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1 Introduction

Isoperimetric problems consist in maximizing or minimizing a cost functional subject to in-
tegral constraints [5]. They have found a broad class of important applications throughout
the centuries. Areas of application include astronomy, physics, geometry, algebra, and anal-
ysis [6, 17]. Concrete isoperimetric problems in engineering have been also investigated by a
number of authors [18].

The study of isoperimetric problems is nowadays done, in an elegant and rigorously way,
by means of the theory of the calculus of variations. This is possible through a powerful
tool known as the Euler-Lagrange equation [33]. Recently the theory of the calculus of
variations has been considered in the fractional context [7, 8, 10, 11, 12, 13, 14, 23, 25, 27, 32].
The fractional calculus allows to generalize the ordinary differentiation and integration to an
arbitrary (non-integer) order, and provides a powerful tool for modeling and solving various
problems in science and engineering [28, 29, 31]. The problems considered are more general,
and hold for a bigger class of admissible functions which are not necessarily differentiable in
the classical sense [30]. Several results were proved for the new calculus of variations. They
include: Euler-Lagrange equations for fractional variational problems with Riemann-Liouville
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[1], Riesz [3], Caputo, and (α, β) derivatives [19]; transversality conditions [2]; and Noether’s
symmetry theorem [21, 22]. For a state of the art of the fractional variational theory see the
recent papers [4, 9, 15, 16, 20, 24] and references therein. In this paper we develop further
the theory of the fractional variational calculus by studying isoperimetric problems.

The paper is organized as follows. In Section 2 we shortly review the necessary background
on fractional calculus. Our results are given in Section 3. In Section 3.1 we introduce the basic
fractional isoperimetric problem and prove correspondent necessary optimality conditions,
both for normal and abnormal extremizers (Theorems 6 and 7, respectively). In Section 3.2
we generalize our results for functionals where the lower bound of the integral is greater than
the lower bound of the Riemann-Liouville derivatives. Finally, in Section 3.3 we present a
necessary condition of optimality for the case where the order of the derivative is taken as a
free variable.

2 Preliminaries of fractional calculus

A fractional derivative is a generalization of the ordinary differentiation, which allows real
number powers of the differential operator. There exist numerous applications of fractional
derivatives to several fields, like geometry, physics, engineering, etc. In the literature we
may find a great number of definitions for fractional derivatives (see, e.g., [28, 29, 31]). In
this paper we deal with the left and right Riemann-Liouville fractional derivatives, which are
defined in the following way.

Definition 1. Let f : [a, b] → R be a continuous function. The left and right Riemann-
Liouville fractional derivatives of order α > 0 are defined respectively by

aDα
xf(x) =

1

Γ(n− α)

dn

dxn

∫ x

a
(x− t)n−α−1f(t)dt , x ∈ (a, b] ,

and

xDα
b f(x) =

(−1)n

Γ(n− α)

dn

dxn

∫ b

x
(t− x)n−α−1f(t)dt , x ∈ [a, b) ,

where Γ is the Euler gamma function, α is the order of the derivative, and n = [α] + 1 with
[α] being the integer part of α.

If α ≥ 1 is an integer, these fractional derivatives are understood in the sense of usual
differentiation, that is,

aDα
xf(x) =

(
d

dx

)α

f(x) and xDα
b f(x) =

(
− d

dx

)α

f(x).

¿From the physical point of view, if f(x) describes a certain process through time x, then
the left derivative is related to the past of this process, while the right derivative belongs to
the future.

These operations are linear, in the sense that

aDα
x (µf(x) + νg(x)) = µ aDα

xf(x) + ν aDα
xg(x)

and

xDα
b (µf(x) + νg(x)) = µ xDα

b f(x) + ν xDα
b g(x).

We now present the integration by parts formula for fractional derivatives.
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Lemma 2. ([31, p. 46]) If f and g and the fractional derivatives aDα
xg and xDα

b f are contin-
uous at every point x ∈ [a, b], then for 0 < α < 1 we have

∫ b

a
f(x)aDα

xg(x)dx =

∫ b

a
g(x)xDα

b f(x)dx. (1)

Moreover, formula (1) is still valid for α = 1 provided f or g are zero at x = a and x = b.

3 Main results

¿From now on we fix α, β ∈ (0, 1). We consider functionals J of the form

J (y) =

∫ b

a
L(x, y, aDα

xy, xDβ
b y)dx (2)

defined on the set of admissible functions y that have continuous left fractional derivatives of
order α and continuous right fractional derivatives of order β in [a, b], and where (x, y, u, v) →
L(x, y, u, v) is a function with continuous first and second partial derivatives with respect to

all its arguments such that ∂L
∂u (x, y, aDα

xy, xDβ
b y) has continuous right fractional derivative of

order α for all x ∈ [a, b] and ∂L
∂v (x, y, aDα

xy, xDβ
b y) has continuous left fractional derivative of

order β in [a, b].

Remark 1. The left Riemann-Liouville fractional derivative is infinite at x = a if y(a) 6= 0.
If y(b) 6= 0, then the right Riemann-Liouville fractional derivative is also not finite at x = b
[30]. For this reason, by considering that the admissible functions y have continuous left
fractional derivatives, then necessarily y(a) = 0; by considering that the admissible functions
y have continuous right fractional derivatives, then necessarily y(b) = 0. This fact seems
to have been neglected in some previous work on the calculus of variations with Riemann-
Liouville fractional derivatives. Alternatively, we can consider the general case of boundary
conditions, say y(a) = ya and y(b) = yb, and study functionals of type

J (y) =

∫ b

a
L(x, y(x), aDα

x (y(x)− ya), xDβ
b (y(x)− yb))dx.

This needs, however, a modified fractional calculus [26].

Definition 3. The functional J is said to have a local minimum (resp. local maximum) at
y if there exists a δ > 0 such that J (y) ≤ J (y1) (resp. J (y) ≥ J (y1)) for all y1 such that
‖y − y1‖ < δ.

In [1] the following problem is addressed: among all curves y(x) satisfying the boundary
conditions, find the ones that maximize or minimize a given functional J . An answer to this
question is given in the next theorem.

Theorem 4 ([1]). Let J be a functional as in (2) and y an extremum of J . Then, y satisfies
the following Euler-Lagrange equation:

∂L

∂y
+ xDα

b

∂L

∂u
+ aDβ

x

∂L

∂v
= 0. (3)
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3.1 The fractional isoperimetric problem

We introduce the fractional isoperimetric problem as follows: find the functions y that satisfy
boundary conditions

y(a) = ya, y(b) = yb (4)

(ya = 0 if left Riemann-Liouville fractional derivatives are present in (2); yb = 0 if right
Riemann-Liouville fractional derivatives are present in (2) — cf. Remark 1), the integral
constraint

I(y) =
∫ b

a
g(x, y, aDα

xy, xDβ
b y)dx = l , (5)

and give a minimum or a maximum to (2). We assume that l is a specified real con-
stant, functions y have continuous left and right fractional derivatives (if present in (2)),
and (x, y, u, v) → g(x, y, u, v) is a function with continuous first and second partial deriva-

tives with respect to all its arguments such that ∂g
∂u(x, y, aDα

xy, xDβ
b y) has continuous right

fractional derivative of order α for all x ∈ [a, b] and ∂g
∂v (x, y, aDα

xy, xDβ
b y) has continuous left

fractional derivative of order β in [a, b]. Theorem 4 motivates the following definition.

Definition 5. An admissible function y is an extremal for I in (5) if it satisfies the equation

∂g

∂y
+ xDα

b

∂g

∂u
+ aDβ

x

∂g

∂v
= 0

for all x ∈ [a, b].

The following theorem gives a necessary condition for y to be a solution of the fractional
isoperimetric problem defined by (2)-(4)-(5) under the assumption that y is not an extremal
for I.
Theorem 6. Suppose that J given by (2) has a local minimum or a local maximum at y
subject to the boundary conditions (4) and the isoperimetric constraint (5). Further, suppose
that y is not an extremal for the functional I. Then there exists a constant λ such that y
satisfies the fractional differential equation

∂F

∂y
+ xDα

b

∂F

∂u
+ aDβ

x

∂F

∂v
= 0 (6)

with F = L− λg.

Proof. Consider neighboring functions of the form

ŷ = y + ε1η1 + ε2η2, (7)

where for each i ∈ {1, 2} εi is a sufficiently small parameter, ηi have continuous left and right
fractional derivatives, and ηi(a) = ηi(b) = 0.

First we will show that (7) has a subset of admissible functions for the fractional isoperi-
metric problem. Consider the quantity

I(ŷ) =
∫ b

a
g(x, y + ε1η1 + ε2η2, aDα

xy + ε1aDα
xη1 + ε2aDα

xη2, xDβ
b y + ε1xDβ

b η1 + ε2xDβ
b η2)dx.

4



Then we can regard I(ŷ) as a function of ε1 and ε2. Define Î(ε1, ε2) = I(ŷ)− l. Thus,

Î(0, 0) = 0. (8)

On the other hand, we have

∂Î

∂ε2

∣∣∣∣∣
(0,0)

=

∫ b

a

[
∂g

∂y
η2 +

∂g

∂u
aDα

xη2 +
∂g

∂v
xDβ

b η2

]
dx

=

∫ b

a

[
∂g

∂y
+ xDα

b

∂g

∂u
+ aDβ

x

∂g

∂v

]
η2dx, (9)

where (9) follows from (1). Since y is not an extremal for I, by the fundamental lemma of
the calculus of variations (see, e.g., [33, p. 32]), there exists a function η2 such that

∂Î

∂ε2

∣∣∣∣∣
(0,0)

6= 0. (10)

Using (8) and (10), the implicit function theorem asserts that there exists a function ε2(·),
defined in a neighborhood of zero, such that Î(ε1, ε2(ε1)) = 0. We are now in a position to
derive the necessary condition (6). Consider the real function Ĵ(ε1, ε2) = J (ŷ). By hypothesis,
Ĵ has minimum (or maximum) at (0, 0) subject to the constraint Î(0, 0) = 0, and we have
proved that ∇Î(0, 0) 6= 0. We can appeal to the Lagrange multiplier rule (see, e.g., [33,
p. 77]) to assert the existence of a number λ such that ∇(Ĵ(0, 0)− λÎ(0, 0)) = 0. Repeating
the calculations as before,

∂Ĵ

∂ε1

∣∣∣∣∣
(0,0)

=

∫ b

a

[
∂L

∂y
+ xDα

b

∂L

∂u
+ aDβ

x

∂L

∂v

]
η1(x)dx

and
∂Î

∂ε1

∣∣∣∣∣
(0,0)

=

∫ b

a

[
∂g

∂y
+ xDα

b

∂g

∂u
+ aDβ

x

∂g

∂v

]
η1(x)dx .

Therefore, one has

∫ b

a

[
∂L

∂y
+ xDα

b

∂L

∂u
+ aDβ

x

∂L

∂v
− λ

(
∂g

∂y
+ xDα

b

∂g

∂u
+ aDβ

x

∂g

∂v

)]
η1(x)dx = 0. (11)

Since (11) holds for any function η1, we obtain (6):

∂L

∂y
+ xDα

b

∂L

∂u
+ aDβ

x

∂L

∂v
− λ

(
∂g

∂y
+ xDα

b

∂g

∂u
+ aDβ

x

∂g

∂v

)
= 0.

Remark 2. Theorem 6 holds true in the case when α or β are equal to 1. Indeed, in the
proof we imposed the condition η2(a) = η2(b) = 0, and formula (1) is valid.
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Example 1. Let α be a given number in the interval (0, 1). We consider the following
fractional isoperimetric problem:

∫ 1

0
(x4 + (0Dα

xy)
2)dx −→ min

∫ 1

0
x20Dα

xy dx =
1

5

y(0) = 0 , y(1) =
2

2α+ 3α2 + α3
.

(12)

The augmented Lagrangian is

F (x, y, 0Dα
xy, xDβ

1 y) = x4 + (0Dα
xy)

2 − λx20Dα
xy

and it is a simple exercise to see that

y(x) =
1

Γ(α)

∫ x

0

t2

(x− t)1−α
dt =

1

Γ(α)

2xα+2

2α+ 3α2 + α3
(13)

(i) is not an extremal for the isoperimetric functional, (ii) satisfy 0Dα
xy = x2, (iii) (6) holds for

λ = 2, i.e., xDα
1 (2 0Dα

xy− 2x2) = 0. We remark that for α = 1 (13) gives y(x) = x3/3, which
coincides with the solution of the associated classical variational problem (Fig. 1). Indeed, for

0.2

0.50.25

0.4

0.6

0.8

0.0 0.75 1.0

0.0

α = 0.2

α = 0.5

α = 0.7

α = 0.9
α = 1

x

y

Figure 1: The fractional solution converges to the classical one as α → 1.

α → 1 our fractional problem (12) tends to the classical isoperimetric problem of minimizing
the functional

∫ 1
0 (x

4 + (y′)2)dx subject to the isoperimetric constraint
∫ 1
0 x2y′ dx = 1

5 and the
boundary conditions y(0) = 0 and y(1) = 1/3. Then, F = x4 + (y′)2 − λx2y′ and the classical
Euler-Lagrange equation is

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0 ⇔ −2y′′ + 2λx = 0. (14)

The solution of (14) subject to y(0) = 0, y(1) = 1/3, and
∫ 1
0 x2y′ dx = 1

5 is λ = 2 and
y = x3/3.
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Introducing a multiplier λ0 associated with the cost functional (2), we can easily include
in Theorem 6 the situation when the solution of the fractional isoperimetric problem defined
by (2)-(4)-(5) is an extremal for the fractional isoperimetric functional. This is done in
Theorem 7.

Theorem 7. If y is a local minimizer or a local maximizer of (2) subject to the boundary
conditions (4) and the isoperimetric constraint (5), then there exist two constants λ0 and λ,
not both zero, such that

∂K

∂y
+ xDα

b

∂K

∂u
+ aDβ

x

∂K

∂v
= 0 (15)

with K = λ0L− λg.

Proof. Using the same notation as in the proof of Theorem 6, we have that (0, 0) is an extremal
of Ĵ subject to the constraint Î = 0. Then, by the abnormal Lagrange multiplier rule (see, e.g.,
[33, p. 82]) there exist two reals λ0 and λ, not both zero, such that ∇(λ0Ĵ(0, 0)−λÎ(0, 0)) = 0.
Therefore,

λ0
∂Ĵ

∂ε1

∣∣∣∣∣
(0,0)

− λ
∂Î

∂ε1

∣∣∣∣∣
(0,0)

= 0.

Applying the same reasoning as in the proof of Theorem 6, we end up with (15).

3.2 An extension

In [9] a fractional functional

L(y) =
∫ B

A
L(x, y, aDα

xy)dx (16)

is considered with [A,B] ⊂ [a, b], i.e., with the lower bound of the integral not coinciding with
the lower bound of the fractional derivative. The main result of [9] is a new Euler-Lagrange
equation for the functional (16). We now extend the techniques of [9] to prove an Euler-
Lagrange equation for functionals containing both left and right Riemann-Liouville fractional
derivatives, i.e., for fractional functionals of the form

J (y) =

∫ B

A
L(x, y, aDα

xy, xDβ
b y)dx, (17)

where the integrand L satisfies the same conditions as before. Let y be a local extremum of
J such that y(a) = ya and y(b) = yb, and let ŷ = y + εη with η(a) = η(b) = 0. Consider the
function Ĵ(ε) = J (y + εη). Since Ĵ(ε) has a local extremum at ε = 0, then

0 =

∫ B

A

[
∂L

∂y
· η +

∂L

∂u
· aDα

xη +
∂L

∂v
· xDβ

b η

]
dx

=

∫ B

A

∂L

∂y
· ηdx+

[∫ B

a

∂L

∂u
· aDα

xηdx−
∫ A

a

∂L

∂u
· aDα

xηdx

]

+

[∫ b

A

∂L

∂v
· xDβ

b ηdx−
∫ b

B

∂L

∂v
· xDβ

b ηdx

]

=

∫ B

A

∂L

∂y
· ηdx+

[∫ B

a
η · xDα

B

∂L

∂u
dx−

∫ A

a
η · xDα

A

∂L

∂u
dx

]

+

[∫ b

A
η · ADβ

x

∂L

∂v
dx−

∫ b

B
η · BDβ

x

∂L

∂v
dx

]
.
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Continuing in a similar way,

0 =

∫ B

A

∂L

∂y
· ηdx+

[∫ A

a
η · xDα

B

∂L

∂u
dx+

∫ B

A
η · xDα

B

∂L

∂u
dx−

∫ A

a
η · xDα

A

∂L

∂u
dx

]

+

[∫ B

A
η · ADβ

x

∂L

∂v
dx+

∫ b

B
η · ADβ

x

∂L

∂v
dx−

∫ b

B
η · BDβ

x

∂L

∂v
dx

]

=

∫ A

a

[
xDα

B

∂L

∂u
− xDα

A

∂L

∂u

]
ηdx+

∫ B

A

[
∂L

∂y
+ xDα

B

∂L

∂u
+ ADβ

x

∂L

∂v

]
ηdx

+

∫ b

B

[
ADβ

x

∂L

∂v
− BDβ

x

∂L

∂v

]
ηdx .

Let η1 : [a,A] → R be any function satisfying η1(a) = 0, and η be given by

η(x) =

{
η1(x) if x ∈ [a,A] ,
0 elsewhere.

Therefore,

0 =

∫ A

a

[
xDα

B

∂L

∂u
− xDα

A

∂L

∂u

]
η1dx.

By the arbitrariness of η1 and the fundamental lemma of calculus of variations,

xDα
B

∂L

∂u
− xDα

A

∂L

∂u
= 0 for all x ∈ [a,A].

Analogously, we have

∂L

∂y
+ xDα

B

∂L

∂u
+ ADβ

x

∂L

∂v
= 0 for all x ∈ [A,B] ,

and

ADβ
x

∂L

∂v
− BDβ

x

∂L

∂v
= 0 for all x ∈ [B, b].

We have just proved the following.

Theorem 8. Let y be a local extremizer of (17). Then, y satisfies the following equations:




∂L

∂y
+ xDα

B

∂L

∂u
+ ADβ

x

∂L

∂v
= 0 for all x ∈ [A,B] ,

xDα
B

∂L

∂u
− xDα

A

∂L

∂u
= 0 for all x ∈ [a,A] ,

ADβ
x

∂L

∂v
− BDβ

x

∂L

∂v
= 0 for all x ∈ [B, b].

Remark 3. Theorem 8 simplifies to the result proved in [9] in the case the Lagrangian L in

(17) does not depend on the right Riemann-Liouville fractional derivative xDβ
b y.

We will study now the fractional isoperimetric problem for functionals of type (17) subject
to an integral constraint

I(y) =
∫ B

A
g(x, y, aDα

xy, xDβ
b y)dx = l . (18)
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Definition 9. We say that y is an extremal for functional I given in (18) if

∂g

∂y
+ xDα

B

∂g

∂u
+ ADβ

x

∂g

∂v
= 0 for all x ∈ [A,B].

Theorem 10. Let y give a local minimum or a local maximum to the fractional functional
(17) subject to the constraint (18). If y is not an extremal for I, then there exists a constant
λ such that 




∂F

∂y
+ xDα

B

∂F

∂u
+ ADβ

x

∂F

∂v
= 0 for all x ∈ [A,B]

xDα
B

∂F

∂u
− xDα

A

∂F

∂u
= 0 for all x ∈ [a,A]

ADβ
x

∂F

∂v
− BDβ

x

∂F

∂v
= 0 for all x ∈ [B, b]

(19)

with F = L− λg.

Proof. Consider a variation (ε1, ε2) 7→ ŷ = y + ε1η1 + ε2η2 where η1(a) = η1(b) = η2(a) =
η2(b) = 0. Let

Î(ε1, ε2) =

∫ B

A
g(x, ŷ, aDα

x ŷ, xDβ
b ŷ)dx− l.

Then, Î(0, 0) = 0 and

∂Î

∂ε2

∣∣∣∣∣
(0,0)

=

∫ B

A

[
∂g

∂y
η2 +

∂g

∂u
aDα

xη2 +
∂g

∂v
xDβ

b η2

]
dx

=

∫ A

a

[
xDα

B

∂g

∂u
− xDα

A

∂g

∂u

]
η2dx+

∫ B

A

[
∂g

∂y
+ xDα

B

∂g

∂u
+ ADβ

x

∂g

∂v

]
η2dx

+

∫ b

B

[
ADβ

x

∂g

∂v
− BDβ

x

∂g

∂v

]
η2dx.

Since y is not an extremal for I, there exists a function η2 such that ∂Î
∂ε2

∣∣∣
(0,0)

6= 0. By the

implicit function theorem, there exists a subset of curves {y + ε1η1 + ε2η2 | (ε1, ε2) ∈ R2}
admissible for the fractional isoperimetric problem. Let Ĵ(ε1, ε2) = J (ŷ). Then, there exists
a real λ such that ∇(Ĵ(0, 0)− λÎ(0, 0)) = 0. Because

∂Ĵ

∂ε1

∣∣∣∣∣
(0,0)

=

∫ A

a

[
xDα

B

∂L

∂u
− xDα

A

∂L

∂u

]
η1dx+

∫ B

A

[
∂L

∂y
+ xDα

B

∂L

∂u
+ ADβ

x

∂L

∂v

]
η1dx

+

∫ b

B

[
ADβ

x

∂L

∂v
− BDβ

x

∂L

∂v

]
η1dx,

∂Î

∂ε1

∣∣∣∣∣
(0,0)

=

∫ A

a

[
xDα

B

∂g

∂u
− xDα

A

∂g

∂u

]
η1dx+

∫ B

A

[
∂g

∂y
+ xDα

B

∂g

∂u
+ ADβ

x

∂g

∂v

]
η1dx

+

∫ b

B

[
ADβ

x

∂g

∂v
− BDβ

x

∂g

∂v

]
η1dx,

∂Ĵ

∂ε1

∣∣∣∣∣
(0,0)

− λ
∂Î

∂ε1

∣∣∣∣∣
(0,0)

= 0,

and η1 is an arbitrary function, it follows (19).
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Similarly as before, we can include in Theorem 10 the situation when the solution y is an
extremal for I (abnormal extremizer). For that we introduce a new multiplier λ0 that will be
zero when the solution y is an extremal for I and one otherwise.

Theorem 11. If y is a local minimizer or a local maximizer of (17) subject to the isoperimetric
constraint (18), then there exist two constants λ0 and λ, not both zero, such that





∂K

∂y
+ xDα

B

∂K

∂u
+ ADβ

x

∂K

∂v
= 0 for all x ∈ [A,B]

xDα
B

∂K

∂u
− xDα

A

∂K

∂u
= 0 for all x ∈ [a,A]

ADβ
x

∂K

∂v
− BDβ

x

∂K

∂v
= 0 for all x ∈ [B, b]

with K = λ0L− λg.

3.3 Dependence on a parameter

Consider the following fractional problem of the calculus of variations: to extremize the
functional

Ψ(y) =

∫ 1

0

[
xα

Γ(α+ 1)
(0D

α
xy)

2 − 2y 0D
α
xy

]2
dx

when subject to the boundary conditions

y(0) = 0, y(1) = 1.

Here, y := xα, x ∈ [0, 1]. The fractional Euler-Lagrange associated to this problem is

xD
α
1

(
2

[
xα

Γ(α+ 1)
(0D

α
xy)

2 − 2y 0D
α
xy

]
·
[

2xα

Γ(α+ 1)
0D

α
xy − 2y

])
= 0. (20)

Replacing y by y, and since 0D
α
xy = Γ(α+ 1), we conclude that y is a solution of (20).

Consider now the following problem: what is the order of the derivative α, such that Ψ(y)
attains a maximum or a minimum? In other words, find the extremizers for ψ(α) = Ψ(y).
Direct computations show that

ψ(α) =

∫ 1

0
[xαΓ(α+ 1)]2 dx.

Evaluating its derivative,

ψ′(α) =

∫ 1

0

d

dα
[xαΓ(α+ 1)]2 dx

=

∫ 1

0
2xαΓ(α+ 1)

[
xα lnxΓ(α+ 1) + xα

∫ ∞

0
tα ln t e−tdt

]
dx.

We have that α ≈ 0.901 is a solution of the equation ψ′(α) = 0, and such value is precisely
where Ψ(y) attains a minimum.
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Figure 2: Graph of Ψ(y) for α ∈ [0, 1]

More generally, consider the functional

Φ(y, α) =

∫ b

a
L(x, y(x), aD

α
xy(x))dx. (21)

Functional (21) contains the left Riemann-Liouville derivative only, but we can consider func-
tionals containing right Riemann-Liouville derivatives or both in a similar way. Let h be a
curve such that h(a) = h(b) = 0, δ be a real number, and (y, α) be an extremal for Φ. Then,

Φ(y + h, α+ δ)− Φ(y, α)

=

∫ b

a

∂L

∂y
· h+

∂L

∂u
· aDα+δ

x h+
∂L

∂u
· (aDα+δ

x y − aD
α
xy)dx+O|(h, δ)|2 .

For δ = 0, using the fractional integration by parts formula and the fundamental lemma
of the calculus of variations, we obtain the known fractional Euler-Lagrange equation:

∂L

∂y
(x, y(x), aD

α
xy(x)) + xD

α
b

∂L

∂u
(x, y(x), aD

α
xy(x)) = 0.

For h = 0, we obtain the relation
∫ b

a

∂L

∂u
(x, y(x), aD

α
xy(x))φ

′(α)dx = 0,

where φ(α) = aD
α
xy(x). In summary, we have:

Theorem 12. If (y, α) is an extremal of Φ given by (21), satisfying the boundary conditions
y(a) = 0 and y(b) = yb, then y satisfies the system





∂L

∂y
(x, y(x), aD

α
xy(x)) + xD

α
b

∂L

∂u
(x, y(x), aD

α
xy(x)) = 0

∫ b

a

∂L

∂u
(x, y(x), aD

α
xy(x))φ

′(α)dx = 0
(22)

where φ(α) = aD
α
xy(x).
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In the previous example the solution obtained satisfies system (22) since

∂L

∂u
(x, y(x), aD

α
xy(x))) = 0.
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