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Abstract: Finite differences, as a subclass of direct methods in the calculus of variations,
consist in discretizing the objective functional using appropriate approximations for derivatives
that appear in the problem. This article generalizes the same idea for fractional variational
problems. We consider a minimization problem with a Lagrangian that depends only on the left
Riemann–Liouville fractional derivative. Using Grünwald–Letnikov definition, we approximate
the objective functional in an equispaced grid as a multi-variable function of the values of
the unknown function on mesh points. The problem is then transformed to an ordinary static
optimization problem. The solution to the latter problem gives an approximation to the original
fractional problem on mesh points.
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1. INTRODUCTION

A fractional variational problem consists in finding the
extremizer of a functional that depends on fractional
derivatives and/or integrals subject to some boundary
conditions and possibly some extra constraints. In this
work we consider the following minimization problem: J [x(·)] =

∫ b

a

L(t, x(t), aD
α
t x(t))dt → min

x(a) = xa, x(b) = xb,
(1)

that depends on the left Riemann–Liouville derivative,

aD
α
t , which is defined as follows.

Definition 1. (see Kilbas et al. (2006)). Let x(·) be an ab-
solutely continuous function in [a, b] and 0 ≤ α < 1. The
left Riemann–Liouville fractional derivative of order α,
aD

α
t , is given by

aD
α
t x(t) =

1

Γ(1− α)

d

dt

∫ t

a

(t−τ)−αx(τ)dτ, t ∈ [a, b].

There are several different definitions for fractional deriva-
tives, left and right, that can be found in the literature
and could be included. They posses different properties:
each one of those definitions has its own advantages and
disadvantages. In certain conditions they are equivalent
and can be used interchangeably.

There are two major approaches in the classical theory of
calculus of variations. In one hand, using Euler–Lagrange
necessary conditions, we can reduce a variational problem
to the study of a differential equation. Hereafter, one can
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use either analytical or numerical methods to solve the
differential equation and reach the solution of the original
problem (see, e.g. Kirk (1970)). This approach is referred
as indirect methods in the literature. On the other hand,
we can tackle the functional itself, directly. Direct methods
are used to find the extremizer of a functional in two
ways: Euler’s finite differences and Ritz methods. In the
Ritz method, we either restrict admissible functions to all
possible linear combinations

xn =
n∑

i=1

αiϕi(t),

with constant coefficients αi and a set of known base
functions ϕi, or we approximate the admissible functions
with such combinations. Using xn and its derivatives
whenever needed, one can transform the functional to a
multivariate function of unknown coefficients αi.

By finite differences, however, we consider the admissible
functions not on the class of arbitrary curves, but only
on polygonal curves made upon a given grid on the time
horizon. Using an appropriate discrete approximation of
the Lagrangian, and substituting the integral with a sum,
we can transform the main problem to the optimization of
a function of several parameters: the values of the unknown
function on mesh points (see, e.g. Elsgolts (1973)).

Indirect methods for fractional variational problems have
a vast background in the literature and can be considered
a well studied subject: see Agrawal (2002); Atanacković
et al. (2008); Frederico and Torres (2008); Jelicic and
Petrovacki (2009); Klimek (2001); Almeida et al. (2012);
Odzijewicz et al. (in press); Riewe (1997) and references
therein that study different variants of the problem and
discuss a bunch of possibilities in the presence of fractional
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terms, Euler–Lagrange equations and boundary condi-
tions. Direct methods, however, to the best of our knowl-
edge, have got less interest and are not well studied. A brief
introduction of using finite differences has been made in
Riewe (1996) that can be regarded as a predecessor to what
we call Euler-like direct method here. A generalization of
Leitmann’s direct method can be found in Almeida and
Torres (2010) while Lotfi et al. (2011) discusses the Ritz
direct method for optimal control problems that can easily
be reduced to a problem of the calculus of variations.

2. DIRECT METHODS IN THE CLASSICAL THEORY

The basic idea of direct methods is to consider the vari-
ational problem as a limiting case of a certain extremum
problem of a multi-variable function. This is then an or-
dinary static optimization problem. The solution to the
latter problem can be regarded as an approximate solution
to the original variational problem. There are three major
methods: Euler’s finite differences, Ritz and Kantorovich’s
methods. We are going to discuss the Euler’s method
briefly: see, e.g., Elsgolts (1973). The basic idea of a finite
differences method is that instead of considering the values
of a functional

J [x(·)] =
∫ b

a

L(t, x(t), ẋ(t))dt

with boundary conditions x(a) = xa and x(b) = xb, on
arbitrary admissible curves, we only track the values at an
n + 1 points grid, ti, i = 0, . . . , n, in the interested time
interval. The functional J [x(·)] is then transformed into
a function Ψ(x(t1), x(t2), . . . , x(tn−1)) of the values of the
unknown function on mesh points. Assuming h = ti−ti−1,

x(ti) = xi and ẋi ≃ xi−xi−1

h , one has

J [x(·)]≃Ψ(x1, x2, . . . , xn−1)

= h
n∑

i=1

L

(
ti, xi,

xi − xi−1

h

)
,

x0 = xa, xn = xb.

The desired values of xi, i = 1, . . . , n − 1, give the
extremum to the multi-variable function Ψ and satisfy the
system

∂Ψ

∂xi
= 0, i = 1, . . . , n− 1.

The fact that only two terms in the sum, (i−1)th and ith,
depend on xi makes it rather easy to find the extremum of
Ψ solving a system of algebraic equations. For each n, we
obtain a polygonal line which is an approximate solution of
the original problem. It has been shown that passing to the
limit, as h → 0, the linear system corresponding to finding
the extremum of Ψ is equivalent to the Euler–Lagrange
equation for the original problem Tuckey (1993).

3. FINITE DIFFERENCES FOR FRACTIONAL
DERIVATIVES

In classical theory, given a derivative of certain order x(n),
there is a finite difference approximation of the form

x(n)(t) = lim
h→0+

1

hn

n∑
k=0

(−1)k
(
n

k

)
x(t− kh)

where (
n

k

)
=

n(n− 1)(n− 2) · · · (n− k + 1)

k!
. (2)

This is generalized to derivatives of arbitrary order and
gives rise to the Grünwald–Letnikov fractional derivative.

Definition 2. (See Kilbas et al. (2006)). Let 0 < α < 1.
The left Grünwald–Letnikov fractional derivative is de-
fined as

GL
a Dα

t x(t) = lim
h→0+

1

hα

∞∑
k=0

(−1)k
(
α

k

)
x(t− kh). (3)

Here
(
α
k

)
is the generalization of binomial coefficients (2)

to real numbers.

Similarly, the right Grünwald–Letnikov derivative is given
by

GL
t Dα

b x(t) = lim
h→0+

1

hα

∞∑
k=0

(−1)k
(
α

k

)
x(t+ kh). (4)

The series in (3) and (4) converges absolutely and uni-
formly if x(·) is bounded. The definition is clearly affected
by the non-local property of fractional derivatives. The
arbitrary order derivative of a function at a time t depends
on all values of that function in (−∞, t] and [t,∞) because
of the infinite sum, backward and forward difference nature
of the left and right derivatives, respectively. Since we are,
usually, and specifically in this paper, dealing with closed
time intervals, the following remark is made to make the
definition clear in closed regions.

Remark 3. For the above definition to be consistent, we
need the values of x(t) outside the interval [a, b]. To
overcome this difficulty, we take

x∗(t) =

{
x(t) t ∈ [a, b],
0 t /∈ [a, b].

Thus, one can assume GL
a Dα

t x(t) = GL
a Dα

t x
∗(t) and

GL
t Dα

b x(t) =
GL
t Dα

b x
∗(t) for t ∈ [a, b].

As we mentioned before, this definition coincides with
Riemann–Liouville derivatives. The following proposition
establishes the connection between these two definitions
and that of Caputo derivative, another type of derivative
that is believed to be more applicable in practical fields
such as engineering and physics.

Proposition 4. (See Podlubny (1999)). Let n−1 < α < n,
n ∈ N and x(·) ∈ Cn−1[a, b]. Suppose also that x(n)(·) is
integrable on [a, b]. Then the Riemann–Liouville derivative
exists and coincides with the Grünwald–Letnikov deriva-
tive and the following holds:

aD
α
t x(t) =

GL
a Dα

t x(t) =

n−1∑
i=0

x(i)(a)(t− a)i−α

Γ(1 + i− α)

+
1

Γ(n− α)

∫ t

a

(t− τ)n−1−αx(n)(τ)dτ.

Remark 5. For numerical purposes we need a finite sum
in (3) and this goal is achieved by Remark 3. Given a grid
on [a, b] as a = t0, t1, . . . , tn = b, where ti = t0 + ih for
some h > 0, we approximate the left Riemann–Liouville
derivative as



aD
α
t x(ti) ≃

1

hα

i∑
k=0

(ωα
k )x(ti − kh) =: aD̃

α
t x(ti) (5)

where (ωα
k ) = (−1)k

(
α
k

)
= Γ(k−α)

Γ(−α)Γ(k+1) .

Similarly, one can approximate the right Riemann–Liouville
derivative by

tD
α
b x(ti) ≃

1

hα

n−i∑
k=0

(ωα
k )x(ti + kh). (6)

As it is stated in Podlubny (1999), this approximation is
of first order, i.e.,

aD
α
t x(ti) =

1

hα

i∑
k=0

(ωα
k )x(ti − kh) +O(h).

Remark 6. In Meerschaert and Tadjeran (2004), it has
been shown that the implicit Euler method is un-
stable for certain fractional partial differential equa-
tions with Grünwald–Letnikov approximations. There-
fore, discretizing fractional derivatives, shifted Grünwald–
Letnikov derivatives are used. Despite the slight difference
with respect to standard Grünwald–Letnikov derivatives,
they exhibit, at least for certain cases, a stable perfor-
mance. The shifted Grünwald–Letnikov derivative is de-
fined by

sGL
a Dα

t x(ti) ≃
1

hα

i∑
k=0

(ωα
k )x(ti − (k − 1)h).

Other finite difference approximations can be found in the
literature, e.g., the Diethelm’s backward finite difference
formulas for fractional derivatives Diethelm et al. (2005).

4. EULER-LIKE DIRECT METHOD FOR
FRACTIONAL VARIATIONAL PROBLEMS

As mentioned earlier, we consider a simple version of the
fractional variational problem where the fractional term
has a Riemann–Liouville form on a finite time interval
[a, b]. The boundary conditions are given and we ap-
proximate using Grünwald–Letnikov approximation given
by (5). In this context we discretize the functional in
(1) using a simple quadrature rule on the mesh points
a = t0, t1, , . . . , tn = b with h = b−a

n . The goal is to find
the values x1, x2, . . . , xn−1 of the unknown function x(·)
at points ti, i = 1, 2, . . . , n − 1. The values of x0 and xn

are given. Applying the quadrature rule gives

J [x(·)] =
n∑

i=1

∫ ti

ti−1

L(ti, xi, aD
α
t xi)dt

≃
n∑

i=1

hL(ti, xi, aD
α
t xi)

and by approximating the fractional derivatives at mesh
points using (5) we have

J [x(·)] ≃
n∑

i=1

hL
(
ti, xi, aD̃

α
t xi−k

)
. (7)

Hereafter the procedure is the same as in classical case.
The right hand side of (7) can be regarded as a function
Ψ of n− 1 unknowns x = (x1, x2, . . . , xn−1),

Ψ(x) =

n∑
i=1

hL
(
ti, xi, aD̃

α
t xi−k

)
. (8)

To find an extremum for Ψ, one has to solve the following
system of algebraic equations:

∂Ψ

∂xi
= 0, i = 1, . . . , n− 1. (9)

Unlike the classical case, all terms, starting from ith term,
in (8) depend on xi and we have

∂Ψ

∂xi
= h

∂L

∂x
(ti, xi, aD̃

α
t xi)

+

n−i∑
k=0

h

hα
(ωα

k )
∂L

∂ aDα
t x

(ti+k, xi+k, aD̃
α
t xi+k).(10)

Equating the right hand side of (10) with zero one has

∂L

∂x
(ti, xi, aD̃

α
t xi)

+
1

hα

n−i∑
k=0

(ωα
k )

∂L

∂ aDα
t x

(ti+k, xi+k, aD̃
α
t xi+k) = 0.

Passing to the limit and considering the approximation
formula for the right Riemann–Liouville derivative (6), it
is straightforward to verify that:

Proposition 7. The Euler-like method for a fractional vari-
ational problem of the form (1) is equivalent to the frac-
tional Euler–Lagrange equation

∂L

∂x
+ tD

α
b

∂L

∂ aDα
t x

= 0,

as the mesh size, h, tends to zero.

5. EXAMPLES

In this section we try to solve test problems using what
has been presented in Section 4. For the sake of simplicity
we restrict ourselves to the interval [0, 1]. To measure
the accuracy of our method we use the maximum norm.
Assume that the exact value of the function x(·), at the
point ti, is x(ti) and it is approximated by x̃i. The error
is defined as

E = max{|x(ti)− x̃i|, i = 1, 2, · · · , n− 1}. (11)

Example 1. Consider the following minimization problem: J [x(·)] =
∫ 1

0

(
0D

0.5
t x(t)− 2

Γ(2.5)
t1.5
)2

dt → min

x(0) = 0, x(1) = 1.
(12)

Problem (12) has the obvious solution of the form x̂(t) = t2

due to the positivity of the Lagrangian and the zero value
of J [x̂(·)].

Using the approximation

0D
0.5
t x(ti) ≃

1

h0.5

i∑
k=0

(
ω0.5
k

)
x(ti − kh)

for a fixed h, and following the routine discussed in
Section 4, we approximate problem (12) by

Ψ(x) =

n∑
i=1

h

(
1

h0.5

i∑
k=0

(
ω0.5
k

)
xi−k − 2

Γ(2.5)
t1.5i

)2

.
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Fig. 1. Analytic and approximate solutions for Example 1.

Since the Lagrangian in this example is quadratic, system
(9) is linear and therefore easy to solve. Other problems
may end with a system of nonlinear equations. Simple
calculations lead to the system

Ax = b, (13)

in which

A =



n−1∑
i=0

A2
i

n−1∑
i=1

AiAi−1 · · ·
n−1∑

i=n−2

AiAi−n+2

n−2∑
i=0

AiAi+1

n−2∑
i=1

A2
i · · ·

n−2∑
i=n−3

AiAi−n+3

n−3∑
i=0

AiAi+2

n−3∑
i=1

AiAi+1 · · ·
n−3∑

i=n−4

AiAi−n+4

...
...

. . .
...

1∑
i=0

AiAi+n−2

1∑
i=0

AiAi+n−3 · · ·
1∑

i=0

A2
i


where Ai = (−1)ih1.5

(
0.5
i

)
, x = (x1, x2, · · · , xn−1)

T and

b = (b1, b2, · · · , bn−1)
T with

bi =
n−i∑
k=0

2h2Ak

Γ(2.5)
t1.5k+i −An−iA0 −

(
n−i∑
k=0

AkAk+i

)
.

The linear system (13) is easily solved for different values
of n. As indicated in Figure 1, by increasing the value of
n we get better solutions.

Although we constructed our theory for problems in the
form (1), other operators can be included in the La-
grangian. Let us now move to another example that de-
pends also on the first derivative and the solution is ob-
tained via the fractional Euler–Lagrange equation.

Remark 8. Suppose that the objective functional in a
fractional variational problem depends on left Riemann–
Liouville fractional derivative, aD

α
t , and first derivative,

ẋ. It is easy to verify that if x(·) is an extremizer of such
a problem, then it satisfies the fractional Euler–Lagrange
equation

∂L

∂x
+ tD

α
b

∂L

∂aDα
t x

− d

dt

(
∂L

∂ẋ

)
= 0, (14)

see Odzijewicz et al. (2012).
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Fig. 2. Analytic and approximate solutions for Example 2.

Example 2. Consider the following minimization problem: J [x(·)] =
∫ 1

0

(
0D

0.5
t x(t)− ẋ2(t)

)
dt → min

x(0) = 0, x(1) = 1.
(15)

In this case the Euler–Lagrange equation (14) gives

tD
0.5
1 1 + 2ẍ(t) = 0.

Since tD
0.5
1 1 = 1

Γ(0.5) (1 − t)−0.5, the fractional Euler–

Lagrange equation turns to be an ordinary differential
equation

ẍ(t) = − 1

2Γ(0.5)
(1− t)−0.5,

which subject to the given boundary conditions has solu-
tion

x(t) = − 1

2Γ(2.5)
(1− t)1.5 +

(
1− 1

2Γ(2.5)

)
t+

1

2Γ(2.5)
.

Discretizing problem (15), with the same assumptions of
Example 1, ends in a linear system of the form

2 −1 0 0 · · · 0 0
−1 2 −1 0 · · · 0 0
0 −1 2 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −1 2




x1

x2

x3

...
xn−1

 =


b1
b2
b3
...

bn−1

 , (16)

where

bi =
h

2

n−i−1∑
k=0

(−1)kh0.5

(
0.5

k

)
, i = 1, 2, · · · , n− 2

and

bn−1 =
h

2

1∑
k=0

(
(−1)kh0.5

(
0.5

k

))
+ xn.

The linear system (16) can be solved efficiently for any n to
reach the desired accuracy. The analytic solution together
with some approximated solutions are shown in Figure 2.

Both examples above end with linear systems and their
solvability is simply dependent to the matrix of coeffi-
cients. Now we try our method on a more complicated
problem, yet analytically solvable with an oscillating solu-
tion.

Example 3. Consider a minimization problem with the
following Lagrangian:



L =

(
0D

0.5
t x(t)− 16Γ(6)

Γ(5.5)
t4.5 +

20Γ(4)

Γ(3.5)
t2.5 − 5

Γ(1.5)
t0.5
)4

and subject to the boundary conditions x(0) = 0 and

x(1) = 1. The functional
∫ 1

0
Ldt, with positive L, attains

its minimum value for

x(t) = 16t5 − 20t3 + 5t.

The appearance of fourth power in the Lagrangian, results
in a nonlinear system as we apply the Euler-like direct
method to this problem. For j = 1, 2, · · · , n− 1 we have

n∑
i=j

(
ω0.5
i−j

)( 1

h0.5

i∑
k=0

(
ω0.5
k

)
xi−k − ϕ(ti)

)3

= 0, (17)

where

ϕ(t) =
16Γ(6)

Γ(5.5)
t4.5 +

20Γ(4)

Γ(3.5)
t2.5 − 5

Γ(1.5)
t0.5.

System (17) is solved for different values of n and the
results are given in Figure 3.
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Fig. 3. Analytic and approximate solutions for Example 3.

6. CONCLUSION

Roughly speaking, an Euler-like direct method reduces a
variational problem to the solution of a system of alge-
braic equations. When the system is linear, we can freely
increase the number of mesh points, n, and obtain better
solutions as long as the resulted matrix of coefficients is
invertible. The method is very fast in this case and the
execution time is of order 10−4 for Example 1 and 2. It
is worth, however, to keep in mind that the Grünwald–
Letnikov approximation is of first order, O(h), and even
a large n can not result in a high precision. Actually, by
increasing n, the solution slowly converges and in Example
2, a grid of 30 points has the same order of error, 10−3, as
a 5 points grid.

The situation is completely different when the problem
ends in a nonlinear system. In Example 3 a small number
of mesh points, n = 5, results in a poor solution with
the error E = 1.4787. The Matlab built in function fsolve
takes 0.0126 seconds to solve the problem. As one increases
the number of mesh points, the solution gets closer to
the analytic solution and the required time increases
drastically. Finally, by n = 90 we have E = 0.0618 and

the time is T = 26.355 seconds. Table 1 summarizes the
results.

n T E

Example 1 5 1.9668× 10−4 0.0264
10 2.8297× 10−4 0.0158
30 9.8318× 10−4 0.0065

Example 2 5 2.4053× 10−4 0.0070
10 3.0209× 10−4 0.0035
30 7.3457× 10−4 0.0012

Example 3 5 0.0126 1.4787
20 0.2012 0.3006
90 26.355 0.0618

Table 1. Number of mesh points, n, with cor-
responding run time in seconds, T , and error,

E (11).

In practice, we have no idea about the solution in advance
and the worst case should be taken into account. Com-
paring the results of the three examples, reveals that for
a typical fractional variational problem, Euler-like direct
method needs a large number of mesh points and most
likely a long running time for the solution procedure.

The Euler-like direct method for fractional variational
problems can be improved in some stages. One can try
different approximations for the fractional derivative that
exhibit higher order precisions. Better quadrature rules
can be applied to discretize the functional and, finally,
we can apply more sophisticated algorithms for solving
the resulting system of algebraic equations. Further works
are needed to cover different types of fractional variational
problems.
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