genetic pattern 

observed in the bar plot, and also the large group of the Hunsrück mountains present a 

diverse genetic group. This group included the populations Lampaden, Grimburg, 

Heddert, Morbach 1, Morbach 2, Niederkell, Reinsfeld and Wawern. While the population 

Lampaden was the genetically most distinguished one in this geographical region, 

Grimburg, Heddert and Reinsfeld showed very close genetic proximity, followed by 

Niederkell, Morbach 1, Morbach 2, and last Wawern. Probably, gene-flow occurs more 

strongly among the populations Grimburg, Heddert, Morbach 1, Morbach 2, Reinsfeld, 

and, maybe, even Rodalben. The population Rodalben was probably the last one to be 

colonized. If so, we can suggest that in our system the recent colonization (over the past 

100 years or so) was made from the North to the South. Thus, the conservation effort may 

take the genetic differentiation into account, and the mountain habitats of this butterfly 

should be preserved. 

With our MRR, we could conclude that the species Pieris rapae, Pieris napi and 

Leptidea reali show a large range of mobility, explained by the estimation calculations for 

the NEF and the IPF functions, and possibly also have a large population density due to 

the low values of the recapture ratio. The recapture event of the species P. rapae 

indicated that they can patrol the entire area of the transect searching for food, water, 

mating partner and the host plant for egg laying. 

Both of the conclusions on the two analytical methods demonstrate the great 

importance of population genetics and behavioural studies in conservation ecology. 
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ANNEXE I – Microsatellites analysis for Brenthis ino 



 

 

 

Table I. 1. Five parameters of genetic diversity for all populations and loci for Brenthis ino. Allelic 
richness (AR), Number of alleles (Na), expected Heterozygosity (He), observed Heterozygosity (Ho) and 
Fixation index (F) 

Pop   Bi3 Bi8 Bi19 Bi24 Bi29 Bi33 Bi36 Bi38 Bi39 Bi41 Bi44 

Ballon d'Alsace AR 8.30 9.92 8.71 5.96 6.00 7.15 4.96 4.00 5.72 7.48 5.88 

  Na 9 11 10 6 6 8 5 4 6. 9 6 

  He 0.82 0.82 0.72 0.80 0.80 0.73 0.67 0.61 0.69 0.71 0.76 

  Ho 0.88 0.51 0.30 0.63 0.85 0.70 0.72 0.68 0.50 0.50 0.85 

  F -0.06 0.38 0.58 0.22 -0.06 0.04 -0.08 -0.13 0.27 0.29 -0.12 

Birkenfeld AR 9.28 15.72 15.98 4.53 5.83 5.67 7.62 3.96 5.41 13.27 10.05 

  Na 11 21 19 5 7 6 8 4 6 13 8 

  He 0.83 0.89 0.82 0.56 0.66 0.74 0.70 0.40 0.69 0.88 0.59 

  Ho 0.80 0.30 0.73 0.55 0.60 0.54 0.53 0.35 0.43 0.33 0.18 

  F 0.04 0.66 0.11 0.02 0.10 0.27 0.25 0.12 0.39 0.62 0.70 

Fischbach AR 9.15 13.95 16.65 6.67 3.65 7.55 6.38 4.00 4.61 10.51 13.59 

  Na 11 16 20 8 4 8 7 4 5 18 6 

  He 0.83 0.86 0.80 0.82 0.60 0.79 0.66 0.57 0.68 0.84 0.67 

  Ho 0.80 0.28 0.59 0.72 0.43 0.44 0.49 0.58 0.48 0.36 0.18 

  F 0.04 0.68 0.26 0.12 0.29 0.45 0.26 -0.02 0.30 0.57 0.74 

Grimburg AR 8.62 10.54 10.29 5.62 5.64 5.64 5.49 4.00 6.60 9.69 8.00 

  Na 9 11 12 6 6 6 6 4 7 11 9 

  He 0.85 0.83 0.59 0.68 0.72 0.69 0.63 0.57 0.73 0.78 0.69 

  Ho 0.83 0.46 0.41 0.75 0.83 0.60 0.55 0.63 0.60 0.57 0.45 

  F 0.03 0.45 0.30 -0.11 -0.15 0.13 0.13 -0.09 0.18 0.27 0.35 

Heddert AR 8.84 10.55 9.79 6.59 5.92 6.26 5.26 3.99 5.95 7.67 7.06 

  Na 9 11 11 7 6 7 6 4 6 9 8 

  He 0.86 0.87 0.61 0.72 0.76 0.71 0.61 0.50 0.75 0.73 0.77 

  Ho 0.88 0.63 0.44 0.83 0.88 0.78 0.65 0.55 0.65 0.73 0.65 

  F -0.02 0.28 0.29 -0.15 -0.16 -0.08 -0.06 -0.10 0.13 0.01 0.15 

Heyroth AR 7.64 14.58 16.48 7.62 5.64 4.65 4.56 3.97 6.85 11.70 10.82 

  Na 12 16 21 10 6 5 5 4 7 17 7. 

  He 0.80 0.87 0.82 0.83 0.75 0.63 0.54 0.58 0.77 0.79 0.79 

  Ho 0.73 0.08 0.82 0.83 0.55 0.50 0.32 0.64 0.49 0.33 0.63 

  F 0.10 0.91 0.01 0.00 0.26 0.20 0.41 -0.11 0.37 0.59 0.21 

Himburg AR 7.62 10.08 17.55 5.53 5.90 5.30 6.82 3.00 6.96 10.33 8.63 

  Na 8 11 21 6 6 6 7 3 7 12 9 

  He 0.63 0.81 0.90 0.70 0.76 0.65 0.71 0.60 0.82 0.64 0.83 

  Ho 0.75 0.38 0.85 0.73 0.76 0.59 0.74 0.63 0.78 0.53 0.85 

  F -0.19 0.54 0.06 -0.03 0.00 0.10 -0.05 -0.04 0.05 0.18 -0.01 

Holzmaar AR 6.99 16.41 15.15 5.89 6.00 6.93 6.85 4.96 6.92 13.00 14.84 

  Na 7 14 16 6 6 7 7 5 7 12 7 

  Ho 0.76 0.29 0.76 0.86 0.82 0.39 0.50 0.26 0.36 0.19 0.21 

  He 0.80 0.85 0.83 0.73 0.77 0.68 0.66 0.35 0.75 0.82 0.77 

  F 0.05 0.67 0.09 -0.19 -0.07 0.43 0.25 0.26 0.52 0.77 0.73 

Lampaden AR 11.88 16.27 15.25 5.80 5.87 7.95 7.15 3.98 5.81 15.82 10.75 

  Na 14 18 18 6 6 9 6 4 6 15 10 

  He 0.86 0.88 0.80 0.71 0.71 0.77 0.75 0.38 0.75 0.88 0.79 

  Ho 0.85 0.49 0.68 0.68 0.76 0.79 0.59 0.39 0.53 0.42 0.84 

  F 0.01 0.45 0.14 0.03 -0.08 -0.03 0.20 -0.04 0.30 0.52 -0.07 

Morbach 1 AR 10.17 11.07 6.28 4.87 6.94 5.86 4.60 3.88 6.60 11.55 6.87 

  Na 11 13 7 5 7 6 5 4 7 13 8 



 

 

  He 0.85 0.81 0.59 0.63 0.78 0.58 0.59 0.48 0.72 0.83 0.52 

  Ho 0.78 0.33 0.31 0.68 0.83 0.56 0.58 0.53 0.68 0.51 0.28 

  F 0.09 0.59 0.48 -0.07 -0.06 0.03 0.03 -0.08 0.07 0.38 0.47 

Morbach 2  AR 9.18 14.97 12.01 7.00 5.89 5.67 5.75 4.37 4.64 10.30 14.88 

  Na 10 12 14 8 7 6 7 5 6 10 9 

  He 0.82 0.78 0.71 0.75 0.69 0.72 0.58 0.58 0.71 0.75 0.83 

  Ho 0.73 0.23 0.73 0.72 0.72 0.49 0.48 0.58 0.43 0.56 0.54 

  F 0.11 0.71 -0.02 0.04 -0.03 0.32 0.18 0.01 0.40 0.25 0.35 

Niederkell AR 12.43 13.95 19.49 4.56 6.83 6.89 6.83 4.00 5.94 17.69 10.10 

  Na 14 14 27 6 8 10 9 4 7 19 12 

  He 0.87 0.85 0.82 0.57 0.76 0.76 0.72 0.58 0.66 0.90 0.78 

  Ho 0.90 0.45 0.92 0.56 0.75 0.62 0.83 0.63 0.45 0.56 1.00 

  F -0.03 0.47 -0.12 0.01 0.02 0.19 -0.14 -0.08 0.32 0.37 -0.28 

Reinsfeld AR 8.95 9.45 7.05 6.26 6.64 5.30 4.68 3.88 4.96 8.02 6.53 

  Na 9 10 8 7 7 6 5 4 5 9 7 

  He 0.85 0.84 0.45 0.70 0.76 0.64 0.58 0.51 0.71 0.79 0.72 

  Ho 0.88 0.68 0.29 0.75 0.83 0.73 0.55 0.48 0.58 0.53 0.65 

  F -0.03 0.19 0.36 -0.07 -0.09 -0.13 0.04 0.06 0.18 0.34 0.10 

Rodalben AR 10.03 17.97 13.13 5.79 5.75 6.23 5.57 4.63 6.34 11.06 11.40 

  Na 13 21 17 8 6 7 6 5 6 11 5 

  He 0.84 0.90 0.63 0.67 0.63 0.75 0.63 0.68 0.65 0.79 0.55 

  Ho 0.88 0.28 0.40 0.58 0.57 0.60 0.56 0.59 0.51 0.38 0.12 

  F -0.05 0.69 0.37 0.13 0.09 0.21 0.11 0.14 0.21 0.52 0.79 

Wascheid AR 10.89 16.16 14.29 7.17 5.62 5.62 8.98 3.63 7.19 11.67 10.60 

  Na 13 18 21 9 6. 6 10 4 8 14 7 

  He 0.86 0.86 0.82 0.78 0.76 0.71 0.71 0.55 0.75 0.75 0.73 

  Ho 0.83 0.21 0.86 0.67 0.74 0.43 0.40 0.39 0.64 0.29 0.62 

  F 0.04 0.75 -0.05 0.14 0.02 0.40 0.43 0.29 0.14 0.62 0.15 

Wawern AR 10.43 9.29 9.31 7.16 6.61 7.87 8.34 3.88 4.00 11.97 7.45 

  Na 11 10 11 8 7 8 10 4 4 13 8 

  He 0.86 0.82 0.68 0.76 0.77 0.75 0.67 0.54 0.72 0.87 0.77 

  Ho 0.90 0.46 0.75 0.78 0.85 0.46 0.75 0.58 0.58 0.69 0.43 

  F -0.04 0.44 -0.11 -0.02 -0.11 0.39 -0.13 -0.06 0.21 0.20 0.45 

 



 

 

 

Table I. 2. Pairwise FST values (p < 0.001) of all populations analysed of Brenthis ino, provided by GenAlEx. Each number correspond to the same 
population 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Ballon d'Alsace (1) 0.000                

Birkenfeld (2) 0.066 0.000               

Fischbach (3) 0.068 0.023 0.000              

Grimburg (4) 0.044 0.030 0.045 0.000             

Heddert (5) 0.048 0.036 0.051 0.008 0.000            

Heyroth (6) 0.070 0.061 0.039 0.050 0.041 0.000           

Himburg (7) 0.080 0.065 0.068 0.064 0.057 0.064 0.000          

Holzmaar(8) 0.059 0.039 0.034 0.043 0.035 0.022 0.052 0.000         

Lampaden (9) 0.065 0.040 0.043 0.063 0.061 0.059 0.082 0.045 0.000        

Morbach 1 (10) 0.059 0.011 0.038 0.015 0.023 0.052 0.058 0.039 0.059 0.000       

Morbach 2 (11) 0.055 0.029 0.030 0.033 0.035 0.029 0.059 0.035 0.049 0.030 0.000      

Niederkell (12) 0.053 0.018 0.031 0.016 0.025 0.042 0.055 0.032 0.040 0.020 0.020 0.000     

Reinsfeld (13) 0.046 0.023 0.036 0.000 0.008 0.038 0.064 0.036 0.054 0.011 0.016 0.013 0.000    

Rodalben (14) 0.054 0.027 0.037 0.042 0.047 0.058 0.081 0.054 0.059 0.027 0.026 0.027 0.031 0.000   

Wascheid (15) 0.054 0.035 0.043 0.042 0.035 0.017 0.051 0.024 0.048 0.033 0.019 0.037 0.030 0.036 0.000  

Wawern (16) 0.045 0.025 0.029 0.015 0.015 0.034 0.047 0.028 0.045 0.019 0.020 0.016 0.011 0.037 0.030 0.000 

 



 

 

 

 

 

 

 

 

 

 

 

 

ANNEXE II - Mark release recapture for the species 

Anthocharis cardamines; Pieris napi; Pieris rapae; 

Leptidea reali and Araschnia levana 



 

 

 

Figure II. 1 – Graphic resulting on the measured temperatures of the data loggers replaced in the beginning of the transect – vineyard 1 and meadow 1 



 

 

 

Figure II. 2 – Graphic resulting on the measured temperatures of the data loggers replaced in the middle part of the transect – end of vineyard 2 



 

 

 

Figure II. 3 – Graphic resulting on the measured temperatures of the data loggers replaced in the last part of the transect – meadow 5 



 

 

 

Table II. 1. List of plant species, only the most common and observed along the transect 

Location Family Species  Plant species 

All parts of the transect Dipsacaceae Dipsacus sylvestris 

All parts of the transect Asteraceae Senecio jacobaea 

All parts of the transect Lamiaceae Clinopodium vulgare 

All parts of the transect Rosaceae Rubus sp. 

All parts of the transect Boraginaceae Echium vulgare 

All parts of the transect Asteraceae Centaurea nigra 

All parts of the transect Asteraceae Achillea millefolium 

All parts of the transect Salicaceae Salix sp. 

All parts of the transect Leguminosae or Fabaceae Trifolium pratense 

All parts of the transect Leguminosae or Fabaceae Trifolium repens 

All parts of the transect Urticaceae Urtica dioica 

All parts of the transect Papaveraceae Papaver sp. 

All parts of the transect Lythraceae Lythrum salicaria 

all meadows Rosaceae Potentilla tabernaemontani 

all meadows Lamiaceae or Labiatae Lamium purpureum 

all meadows Cornaceae Cornus sanguinea 

vineyard 1 Apiaceae Daucus carota 

vineyard 1 Convolvulaceae Convolvulus arvensis 

vineyard 1 Convolvulaceae Convolvulus cneorum 

vineyard 1 Campanulaceae Campanula sp. 

vineyard 1, vineyard 2 Vitaceae Vitis vinifera 

vineyard 1, vineyard 2 Asteraceae Tripleurospermum perforatum 

vineyard 1, vineyard 2 Asteraceae Cirsium arvense 

vineyard 1, vineyard 2 Asteraceae Cirsium vulgare 

vineyard 1, vineyard 2  Amaranthaceae Amaranthus chlorostachys 

vineyard 1, meadow 1 Euphorbiaceae Euphorbia peplus 

vineyard 1, meadow 2 Asteraceae or Compositae Lapsana communis 

vineyard 1, meadow 3, meadow 4  Fabaceae Lotus corniculatus 

meadow 1 Poaceae Lolium perenne 



 

 

meadow 1 Poaceae Deschampsia cespitosa 

meadow 1 Juncaceae Juncus effusus 

meadow 1 Poaceae or Gramineae Setaria pumila 

meadow 1, meadow 3 Asteraceae Hieracium prenanthoides 

meadow 1, meadow 2a, meadow 2b Rosaceae Filipendula ulmaria 

meadow 2a, meadow 2b Ranunculaceae Ranunculus acris 

meadow 2a, meadow 2b, vineyard 2 Fabaceae or Leguminosae Robinia pseudoacacia 

meadow 2b Cupressaceae Thuja plicata 

meadow 2b, vineyard 2 Rosaceae Crataegus monogyna 

meadow 2b, vineyard 2 Pinaceae Picea abies 

vineyard 2 Asteraceae Taraxacum officinale 

vineyard 2 Clusiaceae Hyperium perforatum 

vineyard 2 Asteraceae Erigeron canadensis 

vineyard 2 Asteraceae or Compositae Lactua serriola 

vineyard 2 Brassicaceae or Cruciferae Bunias orientalis 

vineyard 2 Onagraceae Epilobium parviflorum 

vineyard 2 Asteraceae   Erigeron canadensis 

vineyard 2 Asteraceae Lactuca serriola  

vineyard 2 Solanaceae Solanum dulcamara 

vineyard 2 Fagaceae Fagus sylvatica 

vineyard 2 Aceraceae Acer pseudoplatanus 

vineyard 2 Aceraceae Acer platanoides 

vineyard 2 Aceraceae Acer campestris 

vineyard 2 Fagaceae Quercus sp. 

vineyard 2 Fagaceae Quercus robur 

vineyard 2 Fagaceae Quercus peraea 

vineyard 2 Betulaceae Corylus avellana 

vineyard 2 Adoxaceae Sambucus nigra 

vineyard 2 Fabaceae or Leguminosae Vicia sepium 

Vineyard 2 Asteraceae or Compositae Artemisia vulgaris 

vineyard 2 Brassicaceae Brassica oleracea 

vineyard 2 Asteraceae Solidago canadensis 



 

 

vineyard  2 Rosaceae Agrimonia eupatoria 

vineyard 2 Dipsacaceae Knautia arvensis 

vineyard  2 Asteraceae Matricaria maritima 

vineyard  2 Apiaceae Pastinaca sativa 

vineyard  2, meadow 3 Asteraceae Tanacetum vulgare 

meadow 3 Asteraceae Bellis perennis 

meadow 3 Fabaceae or Leguminosae Medicago sativa 

meadow 3 Lamiaceae Galeopsis tetrahit  

meadow 3 Lamiaceae Origanum vulgare 

meadow 3, meadow 4, meadow 5 Oleaceae Fraxinus ornus 

meadow 4 Plantaginaceae Plantago major 

meadow 4 Polygonaceae Polygonum sp. 

meadow 4 Equisetaceae Equisetum pratense 

meadow 4, meadow 5 Plantaginaceae Plantago lanceolata 

meadow 4, meadow 5 Rosaceae Sanguisorba officinalis 

meadow 5 Ranunculaceae Ranunculus flanula 

 


