
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2012

Malte
Schmidt

Sistema de Localização para Hospitais com base
em Tempo de Propagação

Hospital Localisation System using Round Trip
Time Measurements

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2012

Malte
Schmidt

Sistema de Localização para Hospitais com base
em Tempo de Propagação

Hospital Localisation System using Round Trip
Time Measurements

Dissertação apresentada para cumprimento dos requisitos necessários à
obtenção do grau de Mestre em Engenharia de Computadores e Telemtica,
Universidade de Aveiro, e Master of Science in Information Technology,
Universidade de Ciências Aplicadas de Kiel, Alemanha, realizada sob a ori-
entação cient́ıfica do Prof. Doutor José Alberto Gouveia Fonseca, Professor
Associado do Departamento de Electrónica, Telecomunicacões e Informática
da Universidade de Aveiro e do Prof. Doutor Helmut Dispert, Professor da
Faculdade de Informática e Engenharia Eléctrica da Universidade de Ciências
Aplicadas de Kiel, Alemanha.

agradecimentos /
acknowledgements

I would like to express my appreciation for the possibility to study and
perform my thesis at the University of Aveiro and thank my supervisors
Prof. Dr. Fonseca and Prof. Dr. Dispert for their continuous support.
Furthermore, my thanks goes to my parents and family for their everlast-
ing support, their advices and for giving me the possibility to realise my
academic education.

palavras-chave Localização clientes moveis, Tempo de retorno, Tempo de propagação do
sinal, Trilateração

resumo O presente trabalho discute a localização de pacientes em ambientes hospi-
talares e contém as seguintes partes principais: em primeiro lugar, é intro-
duzido o estado de arte sobre técnicas de localização de modo a fornecer
ao leitor os conhecimentos básicos para os capitulos seguintes. Em se-
gundo lugar, é efectuada uma avaliação do estado de arte tendo em conta
os requisitos necessários para ambientes hospitalares. Em terceiro lugar, é
especificado um sistema de localização de pacientes com enfoque na sua
arquitectura. A quarta e última parte contém uma proposta de imple-
mentação de um sistema de localização, fazendo referencia á investigação
actual, sendo também descrito o software do servidor de localização que foi
desenvolvido durante a tese.

keywords Mobile Client Localisation, RTT (Round Trip Time), Signal Propagation
Time, Trilateration

abstract The present work discusses the localisation of patients in hospital environ-
ments and contains following main parts: Firstly, the state-of-the-art locali-
sation techniques are introduced to provide the reader with the basic knowl-
edge the following chapters are based on. Secondly, the state-of-the-art is
evaluated regarding the requirements for a use in hospital environments.
Thirdly, a blueprint design for a hospital patient localisation system, pro-
viding the key functionalities without looking at a specific implementation,
is developed. The fourth and last part contains the proposal of a specific
localisation system implementation by referencing to existing research and
development as well as the introduction of a localisation server software
that has been developed during the thesis.

Contents

Contents 2

Declaration 5

List of Figures 6

1 Introduction 8

1.1 Monitoring of high risk patients . 8

1.2 Localisation issues in patient monitoring . 8

1.3 Contribution and content of the thesis . 11

2 Use case definition 12

3 State of the Art and Related Work 13

3.1 Localisation Strategies . 13

3.1.1 Infrastructure based localisation . 13

3.1.2 Mobile Client involved localisation . 13

3.2 Measuring Principles . 14

3.2.1 Trilateration Techniques . 14

Measuring by using the Received Signal Strength 14

Measuring by using the Signal Propagation Delay 15

3.2.2 Angulation Techniques . 20

3.3 Signal Propagation Delay Measurement . 20

3.3.1 Digital clocks . 21

3.3.2 Clock Synchronisation via IEEE 1588 21

3.3.3 Timestamping . 24

3.3.4 Environmental considerations . 24

Line of Sight (LOS) . 25

Non Line of Sight (NLOS) . 25

3.3.5 Influences on the signal propagation delay measurement 25

3.4 Localisation supporting algorithms . 26

3.5 Conclusion . 28

4 Evaluation of the State of the Art 29

4.1 Evaluation of the Localisation Strategies . 29

4.2 Evaluation of the Measuring Principles . 29

4.2.1 Definition of the Evaluation Criteria 30

2

4.2.2 Evaluation . 30

5 System Definition 32

5.1 Comprehensive System Design . 32

5.1.1 The Base Station . 34

5.1.2 The Mobile Client . 37

Real Time Characteristics . 37

Design and Frame Processing . 37

5.1.3 The Localisation Server . 39

6 Localisation System Development 41

6.1 The Base Station (BS) . 41

6.2 The Mobile Client (MC) . 42

6.2.1 Problem Analysis . 42

6.2.2 Software Implementation . 42

6.3 The Localisation Server . 43

6.3.1 Server Software . 44

The Trilateration Algorithm . 47

Future Algorithm Extensions . 52

6.3.2 The Database . 53

6.4 The Display Service . 54

7 Validation 56

7.1 Case One . 56

7.1.1 Calculation of the Centroid coordinates by Hand 56

7.1.2 Execution of the Algorithm . 58

7.2 Case Two . 60

7.2.1 Calculation of the Centroid coordinates by Hand 60

7.2.2 Execution of the Algorithm . 60

7.3 Case Three . 62

7.3.1 Calculation of the Centroid coordinates by Hand 62

7.3.2 Execution of the Algorithm . 62

7.4 Case Four . 64

7.4.1 Calculation of the Centroid coordinates by Hand 64

7.4.2 Execution of the Algorithm . 64

8 Outlook and Conclusion 67

Bibliography 69

A Java Code: Client 71

B Java Code: Server 76

B.1 Server . 77

B.2 ServerThread . 79

B.3 WriteRawData . 83

B.4 PositionCalculationThread . 89

3

C Java Code:
Graphical User Interface 113
C.1 GUI . 113
C.2 ShowLocation . 115

D Localisation Area Test Case 127

4

Declaration

Unless otherwise indicated in the text or references, or acknowledged above, this thesis is
entirely the product of my own scholarly work.

Date Signature

5

List of Figures

1.1 Aging population, Datasource: [2] . 9

1.2 Rise in health expenditure, Datasource: [2] . 9

1.3 Change of working-age population, taken from [1] 10

3.1 Overview of Measuring Principles . 14

3.2 Trilateration . 15

3.3 TOA concept . 17

3.4 RTT concept . 17

3.5 TDoA localisation, taken from [10] . 18

3.6 TDoA concept . 19

3.7 Geometric calculation . 19

3.8 AOA concept, adapted from [11] . 20

3.9 Parts of a digital clock . 21

3.10 Clock hierarchy in IEEE 1588, adapted from [27] 22

3.11 Basic synchronisation message exchange, taken from [27] 23

3.12 Timestamp generation, adapted from [27] . 23

3.13 Group delay with rising attenuation, taken from [8] 27

3.14 Group delay standard deviation, taken from [8] 27

4.1 Comparison of the measuring principles . 31

5.1 Functional block diagram, adapted from [24] 32

5.2 The localisation System . 33

5.3 Sequence Diagram: Localisation Process . 34

5.4 Base Station Functionalities . 35

5.5 Jitters: Timeline . 35

5.6 Block Diagram of a Standard- and a Localisation Base Station 36

5.7 Real Time Characteristics . 38

5.8 Mobile Client Block Diagram . 38

5.9 Server Sequence Diagram . 40

6.1 Establishing a Java UDP socket connection 43

6.2 The Server Classes . 45

6.3 Querying a Database with Java . 46

6.4 Execute an update on a Database with Java 47

6.5 Example case with marked intersection points 48

6.6 Two intersecting circles . 49

6

6.7 Position calculation: sequence diagram part 1 of 4 51
6.8 Position calculation: sequence diagram part 2 of 4 51
6.9 Position calculation: sequence diagram part 3 of 4 52
6.10 Position calculation: sequence diagram part 4 of 4 52
6.11 Non intersecting circles . 53
6.12 Database Model . 54
6.13 The Display Service . 55

7.1 Case One: CAD Drawing . 57
7.2 Case One: Centroid Coordinates . 58
7.3 Case One: GUI Output . 59
7.4 Case Two: CAD Drawing . 60
7.5 Case Two: Centroid Coordinates . 61
7.6 Case Two: GUI Output . 61
7.7 Case Three: CAD Drawing . 62
7.8 Case Three: Centroid Coordinates . 63
7.9 Case Three: GUI Output . 63
7.10 Case Four: CAD Drawing . 64
7.11 Case Four: Centroid Coordinates . 65
7.12 Case Four: GUI Output . 66

B.1 The Server Classes . 76
B.2 The Server Classes . 77
B.3 The Server Classes . 79
B.4 The Server Classes . 83
B.5 The Server Classes . 89

C.1 The Graphical User Interface . 113

7

Chapter 1

Introduction

The introduction describes the context of the thesis, possible fields of localisation appli-
cations related to hospitalisation as well as its contribution to this fields.

1.1 Monitoring of high risk patients

As exemplarily depicted in 1.1 and 1.2 most industrial nations are facing an aging pop-
ulation and the consequent rise in healthcare expenditures. Furthermore, 1.3 illustrates the
vanish of workforce resulting from the aging population and an entailing omission of people
pay into health insurance. As seen at the diagrams especially Germany, Portugal and the
Netherlands are affected by the need for young working people and rising costs in healthcare.
This challenges for developing new ways of taking care for elderly people whether in hospitals
or in their own homes. One approach for lower healthcare costs and increase the peoples
independence is a continuous patient monitoring: Sensors in and on the patients body are
measuring different vital functions and as soon as a threshold is reached an alarm is send
to a central station, transmitting the actual recorded vital measurements and call for help.
Furthermore, a continuous monitoring of special patients can help to early recognize possible
problems. According to [25] ”a large percentage of chronic diseases deteriorate to the point
where a crisis is reached” and ”that preventing occurrences of acute episodes holds the key to
providing quality healthcare, reducing incidences of prolonged hospitalizations and resultant
healthcare expenses”. In general this and similar approaches can help to shift from a hospital
centric system where every treatment is done in a central institution to a more patient centric
system which allows the patients to stay at home more and more and where a domiciliary
care by the relatives can be eased. Therefore, a technological supported healthcare could help
both, the patients for having a higher quality of living and the insurances for saving money
in a time of aging populations.

1.2 Localisation issues in patient monitoring

First and most obvious application for locating patients (whether in a hospital, a nursing
home, at the home of the patients or everywhere else) is to be able to send help in emergency
cases. The appeal for help could be send automatically as soon as a sensed vital functions
exceeds a threshold or manual by the patient pushing an emergency button. Moreover it can
be used for long time measurements to compare the location of the patients to its measured

8

Figure 1.1: Aging population, Datasource: [2]

Figure 1.2: Rise in health expenditure, Datasource: [2]

9

Figure 1.3: Change of working-age population, taken from [1]

10

vital functions for better understanding the patients issues. For example it could be interesting
to know that every time the measured data shows that the patient feels better and is more
relaxed, he sat in the nursing homes park.

But Independent of the application a comprehensive and reliable infrastructure which
performs the localisation has to be provided. Since a breakdown can be life-threatening the
system has to be failure-resistant. And if a defect occurs it has to be reported to the staff
and to the users automatically to inform them that they can not build on it anymore and
have to call help other way.

1.3 Contribution and content of the thesis

The thesis is summarising the state of the art localisation techniques and subsequently
evaluates them regarding the application for the use case defined in chapter 2. Furthermore,
the requirements for such a system are specified and a concept for a test system is drawn.
The last part contains of building and evaluating a test system for the localisation of patients
regarding the predefined requirements.

11

Chapter 2

Use case definition

The focus of this thesis is the localisation of people in hospitals or nursing homes. If
patients have to stay in a hospital for medical observation they could be allowed to move free
at the hospitals area to have a walk outside or visit the cantine. Similar situations occur in
nursing homes where elderly people who aren’t able to take care for themselves because of
any diseases are nursed. In these cases, when the patients are not in their rooms and an alarm
case is reported by a monitoring device it is important for the medical staff to localize the
patient as fast as possible to be able to help. This alarm functionality could be implemented
as an automatic mechanism initiated by a monitoring device that detects a complication or
as a manual assistance call by pushing a button at a wireless device. The system which is to
develop targets:

• A localisation in hospital / nursing home rooms or outside areas.

• An accuracy of a 2m radius by line of sight measurements.

• Cheap and flexible infrastructure to equip the rooms with.

• The use of common communication standards such as IEEE 802.11g.

• Use of state-of-the-art techniques and customization where needed.

12

Chapter 3

State of the Art and Related Work

The following chapter is the theoretical basis for the thesis and contains the state of
the art in localisation approaches as well as related work in the field of localisation and
some associated research topics. Firstly, two different localisation strategies are introduced
followed by a description of the some widely used measuring principles. Afterwards the signal
propagation delay measurement, which is essential when using certain measuring principles
(e.g. RTT or TDoA) and the different influences on it are discussed.

3.1 Localisation Strategies

First, this section contains the definition of two localisation strategies which are to differ-
entiate in this paper.

3.1.1 Infrastructure based localisation

The infrastructure based localisation depends only on the network and is independent of
the client which has to be located. The advantage is that theoretically every client in the
network can be spotted and no action of the user, like installing a software or setup the device,
is needed. The obviously occurring problem is a possible breach of privacy if people devices
are located without their knowledge or even movement profiles of individual users will be
saved and evaluated. For example, a supermarket could be interested in how their customers
walk through the market, where they linger or if they respond to advertised offers.

Despite the legal considerations an infrastructure based approach is very comfortable,
even if an involvement of the user can’t be bared at all. The action a user still has to perform
is to accept a connection establishment with the wireless network.

3.1.2 Mobile Client involved localisation

The mobile client involved localization is based on an interaction of the network infrastruc-
ture with the user and his/her device. In respect of the use of a mobile phone this interaction
could be the installation and use of an application, which interacts with the network and
performs the positioning. An integration in any location based service is conceivable, too.
This could be the provision of a map of a huge building complex like an airport or a university
or a medical service, which is the focus of this thesis.

13

3.2 Measuring Principles

The following chapters contain the definition of and the introduction to some widely used
localisation measuring principles. According to [11] the explained methods can be divided
into two main groups: Lateration and angulation. Furthermore, the lateration can be divided
into approaches using time measurements and the one measuring the signal strength at the
localisation object (i.e. a Wireless LAN client like a laptop or mobile phone). See also figure
3.1.

Figure 3.1: Overview of Measuring Principles

3.2.1 Trilateration Techniques

Trilateration is a localisation using the distance of the localisation object to three known
reference positions (i.e. a wireless access point of the network infrastructure). The distance
to the object can be described as a circle around the centre of each position. As depicted in
figure 3.2 the object can be located at the intersection of the three circles. The approaches
described in the following differ in how to measure those distances.

If the number of known points is two or especially if it is more than three the approach is
also referred to as multilateration. Two reference positions result in two possible locations of
the object from which one has to be barred. Additional references can be used to achieve a
higher localisation accuracy, which has an extraordinary impact in non line of sight environ-
ments. But one has to avoid the case that all base stations are located in one straight line. In
this case two opposite locations separated by the line on which the base stations are placed
will be received. This avoids an uniquely localisation wherefore the base stations have to be
spread into different walls of a room.

Measuring by using the Received Signal Strength

Using the received signal strength indicator (RSSI) is one possibility for measuring the
distance between a client and a base station. The RSSI usually is a parameter of one byte
(range from 0-255) which ”is a measure by the PHY1 of the energy observed at the antenna
used to receive the current PPDU2” [28]. The RSSI is a relative parameter. ”Absolute

1Physical layer (i.e. network interface card)
2PLCP (physical layer convergence procedure) protocol data unit

14

Figure 3.2: Trilateration

accuracy of the RSSI reading is not specified” [28]. Therefore, it is not possible to map
the distance to the received signal strength directly. Instead an extensive measurement of
the signal strength in the localisation environment is needed to explore the influences of
obstacles like walls, doors and furnitures. Additionally a ”decisive drawback of this method
is a mandatory re-training phase, once the environment has been subject to major changes,
like moved furniture or a rearrangement of an assembly line” [18].

Nevertheless the received signal strength was subject of many research papers and locali-
sation projects as shown in [11]. It was the first approach for the localisation of mobile clients
in wireless networks and has still relevance for special applications. Because of its simplicity
and availability in every WLAN device it could be a good solution for applications which do
not require a high localisation accuracy for example if an exact to the room localisation is
needed.

Measuring by using the Signal Propagation Delay

The second group of approaches for measuring the distance between a client and the
reference positions is to time the signal propagation delay. The electromagnetic signals of
a wireless network propagate with nearly speed of light. Equation 3.1 is the definition of
the velocity of propagation of an electromagnetic wave. The resulting speed by adding the
parameters for an IEEE 802.11 WLAN (λ = 0.12m, f = 2.4GHz) is depicted in 3.2. The
difference compared to the speed of light in vacuum (illustrated by equation 3.3) is marginal.
Because of the the relatively small difference (0.299 m/ns when assumed light speed to 0.288
m/ns when taking the characteristics of IEEE 802.11 WLANs into account) often the speed
of light is assumed as propagation speed for wireless networks. Furthermore, this visualizes
the accuracy which is needed by using the described metric for localisation applications.

15

v = λ ∗ f (VoP3of an electromagnetic wave) (3.1)

v = 2.88 ∗ 108m/s (VoP in a 802.11 WLAN) (3.2)

c = 2.99 ∗ 108m/s (speed of light in vacuum) (3.3)

In the following three common methods using the signal propagation delay for calculating
the distances between the mobile client and the base stations are introduced.

Time of Arrival (TOA) The Time of Arrival is a measurement of the absolute time
which one data frame needs to be transmitted from the source to the sink (see equation
3.4 [21]). This means from the base station to the mobile client or vice versa. By applying
this technique a time-stamping of the outgoing and incoming data is required. Picture 3.3
depicts a time-stamping at the sink and the source which doesn’t have to be realised by
adding it directly to the frame. Instead it could be implemented just by saving a timestamp
when the frame reached the sink. For avoiding to change the frame by adding a timestamp
at the source too, it could also be saved and sent to the source in a follow up message like
described in 3.3.2 and 3.3.3. Nevertheless, both devices, client and base station, have to be
able to generate timestamps exact to the nanosecond which, as described in 3.2.1, is a tough
task. Furthermore, the clocks of all involved devices (at least three base stations and one
client) have to be synchronised [8, 11].

tn = t0 +
dn
v

(TOA for BS n) (3.4)

dn = (tn − t0) ∗ v (distance MC to BS n) (3.5)

where:
tn = time of flight between the client and the base station n
t0 = time when beginning the measurement
dn = distance between the client and the base station n
v = velocity of propagation

Round Trip Time (RTT) The Round Trip Time is the period, the signal needs travelling
from the source to the sink and back. This has to be done with at least three base stations.
Therefore, it has to be taken into account that the client is moving during the three measure-
ments. This will distort the measurement, especially if the object that has to be located is
able to move very fast. Because only one clock is used to determine the roundtrip time no
synchronization between the different devices is needed. In return another problem occurs:
Additionally to the time of flight to the mobile client and back to the base station, it needs
a certain time for the client to send back the received frame. This period, which is used for
processing the data at the sink before responding to the source has to be considered when
calculating the distance to the base station [8]. 3.6 to 3.8 depicts the RTT by using the TOA
equation 3.4. The error which would be added to the measurement is ignored and not part
of the equation.

3Velocity of Propagation

16

Figure 3.3: TOA concept

Figure 3.4: RTT concept

RTT = 2 ∗ TOA (RTT from TOA) (3.6)

tRTT = tTOA ∗ 2 + tProcessing (RTT with MC processing time) (3.7)

tRTTn = (t0 +
dn
v

) ∗ 2 + tProcessing (3.8)

where:
RTTn = Round Trip Time between the client and base station n

The transformation for calculating the distance from the mobile client to base station n is
depicted in 3.9 to 3.10. Instead of absolute times (e.g. timestamps) relative times are used.
Therefore, t0 can be dropped.

tRTTn = (
dn
v

) ∗ 2 + tProcessing (RTT without t0) (3.9)

dn = [
tRTTn − tProcessing

2
] ∗ v (distance calculation) (3.10)

Time Difference of Arrival (TDoA) Another method for determining the distance from
the mobile client to the access points is the Time Difference of Arrival method. The idea is
that the mobile client is sending a broadcast frame which is received by at least three base
stations (for a 2D localisation) at different times. The base stations are saving the time of
arrival and a central entity (i.e. a localisation server) computes the time differences between

17

Figure 3.5: TDoA localisation, taken from [10]

the access points, when the frame arrived at each of them. The time difference of two base
stations and their locations are used to calculate a hyperbolic curve on which the mobile client
is located. For evaluating the exact position the time differences between the two previously
mentioned and the third base station is needed. This is illustrated in 3.5 where r1-3 are the
base stations and rt is the mobile client.

As depicted in 3.6 the clocks of the access points have to be synchronised with each other.
But since only the time differences are measured no clock synchronisation with the mobile
client is needed [7, 8, 11].

For calculating the time difference of arrival the time of arrival can be used, too. Equations
3.11 to 3.13 are depicting the transformation [12,21,26].

TDOA = TOA1 − TOA2 (3.11)

t1 − t2 =
d1 − d2

v
(3.12)

v ∗ (t1 − t2) = d1 − d2 (3.13)

Figure 3.7 depicts the triangle which has to be calculated to determine the mobile client’s
(MC) distance to one of the base stations (BS). By knowing the position of the base station
from the floor, in which it is mounted on the wall, one side of the triangle is already known.
Furthermore, the figure depicts that, in this case, only a 2D measurement is done and it is
assumed that the client is located on the floor. Now, the distances in equation 3.13 can be
replaced by geometric notation. By further using the pythagorean theorem equation 3.14 is
received [12]:

v ∗ (t1 − t2) = (3.14)√
(x− x1)2 + (y − y1)2 −

√
(x− x2)2 + (y − y2)2

18

Figure 3.6: TDoA concept

Figure 3.7: Geometric calculation

19

By having three base stations we obtain the following equations [12]:

v ∗ (t1 − t2) = (3.15)√
(x− x1)2 + (y − y1)2 −

√
(x− x2)2 + (y − y2)2

v ∗ (t2 − t3) = (3.16)√
(x− x2)2 + (y − y2)2 −

√
(x− x3)2 + (y − y3)2

v ∗ (t3 − t1) = (3.17)√
(x− x3)2 + (y − y3)2 −

√
(x− x1)2 + (y − y1)2

3.2.2 Angulation Techniques

In addition to the trilateration the angulation is the second measuring principle for locating
mobile clients in a wireless network. The Angle of Arrival (AOA) which is depicted in 3.8
is one method which uses the intersection of angle direction lines radiant from the base
stations (BS) to identify the location of the mobile client (MC). To extend the shown 2-D
positioning example for a 3-D measurement a third base station is required. The advantage
of an angulation is that ”no time synchronization between measuring units is required. The
disadvantages include relatively large and complex hardware requirement(s), and location
estimate degradation as the target moves farther from the measuring units” [11].

Figure 3.8: AOA concept, adapted from [11]

3.3 Signal Propagation Delay Measurement

The signal propagation delay measurement is the metering of the time the data needs
traveling from the sink to the source or vice versa, depending on the used measuring principle
(see section 3.2). This process is dependent on the digital clock, the synchronization of the
clocks as well as some other influences discussed below.

20

Figure 3.9: Parts of a digital clock

3.3.1 Digital clocks

Digital clocks are a common part used in watches or other electronics. 3.9 roughly depicts
the parts of a digital clock and its functional principle. As shown, an oscillator, mostly
of quartz crystal, is used to create an electric signal of a certain frequency. Quartz is a
piezoelectrical material which is vibrating when a voltage is applied. The frequency generated
by this kind of oscillators is very stable and, by cutting the quartz crystal in different ways,
almost every frequency can be created [19]. In digital clocks the frequency is usually 32,786
Hz which is used to generate one pulse per second by using a down streamed frequency divider
of 215. Several counters are used for counting to minutes, hours and so on.

A frequency of 32,786 Hz enables a resolution of milliseconds. But due to our requirement
for a measurement exact to a nanosecond which means a billion of a second, this isn’t enough.
By keeping in the binary system at least a frequency of 1.074 GHz (230) which corresponds
to a period T = 931.3ps is needed to realize a nanosecond exact measurement.

3.3.2 Clock Synchronisation via IEEE 1588

As mentioned in chapter 3.2.1 clock synchronisation is an inevitable part of the localisation
when using certain methods which are based on measuring the signal propagation delay. One
method for synchronising clocks over a network like Ethernet is the IEEE4 1588 standard
(also called PTP5) for a precision clock synchronisation protocol for network measurement
and control systems. According to IEEE ”existing protocols for clock synchronization are
not optimum for these applications. For example, the Network Time Protocol (NTP) targets
large distributed computing systems with millisecond synchronization requirements” [27]. In
contrast the IEEE 1588 permits synchronisation better than 1 ns which should be reached
by generating a master-slave architecture where ”all clocks ultimately derive their time from
a clock known as the grandmaster clock” [27]. 3.10 depicts an example hierarchy: Clock one
is the grandmaster which is connected as a master to a slave port of boundary clock one.
The boundary clocks are distributing the grandmasters time like a switch. The master ports
of boundary clock one are connected to an ordinary clock as well as another boundary clock
which is connected by its slave port and again distributes the time via its master ports.

The basic synchronisation message exchange (shown in 3.11) proceeds as follows: The
master sends a synchronisation packet to the slave and notes the time (t1) it was sent. The
slave notes the time the packet arrived (t2). The master has two possibilities to inform the

4Institute of Electrical and Electronics Engineers
5Precision Time Protocol

21

Figure 3.10: Clock hierarchy in IEEE 1588, adapted from [27]

slave about t1:

• Embedding t1 in the synchronisation message which requires a high effort to avoid any
delays during the time-stamping process.

• Embedding t1 in a follow up message sent directly after the synchronisation message as
shown in 3.11.

Now the slave knows the time the packet was sent by the master as well as the time it arrived.
By assuming that the master-to-slave and slave-to-master propagation times are equal another
message exchange takes place for calculating the offset between the slaves clock respective to
the masters one. For this purpose the slave sends a delay request message to the master and
notices the outgoing time (t3). The master sends the timestamp of the incoming of the delay
request (t4) as a delay response back to the slave. Now the slave knows about all four times
and is able to process the respective calculations.

The timestamps discussed above should be created at the transition of the node and the
network. The nearer to the network the time stamp is created the smaller are the timing
errors. These emerge due to the time lapse from the creation of the timestamp till the
data has traversed the upper layers to the actual network connection. A solution is to use
a hardware assist between the MAC6- and the physical layer (figure 3.12). In [16] Patrick
Loschmidt et al. analysed the limits of synchronisation accuracy using hardware support.
While using hardware support to eliminate the jitter generated by the higher layers like IP7

and UDP8, they identified further jitter sources on and below the physical layer [16] which
are introduced in chapter 3.3.5.

This brief introduction to the IEEE 1588 clock synchronization is a basis for further
discussions in this document. For detailed and further information the standard [27] should
be consulted.

6Medium Access Control
7Internet Protocol
8User Datagram Protocol

22

Figure 3.11: Basic synchronisation message exchange, taken from [27]

Figure 3.12: Timestamp generation, adapted from [27]

23

3.3.3 Timestamping

Creating timestamps is not only needed for the clock synchronisation as described in chap-
ter 3.3.2. Another field of application is the measurement of the time of flight for determining
the distance from the mobile client to the base stations as described in section 3.2.1. In both
cases the timestamps have to be as precise as possible, in our case minimum exact to the
nanosecond.

As already mentioned a timestamp can be added to the actual frame which has to be
timestamped or the timestamp can be saved as soon the frame passes a certain event. By
using the second option the incoming and outgoing frames are only monitored, not changed.
Here it is important that the frames ID is recorded next to the actual time. Otherwise it is
not possible to refer the recorded times to the frame and therefore to its origin anymore. If
the timestamp should be added directly to the frame there are some things to be considered,
too:

1. The length of some fields like the header of the data are varying. Hence, ”either the
assumption of a fixed position must hold or the hardware unit must be able to interpret
all necessary header information to determine the correct position in the frame” [22]

2. The insertion of a timestamp involves the recalculation of the CRC9 which may have
been done before. For some protocols such as UDP10 a recalculation is not possible or is
that time consuming that the processing time would corrupt the measurement. Though,
a benefit of UDP is the possibility to simply set the checksum to zero. This suspends
the actual purpose of the CRC and furthermore doesn’t work with every protocol. [22]

Next to the place where the timestamp is saved different methods where the timestamp is
recorded exists: The first option for recording timestamps is a software solution and the second
one is using a hardware support near to the PHY. This second solution was described before
and shown in figure 3.12: a hardware support between the MAC and the PHY that reduces
the jitter from the upper layers. According to [22] the IEEE defines the Media Independent
Interface (MII) as the interface closest to the medium. Therefore, it is stated as the optimal
access point if COTS11 products should be used. Further it’s mentioned that ”cost reductions
and size issues lead to highly integrated, combined PHY/MAC solutions” [22] and that in
this case ”the required physical signals for a timestamper are no longer available on the MII
level” [22]. The other option is creating timestamps on the software level inside the device
driver. ”When a packet is sent or received, the hardware notifies the driver with a hardware
interrupt. The driver masks the interrupt, takes the timestamp using the getnstimeofday
interface of the kernel and then instigates a corresponding interrupt handling routine” [3].

3.3.4 Environmental considerations

Regarding the environmental considerations we differentiate two cases: Line of sight and
non line of sight environments, both explained below.

9Cyclic Redundancy Check
10User Datagram Protocol
11Commercial off the shelf

24

Line of Sight (LOS)

A line of sight environment exists if there is a line of sight between the mobile client
and the base stations used to locate the client. Like explained in the next chapter this
case is rare in normal life applications. Nevertheless it is widely mentioned in contemporary
literature [11,14,15] and sometimes also used as a reference environment. The angle of arrival
method explained in 3.2.2 for example is dependent on a line of sight environment. And
the requirements pointed out for this thesis are based on a line of sight environment, too.
Hence, every room should be equipped with a minimum of three base stations to avoid heavy
obstacles like walls between the base station and the mobile client. Nevertheless, the most
applications will require a localisation system able to work in a non line of sight environment
which is explained below. At least smaller obstacles like persons or furnitures which could
hinder a direct line of sight exists in every room.

Non Line of Sight (NLOS)

A non line of sight environment is most likely to be encountered when designing an indoor
localisation system for a real world application. Most rooms and buildings are full of obstacles
like tables, lockers, people and so on, which obstruct a clear line of sight between the mobile
client and the three or more base stations needed for the localisation. Since, like shown in
the previous chapters, no off-the-shelf antennas could be used for most of the localisation
purposes, one will try to use as less costly special build ones as possible. Hence, cost concerns
will lead to the wish to cover as much space (also different rooms) with as less base stations
as possible. Therefore a precise localisation in non line of sight environments should be the
future task to be solved.

3.3.5 Influences on the signal propagation delay measurement

This section summarises the influences on the signal propagation delay measurement dis-
cussed previously and additionally introduces some new points.

The first and essential influence is ”the clock rate (resolution of the time stamp) and
the stability of the oscillator used to generate the nodes internal clock” [16]. 3.3 illustrates
that the available accuracy of widely used crystal oscillators doesn’t fit the needs for a high
precision time measurement exact to the nanosecond.

Second is the protocol for synchronising the different clocks to be able to measure the
propagation delay for metering the distance from the base stations to the mobile client as
illustrated in chapter 3.2.1. We have seen that the accuracy using the network time protocol
(NTP) isn’t sufficient, hence the IEEE 1588 protocol was introduced. However, also using
the IEEE 1588 some points have to be considered to reduce or eliminate the jitter:

1. The creation of the timestamp should take place at the lowest possible level, if possible
directly at the transition to the physical layer. As mentioned in 3.3.2 this helps to
reduce the timing error.

2. [16] evaluates the impact of the synchronisation interval on the accuracy of the clock
synchronisation. It is shown that a diminished interval leads to a higher standard
deviation of the clocks accuracy. This is obvious and depends on the oscillators stability.
If an oscillator for example deviates 4 nanoseconds from its target every 2 seconds it

25

has to be synchronised more often than an oscillator which deviates only 2 nanoseconds
every 2 seconds.

3. The master-slave architecture of the PTP obviously entails a single point of failure, the
grandmaster clock. [9] treats the potential risk of a loose of accuracy while determining
a new grandmaster clock if the original one fails. However in our case a continuous
measuring is secondary, hence this point is neglectable. But a measurement affected
by a clock failure should be recognized and repeated after the operating conditions are
re-established.

4. Additionally [4] mentions problems when trying to implement a clock synchronisation
for very huge networks: ”However, in case of a large-scale network it is not likely to
have the possibility to distribute a single clock frequency throughout the whole system.
Consequently, principles which can be expanded to large-scale networks need to be
found” [4]. Therefore, before implementing a clock synchronisation it has to be checked
if the clock synchronisation domain can be devided for example building-wise or even
floor-wise if the building is very huge. This entails possible synchronisation problems
at the outskirts of two domains when base stations of both domains have to be used.
But in many cases this interference neglectable.

A third aspect affecting the signal propagation delay measurement occurs in non line of
sight environments (which are described in chapter 3.3.4). This so called multipath-problem
arises when the signal from the mobile client is reaching the receiving base station on different
paths. Causes of multipath are reflections of the signal by obstacles in the environment, like
people or furnitures. Furthermore, the signal also can be reflected by the rooms floors and
ceilings. This leads to a mitigation of the signal or even to its loss, if the signal strength comes
below the threshold the base station is able to recognize. On the other hand the reflections
can directly influence the measurement because a reflected signal has a longer propagation
time from the source to the sink than a signal which travels the direct way [15]. [15] proposed
a method to mitigate this problem by analysing the multipath condition of the channel and
choosing an appropriate distance estimation algorithm for the measurement.

Furthermore, an influence of the transceiver amplification on the measurement was dis-
covered in [8]. It has been shown that the used boards shown a non-linear, amplification
dependent group delay. ”The higher the gain of the amplifier, the higher the group delay of
the signal” [8]. Group delays occur when passing a signal through a medium or a device and
in this case generate, as depicted in 3.13 and 3.14, measurement errors in the nanosecond
range. This error which will differ depending on the used hardware has to be compensated
for example by adding a function to the device software which is subtracting an amount of
time depending on the transceivers attenuation.

3.4 Localisation supporting algorithms

Besides a well planned and precise hardware system, algorithms can be used to improve
the accuracy and form the localisation system.

The supporting possibilities of algorithms range from simply tracking the last positions of
a moving object to be able to assure the upcoming measurement to the use of Kalman filters
and genetic algorithms. The first example could be used at our hospital use case. By assuming
that the location of a patient in the hospital will be established every 3 seconds and by saving

26

Figure 3.13: Group delay with rising attenuation, taken from [8]

Figure 3.14: Group delay standard deviation, taken from [8]

27

the last few locations of the patient we can try to predict the upcoming measurement. If a
patient moves with about 4 km per hour he / she will be located within a radius of 3.3 meters
from his/her last position. Of course this alone isn’t a very precise prediction and it will be
stretched to its limits if the patient is for example using an elevator. In this case the algorithm
would report an error. But if the upcoming measurements are logically correct again, we can
drop the wrong prediction. On the other hand, if the reported locations differ all the time we
can assume an error like a reflection of the signal occurred. However, by adding information
like maps or more precise moving speeds to the algorithms, the accuracy will enhance and
can be a helpful add on.

In [13] Luis Mengual et al. introduced a software support for RSSI based locations. They
proposed a localisation by using fingerprints of the environment. These are measurements
of the the signal strength of the different base stations at several points in the environment
to build a so called radio-map. When establishing a localisation the mobile clients actual
measurements are compared to the radio-map by using a neural network which determines
the most certain position of the client by looking at the existing data. In [17] Qiuxia Chen et
al. argued that ”obviously, these methods do not perform well because RSSs change over time
due to the dynamically changing environment.” Non-changing environments are not common
in real world scenarios, which reduces the importance of radio-map based RSSI localisation
methods.

In another example which was already mentioned in chapter 3.3.5 algorithms are used to
improve the localisation accuracy in non-line-of sight environments. The method proposed
in [15] reduces the error originated by multipath by analysing the chanel conditions and then
choosing an appropriate distance estimation algorithm.

These are only some examples for possibilities to increase the location accuracy by deploy-
ing appropriate algorithms. Summarizing it has to be stated that a good localisation system
always contains a well designed software next to its hardware.

3.5 Conclusion

As will be seen in the next chapter some intensively described methods of this chapter
aren’t feasible to be used for the defined use case. But describing the state-of-the-art locali-
sation techniques and their characteristics was an essential part for being able to reconstruct
the arguments for banning certain methods and favor others during the evaluation in this
next chapter. Furthermore, they are important when having another use case at hand. And
since this work is supposed to give a general overview to techniques and problems involved
in wireless mobile client localisation this pleadings was inevitable.

28

Chapter 4

Evaluation of the State of the Art

The following chapter evaluates the state of the art techniques discussed in chapter 3 and
constitutes the basis for the development of a system blueprint, described in chapter 5. It
compares the different methods regarding usability and efficiency by paying attention to the
defined use case and its requirements.

4.1 Evaluation of the Localisation Strategies

Because of the already mentioned legal considerations the mobile client involved localisa-
tion has to be preferred. A possible localisation of every person who is around the antennas
reception area will most certainly lead to legal problems. Such as that employers are not al-
lowed to monitor their staff especially not during their brakes. Moreover, the guests visiting
friends and family could have doubts about to expose where they are and whom they are
visiting. And at least there are the patients who don’t need or even don’t want to use the
service of being detected in an alarm case. Hence the mobile client involved localisation is
the right strategy to choose.

However, this use case enables another opportunity which is not practical in a lot of other
cases. Beside the use of a mobile phone application on the client side as introduced in the
requirement specification of chapter 2, a mobile client device especially developed for this
case can also be used. Because a hospital area as well as the targeted user group is very
delimited it could be worth to develop a mobile device which is more convenient regarding a
time-stamping of the frames when using the TDoA1 approach or regarding a short processing
of the data when responding to the base station as postulated when using the RTT2 method.
Therefore the costs of developing such a device as well as the resulting benefits have to be
analysed to be able to make a decision about that.

4.2 Evaluation of the Measuring Principles

The evaluation of the measuring principles contains of the evaluation itself as well as a
previous definition of possible evaluation criteria.

1Time Difference of Arrival
2Round Trip Time

29

4.2.1 Definition of the Evaluation Criteria

For evaluating the methods described in the previous chapters some criteria based on the
use case requirements has to be defined. Georg Gaderer et al. for example used the dimensions
accuracy, range and power awareness for comparing the different localisation approaches [8].
The accuracy of the overall measurement system is a criteria here, too. But because of the
line of sight requirement every room has to be equipped with base stations the range most
certainly will not be a problem and can be dropped as a criteria in this case. The power
awareness at the mobile client side could be an important criteria, too. If a localization is
only needed in alarm cases the power consumption will be low. Emergencies will be rare and
the rest of the time only some regularly status messages (so called ”I am alive messages”)
have to be sent to be sure that the client is still working properly. But if, for some reason
a continuous localisation is required the power consumption of the mobile client will become
an important criteria. However, since not many implementations of the measuring principles
exist, an evaluation of the power consumption is hard and only theoretical. Therefore, this
criteria will not be used here either.

Further dimensions that should be used here for the upcoming evaluation are the costs
and the simplicity of the system. The costs include the price of the hardware as well as
for the operation and possible extensions of the localization system. Simplicity contains
different points like the use of common techniques where possible, as well as a reliability and
fault tolerance through simplicity. Therefore we have the following criteria for rating the
measuring principles as well as the overall localisation system:

• Accuracy

• Costs

• Simplicity

Furthermore, the before mentioned possibility of building a special client because of the
limited user group should be concerned.

4.2.2 Evaluation

As discussed before, establishing an angulation system like the described angle of arrival
method requires extensive effort especially regarding the needed hardware. Additionally the
reachable accuracy is relatively low, especially when the distances between base station and
mobile client get larger. Therefore, a lateration principle is the preferable to use.

A hospital is a very changing environment. Beds as well as lockers are moved as needed
and a lot of people are walking around all the time. Rooms can be empty and one hour later
crowded of visiting family members. In places like these RSSI3 based measuring principles will
reach a very poor localisation accuracy and still a lot of research is needed to mitigate those
problems. The once created radio maps which are the basis for an RSSI based method will
be useless very soon. Keeping the maps up to date would require extensive and very costly
re-measurements. Dimitrios Lymberopoulos et al., who analysed the impact of the base sta-
tions antennas and their orientation on the RSSI measurement in IEEE 802.15.4 networks,
concluded their paper [5] as followes: ”Our results and experience from this work show that
signal strength localization will work in specially instrumented scenarios. In other scenarios

3Received Signal Strength Indicator

30

Figure 4.1: Comparison of the measuring principles

and 3D deployments, signal strength localization remains an extremely challenging task. Sta-
tistical techniques and specific deployment scenarios will mitigate some of these challenges.
However, the large amount of characterization needed will make the use of signal strength
approaches with low power radios practically impossible” [5]. Additionally, by looking at
their results, Francesco Potorti et al. finished their paper about RSSI in-room localisation
with the following sentence: ”This suggests that much investigation is needed for single-room
RSSI localisation to attain any useful performance” [6]. Hence, the distance of the mobile
client to the base stations should be measured by a signal propagation delay method. The
three methods left which are in line to be used are the time of arrival (TOA), the round trip
time (RTT) and the time difference of arrival (TDoA) measurement. As described before,
TOA requires a time synchronisation between the mobile clients and all of the base stations
clocks. The synchronization between the base stations is also needed when using TDoA and
can be done via IEEE1588 over the cabled network. But when the mobile clients clock has
to be synchronised too this has to be done over wireless LAN4. Because of the relatively un-
efficient medium access control used in WLANs and the resulting timing uncertainties this is
a much more complicated task. Hence, time of arrival isn’t the preferred measuring principle
to use. Now, one main characteristic is differentiating the two methods which are still in
line: When using the time difference of arrival method a clock synchronisation between the
base stations is needed for measuring the difference in time between the three or more base
stations in which the packets are arriving. This is a possible but challenging task especially
when a high number of base stations which are distributed over a wide area have to be syn-
chronised. In addition, the synchronisation system is another single point of failure since the
whole localisation system depends on it.

Both methods are possible candidates. The TDoA is the best method for the more general
cases where a lot of different devices use the system and the main tasks should be shifted
to the base stations. And the RTT method is the best for applications where a small and
very specific user group exists and where it is worth to develop a mobile client with real time
characteristics if no one is available off the shelf. And by having a closer look at the use case
definition we can see that the localisation is not needed for everyone in the hospital but only
for special patients. Therefore, the localisation only has to work with a special mobile client
which is carried around by the patients instead of a broad range of devices like cell phones
and computers.

Figure 4.1 is based on the points discussed before and makes the different measuring
principles easy comparable. Regarding this evaluation the round trip time measurement is
the preferred method to use.

4Local Area Network

31

Chapter 5

System Definition

The target of the system definition chapter is to deliver a blueprint for a hospital patient
localisation system independent of any hardware or specific implementation. It is resting
upon the evaluation of the state of the art done previously and ensues the proposed methods
and techniques.

5.1 Comprehensive System Design

[24] proposes a functional block diagram for a wireless geolocation system which is de-
picted in 5.1 It is also adaptable to our case and contains a number of sensing devices that
measure metrics related to the position of a mobile client with respect to their positions which
works as a known reference point. A positioning algorithm processes the metrics reported by
the location sensing elements to calculate the position of the mobile client as well as a display
system which illustrates this position. [24]

Figure 5.1: Functional block diagram, adapted from [24]

By looking at our case the location sensing devices are the base stations which are sending
localisation frames to the mobile client and wait for their response. After they received the
frames from the mobile client they forward them to the localisation server. The server collects
the packets from the different base stations and processes the positioning algorithm. Moreover,
it provides the data for the display system, which could operate on the localisation server

32

Figure 5.2: The localisation System

itself or another device which is connected to the network. Figure 5.2 depicts a diagram of
the localisation system: The base stations as well as the localisation server are attached to
the network by a wired connection. The mobile client communicates with the base stations
over a wireless connection (e.g. IEEE 802.11g).

The localisation process is depicted in 5.3. It shows the interaction of the different com-
ponents of the localisation system. Different starts of the process are possible. In diagram
5.3 the mobile client initiates the localisation. This could happen if the patient feels bad and
pushes a button at his/her mobile client device. Afterwards the client sends a localisation
/ positioning request to the localisation server via the base station it is connected to. It
possibly checks if the client is authorized for this application and sends a localisation order
to all base stations near the one the mobile client is connected to. By letting the server work
as controlling device and triggering the base stations on after another, collisions through the
base stations can be avoided. Afterwards, every base station creates a localisation frame,
timestamps it and sends it to the mobile client. The client processes the frame and redirects
it back to the base station which timestamps it again and forwards it to the localisation
server. The server waits for the response of all base stations and calculates the mobile clients‘
position based on the received data. Afterwards the server makes the position available to
a display device which could be integrated into the localisation server or could operate as a
piece of software installed on any computer in the network.

By knowing the first design draft of the system it is worth to take a look at the constraints
the system has to fulfill. As mentioned in the use case definition, the accuracy requirement
is that the mobile client device is to be located within a uncertainty of a two meter radius.
By looking at the signals velocity of propagation which was was calculated 0.288 m/ns a
maximum time uncertainty of 6.94 ns for the whole localisation system arises. When looking
at the system design especially the localisation process 5.3 following devices have an impact
on the measurement accuracy: the mobile client and the base stations. The localisation
server may only compensate the failures occurred before by applying intelligent algorithms
for calculating the clients position. The display function only shows the position to the user
and has no influence on the systems accuracy. But a third influence which has not beed
discussed in this chapter has a heavy impact, too. Meant is the localisation environment

33

Figure 5.3: Sequence Diagram: Localisation Process

which can add uncertainties through multi-path (i.e. due reflections at obstacles) to the
measurement. Without having any experience at the beginning the 6.94 ns buffer is to be
divided as followed:

• Possible loss at the base station: 2ns

• Possible loss at the mobile client: 2ns

• Possible loss due to the environment: 2ns

Regarding the mobile client and the base stations the localization process 5.3 also unveils
some important sub processes which are potential error sources. This is the creation and
timestamping of the outgoing frame as well as the timestamping of the incoming frame at
the base stations and the frame processing at the mobile client. Hence, a detailed look at the
mobile client and the base station is provided in the following.

5.1.1 The Base Station

Next to the localisation the base station has to fulfill the tasks of a normal WLAN access
point to avoid extra costs for installing an additional network for connecting wireless clients
to the internal network or the internet. Hence, the base station contains of two functional
blocks as depicted in 5.4. Consequently a standard access point design can be taken as a
basis and subsequently extended and changed regarding the localisation requirements.

These localisation requirements are the following:

• To create a localisation frame containing a proper identification and the outgoing times-
tamp.

34

Figure 5.4: Base Station Functionalities

Figure 5.5: Jitters: Timeline

• To create the timestamps exact to the nanosecond

• To develop mechanism to scan incoming packets for localisation frames

• To provide an exact to the nanosecond time-stamping of the localisation frames directly
after arriving at the base stations

In order that the localisation server is able to differentiate the localisation frames and store
their information in the database properly, the frames need to carry an identification. This
identification has to tell about the localisation process, which includes three frames (one from
each of three base stations), the certain base station that was involved in the localisation as
well as the client, that has been located.

Before the frame is sent to the mobile client the base station has to add a timestamp to
it. As already discussed this has to be done as close to the physical layer as possible in order
to generate a jitter as small as possible. This jitter is made up of two parts (see also figure
5.5): firstly the elapsed time between getting the actual time from the system and writing
it as a timestamp to the frame. Second part is the elapsed time between the moment that
the timestamp was added to the frame and the moment the frame leaves the base stations
antenna and enters the medium to travel to the base station. These two periods add up to
the jitter distorting the measurement. In addition, the timestamps resolution has to be exact
to the nanosecond to reach the required accuracy.

35

Figure 5.6: Block Diagram of a Standard- and a Localisation Base Station

After the frame has been returned to the base station by the mobile client, the base station
has to be capable to recognise it as soon as possible to add the incoming timestamp to the
frame. For keeping the jitter small again, the scanner also needs to be installed as near to the
physical layer as possible. Further delays can be avoided by scanning the packets on the fly.
The recognition can be eased by adding an identification at the beginning of the frame that
marks it as a localisation frame. Then only the beginning has to be read to decide what kind
of frame is present. Additionally, the different values of the frame should have fixed positions
to be able to add the new data very quick. Without fixed positions, the delimiters between
the single values have to be counted to find the right place for the certain value to be added.

Figure 5.6 depicts two block diagrams: one of a standard base station and a proposal
for a localisation capable base station. Looking from the upper to the lower levels, the first
difference is the additional Media Independent Interface (MII) scanner and the time-stamper
of the localisation base station. If a normal packet is sent, it does not have to pass the time-
stamper. And the MII-Scanner can be by-passed at all by outgoing frames. Incoming frames
are scanned and, if a localisation frame is detected, it is handed to the time-stamper before
reaching the medium access control.

The second difference is that the localisation base station has two antennas, one for re-
ceiving and one for transmitting. Hence, the receiving and transmitting parts can be split.
This avoids that the system has to switch between receiving and transmitting mode, what

36

would take time and result in another jitter.

5.1.2 The Mobile Client

The mobile clients task is to receive localisation frames sent by the base station and send
them back again. But this very short description contains some complex points which are
worth to have a deeper look at.

For the test system which has to be developed the client just has to send back every
received frame as a broadcast whether it is important for its localisation or not. This means,
no selection is done before processing the received data. For a system which has to be
implemented at a hospital this isn’t feasible any more. By resending every received frame
the amount of data would be doubled with every mobile client used and the medium access
would be more complicated because the medium is occupied more often. Hence, a localisation
system would benefit by a more specific localisation request / answer. This means, that the
client is reading the frame first and only processes the data if itself is the receiver.

As described before in 3.2.1 the processing time has to be subtracted from the round trip
time to calculate the distance between the base station and the client. Hence, the processing
time has to be predictable. This means that, next to the logical or functional correctness of
the output, a timing correctness is necessary. According to [23] these are requirements of a
real-time system.

Real Time Characteristics

As in the mobile clients case real time systems always require a logical correctness and a
timing correctness. ”The two notions of correctness may also be traded of against each other.
The result is two broad categories of realtime systems: hard realtime systems and soft realtime
systems. In hard realtime systems, timing correctness is critically important and may not
be sacrificed for other gains” [23]. ”In soft real time systems timing correctness is important
but not critical” [23]. By looking at the mobile client and its before stated requirements it
is critically important for the measurement that the processing is timing correct within the
2 ns buffer. Hence, the processing doesn’t have to be as fast as possible but it has to be
predictable within an uncertainty of 2 ns. In real time systems another distinction is made
between time-driven and event-driven architectures. [23] The mobile client is an event-driven
system as it reacts to an external event: the receiving of a frame at its antennas. This event
starts an action, the frame processing, which leads to the timing and logical correctness based
output. This functional description of the mobile client is depicted in 5.7 and is the basis for
a more fine grained description.

As described before the test system does not need to distinguish between localisation
frames or normal data frames send by other devices. Hence, any received frame will be
treated as a localisation request. Later the differentiation has to be done by an on-the-fly
interpreter which is preferably located between the PHY and the MAC. If a valid localisation
frame is detected it will be forwarded for further processing in all other cases the frames are
dropped.

Design and Frame Processing

The block diagram in figure 5.8 proposes a system design that takes the before discussed
points into account. It is very similar to the base station block diagram with the difference

37

Figure 5.7: Real Time Characteristics

that no time-stamping functionality is needed and therefore does not exist. Due to the
unpredictabilities by switching between send and receiving mode already discussed in 5.1.1 if
only one antenna exists, those paths are separated here, too.

Figure 5.8: Mobile Client Block Diagram

As soon as a signal arrives at the receiving antenna it passes through the radio frequency
(RF) filter and the receiver, where the analogue signal is processed before being converted
into a digital one at the ADC (analogue digital converter). Afterwards, the MII (media
independent interface) scanner looks for localisation frames to let them pass and drop all
other data.

When it comes to the processor, one of the most unpredictable parts regarding the pro-
cessing time begins. For keeping the uncertainty low, the choice of the programming language

38

is a vital part. First opportunity is to use the most atomic one and write the software in
assembler. This avoids any translation uncertainties caused by the compiler. Second option
is to use a real-time capable high level language like Java Real Time System (Java RTS).
Important differences to other languages are for example that it is assured that the garbage
collection process does not start during a time critical process by giving the real time thread a
higher priority than the garbage collector. Some other innovations of Java Real-Time System
in comparison to Java are an advanced memory management which keeps enough memory
free if the garbage collector is blocked by a critical thread as well as the elimination of a
possible priority inversion.

After the frame has been processed and is ready to be sent back, the second critical part,
the medium access control (MAC), has to be passed. The MAC checks if the medium is free.
If this is not the case it waits for a certain time and tries again. This retry is an uncertainty
which has to be avoided or managed. The most easy way is to drop the frame if it could
not be sent at the first time and initiate a localisation retry. Second option could be to use
a fixed wait time and add an information about the number of tries to the frame so that it
could be factored into the distance calculation of the localisation server.

If the medium is free the frame passes the transmission path and is sent back to the base
station.

5.1.3 The Localisation Server

The localisation server will be a piece of software installed on a computer connected to
the network via cable. The sequence diagram 5.9 depicts the process which is started as
soon as a frame is received by the server. The diagram is partitioned into three parts. The
first one has to be done three times, i.e. one for every base station, and starts with sending
the timestamped localisation frame to the localisation server. After it have been received,
the program reads the frame, extracts the needed information and writes them into the
database. The second part is the calculation of the mobile clients position and starts after all
localisation frames from the base station has been received. Therefore, the program requests
the needed localisation information from the database (e.g. the timestamps, the position of
the base stations and so on), calculates the clients position based on those data and writes
the calculated position back to the server. In step three, the program provides the position
data to a display service that depicts the location on a map.

39

Figure 5.9: Server Sequence Diagram

40

Chapter 6

Localisation System Development

This chapter proposes an implementation of a localisation system based on the blueprint
elaborated during the previous chapter. Due to time constraints and the absence of the hard-
ware needed to build a mobile client and the base stations both devices have been realised as
a piece of software. This enables the simulation of the developed localisation server software.

The general system processing is equivalent to the one depicted by the sequence diagram,
figure 5.3 in chapter 5.1. Same holds true for the components and their interconnection. The
client would be wirelessly connected to the base stations, which are connected to the local area
network (LAN) via cable. The localisation server is also cabled to the LAN and the display
service could run on the server or any other computer in the network. In the following sections
the four main parts, base station, mobile client, localisation server and display service are
treated separately. Because it is intended to use a modified version of a base station already
developed by the OEAW (Austrian Academy of Science) for a future localisation system,
their concept as well as the necessary adaptations are introduced. As already described, by
trying to develop the mobile client, it turned out that the available hardware does not meet
the requirements regarding the needed accuracy. Hence, the mobile client chapter contains a
problem analysis discussing the problems that arise when trying to use a commercial off the
shelf (COTS) hardware instead of developing a board from the scratch.

6.1 The Base Station (BS)

The blueprint chapter 5.1.1 describes the requirements for a base station that can be used
for localisation purposes. Additionally three important extensions in comparison to a normal
base station are described: Firstly, a scanner on the media independent interface (MII) that
scans the incoming frames for localisation ones. Secondly, the a time-stamping functionality
that allows the system to add timestamps to the outgoing and incoming frames. And thirdly,
separated send and receiving paths with own antennas to avoid the need of switching the
antenna when changing from sending to receiving mode or vice versa.

These general requirements are fulfilled by the base station device called SMiLE receiver
developed at the Austrian Academy of Sciences (OEAW) during the flexWARE project. These
are aiming a TDoA (Time Difference of Arrival) localisation that requires clock synchroniza-
tion between the base stations and the mobile client. In addition [4] introduces the use of the
DTDoA (Differential Time Difference of Arrival) method which needs no clock synchronisa-
tion. But in every case, for clock synchronization as well for TDoA or DTDoA a filtering of

41

the received packets as well as a time-stamping exact to the nanosecond is required. There-
fore the proposal is to reprogram the already existing especially for high precision localisation
developed hardware instead of developing an own one up from the ground.

6.2 The Mobile Client (MC)

When it came to develop a mobile client it relatively fast turned out that the available
commercial of the shelf (COTS) hardware was not sufficient to even nearly reach the needed
accuracy. Therefore it has been decided to concentrate on the development of a localisation
server and to realize the hardware as a piece of software to simulate the server. Hence, the
first part of this section is an analysis of the problems by trying to use the COTS hardware
and the second describes the developed piece of software that simulates the client as well as
the base stations by simply sending localisation frames, definable by the user, to the server.

6.2.1 Problem Analysis

The problem analysis is based on a discussion about the possibilities to use a Microchip
16-Bit controller (product no.: dsPIC33FJXXXGPX06/X08/X10) in combination with a Mi-
crochip RF transceiver module (product no.: MRF24 WB0MA/MRF24WB0MB) for the
planned localisation system. First weakness of the controller is the relatively low clock speed
of the primary oscillator which has a maximum of 40 MHz and therefore is not sufficient for
exact to the nanosecond measurements. The programming languages which can be used to
write software for the controller are C and Assembler. Both could by used since C has no
automatic memory management, which is one of the main problems for real-time applications.
But since the result of the compilation from C to machine code is not known exactly, the
execution time for the frame processing has to be measured, for example via an oscilloscope.
But this entails an oscilloscope having a resolution that is high enough to measure with the re-
quired accuracy, which was not available. Another problem, that is located at the transceiver
is that it is equipped with only one antenna. Now, when trying to send the package the
device is first listening to the medium if it is free. If this is the case, the antenna has to be
switched from the receiving to the sending mode. The time to perform this change between
receiving and transmitting is denoted with 10 microseconds. A more precise specification in
nanoseconds or a separated send path with an own antenna would be preferred in order to
better calculate the overall processing time.

All these problems, which has already been figured out through the first discussion as well
as the time constraints for this work let to the decision to concentrate on the server software
and to implement a client software. This is now replacing the base station as well as the
mobile client and is used for validating the server software functionalities.

6.2.2 Software Implementation

Because neither a working base station nor a mobile client were available a piece of software
has been written to simulate the communication with the localisation server. This piece of
software simply opens a network connection and sends localisation frames to the server.
The timestamps, which define the measured distance from the client to the base stations are
entered by the user. This allows to simulate various localisations. The network communication
has been realised by using the UDP (User Datagram Protocol) protocol. This is a simple and

42

connectionless protocol without message acknowledgement. Furthermore, the messages are
not ordered. But since the data sent by the base stations will not exceed the size of one
packet and a message received acknowledgement can be sent manually, these disadvantages
aren’t an issue. The Java code for establishing a socket and sending a packet is depicted in
figure 6.1.

Figure 6.1: Establishing a Java UDP socket connection

The format of the data sent in the frame is as followed:

#loc#locID#bsID#mcID#Timestamp 1 #Timestamp 2 ##

The first hash marks the start of the data, followed by ”loc” to indicate the packet as
a localisation packet. After another hash follows the localisation ID which identifies the
localisation of one mobile client. Hence, a server has to receive three packets with the same
localisation ID to be able to start the localisation process. The ”locID” it the first variable
data. From now on every data value is separated by a hash. Next are the base station Id
(bsID), the mobile client ID (mcID), the first timestamp, which has been recorded as soon as
the packet left the base station and the second timestamp, which has been recorded when the
packet arrived the base station, after being sent by the mobile client. The end of the data is
marked with two hashes. In this case, where no base station exists the data can be entered
into the program to simulate different scenarios.

6.3 The Localisation Server

The server sequence diagram 5.9 of chapter 5.1.3 was the basis for the server software
development. The localisation server firstly consists of a Java program listening for locali-
sation frames, exchanging information with the database and calculating the mobile clients
positions. Secondly it consists of the database that stores the raw data from the frames,
the calculated mobile clients positions as well as several information about the localisation
environment. The graphical user interface (GUI) that is realised as an independent piece of
software and could run at any computer in the network is introduced in section 6.4. Both, the
server software as well as the graphical user interface have been realised in Java. The decision
to use Java was mainly based on the easy implementation of network communications, the
possibility of creating multithreaded programs and on the flexibility to use Java with several
operating systems. The last point was important because the future operating environment

43

and therefore also the system to run the software are unknown. The use of several threads
is interesting because of two points: first, to be able to benefit from a multi core processing
power of the todays computing systems (although if the program is not resource intensive)
and second, for being able to parallelize the different tasks, for example to be able to receive
packets while writing their information to the database. And a network socket implementa-
tion is needed to listen for localisation packets from the base stations or in this case from the
client software.

6.3.1 Server Software

The Server Software contains the following parts (see also figure 6.2):

• The Server class containing the main() and starting the server thread and the graphical
user interface.

• The Server thread, listening for localisation packets, starting the thread for writing the
frame data to the database and starting the thread for calculating the mobile clients
position.

• The write raw data thread for extracting the needed information from the frame and
writing them to the database.

• The localisation thread which is started after the raw data of all three base stations has
been written and calculates the mobile clients position.

44

Figure 6.2: The Server Classes

The server program implements a UDP socket similar to the one introduced in 6.2.2 to
be able to receive the localisation frames. As soon as a frame has been received, the server
answers with a message received acknowledgement to the base station. Afterwards it starts
the thread to write the information contained in the localisation frame to the database. This
is done by firstly splitting the string in its single values. Secondly, the program checks if
already three localisation frames for the certain localisation ID have been received and if the
combination of the localisation ID and the base station is already stored in the database.
This avoids wrong database entries for example if a base station accidentally has sent its data
twice. If the checks have been successful the data are written. When executing a query or
an update on the database several steps have to be taken. To avoid repeating the code for
opening a database connection, executing the query and receiving the data again and again
this whole part has been outsourced to own functions. One for the execution of a query
(ExecQry) and one for the execution of an update (ExecUpd). The ExecQry function simply
takes the SQL1 string and delivers the answer from the database as a two dimensional string

1Subscriber Query Language

45

array representing the SQL result set. The ExecUpd function has been realised in similar
way, merely that no values are returned: it only contains receiving the SQL string, opening a
database connection, executing the update, committing it and closing the connection again.
An example for how to query a database in Java is depicted in 6.3. The execution of an update
is illustrated in 6.4. Further information about the database (e.g. the database-model) can
be found in section 6.3.2. After the raw data is written the thread is finished and the program
returns to the server thread.

Figure 6.3: Querying a Database with Java

After the frames from all three base stations have been received and written to the
database the position calculation thread starts. The calculation is a geometric trilatera-
tion based on [20], which is described in the next section in detail. The calling server thread
passes the localisation ID to the position calculation thread. Then, the first step is to query
the mobile client, the base stations and the room involved in the localisation. The room ID is
derived by looking at the data base tabletblBaseStation that contains all base station related
information, inherent the ID of the room the respective base station is installed in.

Next step is to check if the radius around the base stations, emerging by the measured
distance from the base stations to the client, are intersecting. In the theoretical case where
all measure are infinitely precise, all circles would intersect in exactly one point, where the
mobile client is located. Based on the measurements inaccuracy this will not be the case
and instead of delivering an exact point for the desired position the intersections deliver an

46

Figure 6.4: Execute an update on a Database with Java

area in which the client is located in. The size of this area depends on the inaccuracy which
shouldn’t be more than a two meter radius, as described in the requirements in chapter 2. If
two circles are not intersecting at all any measurement error has occurred and the position
calculation can not start immediately. In this case the measurement could be repeated or the
calculation has to be functionally extended as described in the algorithm extension section.

Now, the six intersection points of the circles have to be calculated. Then the distances
among all points are measured and sorted by their length to obtain the three shortest distances
which are shaping a triangle. This triangle formed area is where the mobile client is located
in. For deriving an exact point, the centroid of the triangle is calculated and assumed as its
position.

The Trilateration Algorithm

The following section contains the description of the mathematical part as well as the
algorithmic Java implementation. The mathematical part is based on [20]. The code of the
program can be found in appendix C.

Figure 6.5 depicts an example case to point out the needed calculations, where the six
needed intersections points are marked with red circles. 6.6 illustrates two of the circles as
well as the points and lines that have to be calculate.

The one circles center is BS1 = (BS1x,BS1y) with the radius BS1r. The other circles center
is BS2 = (BS2x,BS2y) with the radius BS2r. First target is to find the circles intersection

47

Figure 6.5: Example case with marked intersection points

points A and C. Therefore the distance between the circles centers (∆) has to be calculated
first:

∆x = BS1x −BS2x (6.1)

∆y = BS1y −BS2y (6.2)

∆2 = ∆2
x + ∆2

y (6.3)

∆ =
√

∆2
x + ∆2

y (6.4)

If ∆ > BS1r + BS2r then both circles do not intersect. Next step is to find point B =
(bx,by), which is located at the intersection of the line between BS1r and BS2r as well as the
line between A and C:

s2 + u2 = BS12
r (6.5)

t2 + u2 = BS22
r (6.6)

with: s = Distance between BS1 and B
t = Distance between BS2 and B
u = Distance between A and B or B and C

By subtracting both equations:

s2 + u2 − t2 − u2 = BS12
r −BS22

r (6.7)

s2 − t2 = BS12
r −BS22

r (6.8)

48

Figure 6.6: Two intersecting circles

Factor the left side:

(s− t)(s+ t) = BS12
r −BS22

r (6.9)

Because s+ t = ∆ and therefore t = ∆− s, equation 6.9 can be written like:

(s− (∆− s))∆ = BS12
r −BS22

r (6.10)

(s−∆ + s)∆ = BS12
r −BS22

r (6.11)

2∆s−∆2 = BS12
r −BS22

r (6.12)

s =
∆2 +BS12

r −BS22
r

2∆
(6.13)

By knowing s, we can solve following equations to derive the coordinates of point B:

bx = BS1x +
∆xs

∆
(6.14)

by = BS1y +
∆ys

∆
(6.15)

By having equation 6.13 we can change equation 6.5 and are able to solve it:

u =
√
BS12

r − s2 (6.16)

Then the coordinates of point A can be described as:

ax = bx −
∆yu

∆
(6.17)

ay = by +
∆xu

∆
(6.18)

49

Furthermore, the coordinates of point C are:

cx = bx +
∆yu

∆
(6.19)

cy = by −
∆xu

∆
(6.20)

This was the part which is described in [20] and which is implemented in some of the functions
of the position calculation thread depicted in 6.7, 6.8, 6.9 and 6.10. Those four pictures
illustrate the order of calling the different functions while the position calculation thread is
running. The whole process depicted in 6.9 is executed three times, once for the circles of
base station one and two, once for base station one and three and once for base station two
and three. At the diagrams where the run() function starts several different actions these are
marked in different colors (blue and dark) for a better readability.

By processing the calculation for all three circles as just described, the six intersection
points of figure 6.5 are derived. Now, the three points in the middle, forming the triangle
in which the client is located, have to be found. Therefore, the x-y-coordinates of all 6
intersection points are handed to the CalcShortestIntersectionPoints() function. Here, the
fifteen possible lines between the points are calculated and written in a two dimensional
matrix of the following form: One row represents one line and contains five columns for the
x-coordinate of the start point, the y-coordinate of the start point, the x-coordinate of the end
point, the y-coordinate of the end point and the distance between both of them. Afterwards
a one dimensional reference array containing the numbers from zero to fourteen (one for
every row of the before described matrix) is created. Now this reference array is sorted by
referencing to the distances in column five of the two-dimensional array. Then the three
shortest lines and their x-y-coordinates are written into a matrix which is handed back to
the calling function as return value. The SelectTriangleCoordinates() function takes those six
coordinates (six x- and six y-coordinates) and eliminates the equal ones so that only the three
triangle coordinates are left. Based on those the CalcTrianglePoints() function calculates the
centroid of the triangle which is assumed as the position of the mobile client.

50

Figure 6.7: Position calculation: sequence diagram part 1 of 4

Figure 6.8: Position calculation: sequence diagram part 2 of 4

51

Figure 6.9: Position calculation: sequence diagram part 3 of 4

Figure 6.10: Position calculation: sequence diagram part 4 of 4

Future Algorithm Extensions

The before introduced localisation algorithm is just a basis which should be enhanced for
use in a real case scenario. In the following some important extensions are proposed:

Enable a localisation even if two circles around the base stations, resulting from the
distance of the client to the base station, are not intersecting each other. Now, in the beginning
of the localisation process, a function is checking if all three circles are intersecting each other.
If this is not the case, the localisation has to be cancelled. To avoid this, there are at least
two possibilities:

52

1. Simply restart the whole localisation to proof the measures.

2. Adapt the algorithm to deal with the situation. This includes first to check if a locali-
sation within the required accuracy is still possible. Secondly, calculating the position
based on another reference point as for example shown in figure 6.11: Calculating point
y which is on the circle around base station three and at the same time on the line
between the center of the base station and the intersection point x of the two other base
stations. Then the position of the client could be referenced to as the middle of the the
line between x and y.

Figure 6.11: Non intersecting circles

Another extension could be to increase the localisation accuracy by enabling the use of
more than three base stations. In the first step by using the ones in the room, if existing and in
the second step by trying to use base stations from other rooms, too. Second case is definitely
very challenging because of the signal change when it has to pass a wall. However, this case
is also very important to avoid equipping every small room with three base stations. So there
have to be a prioritization that favors the base stations from within the room where the client
is located when doing the calculation and give a higher weight to theirs measurements.

Furthermore, it needs a better accuracy evaluation that measures if the area, resulting
from the intersecting circles, where the client is suspected isn’t larger than the two meter
radius which is set as a requirement. Moreover, the size of the area of uncertainty could be
presented to the user so that he / she is not loosing sight of the fact that there is a certain
unprecisenes regarding the patients position. Because if only a dot on map is presented, one
could easily forget that most certainly the client is located within a specific area and not
exactly at the presented point.

6.3.2 The Database

A MySQL database is used to store the localization information. Figure 6.12 depicts the
created tables and their connections.

53

Figure 6.12: Database Model

The database is logically split into two parts. First contains only the table tblFrame which
stores the raw data from the localisation frames. There are fields for recording the localisation
ID, the mobile client ID, the base station ID and the outgoing and incoming timestamp. Three
base stations each sending one localisation frame are needed for the localisation of one mobile
client. Hence, the table has to contain three entries for one clients localisation. These entries
will have the same localisation ID and obviously the same mobile client ID.

The second part of the database contains the rest of the tables. Four of them, the tblBuild-
ing, the tblFloor, the tblRoom and the tblBaseStation, are representing the infrastructure of
the localisation area. That could be a hospital building containing different floors, with sev-
eral rooms and each room equipped with three base stations. The first of the two tables left
is the tblMobileClient and represents the existing mobile clients and enables an association to
the patient using it. The other one, the tblPosition stores the information calculated by the
positioning algorithm. This is the position of a specific mobile client at a specific time.

6.4 The Display Service

For providing a graphical user interface to the user, a piece of software has been pro-
grammed. Regarding the time constraints of this work, the user interface is a very simple
piece of software that always shows the last localisation entry. It is completely independent
from the other programs to be able to run on any machine in the network. It only needs
access to the localisation database to read the information about the last localisation and the
other needed information, like the involved base stations and their positions as well as the
information about the room, from the database. Afterwards the coordinates are converted
from the cartesian coordinate system to the system used in Java that starts in the upper left
corner. When having the right coordinates for all components those are drawn by using the
proper AWT/SWING functions. This leads to an output depicted in figure 6.13.

When the GUI gets started, now it only shows the last localisation saved to the database.

54

Figure 6.13: The Display Service

For improving the GUI2 it should be able to interact with the user. This includes not only
showing the latest localisation but also specific clients at specific times as well as at which
floor of which building and where at this floor the showed room room is located. A first and
very easy step for improving it could be a time triggered check for new localisation entries in
the database.

A simple further development would be to implement the display service as a web interface.
Because the software is already written in Java, the effort to change it to an applet is relatively
low. But the benefit for not being forced to install the software on every device that should be
able to show the patients location is immense, since only the server running the web service
has to be serviced.

2Graphical User Interface

55

Chapter 7

Validation

The validation chapter proofs the correctness of the calculations executed by the developed
algorithm. Therefore, four cases has been developed with a CAD1 software. These show the
defined room (see also appendix D) including the base stations and different measurements for
each given case. The measurements are a specific distance which represents one measurement
between the certain base station and the mobile client as well as all necessary distances. These
distances was measured within the CAD software. For validating the algorithms performance
the centroid coordinates, which are the result of the algorithm, are calculated by hand and
compared with the algorithms results. In the following every section represents one case.
Because the procedure is the same for every case, only the first one is described in detail.

7.1 Case One

Figure 7.1 depicts the first case created with the CAD software. The distances from the
base stations are represented by an arc of a circle with the certain distance. Furthermore, the
three intersection points are marked and measured regarding the x and y axis. Also the base
stations positions can be read from the attached measurements. These measurements have
been done within the CAD software. The size of the room as well the positions of the base
stations correspond to the ones of the defined test case (see appendix D). These information
are also stored in the database and are used when executing the developed software. The last
result, which is based on all of the previous calculations, is the centroid of the triangle formed
by the three intersection points. Therefore the centroid coordinates are calculated by hand.
Afterwards, the program is executed with the distances defined in the CAD picture and the
results are compared with each other.

7.1.1 Calculation of the Centroid coordinates by Hand

The calculation of a centroid is done by using the following formulas:

xcentroid =
1

3
∗ (xBS1 + xBS2 + xBS3) (7.1)

ycentroid =
1

3
∗ (yBS1 + yBS2 + yBS3) (7.2)

1Computer Aided Design

56

Figure 7.1: Case One: CAD Drawing

57

Figure 7.2: Case One: Centroid Coordinates

with:
x/ycentroid = x/y-coordinate of the triangles centroid
xBS1-3 = x-coordinate of base station one to base station three
yBS1-3 = y-coordinate of base station one to base station three

Hence, the calculation looks as followed:

xcentroid =
1

3
∗ (6.834 + 6.337 + 6.825) = 6.665 (7.3)

ycentroid =
1

3
∗ (5.238 + 4.903 + 4.585) = 4.908 (7.4)

7.1.2 Execution of the Algorithm

When executing the client software that sends the timestamps to the localisation server,
the user has to enter the measured distance between every base station and the mobile client
in nanoseconds. Every nanosecond of elapsed time corresponds to 0.28cm travelled distance.
Therefore, the radius defined at the CAD pictures have to be converted to nanoseconds.
Because the client software only allows the input of full nanoseconds, which is assumed as the
most accurate time to be able to measure, the converted values have to be rounded in most
of the cases. Hence, the calculated results will vary a little bit from the ones calculated by
hand.

BS1Radius = 6.277m =̂ 22.41ns⇒ 22ns (7.5)

BS2Radius = 6.121m =̂ 21.86ns⇒ 22ns (7.6)

BS3Radius = 6.838m =̂ 24.42ns⇒ 24ns (7.7)

When entering those nanosecond values into the software following results are produced:
Figure 7.2 depicts the centroid coordinates calculated by the position calculation algorithm.
Figure 7.3 illustrates the output of the graphical user interface which can be compared to the
CAD painting. By comparing both with the calculated data by hand or respectively with the
CAD drawing, the results are the same up to a small error because of the rounding to full
nanoseconds as done before.

58

Figure 7.3: Case One: GUI Output

59

7.2 Case Two

Figure 7.4 depicts the actual case as a CAD drawing.

Figure 7.4: Case Two: CAD Drawing

7.2.1 Calculation of the Centroid coordinates by Hand

By taking the intersection coordinates of the CAD drawing, following x-y-coordinates of
the centroid are calculated by hand:

xcentroid =
1

3
∗ (8.236 + 8.8 + 9.049) = 8.695 (7.8)

ycentroid =
1

3
∗ (8.319 + 8.419 + 7.736) = 8.158 (7.9)

7.2.2 Execution of the Algorithm

The distances of the base stations to the mobile client taken from the CAD drawing lead
to following nanosecond values:

BS1Radius = 2.455m =̂ 8.76ns⇒ 9ns (7.10)

BS2Radius = 8.5m =̂ 30.35ns⇒ 30ns (7.11)

BS3Radius = 9.451m =̂ 33.75ns⇒ 34ns (7.12)

The position calculation algorithm calculates the values depicted in 7.5. Figure 7.6 illus-
trates the output of the graphical user interface.

60

Figure 7.5: Case Two: Centroid Coordinates

Figure 7.6: Case Two: GUI Output

61

7.3 Case Three

Figure 7.7 depicts the actual case as a CAD drawing.

Figure 7.7: Case Three: CAD Drawing

7.3.1 Calculation of the Centroid coordinates by Hand

By taking the intersection coordinates of the CAD drawing, following x-y-coordinates of
the centroid are calculated by hand:

xcentroid =
1

3
∗ (1.594 + 1.672 + 1.97) = 1.745 (7.13)

ycentroid =
1

3
∗ (1.154 + 1.601 + 1.311) = 1.355 (7.14)

7.3.2 Execution of the Algorithm

The distances of the base stations to the mobile client taken from the CAD drawing lead
to following nanosecond values:

BS1Radius = 11.834m =̂ 42.26ns⇒ 42ns (7.15)

BS2Radius = 8.5m =̂ 30.35ns⇒ 30ns (7.16)

BS3Radius = 4.182m =̂ 14.93ns⇒ 15ns (7.17)

The position calculation algorithm calculates the values depicted in 7.8. Figure 7.9 illus-
trates the output of the graphical user interface.

62

Figure 7.8: Case Three: Centroid Coordinates

Figure 7.9: Case Three: GUI Output

63

7.4 Case Four

Figure 7.10 depicts the actual case as a CAD drawing. The singularity of this case in
comparison to the ones before is that the three distances from the base stations are not
overlapping in full. In this case these are near enough to form three intersection points
but the localisation area is outside of the three circles as can be seen in the CAD painting.
Nevertheless, the algorithm works in a proper way, because the centroid of the triangle, formed
by the three intersection points, can be calculated.

Figure 7.10: Case Four: CAD Drawing

7.4.1 Calculation of the Centroid coordinates by Hand

By taking the intersection coordinates of the CAD drawing, following x-y-coordinates of
the centroid are calculated by hand:

xcentroid =
1

3
∗ (7.863 + 7.783 + 8.614) = 8.077 (7.18)

ycentroid =
1

3
∗ (4.617 + 3.99 + 4.354) = 4.320 (7.19)

7.4.2 Execution of the Algorithm

The distances of the base stations to the mobile client taken from the CAD drawing lead
to following nanosecond values:

64

Figure 7.11: Case Four: Centroid Coordinates

BS1Radius = 5.81m =̂ 20.75ns⇒ 21ns (7.20)

BS2Radius = 4.573m =̂ 16.33ns⇒ 16ns (7.21)

BS3Radius = 7.839m =̂ 27.99ns⇒ 28ns (7.22)

The position calculation algorithm calculates the values depicted in 7.11. Figure 7.12
illustrates the output of the graphical user interface.

65

Figure 7.12: Case Four: GUI Output

66

Chapter 8

Outlook and Conclusion

The thesis goal can be separated in two parts: firstly the proposal for a hospital localisation
system based on the state-of-the-art techniques and secondly the implementation of this
proposal. Part one has been succcefully fulfilled. Though it was not possible to implement
the full localisation system. The problems faced were that the planned cooperation with the
Austrian Academy of Sciences was not able during the thesis. That is why there was no
possibility to access the hardware developed by them, which should have been used as base
stations after some reprogramming work. Regarding the mobile client it turned out that the
available hardware was not sufficient to reach the accuracy needed for a proper localisation.
Therefore, the focus has been set on the development of a server software that is able to receive
UDP localisation frames and calculate the mobile clients position based on those information.
This software has been developed and successfully tested as described in chapter 6 and 7. It
uses a trilateration algorithm which calculates the intersection points of the circles drawn
around the base stations in the distance of the measurement of the signal propagation delay.
By calculating the centroid of the triangle formed by the three shortest lines between the
intersection points the clients position is received. For visualising the client in a certain room
a display service software has been developed that could run on any computer in the network
that is able to connect to the database, that contains the calculated position information.

Next to this results, the thesis provides an overview of the state-of-the-art techniques and
summarizes the problems one is faced when trying to set up a localisation system. Because of
its importance for the whole process, the time-stamping has been treated with special care.

Additionally the thesis has shown that, due to its simplicity, the round trip time approach
is a good alternative to the TDoA method, especially when it comes to special use cases
(e.g. the treated hospital use case) where only a special group of persons have to be located.
Because in those cases there is no need to integrate the localisation functionality in an existing
device like a mobile phone. Instead it could be implemented in an special device which only
provides the localisation or as an integration in a personal health monitoring device that
collects vital data from several body sensors. Only in the second case the full potential would
be used by enabling automatic emergency calls if a vital sign is reaching a critical level.

Another important topic for future research could be to figure out possibilities to mitigate
the influences from the environment. Especially in non-line-of-sight environments, which most
certainly occur in real world scenarios, the influence on the measurement through reflection
and distraction at obstacles, placed in the line between mobile client and base station, are
immense. Finding ways to enable a localisation even with heavy obstacles like walls would

67

heavily increase the acceptance, since not every room would needed to be equipped with
three antennas. Moreover, the full range of the antennas could be used to cover a certain
area, which would heavily decrease the investment costs, since only a fraction of base stations
is needed.

Last point for further development is the trilteration algorithm. The developed one lacks
functionalities that makes it more fault tolerant and let it work for example even if not all
three distances from the base stations are overlapping as described in chapter 5.

Summarising it can be said that till now, it is not possible to use any commercial-of-the-
shelf hardware, for a mobile client localisation as described during the thesis. Therefore,
these functionalities will take several more years to reach the market and even then it will
be a product for special applications only. But since the rising healthcare costs described in
chapter 1 are calling for solutions it will be worth to stick to solutions like the ubiquitous
patient monitoring that on the other hand implies a localisation of patients in emergency
cases.

68

Bibliography

[1] The vanishing workforce. The Economist (Online), 24.02.2012.

[2] The World Bank. World Development Indicators (WDI) & Global Development Finance
(GDF). World dataBank (databank.worldbank.org), 15.12.2011.

[3] Aneeq Mahmood et al. Clock Synchronization in Wireless LANs without Hardware Sup-
port. 8th IEEE International Workshop on Factory Communication Systems (WFCS),
2010.

[4] Anetta Nagy et al. Time-based Localisation in Unsynchronized Wireless LAN for Indus-
trial Automation Systems. IEEE ETFA’2011, 2011.

[5] Dimitrios Lymberopoulos et al. An Empirical Characterization of Radio Signal Strength
Variability in 3-D IEEE 802.15.4 Networks Using Monopole Antennas. Springer-Verlag
Berlin Heidelberg, 2006.

[6] Francesco Potorti et al. Accuracy limits of in-room localisation using RSSI.

[7] Georg Gaderer et al. Localisation of Wireless LAN Nodes using Accurate TDoA Mea-
surements. WCNC 2010, IEEE Wireless Communications and Networking Conference,
18.04.2010.

[8] Georg Gaderer et al. Localisation in Wireless Sensor Networks. Proceedings of the IEEE
2009 Sensors Conference, 27.10.2009.

[9] Georg Garderer et al. Master Failures in the Precision Time Protocol. ISPCS 2008 –
International IEEE Symposium on Precision Clock Synchronization for Measurement,
Control and Communication, 22.09.2008.

[10] Guoqiang Mao et al. Wireless Sensor Network Localization Techniques.

[11] Hui Liu et al. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE
Transactions on Systems, Man, and Cybernetics, 06.11.2007.

[12] Kim Sanhae et al. An Improved TDoA-based Tracking Algorithm in Mobile-WiMAX
Systems. IEEE, 2009.

[13] Luis Mengual et al. Clustering-based location in wireless networks. Expert Systems with
Applications 37 (2010), 2010.

[14] M. Ciurana et al. Tracking mobile targets indoors using WLAN and time of arrival.
Computer Communications 32 (2009), 2009.

69

[15] M. Ciurana et al. A robust to multi-path ranging technique over IEEE 802.11 networks.
Wireless Netw (2010), 29.04.2009.

[16] Patrick Loschmidt et al. Limits of Synchronization Accuracy Using Hardware Support
in IEEE 1588. ISPCS 2008 – International IEEE Symposium on Precision Clock Syn-
chronization for Measurement, Control and Communication, 22.09.2008.

[17] Qiuxia Chen et al. Rule-Based WiFi Localization Methods. 2008 IEEE/IFIP Interna-
tional Conference on Embedded and Ubiquitous Computing, 2008.

[18] Stefan Schwalowsky et al. System Integration of an IEEE 802.11 based TDoA Localiza-
tion System. ISPCS 2010 – International IEEE Symposium on Precision Clock Synchro-
nization for Measurement, Control and Communication, 2010.

[19] invention.smithsonian.org. The Quartz Watch. http://invention.smithsonian.org,
06.12.2011.

[20] Alan Kaminsky. Trilateration. 2007.

[21] Harry B. Lee. A Novel Procedure for Assessing the Accuracy of Hyperbolic Multilater-
ation Systems. IEEE Transactions on Aerospace and Electronic Systems, 01.1975.

[22] Partrick Loschmidt. On Enhanced Clock Synchronization Performance Through Dedi-
cated Ethernet Hardware Support. Dissertation, 2010.

[23] Nimal Nissanke. Realtime Systems. Prentice Hall, 1997.

[24] Kaveh Pahlavan. Indoor Geolocation Science and Technology. IEEE Communications
Magazine, 02.2002.

[25] Sweta Sneha and Upkar Varshney. Enabling ubiquitous patient monitoring: Model,
decision protocols, opportunities and challenges. Elsevier B.V., 21.10.2008.

[26] Don J. Torrieri. Statistical Theory of Passive Location Systems. IEEE Transactions on
Aerospace and Electronic Systems, 03.1984.

[27] IEEE 1588 working group. IEEE Std 1588-2008. IEEE Standards, 01.08.2005.

[28] IEEE 802.11 working group. IEEE Std 802.11, 2003 edition. IEEE Standards, 01.08.2005.

70

Appendix A

Java Code: Client

The client code that is presented at the following pages is an autonomous piece of software
that simulates the three base stations, which have to send their localisation frames to the
server. For trying simulating different situations the user is able to define the distance from
the client to each base station by enter the time of flight in nanoseconds before the program
sends the frames via UDP to the server. One nanosecond of time of flight corresponds to 28
centimeters of traveled distance. Furthermore the user has to specify a localisation ID which
has to be unique for one client localisation process.

71

 1

 2 package client;

 3

 4 import java.io.*;

 5 import java.net.*;

 6 import java.sql.Connection;

 7 import java.sql.DriverManager;

 8 import java.sql.ResultSet;

 9 import java.sql.Statement;

 10 import java.util.*;

 11 import java.util.logging.Level;

 12 import java.util.logging.Logger;

 13 import org.apache.commons.math3.analysis.function.*;

 14

 15 public class Client {

 16 public static void main(String[] args) throws IOException {

 17

 18

 19 String strLocID = javax.swing.JOptionPane.showInputDialog(

 20 "Please enter the localisation ID.");

 21 int locID = Integer.parseInt(strLocID);

 22 String distanceBS1 = javax.swing.JOptionPane.showInputDialog(

 23 "Please enter the "

 24 + "distance from BS1 in nanoseconds (1ns = 28cm).");

 25 String distanceBS2 = javax.swing.JOptionPane.showInputDialog(

 26 "Please enter the "

 27 + "distance from BS2 in nanoseconds (1ns = 28cm).");

 28 String distanceBS3 = javax.swing.JOptionPane.showInputDialog(

 29 "Please enter the "

 30 + "distance from BS3 in nanoseconds (1ns = 28cm).");

 31

 32

 33 Client BS1 = new Client();

 34 Client BS2 = new Client();

 35 Client BS3 = new Client();

 36

 37 BS1.sendLocalPacket("#loc#" + locID + "#1001#2001#283:645:000"

 38 + "#283:645:"+ distanceBS1 +"##"); //21ns

 39

 40 BS2.sendLocalPacket("#loc#" + locID + "#1002#2001#283:645:000"

 41 + "#283:645:"+ distanceBS2 +"##"); //18ns

 42

 43 BS3.sendLocalPacket("#loc#" + locID + "#1003#2001#283:645:000"

 44 + "#283:645:"+ distanceBS3 +"##"); //25ns

 45

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Client/src/client/Client.java

1.1 of 4 2012.05.22 12:50:45

72

 46

 47 }

 48

 49

 50 public void sendLocalPacket(String PacketData) throws IOException {

 51

 52 String hostAddress = "localhost";

 53 String data = PacketData;

 54 byte[] response = new byte[256];

 55

 56 // Create a datagram socket

 57 DatagramSocket socket = new DatagramSocket();

 58

 59 // Send the data to the server

 60 byte[] buf = data.getBytes();

 61 InetAddress address = InetAddress.getByName(hostAddress);

 62 DatagramPacket packet = new DatagramPacket(buf, buf.length,

 63 address, 4445);

 64 socket.send(packet);

 65

 66 // get response

 67 packet = new DatagramPacket(response, response.length);

 68 socket.receive(packet);

 69

 70 // display response

 71 String received = new String(packet.getData());

 72 System.out.println("Answer from Server: " + received);

 73

 74 socket.close();

 75

 76 }

 77

 78

 79

 80

//***

 81 //* Name: ExecQry

*

 82 //* Input: SQL Query as a String

*

 83 //* Output: String Array containing the ReseultSet Data

*

 84 //* Functionality: Returns the ResultSet Data in form of a Multi-

*

 85 //* Dimensional Array (according to the RS)

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Client/src/client/Client.java

2.1 of 4 2012.05.22 12:50:45

73

*

 86

//***

 87 public String[][] ExecQry(String input){

 88

 89 Connection conn = null;

 90 String url = "jdbc:mysql://localhost/mydb";

 91 String user = "root";

 92 String pass = "malte";

 93 String strSQL = input;

 94 ResultSet rs = null;

 95 String[][] stringResult = null;

 96 int NoRows = 0;

 97 int NoColumns = 0;

 98 int ArrayCount = 0;

 99 int RSCount = 1;

100

101 try {

102 Class.forName("com.mysql.jdbc.Driver").newInstance();

103 conn = DriverManager.getConnection(url, user, pass);

104 System.out.println("PosCalcThread: ExecQry: "

105 + "Connected to DB");

106 Statement stmt = conn.createStatement();

107 rs = stmt.executeQuery(strSQL);

108

109 //Getting Number of Rows

110 rs.last();

111 NoRows = rs.getRow();

112 rs.first();

113

114 //Getting Number of Columns

115 NoColumns = rs.getMetaData().getColumnCount();

116

117 //Initializing the string-Array

118 stringResult = new String[NoRows][NoColumns];

119

120 //Writing ResultSet Data in string-Array

121 for(int i = 0; i < NoRows; i++){

122 for(int j = 0; j < NoColumns; j++){

123 stringResult[i][j] = rs.getString(j+1);

124 }

125 rs.next();

126 }

127

128 }

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Client/src/client/Client.java

3.1 of 4 2012.05.22 12:50:45

74

129 catch (Exception e) {

130 System.err.println("PosCalcThread: ExecQry: "

131 + "Connection poblem:");

132 e.printStackTrace();

133 }

134 finally {

135 if (conn != null) {

136 try {

137 conn.close();

138 System.out.println("PosCalcThread: ExecQry: "

139 + "Connection closed.");

140 } catch(Exception e) {

141 System.out.println("PosCalcThread: ExecQry: "

142 + "Failure while closing connection:");

143 e.printStackTrace();

144 }

145 }

146 }

147

148 return stringResult;

149 }

150

151 }

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Client/src/client/Client.java

4.1 of 4 2012.05.22 12:50:45

75

Appendix B

Java Code: Server

The following sections are containing the program code of the server software. An overview
is illustrated in figure B.1.

Figure B.1: The Server Classes

76

B.1 Server

The next page contains the server class which simply starts the server thread from its
main class.

Figure B.2: The Server Classes

77

 1 /*

 2 * To change this template, choose Tools | Templates

 3 * and open the template in the editor.

 4 */

 5 package server;

 6

 7 import java.io.*;

 8

 9

10 public class Server{

11

12 public static void main(String[] args) throws IOException {

13

14 new ServerThread().start();

15

16

17 }

18

19 }

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/Server.java

1.1 of 1 2012.05.21 17:17:57

78

B.2 ServerThread

The following contained server thread is an infinite loop that is listening for new packets
from the mobile client and starts the subsequent processing stages: writing the raw data to
the database and calculate the position of the mobile client.

Figure B.3: The Server Classes

79

 1 package server;

 2

 3 import java.io.*;

 4 import java.net.*;

 5 import java.util.*;

 6 import java.util.concurrent.locks.Lock;

 7 import java.util.concurrent.locks.ReentrantLock;

 8 import java.util.logging.Level;

 9 import java.util.logging.Logger;

10

11 public class ServerThread extends Thread {

12

13 protected DatagramSocket socket = null;

14 Collection list1 = new LinkedList();

15 int NoWRD = 0;

16 int PosCalcStart = 0;

17 final Lock lock = new ReentrantLock();

18

19 public ServerThread() throws IOException{

20 socket = new DatagramSocket(4445);

21 }

22

23

24 public void run() {

25

26

27 while (true) {

28 try {

29 byte[] buf = new byte[256];

30 String receivedData = new String();

31 String responseText = "#PacketReceived_ACK##";

32 byte[] response = responseText.getBytes();

33

34 // receive request

35 DatagramPacket packet = new DatagramPacket(buf,

36 buf.length);

37 socket.receive(packet);

38

39 receivedData = new String(packet.getData());

40

41 // show received data

42 System.out.printf("ServerThread: Received Packet: "

43 + "Addressed to %s at Port %d with %d Byte, "

44 + "Content:%n%s%n%n",

45 packet.getAddress(), packet.getPort(),

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/ServerThread.java

1.1 of 3 2012.05.22 12:44:51

80

46 packet.getLength(),

47 new String(packet.getData()));

48

49 // send response to the client

50 InetAddress address = packet.getAddress();

51 int port = packet.getPort();

52 packet = new DatagramPacket(response, response.length,

53 address, port);

54 socket.send(packet);

55

56 System.out.printf("ServerThread: Response Packet: "

57 + "Addressed to %s at Port %d with %d Byte, "

58 + "Content:%n%s%n%n",

59 packet.getAddress(), packet.getPort(),

60 packet.getLength(),

61 new String(packet.getData()));

62

63 // splitting the string for getting the Loclisation

ID

64 String LocID = new String();

65 String[] splitted =

66 new String[receivedData.split("#").length];

67 splitted = receivedData.split("#");

68 LocID = splitted[2];

69

70

71 // start Thread to write RAW Data in DB

72 lock.lock();

73 if(receivedData.startsWith("#loc#")){

74 new WriteRawData(receivedData).start();

75 }else

76 System.out.printf("%nNo localisation Frame");

77

78 try {

79 Thread.currentThread().sleep(400);

80 } catch (InterruptedException ex) {

81 Logger.getLogger(ServerThread.class.getName()).log(

82 Level.SEVERE, null, ex);

83 }

84 //start position calculation thread

85 new PosCalcThread(Integer.parseInt(LocID)).start();

86 lock.unlock();

87

88 } catch (IOException e) {

89 System.out.println("A problem occured: ");

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/ServerThread.java

2.1 of 3 2012.05.22 12:44:51

81

90 e.printStackTrace();

91 }

92 }

93 }

94

95

96 }

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/ServerThread.java

3.1 of 3 2012.05.22 12:44:51

82

B.3 WriteRawData

The WriteRawData class is started by the server thread and write the information of the
received localisation frames to the database.

Figure B.4: The Server Classes

83

 1

 2 package server;

 3

 4 import java.sql.*;

 5 import java.util.logging.Level;

 6 import java.util.logging.Logger;

 7 import java.util.concurrent.locks.ReentrantLock;

 8 import java.util.concurrent.locks.Lock;

 9

 10 public class WriteRawData extends Thread {

 11

 12 protected String data = null;

 13 int PosCalcStart = 0;

 14 final Lock lock = new ReentrantLock();

 15

 16 public WriteRawData(String rawData){

 17 this.data = rawData;

 18 }

 19

 20

 21 public void run(){

 22

 23 String[] rs = null;

 24 int rsLength = 0;

 25 int MeasurementValues = 3;

 26 String[] rs2 = null;

 27

 28 System.out.printf("%nWrite RAW Data starts...%n");

 29 System.out.printf("RawData: " + data + "%n%n");

 30

 31 // splitting the string

 32 String T1, T2, LocID, BSID, MCID = new String();

 33 String[] splitted = new String[data.split("#").length];

 34 splitted = data.split("#");

 35 LocID = splitted[2];

 36 BSID = splitted[3];

 37 MCID = splitted[4];

 38 T1 = splitted[5];

 39 T2 = splitted[6];

 40

 41 // Test if already three BS entrys saved in DB

 42 String strSQL = "SELECT COUNT(LocalisationID) "

 43 + "FROM tblframe "

 44 + "WHERE LocalisationID = " +

Integer.parseInt(LocID);

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/WriteRawData.java

1.1 of 5 2012.05.22 12:54:34

84

 45 rs = ExecQry(strSQL);

 46 if(rs.length != 0){

 47 if(Integer.parseInt(rs[0]) < MeasurementValues){

 48 strSQL = "INSERT INTO tblframe (LocalisationID,"

 49 + "MobileClientID,BaseStationID,"

 50 + "OutgoingTime,IncomingTime) "

 51 + "VALUES ("

 52 + Integer.parseInt(LocID) + ","

 53 + Integer.parseInt(MCID) + ","

 54 + Integer.parseInt(BSID) + ","

 55 + "'" + T1 + "'" + "," + "'" + T2 +

"')";

 56 ExecUpd(strSQL);

 57

 58 System.out.println("WriteRawData: "

 59 + "RawData is written");

 60

 61

 62 }else

 63 System.out.println("WriteRawData: "

 64 + "Threre are already three "

 65 + "entrys for this localisation ID "

 66 + "stored in the DB!");

 67 }else

 68 System.out.println("WriteRawData: Failure in "

 69 + "ResultSet");

 70

 71 }

 72

 73

 74

//***

 75 //* Name: ExecUpd

*

 76 //* Input: SQL String as String

*

 77 //* Output: -

*

 78 //* Description: Takes an SQL String with and performs the Update

on*

 79 //* the DataBase

*

 80

//***

 81 public void ExecUpd(String input){

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/WriteRawData.java

2.1 of 5 2012.05.22 12:54:34

85

 82

 83 Connection conn = null;

 84 String url = "jdbc:mysql://localhost/mydb";

 85 String user = "root";

 86 String pass = "malte";

 87 String strSQL = input;

 88 ResultSet rs = null;

 89

 90 try {

 91 Class.forName("com.mysql.jdbc.Driver").newInstance();

 92 conn = DriverManager.getConnection(url, user, pass);

 93 System.out.println("WriteRawData: ExecUpd: "

 94 + "Connected to DB");

 95 Statement stmt = conn.createStatement();

 96 stmt.executeUpdate(strSQL);

 97 conn.setAutoCommit(true);

 98 conn.close();

 99

100 }

101 catch (Exception e) {

102 System.err.println("WriteRawData: ExecUpd: "

103 + "Connection poblem:");

104 e.printStackTrace();

105 }

106 finally {

107 if (conn != null) {

108 try {

109 conn.close();

110 System.out.println("WriteRawData: ExecUpd: "

111 + "Connection closed.");

112

113 } catch(Exception e) {

114 System.out.println("WriteRawData: ExecUpd: "

115 + "Failure while closing connection");

116 }

117 }

118 }

119

120 }

121

122

123

124 //NOTE: Eventually exchange to newer Version like in

PosCalcThread.java

125 public String[] ExecQry(String input){

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/WriteRawData.java

3.1 of 5 2012.05.22 12:54:34

86

126

127 Connection conn = null;

128 String url = "jdbc:mysql://localhost/mydb";

129 String user = "root";

130 String pass = "malte";

131 String strSQL = input;

132 ResultSet rs = null;

133 String[] stringResult = null;

134 int ArrayCount = 0;

135 int RSCount = 1;

136

137 try {

138 Class.forName("com.mysql.jdbc.Driver").newInstance();

139 conn = DriverManager.getConnection(url, user, pass);

140 System.out.println("WriteRawData: ExecQry: Connected to

DB");

141 Statement stmt = conn.createStatement();

142 rs = stmt.executeQuery(strSQL);

143

144 stringResult = new

String[rs.getMetaData().getColumnCount()];

145

146 while(rs.next()){

147 stringResult[ArrayCount] = rs.getString(RSCount);

148 ArrayCount++;

149 RSCount++;

150 }

151

152 }

153 catch (Exception e) {

154 System.err.println("WriteRawData: ExecQry: "

155 + "Connection poblem:");

156 e.printStackTrace();

157 }

158 finally {

159 if (conn != null) {

160 try {

161 conn.close();

162 System.out.println("WriteRawData: ExecQry: "

163 + "Connection closed.");

164 } catch(Exception e) {

165 System.out.println("WriteRawData: ExecQry: "

166 + "Failure while closing connection:");

167 e.printStackTrace();

168 }

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/WriteRawData.java

4.1 of 5 2012.05.22 12:54:34

87

169 }

170 }

171

172 return stringResult;

173 }

174

175

176

177

178 }

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/WriteRawData.java

5.1 of 5 2012.05.22 12:54:34

88

B.4 PositionCalculationThread

The next pages contain the Java code for the calculation of the mobile clients position,
which is by far the most complex class.

Figure B.5: The Server Classes

89

 1

 2 package server;

 3

 4 import java.sql.*;

 5 import java.math.*;

 6 import java.util.Arrays;

 7 import org.apache.commons.math3.analysis.function.*;

 8 import java.util.*;

 9

 10 public class PosCalcThread extends Thread {

 11

 12 protected int locID = 0;

 13 protected int numberOfBaseStations = 3;

 14

 15

 16 public PosCalcThread(int LocID){

 17 this.locID = LocID;

 18 }

 19

 20

 21 public void run(){

 22

 23 System.out.printf("%nPosition Calculation for LocID: " + locID

 24 + " starts%n");

 25

 26 String[][] rs = null;

 27 int MeasurementValues = 3;

 28 String[] baseStationIDs;

 29 int mobileClientID;

 30 int RoomID;

 31 double[] allInterSecPoints = new double[12];

 32 double[][] shortestInterSecDist;

 33

 34

 35 // Test if already three BS entrys saved in DB

 36 String strSQL = "SELECT COUNT(LocalisationID) FROM tblframe "

 37 + "WHERE LocalisationID = " + locID;

 38 rs = ExecQry(strSQL);

 39 if(rs.length != 0){

 40 if(Integer.parseInt(rs[0][0]) == MeasurementValues){

 41

 42 System.out.println("PosCalcThread: Calculation starts...

"

 43 + "No. of Entrys: " + rs[0][0]);

 44

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

1.1 of 23 2012.05.22 11:14:33

90

 45 baseStationIDs = GetInvolvedBaseStations(locID);

 46 mobileClientID = GetInvolvedMobileClient(locID);

 47

 48 RoomID = GetRoomIDbyBaseStationID(

 49 Integer.parseInt(baseStationIDs[0]));

 50

 51

 52 boolean intersection1 = checkIntersection(locID,

 53 Integer.parseInt(baseStationIDs[0]),

 54 Integer.parseInt(baseStationIDs[1]));

 55 boolean intersection2 = checkIntersection(locID,

 56 Integer.parseInt(baseStationIDs[1]),

 57 Integer.parseInt(baseStationIDs[2]));

 58 boolean intersection3 = checkIntersection(locID,

 59 Integer.parseInt(baseStationIDs[0]),

 60 Integer.parseInt(baseStationIDs[2]));

 61

 62 if(intersection1 && intersection2 && intersection3){

 63

 64 double[] ISPoints1;

 65 ISPoints1 = CalcIntersectionPoints(locID,

 66 Integer.parseInt(baseStationIDs[0]),

 67 Integer.parseInt(baseStationIDs[1]));

 68

 69 double[] ISPoints2;

 70 ISPoints2 = CalcIntersectionPoints(locID,

 71 Integer.parseInt(baseStationIDs[1]),

 72 Integer.parseInt(baseStationIDs[2]));

 73

 74 double[] ISPoints3;

 75 ISPoints3 = CalcIntersectionPoints(locID,

 76 Integer.parseInt(baseStationIDs[0]),

 77 Integer.parseInt(baseStationIDs[2]));

 78

 79

 80 allInterSecPoints[0] = ISPoints1[0];

 81 allInterSecPoints[1] = ISPoints1[1];

 82 allInterSecPoints[2] = ISPoints1[2];

 83 allInterSecPoints[3] = ISPoints1[3];

 84 allInterSecPoints[4] = ISPoints2[0];

 85 allInterSecPoints[5] = ISPoints2[1];

 86 allInterSecPoints[6] = ISPoints2[2];

 87 allInterSecPoints[7] = ISPoints2[3];

 88 allInterSecPoints[8] = ISPoints3[0];

 89 allInterSecPoints[9] = ISPoints3[1];

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

2.1 of 23 2012.05.22 11:14:33

91

 90 allInterSecPoints[10] = ISPoints3[2];

 91 allInterSecPoints[11] = ISPoints3[3];

 92

 93 shortestInterSecDist =

 94

CalcShortestIntersectionDistances(allInterSecPoints);

 95

 96 System.out.printf("%n%nShortest Distances and

according"

 97 + " x-y- coordinates:%n");

 98 for(int i = 0; i < 3; i++){

 99 for(int j = 0; j < 5; j++){

100 System.out.print(shortestInterSecDist[i][j]

101 + " ");

102 }

103 System.out.println("");

104 }

105

106 double[] centroid = CalcTriangleCentroid(

107 SelectTrianglePoints(shortestInterSecDist));

108

109 System.out.printf("%n%nCentroid coordinates:%n%n");

110 System.out.println("Cx: " + centroid[0]);

111 System.out.println("Cy: " + centroid[1]);

112

113 // Write calculated position data in DB

114 strSQL = "INSERT INTO tblposition (MobileClientID, "

115 + "Date, Time, RoomID, RoomRelPosX, "

116 + "RoomRelPosY, LocalisationID) "

117 + "VALUES ("

118 + mobileClientID + ","

119 + " CURRENT_DATE(),"

120 + " NOW(),"

121 + RoomID + ","

122 + centroid[0] + ","

123 + centroid[1] + ","

124 + locID + ")";

125 ExecUpd(strSQL);

126 }else

127 System.out.println("The circles do not intersect!");

128

129 }else

130 System.out.println("PosCalcThread: Cant start, now.

Threre "

131 + "are only " + rs[0][0] + "entrys for this "

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

3.1 of 23 2012.05.22 11:14:33

92

132 + "localisation ID stored in the DB.");

133 }else

134 System.out.println("PosCalcThread: Failure in ResultSet");

135

136

137 }

138

139

//***

140 //* Name: ExecUpd

*

141 //* Input: SQL String as String

*

142 //* Output: -

*

143 //* Description: Takes an SQL String with and performs the Update

on*

144 //* the DataBase

*

145

//***

146 public void ExecUpd(String input){

147

148 Connection conn = null;

149 String url = "jdbc:mysql://localhost/mydb";

150 String user = "root";

151 String pass = "malte";

152 String strSQL = input;

153 ResultSet rs = null;

154

155 try {

156 // Settting the driver and creating a connection

157 Class.forName("com.mysql.jdbc.Driver").newInstance();

158 conn = DriverManager.getConnection(url, user, pass);

159 // Creating a statement object and exectuting the

update

160 Statement stmt = conn.createStatement();

161 stmt.executeUpdate(strSQL);

162 // AutoCommit the Update and close the connection

163 conn.setAutoCommit(true);

164 conn.close();

165

166 }

167 catch (Exception e) {

168 System.err.println("PosCalcThread: ExecUpd: "

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

4.1 of 23 2012.05.22 11:14:33

93

169 + "Connection poblem:");

170 e.printStackTrace();

171 }

172

173

174 finally {

175 if (conn != null) {

176 try {

177 conn.close();

178 System.out.println("PosCalcThread: ExecUpd: "

179 + "Connection closed.");

180

181 } catch(Exception e) {

182 System.out.println("PosCalcThread: ExecUpd: "

183 + "Failure while closing connection");

184 }

185 }

186 }

187

188 }

189

190

//***

191 //* Name: GetRoomIDbyBaseStationID

*

192 //* Input: BaseStation ID as integer

*

193 //* Output: Room ID as integer

*

194 //* Description: Retrieves the ID of the room, where a specific

base*

195 //* station is installed in

*

196

//***

197 public int GetRoomIDbyBaseStationID (int BaseStationID){

198

199 String[][] rs;

200 int RoomID;

201 String strSQL = "SELECT RoomID"

202 + " FROM tblbasestation"

203 + " WHERE idtblbasestation = " + BaseStationID;

204

205 rs = ExecQry(strSQL);

206 RoomID = Integer.parseInt(rs[0][0]);

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

5.1 of 23 2012.05.22 11:14:33

94

207

208 return RoomID;

209 }

210

211

212

//***

213 //* Name: CalcTriangleCentroids

*

214 //* Input: Three x-y point coordinates of a triangle as a double

*

215 //* array

*

216 //* Output: x-y-coordinates as double array

*

217 //* output[0] = x-coordinate

*

218 //* output[1] = y-coordinate

*

219 //* Description: Calculates the centroid coordinates of a given

*

220 //* triangle

*

221 //*

*

222

//***

223 public double[] CalcTriangleCentroid(double[][] TrianglePoints){

224

225 double[] centroidCoordinates = new double[2];

226

227 double P1x, P1y, P2x, P2y, P3x, P3y;

228 double Cx, Cy;

229 Divide div = new Divide();

230

231 P1x = TrianglePoints[0][0];

232 P1y = TrianglePoints[0][1];

233

234 P2x = TrianglePoints[1][0];

235 P2y = TrianglePoints[1][1];

236

237 P3x = TrianglePoints[2][0];

238 P3y = TrianglePoints[2][1];

239

240 Cx = div.value(1, 3) * (P1x + P2x + P3x);

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

6.1 of 23 2012.05.22 11:14:33

95

241 Cy = div.value(1, 3) * (P1y + P2y + P3y);

242

243 centroidCoordinates[0] = Cx;

244 centroidCoordinates[1] = Cy;

245

246 return centroidCoordinates;

247 }

248

249

250

//***

251 //* Name: SelectTrianglePoints

*

252 //* Input: 3 Distances and their start and end x-y-coordinates as a

*

253 //* double array.

*

254 //* Output: 3 x-y-coordinates as a double array

*

255 //* Description: Selects the three points which are bulding a

*

256 //* triangle out of the six start and end points

*

257 //* (given as x-y-coordinates) defining the three

*

258 //* lines of the triangle

*

259

//***

260 public double[][] SelectTrianglePoints(double[][] Points){

261

262 double[] workSet = new double[12];

263 double[] buffer = new double[6];

264 double x,y;

265 double[][] TrianglePoints = new double[3][2];

266 int counter = 0;

267

268 // Writing the input data into a one-dimensional workset

array

269 for(int i = 0; i < 3; i++){

270 for(int j = 0; j < 4; j++){

271 workSet[counter] = Points[i][j];

272 counter++;

273 }

274 }

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

7.1 of 23 2012.05.22 11:14:33

96

275

276 System.out.println("WorkSet:");

277 for(int i = 0; i < 12; i++){

278 System.out.print(workSet[i] + ", ");

279 }

280 System.out.printf("%n%n");

281

282 int nextFree = 0;

283 // Elemenating equal points from the workSet by going

through

284 // the workset array and writing the cointaining

285 // x-y-coordiantes into the buffer array if not already in.

286 // Target: Elemenating the double contained points which

defines

287 // the lines between the points of the triangle

288 for(int i = 0; i < (workSet.length-1); i = i + 2){

289 x = workSet[i];

290 y = workSet[i+1];

291 System.out.println("x = " + workSet[i]);

292 System.out.println("y = " + workSet[i+1]);

293 System.out.println(x != buffer[0]);

294 if(((x != buffer[0]) || (y != buffer[1])) &&

295 ((x != buffer[2]) || (y != buffer[3])) &&

296 ((x != buffer[4]) || (y != buffer[5]))){

297 System.out.println("NextFree: " + nextFree);

298 buffer[nextFree] = x;

299 System.out.println("buffer " + nextFree+ ": "

300 + buffer[nextFree]);

301 buffer[nextFree+1] = y;

302 System.out.println("buffer " + nextFree+1+ ": "

303 + buffer[nextFree+1]);

304 nextFree = nextFree + 2;

305 System.out.println("NextFree: " + nextFree);

306

307 }

308 }

309

310 // Print the buffer Array to screen

311 System.out.printf("%n%nBuffer Array:%n");

312 for(int j = 0; j < buffer.length; j++){

313 System.out.println(buffer[j]);

314 }

315

316 //Putting Elements from buffer to Array TrianglePoints

317 counter = 0;

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

8.1 of 23 2012.05.22 11:14:33

97

318 for (int i = 0; i < 3; i++){

319 for (int j = 0; j < 2; j++){

320 TrianglePoints[i][j] = buffer[counter];

321 counter++;

322 }

323 }

324

325 return TrianglePoints;

326 }

327

328

329

//***

330 //* Name: CalcShortestIntersectionDistances

*

331 //* Input: double Array containing of all 12 intersection points

*

332 //* Output: two-dimensional array containing the distance of the

*

333 //* three shortest lines between intersection points as

*

334 //* well as the x-y-coordinates defining start and end of

*

335 //* these lines

*

336 //* output[0][0] [0][1] [0][2] [0][3] [0][4]

*

337 //* x-coordinate y-coord. x-coord. x-coord. Distance

*

338 //* start point start p. end-point end-p.

*

339 //* Description: Calculating the shortest lines between the six

*

340 //* intersection points

*

341

//***

342 public double[][] CalcShortestIntersectionDistances(double[]

ISPoints){

343

344 double[][] output = new double[3][5];

345 double Dx, Dy, D;

346

347 double[] Intersections1 = ISPoints;

348 double[] Intersections2 = ISPoints;

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

9.1 of 23 2012.05.22 11:14:33

98

349 double[][] Distances = new double[6][6];

350 double[][] ISDistances = new double[15][5];

351

352 int i = 0;

353 int j = 2;

354 int d = 1;

355 int e = 0;

356 int count = 0;

357

358

359 // Calculate the distances of all needed lines between the

360 // 6 different intersection points and save them into two

361 // different Arrays: one just saving the distances and the

362 // second saving the distances as well as the according

363 // x-y-coordinates

364 while(i < Intersections1.length){

365 while(j < Intersections2.length){

366

367 Dx = Intersections2[j] - Intersections1[i];

368 Dy = Intersections2[j+1] - Intersections1[i+1];

369

370 D = Math.sqrt(Math.pow(Dx,2) + Math.pow(Dy,2));

371 Distances[e][d] = D;

372

373 ISDistances[count][0] = Intersections1[i];

374 ISDistances[count][1] = Intersections1[i+1];

375 ISDistances[count][2] = Intersections2[j];

376 ISDistances[count][3] = Intersections1[j+1];

377 ISDistances[count][4] = D;

378

379 count++;

380 j = j+2;

381 d++;

382 }

383 i = i+2;

384 j = i+2;

385 e++;

386 d = e+1;

387 }

388

389 // Printing the Array just saving the distances on the

screen

390 for(int k = 0; k < Distances.length; k++){

391 for(int l = 0; l < Distances.length; l++){

392 System.out.print(Distances[k][l] + " ");

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

10.1 of 23 2012.05.22 11:14:33

99

393 }

394 System.out.println("");

395 }

396

397 // Printing the Array containing the distances and the

398 // x-y-coordinates on the screen

399

System.out.println("--");

400 for(int k = 0; k < 15; k++){

401 for(int l = 0; l < 5; l++){

402 System.out.print(ISDistances[k][l] + " ");

403 }

404 System.out.println("");

405 }

406

System.out.println("---");

407

408

409 // Sorting the before printed Array by using a reference

Array

410 // by the distance of the lines. After sorting, the first

three

411 // entrys are the searched ones with the shortest distances.

412 int[] RefArray = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14};

413 boolean done = false;

414 int doneCount;

415 int x = 0, y = 0;

416 int ref1, ref2;

417

418 System.out.println("Start sorting the RefArray");

419 while(done == false){

420 doneCount = 0;

421 for(i = 0; i < 14; i++){

422 if(ISDistances[RefArray[i]][4]

423 > ISDistances[RefArray[i+1]][4]){

424 x = RefArray[i];

425 y = RefArray[i+1];

426 RefArray[i] = y;

427 RefArray[i+1] = x;

428 doneCount++;

429 }

430 }

431 if(doneCount == 0)

432 done = true;

433 }

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

11.1 of 23 2012.05.22 11:14:33

100

434

435 // Printing the sorted reference Array

436 System.out.println("Sorted RefArray: ");

437 for(i = 0; i < 15; i++)

438 System.out.print(", " + RefArray[i]);

439

440 System.out.println("");

441

442 // Writing the first three (searched) entrys of the Array

443 // containing the distances as well as the point coordinates

444 // into the output array.

445 for(i = 0; i < 3; i++){

446 for(j = 0; j < 5; j++){

447 output[i][j] = ISDistances[RefArray[i]][j];

448 }

449 }

450

451

452 return output;

453 }

454

455

456

//***

457 //* Name: CalcIntersectionPoints

*

458 //* Input: Localisation ID and two Base Station IDs as Integer

*

459 //* Output: x-y-coordinates of the two intersection points (IS)

*

460 //* output[0] : x-coordinate of IS1

*

461 //* output[1] : y-coordinate of IS1

*

462 //* output[2] : x-coordinate of IS2

*

463 //* output[3] : y-coordinate of IS2

*

464 //* Description: Calculates the intersection points of the circles,

*

465 //* drawn by the distances to the MC around the BS

*

466

//***

467 public double[] CalcIntersectionPoints(int localisationID, int

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

12.1 of 23 2012.05.22 11:14:33

101

BS1ID,

468 int BS2ID){

469

470 double[] output = new double[4];

471 float RadiusBS1, RadiusBS2;

472 double S1, S2, S3;

473 double BSAx, BSAy, BSBx, BSBy, Dx, Dy, D;

474 double[] coordinates;

475 String[] TimestampsBS1, TimestampsBS2;

476 double IS1x, IS1y, IS2x, IS2y, Cx, Cy;

477

478 // Get coordinates according to BaseStation ID

479 coordinates = GetBSCoordinates(BS1ID);

480 BSAx = coordinates[0];

481 BSAy = coordinates[1];

482

483 //Get coordinates according to BaseStation ID

484 coordinates = GetBSCoordinates(BS2ID);

485 BSBx = coordinates[0];

486 BSBy = coordinates[1];

487

488 // Calculate the Distance between the BaseSations

489 Dx = BSBx - BSAx;

490 Dy = BSBy - BSAy;

491 D = Math.sqrt(Math.pow(Dx,2) + Math.pow(Dy, 2));

492

493

494 // Get the timestamps of BS1

495 TimestampsBS1 = GetTimestamps(locID, BS1ID);

496

497 // Get the radius of BS1

498 RadiusBS1 = TimestampsToDistance(TimestampsBS1);

499

500

501 // Get the timestamps of BS2

502 TimestampsBS2 = GetTimestamps(locID, BS2ID);

503

504 // Get the radius of BS1

505 RadiusBS2 = TimestampsToDistance(TimestampsBS2);

506

507 // Initialising object for being able to devide two numbers

508 Divide d = new Divide();

509

510 // Calculating the distance to the point which is on the line

511 // between both base stations and on the line between both

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

13.1 of 23 2012.05.22 11:14:33

102

512 // intersection points

513 S1 = d.value((Math.pow(D, 2) + Math.pow(RadiusBS1, 2)

514 - Math.pow(RadiusBS2, 2)), 2*D) ;

515

516 // Calculating the x-y-coordinates of the point which is on

517 // the line between both base stations and on the line

between

518 // both intersection points (Point C)

519 Cx = BSAx + d.value((Dx * S1), D);

520 Cy = BSAy + d.value((Dy * S1), D);

521

522 // Calculating the distance from point C to the

523 // intersection points)

524 S3 = Math.sqrt(Math.pow(RadiusBS1, 2) - Math.pow(S1, 2));

525

526 // Calculate the x-y-coordinates of the first

527 // intersection point

528 IS1x = Cx - d.value((Dy * S3), D);

529 IS1y = Cy + d.value((Dx * S3), D);

530

531 // Calculate the x-y-coordinates of the second

532 // intersection point

533 IS2x = Cx + d.value((Dy * S3), D);

534 IS2y = Cy - d.value((Dx * S3), D);

535

536 // Write the x-y-coordinates of the intersection points

537 // into an array

538 output[0] = IS1x;

539 output[1] = IS1y;

540 output[2] = IS2x;

541 output[3] = IS2y;

542

543 return output;

544 }

545

546

547

548

//***

549 //* Name: GetTimestamps

*

550 //* Input: Localisation ID and BaseStation ID as String Array

*

551 //* Output: Timestamps according to LocID and BS ID

*

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

14.1 of 23 2012.05.22 11:14:33

103

552 //* Description: Gets the Timestamps of one measurement for one

*

553 //* Localisation ID and one Base Station from the DB

*

554

//***

555 public String[] GetTimestamps(int localisationID, int

BaseStationID){

556

557 String[] output = new String[2];

558 int locID = localisationID;

559 int BSID = BaseStationID;

560 int NoRows, NoColumns;

561 String[][] rs;

562 String strSQL = "SELECT OutgoingTime, IncomingTime"

563 + " FROM tblframe"

564 + " WHERE LocalisationID = " + locID

565 + " AND BaseStationID = " + BSID;

566 rs = ExecQry(strSQL);

567

568 //Getting number of rows and columns

569 NoRows = rs.length;

570 NoColumns = rs[0].length;

571

572 // Getting Base Station IDs from ResultSet string-Array

573 // NOTE: Check to replace with System.arraycopy

574 for(int i = 0; i < NoRows; i++){

575 for(int j = 0; j < NoColumns; j++){

576 output[j] = rs[i][j];

577 }

578 }

579

580 return output;

581 }

582

583

584 //**

585 //* Name: checkIntersection *

586 //* Input: A localisation ID and two Base Station IDs *

587 //* Output: true&false as boolean *

588 //* Functionality: Calculates if the circles of a certain *

589 //* measurement around two base stations are *

590 //* intersecting each other *

591 //**

592 public boolean checkIntersection(int localisationID, int BSID1,

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

15.1 of 23 2012.05.22 11:14:33

104

593 int BSID2){

594

595 int locID = localisationID;

596 int BS1 = BSID1;

597 int BS2 = BSID2;

598 String[] BaseStations = new String[2];

599 // BaseStations[0] = BS1;

600 //BaseStations[1] = BS2;

601 boolean output;

602 double BSDistance;

603 float RadiusBS1, RadiusBS2;

604 String[] TimestampsBS1, TimestampsBS2;

605

606 // Get the distance between the both BS

607 BSDistance = BaseStationDistance(BS1, BS2);

608

609

610 // Get the timestamps of BS1

611 TimestampsBS1 = GetTimestamps(locID, BS1);

612

613 // Get the radius of BS1

614 RadiusBS1 = TimestampsToDistance(TimestampsBS1);

615

616

617 // Get the timestamps of BS2

618 TimestampsBS2 = GetTimestamps(locID, BS2);

619

620 // Get the radius of BS1

621 RadiusBS2 = TimestampsToDistance(TimestampsBS2);

622

623 // Check, if the both radius are intersecting

624 if(BSDistance > (RadiusBS1 + RadiusBS2))

625 output = false;

626 else

627 output = true;

628

629

630 return output;

631 }

632

633

634

//***

635 //* Name: BaseStationDistance

*

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

16.1 of 23 2012.05.22 11:14:33

105

636 //* Input: Two Base Statio IDS as a String Array

*

637 //* Output: The Distance between the both Base Stations as float

*

638 //* Functionality: Calcultes the Distance between two BS

*

639 //*

*

640

//***

641 public double BaseStationDistance(int BaseStationA, int

BaseStationB){

642

643 int BSA = BaseStationA;

644 int BSB = BaseStationB;

645 double[] coordinates;

646

647 double BSAx, BSAy, BSBx, BSBy, Dx, Dy, D = 0;

648

649 coordinates = GetBSCoordinates(BSA);

650 BSAx = coordinates[0];

651 BSAy = coordinates[1];

652

653 coordinates = GetBSCoordinates(BSB);

654 BSBx = coordinates[0];

655 BSBy = coordinates[1];

656

657 Dx = BSBx - BSAx;

658 Dy = BSBy - BSAy;

659 D = Math.sqrt(Math.pow(Dx,2) + Math.pow(Dy, 2));

660

661 return D;

662 }

663

664

665

//***

666 //* Name: GetBSCoordinates

*

667 //* Input: Base Station ID as String

*

668 //* Output: X-Y-Coordinates of the BS as a float Array

*

669 //* Description: Gets the X-Y-Coordinates of the Base Station from

*

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

17.1 of 23 2012.05.22 11:14:33

106

670 //* the according table of the DB

*

671 //* float coordinates[0] = x-coordinate

*

672 //* float coordinates[1] = y-coordinate

*

673

//***

674 public double[] GetBSCoordinates(int BaseStationID){

675

676 int BSID = BaseStationID;

677

678 String[][] rs;

679 int count = 0;

680 int NoRows = 0;

681 int NoColumns = 0;

682 double[] coordinates = new double[2];

683

684 String strSQL = "SELECT RoomRelPosX, RoomRelPosY "

685 + "FROM tblbasestation "

686 + "WHERE idtblbasestation = " + BSID;

687 rs = ExecQry(strSQL);

688

689 //Getting number of rows and columns

690 NoRows = rs.length;

691 NoColumns = rs[0].length;

692

693 //Getting Base Station IDs from ResultSet string-Array

694 for(int i = 0; i < NoRows; i++){

695 for(int j = 0; j < NoColumns; j++){

696 coordinates[j] = Double.parseDouble(rs[i][j]);

697 }

698 }

699

700 return coordinates;

701 }

702

703

704

//***

705 //* Name: GetInvolvedMobileClient

*

706 //* Input: Localisation ID as Integer

*

707 //* Output: Mobile Client ID as Integer

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

18.1 of 23 2012.05.22 11:14:33

107

*

708 //* Description: Gets the Mobile Client ID according to the

*

709 //* localisation ID from the DB

*

710

//***

711 public int GetInvolvedMobileClient(int LocalID){

712

713 int MobileClient;

714 String[][] rs;

715 int count = 0;

716 int NoRows = 0;

717 int NoColumns = 0;

718

719 String strSQL = "SELECT MobileClientID "

720 + "FROM tblframe WHERE "

721 + "LocalisationID = " + LocalID;

722 rs = ExecQry(strSQL);

723

724 MobileClient = Integer.parseInt(rs[0][0]);

725

726 return MobileClient;

727 }

728

729

730

//***

731 //* Name: GetInvolvedBaseStations

*

732 //* Input: Localisation ID as Integer

*

733 //* Output: Localisation Involved Base Stations as a String Array

*

734 //* Description: Gets the Base Stations involved in the

Localisation*

735 //* according to the localisation ID from the DB

*

736

//***

737 public String[] GetInvolvedBaseStations(int LocalID){

738

739 String[] BaseStations = new String[numberOfBaseStations];

740 String[][] rs;

741 int count = 0;

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

19.1 of 23 2012.05.22 11:14:33

108

742 int NoRows = 0;

743 int NoColumns = 0;

744

745 String strSQL = "SELECT BaseStationID "

746 + "FROM tblframe WHERE "

747 + "LocalisationID = " + LocalID;

748 rs = ExecQry(strSQL);

749

750 //Getting number of rows and columns

751 NoRows = rs.length;

752 NoColumns = rs[0].length;

753

754 //Getting Base Station IDs from ResultSet string-Array

755 for(int i = 0; i < NoRows; i++){

756 for(int j = 0; j < NoColumns; j++){

757 BaseStations[i] = rs[i][j];

758 }

759 }

760

761 System.out.println("Involved Base Stations: " + BaseStations[0]

762 + ", " + BaseStations[1] + ", " + BaseStations[2]);

763

764 return BaseStations;

765 }

766

767

//***

768 //* Name: TimestampToDistance

*

769 //* Input: Two Timestamps recorded at one BS as a String Array

*

770 //* Output: The distance in meters between the BS and the MC

*

771 //* Functionality: Calculates the distance according to the

*

772 //* Timestamps

*

773

//***

774 public float TimestampsToDistance(String[] Timestamps) {

775

776 float VOP = (float) 0.28; // Velocity of Propagatio

777 // (~28cm/nanosecond)

778 String T1 = Timestamps[0];

779 String T2 = Timestamps[1];

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

20.1 of 23 2012.05.22 11:14:33

109

780 String[] T1Splitted, T2Splitted = new String[3];

781 String T1Milli, T1Micro, T1Nano = new String();

782 String T2Milli, T2Micro, T2Nano = new String();

783

784 T1Splitted = T1.split(":");

785 T2Splitted = T2.split(":");

786

787 T1Milli = T1Splitted[0];

788 T1Micro = T1Splitted[1];

789 T1Nano = T1Splitted[2];

790

791 T2Milli = T2Splitted[0];

792 T2Micro = T2Splitted[1];

793 T2Nano = T2Splitted[2];

794

795 float Milli, Micro, Nano, distance = 0;

796

797 Milli = Float.valueOf(T2Milli).floatValue()

798 - Float.valueOf(T1Milli).floatValue();

799 Micro = Float.valueOf(T2Micro).floatValue()

800 - Float.valueOf(T1Micro).floatValue();

801 Nano = Float.valueOf(T2Nano).floatValue()

802 - Float.valueOf(T1Nano).floatValue();

803

804 System.out.println("Milli: " + Milli);

805 System.out.println("Micro: " + Micro);

806 System.out.println("Nano: " + Nano);

807

808 if(Milli == 0){

809 if(Micro == 0){

810 if(Nano < 300){

811 distance = Nano * VOP;

812 }

813 else

814 System.out.println(Nano + " nanoseconds would lead "

815 + "to an unrealistic distance");

816 }

817 else

818 System.out.println(Micro + " microseconds would lead "

819 + "to an unrealistic distance");

820 }

821 else

822 System.out.println(Milli + " microsecods would lead to an "

823 + "unrealistic distance");

824

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

21.1 of 23 2012.05.22 11:14:33

110

825 return distance;

826 }

827

828

829

830

//***

831 //* Name: ExecQry

*

832 //* Input: SQL Query as a String

*

833 //* Output: String Array containing the ReseultSet Data

*

834 //* Functionality: Returns the ResultSet Data in form of a Multi-

*

835 //* Dimensional Array (according to the RS)

*

836

//***

837 public String[][] ExecQry(String input){

838

839 Connection conn = null;

840 String url = "jdbc:mysql://localhost/mydb";

841 String user = "root";

842 String pass = "malte";

843 String strSQL = input;

844 ResultSet rs = null;

845 String[][] stringResult = null;

846 int NoRows = 0;

847 int NoColumns = 0;

848 int ArrayCount = 0;

849 int RSCount = 1;

850

851 try {

852 // Setting the driver and creating a connection

853 Class.forName("com.mysql.jdbc.Driver").newInstance();

854 conn = DriverManager.getConnection(url, user, pass);

855 System.out.println("PosCalcThread: ExecQry: "

856 + "Connected to DB");

857 Statement stmt = conn.createStatement();

858 rs = stmt.executeQuery(strSQL);

859

860 //Getting Number of Rows

861 rs.last();

862 NoRows = rs.getRow();

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

22.1 of 23 2012.05.22 11:14:33

111

863 rs.first();

864

865 //Getting Number of Columns

866 NoColumns = rs.getMetaData().getColumnCount();

867

868 //Initializing the string-Array

869 stringResult = new String[NoRows][NoColumns];

870

871 //Writing ResultSet Data in string-Array

872 for(int i = 0; i < NoRows; i++){

873 for(int j = 0; j < NoColumns; j++){

874 stringResult[i][j] = rs.getString(j+1);

875 }

876 rs.next();

877 }

878

879 }

880 catch (Exception e) {

881 System.err.println("PosCalcThread: ExecQry: "

882 + "Connection poblem:");

883 e.printStackTrace();

884 }

885 finally {

886 if (conn != null) {

887 try {

888 conn.close();

889 System.out.println("PosCalcThread: ExecQry: "

890 + "Connection closed.");

891 } catch(Exception e) {

892 System.out.println("PosCalcThread: ExecQry: "

893 + "Failure while closing connection:");

894 e.printStackTrace();

895 }

896 }

897 }

898

899 return stringResult;

900 }

901

902 }

C:/Users/Malte Schmidt/Documents/NetBeansProjects/Server/src/server/PosCalcThread.java

23.1 of 23 2012.05.22 11:14:33

112

Appendix C

Java Code:
Graphical User Interface

The following documents contain the Java code of the graphical user interface which is an
own program that can be executed by any computer in the network that is able to connect
to the localisation database.

C.1 GUI

The GUI class simply creates a new SWING JFrame and adds the ShowLocalisation class,
that works as a JPanel to it. ShowLocalisation gets the needed data from the database and
paints the objects to its JPanel.

Figure C.1: The Graphical User Interface

113

 1

 2 package gui;

 3

 4 import javax.swing.JFrame;

 5

 6 public class GUI {

 7

 8 public static void main(String[] args) {

 9

10 JFrame f = new JFrame();

11 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

12 f.setSize(600, 600);

13 f.setVisible(true);

14 f.add(new ShowLocation());

15

16 }

17 }

C:/Users/Malte Schmidt/Documents/NetBeansProjects/GUI/src/gui/GUI.java

1.1 of 1 2012.05.21 17:20:16

114

C.2 ShowLocation

The ShowLocalisation class extends JPanel and paints the needed objects like the room,
the base stations, the distance radius around the base stations and the client to the panel.
Therefore it needs to get the according information from the localization database and uses
the same classes that also has been used for the calculation of the clients position.

115

 1

 2 package gui;

 3

 4 import java.awt.*;

 5 import java.sql.*;

 6 import java.util.logging.Level;

 7 import java.util.logging.Logger;

 8 import javax.swing.*;

 9 import org.apache.commons.math3.analysis.function.Divide;

 10

 11

 12 public class ShowLocation extends JPanel{

 13

 14

 15

 16 public void paintComponent(Graphics g){

 17

 18 super.paintComponents(g);

 19 Graphics2D g2d = (Graphics2D) g;

 20

 21 String strSQL;

 22 String[][] rs;

 23 int mobileClientID, RoomID, BS1ID, BS2ID, BS3ID;

 24 double BS1x, BS1y, BS2x, BS2y, BS3x, BS3y;

 25 double[] coordinates;

 26 double clientPosX, clientPosY;

 27 int accuracy = 2;

 28 int factor = 50;

 29 int floorID;

 30 float RoomSizeX, RoomSizeY;

 31 int localisationID;

 32 String Date, Time;

 33 String[] baseStationIDs;

 34 double RefY = 10;

 35 int OriginX = 10, OriginY = 40;

 36 int upperLeftX, upperLeftY, upperRightX, upperRightY;

 37 int lowerLeftX, lowerLeftY, lowerRightX, lowerRightY;

 38

 39

 40 strSQL = "SELECT COUNT(idtblposition) "

 41 + "FROM tblposition";

 42 rs = ExecQry(strSQL);

 43

 44 if(Integer.parseInt(rs[0][0]) > 0)

 45 {

C:/Users/Malte Schmidt/Documents/NetBeansProjects/GUI/src/gui/ShowLocation.java

1.1 of 11 2012.05.22 12:49:03

116

 46

 47

 48 strSQL = "SELECT * FROM tblposition "

 49 + "WHERE Date = (SELECT MAX(Date) FROM tblposition) "

 50 + "AND Time = (SELECT MAX(Time) FROM tblposition)";

 51 rs = ExecQry(strSQL);

 52

 53 mobileClientID = Integer.parseInt(rs[0][1]);

 54 Date = rs[0][2];

 55 Time = rs[0][3];

 56 RoomID = Integer.parseInt(rs[0][4]);

 57 clientPosX = Double.valueOf(rs[0][5]) * factor;

 58 clientPosY = (RefY - Double.valueOf(rs[0][6])) * factor;

 59 System.out.println("Client Position: X(" + clientPosX

 60 + "), Y(" + clientPosY + ")");

 61 localisationID = Integer.parseInt(rs[0][7]);

 62

 63 g2d.drawString("Clients location in room (ID): " + RoomID, 10,

20);

 64

 65

 66 strSQL = "SELECT * FROM tblroom "

 67 + "WHERE idtblroom = " + RoomID;

 68 rs = ExecQry(strSQL);

 69

 70 floorID = Integer.parseInt(rs[0][2]);

 71 RoomSizeX = Float.valueOf(rs[0][3]) * factor;

 72 RoomSizeY = Float.valueOf(rs[0][4]) * factor;

 73 System.out.println("Room Size: " + rs[0][3] + " * " + rs[0][4]);

 74 System.out.println("Room Size factored: " + RoomSizeX

 75 + " * " + RoomSizeY);

 76

 77 baseStationIDs = GetInvolvedBaseStations(localisationID);

 78 BS1ID = Integer.parseInt(baseStationIDs[0]);

 79 BS2ID = Integer.parseInt(baseStationIDs[1]);

 80 BS3ID = Integer.parseInt(baseStationIDs[2]);

 81

 82 coordinates = GetBSCoordinates(BS1ID);

 83 BS1x = coordinates[0] * factor;

 84 BS1y = (RefY - coordinates[1]) * factor;

 85

 86 coordinates = GetBSCoordinates(BS2ID);

 87 BS2x = coordinates[0] * factor;

 88 BS2y = (RefY - coordinates[1]) * factor;

 89

C:/Users/Malte Schmidt/Documents/NetBeansProjects/GUI/src/gui/ShowLocation.java

2.1 of 11 2012.05.22 12:49:03

117

 90 coordinates = GetBSCoordinates(BS3ID);

 91 BS3x = coordinates[0] * factor;

 92 BS3y = (RefY - coordinates[1]) * factor;

 93

 94

 95

 96 // Calculate the points according to the size of the room

 97 upperLeftX = OriginX;

 98 upperLeftY = OriginY;

 99

100 upperRightX = (int) (OriginX + RoomSizeX);

101 upperRightY = OriginY;

102

103 lowerLeftX = OriginX;

104 lowerLeftY = (int) (OriginY + RoomSizeY);

105

106 lowerRightX = (int) (OriginX + RoomSizeX);

107 lowerRightY = (int) (OriginY + RoomSizeY);

108

109 // Linien Zeichnen

110 g2d.drawLine(upperLeftX, upperLeftY, upperRightX, upperRightY

);

111 g2d.drawLine(upperLeftX, upperLeftY, lowerLeftX, lowerLeftY);

112 g2d.drawLine(lowerLeftX, lowerLeftY, lowerRightX, lowerRightY

);

113 g2d.drawLine(upperRightX, upperRightY, lowerRightX,

lowerRightY);

114

115

116 g2d.drawOval((int)clientPosX - 5 + OriginX,

117 (int)clientPosY - 5 + OriginY, 10, 10);

118 g2d.drawString("Client No: " + mobileClientID,

119 (int)clientPosX + OriginX,

120 (int)clientPosY + 20 + OriginY);

121

122 g2d.drawRect((int)BS1x - 5 + OriginX,

123 (int)BS1y - 5 + OriginY, 10, 10);

124

125 g2d.drawRect((int)BS2x - 5 + OriginX,

126 (int)BS2y - 5 + OriginY, 10, 10);

127

128 g2d.drawRect((int)BS3x - 5 + OriginX,

129 (int)BS3y - 5 + OriginY, 10, 10);

130

131

C:/Users/Malte Schmidt/Documents/NetBeansProjects/GUI/src/gui/ShowLocation.java

3.1 of 11 2012.05.22 12:49:03

118

132

133 String[] TimestampsBS1, TimestampsBS2, TimestampsBS3;

134 float RadiusBS1, RadiusBS2, RadiusBS3;

135

136 // Get the timestamps of BS1

137 TimestampsBS1 = GetTimestamps(localisationID, BS1ID);

138

139 // Get the radius of BS1

140 RadiusBS1 = TimestampsToDistance(TimestampsBS1);

141 System.out.println("RBS1: " + RadiusBS1);

142 RadiusBS1 = RadiusBS1 * factor * 2;

143 System.out.println("RBS1 factored: " + RadiusBS1);

144

145 // Get the timestamps of BS2

146 TimestampsBS2 = GetTimestamps(localisationID, BS2ID);

147

148 // Get the radius of BS2

149 RadiusBS2 = TimestampsToDistance(TimestampsBS2);

150 System.out.println("RBS2: " + RadiusBS2);

151 RadiusBS2 = RadiusBS2 * factor * 2;

152 System.out.println("RBS2 factored: " + RadiusBS2);

153

154

155 // Get the timestamps of BS3

156 TimestampsBS3 = GetTimestamps(localisationID, BS3ID);

157

158 // Get the radius of BS3

159 RadiusBS3 = TimestampsToDistance(TimestampsBS3);

160 System.out.println("RBS3: " + RadiusBS3);

161 RadiusBS3 = RadiusBS3 * factor * 2;

162 System.out.println("RBS3 factored: " + RadiusBS3);

163

164 Divide d = new Divide();

165

166

167 g2d.drawOval((int)BS1x - (int)d.value(RadiusBS1, 2) + OriginX,

168 (int)BS1y - (int)d.value(RadiusBS1, 2) + OriginY,

169 (int)RadiusBS1,

170 (int)RadiusBS1);

171

172 g2d.drawOval((int)BS2x - (int)d.value(RadiusBS2, 2) + OriginX,

173 (int)BS2y - (int)d.value(RadiusBS2, 2) + OriginY,

174 (int)RadiusBS2,

175 (int)RadiusBS2);

176

C:/Users/Malte Schmidt/Documents/NetBeansProjects/GUI/src/gui/ShowLocation.java

4.1 of 11 2012.05.22 12:49:03

119

177 g2d.drawOval((int)BS3x - (int)d.value(RadiusBS3, 2) + OriginX,

178 (int)BS3y - (int)d.value(RadiusBS3, 2) + OriginY,

179 (int)RadiusBS3,

180 (int)RadiusBS3);

181

182 }

183

184

185 }

186

187

188

189

//***

190 //* Name: ExecQry

*

191 //* Input: SQL Query as a String

*

192 //* Output: String Array containing the ReseultSet Data

*

193 //* Functionality: Returns the ResultSet Data in form of a Multi-

*

194 //* Dimensional Array (according to the RS)

*

195

//***

196 public String[][] ExecQry(String input){

197

198 Connection conn = null;

199 String url = "jdbc:mysql://localhost/mydb";

200 String user = "root";

201 String pass = "malte";

202 String strSQL = input;

203 ResultSet rs = null;

204 String[][] stringResult = null;

205 int NoRows = 0;

206 int NoColumns = 0;

207 int ArrayCount = 0;

208 int RSCount = 1;

209

210 try {

211 Class.forName("com.mysql.jdbc.Driver").newInstance();

212 conn = DriverManager.getConnection(url, user, pass);

213 System.out.println("PosCalcThread: ExecQry: "

214 + "Connected to DB");

C:/Users/Malte Schmidt/Documents/NetBeansProjects/GUI/src/gui/ShowLocation.java

5.1 of 11 2012.05.22 12:49:03

120

215 Statement stmt = conn.createStatement();

216 rs = stmt.executeQuery(strSQL);

217

218 //Getting Number of Rows

219 rs.last();

220 NoRows = rs.getRow();

221 rs.first();

222

223 //Getting Number of Columns

224 NoColumns = rs.getMetaData().getColumnCount();

225

226 //Initializing the string-Array

227 stringResult = new String[NoRows][NoColumns];

228

229 //Writing ResultSet Data in string-Array

230 for(int i = 0; i < NoRows; i++){

231 for(int j = 0; j < NoColumns; j++){

232 stringResult[i][j] = rs.getString(j+1);

233 }

234 rs.next();

235 }

236

237 }

238 catch (Exception e) {

239 System.err.println("PosCalcThread: ExecQry: "

240 + "Connection poblem:");

241 e.printStackTrace();

242 }

243 finally {

244 if (conn != null) {

245 try {

246 conn.close();

247 System.out.println("PosCalcThread: ExecQry: "

248 + "Connection closed.");

249 } catch(Exception e) {

250 System.out.println("PosCalcThread: ExecQry: "

251 + "Failure while closing connection:");

252 e.printStackTrace();

253 }

254 }

255 }

256

257 return stringResult;

258 }

259

C:/Users/Malte Schmidt/Documents/NetBeansProjects/GUI/src/gui/ShowLocation.java

6.1 of 11 2012.05.22 12:49:03

121

260

261

//***

262 //* Name: GetBSCoordinates

*

263 //* Input: Base Station ID as String

*

264 //* Output: X-Y-Coordinates of the BS as a float Array

*

265 //* Description: Gets the X-Y-Coordinates of the Base Station from

*

266 //* the according table of the DB

*

267 //* float coordinates[0] = x-coordinate

*

268 //* float coordinates[1] = y-coordinate

*

269

//***

270 public double[] GetBSCoordinates(int BaseStationID){

271

272 int BSID = BaseStationID;

273

274 String[][] rs;

275 int count = 0;

276 int NoRows = 0;

277 int NoColumns = 0;

278 double[] coordinates = new double[2];

279

280 String strSQL = "SELECT RoomRelPosX, RoomRelPosY "

281 + "FROM tblbasestation "

282 + "WHERE idtblbasestation = " + BSID;

283 rs = ExecQry(strSQL);

284

285 //Getting number of rows and columns

286 NoRows = rs.length;

287 NoColumns = rs[0].length;

288

289 //Getting Base Station IDs from ResultSet string-Array

290 for(int i = 0; i < NoRows; i++){

291 for(int j = 0; j < NoColumns; j++){

292 coordinates[j] = Double.parseDouble(rs[i][j]);

293 }

294 }

295

C:/Users/Malte Schmidt/Documents/NetBeansProjects/GUI/src/gui/ShowLocation.java

7.1 of 11 2012.05.22 12:49:03

122

296 return coordinates;

297 }

298

299

300

//***

301 //* Name: GetInvolvedBaseStations

*

302 //* Input: Localisation ID as Integer

*

303 //* Output: Localisation Involved Base Stations as a String Array

*

304 //* Description: Gets the Base Stations involved in the

Localisation*

305 //* according to the localisation ID from the DB

*

306

//***

307 public String[] GetInvolvedBaseStations(int LocalID){

308

309

310 String[] BaseStations = new String[3];

311 String[][] rs;

312 int count = 0;

313 int NoRows = 0;

314 int NoColumns = 0;

315

316 String strSQL = "SELECT BaseStationID "

317 + "FROM tblframe WHERE "

318 + "LocalisationID = " + LocalID;

319 rs = ExecQry(strSQL);

320

321 //Getting number of rows and columns

322 NoRows = rs.length;

323 NoColumns = rs[0].length;

324

325 //Getting Base Station IDs from ResultSet string-Array

326 for(int i = 0; i < NoRows; i++){

327 for(int j = 0; j < NoColumns; j++){

328 BaseStations[i] = rs[i][j];

329 }

330 }

331

332 System.out.println("Involved Base Stations: " + BaseStations[0]

333 + ", " + BaseStations[1] + ", " + BaseStations[2]);

C:/Users/Malte Schmidt/Documents/NetBeansProjects/GUI/src/gui/ShowLocation.java

8.1 of 11 2012.05.22 12:49:03

123

334

335 return BaseStations;

336 }

337

338

339

340

//***

341 //* Name: TimestampToDistance

*

342 //* Input: Two Timestamps recorded at one BS as a String Array

*

343 //* Output: The distance in meters between the BS and the MC

*

344 //* Functionality: Calculates the distance according to the

*

345 //* Timestamps

*

346 //*

*

347

//***

348 public float TimestampsToDistance(String[] Timestamps) {

349

350 float VOP = (float) 0.28; // Velocity of Propagatio

351 // (~28cm/nanosecond)

352 String T1 = Timestamps[0];

353 String T2 = Timestamps[1];

354 String[] T1Splitted, T2Splitted = new String[3];

355 String T1Milli, T1Micro, T1Nano = new String();

356 String T2Milli, T2Micro, T2Nano = new String();

357

358 T1Splitted = T1.split(":");

359 T2Splitted = T2.split(":");

360

361 T1Milli = T1Splitted[0];

362 T1Micro = T1Splitted[1];

363 T1Nano = T1Splitted[2];

364

365 T2Milli = T2Splitted[0];

366 T2Micro = T2Splitted[1];

367 T2Nano = T2Splitted[2];

368

369 float Milli = 0, Micro = 0, Nano = 0, distance = 0;

370

C:/Users/Malte Schmidt/Documents/NetBeansProjects/GUI/src/gui/ShowLocation.java

9.1 of 11 2012.05.22 12:49:03

124

371 Milli = Float.valueOf(T2Milli).floatValue()

372 - Float.valueOf(T1Milli).floatValue();

373 Micro = Float.valueOf(T2Micro).floatValue()

374 - Float.valueOf(T1Micro).floatValue();

375 Nano = Float.valueOf(T2Nano).floatValue()

376 - Float.valueOf(T1Nano).floatValue();

377

378 System.out.println("Milli: " + Milli);

379 System.out.println("Micro: " + Micro);

380 System.out.println("Nano: " + Nano);

381

382 if(Milli == 0){

383 if(Micro == 0){

384 if(Nano < 300){

385 distance = Nano * VOP;

386 }

387 else

388 System.out.println(Nano + " nanoseconds would "

389 + "lead to an unrealistic distance");

390 }

391 else

392 System.out.println(Micro + " microseconds would "

393 + "lead to an unrealistic distance");

394 }

395 else

396 System.out.println(Milli + " microsecods would "

397 + "lead to an unrealistic distance");

398

399 System.out.println("Distance for TS " + Timestamps[0] + " and "

400 + Timestamps[1] + " is " + distance);

401

402 return distance;

403 }

404

405

406

//***

407 //* Name: GetTimestamps

*

408 //* Input: Localisation ID and BaseStation ID as String Array

*

409 //* Output: Timestamps according to LocID and BS ID

*

410 //* Description: Gets the Timestamps of one measurement for one

*

C:/Users/Malte Schmidt/Documents/NetBeansProjects/GUI/src/gui/ShowLocation.java

10.1 of 11 2012.05.22 12:49:03

125

411 //* Localisation ID and one Base Station from the DB

*

412

//***

413 public String[] GetTimestamps(int localisationID, int

BaseStationID){

414

415 String[] output = new String[2];

416 int locID = localisationID;

417 int BSID = BaseStationID;

418 int NoRows, NoColumns;

419 String[][] rs;

420 String strSQL = "SELECT OutgoingTime, IncomingTime"

421 + " FROM tblframe"

422 + " WHERE LocalisationID = " + locID

423 + " AND BaseStationID = " + BSID;

424 rs = ExecQry(strSQL);

425

426 //Getting number of rows and columns

427 NoRows = rs.length;

428 NoColumns = rs[0].length;

429

430 // Getting Base Station IDs from ResultSet string-Array

431 // NOTE: Check to replace with System.arraycopy

432 for(int i = 0; i < NoRows; i++){

433 for(int j = 0; j < NoColumns; j++){

434 output[j] = rs[i][j];

435 }

436 }

437

438 System.out.println("TS for BSID: " + BSID + " is: "

439 + output[0] + ", " + output[1]);

440

441 return output;

442 }

443

444 }

C:/Users/Malte Schmidt/Documents/NetBeansProjects/GUI/src/gui/ShowLocation.java

11.1 of 11 2012.05.22 12:49:03

126

Appendix D

Localisation Area Test Case

The localisation area test case contains of the definition of a localisation area for proof the
developed algorithm. The first page depicts two different buildings at a area, the second page
the different floors of the area. Page number three is a detailed overview of the first floor of
building one including all rooms and corridors. The fourth and last page is a detailed view
of one room including the installed base stations and their positions in relation to the room.

All pages use an own scale and the base stations at the last page use room related co-
ordinates. This is a very easy way of defining the mobile clients position and allows a easy
measuring of the base stations installation points, especially when no detailed floor layouts
are available.

127

Building 1

5

10

15

 5

 10

Building 2

 15

 20

128

no localisation

Floor 0

Floor 1

Floor 2

Floor 3

Building 1

129

Entrance /
Reception Hall Corridor EastCorridor West

0

5

10

 0

 5

 10

 15

 20

Cantine

Waiting
RoomShopping Area Diagnostic

Room 1
Diagnostic

Room 2

Diagnostic
Room 3

Diagnostic
Room 4

Building 1, Floor 0

130

0

5

10

 0

 5

 10

Diagnostic
Room 2

Building 1, Floor 0,
Diagnostic Room 2

 BS 1 (10,10)

 BS 2 (10,0)

 BS 3 (0,5)

131

	Contents
	Declaration
	List of Figures
	Introduction
	Monitoring of high risk patients
	Localisation issues in patient monitoring
	Contribution and content of the thesis

	Use case definition
	State of the Art and Related Work
	Localisation Strategies
	Infrastructure based localisation
	Mobile Client involved localisation

	Measuring Principles
	Trilateration Techniques
	Measuring by using the Received Signal Strength
	Measuring by using the Signal Propagation Delay

	Angulation Techniques

	Signal Propagation Delay Measurement
	Digital clocks
	Clock Synchronisation via IEEE 1588
	Timestamping
	Environmental considerations
	Line of Sight (LOS)
	Non Line of Sight (NLOS)

	Influences on the signal propagation delay measurement

	Localisation supporting algorithms
	Conclusion

	Evaluation of the State of the Art
	Evaluation of the Localisation Strategies
	Evaluation of the Measuring Principles
	Definition of the Evaluation Criteria
	Evaluation

	System Definition
	Comprehensive System Design
	The Base Station
	The Mobile Client
	Real Time Characteristics
	Design and Frame Processing

	The Localisation Server

	Localisation System Development
	The Base Station (BS)
	The Mobile Client (MC)
	Problem Analysis
	Software Implementation

	The Localisation Server
	Server Software
	The Trilateration Algorithm
	Future Algorithm Extensions

	The Database

	The Display Service

	Validation
	Case One
	Calculation of the Centroid coordinates by Hand
	Execution of the Algorithm

	Case Two
	Calculation of the Centroid coordinates by Hand
	Execution of the Algorithm

	Case Three
	Calculation of the Centroid coordinates by Hand
	Execution of the Algorithm

	Case Four
	Calculation of the Centroid coordinates by Hand
	Execution of the Algorithm

	Outlook and Conclusion
	Bibliography
	Java Code: Client
	Java Code: Server
	Server
	ServerThread
	WriteRawData
	PositionCalculationThread

	Java Code: Graphical User Interface
	GUI
	ShowLocation

	Localisation Area Test Case

