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resumo 
 

 

A monitorização de uma pessoa pode ser importante em várias situações do 
dia-a-dia. Um modo de monitorização é a identificação de atividades 
realizadas. Atualmente, vários sensores potencialmente úteis para o 
reconhecimento de atividades, são integrados em dispositivos móveis, o que 
os torna particularmente interessantes para este tipo de monitorização. 
 

Uma forma complementar de monitorização é a utilização da gravação de um 
vídeo do ambiente que rodeia a pessoa a ser monitorizada. No entanto, dado 
o tamanho elevado dos vídeos para transmissão por canais sem fios ou 
mesmo para gravação no dispositivo, torna-se necessário atuar na 
compressão e redução da informação associada. Uma forma de o conseguir é 
adaptar a cadência de imagens adquiridas à velocidade da pessoa que está 
ser monitorizada. 
 

Nesta dissertação é proposto um sistema de monitorização online, chamado 
MonitorMe, que permite o reconhecimento de atividades e a gravação de um 
vídeo do ambiente envolvente de uma pessoa. Este sistema inclui um 
smartphone Android, mantido num bolso de camisa, e um módulo MARG 
(Magnetic, Angular Rate and Gravity), colocado num bolso das calças. Foi 
desenvolvida uma aplicação para o smartphone, que obtém dados dos 
sensores integrados em ambos os dispositivos para a realização do 
reconhecimento online de 6 atividades diferentes (em pé, sentado, deitado, 
andar, correr e queda). Este reconhecimento é conseguido utilizando um 
algoritmo de baixo custo computacional, cujo desenvolvimento teve em 
consideração as restrições relativas à capacidade de processamento e à 
duração da bateria dos telemóveis.  
 

Paralelamente ao reconhecimento de atividades, a câmara do smartphone 
captura imagens com uma cadência que varia com a velocidade do utilizador, 
esta última estimada a partir dos dados dos sensores processados para o 
reconhecimento de atividades. Demonstra-se assim a possibilidade de, com 
baixo custo computacional, diminuir a largura de banda de transmissão ou o 
armazenamento no dispositivo móvel. 
 
O sistema MonitorMe foi treinado e depois testado com dados obtidos em 
duas experiências envolvendo 10 pessoas, num total de 440 eventos 
diferentes com uma duração total de 45 minutos (2/3 usados para treino e 1/3 
para teste). Os resultados globais obtidos mostraram uma sensibilidade 
superior a 93% e uma especificidade superior a 98% para o reconhecimento 
de atividades, e um erro médio relativo de 8.6% para a estimativa de 
velocidade. 
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abstract 
 

 

The monitoring of a given person can be important in different day-to-day 
scenarios. Monitoring can be performed by detecting activities while being 
carried out. Presently, various sensors with potential for activity recognition are 
being included in mobile devices, so they are particularly interesting for this 
type of monitoring. 
 

A complementary way of monitoring consists in the use of a video recording of 
the subject’s surrounding environment. However, given the large size of the 
videos for transmission through wireless links or even for storage in the 
device, it is necessary to compress and reduce the corresponding information. 
This can be achieved by adapting the frame rate of the captured images to the 
speed of the user being monitored. 
 

In this dissertation an online monitoring system, MonitorMe, which performs 
activity recognition and video recording of the surrounding environment of a 
subject, is proposed. This system includes an Android smartphone, inserted in 
a shirt pocket, and an MARG (Magnetic, Angular Rate and Gravity) module, 
placed in a pants pocket. A smartphone application was developed, which 
collects data from the sensors integrated in both devices to perform the online 
recognition of 6 different activities (standing, sitting, lying, walking, running and 
fall). This was achieved by using an algorithm of low computational cost, which 
took into account the existing restrictions regarding processing power and 
battery life of mobile phones. 
 

In parallel with activity recognition, the smartphone camera captures images 
with a frame rate that varies with the user speed, the latter estimated from 
sensor data processed for activity recognition. This demonstrates the 
possibility of reducing the required transmission bandwidth or the storage in 
the mobile device, with a low computational cost. 
 

The MonitorMe system was trained and then tested using data collected in two 
experiments with a participation of 10 subjects, which resulted in a total of 440 
different events with a total duration of 45 minutes (2/3 used for training and 
1/3 for testing). The overall results have shown a sensibility greater than 93% 
and a specificity greater than 98% for activity recognition, and an average 
relative error of 8.6% for speed estimation.  
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1 Introduction 
 

1.1 Motivation and Context 

The monitoring of a given person can be very important in some areas and professions. Monitoring 
can be defined as the action of supervising the state of something or someone, normally over a 
period of time and for a special purpose [1]. 

Regarding elderly citizens, the population of the age group 65 and over has been increasing 
worldwide, and this growth is expected to continue at least until 2100 [2]. A monitoring system can 
enable the supervision of elders living alone and also of patients recovering at home. In the case of 
specific diseases, such as Parkinson, monitoring can also be used to study the disease related 
movements and the improvements due to medication. 

Monitoring is also potentially useful in others situations related to healthcare. In 2008, around 47% 
of the adults worldwide, aged 20 years old and over, were overweight or obese (35% and 12% 
respectively) [3]. The scenario is even worse if we consider that childhood obesity has been 
increasing [4]. A monitoring application can be used not only to study lifestyles, but also to help 
improve these figures and prevent obesity related diseases. This may be achieved by generating 
reports with information obtained through monitoring, which can be for example sent to the user’s 
doctor. This kind of reports is also very useful in the area of professional sports, where exercise 
information can be used to present a graph with the evolution of the athlete performance across 
training sessions. 

Some professions where monitoring can be very important, include professionals in the field (e.g. 
first responders). In these cases, a monitoring application can allow the identification of life 
threatening situations. There are also other professions, such as in the security area, where the 
continuous monitoring of the worker’s surrounding environment and his/her type of activity can be 
of enormous use. 

In the situations describe above as well as in other scenarios, monitoring can be achieved in many 
different ways. When monitoring people, one way consists in the use of a video recording of the 
person to be monitored. However, when the person’s location changes over time, recorded images 
of the surrounding environment (obtained with a wearable camera, for example) are more 
appropriate. 

One potential problem with video utilization, in the context of online monitoring, is that standard 
video requires considerable processing power, by the devices sending/receiving the corresponding 
data, and a large transmission bandwidth. To alleviate these requirements, a possible solution 
consists in adapting the video frame rate according to the monitoring scenario. This can imply 
finding the adequate frame rate value for a given situation (e.g. a low speed of the monitored 
subject may correspond to a lower frame rate and a high speed to higher frame rate). 

In the monitoring scenario of a given person, the identification of the activity changes can also be 
very useful. This information and an adaptable image recording of the surrounding environment 
can be used together in a monitoring solution. For example, considering online monitoring, the 
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recorded images can help in verifying an identified activity, such as a fall, allowing an appropriate 
and timely response.  

 

1.2 Objectives 

In the context just described, the main objective of this dissertation is to implement an online 
monitoring system, named MonitorMe, which recognizes activities based on sensors and records a 
video of the surrounding environment. MonitorMe is based on an Android smartphone with a 
camera and sensors. This device is to be placed at the chest (e.g. in a shirt pocket) and should be 
able to exchange information with other devices through data connections, such as a Bluetooth or a 
Wi-Fi (Wireless Fidelity) link. In this study one of these devices is an in-house built module based 
on MARG (Magnetic, Angular Rate and Gravity) sensors [5] placed at the upper right leg (e.g. in 
the pants pocket).  

The activities to be recognized by this system include the following: standing, sitting and lying 
(static activities or postures), walking and running (dynamic activities), and fall (instantaneous 
activity). The use of another device, besides the smartphone, aims at helping the recognition of one 
of the static activities (the sitting posture). Indeed it would be very difficult to distinguish this 
posture from the standing posture with just one device placed at the chest, since the position of the 
trunk can be similar in both postures. 

Since the system is based mainly on a smartphone to be used on a daily basis, the activity 
recognition approach used in our system aims at achieving a balance between accuracy and 
required processing resources. Also, the impact of each device and each sensor on the quality of the 
proposed system is investigated. 

Regarding the video of the surrounding environment, to minimize the use of the smartphone 
resources and the required transmission bandwidth, the frame rate is set according to the user speed 
while walking or running. To estimate this speed, instead of using the phone GPS (Global 
Positioning System) that represents extra resources and is only available outdoors, the possibility of 
using information already extracted from the sensor data for activity recognition is studied. 

The smartphone should be able to send to a server the current identified activity and the images 
being recorded. A remote monitoring device can connect to the server to receive this data and 
present it to its user. So it is necessary to develop applications for an Android smartphone, a server 
and a remote device. The main application of MonitorMe is the one running on the smartphone, 
since it performs most of the processing that allows online monitoring: 

 Data collection from the smartphone and MARG module sensors 

 Information extraction from the sensor data 

 Classification of the current activity given the extracted information 

 Speed estimation when the user is walking/running 

 Video recording with variable frame rate according to the user speed 

 Transmission of the current recognized activity and the video being recorded to a remote 
device, via a server. 
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1.3 Contributions 

The main contribution of this dissertation is the development of an online monitoring system, based 
on motion sensors and a camera, using two mobile devices. The most important part of this system 
is an Android application, which includes an activity recognition algorithm. Another important 
contribution is the frame rate control of a video being recorded, according to the user speed. 

The developed activity recognition algorithm allows the identification of different types of 
activities, including static, dynamic and instantaneous activities. The algorithm was implemented 
after analyzing a set of sensor data collected from various subjects, as described in detail in this 
dissertation. The main characteristics of the recognition algorithm are its low computational cost 
and the use of only one type of sensor (accelerometer). It is also possible to use just one device (a 
smartphone placed at the chest), if the distinction between the sitting and standing postures is not 
important. 

The video frame rate control allows further savings in processing requirements and also a decrease 
of the necessary transmission bandwidth. For the purpose of frame rate control, the implemented 
system estimates user speed while walking and running. The speed estimator was developed after 
the study of data collected in a real track and field environment. The validation of the resulting 
algorithm was also performed with data obtained in the same experiment. The speed estimator 
needs only a feature already computed for activity recognition, and some simple additional 
calculations. This represents a good alternative to the use of the GPS for obtaining speed, since the 
GPS would use even more phone resources. 

Another contribution consists in the integration of all developed algorithms into a system which 
allows transmission of all the resulting information (recognized activity plus images) to a server 
through a wireless connection.  Furthermore, this information can be accessed online by a remote 
device connected to the server using any type of connection. The operation of this system was 
demonstrated in a real situation. 

A paper describing the MonitorMe system was submitted to the 8th IEEE International Conference 
on Wirless and Mobile Computing, Networking and Communications (WiMob 2012), to be held in 
Barcelona, October 8-10, 2012. 

 

1.4 Dissertation Structure 

This dissertation is divided into 5 chapters, excluding this one. Chapter 2 provides some 
background on the subjects studied in this dissertation: activity recognition, speed estimation and 
video monitoring. For the first two areas, an overview of the state of the art is also presented. 

The proposed system, MonitorMe, is detailed in Chapter 3. This chapter begins by describing the 
requirements of a monitoring system based on sensors. The specific case of the MonitorMe is then 
explained, including its additional feature of video recording with adaptable frame rate. This 
chapter describes also the MonitorMe architecture, including the specifications of the used sensor 
devices. Details on the programming environment and on the MonitorMe implementation are also 
presented. 
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The development of the MonitorMe activity recognition and speed estimation algorithms is 
described in Chapter 4. The chapter starts by detailing the methods used to collect the 
experimental data. Then the activity recognition algorithm is presented, followed by details on the 
data analysis performed in order to develop this algorithm. The algorithm used for controlling the 
video frame rate is also presented, with special emphasis on the speed estimator developed from the 
sensor data analysis. In the final part of this chapter, the results of the algorithms evaluation are 
presented, including a discussion of the achieved values and a comparison with some data from the 
literature. 

Chapter 5 includes a demonstration of the MonitorMe system in a real situation, with online 
recognition of activities and video frame rate control. The relevant information was saved during 
the demonstration, allowing the confirmation of the activity recognition and of the frame rate 
variation according to the user activity/speed. 

Finally, Chapter 6 summarizes the contents and presents some of the main conclusions of this 
dissertation. In this chapter, some possible future research topics are also described. 

 



 

5 
 

2 Background and Related Work 
 

The monitoring of a person can be achieved in different ways. In this dissertation, activity 
recognition, video recording and speed estimation are used together for online monitoring. This 
chapter provides some background on the most used methods/techniques and describes some of the 
work done in each of these areas. 

 

2.1 Activity Recognition 

Activity recognition is usually achieved by performing the sequence of main steps shown in Figure 
1. Different types of data can be used to recognize activities, but the most commonly used are the 
data obtained from one or more sensors. From these data it is possible to extract features, which are 
the input of a classifier that is able to identify a given set of activities. These activities are generally 
simple day-to-day activities, such as standing, sitting, lying and walking. A brief background on 
sensors, features and classifiers is presented next. This section ends with a summary of related 
work in the area of activity recognition. 

 

Figure 1. Sequence of steps usually needed for activity recognition. 

 

Accelerometer and Gyroscope Sensors 

In a very broad way, a sensor can be defined as a device that is able to convert a physical stimulus 
(e.g. heat, light, sound, pressure, magnetic field, a specific motion) into an signal that can be 
measured [6]. In the recent years an increasing number of micro sensors, using MEMS (Micro-
electromechanical Systems) technology, have been integrated into portable devices (e.g. 
smartphones, wearable devices). This contributed to the use of these sensors with the aim of 
recognizing different activities. Smartphones are carried on a daily basis by most people, making 
the combination of smartphones and sensors suitable for daily monitoring of activity.  

Some sensors have already been used in mobile devices for quite some time, including audio 
sensors (e.g. microphones), vision sensors (e.g. cameras) and GPS sensors. Other types of sensors 
are also being integrated into the most recent devices [7]. In the particular case of motion sensors, 
they have been used mainly for gaming and music player control, and for automatic screen rotation. 
Motion sensors have also been used intensively in research for activity recognition [8-11] and also 
for speed estimation [8-12].  

In this dissertation the accelerometer and gyroscope (motion sensors) were studied for this purpose. 
The gyroscope measures the device’s rate of rotation, i.e. the device’s angular speed around each 

Sensors Features Classifier Activity
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axis (in rad/s). There are three physical axes (x, y, z) and the sensors that have an associated 
coordinate system can be uni-, bi- or tri-axial. 

The accelerometer deserves some additional explanation. This device measures the specific force, 
defined as the non-gravitational force per unit mass. This quantity, also called g-force, is measured 
in meters/second2 (m/s2), which are the units of acceleration in the International System of Units 
(SI). So the specific force is not really a force, but a type of acceleration. However, this is not the 
coordinate acceleration used in many situations, but the proper acceleration. The latter is the 
acceleration relative to the free-fall reference frame (inertial reference frame). 

For example, if an accelerometer is resting on a horizontal surface with its z-axis facing up, it will 
measure a value of +g on this axis (g = 9.80665 m/s2). This happens because, although it is not 
accelerating relative to a frame associated with the surface (zero coordinate acceleration), it is 
accelerating upwards relative to the freely-falling frame. Alternatively we can say that when resting 
on the horizontal surface, the accelerometer measures the g-force exerted by the surface.  

On the other hand, the accelerometer will show a zero value when in free-fall toward the center of 
the earth, since although the phone is accelerating relative to a frame associated to the earth’s 
surface, it is at rest in the free-fall frame of reference (in which objects are weightless). From 
another point of view, we can say that the specific force is zero for free-falling objects, because 
gravity alone does not produce g-forces. 

The examples above show that proper acceleration can be rather different from coordinate 
acceleration. However, since it will be the only type used in this dissertation, the proper 
acceleration will be denoted simply as acceleration in the remainder of this document. 

To further illustrate the accelerometer and gyroscope properties, some data were collected from the 
smartphone used in this dissertation (Samsung Galaxy S II). Figure 2 shows the values of both 
sensors for different static positions of the smartphone. Firstly, the phone was kept on a flat surface 
with the screen facing upwards (positive z-axis parallel to the force of gravity but in the opposite 
direction). The values obtained are shown in Figure 2 (a), where it can be seen that the reading on 
the z-axis is around 10 m/s2 (it should be 9.8 m/s2 if the z-axis was exactly parallel to the 
gravitational field). On the other hand, the values on the x- and y-axis are approximately zero. This 
is in accordance with the explanation given above, since as the accelerometer is resting on a 
horizontal surface, it measures the g-force exerted by the surface, which in this case is +g (direction 
of the positive z-axis). 

After a few seconds the smartphone position was changed so that its volume control was on top 
(positive x-axis parallel and in the same direction as the force of gravity). In this case, the g-force 
exerted by the surface is directed towards the negative x-axis so that the acceleration value 
becomes approximately –g on the x-axis and zero on the other two axes, as seen in Figure 2 (a). 
The random variations between the two static positions of the smartphone are due to the movement 
of the smartphone between these two positions. 

Finally, the smartphone was positioned so that its headphones’ input was on top (positive y-axis 
parallel to the force of gravity but in the opposite direction). As expected, now the acceleration 
value is approximately +g on the y-axis and zero on the two other axes. 
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As shown in Figure 2 (b), the behavior of the gyroscope is simpler: whenever the smartphone is 
static the reading on all three axes is approximately zero; only when the phone is moved from one 
static position to the next position the angular speed takes random values that depend on the 
rotation around the corresponding axis. 

 
(a) 

 
(b) 

Figure 2. Values for the phone accelerometer (a) and gyroscope (b) on the three axes, when changing 
between three static positions. 

 

Figure 3 illustrates the sensors dynamic behavior. In the beginning the smartphone was held 
approximately 60 cm above a cushion, with the screen facing upwards (positive z-axis parallel to 
the force of gravity but in the opposite direction). As it can be seen in Figure 3 (a), the acceleration 
on the z-axis is approximately +g and zero on the x- and y-axis. This situation is similar to the one 
shown above (phone on a flat horizontal surface). But now the values change around an average 
value due to the fact that, while holding the smartphone, the hands were not completely still. For 
the same reason the gyroscope values, Figure 3 (b), vary also around an average value of 
approximately zero. 

After a few seconds in the static position, the smartphone was dropped and fell on the cushion. This 
corresponds to the fast changes in the central part of Figure 3. The z-axis value for the 
accelerometer is especially interesting: it changes from a value of approximately +g to a value of 
zero. The latter corresponds to the time interval when the phone was in free-fall: as explained 
above, in this situation the g-force, or proper acceleration, is zero. After this zero value the 
acceleration increases instantaneously to a value greater than g (≈15 m/s2). This high value 
corresponds to a large g-force exerted by the cushion, to decelerate the phone in a short time 
interval. After this, the z-axis acceleration returns to its initial value of approximately +g. On the 
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other hand, the acceleration on the two other axes started by having approximately a zero value, but 
when on the cushion, the phone’s y-axis acceleration is greater than zero and the x-axis 
acceleration is smaller than zero. This behavior is due to the fact that after the fall the phone took a 
position that was not exactly horizontal. 

 
(a) 

 
(b) 

Figure 3. Values for the phone accelerometer (a) and gyroscope (b) on the three axes, when dropping 
from a static position. 

 

Features 

From the data collected from sensors it is generally possible to obtain further information. In the 
activity recognition area, this information usually corresponds to one or more features extracted 
from the sensor data, for time windows of finite and constant size, which varies a lot from work to 
work. It is also common to use sliding windows, i.e. to have some overlap between consecutive 
windows (normally of 50%). 

Features can be classified according to their domain: time, frequency or discrete [13]. Time-domain 
features can be obtained using mathematical or statistical functions, such as the mean, variance, 
root mean square (RMS), minimum and correlation, but also using other type of functions (e.g. 
zero-crossing). Some examples of frequency-domain features are the DC component, energy and 
entropy. Belonging to the discrete-domain, we can have symbolic string representations, such as 
the Levenshtein edit distance. These and other features are described in detail in [13], where they 
also show that time-domain features usually have lower computational cost, when comparing to 
frequency-domain or discrete-domain features. This is due to the fact that the time-domain features 
are computed directly over the sensor data, while to obtain the frequency- and discrete-domain 
features a transformation from the time-domain to the desired domain is needed. 
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Classifiers 

Considering a set of N classes, a classifier is an algorithm that is able to identify a given 
observation as belonging to one of the existing classes [14]. A classifier is normally based on a set 
of observations whose class association is known. In the sensor-based activity recognition context, 
a classifier is used to identify different activities given a set of features extracted from sensor data. 
Some of the most popular techniques used in classifiers include the following: k-nearest Neighbor 
(k-NN), Nearest Mean (NM), Neural Networks (NN), Hidden Markov Models (HMM), logistic 
regression, decision trees and threshold-based. These and other techniques are described in [15].  

The threshold-based technique consists in developing an algorithm that classifies activities 
according to one or more thresholds. These thresholds are defined during the analysis of extracted 
features and their value ranges for each of the considered activity. This was the technique used in 
this dissertation to construct a classifier for activity recognition, since it enables more control in the 
choice of the most adequate recognition strategy for each activity, while achieving similar or better 
accuracies when compared with some classifiers constructed in a more automated way. The latter 
are generally obtained automatically when the generating technique is provided with an input of 
features. This technique can be one of the listed above (except the threshold-based), which are not 
further detailed in this dissertation. 

 

Related Work 

In recent years there has been intense research in the activity recognition area. Studies related to 
activity recognition use mainly accelerometers [8, 9, 13, 15-24]. However, combinations of 
different types of sensors have also been used, such as an accelerometer together with an 
orientation sensor and a magnetic field sensor [25]. Recently the gyroscope has also been used 
either alone or combined with other sensors [26-28]. Wearable devices have been widely used in 
many studies [8, 9, 15, 16, 20, 21, 23, 24, 26-28]. Nowadays smartphones1 include many embedded 
sensors, which make these devices increasingly popular in activity recognition [17-19, 22, 25]. 

Table 1 presents a state of the art summary of activity recognition research, with emphasis on the 
most relevant studies for this dissertation. For each reference, the table lists the devices, sensors 
and locations used, the activities recognized, the number of subjects that participated, the sampling 
rate and window size used and the features extracted. Some of the techniques used for obtaining the 
classifiers are also listed, as well as the corresponding achieved accuracies. The word accuracy is 
used here for simplicity, since its definition may vary from work to work. More details concerning 
accuracy for each reference (if defined) can be found below. 

As already mentioned above, wearable sensors have been often used in activity recognition. Some 
studies used these sensors across multiple body locations, such as [15] where they used sensor data 
collected by Bao and Intille [21] from 13 users, each using bi-axial accelerometers placed at 5 
different body locations (see Table 1). The main goal of [15] was the development of a pedestrian 
navigation system, so they focused on activities where the legs have an important role (e.g. sitting, 
                                                      

1 Although smartphones can also be considered wearable devices, in this dissertation the term wearable 
devices is used for all devices in this category except for smartphones and Wii remotes. 
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standing, walking, running). For each sensor location and each axis the following features were 
extracted: DC component, energy, entropy and correlation coefficients between each pair of 
signals. Classifiers using several techniques, including the ones listed in Table 1 for [15], were 
trained with the referred features (separately for each subject). The evaluation of these classifiers 
showed that the best results (> 98%) were achieved for the classifiers based on NM, k-NN and 
cHMM (continuous emissions HMM) with 2 training phases. The exact meaning of accuracy is not 
defined in this publication: it is described as the “the aggregate classification accuracy”, obtained 
from the “aggregated confusion matrix that added the classification outcomes for all subjects”. 

In contrast, there are studies that focused only on 1 or 2 body locations, being the most popular the 
trunk/chest, the waist and/or the leg/thigh. In [16] a single wearable tri-axial accelerometer was 
placed at the chest to recognize 5 different activities (walking, stair climbing, standing, talking with 
people, and working at computer). They applied a filter to the collected sensor data to obtain the 
low and high frequencies components. The features listed in Table 1 were extracted from the 
signals with and without filtering, considering the values on three axes of the accelerometer and the 
acceleration magnitude (square root of the sum of the value on each axis squared). The skewness 
feature is a measure of the degree of asymmetry of a distribution around its center point and the 
kurtosis measures if the distribution is peaked or flat relative to the normal distribution2. The 
correlation was computed for each pair of accelerometer axes. The energy was obtained from the 
coefficients of a wavelet transform. The root mean square (RMS) of speed was also calculated, 
where the speed was obtained by integrating the acceleration. The Minmax sums correspond to the 
sum of all the samples in a window sorted in crescent order, with all the samples in the same 
window sorted in decreasing order. The features extracted from the training set were used as the 
input of a random forest, which associated a measure of importance to each feature. The 20 most 
meaningful features were chosen to train the classifiers based on a decision tree, a bagging3 of 10 
decision trees, AdaBoost4 (Adaptive Boosting) using decision trees and a random forest of 10 
decision trees. The selected features included mean values, standard deviations and mean values of 
Minmax sums of acceleration, and root mean squares (RMS) of speed. Accuracies greater than 
90% were observed for all 4 classifiers. 

                                                      

2 For example, data sets with a low kurtosis, such as the uniform distribution, tend to have a flat top around 
the mean. In contrast, data sets with a low kurtosis tend to have sharp peaks near the mean. 
3 Bagging (bootstrap aggregating) is a method for combining decision trees or other classifiers. 
4 The AdaBoost technique is another method for combining low-accuracy classifiers to create a high-
accuracy classifier. 
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Table 1. State of the art summary of activity recognition research 

Reference 
Devices, sensors & 

locations 
Activities 

Subjects, sampling 
rate & window 

size 
Features 

Techniques used in 
classifiers 

Accuracies (%) 

[15] 

5 wearable devices 
each with a bi-axial 
accelerometer, 
at hip, wrist, arm, 
ankle and thigh 

 Sitting 
 Lying 
 Standing 
 Walking 
 Stair climbing 
 Running 
 Cycling 

13 subjects, 
76.25 Hz 
& 
6.7 seconds 
(50% overlap) 

 DC component 
 Energy 
 Entropy 
 Correlation 
coefficients 

 Logistic regression 
 NM 
 k-NN 
 Artificial NN 
(ANN) 
 Binary decision 
tree (C4.5 algorithm) 
 cHMM 

 [92, 99] 

[16] 

Wearable device 
with a tri-axial 
accelerometer, 
at chest 

 Walking 
 Stair climbing  
 Standing 
 Talking with people 
 Working at 
computer 

14 subjects, 
52 Hz 
& 
1 second 
(50% overlap) 

 Mean 
 Standard deviation 
 Skewness 
 Kurtosis 
 Correlation 
 Energy 
 RMS of speed 
 Mean of Minmax 
sums  

 Decision Tree 
 Bagging of 10 
decision trees 
 AdaBoost 
(Adaptive Boosting) 
using decision trees 
 Random forest of 
10 decision trees 

 [90, 94] 

[22] 

Mobile phone 
with a tri-axial 
accelerometer, 
in front pants leg 
pocket 

 Walking 
 Jogging 
 Stair climbing  
 Sitting 
 Standing 

29 subjects, 
20 Hz 
& 
10 seconds 

 Mean 
 Standard deviation 
 Mean absolute 
difference 
 Mean resultant 
acceleration 
 Time between peaks 
 Binned distribution 

 Decision tree (C4.5 
algorithm) 
 Logistic regression 
 Multilayer NN 
(MNN) 

 [56, 97[ for the 
decision tree 
 [12, 98] for logistic 
regression 
 [44, 98] for MNN 
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Reference
Devices, sensors & 

locations 
Activities 

Subjects, sampling 
rate & window size 

Features Techniques used in 
classifiers Accuracies (%) 

[25] 

Mobile phone 
with a tri-axial 
accelerometer, 
orientation and 
magnetic field 
sensors, 
in front pants pocket 

 Walking 
 Running 
 Stair climbing 

2 subjects, 
64 Hz 
& 
2 seconds (50% 
overlap) 

 Mean 
 Variance 
 Range 
 Energy 

 Decision tree (C4.5 
algorithm) 
 
 

 [58, 82[ 

[13] 

Wii Remote 
with a tri-axial 
accelerometer, 
in right pants pocket 

 Walking 
 Running 
 Jumping 

Nr. of subjects not 
specified, 
100 Hz 
& 
2.56 seconds 
(50% overlap) 

 Various time-
domain 
 Various frequency-
domain 
 Various discrete-
domain 

 Threshold-based  [41, 81[ (time-
domain) 
 [58, 80[ (frequency-
domain) 
 [32, 53[ (discrete-
domain) 

[23] 

2 wearable devices 
each with a uni-axial 
accelerometer, 
at chest and thigh 

 Sitting 
 Standing 
 Lying 
 Locomotion 

5 subjects, 
10 Hz 
& 
10 seconds 

 Median 
 Mean absolute 
deviation 

 Threshold-based  [73, 93] 

[27] 

3 wearable devices 
each with a tri-axial 
accelerometer and a 
tri-axial gyroscope, 
at chest and thighs  

 Sitting 
 Standing 
 Lying 
 Locomotion 
 Transition 

10 subjects, 
50 Hz 
& 
1 second 

 Standard deviation 
 Number of peaks 
 Power spectral 
density 

 Threshold-based  [96, 100] 

[20] 

2 wearable devices 
each with a tri-axial 
accelerometer, 
at trunk and thigh 

 8 types of falls 
 7 ways of sitting 
and lying 
 Walking 

10 + 10 subjects, 
1 kHz 
& 
window size not 
specified 

 Root sum of 
squares 

 Threshold-based  [67, 100] for falls 
 [23, 100] for other 
activities 

[28] 

Wearable device 
with a bi-axial 
gyroscope, 
at trunk 

 8 types of falls 
 7 ways of sitting 
and lying 
 Walking 

10 + 10 subjects, 
1 kHz 
& 
window size not 
specified 

 Root sum of 
squares 

 Threshold-based  100 
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As mentioned before, mobile phones are increasingly being used in activity recognition studies, 
such as in [22] where an Android smartphone including a tri-axial accelerometer was placed in the 
front pants leg pocket to identify 6 different activities: sitting, standing, ascending and descending 
stairs, walking, and jogging. Sensor data was collected from 29 users while carrying out these 
activities. Two different window sizes were studied, 10 and 20 seconds, with the best results for 
10-second windows. For each window, the mean, standard deviation, average absolute difference, 
and time between peaks were computed for each axis. The average absolute difference is the 
average of the absolute difference between each sample value and the mean value of the 
corresponding window. Another feature computed was the mean of the resultant acceleration 
(square root of the sum of the value on each axis squared). The binned distribution was also 
obtained, for each window, by dividing the range of values on each axis into 10 bins with equal 
sizes. Each bin contained the fraction of the measured values that fell in that bin. This set of 
features was used to train 3 classifiers: decision tree (using J48, a Java implementation of C4.5 
algorithm5), logistic regression and multilayer neural networks (MNN). Overall, the MNN 
classifier had the best accuracy (92%), where accuracy for each activity is defined as the 
percentage of correctly classified windows, when considering the total windows for a given 
activity. 

Even though the accelerometer is the most used sensor for activity recognition, others sensors have 
been used alone or in combination. For example, in [25] a 3-axial accelerometer, an orientation 
sensor and a magnetic field sensor, available in a smartphone, were explored. These sensors were 
used together to recognize the following activities: walking, running, climbing stairs, and 
descending stairs. Sensor data were collected from the mobile phone while being carried by 2 
subjects in the front pants pocket. The acceleration data were normalized, using the orientation and 
magnetic field data, so that the acceleration values were independent of the device orientation. The 
mean, variance, range (difference between the maximum and minimum values) and energy were 
extracted from the normalized data belonging to the training set. These features were used to train a 
decision tree (using a Java implementation based on the C4.5 algorithm – jaDTi), considering 
windows of 1, 2 and 3 seconds with 50% overlap. The classifier evaluation showed that for walking 
and running the best results were achieved for 1-second windows, while for climbing and 
descending stairs the best accuracies were achieved for 2-second windows. Nevertheless, the best 
overall accuracy was obtained for 2-second window. This was the window size used for a final 
study, where a constant sample rate of 64 Hz was set, obtaining accuracies of 78% and 82% for 
walking and running respectively, and near 60% for ascending and descending stairs. 

In [13] a study of mobile devices suitability for implementation of activity recognition was 
performed, taking into account the computational cost as well as the storage and memory 
operations necessary to compute each feature. The main conclusion was that most of the considered 
time-domain features are suitable for implementation in mobile devices, while for the frequency-
domain and discrete-domain cases just one the considered features is suitable. An experimental 
study was also performed in [13], using a Nintendo Wii Remote with a tri-axial accelerometer, in 
order to verify the suitability of the features for the recognition of three dynamic activities: 
walking, running and jumping. The data from the training set was divided into 2.56-seconds (256 

                                                      

5 C4.5 is an algorithm used to generate decision trees. J48 is an open source Java implementation of the C4.5 
algorithm. 
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samples) windows, which was the basic unit used for classification. For each sample, the norm 
(square root of the sum of the value on each axis squared) was computed. For each window, the 
various time-, frequency- and discrete-domain features were extracted from the norm values (with 
some possible exceptions, such as the sample differences, where the absolute difference between 
signals is computed in a pairwise arrangement of samples from the 3 axes). For each feature, two 
thresholds were defined to distinguish between the 3 considered activities. The optimum values of 
these thresholds were obtained by maximizing the accuracy when classifying the training set. The 
developed classifier was then evaluated using the test set. Accuracy is defined as the percentage of 
windows correctly classified. Considering the 3 activities, the best results were achieved for the 
minimum value (over a window) and the sample differences, both belonging to the time-domain, 
with accuracies of 80% and 81% respectively. In the frequency-domain, the best accuracies were 
obtained for the energy and the fast Fourier transform (FFT) coefficients sum (from 0.5 Hz to 3 
Hz), with accuracies of 77% and 80% respectively. The discrete-domain features analyzed had 
much lower accuracies (below 53%). 

Regarding threshold-based algorithms, some studies [20, 23, 24, 27, 28] used this technique and a 
configuration with sensors placed at the chest/trunk and/or at the thigh(s). In [23] two uni-axial 
accelerometers were placed at the chest and thigh to identify static activities (lying, sitting and 
standing) and dynamic activities (locomotion). A threshold-based algorithm was developed using 
the data collected from 5 subjects with a sample rate of 10 Hz. For each time interval of 1 second, 
the median of the low-pass filtered acceleration in both locations (chest and thigh) was computed. 
The sum of the mean absolute deviation for both locations was also calculated, where the mean 
absolute deviation is the average of the absolute difference between each sample value and the 
mean value of a given 1-second time interval. Then, for each window of 10 seconds, the average 
value of these features was obtained. The developed algorithm achieved accuracies of 73% for 
standing, 91% for lying and locomotion and 93% for sitting, where the accuracy for each activity 
was defined as the percentage of time in which the recognition was correct. 

A combination of accelerometers and gyroscopes was used in [27]. More specifically, they used 3 
wearable devices, each with a tri-axial accelerometer and a tri-axial gyroscope. These devices were 
placed at the chest and both thighs, and they sent the sensor data to a smartphone though a 
Bluetooth connection. Part of the data collected from 10 subjects was used to develop a threshold-
based algorithm that recognizes sitting, standing, lying and locomotion activities, and transitions 
between these activities. The angle of each body part (chest and both tights) relative to the vertical 
axis is calculated from the accelerometer and gyroscope data, using three types of filters and 
numerical integration. The features extracted from the angle values over 1-second windows were 
the following: mean, standard deviation, number of peaks, maximum difference relative to the 
mean and power spectral density6. Using a validation similar to the one used in [23] (described 
above), accuracies of 96% and 99% were observed for standing and sitting respectively, and of 
100% for the other considered activities and for transitions. 

Fall detection is also an important aspect of the activity recognition algorithm developed in this 
dissertation. Some studies, such as [20, 26, 28], focused on fall detection. In these situations it is 

                                                      

6 The power spectral density characterizes a random signal in the frequency domain. It is useful to determine 
the frequency content of the signal. 



 2  Background and Related Work 

 
Ana Rocha 

15 

common to analyze also other activities that can be confused with falls (such as transitions from 
standing to sitting or lying, and the walking activity). In [20] two tri-axial accelerometers were 
placed at the trunk and thigh to detect falls in elderly people. In a first experiment, 10 young 
subjects simulated 8 different fall types. Another experience consisted in having 10 elderly subjects 
performing activities of daily living (ADL) that can be incorrectly recognized as falls, such as 
sitting down and standing up from different types of seats, lying down and standing up from a bed, 
and walking. The collected signals were low-pass filtered and then the root sum of squares (square 
root of the sum of the value on each axis squared) was computed for both locations. For each 
location, an upper and a lower fall threshold were defined, considering the positive peaks and the 
negative peaks, respectively. They verified that only the upper fall threshold associated to the trunk 
achieved 100% accuracy in fall detection. Also, all ADLs were correctly recognized as non-falls 
using this threshold. 

In [28] a study similar to [20] is made, using a bi-axial gyroscope placed at the trunk. The rest of 
the setup is the same as [20], concerning the activities, number of subjects, sample rate and feature 
computed. In addition to the angular speed, the angular acceleration (derivative of angular speed) 
and the change in trunk angle (integration of angular speed) were obtained for each of the two axes. 
The resultant values for angular speed, angular acceleration and change in angle were then obtained 
by evaluating the root sum of squares. Three thresholds were defined for the resultant angular 
speed, the maximum value of change in angle and the maximum value the angular acceleration. 
Using these 3 thresholds, falls were always correctly identified (100% accuracy) and all the ADLs 
were correctly recognized as non-falls. 

 

2.2 Speed Estimation  

Speed is a scalar measure of the rate of change of a body position. The average speed is the 
distance travelled by the body divided by the elapsed time. The instantaneous speed is the limit of 
the average speed as the time interval duration approaches zero. The SI units of speed are meter per 
second (m/s). 

One of the objectives of this dissertation is to estimate the user speed while walking or running, for 
control of the frame rate of a video recorded by the smartphone camera during online monitoring. 
Table 2 summarizes the methods used in [8-11, 24] for estimating the subject speed based on 
sensor data. For each reference, the table lists the devices, sensors and locations used, the speed 
range, the number of subjects that participated, the sampling rate and window size used, the 
features/methods used for estimating speed and the corresponding evaluation results. When some 
information is not included in the table, it is due to the lack of its specification in the corresponding 
study. 

In [24] they observed that the mean value of the duration of a signal cycle and the standard 
deviation of the acceleration values, obtained from the data collected from an uni-axial 
accelerometer placed at the thigh, can possibly be related with the user speed in dynamic activities. 
However, the actual speeds associated with the data were not measured and further studies were not 
presented, since this was not the objective of this paper. 
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Table 2. State of the art summary of speed estimation research 

Reference 
Devices, sensors 

& locations 

Speed 
range 
(m/s) 

Subjects, 
sampling & 
window size 

Features/Methods 
Evaluation 

results 

[24] 

1 wearable device 
with a uni-axial 
accelerometer, 
at thigh 

— 

5 subjects, 
100 Hz 

 Mean duration of 
signal cycles 
 Standard 
deviation of 
acceleration values 

— 

[9] 

1 wearable device 
with a tri-axial 
accelerometer, 
at chest — 

10 subjects, 
20 Hz 
& 10 seconds 
(50% overlap) 

 Distance covered 
(obtained from 
stride length and 
number of zero 
crossings) in a 
window 
 Window duration 

 Error rate of 
6.5% for step 
counter (using 
the number of 
zero crossings) 

[10] 

1 wearable device 
with a tri-axial 
accelerometer, 
at chest 

[1.31, 4.76] 17 subjects, 
200 Hz 

 Range value of 
strides, and user 
weight and height 
for stride length 
estimation (by 3 
neural networks) 
 Stride duration 

 Coefficient of 
determination of 
0.975 
 Mean squared 
error (MSE) of 
0.0225 (m/s)2 

[8] 

3 wearable devices 
each with a bi-
axial 
accelerometer 

[1.12, 6.48[ 1 subject, 
100 Hz 
& 
1 second 

 RMS of resultant  
acceleration 

— 

[11] 

2 wearable devices 
each with bi-axial 
accelerometer, 
at both thighs 

[0.28, 3.61] 5 subjects, 
25 Hz 
& 
2 seconds 

 Average of the 
summations of 
resultant  
acceleration for 
each thigh 
 3rd-order 
polynomial model 

 MSE of 
0.1358 (m/s)2 

 

A tri-axial accelerometer placed at the chest was used in [9] to extract exercise related information, 
including the stride length, step count, distance, speed and energy expenditure. If the current 
activity being carried out by the subject was walking, the speed was obtained by using the distance 
covered during a 10-second window and the window duration. The distance was calculated from 
the stride length and the step count for the considered window. The stride length was estimated for 
each user based on the age, sex and height of the subject. The number of steps was obtained from 
the number of zero crossings. The validation of the step counter led to an error rate of 6.5% for 
walking, considering the estimated and actual total number of steps. 

A recent review of methods for speed estimation based on sensors is made in [12]. Most of the 
described studies explored only lower speeds, but others such as [10, 11] also analyzed higher 
speeds. In [10] data was collected on a treadmill, from a tri-axial accelerometer placed at the chest. 
These data were segmented into strides. For each stride and each of the 3 axes, the difference 
between the maximum and the minimum values was computed. These features, together with the 
subject’s height and weight were used as an input of three neural networks, one for differentiating 
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walking from running, and the other two for estimating stride length for walking and for running, 
respectively. The speed was calculated using the estimated stride length and the corresponding 
stride duration. The latter was measured during the initial segmentation of the acceleration signal 
into strides. An evaluation of this speed estimator led to a coefficient of determination of 0.975 
when considering  measured and estimated speeds, and a mean squared error (MSE) of 0.0225 
(m/s)2, for measured speeds in the range of [1.31, 4.76] m/s. An additional evaluation was made, 
with a user running 10 km on a track and field environment. An average estimated speed of 4.76 
m/s was obtained for an actual average speed of 5.27 m/s, which results in a relative error of 
9.59%. 

Another way of estimating speed, instead of computing stride/cycle length and duration, is to use 
directly a feature extracted from the sensor data. This method was used in [8], where they 
investigated the possibility of determining the speed while performing the following activities: 
walking, jogging, running and sprinting. Data were collected from bi-axial accelerometers, placed 
at the side of the chest and at the side of the right thigh, while a user performed the referred 
activities. For each location (chest and thigh), the RMS of the resultant acceleration was computed 
over 1-second windows. The average value of all windows, for each activity and location 
combination, was obtained. Just one subject was used for this study and no validation tests were 
performed with alternative users. 

In [11] bi-axial accelerometers placed at both thighs were used to estimate speed from acceleration 
values. The sum of the resultant accelerations (square root of the sum of the value on each axis 
squared), associated with the left and right thighs, was averaged over each 2-second window. Then, 
for each speed and subject combination (five subjects were used), the average of all windows 
results was calculated. Finally, the most adequate third-order polynomial model was obtained from 
all speed-subject data. An evaluation of this speed estimator led to an overall MSE of 0.1358 
(m/s)2, for speeds in the range of [0.28, 3.61] m/s. 

 

2.3  Video Monitoring 

A video is a sequence of still images that represent scenes in motion, which nowadays are usually 
captured by a camera with an electronic image sensor (digital camera). The number of still pictures 
per unit of time (or frames per second) corresponds to the frame rate of the video. With the aim of 
improving the compression rate, a video can have a variable frame rate for example by reducing the 
number of frames or by dropping frames during intervals of time where there is a large amount of 
static images. Variable frame rate is used in [29] for real-time video communication adapted to 
deaf users using mobile phones, in order to save system resources. Regarding the use of mobile 
phones, these devices are suitable for image capture, since they are carried on a daily basis, and 
most of the recent models include a camera. 

A video can be recorded and stored for a later view, but it can also be streamed live. A live video 
stream or broadcast is the online transmission of video content normally over the Internet in a 
continuous stream of data, which can be displayed to one or more users. As it will be explained 
later, in this dissertation a smartphone is used to capture still images, which are sent sequentially to 
a remote user. This means that it was necessary to deal with images formats, instead of video 
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formats. The most used image file formats in digital cameras are the following [30]: JPEG/JFIF 
(Joint Photographic Experts Group/JPEG File Interchange Format), TIFF (Tagged Image File 
Format) and raw file formats. If it is important to store or send images in a more efficient way, 
image compression can be used to reduce the size in bytes while still having an acceptable level of 
quality. 

Video monitoring can be defined as the act of monitoring by recording a video of the place/person 
to be supervised. This monitoring can be made remotely by someone who watches a video that was 
or is being recorded by a camera placed at the location of the object/person to be monitored. This 
type of monitoring is used in the healthcare area to supervise patients at the hospital [31, 32] or 
elderly people in their own homes [33, 34]. Video monitoring can also be useful in some 
professions, such as in the security and emergency service areas. The capture of a video can also be 
used for leisure, for example in extreme sports or to log the day-to-day activities of a person. In all 
these scenarios images of the surrounding environment can be captured using a mobile phone 
camera, a special head mounted camera [35] or glasses with an integrated camera [36, 37]. 
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3 MonitorMe System 
 

This chapter presents MonitorMe, a system for the online monitoring of a person’s day-to-day 
activities. The chapter is divided into 3 sections. The first section describes the design of a 
monitoring system based on sensors. This is followed by details on the specific case of the 
MonitorMe design, including some non-functional requirements. The second section presents the 
architecture of the implemented system, including the most relevant specifications of the used 
sensor devices. The final section of this chapter describes the programming environment and 
provides details on the implementation of the MonitorMe smartphone application. 

 

3.1 Monitoring System 

One of the main objectives of this dissertation is the implementation of a system that allows the 
online monitoring of a given person, by recognizing different activities based on sensor data. This 
scenario includes also the user of a remote monitoring device. The system should be able perform 
the following tasks: 

 Collect data from sensors worn by a subject 

 Extract features from the obtained sensor data 

 Recognize the activity being carried out by the user, based on the features extracted 

 Send the information of the current activity to a remote monitoring device 

 Present the activity information online to the user of the remote device. 

These tasks are presented as use cases in Figure 4, where the main use case (“Recognize 
activities”) is sub-divided into the tasks shown in a red background in Figure 5. 

 

MonitorMe 

In the case of the MonitorMe system, the user being monitored wears a smartphone that includes an 
accelerometer and a gyroscope, and an in-house built module based on MARG (Magnetic, Angular 
Rate and Gravity) sensors [5]. The sensor data is gathered and processed by the smartphone, which 
in addition to recognizing activities, simultaneously captures images using its camera. MonitorMe 
also estimates the speed of the user using features extracted from the sensor data, which is used to 
control the image frame rate. The activity information and the captured images are sent to a server, 
which relays them to the remote monitoring device. Figure 6 shows the tasks that are additionally 
performed by the MonitorMe system (in green) and their relationship with the basic tasks of a 
sensor-based monitoring system that performs activity recognition. More details on these tasks are 
included in the Section 3.3.2, where the most important aspects of the smartphone application 
implementation are described. 
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Figure 4. Use case diagram of an online monitoring system that performs activity recognition. 

 

 

Figure 5. Activity diagram that includes the various tasks necessary for online activity recognition. 
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Figure 6. Activity diagram of the MonitorMe smartphone application. 

 

Smartphone Constraints 

The MonitorMe system is based on the use of a smartphone for achieving online monitoring. It was 
then necessary to take into account the restrictions associated with the use of mobile phones. Most 
of these devices have limited resources, namely low processing power when compared with 
desktop or portable computers. Even though some of the most recent smartphones models have 
quad-core 1.5 GHz processors, they still have a constrained battery life, which is greatly affected 
by the amount of processing performed. Therefore, it is important to achieve a balance between the 
accuracy of the developed algorithm for activity recognition and the required processing resources. 
Furthermore, for speed estimation the aim is to use as much as possible features calculated for 
activity recognition, rather than the phone’s GPS (which represents extra resources and additionally 
can only be used in outdoor scenarios).  

Another relevant aspect in the MonitorMe implementation is the system performance. Since its aim 
is online monitoring, it is important to minimize the delay of the information sent from the 
smartphone to the remote device. Besides the delays related with the processing in the smartphone, 
there are delays associated with the connections between the devices. The latter depends mainly of 
the type of connection being used, which can vary a lot. But a factor that can be controlled is the 
quantity of information sent, which was reduced by compressing the captured images. In addition, 
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the required transmission bandwidth was minimized by keeping the image rate at 1 frame per 
second (fps) if the user is carrying out a static activity. If the user is walking or running, the frame 
rate is set according to the estimated user speed. This also contributes to the minimization of the 
required smartphone processing. 

 

3.2 MonitorMe Architecture 

The setup of MonitorMe includes an Android-based smartphone (Samsung Galaxy S II) and a 
MARG module [5], both equipped with a tri-axial accelerometer and a tri-axial gyroscope. More 
details on their specifications can be found below. The smartphone is placed at the chest (in the left 
shirt pocket) with the primary camera pointing to the front (screen facing the user), and the module 
is placed at the leg (in the right pants pocket), as illustrated in Figure 7. For simplicity, in this 
dissertation the smartphone will sometimes be referred as “phone” and the MARG module as 
“module”. 

 

Figure 7. The MonitorMe system architecture, including the location of the smartphone and the 
MARG module device (and associated coordinate systems). 

 

The module sends the data collected from its sensors to the phone through a Bluetooth link, 
initiated by the phone. The MonitorMe system also includes a server that receives the relevant 
information (i.e. the current recognized activity and the captured images) sent by the phone through 
a wireless data connection, such as Wi-Fi or 3G/4G (3rd/4th generation mobile telecommunications). 
If the remote monitoring device is connected to the server, an application running at this remote 
device will receive and present the referred information to its user, allowing online monitoring. 

The main components of MonitorMe are the smartphone and the MARG module, since they are 
worn by the user to be monitored. Both include motion sensors that were used to develop the 
activity recognition and speed estimation algorithms. The smartphone also includes a camera that is 
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used for image capture. Some of the most relevant specifications of both devices are described 
below. 

 

Smartphone 

The model of the smartphone used in MonitorMe is the Samsung I9100 Galaxy S II. From the 
sensors available in this model, the tri-axial accelerometer and the tri-axial gyroscope were used in 
this dissertation for the MonitorMe development. The accelerometer is the LIS3DH model from 
STMicroelectronics [38], with a range of ±2g for the Galaxy S II. The gyroscope is the L3G4200D 
model also from STMicroelectronics [39], with a range of ±500 dps (degrees per second) for the 
Galaxy S II. The accelerometer and gyroscope data are measured in m/s2 and rad/s, respectively. 
The coordinate system for each of the sensors is presented in Figure 8.  

   
 (a) (b) 

Figure 8. Axes orientation for the: (a) smartphone accelerometer; (b) smartphone gyroscope. 

 

As explained previously in this dissertation, a tri-axial gyroscope measures the angular speed in 
rad/s (or dps) around a device's x-, y-, and z-axis. Regarding the smartphone, as shown in Figure 8 
(b), the rotation is considered positive if an observer, looking from a given positive location on the 
x-, y- or z-axis at the device positioned at the origin, reports a counter-clockwise rotation.  

Other Galaxy S II specifications [40, 41] that can be relevant for the operation of MonitorMe, more 
specifically for its Android application, are the presented in Table 3. 
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Table 3. Samsung Galaxy S II main specifications 

Specification Description 

Processor Dual core 1.2 GHz ARM Cortex A9 

Memory (RAM) 1 gigabyte 

Primary camera 8 megapixels, 3264×2448 pixels 

Connectivity 
 Wi-Fi 802.11 a/b/g/n 
 Bluetooth v3.0+HS 

Battery 
 Li-Ion 1650 mAh 
 Stand-by up to 710h (2G) or 610h (3G) 
 Talk time up to 18h20 (2G) or 8h40 (3G) 

OS (Operating System) Android 2.3.3 

 

MARG Module 

MonitorMe has the possibility of using another device that provides sensor data. In this dissertation 
an in-house built MARG module developed by the authors of [5, 42] was used. This module has a 
PIC24FJ64GA002 microcontroller from Microchip [43], a low power embedded Bluetooth 
v2.0+EDR (F2M03GLA from Free2Move [44]), and a tri-axial magnetometer, a tri-axial 
accelerometer and a tri-axial gyroscope. Similarly to the smartphone, the accelerometer and 
gyroscope of the MARG module were used in this dissertation for the development of MonitorMe. 
The accelerometer is the KXTF9-1026 model from Kionix [45], with a range of ±2g. The 
gyroscope is the ITG-3200 model from Invensense [46], with a range of ±2000 dps. The MARG 
module was programmed to send a string including sensor data, with an approximate rate of 25 Hz. 

The coordinate systems associated with the MARG module sensors detailed above are presented in 
Figure 9. As it can be seen, the only differences in relation to the smartphone are the z-axis 
direction and the convention for the positive values of the angular speed around the y-axis. This 
speed is now considered positive if an observer, looking from a given positive location on the y-
axis at the device positioned at the origin, reports a clockwise rotation. Apart from these 
differences, the values of the accelerometer and gyroscope in the MARG module have the same 
meaning as the corresponding values in the smartphone. Regarding the units, they are the same for 
the accelerometer data, but for the gyroscope data the units are dps (converted to rad/s before 
feature extraction in MonitorMe). 
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 (a) (b) 

Figure 9. Axes orientation for the: (a) MARG module accelerometer; (b) MARG module gyroscope. 

 

 

3.3 MonitorMe Implementation 

 

3.3.1 Programming	Environment	
 

The operating system of the smartphone (Samsung Galaxy S II) used in this dissertation is the 
Android OS (Operating System). Android is an open-source, Linux-based OS for mobile devices 
(e.g. smartphones), developed by the Open Handset Alliance with the goal of allowing the easy 
development of new applications [47]. By March 2012, Android had the biggest share (48.5%) 
concerning U.S.A. smartphone owners [48]. 

As referred above (Table 3), the OS version of the Galaxy S II is the Android 2.3.3, which means 
that it can run applications developed for this or older versions. For developing an Android 
application it is necessary to use the Android SDK (Software Development Kit). From the available 
versions, the most adequate would then be the Android 2.3.3. But due to a bug related with the 
preview frames captured by the camera, the Android 2.2 was used. In addition, the Eclipse IDE 
(Integrated Development Environment) was used since it very easy to develop and test the Android 
applications using the ADT (Android Development Tools) Plugin for Eclipse. 

Android provides APIs (Application Programming Interfaces) that enable the access to hardware 
features, such as the camera and other sensors, when supported by the Android-based device in use. 
This is very important for the implementation of the MonitorMe smartphone application. Using the 
Android sensor framework, it is possible to easily access the sensors integrated in the device and 
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collect sensor data, among other sensor-related tasks [7]. The Android framework also supports the 
capture of images though the Camera API. 

The primary programing language used in the development of an Android application is a 
customized version of Java. This enables the reuse of the code that does not depend on the Android 
SDK, for other Java applications. For the MonitorMe applications that run on the server and on the 
remote monitoring device, Java was also the programming language used, together with the Eclipse 
IDE. This allows the reuse of the remote device application code (in Java), for the development of 
an Android application. This would mean that the remote monitoring device could be a desktop or 
a laptop computer (as illustrated in Figure 7), but also a smartphone or a tablet for example. 

 

3.3.2 Android	Application	
 

Most of the processing in the MonitorMe system is done by the Android application running on the 
smartphone. This application is organized in packages according to package diagram shown in 
Figure 10, where only the main packages are presented. In Figure 11 the most important classes of 
the application are presented, with the indication of the package they belong to (where “pt::ua” 
refers to the root package) and the associations between them. It is important to note that an 
association between class A and class B (excluding the relationship of inheritance) means that class 
A has a field of the data type B and calls a method of class B using that field. So, the associations 
between the presented classes (Figure 11) do not represent all the dependencies between the 
existing packages (Figure 10). 

The “activities” package contains the main Android activity (corresponding to the MonitorMe 
class), which is associated with the user interface (UI) shown in Figure 12 (a). All main 
initializations take place in this activity (corresponding to the dependencies represented in Figure 
10 by the light blue dashed lines originated in the “activities” package). This main activity also has 
an associated menu (shown at the bottom of Figure 12 (a)), which is presented to the user when the 
menu button of the smartphone is selected. The only option, “Connect Bluetooth device”, is 
associated with another Android activity (BluetoothDeviceList class) that allows the management 
of Bluetooth connections through the UI shown in Figure 12 (b). 

The “ui” package includes the classes that enable user interaction with the UI of the MonitorMe 
application (e.g. UI Handler class). As it can be seen from Figure 12, the UI allows the indication 
of the name of the user, the server IP address (for testing purposes) and whether or not the MARG 
module is to be used. It is also possible to start/stop monitoring by selecting the corresponding 
button. The start button initiates the sensor data gathering and processing (“ui” package 
dependencies with the “sensors” and “recognition” packages, shown in Figure 10) and the image 
capturing (dependency with the “camera” package). Also, if possible, a wireless connection is 
established with the server (dependency with the “communication” package). In Figure 10, all the 
mentioned dependencies are represented by the pink dashed lines originated in the “ui” package. 
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Figure 10. Package diagram of MonitorMe Android application. 

 
 

 

Figure 11. Class diagram of MonitorMe Android application. 
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 (a) (b) 

Figure 12. Capture of the smartphone screen when running the MonitorMe Android application. 

 

The classes related with sensor data collection are included in the “sensors” package (e.g. 
DeviceSensors, SensorsSync and SensorData classes shown in Figure 11). MonitorMe gathers data 
from accelerometers integrated in an Android smartphone and/or in a device connected to the 
smartphone. For this reason, the “sensors” package has a dependency with the “enums” package, 
which includes the DeviceType enumeration and the SensorType enumeration (used by the 
SensorData class, as shown in Figure 11). If there is a connection established between the phone 
and the other device, the beginning/ending of data exchange between these devices is controlled in 
the “sensors” package but it also depends on the “communication” package (see 
BluetoothConnection class in Figure 11). Whenever data from all sensors and devices are collected, 
the associated values are passed on to the class ActivityRecognition of the “recognition” package, 
which performs the activity recognition for each 1-second sliding window. All dependencies of the 
“sensors” package with others packages are represented in Figure 10 by the green dashed lines 
originated in this package. 

Regarding the “recognition” package, it includes the classes ActivityRecognition and Features that 
deal with sensor data. For each 1-second window, the necessary features for activity recognition are 
extracted. Then, according to the algorithm presented in Chapter 4, the current activity is identified 
(the possible activities are included in the ActivityType enumeration of “enums” package). If 
necessary, the value of the frame rate of the image capture is calculated and is set in the appropriate 
class of the “camera” package (association between ActivityRecongition and ImageCapture 
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classes, as seen shown in Figure 11). The activity information is sent to the server, using the class 
TcpIpConnection of the “communication” package that manages the associated connection. In 
Figure 10, the referred dependencies are represented by the red dashed lines originated in the 
“recognition” package. 

The “camera” package consists in the classes that allow the capture of images using the smartphone 
camera (ImageCapture and ProcessImageThread). Similarly to the activity information, after 
processed, the data of each image is sent to the server (using the TcpIpConnection class). For this 
reason there is a dependency between the “camera” and “communication” packages, represented by 
the orange dashed line in Figure 10. The “communication” package includes two sub-packages: 
“bluetooth” and “tcp_ip”. The dependency between the “communication” and “sensors” packages 
(represented by the dark blue dashed line in Figure 10) is due to the fact that after a Bluetooth 
connection is established, a thread listens to incoming data that it is passed on to a class of the 
“sensors” package (association between ModuleConnectedThread and ModuleSensors classes in 
Figure 11). 

More details on the main tasks performed by the MonitorMe Android application (shown in Figure 
6) are presented next. 

 

Sensor Data Collection 

When the option of start monitoring is selected, if the user chose to use the module and it was 
possible to successfully establish a Bluetooth connection with this device, data from both the phone 
and the module are collected. Otherwise, data are collected only from the phone. In both situations 
the sample rate is of approximately 25 Hz. This value was used to minimize the processing cost, 
while allowing a number of samples per second that does not compromise the accuracy of the 
activity recognition algorithm. Considering the related work described in the previous chapter, this 
seemed to be an adequate choice. 

When the data is collected from different devices/sensors in parallel it is necessary to synchronize 
the data (implemented in SensorsSync class, shown in Figure 11), i.e. only when there is new value 
available from all device and sensor combinations they are actually collected (considering always 
the most recent values). The set of data of each collection is time stamped with the millisecond 
offset from the Epoch (January 1, 1970, 00:00:00.000 GMT). For each window of 1 second, with a 
50% overlap between consecutive windows, the corresponding sensor data is provided as an input 
to the feature extraction task. 

 

Feature Extraction, Activity Recognition and Speed Estimation 

For each sliding window of approximately 1 second, the necessary features are extracted from the 
collected sensor data (in the Features class) and processed by the activity recognition algorithm (in 
the ActivityRecognition class). The development and evaluation of the activity recognition 
algorithm are described in detail in Chapter 4. 
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During online monitoring, if the current recognized activity is either walking or running, the user 
speed is estimated. The frame rate of the image capture is set according to the estimated speed 
value, which is calculated using a feature extracted for activity recognition. More details on this are 
provided in Section 4.3.2. If the current activity is not walking or running, then the frame rate is set 
to 1 fps, except in the case a fall where the frame rate value is maintained. 

 

Image Capture 

In parallel with the data collection and activity recognition, images are captured using the phone 
camera, with a frame rate that varies according to the user activity/speed (as explained above). 
Regarding the capture of images, in Android it is not possible to record a video while streaming it 
at the same time. On the other hand, it is possible to preview captured frames. Since it is not 
possible to directly control the frame rate, the method of dropping frames was used for this 
purpose. Each image frame is converted to the JPEG format, with 50% compression. JPEG is an 
image file format that has associated small/medium sizes, when compared with the TIFF format for 
example, but that still has a good/high quality [30]. 

The processing of each image frame is done in a separate thread (see ProcessImageThread class in 
Figure 11), but the frames are sent in order of capture to maintain a video-like stream, without any 
further frame dropping than the one performed for frame rate control. This is possible by attributing 
a value to each frame, named the frame number, which starts at 1 and is incremented by 1 every 
time a new image frame is captured. 

 

Information Transmission 

Whenever new activity or image information is available, it is added to a queue to be sent to the 
server (if there is an active wireless connection between this and the phone). This waiting queue 
(represented by the Queue class in Figure 11) is actually formed by two queues, one for the 
activities and another for the images. Each element of the activity queue has an associated 
timestamp and activity description. Each element of the images queue contains a timestamp and the 
encoded binary data. The frame number of the next frame to be sent is associated with the images 
queue. The activities are sorted by ascending order of the timestamp value, while the images are 
sorted by ascending order of the frame number. 

A thread constantly checks if there is new information to be sent (see SendDataThread class in 
Figure 11). When there are elements available in both queues, the timestamps of the elements at the 
head of the queues are compared. The element with the lowest timestamp is removed from its 
queue and is sent to the server. The exception is when an image has the lowest timestamp, but the 
frame number does not match the frame number of the next frame to be sent. In this case, the next 
activity information is sent, if any is available (even if it has a higher timestamp). 

The activity data is sent using the following format: “ACT” and a single line with the activity 
name, separated by a carriage return. The image data has a similar format, but the first line is 
“IMG_size”, where size is the number of characters of the second line, which has the image byte 
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information encoded in Base64. Base64 is a group of encoding schemes that represent binary data 
in an ASCII string format. In this case, encoding the image binary data ensures that it remains 
intact during transport. 

If a remote monitoring device is connected to the server, it will receive this information. An 
application running at the remote device will extract the activity and image data, and present it to 
its user. For obtaining the image frame, it is necessary to further decode the Base64-encoded string. 
For this dissertation the remote device application was developed in Java, so it can be easily reused 
to develop an Android application. 
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4 MonitorMe Algorithm 
 

MonitorMe aims at recognizing 6 different activities (standing, sitting, lying, walking, running and 
fall) and estimating speed for video control. To achieve these objectives, sensor data was collected 
from several users and then analyzed with the purpose of developing a threshold-based activity 
recognition algorithm and a speed estimation algorithm. The user speed is used to obtain a frame 
rate value for the video recorded during online monitoring. The development of both algorithms is 
described in the next sections.  

 

4.1 Data and Methods 

Two experimental procedures involving adult users were performed. For each of the two 
experiments (experiment 1 and 2), Table 4 includes the number of participating users, as well as 
their characterization in terms of the average and [minimum, maximum] values for age, weight, 
height and body mass index (BMI). Only one of the total 11 volunteers participated in both 
experiments. The activities performed in the experiments include the following: standing (A1), 
sitting (A2), lying (A3), walking (A4), running (A5) and fall (A6). 

Table 4. Users’ characterization in both experiments, including the average and [minimum, maximum] 
range values for age, weight, height and BMI 

Experiment 
Number 
of users 

Sex 
(M/F) 

Age 
Weight 

(kg) 
Height 

(m) 
BMI 

(kg/m2) 

1 6 6/0 
23 

[22, 25] 
74 

[70, 85] 
1.75 

[1.65, 1.75] 
24.4 

[21.1, 27.4] 

2 5 3/2 
37 

[23, 63] 
70 

[54, 78] 
1.73 

[1.65, 1.91] 
23.6 

[18.5, 27.6] 
 

Experiment 1 

The first experiment focused on the study of static activities or postures (standing, sitting and lying) 
and instantaneous activities (falls). The following sequence of activities was carried out: A1, A4, 
A1, A2, A4, A1, A2, A4, A1, A3, A4, A1, A6, A3 and A1. Every activity lasted for about 6 
seconds, excluding walking (A4). The sitting activity (A2) was carried out twice, but using 
different types of chairs (with different heights). A sofa was used for the first lying activity (A3), 
while some cushions were used for the fall (A6). On the second lying activity the subject is lying 
on the floor (after the fall). Even though this experiment did not focus on dynamic activities, the 
last walking event in the sequence was used for the data analysis described below, since it had 
longer duration when compared with the other 3 walking events. 

The sequence mentioned above was performed 5 times by each of the 6 volunteers that participated 
in this experiment. An example of the accelerometer and gyroscope data (from the phone and 
module) recorded during a sequence in this experiment is presented in Fig. 4 (b). The 
corresponding activity being carried out at each instant is indicated in Fig. 4 (a). The time elapsed, 
in seconds, since the beginning of the sequence is shown in both figures. 
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 (a) 

 
 (b) 

Figure 13. Example of a sequence performed in experiment 1: (a) activity being carried out at each 
instant; (b) data obtained from the phone accelerometer, phone gyroscope, module accelerometer and 

module gyroscope, respectively. 
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Experiment 2 

The second experiment aimed at studying dynamic activities (walking and running) as well as the 
subject speed while performing them. Therefore, this experiment included a sequence of different 
ways of walking and running: walking slowly (W1), walking normally (W2), walking faster (W3), 
running slowly (R1) and running faster (R2). The sequence (W1, W2, W3, R1, R2) was repeated 4 
times by each of the 5 volunteers that participated in this experiment. For each activity event, the 
duration of the covered distance of 18.5 m was recorded, so that an estimation of the average speed 
was possible. 

 

Acquisition Setup 

The acquisition setup used in the experiments included only the smartphone and the MARG 
module. Moreover, the phone application was different from the one described in Chapter 3, 
performing only the gathering of sensor data that were saved to files. The UI of this application 
(shown in Figure 14) allowed the indication of some extra information: the location of the devices 
(smartphone and MARG module), the activity or sequence of activities performed, and the 
smartphone sampling rate (the overall sampling rate depended not only on this value but also on the 
sampling rate of the module). This information was associated with the sensor data saved to a file. 

 

Figure 14. Capture of the smartphone screen when running the Android application for the sensors 
data collection. 
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Experimental Data Sets 

For each sequence of consecutive activities performed in the experiments, data from the 
accelerometer and the gyroscope of both the smartphone and the MARG module were collected 
and saved to a file in the smartphone. The resulting set of files was transferred to a laptop and each 
file was split according to the different activities. 

From the resulting files for each activity, 70% per subject were chosen randomly. Together these 
files formed a training set, used to develop a threshold-based activity recognition algorithm. The 
remaining 30% formed a test set used to evaluate the algorithm. For example, in the case of 10 files 
per user for the walking activity, 7 files out of total 10 would be chosen randomly from each user. 

For 5 users, this would lead to a training set of 7×5=35 files and a test set of (107)×5=15 files, for 
the walking activity. 

Table 5 shows the number of events and the duration in seconds of the training and test sets as well 
as the total set, for each activity. For the development and evaluation of the speed estimation 
algorithm, only a fraction of these sets was used (walking and running data from experiment 2). 
The data analysis, detailed below for the activity recognition and the speed estimation algorithms, 
was carried out using Matlab and Microsoft Excel. 

Table 5. Activity distribution in the training and test sets, represented by the number of events and the 
duration in seconds 

 
 Standing 

(A1) 
Sitting
(A2) 

Lying
(A3) 

Walking
(A4) 

Running
(A5) 

Fall 
(A6) 

All 

Training 
set 

Number 
of events 

115 40 39 62 28 19 303 

Duration 
(s) 

588 233 224 630 152 33 
1860 

(≈ 31 min) 

Test set 

Number 
of events 

53 18 18 27 12 9 137 

Duration 
(s) 

288 102 106 279 67 12 
854 

(≈ 14 min) 

Total set 

Number 
of events 

168 58 57 89 40 28 440 

Duration 
(s) 

876 335 330 909 219 45 
2714 

(≈ 45 min)
 

 

4.2 Activity Recognition 

To recognize activities based on sensor data, a threshold-based algorithm was developed. The next 
section (Section 4.2.1) presents the configuration of the devices and sensors, the features extracted 
from the sensor data and the associated thresholds, which are necessary to recognize the considered 
activities. The decision tree corresponding to the algorithm is also presented. A more detailed 
explanation of how the features and thresholds were chosen is included in Section 4.2.2.  
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4.2.1 Algorithm	
 

An activity recognition algorithm was implemented based on thresholds and sliding windows of 1 
second (25 samples), with an overlap of 50% between consecutive windows. In order to find the 
best configuration, different combinations of features, devices, sensors and axes were explored. For 
this purpose, it was necessary to perform the analysis of the sensor data collected in the 
experiments described above, which is presented in the next section. In the MonitorMe activity 
recognition algorithm, for each sliding window, the features listed in Table 6 are extracted and then 
the current activity is recognized according to the thresholds presented in Table 7. The algorithm is 
based on the decision tree represented by the flowchart shown in Figure 15. 

Table 6 lists the features used in MonitorMe, including their description, the general expression 
used to compute them and the notation used to reference them in Table 7 and in Figure 15. 
Regarding the mean feature, its values are obtained for both devices (smartphone and module) and 
for each axis (x-, y-, and z- axis) separately. Table 7 summarizes the features and thresholds 
(values in terms of g) used to distinguish or identify the different activities, while Figure 15 shows 
how they are actually used. 

In the equations presented in Table 6, xi, yi and zi represent sample values of signals on the x-, y- 
and z-axis, respectively, and N is the number of samples per processing window. The terms minj 
and meanj, refer to the minimum and the mean value respectively, considering the j-axis, evaluated 
over each processing window. 

 

Table 6. Features used in the activity recognition algorithm, including the corresponding expression 
and notation 

Feature Expression Notation 

Sum of minimum values on all 
axes of the phone  

accelerometer 
min min minx y z   min_phone_acc 

Sum of variances on all axes 
of the phone accelerometer  

     2 2 2

1 1 1

N N N

i i i
i i i

x x y y z z

N N N
  

  

 
  

 var_phone_acc 

Mean value in each of the axis 
of the phone & module 

accelerometer 
mean mean mean, ,x y z  mean_device_acc_axis * 

 * device can be “phone” or “mod”,  and axis can be x, y or z 
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Table 7. Features and thresholds used in the activity recognition algorithm 

Activity Feature Thresholds 

Fall min_phone_acc -2.294g 

Static or dynamic var_phone_acc 0.01g2 

Walking or running 

mean_phone_acc_x, 
mean_phone_acc_y, 
mean_phone_acc_z 

1.122g, 0.422g 
and -0.408g 

var_phone_acc 0.408g2 

Standing, sitting or lying 
mean_phone_acc_y 1.122g, 0.62g and -0.51g 

mean_mod_acc_z 0.51g, -0.424g and -1.122g 

 

The decision tree presented in Figure 15 shows how the activity corresponding to each 1-second 
window is recognized. As indicated in the flowchart, if some of the conditions are not met, the 
activity of the last window is used (if there is a previous window). It is important to note that this 
decision tree assumes the use of the module, to be able to distinguish standing from sitting. But if 
this last distinction is not necessary or important in a given monitoring environment, then it is 
possible to use just the smartphone. In this case, the algorithm is the same, with the exception of 
the conditions associated with the feature “mean_mod_acc_z” that do not exist. Moreover, if the 
condition “mean_phone_acc_y   [0.62g, 1.22g]” is true, then the output is “Standing or Sitting”. 

 

4.2.2 Data	Analysis	
 

To develop a threshold-based activity recognition algorithm, it was necessary to find the most 
adequate features and thresholds for identification of each of the considered activities. These can be 
divided in 3 different groups: static activities or postures (standing, sitting, lying), dynamic 
activities (walking, running) and instantaneous activities (fall). The analyzed features were 
extracted from the training set data, taking into account the entire duration of each activity event. 

The choice of features to analyze, with the aim of identifying activities or distinguishing between 
groups of activities, took into account their main characteristics. During a fall there are 
higher/lower signal peaks when comparing with the other considered activities. Therefore, 
minimum and maximum values were explored. During static activities, the accelerometer sensor 
signals on each axis are normally stable around a given value, which can be different from posture 
to posture. So, the use of mean values seemed adequate for the purpose of distinguishing between 
static activities. To distinguish the latter from dynamic activities, features that translate the higher 
variation of signals during walking and running are more appropriate. This will be explained in 
more detail below. 
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Figure 15. Decision tree that represents the activity recognition algorithm. 

 

This section presents a summary of the analysis of features and the choice of thresholds that enable 
the recognition of the activities listed above. All features referred below were analyzed for both 
devices (smartphone and MARG module) and both sensors type (accelerometer and gyroscope).  
An exhaustive analysis was performed for various combinations of devices, sensors and features, 
but only the most relevant results are presented in this dissertation. Each choice took into account 
the possibility of using, whenever possible, only the phone (main device). Even though the 
acceleration data collected, analyzed and used in the developed algorithm was in m/s2, the plots and 
thresholds associated with acceleration values are presented in this section in terms of g. 
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The range of values obtained for the various studied features are presented in the box plot format 
(e.g. Figure 16) implemented in Matlab [49]. In this format, the bottom and the top of a box 
represent the 25th and 75th percentiles of the data, respectively. The distance between the top and 
bottom values is denoted by interquartile range and the horizontal line inside a box is the median of 
the represented data (50th percentile). The vertical lines (whiskers) extending above and below the 
top and bottom of a box, respectively, indicate further values within the whisker length. Data 
beyond the whiskers lengths are marked as outliers. In the implementation used in this dissertation, 
an outlier (displayed with a red + sign) is a value that is more than 1.5 times the interquartile range 
away from the top or bottom of the box (default in Matlab). 

 

Falls 

A fall has the particular characteristic of being instantaneous, i.e. it normally happens in a much 
shorter interval of time than the other activities considered in this dissertation. Moreover, during 
this activity sensor signals usually have higher and/or lower peaks when comparing with the other 
activities. For this reason, the studied features for distinguishing between falls and other activities 
were the minimum value considering all axes (1) and the maximum value considering all axes (2). 
In the equations presented below, the terms mini and maxi, refer to the minimum and the maximum 
value respectively, considering the i-axis, where i can be x, y or z. 

  min min min minminimum , ,x y z  (1) 

  max max max maxmaximum , ,x y z  (2) 

Figure 16 and Figure 17 show the boxplots associated with feature (1), representing the ranges of 
values obtained for each activity, for the phone accelerometer and module accelerometer 
respectively. It can be seen from Figure 16 (phone accelerometer) that there is no overlap between 
the values associated with falls and the values obtained for the other activities. However, Figure 17 
shows that feature (1) obtained from the module accelerometer data is not suitable for fall 
detection, since there is overlap between the values for falls and the values for most of the other 
activities. 
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Figure 16. Box plot for the minimum value considering all three axes, according to (1), for the phone 
accelerometer. 

 

 

Figure 17. Box plot for the minimum value considering all three axes, according to (1), for the module 
accelerometer. 

 

The boxplot of feature (2) for the phone accelerometer is presented in Figure 18. Figure 19 and 
Figure 20 show the boxplots for features (1) and (2), respectively,  for the phone gyroscope. For all 
these 3 features, it can be seen that there is overlap between walking, running and fall values. So it 
is not possible to use them for identifying a fall. However, there is no overlap between the set of 
walking, running and fall activities and the postures (standing, sitting and lying), so they could 
possibly be used for distinguishing between static and dynamic activities (more details below). 
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Figure 18. Box plot for the maximum value considering all three axes, according to (2), for the phone 
accelerometer. 

 

 

Figure 19. Box plot for the minimum value considering all three axes, according to (1), for the phone 
gyroscope. 

 

 

 Figure 20. Box plot for the maximum value considering all three axes, according to (2), for the phone 
gyroscope. 
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Comparing all features considered above, it is possible to conclude that the most adequate for 
distinguishing falls from the other activities is the minimum value considering all axes (1) for the 
phone accelerometer. Associated with this feature, the threshold value of -1.241g was defined 
(Figure 16, red dashed line), corresponding to the midpoint between the maximum value for the 
falls and the minimum value for all other activities. A fall is then detected if the considered feature 
has a value lower than -1.241g. 

 

Static versus Dynamic Activities 

All activities, except the fall, belong either to the static or to the dynamic group of activities. The 
static activities correspond to postures where the subject is at rest or making minimal movements. 
On the other hand, dynamic activities are characterized by a larger amount of movement, which 
translates into higher variation of accelerometers and gyroscopes signals. The analysis concerning 
fall detection (above) has shown that some of the studied features may be used for distinguishing 
static from dynamic activities. However, they are not the most adequate, since the analysis 
considered the minimum or maximum value of an entire event, but the algorithm for activity 
recognition uses windows of just 1 second. 

Some alternative features in which all samples contribute to their values, and that are intuitively 
interesting for the purpose of distinguishing static from dynamic activities, include the following: 
the sum of the mean squares on each axis (3), the sum of the variances on each axis (4) and the sum 
of mean absolute difference on each axis (5). In the equations presented below, xi, yi and zi 
represent sample values of signals on the x-, y- and z-axis, respectively, , ,x y z  are the mean 

values of the  xi, yi and zi samples, respectively, and N is the number of samples considered in the 
calculations. 

 sum mean sq. = 

2 2 2

1 1 1

N N N

i i i
i i i

x y z

N N N
   
  

 (3) 

 

     
sum var. = 

2 2 2

1 1 1

N N N

i i i
i i i

x x y y z z

N N N
  

  

 
  

 (4) 

 
sum mean abs. diff.= 1 1 1

N N N

i i i
i i i

x x y y z z

N N N
  

  

 
  

 (5) 

These features can possibly help in distinguishing static from dynamic activities, since it is 
expected that during dynamic activities the signals (acceleration and angular speed) will have 
greater values (see signals in Figure 13 during walking activity). In feature (3) the squared values 
were used so that the signal variations are translated into meaningful feature values. If a simple 
mean was used, in some cases the negative values could cancel positive values and the variations in 
the signal might not be reflected into a corresponding variation of the feature value. The sum of the 
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mean square on all axes was considered, since the significant values can happen in any one of the 
three axes. 

However, the boxplot corresponding to feature (3) for the phone accelerometer (Figure 21) shows 
that there is a clear overlap between the static activities and walking. This happens because the 
mean square takes into account the DC component of the signals. For instance, when in a standing 
position, the acceleration will have a strong component of approximately +g on the axis 
perpendicular to the earth surface (Figure 13). The overlap of values between static and dynamic 
activities does not exist for the module accelerometer, since the amplitude of the legs motion is 
much bigger for dynamic than static activities, when comparing with the trunk motion 
(smartphone). The overlap between static and dynamic activities does not exist also for the phone 
gyroscope (Figure 22) and the module gyroscope. But in all these cases there is still an overlap 
between walking and running values. 

 

Figure 21. Box plot for the sum mean square values, according to (3), for the phone accelerometer. 

 

 

Figure 22. Box plot for the sum mean square values, according to (3), for the phone gyroscope. 
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Due to the difficulties originated by the DC component mentioned above, feature (4) was explored 
next. This feature takes into account just signal variations (independent of the DC component), 
since the difference between each value on an axis and the mean value on the same axis is 
computed. The results are better for this feature when comparing with (3), because there is no 
overlap between static and dynamic activities for all of the device and sensor combinations. This 
property is shown in Figure 23 for the phone accelerometer and in Figure 24 for the module 
accelerometer. Furthermore, for the phone accelerometer there is also no overlap between the 
waking and running activities. 

 

Figure 23. Box plot for the sum of variances values, according to (4), for the phone accelerometer. 

 

 

Figure 24. Box plot for the sum of variances values, according to (4), for the module accelerometer. 
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The variance on each axis alone was also analyzed. Some of the best results were obtained for the 
accelerometers y-axis, since when walking the acceleration on this axis will have positive value 
pulses, which correspond to the upward and forward forces which propel the body when walking. 
These forces are even greater for the running case. So the variance on the phone accelerometer y-
axis, for example, could be used to distinguish static from dynamic activities. This feature has the 
additional advantage of less associated mathematical operations, when compared with the sum of 
the variances on each axis of the phone accelerometer. However, the latter feature depends less on 
the way each user walks or runs, so it is a better solution. 

Feature (5) is similar to (4), but the absolute value of the difference between a value and the 
corresponding mean is calculated instead of the square of the same difference. The values obtained 
for feature (5) in the case of the phone accelerometer are represented by the boxplot in Figure 25. 
Comparing Figure 25 with Figure 23, it is possible to see that the ranges of values are different. 
However, the results concerning overlapping are similar for the two possibilities. 

 

Figure 25. Box plot for the sum of mean absolute differences values, according to (5), for the phone 
accelerometer. 

 

To quantify the quality of the two possibilities, the relative delta value defined in (5) was calculated 
for both features. The relative delta value for the sum of the variances on each axis of the phone 
accelerometer (value of 6.63) is considerably higher than the value of 1.85 obtained for the sum of 
absolute differences on each axis of the phone accelerometer. A similar result is observed when 
considering the ranges of values between the maximum value for walking and the minimum value 
for running. So despite the possible lower complexity of (5), the sum of variances feature for the 
phone accelerometer, was chosen for the purpose of distinguishing between static and dynamic 
activities. 
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So, to distinguish static from dynamic activities, a threshold associated with feature (4) was 
defined, which is represented in Figure 23 by the red dashed line. This threshold has a value of 
0.01g2, corresponding to the midpoint between the maximum value for the static activities 
(standing, sitting and lying) and the minimum value for the dynamic activities (walking and 
running). If the value of the considered feature is equal or lower than 0.01g2 than the activity is 
static, else it is dynamic. In addition, this feature can also be used to distinguish between walking 
and running, as it will be further explained below. 

 

Dynamic Activities 

If an activity is identified as dynamic, it is necessary to confirm first if it can actually be either 
walking or running. This is done to help preventing, for example, the identification of transitions 
between activities as walking or running. This verification can be made by identifying the position 
of the trunk of the user, through the mean values on each axis of the phone accelerometer. Figure 
26 presents the boxplot for these features. It is possible to see that none of the y-axis values is 
greater than 1.122g and that none of the x- and z-axis values is lower than -0.408g. Additionally, 
the value 0.422g divides the y-axis values from the x- and z-axis values, corresponding to the 
midpoint between the minimum value of the first group of values and the maximum values of the 
second group of values. So if the mean values on the x- and z-axis are in the range [-0.408g, 
0.422g] and the mean value on the y-axis is in the range ]0.422g, 1.122g], then the current activity 
identified previously as dynamic is confirmed as either walking or running. The defined thresholds 
of 1.122g, 0.422g and -0.408g are represented by red dashed lines in Figure 26. 

 

Figure 26. Box plot for the mean values on each axis of the phone accelerometer, for walking and 
running. 
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To actually distinguish walking from running, it is possible to use the sum of variances on each 
axis of the phone accelerometer, as mentioned above. The values obtained for this feature are 
shown in Figure 23. An activity is walking if the feature value is in the range ]0.01g2, 0.408g2] and 
is running if it is greater than 0.408g2. The defined threshold of 0.408g2 is represented in Figure 23 
by a green solid line. This threshold corresponds to the midpoint between the maximum value for 
walking and the minimum value for running. 

 

Static Activities 

If an activity is identified as belonging to the group of static activities, it is necessary to verify if it 
is one of the considered postures. Since these are static activities, the obvious choice for a feature 
to distinguish between standing, sitting and lying is the mean value of acceleration on each axis. 
This choice can be explained by observing the signals in Figure 13 (b). As it can be seen, 
considering the phone accelerometer, the DC values on the x-, y- and z-axis for the standing/sitting 
postures are rather different from the equivalent values during a lying posture. On the other hand, 
in the case of the module accelerometer there is a great difference in the DC values for the y- and z-
axis between the standing and sitting positions. A similar reasoning was used for verifying the 
trunk position during walking and running (above). 

The boxplot that includes the values obtained for the mean values on each axis of the phone 
accelerometer is shown in Figure 27. From this figure it can be seen that the x- and z-axis values 
are useless for distinguishing between the static activities. However, it is possible to distinguish the 
lying posture from the other two postures by defining a threshold for the y-axis with a value of 
0.62g, which corresponds to the midpoint between the minimum value for standing and sitting and 
the maximum value for lying. Furthermore, considering the y-axis values, for both standing and 
sitting there is no value greater than 1.122g, and for lying there is no value lower than -0.51g. So if 
the mean value on the phone accelerometer y-axis is in the range [-0.51g, 0.62g[, the activity is 
lying. Else if that value is in the range [0.62g, 1.122g], the activity is either standing or sitting. 

 

Figure 27. Mean values on the three axes of the phone accelerometer, for standing, sitting and lying 
postures. 
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To distinguish between standing and sitting it is necessary to use the module, whose associated 
mean values on each axis are represented by the boxplot shown in Figure 28. It can be seen that 
both the y- and z-axis values can be used to differentiate between these two postures, but the z-axis 
was the chosen one because it has a delta (6) of 7.32 m/s2, while the same delta for the y-axis has a 
value of 4.507 m/s2. 

    delta standing range values sitting range valuesminimum maximum   (6) 

A threshold of -0.424g associated with the chosen feature was defined, corresponding to the 
midpoint between the minimum value for standing and maximum value for sitting. Furthermore, 
since there is no value greater than 0.51g and no value lower than -1.122g for the considered 
feature, the activity is considered as standing if the mean value of the module accelerometer on the 
z-axis is in the range ]-0.424g, 0.51g] and as sitting if it is in the range [-1.122g, -0.424g]. All the 
thresholds used for identifying the different postures are represented by the red dashed lines in 
Figure 27 and Figure 28. 

 

Figure 28. Mean values on the three axes of the module accelerometer, for standing and sitting 
postures. 
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However, the aim of MonitorMe is not transitions detection (except falls). So, one way of dealing 
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actually recognized. This is achieved by adding the following condition the algorithm presented 
above: the current recognized activity is changed only when three consecutive decisions are the 
same. 

Figure 29 shows an example where the 1-second sliding windows are represented by the “blocks” 
above the horizontal line ending with an arrow that corresponds to the time elapsed. Since 
overlapping windows are used, consecutive windows are represented alternately by blocks in the 
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first and second rows. Inside each block the actual activity being performed is indicated, unless 
there was a transition between activities (in which case the word “transition” is used). If the 
algorithm did not take into account the possibility of transitions, the recognized activities would be 
for example the ones shown below the vertical dashed lines. Using the method to deal with 
transitions mentioned above, the output of the activity recognition algorithm for the presented 
example corresponds to the activities shown below the vertical solid lines ending in an arrow. 

As it can be seen from Figure 29, the decisions during the transition are ignored and the lying 
activity is recognized only after three consecutive decisions correspond to this activity. The final 
result is then correct with only a small delay of 1.5 seconds in detecting the lying activity, which is 
not important in many applications. 

 

Figure 29. Example of how the transitions are dealt with in MonitorMe. 

 

A study, using the original sequences collected during the first experiment, showed that most of the 
times this method produces the desired results. However, some transitions can be erroneously 
recognized as one of the considered activities for three or more consecutive windows, leading to a 
false positive. For the sequences of activities obtained in the first experiment, this situation occurs 
mainly in the transitions between the following postures: 

 Standing to sitting (confused with walking) 

 Standing to lying (confused with walking and fall) 

 Lying (on the floor) to standing (confused with walking and fall) 

Observing the accelerometer signals it is possible to see that some transition signals are very 
similar to the ones of walking or fall activities. Consequently, in these situations transitions 
sometimes have features values similar to the ones used to recognize walking or falls. Regarding 
transitions that are confused with walking, the number of mean crossings was analyzed (using 1-
second windows, instead of considering the whole event). However, it was possible conclude that 
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this feature is not suitable for solving this problem. A further analysis of sensor data is needed to 
address these transitions. 

Concerning falls, an analysis using 1-second windows was made. Some features were explored, 
including the sum of minimum values on each axis (6) and the sum of maximum values on each 
axis (7). Other features analyzed were the sum of the absolute values of the maximum and 
minimum values on each axis (8), and the sum of the absolute values of the minimum value and the 
maximum value considering all axes (9).  

 sum minimums min min minx y z    (6) 

 sum maximums max max maxx y z    (7) 

 sum maximums minimums max max max min min minx y z x y z       (8) 

    sum maximum minimum max max ,max ,max min min ,min ,minx y z x y z   (9) 

For each fall event of the training set, the minimum value for feature (6) and the maximum value 
for features (7), (8) and (9) were found. Considering the transitions where a fall is incorrectly 
detected (from the original sequences of experiment 1), the best results are obtained for features (6) 
and (8). Figure 30 and Figure 31 present the boxplots showing the range of values obtained for 
these features in the case of fall events and of transitions confused with falls. These figures show 
that it is not possible to eliminate completely the problem of false fall positives associated with 
some transitions. The difficulty of simulating real falls in the experiments may have also 
contributed to this problem. Nevertheless, these false fall positives can be minimized by defining a 
proper threshold. 

 

Figure 30. Range of values obtained for the sum of minimums on each axes of the phone accelerometer, 
according to (6), considering falls and transitions confused with falls. 
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Figure 31. Range of values obtained for the sum of maximums and minimums on each axis axes of the 
phone accelerometer, according to (8), considering falls and transitions confused with falls. 

 

For both features (6) and (8), it is possible to solve the transition problem (avoiding false fall 
positives) for 4 out of 7 of the considered transitions. However, the chosen feature was (6), since it 
does not need the additional computation of the maximums. The threshold defined to detect falls 
was then changed from the value of -1.241g associated with the minimum value considering all 
axes, defined previously without considering the transition problem, to a value of -2.294g 
associated with feature (6). This new threshold is represented in Figure 30 by a red dashed line. 
The threshold value was chosen so that all falls are detected and the greatest possible number of 
transitions is not confused with falls (it is better to have some false positives, rather than non-
detected falls). Furthermore, none of the other activities (standing, sitting, lying, walking and 
running) are confused with a fall, since the minimum value of (6) obtained for this set of activities, 
considering the training set, is of -1.794g, a value well above the -2.294g threshold. So now a fall is 
detected if the sum of minimum values on each axis has value lower than -2.294g. 
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be controlled using an estimation of the user speed. This is followed by the data analysis performed 
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4.3.1 Video	Control	
 

In MonitorMe, the smartphone camera is used for video capturing. Furthermore, the frame rate of 
the video being recorded is varied according to the current activity/speed. If the current recognized 
activity is walking or running, the frame rate is set according to the user speed. Otherwise, the 
frame rate is set to 1 fps, except during a fall where the frame rate value is maintained. This enables 
the minimization of required transmission bandwidth when the user is not very active and also the 
adaptation of the frame rate value to the user speed when he/she is moving around.   

So when the user is walking or running, the video frame rate can be defined as a function of speed 
using (9). The parameters A and B can be set in accordance with the requirements of the specific 
application environment. For the MonitorMe system presented in this dissertation, the values of 
A=1 m-1 and B=1 s-1 were considered. More specifically, the value for the parameter B was chosen 
so that the frame rate value for dynamic activities is always greater than its value for the other 
activities. The video frame rate is set to the calculated frame rate value rounded to the unit. 

  frame_rate speed A speed B    (9) 

 

4.3.2 Data	Analysis	
 

The data analyzed for speed estimation was obtained in the second experiment, which included 
walking and running events with different associated average speeds. For each device-sensor 
combination, several features were explored, most of them already analyzed for distinguishing 
static from dynamic activities and walking from running. Also here the analysis took into account 
the entire duration of each activity event. 

For each feature, a scatter plot of the average speed versus the feature value was obtained and then 
a linear regression was performed. The choice of this type of regression is due to the smaller 
number of operations necessary (only a multiplication and a sum) when comparing to exponential 
or polynomial regressions of higher order. The coefficient of determination (R2) associated with 
each linear regression is presented in the corresponding scatter plot. The acceleration values 
presented in this section are in m/s2 (they are not expressed in terms of g, as in the section 4.2). 

For the sum of mean squares on each axis (3), the scatter plots obtained for the phone and module 
accelerometer are shown in Figure 32 and Figure 33, respectively. For both plots there are some 
points corresponding to the highest speeds that have a significantly lower value for the feature 
when compared with some lower speed cases. An example of this reversal is given in Figure 32, 
where point A refers to an event where a subject is running with a higher speed than the speed of 
the subject in event B. However, as can be seen in the figure, the value of the sum of mean squares 
for event A is significantly lower than this feature value for event B. So the mean square feature is 
not appropriate for speed estimation. 
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Figure 32.  Scatter plot of the average speed versus the sum of mean squares on each axis of the phone 
accelerometer, including the corresponding linear regression. Points A and B refer to two different 

events. In event A a subject was running with higher speed than the speed corresponding to the subject 
in event B. 

 

 

Figure 33.  Scatter plot of the average speed versus the sum of mean squares on each axis of the 
module accelerometer, including the corresponding linear regression. 

 

The sum of mean absolute differences on each axis (5) was also studied. The corresponding results 
are shown in the scatter plots of Figure 34 (phone accelerometer) and Figure 35 (module 
accelerometer). The coefficients of determination associated with the linear regressions have higher 
values when compared with the sum of mean squares on each axis (0.8682 and 0.8541, instead of 
0.5409 and 0.671, for the phone and module accelerometers respectively).  
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Figure 34.  Scatter plot of the average speed versus sum of mean absolute differences on each axis of 
the phone accelerometer, including the corresponding linear regression. 

 

 

Figure 35.  Scatter plot of the average speed versus sum of mean absolute differences on each axis of 
the module accelerometer, including the corresponding linear regression. 

 

The remaining feature of three used for activity recognition, the sum of variances on each axis (4), 
was also analyzed for speed estimation purposes. The corresponding scatter plots for the phone and 
module accelerometers are shown in Figure 36 and Figure 37. When comparing these plots with the 
ones obtained for the sum of mean absolute differences on each axis (5), the main difference is the 
wider range of feature values. Concerning the associated coefficients of determination, the values 
of 0.8546 and 0.8735 are similar to the values of 0.8682 and 0.8541 obtained for (5). 
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Figure 36.  Scatter plot of the average speed versus the sum of variances on each axis of the phone 
accelerometer, including the corresponding linear regression. Points A and B refer to two different 

events. In event A a subject was running with higher speed than the speed corresponding to the subject 
in event B. 

 

 

Figure 37. Scatter plot of the average speed versus the sum of variances on each axis of the module 
accelerometer, including the corresponding linear regression. 

 

To better understand the big difference between the sum of mean squares and the sum of variances 
features, the points corresponding to events A and B (shown in Figure 32) are also shown in Figure 
36. In this figure, it can be seen that the feature value for the higher speed subject (event A) is not 
much lower than the value lower speed subject (event B). In fact the corresponding speed of event 
A is now slightly higher than the speed corresponding to event B, as explained below. So the 
problem of a much lower feature value for the higher speed subject, pointed out above (Figure 32) 
is now partially attenuated.  
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The reason for the difference between the two features can be explained by observing Table 8. 
Considering the y-axis value, the higher speed event has a much lower value when the mean 
squares are used, but for the variances the values for the two events are not so markedly different. 
Furthermore, for the variance the x- and z-axis values are markedly greater for the higher speed 
subject. As a final result the sum of variances feature has higher values for the higher speed event 
(last column of Table 8) in contrast with the sum of mean squares feature where the higher speed 
subject has a significantly lower value. This result shows that the way a subject walks or runs will 
have an impact on the three accelerometer axis so all of them must be considered for good speed 
estimation.  

Table 8. Feature values for two subjects corresponding to points A and B of Figure 32 and Figure 36 

Feature Event 
Speed 
(m/s) 

Feature per axis ((m/s2)2) Feature value 
((m/s2)2) x-axis y-axis z-axis 

Sum mean 
squares 

A 3.62 14.77 91.66 7.26 113.70 

B 2.53 12.14 129.68 5.69 147.52 

Sum 
variances 

A 3.62 14.62 44.68 6.67 66.09 

B 2.33 8.57 54.87 2.47 65.92 

  

Regarding the gyroscopes, for the module (Figure 39) the coefficient of determination (R2 = 
0.7811) is lower when compared to the last values presented above (for the sum of variances). For 
the phone gyroscope (Figure 38), although the coefficient of determination is similar to the phone 
accelerometer (0.8503 instead of 0.8546), it can be easily seen in Figure 38 that it is not adequate 
for estimating lower speeds. 

 

Figure 38. Scatter plot of the average speed versus the sum of variances on each axis of the phone 
gyroscope, including the corresponding linear regression. 
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Figure 39. Scatter plot of the average speed versus the sum of variances on each axis of the module 
gyroscope, including the corresponding linear regression. 

 

Considering all the features studied above for speed estimation, the sum of variances on each axis 
of the phone accelerometer was the chosen feature, since it has one of the best coefficients of 
determination values and is the same feature used in the activity recognition for distinguishing 
between static and dynamic activities, and between walking and running. So this choice is a great 
advantage regarding our aim of saving processing resources. Furthermore, it meets another aim of 
this dissertation, which is to explore the possibility of using only the smartphone. 

So the equation of the linear regression included in Figure 36 (sum of variances for the phone 
accelerometer), is used to estimate the user speed. This equation can be written as (10), which gives 
the estimated average speed, in m/s, in function of the sum of variances for the phone 
accelerometer. 

     m/sspeed 0.0279 1.1756sum_variances sum_variances    (10) 

 

4.4 Experimental Results 

Both algorithms described above (activity recognition and speed estimation) were evaluated using 
the data set aside for this purpose. The evaluations carried out and the corresponding results are 
presented in the next sections, followed by a discussion of the results and a comparison with some 
of the studies described in Chapter 2. 
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4.4.1 Activity	Recognition	
 

Evaluation 

An evaluation of the activity recognition algorithm was performed using a single continuous file. 
This file resulted from the concatenation in a random order of all activities events (standing, sitting, 
lying, walking, running and fall) from the test set. Since each sliding window can contain values 
from two contiguous activities, whenever a given window includes two different activities, the one 
that occurred first was considered as the correct activity. The sensitivity, specificity and accuracy 
values associated with each activity were calculated, using (11), (12) and (13), respectively. 

 
true positives)
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true positives false negatives)
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#(



 (11) 
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To explain the meaning of the terms used in these equations, in the context of activity recognition, 
consider for example the standing activity. If the present window contains data from this activity, 
then: 

 A true positive corresponds to the recognition of the standing activity. 

 A false negative corresponds to the recognition of an activity other than standing. 

Still considering the standing activity, if the present window contains data from an activity 
different from standing, then: 

 A false positive corresponds to the identification of the standing activity. 

 A true negative corresponds to the identification of activity different from the standing 
activity. 

Table 9 shows the confusion matrix obtained for this evaluation, where the lines represent the 
actual activity and the columns the activities recognized by MonitorMe. The numeric values 
correspond to the number of windows evaluated (i.e. decisions made). The corresponding 
sensitivity, specificity and accuracy values are presented in Table 10. 
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Table 9. Confusion matrix when using the single continuous file with the activity events concatenated 
in random order * 

 Standing Sitting Lying Walking Running Fall 

Standing 536 11 16 28 8 0 

Sitting 17 187 4 2 2 0 

Lying 18 2 188 8 2 0 

Walking 10 0 4 563 4 0 

Running 4 6 1 2 129 0 

Fall 0 0 0 0 0 44 

 * Rows are the correct activity, columns the MonitorMe classification 

 

Table 10. Sensitivity, specificity and accuracy for each activity, when using the single continuous file 
with the activity events concatenated in random order 

 Sensitivity Specificity Accuracy 

Standing 89.5% 96% 93.8% 

Sitting 88.2% 98.8% 97.6% 

Lying 86.2% 98.4% 97% 

Walking 96.9% 96.8% 96.8% 

Running 90.8% 99% 98.4% 

Fall 100% 100% 100% 

Overall 93.4% 98.2% 97.3% 

 

For comparison of MonitorMe with other systems, a second evaluation of the algorithm was 
performed following the typical evaluation found in the state of the art, where the recognized 
activity for each window (containing data from only one activity) is compared with the actual 
activity [13, 22, 23]. So similarly to other studies, instead of performing the evaluation against a 
heterogeneous and random sequence of activities, each activity was considered separately. In other 
words, each processed window corresponded to only one activity. The confusion matrix for this 
evaluation is shown in Table 11, and the corresponding sensitivity, specificity and accuracy values 
are presented in Table 12. 
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Table 11. Confusion matrix when considering the activity events separately * 

 Standing Sitting Lying Walking Running Fall 

Standing 576 0 0 0 0 0 

Sitting 0 202 0 0 0 0 

Lying 0 0 211 0 0 0 

Walking 7 0 0 560 0 0 

Running 0 0 0 0 134 0 

Fall 0 0 0 0 0 33 

 * Rows are the correct activity, columns the MonitorMe classification 

 

Table 12. Sensitivity, specificity and accuracy for each activity, when considering the activity events 
separately 

 Sensitivity Specificity Accuracy 

Standing 100% 99.4% 99.6% 

Sitting 100% 100% 100% 

Lying 100% 100% 100% 

Walking 98.8% 100% 99.6% 

Running 100% 100% 100% 

Fall 100% 100% 100% 

Overall 99.8% 99.9% 99.9% 

 

Discussion 

The first evaluation regarding activity recognition, presented above, uses an approach that takes 
into account the existence of transitions between the 6 recognizable activities. For the used 
sequence of randomly ordered activities, the windows containing data from more than one type of 
activity represented 10% of all windows. In this evaluation every fall is detected (100% accuracy) 
and the other activities have sensitivities in the range [86.2, 96.9] %, specificities in the range [96, 
99] % and accuracies in the range [93.8, 98.4] %. 

It is important to note that most of the false negatives are due to the method used for dealing with 
transitions, where the recognition of an activity is delayed for two windows (Section 4.2.2). On the 
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other hand, in real situations, transitions may have longer time durations. Also, there would 
probably be more confusion with the fall activity. Nevertheless, the first evaluation is closer to 
reality than the second evaluation, which was performed with the intention of comparison with 
other studies, as mentioned above. 

In the second evaluation, the walking activity has a sensitivity of 98.8% and all other activities 
have 100% sensitivity. On the other hand, standing has 99.4% specificity and all other activities 
have 100% specificity. This leads to accuracies of 99.6% for standing and walking, and 100% for 
the rest. These better results were expected since the activities are considered separately, i.e. each 
window has only one associated activity.  

The results presented above were achieved using a threshold-based activity recognition algorithm 
that uses only three time-domain features extracted from the accelerometer data. Frequency-domain 
features were not explored since they generally are more complex to compute and do not lead to 
much better accuracies when compared with some time-domain features [13]. Furthermore, the 
features used in MonitorMe have very low computational cost and storage requirements, as 
concluded by [13]. 

Although the gyroscope data were analyzed, the accelerometer data were enough to recognize the 
considered activities in this dissertation. More useful information could probably be obtained by 
performing integration and/or derivation of the gyroscope data, as in [27] and [28], but the 
associated extra mathematical operations would not be suitable for a mobile phone implementation. 
Also, this extra computational cost does not always contribute to the improvement of the algorithm 
accuracy, as we can see from [27] where the gyroscope data is integrated to calculate body angles 
together with accelerometer data. Indeed, the range of sensitivities obtained in the second 
evaluation of MonitorMe (]98, 100] %) are similar to the range of sensitivities achieved in [27] 
([96, 100] %), when considering the same set of activities. 

Using only accelerometer data, in [15] accuracies over 97% were achieved for some of the studied 
classifiers (using other techniques than threshold-based). However, the classifiers were trained for 
each user separately. The MonitorMe algorithm was developed based on all the data collected from 
the various users, as it is intended for general use, without prior user specific calibration. 

In contrast with MonitorMe, in [22] the processing necessary for activity recognition takes place at 
a server, although the data is collected from sensors of a mobile phone. Moreover, the window size 
is of 10 seconds, which may not be appropriate for situations where it is important to have quickly 
the most updated activity information. Considering the classifier with best overall sensitivity from 
the 3 classifiers studied in [22], walking, jogging, sitting and standing have sensitivities of 91.7%, 
98.3%, 95% and 91.9%, respectively. The sensitivities achieved (in the second evaluation) with 
MonitorMe are higher, with 99.6% for walking and 100% for running, sitting and standing. 

The sensors configuration used in [23] is similar to MonitorMe, with an uni-axial (instead of tri-
axial) accelerometer placed at the chest and another at the thigh. The set of activities is also similar, 
with the difference that walking is not distinguished from running (only locomotion is recognized) 
and falls are not considered. The authors developed a threshold-based algorithm based on the mean 
absolute deviation to distinguish static (standing, sitting and lying) from dynamic (locomotion) 
activities. In this dissertation the mean absolute difference on each axis was also studied but was 
not used for algorithm implementation. The sum of the variances on each axis was used instead, 
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since it results in a greater relative difference between the values for dynamic and static activities 
(as explained above in Section 4.2.2). Another difference is that posture identification in [23] is 
based on median values, while MonitorMe uses mean values. The evaluation of their algorithm led 
to sensitivities of 93% for sitting, 73% for standing and 91% for lying and locomotion. The 
MonitorMe algorithm achieved 100% sensitivity for all postures and 99.8% for locomotion (99.6% 
for walking and 100% for running) in the second evaluation. Apart from the different features used, 
the worse results of [23] can be due to the use of sensors with only one axis and the use of a lower 
sampling rate together with larger windows (10Hz and 10 seconds, respectively, instead of 25Hz 
and 1 second of MonitorMe).  

 

4.4.2 Speed	Estimation	
 

Evaluation 

The speed estimator (10) was also evaluated, using 30% of data (test set) from experiment 2, which 
includes 30 walking and running events at different speeds. Figure 40 presents the scatter plot of 
the average speed estimated by MonitorMe versus the measured average speed. The measured 
average speeds were obtained from the covered distance and elapsed time measured during the 
performance of each walking/running event. Each estimated average speed corresponds to the 
average of speeds estimated by MonitorMe for all windows of the considered walking/running 
event (14). It is possible to see from Figure 39 that the trend is of an increase of the estimated speed 
with the actual speed, with only some local deviation from this trend, as expected. The associated 
coefficient of determination is of R2=0.8944. 

 

 

Figure 40. Estimated average speed versus the measured average speed for the test set of experiment 2 
(walking and running). 
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Considering the measured and estimated average speeds, an average relative error of 8.6% was 
obtained using (15). The mean squared error (MSE), calculated using (16), resulted in a value of 
0.0773 (m/s)2.  
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Discussion 

The evaluation of the speed estimator developed in this dissertation resulted in a coefficient of 
determination of 0.8944, an average relative error of 8.6% and a MSE of 0.0773 (m/s)2, when 
considering the estimated average speeds and the corresponding measured average speeds. This 
confirms the suitability of (10) for estimating speed and therefore to control the video frame rate, 
when the user is walking or running. 

In [9] the user speed was estimated by using exercise information that is generated and presented to 
the user. But the method used has the disadvantage of requiring the indication of the user age, sex 
and height for calculating the stride length based on a table of fixed values. 

In [10] a different method is used for speed estimation, but it also relies on the user characteristics 
(height and weight). The speed estimator was developed using a training set obtained from data 
collected on a treadmill with controlled speed. It was then evaluated using the test set, resulting in a 
coefficient of determination of 0.975 and a MSE of 0.0225 (m/s)2, when considering the actual and 
the estimated speeds, for a range of actual speeds between 1.31 a 4.76 m/s. A test with a single user 
running a distance of 10 km, in a track and field environment, resulted in a relative error of 9.57% 
between the actual average speed and the estimated average speed. The MonitorMe speed estimator 
was developed and evaluated from data collected in experiment 2, from a set of subjects with quite 
different ages, weights, heights and BMIs (values in Table 4), in a track and field environment. The 
evaluation resulted in a coefficient of determination of 0.8944, a MSE of 0.0773 (m/s)2 and an 
average relative error of 8.6% between average estimated and average real speeds, for a range of 
actual speeds between 0.94 a 3.82 m/s. Besides the above considerations, to compare the two sets 
of results it is also important to note that the algorithm in [10] uses neural networks with a 
computational complexity difficult to evaluate from the presented data, but probably more complex 
than the MonitorMe algorithm. Furthermore, the latter is user independent (i.e. it can be used by 
any person and there is no need of personal information input). Taking this into account, the 
MonitorMe results can be considered good. 
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The acceleration values of both thighs were used together in [11] to estimate speed, using a third-
order polynomial model obtained from the training set. In MonitorMe, the speed estimator uses a 
different feature extracted from the acceleration data of a single location (chest), instead of two 
locations (both thighs), and a first order polynomial model (more adequate for a mobile phone 
implementation). The sample rate and window size values are similar to the ones used in 
MonitorMe, as well as the number of subjects from which data was collected. However, in [11] a 
treadmill was used, while in MonitorMe the experiment took place in a track and field environment 
with many changes in wind intensity. Even though the model used in [11] is more complex and 
should provide a better fit, the MSE of 0.1358 (m/s)2 is greater than the one obtained for the 
MonitorMe speed estimator evaluation (MSE = 0.0773 (m/s)2). 

In [8], data was collected from two bi-axial accelerometers (chest and right thigh). The RMS of the 
resultant acceleration was computed from these data, over 1-second windows, and was used for 
speed estimation. Just one subject was used for the study and no validation tests were performed 
with alternative users. In this dissertation data from accelerometers and gyroscopes placed at the 
same body locations were collected from 5 different users. From the study of these data it was 
concluded that the sum of variances on each axis, computed also over 1-second windows, provides 
better results compared with the mean squares feature. Further calculations have shown that the 
sum of variances is also better than the RMS feature (used in [8]).  
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5 MonitorMe Demonstration 
 

In this section a simple demonstration trial of the MonitorMe system is presented and documented, 
to illustrate both the activity recognition and the video frame rate adaptability. MonitorMe is now 
fully deployed in an Android smartphone, a server and a remote device, in contrast with the early 
phases of the current work, where the development and evaluation stages were performed in a 
laptop. The setup presented in Figure 7 was used to show the MonitorMe online operation, using a 
laptop as both the server and the remote monitoring device for demonstration purposes. Also a 
wireless connection was used for communication between the smartphone and the server. 

A 32 years old male subject, 1.8 m high and weighting 76 kg, performed at least once the standing, 
sitting, lying, walking, running and fall activities. This subject did not participate in any of the 
experiments carried out for the development of the MonitorMe algorithm. The activity recognition 
was performed online, with the current activity being sent to the remote device via the server. At 
the same time, the captured images (with variable frame rate) were also sent to the remote device. 

For demonstration purposes, the following information was recorded for each window/decision: the 
timestamp of the moment when an activity was identified (activity_timestamp) and the name of the 
recognized activity. The value of the image frame rate, set according to the recognized activity, was 
also saved. For each captured image, the timestamp associated with the moment of capture 
(image_timestamp) was recorded. 

 

Figure 41. Activities recognized at each instant during the demonstration of the MonitorMe. The 
actual activities are shown above the graph, using the notation indicated in the graph y-axis. The red 
dashed lines indicate the duration of each actual activity. The read ellipses show incorrect recognition 

during transitions. 

 

The graph presented in Figure 41 shows the activities recognized by MonitorMe as a function of 
the time elapsed since the beginning of the demonstration, obtained from the activity_timestamp 
values. The sequence of actual activities carried out is presented above the graph, together with 
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vertical red dashes lines that indicate the time intervals of each activity event. These activities were 
identified by using a video recorded during the demonstration. A1, A2, A3, A4, A5 and A6 refer to 
standing, sitting, lying, walking, running and fall, respectively. The marked transitions between 
activities are represented by the notation T.   

For a proper interpretation of the demonstration, it is important to recall that the algorithm 
developed in this dissertation is not intended for detecting transitions between activities.  As 
explained before, to deal with these events the algorithm maintains the previous decision until a 
new recognizable activity is detected for at least three consecutive windows.  This approach works 
in many transition situations, but as explained previously, some situations still remain where 
transitions are recognized as an activity other than the activity performed before the transition 
(Section 4.2.2). These situations occurred in this demonstration, as indicated by the red ellipses in 
Figure 41, where marked transitions are recognized as walking. Depending on the application 
scenario, this may be of little consequence, since these false recognitions will occur only during 
time intervals of the order of a few seconds. 

Apart from these transition situations, it can be seen in Figure 41 that all activities are correctly 
recognized with only a small delay, which was expected due to the method used to address 
transitions. Also due to this method, in the walking-standing-fall (A4-A1-A6) sequence, the 
standing activity (A1) is not recognized because the subject stood still for just about 1 second 
(duration of one window), between the walking activity and the fall. As the standing position was 
not recognized for more than two windows, the previous activity (walking) was kept, in accordance 
with the implemented algorithm.  

Regarding the fall activity, unlike other activities, it is recognized with almost no delay. This is due 
to the fact that the method to deal with transitions is not used when a fall is detected. Also, the fall 
detection is maintained during a longer time than would be expected, because the subject changed 
his position immediately after falling. So the next activity (lying) is only recognized when the user 
is lying still for a few seconds. 

Figure 42 and Figure 43 show images captured during the demonstration, for the sitting and 
walking activities, respectively. Figures (a) present images that correspond to the information 
shown at the remote device, with the indication of the current activity being performed and current 
image of the user surrounding environment. Figures (b) show images of the user taken from the 
video recorded during the demonstration. These images were used to identify the actual activities 
carried out, to confirm the correctness of the activities recognized by MonitorMe. 
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 (a) (b) 

Figure 42. Capture from the remote device screen (a) and from the video used for identification of the 
actual activities (b), while the subject was sitting. 

 

  
 (a) (b) 

Figure 43. Capture from the remote device screen (a) and from the video used for identification of the 
actual activities (b), while the subject was walking. 
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Figure 44 shows that MonitorMe adjusts the frame rate value according to the current recognized 
activity, figure (a), and that the video acquisition rate is effectively modulated using the frame rate 
value, as shown by the measured time intervals between consecutive frames, indicated in figure (b). 
It is important to note that although the ranges of elapsed time values are similar in figures (a) and 
(b), they do not correspond exactly to the same instants, i.e. they were obtained from different 
timestamps (activity_timestamp and image_timestamp, respectively). In figure (a) the recognized 
activities are shown above the graph, together with vertical red dashes lines that indicate the 
associated time intervals. A1, A2, A3, A4, A5 and A6 refer to standing, sitting, lying, walking, 
running and fall, respectively. 

 
 (a) 

 
 (b) 

Figure 44. MonitorMe demonstration of the adaptable video frame rate: the frame rate value is 
computed according to activity/speed (a); this value is used to adjust the time interval between 

consecutive captured frames (b).  The alphanumeric symbols on the top of figure (a) represent the 
activity being carried out in each time interval. The red ellipse corresponds to a case analyzed in detail 

in the text.  

 

For a more detailed analysis, consider the sequence of activities (sitting, walking, running, 
walking) indicated in Figure 44 (a) by the sequence (A2, A4, A5, A4). It can be seen that when the 
user is sitting (A2) the frame rate is set to 1 fps, as expected. From the moment the walking activity 
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(A4) is detected, the frame rate is changed in the range between 2 and 3 fps. The 3 fps values 
correspond to faster speeds while walking.  

Still relative to Figure 44 it is interesting to analyze the situation indicated by the red ellipse: at the 
end of the walking activity (A4) the frame rate value changes to 5 fps. To interpret this, it is 
necessary to take into account the delay associated with the recognition of a new activity, in order 
to deal with transitions (as mentioned above). So when the frame rate has the value of 5 fps, the 
user actually just started running, but the algorithm kept its previous decision of walking for two 
further processing windows. So, although the algorithm output is not yet running (A4 instead of 
A5), it makes sense that the frame rate is adapted to the effective higher speed that happens right 
before the actual running recognition. 

During the time interval when the running activity (A5) is recognized, it is possible to see that the 
frame rate value decreases gradually from 5 fps to 2 fps. Considering the recognition delay 
explained above, this corresponds to the transition from running to walking, where the user speed 
decreases. While walking again (third A4 in the figure), the frame rate value stabilizes at 2 fps. 
After the considered sequence, it is possible to see that during the fall activity (A6) the frame rate 
value of 2 fps is maintained until the lying activity is recognized (the value returns then to 1 fps as 
expected). 

Comparing plots (a) and (b) of Figure 44, it is possible to see that, as already mentioned above, the 
computed frame rate values were actually used when capturing images. For example, when the 
frame rate is set to 1 fps, the average time interval between consecutive images is of 1005 ms 
(corresponding to 1000/1005 = 0.995 ≈ 1 fps). Similarly, for 2, 3, 4 and 5 fps, the average time 
interval between captured images is of 506, 338, 268 and 207 ms, corresponding to 1.98, 2.96, 3.73 
and 4.83 fps, respectively. The difference between the target and effective values can be explained 
by the fact that the frame rate of the phone camera (without any frame dropping) is not constant. 
However, the effective frame rate increases or decreases in accordance with the target values. 
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6 Conclusions and Future Work 
 

6.1 Conclusions 

In this dissertation we presented the MonitorMe system, which is able to monitor a subject by 
recognizing the activities being carried out, while simultaneously recording a video of the 
surrounding environment. Both the current recognized activity and the captured images are sent to 
a remote device. The activity recognition is based on sensor data collected from a smartphone and 
an in-house built MARG module. The video is captured as a sequence of images using the camera 
of the smartphone. The smartphone is placed at the user’s chest (in a shirt pocket) and the MARG 
module at the right leg (in a pants pocket). 

The MonitorMe smartphone application gathers and processes data from the accelerometers 
included in both devices, to perform online recognition of 6 different activities (standing, sitting, 
lying, walking, running and fall). This is achieved by using a low processing cost algorithm that 
requires only a small number of features (sum of minimum values, mean values and sum of 
variances).  

The features used for activity recognition are extracted mainly from the phone accelerometer data. 
However, the results in this dissertation show that the smartphone alone would not enable the 
distinction between standing and sitting. This distinction is easily achieved with the MARG module 
data (placed at the leg). So this device is mandatory if the application scenario requires separate 
recognition of sitting and standing. Otherwise, the use of the smartphone at the chest is enough. 
Even though the implemented algorithm does not use gyroscope data, we observed that this sensor 
type could be also useful to distinguish static from dynamic activities, for example. 

While recognizing activities, the phone additionally records a video of the surrounding 
environment in an efficient way, by adapting the frame rate in function of the estimated user speed. 
The non-GPS speed estimation is based on one of the features already computed for activity 
recognition. So the combination of simple speed estimation and frame rate adaptation allows 
further savings in data processing and required transmission bandwidth. 

MonitorMe achieves similar or even better results than some alternative solutions available in the 
literature, considering comparable scenarios. Furthermore, when compared with other solutions, 
MonitorMe has the advantage of being an integrated system of activity recognition plus 
controllable image recording, which can be accessed remotely. 

MonitorMe is an efficient, low computational cost system, which is an important characteristic in 
the development of smartphone applications with limited resources available. It is also a reliable 
solution that can be applied in many scenarios where mobility and autonomy are relevant. In health 
care, namely when involving elders, it is very important to provide autonomy. In the case of 
monitoring professionals in the field (e.g. first responders) it is also important to offer an 
autonomous solution with low signature (regarding space and weight) that can help in identifying 
critical or life threatening situations. 
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6.2 Future Work 

The evaluation results of the MonitorMe algorithm presented in this dissertation are positive. 
However, a further validation is needed, given the limited number of subjects that participated in 
the experiments. This can be done namely by increasing the number of trials and subjects. 

The main aim of this dissertation was to recognize the standing, sitting, lying, walking, running and 
fall activities. So transitions between these activities were addressed using the method explained in 
Section 4.2.2. However, it was verified that there are still some situations where transitions are 
confused incorrectly with a certain activity. A further analysis of sensor data is needed to deal with 
these situations, where other features associated with the accelerometer could be explored as well 
as the possibility of additionally use the gyroscope data. Also, a study similar to [20, 26] could be 
useful in the case of confusion with falls. The effect of the window size on the activity recognition 
results, especially in the case of transitions between activities, can also be studied. 

Regarding the further reduction of the required processing power, some of the aspects that can be 
explored include the sampling rate value and the amount of window overlap. These can possibly be 
lowered without compromising the results obtained in this dissertation. Another way of minimizing 
the required processing and transmission bandwidth would be to start the capture and transmission 
of images only when certain activities are detected (e.g. fall, walking and running). Different 
methods for converting/compressing images can also be explored with the aim of reducing the 
processing time. 

MonitorMe estimates speed by using information computed for activity recognition, instead of 
using the GPS that represents extra resources and can only be used outdoors. Nevertheless, the GPS 
can be useful in situations where it is important to know the user location. So if the user is 
outdoors, the GPS could be turned on when a certain event (e.g. a fall) occurs, to provide 
information about the user location. 

In this dissertation a functional online monitoring system is presented, where the focus is on the 
smartphone application. For future work, this system could be improved by enabling the 
monitoring of several users. This could be applied in practical situations, such as team monitoring 
of fire-fighters. MonitorMe can also be integrated into the DroidJacket [50], an Android based 
monitoring solution developed in the context of the Vital Responder project, enhancing the 
monitoring of professionals such as fire-fighters. 

The use of a mobile phone as a remote monitoring device could also be very useful, so an Android 
application for this device could be developed in the future by reusing the code of the Java 
application implemented in this dissertation. Another improvement, which could be especially 
important if a subject is monitoring a large number of users with a mobile phone, is the 
implementation of alarms for certain events. For example, if one of the users falls, an alarm can be 
sent to the mobile phone and a window opened with the information (activities and images) of the 
corresponding user. 
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