
 Universidade de Aveiro
2012

Departamento de Eletrónica, Telecomunicações e
Informática

Bruno Tiago
Carneiro Palos

Melhoria das práticas de construção de software:
um caso de estudo
Software construction practices redesign: a case
study

 Universidade de Aveiro

2012
Departamento de Eletrónica, Telecomunicações e
Informática

Bruno Tiago
Carneiro Palos

Melhoria das práticas de construção de software:
um caso de estudo
Software construction practices redesign: a case
study

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de
Computadores e Telemática (MIECT), realizada sob a orientação científica do
professor Doutor José Maria Amaral Fernandes, professor Auxiliar do
Departamento de Eletrónica, Telecomunicações e Informática da Universidade
de Aveiro e do Mestre Ilídio Castro Oliveira, Assistente Convidado do
Departamento de Eletrónica, Telecomunicações e Informática da Universidade
de Aveiro

Dedico este trabalho ao meu pai.

o júri

presidente Professor Doutor José Luis Guimarães Oliveira
 professor associado do Departamento de Eletrónica, Telecomunicações e Informática da

Universidade de Aveiro

 Professor Doutor João Miguel Lobo Fernandes
 professor catedrático do Departamento de Informática da Escola de Engenharia da Universidade

do Minho

 Professor Doutor José Maria Amaral Fernandes
 professor auxiliar do Departamento de Eletrónica, Telecomunicações e Informática da

Universidade de Aveiro

 Mestre Ilídio Fernando de Castro Oliveira
 assistente convidado do Departamento de Eletrónica, Telecomunicações e Informática da

Universidade de Aveiro

agradecimentos

Agradeço à minha Mãe pelo amor, pelos sacrifícios que fez e pelo apoio que
sempre me deu de forma incondicional desde que nasci e não apenas durante
a realização deste trabalho. Agradeço à minha irmã Carla Palos por ser das
pessoas que mais torceu por mim. Agradeço à minha namorada Andreia
Rodrigues pela sua paciência e apoio, que foram imprescindíveis para terminar
este trabalho. Agradeço aos meus amigos, especialmente ao Tiago Pereira,
pela amizade durante os momentos mais difíceis do curso. Um abraço aos
meus colegas de trabalho que sempre me apoiaram. Agradeço ao meu
orientador Prof. Doutor José Maria Fernandes e ao meu co-orientador Prof.
Ilídio Oliveira pela paciência, atenção e acompanhamento constantes, sem os
quais não seria possível terminar este documento.

palavras-chave

processos de qualidade, práticas, software, integração contínua,
automatização, desenvolvimento evolutivo

resumo

Em muitos projetos de desenvolvimento de software não são utilizados
processos e práticas explícitos com o intuito de garantir a qualidade do produto
final. Nesses casos, a organização do ambiente de construção nasce das
acções imediatas do dia-a-dia da equipa de desenvolvimento de forma não
estruturada e não escalável.

No contexto dos projetos de investigação com desenvolvimento de software,
em que as equipas são marcadamente mutáveis, a definição de estratégias
para o processo de construção de software é essencial para agilizar o
desenvolvimento, aumentar a produtividade e controlar a evolução do produto.

Este trabalho visa a análise e definição de estratégias para a construção de
software usando como caso de estudo o projeto Rede Telemática Saúde (RTS)
do Instituto de Engenharia Eletrónica e Telemática de Aveiro, e a sua
implementação, através da introdução de boas práticas e ferramentas que
permitem melhorar a evolução do sistema.

A implementação dessas estratégias inclui disciplinas de gestão de
configurações, que asseguram a consistência das versões do projeto e
respetivas dependências, e um ambiente de integração contínua que controla
todo o código-fonte produzido pela equipa de programadores usando testes
automatizados. Cada versão é composta por um conjunto de tarefas ou tópicos
atribuídos a cada colaborador que são geridos por critérios de prioridade,
alavancando a agilidade do processo de desenvolvimento. Todo o ciclo é
representável numa plataforma de gestão dessas tarefas, essencial à gestão
de alto nível.

Complementarmente, realizou-se um estudo para caracterizar as práticas
correntes no processo de construção de software, através de um inquérito à
indústria de software portuguesa.

As estratégias propostas e implementadas permitiram redefinir o processo de
construção no projeto RTS, introduzindo um maior controlo sobre a linha de
produção, especialmente na identificação antecipada de defeitos e controlo de
versões. Estes resultados estão alinhados com as necessidades prioritárias
identificadas no inquérito à indústria.

keywords

quality processes, practices, software, continuous integration, automation,
evolutionary development

abstract

Software projects often neglect the use explicit processes and practices to
ensure final product quality are. On those cases, the arrangement of the
construction environment arises from pressing needs of the development team
daily routine in a non-structured and non-scalable way.

In the context of research projects that need software development, in which
teams are strongly mutable, the definition of strategies for software construction
practices is essential to streamline development, increase productivity and to
control the product evolution.

This study aims at analyzing and define software construction strategies using
as a case study the Rede Telemática Saúde project (RTS) of the Institute of
Electronics and Telematics Engineering of Aveiro (IEETA), and their
implementation, by introducing best practices and tools that help improving the
system evolution.

Such strategies include particular topics of configuration management, which
ensure consistency of versions and their dependencies, and a continuous
integration environment by validating the source-code produced by developers
using automated testing. Every version is composed of a set of tasks or topics
particularly assigned to each team member and managed by priority criteria to
leverage the agility of the development process. Such tasks and the whole
development cycle are mapped on a management platform, which is essential
to high-level management.

Additionally, an industry study was carried out to characterize current practices
on software construction process, through a survey to the Portuguese software
industry.

The proposed and implemented strategies allowed redefining the construction
process on the RTS project, introducing more control over the production line,
especially on version control and early identification of defects. Those results
are aligned with identified priority needs in the industry survey.

 i

Contents

List of figures.. iv

List of tables ... vi

List of tools ..vii

Acronyms .. ix

1 Introduction .. 1
1.1 Context and motivation.. 1
1.2 Objectives..2
1.3 Document structure..3

2 Background concepts and state of the art ..5
2.1 Software Quality ...5
2.1.1 Overview...5
2.1.2 Detection and prevention ..6
2.1.3 Verification and validation ..6
2.1.4 Configuration management... 7
2.1.5 Quality standards ...8

2.2 Agile development ..9
2.2.1 What is agile development? ...9
2.2.2 Agile methodologies...9
2.2.3 Agile manifesto and principles ...11
2.2.4 Communication and collaboration...11
2.2.5 Development lifecycle .. 12

2.3 Testing .. 13
2.3.1 Regression tests ... 14
2.3.2 Performance and load tests ... 14
2.3.3 Unit tests .. 15
2.3.4 Integration tests ... 16
2.3.5 Functional tests.. 17

2.4 Software configuration management... 17
2.4.1 Version control... 17
2.4.2 Software dependencies management .. 19
2.4.3 Tasks management ... 20

 ii

2.4.4 Project elements traceability ... 21
2.5 Coding improvement..22
2.5.1 Code reviews and metrics ..22
2.5.2 Coding rules and conventions ...22

2.6 Continuous integration ..23
2.6.1 Overview...23
2.6.2 Continuous feedback..24
2.6.3 The build process ...25
2.6.4 Continuous testing ...27

3 Industry survey ...29
3.1 Overview ...29
3.2 Characterization of the sample ..29
3.3 Analysis of results...33
3.3.1 Version control...33
3.3.2 Tests ...36
3.3.3 Continuous integration ..39
3.3.4 Quality control .. 40
3.3.5 Task management ..43

3.4 Conclusion ..43

4 A proposal for construction process improvement in the RTS project47
4.1 The previous construction process...47
4.1.1 Construction processes, practices and tools..47
4.1.2 Identified problems..50

4.2 A new construction process.. 51
4.2.1 The development pipeline ... 51
4.2.2 Releases maintenance and consistency...55
4.2.3 Project progress and rapid delivery...58
4.2.4 Assuring software quality .. 61
4.2.5 Team communication and interaction ..64
4.2.6 Summary of the new development process...65

4.3 Applying the construction process to other projects ...65

5 Implementation of the proposed construction process ...69
5.1 Selected tools for the construction process..69
5.2 The construction environment pipeline...72

 iii

5.2.1 The project’s files repository..74
5.2.2 Managing the software artifacts repository...76
5.2.3 The continuous integration server ..79

5.3 Software project changes management ...83
5.3.1 The versioning strategy..83
5.3.2 Applying database changes..84
5.3.3 Releasing versions of the project ...87

5.4 Automated tests on every build..92
5.4.1 Automated integration tests ..92
5.4.2 Automated unit tests..94

5.5 Automated code verifications...96

6 Results ... 101

7 Conclusions and future work.. 103

8 References ... 105

9 Annexes ...109
9.1 Annex A - Questionnaire form ...109
9.2 Annex B - Public appraisal of contributing respondents..121
9.3 Annex C - Best practices document.. 123

 iv

List of figures
Figure 1 - Quality assurance components [6]. 5
Figure 2 - Software configuration management components [6]. 7
Figure 3 - Agile delivery framework [1]. 13
Figure 4 - The repository and working copies [70]. 18
Figure 5 - A traceability information model for a basic agile project [81]. 21
Figure 6 - Components of a continuous integration system [38]. 24
Figure 7 - Number of employees. 30
Figure 8 - Weight of the software projects. 30
Figure 9 - Project team disposition. 31
Figure 10 - Project team size. 31
Figure 11 - Project age, since the beginning of the activity. 32
Figure 12 - Time in production of the project. 32
Figure 13 - Programming languages used in the projects. 33
Figure 14 - Project categories. 33
Figure 15 - Dependency control. 34
Figure 16 - Capacity to reproduce existent versions. 35
Figure 17 - Use version control servers. 36
Figure 18 - Used version control software. 36
Figure 19 - Use dedicated functional tests team. 37
Figure 20 - Performed test types. 38
Figure 21 - Construction practices versus tests team. 38
Figure 22 - Uses automated continuous integration. 39
Figure 23 - Automated continuous integration frequency. 39
Figure 24 - Phased affected by continuous integration. 40
Figure 25 - Manual integration frequency. 40
Figure 26 - Quality parameters versus continuous integration. 40
Figure 27 – Use of rules, conventions or good practices document. 41
Figure 28 - Development process and methodologies adoption. 41
Figure 29 - Most used development processes and methodologies. 42
Figure 30 - Regular code revisions adoption. 42
Figure 31 - Code revision types used. 42
Figure 32 - Used issue tracking systems. 43
Figure 33 - Impact of the different aspects in software construction. 44
Figure 34 - Task development activity. 47
Figure 35 - Old versioning strategy. 48
Figure 36 - Continuous integration base. 52

 v

Figure 37 - Continuous integration cycle. 53
Figure 38 - Integration activities. 54
Figure 39 - Proposed versioning strategy. 56
Figure 40 - Using CI on the main dev. line versus "integration hell". 57
Figure 41 - Continuous version evaluation. 58
Figure 42 - Issues management. 59
Figure 43 - Using a distribution repository. 60
Figure 44 - New task development activity. 62
Figure 45 - Automatic integration tests. 63
Figure 46 - Simplified RTS' development pipeline. 73
Figure 47 - Subversion's directory structure. 75
Figure 48 - Repository Management scenario on RTS project. 77
Figure 49 - Snapshot dependencies download. 78
Figure 50 - Snapshots repository maintenance. 79
Figure 51 - Hudson integration jobs. 81
Figure 52 - Configured jobs on Hudson. 82
Figure 53 – Using Liquibase for database migrations. 86
Figure 54 - Typical issue statuses. 87
Figure 55 - Shifting issue to another version on Redmine. 88
Figure 56 - Creating a RC branch. 89
Figure 57 - Releasing process steps. 90
Figure 58 - Maven Release Plugin mapping with RTS' releases strategy. 91
Figure 59 - Closing a release on Redmine. 91
Figure 60 - Integration testing. 92
Figure 61 - Using soapUI to create a test suite. 93
Figure 62 - Database automatic migration on RTS dev. environment. 93
Figure 63 - Running integration tests with Hudson. 94
Figure 64 - Unit tests directory structure. 95
Figure 65 - Test result with fails. 96
Figure 66 - FindBugs summary on Hudson. 97
Figure 67 - Problem detail on Hudson found by FindBugs. 98
Figure 68 - Bug found by FindBugs on Eclipse. 98
Figure 69 - Duplicate code detection example. 99
Figure 70 - Test coverage of CitizenCardParser class. 100
Figure 71 - Best practices document's structure. 101

 vi

List of tables
Table 1 - Load and performance tests frameworks. 15
Table 2 - Unit testing frameworks. 16
Table 3 - Functional testing frameworks for Web applications. 17
Table 4 – Number of projects using dependencies management software. 34
Table 5 - Projects that can reproduce versions. 35
Table 6 - Quality parameters in function of time in production. 45
Table 7 - Quality parameters in function of number of participants. 45
Table 8 - Diagnosis of dev. practices implementation in previous development

process. 49
Table 9 – Problematic practices and suggested actions. 65
Table 10 - Version segments. 83

 vii

List of tools
Build Description

Apache Ant[99] Automated build tool for Java.

Apache Maven[72] A build manager for Java projects. Supports automation.

Code static analysis Description

Checkstyle[86] Analyses coding standards and conventions.

Cobertura[87] A Java code coverage analysis tool.

FindBugs[84] Analyses Java bytecode for potential bugs.

PMD[85] Scans source-code and looks for potential problems.

Continuous integration Description

Apache Continuum[92] A continuous integration server for Java projects.

CruiseControl[90] A wrapper for Ant for automating builds on Java projects.

Hudson[88] A flexible continuous integration server.

Jenkins[89] A fork from Hudson project.

Luntbuild[91] Build automation and management tool.

Database migrations Description

autopatch[114] An automated database-patching framework for Java.

DbDeploy[112] A database change management tool.

Liquibase[115] An open-source database change management tool.

migrate4j[113] A database migration tool for Java.

Dependency Management Description

Apache Archiva[110] Extensible build artifact repository manager.

Apache Maven[72] A build manager for Java projects. Supports automation.

Artifactory[108] Artifacts repository manager.

Ivy[74] Dependency manager for Ant.

Nexus[109] Lightweight artifacts repository manager.

Functional testing Description

actiWATE[62] Java-based tool for automating tests on Web applications.

IeUnit[63] Testing framework for Web browsers

Selenium[45] Framework for automating Web browsers.

Watir[61] Automates Web browsers.

Integration testing Description

Arquillian[57] Integration testing framework to run on the JVM.

Citrus[59] Testing framework for SOA applications.

Gint[58] Groovy based integration testing framework.

soapUI[46] Multi-purposed testing framework for Web technologies.

 viii

Issue Tracking System Description

Bugzilla[75] Bug tracking framework.

Launchpad[76] Software collaboration platform. Includes bug tracking.

Redmine[78] A flexible project management web application.

Trac[77] Project management and bug/issue tracking system.

Load/performance testing Description

Apache JMeter[32] Server performance testing tool.

FWPTT[30] A Web load-testing framework.

Grinder[29] A Java load-testing framework.

Multi-Mechanize[31] A Web performance and scalability-testing framework.

Pylot[33] Open-source tool for testing performance of Web Services.

Siege[34]

Version Control System Description

Bazaar[68] A scalable version control system.

CVS[67] An old open-source VCS, which is widely used.

Git[66] A popular distributed VCS designed to be scalable.

Mercurial[69] A distributes VCS, dedicated to speed and efficiency.

Subversion[65] A popular open-source VCS.

Unit testing Description

Jasmine[52] Behavior-driven framework for testing JavaScript code.

JSUnit[50] Unit testing framework for client-side JavaScript.

JUnit[47] A popular Java unit-testing framework.

Mockito[49] A mocking framework for Java.

QUnit[51] A powerful JavaScript test suit.

TestNG[48] A testing framework inspired from JUnit and NUnit.

Other Description

Cargo[118] A thin wrapper that allows manipulating J2EE containers.

 ix

Acronyms
API Application Programming Interface

AS Application Server

CI Continuous Integration

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

DB Database

DETI Departamento de Electrónica, Telecomunicações e Informática

IEETA Instituto de Engenharia Electrónica e Telemática de Aveiro

ISO International Organization for Standardization

ITS Issue Tracking System

J2EE Java Platform, Enterprise Edition

JAR Java Archive

JDBC Java Database Connectivity

JPA Java Persistence API

JSON JavaScript Object Notation

JVM Java Virtual Machine

OS Operating System

POM Project Object Model

QA Quality Assurance

RC Release Candidate

RTS Rede Telemática Saúde

RUP Rational Unified Process

SCM Software Configuration Management

SME Small Medium Enterprises

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SQL Structured Query Language

SVN Subversion

TDD Test Driven Development

UA Universidade de Aveiro

UP Unified Procees

VCS Version Control System

WAR Web Application Archive

WS Web Service

XML Extensible Markup Language

XP Extreme Programming

 x

 1

1 Introduction

1.1 Context and motivation

In software industry, costumers assume development teams to promptly meet their

expectations. As software applications are products of great complexity, which can attain countless

different states, the need to immediately solve unforeseen problems is critical to ensure the trust of

stakeholders. This unpredictability must be embraced by development teams as something

natural[1], compelling them to equip themselves with rapid response skills because it is impossible

to predict when a bug will be detected on applications (which may occur days, weeks or even

months after installation on the client). For such reason, the ability to reproduce and fix production

releases must be part of teams’ skills, requiring agility in execution, from detecting the problem,

through its resolution to the deployment on runtime environments.

Beyond the ability on maintaining software releases, development teams must ensure

minimum defects to be introduced into the solution and new features to be developed in tune with

costumers expectations, ensuring constant production quality. Yet, orchestrating all these

guarantees, given the software unpredictability and regarding all deadlines, may ascertain an

extremely complex task to achieve. Therefore, during development periods of new releases,

progress must be frequently analyzed and priorities must be continuously assessed and changed

[2]. This flexible approach must be a daily basis process and the development staff should grasp it.

This work is carried out under the Rede Telemática Saúde (RTS) [3], [4] project of the

Institute of Electronics and Telematics Engineering of Aveiro (IEETA) - a solution to share medical

information about patients among health institutions. The project has the peculiar trait of highly

transient development staff, keeping developers for short periods of time, at most a year with

minimal number of resident developers. The project has periods of inactivity, depending on the

focus of research by IEETA. Usually, developers are students of the Department of Electronics,

Telecommunications and Informatics (DETI) at University of Aveiro (UA) working at part-time,

leveraging the lack of communication among individuals. People do not regularly interact due to

the academic environment characteristics, where software development processes are not subject

to strong investments and development teams are usually uncoordinated. Thus, two needs arise to

mitigate the problem: a fast integration of new developers and simplifying the development team’s

common language.

An extra characteristic of the project is the lack of an independent tests team to carry out

project’s releases validations throughout the iterations. Therefore, the development team itself

must ensure the product implementation and product validations prior delivering it to customers.

 2

The key is to streamline validations duration and effort by adopting automated tests (unit testing,

integration testing, regression testing, etc.). Since RTS handles sensitive health information, such

checks must obtain proper care.

The proposals submitted on the present dissertation are expected to improve the entire

construction practices of the RTS project by speeding and to ease the application availability to

customers, ensuring stakeholders’ expectations to be fulfilled. It is important to note that this

document centers on merely a few processes of the Software Quality Assurance (SQA) and does not

discuss the entire spectrum of each. The processes and practices covered relate to version control,

code construction, releases management, continuous integration, code reviews and certain kinds of

tests.

1.2 Objectives

This work proposes enhancements on software construction practices, using the context of

the Rede Telemática Saúde (RTS) development environment - a research project with a highly

rotational team of developers - as a case study. Despite focusing on a particular project, practices

and processes defined in this work are also pertinent for use by other software projects in general

but the selection of technologies just applies to systems developed in Java programming language.

The main objective is to improve the project building process by designing and to

implement a developmental pipeline using appropriate tools.

The work will start by establishing a baseline of the current development practices and to

identify potential problems. This assessment will be performed in detail on the RTS case study but

a wider observation will also be conducted on the Portuguese software industry through a survey

(see Annex A).

Some of the agile principles will be applied to propose improvements that favor the overall

production performance in view of the deliverables’ quality and endowing the project with constant

and rapid delivery capabilities, either during construction phase or during maintenance situations

of production releases, deployed on costumers machines without ever losing control, nor losing the

coveted quality.

We also intend to produce a functional best practices document towards aligning the entire

team to adopt the suggested construction processes and practices (see Annex C). This document

also specifies some rules and conventions for improving communication between individuals,

increasing the quality of the source code and improving the project maintainability.

 3

1.3 Document structure

The following describes the summary of the next chapters:

• Chapter 2 – Background concepts and state of the art:

An overview on software development concepts and quality assurance processes applied to

software production is introduced. Also, a review on software engineering tools, techniques and

methodologies is presented.

• Chapter 3 – Industry survey:

Presents the results and conclusions of an industry survey carried out on the Portuguese

small and medium-sized enterprises that produces software systems.

• Chapter 4 – A proposal for construction process improvement in the RTS project:

On this chapter, the old construction process used on the RTS project is analyzed and a

proposal of a new one is presented, with the intent of improving the overall developmental

practices and to assure the quality of the final product.

• Chapter 5 - Implementation of the proposed process:

The implementation of the proposed construction process on Chapter 4 is presented, where

tools and techniques are materialized and the specific development environment is defined. On this

chapter, particular implementation use-cases on the different aspects of the new development

pipeline are also described.

• Chapter 6 – Results:

The industry survey results are discussed and the success of the construction process

implementation is analyzed.

• Chapter 7 – Conclusion:

This chapter discusses a comparison on the outcome of the proposed construction process

and the ones used by Portuguese industry. Mappings between the agile methodologies and the

proposed practices are described. Finally, the chapter discusses possible future improvements on

this work.

• Annex A – Questionnaire form:

Questionnaire sent to Portuguese companies to conduct the industry survey.

• Annex B – Public appraisal of contributing respondents:

 4

Acknowledgments to all the cooperating companies. Includes a list with the companies that

agreed to incorporate their name in the public appraisal of their collaboration.

• Annex C – Best practices document:

Document for use by the RTS development team in order to improve the development

practices, developed in the scope of this work.

 5

2 Background concepts and state of the art

2.1 Software Quality

2.1.1 Overview

Prior initiating some quality concepts definition, the quality concept it self will be featured.

Quality, according to Oxford's Dictionary, is "the standard of something as measured against other

things of a similar kind; the degree of excellence of something" [5]. Different people in different

circumstances regard the concept of quality differently. Broadly, quality is seen as a product or

service characteristic that customers expect [6], which in this case applies to software industry.

Therefore, customers define quality with their satisfaction, according to previously established

needs [7]. In quality processes if software systems, there are two concepts, often confused on

distinctness: quality assurance and quality control.

Software Quality Assurance (SQA) activities are held on a particular methodology

(procedures), which provide evidence about how the whole software system is suitable for end use

and about compliance with specifications (Figure 1). Those activities are used to control and

monitor software development processes to attain the projects’ specific goals with a certain level of

confidence in quality terms [6]. SQA also enables checking and assessing how processes are

running and if they are being well accepted by development teams, using process reviews. This

enables organizations to check if products follow internal standards, templates and conventions

[8].

Figure 1 - Quality assurance components [6].

 6

Software Quality Control is about processes and methods definition used to monitor

software development and to verify whether requirements are being fulfilled, focusing on removing

defects from products before they are delivered to customers [6]. That is, it evaluates if software

products are within the defined quality standards resorting to formal inspections, walkthroughs

and different kinds of tests [8]. Quality control aims to detect and fix defects, whereas quality

assurance enables to prevent them.

2.1.2 Detection and prevention

The commonest approach to improve software quality is detection and consists in

thoroughly test software systems until all defects are found and fixed. That is the purpose of

detection and allows finding large amount of problems but it is not possible to test entire software

systems. There are plentiful ways of detecting defects in software applications: static analysis tools,

automated testing, system testing and functional testing [9]. Those detection techniques are used

on many software projects but although several faults are found is nowhere to be the most effective

way to enhance the quality of software systems.

Applying just fault detection techniques, quality cannot be reached in an already advanced

development stage of software applications. It is therefore necessary to prevent defects to be

inserted into the solution during development progress [6]. This can be achieved by defining

development processes using methods, techniques and tools. Prevention allows reducing costs of

quality management, maintenance and production by decreasing defects count, which might be

found on customer environments. This quality improvement degree is the most effective and can be

optimized with gained experience on detecting defects. With that experience, development

processes and practices can be improved and defects root causes can be eliminated in order to

prevent re-occurrence. Prevention helps improving the overall product quality and end-user

satisfaction, since defects have detrimental effects on the final solution’s image. Prevention also

helps to decrease development and maintenance expenses, since defects increases costs with time

they pass unnoticed and shifts problems correction to the initial stages of development. The

identification of defects root causes and prevention techniques appliance enable foresee ability and

improves production processes, since defects are unplanned events that can slow down iterations

completion and releases deployment on costumers’ machines [10].

2.1.3 Verification and validation

As means of quality control, verification and validation guarantees agreement with client

requirements definition when software development process is conducted. However, both

processes have different roles during software development lifecycle. Verification is the process to

guarantee the product is being developed in line with requirements at the end of each phase during

 7

the development cycle. Validation guarantees consistency between software product result and

costumers’ expectations throughout development cycle, and if the application’s behavior conforms

with specifications [6].

Typically, tests are performed during software validation process, namely, at the end of the

development cycle, right after programming stage, to check if the system is compliant with the

result that should be delivered to customers at functional and operational levels [6], [8].

Verification process occurs during development cycles, not just at the end of each stage.

Verification proves that each phase is being developed properly, from requirements specification to

construction [8]. Verification practices include: reviews, analysis and testing of project items, such

as requirements, design, architecture and code.

2.1.4 Configuration management

In general, Software Configuration Management (SCM) is a suite of management practices

that enables to reproduce future product versions, allowing teams to remove defects from those

versions [9]. Enables distribution of software applications by using version control mechanisms in

order to implement all its objectives [11]. SCM relates to change control of software applications,

and its components relationship through time. SCM is a discipline that can be applied to software

development, documentation, problem tracking, change control, test cases, external dependencies

and versions maintenance. Allows software reuse because each component and their mutual

relationships are defined, thus reducing production costs. Helps organize software development

and prevent inadvertent introduction of unwanted changes [6]. Its stabilizing effect provides

consistency among different software components, especially between source code, documentation,

requirements and product validation actions, while maintaining versions integrity and sustaining

configurations traceability throughout the implementation process. It also allows managing how

individuals collaborate during software production [12].

Figure 2 - Software configuration management components [6].

There are four major groups on SCM: version control, configuration building, change

control and component identification [6], [12], [13] (Figure 2). Version control is the most used,

which allows managing different software versions consistently through project evolution.

 8

Configuration building concerns linking each source component to obtain complete software

derivations. This SCM element defines the way software components are put together. An example

is external dependencies management, which consists to organize external libraries and external

binary files used by software applications. SCM must ensure consistency between software versions

with change management of such dependencies. Change control is the process were all software

changes made are proposed, evaluated, approved, rejected, scheduled and tracked [6]. Component

identification consists on identifying software components at each point of its development, such as

the software baselines, components and configurations. Software suffers a series of changes and

methods must be established to uniquely identify each revision [6]. An example is the version

schema, depicted by literals, which usually use incrementing numbers for each release evolution.

2.1.5 Quality standards

The following quality standards shall apply to development projects and software systems

and are references towards improving production processes and enhance the ultimate quality of

what is delivered to customers.

• Capability Maturity Model (CMM):

It is one of the oldest models for software and was described by Watts Humphrey (1989)

[14]. The main purpose of this model is to evaluate the capabilities of organizations to accomplish a

defined set of processes, but is also a continuous improvement driver. As the name suggests,

outlines a series of maturities to organizations exercise over specific elements of the model [9].

There are five maturity levels, each one with an aim, based on milestones achieved on previous

levels, allowing stepwise improvement procedures. Each level is incremented whenever a number

of key practices are reached by completing the former level maturation [6].

• Capability Maturity Model Integration (CMMI):

The model described previously applies to organizations that produce software. CMMI is a

more complex model that stretches CMM to be appropriate to organizations that develop software

and systems engineering [9]. Provides a collection of practices for developing products and

services, ensuring their maintenance [6], [15]. This model adds more information to the previous

one, which is reflected in the structure of its maturation levels. Organizations who implement this

model claim that is suitable for process improvement [9].

• ISO9000:

Published by the International Organization for Standardization (ISO), ISO standards are

widely used by countless organizations that provide products and services [9]. They are more

suitable for non-IT organizations but the generic nature of such standards allows them to be

 9

tailored to software industry by using flexible rules, allowing interpretations that apply to software

industry. ISO9000 establishes a series of quality standards, including ISO9001, which implement a

number of guidelines to normalize quality parameters, namely to ensure that organizations have

abilities to design and produce high quality products, retaining control over development activities

and providing capacity to detect and manage non-compliances during inspections and tests [16].

• ISO 15504:

Also known as SPICE (Software Process Improvement and Capability Determination), is a

similar model to CMM, containing six levels of maturation. Deploys a collection of processes

broken down into categories, which define how to manage customer requirements, software

products implementation, operations over the organization’s solutions, project management and

process improvement [17].

2.2 Agile development

2.2.1 What is agile development?

Agile methodologies enable developing software applications in a highly collaborative

fashion [18]. Agile development methods use clearly defined timed-iterations, evolutionary

development, adaptive planning and evolutionary deliveries. Those practices enable teams to

quickly respond to constant changes, encouraging agility. Since there are different agile

development methods and practices, it is not possible to define them precisely but they all share

common characteristics: short iterations, adaptive plan refinement and development evolution.

Additionally, they promote principles and practices of agility and simplicity, communication and

focus on programming instead on documentation [2], [19].

The concept originated in the 1990's when several emerging methodologies were calling the

software development community’s attention. Each of these methodologies, with different

combinations of old and new ideas, valued the close collaboration between individuals, close

communication over written documentation (less efficient), frequent deliveries and new business

values; small and self-organized teams; and new ways to produce code and to mitigate

requirements without being troublesome [20].

2.2.2 Agile methodologies

A methodology is something to ease software production. Includes the description of how

teams work, who is doing what, how they interact and what they produce. Every organization has a

methodology and is how they do business. A precise definition of agile methodologies cannot be

 10

found, because specific practices vary. However, they all share the use of short iterations, adaptive

evolution and plan refinement. All of them foster practices and principles of simplicity,

communication, lightness, self-organized teams, etc. [2], specified above. Three of the most popular

methodologies in agile software development will be introduced next.

• Unified Process (UP):

For medium sized projects, this method recommends using iterations enduring two to six

weeks. It is characterized by being highly flexible on process formality and documentation. The

flexible nature of its optional work items allows it to be adopted by small projects of three people up

to large critical projects involving hundreds of developers [21]. It is a broad and ambiguous

iterative process that allows being continuously refined, yielding particular methods such as RUP

(Rational Unified Process). Requires to be "tailored" for every project because it defines more than

50 optional work items. These items must be selected in order to mitigate risks and goals for

specific projects. Despite the numerous optional work items, the recommendation is "less is better"

[2].

• Scrum:

Like UP, Scrum is a flexible methodology with respect formality of its work items for use on

projects. As a guideline, the choice should be towards the lowest possible use of such artifacts. In

Scrum, teams will decide the formality degree for documents, not the manager. Teams consist of

few elements (seven or less), however, several teams may work on the same project, with option of

scaling to hundreds of developers (scrum of scrums) [22]. Team elements work physically close and

held a daily meeting to monitor iterations progress. Its flexibility enables it to be used for informal

projects, or be used in large life-critical projects. Scrum can be combined with other iterative

methodologies, since its emphasis is on a set of management practices rather than on

requirements, or implementation [2].

• Extreme Programming (XP):

Is an incremental and iterative development (IID) method that values customer

satisfaction by producing high quality software, sustainable development techniques and flexible

response to changes. It is suitable for small sized teams with very short iterations - one to three

weeks. Provides quite explicit programming methods to quickly respond to changing requirements

without denigrating the code quality. This includes test-driven development, pair programming

and continuous integration [2]. The XP distinguishes itself by not require detailed definition of its

work items, except for the code and tests. Thus, oral communication to specify requirements and

design, rather than detailed paper documentation, is valued. It may seem a messy method but

proves to be highly effective in projects with referred characteristics but it requires constant

practice and discipline [23].

 11

2.2.3 Agile manifesto and principles

In 2001, 17 representatives of different development methodologies signed the agile

manifesto where they reached consensus on four core values (the elements on the left are more

valued) [20]:

• Individuals and interactions over processes and tools:

• Working software over comprehensive documentation;

• Customer collaboration over contract negotiation;

• Responding to change over following a plan.

It thus becomes clear the focus on people and teams, as opposed to paper as a way of

communication, where the quality of personal interaction is more valuable. Documentation may be

critical but its overuse does not prove the value of the developed product: a working application is

the sole way to present a tangible result. Interpersonal collaboration is highly valued because the

value created by the closeness between teams, customers and managers boosts the ability to quickly

adjust unforeseen and unplanned situations, making requirements changes during development

period as something to be faced as natural. That is, a rigid plan is useful until lies outdated,

rendering it useless [24]. For this reason, on agile methodologies, constant changes on

requirements should be accepted.

Additionally, the group of 17 described a set of principles that define more accurately the

agile manifesto [20]. These principles may well evolve in the existence of new points of discussion

[24]. Some of these principles are implicitly described in the following sections.

2.2.4 Communication and collaboration

A team defines itself by having a purpose, for being composed of two or more persons and

for being subject to coordination by these people [25]. Self-organized teams shape the basis of agile

project management. They interweave concepts as freedom, responsibility, flexibility and structure.

In addition to establishing self-organized teams, each element is also self-disciplined, which allows,

in the event of ambiguities or inconsistencies throughout development, teams themselves to decide

the path of project’s vision complying with the project’s constraints [1]. In self-organized teams,

work can be switched between individuals, according to needs and strategy for each iteration.

Individuals are responsible for managing their own activities, which are not decided by managers,

as opposed to "command-control" management system. This approach does not imply lack of a

leader, just supplies more leeway to teams, being managed with a different style. Thus promoting

cultures of self-organization freeing inventive spirit of individuals, providing more value to

customers than traditional management projects [2]. As stated in the agile principles, the best

architectures, requirements, and designs arise from self-organized teams [24].

 12

Skills of agile teams are based on collaboration, interaction and cooperation of all members

to produce value. This result can be defined as a functional product, a decision or a shared

knowledge [1]. Agile teams being self-organizing and self-directional, encourage the adoption of

regular meetings to reflect on how to improve development efficiency based on experience gained

in previous iterations, adjusting next iteration according to needs. Those intervals enable

settlement of conflicts and dependencies in real time [2], allowing constantly measure progress.

Other encouraged approach of collaboration is amongst development teams and those who

understand business - customers. Customers should form an integral part of agile development

effort. While development staff and customers have different roles, bundling all involved

individuals in the same team will foster the improvement of delivered results. This kind of

collaboration can be difficult to attain, becoming a barrier to efficient implementation, so there may

be need to identify specific roles on costumer’s edge, such as product expert or product manager

[1].

2.2.5 Development lifecycle

Agile development is focused on delivery. Early deliveries allow obtaining early feedback on

requirements, teams, and processes. They help teams feel continued compliance with objectives

and also enable project adjustment throughout iterations to drive it into desired directions,

improving the value delivered to customers. The frequency of deliveries may be agreed with clients,

depending on their availability, bearing in mind that the more shorter iterations, the better [24].

On agile projects, constant requirement changing should be embraced, even during an

advanced state of development. Constant adaptation to change on software projects helps grant

competitive advantage to customers, even during periods of business crisis because the product is

valuable at an early stage of development. Despite the intended objective to be common among

different agile methodologies, specific details about mechanisms for mitigating constant changes

during development differs in specificity [24]. Nevertheless, adaptation to change is only doable

when there is an ongoing process assessment of development over iterations. Such progress is

measurable only when the outcome product of each iteration is a running application, not by

documents describing promising plans.

 13

Figure 3 - Agile delivery framework [1].

Regarding mentioned considerations about agile development, and given the aim to

produce software in a repetitive fashion, the specification of a development process is justifiable,

always focusing on people and interplay between them. Nevertheless, the process must be organic,

flexible and easy to adapt [1]. The management structure of agile projects is focused on delivery and

adaptation, whose cycle is shown in Figure 3. The cycle starts at "Envision" which determines the

critical factor for project success - the vision. Goals and constraints are defined, who is going to be

involved, who the customers are and how the team will interact during development. The next stage

is denoted by "Speculate" and relies on incomplete information to define the initial requirements,

the iterative deliveries plan and risk mitigation strategies. Financial costs are estimated and other

administrative aspects are set. Following is “Exploration” phase where the project vision is planned

and implemented during small iterations, mitigating risk and uncertainty. This phase is where self-

organizing teams and people collaborate to create value for customers. The achieved result in the

previous phase is revised during "Adapt" phase, which evaluates team’s performance and necessary

adjustments are performed. The outcome of adaptation phase is part of a planning effort to initiate

the next iteration. This cycle closes between Speculate-Explore-Adapt phases, where each iteration

will refine the product. Eventually, the project will end up with a final iteration where it learned

aspects are identified that could benefit future projects [26].

2.3 Testing

Software systems testing are inherently connected to software quality control because they

are means to scrutinize whether those systems meet the minimum standards required by

stakeholders. They also check if the solution correctly implements all specified requirements and

help measuring the process that took place to develop the systems and thereby improve them. The

 14

goal, in a wider view, is to stop defects to be introduced into production, preventing belittling the

product image among customers, resulting on business losses [6]. This process of quality assurance

(QA) aims to detect defects as early as possible, ideally as soon as they are introduced during

development stage, reducing overall expenses as the cost of fixing an undetected bug increases

exponentially as time elapses [27] and may become even more expensive than the implementation

of the requirement that produce it [6].

There are two kinds of testing: black-box testing and white-box testing. Black-box testing

consists of tests that do not require aware of implementation details and white-box testing, on

opposite, are tests that require knowledge of the inner workings of software modules to be tested

[27]. Different types of tests will be presented further, on subsequent sections.

2.3.1 Regression tests

Regression tests are set of tests created gradually as applications evolves through time to

verify if the implemented requirements continue to work after new increments to the source-code,

even if there is no direct relationship with the functionality originally developed [10]. Regression

problems should be detected the earliest possible to prevent the cost required to eliminate them to

increase, therefore they must be carried out on regular basis. If regression issues cause a defect,

they should be fixed as quickly as possible to prevent them from spreading further. Regression

testing also allows verifying whether the behavior of certain features has not been compromised

after changes to the project code [12].

2.3.2 Performance and load tests

Performance and load tests are used for measuring and evaluating software systems’

behavior in situations of regular use in situations of extreme load. On the first, performance testing

enables development teams to adjust and record response times of applications. Moreover, load

testing subject systems to extreme conditions leading to breakage of resources by exhaustion [10].

The subjection of the application to these types of tests can help measure their behavior and thus

set a criteria of use for which the system can operate. So it is important that such examination

would be performed immediately after the birth of the base architecture, in order to be able to

perform appropriate changes for the case of being inappropriate for the defined performance

objectives [28].

Table 1 shows the most relevant and popular load and performance tools for performing

such kind of testing over different technologies.

 15

Load/performance Tests Framework Target technologies

Grinder [29] Java, HTTP, WS, RMI, JMS, etc.

FWPTT [30] Web applications, Web browsers, HTTP, etc.

Multi-Mechanize [31] Web, remote services, Python.

JMeter [32] Java, Databases, JMS, LDAP, FTP, WS, etc.

Pylot [33] Web Services, HTTP.

Siege [34] Web applications, HTTP, HTTPS, etc.

Table 1 - Load and performance tests frameworks.

2.3.3 Unit tests

A unit test is a piece of code written by programmers that tests a small portion of business

code to prove that those developments behaves in line with the objective for which they were

created [35]. When testing all the units individually, much of the errors that might be introduced

into the source-code throughout the evolution of applications can be detected nearly at the time

they are introduced into the development pipeline and thereby prevent them to propagate through

the rest of the system [10]. Besides all the advantages inherent to testing code in small units, this

technique used consistently throughout the project forces the use of development best practices

which lead to improved implementation of the solution design [36], helping to detect issues earlier

in this construction phase. The high confidence established by unit testing and by bugs detection,

caused as result of regression problems (for example), does not dispenses the adoption of other

kinds of tests [35].

The term “unit testing” is commonly misused and may cause confusion, even on developers

themselves. Typically a unit test has a one to one relationship with one class to be tested but

occasionally this relationship can be extended with mock objects to mimic complex behaviors [37].

This subordination relationship must be simple and without depth hierarchy of objects. Typically

those mock objects emulate databases or file systems but if instantiated on tests, instead of

emulated, are no longer regarded as atomic and singular unit tests, but integration tests. It is

crucial that unit tests remain simple, that run without setting up runtime environments, without

resort to any configuration files and, preferably, without dependencies to other objects [28],

otherwise, the project build execution time will increase, denigrating the effectiveness between the

time of development and checking the results [38].

As described earlier, regression tests are used to find out whether specific functionalities

continue to work after new developments. Unit tests can perform a major role in checking

regression issues of a project due to their size and scope [9], especially when the source of errors is

the amendment of other defects in code. The described achievement is only valuable if unit tests

cover pertinent areas of the source code, if the full coverage is not possible.

 16

Unit tests should be regarded as the lowest level testing kind, as a first line of defense

against defects in the application. That line must only cover testing of individual interfaces one at a

time, with no external dependencies (except when using mock objects) [28].

Table 2 shows the most popular unit testing frameworks used by software development

community for the most popular programming languages and technologies.

Target technologies Unit Testing Framework

C Check[39], CMockery[40]

C++ CppUTest[41], CppUnit[42], Google Mock[43]

Internet HtmlUnit[44], Selenium[45], soapUI[46]

Java JUnit[47], TestNG[48], Mockito[49]

Javascript JSUnit[50], QUnit[51], Jasmine[52]

PHP PHPUnit[53]

.NET NUnit[54], MSTest[55]

Table 2 - Unit testing frameworks.

2.3.4 Integration tests

Integration testing combine more than an external dependency, whether they are classes,

databases or even file systems, typically created by multiple developers or teams of developers and

tested in isolation from the entire system [27]. They check if interactions of all components are

performing the expected behavior and should begin as early as possible, as soon there exist more

than one component in the application, so that architecture is validated early and potential issues

are timely fixed to prevent later changes, avoiding development costs to increase [38].

Integration tests (or component tests) are often mistaken as unit tests but it is necessary to

split both roles. Integration tests are dependent on other components to be executed, with opposite

to unit tests that don’t rely on dependencies, and should only use fragments of the system

architecture without resorting to the client tier interfaces [38]. Unit tests, which certify code

interfaces, should be designed to run on the programmer's machine and be incorporated in the

development build to be fast, flexible and portable to every workstation [56]. Integration testing, by

contrast, verifies if all interfaces work together as supposed to and they not require to be carried

out as quickly and as often as unit tests. They may require some sort of configuration or

deployment action to an integration environment [28].

In tests which involve APIs, Web Services, file systems and other code interfaces, databases

might be clustered on most of integration tests and even belong to a set of verified components

crossing multiple architectural layers. Thus, a higher code testing coverage is achieved by each test

[38].

 17

There are several ways to perform integration tests but there available frameworks to

perform integrations tests: Arquillian[57] for JBoss AS, Gint[58] for Groovy, Citrus[59] for SOA

applications, and others.

2.3.5 Functional tests

Also known as acceptance tests, functional tests ensure that acceptance criteria are met,

validating every attribute of the system according to functionalities, capacities, safety, availability,

etc. [12], in harmony with end users expectations. This sort of tests typically are conducted by a

team which attempt to validate if the application is in agreement with the functional requirements,

by using the user interface in a similar environment to production environments. Ideally, these

tests should also be automated.

As is required to test the application in a production-like environment from the human

user interface, it is difficult to validate it in an automated approach [60]. Nevertheless, software

systems can provide interfaces that assist the automation of functional tests. For instance, web

applications, which allow a good separation between the features and the presentation layer, allow

the capture of the graphical objects that make automation easier (see Table 3).

Functional Tests Framework Target technologies

Selenium[45] Web browsers

Watir[61] Web applications, Web browsers

actiWATE[62] Web browsers, HTTP, JavaScript, etc.

IeUnit[63] Web applications

Table 3 - Functional testing frameworks for Web applications.

2.4 Software configuration management

2.4.1 Version control

The version control concept is commonly mistaken as the source-code version control but

software versions are more than that. A version of an application is a reproducible state at any

point in the time, including all artifacts that made possible to create that version, like the source-

code, test code, database scripts, build and deployment scripts, documentation, dependencies and

configuration files [12]. It should be possible from scratch to reproduce any given version of the

produced software on any environment. In addition to the project’s files versioning, it is critical to

address a mechanism that enables managing the versions of the external dependencies [64].

Version Control Systems (VCS) offer teams the possibility to keep versions of the project files and

people to collaborate without interfering in each other’s work [12], as seen on Figure 4. These

 18

systems allow to go back in history’s files or to perpetuate a new release version. There are several

VCS available: Subversion[65], Git[66], CVS[67], Bazaar[68], Mercurial[69], etc.

Figure 4 - The repository and working copies [70].

The faculty of gathering information about any change on every file is an essential aspect in

managing versions. Such information should endure in the repository history, regardless of every

change made on the project files [12]. Such capacity allows obtaining the differences between each

change to any point in time, leaving clues for diagnosing new bugs. This process also allows

reverting portions of the project changes to previous states, helpful in solving critical problems on

production environments.

One of the most useful features in a VCS is the ability to reproduce earlier states of software

projects. Typically, those states might be linked to particular versions with specific characteristics,

such as the amendment of a set of bugs and implementation of new features [12]. Reproduction of

versions is critical to fix issues, which are detected on production environments, therefore it is

necessary to increment those versions with just the desired changes. The ability to quickly solve

bugs found on production environments is vital to the system perception by end users.

An organization that produces software applications should define a versioning strategy to

enable regular evolution of their products in a flexible and appropriate way. If the strategy isn’t well

planned, it might be unable to update a module or API without the obligation to launch releases of

all dependent components. Or, on the other hand, the project may evolve with compatibility with

future versions more than required. Such problems are called "dependency hell" that prevents the

project to grow in a controlled and safe fashion [71]. This strategy should also establish a semantic,

which enables pinpoint the kind of changes that are involved between versions increments. The

versioning strategy affects the process of performing a release and the definition of such semantics

should cover all cases where there is needed to release a version. There are tools for managing

projects’ files, beyond VCSs, which may prove vital in that strategy. Maven[72], for example, is a

tool that takes a specific versioning model for software projects developed in Java that help

 19

organize the relationship between the various applications’ components and their versions,

managed through time. Such tools may turn out to be crucial in the configuration management of a

software project.

The mechanism for releasing versions shall consist of rigid processes that must not be

thwarted because they ensure a greater control on implemented changes, quality parameters and

risks on what will be put into production. Whereas that may exist various development versions of

the same product, those processes need to consider the effective management of all versions

without mutual interference [6]. Features or fixes that will be applied on the final version must be

carefully selected and subject to quality parameters, in view on what was planned and the risks that

such changes pose to the success of the release.

2.4.2 Software dependencies management

The continuous progress of the project and the different versions or states, which

characterizes it, frequently implies changing the way the various modules of the system

components communicate. Such modules or APIs may be internal or external and are also coupled

with different releases as they are subjected to evolution as most software systems. Generally,

internal APIs retain the same version the main project holds but, as external dependencies, internal

APIs could live on different development lines from the rest of the components. It then becomes

essential to control the versions of these dependencies.

The connection between the project and its dependencies shall be carried out through their

compatibility, therefore different project releases may rely on different versions of external libraries

without ensuring backward compatibility [64]. The usual practice for managing dependencies

versions - typically binary files, if they have been built in a compiled language - is coupling them

with the project source code [73]. This ensures its easy reproduction and the control of its versions

on different reproductions of the application. While it is an efficient solution, is not the ideal one

because developers must manage the dependencies by hand and, on complex projects, it may

become impractical. However, there are tools that enable to automatically manage them, such as

Maven [72] and Ivy[74] for Java applications. Simply to declaratively specify the direct

dependencies and the respective versions or a range of versions, hierarchical dependencies

management is performed transparently and automatically [72].

The reproduction of releases also extends to the related dependencies. If dependencies in a

VCS follow the evolution together with the remaining files, it’s always possible to obtain an early

version of the application with the accurate dependencies. With dependencies management tools,

obtaining the exact dependencies of a specific version should always be possible in order to be able

to reproduce all released versions [6].

 20

2.4.3 Tasks management

A good Issue Tracking System (ITS) is fundamental to report all problems, requirements

and tasks assigned to a project. In addition to being a centralized repository for such items, where

might be included every aspect of the development process [60], allows individuals to record ideas

aimed for improving the application, even if not given immediate attention. Once these issues are

recorded, they may be later found, examined, implemented or solved, depending on their priority,

in a particular version of the application. Examples of such platforms are: Bugzilla[75],

Launchpad[76], Trac[77] or Redmine[78].

ITSs should be a mean of driving between end-users, testers, the support team,

programmers and managers. To take full advantage of such platforms, all the crucial information

should be recorded and the contribution of incorrect and unnecessary information discouraged

[36] to help define a solid and trustworthy support for the project’s strategy. Those platforms

register every activity of the project under the form of tasks, requirements, bugs, requirement

amendments, changes in the documentation, etc. Even if not provided immediate attention, every

reported issue will be listed and solved in a specific version of the application sooner or later,

without being forgotten [79]. Typically, there are three main groups of items: defects, tasks and

requirements. Requirements represent new application functionalities and may be imposed by

customers or internally suggested by other project stakeholders. Defects are unforeseen problems

or bugs found by testing teams, customers or even by the development team. Certain defects found

by the testing team may imply nonconformity of the requirement implementation with its

specification [6]. Another major group of issues are tasks that represent other generic activities to

be performed by the project’s staff. Upgrading the documentation is an example of a task. Usually,

each of these items have its own lifecycle representation on ITS and may be toggled through time

between different assignees in accordance with their duties and the status of the item [80].

Beyond having potential to organize all tasks of the project’s contributors, ITSs provide a

real time view of the project status and produce enough information to aid managers to decide on

the course of the solution [60]. Such decisions are sustained by the priority given to each issue, but

most importantly, help prevent bugs, requirements and tasks to be ignored and help to log all

relevant information. The record of all project activity on a unique repository also facilitates access

to committed errors and enables preventing them in future situations. If used properly, such

systems allow, at all times, that every project member knows exactly what to do and what available

time have to accomplish it. Therefore it is of utmost importance that each of the issues is constantly

reviewed in terms of priorities, risk and timing in order not to lose control over the solution. Even if

tasks’ planning does not reach the desired goal, their flexibility enables teams to conclude them on

future iterations, in accordance with customers’ expectations.

 21

Thus, in view of the completion of tasks, their priority, the risk they entail and which were

validated through tests, it is possible to known exactly what bugs, requirements and changes make

up each version of the application, including those planned.

2.4.4 Project elements traceability

Best Issues Tracking Systems (ITS) supply mechanisms to record the whole history of the

project’s activity and allow all changes, since the source code to the versions installed on the

various production environments, to be replicated and revisited.

Figure 5 - A traceability information model for a basic agile project [81].

This concept is called traceability and is based on the interconnection between all the

elements that constitute the activity that took place for a particular task in the project [6]. The

elements that are connected together to form the relationship of all this activity are the

requirements, bugs, tasks, specifications, design, architecture, code and test cases, which should be

all recorded in ITS. That is, from the ITS, all specification information of a requirement should be

available, from design to architecture, the related test cases and all the developed code [8]. Every

requirement is linked to a particular version of the application, which may be installed in

production environments. So it is possible to trace any change from what is on production to

source-code, allowing to help solving any issues that may be found on client machines, or even in

test environments.

 22

2.5 Coding improvement

2.5.1 Code reviews and metrics

There are plenty of ways to measure the quality of software construction and the most

efficient are code reviews, by using formal inspections, code reading, or walk-throughs (informal

reviews). The effectiveness of such practices is so high that senses 60% of defects for the case of

formal inspections and code reading detects 3.3 defects per hour versus the 1.8 errors per hour of

testing activity [27], despite not being used in a consistent manner on the majority of software

projects [82]. Therefore, a better alternative is to use analysis tools that could provide some of the

benefits of code reviews, even though not providing the full benefits of human reviews, because the

human eye detects problems that a machine cannot [27]. These tools can analyze if the conventions

and best practices are being applied in practice and - most importantly - can perform static analysis

techniques that look for potential bugs, bad programming practices, bug patterns and poor

performance code.

Another major issue in quality metrics is code coverage. Most tools that implement this

type of analysis use test coverage per line [38]. This kind of coverage examines whether a particular

line has been covered during the execution of a test, and the collected data about tested lines are

aggregated to produce a report that the development staff use to check which source code areas are

not being covered by testing, for purposes of measurement the construction quality. Varying the

coverage percentage of a particular zone of the source-code makes the determination of these

measurements [83]. For example, the coverage percentage declining of a certain class means that

new developments were added without the execution of respective tests, lowering the changes of

finding errors during development phase and increasing the likelihood of being detected in testing

environments or even in production environments.

Tools for static analysis are available like: FindBugs[84], PMD[85], Checkstyle[86] or

Cobertura[87] for test coverage analysis.

2.5.2 Coding rules and conventions

In order the system to work optimally, sub-processes should be followed with rules and

definitions agreed by the parties involved in the project. Such practices can help to measure and

compare efforts spent in the different components of the system [9]. The organizational

characteristics of such processes make a huge difference when comparing to the individual

characteristics of people involved [27], so if the collective ability is not satisfactory, there are no

individual capacities that supersede the difficulties of working in a team activity, making those

methods for developing software extremely important in the overall success of the project. As with

 23

all others, the low-level processes - such as those used on writing code - should be refined in order

to get the most out of the creative process of developing software [27]. For code development, rules

and conventions are often chosen by software industry organizations to enable improved

communication and cooperation among individuals, making the solution more effective, avoiding

the tendency to inefficient behaviors [9].

Different programmers use different programming styles, the problem starts when they

need to work on the same code. Often there are no grounds to defend that a style is better than

another, what matters is the existence of a well-defined approach by the development teams. That

style applies to variable names, classes names, code comments, etc. but the existence of a

convention provides programmers more time to think in what more relevant: the logic. However,

rules and programming practices must not be implemented blindly or used as a means of assessing

the performance of developers but used as feedback about the quality of the written code, allowing

the team to learn and progress as a unit [82].

Conventions are a way to manage the complexity a certain activity that prevents developers

to wonder about the same issues numerous times and also avoid taking decisions about the same

problems in different ways in a completely arbitrary manner [27]. These rules cover different

aspects such as formatting the lines of code, code documentation, use of names for variables,

methods and classes, use of data structures, input handling, exception handling, particular

programming language conventions, etc. After setting these parameters, the source-code will be

more consistent, readable and easier to maintain, helping to avoid more functionality defects and

increasing performance, security and usability [10]. Coding conventions are a way to protect

against recurring problems and to help eliminate the use of hazardous practices. Applied at lower

level, tasks become more foreseeable and intelligible to any programmer, improving cooperation

[27].

2.6 Continuous integration

2.6.1 Overview

A very common practice seen on many software development teams that produce different

architectural modules is to use a long and unforeseeable integration period when the deadline for

releasing an application version is getting closer. In the world of software development, this period

is called “Integration Hell” [82]. This way of developing software assumes that the application is

not at a functional state most of the time, because no one is interested to check that everything is

working as planned before the application is finished [12]. In the worse cases, the integration phase

is followed by the organization conclusion about the failure of the project [2]. The solution to this

problem is continuous integration.

 24

Figure 6 - Components of a continuous integration system [38].

The use of continuous integration (CI) makes the development process smoother, more

predictable and less risky, even on advanced stages in the lifecycle of software applications [38].

Additionally, bugs can be traced soon after they are introduced into the project code and, after

notification, developers can solve them quickly. Team communication also gets benefited by CI

because minimizes the hazard of personal conflict making software development a more

harmonious process. Also, reduces the time to release a new version and a demonstrable version of

the application is virtually available all the time [12], [38]. Figure 6 shows the basic components of

a CI system: the developers’ machines, the code repository (VCS), the CI server and the feedback

mechanism. Simply put, CI consists on building the project regularly and automatically with the

execution of automated tests, quality checks, integration mechanisms and deployment of binaries

on runtime machines or sharing repositories. The CI process can be seen as a fundamental factor

for the software project overall quality, which is guaranteed by frequent builds, stimulated by every

change made by developers [38]. Possible CI server implementations: Hudson[88], Jenkins[89],

CruiseControl[90], Luntbuild[91], Apache Continuum[92].

2.6.2 Continuous feedback

The main principle of CI is the motto "integrate early and often". The most frequent the

integration process is, the less painful will be for everyone involved [28]. Developers should often

commit their code to benefit from the CI process. Expecting more than a day to submit personal

changes to the source-code repository may arise integration issues [38]. Errors are easier to detect

in an earlier stage, near the point where they have been introduced in the system, since the issue is

more present in the mind of the person who introduced it in the system. The detection mechanism

of such bugs becomes simpler because the natural step in diagnosing the problem is to check what

 25

was the latest submitted change. That is, problems followed by atomic commits are easiest to

correct than to fix several problems at once, after bulk commits were made on code repositories

[93].

It is important the development staff to react to all feedback provided by CI servers,

therefore there must be an effective mechanism that automatically informs programmers, testers,

database administrators and managers about the status of construction. The reaction to feedback

entails disciplining collaborators for the possibility to interrupt tasks being carried out and deciding

on actions to be taken if the process alerts about an integration problem [38], [94].

Without proper feedback, continuous integration is useless. The feedback is the reason for

existence of rapid and continuous builds, which fail as early as possible [38]. For example, if it is

merely possible to know several hours later that build tests had failed, is difficult to promptly act on

solving the problem before its propagation through code. The feedback aims to generate

notifications that encourage reaction in a more accurate and fast way. Such reporting mechanisms

include sending SMSs, e-mails, visual alerts in the browser, etc.

2.6.3 The build process

The build process is a series of steps that transforms the various project components in an

application ready to be deployed. In other words, a build follows a sequence of statements

previously prepared in a specific order resulting in packaged files, prepared to be installed into

production or into other types of runtime environments. Typically, build instructions are outlined

in one or more description files and its inputs are the source-code, test code, dependencies, the

documentation, etc. and the output are the executable files, the user documentation, and libraries

on which the application depends.

On small projects, the execution of the integrated build on programmers’ Integrated

Development Environment (IDE) might be sufficient but, on larger projects, kept by various

persons or teams who produce more than one file, demand better control for managing its

complexity [12]. Besides, it is essential for large projects that multiple processes and tools such as

unit testing and the generation of the deployment files are incorporated into the build process.

Software builds automate software generation processes making it less adherent to human errors

saving developers from tedious and repetitive tasks [82].

Next, the characteristics of an ideal build will be listed:

• Builds should be portable:

This does not necessarily mean that a build has to be executed in a UNIX environment as

much as in a Windows environment [95], but should be easily portable across all machines running

 26

the OS for which the software was designed with least possible configurations, regardless of IDEs

used by programmers and IP address of the involved machines. It should be possible to perform

checkout of all project’s files from code repositories and able to run the build with relatively little

effort [96].

• Builds should be replicable:

Should be possible to reproduce, with the aid of code repositories, any build from previous

versions of software projects [97]. This feature is essential to generate executable files from

previous releases to diagnose issues affecting the costumers’ instances, for example.

• Builds should aggregate processes and tools:

Prior the generation of executable files of a given release, it may be necessary, in addition

to compile the source code, to obtain the dependencies, to perform different kind of tests, to check

the source-code quality, to generate installation files and to deploy them on test environments [82].

Builds should be able to connect all these processes and tools in a single and sequential flow.

• Builds should be flexible:

They must adapt to different environments where they are executed [28]. For instance, a

build in a development workstation should behave differently than when it is executed in CI scope.

Does not concern developers to perform functional and integration tests every time the build is

executed privately, otherwise construction periods could be increased unacceptably. Programmers

are just interested in compiling the code, obtaining the dependencies and conducting unit tests.

Conversely, on the CI machine, the build should be set for integration tests at suitable intervals

following the configuration and deployment of the deliverables on suitable environments.

The most effective way to develop a repeatable and consistent solution for processing

builds is using a dedicated tool at the expense of using custom scripts developed by teams [38]. By

automating build tasks, the number of manual, repetitive and error-prone processes is reduced

[27]. If the tool that allows running repeated builds present all the characteristics given in the

above paragraphs, it becomes possible to automate the whole process without human intervention.

Continuous integration (CI) is based on automated builds to continuously integrate all the

development team’s work at a regular basis [12], [38], [82], [95].

There are innumerous build solutions for all programming languages, like CMake or qmake

for C and C++, or Rake[98] for Ruby. For Java programming languages the most popular are

Apache Ant[99] and Apache Maven. Unlike Ant, Maven is more that a build tool, as stated before: it

can automate the all process of building a software application, including version control, external

dependencies management, deployment and binaries sharing[96]. All of those features can be

easily integrated on CI servers.

 27

2.6.4 Continuous testing

Most software systems consist of various components or modules that communicate with

each other. Each of those components is composed by source files, which employ algorithms.

Therefore, to ensure that these systems are globally reliable, it is necessary to check at procedure

level that each of those components is also reliable. The desired quality for a software application

can only be achieved if each of the constituent modules is tested every time a change is added to the

project by development teams [9], [12], [38]. Many projects rely only on high-level testing,

however, a broader testing strategy should be adopted by performing quality checks at all system

levels and involve all individuals, not just the elements of the QA team [100]. Such levels comprise

the functional testing, unit testing, integration testing, regression testing, system testing, load and

performance testing, etc. So that every change in the application is properly verified, most of these

tests can be automated and should be run in the CI pipeline to be carried out repeatedly [38], [101].

Manual testing - the most of functional testing, usability testing, showcases, etc. - should also be

part of the testing strategy and, if possible, also included throughout this automated process [36],

[82]. The successful implementation of all these tests demonstrates that the system complies with

costumers’ requirements, meeting their expectations. Build tools can take a crucial role on

automating tests. Ant and Maven, for Java projects, are perfect for such tasks. While Ant need fully

specified tests declaration, Maven with just a few lines in the declarative model file (configuration

file), can automate all available developed unit tests in the project[72], [96].

The most indivisible sort of tests on a CI system is unit tests. They individually test the

smallest elements present in a software system, which, in the majority of cases, are procedures. If

the development team assume a Test Driven Development (TDD) approach, automation of unit

testing shall be a natural process enabling more effectively to sense regression issues during the

construction period [6], [36].

In contrast to unit testing, integration tests requires the existence of at least two

components being tested together. Such testing may require the existence of a dedicated runtime

environment, correctly set up and accessible to the CI server for deployment purposes. The

integration tests being carried out continuously helps lessen the risk of incompatibility between

APIs during the constant change of code. The period of "integration hell" ceases to exist and the

integration process shall be distributed throughout the construction cycle [82].

At the user level fits in all high-level tests and refer to functional testing, usability,

acceptance, and others. Independent teams of testers often manually execute these tests, however,

some may be configured to be included in the CI pipeline for checking certain relevant use-cases.

The automation of such tests increases the CI server load and must only be run during times of

little server activity, such as during the night [28], [38].

Finally, the CI server can also perform load and performance tests within different contexts

 28

emulating different environments, continually assessing whether the system have the expected

behavior and if any of the latest developments will impact the performance [12]. Continuously

testing system load and performance avoids potential problems to be injected into production

environments.

 29

3 Industry survey

3.1 Overview

With growing competition from developing countries and the proficiency of the current

world powers in the field of software production, it is necessary to realize if Portugal has the

potential to develop and maintain high quality products in order to survive in the globalized

market. It does not matter merely to create the solution by any means necessary, it is essential that

construction processes are well defined and suitable to the multiple production environments to

satisfy the needs of stakeholders [102]. Small and medium sized enterprises (SME) play a crucial

role on software industry in Portugal, because technological SME are responsible for almost 30% of

volume business for technological products in that country [103].

It is often said that software construction is a bumpy and uncontrolled process, but little

evidence is available from real world surveys. Are the industry practices as fragile as those often

seen in academic projects by students and many research projects? Which are the problems

deserving less coverage and need more attention? Can this work use industry inputs to enhance the

practices proposition?

To address these questions and to characterize the current practices in the process of

constructing software for SMEs of the Portuguese industry, we carried out a survey in which

companies were invited to consider a single representative project of their activity. Annex A

presents the sent questionnaire to carry out the survey.

The survey has been distributed by email, by telephone and face-to-face between October

15th and November 4th of 2011 to a list of 241 companies around the country, but mostly in areas of

Lisbon, Oporto, Aveiro, Coimbra and Braga (see Annex B for acknowledgments). Companies were

selected from personal recommendations, web content search engines, industrial associations and

other sources. From 60 replies received, resorting to an online questionnaire, 59 were considered

valid (24.5%).

The survey was directed preferentially to be answered by project managers, however, there

was also participation from executive officers, technical managers and other employees.

3.2 Characterization of the sample

The results presented on Figure 7 and Figure 10 confirms that the objects under

observation were the small and medium sized enterprises in the Portuguese software industry.

Most of the surveyed companies have fewer than 11 employees and nearly half of them have from 4

 30

to 10 workers (Figure 7), but a significant amount (19%) has between 11 and 25. The amount of

software projects in all these software businesses has never been less than one half of the totality of

companies’ projects but over 35% of them dedicates themselves almost entirely to construct this

sort of solutions (Figure 8).

Figure 7 - Number of employees.

Figure 8 - Weight of the software projects.

 31

Figure 9 indicates that the overwhelming majority of projects (71.2%) have disposed the

team in the same physical location and 20.3% of them have nationwide collaborators but merely

8.5% of the projects rely on international participation. Most organizations choose to implement

projects with a small number of employees where 44% of the total counts with 4 to 10 persons and

39% have from 1 to 3 people. Despite the reduced number (3.4%), there are also enterprises

implementing large-scale projects with more than 50 collaborators (Figure 10).

Figure 9 - Project team disposition.

Figure 10 - Project team size.

Once the questionnaire was published (Annex A), typos were found in the question about

the project’s age and in the question about the time in production. Particular intervals on both

questions were intercepting making impracticable to single out on what intervals the projects are

inserted, on those particular ambits. Besides that, it’s possible to infer with confidence that 17.2% of

the projects have less than 6 months old and 24.1% were started, at least, 6 years ago (Figure 11). In

the same way, Figure 12 depicts that 13.6% of the inquired solutions are not installed in production

machines, 28.8% of them started the production activity for less than 6 months ago and 40.7% are

installed on those environments at least for 3 years.

 32

Figure 11 - Project age, since the beginning of the activity.

Figure 12 - Time in production of the project.

Figure 13 displays the most widely used programming languages in the Portuguese

software solutions, taking into account that one project may support more than one. The JavaScript

programming language is used by more than 54% of them and suggests that companies are

investing on web solutions, where the use of PHP (32.2%) corroborates this tendency. The C# and

Java programming languages, widely used on enterprise products and mobility solutions, are bets

from 52.5% and 42.4% of the projects, respectively. As shown in the figure, the Portuguese software

market keeps pace with the growing popularity of Apple products via 16.9% of the solutions using

Objective-C programming language.

 33

Figure 13 - Programming languages used in the projects.

As the previous paragraph implies on the basis of the used programming languages and the

data shown on Figure 14, almost 70% of the analyzed solutions fall into the category of Web

projects, which exposes the focus on using this kind of technologies in Portugal, also counting

significant number of solutions qualified as Enterprise (37.3%) and Mobile (37.3%). Only 6.8% of

the projects are categorized as critical software solutions (Figure 14).

Figure 14 - Project categories.

3.3 Analysis of results

3.3.1 Version control

For certain projects - depending on factors such as the used technologies, the programming

languages and the kinds of project – it’s not easy to solve the problem of managing dependencies

 34

[104], yet, 91.5% of the studied solutions control their dependencies and respective versions

somewhat. Despite not being the ideal resolution, the overwhelming majority of the companies

solved this problem with relative ease.

Figure 15 - Dependency control.

As shown in Figure 15, most of the subjects, 74.6% of them, control the dependencies

versions (internal or external) by using a Version Control System (VCS). Although this is not the

most effective way to handle dependencies versions, nevertheless, 8.5% have no control over its

dependencies and only 16.9% of the projects use enabled software to manage them. Of that group,

which consists only on 10 projects, Apache Maven for Java is used in 5 cases (Table 4).

 Projects using dep.
management software

Total 10 (16,9%)

Maven 5

RubyGems 2

Ivy 1

NuGet 1

WindDev 1

Internal solution 1
Table 4 – Number of projects using dependencies management software.

One of the most significant aspects in the practice of software construction is the capacity

to maintain versions because the software evolves, has defects which need to be fixed and

companies must have the ability to address the specific problems of each version to production and

test environments [6]. Since this is one of the cornerstones of building evolving software, its weight

on the projects survival is heavy, even on very small sized ones [13].

 35

Figure 16 - Capacity to reproduce existent versions.

Among the 59 studied projects, 44 of them (74.6%) are able to reproduce versions, i.e., to

restore the state of the project preceding a given moment (Figure 16). If given due importance to

this matter, those values should be approaching the totality.

Of those 44, like specified on Table 5, 36 claimed to have the ability to increment existing

versions, 40 manage to get information on any change in files and 34 report having capacity to

handle changes in the database. Since database change management is very complex to deploy

[105], this result is surprisingly positive, even taking into account that may exist projects in the

sample not using them.

Projects that can

reproduce existent
versions

Total 44 (74,6%)

Can increment
versions 36

Can obtain
information on

changes
40

Can manage changes
on database 34

Can fully manage
versions 36 (61%)

Table 5 - Projects that can reproduce versions.

Taking into consideration a project with full capacity to manage versions is to have

simultaneously all the features stated in the previous paragraph, except for the ability to manage

changes in the database, only 61% of projects fulfill this requirement, as shown on the last line of

Table 5.

As seen in Figure 17, the use of VCS is performed by 89.8% and the most widely used is

Subversion (Figure 18). These findings suggest that a good share of projects are not properly using

 36

software platforms for managing versions because most of them, such as Subversion and Git, offer

the features required to perform effective and complete files versioning.

Figure 17 - Use version control servers.

Figure 18 - Used version control software.

3.3.2 Tests

From the whole sample, around 53% of respondents maintains a dedicated team for

performing functional tests, as indicated by Figure 19, which means that Portuguese companies

stake time and effort in this process of quality assurance. Not taking into account a team of

"testers", 89.8% of the solutions are subject to some kind of functional testing and 35.6% use

continuous integration to implement them (Figure 20), which confirms the concern of the software

industry in this matter.

 37

Figure 19 - Use dedicated functional tests team.

Figure 20 illustrates that unit tests are conducted in just 62.7% of cases and 39% claim that

use them complemented in continuous integration. The small percentage usage of this practice may

be explained by a possible erroneous interpretation, because unit tests are crucial to ensure that a

particular functionality is implemented successfully and it is virtually impossible to develop

software without programmers performing their own tests. The most likely interpretation so that

37.3% of respondents claim the dismissal of unit testing is the assumption of mandatory use of

specific platforms to carry out such practices, like the TestNG and the JUnit for Java applications.

Unit tests may exempt the use of such tools, though it is advisable their adoption [35], [37].

Integration and performance/load testing present themselves as being useful in certain

types of projects. Integration tests are suitable for large scale systems with multiple modules or

instances and performance/load tests are used to realize if a solution meets the expectations in

terms of behavioral performance on normal operation or on overload situations. Despite of the

specialty of such tests, their use is fairly adopted among the sample, as presented in Figure 20. The

less performed type of tests is the regression testing which ensures that existing features are not

adversely affected by the implementation of new ones, performed just in 37.3% of the projects and

only 20.3% use them in continuous integration.

 38

Figure 20 - Performed test types.

Figure 21 represents the crossing of data between the different quality parameters and the

use of a dedicated team for functional testing. It is evident that solutions with dedicated testing

team are more concerned by using quality practices when constructing software than solutions

without such teams. This fact is strengthened on the use of methodologies and development

processes (80.6% vs. 53.6%), on the adoption of code reviews (51.6% vs. 17.9%) and on using

continuous integration (51.6% vs. 28.6%).

Figure 21 - Construction practices versus tests team.

 39

3.3.3 Continuous integration

The automated continuous integration is used to cumulate portions of code in the global

solution to detect problems virtually in the instant they are created, therefore it is always advisable

for every project to use this practice [38].

Figure 22 - Uses automated continuous integration.

This technique is used on 24 of the 59 studied projects, that is, 40.7% of the overall sample

(Figure 22), and the frequency at which new changes are consolidated on the global solution is

performed when possible on 15 out of 24 projects (Figure 23). Of those using automated continuous

integration, 23 use it to ensure good compilation of new code, 17 of them use it for testing and 8 to

produce quality metrics (Figure 24). While more than 40% of respondents use continuous

integration, not all use it to carry out automated testing and to guarantee the quality of the

produced code. The adoption of automated continuous integration for deployment into runtime

environments is done by just 8 projects.

Figure 23 - Automated continuous integration frequency.

From the 35 projects that perform manual integration of the new code, 25 make it

whenever possible and 5 execute it in the worst possible moment: at the end of construction phase

(Figure 25).

 40

Figure 24 - Phased affected by continuous integration.

Like the comparison of quality parameters among projects with and without functional

testing team, we conducted a similar comparison of these values for solutions with and without

automatic continuous integration. As Figure 26 displays, the projects using automatic continuous

integration reveal higher adoption of quality practices.

Figure 25 - Manual integration frequency.

Figure 26 - Quality parameters versus continuous integration.

3.3.4 Quality control

We questioned companies about the use of any good practices document, rules or coding

conventions for use by developers and 57.6% of the replies were positive (Figure 27). The following

up of this document by those involved in the project helps focus programmatic construction for a

 41

common purpose where everyone involved speak a common language contributing to the evolution

of development with improved quality and proliferation of the working experience by all

programmers. The fact that almost 60% of respondents claim its use proves that there is some

concern in the aspects mentioned above.

Figure 27 – Use of rules, conventions or good practices document.

Like the best practices document, the use of well proven development processes and

methodologies outlined in literature guarantees that the industrial process of building software

flows towards ensuring the feasibility and the quality of the solution, maintaining control over it

[106]. As the Figure 28 depicts, 67.8% of projects use some sort of development methodology or

process. Although being a good percentage, it would be ideal that the majority of companies adopt

these processes because software development is a highly complex industry, which can lead to flop

with relative ease [107].

Figure 28 - Development process and methodologies adoption.

Figure 29 shows that, of these methodologies and development processes, Scrum (57.5%)

and Extreme Programming (27.5%) are most commonly used by projects. Test Driven Development

(7.5%) and the Unified Process (7.5%) showed being slightly proliferated through the sample.

 42

Figure 29 - Most used development processes and methodologies.

From 59 software projects, only 21 use code reviews, whether human (formal or informal)

or automatic (Figure 30). Of these, 20 do visual code reviews by employees (other than the

programmer) and 6 are subject to static analysis, 4 of whom by the continuous integration server

(Figure 31). According to Steve McConnell [27], code reviews are most efficient than functional

testing with regard to the detection of bugs, therefore there is still much to evolve in Portugal at the

adoption of this practice.

Figure 30 - Regular code revisions adoption.

Figure 31 - Code revision types used.

 43

3.3.5 Task management

According to Figure 32, 20.7% of the projects does not use any Issue Tracking System

(ITS). This is a large value given that task management is crucial for the proper management of the

project itself. Such importance is proportionate to the complexity of the solution and the number of

employees involved. The most commonly used application for managing tasks, requirements and

defects is the Redmine (19%) followed by the Team Foundation and own solutions (19%).

Figure 32 - Used issue tracking systems.

3.4 Conclusion

According to the obtained results, small and medium sized enterprises in the software

industry of Portugal show preoccupations on the adoption of quality assurance practices, but there

are still margin for improvements on several aspects, especially in some crucial practices such as

version control, adopted in full by only 61% projects, and task management (requirements, tasks

and bugs) over suitable software platforms (ITS), which are not used on 20% of cases. Also the

automated continuous integration is not performed in 35 of 59 solutions, as well as code revisions,

carried out in 21 projects. Nevertheless, some kinds of methodology or development process

described in literature are used in a large number of the surveyed companies (67.8%) and they

assume its relevancy to the project's success. Another quite positive aspect is the execution of

functional tests in the vast majority of the sample.

Figure 33 summarizes the opinion of projects representatives about the significance level of

the various practices presented on the survey. According to the findings, functional testing is at the

top of the concerns in the construction processes of quality assurance. The surveyed companies also

 44

regard the task management and version control as significant but continuous integration is,

according to the companies’ vision, a process of relative importance, which is consistent with the

projects that use this technique.

Figure 33 - Impact of the different aspects in software construction.

With the exception of functional testing, all other kinds of tests presented in the

questionnaire were been given a similar significance, but still higher than the continuous

integration and quality metrics. The development practices and methodologies also receive

attention among respondents. Following the continuous integration, the software build process is

the practice with less importance, according to the sample.

Table 5 and Table 6 aggregate the survey results as a function of time in production and in

function of the number of employees. Thus, it is possible to withdraw some information regarding

the concern of the companies about the quality of construction of its software according to the

evolution over time and the need to have greater control over the development having regard to the

amount of participants involved. Although not a clear result, there is an upward trend regarding the

use of quality practices in larger projects (Table 6) and in older projects (Table 5).

 45

 1-3
persons

4-10
persons

11-25
persons

26-50
persons

> 50
persons

Nr. of
projects 23 26 4 4 2

Version
control 14 13 4 3 2

DB changes 12 14 3 3 2

Dep. versions 19 23 3 3 1

CI 10 7 3 2 2

Tests team 8 14 4 3 2

ITS 15 18 4 4 2

Good
practices 14 12 4 3 1

Dev.
processes 16 16 4 3 1

Code
revisions 8 7 2 3 1

Cumulative 56,0% 53,0% 86,1% 75,0% 77,8%

Table 7 - Quality parameters in function of number of participants.

Not in

productio
n

< 6
months

6 months
– 1 year

1 year – 3
years > 3 years

Nr. of
projects 8 17 4 6 24

Version
control 2 11 2 4 17

DB changes 2 9 3 2 18

Dep. versions 6 15 3 5 20

CI 1 7 2 3 11

Tests team 3 7 3 1 17

ITS 3 14 3 3 20

Best practices 5 9 2 5 13

Dev.
processes 6 12 3 3 16

Code
revisions 2 6 3 1 9

Cumulative 41,7% 58,8% 66,7% 50,0% 65,3%

Table 6 - Quality parameters in function of time in production.

 46

 47

4 A proposal for construction process improvement

in the RTS project

4.1 The previous construction process

4.1.1 Construction processes, practices and tools

RTS is a research and development project, which, unlike other research projects, spawns

over several years (active since 2004). Since students and grantees also contribute to the project,

means that comprises a highly rotational team, with people frequently entering and leaving the

project. This is a big challenge to the software construction practices, which should tolerate the

variability in programming styles (and even programming skills).

The old RTS’ evolutionary process began with a new release development and finished with

its deployment on production machines. New features addition and bug fixes characterized a

release implementation. Those bugs were typically found on production machines or during the

construction phase which developers immediately fixed after reported. The implementation cycle of

a task used to end if the written code passed the conducted development unit tests performed by

programmers (Figure 34). Finally, the deployment date of the release’s deliverables was agreed

with client healthcare institutions where a member of the development staff physically traveled to

customer premises to carry out the product installation and perform supervision at earliest

moments of the application execution.

Figure 34 - Task development activity.

 48

Releases maintenance was handled in a similar way. Despite versions generation on RTS

project was performed at low pace, sets of defects were grouped together to improve the

application’s releases, along with new functionalities as a matter of convenience to avoid releasing

corrective patches. Copying all files from previous releases to a new directory in the VCS began the

internal process of developing a new version and bug corrections changes were directly submitted

to the original version’s directory on VCS after the release. As seen in Figure 35, each line matches a

version (released or not) and each dot subsequent to a new line corresponds a later correction to

the original release.

External dependencies management, or matching the dependencies with application’s

versions, was usually attained on placing the dependencies binary files along with other project files

on VCS. This procedure guaranteed consistency between versions of external dependencies and the

version of the overall application. Maven, a build tool used by the project, resolved the remained

dependencies management not placed on VCS.

Figure 35 - Old versioning strategy.

The installed Issue Tracking System (ITS) on the project’s development environment was

used to record some tasks (features or bugs) endorsed to developers. This platform was used only

for tasks allocation, however there was no correlation of such issues to specific application versions

or any evidence of continuous progress update for high-level management purposes.

The RTS project uses several databases (DB) instances therefore it is crucial to maintain

their mutual consistency among the remaining application. Modifications to DBs were only

documented in the project’s collaborative wiki in plain text and its deployment on runtime

instances were done manually by a project collaborator during installation of releases on

costumers’ machines. On development environment, changes used to be installed just after their

 49

implementation in DB schemas. Databases migrations process assumed the individual knowledge

about the exact changes to apply on the particular runtime instance.

Code quality control was constrained to static analysis provided by the Integrated

Development Environments (IDE) on development workstations, just providing low intensity

checks without bug patterns detection. Development was undertaken using private unit tests and

integration testing - performed on the shared RTS’ development machine – during features or bugs

implementation, each conducted by the same individual. New features implementation or bugs

fixes ended when developers assume them as complete along with individual tests deemed as

successfully implemented.

All activities outlined in previous paragraphs were implemented resourcing the following

set of tools:

• Subversion: Used for files version control, to identify existing releases and to manage

versions (development or released);

• Redmine (ITS): Used for development work allocation and to index the entire project’s

documentation;

• Maven: Tool used mainly to build the project’s source-code files, to package the compiled

binaries and resolve dependencies;

• Netbeans: IDE adopted by the whole development team. Used for code construction and

other helpful integrations to development process like data sources access.

The implemented practices used in previous construction process are summarized on

Table 8. The first column defines the analyzed development practice and the second column

describes how the RTS project’s development team is using those practices.

Development practice Existing Implementation

Version control using appropriate software Yes, with Subversion

It’s possible to reproduce previous releases Only some of them

It’s possible to fix or increment previous releases Only some of them

Database subject to change management No

External dependencies management Yes, with Subversion

Tests Manual development unit tests only

Code analysis Basic, provided by IDEs

Issues and tasks tracking Incomplete usage

Table 8 - Diagnosis of dev. practices implementation in previous development process.

 50

4.1.2 Identified problems

Numerous issues were identified on the project’s development process given the goal of

improving its evolution performance. Despite the low rate of new releases generation, the agility in

which they were released was the first found setback. Likely, this frequency arises from lack of

facility on launching releases because they depend on the previously specified manual procedure.

Besides, the know-how for performing releases was focused on only one developer and, therefore,

not all participants were able to easily trigger the releasing process. The installation on customer

machines suffered a similar issue by depending on experience and knowledge of a single individual.

Besides, that individual needed a long period for checking the success of the operation at customer

sites to ensure the installation operation was performed successfully.

Further problems also have been found on maintaining releases. The ability to replicate

and fix production problems may be a crucial faculty for the project survival because one can never

assume absence of bugs on delivered releases. Restrictions were detected in the ability to apply

fixes to final releases of the application: whether different RTS versions are deployed in multiple

production environments, the development team should enable to fix them all without needing to

update the costumer systems to the most evolved version, which is not the case for RTS project.

Direct mapping between a directory on VCS and a RTS specific release without distinction between

development versions and final versions, hinders the scalability on the number of costumers the

project is able to maintain without threatening the consistency of all application’s releases. Using

such strategy, the only chance of ensuring versions consistency is to install the most updated

version to fix bugs, even though the purpose of installation might be bug corrections, assuming the

most updated version as the most stable, which is not always true.

Another releases consistency related question detected on the RTS’ construction process

was the powerlessness to handle DBs changes. Code to reflect changes on DB schemas were only

held on the project’s contributive wiki using plain text, without reference to any version. By

installing new releases, updating DBs schemas on customer machines was based exclusively on the

collaborator’s knowledge, which would undertake the job. That individual should know the earlier

version used by the particular customer and the specific changes that should be carried out on each

DB schema. Consistency of DBs schemas and releases deployment process was based on manual

and risky activities, which dangerously threatened the data survival on customer environments.

Managing dependencies was the configuration management area where no serious

problems were met, although the outcome of lacking an overall strategy for versions as well affects

the project’s dependencies. The model that consists in placing external dependencies’ binaries

along with source-code files in the VCS can guarantee the whole application’s version to match

accurately the dependencies’ versions. Even though, this process might be improved because

Maven (used on RTS) provides a highly effective dependencies management mechanism.

 51

Issue Tracking Systems (ITS) help support management and plan strategies for software

releases with capabilities to keep pace with every aspect of software evolution. ITS employment

proved to be incomplete by the RTS development team, disabling monitoring the development

progress with the partial data placed on the platform by developers. Its exploitation was confined to

tasks allocation and work division among developers team without any reference to which versions

have been implemented, or what their relevant progress, preventing tracking developed work and

the target versions. With some effort and due to VCS capabilities, it is possible to trace specific code

changes with a particular version because files were placed into the releases directories, which were

properly named. If not so, versions were unable to be found on any place.

Validation of developed tasks also presented significant flaws. All work performed by each

developer was subject to unit and integration tests solely as a consequence of code construction

within the assigned task and conducted by the developer itself. Also, the built code was not subject

to relevant quality checks.

4.2 A new construction process

4.2.1 The development pipeline

The proposed construction process and practices assumes all work done by the developers

will be checked before being deemed valid within a particular version of the application. This is the

base ground that governs the entire argument advocated towards boosting the performance of RTS

project’s development activities, having as ultimate aim enhancing the quality of product delivered

to customers. Yet, just checking everything that has been developed does not ensure achieving such

goal, therefore, modifications will be stated which improve each process activity individually by

safeguarding the intended outcome, with the addition to be raised in a faster and agile fashion

requiring less effort from the development team. The backbone of this proposal is to adopt a

continuous integration (CI) system that runs part of those checks and that introduces new habits in

development culture of the RTS project, pursuant by what is defined on this proposal. CI will be

introduced in the project with recourse to the installation of a CI server on the development

environment, which is intended to form part of the programmers’ daily habits. The CI server will

interoperate with multiple actors from the project construction process.

There are three key players in the studied CI scenario: developers, VCS (code repository)

and the CI server, as shown in Figure 36. Developers will be responsible for producing source-code

by implementing features or fix bugs and will drive each run of CI build by submitting their work in

the files repository (VCS). The VCS will centralize all files that make up the RTS project and it is

considered as the primary interface between developers and the CI server. Finally, the CI server's

role is to check the correct integration of all submitted work by development team.

 52

Figure 36 - Continuous integration base.

Next, one CI iteration cycle will be explained referring to the interaction between aforesaid

players (Figure 36). The whole cycle starts when a developer submits files changes in VCS.

Regularly, the CI server will poll VCS to check for new changes, if any, will confirm if the

modifications were properly integrated. Detecting an integration problem drives the CI server to

notify the developer that introduced the error to immediately precede the correction. It is assumed

that these cycles are performed promptly by each triggered change to the project files.

The suggested CI process will have an automated nature secured by a CI server and relies

on the impulsion of the developers’ work. One objective of this approach is to seamlessly integrate

work from the entire developers team and to ensure that errors are detected immediately upon

being introduced into the solution. To ensure a constantly healthy development environment, RTS

project’s developers must quickly fix the identified problems so as not to hinder the natural project

progression. This procedure argues that all programmers must check whether the carried work will

not defuse a negative feedback by the CI system. They must perform local unit tests and to insure

their changes are not going to subvert work of the remaining team.

Following each change to RTS project, the CI server will internally run an ordered sequence

of stages, which jointly ensure the successful integration. Figure 37 presents the stages processed

by CI server. This sequence begins with the external project’s dependencies resolution by checking

their availability. Then the source-code files will be compiled for which unit tests are performed

over the Java classes’ methods. Following the testing phase, the binary files will be packaged in

order to be ready for installation on runtime scenarios. With this assumption, integration tests are

met after their installation on an integration machine. Then the server analyses the produced

source-code quality and reports will be generated on the output. Lastly, the cycle will end by

sharing the generated packages, installing them in a distribution machine for eventual external use,

in the event of APIs reuse benefit, for instance.

 53

Figure 37 - Continuous integration cycle.

The integration cycle of this proposal builds on premises that Maven will continue to be the

used build tool by RTS project and construction will be based on the Java programming language.

Concretely, the outlined above stages are based on the Maven’s default lifecycle phases and

packages that contains the compiled binary files are Java archive files (jar, war, ear, etc.).

The stages described previously are illustrated in Figure 38, which specifies an activities

diagram depicting the flow of operations carried out by CI server when performing integration

builds. As already mentioned, the process starts when a developer submits work to VCS that fosters

CI server to obtain such changes. Every activity depicted, except the quality checks, will be able to

stop the build when files are not properly integrated. If one of such activities notices any

nonconformity, the CI server will notify the responsible developer to fix the problem without delay,

however, if the sequence flows without issues, the CI system will assume the build was run

successfully. The quality checks conduct source-code static analysis, which generate a set of reports

to point out possible bugs patterns.

 54

Figure 38 - Integration activities.

Automating CI depends on the development staff’s attitude and their awareness of all of its

benefits. In order the activity of building software can take proper party of the proposed CI

environment, developers must frequently submit their work for it to be continuously integrated.

Hence, this proposal defines the period not exceeding one day without individual integration so

that developers not end up their journey without submitting their work, not to inhibit proper

integration. Developers own the integration initiative, therefore the RTS development team’s

culture should be changed to use frequent small integrations, reflecting evolutions of an

implementation of a particular task, contradicting the usual method of submitting the full set of

changes when the task is finished. This culture helps to keep a cleaner and stable developmental

line by killing bulk file integration periods.

A critical aspect on CI process is the aforementioned feedback and staff’s response ability.

Without this faculty, any effort on always keeping the project in a stable state to ensure the ongoing

integration of work may become useless. Thus, the CI server used in this work will notify the

development team whenever it detects integration issues. Without prompt feedback and rapid

reaction, risks of bug contagion may arise in the RTS project.

 55

Is relevant at this point, by defining the foundation for the new developmental process, to

refer about the connection between developing RTS application versions and integrating

continuous changes. Each integration cycle will be coupled with the implementation of a specific

task, typically assigned to developers. Every operation on VCS should match a small breakthrough

in the evolution of that task, without implying a VCS transaction to match a full task

implementation. A set of tasks, whether these are new functionalities or bug fixes, will define an

application version. Its consecutive integration cycles, when successful, will provide progress to

versions with the purpose of finishing them. Depending on the project’s approach, the completion

of all release’s tasks or the closeness to the final deadline must entail the stability of the

development version. The CI has a crucial role in this mission however the following sections will

suggest measures for improving RTS’ releases stability and to help reacting when difficulties arise

in attempting to achieve this goal.

4.2.2 Releases maintenance and consistency

A fundamental aspect on successful integrate the RTS team’s work is to define a main

developmental line. This work strongly supports its existence to all application functionalities

should be implemented therein and to be instantly integrated by the CI server, even though they

might belong to different target releases. The mainline is the core of the application and where the

development team will focus all project progress, thus not dispersing new requirements

implementation to other parallel development lines, helps strengthen the CI concept. Techniques to

enable adoption of such development method will be shown later in this section.

The mainline will bear only new releases development and has the objective to allow a

steady progress of the project as a software solution. As seen in Figure 39, the parallel production

lines, which correspond to application releases, arise from the mainline, making it a releases

factory. The branch lines enable pre-production releases stabilization at first and afterward

maintaining production releases. Thus, applying new features from RTS project on branches will

not be acceptable as maintaining releases merely involves fixing problems found after definitive

launching.

 56

Figure 39 - Proposed versioning strategy.

As noted, branch lines have two functions: a permanent one and a temporary one. Figure

39 shows that one decided at a given moment to create a maintenance branch from the mainline.

This proposal specifies the exact timing to create such lines, which will be accounted next. Once the

specified deadline for next release is approaching the end, or when all tasks targeted to the release

are finished - depending upon the defined plan by the RTS project management - a branch line will

be forked from mainline in order to steady the future release, untying it from other unrelated

developments being carried out in the mainline. Since then, the version shall be appointed as

Release Candidate (RC). To be noted that new features should not be added into the newly created

branch because it is meant to stabilize the version prior going into production environments, by

remedying any issues found during validation stage - in case not being in agreement with

requirements - or bugs detected. Just when all issues and features aimed to the release, on verge of

going into production, are properly valid the release can be closed. Stabilizing a RC may be required

if the mainline supports developments aimed to other releases, but to simplify process’ rules,

branches creation will always happen at the referred instant, irrespective of needing stabilization as

its existence is mandatory for maintenance purposes after releases are putted into production.

Maintaining versions along branch lines requires just adding fixes but not new features, as already

explained.

 57

Figure 40 - Using CI on the main dev. line versus "integration hell".

This proposal builds the development process in sustainable integration of work produced

by RTS team using a central developmental line, from which will arise all application versions. This

technique blends the implementation of features from different releases in the same pipeline,

which may difficult the construction process. Will be tempting to detach the implementation of

complex tasks from the mainline but using feature branches can lead exactly to the situation that

the very CI seeks to prevent: integration problems and "integration hell" period. That is precisely

the purpose of CI: to frequently add small amounts of code into the overall solution to avoid adding

all changes at once therefore is incoherent to separate development of complex tasks from the

mainline when the RTS project will comprises a complete CI environment. Figure 40 shows an

example of how it is often advantageous to fit in small changes when developing complex tasks. The

mainline from left shows a continuous integration example, while the right mainline shows the use

of another line to break up the implementation of complex functionalities that requires integrating

large changes at the final period, forcing the "integration hell” period. To ease the acceptance of this

practice by the RTS’ development team, "feature hiding" should be used. The trick is to add code

increments (functional or not) belonging to a complex task, which are not displayed in global

solution. This procedure will require some care with architecture, some planning and discipline but

benefits far exceed the existence of a devoted phase to integrate functionalities.

The "feature hiding" can also be used when the development team is faced with the

development of different releases in the mainline. Figure 39 shows that example in the red line

(mainline). Nevertheless, despite the benefits of integrating all features in the same place,

eventually be assigned to different versions, there is a particular case where it is suitable to separate

development in another line: when a version completely cuts off the compatibility with the

 58

remaining still under development. Figure 39 lists the version "3.0.0" apart from mainline since it

was assumed that most APIs were not backward compatible. This example could reflect a profound

change in the system architecture.

The submitted strategy for managing RTS project’s versions enables consistency across all

versions of the application, whatever multiple development versions would still under development

or various production releases supported by the team. Using maintenance lines allows insulating

the development of new versions from remaining releases, excluding mutual interference, which

allow the propagation of instabilities between them. Thus, it is virtually possible to manage endless

number of versions, maintaining consistency in all of them. For example, a stable RTS release

installed on a customer machine require to be evolved with a fix, its stability would continue to be

ensured because the only difference between that version and fixed version would be the correction

changes. With no interference between patches and under development releases or with other

production versions, isolation between all types of releases is ensured.

4.2.3 Project progress and rapid delivery

To confirm the plan is being fulfilled, however minimalist it may be, versions development

progress must continually be assessed during implementation cycles. If there are deviations -

unforeseen situations or new circumstances - the development team must react immediately.

During the course of development of every application version, the functionalities definition and

defects that characterize them can easily vary over time, so the project leader should continually

evaluate the progress towards adapting to changes and unforeseen events.

Figure 41 - Continuous version evaluation.

Figure 41 presents a form to continuously adapt the project to new circumstances.

Developing a new release begins with tasks definition and its implementation by project’s

collaborators. Progress should be held with resolving high priority tasks first, whose importance

were previously set. Success in this procedure depends upon proper choice of priorities thus the

ongoing assessment of this parameter must be made and, if necessary, be changed during the

progress. Continuous assessment will monitor the course of RTS project to enable adjusting the

 59

tasks according to needs, as many times as required. The RC will be released after every planned

task is resolved.

Every task on ITSs has a related lifecycle, which indicates its state of progress at each

instant. The RTS developers shall update the tasks status in the course of changes throughout its

implementation, just so is that the proposed process will enable the project manager to evaluate

status of versions evolution in real time manner. Strategic decisions can be held then, leading to the

rapid reaction over the unexpected changes over project and thereby releases development can flow

in the desired direction. This is made possible because ITSs are fitted with capabilities that allow

monitoring status of software projects, from the management viewpoint by using diagrams and

charts.

Figure 42 - Issues management.

The present work suggests active targeting of versions to tasks in ITS. Starting from the

ground that tasks will have priorities, that will be assigned to somebody from the RTS’ development

team and have a lifecycle that must be constantly updated, its connection to a particular release is

fundamental to successfully construct each release. So, each task (or issue), using project

continuous reassessment, will never be forgotten and will always be incorporated in a release.

Figure 42 shows an example of the offered method for using on RTS’ development environment.

The figure shows the example of three development versions (1.2.0, 1.3.0 and 2.0.0) and one

maintenance release (1.1.4). Task priorities are depicted by colors red (high priority), yellow

(medium priority) and green (low priority). For each version, the highest priority issues should be

addressed first, however, priorities can be amended following each assessment. New issues may be

included on every version at any moment, always connected to a priority. Every reassessment may

establish which tasks can be shifted to later versions or vice versa and issues with no target version

(unscheduled) may be caught by any development version - the project leader so decides. Figure 42

also shows a release patch (1.1.4) imposing a correction to 1.1.3 (in production), which itself also

already patched the late 1.1.2 version and so forth. For consistency effects, this dissertation

 60

proposes only inclusion of tightly controlled fixes as not to increase risks by removing stability to

production releases, so is not advisable to indiscriminately shift issues from development versions

to patches and never to include new features.

Following the adoption of suggested practices inducts the building blocks for agile

development. Adoption of constant change and continuous evolution in the project endows

development team skills that enable to quickly produce working versions of the application,

whether for evolution purposes, or to fix production releases or for demonstration purposes. The

fast deliveries model suggested in this document relies on continuous integration (CI), accounted in

the previous section, and the ability to promptly engender a working version of the application

proves the concept of this methodology. Emphasis is given on the value to maintain the RTS’

production line always clean, only accomplished by adopting a culture of frequent integration and

backed by development mainline where all new features are built. Have as theme conservation an

always-working version helps to embrace the culture of fast delivery and continuous integration on

the mainline.

As RTS project has an architecture composed by multiple modules somewhat complex, it

may be useful for binary files to be available for external use, like APIs reused by other projects as

external dependencies. The proposed solution suggests the introduction of a centralized location

where CI server shares project’s binary files. Figure 43 shows the inclusion of a repository

distribution within the project RTS’ continuous integration environment. Thus, the integration

cycle ends by placing such files on the repository server following each successful CI build.

Figure 43 - Using a distribution repository.

This repository will contain every version of all binaries produced by RTS project for that in

a short time, all versions of the application can be obtained and so that dependencies are

continuously available without the need to conduct VCS checkout and subsequent project

 61

compilation. VCS will allow easily get all RTS versions but thereby obtaining earlier versions will be

almost instantaneous, disabling manual labor to yield the desired release. Cataloguing all versions’

binaries merely applies to final releases because produced files by developing versions after each CI

cycle should be deployed in a limited number on distribution repository, since sharing all-time

development binaries can rapidly reach its maximum storage capacity.

4.2.4 Assuring software quality

The overall quality of RTS application is a characteristic that must be cautiously controlled

and ensured because the solution manages confidential data in the health sector. Therefore, beyond

the safety precautions over the information contained on the database, the overall quality will help

keep the application consistent thought runtime while decreasing the number of problems found

on costumer environments.

In this proposal, the construction cycle will consist of a set of activities carrying out quality

assurance on various development levels. The first step in quality control starts at the developers'

workstations. Every developer must ensure development tests are conducted, including unit tests

and integration tests run on RTS’ development environment. Unit tests can be coded in a proper

framework and placed together with the project’s business code. Persisting these unit tests on VCS,

they can be executed by CI server over all integration cycles. Unit tests automatically run by the CI

server ensure the behavior of regions covered by them to stay unchanged over time. That is, each CI

cycle will check the eventual regression of behavior in the covered areas.

To improve code quality, developers must complement their IDEs with static analysis tools

for detecting bugs patterns and programming errors. Moreover, prior to submitting any

modification, each developer must guarantee a local project build execution so that untested code is

not introduced in VCS. Figure 44 shows that developers, after task assignment, will start the

programming activity and subject work to development tests as often as necessary to ensure its

good implementation. Following these activities, developers will submit their work to VCS, which

will be integrated into the overall solution. To be noted that the integration should be carried out

several times until the task is completed - a best practice defended in the preceding section.

 62

Figure 44 - New task development activity.

As mentioned on previous paragraph, the CI server will conduct a set of tests on everything

that will be developed in the RTS project. As seen in Figure 44, this process is taken after every VCS

commit, which will subject the code to automated unit tests. It is also achievable to adapt the

process by adding functional, load and performance tests but this proposal provides greater

relevance to the establishment of an integration scenario devoted to automated tests. The CI server

will prepare the environment and then execute a series of tests for integration purposes. Figure 45

shows an example of how CI server will perform this sequence from the deployment of application

to execution of automated integration tests. Following producing the installation packages, the first

step is to prepare the environment: the server will first migrate the database with the necessary

changes, consistent with the development release, and then deploy binary files in the RTS’

Application Server. After deployment, the CI server will accomplish integration testing on the

 63

execution environment, and if one fails, the developer that introduced the problem will be

immediately notified. The sample of Figure 45 presents a series of tests where the latter fails,

stopping the integration cycle and disrupting the build. This procedure is wrapped in "Integration"

activity of Figure 44 and will compel the responsible developer for prompt rectification.

Figure 45 - Automatic integration tests.

The RTS’ CI server will also conduct automated checks to source-code quality which

include detection of bugs patterns, proper use of coding conventions defined for the project,

excessive complex code detection, unused code detection, bad performance code detection and

duplicate code detection – a.k.a. "copy / paste" detection. The CI server will be responsible for

regularly analyze the whole project source-code but these scans will not raise notifications, or

demand the prompt correction like with unit tests or integration tests. However, reports will be

generated, which will enable to identify each detected issue.

To overcome the lack of a testing team for checking proper implementation of tasks on RTS

project, development team will perform validations on what is implemented. Validating tasks maps

out on "Validation" activity of the diagram in Figure 44 and occurs after the developer deem the

implementation of a particular task as completed. In order to ensure whatever will be added in a

project specific release agrees with the expectations of customers, developers will conduct

validation tasks, using functional tests, with the constraint of not being themselves to validate their

own work. This provides some exemption about what will be implemented in the solution and

includes more than one person in the tasks lifecycle. In terms of ITS, when developers complete

implementation tasks, they should change its status to resolved (not validated) and assign the task

to another individual to validate it. The validation activity, carried out by a 3rd person, will

conclude whether the task has been completed successfully or not. If validation fails, the individual

in charge of validating the task will have to document the found problems in ITS and ultimately

 64

return it to the implementer again to fix it. The validation ends only when the task is implemented

effectively, ensuring it is carried out according to specification.

4.2.5 Team communication and interaction

In order to improve communication between individuals on RTS’ development team, this

proposal presents some measures to assist the dissemination of information. As deemed above, the

RTS project has a rotational team of developers who does not carry full-time job, disabling smooth

communication among individuals and hindering collaborative work. For this reason, placing all

necessary information in an easily accessible location could be a possible solution. Solutions

discussed later will not disentangle such communication issues but will help improving

communication and reduce learning curve of new employees.

The use of best practices is applicable to all project activities. They never overlap the

expertise that an individual has in a particular area, however, the existence of one or more

documents, which record some of the experience gained over time, helps disseminating all this

knowledge. These documents may also be based on the experience of other professionals oblivious

to the project, often found in books, academic papers and even on the Internet, but the good

practice learned in the course of the project should be registered so that everyone can access this

information making more efficient the execution of the activities they address. It is important to

note that best practices are relevant to the project and they are developed out by the end of the

project itself with the learning and experience of everyone involved.

Good practices can benefit all activities of the developmental process. There may be good

practices in creating tasks on the Issue Tracking System (ITS), on using the Version Control System

(VCS), on unit testing activity, and so on. The whole experience acquired and the learning arisen by

the committed errors throughout the life of the project should be proliferated by the team.

The RTS project, before this work, previously used Redmine for documentation, a quite

popular open-source ITS. This proposal recommends its continued use to help managing the

project and related documentation. This tool offers a contributive wiki where every project

participants will be able to freely publish documents and other topics of relevance like: RTS

application user manuals, requirements specification and implementation documents, record the

learned lessons throughout project evolution; manuals for used development tools; solution to

recurring, among other subjects of interest.

Towards standardizing certain aspects of project enhancing communication among RTS’

collaborators, a best practices and conventions document will be written for this work. This

document will contain code conventions definitions to be used by developers, development best

practices and the documentation of the whole development process suggested by this proposal.

That handbook will be made accessible in a digital format in the contributive wiki for it to be

 65

evolved and thus collect gained experience by the development team during development of RTS

project.

4.2.6 Summary of the new development process

The following table (Table 9) summarizes the importance of the suggested practices on the

resolution of the found problems in the previous development process.

Caption: +++: Solved the problem; ++: Contributed greatly to solve the problem; +:

Contributed some how to solve the problem.

Problems

Proposed
actions La

ck
 o

f a
gi

lit
y

on

re
le

as
in

g
ve

rs
io

ns

D
iff

ic
ul

t t
o

re
pr

od
uc

e
an

d
fix

pr

ev
io

us
 r

el
ea

se
s

N
o

sc
al

ab
ili

ty
 o

r
co

ns
is

te
nc

y
on

re

le
as

es

N
o

da
ta

ba
se

ch

an
ge

m

an
ag

em
en

t

In
fle

xi
bl

e
de

pe
nd

en
ci

es

m
an

ag
em

en
t

N
o

ve
rs

io
n

co
nt

ro
l

on
 I

T
S

N
o

va
lid

at
io

n
of

de

ve
lo

pe
d

w
or

k

La
ck

 o
f q

ua
lit

y
ch

ec
ks

La
ck

 o
f

co
m

m
un

ic
at

io
n

Continuous
integration culture ++ ++ ++ +

Automated tests ++ ++

Automated code static
analysis + ++

Using Maven as dep.
management system + + + +++

Database migrations + ++ ++ +++

Using a main line and
releases branches +++ +++ +++ +

Tasks and issues as
subsets of releases on
ITS

+ ++ + + +++ +

Continuous release
assessment + ++

Using Release
Candidates ++ + +

3rd person validation
process + ++ + +

Best practices and
conventions document +

Table 9 – Problematic practices and suggested actions.

4.3 Applying the construction process to other projects

The defined processes and practices are within the scope of improving the development

practices of the RTS project. Though, this work may apply to other software projects. All presented

definitions, such as fast delivery, agile development, consistency of versions, continuous

integration, etc. are generally applied concepts extensible to projects with similar characteristics.

 66

The general projects characteristics for adapting this solution are: distributed applications; teams

with several collaborators, projects whose quality must be ensured; projects with constant

evolution and ongoing maintenance, projects having multiple costumers.

The sole difficulty to adapt the process to other projects is the potential incompatibility of

presented technologies to be used in the development environment. The RTS project adopted four

core technologies that speeds up the process implementation: Hudson CI server, Java

programming language, Maven build tool and Subversion. Those technologies interconnect

smoothly among them, enabling to assemble the pipeline without development of own solutions or

major adjustments. Next, it will be shown how such technologies enable the process clean

implementation.

• Hudson:

This CI server supports Subversion and Maven natively, and consequently Java

programming language;

• Java:

Tools that enable enforcing some outlined features of the process are available to this

widely used programming language. In particular static analysis tools, unit testing frameworks and

others;

• Maven:

This tool provides more than the ability to perform project builds. In addition to automate

activities like testing and package generation, it allows teams to easily manage external

dependencies and to share project’s binaries. It can be bundled with a set of plugins that extend the

project with automatic features like documentation generation and application deployment on

runtime environments;

• Subversion:

Like most VCSs allows controlling project’s files versions, integrating smoothly with

Maven, Hudson and Redmine. Helps keeping the consistency of file versions over time.

Projects that cannot make use of such technologies must encounter other possible

solutions. Maven is only for Java but other programming languages have efficient tools to build

projects. For instance, C# applications can use NAnt or MSBuild. To control file versions,

Subversion is commonly used on many technologies, so it can be used in most software projects but

there are excellent alternatives: Git, Mercurial, Bazaar, etc.. Even several CI servers are suitable to

use on many project types: Hudson - used on RTS - can be used on C++ projects with CMake (build

tool) and CppUnit (framework for unit testing), which can be adapted by writing a few scripts.

 67

In short, the proposed process is customizable to most software projects with the eventual

need of selecting other technologies than the ones used on RTS. They might be quite different,

alternatively organizations can produce own solutions to fit their needs or adapt existent tools with

custom scripts.

 68

 69

5 Implementation of the proposed construction

process

5.1 Selected tools for the construction process

Some of the elected tools for the process have already been mentioned in the preceding

chapter, others will be referred and their function will be detailed along the sections of this chapter.

The remaining, such as testing frameworks, shall be revealed but are not included in this section as

elected because it is intended that development staff has freedom to choose such tools. Taking the

cue of testing frameworks, there is a wide range of options and many of them with different

capabilities, therefore it is valid in particular situations to use multiple testing frameworks in the

RTS project. The following presented tools are the sustainment of the proposed development

process and they cannot be easily superseded, at least without a formal decision by the RTS project

team. The core tools are: the continuous integration server, Maven, the Maven repository manager,

the database migration tool and the Issue Tracking System (ITS).

• Continuous integration (CI) server:

Choosing a continuous integration (CI) tool relied on multiple requirements but the main

ones were: free to use (preferably open-source) and straightforward support for Maven 2.

Considering these factors, the tens of tools available, just five comply with the requirements:

Apache Continuum, CruiseControl, Jenkins / Hudson and LuntBuild. Upon elimination of most of

those tools and in view the popularity, flexibility and constant evolution of the product, it was

found the server that fulfils all needs of the RTS project: Hudson.

Hudson is a server that runs on J2EE containers and its installation on the RTS’

development environment was swift for the reason that Tomcat is the J2EE web container of

election for the project. Jenkins further emerged as a fork of the Hudson project, after it had

become the property of Oracle, but on the RTS project was decided to give continuity to the first

choice. There were no reasonable grounds to outcome the change, as the essence of this tool

remains the same. Hudson is deemed the obvious choice for Java projects. The CI environment

setup is easily carried out when dealing with Maven, which is done in just a few minutes, and

provides native support for Subversion, both used in the project RTS. Its rising popularity led to a

community who actively develops plugins that comprise with many other tools like JUnit, Redmine

and other build and Software Quality Assurance (SQA) tools. Due to its extensibility, Hudson is

incredibly flexible and adaptable to every software designs developed in Java. The ease setting

makes it possible to assemble a CI environment within minutes but simultaneously has the ability

 70

to support complex integration scenarios with multiple parallel Hudson instances interacting, if

necessary.

• Build tool:

Before this proposal, Maven was already being explored on RTS project but as it has a key

role in the submitted development process, it was not deemed moving to an alternative.

Nevertheless, a comparison with Ant - another popular build tool for Java projects - will be made.

Maven is a build tool because it allows generating deployable files from Java source code.

However, it is more than that: a management tool that includes a project object model (POM), a set

of standards, a lifecycle, a dependencies management system and logic to execute plugins on every

phase of its life cycle. For Java projects, the most commonly used alternative is Ant, a tool that

focuses on code compilation, packaging, testing and distribution. There are several advantages of

Maven over Ant beyond those referred: Maven uses conventions, unlike Ant, which forces the exact

definition of source files location and where to place the output; Maven is declarative as it enables

to build a project without being necessary to specify what should be done and when, unlike Ant,

which needs to be tell on how to compile, copy, compress, etc.; Maven has a lifecycle that performs

a fixed sequence of steps that allow to build the application.

Besides being a build tool, Maven also makes the management of internal and external

dependencies, directly described on text files with specific XML notation on each of the constituent

modules. The dependencies are declared in Project Object Model (POM) files and not placed in a

specific directory like on other build tools like Ant. Maven will do its best to find those

dependencies using special remote repositories, typically available to the general public. Once the

build is executed and the dependencies found, Maven will store them locally in a private repository

of the machine that is running the build. It will only download from the public repository when the

dependencies are not found in the local repository. In addition to the declared dependencies,

Maven will use transitive dependencies, i.e. dependencies that are undeclared but necessary to the

declared ones.

• Maven Repository Manager:

There are some freely available Maven Repository Managers for the software development

community. The most popular are Artifactory[108], Nexus[109] and Apache Archiva[110]. Any of

the referred Maven Repository Managers as well having the ability to serve as a proxy for external

dependencies used by the organization, saving bandwidth on the internal network, they have the

capacity to mirror public repositories, making the task of configuring the repository section inside

POMs easier. But the most significant requirement that any Maven Repository Manager should

implement is the possibility to easily distribute the organization’s compiled products (artifacts).

This capability streamlines the process of sharing work between different development teams

within the organization, or even among members of the same team.

 71

On RTS project it was decided to use Nexus due to its simplicity and incredible small

footprint of only 28MB of RAM, against the 128MB of RAM used by other solutions. The RTS’

Nexus instance is running on a shared machine where multiple other servers are configured,

including the SVN server and Hudson (C.I. Server), thus the less impact on the global architecture,

the better. Its installation is also an advantage because it requires no container configuration on the

J2EE Application Server where the Nexus WAR file will be deployed. Despite Nexus server not

having all the advanced features used by Artifactory, like parallel download of dependencies, or

statistical tools for analyzing repositories and artifacts, it fits perfectly the purposes of RTS project.

But probably the greatest benefit of Nexus on the remaining solutions is its extreme efficiency

derived from its development team’s know-how at Sonatype enterprise. The staff is composed by

the founder of Maven and by several core Maven developers. In addition, this team maintains the

Maven Central Repository, making Nexus one of the more robust, secure and light Maven

Repository Managers available.

• Performing Maven releases:

Maven is extensible with the use of plugins. As previously stated, Maven, as well as being a

build tool, it can perform software configuration management actions over a project developed in

Java. The RTS project will adopt the default releases management mechanism provided by Maven:

release versions and snapshot versions. Hence, conducting RTS releases, as well as entailing

changes on Subversion and on Redmine, also implies changing versions on the Maven items,

particularly on POM files. While Maven features benefit the RTS project, while releasing versions, it

will imply additional set of actions, such as: changing POM versions, commit POM changes into

Subversion, perform binaries deploy to the sharing repository (Nexus), among others. To

streamline and semi-automate the process, a plugin for Maven will be used: Maven Release

Plugin[111], which will attend RTS releases. Its use in the context of project will be detailed later,

but its operation will rely on three actions: releases preparation; releases execution; and creation of

branches for maintaining and stabilize releases. Each of these actions will map out into a specific

plugin goal: prepare, perform and branch, respectively.

• Database migrations:

From the available tools to perform database migrations, such as DbDeploy[112],

migrate4j[113] and autopatch[114], Liquibase[115] was the favored to conduct that kind of

operations in the project RTS.

A core feature of Liquibase is to enable DBs migrations using script files containing plain

old SQL code, exempting the need to use changesets files with specific implementation formats.

Such files enable easier migrations in a portable fashion since the SQL code is directly executable

over PostgresSQL instances, used on runtime RTS systems. Despite these systems employ a driver

that implements the JDBC API to carry out database operations, Liquibase helps manage DB

 72

evolutions with Hibernate - an implementation of JPA (Java Persistence API) for Java

environments. Liquibase binds along with Maven builds due to a plugin that allows automated

migration on integration and testing environments. In production scenarios, migrations can be

accomplished by running a command line application developed in Java that takes multiple

parameters. Development teams can also use the Liquibase API for Java that allows developers to

programmatically access all features from this migration tool. As well as allowing migration of

multiple databases towards its evolution, Liquibase also allows rollbacking them to older versions.

This tool supports to rollback certain database operations automatically but using custom SQL code

to match each evolution with a rollback operation is supported inside changeset files.

• Issue Tracking System (ITS):

On RTS is intended to use just freely distributed development tools, preferably open-source

ones, and ITSs are no exception. From the several choices, such as Bugzilla, Launchpad or Trac, the

project had already adopted Redmine, before the beginning of the present dissertation. Redmine is

a fairly popular web-based tool, freely distributed with an open source license, developed in Ruby

and supports different databases. Allows managing multiple projects and has good third-party

integration with tools like Subversion and Hudson, also used on the project. In addition, there are a

large number of plugins that extend its capabilities, held by a wide community of developers. This

solution provides all necessary features for proper project evolution management, so was decided

to continue using it as RTS’ official ITS.

In order the RTS project to be managed successfully, it is required that the selected ITS fill

out some prerequisites complied by Redmine. This tool is a highly flexible ITS which helps manage

users with different roles across multiple projects. It does time tracking with a calendar and an

integrated Gantt chart. Besides having default configurations on different kinds of issues, Redmine

supports creating custom ones by defining its full lifecycle and the selection of specific fields.

Integrates well with VCSs, like Subversion by providing diff views, repository browser, changesets

viewing and connection between SVN revisions and issues for better traceability. Also implements a

documentation manager, news or other files, a discussion forum and a participative wiki. It also

supports e-mail notifications and RSS feeds.

Redmine offers all conditions to development teams to manage tasks, plans, and releases of

applications, but motivation and commitment of workers are required to carry out all actions

necessary for its proper use.

5.2 The construction environment pipeline

There are many different ways of setting up an integration environment depending on what

is required to perform the integration process, but there are actors who are essential and common

 73

to all these environments. The main actors are: the Developer, the Version Control Repository, the

Build and Continuous Integration Server [38], as specified on previous chapter. Next, a

development pipeline with continuous integration capabilities will be proposed suitable for the RTS

project.

Figure 46 - Simplified RTS' development pipeline.

Figure 46 shows the integration environment set for the development of the RTS project.

For representation purposes, Hudson (CI server), Subversion server and the integration machine

are depicted separately though in fact they are installed on the same machine on RTS’ development

scenario. Before integrating new code into the pipeline, developers must update their Subversion

working copy to receive new possible changes from the repository. This procedure should be done

regularly for developers integrate colleagues’ work into their private work. Then, the integration

process is started when developers commit changes from their workstations to Subversion. At

regular intervals, Hudson polls Subversion state to see whether there are new changes and update

its working copy to start executing the build, which includes compilation, testing and packaging.

After packaging the project’s artifacts, Hudson will deploy them on the integration machine where

integration tests are carried out. The database migration is included in this routine. The integration

machine runs a Tomcat J2EE web container and PostgreSQL instances. After Hudson finishes the

deployment of packages in the integration container, tests will be performed in order to guarantee

that the integration of all executables and databases changes of that build work as expected.

 74

5.2.1 The project’s files repository

At the beginning of this work, the RTS’ Subversion directory layout was not arranged to

perform organized operations over multiple developing versions without mutual interference, or

even in a scalable way. Therefore, the elected strategy to dispose the different development lines

takes the default structure recommended for all Subversion repositories [11]. Such a structure

consists in dividing the repository into different directories, each having its function. Some of those

directories will have direct match with the different developmental lines the project may take in

accordance with the active development versions and maintenance versions, as explained on the

propose (chapter 4). This arrangement delivers improved organization and maintenance for

project’s files repository to handle the continuing evolvement and growing of the RTS project. The

chosen layout consists of three main directories in the root of the project repository: trunk,

branches and tags.

Trunk will hold the most highly evolved version of the development project and be the

focus of continuous integration, which will be also the most unstable development line during the

construction process. With few exceptions, trunk will be the main evolution line, reflecting the

development of every new feature, even with the existence of parallel development lines. Hudson

will use this directory as the primary target of its action, it is consequently important when adding

new features to reflect them as soon as possible in the trunk.

The branches directory will have different roles according to existent maintenance versions

and the amount of highly complex requirements under development. Will also be the most

complicated directory to maintain and rules must be followed to prevent unnecessary files being

placed in the repository. The exact use of branching within version control context of RTS project

was discussed on the previous chapter. Branches are used to maintain releases and to stabilize

release candidates (RC).

The tags directory contains copies of final and released versions therefore this directory

must be regarded as read-only after generating a release. This directory enables to easily reproduce

all production versions of the RTS application.

 75

Figure 47 - Subversion's directory structure.

Figure 47 shows an example of the directory structure of RTS project's Subversion

repository. The trunk contains the most actual developments of the project (mainline); the

branches directory, in this case, provides two releases subject to maintenance, which correspond to

1.0.x and 1.1.x releases; the picture shows that the tags directory contains four final application’s

releases, where 1.0.1 and 1.0.2 account corrections to 1.0.0 release and have been generated from

the “1.0” branch. Version 1.1.0 has not yet been liable to fixes, while the “1.1” branch has been

created stabilizing the corresponding release candidate (RC).

On RTS’ development scenario, quality assurance relies mostly on Hudson by using

automated builds that include source-code quality analysis, unit testing or even system testing.

Hudson will use most of its processing on building the trunk, which represents the main

development line. Always committing into the trunk is a very effective way of development [12]

since it is the only way to take full advantage of CI process. Developers should reflect all their work

into trunk - with a few exceptions - because it ensures that all team’s work is continuously

integrated in the same place with instantaneous feedback, as stated previously. According to this

philosophy, RTS development team must follow the established conventions when creating new

branches and to use them only when different lines of development are not going to converge at the

same point, as branches are considered independent development lines. However, atomic merges

between trunk and branches may be performed during the stabilization period of RCs or when one

performs bug corrections found on production machines, for example. Whenever a change is

performed in a branch, the trunk must be evaluated to check whether makes sense to merge this fix

since it might have already been done during the development process or neither be compatible

among the different development threads.

 76

5.2.2 Managing the software artifacts repository

The Maven dependency mechanism will allow RTS to have repository managers, in this

case Nexus. Nexus allow to proxy public repositories to avoid downloading the same information

numerous times each time a Maven build is executed. RTS developers’ workstations, instead of

downloading directly from the public repositories, may do so using Nexus that stores all the

information that passes trough it. Thus, the second time a given dependency is required within the

development team, is loaded from the cache and is spared an unnecessary download. Another

reason to use this proxies is the use of external snapshot dependencies. Maven will continuously

check for new updated snapshot (development) versions and this mechanism will literally save

seconds to RTS project’s builds when external snapshot dependencies are used.

Nexus will be used as artifact deployment destination for all produced binaries from the

RTS development team. This increases collaboration by automating module sharing for internal

use rather than distributing them manually or building them to get the required artifact. Other

external teams within IEETA may also use the RTS’ binaries as external dependencies. In seconds,

RTS final products (release) or developing products (snapshot) can be shared without the need of a

formal request, with just the declaration of the required dependency within the POM, or by

downloading it directly from Nexus. However, in order for this process to be effective, an

automated scenario for sharing artifacts must be settled, along with the best practices on software

development, including the continuous code integration.

 77

Figure 48 - Repository Management scenario on RTS project.

Figure 48 shows a representation of the adopted solution to implement the behavior

described above. In spite of being installed on the same machine with Hudson and SVN server,

Nexus is represented as being housed in a dedicated machine just for the sake of representation. In

the depicted scenario, Nexus presents itself as the core of the whole process, as it will store all the

generated artifacts from the organization, in this case, the RTS project. As described in the previous

section, Nexus can prevent machines that rely on it to download dependencies directly from

external public repositories, optimizing the network load by not downloading the same files

repeatedly. Nexus will get the dependencies from the Internet, whenever a client requests the

download, as illustrated. The picture shows that developers’ workstations and Hudson will get the

project dependencies when necessary, both after running a project build with Maven. Maven

resolves dependencies and will do its best to find them on accessible Maven repositories.

 78

The releases and snapshots repositories management is done with the help of Hudson. This

process starts when the developer do a commit on Subversion, then Hudson, after a periodical

update operation, gets the newly code developments, which will trigger a new build. If everything

goes well on this build, Hudson will generate all the project artifacts and deploy them to Nexus.

Hudson will automatically deploy the artifacts that are still under development (snapshots),

making them immediately accessible for internal sharing. The released versions, in turn, are

triggered in the process of launching a new final version. The release generation and its deployment

to Nexus can be prepared on any workstation or using Hudson with a dedicated parameterized

build on CI server, but always with human initiative. After each successful automatic build, Hudson

will deploy all the recently generated artifacts on Nexus’s snapshots repository. This repository may

contain several development builds of the same artifact version, ordered by upload date. These files

may be declared as dependencies on POMs by using versions numbers that denote the deploy date

or a "-SNAPSHOT" suffix, which will get the most updated development version of the artifact

(Figure 49). The use of different builds of the same development version might be helpful when the

most recent snapshot version is broken due to possible programming bugs, and the RTS modules

using it as dependency can specify the last build that worked on the dependencies list, just while

the problem is being solved by the RTS’ development team.

Figure 49 - Snapshot dependencies download.

There is a catch in this mechanism: The continuous build will generate several files that

occupy a lot of space. Multiplying several times the size of all compiled files from the RTS project it

will become rapidly unmanageable and fill the storage device in just a few days. Figure 49 shows an

example of Nexus’ snapshots repositories with multiple files of the same artifact. Therefore, it is

necessary to control the amount of builds that must be kept in the snapshots repository. Nexus

 79

allows scheduling the repository cleanup with just providing the minimum snapshot count for each

artifact and number of days that should be retained. Within RTS project, the decided policy for the

Snapshot Repository is keeping only the most updated file per snapshot version, because, for the

moment, only one team uses the installed repository manager and the build process is fairly simple.

When a snapshot version is broken, a member of the team should solve the problem immediately.

On Figure 50 is depicted the Nexus’ Scheduled Tasks configuration window where a task for daily

removing old snapshot versions is programmed to maintain the repository clean.

Figure 50 - Snapshots repository maintenance.

5.2.3 The continuous integration server

One of the most significant elements to combine all processes and tools described in this

document is Maven, which is used in the RTS project. Its flexibility allows it to manage build

executions, quality checks, the dependency management (internal and external) and more. Has

also a key role in the continuous integration process because it enables the automation of the entire

assemblage lifecycle, testing runs and distribution management, interacting with Hudson to supply

all required feedback to ensure the validation and integration of all project’s changes. Maven offers

the ability to execute different build profiles of the same project that can be adjusted to different

 80

environments. For example, a build carried out on a developer working station may behave

differently than a build performed on the CI server. Such flexibility allows organizing different

integration builds to render efficiency and interactivity to the entire process. The chosen CI server

– Hudson - interconnects seamlessly with Maven and can activate profiles to help split and

prioritize the continuous integration process because the execution of an entire build can be a

cumbersome activity, and may prevent feedback to instantly be triggered rendering useless the CI.

The combination between Maven and Hudson is ideal for tear down the continuous integration

process in different stages with different priorities regarding the feedback on the integration result.

It is also possible in certain circumstances to integrate more than a development line, each one

corresponding to a different version. The development pattern of the RTS’ development team

focuses on integrating all new available features on the main development line (trunk), implying

that these parallel lines, subject to the CI server’s action, correspond to different maintenance

versions of the project.

On the integration environment of the RTS project, the triggering process that enables

Hudson to initiate a new build vary from the manual execution using the Hudson’s GUI to the

automated flow which is started if there are any changes to the project files in Subversion. If the

build fails, a notification is sent to the development team containing the details why the build

cannot be completed. A timer is scheduled to check regularly if there are changes in Subversion’s

repository, so if no changes were made, the build is not executed. Otherwise, Hudson will carry out

its working copy update and execute a build for integration purposes.

5.2.3.1 Using multiple integration lines

A Maven build has a well-defined lifecycle, which comprises various stages ranging from

cleaning the output files from prior builds to the deployment of binary files on Nexus. If the whole

lifecycle is performed, it demands a lot of CPU consumption of the machine that runs Hudson.

There are multiple lifecycle’s phases that may take long minutes to run, in case the project is made

up of many modules and files. A Maven build performed by Hudson, traversing its complete

lifecycle may take longer than would be expected for the continuous integration scenario that aims

to implement rapid cycles. In that case, code integration would not be agile, feedback would

become slower and retrieving a working version of the application within minutes would be at risk.

The solution to this problem is to split the build by using multiple inter-dependent jobs on Hudson,

tuned for with different frequencies (Figure 52).

 81

Figure 51 - Hudson integration jobs.

For purposes of rapid feedback when integrating new code, a job in Hudson was created

which cleans up files resulting from earlier builds, compiles the source files, carries out automated

unit tests and, finally, performs artifacts deployment to Nexus for sharing generated files. If the

build fails at some point, the developer that broke down the code stability is notified to immediately

fix the error. This job provides functionality in order to ensure minimal integration of new changes

therefore its execution frequency is high. Thus, the Subversion repository is checked every 5

minutes by Hudson to spot new modifications on the project and, if any, the job is executed. An

 82

update operation from code repository is performed prior to each run which implies that the build

workspace is not pristine and earlier generated artifacts from previous builds remains intact until

Hudson starts a new build on the job, which can lead to some build failures in occasional situations.

This job is represented on the left on Figure 51. At the end of building this job, integrations tests

will be conducted.

To supplement the previous job, a new one was set up to fulfill two main functions: run a

base build on a pristine working copy and trigger integration tests, depicted on the right on Figure

51. This job is executed once daily at night but removes all files from earlier builds before

performing a clean checkout from the Subversion repository before each build execution, which

guarantees a clean but a slower build. A further difference from the previous job is the fact that

doesn’t perform artifacts deployment Nexus. By the end of execution, another job will be trigger to

perform runtime integration tests.

The integration-testing job is always executed in sequence with previously described jobs.

Such tests are performed on a dedicated machine therefore the very fact of scenario configuration

premises exist, with oblivious failure points to Hudson, led to insulate the integration-testing job

from the rapid integration jobs, like described on previous paragraphs, to prevent breaking the

whole CI cycle. The performed lifecycle includes the package installation on Tomcat application

server with Cargo in the integration environment and subsequently the execution of runtime

integration tests.

At last, for code quality assurance purposes, static analysis tools are used, isolated in a

dedicated job. Static analysis of all RTS project’s files can take around 20 minutes to finish. This job

is performed just once a week. Such check produces results based on a brief historical record to

state the evolution of code quality over time, reinforcing the choice of weekly scans.

Figure 52 - Configured jobs on Hudson.

5.2.3.2 Continuous feedback mechanism

The CI environment relies on a notification system to immediately inform the development

staff about the project status when problems are detected. It is vital that the team of developers is

 83

always prepared to deal with implementation errors detected by Hudson. Hudson’s notification is

based on the principle of “no news is good news” and starts whenever it detects a problem running

a job. Bugs are typically introduced during the construction process by a RTS developer. As soon

the error is detected, Hudson notifies the responsible programmer for the instability by notifying

him via email and optionally notifying other collaborators. Once the developer is notified, shall

immediately fix the error to avoid disrupting the proper functioning of development cycle and

prevent the problem to propagate through the code, besides being able to stop the entire

development team’s activity. If additional developers check in code changes to Subversion during

this instability period, they will also receive notifications from Hudson about the existing problems.

Following fixing the error and subsequent build execution, all parties will receive an email

regarding the successful integration and team’s activity will return to normal.

Besides the built in methods, Hudson has the flexibility of supporting many other forms of

notifications. In addition to the notification types mentioned above, there are plugins that span this

functionality: Notification Plugin allows sending JSON messages with well-defined format of the

integration result to a given machine and that information can be processed in many ways, since it

is an API; Instant Messaging Plugin integrates with most available messaging applications and acts

as a notification bot by that means; Status Monitor Plugin enables to visually notify the integration

state to be presented on large screens fixed on the development team’s physical location; among

many other developed plugins by the Hudson’s programmers community.

5.3 Software project changes management

5.3.1 The versioning strategy

For the RTS project, the chosen version-numbering schema is based on a structured triplet

of integers: MAJOR.MINOR.PATCH, each one with a specific meaning described on Table 10.

Segment Description

Major When breaks up compatibility

Minor When enough requirements are

implemented and the changes are externally visible

Patch Bug fixes without new requirements

Table 10 - Version segments.

Each segment of the project’s version number increment a single unit, depending on the

changes that were introduced. The patch segment will be incremented only when bug fixes are

 84

added to a specific version. This must not comprise changes on data structures and API definitions

neither include new requirements. When enough new features are produced and possibly some bug

corrections, the minor segment must be incremented. API compatibility should not be broken but

new methods can be added and existent ones can be marked as deprecated. When large

modifications occur, like breaking up compatibility with older versions of the application, the major

segment should be incremented.

There are two kinds of versions to bear in when generating distributable files using Maven:

release versions and snapshot versions. The first kind refers to final and published versions of the

application. The second kind concerns development versions that overlap a released major, minor

or patch version, depending on what’s planned by the RTS project responsible. The snapshot

strategy supports multiple versions being developed at the same time. When this scenario occurs

and a release date is reaching the deadline, a release candidate (RC) version can be created to

isolate those developments from the rest of the development pipeline, ensuring the maximum

stability of the final version by not crossing unrelated work targeted to other releases.

On the ITS level of perspective, when a new release version is about to be closed, all issues

targeted to that version, if possible, should be closed, tested and validated. If there is the

impossibility of solving all the issues aimed for the version to be generated, their target should be

shifted to a future RTS release.

5.3.2 Applying database changes

Typically, managing code files’ changes is based on using management tools such as

Subversion. Such management is accomplished statically, which enables the compilation of those

code files to generate always the same result: binary files which always match to the same version.

Installing a particular version of the system in a runtime environment, consist on copying all

binaries to the machine, replacing the files from previous versions. A similar procedure does not

apply on updating databases because the information contained herein differs on every scenario

and just replacing the respective schemas is not enough. In order to upgrade the DB consistently

with the application’s version being installed requires migrating only new changes matching the

new version, such as inserting new tables, or adding new constraints. Changes to be migrated must

be properly marked so that the DB integrity not becomes corrupted. The procedure described above

applies to the pretension of evolving an application version on a machine. The opposite, i.e. the

regression of a version, should also be possible. Databases’ versions control refers to the capacity,

as in managing static files’ versions on Subversion, to accomplish roll forward and rollback

migrations, to record information about every atomic change, who implemented it and why. This

feature extends the ability to trace all changes on databases, as intended for regular source-code

files.

 85

The most common strategy for migrating databases versions is using a table that indicates

the installed version in each environment. Therefore, each set of changes in the database

corresponding to the main solution’s version, one must create a script that evolve the database to a

newer version (roll forward) and a script that allows to recover from those same developments

(roll-back) [12]. Thus, for each application version deployed in any runtime environment, it is

always possible to know which scripts have already been applied in the database so that migration

of newer versions apply only correspondent changes. Liquibase uses changesets files that are

compatible with a variety of formats such as XML or plain old SQL, enabling straightforward DBs

migration on the RTS project. It was decided to use SQL code on this project to conduct migrations:

a changeset file for each of the four PostgreSQL schemas used in this project, because using SQL

code is agnostic to every DB migration tool and also dispense new developers to learn a new lexicon

to conduct such operations. Like the rest of files that make up the overall solution, changeset files

are now versioned in Subversion. This means that changes in the DB schemas will be directly

matched with versions of the overall solution. In the event of using PostgreSQL stored procedures

on the project, the files containing them should also be included inside the SVN repository.

However, its deployment on runtime environments will not origin the same difficulties like

schemas migration because it is not necessary to record which store procedure is installed in a

particular environment. Scripts containing the stored procedures can be executed every time a DB

is migrated, as these new changes will override the existing ones. Liquibase implements this

strategy and logs, on the occasion of migrating the DB, what new changes were held therein. During

the development of new increments to database schemas, the RTS project’s developers must

uniquely identify, within each changeset file, such changes in SQL formatted comments with

specific references. Thus, when applying the evolved changesets in a specific instance, these

references will be recorded in the Liquibase table and, in a subsequent migration of the DB, they

will be ignored applying just the further changes (Figure 53).

 86

Figure 53 – Using Liquibase for database migrations.

On changeset files, for each rolling increment of schemas, a block of code should be created

to rollback the correspondent change in cases where is necessary to reverse versions of the whole

application. Liquibase supports the implicit rollback of certain operations, such as inserting tables

and adding columns, but filling tables with data and removal of existent tables requires the manual

specification of SQL code that allows reverting such changes because its automatic rollback is not

supported. It is therefore advisable to include indiscriminately on every atomic change in schemas

the corresponding SQL code to rollback it.

The engine used by Liquibase on each runtime environment tags the database with the

version of the deployed application and the tag operation is performed in the process of deploying a

new version of the RTS project. On production machines, executing the Liquibase standalone

command-line application applies the migration of DBs and respective tag operation, while on the

dedicated environment for integrating and testing the RTS system, Hudson server accomplishes

such operations in an automated manner shortly after the deployment of the application packages

on the runtime servers.

The produced code by developers for the RTS project will be regularly and automatically

checked, built, subject to low-level unit testing, packaged and then deployed in the integration

environment. During this process, the DB version, which will be migrated by Liquibase, is always

consistent with the installed SVN revision (or version) of the application that is installed on the

integration machine - in this case, that version matches a Subversion revision in a development

 87

branch. Once the proper deployment of the application is done and correspondent migration of

DBs is executed, the system is subject to automatic integration tests started by Hudson.

As mentioned in previous sections, there’s a Liquibase plugin that allows migrate DBs with

Maven builds, which was adopted by the RTS project to perform those operations in an automated

way. The Hudson CI server uses Cargo Maven Plugin and performs automated deployments of the

application in this scenario.

5.3.3 Releasing versions of the project

As mentioned on previous chapter, before launching a RTS application release, all tasks,

bugs and requirements for that release should be validated and closed. Releasing a new version of

the application may rely on those issues’ statuses but is not always feasible to finish them as

scheduled, which may impose the development team to shift them to further releases by ensuring

that no one remains unsolved. Figure 54 shows issues’ statuses as used on Redmine by the RTS

project. When an issue is created and assigned to a particular developer, it has the “new” status but

when the related work is finished, he should change the issue status to “resolved” and immediately

assign it to another developer for validation purposes. Then, the new assignee must ensure that the

original developer’s work was properly carried out, by validating the issue. If it is the case, the issue

must be set to “closed”, otherwise, the second assignee must send the issue back to the

implementer to complete or fix the work. When an issue is closed by proper validation, it is deemed

as successfully resolved and ready to be included on final RTS’ releases.

Figure 54 - Typical issue statuses.

RTS project responsible must continuously check all corresponding issues statuses during

the development process. Closed issues were validated and successfully resolved by the RTS

development team, otherwise they are not ready to be included on the final release. Redmine allows

checking those statuses and to easily move unfinished issues to further releases, even when a

release is about to be completed. Figure 55 shows how to bulk shift a set of issues to another

versions, when they are not ready to be released.

 88

Figure 55 - Shifting issue to another version on Redmine.

Following the guarantee that all release issues were validated, even if that entails shifting

unfinished and invalidated issues to future releases, the development team can perform the release

of the RTS application. There are two distinct kinds of release, as explained in earlier chapters:

releases with features (major and minor) and maintenance releases (patches). Next, it will be

explained how to easily perform major, minor and patch releases using Maven.

As pointed out in above chapter, prior every version release, a release candidate (RC) is

created for stabilization purposes. The RC may be established upon completion of all features

aimed at the final release, even if they were not yet validated. Stabilization requires solving bugs

found during validation phase of new developed features, aimed to that release, or solving older

bugs. For RTS project, stabilization branches will always be used in a view to separate mainline

(trunk) developments from the version about to be launched. Procedures to generate release

candidates and final releases will be conducted in a semi-automatic way because it requires

 89

executing a fixed sequence of operations, which become repetitive and clinging to errors when run

in a fully manual manner.

Figure 56 - Creating a RC branch.

Figure 24 shows what is required to create a branch to a release candidate (RC). If

performed manually, the sequence of needed steps are:

• Check for changes to be submitted to the Subversion repository;

• Create a version branch (1);

• Increase the versions of all POM files in the trunk to the next development version (2);

• Submit changes to POM files.

As seen on figure, at a given instant, it was decided a RC to be produced by creating a new

branch (1). In this illustration, the version that is being developed is the 1.2.0 and will be

transposed into the new branch, where it will be raised later as a final release. The trunk, following

the establishment of the branch, will bear the development of the next release (2), which in this

case will be 1.3.0. Thus, the development of that release may optionally start while the period of the

1.2.0 release stabilization follows in the new branch. The semi-automatic process of generating RCs

in the RTS project will be done using the Maven Release Plugin. This plugin allows developers to

perform all above steps automatically, except the definition of the next development version, which

will be prompted during the execution of the plugin. When the “branch” goal of this plugin is run, it

will prompt the user about the next development version (in the figure example: 1.3.0-SNAPSHOT)

and then automatically execute all steps outlined above, reflecting what is illustrated in Figure 56.

All RC stabilization related issues should be submitted to the new branch directly and, if pertinent,

those changes should be merged to trunk, so that these problems do not recur in the next version.

 90

Figure 57 - Releasing process steps.

Once the RC is stabilized, with every issue closed and validated, the next action to take is to

perform the final release. Figure 57 shows the steps that must be followed to release versions from

the branch. Those versions could be the RC itself (for major and minor releases) or, in maintenance

situations, patch releases. The sequence of steps to prepare the final release is:

• Check for changes to be submitted to the Subversion repository;

• Check if there are dependencies in the project still under development (snapshots);

• Change POM files’ versions of the branch to final release (1);

• Perform automated tests with the new version set on POM files;

• Commits changes to POM files;

• Create a version tag, copying files to tags directory (2);

• Change back version POM files’ version of the branch to next patch version, for

maintaining the major/minor release (3);

• Commits again to Subversion the changes to POM files.

The extensive list of steps that must be taken to prepare the release may lead to oblivion or

errors if performed manually. Therefore, as like creating branches, releasing RTS final versions is

done semi-automatically using again the Maven Release Plugin. The execution of this plugin using

the “prepare” goal runs all the steps described above, after questioning the user about which

versions are involved in the process: the final release literal and next development patch literal on

the branch, as the ultimate objective of branches is maintenance. However, the release is not

complete without publishing binaries to Nexus repository. The Maven Release Plugin enables also

holding such task, using the goal “perform” and perpetuate the release as complete. Figure 58

resumes the Maven Releases Plugin goals used by the RTS development team to perform releases

of the application.

 91

Figure 58 - Maven Release Plugin mapping with RTS' releases strategy.

A release is only finished when it is taken for closed on Redmine. Figure 59 shows how to

close an RTS application release.

Figure 59 - Closing a release on Redmine.

 92

5.4 Automated tests on every build

5.4.1 Automated integration tests

In the RTS continuous integration (CI) environment, a dedicated scenario for integration

testing was created. The responsible entity for performing such tests is Hudson, which are

frequently run during integration cycles of the developed work by RTS team. Integration tests, as

previously explained, are executed following each change on project’s files and Hudson conducts

them independently from the rapid integration jobs. This prevents the main CI jobs to stop running

rapid integration builds when integration tests detect some issue with the system components. Yet,

the job that runs integration tests will notify RTS developers if such problems arise on the project.

Every build started by Hudson will produce the executable files of the most updated version of the

trunk and install all of them in the live environment, right after the migration of all RTS databases

in that scenario, making them coherent with the remaining application and mimicking a real

environment. Not until the end of the deployment on Tomcat and the migration of all databases,

the integration tests are performed. Hudson performs the complete installation of the application

on the integration scenario, including all database changes, in a completely automatic manner.

Figure 60 shows a representation of that runtime environment. Hudson uses Maven builds on

every integration cycle with resource to three Maven plugins: Liquibase[115], [116], Cargo[117],

[118] and soapUI[46]. Liquibase is a database (DB) migration tool; Cargo remote controls J2EE

containers like Tomcat - used by the RTS project - and supports deployments of java applications

and to stop and start the container. soapUI is a web services (WS) testing framework that allows

creating tests suites with multiple WS parameters, including WS security.

Figure 60 - Integration testing.

An integration tests suite was created using the soapUI graphical tool (Figure 61) to access

the web services interface of the RTS project, the RTS.WS module. The suite tests the integration

between DBs, the RTS application core and the RTS.WS. Using the WSDL (Web Service Definition

Language) file, the test suite was generated with multiple interface binds and configured to

simulate remote requests for each remote access points of the RTS.WS interface with

 93

authentication support. Figure 28 shows a test execution over the WS using the soapUI graphical

tool.

Figure 61 - Using soapUI to create a test suite.

The soapUI framework saves the test suites in XML format that can be used by the soapUI

Maven Plugin. The created soapUI test suite was settled on a Maven build for use by Hudson on the

integration tests job so as to be executed after migrating the database and deploying the application

on Tomcat (Figure 60). Figure 62 shows the Hudson’s integration tests job updating one of the

RTS’ databases using Liquibase Maven Plugin. This plugin will directly access databases using a

JDBC driver for PostgreSQL and perform the schemas migration to be coherent with the rest of the

RTS application modules on the integration runtime environment inside Tomcat (Figure 60).

Deployment of the RTS application no Tomcat application server will be done next.

Figure 62 - Database automatic migration on RTS dev. environment.

 94

During the Maven build, Cargo will update the Tomcat J2EE Web container with the RTS

application. As shown in Figure 63, Cargo will first undeploy the previous version of the installed

application before deploying the newly built version by Hudson. After this process, the soapUI test

suite will be run and invoke the WS interfaces of the RTS application to check if the integration of

the supporting modules were done successfully. On error, Hudson will fail the integration tests job

and notify the RTS development team about the integration problem.

Figure 63 - Running integration tests with Hudson.

This procedure is repeated whenever a change is made to RTS project files in order to

ensure fast integration of the components involved on tests, preventing regression issues to be

detected hours, days or weeks later.

5.4.2 Automated unit tests

As an example for the RTS development team, a unit test case was created using JUnit to

test a helper class of the RTS project. The example below shows the concept and the benefit of using

automated unit testing prolifically during development phase on the project. Using the default

Maven configuration, a test case was placed on the “src/test/java” directory of the same java

package of the class being tested (Figure 63). The tested class is “CitizenCardParser.java” and the

unit test class is the file “CitizenCardParserTest.java”, both shown with an arrow in Figure 64.

 95

Figure 64 - Unit tests directory structure.

Using Maven default configuration, the only steps to automate unit tests on Maven builds

were the JUnit dependency configuration on the project’s parent POM file and to place the unit test

class on the default tests directory. In the unit test file, JUnit annotations were used to specify

witch methods should be tested by the framework and the code were developed to test the methods

logic using JUnit’s assertions. So, every Maven build will execute the test case on the tests phase of

the Maven lifecycle, whether locally, on RTS developers’ workstations, or by Hudson during

integration builds. This automated testing process is advantageous for continuous integration

because it verifies eventual regression problems when the unit tests coverage is significant. For the

case of RTS project, the shown example is the first developed automated unit test but it is expected

the RTS development team to create automated unit tests during every feature implementation to

increase the code test coverage.

 96

Figure 65 - Test result with fails.

Figure 65 shows the previous test case execution by Hudson on an integration build. As

shown, the “CitizenCardParserTest” test case analyses five methods and one failed. The error was

simulated to exemplify the negative feedback performed by Hudson upon a unit testing error,

which generates an e-mail notification to the developer that introduced the problem on the code.

Using the Hudson’s web GUI, it is possible to see details about the testing results, including the

cause and a graphic with previous tests runs. This information includes a simple test coverage

analysis about the number of unit tests used during recent integration builds. The static analysis of

automated unit tests coverage will be addresses in the next section.

5.5 Automated code verifications

Hudson will carry out code static analysis every week on the RTS’ project files, although

RTS’ developers should use static analysis plugins on their IDEs to check for bugs in real time.

Hudson will focus code analysis on controlling the code quality by analyzing and checking the

quality advancement and placing the results into graphics and tables. Various static analysis tools

were installed on Hudson in order to carry out constant code checks. The most relevant are:

FindBugs, PMD, Checkstyle and Cobertura. FindBugs performs analysis on Java code and detects

bugs patterns, divided by categories and severity. PMD can detect unused code, overcomplicated

expressions ad other bugs, besides detecting duplicated code – “copy paste detector”. Checkstyle

examines the use of Java code conventions by the RTS’ development team, such as the number of

 97

characters per line or proper code documentation. Lastly, Cobertura is a tool for tests coverage, or

code coverage, which calculates the proportion of code that is acceded by tests.

Figure 66 - FindBugs summary on Hudson.

A weekly job was set up on Hudson to perform code static analysis. The results are brought

on formatted tables and graphics, organized by categories. The results are available by kind, per

project module, per package, per file and per code area inside each class file of the RTS project.

Figure 66 shows a FindBugs results table provided by Hudson, with bug distribution by RTS

modules and showing the amount of bug patterns found, divided by severity. Hudson enables to

analyze every bug in detail, namely the exact line of code where was found. FindBugs even suggests

a way to fix the bug, as shown on Figure 67. The example presents a bug on “DischargeLetter.java”

file, on line 24 with a low severity but programmers should have critical thinking with FindBugs or

other tool’s hints because some of the found patterns are false positives.

 98

Figure 67 - Problem detail on Hudson found by FindBugs.

The most effective means to enhance the quality of code is prevention, not detection.

Detection assumes the bugs were introduced and detected by verification, like by static analysis

tools. Each RTS developer workstation should have static analysis plugins installed on their IDE,

like FindBugs, PMD and Checkstyle plugins, so that bugs are displayed in real time on source-code

editors. Figure 68 shows FindBugs plugin on Eclipse showing a line with a bug pattern. As on

Hudson, it is possible to get the pattern details and correction hint.

Figure 68 - Bug found by FindBugs on Eclipse.

The PMD tool as well as detecting different types of bugs like FindBugs, detects duplicated

blocks of code (Figure 69). Hudson allows searching all occurrences and checks exactly where are

the duplicated blocks on the project’s files and on which lines. These events are divided by severity

depending on the number of duplicate lines in each instance. That is, on each occurrence of

duplicate blocks, the more lines have been copied, the greater the severity. Code blocks duplicates

can be easily fixed using code refactors, which improve the code quality and maintainability.

 99

Figure 69 - Duplicate code detection example.

As noted in the previous section, automated unit tests proliferation on RTS project will

help detect regression issues immediately during continuous integration cycles performed by

Hudson. So it is important to identify which areas of code are being subject to automated tests.

Cobertura tool was installed on Hudson to detect which lines of code of the RTS project are covered

by tests. The obtained percentage allows giving development team the awareness whether critical

modules are being verified by continuous integration (CI). Figure 70 illustrates a code coverage

analysis to the “CitizenCardParser” class file, referred on the preceding section and subject to

automated testing with JUnit (Figure 64). This class has 10 methods and, according to coverage

analysis, only 9 are being subject to the action of the unit test file “CitizenCardParserTest.java”

(Figure 64). For each of the class’ methods, the coverage analysis examines which lines are being

covered by tests and, in this case, only 53% of all class’ lines are being tested. This figure also

demonstrates that 12 of the 26 possible conditions are run by tests. Analyzing test coverage results

allows improving the effectiveness of developed unit test cases and to check which areas of code

needs to be tested, aiming the objective of almost full coverage, while not being possible in many

cases.

 100

Figure 70 - Test coverage of CitizenCardParser class.

 101

6 Results
We carried out a survey about software development practices and processes in the

Portuguese industry of small and medium-sized companies (see Annex A). From the survey

outcome, organizations have expressed interest in adopting construction practices aimed to

improve the quality of their software products. Nevertheless, there is still great room for

improvement in some key points of the used processes and practices. During the request for

participation, some companies revealed strong interest to contribute and highlighted the

significance of the survey in the software development field. Such interest was expressed in the high

participation rate: 25%. The results were compiled in a report and sent to the participating

companies (see Annex B), which some of them replied with positive feedback.

To properly deploy the proposed construction process on the RTS[3], [4] development

environment, all team must comply the defined steps and practices. For such changes to be

effectively embraced, the project’s collaborators have to learn and perceive the core procedures and

follow them with discipline. In addition, the relative complexity of the proposed construction

process propelled the establishment of a best practices document for use by the RTS project’s

developers (Annex C). This document explains the proposed development practices without

mention particular details for easier assimilation after reading. It also contains guidelines for

developers, specific design patterns and strict Java code conventions. Figure 71 presents the

covered topics on the best practices document and their correlation. As seen in the illustration, the

document focuses more on programming subjects and less on management matters.

Figure 71 - Best practices document's structure.

The implementation of the proposal submitted by this dissertation changed the way the

software construction takes place in the RTS project. The new introduced practices altered the

 102

programmers’ habits and have brought improvements in the way the project is built. One of the

most important features of the new construction process is continuous integration, which led to

switch the code production paradigm on the RTS project. Releasing versions of the application also

became more effective: Maven[72] releases and Subversion’s directory structure now supports the

defined versioning strategy. Releasing versions of the RTS application is now a more agile process,

which helps to efficiently uphold handling over the developmental environment. Project’s

dependencies management and database change management were also successfully achieved by

equipping the project greater control over the different RTS’ components. Seamless databases

migrations are now possible and allowed to purge the risk of hazards on sensitive data during

deployments on production environments.

We could not confirm the benefits of automating unit tests using continuous integration.

Due to low development pace and the large project size, the growth of automated unit tests in the

RTS project was not feasible. Thus, the quality of produced code did not notably improved during

the course of this work. The use of integration tests has also not evolved, in spite of the

establishment of a runtime integration scenario with support for automated deployments of

databases changes and binaries of the RTS application.

The progress management and adaptive development did not suffer relevant changes that

allow this dissertation to create a pertinent conclusion.

 103

7 Conclusions and future work
This dissertation features a proposal for improving the software construction processes and

practices on the RTS project [3], [4] that allows being compared with the practices used on the

Portuguese software industry, based on the outcome of a survey (Annex A and Annex B), carried

out in the scope of this work. The survey results showed that there are differences about the given

meaning on the different construction practices between the industry and the proposal presented in

this work. According to those results, the Portuguese software companies attach great significance

to functional tests and most of them claimed that a specialized team tests their products. Given the

nature of the RTS project, functional tests are conducted by the RTS development team itself,

despite the proposed construction process suggesting the achievement of such validations by

elements that did not developed the features being tested. Placing emphasis on proper use of tasks

management platforms is greatly valued by the Portuguese industry like the proposal we presented

on this work.

Besides the divergences in the use of functional testing practices between the Portuguese

companies and the proposed construction process, we found other major differences: continuous

integration (CI) and automated testing are substantially more valued by the proposal we present

than by the present industry. Unlike the generalized belief of software companies, this dissertation

supports that CI is vital in the process of developing software. The adoption of such technique

outweighs the lack of testing resources on the RTS project. CI enables tight change control using

automated tests, which can virtually cover all source-code lines and thereby improve the final

product.

The proposed construction process is endowed with some characteristics that define agile

development. This work is more focused on code construction practices than on management

methods, like agile methodologies. However, conclusions can be drawn about the proximity of this

proposal to such methodologies and agree on whether the agile philosophy is close to be met or not.

The proposed construction process is explicit in some of the items specified by the agile

manifesto[20], such as adaptation to changes, evolutionary development and valuing

communication between individuals, however it is ambiguous on the definition of highly

collaborative interactions and does not specify the fixed time iterations during development cycles.

It also does not require frequently delivering value to costumers. However, the proposed work does

not hinder the adoption of a particular agile methodology since there are no mismatches between

the agile philosophy and the presented practices. Characteristics of academic software projects may

inhibit the adoption of a specific agile methodology because most of them require experience,

discipline and closeness between individuals and these traits may be insufficient in the academic

scope.

 104

A major obstacle to implement the new construction process in the RTS project is the

relative complexity of the proposal, which encompasses several disciplines of software

development. For every software project it takes time for teams to absorb and perceive every

practices defined by new ways of working, combined with the lack of training and coaching about

the new construction process[119]. We have not provided initial training to the RTS development

team about the practices described in this dissertation and that may be the key to properly

implement them on the project.

The implementation of the proposed work on the RTS development environment shows

that organized processes enhance efficiency in the production of products and services. Despite the

inconclusive results about the final quality of the RTS application in the eyes of customers, the new

construction process helped to ensure greater control over the project. Like on other industries,

process improvement adds value to the end product [120].

The assembled platform supports all sorts of automated tests but there are only two

automated test cases, created in the context of this dissertation: a single unit test and an

integration test, which checks the operability between Web Services interfaces, RTS’ internal

components and the databases. It is necessary to produce massive amount of automated unit tests

for taking the best out of potential of this kind of validation. The analysis of code coverage may be

vital to check what critical regions should be checked by automated tests. It is also necessary that

automated integration tests cover more project modules and not only those referred previously.

Continuous integration may also support additional kinds of automated tests: functional

tests, which can easily be carried out using tools like Selenium[45] (automates Web browsers), and

load/performance tests using tools like JMeter[32], which should help to study the application’s

behavior on different environments.

The definition of the construction process was incomplete because it did not cover certain

important matters of software configuration management: automatic packages installation and

application configurations management. To speed up the delivery process, installation packages

should be used with support for packages versions management. The application configurations

management is typically concerned with portable configuration files and is responsible for

managing how the application behaves on different situations: during builds, during deployment

and during runtime.

Depending on the prospect to be given to the RTS project, it could be of interest to adopt a

particular agile methodology that best suits the project’s characteristics. The adaptation of the

proposed practices to an agile methodology should not be incompatible, as previously mentioned.

 105

8 References

[1] J. Highsmith, Agile Project Management: Creating Innovative Products, Second Edi. Addison-
Wesley Professional, 2009.

[2] C. Larman, Agile and Iterative Development: A Manager’s Guide. Addison Wesley, 2003.
[3] I. C. Oliveira and J. P. S. Cunha, “Integration Services to Enable Regional Shared Electronic Health

Records,” in User Centred Networked Health Care - Proceedings of MIE, Oslo, Norway, 2011, pp.
310-314.

[4] “Rede Telemática Saúde.” [Online]. Available: http://www.rtsaude.pt. [Accessed: 13-May-2012].
[5] Oxford University Press (Corporate Author), “New Oxford American Dictionary.” .
[6] W. Lewis, Software Testing and Continuous Quality Improvement, Third Edit. CRC Press, 2009.
[7] C. Borror, Ed., The Certified Quality Engineer Handbook, Third Edit. ASQ Quality Press, 2009.
[8] G. Gordon Schulmeyer, Ed., Handbook of Software Quality Assurance, Fourth Edi. Artech House,

2008.
[9] M. McDonald, M. Robert, and R. Smith, The Practical Guide to Defect Prevention. Microsoft Press,

2008.
[10] D. Huizinga and A. Kolawa, Automated Defect Prevention: Best Practices in Software Management.

John Wiley & Sons, Inc, 2007.
[11] B. Collins-sussman, B. W. Fitzpatrick, and C. M. Pilato, Version Control with Subversion: For

Subversion 1.5, vol. 5. TBA, 2008.
[12] J. Humble and D. Farley, Continuous Delivery. Addison-Wesley, 2011.
[13] M. Moreira, Adapting Configuration Management for Agile Teams: Balancing Sustainability and

Speed. John Wiley & Sons, Inc, 2009.
[14] W. S. Humphrey, Managing the Software Process. Addison-Wesley Professional, 1989.
[15] M. Andrews and J. A. Whittaker, How to Break Web Software: Functional and Security Testing of

Web Applications and Web Services. Addison-Wesley Professional, 2006.
[16] International Organization for Standardization, “ISO 9000 - Quality management.” [Online].

Available:
http://www.iso.org/iso/iso_catalogue/management_and_leadership_standards/quality_management.ht
m. [Accessed: 28-May-2012].

[17] I. O. for Standardization, “ISO 15504 - Information technology: Process assessment.” [Online].
Available:
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38932.
[Accessed: 30-May-2012].

[18] E. Whitworth, “Agile Experience: Communication and Collaboration in Agile Software
Development Teams,” Carleton University, 2006.

[19] B. C. Ferreira Dias Alves, “Construção de módulos para o Ddesenvolvimento ágil de sites Web na
Dreamlab,” Universidade de Aveiro, 2010.

[20] “Agile Alliance.” [Online]. Available: http://www.agilealliance.org. [Accessed: 30-May-2012].
[21] P. Kroll, P. Kruchten, and G. Booch, The Rational Unified Process Made Easy: A Practitioner’s

Guide to the RUP. Addison-Wesley Professional, 2003.
[22] “Scrum Alliance.” [Online]. Available: http://www.scrumalliance.org. [Accessed: 30-May-2012].
[23] J. Shore and Chromatic, The Art of Agile Development. O’Reilly Media, 2007.
[24] A. Cockburn, Agile Software Development: The Cooperative Game, Second Edi. Addison Wesley

Professional, 2006.
[25] C. Larson and F. LaFasto, Teamwork: What Must Go Right/What Can Go Wrong. Sage Publications,

1989.
[26] G. Chin, Agile Project Management: How to Succeed in the Face of Changing Project Requirements.

AMACOM, 2004.
[27] S. C. McConnell, Code Complete, 2nd ed. Microsoft Press, 2004.
[28] P. Cauldwell, Code Leader: Using People, Tools, and Processes to Build Successful Software. Wiley

Publishing, Inc., 2008.
[29] P. Aston, C. Fitzgerald, and V. Mitov, “The Grinder, a Java Load Testing Framework.” [Online].

Available: http://grinder.sourceforge.net/. [Accessed: 10-Jun-2012].

 106

[30] B. Damian, “FWPTT - Web Load Testing Framework.” [Online]. Available:
http://fwptt.sourceforge.net/. [Accessed: 10-Jun-2012].

[31] C. Goldberg, “Multi-Mechanize - Performance Testing Framework.” [Online]. Available:
http://testutils.org/multi-mechanize/. [Accessed: 10-Jun-2012].

[32] The Apache Software Foundation, “Apache JMeter.” [Online]. Available: http://jmeter.apache.org.
[Accessed: 10-Jun-2012].

[33] C. Goldberg, “Pylot - Web Performance Tool.” [Online]. Available: http://www.pylot.org/.
[Accessed: 10-Jun-2012].

[34] J. Fulmer, “Siege.” [Online]. Available: http://www.joedog.org/siege-home/. [Accessed: 10-Jun-
2012].

[35] A. Hunt and D. Thomas, Pragmatic Unit Testing in Java with JUnit. The Pragmatic Programmers,
2003.

[36] T. Riley and A. Goucher, Eds., Beautiful Testing: Leading Professionals Reveal How They Improve
Software. O’Reilly, 2010.

[37] P. Tahchiev, V. Massol, and G. Gregory, JUnit in Action, Second Edi. Manning Publications, 2010.
[38] P. M. Duvall, Continuous Integration: Improving Software Quality and Reducing Risk. Addison

Wesley, 2007.
[39] A. Malec, C. Pickett, F. Hugosson, and R. Lemmen, “Check: A unit testing framework for C.” .
[40] “CMockery.” [Online]. Available: http://code.google.com/p/cmockery/. [Accessed: 10-Jun-2012].
[41] R. S. Consulting, “CppUTest.” [Online]. Available: http://www.cpputest.org/. [Accessed: 10-Jun-

2012].
[42] B. Lepilleur, “CppUnit - C++ port of JUnit.” [Online]. Available:

http://sourceforge.net/projects/cppunit/. [Accessed: 10-Jun-2012].
[43] “googlemock - Google C++ Mocking Framework.” [Online]. Available:

http://code.google.com/p/googlemock. [Accessed: 10-Jun-2012].
[44] Gargoyle Software Inc., “HtmlUnit.” [Online]. Available: http://htmlunit.sourceforge.net. [Accessed:

10-Jun-2012].
[45] “Selenium - Web Browser Automation.” [Online]. Available: http://www.seleniumhq.org.

[Accessed: 10-Jun-2012].
[46] SmartBear Software., “soapUI.” [Online]. Available: http://www.soapui.org/. [Accessed: 10-Jun-

2012].
[47] “JUnit.” [Online]. Available: http://www.junit.org/. [Accessed: 10-Jun-2012].
[48] “TestNG.” [Online]. Available: http://www.testng.org. [Accessed: 10-Jun-2012].
[49] “Mockito.” [Online]. Available: http://code.google.com/p/mockito. [Accessed: 10-Jun-2012].
[50] “JSUnit.” [Online]. Available: http://www.jsunit.net. [Accessed: 10-Jun-2012].
[51] The jQuery Project., “QUnit.” [Online]. Available: http://docs.jquery.com/QUnit. [Accessed: 10-Jun-

2012].
[52] Pivotal Labs., “Jasmine.” [Online]. Available: http://pivotal.github.com/jasmine/. [Accessed: 10-Jun-

2012].
[53] S. Bergmann, “PHPUnit.” [Online]. Available: https://github.com/sebastianbergmann/phpunit/.

[Accessed: 10-Jun-2012].
[54] “NUnit.” [Online]. Available: http://www.nunit.org/. [Accessed: 10-Jun-2012].
[55] Microsoft Corporation., “MSTest.” [Online]. Available: http://www.microsoft.com/visualstudio.

[Accessed: 10-Jun-2012].
[56] K. Li and M. Wu, Effective Software Test Automation: Developing an Automated Software Testing

Tool. Sybex, 2004.
[57] RedHat, “Arquillian.” [Online]. Available: http://www.jboss.org/arquillian.html. [Accessed: 10-Jun-

2012].
[58] B. Swift, “GINT - Groovy Integration Test Framework.” [Online]. Available:

https://bobswift.atlassian.net/wiki/display/GINT. [Accessed: 10-Jun-2012].
[59] “Citrus.” [Online]. Available: http://www.citrusframework.org/. [Accessed: 10-Jun-2012].
[60] A. Zeller, Why Programs Fail: A Guide To Systematic Debugging, Second Edi. Morgan Kaufmann,

2009.
[61] A. Scott and !. Filipin, “Watir - Web Application Testing in Ruby.” .
[62] I. Actimind, “actiWATE - Web application testing environment.” [Online]. Available:

http://www.actiwate.com. [Accessed: 07-Jul-2012].

 107

[63] “IeUnit - Unit test framework for web pages.” [Online]. Available: http://code.google.com/p/ieunit.
[Accessed: 07-Jul-2012].

[64] A. Oram and G. Wilson, Making Software: What Really Works, and Why We Believe It. O’Reilly
Media, 2010.

[65] The Apache Software Foundation, “Subversion.” [Online]. Available: http://subversion.apache.org.
[Accessed: 07-Jul-2012].

[66] “Git.” [Online]. Available: http://www.git-scm.com. [Accessed: 07-Jul-2012].
[67] “CVS.” [Online]. Available: http://www.nongnu.org/cvs. [Accessed: 07-Jul-2012].
[68] Canonical Ltd., “Bazaar.” [Online]. Available: http://bazaar.canonical.com. [Accessed: 07-Jul-2012].
[69] “Mercurial.” [Online]. Available: http://mercurial.selenic.com. [Accessed: 07-Jul-2012].
[70] M. Mason, Pragmatic Version Control using Subversion. The Pragmatic Programmers, 2006.
[71] T. Preston-Werner, “Semantic Versioning.” [Online]. Available: http://www.semver.org. [Accessed:

25-Nov-2011].
[72] “Apache Maven Project.” [Online]. Available: http://maven.apache.org. [Accessed: 13-Sep-2011].
[73] Sonatype, “The Benefits of a Repository Manager.” 2011.
[74] The Apache Software Foundation, “Ivy.” [Online]. Available: http://ant.apache.org/ivy. [Accessed:

07-Jul-2012].
[75] “Bugzilla.” [Online]. Available: http://www.bugzilla.org. [Accessed: 07-Jul-2012].
[76] Canonical Ltd., “Launchpad.” [Online]. Available: https://www.launchpad.net. [Accessed: 07-Jul-

2012].
[77] “Trac - Integrated SCM & Project Management.” [Online]. Available: http://trac.edgewall.org.

[Accessed: 07-Jul-2012].
[78] J.-P. Lang, “Redmine.” [Online]. Available: http://www.redmine.org. [Accessed: 07-Jul-2012].
[79] A. Mukherjee, Challenges and Solution: A Web Based Issue Tracking System for detecting Bugs.

VDM Verlag Dr. Müller, 2010.
[80] E. Dustin, Effective Software Testing: 50 Specific Ways to Improve Your Testing. Addison-Wesley

Professional, 2002.
[81] J. Cleland-Huang, O. Gotel, and A. Zisman, Eds., Software and Systems Traceability. 2012.
[82] J. F. Smart, Java Power Tools, vol. 33, no. 1. O’Reilly, 2008.
[83] B. Rex, Critical Testing Processes: Plan, Prepare, Perform, Perfect. Addison-Wesley Professional,

2003.
[84] “FindBugs.” [Online]. Available: http://findbugs.sourceforge.net. [Accessed: 07-Jul-2012].
[85] InfoEther, “PMD.” [Online]. Available: http://pmd.sourceforge.net. [Accessed: 07-Jul-2012].
[86] “Checkstyle.” [Online]. Available: http://checkstyle.sourceforge.net. [Accessed: 07-Jul-2012].
[87] M. Doliner, “Cobertura.” [Online]. Available: http://cobertura.sourceforge.net. [Accessed: 07-Jul-

2012].
[88] Oracle, “Hudson.” [Online]. Available: http://www.hudson-ci.org. [Accessed: 07-Jul-2012].
[89] “Jenkins.” [Online]. Available: http://www.jenkins-ci.org. [Accessed: 07-Jul-2012].
[90] “CruiseControl.” [Online]. Available: http://cruisecontrol.sourceforge.net. [Accessed: 07-Jul-2012].
[91] “Luntbuild.” [Online]. Available: http://luntbuild.javaforge.com. [Accessed: 07-Jul-2012].
[92] The Apache Software Foundation, “Apache Continuum.” [Online]. Available:

http://continuum.apache.org. [Accessed: 07-Jul-2012].
[93] C. Hibbs, S. Jewett, and M. Sullivan, The Art of Lean Software Development. O’Reilly Media, 2009.
[94] S. Guckenheimer and N. Loje, Agile Software Engineering with Visual Studio: From Concept to

Continuous Feedback, Second Edi. Addison-Wesley Professional, 2011.
[95] M. Clark, Pragmatic Project Automation: How To Build, Deploy and Monitor Java Applications.

The Pragmatic Programmers, 2004.
[96] T. O’Brian, J. Casey, B. Fox, B. Snyder, J. Van Zyl, and E. Redmond, Maven: The Definitive Guide.

Sonatype inc., 2008.
[97] S. D. Ritchie, Pro .NET Best Practices. Apress, 2011.
[98] J. Weirich, “Rake - Ruby Make.” [Online]. Available: http://rake.rubyforge.org. [Accessed: 07-Jul-

2012].
[99] The Apache Software Foundation, “Apache Ant.” [Online]. Available: http://ant.apache.org.

[Accessed: 07-Jul-2012].
[100] S. Desikan and G. Ramesh, Software Testing: Principles and Practices. Addison-Wesley

Professional, 2007.
[101] J. F. Smart, Jenkins: The Definitive Guide. O’Reilly Media, 2011.

 108

[102] J. Ward and J. Peppard, Strategic Planning for Information Systems. John Wiley & Sons, Inc, 2002.
[103] Instituto Nacional de Estatíistica, “Estudos sobre Estatísticas Estruturais das Empresas (2008),”

2010.
[104] M. Riou, Raven: Scripting Java Builds With Ruby. firstPress, 2007.
[105] J. Morris, Practical Data Migration. British Computer Society, 2006.
[106] K. Schwaber, Agile Project Management with Scrum. Microsoft Press, 2004.
[107] A. Kelly, Changing Software Development: Learning to Be Agile. John Wiley & Sons, Inc, 2008.
[108] JFrog Ltd., “Artifactory.” [Online]. Available:

http://www.jfrog.com/home/v_artifactory_opensource_overview. [Accessed: 07-Jul-2012].
[109] Sonatype Inc., “Nexus.” [Online]. Available: http://www.sonatype.org/nexus. [Accessed: 07-Jul-

2012].
[110] The Apache Software Foundation, “Apache Archiva.” [Online]. Available: http://archiva.apache.org.

[Accessed: 07-Jul-2012].
[111] The Apache Software Foundation, “Maven Release Plugin.” [Online]. Available:

http://maven.apache.org/plugins/maven-release-plugin. [Accessed: 07-Jul-2012].
[112] “DbDeploy.” [Online]. Available: http://www.dbdeploy.com. [Accessed: 07-Jul-2012].
[113] “migrate4j.” [Online]. Available: http://migrate4j.sourceforge.net. [Accessed: 07-Jul-2012].
[114] “autopatch.” [Online]. Available: https://github.com/tacitknowledge/autopatch. [Accessed: 07-Jul-

2012].
[115] “Liquibase.” [Online]. Available: http://www.liquibase.org. [Accessed: 07-Jul-2012].
[116] “Liquibase Maven Plugin.” [Online]. Available: http://www.liquibase.org/manual/maven. [Accessed:

07-Jul-2012].
[117] “Cargo Maven Plugin.” [Online]. Available: http://cargo.codehaus.org/Maven2+plugin. [Accessed:

07-Jul-2012].
[118] V. Massol, M. Wringe, and S. A. Tokmen, “Cargo.” [Online]. Available: http://cargo.codehaus.org.

[Accessed: 07-Jul-2012].
[119] M. Cohn, Succeding with Agile - Software development using Scrum. Addison Wesley, 2010.
[120] W. McIntyre, Lean and Mean Process Improvement. BookSurge Publishing, 2009.

 109

9 Annexes

9.1 Annex A - Questionnaire form

 110

 111

 112

 113

 114

 115

 116

 117

 118

 119

 120

 121

9.2 Annex B – Public appraisal of contributing respondents

In the setup of the survey, we have asked respondents weather they would agree us to

include the company name in a public appraisal of their collaboration. The following is the list of

the companies that agreed to it. We are thankful for their contribution, as for the others that

preferred not to be disclosure.

Company name City

9Tree Cartaxo

Be.Ubi Aveiro

Bullet Solutions Oporto

Conexus World Espinho

Digidelta Software, Lda. Torrers Vedras

Edgelabs Aveiro

FeedZai Coimbra

Grupo@work Matosinhos

Humansoft Leiria

Log Lisbon

Moving2u, Lda. Coimbra

NDrive Oporto

PHC Software, S.A. Oeiras

Pictonio, Lda. Aveiro

Pontual - Soluções Tecnológicas Santa Maria da Feira

S2L - Software e Sistemas, Lda. Viseu

SAGE Portugal, S.A. Oporto

Seegno Braga

Segilac - Sistemas de Gestão de Saúde, Lda. Vila Nova de Gaia

Sensebloom Coimbra

Sonatrix, Lda. Covilhã

Sysactum - Sistemas e Software, S.A. Oporto

Sysnovare Oporto

Tecla Infinita Fundão

Vendder Oporto

White Road Software Lisbon

 122

 123

9.3 Annex C - Best practices document

Grupo de Sistemas e Informação na área da Saúde
RTS – Rede Telemática de Saúde

TECHNICAL REPORT

Coding Style and Developer Best Practices
Version 0.9, not revised

Contributors: Ilídio Oliveira, Bruno Palos

Abstract: Presents the normative coding style and developing practices to
be used in the RTS Project.

Circulation: RTS Project developers and the SIAS Group.

 124

Coding Style and Developer Best Practices

RTS Project 2

Contents
1 Introduction 4

1.1 Why do we need this guide? 4

1.2 Background concepts and values 4
1.2.1 The development scenario .. 4
1.2.2 Terms definition .. 5

2 Developer use cases in practice 7

2.1 Set-up Developer Environment 7

2.2 Checkout a project and start developing....... 7

2.3 Contribute with new code 7

2.4 Adding new fi les to the Project 8

2.5 Refactor classes and packages 8

2.6 Rollback changes from previous releases 8

2.7 Start a new version (and about builds?) 8

2.8 Generate a corrective patch to a existent version 9

2.9 Keep a development branch synchronized with the main
development l ine (trunk) 9

2.10 Updating the databases schemasError! Bookmark not
defined.

3 Shared software construction practices 10

3.1 Java coding style 10
3.1.1 What conventions to use? ... 10
3.1.2 Javadoc.. 10
3.1.3 Check style tools ... 12
3.1.4 Bug patterns tools.. 12

3.2 Version control good practices 13

3.3 Best practices with the Issues Tracking System (ITS) .. 14

3.4 Continuous Integration good practices 14

4 Using construction processes and tools....... 15

4.1 Java projects with Maven 15
4.1.1 Maven releases and snapshots... 15
4.1.2 Maven commands ... 15
4.1.3 Run the unit tests... 16
4.1.4 Verify if there are no SNAPSHOT dependencies... 16
4.1.5 Changing the version of the module ... 16
4.1.6 Generating a release .. 17
4.1.7 Remote repository manager .. 17

 125

Coding Style and Developer Best Practices

RTS Project 3

4.2 Continuous Integration Server 18

4.3 Your project’s code repository (SVN) 20
4.3.1 Configuring a graphical SVN client.. 20
4.3.2 How repository is organized ... 21
4.3.3 Operations using command line.. 21
4.3.4 View SVN log ... 22
4.3.5 Update the working copy with the latest’s developments............................. 23
4.3.6 Commit the changes to repository .. 23
4.3.7 Create new versioned file.. 24
4.3.8 Move/remove versioned files.. 24
4.3.9 View local modifications .. 25
4.3.10 Revert local modifications .. 25
4.3.11 View file modifications... 26
4.3.12 Compare changes from different revisions ... 26
4.3.13 Conflict after an update... 27

4.4 Versioning 28
4.4.1 Overview... 28
4.4.2 Version-numbering strategy.. 28
4.4.3 Releasing a version ... 29

5 Programming patterns 35

5.1 Generic programming techniques 35

5.2 Patterns for logging 35
5.2.1 Introduction ... 35
5.2.2 Logging efficiency .. 35
5.2.3 Guarded logging.. 37
5.2.4 Logging framework configuration .. 39
5.2.5 Guidelines for using logging levels .. 40

5.3 Patterns for Exceptions handling 41
5.3.1 Introduction ... 41
5.3.2 Common errors on exceptions .. 41
5.3.3 Basic principles of exception handling ... 45
5.3.4 Custom exception classes.. 45
5.3.5 The use of unchecked exceptions: .. 46
5.3.6 Exceptions on multi-module systems ... 46

6 References 47

 126

Coding Style and Developer Best Practices

RTS Project 4

1 Introduction

1.1 Why do we need this guide?

Because:

• We have different brains, values and attitudes (difference is good).

• We value results (!productivity).

• We code better when coding for the team (!quality).

• Shared rules make developing easier (!mental sanity).

• I will benefit from shared practices later on, even with respect to my
own work.

1.2 Background concepts and values

1.2.1 The development scenario

Figure 1 - RTS' development scenario.

Figure 1 shows how the RTS’s development pipeline works. This process
starts when the developer do a commit on Subversion, then Hudson, after a
periodical update operation, gets the newly code developments, which will
trigger a new build. If everything goes well on this build, Hudson will generate
all the project artifacts and deploy them to Nexus. Hudson will automatically
deploy the artifacts that are still under development (snapshots), making them
immediately accessible for internal sharing. After each successful automatic
build, Hudson will deploy all the recently generated artifacts on Nexus’s
snapshots repository.

 127

Coding Style and Developer Best Practices

RTS Project 5

1.2.2 Terms definition
• Build

The build process is a series of steps that transforms the various project
components in an application ready to be deployed. In other words, a build
follows a sequence of statements previously prepared in a specific order
resulting in packaged files, prepared to be installed into production or into
other types of runtime environments.

• Branch
Branches are development lines that will evolve in parallel with each other

and with trunk (the main development line). They are mapped as directories on
the code repository (Subversion) to separate developments of different
application’s versions. Branches are used to maintain releases and to stabilize
release candidates (RC), just before a final release.

• Code repository
Code repositories are typically Version Control Systems (VCS). Such

tools offer teams the possibility to keep versions of the project files and people
to collaborate without interfering in each other’s work. These systems allow to
go back in history’s files or to perpetuate releases. One of the most useful
features in a VCS is the ability to reproduce earlier states of software projects.

• Continuous Integration
Continuous integration (CI) is a technique that makes the development

process smoother, more predictable and less risky, even on advanced stages in
the lifecycle of software applications. Additionally, bugs can be traced soon
after they are introduced into the project code and, after notification,
developers can solve them quickly. This avoids the period called “Integration
Hell”, which is used to integrate software components in the final stage of
development.

• Database migrations
Typically, managing code files’ changes is based on using management

tools such as Subversion. Such tools are not enough when evolving databases
because the information contained herein differs on every runtime scenario and
just replacing the respective schemas is not enough. In order to upgrade the
DB consistently with the application’s version being installed requires migrating
only new changes matching the new version, such as inserting new tables, or
adding new constraints. Changes to be migrated must be properly marked so
that the DB integrity not becomes corrupted.

• Dependencies management
The continuous progress of the project frequently implies changing the

way the various modules of the system components communicate. Such
modules or APIs may be internal or external and are also coupled with different
releases as they are subjected to evolution as most software systems. The
connection between the project and its dependencies shall be carried out

 128

Coding Style and Developer Best Practices

RTS Project 6

through their compatibility, therefore different project releases may rely on
different versions of external libraries without ensuring backward compatibility.

• Issue
Are defects, tasks or requirements that allow development teams to

organize work. They are characterized by severity, target version and assignee.
Requirements represent new application functionalities and may be imposed by
customers or internally suggested by other project stakeholders. Defects are
unforeseen problems or bugs found by testing teams, customers or even by
the development team. Tasks represent other generic activities to be
performed by the project’s staff.

• Releases
Releases are closed versions of the application. A release is performed

after the end of development phase. There are three kinds of releases: major,
minor and patches. Major releases are versions who breakup compatibility with
previous versions; Minor releases are evolutions of the application with new
features but without compatibility breakup; patches are releases with the
objective of fixing bugs.

• Trunk
Opposed to branches, the trunk is the main development line. All branches

born from trunk and contains the most updated version of the project. For
continuous integration purposes, all feature development should be committed
to the trunk.

• Snapshot version
Snapshot versions are versions of the application, which are still under

development. All releases are preceded by a snapshot version. This term were
introduced with the adoption of Maven versions.

 129

Coding Style and Developer Best Practices

RTS Project 7

2 Developer use cases in practice

2.1 Set-up Developer Environment

• Synchronize your workstation’s time with an NTP server (ex:
ntp.ua.pt);

• Use an IDE and O.S. with full UTF-8 support;
• Install the necessary plug-ins on your IDE:

o Install a SVN integration plug-in;
o Install a plug-in for the IST (Issue Tracking System);
o Install all necessary plug-ins for code static analysis. The

FindBugs plug-in is the most important;
• You can complement your IDE SVN plug-in with a standalone SVN

client. You can use the command-line client or a graphical tool;
• Install the correct Java SDK version and the selected Application

Server for local development;
• Install Maven version 2 in your computer for building, dependency

management, Unit testing, etc.:
o After install, update the ~/.m2/settings.xml file with the

correct parameters.

2.2 Checkout a project and start developing

Method 1:
• Choose a location in your workstation to place the new working

copy of the project;
• Checkout the project from the SVN repository;
• Using your IDE, create a new project importing the new created

working copy;
• Start developing.

Method 2:
• Using your IDE, create a new project from SVN repository. The IDE

will checkout the project for you;
• Start developing.

2.3 Contribute with new code

• Update your working copy (go to 4.3.5 section);
• Develop code;
• Check for SVN repository changes (go to 4.3.4 section);

o If there are new SVN transactions (go to 4.3.4), update your
working copy;

 130

Coding Style and Developer Best Practices

RTS Project 8

• If the code is not compiling, correct the errors;
• If the static analysis detects bugs, correct the code;
• If the Unit testing fails (go to 4.1.3 section), correct the code;
• After the code is compiling, the detected bugs fixed (if possible)

and the all the Unit tests passing, commit the new changes to the
SVN repository (go to 4.3.6 section);

• If applicable, update the status of the associated issue in the
project’s ITS;

• If the Continuous Integration server detects problems, stop
immediately what you’re doing and fix those problems.

2.4 Adding new files to the Project

• Update your working copy (go to 4.3.5 section);
• Create the new file (go to 4.3.7);
• Add the file to the SVN working copy (go to 4.3.7 section);
• Go to the “Contribute with new code” use-case.

2.5 Refactor classes and packages

• Update your working copy (go to 4.3.5 section);
• Refactor using IDE tools (go to 4.3.8);
• Confirm the SVN operations done by the IDE;

o If the new files weren’t added to the working copy, add the
files (go to 4.3.7 section);

o If the removed/moved files weren’t removed from the
working copy, remove or move the files (go to 4.3.8 section);

• Go to the “Contribute with new code” use-case.

2.6 Rollback changes from previous releases

• Identify the SVN revision to rollback (go to 4.3.4);
• If the rollback applies only to one file, identify it;
• SVN merge the change of the specific revision and file (if

applicable);
• Verify the changes affected by the merge;
• Go to the “Contribute with new code” use-case.

2.7 Start a new version (and about builds?)

• Verify the issues in the ITS targeted to the new version;
o If the issues are not closed, move them to a future version;

• Choose the target build or SVN revision (?) that complies with the
version identified in the ITS;

• If the revision is not the HEAD of the correspondent SVN branch,
create a new branch for this version;

• Verify that are no dependencies with SNAPSHOT version;

 131

Coding Style and Developer Best Practices

RTS Project 9

• Change the SNAPSHOT version of the Project’s POMs to its
corresponding release version;

• Commit the changes to the corresponding branch (go to 4.3.6
section);

• Tag the last revision with the desired version;
• If applicable, increment the POMs version in the correct branch to

the new development version (SNAPSHOT) and commit the changes.

2.8 Generate a corrective patch to a existent version

• Create a new branch from the desired tag, if not already created;
• Change the release version of the Project POMs to the corrective

SNAPSHOT version and commit the changes, if applicable;
• Go to “Contribute with new code” use-case;
• Change the SNAPSHOT version to its correspondent release version;
• Commit the changes (go to 4.3.6 section);
• Tag the files with the corrective version.

2.9 Keep a development branch synchronized with
the main development line (trunk)

• Make sure your working copy has no local modifications (go to
4.3.9);

• From the development branch, merge the trunk;
o If resulted in conflict, resolve the problems;
o If the conflicts are impossible to resolve, revert the code and

try to understand what seems to be the problem with your
co-workers;

• Verify if the merge didn’t break the code;
• If unit testing fails, fix the problems;
• After every thing is ok, commit the merge result;
• Repeat the previous process frequently when developing to the

branch;
• If all developments to the branch are finished, switch to the trunk

and merge with reintegrate option;
• Verify if the merge didn’t break the code;
• Run all necessary unit tests;
• Commit the reintegration (go to 4.3.6 section);
• Delete the development branch.

 132

Coding Style and Developer Best Practices

RTS Project 10

3 Shared software construction practices

3.1 Java coding style

3.1.1 What conventions to use?
Apply the following conventions, in this order:

1. The following tried-and-true conventions:

a. Always specify UTF-8 for encoding (unless otherwise required).

b. Preferred indentation is 8 spaces (yes, eight).

c. Use an IDE with code formatting capabilities and apply them.

2. Always use English names for the programming entities: classes,
methods, fields, etc.;

3. Read and apply the guidelines from Code Conventions for the Java
Programming Language, especially the Naming Conventions chapter.
(“Attempt to make your names so clear that comments are (almost)
unnecessary”).

Complementary, apply also the following best practices;

4. Try to match the style and naming that you can observe in Java
standard API.

5. Use the “get”, “set” and “is” naming convention for methods that
change and read private fields.

6. Avoid implementing long methods; usually it signals a design problem.

7. Try to maintain your fields as private as possible, specially with
multithreading;

8. Don’t hard-code numbers in you implementation. Don’t hard-code any
literals.

9. Remember that other people will read the code. And you, some weeks
later.

3.1.2 Javadoc
You must use Javadoc syntax to produce documentation. You are

expected to include meaningful comments in the code too. Note that:

• Documentation-style is for API, pre and post conditions reference.
• Comments are for other programmers to understand your rationale

and options when writing the code.

At the very least, you need to provide a class purpose description in
Javadoc. As a standard practice, also document public methods.

 133

Coding Style and Developer Best Practices

RTS Project 11

Entity level: Javadoc to provide:

Source file header

(not in javadoc)

Full project name.

Copyright notice.

Optional: author name.

Class Purpose description.

Optional: author name (@author tag).

Optional: version tag.

Optional: link to related files/classes (@see tag).

Method (public): Purpose description.

Pre-conditions (if applicable).

Parameters (if applicable).

Description of return (if applicable).

/*
 * RTS - Rede Telematica da Saude
 * Copyright (c) 2005-2011 IEETA – SIAS
 *
 * This software is the confidential and proprietary information of IEETA
 * You shall not disclose such Confidential Information and shall use it
 * only in accordance with the terms agreed with IEETA.
 */

/**
 * Core scheduler to initiate the distributed integration processes.
 * @author IOliveira
 * @see org.rtsaude.foundation.rim.Episode;
 */

Listing 1: Sample header (to be used as a template) and class javadoc.

Be also aware that Java comments can be used to tag unfinished work and
problems (Table 1). Modern IDEs will pick up these tags and call the
programmer attention.
Tag Use to:

//FIXME Need to control limits Signal a known problem in the code that prevents it to
work as expected.

//TODO Implement the iterator Signal some task, usually new code.

//XXX Unlikely to support concurrency Signal code portions that work, but the implementation is
poor and needs to be revised.

Table 1: Tags embedded in comments to signal issues requiring future attention.

 134

Coding Style and Developer Best Practices

RTS Project 12

3.1.3 Check style tools
Checkstyle tools allow developers to maintain the code with a specific

style, as defined on code conventions. There are several ways to check and
maintain code conventions while developing code:

• Using IDE’ code formatters;
• Using automatic static analysis tools;
• Using plugins on IDEs to warn the developer when the conventions

are not being respected.
 Figure 2 shows the Checkstyle plugin embedded on Java code editor from

the Eclipse IDE. This feature enables real-time style checking while developing
code. Figure 3 shows the code style formatter configuration for Eclipse. This
allows to auto-format source-code files with the desired code conventions and
style. Other IDEs, like Netbeans or IntelliJ IDEA, can also auto-format code files.

Figure 2 - Checkstyle plugin on Eclipse.

Figure 3 - Code style formatter configuration on Eclipse.

3.1.4 Bug patterns tools
There are several static analysis tools to find bug patterns on source-code

files. One of the most popular is FindBugs. This tool can be used integrated on
IDE code editors, on Continuous Integration servers, or even standalone. On the
RTS project, every developer should install the FindBugs plugin for the IDE
installed on his workstation (there are plugins for the most popular IDEs, like
Netbeans, IntelliJ IDEA and Eclipse). Figure 4 shows real-time static analysis
using FindBugs on Eclipse.

 135

Coding Style and Developer Best Practices

RTS Project 13

Figure 4 - FindBugs plugin installed on Eclipse IDE.

Other useful static analysis tool is PMD. It finds bug patterns similarly to
FindBugs, but it has the ability to search for suspect copy-pasted code blocks.
Figure 5 shows the found suspect copy-paste using the PMD plugin for Eclipse.
PMD plugins for other IDEs are also available.

Figure 5 - Using PMD to find suspect copy-pasted code.

3.2 Version control good practices

1. Before committing, be sure to check for possible changes in the
repository! (Usually: do an update!)

2. When you commit a change to the repository, make sure your
change reflects a single propose (Ex: Fixing a bug, adding a new
feature, etc);

3. If possible, try to create changesets linked to the issue tracker. Use
the issue ID in the commit message;

4. Commit to trunk only tested and compiling code;
5. After merging, run the unit tests to ensure that the merge was

successful;
6. After creating a tag, don’t commit to it any more. Visualize the tag

as read-only. If you need to resolve an issue in that specific version,
create a branch from that tag and commit the changes to it;

7. If you are using a branch for version maintaining purposes, when you
commit a fix to this branch and this fix is not resolved in the trunk,
merge it to the trunk after you finished it;

8. Try not to merge a large quantity of changes between trunk and the
branches. Use atomic commits;

9. Make, at least, one commit a day with all your day’s work.

 136

Coding Style and Developer Best Practices

RTS Project 14

3.3 Best practices with the Issues Tracking System
(ITS)

1. You must use an ITS in a daily basis. In RTS, we’re using Redmine.

2. Always reference an ITS issue on commits to ensure traceability;

3. Resolve issues by priority;

4. Use a tool to trace the time spent in every task and register it in
ITS. This helps the team to estimate the time spent in future issues
and not to justify your work;

5. Use the ITS as a central repository of information for the project. If
you find a solution to a specific and recurrent problem, use it to
spread the information thought the team;

6. Document your work when working on the issue. Remember that
you wil l probably work on it again;

7. Try to use the sub-tasking capabilities of the ITS to maintain an
atomic structure of the issue. Remember the divide and conquer
concept.

3.4 Continuous Integration good practices

1. Don’t check in on a broken build;

2. Always run all commit tests locally before committing;

3. Commit your changes frequently (at least once a day);

4. Never go home with changes to commit;

5. Never go home on a broken build;

6. Always be prepared to revert the previous revision;

7. Take responsibility for all breakages that result from your changes;

8. Fix broken builds immediately.

 137

Coding Style and Developer Best Practices

RTS Project 15

4 Using construction processes and tools

4.1 Java projects with Maven

4.1.1 Maven releases and snapshots
Maven uses releases and snapshots to distinguish development versions from
released versions of an artifact.
This is specified in the POM. If the version 1.2.1-SNAPSHOT is declared in the
pom.xml file, the 1.2.1 version of the module is in development. By deploying
the artifacts as a snapshot to the snapshots repository it is guaranteed that
the last version of the development version is accessible to the rest of the
development team and to yourself.
Ideally, a non-snapshot version shouldn’t be used to make developments. A
typical use-case to correct a released version is to create a branch from the
tag directory and then change the version of the POMs to snapshot.
In the project’s repository, an artifact in the releases repository should be
considered has a final version.

4.1.2 Maven commands
Use Maven commands in the folder where a pom.xml file is present. Typically, a
pom.xml file is placed in the root file structure of a project module.

Maven Command Purpose

$mvn compile To compile. The first time you execute this command, Maven will
download the necessary dependencies.

$mvn test To compile and run the test sources.

$mvn test compile To compile the test sources, but not run them.

$mvn clean To remove the target directory (compiled files).

$mvn package To generate java archive files.

$mvn install To install the generated artefacts in your local repository.

$mvn deploy To install the generated artefacts in your project’s repository:

$mvn clean install You can use multiple goals in one command. For example:

This will clean the target directory, compile the sources, package
and install the artefacts in your local repository.

Table 2: Useful Maven commands

 138

Coding Style and Developer Best Practices

RTS Project 16

4.1.3 Run the unit tests
Maven runs the unit tests of a suitable framework (JUnit, TestNG, etc.)

present in the project’s default directory: src/test/java.
All the unit tests of the project can be run at once or just the ones of

individual modules by executing the command in the same directory of the
module POM file.

The unit test goal is integrated with Maven build lifecycle but you can run
that goal alone, ignoring other lifecycle goals. To run the tests use the
command ‘mvn test’ in the same directory of the desired POM file. All the tests
must pass otherwise the build fails.

To compile the tests without run them use the command ‘mvn test-
compile’. Or to skip the tests on a regular build cycle use the command ‘mvn
install –Dmaven.test.skip=true’, for example. Skip the tests only in punctual
situations because the objective is to produce high quality software. The C.I.
server never skips the tests and fails the builds with failed unit tests.

4.1.4 Verify if there are no SNAPSHOT dependencies
The Maven Dependecy Plugin can be used to list a dependency tree of a

project or module.
To list the SNAPSHOT dependencies of a project or module use the

following command: ‘mvn dependency:tree –Dincludes=:::*-SNAPSHOT’.

4.1.5 Changing the version of the module
This can be done manually, POM-by-POM or you can do it with the Versions
Maven Plugin. The Table 3 shows how to do it.

Maven command Description

$mvn versions:set \

-DnewVersion=1.2.1-SNAPSHOT

Change the module to a snapshot version.
Used in the same directory level of the parent
POM.

$mvn versions:set -DnewVersion=1.2.1 Change the POMs to a release version. Used in
the same directory level of the parent POM.

$mvn versions:use-releases This command can override the previous by
removing the “-SNAPSHOT” from the POM
version when a release version of the module is
about to be generated.

Table 3: Version plugin goals.

This plugin is used just to change the version numbering in the POM file. The
next section shows how to automate a release generation, including changing
the POM’s version, dispensing the use of this plugin.

 139

Coding Style and Developer Best Practices

RTS Project 17

4.1.6 Generating a release
The Releases Maven Plugin is useful to automate the process of generating a
release. There are two phases to accomplish when generating a release using
this plugin:

• Prepare
o Check if there are no uncommitted changes;
o Check if there are no SNAPSHOT dependencies;
o Change the POMs version removing the “-SNAPSHOT”;
o Change the SVN information in the POM to be associated with

the tag;
o Run the project tests with the modified POMs;
o Commit the POMs;
o Tag the code in SVN with the version name;
o Change the version of the POMs to a new snapshot version;
o Commit the modified POMs.

• Perform
o Checkout from the SVN the code from the new tag;
o Run Maven goals to release the project.

The Table 4 shows how to use the release plugin goals.

Maven command Description

$mvn release:prepare Prepares the process and generate the
release.properties file to be used by the
perform goal.

$mvn release:perform Perform the release has described previously.

$mvn release:clean Cleans the backup POM files and remove the
release.properties file.

$mvn release:branch Performs branches and updates both the POM
versions on trunk and on the newly created
branch.

$mvn release:rollback If the clean goal haven’t been executed, this
rollbacks the previous generated release.

Table 4: Releases plugin goals.

4.1.7 Remote repository manager
There is a server that will manage the artifacts generated by the development
team. This server is available at: http://heartbeat.ieeta.ot:8180/nexus.
When you use the command “mvn deploy”, the Maven will upload all generated
artifacts by the build to the repository manager. And if your module depends
on a specific version of an artifact generated by your team members, you can
use the repository manager to download it. Maven will do it automatically has
needed.

 140

Coding Style and Developer Best Practices

RTS Project 18

There is no need to e-mail the dependencies between developers and to move
them to the SVN. The dependencies are available on the fly in the project’s
artifacts repository.

4.2 Continuous Integration Server

The RTS project base the development paradigm by using a Continuous
Integration server. The project uses Hudson is available at:
http://heartbeat.ieeta.pt:8180/hudson

Figure 6 - General view on Hudson.

Within Hudson’s main web page, the user can view all configured
integration Jobs, the currently Jobs performing builds and other general
options (Figure 6).

 141

Coding Style and Developer Best Practices

RTS Project 19

Figure 7 - Job view on Hudson.

On each Job, Hudson has several options. Users can force the Job to
execute a build, view the recent Subversion changes, configure the Jobs, etc.
This view shows the build history and, if applicable, the recent unit test cases
results (Figure 7).

Figure 8 - Build details on Hudson.

Each build within a Job can be viewed in detail. The user can view the
console output to see the details of the Maven build. This view enables the user
to view details of the build on the project’s module (Figure 8).

 142

Coding Style and Developer Best Practices

RTS Project 20

4.3 Your project’s code repository (SVN)

4.3.1 Configuring a graphical SVN client
The repository path is located at:

https://heartbeat.ieeta.pt/svn/rts

If you use, for example, SmartSVN has an SVN client, you can create a
new repository profile has showed in Figure 7.

Figure 9 - SmartSVN repository profile.

 143

Coding Style and Developer Best Practices

RTS Project 21

4.3.2 How repository is organized
The project’s repository is organized in three directories. Each one has a
specific function:
• “branches”: A branch can be used for personal purposes,

development purposes and versioning purposes;
• “tags”: For versions only. A specific version must be mapped with a

tag in this directory. Is mandatory to never commit to a tag;
• “trunk”: This directory is where the most update code must be. All

developers commit to this directory.

4.3.3 Operations using command line

Command Result

$svn checkout https://heartbeat.ieeta.pt/svn/rts Get a working copy of the project
(CHECKOUT)

$svn commit file1.java –m “Fixed a bug” Committing after changing files
(COMMIT)

$svn update Update you working copy with
remote changes (UPDATE)

Table 5 - Basic SVN commands

Commands Description

$svn checkout https://heartbeat.ieeta.pt/svn/rts/trunk

Checking out the trunk (TRUNK)

$svn checkout \
https://heartbeat.ieeta.pt/svn/rts/branches/1.2

Checking out a branch (BRANCH)

$svn add file2.java Adding a new file to the repository
(ADD)

$svn delete file2.java Deleting a file from the repository
(DELETE)

$svn status file1.java Overview (STATUS)

- (A)dded;

- (C)onflict;

- (D)eleted;

- (M)odified

$svn diff View details of your local modified

 144

Coding Style and Developer Best Practices

RTS Project 22

 files (DIFF)

Created lines preceded by “+”

Removed lines preceded by “-“

$svn copy https://heartbeat.ieeta.pt/svn/rts/trunk \

https://heartbeat.ieeta.pt/svn/rts/branches/1.9 \

 -m “Create new branch”

Creating a branch from the trunk

$svn copy https://heartbeat.ieeta.pt/svn/rts/trunk \

https://heartbeat.ieeta.pt/svn/rts/tags/2.1

Creating a tag from the trunk
(TAG)

$svn copy –r 123 \

https://heartbeat.ieeta.pt/svn/rts/branches/2.5 \

–m “Create branch from revision 123”

Creating a tag from a specific
revision

$svn delete \
https://heartbeat.ieeta.pt/svn/rts/branches/my_branch

Deleting a branch (this command
can be used to delete other
elements, like files and directories)

Table 6 – Common SVN commands.

4.3.4 View SVN log
This can be very useful to view last commits, view revisions, modified files,

detect repository activity, etc.

• Subversion command-line client:

The command ‘svn log –l 5’ will show the last 5 log messages from the
repository. Used with –v option (verbose), will show the evolved files too.

• Eclipse IDE:
The user must follow the menus ‘Window->Show View->Team->History’ and
hit the ‘refresh’ button.

• Netbeans IDE
Doesn’t support this feature, must use an external tool.

• SmartSVN tool:

The log is presented in the ‘Transactions’ section with help of a selection
tree, a refresh button and transaction filters.

 145

Coding Style and Developer Best Practices

RTS Project 23

4.3.5 Update the working copy with the latest’s
developments

Don’t forget to maintain your working copy synchronized with the project’s
repository every time. Occasionally, you may need to update just parts of the
project.
• Subversion command-line client:

Use the command ‘svn update’ at the desired location. The use of this
command updates all elements bellow in the current directory. This
command can be used to update files passed in the argument.

• Eclipse IDE:
With an appropriate view, select a project, package or file from the tree,
right click over-it and select ‘Team->Update to HEAD’. This works right
clicking over the code editor to update the opened file.

• Netbeans IDE:
Select the desired element (project, module, package or file) and use the
application menu ‘Team->Update’.

• SmartSVN tool:
Select the file or directory in the tree and click the “Update” button.

4.3.6 Commit the changes to repository
This action must be used with careful because it can cause the repository

code not to compile. Incomplete commits, unversioned new files, etc. can
cause this. With unversioned files extra careful must be taken because the
code compiles locally.

Don’t forget to write an explicit commit message explaining the task and, if
possible, refer an ITS issue key in the message.
• Subversion command-line client:

Use the following command: ‘svn commit –m “message” PATH. Where
‘PATH’ can be added, modified or deleted files or directories. This parameter
can be used with wildcards.

• Eclipse IDE:
Select the desired element (project, package or file) and using the right
click menu ‘Team->Commit’, the IDE will commit the related modified, added
or deleted files or directories.

• NetBEans IDE:
After selecting the element (project, module, package or file) select the
application menu ‘Team->Commit’ and the IDE will commit related modified,
added or deleted files or directories.

 146

Coding Style and Developer Best Practices

RTS Project 24

• SmartSVN application:
Press the ‘Refresh’ button. If you wish to commit directories or files under
it, select the desired directory in the tree. If you wish to commit individual
files, select the added, modified or deleted files to commit.

4.3.7 Create new versioned file
This operation will add new files to your working copy under management

of SVN. Before commiting check if you will send only the intended files. Its very
frequent to see IDE generated files, temporary files and other unwanted files
commited to SVN.

• Subversion command-line client:
The command ‘svn add PATH’ will add to version control the specified file or
directory to the working copy. The ‘PATH’ parameter can be a file or
directory and wildcard can be used.

• Eclipse IDE
Choose the unversioned project, module, package or file in the appropriate
view, right-click the item, select the menu ‘Team->Add to version control’.
This action can be done over the file editor.

• Netbeans IDE
Just create a new project, module, package or file in Netbeans. Note the
new created items are not versioned. The operation to add to working copy
will be done before the commit operation by the IDE.

• SmartSVN tool
Use the application menu and check the ‘View->Unversioned’ menu, find the
target files or directories and click the “Add” button.

4.3.8 Move/remove versioned files
This action is often used in refactoring and the IDE will do this

automatically. Use this operation to move and rename versioned files or
directories and to maintain the SVN history tree consistent. Don’t use the ‘svn
add’ and ‘svn remove’ to move or rename files.

• Subversion command-line client:
Use the command ‘svn move SRC DST’ on versioned files to move or
rename them. The ‘SRC’ and ‘DST’ parameters can be files or directories. To
move a item, the source path must be different from the destination path.

• Eclipse or Netbeans IDEs:
In the appropriate view, drag the desired item to the destination location to
move. If you wish to rename a project, module, package or file right-click
over the menu ‘Refactor->Rename’.

• SmartSVN tool:

 147

Coding Style and Developer Best Practices

RTS Project 25

Select the target file or directory and drag and drop the resource to the
desired location.

4.3.9 View local modifications
It’s imperative to the programmer to track and to be aware of the status

of the working copy. The developer must have control over its work. Mixing
multiple development issues can be confusing and lead to problems and
conflicts. Despite that, always maintain absolute control over your local
modifications.

Use the available tools to view all modifications all the time, don’t forget to
be aware of any file, versioned or not.

• Subversion command-line client:
The command ‘svn status’ will show either the unversioned and local
changed files or directories. The unversioned files are identified by a ‘?’.
To view only the modified files, use the ‘svn status –q’ command.

• Eclipse IDE:
Doesn’t support totally, the closest answer to this operation is the
‘Synchronize’ view but it’s not possible to distinguish the unversioned files
and newly added files. Must use an external tool.

• Netbeans IDE:
Select the project, module, package or file, right-click over it and choose
the menu ‘Subversion->Show changes’.

• SmartSVN tool:
In the application menu ‘View’ uncheck the ‘Unchanged files’, the
‘Unversioned files” and the ‘Ignored files’. The coloured files and marked
directories are the modified items. Use the tree to view the changes under
the selected directory.

4.3.10 Revert local modifications
Reverting local modifications is an operation that can’t be undone. It could

be the lost of hours and days of work. Unless if you want to revert all your
work, use this operation atomically with small and controlled reverts,
accomplished with file inspection.

• Subversion command-line client:
To revert all the modifications under the current directory, use the
command ‘svn revert –R .’. To revert specific files or directories use the
command ‘svn revert PATH’, where ‘PATH’ parameter can be a file or
directory with wildcards.

 148

Coding Style and Developer Best Practices

RTS Project 26

• Eclipse IDE:
Select the desired item (project, module, file, etc.), right-click over it and
select the menu ‘Team->Revert’.

• Netbeans IDE:
Select the specific project, module, package or file, right-click it and choose
the menu ‘Subversion->Revert’.

• SmartSVN tool:
Select the file or directory, right-click over it and choose the menu ‘Revert’.

4.3.11 View file modifications
It’s very useful to know what code was changed in the working copy

relative to the pristine copy. Knowing immediately and easily the local file
modifications is a feature that every modern IDE offers to the developers. This
“quick diff” gives the programmer the possibility to revert a single line or
blocks in a single click.

• Subversion command-line client:
Use the command ‘svn diff PATH’. The ‘PATH’ parameter can be a file or
directory and the output is the changed, added and removed lines of code.

• Eclipse IDE:
This feature must be enabled first. To accomplish this, go to the general
preferences menu, select ‘General->Editors->Text editors->Quick diff’ and
change the reference source to ‘Pristine SVN copy’. Then, the changes will
appear in the left side of the file editor with colour representation. Mouse-
over the coloured area to view the original code.

• Netbeans IDE:
The same quick diff method with coloured representation used on Eclipse
IDE.

• SmartSVN tool:
Select the modified file, right-click over it and choose ‘Show changes’.

4.3.12 Compare changes from different revisions
Comparing zones of code can help track bugs and revert changes between

revisions. This feature is especially relevant to view differences between
branches and to ensure that a development branch is properly synchronized.

• Subversion command-line client:
Use the command ‘svn diff TARGET1@[REV1] TARGET[@REV2]’. The
‘TARGET1’ and ‘TARGET2’ parameters arte the elements to compare. These
items can be in different branches. The ‘REV1’ and ‘REV2’ are the revision
numbers.

 149

Coding Style and Developer Best Practices

RTS Project 27

• Eclipse IDE:

Over the file right-click and select the menu ‘Team->Show History’. Select
the two revisions from the list, right-click and select ‘Compare’.
To compare a specific revision with other linked to another branch, choose
the revision, right-click over it and select ‘Compare’, then use the graphical
components to select the branch and revision to compare.

• Netbeans IDE:
Choose the file to compare, right-click and select the menu ‘Subversion-
>Search History’. Netbeans doesn’t support diff operations between
branches, must be used an external tool.

• SmartSVN tool:
Select the file, use the menu ‘Query->Compare with revision’ and select the
path and revision. It’s not possible to compare two arbitrary revisions
between branches. The developer only can compare the HEAD of the
current revision with an arbitrary revision from another branch.

4.3.13 Conflict after an update
Make one of tree things if there is an conflict on a file:
1. $svn revert <file> (reverts local file);
2. Copy one of temporary files created by conflict on top of your

working file;
3. Merge the file by hand, examining the conflict markers (see below

for an example).

You can find yourself with a tree conflict. This is caused when other
developers move or delete a file that you are working on.

For example:

$vim file1.java
<<< .mine

This is an example text inside a file
===

This is an eaxmasoda asd asd ds a file
>>> .r2

$svn resolved file1.java

 150

Coding Style and Developer Best Practices

RTS Project 28

This conflict must be resolved manually by analyzing if this deletion is
supposed to happen and then remove the file if you decide it:

4.4 Versioning

4.4.1 Overview
The version of an application is a reproducible state at any point in the

time, including all artifacts that made possible to create that version, like the
source-code, test code, database scripts, build and deployment scripts,
documentation, dependencies and configuration files of a given application. It
should be possible from scratch to reproduce any given version of the
produced software on any environment.

4.4.2 Version-numbering strategy
In the RTS project, the version-numbering schema is structured as a triplet

of integers: MAJOR.MINOR.PATCH, each one with a specific meaning described
on Table 7.

Segment Description

Major When breaks up compatibility

Minor When enough requirements are implemented and the changes are
externally visible

Patch Bug fixes without new requirements

Table 7 - Version segments.

Each segment of the project’s version number increment a unit depending
on the changes that were introduced:
• Patch increments:

o Only when bug fixes are added;
o No changes on data structures;

$svn status
M file1.java
A + C file2.java

 > local edit, incoming delete upon update
M file3.java

$svn remove --force file2.java
D file2.java
$svn resolve –accept=working file2.java

Resolved conflicted state of ‘file2.java’

 151

Coding Style and Developer Best Practices

RTS Project 29

o No changes on API definitions;
o Never include new features.

• Minor increments:

o When includes new features;
o Bug fixes can be added too;
o API compatibility should not be broken;
o New method can be added;
o Existent methods can be marked as deprecated;

• Major increments:

o Large changes that breaks up compatibility with older versions.

On the ITS level of perspective, when a new release version is about to be

closed (major, minor or patch), all issues targeted to that version, if possible,
should be closed, tested and validated. If there is the impossibility of solving all
the issues aimed for the version to be generated, their target should be shifted
to a future version.

4.4.3 Releasing a version
The most straightforward situation for generating a new version is when a

team comes across with just one development line and all newly developed
issues are targeted for the next release. Therefore, when the deadline dues
with all related issues committed, closed and validated, ready to be included in
the new version, all the POMs that define the project must be updated by
replacing the snapshot versions by their release versions. This includes the
versions of the project’s dependencies.

In this simple scenario, when a new version is about to be tagged and
released, the team members must be alerted to not commit any change to the
related development line during this transitional process. There may be
occasions in which it’s not possible to stop adding changes to that line of
development during the releasing of a new version but that difficulty can be
overcome by forking a version branch sourced in the SVN revision that should
be tagged. This scenario will be explained in the next section.

Figure [?] shows an example on how to generate a new minor version and a
new patch version on a single development line, commonly applied on small
development teams with modest activity. When the snapshot version is stable
and all correspondent issues are closed, the POM versions must be updated and

$mvn release:prepare -DautoVersionSubmodules=true
$mvn release:perform

 Figure 10 - Using Maven Release Plugin to perform a version release.

 152

Coding Style and Developer Best Practices

RTS Project 30

all the development work must be tagged. There is a Maven plugin that will do
the entire job with just a few command lines, the Maven Release Plugin (Figure
10).

The following phases will be executed by the “prepare” goal [11]:
• Verify if there are no local changes to commit;

• Verify if no snapshot dependencies are used by the project;

• Change the snapshot version to the prompted release version;

• Run the tests against the modified POMs to confirm that everything is
working as supposed;

• Commit the modified POMs;

• Tag the code in the SCM repository with the prompted tag;

• Increment the POMs to a new prompted snapshot version;

• Commit the modified POMs.

The following phases will be executed by the “perform” goal [11]:
• Checkout the from the SCM the newly crated tag;

• Run the default Maven goals to release the project (deploy, site-deploy).

Figure 11 – Generation of the version 1.2.

 153

Coding Style and Developer Best Practices

RTS Project 31

Using the example exposed in Figure 11, the initial development version is
“1.2-SNAPSHOT” which will be changed to the release version “1.2” after all
issues are completed. After perpetuating that version with a tag, the new
development version could be the “1.3.0-SNAPSHOT”, if the team intent to
develop new features. But there might emerge the need to generate a different
snapshot version, like the “1.2.1-SNAPSHOT” when are critical corrections to
fix over the “1.2” release version. This Maven Release Plugin includes a goal to

change the POMs versions and can be used as shown in Figure 12.
This command can change the “1.3.0-SNAPSHOT” to “1.2.1-SNAPSHOT”,

for instance. Later, after adding the desired fixes, the “1.2.1” release version
could be created by using again the “prepare” goal of the Maven Release Plugin.

Releasing with multiple development versions

Teams with active developments almost certainly will face the
incompatibility of producing multiple scheduled versions on the same
development line, typically the trunk on Subversion. The developers must bear
in mind that the trunk should contain the latest developments of the project,
even if there are active branches on the run. The trunk is the main
development line and should be used for integrating the team’s work all the
time. Therefore, development branches should integrate regularly to trunk.

One of the acceptable situations that allow the trunk to be branched is
when a release version is reaching the deadline and all features of that version
have been developed. This procedure ensures a way to isolate the new coming
version from the instability of the trunk developments and to stabilize it with
tests and validations [10]. Only bug fixes should be committed to the branch,
which must be merged to the trunk immediately. There are rare exceptions
when the merging of corrections will not be done but only with the project
manager’s specific instructions.

A perfect example to exhibit the prior procedure is presented in Figure [?].
A release candidate (RC) is created when the last requirement targeted to the
“1.2” version is implemented for the reason that the team need to implement
new features for the “1.3” version. During the stability phase of the “1.2”
version, tests encounters some bugs that should be fixed. Those bugs are
corrected by the development team and merged to the trunk, while new
unrelated requirements are implemented for the “1.3” version. When the “1.2”
version is stable, it’s time to generate the final release.

$mvn release:update-versions -DautoVersionSubmodules=true

Figure 12 - Using Maven Release Plugin to change POM versions.

 154

Coding Style and Developer Best Practices

RTS Project 32

Figure 13 – Generation of the version 1.2 when next iteration (1.3) is in development.

The Maven Release Plugin offers the possibility to automatically create a
version branch on Subversion (or other SCM) when the team wants to stable a
release candidate. As shown in Figure 13, the “1.2” version will be created
when the “1.3-SNAPSHOT” is on the run so, the POMs versions in the trunk
when the RC is created corresponds to the “1.3” snapshot version. Inside the
“1.2” branch, the POMs version should be “1.2-SNAPSHOT” but the plugin will
update all necessary files automatically with that snapshot version. The Maven
command presented in Figure 14 will execute the all specified steps for

creating the “1.2” release candidate.

Where the “branchName” parameter will define the new branch’s name, the

parameter “updateBranchVersions” will force the POMs of the new branch to be
updated with the correct version, the “updateWorkingCopyVersions” parameter
set to false will ignore changing the working copy versions and the
“autoVersionSubmodules” parameter will allow the same version to be
configured on all modules of the project.

The following phases will be executed by the “branch” goal [11]:

$mvn release:branch -DbranchName=1.2 -DupdateBranchVersions=true -
DupdateWorkingCopyVersions=false -DautoVersionSubmodules=true

Figure 14 - Using Maven Release Plugin to create a version maintenance branch.

 155

Coding Style and Developer Best Practices

RTS Project 33

• Verify if there are no local changes to commit;

• Create the new branch with the specified name;

• Update the POMs of the newly created branch with the prompted
version;

• Commit the modified POMs.

After the development branch is created, developers can start doing all the
necessary fixes, without forgetting to merge all changes to the trunk. Finally,
when the release candidate is stabilized, the final version could be released by
using the previously mentioned commands on Figure 10. This version branch
can be used for maintaining the release version with possible bug fixes found
on production environments, as will be explained in the next section.

Releasing corrective versions

Despite the effort to increase the quality control over software projects, is
impossible to any development team to produce released applications without
bugs. Eventually, when a bug is found, probably on a production environment,
the development team must have the ability to reproduce the version where
the bug was found to increment the needed corrections over it. On situations
like this, branching from the correspondent tag will allow to add an increment
to the exact version where the bug was found and to release a patch version.
Without exception, the applied corrections to that version should be
reproduced in the trunk. If the bug was found on a very old version,
programmers must try to reproduce the problem to ensure that is applicable to
the new version and might have to correct it on a more evolved code with
different circumstances using different solutions.

The Figure 15 shows an example on how to correct bugs to an already
released version. In this case, some issues were found on “1.2” version, despite
the newest version of the project being superior to “1.3.1”. If the maintenance
branch for this version isn’t already created, the development team must
create it from the correspondent tag to increment the desired changes, such is
the case shown in this example, and the POM files of the new branch must be
updated with the patch version the team wants to publish, in this case, will be
“1.2.1-SNAPSHOT” because the “1.2.1” version is under development until the
corrections are stabilized.

 156

Coding Style and Developer Best Practices

RTS Project 34

Figure 15 - Generation of the patch 1.2.1, when other versions where released.

Currently, Maven Release Plugin doesn’t support creating a branch from a
tag therefore the way to do that is to use Subversion commands available on
every SVN client. On the example of Figure 15, after the branch is created from
the “1.2” tag, the appointed personnel to solve the issues must checkout that
branch and change its POM files with the new development version. As was
previously used, the following command shown on Figure 12 will update those
files.

After the POMs are updated with “1.2.1-SNAPSHOT”, developers can start
fixing the found issues, without forgetting to merge all changes to the trunk.
Finally, when the patch version is stabilized, using the following commands
specified on Figure 10 the release will be performed. This branch set is available
for other possible fixes and is designated for patch increments, nothing else,
making “1.2.2-SNAPSHOT” the next version to use on the branch’s POM files.
As shown in Figure 15, the 1.2.1 version can be incremented with other
corrective version 1.2.2, and so on.

 157

Coding Style and Developer Best Practices

RTS Project 35

5 Programming patterns

5.1 Generic programming techniques

Review and study the following resources:

• Check Java Programming Practices in the official Java style guide.
• Check Bruce Eckel’s Thinking in Java book guidelines.

5.2 Patterns for logging

5.2.1 Introduction
Logging should be considered as part of the application source-code, like

any other regular feature and as such, its use should not be neglected, neither
the impact of the bad written logging code on the system. Logging code help
improve the application’s quality. Thus, the logging code should be written to
have the minimum impact on the performance of a running system.

5.2.2 Logging efficiency
• Logger naming conventions

For maintainability reasons, when instantiating logger objects, it should be
used package base naming conventions, like the fully qualified package of the
class whose being logged. Exceptionally, when different components in the
same package have different logging behaviour, the loggers should be
separated by the different performed tasks.

 158

Coding Style and Developer Best Practices

RTS Project 36

• Logging parameters and internationalization

When processing a log line, the first thing to be computed is the log
parameter, typically a String object (Figure 17). Parameter constructions within
the log message are costly and they should be wrapped with a level check. This
issue will be addressed forward in the Guarded Logging section.

Using ResourceBundle objects is extremely costly and should be avoided
when the application is implemented with only one language support. Together,
parameter construction and internationalization are the most critical
performance aspect to take care when using logs.

public class ClassExample {
 public interface SpecialLoggers {
 Logger business = Logger.getLogger("business");
 Logger security = Logger.getLogger("security");
 }

 /**
 * The category of messages using this logger is the fully qualified name of
 * the class.
 */
 private static final Logger logger = Logger
 .getLogger(ClassExample.class.getName());

 public void doSomethingAgain(int parameter, String username) {
 if (logger.isDebugEnabled()) {
 logger.debug("Passed parameter: " + parameter);
 }

 if (SpecialLoggers.security.isEnabledFor(Level.WARN)) {
 SpecialLoggers.security.warn(" The user [" + username
 + "] had done something.");
 }
 }
}

Figure 16 - Multiple purpose Logger objects.

 159

Coding Style and Developer Best Practices

RTS Project 37

5.2.3 Guarded logging
Guarded logging is a pattern to check if a given logging level is active,

before executing the related log message.

Avoids the unnecessary parameter construction and localization
translation, because this check is verified after that construction. Almost every

public class GuardedLogging {
 private static final Logger logger = Logger.getLogger(GuardedLogging.class
 .getName());

 public static void main(String[] args) {
 for (int i = 0; i < 90; i++) {
 logger.debug("Value " + i + " is integer.");
 }

 if (logger.isDebugEnabled()) {
 for (int i = 0; i < 90; i++) {
 logger.debug("Value " + i + " is integer.");
 }
 }
 }
}

Figure 18 - Guarded logging pattern.

public class StringParameterExample {
 private static final Logger logger = Logger
 .getLogger(StringParameterExample.class.getName());

 public static void main(String[] args) {
 String str = "Ok?";
 logger.debug("This" + " " + "is" + " " + "wrong! " + str);

 if (logger.isDebugEnabled()) {
 logger.debug("This is right!" + str);
 }
 }
}

Figure 17 - Parameter construction on logging.

 160

Coding Style and Developer Best Practices

RTS Project 38

log messages use String objects and the accumulation of operations over them
causes memory fragmentation and unnecessary garbage collection.

 161

Coding Style and Developer Best Practices

RTS Project 39

5.2.4 Logging framework configuration
• Changing log4j configuration on runtime

Restarting the framework’s configuration without killing the application can
be achieved using the configureAndWatch options at a starting point of the
application. The framework will pool for configuration changes at a specified
time interval and restart the logger when the configuration is changed. Figure
19 shows an example on how to use this feature.

• Log file rollers
Using log rotation, old log messages are automatically archived so that new

messages are appended to a smaller file. In Log4j, the DailyRollingFile appender
can be used to rotate log files as shown on Figure 20.

public class ConfigureAndWatchExample {

 public static void main(String[] args) {
 initApp();
 }

 private static void initApp() {
 DOMConfigurator.configureAndWatch("/opt/app/conf/log4j.xml");
 }
}

…
<log4j:configuration>
 <appender name="dest" class="org.apache.log4j.RollingFileAppender">
 <param name="file" value="${user.home}/log.out" />
 <param name="threshold" value="error" />
 <param name="immediateFlush" value="true" />
 <param name="append" value="true" />
 <param name="datePattern" value=" '.' yyyy-MM-dd " />

…
 </appender>
 …
</log4j:configuration>

Figure 19 - Example on how to watch changes in log4j configuration files.

Figure 20 - Log file rotation configuration example.

 162

Coding Style and Developer Best Practices

RTS Project 40

• Formatting log messages
The Log4j framework implements multiple Layout objects to help format

the messages, besides providing the possibility of custom layouts to be
implemented extending the abstract super class Layout. These Layout
implementations include XML and HTML formatters, layout suitable to
multithreaded environments and date formatters.

Other main concern about log output is the date of the event that
generated a given log message. When analysing logs, knowing when those
messages occurred is critical but they slow down the system performance.
Log4j provides various date layouts and the most efficient is the
ISO8501DateFormat.

5.2.5 Guidelines for using logging levels
There are seven different levels defined in Log4j, respectively arranged: All,

DEBUG, INFO, WARN, ERROR, FATAL and OFF, where ALL allows all information
to be published and OFF doesn’t allow any information to be published.

Commonly, these levels when associated to log messages are wrongly used
by developers, so it should be defined clear guidelines before they start coding:

• DEBUG: This level of priority is used for problem diagnosis, since it

provides extensive background information. It should be mostly used in
the development phase. Logging information linked to this priority
should be from developers to developers. On normal circumstances, this
level of priority is not active on production environments, except for
problem detection.

• TRACE: This special level will complement the DEBUG level because
shows more debug information and should be used with the previous
guidelines.

• INFO: To help trace the business behaviour of a running application, this
level is the appropriated one. Developers should write these log
messages for users and administrators without exposing implementation
details. Log messages within this level represent the application’s
operations flow, including its components, thus they should be clear and
should enlighten about what’s the application doing.

• WARN: A warning log may represent a potential problem on the
application. This kind of logging shows information about unexpected
situations that needs immediate attention but will not prevent the
majority of operations to continue flowing. This level shouldn’t be used
when the problem crash some function.

 163

Coding Style and Developer Best Practices

RTS Project 41

• ERROR: Indicates a severe problem in the system and is usually not
recoverable and doesn’t exempt manual intervention. Error messages
indicate a significant or complete loss of an operation but still allowing
the application to continue running.

• FATAL: Presents critical problems causing the application to abort.
Fatal shouldn’t be used if the problem is transient or any of the
operations will continue.

5.3 Patterns for Exceptions handling

5.3.1 Introduction
• Checked exceptions:

These kinds of exception are used to anticipate exceptional situations and
to help the application to recover from them and must make sense to the code
that handles it.

Checked exceptions extends from the Exception class and they are always
subject to the try-catch block or the throws clause, apart where was caught.

• Runtime or unchecked exceptions:

Unchecked exceptions are internal to the application and are thrown during
unexpected situations - they could indicate a programming bug. It might be
more correct to fix the bug that causes the exception rather then catch them.

This kind of exception extends from RuntimeException class.
• Errors:

Errors are external to the application that might not be able to recover
from them, like the runtime exceptions. The best handling strategy to these
exceptions is to print the stack trace and terminate the program. When an
error is thrown, might indicate a system malfunction, an overflow in the stack
or lack of memory to continue to run the application.

This kind of exception extends from Error class.

5.3.2 Common errors on exceptions
• Swallowing exceptions

 public void doSomethingElse() {
 try {
 doSomething();
 } catch (CustomException e) {
 // What was i thinking?
 }
 }

Figure 21 – Method swallowing the CustomException.

 164

Coding Style and Developer Best Practices

RTS Project 42

This kind of exception treatment makes the information to be lost forever
and might indicate that the code within the try-catch blocks is wrong. Despite
not being a good practice, if the developer is facing one of the rare
circumstances where using this exception handling is appropriate, at least the
practice should be documented or logged. Programmers to shut up the
compiler when the code throws a checked exception commonly use this bad
practice.

• Log and throw

As explained previously, when an exception is thrown, the runtime system
will search the call stack, in inverted order of the method execution, to find the
handle to deal with the exception. If the same exception is logged in multiple
places, the log output will show multiple logs to the same action. This
overloads the logs and denigrates the system performance. Either the
exception should be logged or thrown, but never the both.

• Exceptions that are too general

 public void doMoreStuff() throws CustomException {
 try {
 doSomething();
 } catch (CustomException e) {
 logger.debug("Error doing some stuff!");
 throw e;
 }
 }

 public void processSomething(String something) throws Exception {
 if (something.length() == 0) {
 throw new Exception("There nothing to do!");
 } else {
 // Going to process something
 }
 }

Figure 22 - Log and throw anti-pattern.

Figure 23 - Method that throws the Exception object.

 165

Coding Style and Developer Best Practices

RTS Project 43

Such an approach, like throwing Exception, is against the all point of using
checked exceptions. This violates the right level of abstraction of an interface,
and throwing a too general exception just advises that something can go wrong
inside a method. Instead, it should declare the checked exceptions the method
can throw. This may cause the next problem to arise.

• Throwing several exceptions

If a method throws several checked exceptions, might indicate that they
should be wrapped in a new custom exception. This is particularly true if
basically all exceptions mean the same. But the opposite situation when the
different thrown exceptions can conduce the caller to different ways of action
negates that proposition.

 public void analyseSentence(String sentence)
 throws InvalidSentenceException, EmptySentenceException,
 SentenceAnalysisException {
 if (sentence == null) {
 throw new InvalidSentenceException("The sentence cannot be null");
 } else if (sentence.length() == 0) {
 throw new EmptySentenceException("The sentence cannot be empty");
 } else {
 // Analyse the sentence
 }
 }

Figure 24 – Throwing several exceptions.

 166

Coding Style and Developer Best Practices

RTS Project 44

• Destructive wrapping

Destructive wrapping used to encapsulate other exceptions makes difficult
to detect some problems that arise from the application. The original stack
trace information from the wrapped exception shouldn’t be lost forever within
the wrapper exception.

• Breaking the encapsulation

When throwing exceptions that make no sense to the caller exposes the
implementation details. This causes the encapsulation to be broken, besides
increasing the complexity of the code. This might indicate a wrong approach on
error-handling logic inside the method that throws unrelated exceptions. Or
those exceptions should be wrapped to exceptions the caller can use.

 public void goCollectFlowers() throws EmptyFieldException, NotTodayException {
 try {
 runToField();
 } catch (BrokenLegException e) {
 // Will conserve the original stack trace
 new NotTodayException("Call an ambulance", e);
 }

 try {
 observeField();
 } catch (FlowersStolenException e) {
 // Will destroy the original stack trace
 throw new EmptyFieldException("All flowers were stolen");
 }
 pickFlowers();
 }

 public void goCollectFlowersAgain() throws IOException {
 // Collect flowers code goes here
 }

Figure 25 - Destructive wrapping anti-pattern.

Figure 26 – Exception breaking the method’s encapsulation.

 167

Coding Style and Developer Best Practices

RTS Project 45

5.3.3 Basic principles of exception handling
• The exception should be caught as closest as possible from the source.

If the caller handles the exception, should take care of it immediately by
wrap it, log it or take measures with appropriate code. If exceptions are a
mechanism to deal with unexpected situations in a certain context of a call
to a method, it should be treated according to that context, for readability
reasons. Uncaught exceptions shouldn’t be thrown if the error can be
handled locally.
• When an exception can’t be handled, it shouldn’t be caught.

If the code can’t handle the exception, something may be wrong in the
caller’s level of abstraction. Probably the code within the try block is invalid
because it raises an exception for no reason or the exception is supposed to
be thrown higher in the call stack. Nevertheless, if there is no alternative
but to catch, at least, it should be documented or logged.
• Exception messages must include all information that led to the

exception

Exception occurs in particular situations in a certain context. To realize
where and why occur, the information message must include the
circumstances under which occurred when they were thrown. This is
another reason for them to be caught nearest to the origin as stated
previously.
• When appropriate, the exception should be logged where was caught

Unless the exception is supposed to be thrown, logging is done
exclusively where was caught. This practice will avoid duplicate messages
on logging systems and shun using the machine in a careless manner
because logging consumes resources.
• Exceptions should respect the interface’s abstraction

Exceptions may be declared on methods of an interface. If the
method’s parameters should respect the class’s level of abstraction,
exceptions should to. Exceptions consistent with that level of abstraction
makes possible to hide the implementation details of a class. Thus, the
implementation complexity of a code where that interface is used is
obviously decreased.

5.3.4 Custom exception classes
There are some guidelines that should be taken into consideration when

designing a new exception. A new exception should be created when:
• There is no representation of the exception in a accessible API;

• A routine throws more than one similar exception;

 168

Coding Style and Developer Best Practices

RTS Project 46

• Wrap exceptions to hide implementation details.

5.3.5 The use of unchecked exceptions:
Developers with unchecked exceptions are urged to write code that just

throws exceptions of that kind, because it apparently improves the code’s
readability and apparently fixes the problem that is trying to solve.

Unchecked exceptions should be used to represent programming bugs and
unexpected exceptions. This is the reason they aren’t thrown on methods of a
class. Other reason not to throw unchecked exception it’s because they are
numerous.

Briefly, errors that the application cannot recover from are unchecked
exception. Otherwise, if the application can recover from an exception, is a
checked one.

5.3.6 Exceptions on multi-module systems
Generally accepted rules when dealing with exceptions on multi-module

systems:
• Declared exceptions should make sense to the caller method;

• Exceptions thrown by a public method should belong to the same
package of that method;

• If a checked exception is thrown by a method in one package, it should
be wrapped when the exception propagates to a second package.

Heuristic when the caller receives a checked exception and don’t know how
to handle it:

• The exception belongs to an expected situation and should be translated
(wrapped) to an exception that the caller understands;

• The exception belongs to an expected situation but it can’t be handled
by the caller and can’t be translated, so it must be treated as an error.
The method should hide it and re-thrown as a SystemException, the
main routine will handle it and log it;

• The exception doesn’t belong to an expected situation, so it must be
treated as an error. A SystemException should wrap it. The main routine
will handle it.

 169

Coding Style and Developer Best Practices

RTS Project 47

6 References
http://wiki.eclipse.org/Version_Numbering

http://maven.apache.org/guides/

http://svnbook.red-bean.com/en/1.4/svn-book.html

http://www.tigris.org/scdocs/SVNTips

http://www.redmine.org/projects/redmine/wiki/Guide

http://mojo.codehaus.org/versions-maven-plugin/

http://maven.apache.org/plugins/maven-release-plugin/
http://download.oracle.com/javase/tutorial
http://code.google.com/p/solidbase/wiki/ExceptionHandlingGuideline
http://today.java.net/pub/a/today/2006/04/06/exception-handling-

antipatterns.html

