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resumo 
 

 

No contexto dos contaminantes aquáticos, os herbicidas são considerados 
como um dos grupos mais perigosos. Uma vez aplicados, estes são facilmente 
transportados para cursos de água, quer devido a uma pulverização pouco 
cuidada ou devido a fenómenos de escorrência superficial e/ou subterrânea. A 
presença destes agroquímicos no ambiente tem vindo a ser associada a 
efeitos nefastos em organismos não-alvo, como é o caso dos peixes. Contudo, 
existe ainda uma grande lacuna no que diz respeito à informação científica 
relacionada com o seu impacto genotóxico. Deste modo, a presente tese foi 
delineada com o intuito de avaliar o risco genotóxico em peixes de duas 
formulações de herbicidas: o Roundup®, que tem como princípio activo o 
glifosato, e o Garlon®, que apresenta o triclopir na base da sua constituição, 
produtos estes largamente utilizados na limpeza de campos agrícolas, assim 
como em florestas. Foi ainda planeado desenvolver uma base de 
conhecimento no que diz respeito aos mecanismos de dano do ADN. Como 
último objectivo, pretendeu-se contribuir para a mitigação dos efeitos dos 
agroquímicos no biota aquático, nomeadamente em peixes, fornecendo dados 
científicos no sentido de melhorar as práticas agrícolas e florestais. 

Este estudo foi realizado adoptando a enguia europeia (Anguilla anguilla L.) 
como organismo-teste, e submetendo-a a exposições de curta duração (1 e 3 
dias) dos produtos comerciais mencionados, em concentrações consideradas 
ambientalmente realistas. Para a avaliação da genotoxicidade foram aplicadas 
duas metodologias: o ensaio do cometa e o teste das anomalias nucleares 
eritrocíticas (ANE). Enquanto o ensaio do cometa detecta quebras na cadeia 
do ADN, um dano passível de ser reparado, o aparecimento das ANE revela 
lesões cromossomais, sinalizando um tipo de dano de difícil reparação. O 
ensaio do cometa foi ainda melhorado com uma nova etapa que incluiu a 
incubação com enzimas de reparação (FPG e EndoIII), permitindo perceber a 
ocorrência de dano oxidativo no ADN. No que diz respeito ao Roundup®, o 
envolvimento do sistema antioxidante como indicador de um estado pró-
oxidante foi também alvo de estudo. 

Uma vez que as referidas formulações se apresentam sob a forma de 
misturas, o potencial genotóxico dos seus princípios activos foi também 
avaliado individualmente. No caso particular do Roundup®, também foram 
estudados o seu surfactante (amina polietoxilada; POEA) e o principal 
metabolito ambiental (ácido aminometilfosfórico; AMPA). 

 

 
 
 



 

 
Os resultados obtidos mostraram a capacidade do Roundup® em induzir 

tanto dano no ADN (em células de sangue, guelras e fígado) como dano 
cromossómico (em células de sangue). A investigação sobre o possível 
envolvimento do stresse oxidativo demonstrou que o tipo de dano no ADN 
varia com as concentrações testadas e com a duração da exposição. Deste 
modo, com o aumento do tempo de exposição, os processos relacionados com 
o envolvimento de espécies reactivas de oxigénio (ERO) ganharam 
preponderância como mecanismo de dano no ADN, facto que é corroborado 
pela activação do sistema antioxidante observado nas guelras, assim como 
pelo aumento dos sítios sensíveis a FPG em hepatócitos.  

O glifosato e o POEA foram também considerados genotóxicos. O POEA 
mostrou induzir uma maior extensão de dano no ADN, tanto comparado com o 
glifosato como com a mistura comercial. Apesar de ambos os componentes 
contribuirem para a genotoxicidade da formulação, a soma dos seus efeitos 
individuais nunca foi observada, apontando para um antagonismo entre eles e 
indicando que o POEA não aumenta o risco associado ao princípio activo. 

Deste modo, realça-se a necessidade de regulamentar limiares de 
segurança para todos os componentes da formulação, recomendando, em 
particular, a revisão da classificação do risco do POEA (actualmente 
classificado com “inerte”). Uma vez confirmada a capacidade do principal 
metabolito do glifosato – AMPA – em exercer dano no ADN assim como dano 
cromossómico, os produtos da degradação ambiental dos princípios activos 
assumem-se como um problema silencioso, realçando assim a importância de 
incluir o AMPA na avaliação do risco relacionado com herbicidas com base no 
glifosato. 

A formulação Garlon® e o seu princípio activo triclopir mostraram um claro 
potencial genotóxico. Adicionalmente, o Garlon® mostrou possuir um potencial 
genotóxico mais elevado do que o seu princípio activo. No entanto, a 
capacidade de infligir dano oxidativo no ADN não foi demonstrada para 
nenhum dos agentes. 

No que concerne à avaliação da progressão do dano após a remoção da 
fonte de contaminação, nem os peixes expostos a Roundup® nem os expostos 
a Garlon® conseguiram restaurar completamente a integridade do seu ADN ao 
fim de 14 dias. No que concerne ao Roundup®, o uso de enzimas de 
reparação de lesões específicas do ADN associado ao teste do cometa 
permitiu detectar um aparecimento tardio de dano oxidativo, indicando deste 
modo um decaimento progressivo da protecção antioxidante e ainda uma 
incapacidade de reparar este tipo de dano. O período de pós-exposição 
correspondente ao Garlon® revelou uma tendência de diminuição dos níveis 
de dano, apesar de nunca se observar uma completa recuperação. Ainda 
assim, foi evidente uma intervenção eficiente das enzimas de reparação do 
ADN, mais concretamente as direccionadas às purinas oxidadas. 

A avaliação das metodologias adoptadas tornou evidente que o 
procedimento base do ensaio do cometa, que detecta apenas o dano não-
específico no ADN, possui algumas limitações quando comparado com a 
metodologia que incluiu a incubação com as enzimas de reparação, uma vez 
que a última mostrou reduzir a possibilidade de ocorrência de resultados falsos 
negativos. Os dois parâmetros adoptados (ensaio do cometa e teste das ANE) 
demonstraram possuir aptidões complementares, sendo assim recomendado a 
sua utilização conjunta com vista a efectuar uma avaliação mais adequada do 
risco genotóxico. 

Globalmente, os resultados obtidos forneceram indicações de grande 
utilidade para as entidades reguladoras, contribuindo ainda para a 
(re)formulação de medidas de conservação do ambiente aquático. Neste 
sentido, os dados obtidos apontam para a importância da avaliação de risco 
dos herbicidas incluir testes de genotoxicidade. A magnitude de risco 
detectada para ambas as formulações adverte para a necessidade de adopção 
de medidas restritivas em relação à sua aplicação na proximidade de cursos 
de água. Como medidas mitigadoras de impactos ambientais, aponta-se o 
desenvolvimento de formulações que incorporem adjuvantes selecionados 
com base na sua baixa toxicidade. 
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abstract 

 
Herbicides are considered among the most hazardous contaminants of 

water bodies, since they easily reach these ecosystems through aerial spray 
drift, artificial drainage systems and surface or sub-surface runoff. The 
occurrence of these agrochemicals in the aquatic environment has been 
associated to deleterious effects in non-target organisms, namely fish. 
However, a considerable gap is evident regarding the scientific information on 
their genotoxic impact. Therefore, the present thesis was designed with the 
intention to evaluate the genotoxic risk to fish of the herbicide formulations 
Roundup® (glyphosate-based) and Garlon® (triclopyr-based), representing 
broadly used products worldwide to manage unwanted vegetation in agriculture 
and forestry. It was also planned to develop of a biologically base knowledge 
on DNA damage mechanisms. As ultimate goal, it was intended to contribute to 
mitigate the effects of agrochemicals in aquatic biota, namely fish, providing 
scientific data able to improve forestry and agriculture managing practices.  

The study was carried out adopting the European eel (Anguilla anguilla L.) 
as test organism and performing short-term exposures (1 and 3 days) to 
environmentally realistic concentrations of the mentioned commercial products. 
Two different genotoxic endpoints were adopted: comet and erythrocytic 
nuclear abnormalities (ENA) assays. The comet assay measures DNA stand 
breaks, a repairable type of damage, whereas the ENA assay identifies 
chromosomal lesions, signalizing a type of damage hardly repairable. The 
comet assay was also upgraded with an extra-step involving incubation with 
repair enzymes (FPG and EndoIII), in order to detect oxidative DNA damage. In 
what concerns to Roundup®, the involvement of the antioxidant system as 
indication of a pro-oxidant status was also assessed. 

Once the aforementioned formulations are presented as mixtures of 
chemicals, the genotoxic potential of their active ingredients individually was 
also assessed. In the case of Roundup®, the evaluation of the risk associated 
to the surfactant (polyethoxylated amine; POEA) and to the major 
environmental breakdown product of the active principle 
(aminomethylphosphonic acid; AMPA) was carried out as well.  

The results obtained showed the Roundup® ability to induce both DNA (in 
blood, gills and liver cells) and chromosomal damage (in blood cells). The 
investigation on the causative involvement of oxidative stress demonstrated 
that the type of DNA damage varies with tested concentrations and exposure 
duration. Thus, ROS-dependent processes gained preponderance as a 
mechanism of DNA damage with the increase of exposure length, which was 
corroborated by the antioxidant activation observed in gills as well as the net 
FPG-sensitive sites elevation detected in liver. 

 
 
 



 

 
Glyphosate and the surfactant POEA were also found to be genotoxic. 

Moreover, POEA induced the highest extent of DNA damage, when compared 
to glyphosate and the commercial mixture. Though both components showed 
to contribute to the overall genotoxicity of the herbicide formulation, the sum of 
their individual effects was never observed, pointing out an antagonistic 
interaction between them, indicating that POEA does not increase the risk 
associated to the active ingredient. These findings also emphasized the need 
to define regulatory thresholds for all the formulation components, 
recommending, in particular, the revision of the hazard classification of POEA 
(classified as “inert” until date). Since the ability of the main environmental 
metabolite of glyphosate - AMPA - in exert DNA and chromosomal damage 
was also confirmed, it was pointed out the silent problem that the products of 
environmental degradation of the active ingredients can constitute. In addition, 
the importance to include AMPA in risk assessment studies concerning the 
glyphosate-based herbicides was highlighted.  

The formulation Garlon® and its active ingredient triclopyr also showed a 
clear genotoxic potential. In addition, it was demonstrated the higher 
genotoxicity of the formulation, in comparison to the active ingredient. However, 
their ability in exert oxidative DNA damage could not be demonstrated.  

In what concerns to the evolution of the damage progression after removal 
of the contamination source, neither fish exposed to Roundup® nor Garlon®
achieved a complete restoration of DNA integrity in 14 days. In relation to 
Roundup®, the use of the DNA lesion-specific repair enzymes allowed 
understanding the occurrence of a late oxidative DNA damage, indicating a 
progressive decay of cell antioxidant protection as well as the incapacity to 
repair this particular type of damage. The Garlon® post-exposure period 
revealed a tendency to decrease damage levels, although not enough to be 
regarded as an effective recovery. However, an efficient intervention of DNA 
repair enzymes specifically directed to oxidized purines became evident.  

Evaluating the performance of the adopted genotoxic endpoints, it was 
evident that the standard comet procedure, detecting only non-specific DNA 
damage, displayed some limitations when compared to the methodology that 
includes the incubation with the repair enzymes, since the latter reduced the 
possibility of false negative results. The two adopted endpoints (comet and 
ENA assays) demonstrated complementary aptitudes, being recommended
their jointly application since it allows a more effective genotoxic risk 
assessment.  

Overall, the results obtained provided useful recommendations for policy-
making, contributing to (re)formulate regulatory procedures for protecting the 
health of aquatic environment. In this direction, the data gathered in this work 
point to the importance of performing a genotoxic evaluation in order to actually 
determine the hazard posed by herbicides and their by-products. The 
magnitude of risk detected for both formulations strongly advise the adoption of 
restrictive measures in relation to their application in the proximity of 
watercourses. As mitigation measures, the development of formulations 
incorporating adjuvants selected on the basis of their lower toxicity emerged as 
a recommended path. 
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1 General Introduction 

1.1 Environmental contamination and pesticides 

The natural environment is being continuously loaded with foreign chemicals 

released by human activities such as industries and agriculture. Since the early sixties, 

especially due to the huge impact of the publication of Rachel Carson’s book “Silent 

Spring” (Carson 1962), the world has become aware of the potential long-term adverse 

effects of pesticides in general, and their potential risks for the environment.  

Within the environmental compartments, the aquatic has been widely studied and 

the concept “water quality” is considered as a vast and complex issue (Batista 2003). The 

aquatic environment covers two-thirds of the planet. Thus, the impacts on large aquatic 

systems – upon which many people depend – may pose a considerable threat to current 

and future generations. Economic functions for navigation, agriculture and energy supply, 

ecological functions for sustaining ecosystems, and social functions in terms of safety and 

drinking water supplies are without exception of critical importance to modern society 

(Brugge and Rotmans 2007).  

The European Water Framework Directive (WFD), adopted in 2000, changed water 

management in all member states of the European Union, considering aquatic ecology as 

the base of management decisions (Hering et al. 2010) in order to protect aquatic 

environment in its entirety. In line with this, the WFD recognizes, for the first time, the 

integral nature of aquatic biota in determining the quality of European fresh and marine 

waters (Sweeting 2001) and considers as its main goal to achieve at least “Good 

Ecological Status” for all surface waters by 2015. Hence, the protection, improvement and 

sustainable use of Europe’s water resources are a major goal of current European Water 

Policy. 

Bearing this in mind, the WFD established the following objectives for water 

management in Europe: 

• to prevent further deterioration of the water resources and enhance their status; 

• to promote sustainable water use; 

• to progressively reduce discharges of priority substances and to phase-out 

discharges of priority hazardous substances; 

• to progressively reduce groundwater pollution; 

• to contribute to mitigating the effects of floods and droughts (Mostert 2003). 

The real challenge posed by the WFD for ecologists alike will be to integrate the 

scientific studies on separate habitat components and single taxonomic groups into a 

holistic view of the ecological status of aquatic compartments (Logan and Furse 2002).  
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Agricultural activities have been identified as major contributors to environmental 

contamination (Cooper 1993). The intensive use of pesticides in agriculture and forest 

plantations, that are usually sprayed during the cropping seasons (Candela 2003), 

represents a permanent risk of soil and water contamination due to their involvement in 

diverse environmental processes (Palma et al. 2004). As a consequence, the reference to 

these compounds whose concentration is above its maximum allowable value has also 

increased (PSEA 1997). 

A pesticide is defined as any substance or mixture of substances intended for 

preventing, destroying, repelling or mitigating any pest (U.S.EPA 2012). An ideal pesticide 

should only affect target species and then be degradated into non-toxic substances, 

becoming thus safe to non-target organisms as well as environment friendly. The 

classification of pesticides can meet several criteria such as the target of action (e.g. 

insects, mites, nematodes, weeds, rats), the chemical class (e.g organochlorides, 

organophophates, carbamates), toxicological characteristics, mode of action as well as its 

origin (natural or synthetic) (Fernando and Duarte 2011). In Europe, and considering the 

pesticides categorization according to the specific type of pest that it is supposed to 

attack, the major types of pesticides in the market are fungicides (43%), followed by 

herbicides (36%), insecticides (12%) and other kind of pesticides (9%) (CEC 2002). 

In general, after their application, pesticides reveal a complex environmental 

behaviour which results from several processes (physical, chemical and biological), 

influencing thus their transport and transformation. The knowledge associated to the 

mentioned processes assumes a great importance in what concerns to the improvement 

of the good practices in pesticides use. 

The application of pesticides has become essential to control pests in modern 

agriculture, contributing significantly to enhance its productivity (Tomita and Beyruth 

2002). Globally, 4.6 million tons of pesticides are annually sprayed into the environment. 

However, only 1% of that amount is effective, while 99% of pesticides applied reach non-

target soils, water bodies and atmosphere, and finally being absorbed by non-target 

organisms (Zhang et al. 2011). 

 

 

1.2 Herbicides in the aquatic environment 

The important role of herbicides in the high-yield crops is well-established, since 

they are regular and intensively used during the production season as a way to control a 

variety of weeds in different crop types that compete with crop plants for water and 
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nutrients. Moreover, herbicides application in forest replantation areas increases the 

likelihood of success (Colborn and Short 1999). 

In the 2000’s, herbicides represented an huge amount of the pesticides used in 

Europe, where the highest quantities were usually applied in cereal crops (EC 2007; 

OECD 2008). In the particular case of Portugal, 2,042,383 kg of herbicide active 

ingredients were sold in 2010, reflecting an increase of 20%, when compared to 2009 

data (DGADR 2011). 

 

1.2.1 Fate and risk 

Herbicides fate following the application can vary according to the nature and 

properties of the active substance, considering also the prevailing agro climatic conditions. 

The major input of herbicides in water systems occurs in an indirect way, during or shortly 

after application. Their diffuse losses are mostly constrained by their degradation, either 

abiotic (hydrolysis, oxidation/reduction) or due to the presence of microorganisms and 

dissipation processes, taking place in the topsoil layer. The herbicide and/or its 

metabolites can reach the water via artificial drainage systems, surface or sub-surface 

runoff, and leaching to groundwater. Additionally, the spray drift also appears as key 

potential route to surface water (Fig.1) (Batista 2003; Reichenberger et al. 2007; Marques 

2009). 

Despite the lower toxicity attributed to herbicides when compared to other 

pesticides, the concentrations required to an effective herbicidal action are high, posing 

thus a real risk to the aquatic environment (Sabater and Carrasco 1998; Sánchez et al. 

2004; Marques 2009). Several authors demonstrated the effective risk of herbicides, 

namely to fish. Herbicides as clomazone, propanil, metsulfuron methyl, thiobencarb and 

2,4-D showed to affect the fish acetylcholinesterase enzyme (AchE) (Sancho et al. 2000; 

Moraes et al. 2007; da Fonseca et al. 2008). Moreover, the latter and the organochlorides 

alachlor and paraquat showed to promote alterations in the antioxidant responses (Zhang 

et al. 2004; Parvez and Raisuddin 2006; da Fonseca et al. 2008) of fish. In addition, 

clomazone was also able to induce histopathological changes in silver catfish (Crestani et 

al. 2007). 
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Fig. 1. Herbicides environmental behaviour (adapted from Batista 2003). 

 

1.2.2 The cases of Roundup® and Garlon® 

Glyphosate-based products are considered the most popular herbicides worldwide, 

due to its efficacy and cost effective (Monheit 2007). The commercial formulation 

Roundup® (distributed by Bayer CropScience) is a broad-spectrum organophosphate 

herbicide used to control undesirable weeds (Giesy et al. 2000) either in agriculture or 

ornamental gardens. It contains isopropylammonium salt of glyphosate at 485 g.L-1, as 

active ingredient (equivalent to 360 g.L-1 or 30.8 % of glyphosate), and polyethoxylated 

amine (POEA) (16 %), a non-ionic surfactant that promotes the penetration of glyphosate 

into the plant cuticle (Relyea 2005; Brausch and Smith 2007).  

After the application, glyphosate (Fig. 2) is assimilated by leaves and other green 

plant structures, being then translocated within the phloem throughout the entire plant. Its 

mode of action consists primarily in the inhibition of the enzyme 5-enolpyruvylshikimate-3-

phosphate synthase (EPSPS), a chloroplast-localized enzyme in the shikimic acid 

pathway of plants (Della-Cioppa et al. 1986) that prevents the production of the essential 

amino acids tryptophan, tyrosine, and phenylalanine, reducing thus the production of 

protein within the plant, thereby inhibiting plant growth (Herbicide Handbook 1994; 

Williams et al. 2000). Since this biochemical pathway does not exist in animals, 

glyphosate was supposed to be practically non-toxic to animal species (Monheit 2007).  
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Fig. 2. Chemical structure of glyphosate (Source: FOOTPRINT PPDB). 

 

The toxicity of the herbicide Roundup® was already demonstrated. Its ability in 

affecting antioxidant responses and acute physiological stress parameters (Langiano and 

Martinez 2008), as well as to promote the appearance of oxidative stress (Glusczak et al. 

2007; Lushchak et al. 2009), is well documented. 

The primary process of decomposition of glyphosate in the environment happens in 

the soil, due to the microbial degradation. This degradation generates 

aminomethylphosphonic acid (AMPA) (Fig. 3), the major metabolite of glyphosate (Forlani 

et al. 1999; Williams et al. 2000; Monheit 2007). This degradation may also occurs in the 

aquatic environment, where glyphosate can be naturally converted into sarcosine and 

aminomethylphosphonic acid (AMPA) (Landry et al. 2005; Al-Rajab et al. 2008), with a 

greater incidence of the latter. According to Giesy et al. (2000), the degradation of 

glyphosate in water bodies is relatively rapid, which may minimize its risk to the 

environment. On the other hand, the absence of studies concerning AMPA effects 

emphasizes the unpredictable risk to aquatic organisms. 

 

 

Fig. 3. Chemical structure of AMPA (Source: FOOTPRINT PPDB). 
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Garlon® is a commercial formulation (distributed by Dow AgroSciences) which 

presents triclopyr as its active ingredient (formulated as a butoxyethyl ester - TBEE - at a 

concentration equivalent to 480 g.L-1) and kerosene (a petroleum distillate) as adjuvant. 

This herbicide is widely used for the control of woody plants and annual and perennial 

broadleaf weeds. Triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) (Fig. 4), belonging to 

the class of pyridinecarboxylic acids, acts as a selective systemic herbicide, mimicking the 

plant growth hormone auxin (indole acetic acid) and increasing its natural levels in 1000 

times, causing the disruption of the hormonal balance and a subsequent uncontrolled and 

disorganized plant growth (DowElanco, 1996; Tu et al. 2001). 

Once in the soil, TBEE is rapidly converted in triclopyr acid through microbial 

intervention (Tu et al. 2001), as well as by hydrolysis and photolysis (Health Canada 

1991; Tu et al. 2001). Since the TBEE form is considered much more toxic than the acid 

(Kreutzweiser et al. 1995), its fast transformation in a less toxic form appears to be 

positive to the environment, at the time of the herbicide application (Health Canada 1991). 

In what concerns to triclopyr persistence and mobility in the soil, and consequently 

the surface runoff, there are no consensus. However, its presence and potential toxic 

effects in aquatic organisms should not be neglected.  

In any case, the commercial formulations containing the TBEE appear to be highly 

toxic to fish (Kreutzweiser et al. 1994; Kreutzweiser et al. 1995) and amphibians 

(Wojtaszek et al. 2005). In this context, the exposure to Garlon® pointed an increased risk 

of acute lethal effects on fish (Kreutzweiser et al. 1994), while Kreutzweiser and co-

workers (1995) reported a growth inhibition in rainbow trout. 

 

 

Fig. 4. Chemical structure of triclopyr (Source: FOOTPRINT PPDB). 
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1.3 DNA as a target molecule of herbicides 

The DNA integrity is crucial to the organisms’ survival. A single alteration in the DNA 

molecule could originate serious biological consequences, disrupting normal cell 

processes and leading to the cell death. The impact of genotoxic chemicals on the DNA 

integrity is considered one of the first events that occurs in exposed organisms (Frenzilli et 

al. 2009), highlighting thus the importance of its early evaluation. Since herbicides are 

considered as potential exogenous sources of DNA damage, there is a need to clarify the 

risks associated to these contaminants. 

 

1.3.1 Genetic damage events 

The environmental exposure to genotoxicants (substances capable to interfere with 

the DNA molecule) may be on the base of several DNA lesions. 

DNA adducts are an example of a direct attack caused by genotoxic compound, for 

instance an herbicide. Adducts are products of the covalent reaction of electrophilic 

molecules with DNA. They represent an earlier event between the exposure to a 

genotoxic risk factor and a cancer. Their presence does not point automatically to an 

evolution towards the disease since they can be removed by DNA repair mechanisms. 

The appearance of these adducts may occur in different kinds of cells, depending on their 

localization, on the toxicokinetics, metabolism, DNA repair ability and cell proliferation rate 

of the tissue (De Flora et al. 1996). For instance, Peluso and coworkers found that the 

herbicide Roundup® was able to induce DNA adducts in mice (Peluso et al. 1998), while 

alachlor and its metabolite promote their appearance in bovines (Nelson and Ross 1998).  

A genotoxic agent can also induce the formation of micronuclei (MN). Micronuclei 

are originated from chromosome fragment or whole chromosome that lag behind at 

anaphase, during the nuclear division (Fenech 2000). Micronuclei harboring chromosomal 

fragments may result from direct double-strand DNA breakage, conversion of single-

strand breaks in double-strand breaks after cell replication, or inhibition of DNA synthesis 

(Mateuca et al. 2006). Micronuclei containing whole chromosomes are formed from 

defects in the chromosome segregation machinery such as deficiencies in the cell cycle 

controlling genes, failure of the mitotic spindle, kinetochore, or other parts of the mitotic 

apparatus or by damage to chromosomal substructures, mechanical disruption (Albertini 

et al. 2000) and hypomethylation of centromeric DNA (Fenech et al. 2005). 

Conventionally, it is assumed that MN are formed exclusively in dividing cells. However, it 

has been suggested that MN may also be originated through nuclear budding in 

interphase (Longwell and Yerganian 1965; Lindberg et al. 2007). Nuclear buds are 
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constituted by nuclear material which is associated to the main nucleus. It contains 

amplified DNA that is selectively localized to specific sites at the periphery of the nucleus 

and eliminated via nuclear budding to form MN during the S-phase of mitosis. Amplified 

DNA might be eliminated through recombination between homologous regions within 

amplified sequences forming minicircles of acentric and atelomeric DNA, which are 

localized in distinct regions within the nucleus or through the excision of amplified 

sequences after segregation to distinct regions of the nucleus. These facts suggest that 

the nucleus could have a capacity to detect excess DNA that does not fit well within the 

nuclear matrix, indicating a higher order DNA repair or nuclear housekeeping processes. 

Shimizu et al. (1998; 2000) have suggested that the nucleus may eliminate the excess of 

amplified DNA concentrating it in a peripheral point in the nucleus, following which this 

surplus DNA is budded out to form a micronucleus and eventually excluded from the cell 

altogether by extrusion of the micronucleus from the cytoplasm leading to the formation of 

a “minicell”. The process of nuclear budding occurs during S-phase and the nuclear buds 

are characterized by having the same morphology as a micronucleus with the exception 

that they are linked to the nucleus by a narrow or wide stalk of nucleoplasmic material 

depending on the stage of the budding process (Fenech 2002). These facts may shed a 

light in the controversial matter concerning the MN as an extreme stage of a nuclear 

abnormality (NA). Several studies have used the MN test to evaluate, in mice, the 

genotoxic potential of herbicides such as glyphosate and its commercial formulation 

Roundup® (Bolognesi et al. 1997), as well as atrazine and trifluralin (Gebel et al. 1997). 

Moreover, the genotoxic damage is also evaluated analysing the occurrence of 

chromosomal aberrations (CA) and sister chromatid exchanges (SCE). Chromosomal 

aberrations are changes in normal chromosome structure or number that can occur 

spontaneously or as a result of a genotoxicant attack (Russell 2002). Structural CA may 

be induced by direct DNA breakage, by replication on a damaged DNA template, by 

inhibition of DNA synthesis and by other mechanisms (e.g. topoisomerase II inhibitors) 

(Albertini et al. 2000; Mateuca et al. 2006). Georgian and co-workers (1983) demonstrated 

the ability of the herbicide alachlor in induce CA in mice.  

Sister chromatid exchanges occur during cell replication when a chromosome 

duplicates its genetic material, forming a pair of chromatids attached at the centromere. 

Through mechanisms that involve DNA breakage and rejoining, sister chromatids can 

exchange seemingly identical segments of DNA without known alterations of cell viability 

or function (Wilcosky and Raynard 1990). There are two models concerning the SCE 

formation. The recombination model is based on chromatid exchanges as part of a 
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postreplication repair process, whereas the replication model involves recombination 

during the DNA replication (Wilcosky and Raynard 1990). A study in humans showed that 

Roundup® was able to induce the formation of SCE (Vigfusson and Vyse 1980). 

 

The association of herbicides genotoxicity with oxidative stress is not well established. 

The continuous production and subsequent release of reactive oxygen species (ROS) by 

the mitochondrial respiratory chain as well as their interference with cellular components 

and/or processes may result in oxidative stress. There are many different forms of ROS: 

singlet oxygen (O2
�), hydrogen peroxide (H2O2), superoxide (O2

�
-) and the hydroxyl radical 

(OH�). Depending on ROS levels, cellular death may occur. However, in normal 

conditions, the antioxidant defences are able to neutralize them, avoiding thus deleterious 

effects caused by either ROS higher levels production or due to the depletion of the 

antioxidant system (Collins 2009). To cope with oxidative stress and to prevent damaging 

effects of ROS, organisms increase their levels of protective antioxidants. In this context, 

thiols play an important role against the pernicious effects of pro-oxidant challenges where 

glutathione provides a first line of defence against ROS (Li et al. 2007; Oliveira et al. 

2008). This non-enzymatic antioxidant is included in many cellular reactions, since it 

scavenges ROS directly and indirectly, through enzymatic reactions (Fang et al. 2002). 

Consequently, reduced glutathione (GSH) is converted to oxidized glutathione (GSSG), 

which is rapidly reduced back to GSH by glutathione reductase (GR), forming a closed 

system (redox cycle). The organic hydroperoxides reduction by GSH may be then 

catalyzed by glutathione peroxidase (GPx), which is provided by glutathione S-

transferases (GST) (Wang and Ballatori 1998). Additionally, catalase (CAT), though not 

using GSH, plays also an important role in cellular protection reducing H2O2 to water and 

oxygen (Bainy et al. 1996). All these antioxidants exist as a coordinated system to detoxify 

distinct ROS. However, when antioxidant defences are impaired or surmounted it 

eventually may originate deleterious effects on cells and tissues such as DNA damage, 

enzymatic inactivation and peroxidation of cell constituents (Winston and Di Giulio 1991). 

DNA is a key cellular component that is particularly susceptible to oxidative damage 

by ROS (Cerutti 1985). The DNA nature provides a useful substrate facilitating the 

formation of OH� adjacent to this critical biological target (Halliwell and Aruoma 1991) and 

allowing attacks to the sugar–phosphate backbone (Buxton et al. 1988; Valavanidis et al. 

2006). In addition, the radical OH� may also induce a direct damage on the DNA, in 

particular guanine (Shugart 2000).  



Chapter I 

32 

The pro-oxidant potential of herbicides has already been demonstrated (Banerjee et 

al. 2001). In particular, Lushchak and co-workers (2009) showed the herbicide Roundup® 

was able to induce mild oxidative stress in gold fish tissues. Other study pointed 

Roundup® as the responsible for the induction of the antioxidant enzyme catalase in fish 

(Langiano and Martinez 2008). 

In what concerns to the herbicide Garlon®, as well as its active ingredient triclopyr, no 

studies were found concerning their pro-oxidant potential. 

 

1.3.2 DNA damage tissue-specificity 

It is already known that DNA strand breakage can present a tissue specificity (Siu et 

al. 2004; Pandey et al. 2006). In this direction, blood seems the preferred tissue to 

perform genotoxic studies, including in fish, mainly due to the easy sampling and 

adaptability of its cells to the most common methodologies, as well as the practical 

advantages of processing tissues constituted by nucleated and dissociated cells. 

However, circulating cells are frequently reported as the less sensitive, when compared to 

other types of cells (Frenzilli et al. 2009). Once in the blood, the genotoxicant is rapidly 

transported and distributed by the different organs, being thus accumulated according to 

its affinity to specific tissues. Considering the different roles performed by each tissue, it 

can be inferred that different cell types may respond to the presence of a genotoxicant 

with distinct sensitivities. Accordingly, other cell types should be used for monitoring 

genotoxic effects, thereby exploiting tissue-specific responses and acquiring a better 

perspective about the overall condition of the organisms (Sharma et al. 2007). 

Gills are the primary site of contact with waterborne genotoxicants, since they are in 

direct and continuous contact with the external medium, reflecting the uptake 

(Jiraungkoorskul et al. 2003). On the other hand, liver is considered as the central organ 

of metabolism in fish, since its role concerning bioaccumulation and biotransformation is 

stared of great important for activation and inactivation/detoxification of contaminants 

absorbed via different routes. Several studies reported liver (Liu et al. 2006; Mañas et al. 

2009) and gills (Sharma et al. 2007; Cavalcante et al. 2008) as suitable tissues in the 

evaluation of genotoxicity. 

Despite the integration of information, considering the system ‘‘organism–tissue–

genotoxicant” to evaluate the genotoxicity (Kim and Hyun 2006) it is important to keep in 

mind that either the genotoxicant uptake routes or the bioaccumulation mechanisms 

should be carefully considered (Sharma et al. 2007), as well as genotoxicant specific 

characteristics. 
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1.3.3 Methodologies for the evaluation of genetic damage (DNA vs. 

chromosomal damage) 

The application of genotoxic endpoints which meant to assess DNA damage intends 

to investigate an eventual and causal relationship between the exposure to genotoxicants 

and effects in individuals. In addition, the analysis of DNA alterations is considered a 

highly suitable approach for the evaluation of exposure to low concentrations of 

genotoxicants (Scalon et al. 2010), namely certain herbicides (Frenzilli et al. 2009). During 

the last decades, it was noticed the huge development of responsive genotoxic 

biomarkers, namely considering aquatic organisms (Hayashi et al. 1998).  

 

(i) The comet assay 

One of the most applied methodologies in the assessment of the genetic damage is 

the alkaline version of the Single Cell Gel Electrophoresis assay (SCGE), which was first 

developed by Singh and co-workers (1988). The comet assay is a simple, rapid, versatile, 

sensitive and economic method to evaluate DNA damage (Nandhakumar et al. 2011). 

Moreover, it allows the early detection of the genotoxic damage at the cellular level, 

requiring only a small number of cells. This technique reveals a broad spectrum of recent 

lesions that are susceptible of being repaired, as well as DNA strand-breaks and alkali 

labile sites (Lee and Steinert 2003; Andrade et al. 2004; Speit and Schütz 2008). Briefly, 

cells are embedded in agarose, on a microscope slide. Afterwards, a lysis with a 

detergent and a high concentration of NaCl is performed, in order to obtain nucleotides 

(histone-depleted DNA). In order to shed light on the eventual oxidative cause in the 

observed damage, it is possible to include an extra-step in the protocol where bacterial 

repair endonucleases detect oxidised bases (Collins 2009). Therefore, the use of 

formamidopyrimidine DNA glycosylase (FPG) and Endonuclease III (EndoIII) increased 

the sensitivity of the assay, enhancing the detection of a wider range of damage, and 

essentially its specificity (Azqueta et al. 2009). Later, an electrophoresis is carried out. 

Comet-like structures are then stained and observed with a fluorescence microscope. The 

DNA damage levels (based on a visual scoring) are inferred considering the tail length 

and intensity supported in five comet classes, from 0 (no tail) to 4 (almost all DNA in tail) 

(Collins 2004; Azqueta et al. 2009). This assay has been widely used to evaluate the 

genotoxic potential of herbicides in fish (Bolognesi et al. 1997; Clements et al. 1997; 

Moretti et al. 2002; Çavas and Könen 2007; Cavalcante et al. 2008). 
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(ii) Erythrocytic Nuclear Abnormalities (ENA) assay 

The ENA assay consists in the detection of micronuclei and other nuclear 

abnormalities in nucleated mature erythrocytes (Pacheco and Santos 1997). Nuclear 

abnormalities were first described by Carrasco et al. (1990). The determination of the 

nuclear abnormalities frequency is based on the following nuclear lesion categories: 

kidney shaped nuclei (K), lobed nuclei (L), binucleate or segmented nuclei (S) and 

micronuclei (MN). These nuclear deformations are signals of chromosome breakage 

(clastogenicity) or loss and mitotic spindle apparatus dysfunction (aneugenicity) (Fenech 

2000; Stoiber et al. 2004). Contrarily to what was stated for the lesions detected by the 

comet assay, these lesions are almost irreparable, being considered as less transient 

alterations, displaying a later appearance. ENA assay showed also to be a suitable 

marker for the evaluation of genotoxic damage of herbicides in fish (Çavas and Könen 

2007).  

 

1.4 Genotoxic risk of Roundup
®
 and Garlon

®
 in fish - an almost unexplored 

issue 

As mentioned above, herbicides may be drifted to non-target areas, following 

applications, posing thus an eventual genotoxic risk to aquatic organisms. 

The Unites States Environmental Protection Agency (USEPA) classified glyphosate 

as moderately toxic to practically non-toxic to fish (USEPA 1993). However, and despite 

the controversy concerning the ingredients of glyphosate-based herbicides, little is known 

about their genotoxic potential. Only a few studies, concerning the commercial formulation 

Roundup®, demonstrated its genotoxicity to fish expressed as cytogenetic and DNA 

damaging effects (Grisolia 2002; Çavas and Könen 2007; Cavalcante et al. 2008). 

Considering the fact that glyphosate is rapidly converted into its breakdown product 

AMPA, and since the latter is reported as a recurrent aquatic environment pollutant, it 

would be expectable that its genotoxicity to aquatic organisms have been better studied. 

Despite this, no studies were performed considering these organisms. In fact, and in what 

concerns to the genotoxic potential of AMPA, only a single study was performed, 

revealing its ability in inducing genotoxicity in human lymphocytes and mice (Mañas et al. 

2009). 

As observed, little is known about the pernicious effects of Garlon® and its related 

products, remaining their genotoxic potential unknown.  
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Therefore, regarding the widely use of these herbicides, and their subsequent 

entrance in the water bodies, it should be highlighted the extreme importance of 

evaluating their genotoxicity in aquatic organisms. 

 

1.5 Goals and thesis structure 

In the context of the herbicides genotoxicity to fish, the main goals of the present study 

were: (i) to assess the genotoxic potential of the formulations Roundup® and Garlon® and, 

elucidating the contribution of their constituents to the overall effect; (ii) to develop a 

biologically base knowledge on DNA damage mechanisms; (iii) to contribute to mitigating 

the effects of agrochemicals in aquatic biota, namely fish, providing scientific data able to 

improve forestry and agriculture managing practices. 

 

In order to achieve these general goals, the following specific objectives were defined:  

• to differentiate the type of damage (DNA and chromosomal damage) induced after 

exposures to environmental realistic concentrations; 

• to elucidate the tissue-specificity of the responses to the genotoxic stimuli; 

• to clarify the involvement of defence mechanisms in the DNA damage extent; 

• to identify the involvement of oxidative damage on the DNA integrity loss, namely 

through the use of DNA lesion-specific repair enzymes (FPG and EndoIII). 

 

This study was carried out through the implementation of short-term (1 to 3 days) 

laboratory experiments, using the European eel (Anguilla anguilla L.) as test organism, 

selected due to its previous successful adoption in genotoxicity evaluation. 

 

The present thesis comprises eight chapters. The first chapter (I) is of introductory 

nature, addressing various aspects important for understanding the global perspective of 

this thesis. Chapters II to VII are concurrent with the above mentioned specific objectives, 

and the final chapter (VIII) consists of a general discussion, where all of the results 

obtained and reported in the previous chapters are discussed, providing a global and 

integrated perspective. 
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2 European eel (Anguilla anguilla) genotoxic and pro-oxidant responses 

following short-term exposure to Roundup
®
 - a glyphosate-based herbicide 

 

 

Abstract 

The glyphosate-based herbicide, Roundup®, is among the most used pesticides 

worldwide. Due to its extensive use, it has been widely detected in aquatic ecosystems 

representing a potential threat to non-target organisms, including fish. Despite the 

negative impact of this commercial formulation in fish, as described in literature, the 

scarcity of studies assessing its genotoxicity and underlying mechanisms is evident. 

Therefore, as a novel approach, this study evaluated the genotoxic potential of Roundup® 

to blood cells of the European eel (Anguilla anguilla) following short-term (1 and 3 days) 

exposure to environmentally realistic concentrations (58 and 116 µg.L-1), addressing also 

the possible association with oxidative stress. Thus, comet and erythrocytic nuclear 

abnormalities (ENA) assays were adopted, as genotoxic endpoints, reflecting different 

types of genetic damage. The pro-oxidant state was assessed through enzymatic 

(catalase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase) and 

non-enzymatic (total glutathione content) antioxidants, as well as by lipid peroxidation 

(LPO) measurements. The Roundup® potential to induce DNA strand breaks for both 

concentrations was demonstrated by the comet assay. The induction of chromosome 

breakage and/or segregational abnormalities was also demonstrated through the ENA 

assay, though only after 3 days exposure to both tested concentrations. In addition, the 

two genotoxic indicators were positively correlated. Antioxidant defenses were 

unresponsive to Roundup®. LPO levels increased only for the high concentration after the 

first day of exposure, indicating that oxidative stress caused by this agrochemical in blood 

was not severe. Overall results suggested that both DNA damaging effects induced by 

Roundup® are not directly related with an increased pro-oxidant state. Moreover, it was 

demonstrated that environmentally relevant concentrations of Roundup® can pose a 

health risk for fish populations. 

 

Keywords: Roundup®; glyphosate; genotoxicity; oxidative stress; fish. 
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2.1 Introduction 

The use of pesticides has become essential to control pests in modern agriculture, 

contributing significantly to enhance its productivity. Among pesticides, herbicides are the 

most dangerous for aquatic environment, since they easily reach the water bodies, mainly 

through soil surface run-off (Tomita and Beyruth 2002). Compounds based on glyphosate 

are broad-spectrum nonselective organophosphate herbicides and the most extensively 

used worldwide (Cavalcante et al. 2008). The herbicide Roundup® is a commercial 

formulation which contains glyphosate (N-(phosphonomethyl) glycine) as the active 

ingredient and polyethoxylene amine (POEA) as surfactant. In natural water bodies, 

Roundup® (measured as glyphosate acid equivalents) has been detected at 

concentrations from 0.01 to 0.7 mg.L-1 (Paveglio et al. 1996; Peruzzo et al. 2008), 

reaching 1.7 mg.L-1 in an extreme situation after direct application to water (Horner 1990). 

Despite the acute toxicity of glyphosate was considered to be low (Li and Long 1988; 

WHO 1994), glyphosate-based commercial formulations are generally more toxic than 

pure glyphosate (Rank et al. 1993; Peixoto 2005) mainly due to the interference of 

surfactants such as POEA (Tsui and Chu 2008). 

To understand the impact on aquatic biota of this type of agrochemicals, fish are 

often used as sentinels, due to their key function in the trophic web, bioaccumulation 

propensity and responsiveness to low concentrations (Romeo and Quijano 2000; Sharma 

et al. 2007). Moreover, fish showed to be more sensitive to Roundup® than terrestrial 

organisms (Giesy et al. 2000; Grisolia 2002) highlighting the ecotoxicological relevance to 

approach this taxon. Despite the description of a variety of deleterious effects induced by 

Roundup® in fish (Jiraungkoorskul et al. 2003; Glusczak et al. 2006; Glusczak et al. 2007; 

Lushchak et al. 2009), the scarcity of studies evaluating its genotoxic potential is evident. 

The few available studies demonstrated the genotoxicity of Roundup® to fish expressed 

as cytogenetic and DNA-damaging effects (Grisolia 2002; Çavas and Könen 2007; 

Cavalcante et al. 2008). Nevertheless, these studies concerned only tropical species, 

adopting excessively high concentrations and did not explore any mechanisms behind 

genetic damage. 

Oxidative stress is an imbalance between the production of reactive oxygen species 

(ROS) and the body's ability to detoxify the reactive intermediates or repair the resulting 

damage. Subsequently, peroxides and free radicals can damage potentially all the 

components of the cell, including proteins, lipids, DNA and RNA (Muniz et al. 2008). In 

addition to damaging DNA, ROS also disrupt the function of DNA repair proteins 

(Shimura-Miura et al. 1999). To counteract ROS-induced damage, cells evolved 
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antioxidant systems as a major defense mechanism. Thus, variations in the antioxidant 

defenses can be very sensitive in revealing a pro-oxidant condition and have been 

proposed as indicators of pollutant mediated oxidative stress (Ahmad et al. 2006; Oliveira 

et al. 2008). Human and mammal studies with pesticides, especially organophosphates, 

demonstrated that DNA damage and oxidative stress are mechanistically linked (Lodovici 

et al. 1997; Muniz et al. 2008). Though Roundup® induced mild oxidative stress in goldfish 

(Lushchak et al. 2009), the association between oxidative stress and genetic damage 

remains unidentified in fish. 

The central aim of the present study was to evaluate the genotoxic potential of 

Roundup® to blood cells of fish (Anguilla anguilla), following short-term exposure to 

environmentally realistic concentrations (58 and 116 µg.L-1), addressing its possible 

association with oxidative stress. Genotoxic endpoints such as comet and erythrocytic 

nuclear abnormalities (ENA) assays were adopted, in order to reflect genetic damage at 

different levels. The comet assay, one of the most commonly used methods in 

environmental toxicology and successfully applied to fish for assessing DNA strand 

breaks and alkali labile sites (Lee and Steinert 2003; Andrade et al. 2004), represents an 

early sign of damage, which might be subject to a repair process. The ENA assay, based 

on the detection of micronuclei and other nuclear anomalies (Pacheco and Santos 1997), 

signals in vivo chromosome breakage (clastogenicity) or loss and mitotic spindle 

apparatus dysfunction (aneugenicity) (Fenech 2000; Stoiber et al. 2004). Hence, ENAs 

are irreparable lesions, representing later and less transient alterations when compared 

with those detected by the comet assay. Catalase (CAT), glutathione-S-transferase 

(GST), glutathione peroxidase (GPx), glutathione reductase (GR) activities, total 

glutathione (GSHt) content, and levels of thiobarbituric acid reactive substances (TBARS) 

were determined as indicators of the pro-oxidant state. The concomitant assessment of 

genotoxic markers and indicators of pro-oxidant state represents an innovative approach 

in the context of pesticide-induced genotoxicity in fish. 

 

 

2.2 Material and Methods 

2.2.1 Chemicals 

A commercial formulation of glyphosate (N-(phosphonomethyl) glycine) - Roundup® 

- distributed by Bayer CropScience Portugal, containing isopropylammonium salt of 

glyphosate at 485 g.L-1 as the active ingredient (equivalent to 360 g.L-1 or 30.8 % of 
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glyphosate) and POEA (16 %) as surfactant, was used. All the other chemicals were 

obtained from the Sigma–Aldrich Chemical Company (Spain). 

 

2.2.2 Test animals and experimental design 

European eel (Anguilla anguilla L.) specimens with an average length of 25±3 cm 

and weight 32±5 g (yellow eel stage) were captured from an unpolluted area of Aveiro 

lagoon – Murtosa, Portugal. Eels were acclimated to laboratory for 12 days and kept in 

80-L aquaria under a natural photoperiod, in aerated, filtered, dechlorinated and 

recirculating tap water, with the following physico-chemical conditions: salinity 0, 

temperature 20±1 ºC, pH 7.3±0.2, ammonia <0.1 mg.L-1, dissolved oxygen 8.1±0.5 mg.L-1. 

The experiment was carried out in 20-L aquaria, in a static mode, under the 

conditions described for the acclimation period. After acclimation, 36 eels were divided 

into 6 aquaria (6 fish per aquaria; n=6) and exposed to 58 µg.L-1 (two aquaria) and 116 

µg.L-1 (two aquaria) of Roundup®, equivalent to 18 and 36 µg.L-1 of glyphosate, 

respectively. Another two aquaria were kept with clean water - control groups. For each 

pesticide concentration, 1- and 3-day exposures were tested, corresponding to the two 

different aquaria previously mentioned. Fish were not fed during experimental period. Fish 

blood was collected (approximately 400 µL) from the posterior cardinal vein using 

heparinised Pasteur pipettes. Blood smears were immediately prepared for ENA assay. 

Two µL of blood were diluted in 1 mL of PBS for comet assay. The remainder volume was 

stored in microtubes and kept at -80 ºC until further procedures for oxidative stress 

analyses. Following sampling, fish were sacrificed by cervical transaction. 

 

2.2.3 Evaluation of genetic damage 

2.2.3.1 Comet assay 

The alkaline version of the comet assay was performed according to Collins (2004) 

methodology with slight modifications. Two gel replicates, containing each one 

approximately 2x104 cells (using the whole blood previously diluted in PBS) in 70 µL of 

1% low melting point agarose in PBS, were placed on one glass microscope slide, 

precoated with 1% normal melting point agarose. The gels were covered with glass cover 

slips, left for ±5 minutes at 4 ºC to solidify agarose, and then immersed in a lysis solution 

(2.5 M NaCl, 0.1 M EDTA, 10 mM Tris, 1% Triton X-100, pH 10) at 4 ºC, for 1 h. Slides 

were immediately processed according to the conventional comet assay (Collins 2004). 

Briefly, slides were gently placed in the electrophoresis tank, immersed in electrophoresis 

solution (±20 min) to alkaline treatment. DNA migration was performed at a fixed voltage 
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of 25 V, a current of 300 mA which results in 0.7 V.cm-1 (achieved by adjusting the total 

volume of buffer). The slides were stained with ethidium bromide (20 µg.mL-1). One slide 

with two gels (100 nucleoids per gel) was observed for each fish using a Leica DMLS 

fluorescence microscope (400x magnification). The DNA damage was quantified by visual 

classification of nucleoids into five comet classes, according to the tail intensity and 

length, from 0 (no tail) to 4 (almost all DNA in tail). The total score expressed as a genetic 

damage index (GDI) was calculated multiplying the mean percentage of nucleoids in each 

class by the corresponding factor, according to this formula: 

 

GDI = [(% nucleoids class 0)×0] + [(% nucleoids class 1)x1] + [(% nucleoids class 

2)×2] + [(% nucleoids class 3)×3] + [(% nucleoids class 4)×4] 

 

Results were expressed as “arbitrary units” in a scale of 0 to 400 per 100 scored 

nucleoids (as average value for the 2 gels observed per fish). Besides the GDI, the 

frequency of nucleoids observed in each comet class was also expressed, as 

recommended by Azqueta et al. (2009). 

 

2.2.3.2 ENA assay 

This assay was carried out in mature peripheral erythrocytes according to the 

procedure of Pacheco and Santos (1996). Briefly, one blood smear per animal was fixed 

with methanol during 10 min and stained with Giemsa (5%) during 30 min. From each 

smear, 1000 erythrocytes were scored under 1000x magnification to determine the 

frequency of the following nuclear lesion categories: kidney shaped nuclei (K), lobed 

nuclei (L), binucleate or segmented nuclei (S) and micronuclei (MN). In addition, notched 

nuclei (N) were also scored as suggested by Fenech (2000) and Ayllon and Garcia-

Vazquez (2001). Final results were expressed as the mean value (‰) of the sum for all 

the lesions observed (K+L+S+N+MN). 

 

2.2.4 Biochemical analyses 

2.2.4.1 Tissue preparation and fractionation  

Whole-blood samples were lysed through homogenization in a 1:15 ratio (blood 

volume:buffer volume), using a Potter-Elvehjem homogenizer, in chilled phosphate buffer 

(0.2 M, pH 7.4). This lysate was then divided into three aliquots: for TBARS and GSHt 

quantification, as well as for post-mitochondrial supernatant (PMS) preparation to be used 

in the enzymatic determinations. The PMS fraction was obtained by centrifugation 
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(Eppendorf 5415R centrifuge) at 13,400 g for 20 min at 4 ºC. Aliquots of PMS were stored 

in microtubes at -80 ºC until analyses. 

 

2.2.4.2 Measurement of antioxidant responses and peroxidative damage 

CAT activity was assayed (at 25 ºC) by the method of Claiborne (1985) as described 

by Giri et al. (1996). Change in absorbance was recorded spectrophotometrically at 240 

nm and CAT activity was calculated in terms of µmol H2O2 consumed min-1.mg protein-1 

(ε=43.5 M-1.cm-1). 

GST activity was determined (at 25 ºC) using CDNB (1-chloro-2,4-dinitrobenzene) 

as a substrate, according to the method of Habig et al. (1974). Absorbance was recorded 

spectrophotometrically at 340 nm for 3 min. The enzyme activity was calculated as nmol 

CDNB conjugate formed min-1.mg protein-1 (ε=9.6 mM-1.cm-1). 

GPx activity was determined (at 25 ºC) according to the method of Mohandas et al. 

(1984). NADPH oxidation was recorded spectrophotometrically at 340 nm and GPx 

activity was calculated in terms of nmol NADPH oxidized min-1.mg protein-1 (ε=6.22 x 103 

M-1.cm-1). 

GR activity was assayed (at 25 ºC) by the method of Cribb et al. (1989). The assay 

determines indirectly the GR activity by measuring the NADPH disappearance associated 

to the reduction of oxidised glutathione catalysed by GR. Change in absorbance was 

registered spectrophotometrically at 340 nm during 3 min and GR activity calculated as 

nmol of NADPH oxidised min-1.mg protein-1 (ε=6.22×103 M-1.cm-1). 

For GSHt quantification, protein content in the tissue lysate was precipitated with 

trichloro acetic acid (12 %) for 1 h and then centrifuged at 13,400 g for 20 min at 4 ºC. The 

resulting supernatant was collected and stored at −80 °C. GSHt was determined (in 

deproteinated PMS, at 25 ºC) by adopting the enzymatic recycling method using GR 

excess, whereby the sulfhydryl group of GSH reacts with 5,5, dithiobis-tetranitrobenzoic 

acid and produces a yellow colored 5-thio-2-nitrobenzoic acid (TNB). The rate of TNB 

production is proportional to the concentration of glutathione in the sample (Tietze 1969). 

Formation of TNB was measured by spectrophotometry at 412 nm and the results 

expressed as nmol TNB formed min-1.mg protein-1 (ε=14.1 mM-1.cm-1). 

As estimation of lipid peroxidation (LPO), TBARS quantification was carried out in 

the previously prepared lysate (treated with 1-1 butylated hydroxytoluene 4% in methanol 

to prevent oxidation) as adapted by Filho et al. (2001). The absorbance was measured at 

535 nm and the rate of LPO was expressed in nmol of TBARS formed per mg of fresh 

tissue (ε=1.56x105 M-1.cm-1). 
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Total protein contents were determined according to the Biuret method (Gornall et 

al. 1949), using bovine serum albumin as a standard. 

 

2.2.5 Statistical analysis 

SigmaStat software (SPSS Inc.) was used for statistical analyses. All data were first 

tested for normality and homogeneity of variance to meet statistical demands. One-way 

ANOVA analysis was used to compare the different treatments within the same exposure 

duration as well as to compare the same treatment in different exposure durations. The 

Tukey test was applied for Post-hoc comparison. Whenever the assumptions for 

parametric statistics failed, the non parametric correspondent test (Kruskall Wallis) was 

performed, followed by the non parametric all pairwise multiple comparison procedure 

(Dunn’s test) (Zar 1996). Differences between means were considered significant when 

p<0.05. The relationship between the assessed parameters was explored using linear 

regression analyses. The correlation coefficient (r) was calculated and its statistical 

significance (p) was determined from the table of Critical Values for the Correlation 

Coefficient (Zar 1996). 

 

2.3 Results 

2.3.1 DNA damage as comet assay 

Fish exposed to Roundup® revealed a significantly higher DNA damage, measured 

as GDI, in both concentrations after 1 and 3 days (Fig. 1), when compared to the 

respective control group. Concerning 1 day exposure, fish exposed to Roundup® 

presented a 1.2 and 1.7 times increase, respectively for 58 and 116 µg.L-1 compared with 

the control. An increase of 1.4 times was observed comparing Roundup® concentrations; 

nonetheless, no significant differences were observed between these two exposed 

groups. Similar results were observed after 3 days exposure as exposed groups displayed 

damage increments of 1.4 and 1.7 times, respectively for 58 and 116 µg.L-1 Roundup®. 

The difference between exposed groups was less pronounced (1.2 times increase for 116 

µg.L-1) than that observed after 1 day exposure. Globally, the GDI results were 

concentration dependent, whereas no time-related alterations were noticeable. 
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Fig. 1. Mean GDI (expressed as arbitrary units), measured by comet assay, in peripheral blood 

cells of A. anguilla exposed to 58 and 116 µg.L-1 Roundup®, during 1 and 3 days. Letter (a) 

denotes statistically significant differences (p<0.05) vs. control. Bars represent the standard error. 

 

 

Individual DNA damage classes (Table 1), unlike the pattern displayed in total DNA 

damage (GDI; Fig. 1), revealed a time-related difference concerning the magnitude of 

damage. After the first day, significant differences were found in classes 1 - 4 between 

fish exposed to 116 µg.L-1 Roundup® and control, whereas fish exposed to 58 µg.L-1 

Roundup® showed significant increases only in classes 1 and 2. Following 3-day 

exposure, classes 1, 2 and 3 demonstrated significantly higher values, comparing to 

control, in both Roundup® concentrations. Overall, considering both Roundup® 

concentrations and both exposure times, classes 1 and 2 were the most prevalent classes 

of damage.  

The comparison between exposure lengths (within the same treatment) showed no 

differences in terms of GDI and a significant decrease in class 2 frequency from 1- to 3-

day exposure in the 58 µg.L-1 group. 
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Table 1. Mean frequency of each DNA damage class (± standard error), measured by comet 

assay, in peripheral blood cells of A. anguilla exposed to 58 and 116 µg.L-1 Roundup®, during 1 

and 3 days. Statistically significant differences (p<0.05) are: (a) vs. control; (♦) vs. 1-day exposure 

(for the same exposure condition). 

 

 

 

2.3.2 ENA frequency 

No significant alterations were found in ENA frequency following the first day of 

exposure (Fig. 2). However, an increased tendency was perceptible in both Roundup® 

concentrations, relatively to control.  

 

Fig. 2. Mean frequency (‰) of erythrocytic nuclear abnormalities (ENAs) in A. anguilla exposed to 

58 and 116 µg.L-1 Roundup®, during 1 and 3 days. Statistically significant differences (p<0.05) are: 

(a) vs. control and (b) vs. 58 µg.L-1 (within the same exposure duration); (♦) vs. 1-day exposure (for 

the same exposure condition). Bars represent the standard error. 
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A similar pattern was observed when each lesion category was considered 

individually (Table 2). Nevertheless, significant ENA increases were found after 3 days 

exposure in both exposed groups in comparison with the control. In addition, a significant 

ENA increase (around 2 times) was observed from 58 to 116 µg.L-1 Roundup® group. The 

individual analysis of each nuclear lesion category revealed that K and L frequencies were 

significantly higher in both exposed groups after 3-day exposure. These categories were 

also significantly higher in fish exposed to 116 µg.L-1 Roundup® when compared to 58 

µg.L-1. Lobed nuclei was the most commonly detected abnormality in fish exposed for 3 

days to 58 µg.L-1 Roundup® (L>K>S>N=MN), whereas in 116 µg.L-1 group the highest 

frequency was registered for K (K>L>S>N=MN). The sub-total K+L+S+N displayed a 

pattern similar to that one observed for total ENA frequency.  

 Comparing results between exposure lengths, a significant decrease was observed 

from 1- up to 3-day exposure in control group in terms of L (Table 2) and total ENA (Fig. 

2) frequencies, while in the 116 µg.L-1 group a significant increase was observed in K 

frequency. 

 

Table 2. Mean frequency (‰) of each nuclear abnormality category (± standard error) in peripheral 

erythrocytes of A. anguilla exposed to 58 and 116 µg.L-1 Roundup®, during 1 and 3 days. 

Statistically significant differences (p<0.05) are: (a) vs. control and (b) vs. 58 µg.L-1 (within the 

same exposure duration); (♦) vs. 1-day exposure (for the same exposure condition). 

 

 

 

2.3.3 Antioxidant responses and lipid peroxidative damage 

Concerning antioxidant responses measured in both Roundup® treated groups 

(Figs. 3A–E), no significant alterations were observed after 1- and 3-day exposures. 

However, the evaluation of peroxidative damage (Fig. 3F) showed a significant increase in 
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TBARS values after 1-day exposure to 116 µg.L-1 Roundup®, when compared to control 

as well as to 58 µg.L-1 groups. In spite of the previous results, no LPO increase was 

observed after 3-day exposure. The comparison between 1- and 3-day exposures 

revealed significant LPO increases in control and 58 µg.L-1 groups. 

 

 

Fig. 3. Mean catalase (CAT) (A), glutathione-S-transferase (GST) (B), glutathione peroxidase 

(GPx) (C) and glutathione reductase (GR) (D) activities, as well as total glutathione (GSHt) content 

(E) and lipid peroxidation (LPO) levels (F) in peripheral blood of A. anguilla exposed to 58 and 116 

µg.L-1 Roundup®, during 1 and 3 days. Statistically significant differences (p<0.05) are: (a) vs. 

control and (b) vs. 58 µg.L-1 (within the same exposure duration); (♦) vs. 1-day exposure (for the 

same exposure condition). Bars represent the standard error. 
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2.3.4 Correlations between biological parameters 

The correlation between all biological parameters was statistically tested by 

analyzing the data obtained after 1- and 3-day exposures to 58 and 116 µg.L-1 Roundup®. 

However, only the correlation between DNA damage and ENA frequency was statistically 

significant (Fig. 4). 

 

 
Fig. 4. Correlation between DNA damage (measured by comet assay) and ENA frequency in 

peripheral blood of A. anguilla exposed to 58 and 116 µg.L-1 Roundup®, during 1 and 3 days. 

Statistical significance and correlation coefficient are represented by p and r, respectively. 

 

 

2.4 Discussion 

A model to estimate the worst-case exposure conditions was developed by Giesy et 

al. (2000) who set 0.271-0.406 and 0.339-0.677 mg.L-1 of Roundup® as the maximum 

concentrations likely to be found in surface waters following terrestrial uses and direct 

application to water, respectively. These estimations have proven to be correct, though 

higher levels were sporadically found (Horner 1990). In this perspective, the Roundup® 

concentrations tested in the present study (58 and 116 µg.L-1) are realistic, mainly in the 

context of agriculture applications (the primary use of Roundup®), representing an 

important progress in relation to previous fish studies (Çavas and Könen 2007; 

Cavalcante et al. 2008) where the adopted concentrations were one order of magnitude 

higher. 

As a novel approach in the context of pesticide genotoxicity assessment in fish, the 

current research encompassed the evaluation of genotoxic endpoints with the evaluation 

of pro-oxidant state, a putatively decisive condition on determining the extent and type of 

genetic damage. 
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Fish erythrocytes have been proposed as a tool for studying several aspects of 

toxicology (Pacheco and Santos 1996, 1998). Fish erythrocytes are considered as a major 

site for ROS production due to their role in the oxygen transport via hemoglobin as wells 

as due to oxygen utilization. Moreover, since toxic chemicals are absorbed and then 

transported through the bloodstream, they contact directly with the erythrocytes, which in 

turn are among the first cells to suffer toxic effects (Ruas et al. 2008). 

 

2.4.1 Genotoxic damage induced by Roundup® 

Analyzing comet results, the Roundup® potential to induce DNA strand breaks in 

blood cells became clear, as both concentrations showed increased GDI values after 1- 

and 3-day exposure. In spite of a perceptible concentration-dependence, no clear time 

related variations were identified on the basis of GDI values. Though a general pattern 

marked by the prevalence of classes 1 and 2 could be identified, concentration- and time-

dependent alterations were better discernible when the five classes were analyzed 

individually. Hence, after 1-day exposure only 116 µg.L-1 Roundup® induced significant 

increases of classes 3 and 4. Moreover, after 3-day exposure the frequency of class 4 

was no more significantly different from the control. Fish exposed to 58 µg.L-1 presented a 

prevalence of class 2 on day 1, whereas on day 3 the peak was observed for class 1, 

revealing a time-related attenuation of the effect. The same pattern was perceptible for 

116 µg.L-1, though not so extensive, which by itself is also indicative of a concentration-

dependence. Therefore, it should be inferred that comet results presentation displaying 

the values for each damage class can offer detailed additional information whereas its 

collective analysis (GDI) may mask some variations. 

The main outcome of current comet assay is in agreement with data reported by 

Çavaş and Könen (2007) and Cavalcante et al. (2008) in tropical fish species, where the 

Roundup® potential to affect DNA integrity in blood cells was also observed. However, the 

time-related variation seemed to be clearly affected by species and/or exposure 

concentrations. Prochilodus lineatus exposed to 10 mg.L-1 for 1 day (without test water 

renewal) exhibited significantly elevated comet scores after 6 h exposure, returning to 

control levels 18 h later (Cavalcante et al. 2008). This pattern differs from the present 

study which shows elevated comet scores up to 3 days exposure, though its time-related 

attenuation was also observed. This can be explained by the lowering levels of the 

pesticide (or their metabolites) in blood, combined with the intervention of DNA-repair 

system and/or heavily damaged cells catabolism by the spleen. These processes were 

previously presented by Saleha Banu et al. (2001) to explain reductions in comet tail-
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length after 48 and 72 h and a return to control levels after 96 h in blood cells of fish 

(Tilapia mosambica) exposed to an organophosphate pesticide. Moreover, an increased 

splenic erythrophagia was associated to intense genetic damage in A. anguilla (Pacheco 

and Santos 2002). 

Considering ENA assay, the Roundup® capacity to cause chromosome breakage 

and/or chromosome segregational abnormalities was demonstrated after 3-day exposure 

to both tested concentrations. The genotoxic potential identified is in agreement with the 

study carried out by Çavaş and Könen (2007) with Carassius auratus, though the 

concentrations tested by this researchers were substantially higher (5, 10 and 15 mg.L-1). 

Nevertheless, on that previous study the lowest concentration required 6 days to induce 

ENA increase, highlighting the highest sensitivity of A. anguilla as a model species for 

genotoxicity evaluation by ENA assay. In addition, this species-specificity is reinforced by 

the absence of significant responses reported in P. lineatus exposed o 10 mg.L-1 for 6, 24 

and 96 h (Cavalcante et al. 2008). 

The comparative analysis of comet and MN (or ENA) assays in terms of their 

sensitivity is a controversial matter. In this perspective, current ENA data reflected a 

delayed appearance of damage (in relation to comet assay), indissociable from the need 

of the exposed cell population to undergo at least one cell cycle (Udroiu 2006), which is 

not a requisite for comet assay. Subsequently, only comet assay showed the ability to 

detect genetic damage on first day of exposure, confirming the precocious nature of the 

damaging events involved. Hence, as demonstrated by Wirzinger et al. (2007), DNA 

damage measured by the comet assay appears earlier than do micronuclei and is rather 

short-lived. On the other hand, ENA, unlike comet assay, demonstrated the ability to 

distinguish the two tested concentrations. In short, it can be inferred that these two 

genotoxic endpoints provide complementary information, allowing a more effective 

assessment of Roundup® genotoxic effects when jointly applied. Accordingly, Wirzinger et 

al. (2007) stated previously that both are non-specific biomarkers which reflect different 

forms of environmental stress, recommending the application of both tests for the 

evaluation of the genotoxic potential of surface waters. 

The two genotoxic indicators used (GDI values and ENA frequencies) showed to be 

significantly and positively correlated in the present study. Since comet and ENA assays 

may reflect different types of genetic damage, they can be determined by different factors. 

Thus, the association between the two responses is not a consensual issue and both 

positive (Russo et al. 2004) and negative (Wirzinger et al. 2007) correlations have already 

been observed in fish. The present results seem to support the hypothesis of Russo et al. 
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(2004) that the MN might be induced by strand breaks in the DNA. A question may arise 

in the context of the correlation between these two tests applied to blood. Whereas ENA 

assay only considers mature erythrocytes, comet assay is performed using all blood cell 

types (mature and immature erythrocytes, leukocytes and trombocytes). However, this 

may be regarded as a minor question taking into account the negligible abundance of the 

other cell types when compared to mature erythrocytes. 

 

2.4.2 Oxidative stress as a potential mechanism of genetic damage 

Only recently the effects of Roundup® and/or glyphosate on oxidative stress 

markers have been addressed in fish (Glusczak et al. 2007; Langiano and Martinez 2008; 

Lushchak et al. 2009). The few available studies provided inconclusive information, due to 

the variety of species and concentration ranges adopted, as well as the target organs 

analyzed. Thus, Roundup® exposure (2.5-20 mg.L-1) generally suppressed the activities of 

superoxide dismutase (SOD), GST and GR in brain, kidney and liver of C. auratus 

(Lushchak et al. 2009), which was explained by a ROS-induced inactivation. Oppositely, 

liver CAT activity increased in C. auratus (only at 10 mg.L-1) (Lushchak et al. 2009) and P. 

lineatus (7.5-10 mg.L-1) (Langiano and Martinez 2008), whereas in Rhamdia quelen (0.2-

0.4 mg.L-1) it remained unaltered (Glusczak et al. 2007). 

To our knowledge, this is the first time that these parameters are evaluated in fish 

blood following exposure to Roundup®. The present results revealed that neither 

enzymatic nor non-enzymatic antioxidant defenses were substantially affected by the 

herbicide, and thereby did not provide any evidence of pro-oxidant challenge. Considering 

the present and previous results, it can be suggested that the modulation of antioxidant 

responses by Roundup® is a concentration dependent process and thus, the lack of 

significant alterations currently observed in A. anguilla may be explained by tissue-

specificities and by the low concentrations adopted. These results seem to support the 

idea that the components of Roundup® do not directly enter redox processes (Lushchak et 

al. 2009) and, under the tested conditions (species/concentrations/exposure time), the 

threshold limit to cause, for instance, enzyme inhibition was not reached in blood. 

The LPO levels measured in A. anguilla blood were unaffected by the herbicide 

treatment and only the high concentration, after 1-day exposure, showed enhanced levels. 

Despite the tissue-specific differences, Lushchak et al. (2009) found similar results, as 

Roundup® did not increase the levels of lipid peroxides in C. auratus liver and brain. On 

the other hand, Glusczak et al. (2007) found that Roundup® treatment reduced LPO in 

brain, did not affect liver, and enhanced LPO in muscle of R. quelen.  
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Overall, the present results suggest that redox-defence system and peroxidative 

damage, though interdependent, can follow distinct concentration-dependent patterns. 

This is in agreement with Ahmad et al. (2006) who stated that LPO increase cannot be 

predicted only on the basis of antioxidant variations. 

Elevated levels of ROS or depressed antioxidant defenses may result in DNA 

oxidation and increased steady-state levels of unrepaired DNA, which is a well-known 

process underlying genotoxicity, namely in the context of environmental genotoxicants 

(Collins 2004; Azqueta et al. 2009). This association has already been demonstrated in 

humans for organophosphate pesticides (Muniz et al. 2008). Though never assessed, 

oxidative stress was hypothesized as a possible mechanism for Roundup® genotoxic 

action in fish (Cavalcante et al. 2008). In this perspective, the present data suggested 

that, under the tested conditions, both DNA and chromosomal damage induced by 

Roundup® in blood cells are not supported by an increased pro-oxidant state. However, 

this causal relationship cannot be definitively rejected namely in the presence of higher 

pesticide concentrations. Thus, the assessment of oxidatively altered DNA bases, 

applying for instance the comet assay with an extra step of digesting the nucleoids with 

enzymes that specifically recognize oxidized pyrimidines and purines or through the direct 

quantification of 8-hydroxy-2’-deoxyguanosine in the blood plasma, would be helpful in 

that direction.  

According to Saleha Banu et al. (2001), besides ROS dependent processes, 

organophosphate pesticides can cause DNA strand breaks interacting with DNA or 

inhibiting enzymes involved in DNA repair. Assuming that the slight time-related 

attenuation of DNA integrity loss can be indicative that DNA-repair system was not 

inhibited, the interaction between Roundup® constituents (or metabolites) and DNA 

appears as the most probable mechanism. Giving support to this suggestion, 

organophosphate pesticides were presented as alkylating agents (Wild 1975), affecting 

DNA bases either directly or indirectly via protein alkylation (Mohan 1973; Green et al. 

1974). 

 

 

2.5 Conclusions 

Present data demonstrated the Roundup® genotoxic potential to blood cells of A. 

anguilla exposed to environmentally realistic concentrations. The herbicide showed the 

capacity to induce both DNA damage as single strand breaks (measured by comet assay) 

and cytogenetic effects as chromosome or chromatid breaks or loss (measured by ENA 
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assay). Though correlated, the two adopted genotoxic endpoints demonstrated 

complementary aptitudes and thus their jointly application is recommended for the 

detection of potential environmental genotoxicants. 

Antioxidants were unresponsive to Roundup®, despite LPO increase after the first 

day of exposure to the highest concentration, indicating that oxidative stress caused by 

this herbicide in blood was not severe. In addition, overall results suggested that an 

increase on pro-oxidant state is not compulsory for the induction of both cytogenetic and 

DNA damaging effects of Roundup®.  

 The present findings on genotoxic properties of Roundup® point out increased initial 

risk factors towards the generation of long term adverse effects (e.g. carcinogenic and 

reproductive impairments) in fish exposed to environmentally relevant levels of this 

agrochemical. 
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3 DNA damage in fish (Anguilla anguilla) exposed to a glyphosate-based 

herbicide – elucidation on the organ-specificity and the role of oxidative stress 

 

 

Abstract  

Organophosphate herbicides are among the most dangerous agrochemicals for aquatic 

environment. In this context, Roundup®, a glyphosate-based herbicide, has been widely 

detected in natural water bodies, representing a potential threat to non-target organisms, 

namely fish. Thus, the main goal of the present study was to evaluate the Roundup® 

genotoxic potential to the teleost Anguilla anguilla, addressing the possible causative 

involvement of oxidative stress. Fish were exposed to environmentally realistic 

concentrations of this herbicide (58 and 116 µg.L-1) during 1 and 3 days. The standard 

procedure of comet assay was applied to gill and liver cells in order to reflect organ-

specific genetic damage. Since liver is a central organ on xenobiotic metabolism, 

nucleoids of hepatic cells were also incubated with a lesion-specific repair enzyme 

(formamidopyrimidine DNA glycosylase – FPG), in order to recognise oxidised purines. 

Antioxidants were determined in both organs as indicators of pro-oxidant state. In general, 

both organs displayed DNA damage increase for both Roundup® concentrations and 

exposure times, though liver showed to be less susceptible to the lower concentration. 

The enzyme-modified comet assay showed the occurrence of FPG-sensitive sites in liver 

only after 3-day exposure to the higher Roundup® concentration. The antioxidant defences 

were in general unresponsive, despite a single increment of catalase activity in gills (116 

µg.L-1, 3-day) and a decrease of superoxide dismutase activity in liver (58 µg.L-1, 3-day). 

Overall, the mechanisms involved in Roundup-induced DNA strand breaks showed to be 

similar in both organs. Nevertheless, it was demonstrated that the type of DNA damage 

varies with the concentration and exposure duration. Hence, after 1-day exposure, an 

increase on pro-oxidant state is not a compulsory condition for the induction of DNA 

damaging effects of Roundup®. Differently, by increasing the exposure length (to 3-day), 

ROS-dependent processes gained preponderance as a mechanism of DNA damage in 

the higher concentration. 

 

Keywords: Roundup®; glyphosate; genotoxicity; oxidative stress; fish. 
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3.1 Introduction 

The increment in the use of pesticides in contemporary agriculture is considered a 

major problem worldwide. Though the application of these agrochemicals is concentrated 

in terrestrial areas, they can reach the aquatic environment by drift, runoff, drainage and 

leaching (Cerejeira et al. 2003), raising a number of environmental concerns especially in 

systems of shallow waters. Among pesticides, organophosphates constitute the 

predominant class (Kaur et al. 2007). In this context, the use of Roundup®, a glyphosate-

based non-selective herbicide, has increased mainly due to the cultivation of genetically 

modified crops (Giesy et al. 2000). As a consequence of the extensive use of this 

commercial formulation, glyphosate has been widely detected in water bodies (Battaglin et 

al. 2005; Kolpin et al. 2006; Blanchoud et al. 2007; Pesce et al. 2008), increasing 

significantly the risks to non-target organisms, namely fish (Çavas and Könen 2007). 

Though some studies have considered glyphosate only slightly toxic for aquatic 

animals (USEPA 1993; WHO 1994) and with low potential to bioaccumulate (WHO 1994), 

glyphosate-based formulations are generally more toxic than pure glyphosate (Rank et al. 

1993; Peixoto 2005) mainly due to the interference of surfactants (Tsui and Chu 2008). 

Despite the existence of a large body of work concerning Roundup® deleterious effects on 

fish, only a few studies addressed its genotoxic potential. The available data 

demonstrated the genotoxicity of Roundup® to fish, expressed as cytogenetic and DNA-

damaging effects (Grisolia 2002; Çavas and Könen 2007; Cavalcante et al. 2008). 

Nevertheless, the concentrations tested in these studies were excessively high, when 

compared to the levels detected in natural water bodies. In addition, the mechanisms 

behind genetic damage and organ-specificities remain almost unexplored. Only recently, 

the association of Roundup® genotoxicity with oxidative stress was investigated for the 

first time in fish, following short-term exposure to environmentally realistic concentrations 

(Guilherme et al. 2010). 

Elevated levels of reactive oxygen species (ROS) and/or depressed antioxidant 

defences may result in DNA oxidation and increased steady-state levels of unrepaired 

DNA, which is a well-known process underlying genotoxicity, namely in the context of 

environmental genotoxicants (Collins 2004; Azqueta et al. 2009). Since organophosphate 

pesticides are known as oxidative stress inducers (Banerjee et al. 2001), the hypothesis 

that DNA damage induced by Roundup® may have an oxidative cause should be 

considered. This association has already been demonstrated in humans for 

organophosphate pesticides (Muniz et al. 2008). In relation to fish, the only existent study 

demonstrated that DNA and chromosomal damage induced by Roundup® in blood cells 
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was not supported by an increased pro-oxidant state, evaluated by the antioxidant 

responses (Guilherme et al. 2010). This study also recommended the assessment of DNA 

bases oxidation (for instance, applying the comet assay with an extra step of digesting the 

nucleoids with enzymes that specifically recognise oxidised bases) as a more 

straightforward strategy to achieve the aimed mechanistic knowledge.  

Genotoxic studies in fish are frequently performed in erythrocytes, due to their easy 

sampling and adaptability to most common methodologies (Ayllon and Garcia-Vazquez 

2001; Grisolia and Starling 2001). However, according to Sharma et al. (2007), other cell 

types should be used for monitoring genotoxic effects, thereby exploiting tissue-specific 

responses and acquiring a better perspective of the overall condition of the organisms. 

When waterborne contamination is considered, gills are the first target organ due to the 

wide surface area in direct and continuous contact with the external medium and its 

involvement on uptake (Al-Sabti and Metcalfe 1995; Jiraungkoorskul et al. 2003). 

Additionally, liver is also of great interest in individual fish health assessment considering 

its multi-functionality and primary role in the metabolism of xenobiotics, essential for 

activation/inactivation and detoxification of contaminants absorbed from different routes 

(Cizdziel et al. 2003). Moreover, fish exposure to Roundup® induced histological injuries in 

both organs (Jiraungkoorskul et al. 2002), despite antioxidant alterations were only 

demonstrated in liver (Langiano and Martinez 2008; Lushchak et al. 2009). 

Considering that genotoxicity stands for the most adverse impact of chemicals on 

wild organisms and the knowledge gaps previously recognized, the main goal of the 

present study was to evaluate the genotoxic potential of Roundup® to gill and liver cells of 

fish (Anguilla anguilla), following short-term exposure to environmentally realistic 

concentrations (58 and 116 µg.L-1), addressing the possible causative involvement of 

oxidative stress. The standard procedure of comet assay was applied to gill and liver cells 

in order to reflect organ-specific genetic damage. Additionally, and considering the 

peculiarities of liver in fish physiology, comet assay with an extra step where nucleoids are 

incubated with a DNA lesion-specific repair enzyme (formamidopyrimidine DNA 

glycosylase – FPG) was applied to hepatic cells in order to specifically target oxidised 

DNA bases. Superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase 

(GST), glutathione peroxidase (GPx) and glutathione reductase (GR) activities, as well as 

total glutathione (GSHt) content, were determined in both organs as indicators of pro-

oxidant state. 
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3.2 Material and Methods 

3.2.1 Chemicals 

A commercial formulation of glyphosate (Roundup® Ultra, distributed by Bayer 

CropScience, Portugal), containing isopropylammonium salt of glyphosate at 485 g.L-1 as 

the active ingredient (equivalent to 360 g.L-1 or 30.8 % of glyphosate) and polyethoxylene 

amine (16 %) as surfactant, was used. Formamidopyrimidine DNA glycosylase was 

purchased from Andrew Collins, University of Oslo, Norway. All the other chemicals 

needed to perform comet assay, as well as to quantify antioxidants, were obtained from 

the Sigma–Aldrich Chemical Company (Spain). 

 

3.2.2 Test animals and experimental design 

European eel (Anguilla anguilla L.) specimens with an average length of 25±3 cm 

and weight 32±5 g (yellow eel stage) were captured from an unpolluted area of Aveiro 

lagoon – Murtosa, Portugal. Eels were acclimated to laboratory for 12 days and kept in 

80-L aquaria under a natural photoperiod, in aerated, filtered, dechlorinated and 

recirculating tap water, with the following physico-chemical conditions: salinity 0, 

temperature 20±1ºC, pH 7.3±0.2, ammonia <0.1 mg.L-1, nitrite 0.06±0.03 mg.L-1, nitrate 

25±6.0 mg.L-1, dissolved oxygen 8.1±0.5 mg.L−1. During this period, fish were fed every 

other day with fish roe. 

The experiment was carried out in 20-L aquaria, in a static mode. Physical-chemical 

characteristics of the water during the experiment were daily monitored and fell in the 

intervals above described for the acclimation period. Fish were not fed 1 day before the 

experiment is started or during experimental period. Thirty-six eels were divided into 6 

aquaria (6 fish per dose per duration group; n=6) and exposed to 58 µg.L−1 (two aquaria) 

and 116 µg.L−1 (two aquaria) of Roundup®, equivalent to 18 and 36 µg.L−1 of glyphosate, 

respectively. Another two aquaria were kept with clean water – negative control groups. 

For each pesticide concentration, 1- and 3-day exposures were tested, corresponding to 

the two different aquaria previously mentioned. No mortality was observed during the 

whole experiment. After each exposure time, fish were sacrificed by cervical transection 

and bled. Liver and gills were collected and washed in ice-cold phosphate-buffered saline 

(PBS). A tissue portion of each organ was immediately processed for comet assay and 

the remainder tissue was stored in microtubes, frozen in liquid nitrogen and kept at -80 ºC 

until further procedures for antioxidants analyses. 
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3.2.3 Evaluation of genetic damage 

3.2.3.1 Comet assay 

Liver and gill cell suspensions were obtained by mincing briefly a part of the tissue 

with a pair of fine scissors in 1 mL of PBS and by pipetting up and down the fine minced 

tissue pieces (Hartmann et al. 2003). The conventional alkaline version of the comet 

assay was performed according to the methodology of Collins (2004) with slight 

modifications. Two gel replicates, containing each one approximately 2x104 cells (using 

cell suspension in PBS) in 70 µL of 1% low melting point agarose in PBS, were placed on 

one glass microscope slide, precoated with 1% normal melting point agarose. The gels 

were covered with glass coverslips and left for ±5 min at 4 ºC in order to solidify agarose, 

and then emerged in a lysis solution (2.5 M NaCl, 0.1 M EDTA, 10 mM Tris, 1% Triton X-

100, pH 10) at 4 ºC, for 1 h. Then, slides were gently placed in the electrophoresis tank, 

immersed in electrophoresis solution (±20 min) for alkaline treatment. DNA migration was 

performed at a fixed voltage of 25 V, a current of 300 mA which results in 0.7 V.cm-1 

(achieved by adjusting the buffer volume in the electrophoresis tank). The slides were 

stained with ethidium bromide (20 µg.mL−1). 

Considering liver, an additional set of slides was prepared to apply the comet assay 

procedure with an extra step of digesting the nucleoids with FPG. This lesion-specific 

endonuclease converts oxidised purines, including the major purine oxidation product 8-

oxoguanine as well as other altered purines (ring-opened purines or 

formamidopyrimidines), into DNA single strand breaks (Azqueta et al. 2009). Thus, after 

lysis of agarose-embedded cells, slides were washed 3 times with enzyme buffer (0.1 M 

KCl, 0.5 mM EDTA, 40 mM HEPES, 0.2 mg.mL−1 bovine serum albumin, pH 8) at 4 ºC. 

Then, 50 µL of FPG in buffer was applied in the centre of each gel, along with a coverslip, 

prior to incubation at 37 ºC for 45 min in a humidified atmosphere. Another set of slides 

was submitted to the same treatment, though incubated only with buffer. Subsequent 

steps – alkaline treatment, electrophoresis and staining - were as described above. 

One slide with two gels each, and 100 nucleoids per gel, was observed for each fish 

and organ, using a Leica DMLS fluorescence microscope (400x magnification). The DNA 

damage was quantified by visual classification of nucleoids into five comet classes, 

according to the tail intensity and length, from 0 (no tail) to 4 (almost all DNA in tail). The 

total score expressed as a genetic damage indicator (GDI) was calculated multiplying the 

mean percentage of nucleoids in each class by the corresponding factor, according to the 

formula: 
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GDI = [(% nucleoids class 0)×0] + [(% nucleoids class 1)x1] + [(% nucleoids class 

2)×2] + [(% nucleoids class 3)×3] + [(% nucleoids class 4)×4] 

 

GDI results were expressed as arbitrary units in a scale of 0 to 400 per 100 scored 

nucleoids (as average value for the 2 gels observed per fish). When the comet assay was 

performed with the additional FPG step (for liver), GDI values were calculated in the same 

way but the parameter designated GDIFPG. Besides the GDI, the frequency of nucleoids 

observed in each comet class was also expressed, as recommended by Azqueta et al. 

(2009). In order to improve the expression of the DNA damage extent, the sub-total 

frequency of nucleoids with medium (class 2), high (class 3) and complete (class 4) 

damaged DNA was also calculated (Palus et al. 1999; Çavas and Könen 2007). 

As positive control, both gill and liver cells were treated with 50 µM hydrogen 

peroxide (Sigma-Aldrich, Spain) for 5 min, according to Collins et al. (1995), and the 

respective GDI values were scored. 

 

3.2.4 Antioxidant system analyses 

3.2.4.1 Tissue preparation and fractionation  

Both organs (gills and liver) were homogenized in a 1:10 ratio (tissue volume: buffer 

volume), using a Potter-Elvehjem homogenizer, in chilled phosphate buffer (0.2 M, pH 

7.4). The homogenate was then divided into two aliquots: for GSHt quantification and for 

post-mitochondrial supernatant (PMS) preparation to be used in the enzymatic 

determinations. The PMS fraction was obtained by centrifugation in a refrigerated 

centrifuge (Eppendorf 5415R) at 13,400 g for 20 min at 4 ºC. Aliquots of PMS were stored 

in microtubes at -80 ºC until analyses. 

 

3.2.4.2 Measurement of antioxidant responses 

Superoxide dismutase was assayed (at 25 ºC) using a Ransod kit (Randox 

Laboratories Ltd., UK). Briefly, the method employs xanthine and xanthine oxidase to 

generate superoxide radicals which react with 2-(4-iodophenyl)-3-(4-nitrophenol)-5-

phenyltetrazolium chloride (INT) to form a red formazan dye. SOD activity is then 

measured by the degree of inhibition of this reaction. One unit of SOD is that which 

causes a 50% inhibition of the rate of reduction of INT under the conditions of the assay. 

Results were expressed as SOD units.mg-1 protein. 

Catalase activity was assayed (at 25 ºC) by the method of Claiborne (1985) as 

described by Giri et al. (1996). Briefly, the assay mixture consisted of 1.95 mL phosphate 
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buffer (0.05 mol.L -1, pH 7.0), 1 mL hydrogen peroxide (0.019 mol.L -1) and 0.05 mL of 

sample in a final volume of 3 mL. Change in absorbance was recorded 

spectrophotometrically at 240 nm and CAT activity was calculated in terms of µmol H2O2 

consumed.min-1.mg protein-1 (ε = 43.5 M-1.cm-1). 

Glutathione-S-transferase activity was determined using CDNB (1-chloro-2,4-

dinitrobenzene) as a substrate, according to the method Habig et al. (1974). The assay 

was carried out at 25 ºC in a quartz cuvette with a 2 mL mixture of 0.2 M phosphate buffer 

(pH 7.4), 0.2 mM CDNB and 0.2 mM reduced glutathione (GSH). The reaction was 

initiated by addition of 0.01 mL of sample, and the increase in absorbance was recorded 

spectrophotometrically (Jasco UV/VIS, V-530) at 340 nm, for 3 min. The enzyme activity 

was calculated as nmol CDNB conjugate formed min-1.mg protein-1 (ε = 9.6 mM-1.cm-1). 

Glutathione peroxidase activity was determined (at 25 ºC) according to the method 

of Mohandas et al. (1984), with some modifications. The assay mixture consisted of 0.72 

mL phosphate buffer (0.05 M, pH 7.0), 0.05 mL EDTA (1 mM), 0.05 mL sodium azide (1 

mM), 0.025 mL GR (1 IU.mL-1), 0.05 mL GSH (4 mM), 0.05 mL NADPH (0.8 mM), 0.005 

mL H2O2 (1.0 mM) and 0.05 mL of sample in a total volume of 1 mL. NADPH oxidation 

was recorded spectrophotometrically at 340 nm, and GPx activity was calculated in terms 

of nmol NADPH oxidized.min-1.mg protein-1 (ε = 6.22 x 103 M-1.cm-1).  

Glutathione reductase activity was assayed (at 25 ºC) by the method of Cribb et al. 

(1989), with some modifications. The assay determines indirectly the GR activity by 

measuring the NADPH disappearance associated to the reduction of oxidised glutathione 

(GSSG) catalysed by GR. Briefly, the assay mixture contained 0.025 mL of PMS fraction 

and 0.975 mL of NADPH (0.2 mM), GSSG (1mM) and diethylenetriaminepentaacetic acid 

(DTPA) (0.5 mM). Change in absorbance at 340 nm was registered 

spectrophotometrically (Jasco UV/VIS, V-530) during 3 min and GR activity calculated as 

nmol of NADPH oxidised.min-1.mg protein-1 (ε = 6.22×103 M-1 cm-1).  

For GSHt quantification, protein content in the tissue lysate was precipitated with 

trichloro acetic acid (TCA 12 %) for 1 h and then centrifuged at 13,400 g for 20 min at 4 

ºC. The resulting supernatant was collected and stored at −80 °C. GSHt was determined 

(in deproteinated PMS, at 25 ºC) by adopting the enzymatic recycling method using GR 

excess, whereby the sulfhydryl group of GSH reacts with 5,5, dithiobis-tetranitrobenzoic 

acid and produces a yellow colored 5-thio-2-nitrobenzoic acid (TNB). The rate of TNB 

production is directly proportional to the concentration of glutathione in the sample (Tietze 

1969; Baker et al. 1990). Formation of TNB was measured by spectrophotometry (Jasco 

UV/VIS, V-530) at 412 nm. It should be noted that GSSG in this system is converted to 
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GSH by GR, which, consequently, measures total gluthatione (GSHt) content. The results 

were expressed as nmol TNB formed.min-1.mg protein-1 (ε = 14.1 mM-1.cm-1). 

Total protein contents were determined according to the Biuret method (Gornall et 

al. 1949), using bovine serum albumin (Merck) as a standard. 

 

3.2.5 Statistical analysis 

SigmaStat software (SPSS Inc.) was used for statistical analyses. All data were first 

tested for normality and homogeneity of variance to meet statistical demands. One-way 

ANOVA analysis was used to compare the different treatments within the same exposure 

duration as well as to compare the same treatment in different exposure durations. The 

Tukey test was applied for Post-hoc comparison. Whenever the assumptions for 

parametric statistics failed, a non parametric correspondent test (Kruskall Wallis) was 

performed, followed by a non parametric all pairwise multiple comparison procedure 

(Dunn’s test) (Zar 1996). 

 

 

3.3 Results 

3.3.1 DNA damage 

3.3.1.1 Gills 

Gills of fish exposed to both concentrations of Roundup® (58 and 116 µg.L-1) 

demonstrated an increase in GDI values, after 1- and 3-day exposures, when compared 

to respective control (Fig. 1). Concerning 1-day exposure, gills GDI presented a 1.6 and 

1.7 times increase, respectively for 58 and 116 µg.L-1 Roundup® concentrations, when 

compared to control. After 3 days, GDI values presented a 1.4 and 1.8 times increase, 

respectively for 58 and 116 µg.L-1 groups. Moreover, the 116 µg.L-1 group displayed a 

significant GDI increase, when compared with the 58 µg.L-1 group. Globally, the GDI 

showed to be concentration dependent, whereas only one time-related alteration was 

noticeable, concerning a decrease from 1- to 3-day exposure for the concentration 58 

µg.L-1 of Roundup®. The positive control (cells treated with H2O2) displayed an average 

GDI of 291.7 (± 8.28) arbitrary units, showing to be significantly higher than the negative 

control as well as than both concentrations of Roundup®. 
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Fig. 1. Mean values of genetic damage indicator (GDI), expressed as arbitrary units, measured by 

comet assay in gills of A. anguilla exposed to 58 and 116 µg.L-1 Roundup®, during 1 and 3 days. 

Statistically significant differences (p<0.05) are: (a) vs. control and (b) vs. 58 µg.L-1 (within the 

same exposure duration); (♦) vs. 1-day exposure (for the same exposure condition). Bars represent 

the standard error. 

 

The results in terms of individual DNA damage classes are presented in table 1. 

Hence, after the first day of exposure, gills of fish exposed to 58 µg.L-1 of Roundup® 

showed significant increases in classes 2 and 4 when compared with control, while in 116 

µg.L-1 group significant increases were detected in classes 2, 3 and 4. Sub-total of 

damaged nucleoids (sum of damage classes 2, 3 and 4) showed increments of 3 and 3.5 

times, respectively for 58 and 116 µg.L-1 groups, when compared to control, highlighting 

an influence of Roundup® concentration in the magnitude of damage. Following 3-day 

exposure to 58 µg.L-1 of Roundup®, only class 2 showed a significant increase in 

comparison to control. After 3-day exposure to 116 µg.L-1, classes 2 and 3 showed 

significant increases. Significant time-related differences were observed in classes 1 

(increase) and 4 (decrease). Damaged nucleoids (sub-total 2+3+4) frequency was 

significantly elevated in both treated groups (4.7 and 6.6 times, respectively for 58 and 

116 µg.L-1), though it seems to decrease in comparison with the corresponding levels after 

1-day exposure (significantly lower for 58 µg.L-1 group). Overall, and considering both 

Roundup® concentrations, class 2 was the most prevalent following 1-day exposure, 

whereas after 3-day exposure the most prevalent was class 1. 
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Table 1. Mean frequencies (%) of each DNA damage class and sub-total of damaged nucleoids (± 

standard error), measured by comet assay, in gill cells of A. anguilla exposed to 58 and 116 µg.L-1 

Roundup®, during 1 and 3 days. Statistically significant differences (p<0.05) are: (a) vs. control 

(within the same exposure duration); (♦) vs. 1-day exposure (for the same exposure condition). 

 

 

 

3.3.1.2 Liver 

After 1-day exposure, liver of fish treated with both Roundup® concentrations (Fig. 

2A) displayed significantly higher GDI values, in relation to control. The increments were 

around 1.5 and 1.6 times, respectively for 58 and 116 µg.L-1. In what concerns to 3-day 

exposure, only the higher concentration showed a significant GDI increase (1.6 times), 

when compared to control. This group also displayed a significant increase in relation to 

58 µg.L-1 group (1.7 times). Considering the GDI results as a whole, a concentration 

dependency was not clear. Differently, time-related variations included a significant 

decrease in 58 µg.L-1 group and an increase in 116 µg.L-1 group. The positive control 

displayed an average GDI of 283.0 (± 11.80) arbitrary units, showing to be significantly 

higher than the negative control as well as than both concentrations of Roundup®. 
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Fig. 2. Mean values of DNA damage, expressed in arbitrary units, measured by comet assay in 

liver of A. anguilla exposed to 58 and 116 µg.L-1 Roundup®, during 1 and 3 days. (A) Genetic 

damage indicator (GDI) after standard (alkaline) comet assay. Values after enzyme-modified comet 

assay, as a measure of bases oxidation, showing overall (GDIFPG) and partial scores (B), as well as 

additional DNA breaks corresponding to net FPG-sensitive sites (calculated by the difference 

between GDIFPG and GDI values) (C). Statistically significant differences (p<0.05) are: (a) vs. 

control and (b) vs. 58 µg.L-1 (within the same exposure duration); (♦) vs. 1-day exposure (for the 

same exposure condition). Bars represent the standard error.  

 

Concerning the frequency of individual classes of damage (Table 2), after 1-day 

exposure to 58 µg.L-1, none of the classes displayed significant increases; however, a 

significant increase (about 1.7 times) was found in sub-total of damaged nucleoids for this 

group in relation to control. On the other hand, 116 µg.L-1 group exhibited significant 

increases (compared with the control) either in classes 3 and 4 or in sub-total of damaged 
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nucleoids (about 1.6 times). Both Roundup® concentrations showed a significant 

decrease of class 1 frequency, in relation to the control. The results of 3-day exposure 

revealed significant alteration in relation to the control only for the higher herbicide 

concentration. Thus, 116 µg.L-1 group showed significantly higher frequency of classes 3 

and 4 as well as sub-total of damaged nucleoids in relation to control and to 58 µg.L-1 

groups. 

Some differences were also found comparing both exposure times. Hence, a time-

related decrease was observed for class 2 and sub-total of damaged nucleoids in 58 µg.L-

1 group as well as for class 1 in 116 µg.L-1 group, whereas an opposite temporal variation 

was observed for class 1 in 58 µg.L-1 group and for sub-total of damaged nucleoids in 116 

µg.L-1 group.  

When the digestion with FPG enzyme was incorporated into the assay, significant 

differences were only found after 3-day exposure for the 116 µg.L-1 group (Figs. 2B and 

C). Taking into account the overall score (Fig. 2B), this group displayed significant 

increases of 1.7 and 1.8 times in relation to control and to the lower concentration, 

respectively. Considering the net FPG-sensitive sites (Fig. 2C), the higher concentration 

group (116 µg.L-1) showed increases of 1.7 and 2.1 times when compared with control 

and with the lower concentration, respectively. Moreover, 116 µg.L-1 group showed 

significant increases from 1- to 3-day exposure for both overall score and net FPG-

sensitive sites, being the increment extent particularly relevant in the later parameter (10 

times). 

 

Table 2. Mean frequencies (%) of each DNA damage class and sub-total of damaged nucleoids (± 

standard error), measured by comet assay, in liver cells of A. anguilla exposed to 58 and 116 µg.L-1 

Roundup®, during 1 and 3 days. Statistically significant differences (p<0.05) are: (a) vs. control and 

(b) vs. 58 µg.L-1 (within the same exposure duration); (♦) vs. 1-day exposure (for the same 

exposure condition). 
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3.3.2 Antioxidant responses 

3.3.2.1 Gills 

Concerning antioxidant responses measured in both Roundup® treated groups (Fig. 

3), significant increase was only found for CAT activity in 116 µg.L-1 group after 3-day 

exposure, compared either to control or to 58 µg.L-1 groups (Fig. 3B). Regarding the 

comparison between 1- and 3-day exposures, it is noticeable a significant time-related 

decrease in GPx activity, in both treated groups (Fig. 3E), as well as in GSHt content in 

116 µg.L-1 group (Fig. 3F). 
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Fig. 3. Mean superoxide dismutase (SOD) (A), catalase (CAT) (B), glutathione-S-transferase 

(GST) (C), glutathione reductase (GR) (D) and glutathione peroxidase (GPx) (E) activities, as well 

as total glutathione (GSHt) content (F) in gills of A. anguilla exposed to 58 and 116 µg.L-1 

Roundup®, during 1 and 3 days. Statistically significant differences (p<0.05) are: (a) vs. control and 

(b) vs. 58 µg.L-1 (within the same exposure duration); (♦) vs. 1-day exposure (for the same 

exposure condition). Bars represent the standard error. 
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3.3.2.2 Liver 

With the exception of a significant decrease in SOD activity displayed by liver of 58 

µg.L-1 group after the 3-day exposure (Fig. 4A), no alterations were observed in 

antioxidant responses (Fig. 4). 
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Fig. 4. Mean superoxide dismutase (SOD) (A), catalase (CAT) (B), glutathione-S-transferase 

(GST) (C), glutathione reductase (GR) (D) and glutathione peroxidase (GPx) (E) activities, as well 

as total glutathione (GSHt) content (F) in liver of A. anguilla exposed to 58 and 116 µg.L-1 

Roundup®, during 1 and 3 days. Statistically significant differences (p<0.05) are: (a) vs. control. 

Bars represent the standard error. 

 

 

3.4 Discussion 

The intentional application of Roundup® or other glyphosate-based formulations to 

control emergent and floating aquatic vegetation can result in greater localized 

concentrations in aquatic systems than those from runoff from terrestrial uses (Giesy et al. 



DNA damage in fish exposed to a glyphosate-based herbicide 

85 

2000). Giesy et al. (2000) developed a model to estimate the worst-case exposure 

conditions. Taking into account this theoretical model, values within the ranges 0.27-0.41 

and 0.34-0.68 mg.L-1 of Roundup® were considered the maximum concentrations likely to 

be found in surface waters following terrestrial uses or direct applications, respectively. In 

general, these estimations have proven to be correct, since concentrations of glyphosate 

were detected in the range 75-90 µg.L−1 in the Orge watershed (France) (Botta et al. 

2009) and higher levels (0.5-1.0 mg.L-1) than those predicted were sporadically found 

following direct application to water (WHO 1994). Extreme values of glyphosate were 

found near agricultural areas, in Brazil, corresponding to the range 0.36-2.16 mg.L-1 of 

commercial formulation Roundup® (360 g.L-1 glyphosate) (Rodrigues and Almeida 2005). 

Accordingly, the concentrations tested in the current research (corresponding to 18 

and 36 µg.L-1 of glyphosate) are realistic, contrasting with other studies where Roundup® 

concentrations were one order of magnitude higher (Jiraungkoorskul et al. 2003; Çavas 

and Könen 2007; Cavalcante et al. 2008; Langiano and Martinez 2008; Lushchak et al. 

2009). In addition, the present study represents an important progress in relation to the 

(few) previous fish studies on Roundup® genotoxicity by its mechanistic approach and by 

the exploration of organ-specific susceptibilities. To the authors’ knowledge, a single 

report is available on gills in this context (Cavalcante et al. 2008) and no studies were yet 

performed in liver. Furthermore, the use of comet assay in combination with a specific 

DNA repair enzyme, FPG, is a novel approach, since this tool, applied for the first time to 

fish in 2003 (Akcha et al. 2003), has never been used before to assess pesticide-induced 

DNA damage. 

 

3.4.1 Gills DNA damage and pro-oxidant state  

GDI results clearly indicated the Roundup® potential to induce DNA strand breaks in 

branchial cells, in both tested concentrations (58 and 116 µg.L-1) and exposure times (1 

and 3 days). Overall, a concentration-dependence was observed mainly after 3-day 

exposure. A time-related attenuation of the effect was perceptible only for the lower 

herbicide concentration (showing lower GDI values at day 3 in comparison to day 1, 

though still higher than the respective control), revealing a concentration-related pattern. 

This temporal variation can be explained by the lowering levels of the pesticide (or their 

metabolites) in gills tissue, combined with the intervention of DNA-repair system and/or 

cell turnover. In this direction, it was demonstrated that gills epithelium is regularly subject 

to exfoliation and erosion, which is counteracted by an intense cell division rate (Pacheco 

et al. 1993). 
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Examining the individual damage classes, it was possible to identify in treated fish, 

invariably, decreases in class 1 (not damaged nucleoids) frequency, whenever damaged 

nucleoids classes (2, 3 and 4) predominantly presented increased frequencies. Despite in 

line with GDI data, it is important to highlight the damaged nucleoids (sub-total 2+3+4) 

frequency, since it exhibited higher increments in treated groups (maximum 6.6 times in 

relation to control) when compared to the corresponding increments obtained for GDI 

values (maximum 1.7 times). Rather than GDI, damaged nucleoids frequency appears to 

have a higher capacity to discriminate between treated and untreated fish. Thus, the 

analysis of individual DNA damage classes seems to improve the information concerning 

the magnitude of damage, making clearer concentration- and time-related response 

profiles. 

The main outcome of current comet assay regarding A. anguilla gills is in agreement 

with data reported by Cavalcante et al. (2008) in gills of the neotropical fish Prochilodus 

lineatus, where the Roundup® potential to affect DNA integrity was also demonstrated 

after 6 and 24 h exposure to 10 mg.L−1. 

Only recently the potential of Roundup® (or glyphosate) to induce oxidative stress 

responses in fish have been addressed (Glusczak et al. 2007; Langiano and Martinez 

2008; Lushchak et al. 2009; Menezes et al. 2010). The available studies provided 

inconclusive and divergent information, due to the variety of species and concentration 

ranges adopted, as well as the target organs analysed. Though Roundup® has been 

shown as an oxidative stress agent on different fish organs/tissues (Langiano and 

Martinez 2008; Lushchak et al. 2009; Menezes et al. 2010), its impact specifically on gills 

pro-oxidant state has never been addressed. On the other hand, it is documented that fish 

gills can be more vulnerable towards oxidative damage than other organs (e.g. liver) and 

may respond earlier to a pollutant-induced pro-oxidant challenge (Ahmad et al. 2004; 

Santos et al. 2006). Therefore, DNA oxidation was hypothesised as a potential kind of 

damage induced by Roundup® in branchial cells. However, present data concerning 1-day 

exposure revealed that DNA strand breaks induction was not accompanied by an 

increased pro-oxidant state, suggesting that DNA was not oxidatively damaged under 

these conditions. Differently, after 3-day exposure, the higher concentration (116 µg.L-1) 

induced a CAT activity increase, indicating an overproduction of H2O2, the main cell 

precursor of the hydroxyl radical (OH�) which is considered the most toxic ROS. Hence, 

under these circumstances, the DNA oxidation may play a role on the Roundup® 

genotoxic capacity demonstrated in A. anguilla gills. 
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3.4.2 Liver DNA damage and underlying mechanisms 

Following 1-day exposure, GDI results demonstrated that Roundup® affects DNA 

integrity of hepatic cells in both exposure concentrations, not revealing a concentration 

dependency. The exposure time extension revealed a different pattern, since at day 3, the 

GDI value for the lower concentration reversed to the control level, whereas the higher 

concentration exhibited a time-related GDI increase. As stated for gills, the analysis of 

individual DNA damage classes reinforced the outcome obtained with GDI.  

The clarification of the involvement of oxidative stress on the liver DNA damaging 

effect of Roundup® was attempted combining the analysis of antioxidant responses and 

the identification of additional DNA breaks corresponding to FPG-sensitive sites. Hence, 

antioxidant system did not sign an increased pro-oxidant state in liver, as both enzymatic 

and non-enzymatic antioxidants remained unchanged under all the exposure conditions. 

This finding agrees with a previous study performed by Mañas et al. (2009) who observed 

that an intraperitoneal administration of glyphosate in mice caused genotoxicity in liver, 

despite the absence of antioxidant defences induction. In accordance, after 1-day 

exposure, no DNA oxidation was reflected in the results concerning overall GDIFPG scores 

or net FPG-sensitive sites. Furthermore, the lowest value for net FPG-sensitive sites was 

measured in 116 µg.L-1 group after 1-day exposure, highlighting that under short 

exposures the base oxidation is not a relevant mechanism of damage. Differently, 

following 3-day exposure, oxidised purines were found to be elevated in the 116 µg.L-1 

group, as depicted in the significant increase of GDIFPG and net FPG-sensitive sites 

observed in comparison to control and 58 µg.L-1 groups. Surprisingly, it should be noted 

that the Roundup-induced DNA oxidative damage (signalized by the enzyme-modified 

comet assay) was not accompanied by an activation of the antioxidant system. Thus, as 

previously stated (Ahmad et al. 2006), the oxidative damage cannot be predicted only on 

the basis of antioxidant variations. This association can be particularly compromised when 

the consumption of low molecular mass antioxidants is counterbalanced by de novo 

synthesis and/or inhibitory actions impair the activity of enzymatic antioxidants. Taking 

into account the present results, the occurrence of this effect cannot be excluded, namely 

in the light of the SOD activity decrease detected after 3-day exposure to 58 µg.L-1. Giving 

support to this observation, Lushchak et al. (2009) found that Roundup® exposure (2.5-20 

mg.L-1) suppressed SOD activity in the liver of Carassius auratus, which was explained by 

a ROS-induced inactivation. It is also important to notice that the currently observed SOD 

inhibition occurred for the only condition that did not display DNA integrity loss. This may 

be regarded as an indication of different threshold limits for toxicity expression as enzyme 
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inhibition or as DNA damage. In agreement with Modesto and Martinez (2010a, 2010b), 

who found an activity decrease in antioxidant enzymes (SOD, CAT, GST, and GPX) of 

fish exposed to Roundup®, the present results point to the enzymatic inhibition as a 

potential mechanism through which this herbicide can induce oxidative stress. 

Saleha Banu et al. (2001) stated that, besides ROS-dependent processes, 

organophosphate pesticides can cause DNA strand breaks by inhibiting enzymes involved 

in DNA repair or interacting with DNA. Giving support to this suggestion, 

organophosphates were presented as alkylating agents (Wild 1975) affecting DNA bases 

either directly or indirectly via protein alkylation (Mohan 1973; Green et al. 1974). A study 

performed in mice, also showed the ability of Roundup® to induce a dose-dependent 

formation of DNA adducts (Peluso et al. 1998). Therefore, the previously invoked 

mechanisms (ROS-independent processes) played a key role on the generation of DNA 

damage in hepatic cells under short exposures (1 day), while for 3-day exposure (116 

µg.L-1) DNA bases oxidation appears as a relevant mechanism of damage. 

 

3.4.3 Gills versus liver responses 

The comparative analysis of both comet assay and antioxidant endpoints in gills and 

liver following 1-day exposure revealed similar patterns of response and comparable 

susceptibly towards Roundup-induced genotoxicity. In addition, both organs displayed a 

remarkable decrease of genetic damage after 3-day exposure to 58 µg.L-1. Nevertheless, 

it was also notorious an organ-specificity as GDI values in liver returned to the control 

level whereas in gills remained significantly higher than control. This may be an indication 

of a better adaptive behaviour of hepatic cells, which can be related with a higher capacity 

to maintain the genomic stability by detecting and repairing damaged DNA. This fact 

makes gills more adequate for genotoxic risk assessment in environmental waters in the 

presence of moderate waterborne concentrations of this herbicide. Another difference 

between the studied organs concerned the time-related increase in GDI levels, only 

observed in liver (116 µg.L-1).  

Under the tested conditions, antioxidant system seems to be more responsive in 

gills, also showing lesser vulnerability to enzyme inhibition compared to liver.  

In general, the variation on the preponderance of the ROS-dependent processes as 

a function of concentration and time did not show an organ-specificity. 
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3.5 Conclusions 

The present findings clearly demonstrated the genotoxic properties of Roundup® 

expressed as DNA strand breaks (measured by comet assay) in gills and liver cells of A. 

anguilla exposed to realistic concentrations. Therefore, it was pointed out the risk to 

ichthyopopulations resulting from the occurrence of this agrochemical in natural water 

bodies. 

The investigation of the causative involvement of oxidative stress demonstrated that 

the type of DNA damage varies with the tested concentration and exposure duration. 

Hence, after 1-day exposure, it was demonstrated that an increase on pro-oxidant state is 

not a compulsory condition for the induction of DNA damaging effects of Roundup®. 

Nevertheless, by increasing the exposure length (to 3 days), ROS-dependent processes 

gained preponderance as a mechanism of DNA damage in the higher concentration (116 

µg.L-1), as evidenced by the antioxidant activation observed in gills and the net FPG-

sensitive sites (signalling oxidatively altered DNA bases) elevation detected in liver 

through the enzyme-modified comet assay. 

Overall, the mechanisms involved in Roundup-induced DNA damage seem to be 

similar in both organs. However, liver showed to be less susceptible to DNA integrity loss 

in the presence of the lower concentration (58 µg.L-1). 
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4 Differential genotoxicity of Roundup
®
 formulation and its constituents in 

blood cells of fish (Anguilla anguilla) – considerations on chemical 

interactions and DNA damaging mechanisms 

 

 

Abstract  

It has been widely recognized that pesticides represent a potential threat in aquatic 

ecosystems. However, the knowledge on the genotoxicity of pesticides to fish is still 

limited. Moreover, genotoxic studies have been almost exclusively focused on the active 

ingredients, whereas the effect of adjuvants is frequently ignored. Hence, the present 

study addressed the herbicide Roundup®, evaluating the relative contribution of the active 

ingredient (glyphosate) and the surfactant (polyethoxylated amine; POEA) to the 

genotoxicity of the commercial formulation on Anguilla anguilla. Fish were exposed to 

equivalent concentrations of Roundup® (58 and 116 µg.L−1), glyphosate (17.9 and 35.7 

µg.L−1) and POEA (9.3 and 18.6 µg.L−1), during 1 and 3 days. The comet assay was 

applied to blood cells, either as the standard procedure, or with an extra step involving 

DNA lesion-specific repair enzymes in an attempt to clarify DNA damaging mechanisms. 

The results confirmed the genotoxicity of Roundup®, also demonstrating the genotoxic 

potential of glyphosate and POEA individually. Though both components contributed to 

the overall genotoxicity of the pesticide formulation, the sum of their individual effects was 

never observed, pointing out an antagonistic interaction. Although POEA is far from being 

considered biologically inert, it did not increase the risk associated to glyphosate when the 

two were combined. The analysis of oxidatively induced breaks suggested that oxidation 

of DNA bases was not a dominant mechanism of damage. The present findings 

highlighted the risk posed to fish populations by the assessed chemicals, jointly or 

individually, emphasizing the need to define regulatory thresholds for all the formulation 

components and recommending, in particular, the revision of the hazard classification of 

POEA. 

 

Keywords: Roundup®; glyphosate; POEA; genotoxicity; DNA lesion-specific repair 

enzymes; fish. 
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4.1 Introduction 

Herbicides represent a hazardous and widely spread group of environmental 

contaminants, affecting non-target organisms, namely fish, since they can easily reach the 

aquatic systems by runoff, drainage, leaching or inadvertent aerial overspray. The 

formulations of these agrochemicals typically include the active ingredient and one or 

more adjuvants (Foy 1987) that are meant to aid or modify the active ingredient function 

(Valkenburg 1982). In this framework, surfactants are the most commonly incorporated. 

Paradoxically, toxicity evaluation is almost exclusively focused on the active ingredient, 

whereas the effects of the different adjuvants, either directly or indirectly, are a topic 

largely ignored by environmental toxicologists and protection agencies. Moreover, 

adjuvants are generally considered “dilutants” or “inerts” for regulatory purposes (Richard 

et al. 2005) and risk assessment usually fails to look at the effects resulting from 

interactions with the active ingredient (Renner 2005). 

The broad-spectrum herbicide Roundup® appears as one of the most popular 

commercial formulations worldwide, with a wide use in agriculture, ornamental gardens 

and for aquatic weed control (Giesy et al. 2000). Roundup® is a combination of 

glyphosate, as active ingredient, and a non-ionic surfactant that promotes the penetration 

of glyphosate into the plant cuticle - polyethoxylated amine (POEA) (Relyea 2005; 

Brausch and Smith 2007). Glyphosate has been considered as practically nontoxic to 

birds and mammals and moderately toxic to practically nontoxic to fish and invertebrates 

(USEPA 1993). However, glyphosate-based formulations are generally considered more 

toxic than pure glyphosate (Rank et al. 1993; Tsui and Chu 2003; Peixoto 2005). 

Formulations containing POEA are of particular interest in ecotoxicology since they are 

known to exhibit relatively higher toxicity to many aquatic organisms, as compared to 

glyphosate alone or other glyphosate-based formulations without this particular surfactant 

(Perkins et al. 2000; Howe et al. 2004). It is believed that POEA disrupts cell membranes 

on respiratory surfaces (Lindgren et al. 1996a; Relyea 2005) and its toxicity has been 

demonstrated for crustaceans (Brausch and Smith 2007; Brausch et al. 2007; Frontera et 

al. 2011) and amphibians (Relyea 2005). Nevertheless, the toxicity of POEA to fish has 

not yet been described. 

Since genotoxicity is one of the most adverse effects of contaminants, including 

pesticides, on wildlife, it is noteworthy that little is known about the risk of DNA damage 

associated with fish exposure to Roundup® or its components. Although the available 

literature has recently demonstrated the genotoxicity of the commercial formulation in fish 

(Grisolia 2002; Çavas and Könen 2007; Cavalcante et al. 2008; Guilherme et al. 2010), 
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the action of the active ingredient alone and the comparison of its genotoxic potential 

within the commercial mixture remain unknown. Furthermore, nothing is known about the 

contribution of POEA to the overall genotoxic potential of Roundup®. 

Keeping in mind the knowledge gaps identified, the main goal of the present 

research was to evaluate the relative contribution of the active ingredient (glyphosate) and 

the surfactant (POEA) to the genotoxicity of the commercial formulation Roundup® on fish. 

The classification of POEA as “inert of minimal concern” will also be called into question. 

Therefore, the comet assay was used to detect DNA damage in blood cells of juvenile 

Anguilla anguilla, following a short-term exposure to the previous agents, adopting 

environmentally realistic concentrations. With the purpose to shed light on the DNA 

damaging mechanisms, besides the standard procedure, comet assay was carried out 

with an extra step where nucleoids were incubated with DNA lesion-specific repair 

enzymes. This methodology allows the detection of a genotoxic risk resulting from 

unspecific (alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and single strand 

breaks associated with incomplete excision repair sites) and specific (bases oxidation) 

damage. Hence, it may clarify if the induced damage has an oxidative cause. The 

European eel (A. anguilla) was adopted as test species due to its sensitivity and suitability 

as bioindicator. As demonstrated in previous studies (Guilherme et al. 2010, 2012), this 

species showed to be able of reflecting the pernicious effects of pesticides, namely 

Roundup®. 

 

 

4.2 Material and Methods 

4.2.1 Chemicals 

The experiment was conducted using the commercial formulation Roundup® Ultra, 

distributed by Bayer CropScience (Portugal), containing isopropylammonium salt of 

glyphosate at 485 g.L-1 as the active ingredient (equivalent to 360 g.L-1 or 30.8 % of 

glyphosate) and POEA (16 %) as surfactant. Glyphosate was obtained from Sigma-

Aldrich Chemical Company (Spain). POEA (solution at 785 g.L-1) was kindly provided by 

Professor Robert Bellé (UMR 7150 CNRS/ UPMC, Station Biologique de Roscoff, 

France). DNA lesion-specific repair enzymes, namely formamidopyrimidine DNA 

glycosylase (FPG) and endonuclease III (EndoIII) were purchased from Professor Andrew 

Collins (University of Oslo, Norway). All the other chemicals needed to perform comet 

assay were obtained from the Sigma-Aldrich Chemical Company (Spain). 
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4.2.2 Test animals and experimental design 

European eel (Anguilla anguilla L.) specimens with an average weight 0.25±0.02 g 

(glass eel stage) were captured from Mondego river mouth, Figueira da Foz, Portugal. 

Eels were acclimated to the laboratory for 20 days and kept in 20-L aquaria under a 

natural photoperiod, in aerated, filtered, dechlorinated and recirculating tap water, with the 

following physico-chemical conditions: salinity 0, temperature 20±1ºC, pH 7.3±0.2, nitrate 

25±0.5 mg.L-1, nitrite 0.05±0.01 mg.L-1, ammonia 0.1±0.01 mg.L-1, dissolved oxygen 

8.1±0.5 mg.L−1. During this period, fish were daily fed with fish roe. 

The experiment was carried out in 1-L aquaria, in a static mode, under the 

conditions described for the acclimation period. After acclimation, 168 eels were divided 

into fourteen groups, corresponding to seven test conditions and two exposures times 

(7x2). Thus, fish were exposed to 58 and 116 µg.L−1 Roundup® (groups R1 and R2, 

respectively), 17.9 and 35.7 µg.L−1 glyphosate (groups G1 and G2, respectively), and 9.3 

and 18.6 µg.L−1 POEA (groups P1 and P2, respectively). Another group was kept with 

clean water - control (group C). For each test condition, 1 and 3 days exposures were 

carried out. Water medium in 3-day aquaria was daily renewed (100%). The 

concentrations of Roundup® assayed are considered environmentally relevant (Guilherme 

et al. 2010). Taking this as a starting point, the exposure concentrations of glyphosate and 

POEA were calculated on a proportionality basis, considering the formulation described in 

point 2.1. (for instance, it was assumed that 58 µg of the formulation contains 17.9 µg of 

glyphosate and approximately of 9.3 µg of POEA). Stock solutions of each compound 

were prepared (in deionised water) just before addition to exposure water.  

To each test group was assigned an abbreviation where the first number represents 

the exposure duration, the letter represents the agent tested and the second number 

represents the concentration (1 for the lower and 2 for the higher). The experiment was 

carried out using triplicate (n=3) groups of 4 fish for each condition/time (3x4 = 12 fish). 

Fish were not fed during the experimental period. Fish were sacrificed by cervical 

transaction at the post-opercular region and blood collected from the heart using 

heparinised capillary tubes. Two µL of blood were immediately diluted in 1 mL of ice-cold 

phosphate-buffered saline (PBS) to prepare a cell suspension, which was kept on ice until 

further procedure. 

 

 

 

 



Differential genotoxicity of Roundup
®

 formulation and its constituents in blood cells of fish 

101 

4.2.3 Evaluation of genetic damage 

The conventional alkaline version of the comet assay was performed according to 

the methodology of Collins (2004) as adapted by Guilherme et al. (2010), with the proper 

adjustments to the assay procedure with the extra step of digesting the nucleoids with 

endonucleases. A system of eight gels per slide was adopted, based on a model created 

by Shaposhnikov et al. (2010), in order to increase the assay output. Briefly, 20 µL of cell 

suspension (previously prepared in PBS) were mixed with 70 µL of 1% low melting point 

agarose (in PBS). Eight drops of 6 µL were placed onto the precoated slide as two rows of 

4 (4 groups of 2 replicates), without coverslips, each drop/gel containing approximately 

1500 cells. The gels were left for ±5 min at 4 ºC in order to solidify the agarose, and then 

immersed in a lysis solution (2.5 M NaCl, 0.1 M EDTA, 10 mM Tris, 1% Triton X-100, pH 

10) at 4 ºC, for 1 h. After lysis of agarose-embedded cells, slides were washed 3 times 

with enzyme buffer (0.1 M KCl, 0.5 mM EDTA, 40 mM HEPES, 0.2 mg.mL−1 bovine serum 

albumin, pH 8) at 4 ºC. 

Three sets of slides were prepared: two sets were incubated with endonucleases (1) 

FPG and (2) EndoIII, that convert oxidised purines and pyrimidines into DNA single strand 

breaks, respectively (Azqueta et al. 2009), and a third (3) set was incubated only with 

buffer. Hence, 30 µL of each enzyme diluted in buffer were applied in each gel, along with 

a coverslip, prior to incubation at 37 ºC for 30 min in a humidified atmosphere. The slides 

were then gently placed in the electrophoresis tank, immersed in electrophoresis solution 

(±20 min) for alkaline treatment. DNA migration was performed at a fixed voltage of 25 V, 

a current of 300 mA which results in 0.7 V.cm-1 (achieved by adjusting the buffer volume 

in the electrophoresis tank). The slides were stained with ethidium bromide (20 µg.mL−1). 

Slides with eight gels each, and 50 nucleoids per gel, were observed, using a Leica 

DMLS fluorescence microscope (400x magnification). The DNA damage was quantified 

by visual classification of nucleoids into five comet classes, according to the tail intensity 

and length, from 0 (no tail) to 4 (almost all DNA in tail) (Collins 2004). The total score 

expressed as a genetic damage indicator (GDI) was calculated multiplying the percentage 

of nucleoids in each class by the corresponding factor, according to this formula: 

 

GDI = [(% nucleoids class 0)×0] + [(% nucleoids class 1)×1] + [(% nucleoids class 

2)×2] + [(% nucleoids class 3)×3] + [(% nucleoids class 4)×4] 

 

GDI values were expressed as arbitrary units in a scale of 0 to 400 per 50 scored 

nucleoids (as average value for the 2 gels observed per fish). When the comet assay was 
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performed with additional FPG and EndoIII steps, GDI values were calculated in the same 

way but the parameter designated GDIFPG and GDIEndoIII, respectively. Additional DNA 

breaks corresponding to net enzyme-sensitive sites alone (NSSFPG and NSSEndoIII) were 

also expressed. In order to better estimate the overall magnitude of oxidative DNA 

damage, the sum of GDI with additional DNA breaks corresponding to both net FPG- 

(NSSFPG) and EndoIII-sensitive sites (NSSEndoIII) was also calculated (GDIFPG+EndoIII). 

Besides GDI scores, the frequency of nucleoids observed in each comet class was 

also expressed, as recommended by Azqueta et al. (2009). In order to improve the 

expression of the DNA damage extent (Palus et al. 1999; Çavas and Könen 2007), the 

sub-total frequency of nucleoids with medium (class 2), high (class 3) and complete (class 

4) damaged DNA was also calculated (2+3+4). 

 

4.2.4 Statistical analysis 

Statistica 7.0 software was used for statistical analysis. All data were first tested for 

normality and homogeneity of variance to meet statistical demands. One-way Analyses of 

Variance (ANOVA), followed by a post-hoc Dunnett’s test, was applied to compare the 

different treatment groups with the control, within the same exposure duration. Three-way 

ANOVA was applied to test the effect of the factors agent, concentration and exposure 

time on the levels of DNA damage, as well as the interactions between them. The Tukey 

test was applied as a post-hoc comparison. In all the analyses, differences between 

means were considered significant when p<0.05 (Zar 1996). 

 

 

4.3 Results 

4.3.1 Non-specific DNA damage  

Analyzing GDI values after 1 day exposure (Fig. 1), it was observed that all the 

treatments, with the exception of the lower concentration of Roundup® (1R1), displayed 

significantly higher values in comparison with the control. Comparing the exposure to 

Roundup® with the exposure to its ingredients, the results demonstrated that only the 

lower glyphosate concentration (1G1) presented a significant GDI increase when 

compared with the equivalent concentration of Roundup®. 

In relation to 3 days exposure, significant increases in GDI values (Fig. 1) in relation 

to control were observed for 3R2, 3G1 and both POEA exposed groups (3P1 and 3P2). 

Comparing the effect of each the Roundup® ingredients, POEA increased GDI values 

when compared to glyphosate in the higher concentrations (3P2 vs. 3G2). 
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No concentration related differences were observed in any exposure duration. On 

the other hand, the analysis of temporal variations of GDI values demonstrated a time-

related decrease for the higher concentration of glyphosate (1G2 vs. 3G2). 
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Fig 1. Mean values of genetic damage indicator (GDI) measured by the standard (alkaline) comet 

assay in blood cells of A. anguilla exposed to 58 and 116 µg.L-1 Roundup® (R1, R2), 17.9 and 35.7 

µg.L−1 glyphosate (G1, G2) or 9.3 and 18.6 µg.L−1 polyethoxylated tallowamine (POEA; P1, P2), 

during 1 and 3 days (in the abbreviations for test conditions, the first number represents the 

exposure duration). Bars represent the standard error. Statistically significant differences (p<0.05) 

are: (*) in relation to control (C), within the same exposure time; (▲) between treatments, within the 

same exposure time; (♦) between exposure times, within the same treatment. 

 

Considering the results in terms of individual DNA damage classes (Table 1), and in 

what concerns to 1 day exposure, it was perceptible that in 1R1 group, like in the control, 

the predominant classes were 1 and 2. Differently, all the other treatment groups 

presented higher frequencies in classes 2 and 3. In addition, 1P2 showed to be the group 

where class 4 showed the highest prevalence (though not significantly different from the 

control). The sub-total of damaged nucleoids (2+3+4) revealed significantly higher values 

in all treatment groups in relation to the control, except 1R1. After 3 days exposure (Table 

1), control, 3R1 and 3G2 groups displayed 1 and 2 as the most frequent damage classes, 

while all the other groups showed classes 2 and 3 as the most predominant. The sub-total 

of damaged nucleoids revealed significantly higher values, in relation to the control, for 

3R2, 3G1, 3P1 and 3P2 groups. Comparing 1 and 3 days results displayed in table 1, a 

general time-related decrease was observed in the frequency of class 3 (with significant 
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differences for G2 and P1), whereas an opposite temporal variation pattern was observed 

for classes 1 and 2 (with a significant difference for class 1 in G2). 

 

Table 1. Mean frequencies (%) of each DNA damage class and sub-total of damaged nucleoids (± 

standard error), measured by the standard (alkaline) comet assay, in blood cells of A. anguilla 

exposed to 58 and 116 µg.L-1 Roundup® (R1, R2), 17.9 and 35.7 µg.L−1 glyphosate (G1, G2) or 9.3 

and 18.6 µg.L−1 polyethoxylated tallowamine (POEA; P1, P2), during 1 and 3 days (in the 

abbreviations for test conditions, the first number represents the exposure duration). Statistically 

significant differences (p<0.05) are: (*) in relation to control (C), within the same exposure time; letters 

between treatments, within the same exposure time - (a) vs. R1, (b) vs. R2, (d) vs. G2 and (e) vs. P1; 

(♦) between exposure times, within the same treatment. 

0 1 2 3 4 Sub-total (2+3+4)

1C 5.20±5.20 38.11±4.31 49.03±3.18 7.44±1.59 0.22±0.22 56.69±3.21

1R1 0.00±0.00 27.33±2.26 50.78±3.10 19.67±4.17 2.22±1.36 72.67±8.52

1R2 0.00±0.00 9.67±2.26 53.00±3.10 34.92±4.17 2.42±1.36 90.33±2.26

1G1 0.00±0.00 1.08±0.63 43.58±2.68 50.33±2.83 5.00±1.63 98.92±0.63

1G2 0.00±0.00 0.92±0.62 50.58±3.10 47.00±3.29 1.50±0.82 99.08±0.62

1P1 0.00±0.00 4.23±1.99 44.92±2.35 48.51±3.11 2.33±0.65 95.77±1.99

1P2 0.00±0.00 0.25±0.25 39.08±2.87 52.75±2.37 7.92±2.35 99.75±0.25

3C 0.00±0.00 49.75±3.10 45.58±2.63 4.67±1.17 0.00±0.00 50.25±3.10

3R1 0.25±0.25 32.71±4.62 49.88±2.76 15.92±2.13 1.25±0.74 67.04±4.76

3R2 0.00±0.00 12.58±2.53 62.38±3.20 23.53±3.79 1.50±0.56 87.42±2.53

3G1 0.00±0.00 8.73±2.88 56.82±2.45 31.64±3.73 2.82±1.24 91.27±8.05

3G2 0.00±0.00 36.44±5.71 52.68±3.84 11.24±2.54 0.00±0.00 63.92±5.83

3P1 0.00±0.00 13.83±2.35 59.75±2.05 24.67±3.58 1.75±0.90 86.17±2.35

3P2 0.00±0.00 1.50±0.51 43.92±2.66 51.17±2.64 3.42±1.36 98.50±0.51
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Table 2 (3-way ANOVA results) revealed a significant effect of the factors agent and 

time on GDI levels, as well as a significant interaction agent x concentration. 
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Table 2. Results of three-way ANOVA testing the effect of agent, concentration and time, as well as the interactions between them (agent x 

concentration, agent x time, concentration x time and agent x time x concentration) on the levels of DNA damage in blood cells of A. anguilla exposed to 

Roundup®, glyphosate or polyethoxylated tallowamine (POEA), during 1 and 3 days. Both F and p values are given for each variable. Non significant 

differences are signalized as “ns”. 

11.10 0.0004 2.56 ns 16.97 0.0004 8.21 0.0019 3.35 ns 0.28 ns 1.59 ns

3.61 0.0425 2.39 ns 6.23 0.0198 4.09 0.0296 0.31 ns 0.04 ns 0.16 ns

12.21 0.0002 0.00 ns 4.81 0.0383 5.53 0.0106 3.58 0.0437 1.00 ns 2.65 ns

11.52 0.0003 5.64 0.0259 11.91 0.0021 6.77 0.0047 6.36 0.0061 0.89 ns 2.17 ns

1.74 ns 0.03 ns 5.24 0.0312 2.32 ns 0.42 ns 2.21 ns 3.56 0.0444

4.50 0.0219 2.72 ns 0.48 ns 1.75 ns 0.73 ns 2.21 ns 3.88 0.0346

Agent x Time x 

Concentration

F pF pF p

Concentration  Agent x Time
Concentration x 

Time

F

TimeAgent
Agent x 

Concentration

GDIFPG+EndoIII

InteractionsFactors

GDI

GDIEndoIII

NSSEndoIII

GDIFPG

NSSFPG

F p

Parameter

pF pF p
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4.3.2 Oxidative DNA damage 

The detection of oxidized bases was achieved by the results of the comet assay with 

an extra step where nucleoids were incubated with the DNA lesion-specific repair 

enzymes FPG and EndoIII (Figs. 2 and 3). 
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Fig. 2. Mean values of DNA damage, measured by comet assay in blood cells of A. anguilla 

exposed to 58 and 116 µg.L-1 Roundup® (R1, R2), 17.9 and 35.7 µg.L−1 glyphosate (G1, G2) or 9.3 

and 18.6 µg.L−1 polyethoxylated tallowamine (POEA; P1, P2), during 1 and 3 days (in the 

abbreviations for test conditions, the first number represents the exposure duration). Values 

resulted from the assay with an extra step of digestion with formamidopyrimidine DNA glycosylase 

(FPG) to detect oxidised purine bases: (A) overall damage (GDIFPG) and partial scores, namely 

genetic damage indicator (GDI; grey) and additional DNA breaks corresponding to net FPG-

sensitive sites (NSSFPG; black); (B) NSSFPG alone. Bars represent the standard error. Statistically 

significant differences (p<0.05) are: (*) in relation to control (C), within the same exposure time; (▲) 

between treatments, within the same exposure time. 
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Fig. 3. Mean values of DNA damage, measured by comet assay in blood cells of A. anguilla 

exposed to 58 and 116 µg.L-1 Roundup® (R1, R2), 17.9 and 35.7 µg.L−1 glyphosate (G1, G2) or 9.3 

and 18.6 µg.L−1 polyethoxylated tallowamine (POEA; P1, P2), during 1 and 3 days (in the 

abbreviations for test conditions, the first number represents the exposure duration). Values 

resulted from the assay with an extra step of digestion with endonuclease III (EndoIII) to detect 

oxidised pyrimidine bases: (A) overall damage (GDIEndoIII) and partial scores, namely genetic 

damage indicator (GDI; light grey) and additional DNA breaks corresponding to net EndoIII-

sensitive sites (NSSEndoIII; dark grey); (B) NSSEndoIII alone. Bars represent the standard error. 

Statistically significant differences (p<0.05) are: (*) in relation to control (C), within the same 

exposure time; (▲) between treatments, within the same exposure time; (♦) between exposure 

times, within the same treatment. 

 

 

 



Chapter IV 

108 

FPG associated DNA breaks 

Concerning 1 day exposure, the digestion with FPG (GDIFPG; Fig. 2A) demonstrated 

significantly higher damage, in relation to the control, in all treatment groups. NSSFPG (Fig. 

2B) value in the lower concentration of Roundup® was significantly higher than the control. 

Moreover, the group exposed to the lower concentration of the commercial formulation 

displayed significantly higher levels of oxidative damage than those exposed either to the 

active ingredient or to the surfactant in equivalent concentrations (1R1 vs. 1G1 and 1R1 

vs. 1P1).  

Regarding 3 days exposure and GDIFPG parameter (Fig. 2A), the same pattern of 

results was observed as described for 1 day exposure. However, NSSFPG levels (Fig. 2B) 

revealed no significant differences to the control.  

No temporal variations were found for both GDIFPG and NSSFPG data. 

Table 2 revealed a significant effect of the factors agent and time, as well as a 

significant interaction agent x concentration, for both GDIFPG and NSSFPG. In addition, an 

interaction agent x time was also found for NSSFPG. 

 

EndoIII associated DNA breaks 

After 1 day exposure, the digestion with EndoIII revealed damage levels (GDIEndoIII; 

Fig. 3A) significantly higher than the control in all treatment groups. As far as the NSSEndoIII 

parameter (Fig. 3B) is concerned, none of the conditions showed significant differences in 

relation to the control, despite the clear increase displayed by 1R1. 

Considering 3 days exposure, all the treatment groups displayed a significant 

increase in GDIEndoIII levels versus the control group (Fig. 3A). Comparing the effect of 

both Roundup® ingredients following isolated exposure, fish exposed to the highest POEA 

concentration demonstrated significantly increased GDIEndoIII values compared to those 

exposed to the equivalent glyphosate concentration (3P2 vs. 3G2). GDIEndoIII 

concentration-dependent increase was only detected for Roundup®. A time-related 

decrease was detected in GDIEndoIII for the highest glyphosate concentration (1G2 vs. 

3G2). Considering NSSEndoIII (Fig. 3B), only the highest concentration of glyphosate 

showed an increase in relation to the control.  

Table 2 revealed a significant effect of agent, concentration and time on GDIEndoIII 

levels, as well as significant interactions agent x concentration and agent x time. NSSEndoIII 

showed to be significantly affected by time and displayed also a significant interaction 

agent x time x concentration. 

 



Differential genotoxicity of Roundup
®

 formulation and its constituents in blood cells of fish 

109 
 

FPG plus EndoIII associated DNA breaks  

As described for GDIFPG and GDIEndoIII separately, the parameter GDIFPG+EndoIII (Fig. 4) 

displayed values significantly higher than the control in all the treatments. 
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Fig. 4. Mean values of DNA damage, measured by comet assay in blood cells of A. anguilla 

exposed to 58 and 116 µg.L-1 Roundup® (R1, R2), 17.9 and 35.7 µg.L−1 glyphosate (G1, G2) or 9.3 

and 18.6 µg.L−1 polyethoxylated tallowamine (POEA; P1, P2), during 1 and 3 days (in the 

abbreviations for test conditions, the first number represents the exposure duration). Values 

resulted from the sum of genetic damage indicator (GDI; light grey) with additional DNA breaks 

corresponding to net FPG-sensitive sites (NSSFPG; black) and net EndoIII-sensitive sites (NSSEndoIII; 

dark grey). Bars represent the standard error. Statistically significant differences (p<0.05) are: (*) in 

relation to control (C), within the same exposure time. 

 

Moreover, GDIFPG+EndoIII showed a significant effect of agent, as well as a significant 

interaction agent x time x concentration (Table 2). 

 

 

4.4 Discussion 

Taking as a departing point the genotoxicity of Roundup® (at environmentally 

realistic levels) demonstrated in fish (Guilherme et al. 2010), the major purpose of this 

work was to improve the knowledge on the DNA damaging potential of its components 

(glyphosate and POEA) individually. This approach is relevant since, regardless of their 

jointly agrochemical application, Roundup® components can affect non-target aquatic 

organisms singly. Moreover, it also allows recognize eventual chemical interactions, 
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contributing to better understand how the partial effects contribute to the mixture final 

effect. 

 

The results in terms of non-specific DNA damage, depicted in GDI values, confirmed 

the genotoxicity of Roundup® (for the highest concentration and both exposure times), but 

also demonstrated, for the first time in fish, the genotoxic potential of glyphosate and 

POEA individually. These findings were also corroborated by the sub-total of damaged 

nucleoids. 

In an attempt to compare the effects of the formulation with those of its components, 

it should be highlighted that Roundup® revealed to be, most of the time, less genotoxic 

than the active ingredient or the surfactant alone (with the exception of the higher 

concentrations after 3 days). Furthermore, fish exposed to Roundup® always showed (for 

both concentrations and exposure times) a level of damage far lower than expected based 

on the sum of the effects of the separate components, suggesting an antagonistic 

interaction between glyphosate and POEA. Moreover, the identification of this type of 

interaction is reinforced by the observation that both components individually, at the 

lowest concentrations (G1 and P1) and both exposure times, induced a significant DNA 

damage increase, which was not verified for Roundup®, therefore configuring an 

antagonism of mutual interference. In accordance, after 1 day exposure, 1G1 group 

displayed a significantly higher GDI value than 1R1. 

In divergence with the current observations, the two available studies addressing the 

interactions between glyphosate and POEA in aquatic species pointed to another direction 

(Howe et al. 2004; Frontera et al. 2011). Thus, Howe and co-workers (2004) found that 

glyphosate has no acute or chronic effects (measured as malformations and gonadal 

abnormalities) on developing tadpoles, whereas tadpoles reared in environmentally 

relevant concentrations of Roundup® formulations suffered mortality and developmental 

abnormalities. In addition, exposure to POEA alone showed toxicity similar to that of 

Roundup®, which was regarded as an indication that this surfactant contributes most, if 

not all, to the acute toxicity of the end-use formulations. On the other hand, Frontera and 

co-workers (2011) stated that POEA acts synergistically with glyphosate on the crayfish 

Cherax quadricarinatus concerning long-term effects on somatic growth parameters. This 

highlights that the mechanism of action of these compounds on different parameters (and 

different levels of biological organization) could be entirely different. Besides species, that 

the occurrence (or not) of chemicals interactions, as well as the type of interaction [e.g. 
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supra-additive (synergistic) or infra-additive (antagonistic)], can vary, with the endpoint 

addressed.  

Fish exposed to the highest concentration of glyphosate (G2) for 3 days recovered 

from the damage detected after 1 day exposure. This could be an adaptation to the 

genotoxic stimulus allowing them to avoid the damage expression as GDI. Therefore, it 

can be suggested that the influence of the factor time identified for GDI (see Table 2) was 

markedly determined by the temporal variation above reported for G2 condition. The 

perception of this temporal influence was probably more obvious due to the absence of 

interactions agent x time and concentration x time. Accordingly, G2 group displayed a 

time-related variation on the most frequent damage classes, depicted in a deviation from 

classes 2 and 3 (after 1 day) to classes 1 and 2 (after 3 days). It is known that DNA strand 

breaks and alkali labile sites detected by the comet assay represent an early sign of 

damage (Lee and Steinert 2003), which might be subject to a repair process (Collins 

2004). Hence, the time-related disappearance of DNA damage currently observed in G2 

group can be explained by the intervention of a DNA repair system and/or by the 

catabolism of heavily damaged blood cells in the spleen. These processes were 

previously presented by Saleha Banu et al. (2001) to explain reductions in comet tail-

length after 2 and 3 days and a return to control levels after 4 days in blood cells of fish 

(Tilapia mosambica) exposed to an organophosphate pesticide. Moreover, an increased 

splenic erythrophagia has also been associated with an intense genetic damage in A. 

anguilla (Pacheco and Santos 2002). In the current study, this adaptive/recovery 

phenomenon depended on the concentration (only occurred for the highest concentration) 

and was related to a particular genotoxic agent, since it was not observed for POEA. This 

is in line with the observation that, comparing the respective highest concentrations, the 

surfactant displayed the most elevated levels of DNA damage among the studied agents 

(commercial formulation and components). Accordingly, 3P2 group showed GDI levels 

significantly higher than 3G2. Despite the absence of genotoxic studies comparing the 

potential of glyphosate and POEA, the present results corroborate the assumption 

previously presented by Giesy et al. (2000) and Tsui and Chu (2003) that this surfactant is 

more toxic than the active ingredient. 

The results obtained from the comet assay improved with an extra-step with DNA 

lesion-specific repair enzymes were presented showing either the overall DNA breaks 

scored after the incubation with endonucleases (Figs. 2A, 3A and 4) or the additional 

breaks corresponding to net enzyme-sensitive sites (Figs. 2B and 3B). This improves the 
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possibility to identify a particular damaging action (e.g. oxidative DNA damage) and the 

respective particularities that can be masked by the overall breaks score. 

GDIFPG results demonstrated significantly higher levels of damage for all the 

treatments in both exposure lengths. This means that the evaluation of the additional 

breaks resulting from oxidised purines identified also the lower Roundup® concentration 

as genotoxic (for both exposure lengths), as well as the highest glyphosate concentration 

after 3 days, which did not occur for GDI parameter, as discussed above. The highest 

damage extent, measured as GDIFPG, was found for the groups exposed to the highest 

POEA concentration (in both exposure times); however, those GDIFPG levels should be 

justified mainly by a great elevation of GDI levels, rather than by a increment specifically 

in the breaks resulting from oxidised purines. 

Comparing the effects of the commercial formulation with those of its constituents in 

terms of GDIFPG, it was notable that, in contrast to GDI, Roundup® displayed levels of 

damage at the same level as glyphosate and POEA, at both concentrations and exposure 

times. However, like in GDI, GDIFPG values in fish exposed to Roundup® never showed a 

level of effect close to the sum of the individual chemical effects, which can be regarded 

as an antagonistic interaction. NSSFPG results revealed that the genotoxic risk strictly 

associated to DNA oxidation only occurred for the lowest Roundup® concentration, after 1 

day (1R1). Moreover, this result reflected a synergistic interaction, corroborated by the 

significantly higher NSSFPG levels observed in 1R1 in relation to 1G1 and 1P1. Oxidative 

DNA damage was reduced after 3 days exposure, which is in line with the detection of a 

significant effect of the factor time on NSSFPG (Table 2). 

As described for GDIFPG, GDIEndoIII data revealed significantly higher DNA damage 

for all the treatments in both exposure lengths, when compared with the respective 

control. Additionally, the maximum GDIEndoIII levels were found for the highest 

concentration of POEA in both exposure lengths, which is in line with the significantly 

higher GDIEndoIII values observed for the group 3P2 in relation to 3G2. Nevertheless, these 

observations cannot be regarded as an indication that POEA has a potential to induce 

pyrimidines oxidation higher than the other agents, including glyphosate. This statement is 

corroborated by NSSEndoIII data, which, despite the notably elevated value (statistically 

insignificant) displayed by the group 1R1, did not reflect any significant differences 

between treatments. Moreover, the significant GDIEndoIII increase observed for 3G2 group 

is strictly related to the significant increase in the oxidised pyrimidines levels (NSSEndoIII 

data). It was also demonstrated that glyphosate oxidative action increased with time, 

which is corroborated by the influence of this factor. Returning to the analysis of GDIEndoIII 
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results, it should be highlighted that when the additional breaks resulting from oxidised 

pyrimidines were considered, the highest Roundup® concentration (3 days) appeared to 

be more genotoxic than the lowest. This calls for attention to GDIEndoIII parameter as the 

one able to distinguish between concentrations of the tested agents. Despite the detection 

of significant factor interactions for agent x time and agent x concentration, the isolated 

influence of the factors agent, concentration and time could still be recognized. Again, 

GDIEndoIII results suggest an antagonistic interaction between the Roundup® constituents 

justified by the above presented reason. 

Chemical interactions with a subsequent biological manifestation can occur at 

several levels, such as outside the body or on chemicals uptake, distribution, 

biotransformation, interaction with target sub-cellular structures, modulation of defense 

processes and excretion. Nonionic surfactants, such as POEA, were suggested to exert 

their adverse effects on aquatic organisms through disruption of the respiratory surfaces 

(Lindgren et al. 1996b). Though not testing POEA, Partearroyo et al. (1991) showed that a 

wide range of surfactants interfere with gill morphology and cause lysis of gill epithelial 

cells in fish (Partearroyo et al. 1991). In this direction, despite the evidence that POEA 

facilitates membrane penetration of glyphosate in mammalian cell cultures (as in plants) 

(Richard et al. 2005), a POEA action hampering the uptake of glyphosate through gills 

may be hypothesized as a mechanism underlying the antagonistic interaction perceived in 

Roundup® exposures. However, the present results do not clarify at what level(s) 

glyphosate and POEA interact in order to demonstrate the detected antagonism. This is a 

matter that remains unexplored and deserves more attention in future works. 

It was demonstrated that recently developed glyphosate-based formulations lacking 

POEA were less toxic to amphibians (Howe et al. 2004). Nevertheless, in terms of the 

contribution of the surfactant to the overall genotoxicity of the commercial formulation, the 

present results seem to point out a different direction, since the active ingredient also 

showed to have a genotoxic action. Anyhow, the elevated genotoxic potential displayed by 

POEA reinforced the idea that the omission in the label of commercial herbicides of its 

inclusion is inadequate and its collective identification as ‘‘inert’’ can be misleading, as 

stated by Peixoto (2005) and Renner (2005). Furthermore, a revision of its hazard 

classification (presently is “of minimal concern”) by the public regulatory agencies is 

recommended. 
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4.5 Conclusions 

The present findings confirmed the genotoxicity of Roundup®, also demonstrating, 

for the first time in fish, the genotoxic potential of glyphosate (active ingredient) and POEA 

(surfactant) individually. Moreover, POEA induced the highest extent of DNA damage, 

when compared to glyphosate as well as to the commercial mixture. Though both 

components seem to contribute to the overall genotoxicity of the pesticide formulation, the 

sum of their individual effects was never observed, pointing out an antagonistic interaction 

between them. 

Keeping in mind a reduction of the risk posed by glyphosate-based formulations to 

non-target organisms as a function of the surfactant selection, the results demonstrated 

that POEA, though it is far to be considered biologically inert, does not increase the risk 

associated to the active ingredient. 

The genotoxic action strictly related to oxidized purines was only detected for the 

lowest Roundup® concentration (1 day exposure), pointing out a synergistic action 

between glyphosate and POEA for this specific type of damage. On the other hand, 

damage associated to pyrimidines oxidation was only observed for glyphosate (at the 

highest concentration, after 3 days exposure). Overall, DNA oxidation was not perceived 

as a dominant mechanism of damage for the assessed genotoxicants. 

In evaluating the methodology adopted, the determination of the non-specific 

damage as GDI (standard comet procedure) showed some limitations relatively to the 

scoring of the overall damage encompassing oxidatively induced breaks (comet assay 

with an extra-step involving DNA lesion-specific repair enzymes). The latter approach 

revealed to represent a value-added towards an effective assessment of genotoxic 

hazard, limiting the risk of false negative results. 
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5 DNA and chromosomal damage induced in fish (Anguilla anguilla) by 

aminomethylphosphonic acid (AMPA) - the major environmental breakdown 

product of glyphosate 

 

 

Abstract 

Most of studies on the effects of pesticides in aquatic organisms are focused on the active 

ingredients or on the commercial products as a whole. However, the assessment of the 

direct impact of chemicals that may occur in the environment as breakdown products of 

the parental compound could be considered even more ecotoxicologically relevant. 

Glyphosate, an active ingredient of various well-known herbicide preparations, easily 

reaches the aquatic compartment being naturally degradated into aminomethylphosphonic 

acid (AMPA). Despite the persistence of AMPA in water systems, to date no studies were 

performed concerning its effects in aquatic organisms. In this context, the evaluation of 

the genotoxic hazard posed by AMPA to fish emerges as critical but unexplored issue. 

Hence, the main goal of the present research was to assess the genotoxicity potential of 

AMPA in fish, using the comet and erythrocytic nuclear abnormalities (ENA) assays, as 

reflecting different levels of damage, i.e. DNA and chromosomal damage, respectively. 

Therefore, these assays were applied to blood cells of Anguilla anguilla, following short-

term exposures (1 and 3 days) to environmental realistic concentrations of AMPA (11.8 

and 23.6 µg.L−1). In order to better understand the DNA damaging mechanisms, an extra 

step was added to the standard procedure of comet assay, where nucleoids were 

incubated with DNA lesion-specific repair enzymes (FPG and EndoIII). After 1 day 

exposure, the standard comet assay demonstrated the AMPA potential to induce DNA 

damage for both concentrations. The third day of exposure revealed that only the highest 

concentration was able to induce DNA damage. Concerning the use of DNA lesion-

specific repair enzymes, neither FPG nor EndoIII reflected the capability of AMPA to exert 

oxidative damage. Furthermore, the ENA results indicated the potential of AMPA to 

induce chromosomal lesions, despite its later appearance when compared to damage 

measured as comet assay. Overall, the present findings pointed out the genotoxic hazard 

of AMPA to fish and, subsequently, the importance of including it in futures studies 

concerning the risk assessment of glyphosate-based herbicides in the water systems. 

 

Keywords: AMPA; glyphosate; genotoxicity; DNA lesion-specific repair enzymes; fish. 
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5.1 Introduction 

Most of studies on the effects of pesticides in (non-target) aquatic organisms have 

been focused on the active ingredients or on the commercial products as a whole. 

However, the parental compounds present in the formulations may suffer modifications of 

their chemical structure in the environment, originating products with different toxic 

properties. Though frequently overlooked, this perspective triggered studies with the 

transformation products of endosulfan (a broad-spectrum insecticide) (Hoang et al. 2011) 

and dichlobenil (a broad-spectrum herbicide) (Björklund et al. 2011), pointing out their 

potential risk to aquatic biota. Therefore, the assessment of the direct impact of chemicals 

that may occur in the water systems as breakdown products of the former ingredients 

should be considered ecotoxicologically unavoidable and included in the priorities of both 

researchers and public authorities. 

Glyphosate [N-(phosphono-methyl-glycine)] is the active ingredient of the most 

widely used non-selective post-emergence herbicides in the world. Formulations 

containing glyphosate are heavily used in agriculture, urban landscaping and forestry 

(Landry et al. 2005; Kolpin et al. 2006). Though it can be intentionally applied to control 

emergent and floating aquatic vegetation, surface runoff following terrestrial uses is known 

to be the primary way of glyphosate transfer to surface waters. Studies on environmental 

fate of glyphosate indicated that it tends to strongly bind to organics matrices, like 

sediment of aquatic systems, and rapidly degrade (Feng et al. 1990). The soil sorption 

and the degradation of glyphosate exhibit a great variation depending on soil composition 

and properties (Gimsing et al. 2004), as well as on the factor leachability (Borggaard and 

Gimsing 2008). Once in the aquatic environment, glyphosate can be naturally converted 

into sarcosine and aminomethylphosphonic acid (AMPA) (Landry et al. 2005; Al-Rajab et 

al. 2008). Of these two, AMPA has the highest occurrence in water, showing an 

environmental mobility and persistence greater than glyphosate (Kolpin et al. 2006), being 

thus assumed as the major breakdown product (Williams et al. 2000). Its appearance in 

water (as well as in soils) is due to a microbiologic degradation rather than to a chemical 

action (Rueppel et al. 1977). 

The relative rapid degradation of glyphosate (half-life from 7 to 14 days) in aquatic 

environments (Giesy et al. 2000) can, apparently, limit the environmental risk associated. 

However, this is highly questionable due to the appearance of its metabolites, namely 

AMPA, which has been found in levels ranging 3.6-60 µg.L-1 (Battaglin et al. 2005; Struger 

et al. 2008). 
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Considering the abundance of studies reporting the occurrence of AMPA as a 

pollutant in the aquatic environment, it would be expected that its effects on organisms 

have already been more extensively explored. Nevertheless, this is a matter almost 

completely uncovered, and relatively little is known about the biological activity of this 

compound (Mañas et al. 2009), making surprising its categorization by some regulatory 

agencies as “not of toxicological concern” (USEPA 1993).  

The analysis of DNA alterations in aquatic organisms have been shown as a highly 

suitable method for evaluating the environmental genotoxic contamination, allowing the 

detection of exposure to low concentrations of contaminants, including pesticides, in a 

wide range of species (Scalon et al. 2010). Hence, and despite the considerable amount 

of studies addressing glyphosate and Roundup® (a glyphosate-based herbicide) 

genotoxic potential to fish (Çavas and Könen 2007; Cavalcante et al. 2008; Guilherme et 

al. 2010, 2012a; 2012b), the risk posed to genome integrity by AMPA remains unknown. 

To the author’s knowledge, no studies were performed concerning the genotoxicity of 

AMPA in fish as well as in aquatic organisms. The only study carried out in this direction 

was applied to mammalian models (human cell lines and mice), clearly demonstrating a 

genotoxic action (Mañas et al. 2009). 

Keeping in mind the knowledge gaps identified, the main goal of the present 

research was to assess the genotoxic potential of AMPA, as the major breakdown product 

of glyphosate, following short-term exposures (1 and 3 days) to environmentally realistic 

concentrations (11.8 and 23.6 µg.L−1). Genotoxic endpoints such as comet and 

erythrocytic nuclear abnormalities (ENAs) assays were adopted, since they can reflect 

different levels of genetic damage, i.e. DNA and chromosomal damage, respectively. The 

comet assay detects DNA strand breaks and alkali labile sites (Lee and Steinert 2003; 

Andrade et al. 2004), representing an early sign of damage that can be subjected to a 

repair process. In order to better understand the DNA damaging mechanisms, an extra 

step was added to the standard procedure of comet assay where nucleoids were 

incubated with DNA lesion-specific repair enzymes, highlighting specifically oxidised DNA 

bases. Complementary, the ENA assay, based on the detection of micronuclei and other 

nuclear anomalies (Pacheco and Santos 1997), signals chromosome breakage 

(clastogenicity) or loss and mitotic spindle apparatus dysfunction (aneugenicity) (Fenech 

2000; Stoiber et al. 2004), which are hardly reparable lesions. Hence, ENA assay displays 

later and less transient alterations when compared with those detected by the comet 

assay. 
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5.2 Material and Methods 

5.2.1 Chemicals 

AMPA and all other chemicals were obtained from the Sigma-Aldrich Chemical 

Company (Spain). DNA lesion-specific repair enzymes, namely formamidopyrimidine DNA 

glycosylase (FPG) and endonuclease III (Endo III), were purchased from Professor 

Andrew Collins (University of Oslo; Norway). 

 

5.2.2 Test animals and experimental design 

European eel (Anguilla anguilla L.) specimens with an average weight 0.25±0.02 g 

(glass eel stage) were captured from Mondego river mouth, Figueira da Foz, Portugal. 

Eels were acclimated to laboratory for 20 days and kept in 20-L aquaria under a natural 

photoperiod, in aerated, filtered, dechlorinated and recirculating tap water, with the 

following physico-chemical conditions: salinity 0, temperature 20±1ºC, pH 7.3±0.2, nitrate 

25±0.5 mg.L-1, nitrite 0.03±0.01 mg.L-1, ammonia 0.1±0.01 mg.L-1, dissolved oxygen 

8.1±0.5 mg.L−1. During this period, fish were daily fed with fish roe. 

The experiment was carried out in 1-L aquaria, in a semi-static mode, under the 

conditions described for the acclimation period. After acclimation, 72 eels were divided 

into 6 groups, corresponding to three test conditions and two exposures times (3x2). 

Thus, fish were exposed to 11.8 and 23.6 µg.L−1 AMPA (groups A1 and A2, respectively). 

Another group was kept with clean water - control (group C). For each test condition, 1 

and 3 days exposures were carried out. Water medium in 3-day aquaria was daily 

renewed (100%). The concentrations of glyphosate adopted previously by Guilherme and 

co-workers (2012b) served as a basis to determine the AMPA concentrations currently 

tested. Taking this as a starting point, the concentration of AMPA was calculated 

assuming that it results from a glyphosate conversion on a basis of 1:1 mole. Thus, for 

instance, it was assumed that 17.9 µg of glyphosate correspond to 11.8 µg of AMPA. 

Stock solution of AMPA was prepared using deionized water just before addition to 

exposure water. The experiment was carried out using triplicate (n=3) groups of 4 fish for 

each condition/time (3x4 = 12 fish). 

Fish were not fed during experimental period. Fish were sacrificed by cervical 

transection at the post-opercular region and blood collected from the heart using 

heparinised capillary tubes. Blood smears were immediately prepared for ENA assay. 

Two µL of blood were immediately diluted in 1 mL of ice-cold phosphate-buffered saline 

(PBS) to prepare a cell suspension, which was kept on ice up to further procedure. 
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5.2.3 Evaluation of genetic damage 

5.2.3.1. Comet assay 

The conventional alkaline version of the comet assay was performed according to 

the methodology of Collins (2004) and adapted by Guilherme et al. (2010), with the proper 

adjustments to assay procedure with extra step of digesting the nucleoids with 

endonucleases. In order to significantly increase the throughput of the assay, a system of 

eight gels per slide was adopted, based on a model created by Shaposhnikov et al. (2010) 

and adapted by Guilherme et al. (2012b). Briefly, 20 µL of cell suspension (previously 

prepared in PBS) was mixed with 70 µL of 1% low melting point agarose (in PBS). Eight 

drops of 6 µL were placed onto the precoated slide as two rows of 4 (4 groups of 2 

replicates), without coverslips, containing each gel approximately 1,500 cells. The gels 

were left for ±5 min at 4 ºC in order to solidify agarose, and then immersed in a lysis 

solution (2.5 M NaCl, 0.1 M EDTA, 10 mM Tris, 1% Triton X-100, pH 10) at 4 ºC, for 1 h. 

After lysis of agarose-embedded cells, slides were washed 3 times with enzyme buffer 

(0.1 M KCl, 0.5 mM EDTA, 40 mM HEPES, 0.2 mg.mL−1 bovine serum albumin, pH 8) at 4 

ºC. 

Three sets of slides were prepared: two sets were incubated with endonucleases (1) 

FPG and (2) EndoIII, that convert oxidised purines and pyrimidines into DNA single strand 

breaks, respectively (Azqueta et al. 2009), and a third set (3) was incubated only with 

buffer. Hence, 30 µL of each enzyme diluted in buffer were applied in each gel, along with 

a coverslip, prior to incubation at 37 ºC for 30 min in a humidified atmosphere. Then, 

slides were gently placed in the electrophoresis tank, immersed in electrophoresis solution 

(±20 min) for alkaline treatment. DNA migration was performed at a fixed voltage of 25 V, 

a current of 300 mA which results in 0.7 V.cm-1 (achieved by adjusting the buffer volume 

in the electrophoresis tank). The slides were stained with ethidium bromide (20 µg.L−1). 

Slides with eight gels each, and 50 nucleoids per gel, were observed, using a Leica 

DMLS fluorescence microscope (400x magnification). The DNA damage was quantified 

by visual classification of nucleoids into five comet classes, according to the tail intensity 

and length, from 0 (no tail) to 4 (almost all DNA in tail) (Collins 2004). The total score 

expressed as a genetic damage indicator (GDI) was calculated multiplying the percentage 

of nucleoids in each class by the corresponding factor, according to this formula: 

 

GDI = [(% nucleoids class 0)×0] + [(% nucleoids class 1)×1] + [(% nucleoids class 

2)×2] + [(% nucleoids class 3)×3] + [(% nucleoids class 4)×4] 
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GDI values were expressed as arbitrary units in a scale of 0 to 400 per 100 scored 

nucleoids (as average value for the 2 gels observed per fish). When the comet assay was 

performed with additional FPG and EndoIII steps, GDI values were calculated in the same 

way but the parameter designated GDIFPG and GDIEndoIII, respectively. Besides GDI, the 

frequency of nucleoids observed in each comet class was also expressed, as 

recommended by Azqueta et al. (2009). In order to improve the expression of the DNA 

damage extent (Palus et al. 1999; Çavas and Könen 2007), the sub-total frequency of 

nucleoids with medium (class 2), high (class 3) and complete (class 4) damaged DNA was 

also calculated (2+3+4). 

 

5.2.3.2. ENA assay 

This assay was carried out in mature peripheral erythrocytes according to the 

procedure of Pacheco and Santos (1996). Briefly, one blood smear per animal was fixed 

with methanol during 10 min and stained with Giemsa (5%) during 30 min. From each 

smear, 1000 erythrocytes were scored under 1000x magnification to determine the 

frequency of the following nuclear lesion categories: kidney shaped nuclei (K), lobed 

nuclei (L), binucleate or segmented nuclei (S) and micronuclei (MN). In addition, notched 

nuclei (N) were also scored as suggested by Fenech (2000) and Ayllon and Garcia-

Vazquez (2001). Final results were expressed as the mean value (‰) of the sum for all 

the lesions observed (K + L + S + N + MN). 

 

5.2.4 Statistical analysis 

Statistica 7.0 software was used for statistical analysis. All data were first tested for 

normality and homogeneity of variance to meet statistical demands. One-way Analyses of 

Variance (ANOVA), followed by Dunnett test as Post-hoc comparison, was applied to 

compare treated with control groups, within the same exposure duration. Two-way 

ANOVA was applied to test the effect of the factors concentration and exposure time on 

the levels of DNA damage, as well as on the frequency of nuclear abnormalities. In 

addition, the interactions between factors were also tested. The Tukey test was applied as 

Post-hoc comparison. In all the analyses, differences between means were considered 

significant when p<0.05 (Zar 1996). The relationship between the assessed parameters 

was explored using linear regression analyses. The correlation coefficient (r) was 

calculated and its statistical significance (P) was determined from the table of critical 

values for the correlation coefficient (Zar 1996). 
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5.3 Results 

5.3.1 DNA damage 

5.3.1.1. Non-specific DNA damage  

Analysing GDI values after 1 day exposure (Fig. 1), both AMPA groups showed 

significant increases, relative to the control. The 3 days exposure (Fig. 1) revealed that 

only the higher concentration of AMPA (A2) induced significant DNA damage, in 

comparison with the control. Neither concentration nor time related significant differences 

were observed; however, a decrease tendency was displayed by all treatments in relation 

to time. In line, table 1 (2-way ANOVA) revealed a significant effect of the factor time on 

GDI values. 

 

 
Fig. 1. Mean values of genetic damage indicator (GDI) measured by the standard (alkaline) comet 

assay in blood cells of A. anguilla exposed to 11.8 and 23.6 µg.L−1 aminophosphoric acid (AMPA; 

A1, A2), during 1 and 3 days. Bars represent the standard error. Statistically significant differences 

(p<0.05) are: (*) in relation to control (C), within the same exposure time. 

 

Considering the results in terms of individual DNA damage classes (Table 2), after 1 

day exposure, it was perceptible that only control group (C) displayed a prevalence of 

classes 1 and 2. Differently, both concentrations of AMPA (A1, A2) presented higher 

frequencies in classes 2 and 3. Moreover, both treated groups presented significantly 

lower values concerning class 1 frequency, in relation to control. On the other hand, 

treated groups showed significantly higher values when class 3 was accounted. Similarly, 

the sub-total of damaged nucleoids (2+3+4) revealed significantly higher values in both 

treated groups, in comparison with control. 

When 3 days exposure was taken into account (Table 2), the group A1, like the 

control (C), displayed classes 1 and 2 as the most frequent. In a different way, classes 2 
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and 3 presented higher frequencies for A2 group. Considering inter-group comparisons 

within each damage class, A2 group presented significantly lower values than control for 

class 1, while for class 3 the comparison followed the opposite pattern. The sub-total of 

damaged nucleoids (2+3+4) displayed significantly higher values only for the group A2, in 

relation to control. 

Comparing 1 and 3 days results displayed in table 2, it was noticeable a general 

time-related increase in the frequency of class 1, despite the absence of significant 

differences. In addition, class 3 showed the opposite temporal variation, with a significant 

decrease in A2 group. 

 

Table 1. Results of two-way ANOVA testing the effect of concentration and time, as well as the 

interactions between them (concentration x time) on the levels of DNA and chromosomal damage 

in blood cells of A. anguilla exposed to aminophosphoric acid (AMPA), during 1 and 3 days. Both F 

and p values are given for each variable. Non significant differences are signalized as “ns”. 
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Table 2. Mean frequencies (%) of each DNA damage class and sub-total of damaged nucleoids (± 

standard error), measured by the standard (alkaline) comet assay, in blood cells of A. anguilla 

exposed to 11.8 and 23.6 µg.L−1 aminophosphoric acid (AMPA; A1, A2), during 1 and 3 days. 

Statistically significant differences (p<0.05) are: (*) in relation to control (C), within the same exposure 

time; (♦) between exposure times, within the same treatment. 

 

 

5.3.1.2. Oxidative DNA damage 

The detection of oxidized bases was achieved by the analysis of the results of the 

comet assay with an extra step where nucleoids were incubated with DNA lesion-specific 

repair enzymes - FPG and EndoIII (Figs. 2 - 4). 

 

FPG associated damage 

Regarding GDIFPG results, both treatments, and both exposure times, showed 

significant higher damage, in comparison with the control (Fig. 2A). In a different way, 

NSSFPG parameter was not capable to distinguish any treatment, in relation to the control 

(Fig. 2B). 

Neither concentration nor time related differences were observed for GDIFPG and 

NSSFPG (Fig. 2) data, despite the general decrease tendency displayed by all the 

treatments. 

Considering the effect of tested factors (Table 1), it was possible to observe that 

concentration and time exerted a significant effect in NSSFPG parameter. 
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Fig. 2. Mean values of DNA damage, measured by comet assay in blood cells of A. anguilla 

exposed to 11.8 and 23.6 µg.L−1 aminophosphoric acid (AMPA; A1, A2), during 1 and 3 days. 

Values resulted from the assay with an extra step of digestion with formamidopyrimidine DNA 

glycosylase (FPG) to detect oxidised purine bases: (A) overall damage (GDIFPG) and partial scores, 

namely genetic damage indicator (GDI; light grey) and additional DNA breaks corresponding to net 

FPG-sensitive sites (NSSFPG; black); (B) NSSFPG alone. Bars represent the standard error. 

Statistically significant differences (p<0.05) are: (*) in relation to control (C), within the same 

exposure time. 

 

EndoIII associated damage 

After the 1 day exposure, the digestion with EndoIII (GDIEndoIII; Fig. 3A) revealed an 

overall damage significantly higher than the control, in both treated groups. Concerning 

the NSSEndoIII parameter (Fig. 3B), no significant differences were found. 

Regarding the 3 days exposure, only the group corresponding to the higher 

concentration of AMPA (A2) showed to be significantly higher than the control (GDIEndoIII; 

Fig. 3A). On the other hand, the NSSEndoIII parameter (Fig. 3B) followed the pattern of the 

1 day exposure, being unable to discern any AMPA concentration, when compared with 

control.  
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A general time-related decrease was detected in GDIEndoIII values, considering both 

AMPA groups. Differently, and considering the NSSEndoIII parameter, no differences were 

found, comparing both exposure times. In addition, table 1 revealed a significant influence 

of concentration and time factors on the overall damage (GDIEndoIII). 

 

 

Fig. 3. Mean values of DNA damage, measured by comet assay in blood cells of A. anguilla 

exposed to 11.8 and 23.6 µg.L−1 aminophosphoric acid (AMPA; A1, A2), during 1 and 3 days. 

Values resulted from the assay with an extra step of digestion with endonuclease III (EndoIII) to 

detect oxidised pyrimidine bases: (A) overall damage (GDIEndoIII) and partial scores, namely genetic 

damage indicator (GDI; light grey) and additional DNA breaks corresponding to net EndoIII-

sensitive sites (NSSEndoIII; dark grey); (B) NSSEndoIII alone. Bars represent the standard error. 

Statistically significant differences (p<0.05) are: (*) in relation to control (C), within the same 

exposure time; (♦) between exposure times, within the same treatment. 
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FPG plus EndoIII associated DNA breaks 

As described for GDIFPG, the parameter GDIFPG+EndoIII (Fig. 4) displayed values 

significantly higher than the control in both AMPA treatments and both exposure lengths. 

 

 
Fig. 4. Mean values of DNA damage, measured by comet assay in blood cells of A. anguilla 

exposed to 11.8 and 23.6 µg.L−1 aminophosphoric acid (AMPA; A1, A2), during 1 and 3 days. 

Values resulted from the sum of genetic damage indicator (GDI; light grey) with additional DNA 

breaks corresponding to net FPG-sensitive sites (NSSFPG; black) and net EndoIII-sensitive sites 

(NSSEndoIII; dark grey). Bars represent the standard error. Statistically significant differences 

(p<0.05) are: (*) in relation to control (C), within the same exposure time. 

 

5.3.2 Chromosomal damage 

No significant alterations were found in ENA frequency following the first day of 

exposure (Fig. 5). On the other hand, considering the 3 days exposure, it was possible to 

observe a significant increase for the higher concentration of AMPA (A2), in relation to the 

control. This exposure condition was the only able to signalize a concentration-

dependence, showing a significantly higher chromosomal damage for the higher 

concentration group (A2) when compared to the lower one (A1) (Fig. 5). Moreover, it was 

perceptible a time related increase for the higher concentration of AMPA (A2) (Fig. 5).  

Table 1 (two-way ANOVA) revealed that ENA parameter was influenced by the 

factors concentration and time, also showing an interaction between them (concentration 

x time). 
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Fig. 5. Mean frequency (‰) of erythrocytic nuclear abnormalities (ENA) in blood cells of A. anguilla 

exposed to 11.8 and 23.6 µg.L−1 aminophosphoric acid (AMPA; A1, A2), during 1 and 3 days. Bars 

represent the standard error. Statistically significant differences (p<0.05) are: (*) in relation to 

control (C), within the same exposure time; (▲) between treatments, within the same exposure 

time; (♦) between exposure times, within the same treatment. 

 

Table 3. Mean frequency (‰) of each nuclear abnormality category (± standard error) in peripheral 

erythrocytes of A. anguilla exposed to 11.8 and 23.6 µg.L−1 aminophosphoric acid (AMPA; A1, A2), 

during 1 and 3 days. Statistically significant differences (p<0.05) are: (*) in relation to control (C), 

within the same exposure time; (▲) between treatments, within the same exposure time; (♦) 

between exposure times, within the same treatment. 

 

 

 

The results in terms of individual analysis of each nuclear lesion category (Table 3) 

showed no differences in what concerns to 1 day exposure. Contrarily, the 3 days 

exposure revealed that L and S categories, as well as the sub-total (K+L+S+N), were 
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significantly higher than the control, when the higher concentration of AMPA (A2) was 

considered (Table 3). Similarly to what was notice for ENA frequency (Fig. 5), L category 

and the sub-total displayed significant concentration- and time-related increases (Table 3). 

Kidney shaped nuclei (K) was the most commonly detected nuclear abnormality in all 

experiment groups, except in the higher AMPA concentration, after the 3 days exposure 

(A2) where L category exhibited the highest frequency (Table 3). 

 

 

5.4 Discussion 

Despite glyphosate has been considered as practically nontoxic to fish (USEPA 

1993), its genotoxic potential to this group of aquatic organisms was recent and 

unequivocally demonstrated (Guilherme et al. 2012b). The rapid conversion of glyphosate 

into its breakdown product AMPA appears as a silent problem to the environment, since 

this metabolite has not been taken into account when the impact of pesticides is under 

evaluation. The AMPA persistence is higher than glyphosate but its occurrence in the 

environment has been neglected until now, being its toxicity largely ignored. 

Consequently, concerns regarding the possible health and environmental hazards 

emerged, justifying scientific efforts in this direction. Hence, the present study appears as 

the first study assessing the genotoxic risk of AMPA to fish. 

The concentrations of AMPA currently tested were calculated on the basis of 

environmentally realistic concentrations of glyphosate (Guilherme et al. 2012b), 

considering its total degradation into the metabolite. Keeping this in mind and the scarcity 

of data published so far, the following discussion will be mainly focused on the 

interpretation of the current findings, having as background the available data concerning 

its precursor – glyphosate. 

The genotoxicity of AMPA was assessed by two genotoxic endpoints (comet and 

ENA), in order to reflect genetic damage at different levels as stated in the introduction. In 

line with Mañas et al. (2009), the comet assay could be considered a biomarker of 

genotoxic exposure while ENA assay is a biomarker of genotoxic effect. 

In terms of non-specific DNA damage, depicted in GDI values, AMPA showed its 

genotoxic potential in all tested conditions, except for the lower concentration (A1), after 3 

days exposure. Despite statistically non-significant, a time-related decrease tendency in 

GDI values can be noticed. Taking this together with the lack of a significant GDI increase 

for the lower concentration (A1) after 3 days, it can be suggested that fish erythrocytes 

had the capacity of recover from the damage exhibited after 1 day. This idea is confirmed 
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by the analysis of the DNA damage classes individually, as most of the AMPA treatments 

displayed classes 2 and 3 as the most prevalent, contrarily to A1 group after 3 days where 

classes 1 and 2 showed to be predominant. Moreover, class 3 showed a significant 

decrease from 1 to 3 days exposure. This time-related disappearance of DNA damage 

concerning A1 groups, which is also reinforced by the significant effect of factor time, can 

be explained as an adaptation to the genotoxic stimulus allowing fish to avoid the damage 

expression as GDI. Since it is known that DNA strand breaks and alkali labile sites 

detected by the comet assay represent an early sign of damage (Lee and Steinert 2003), 

which might be subject to a repair process (Collins 2004), this recovery may be explained 

by the intervention of DNA-repair system and/or by the catabolism of heavily damaged 

cells in the spleen. Additionally, an increased splenic erythrophagia was associated to 

intense genetic damage in A. anguilla (Pacheco and Santos 2002). These processes have 

been previously presented by Saleha Banu et al. (2001) to explain reductions in comet 

tail-length after 2 and 3 days and a return to control levels, after 4 days, in blood cells of 

fish (Tilapia mosambica) exposed to an organophosphate pesticide. 

The comparison of the DNA damaging effects (measured as GDI) of AMPA 

presently detected with those of its precursor glyphosate (Guilherme et al. 2012b) reveals 

that both compounds showed a similar pattern. The only difference noticed is related to 

the ability of recover from the damage caused. Thus, after 3 days exposure, fish showed 

to be able to recover from the damage caused by the exposure to 35.7 µg. L-1 of 

glyphosate (the equivalent concentration to the higher concentration of AMPA), while 

considering the metabolite, fish were only able to recover from the exposure to the lowest 

concentration (corresponding to 17.9 µg. L-1 of glyphosate). Considering the previous 

facts, it is not possible to sustain that the metabolite (AMPA) is less toxic than the parental 

compound (glyphosate) as mentioned in a report of the European Commission (2002). 

In order to understand a particular damaging action, namely DNA oxidation, the 

comet assay was improved with an extra-step with two DNA lesion-specific repair 

enzymes. Thus, the DNA breaks scored after the incubation with endonucleases also 

pointed out the genotoxicity of AMPA (in all treatments and exposure times, except for 

GDIEndoIII in A1 group after 3 days exposures). Curiously, when only the additional breaks 

corresponding to net enzyme-sensitive sites were considered, none of the conditions 

revealed significant levels of oxidative damage. However, the use of this methodology 

allows the detection of a genotoxic risk resulting from unspecific (alkali-labile sites, DNA-

DNA/DNA-protein cross-linking, and single strand breaks associated with incomplete 

excision repair sites) and specific (bases oxidation) damage jointly, as well as the isolation 
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of the oxidative DNA damage. The additional step of the assay also improves the 

possibility to identify a damaging action that could have been masked by the breaks score 

as GDI only. 

Looking specifically to GDIFPG parameter, after 1 day exposure the results 

demonstrated to be in accordance with those obtained for GDI. However, when 3 days 

results as GDIFPG were considered, the lower concentration of AMPA (A1) kept its 

genotoxic action, pointing out an inability of adaptation to the genotoxic stimulus, contrarily 

to what has been demonstrated in GDI results. Thus, when DNA damage measured by 

GDI (alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and single strand breaks 

associated with incomplete excision repair sites) was complemented with the evaluation of 

the purine bases oxidation, AMPA confirmed its genotoxicity, revealing also the inability to 

recover from 1 to 3 days exposure. Accordingly, it can be suggested that the oxidative 

damage seems to be more difficult to repair, when compared to the non-specific damage. 

Anyway, it can be inferred that the DNA-repair system played the principal role on the 

temporal recovery (from 1 to 3 days) displayed by the GDI parameter, rather than the 

catabolism of heavily damaged cells. The involvement of the latter process would have 

affected both GDI and GDIFPG parameters (which was not the case). 

As described for GDI and GDIFPG, GDIEndoIII showed significantly higher DNA 

damage for both treatments, considering the 1 day exposure. The GDIEndoIII results 

obtained after the exposure of 3 days, as observed for the GDI parameter and contrarily of 

GDIFPG, did not point out the lower AMPA concentration as being genotoxic.  

The NSSEndoIII parameter, similarly to NSSFPG, was not able by itself to point AMPA 

as a notable inducer of oxidative damage. In this way, the potential of AMPA to exert 

oxidative damage, though it cannot be overlooked, seems to be limited, preventing the 

detection of damage when only the additional breaks corresponding to the incubation with 

DNA lesion-specific repair enzymes (FPG and EndoIII) are assessed. 

Nevertheless, looking to the GDIFPG+EndIII data (considering the incubation with FPG 

and EndoIII), the indication towards the genotoxic potential of AMPA was strengthened, 

since all tested conditions displayed significant DNA damage, which was not observed for 

the GDI parameter. This pattern of results has been also reported for glyphosate (AMPA 

precursor) in a previous study carried out with the same species under comparable 

conditions (Guilherme et al. 2012b). Thus, the present results pointed out a limitation of 

the standard comet assay (GDI data), as already stated by Guilherme and co-workers 

(2012b). Likewise, previous results of non-specific DNA damage, depicted by GDI, 

pointed out the higher concentration of glyphosate (corresponding to the higher 
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concentration of AMPA currently used) as non genotoxic (Guilherme et al. 2012b). This 

fact would be disclaimed by results obtained by overall oxidative damage, as well as 

considering the enzyme-associated DNA breaks (Guilherme et al. 2012b). Contrary to 

AMPA, the previous study demonstrated that glyphosate was able to induce oxidative 

damage measured as NSSEndoIII (in a concentration corresponding to the higher AMPA 

concentration tested). Thus, AMPA showed no evidences to have higher potential to 

oxidatively damage DNA in comparison with its precursor - glyphosate. On the other hand, 

an overall evaluation indicates that these two environmental contaminants present similar 

DNA damaging potential, despite the few differences already mentioned. In spite of the 

use of different biological models, the present findings on DNA damaging potential of 

AMPA are in line with those reported by Mañas and co-workers (2009). 

Considering the ENA assay, chromosomal damage was only found in fish exposed 

to the higher concentration of AMPA, after 3 days (A2). In addition, and considering this 

exposure length, it was possible to distinguish both AMPA concentrations. Moreover, it 

was also noticed a significant increase of chromosomal damage between different 

exposure times, when A2 groups were considered. These results were reinforced by the 

influence of factors concentration and time, as well as by the interaction between them. In 

what concerns to the individual abnormality categories, the data support the results 

already discussed. As observed for ENAs frequency, only A2 group after 3 days showed 

significant differences, either in comparison with corresponding control or A1 group. 

Moreover, a time related increase was also perceptible. The observed differences were 

mostly due to the significant increase of the lobed (L) category, despite the slight 

contribution of S category. In addition, and following the ENAs pattern, L category also 

displayed a significant increase between both treated groups, during the 3 days exposure, 

appearing as the only category able to discern between concentrations. A time related 

increase was also observed for L category (A2 groups), supporting once again its 

contribution to the total ENAs frequency. The absence of MN in the present study 

reinforced the usefulness of the other nuclear abnormalities scoring, as previously stated 

(Guilherme et al. 2008, 2010). The single score of MN may lead to a possible lack of 

sensitivity related to its low frequency in fish. As mentioned for comet assay, the present 

ENA results are in line with the findings of Mañas and co-workers (2009) who described 

an increase frequency of micronucleated erythrocytes in mice, 2 days after an i.p. injection 

of AMPA. 

The comparative analysis of comet and MN (or ENA) assays in terms of their 

sensitivity is a controversial matter. It is well known that comet assay detects primary DNA 
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lesions resulting from the balance of DNA damage (strand breaks, alkali-labile sites, and 

cross-links) and repair mechanisms, while the MN (or ENA) test reveals fixed DNA lesions 

or irreparable aneugenic effects (Bolognesi et al. 2004). Thus, data resulting from both 

assays were considered in parallel, as reflecting different types of genetic damage. In this 

perspective, current ENA data reflected a late appearance of damage when compared to 

comet assay, as suggested by Wirzinger et al. (2007). This fact seems to be related to the 

need of the exposed cell population to undergo at least one cell cycle (Udroiu 2006), 

which is not a requisite for comet assay. Subsequently, only comet assay demonstrated to 

be able of to detect genetic damage after 1 day of exposure, confirming the precocious 

nature of the damaging events involved. On the other hand, ENAs, unlike comet assay, 

demonstrated the ability to distinguish the two tested concentrations. Moreover, it was 

possible to observe a different pattern related to the temporal evolution of the induced 

damage. Hence, with the passage of time, the damage magnitude increased concerning 

the chromosomal damage, while the DNA damage (comet assay) revealed a decrease, 

pointing out a recovery phenomenon. 

In order to clarify the relation between the two endpoints, different correlations were 

studied (ENAs vs. GDI, r= 0.3363; ENAs vs. GDI FPG+EndoIII, r= 0.5743 and ENAs vs. NSS 

FPG+EndoIII, r=0.4883). Accordingly, the total absence of correlations reinforced the idea that 

genotoxic damage could be caused by different events. Despite ENAs could be originated 

by DNA single stand breaks (measured by comet assay), the diversity of processes (e.g. 

DNA repair) involved in this event and the subsequent occurrence of ENAs impairs the 

existence of correlation between these parameters. Moreover, it cannot be ignored that 

ENAs could have an aneugenic origin (which can not be measured by comet assay) that 

can also justify the absence of correlation. 

Briefly, it can be inferred that these two genotoxic end points provide complementary 

information, allowing a more effective assessment of AMPA genotoxic effects, when jointly 

applied. In this direction, only comet assay detected effects after 1 day exposure, while 

only ENA assay showed the aptitude to distinguish the tested concentrations and to reflect 

temporal variations. Accordingly, Wirzinger et al. (2007) stated previously that both are 

non-specific biomarkers which reflect different forms of environmental stress, 

recommending the application of both tests. 
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5.5 Conclusions 

The present findings demonstrated, for the first time in fish, the genotoxicity of 

AMPA, expressed both as DNA (comet assay) and chromosomal (ENA assay) damage. 

Overall, AMPA displayed a genotoxic potential comparable to its precursor (glyphosate), 

bringing to the fore a recent publication of our research group (Guilherme et al. 2012b). 

In an attempt to clarify the mechanisms involved in the detected damaging action, 

the results indicated that AMPA did not induce a marked DNA oxidation. Nevertheless, the 

use of DNA lesion-specific repair enzymes as an extra-step to the standard methodology 

of comet assay appears as a value-added towards an effective assessment of genotoxic 

hazard. 

Finally, it is strongly recommended to include AMPA in futures studies concerning 

the risk assessment of glyphosate-based herbicides due to its rapid appearance in the 

water systems and the potential risk to aquatic organisms, namely fish. 
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6 Genotoxicity of the herbicide Garlon
® and its active ingredient (triclopyr) in 

fish (Anguilla anguilla L.) using the comet assay 

 

 

Abstract 

Triclopyr-based herbicides are broadly used worldwide for site preparation and forest 

vegetation management. Thus, following application, these agrochemicals can 

inadvertently reach the aquatic ecosystems. Garlon® is one of the most popular 

commercial denominations of this group of herbicides, considered as highly toxic to fish, 

even by its manufacturer. Though DNA is frequently regarded as a target of pesticides 

toxicity, the genotoxic potential of Garlon® to fish remains completely unknown. Hence, 

the main goal of this study was to evaluate the genotoxicity of Garlon® and its active 

ingredient (triclopyr), clarifying the underlying mechanisms. Therefore, the comet assay 

(implemented as standard procedure and with an extra step involving DNA lesion-specific 

repair enzymes) was used to identify DNA damage in blood cells of Anguilla anguilla L., 

following short-term exposures (1 and 3 days) to the previous agents, adopting 

environmentally realistic concentrations (67.6 and 270.5 µg.L−1 Garlon®, 30 and 120 

µg.L−1 triclopyr). The results concerning the non-specific DNA damage proved the risk of 

the herbicide Garlon® and its active ingredient triclopyr, in both tested concentrations and 

exposure lengths. In addition, it was demonstrated the higher genotoxic potential of the 

formulation, in comparison to the active ingredient. When the additional breaks 

corresponding to net enzyme-sensitive sites were considered, none of the conditions 

revealed significant levels of oxidative damage. This identification of the genotoxic 

properties of triclopyr-based herbicides to fish recommend the adoption of mitigation 

measures related to the application of these agrochemicals in the framework of forestry 

and agriculture sustainable management. 

 

Keywords: Garlon®; triclopyr; genotoxicity; DNA lesion-specific repair enzymes; fish. 
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6.1 Introduction 

The proper use of herbicides, affecting only restricted terrestrial areas, is a critical 

issue on forestry and agriculture sustainable management. Nevertheless, following 

broadcast applications, from the ground or aircraft, these agrochemicals frequently reach 

the aquatic environment by runoff, aerial drift, or inadvertent overspray. Considering this 

and the fact that several herbicides have already been found to be toxic to aquatic 

organisms, this type of contamination may pose a severe environmental risk to aquatic 

ecosystems (Clements et al. 1997; Relyea 2005). 

Triclopyr-based herbicides, belonging to the class of pyridinecarboxylic acids, are 

broadly used worldwide for site preparation and forest vegetation management 

(Kreutzweiser et al. 1995; Wojtaszek et al. 2005). Triclopyr (3,4,6-trichloro-2-

pyridinyloxyacetic acid) is an auxin-type compound with a spectrum of weed control and 

mode of action similar to that of phenoxy herbicides. It is taken up through the roots, 

stems and leaf tissues of plants, being transported via symplastic processes and 

accumulated in the meristematic regions. Death of triclopyr-sensitive plants usually occurs 

over a period of 7 to 14 days (Getsinger et al. 2000). Triclopyr can be present in the 

commercial formulations either in the form of butoxyethyl ester (TBEE) or triethylamine 

salt (TEA). However, there are substantial differences in toxicity of TBEE and TEA 

derivatives, with the former showing to be more toxic in aquatic settings (MMWD 2008). 

In natural environments, TBEE is degradated within a few hours in triclopyr acid (the 

active ingredient) (McCall et al. 1988), which is supposed to be less toxic than its 

precursor (Kreutzweiser et al. 1995). Regarding the quantifications already performed in 

aquatic environments, and due to the rapid degradation of TBEE, it is frequent to consider 

only the triclopyr occurrence (Getsinger et al. 2000; Petty et al. 2003). Getsinger and co-

workers (2000) found triclopyr levels higher than 2 mg.L-1 in water bodies near agricultural 

fields, which exceed the limits recommended by manufacturers (around 1.25 mg.L-1) (Xie 

et al. 2005). 

Garlon® is one of the most popular commercial denominations of triclopyr-based 

herbicides, both in Europe and America. These formulations (containing TBEE) were 

considered highly toxic to aquatic organisms as demonstrated by the observation of lethal 

effects on fish (Kreutzweiser et al. 1994) and by the detection of avoidance behaviour and 

growth impairment in amphibians (Wojtaszek et al. 2005). However, only a few sub-lethal 

parameters concerning Garlon® adverse effects have been assessed in fish. In this 

context, Kreutzweiser and co-workers (1995) reported a growth inhibition in rainbow trout 

exposed to Garlon®, while another work (Janz et al. 1991) found no signs of acute 
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physiological stress (e.g. alterations on plasma glucose and lactate concentrations). 

Moreover, and considering the usual tendency of manufacturers to underestimate the risk 

associated to their commercial products, it becomes particularly relevant to point out the 

information depicted in the product label (Dow Agrosciences), classifying Garlon® as 

highly toxicity to fish. Thus, it appears evident the importance to evaluate parameters that 

can better predict the fish condition following exposure to Garlon®, as suggested by a 

Canadian health department (Health Canada 1991). Additionally, to the authors’ 

knowledge, no studies were performed concerning the toxicity to fish of the active 

ingredient of Garlon®, individually. 

DNA is a frequent target of pesticides toxicity. In line with this, it has been shown 

that the analysis of DNA integrity in aquatic organisms is a highly suitable method for 

evaluating the impact of environmental genotoxicants, allowing the detection of exposure 

to low concentrations of contaminants, including pesticides (Scalon et al. 2010). 

Nonetheless, the genotoxic potential of Garlon® and its active ingredient (triclopyr), as well 

as the mechanisms behind the possible genetic damage, remain completely unknown. 

Bearing in mind the knowledge gaps above identified, the main goal of the present 

research was to assess the genotoxic potential of the herbicide Garlon® and the active 

ingredient triclopyr in fish. Therefore, the comet assay was used to identify DNA damage 

in blood cells of Anguilla anguilla L., following a short-term exposure to the previous 

agents, adopting environmentally realistic concentrations. As an attempt to clarify the 

involved DNA damaging mechanisms, besides the standard procedure, comet assay was 

carried out with an extra step where nucleoids were incubated with DNA lesion-specific 

repair enzymes. This combined methodology allows the detection of a genotoxic risk 

resulting from unspecific and specific damage. Hence, this additional step intended to 

clarify if the induced damage has an oxidative cause. 

 

6.2 Material and Methods 

6.2.1 Chemicals 

The experiment was conducted using the commercial formulation Garlon®, 

distributed by Dow AgroSciences (Lusosem, Portugal), containing triclopyr formulated as 

a butoxyethyl ester at a concentration of 480 g.L-1 (or 44.4%) and kerosene (petroleum 

distillate) as adjuvant. Triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) was obtained 

from Sigma-Aldrich Chemical Company (Spain). DNA lesion-specific repair enzymes, 

namely formamidopyrimidine DNA glycosylase (FPG) and endonuclease III (EndoIII) were 

purchased from Professor Andrew Collins (University of Oslo, Norway). All the other 
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chemicals needed to perform comet assay were obtained from the Sigma-Aldrich 

Chemical Company (Spain). 

 

6.2.2 Test animals and experimental design 

European eel (Anguilla anguilla L.) specimens with an average weight 0.25±0.02 g 

(glass eel stage) were captured from Mondego river mouth, Figueira da Foz, Portugal. 

Eels were acclimated to laboratory for 20 days and kept in 20-L aquaria under a natural 

photoperiod, in aerated, filtered, dechlorinated and recirculating tap water, with the 

following physico-chemical conditions: salinity 0, temperature 20±1ºC, pH 7.1±0.1, nitrate 

25±0.4 mg.L-1, nitrite 0.04±0.03 mg.L-1, ammonia 0.2±0.03 mg.L-1, dissolved oxygen 

8.1±0.2 mg.L−1. During this period, fish were daily fed with fish roe. The experiment was 

carried out in 1-L aquaria, in a semi-static mode, under the conditions described for the 

acclimation period. After acclimation, 120 eels were divided into ten groups, 

corresponding to five test conditions and two exposures times (5x2). Thus, fish were 

exposed to 67.6 and 270.5 µg.L−1 Garlon® (groups G1 and G2, respectively) and 30 and 

120 µg.L−1 triclopyr (groups T1 and T2, respectively). Another group was kept with clean 

water - control (group C). For each test condition, 1 and 3 days exposures were carried 

out. Water medium in 3-day aquaria was daily renewed (100%). 

The exposure concentrations of Garlon® were calculated considering the acid 

equivalents of triclopyr contained in the formulated product (the active ingredient 

represents 44.4%). Stock solutions of each agent were prepared (in deionised water) just 

before addition to exposure water. 

To each test group was assigned an abbreviation where the first number represents 

the exposure duration, the letter represents the agent tested and the second number 

represents the concentration (1 for the lower and 2 for the higher). The experiment was 

carried out using triplicate (n=3) groups of 4 fish for each condition/time (3x4 = 12 fish). 

Fish were not fed during experimental period. 

Following exposure, fish were sacrificed by cervical transection at the post-opercular 

region and blood collected from the heart using heparinised capillary tubes. Two µL of 

blood were immediately diluted in 1 mL of ice-cold phosphate-buffered saline (PBS) to 

prepare a cell suspension, which was kept on ice until further procedure. 
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6.2.3 Evaluation of genetic damage 

The conventional alkaline version of the comet assay was performed according to 

the methodology of Collins (2004) as adapted by Guilherme et al. (2010), with the proper 

adjustments to assay procedure with extra step of digesting the nucleoids with 

endonucleases. A system of eight gels per slide was adopted, based on a model created 

by Shaposhnikov et al. (2010), in order to increase the assay output. Briefly, 20 µL of cell 

suspension (previously prepared in PBS) were mixed with 70 µL of 1% low melting point 

agarose, in distilled water. Eight drops of 6 µL were placed onto the precoated slide as 

two rows of 4 (4 groups of 2 replicates), without coverslips, containing each gel 

approximately 1500 cells. The gels were left for ±5 min at 4 ºC in order to solidify agarose, 

and then immersed in a lysis solution (2.5 M NaCl, 0.1 M EDTA, 10 mM Tris, 1% Triton X-

100, pH 10) at 4 ºC, for 1 h. After lysis of agarose-embedded cells, slides were washed 3 

times with enzyme buffer (0.1 M KCl, 0.5 mM EDTA, 40 mM HEPES, 0.2 mg.mL−1 bovine 

serum albumin, pH 8) at 4 ºC. 

Three sets of slides were prepared: two sets were incubated with endonucleases (1) 

FPG and (2) EndoIII, that convert oxidised purines and pyrimidines into DNA single strand 

breaks, respectively (Azqueta et al. 2009), and a third (3) set was incubated only with 

buffer. Hence, 30 µL of each enzyme (diluted in buffer) were applied in each gel, along 

with a coverslip, prior to incubation at 37 ºC for 30 min in a humidified atmosphere. The 

slides were then gently placed in the electrophoresis tank, immersed in electrophoresis 

solution (±20 min) for alkaline treatment. DNA migration was performed at a fixed voltage 

of 25 V, a current of 300 mA which results in 0.7 V.cm-1 (achieved by adjusting the buffer 

volume in the electrophoresis tank). The slides were stained with ethidium bromide (20 

µg.L−1). 

Fifty nucleoids were observed per gel, using a Leica DMLS fluorescence microscope 

(400x magnification). The DNA damage was quantified by visual classification of 

nucleoids into five comet classes, according to the tail intensity and length, from 0 (no tail) 

to 4 (almost all DNA in tail) (Collins 2004). The total score expressed as a genetic damage 

indicator (GDI) was calculated multiplying the percentage of nucleoids in each class by 

the corresponding factor, according to this formula: 

 

GDI = [(% nucleoids class 0)×0] + [(% nucleoids class 1)×1] + [(% nucleoids class 

2)×2] + [(% nucleoids class 3)×3] + [(% nucleoids class 4)×4] 
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GDI values were expressed as arbitrary units in a scale of 0 to 400 per 100 scored 

nucleoids (as average value for the 2 gels observed per fish). When the comet assay was 

performed with additional FPG and EndoIII steps, GDI values were calculated in the same 

way but the parameter designated GDIFPG and GDIEndoIII, respectively. Additional DNA 

breaks corresponding to net enzyme-sensitive sites alone (NSSFPG or NSSEndoIII) were also 

expressed. In order to better estimate the overall magnitude of oxidative DNA damage, 

the sum of GDI with additional DNA breaks corresponding to both net FPG- (NSSFPG) and 

EndoIII-sensitive sites (NSSEndoIII) was also calculated (GDIFPG+EndoIII). Moreover, the 

frequency of nucleoids observed in each comet class considering GDIFPG and GDIEndoIII 

was also expressed, as recommended by Azqueta et al. (2009). 

 

6.2.4 Statistical analysis 

Statistica 7.0 software was used for statistical analysis. All data were first tested for 

normality and homogeneity of variance to meet statistical demands. One-way Analysis of 

Variance (ANOVA), followed by Dunnett test as Post-hoc comparison, was applied to 

compare the treated groups with the control, within the same exposure duration. Three-

way ANOVA was applied to test the effect of the factors agent, concentration and 

exposure time on the levels of DNA damage, as well as the interactions between them. 

The Tukey test was applied as Post-hoc comparison. In all the analyses, differences 

between means were considered significant when p<0.05 (Zar 1996). 

 

 

6.3 Results 

6.3.1 Non-specific DNA damage  

Considering GDI values after the first day of exposure, it was possible to notice that 

all treatments showed to be significantly different from control (Fig. 1). Additionally, a 

concentration-dependence was perceived when both concentrations of Garlon® (1G1 and 

1G2) were compared. In the same way, after 3 days, all treatments exhibited higher GDI 

levels, when compared with control. At this exposure time, significantly higher levels were 

found in the higher Garlon® concentration (3G2) comparing with the equivalent 

concentration of its active ingredient (triclopyr) (3T2) (Fig. 1). No time related differences 

were detected. 

Table 1 (3-way ANOVA results) revealed a significant effect of the factors agent, 

concentration and time on GDI levels, as well as significant interactions agent x 

concentration and agent x time. 
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Fig 1. Mean values of genetic damage indicator (GDI) measured by the standard (alkaline) comet 

assay in blood cells of A. anguilla exposed to 67.6 and 270.5 µg.L−1 Garlon® (G1, G2) and 30 and 

120 µg.L−1 triclopyr (T1, T2), during 1 and 3 days (in the abbreviations for test conditions, the first 

number represents the exposure duration). Bars represent the standard error. Statistically 

significant differences (p<0.05) are: (*) in relation to control (C), within the same exposure time; (▲) 

between treatments, within the same exposure time. 

 

6.3.2 Oxidative DNA damage 

The detection of oxidized bases was achieved by the comet assay with an extra step 

where nucleoids were incubated with the DNA lesion-specific repair enzymes FPG or 

EndoIII (Figs. 2 and 3). 

 

FPG associated damage 

After 1 day exposure, the digestion with FPG revealed damage levels (GDIFPG; Fig. 

2A) significantly higher than the control in all treated groups. Moreover, the higher 

concentration of active ingredient (1T2) displayed significantly lower damage when 

compared to the equivalent concentration of the commercial formulation (1G2). Like in 

GDI parameter, GDIFPG was also able to distinguish Garlon® groups, displaying a 

concentration dependence. As far as the NSSFPG parameter (Fig. 2B) is concerned, none 

of the conditions showed significant differences in relation to the control. 

Concerning 3 days exposure (Fig. 2A), all treated groups displayed values 

significantly higher than control. In line with 1 day observations, NSSFPG parameter (Fig. 

2B) did not showed any significant difference. 

A time-related increase was found concerning the higher concentration of triclopyr 

(T2) (Fig. 2A). 
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Fig 2. Mean values of DNA damage, measured by comet assay in blood cells of A. anguilla 

exposed to 67.6 and 270.5 µg.L−1 Garlon® (G1, G2) and 30 and 120 µg.L−1 triclopyr (T1, T2), 

during 1 and 3 days (in the abbreviations for test conditions, the first number represents the 

exposure duration). Values resulted from the assay with an extra step of digestion with 

formamidopyrimidine DNA glycosylase (FPG) to detect oxidised purine bases: (A) overall damage 

(GDIFPG) and partial scores, namely genetic damage indicator (GDI; grey) and additional DNA 

breaks corresponding to net FPG-sensitive sites (NSSFPG; black); (B) NSSFPG alone. Bars represent 

the standard error. Statistically significant differences (p<0.05) are: (*) in relation to control (C), 

within the same exposure time; (▲) between treatments, within the same exposure time; (♦) 

between exposure times, within the same treatment. 

 

Table 1 revealed, for GDIFPG, a significant effect of agent, concentration and time, as 

well as significant interactions agent x time and agent x time x concentration. NSSFPG 

showed only to be significantly affected by time. 
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Table 1. Results of three-way ANOVA testing the effect of agent, concentration and time, as well as the interactions between them (agent x 

concentration, agent x time, concentration x time and agent x time x concentration) on the levels of DNA damage in blood cells of A. anguilla exposed to 

Garlon® or triclopyr, during 1 and 3 days. Both F and p values are given for each variable. Non significant differences are signalized as “ns”. 
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In order to better understand the behaviour of the DNA damage depending on the 

tested agent and exposure length, the damage classes were analyzed individually, 

considering the GDIFPG parameter (Table 2). In general, the significant differences 

between control and treated groups reflected a pattern similar to that one displayed by the 

overall score. Furthermore, it can be highlighted that control groups revealed class 2 as 

the most frequent, while triclopyr groups exhibited a prevalence of class 3. Garlon® 

groups, in particular, presented class 2 and 3 as the most representatives. For class 4, a 

significant frequency increase observed was only evident for groups corresponding to the 

highest concentrations of Garlon® (1 and 3 days) and triclopyr (3 days). 

 

Table 2. Mean frequencies (%) of damaged nucleoids classes (± standard error), measured by the 

comet assay including the incubation with the FPG enzyme, in blood cells of A. anguilla exposed to 

67.6 and 270.5 µg.L−1 Garlon® (G1, G2) or 30 and 120 µg.L−1 triclopyr (T1, T2), during 1 and 3 

days (in the abbreviations for test conditions, the first number represents the exposure duration). 

Statistically significant differences (p<0.05) are: (*) in relation to control (C), (a) in relation to G1 

and (b) in relation to G2, within the same exposure time; (♦) between exposure times, within the 

same treatment. 
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EndoIII associated damage 

In what concerns to the GDIEndoIII parameter (Fig. 3A), all treated groups presented 

significantly higher values, when compared with control (for both exposure times). 

Moreover, and specifying for the first day of exposure, it was possible to observe that the 

active ingredient (1T2) showed a significant decrease when compared to the 

correspondent concentration of the commercial formulation (1G2). This parameter, as 

described for GDI and GDIFPG, was able to show a concentration-dependent increase for 

Garlon® groups (1G1 and 1G2) (Fig. 3A). NSSEndoIII revealed no significant differences in 

any of the exposure times (Fig. 3B). 

 
Fig 3. Mean values of DNA damage, measured by comet assay in blood cells of A. anguilla 

exposed to 67.6 and 270.5 µg.L−1 Garlon® (G1, G2) and 30 and 120 µg.L−1 triclopyr (T1, T2), 

during 1 and 3 days (in the abbreviations for test conditions, the first number represents the 

exposure duration). Values resulted from the assay with an extra step of digestion with 

endonuclease III (EndoIII) to detect oxidised pyrimidine bases: (A) overall damage (GDIEndoIII) and 

partial scores, namely genetic damage indicator (GDI; light grey) and additional DNA breaks 

corresponding to net EndoIII-sensitive sites (NSSEndoIII; dark grey); (B) NSSEndoIII alone. Bars 

represent the standard error. Statistically significant differences (p<0.05) are: (*) in relation to 

control (C), within the same exposure time; (▲) between treatments, within the same exposure 

time. 
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Table 1 displayed significant effects of agent, concentration and time, as well as 

interaction agent x concentration were depicted in for GDIEndoIII parameter. On the other 

hand, NSSEndoIII parameter, as already observed for NSSFPG, was only affected by the 

factor time. 

In line with what was presented for GDIFPG, the DNA damage classes considering 

GDIEndoIII were analyzed individually (Table 3). Control groups (at both exposure times) 

displayed class 2 as the most frequent. Treated groups showed that damage was 

reflected mostly as class 3, with the exception of 1G1 and 1T1 groups (where class 2 was 

the most representative). Considering class 4, and contrarily to what was found for 

GDIFPG, GDIEndoIII was not able to distinguish between treatments, with the exception of 

Garlon® (3 days exposure). 

 

Table 3. Mean frequencies (%) of damaged nucleoids classes (± standard error), measured by the 

comet assay including the incubation with the EndoIII enzyme, in blood cells of A. anguilla exposed 

to 67.6 and 270.5 µg.L−1 Garlon® (G1, G2) or 30 and 120 µg.L−1 triclopyr (T1, T2), during 1 and 3 

days (in the abbreviations for test conditions, the first number represents the exposure duration). 

Statistically significant differences (p<0.05) are: (*) in relation to control (C), (a) in relation to G1 

and (b) in relation to G2, within the same exposure time; (♦) between exposure times, within the 

same treatment. 
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FPG plus EndoIII associated DNA breaks 

As described for GDIFPG and GDIEndoIII separately, the parameter GDIFPG+EndoIII (Fig. 

4) displayed values significantly higher than the control in all the treatments (for both 1 

and 3 days of exposure) with the unique exception for the group 1G1. Moreover, it was 

confirmed the significant difference between both Garlon® groups (1G1 and 1G2) after 1 

day exposure. In addition, GDIFPG+EndoIII showed a significant effect of concentration, as 

well as a significant interaction agent x concentration (Table 1). 

 

 
Fig 4. Mean values of DNA damage, measured by comet assay in blood cells of A. anguilla 

exposed to 67.6 and 270.5 µg.L−1 Garlon® (G1, G2) and 30 and 120 µg.L−1 triclopyr (T1, T2), 

during 1 and 3 days (in the abbreviations for test conditions, the first number represents the 

exposure duration). Values resulted from the sum of genetic damage indicator (GDI; light grey) with 

additional DNA breaks corresponding to net FPG-sensitive sites (NSSFPG; black) and net EndoIII-

sensitive sites (NSSEndoIII; dark grey). Bars represent the standard error. Statistically significant 

differences (p<0.05) are: (*) in relation to control (C), within the same exposure time; (▲) between 

treatments, within the same exposure time. 

 

 

6.4 Discussion 

The present study intended to clarify the genotoxic potential of the triclopyr-based 

herbicide Garlon® and its active ingredient. The adopted approach was based on a 

previous study performed by the authors, concerning the genotoxicity of another herbicide 

(Roundup®) and the respective components (Guilherme et al. 2012) where it became 

clear that DNA damaging patterns followed by the commercial formulation and by the 

active ingredient, individually, may diverge. 



Chapter VI 

160 

Besides the complete absence of genotoxicity evaluation on fish previously 

highlighted, there is also a scarcity of studies addressing other sub-lethal effects of 

Garlon® and triclopyr, despite their recognized hazard to aquatic environment. Hence, 

Kreutzweiser and co-workers (1995) assumed the toxicity of TBEE to fish, but, to be 

precise, they assessed the toxicity of the commercial product Garlon 4® as a whole. Since 

the mentioned formulation has petroleum distillates in its constitution (namely kerosene), 

as presented by the manufacturer Dow Agrosciences, the measured effects cannot be 

strictly attributed to TBEE. Moreover, most studies performed on Garlon 4® toxicity to fish 

(Janz et al. 1991; Kreutzweiser et al. 1994; Kreutzweiser et al. 1995) adopted 

concentrations excessively high (0.25 – 7.6 mg.L-1) (Janz et al. 1991; Kreutzweiser et al. 

1995), comparing to those that commonly are found in the environment. Therefore, the 

authors consider of great importance to carry out the present study adopting 

environmentally relevant concentrations of the active ingredient (triclopyr) individually 

(Getsinger et al. 2000; Petty et al. 2003), extrapolating then to the equivalent 

concentrations of the commercial formulation Garlon®. 

In terms of non-specific DNA damage, the current results expressed as GDI proved 

the genotoxicity of Garlon® and triclopyr in both tested concentrations and both exposure 

lengths. It was also perceptible a dose-dependence of the detected potential for the 

commercial formulation, in particular after the first day of exposure. 

On the other hand, the significant difference between the genotoxic potential of both 

tested agents (considering the highest concentration, after the third day of exposure) call 

the attention towards the higher toxicity of the formulation, which might be related to the 

presence of an adjuvant. It can be also inferred that the formulated product only becomes 

more genotoxic than the active ingredient (individually) with a continued exposure. 

Moreover, it was observed that the groups corresponding to the higher concentrations of 

Garlon® (1G2 and 3G2) were those that exhibited the highest DNA damage extent (as 

absolute values). This fact underlines the highest hazard of the commercial formulation, in 

comparison with the active ingredient. 

The value-added concerning the use of DNA lesion-specific repair enzymes as an 

extra-step to the standard methodology of comet assay in the assessment of the 

pesticides genotoxicity has already been demonstrated (Guilherme et al. 2012). This 

improved methodology allows the jointly detection of the genotoxic risk concerning bases 

oxidation and the non-specific damage (alkali-labile sites, DNA-DNA/DNA-protein cross-

linking, and single strand breaks associated with incomplete excision repair sites). In 

addition, this approach also enables the isolation of the oxidative DNA damage. Thus, 
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analyzing the DNA breaks after the incubation with endonucleases (FPG and EndoIII), the 

genotoxicity of the tested agents was confirmed (in all treatments and exposure times). 

Both GDIFPG and GDIEndoIII parameters pointed out the concentration-dependence of 

Garlon® effects, after 1 day, as reported for GDI. Similarly, these parameters reinforced 

the GDI indication towards the higher genotoxic potential of Garlon® in relation to triclopyr. 

GDIFPG, in particular, also revealed an increased triclopyr genotoxicity over time, thereby 

reflecting an augmented risk related with its persistence in the aquatic environment.  

The analysis of the individual damage classes (concerning both GDIFPG and 

GDIEndoIII parameters) revealed that either the concentration or the exposure time exerted 

influence in the magnitude of damage, since higher concentrations and longer time 

periods presented higher frequencies in class 3. The notorious prevalence of class 3 in 

Garlon® groups emphasizes the hazard caused by this herbicide. Moreover, it can be 

noticed that along the experiment almost all nucleoids presented damage corresponding 

to classes 2, 3 and 4, reflecting a time-related risk increased. 

When the additional breaks corresponding to net enzyme-sensitive sites were 

considered, none of the conditions revealed significant levels of oxidative damage. Hence, 

NSSFPG and NSSEndoIII parameters were not able, by themselves, to point a considerable 

damage. However, looking specifically to these results, it can be noticed that after 1 day 

exposure higher values were recorded comparing to the third day, despite the absence of 

any significance. This fact is supported by the significant effect of factor time, for both 

parameters. Keeping this in mind, the oxidative potential of both tested agents appears to 

be limited, even though it should not be neglected. 

Accordingly, the present findings allowed proving the risk of the herbicide Garlon® to 

non-target organisms, highlighting, at the same time, its higher genotoxicity in comparison 

to its active ingredient triclopyr.  

Considering that the formulation Garlon® has kerosene (as adjuvant) among its 

constituents, the toxicity of the latter should be taken into account when the whole 

formulation is under evaluation due to its recognized toxicity (Arif et al. 1997). However, a 

USFS (United States Forest Service) report states that the toxicity of kerosene to aquatic 

species is approximately 100–1,000 folds less than TBEE, suggesting that the acute 

aquatic toxicity of Garlon® is dominated by TBEE (MMWD 2008). Moreover, Burch and 

Kline (2007) stated that the toxicity of Garlon® is consistent with the toxicity of TBEE, 

considering that kerosene does not appear to contribute to the product’s toxicity. 

Nevertheless, the interaction between constituents inside the mixture should not be 

neglected, since Lohani et al. (2000) found that kerosene can elevate the genotoxic 
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potential of another agent. Keeping this in mind, can Release® (a triclopyr-based herbicide 

similar to Garlon® without kerosene) be a better choice in what concerns to this kind of 

herbicides? 

Guilherme et al. (2012) found that the active ingredient glyphosate may be more 

genotoxic than the corresponding commercial formulation (Roundup®) indicating, in this 

particular case, that the surfactant did not contributed to the mixture genotoxicity. 

Several studies with pesticides (and its constituents and/or metabolites) revealed 

their genotoxic potential through the use of the standard comet assay (Çavas and Könen 

2007; Sharma et al. 2007; Guilherme et al. 2010) (Guilherme et al., submitted). These 

facts pointed out the subsequent hazard of this kind of contaminants to the aquatic 

environment, even when low concentrations were considered. Moreover, the comet assay 

has already proved to be highly suitable as tool for the evaluation of exposure to 

environmental realistic concentrations of herbicides. 

Taking all this into account, the authors strongly recommended the inclusion of the 

DNA integrity evaluation as a useful tool in the Ecological Risk Assessment (ERA) of 

pesticides contaminated sites. 

 

 

6.5 Conclusions 

Overall, this study revealed, for the first time in fish, the genotoxic potential of the 

herbicide Garlon® as well as its active ingredient triclopyr. Moreover, Garlon® seemed to 

be more genotoxic than triclopyr. 

The ability in exert oxidative DNA damage could not be demonstrated for any of the 

tested agents, as depicted in the results as net enzyme-sensitive sites (NSSFPG or 

NSSEndoIII). Though the oxidative potential of both tested agents appeared to be limited, it 

should not be completed neglected.  

Thus, the present findings on genotoxic properties of the assessed agents call the 

attention to the hazard to non-target organisms, namely fish, exposed to these 

agrochemicals, even when low levels are considered. Consequently, the application of 

such herbicides should be reconsidered in order to include mitigation measures, in the 

framework of forestry and agriculture management. 
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7 Are DNA-damaging effects induced by herbicide formulations (Roundup
®
 and 

Garlon
®
) in fish transient and reversible upon cessation of exposure? 

 

 

Abstract 

Owing to the crops seasonality and subsequent periodic/seasonal application of 

herbicides, their input to the aquatic systems is typically intermittent. Consequently, fish 

exposure to this type of contaminants can be short and followed by a period of 

permanence in non-contaminated areas. Bearing this in mind, the assessment of 

genotoxic endpoints in fish after removal of the contamination source appears as a crucial 

step to improve the knowledge on the dynamics of herbicide induced genotoxicity, as well 

as to determine the actual magnitude of risk posed by these agrochemicals to fish. 

Therefore, the present study intended to shed light on fish ability to recover from the DNA 

damage induced by short-term exposures to the herbicide formulations Roundup® 

(glyphosate-based) and Garlon® (triclopyr-based) upon the exposure cessation. European 

eel (Anguilla anguilla) was exposed to the previous commercial formulations, for 3 days, 

and allowed to recover for 1, 7 and 14 days (post-exposure period). The comet assay was 

used to identify the DNA damage in blood cells during both exposure and post-exposure 

periods. As an attempt to clarify the DNA damaging mechanisms involved, an extra-step 

including the incubation of the nucleotides with DNA lesion-specific repair enzyme was 

added to the standard comet. The genotoxic potential of both herbicides was confirmed, 

concerning the exposure period. In addition, the involvement of oxidative DNA damage on 

the action of Roundup® (pointed out as pyrimidine bases oxidation) was demonstrated, 

while for Garlon® this damaging mechanism was less evident. Fish exposed to Garlon®, 

though presenting some evidences towards a recovery tendency, didn’t achieve a 

complete restoration of DNA integrity. In what concerns to Roundup®, a recovery was 

evident when considering non-specific DNA damage, on day 14 post-exposure. In 

addition, this herbicide was able to induce a late oxidative DNA damage (day 14). It was 

also recognized that blood cells of A. anguilla exposed to Roundup® were more 

successful in repairing damage with a non-specific cause, than that associated to bases 

oxidation. Overall, the present findings highlighted the genetic hazard to fish associated to 

the addressed agrochemicals, reinforcing the hypothesis of long-lasting damage. 

 

Keywords: Garlon®; Roundup®; genotoxicity; recovery; fish. 
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7.1 Introduction 

Aquatic contamination became a huge environmental concern since the aquatic 

compartment was converted into a receptacle of several undesirable contaminants, 

namely agrochemicals. In this context, herbicides, widely used to control weeds in forestry 

and agriculture, can reach the aquatic systems by uncontrolled runoff, aerial drift, or 

inadvertent overspray, affecting fish in particular.  

Owing to the crops seasonality and subsequent periodic/seasonal application of 

these weed-killers, their input to the aquatic systems is typically intermittent. For this 

reason, as well as due to fish behaviour (e.g. avoidance responses) and mobility (e.g. 

feeding, refuge-seeking or spawning migrations), their exposure to this type of 

contaminants can be short (time-scale of days) and followed by a period of permanence in 

non-contaminated areas. Therefore, the assessment of toxicity endpoints in fish after 

removal of the contamination source, seeking for an eventual recovery from damage 

previously induced, appears as a crucial step to improve the knowledge on the dynamics 

of herbicide induced toxicity, as well as to determine the actual magnitude of risk posed by 

these agrochemicals to fish. Although several ecotoxicological studies have been 

performed addressing the effects exerted by herbicides in fish (Crestani et al. 2007; 

Moraes et al. 2007; da Fonseca et al. 2008), the evaluation of the same effects in the 

post-exposure period is an almost uncovered issue.  

Due to DNA role as repository of genetic information, its integrity and stability is a 

critical factors to life. Therefore, the evaluation of herbicides as potential exogenous 

sources of DNA damage to fish is a matter that deserves scientific efforts towards a 

deepen knowledge on the risks associated to these contaminants. Moreover, the 

perspective previously presented, related to the (hypothetical) transient or reversible 

nature of the effects, applied to herbicide-induced DNA lesions is completely absent in the 

literature.  

As defined for the majority of toxic effects, genotoxicity can be determined by a 

cascade of events, beginning with exposure and culminating with the expression of one or 

more endpoints. This cascade includes genotoxicant absorption, distribution, metabolism 

(both detoxification and activation), distribution of metabolites, and interaction with nucleic 

acids (DNA and RNA), damage repair and, finally, excretion (Hodgson 2012). Hence, the 

progression of genetic lesions in a post-exposure period is determined by the combined 

interference of the mentioned processes, with DNA repair playing a central role. As a 

general knowledge, it is recognized that genetic damage could be originated by DNA 

adducts formation, DNA/DNA, DNA/protein cross-links as well as DNA single/double 
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strand-breaks (e.g. as a consequence of base oxidation) and their repair. Therefore, DNA 

repair processes, though essential for cell viability, can play an ambivalent role, 

diminishing the impact of the genotoxicant on one hand and, on the other, unintentionally 

amplifying that impact. Several mechanisms of repair can be considered. The reversal of 

damage is the most direct repair mechanism and the most efficient. When the damage is 

more severe, the repair required may presume the excision of a base (base excision 

repair - BER) or even a nucleotide (nucleotide excision repair - NER) (Costa and Eaton 

2006). In addition, the mismatch repair (MMR) usually occurs as a result of a replication 

error in which DNA polymerase incorporates the wrong base (Costa and Eaton 2006).  

Popular herbicide formulations, such as Roundup® and Garlon®, are widely used to 

for site preparation and conifer release in forestry (Relyea 2005; Wojtaszek et al. 2005). 

Although used with similar purposes, these herbicides belong to different chemical 

classes. Roundup® is an organophosphate glyphosate-based herbicide, while Garlon® 

has triclopyr acid as its active ingredient, corresponding to the class of pyridinecarboxylic 

acids. Despite the need of more studies in order to clarify the processes involved in their 

damaging action, the genotoxic potential of Roundup® and Garlon® was already 

demonstrated in fish, following short-term exposures (Çavas and Könen 2007; Cavalcante 

et al. 2008; Guilherme et al. 2012b) (Guilherme et al. submitted).  

Taking as departing point the genotoxic potential of Roundup® and Garlon®, 

considering environmentally realistic concentrations, the present study intended to shed a 

light on fish ability to recover from the DNA damage exerted by short-term exposures to 

these herbicide formulations upon the exposure cessation, thereby contributing to a 

realistic perspective of the risk assessment. Hence, European eel (Anguilla anguilla L.) 

was exposed to the previously mentioned commercial formulations, for 3 days, and 

allowed to recover in clean water for 1, 7 and 14 days (post-exposure period). The comet 

assay was used to identify the DNA damage in blood cells at each moment, during the 

exposure and post-exposure periods. As an attempt to clarify the involved DNA damaging 

mechanisms, besides the standard procedure, comet assay was carried out with an extra 

step where nucleoids were incubated with DNA lesion-specific repair enzymes. This 

methodology allows the detection of a genotoxic risk resulting from unspecific (alkali-labile 

sites, DNA-DNA/DNA–protein cross-linking, and single strand breaks associated with 

incomplete excision repair sites) and specific (bases oxidation) damage. Hence, this 

additional step intent to clarify if the induced damage has an oxidative cause, as well as, 

in case of an eventual recovery, to relate the recovery rates with the damage kind. 
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7.2 Material and Methods 

7.2.1 Chemicals 

The experiment was conducted using two commercial formulations: Roundup® Ultra, 

distributed by Bayer CropScience (Portugal), containing isopropylammonium salt of 

glyphosate at 485 g.L-1 as the active ingredient (equivalent to 360 g.L-1 or 30.8 % of 

glyphosate) and POEA (16 %) as surfactant, and Garlon®, distributed by Dow 

AgroSciences (Lusosem, Portugal), containing triclopyr formulated as a butoxyethyl ester, 

at a concentration of 480 g.L-1 (or 44.4%) as well as kerosene (petroleum distillate) as an 

adjuvant. DNA lesion-specific repair enzymes, namely formamidopyrimidine DNA 

glycosylase (FPG) and endonuclease III (EndoIII) were purchased from Professor Andrew 

Collins (University of Oslo, Norway). All the other chemicals needed to perform comet 

assay were obtained from the Sigma-Aldrich Chemical Company (Spain). 

 

7.2.2 Test animals and experimental design 

European eel (Anguilla anguilla L.) specimens with an average weight 0.25±0.02 g 

(glass eel stage) were captured from Mondego river mouth, Figueira da Foz, Portugal. 

Eels were acclimated to laboratory for 20 days and kept in 20-L aquaria under a natural 

photoperiod, in aerated, filtered, dechlorinated and recirculating tap water, with the 

following physico-chemical conditions: salinity 0, temperature 20±1ºC, pH 7.1±0.3, nitrate 

27±0.2 mg.L-1, nitrite 0.07±0.02 mg.L-1, ammonia 0.2±0.04 mg.L-1, dissolved oxygen 

8.2±0.3 mg.L−1. During this period, fish were daily fed with fish roe. The experiments were 

carried out in 1-L aquaria, in a semi-static mode, under the conditions described for the 

acclimation period. After acclimation, 96 eels were divided into 8 groups, corresponding to 

two test conditions. Thus, fish were exposed to 270.5 µg.L−1 Garlon® (G group) and 

another group was kept in clean water - control (C group). For each test condition, a 3 

days exposure was carried out. After this period, exposed eels were transferred to clean 

water and sampled at 1, 7 and 14 days after the end of exposure (post-exposure period). 

The experiment was carried out using triplicate (n=3) groups of 4 fish for each 

condition/time (3x4 = 12 fish). Water medium in both exposure and post-exposure periods 

was daily renewed (100%). 

Simultaneously, the same experimental design was replicated, this time exposing 

fish to 116 µg.L−1 Roundup® (R group).  

Tested concentrations of both commercial formulations were based on previous 

studies performed by the authors (Guilherme et al. 2010, 2012a; 2012b) (Guilherme et al., 
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submitted), where these concentrations demonstrated to be able of exert genotoxicity in 

fish. 

Fish were not fed during the exposure period, being daily fed with fish roe along the 

post-exposure period. Fish were sacrificed by cervical transection at the post-opercular 

region and blood collected from the heart using heparinised capillary tubes. Two µL of 

blood were immediately diluted in 1 mL of ice-cold phosphate-buffered saline (PBS) to 

prepare a cell suspension, which was kept on ice until further procedure. 

 

7.2.3 Evaluation of genetic damage 

The conventional alkaline version of the comet assay was performed according to 

the methodology of Collins (2004) as adapted by Guilherme et al. (2010), with the proper 

adjustments to assay procedure with extra step of digesting the nucleoids with 

endonucleases. A system of eight gels per slide was adopted, based on a model created 

by Shaposhnikov et al. (2010), in order to increase the assay output. Briefly, 20 µL of cell 

suspension (previously prepared in PBS) were mixed with 70 µL of 1% low melting point 

agarose, in distilled water. Eight drops of 6 µL were placed onto the precoated slide as 

two rows of 4 (4 groups of 2 replicates), without coverslips, containing each gel 

approximately 1500 cells. The gels were left for ±5 min at 4 ºC in order to solidify agarose, 

and then immersed in a lysis solution (2.5 M NaCl, 0.1 M EDTA, 10 mM Tris, 1% Triton X-

100, pH 10) at 4 ºC, for 1 h. After lysis of agarose-embedded cells, slides were washed 3 

times with enzyme buffer (0.1 M KCl, 0.5 mM EDTA, 40 mM HEPES, 0.2 mg.mL−1 bovine 

serum albumin, pH 8) at 4 ºC. 

Three sets of slides were prepared: two sets were incubated with endonucleases 

FPG or EndoIII, that convert oxidised purines and pyrimidines into DNA single strand 

breaks, respectively (Azqueta et al. 2009), and a third set was incubated only with buffer. 

Hence, 30 µL of each enzyme (diluted in buffer) were applied in each gel, along with a 

coverslip, prior to incubation at 37 ºC for 30 min in a humidified atmosphere. The slides 

were then gently placed in the electrophoresis tank, immersed in electrophoresis solution 

(±20 min) for alkaline treatment. DNA migration was performed at a fixed voltage of 25 V, 

a current of 300 mA which results in 0.7 V.cm-1 (achieved by adjusting the buffer volume 

in the electrophoresis tank). The slides were stained with ethidium bromide (20 µg.L−1). 

Fifty nucleoids were observed per gel, using a Leica DMLS fluorescence microscope 

(400x magnification). The DNA damage was quantified by visual classification of 

nucleoids into five comet classes, according to the tail intensity and length, from 0 (no tail) 

to 4 (almost all DNA in tail) (Collins 2004). The total score expressed as a genetic damage 
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indicator (GDI) was calculated multiplying the percentage of nucleoids in each class by 

the corresponding factor, according to this formula: 

 

GDI = [(% nucleoids class 0)×0] + [(% nucleoids class 1)×1] + [(% nucleoids class 

2)×2] + [(% nucleoids class 3)×3] + [(% nucleoids class 4)×4] 

 

GDI values were expressed as arbitrary units in a scale of 0 to 400 per 100 scored 

nucleoids (as average value for the 2 gels observed per fish). When the comet assay was 

performed with additional FPG and EndoIII steps, GDI values were calculated in the same 

way but the parameter designated GDIFPG and GDIEndoIII, respectively. Additional DNA 

breaks corresponding to net enzyme-sensitive sites alone (NSSFPG or NSSEndoIII) were also 

expressed. In order to better estimate the overall magnitude of oxidative DNA damage, 

the sum of GDI with additional DNA breaks corresponding to both net FPG- (NSSFPG) and 

EndoIII-sensitive sites (NSSEndoIII) was also calculated (GDIFPG+EndoIII). Moreover, the 

frequency of nucleoids observed in each comet class considering GDIFPG and GDIEndoIII 

was also expressed, as recommended by Azqueta et al. (2009). 

 

7.2.4 Statistical analysis 

Statistica 7.0 software was used for statistical analysis. All data were first tested for 

normality and homogeneity of variance to meet statistical demands. One-way Analysis of 

Variance (ANOVA), followed by Dunnett test as Post-hoc comparison, was applied to 

compare the treated groups with the control, within the same exposure duration. 

Concerning the post-exposure period, a two-way ANOVA was applied to test the effect of 

the factors “agent” and “exposure time” on the levels of DNA damage, as well as the 

interactions between them. The Tukey test was applied as Post-hoc comparison. In all the 

analyses, differences between means were considered significant when p<0.05 (Zar, 

1996).  

 

 

7.3 Results 

7.3.1 Garlon
®
 experiment 

7.3.1.1. Non-specific DNA damage 

The analysis of the exposure period revealed a significant increase of the damage 

exerted by Garlon, when compared to the control group (Fig. 1A). The post-exposure 

period (Fig. 1A) showed that fish previously treated with Garlon still express significantly 
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higher damage values than the respective controls, for all sampling times. Moreover, the 

G group relative to 14 days showed a significant decrease in relation to the other G 

groups (1 and 7 days post-exposure). Significant effects of the factors agent and time 

were observed (Table 1) (2-way ANOVA results). 

 

Table 1. Results of two-way ANOVA testing the effect of agent and time, as well as the interaction 

between them (agent x time) on the levels of DNA damage in blood cells of A. anguilla in a post-

exposure period (1, 7 and 14 days), following a 3 days exposure to 270.5 µg.L−1 Garlon®. Both F 

and p values are given for each variable. Non significant differences are signalized as “ns”. 

 

 

7.3.1.2. Specific oxidative DNA damage 

The detection of oxidized bases was achieved by the comet assay with an extra step 

where nucleoids were incubated with the DNA lesion-specific repair enzymes FPG and 

EndoIII (Figs. 1B-1E). 

 

FPG associated damage 

Similarly to what was observed for GDI in the exposure period, the GDIFPG 

parameter revealed a significant increase of damage for G group, in comparison with 

control (Fig. 1B). The post-exposure period (Fig. 1B) displayed this kind of difference only 

between groups relative to 1 and 7 days. The comparison between groups previously 

exposed to Garlon revealed a significant damage decrease after 14 days when compared 

to 1 and 7 days post-exposure. The NSSFPG parameter did not display any significant 

variation, either considering the exposure or the post-exposure periods (Fig. 1C). 
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Table 1 revealed, for GDIFPG, a significant effect of agent and time, as well as a 

significant interaction between them (agent x time). NSSFPG showed to be unaffected by 

these factors. 

The DNA damage classes were individually analyzed concerning the GDIFPG 

parameter (Table 2). The exposure period showed significant differences concerning all 

classes (excluding class 0), in relation to control. Moreover, the control group displayed 

class 2 as the most frequent, while G group presented a higher number of nucleoids 

corresponding to class 3. Looking the post-exposure period, it was evident a significant 

increase of class 4 for group G, in relation to control, concerning the day 1. The day 7 

displayed a significant decrease in class 2 while an increase was detected for class 4, 

when G group was compared to control. In the fourteenth day, G group presented a 

general decrease of the damage in relation to 1 and 7 days, reflected in the increase of 

class 1 frequency, in parallel with the decreases of classes 3 and 4. At this point in time, 

class 2 was found as the predominant in both control and G groups. 

 

EndoIII associated damage 

In accordance with GDI and GDIFPG, the GDIEndoIII parameter (Fig. 1D) pointed G 

group as presenting significantly higher damage than control, when the exposure period 

was considered. Concerning the post-exposure period (Fig. 1D), G groups corresponding 

to 1 and 14 days kept damage levels significantly higher than the respective controls. In 

line with what was described to the NSSFPG, NSSEndoIII parameter (Fig. 1E) was unable to 

distinguish test groups, in any time. 

Factors as agent and time, as well their interaction (agent x time) showed to have a 

significant effect on GDIFPG (Table 1). On the other hand, NSSFPG didn’t display any 

significance. 

Looking to the individual analysis of DNA damage classes during the exposure 

period, and concerning the GDIEndoIII parameter (Table 3), it was possible to notice that G 

group expressed a significant decrease in class 1, while classes 2 and 3 showed 

significant decreases, when compared to control. The control group showed class 2 as 

predominant and G group presented class 3 as the most frequent. The post-exposure 

period did not present significant alterations. Moreover, both control and G groups pointed 

class 2 as the predominant, with the exception of G group, in day 7. 
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Fig 1. Mean values of DNA damage, measured by comet assay in blood cells of A. anguilla 

exposed to 270.5 µg.L−1 Garlon® during 3 days (Exposure) and submitted to a period in clean 

water, during 1, 7 and 14 days (Post-exposure); (A) genetic damage indicator (GDI) measured by 

the standard (alkaline) comet assay; (B) overall damage (GDIFPG) and partial scores, namely 

genetic damage indicator (GDI; grey) and additional DNA breaks corresponding to net FPG-

sensitive sites (NSSFPG; black); (C) NSSFPG alone; (D) overall damage (GDIEndoIII) and partial scores, 

namely genetic damage indicator (GDI; light grey) and additional DNA breaks corresponding to net 

EndoIII-sensitive sites (NSSEndoIII; dark grey); (E) NSSEndoIII alone; (F) sum of genetic damage 

indicator (GDI; light grey) with additional DNA breaks corresponding to net FPG-sensitive sites 

(NSSFPG; black) and net EndoIII-sensitive sites (NSSEndoIII; dark grey). Bars represent the standard 

error. Statistically significant differences (p<0.05) are: (*) in relation to control (C), within the same 

exposure time; (♦) between exposure times, within the same treatment. 
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Overall oxidative damage 

Concerning the exposure period, the GDIFPG+EndoIII parameter (Fig. 1F) revealed 

significantly higher values for group G comparing to control. Looking to the post-exposure 

period (Fig. 1F), this difference was only evident for day 7. 

Table 1 depicted the influence of factor agent 

 

Table 2. Mean frequencies (%) of damaged nucleoids classes (± standard error), measured by the 

comet assay including the incubation with the FPG enzyme, in blood cells of A. anguilla exposed to 

270.5 µg.L−1 Garlon® during 3 days (Exposure) and upon cessation of exposure (1, 7 and 14 days 

post-exposure). Statistically significant differences (p<0.05) are: (*) in relation to control (C), (♦) in 

relation to 1 day post-exposure and (▲) in relation to 7 days post-exposure. 
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Table 3. Mean frequencies (%) of damaged nucleoids classes (± standard error), measured by the 

comet assay including the incubation with the EndoIII enzyme, in blood cells of A. anguilla exposed 

to 270.5 µg.L−1 Garlon® during 3 days (Exposure) and upon cessation of exposure (1, 7 and 14 

days post-exposure). Statistically significant differences (p<0.05) are: (*) in relation to control (C) 

and (▲) in relation to 7 days post-exposure. 

 
 

 

7.3.2 Roundup
®
 experiment 

7.3.2.1. Non-specific DNA damage 

Analysing the exposure period, it was possible to notice that the DNA damage 

exerted by Roundup®, reflected by the GDI parameter (Fig. 2A), have significantly 

increased when compared to the control group. Considering the post-exposure period 

(Fig. 2A), only the R groups corresponding to days 1 and 7 post-exposure showed 

significant differences in relation to their respective control. Moreover, it was noticed that 

the group which remained 14 days in clean water revealed a significant damage decrease 

when compared to the other two R groups (1 and 7 days post-exposure). 

Table 4 (2-way ANOVA results) revealed a significant effect of the factors agent and 

time on GDI levels, as well as a significant interaction agent x time. 
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Table 4. Results of two-way ANOVA testing the effect of agent and time, as well as the interaction 

between them (agent x time) on the levels of DNA damage in blood cells of A. anguilla in a post-

exposure period (1, 7 and 14 days), following a 3 days exposure to 116 µg.L−1 Roundup®. Both F 

and p values are given for each variable. Non significant differences are signalized as “ns”. 

 

 

7.3.2.2. Specific oxidative DNA damage (Figs. 2B-E). 

FPG associated damage 

The GDIFPG parameter (Fig. 2B) exhibited an increase of the DNA damage induced 

by Roundup®, after the exposure period (3 days). When fish previously exposed to 

Roundup® were transferred to clean water during 1, 7 and 14 days (Fig. 2B), significant 

increases were also perceptible for all R groups comparing to the respective control 

groups. However, the R group relative to 1 day post-exposure displayed significantly 

higher values when compared with R groups corresponding to 7 and 14 days post-

exposure. On the other hand, the NSSFPG parameter (Fig. 2C) was only able to 

demonstrate significant differences in the post-exposure period. Thus, a significant 

increase was found comparing R and control groups at day 14. Moreover, at this time, the 

R group showed a significant NSSFPG increase in comparison to the corresponding groups 

at 1 and 7 days post-exposure. 

Table 4 revealed, for GDIFPG, a significant effect of agent and time. NSSFPG showed 

to be significantly affected by time and displayed a significant interaction agent x time.  

The damage classes were also analysed individually, considering the GDIFPG 

parameter (Table 5). During the exposure period, class 1 displayed a decrease, while 

classes 2, 3 and 4 showed higher values, in relation to control. Moreover, it was observed 

that R group showed the prevalence of class 3, while control group displayed class 2 with 
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the highest frequency. After the first day of post-exposure, the R group, displayed a 

significant decrease in class 2, while classes 3 and 4 assumed values higher than control. 

The comparison between 1- and 7-day showed a significant increase concerning class 2 

and displayed lower values for class 3. The fourteenth day presented a significant 

decrease between control and R groups, concerning the class 2. Moreover, all the classes 

(once again with the exception of class 0) concerning R group showed to be significantly 

different from the ones corresponding to the first day. Increases were perceptible 

considering classes 1 and 2, while classes 3 and 4 presented lower values. Considering 

the post-exposure period, class 2 was the most frequent with the exception of R group, in 

day 1. 

 

EndoIII associated damage 

Considering the exposure period to Roundup®, the GDIEndoIII parameter (Fig. 2D) 

displayed a significant increase for R group, in comparison with control. In what concerns 

to the post-exposure period (Fig. 2D), this significant increase was only detected for 1 and 

14 days. Moreover, the R group corresponding to day 1 post-exposure assumed 

significantly higher values than the R groups at 7 and 14 days. The NSSEndoIII parameter 

(Fig. 2E) displayed a significant damage increase for the R group, when compared with 

control, considering the exposure period. The post-exposure period (Fig. 2E) revealed 

exactly the same pattern already described for NSSFPG parameter. 

Table 4 revealed, for GDIEndoIII, a significant effect of agent and time, as well as a 

significant interaction agent x time. NSSEndoIII showed to be significantly affected by time 

and displayed a significant interaction agent x time.  

The analysis of individual damage classes in the exposure period, considering the 

GDIEndoIII parameter (Table 6), revealed the same pattern observed for GDIFPG. After the 

first day of post-exposure, differences between control and R groups revealed a decrease 

in class 1, while class 3 presented higher values. The fourteenth day R group displayed a 

significant increase in class 1, as well as a significant decrease concerning class 3, when 

compared to its homologous in day 1. As observed for GDIEndoIII, class 2 was presented as 

the prevalent for both groups, with the only exception for R group, in day 1. 
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Fig 2. Mean values of DNA damage, measured by comet assay in blood cells of A. anguilla 

exposed to 116 µg.L−1 Roundup® during 3 days (Exposure) and submitted to a period in clean 

water, during 1, 7 and 14 days (Post-exposure); (A) genetic damage indicator (GDI) measured by 

the standard (alkaline) comet assay; (B) overall damage (GDIFPG) and partial scores, namely 

genetic damage indicator (GDI; grey) and additional DNA breaks corresponding to net FPG-

sensitive sites (NSSFPG; black); (C) NSSFPG alone; (D) overall damage (GDIEndoIII) and partial 

scores, namely genetic damage indicator (GDI; light grey) and additional DNA breaks 

corresponding to net EndoIII-sensitive sites (NSSEndoIII; dark grey); (E) NSSEndoIII alone; (F) sum of 

genetic damage indicator (GDI; light grey) with additional DNA breaks corresponding to net FPG-

sensitive sites (NSSFPG; black) and net EndoIII-sensitive sites (NSSEndoIII; dark grey). Bars 

represent the standard error. Statistically significant differences (p<0.05) are: (*) in relation to 

control (C), within the same exposure time; (♦) between exposure times, within the same treatment. 



Are DNA-damaging effects in fish transient and reversible upon cessation of exposure? 

 

183 
 

Overall oxidative damage  

The parameter GDIFPG+EndoII (Fig. 2F) signalized, for the exposure period, a 

significant damage increase for the group exposed to Roundup® (R group), in comparison 

to control. Concerning the post-exposure period (Fig. 2F), significant increases in R 

groups compared to the respective control groups were found after 1 and 7 days. In 

addition, GDIFPG+EndoIII showed a significant effect of the factor agent (Table 4). 

 

Table 5. Mean frequencies (%) of damaged nucleoids classes (± standard error), measured by the 

comet assay including the incubation with the FPG enzyme, in blood cells of A. anguilla exposed to 

116 µg.L−1 Roundup® during 3 days (Exposure) and upon cessation of exposure (1, 7 and 14 days 

post-exposure). Statistically significant differences (p<0.05) are: (*) in relation to control (C), (♦) in 

relation to 1 day post-exposure and (▲) in relation to 7 days post-exposure. 
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Table 6. Mean frequencies (%) of damaged nucleoids classes (± standard error), measured by the 

comet assay including the incubation with the EndoIII enzyme, in blood cells of A. anguilla exposed 

to 116 µg.L−1 Roundup® during 3 days (Exposure) and upon cessation of exposure (1, 7 and 14 

days post-exposure). Statistically significant differences (p<0.05) are: (*) in relation to control (C) 

and (♦) in relation to 1 day post-exposure. 

 
 
 

7.4 Discussion 

The herbicides tested in the present study, though not extensively studied in terms 

of their genotoxic potential, have already been considered as DNA damaging agents to 

fish, which is an indispensable condition for pursuing the main objective of this work, viz. 

the evaluation of DNA damage progression along a post-exposure period. Hence, in a 

recent study of our research group, fish exposed to an environmentally relevant 

concentration of Garlon® (270.5 µg.L−1) showed increased DNA damage assessed by the 

comet assay (Guilherme et al. submitted). However, when the additional breaks 

corresponding to net enzyme-sensitive sites were considered, no significant levels of 

oxidative damage were detected (Guilherme et al. submitted). Concerning Roundup®, its 

genotoxicity to fish has been demonstrated by different authors, based on different 

genotoxic endpoints (Çavas and Könen 2007; Cavalcante et al. 2008; Guilherme et al. 

2012b). The participation of oxidative stress on the damage induced by Roundup® was 
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evidenced by the detection of oxidatively altered DNA bases (by means of the enzyme-

modified comet assay) both in liver and blood tissues (Guilherme et al. 2012a; 2012b). 

In line with the previous findings, the genotoxic potential of both herbicides was 

confirmed by the current data concerning the exposure period (3 days). In addition, the 

apparent lower involvement of oxidative DNA damage on the action of Garlon® and the 

association of that damaging mechanism to the action of Roundup® (NSSEndoIII parameter 

pointed out the pyrimidines oxidation) were also confirmed.  

The processes that determine DNA damage, and its extent, can be divided 

according to its intervention towards a genotoxicity promotion and, in opposition, 

according to its anti-genotoxic role. DNA integrity may be affected as a result of a direct 

attack of the genotoxicant (e.g. formation of DNA adducts) and/or its metabolites (Bonfanti 

et al. 1992), as well as, indirectly, through the over-generation of ROS that may disrupt 

DNA or affect the function of DNA repair enzymes (Shimura-Miura et al. 1999). In 

addition, a depletion of the overall antioxidant defences caused by the contaminant can 

create a pro-oxidant condition, which in turn also promotes DNA damage (Ahmad et al. 

2006). On the other side, it can be considered the increment of DNA repair mechanisms 

and antioxidant actions as well as cell turnover in the target tissue. Keeping in mind the 

latter process, it should be considered that genetic damage manifestations (e.g. 

micronuclei, DNA strand breaks) and their detection can be affected by cellular renovation 

(Saleha Banu et al. 2001), which in turn can also be modulated by the genotoxic agent 

itself (Pacheco and Santos 2002). Therefore, the occurrence/absence of a significant DNA 

damage in a given moment depends on the balance between the two types of processes 

above mentioned. An eventual recovery of damage in a post-exposure period relies on the 

tendency of the anti-genotoxic processes to gain preponderance in relation to the 

genotoxic pressures because of the cessation of exposure. Nevertheless, it cannot be 

overlooked the hypothesis that post-exposure period can be more critical, as 

demonstrated in fish exposed to a recognised genotoxicant (benzo(a)pyrene) (Rose et al. 

2001; Nigro et al. 2002). 

The following discussion will be focused on the evolution of damage after removal of 

the contamination source, bringing to the fore the main processes likely to be involved. 

This approach is innovative, since it has never been conducted in fish in the context of 

herbicides genotoxicity. 
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7.4.1 Progression of DNA damage induced by Garlon® in post-exposure period 

In what concerns to the post-exposure period, it was possible to observe slightly 

different patterns depending on the parameter considered. Thus, the GDI parameter, 

although showing a tendency to damage decrease along this period, did not reflect an 

effective recovery from the damage previously induced, since the control levels were not 

restored. Reinforcing the weakly supported indication provided by GDI towards recovery, 

the GDIFPG parameter revealed an actual recovery 14 days after the cessation of 

exposure, which was substantiated by the damage decreases in relation to days 1 and 7 

(also corroborated by the significant effect of the factor time). Differently, GDIEndoIII data 

cannot be interpreted as reflecting a recover. Despite the absence of a significant damage 

increase at day 7 (G vs. C groups), it was not possible to perceive neither a decrease 

tendency along the whole period nor a significant decrease in relation to R group at day 1. 

On the other hand, the analysis of individual classes of damage along the post-exposure 

period, either considering GDIFPG or GDIEndoIII, displayed a general tendency of frequency 

increase for nucleoids of class 2, concomitantly to a decrease in class 3, which supports 

the idea of a damage extent reduction.  

The interaction agent x time detected for GDIFPG and GDIEndoIII (two-way ANOVA) 

didn’t prevent the confirmation of significant effects for these factors separately. 

The analysis of the overall oxidative damage (GDIFPG+EndoIII) showed a significant 

damage only at day 7 post-exposure. Considering that this parameter derives from the 

sum of GDI, NSSFPG and NSSEndoIII scores, it is important to underline that it reflected a 

response pattern different from each partial score that is on the basis of its calculation. 

Thus, contrarily to what was previously stated by the authors (Guilherme et al. 2012b), the 

analysis of this parameter revealed some limitations on the genotoxicity evaluation. 

The submission of fish to a post-exposure period can be regarded as a simulation of 

its shifting from a contaminated to an uncontaminated area. This alteration ensures that 

the exposure to waterborne contaminants was abolished. However, the xenobiotic(s) 

previously absorbed can still persist in the organism’s tissues, promoting the extension of 

damage beyond the exposure period. Bearing this in mind, it is important to understand 

the toxicokinetics and toxicodinamics, mainly, of the active ingredient of Garlon® 

(triclopyr). Usually, the half-life time of a pesticide is defined for its active ingredient. Thus, 

it is known that triclopyr needs less than a day to be reduced to 50% of its concentration in 

fish’s body (Thompson et al. 1991). Considering this, the maintenance of a DNA 

damaging effect after the cessation of exposure, in the time scale currently assessed, 

cannot be associated to the persistence of triclopyr in fish’s body and the subsequent 
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direct attack to DNA. Hence, the impossibility of eel’s blood cells to fully recover from the 

damage induced by Garlon® reflected, mainly, the incapacity of DNA repair system to 

restore DNA integrity in a period of 14 days.  

A negligible involvement of oxidative damage seems to be depicted in the absence 

of significant increases of NSSFPG and NSSEndoIII values. However, this assumption should 

be taken carefully, since, as mentioned above, a recovery of damage value up to the 

control level was exhibited by GDIFPG on day 14. Hence, the most plausible interpretation 

points to a minor induction of purine bases oxidation as a result of Garlon® exposure, 

which was not enough to produce statistical significances, but that shouldn’t be ignored. In 

line with this interpretation, it became evident an efficient intervention of DNA repair 

enzymes specifically directed to oxidized purine lesions. 

 

7.4.2 Progression of DNA damage induced by Roundup® in post-exposure period  

In what concerns to this period, GDI parameter revealed a decrease on the non-

specific DNA damage induced by Roundup® after 14 days in clean water, while GDIFPG 

and GDIEndoIII failed to express a complete recovery of DNA stability.  

Keeping in mind the recovery process evidenced by GDI, it should be first 

questioned if the suppression of a direct genotoxic pressure resulting from chemical 

elimination from the fish body could be on the basis of that damage decline. In this 

direction, it is known that glyphosate, the active ingredient of Roundup®, has a low 

potential to bioaccumulate (WHO 1994). Therefore, the reduction of glyphosate (or its 

metabolites) body burden, as an important condition to allow damage recovery, was 

probably achieved 14 days after the cessation of exposure. 

A second question arises concerning the removal of damaged erythrocytes from 

circulation together with the production of new cells as a possible explanation for the 

absence of DNA damage (measured as GDI) on day 14. The life span of erythrocytes in 

fish is supposed to be around 100 days, but it can be reduced as a consequence of 

exposure to contaminants. In this direction, an increased splenic erythrophagia was 

already associated to an intense genetic damage in A. anguilla (Pacheco and Santos 

2002). Nevertheless, the overall results did not support this hypothesis since an eventual 

influence of the erythrocytes population renovation would be also reflected in GDIFPG and 

GDIEndoIII scores, which didn’t happen.  

When the DNA damage measured as GDIFPG or GDIEndoIII is under consideration, a 

complete recovery process, as discussed above for GDI, is no more evident. It is 

particularly interesting to highlight that, analysing GDI versus GDIFPG or GDIEndoIII, the 
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persistence of damage on day 14 reflected by the latter parameters was coincident with 

the late appearance of DNA breaks corresponding to net enzyme-sensitive sites (as 

depicted in NSSFPG and NSSEndoIII values). NSSFPG and NSSEndoIII results indicated the 

occurrence of oxidative damage on day 14 post-exposure, affecting both purine and 

pyrimidine bases. This is indicative of a progressive decay of cell antioxidant protection, 

favouring a pro-oxidant status, coupled with the incapacity to repair this particular type of 

DNA damage.  

The lack of a significant effect of the factor agent for NSSFPG and NSSEndoIII data in 

two-way ANOVA reflected the complexity of processes involved, also depicted on the 

interaction agent x time detected.  

It can be also inferred that, following Roundup® exposure, blood cells of A. anguilla 

were more successful in repairing damage detected by GDI (here called non-specific 

damage), than that associated to bases oxidation. However, some repair capacity was still 

evident when analysing the individual classes of damage, either considering GDIFPG or 

GDIEndoIII, which displayed a general decrease tendency in the frequency of class 3 

nucleoids along the post-exposure period (while class 2 frequency increase). 

Therefore, it was demonstrated an indirect action of Roundup® on DNA, related to 

the formation of ROS, occurring in a late phase. This interaction can be due to the redox 

cycle of Roundup® constituents generating ROS and/or to the inhibition/exhaustion of the 

antioxidant defences, decreasing thus the ability to counteract a ROS challenge (even at 

basal levels). Supporting this idea, organophosphate pesticides affect DNA bases either 

directly or indirectly via protein alkylation (Mohan 1973). Additionally, and according to 

Saleha Banu et al. (2001), besides ROS dependent processes, organophosphate 

pesticides can also inhibit enzymes involved in DNA repair. 

Taking into account the present overall results, only a partial recovery can be 

assumed concerning the genotoxic endpoints assessed. Even considering the hypothesis 

that fish can restore their DNA integrity measured by the comet assay in blood cells, a 

question remains whether a single exposure can lead to long-term genome-destabilizing 

effects and fixed in stable genotoxic lesions. The transient nature of chromosomal 

damage in the context of pesticides exposure has been assessed in human studies. Thus, 

patients suffering acute organophosphate intoxication evidenced an increase in the 

frequency of chromosome aberrations, which returned to normal levels 6 months after the 

acute exposure (van Bao et al. 1974). Another study revealed that the cessation of 

occupational exposure to phosphine was accompanied by a significant decline in the 

chromosome rearrangements frequency within 1 year time (Garry et al. 1992). 
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Subsequently, the genotoxic potential of Roundup® currently detected in A. anguilla 

should be regarded as a primary risk factor for long-term effects such as carcinogenesis. 

In line with this, it was reported a late appearance of long-term adverse effects (e.g. 

carcinogenicity and reproductive impairments) in fish exposed to pesticides (Kime 1995; 

Moore and Waring 2001; de Campos Ventura et al. 2008). 

In an attempt to evaluate the suitability of the adopted genotoxic endpoints on the 

assessment of genotoxic hazard associated to the tested herbicides in fish 

environmentally exposed, it was demonstrated that comet assay (standard version and 

applying the extra step with DNA lesion-specific repair enzymes) applied to blood cells 

displayed promising aptitudes, namely reducing the possibility of false negatives results in 

a time scale of days/weeks in animals that are no longer exposed. 

 

 

7.5 Conclusion 

The present results confirmed the genotoxicity of the herbicide formulations Garlon® 

and Roundup® to fish, considering environmentally realistic concentrations. 

Analysing the progression of DNA damage along the post-exposure period (up to 14 

days), it was observed that fish exposed to Garlon®, though presenting some evidences 

towards a recovery tendency, didn’t achieve a complete recovery. A recovery of damage 

was only exhibited by GDIFPG parameter (day 14), pointing to a minor induction of purine 

bases oxidation coupled with an efficient intervention of repair enzymes specifically 

directed to these DNA lesions. 

In relation to Roundup®, a recovery was evident when considering non-specific DNA 

damage (GDI), on day 14 post-exposure, while GDIFPG and GDIEndoIII failed to express a 

complete restoration of DNA integrity. In addition, this glyphosate-based herbicide showed 

a potential to oxidatively damage DNA, depicted mainly as a late (day 14) appearance of 

DNA breaks corresponding to net enzyme-sensitive sites (NSSFPG and NSSEndoIII). 

Moreover, blood cells of A. anguilla exposed to Roundup® were more successful in 

repairing damage detected by GDI (non-specific damage), than that associated to bases 

oxidation. 

Overall, the present findings highlighted the genetic hazard to fish associated to the 

addressed agrochemicals, reinforcing the hypothesis of long-lasting damage. 
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8 General Discussion 

This chapter aims to provide an integrated overview of the main outcomes of the 

chapters II to VII, contributing with new interpretative perspectives not presented in the 

inside discussion of each chapter. The current discussion was built taking into account the 

key objectives of the thesis and their throughout progression. The linkage to the general 

and specific objectives of the thesis and the contribution to the scientific knowledge in the 

area were also highlighted. 

Clarifying the rational that directed the development of the present research, it 

should be noted that the work was focused on the herbicide formulations Roundup® and 

Garlon®, though more attention was devoted to the former. Hence, the chapters II to V 

were dedicated to Roundup®, the chapter VI to Garlon®, and the chapter VII to both. 

Besides the assessment of the effects of these formulations as a whole, in both cases the 

discrimination of the contribution of their ingredients to the final impact was also 

addressed (chapters IV for Roundup®; chapter VI for Garlon®). In the case of Roundup®, 

two additional perspectives were explored concerning the clarification of tissue-specific 

damage responses (chapters II and III) and the evaluation of the risk associated to the 

main environmental metabolite of the active principle (chapter V). The A. anguilla ability to 

recover from the DNA damage induced by short-term exposures to the herbicides upon 

the exposure cessation was approached for both formulations in the chapter VII, keeping 

in mind the understanding of the genotoxicity dynamics of these agrochemicals in fish. 

The improvement of the knowledge on the mechanisms underlying the measured genetic 

damage was a perspective transversal to chapters II to VII, namely as a contribution to 

elucidate the involvement of oxidative DNA damage. As another perspective present in all 

the research components (chapters II to VII), it appears the intention to contribute to the 

definition of biomonitoring tools towards an efficient assessment of the risk associated to 

the occurrence in the water systems of the selected agrochemicals. The perspectives now 

enunciated constituted the guidelines for the following discussion.  

 

 

8.1 Genotoxic risk evaluation of the herbicide formulations 

Regardless of the class to which herbicides belong, their presence in the aquatic 

environment is often related to pernicious effects at various levels (Clements et al. 1997; 

Brock et al. 2006; Crestani et al. 2007; da Fonseca et al. 2008), highlighting their toxicity. 

Despite the relevance of these effects in general, those that are related with the “molecule 

of life” play a primordial role in the toxicological field. DNA damage may promote short, 
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medium and long term effects, evidencing the importance of signalizing the chemicals that 

may compromise its viability/functionality.  

The assessment of the genotoxic hazard posed to fish by the two different herbicide 

formulations - Roundup® and Garlon® - was one of the central objectives of this research, 

keeping in view their extensive use worldwide and the notorious scarcity of scientific 

information in this direction, which, at least by omission, has been allowing an 

unsupported idea of environmental safety. 

The herbicides tested, although used with similar purposes in the agricultural context 

(Relyea 2005; Wojtaszek et al. 2005), present quite different characteristics, namely 

concerning their active ingredients. Regarding the chapters II to VI, it was clearly 

demonstrated that both commercial formulations were able of exert genotoxic effects in 

Anguilla anguilla. Short-term exposures (1 and 3 days) to environmentally realistic 

concentrations proved to be sufficient to point out the ability of both formulations in exert 

DNA damage (measured by the comet assay). However, the subjacent mechanisms 

concerning the ability of Roundup® and Garlon® to exert DNA damage revealed to be 

different, as will be exploited in a following point of this section. In addition, and 

considering the exposure to Roundup®, the induction of chromosomal damage (measured 

by the ENA assay) was also clear, despite only occurring after the third day of exposure. 

Most of genotoxic studies in fish has been performed in erythrocytes (Ayllon and 

Garcia-Vazquez 2001; Grisolia and Starling 2001). However, the use of other cell types 

has been strongly suggested (Sharma et al. 2007) keeping in view the understanding of 

tissue-specific responses and thus achieving a better perspective about the overall 

condition of the organisms. Nonetheless, the tissue choice may not be consensual, due to 

specific features (advantages/drawbacks) of each cell types. Considering this, and in what 

concerns to Roundup®, the genotoxicity was demonstrated in three different tissues, i.e. 

blood, gills and liver (chapters II and III). Blood and gills were able to reflect the 

occurrence of damage along the whole experiment (1 and 3 days) and for both tested 

concentrations On the other hand, liver presented an adaptive behaviour to the genotoxic 

stimulus, being not able to signalize damage after 3-day exposure to the lower 

concentration of Roundup®. Thus, blood and gills appears as the most adequate choices 

to the evaluation of the genotoxic risk in environmental waters with moderate waterborne 

concentrations of this herbicide. 

Excluding the few studies concerning the genotoxicity of Roundup® to fish (Grisolia 

2002; Çavas and Könen 2007; Cavalcante et al. 2008), the genotoxic potential of both 

herbicides remained almost unexploited until date. Therefore, the present study strongly 
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contributed to a knowledge improvement on the hazard evaluation regarding their ability to 

exert genotoxic effects. 

 

 

8.2 Formulations versus active ingredients – have they different genotoxic 

potentials? 

The exposure to pesticides often involves complex mixtures of different types of 

chemicals, such as active ingredients and by-products present in technical formulations, 

as well as impurities, solvents, surfactants and other compounds frequently considered as 

inert ingredients. In a review of pesticides genotoxicity in human populations, carried out 

by Bolognesi (2003), it was clearly stated that, although inert ingredients have no 

pesticidal activity, they may be biologically active and sometimes the most toxic 

component of a pesticide formulation. In this direction, the present research had among its 

goals the elucidation of differential genotoxic potential of the commercial formulations and 

their constituents.  

If on one hand, the different contribution of the each Roundup® ingredients was 

made possible by the availability of the formulation composition (chapter IV), on the other, 

in what concerns to Garlon®, it was only possible to assess the genotoxicity of its active 

ingredient due to the impossibility to come to know the detailed formulation (chapter VI). 

Contrary to what was expected based on the idea that glyphosate-based formulations are 

generally considered more toxic than pure glyphosate (Rank et al. 1993; Tsui and Chu 

2003; Peixoto 2005), and looking to the non-specific DNA damage, the Roundup® 

formulation appeared to be, most of the time, less genotoxic than its active ingredient 

glyphosate or the surfactant alone. Furthermore, fish exposed to Roundup® presented 

levels of damage lower than expected, based on the sum of the effects of the separate 

components, pointing an antagonism between their constituents. However, when the 

oxidative potential was evaluated, and looking to the breaks associated to oxidized 

purines (NSSFPG), a synergistic interaction was perceptible between glyphosate and the 

surfactant POEA, highlighting the Roundup® hazard (chapter IV). In addition to the 

genotoxic evaluation of the formulation and its components, the metabolite resulting from 

the degradation of the active ingredient also showed to be a concern. In this way, AMPA 

showed its ability in exert either DNA or chromosomal damage. Hence, and considering 

these findings, the inclusion of AMPA in studies concerning the risk assessment of 

glyphosate-based herbicides is strongly recommended. 
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In a different way, Garlon® showed a higher genotoxic potential when compared to 

its active ingredient triclopyr (chapter VI). Therefore, the possible interference of the 

unknown surfactant (omitted in the technical information provided by the manufacturer), 

as well as the adjuvant (querosene), despite generally considered as ‘‘dilutant’’ or ‘‘inert”, 

cannot be neglected.  

Bearing this in mind, it seems important to consider some alternatives in order to 

minimize the adverse effects exerted by these herbicides, namely encouraging the 

development and increasing use of more ecological formulations including less toxic 

adjuvants. Moreover, the label detailed description considering all the mixture constituents 

appears as a priority, as well as a further revision concerning their individual hazard 

classification. In the specific case of Roundup®, some alternatives to surfactants are 

under development, in order to reduce toxicity or even avoid the use of a surfactant (for 

instance Tornado®). Nevertheless, it must be noted the need to thoroughly test the new 

products with sensitive methodologies as those now adopted, in order to fully evaluate 

their genotoxic risk. 

In what concerns to Garlon®, the eventual alteration of the formulation so that the 

adjuvants and/or surfactants do not increase the toxicity of the active ingredient appears 

as a positive measure. 

 

 

8.3 Contribution to the clarification of DNA damaging mechanisms  

One of the main goals of the present thesis was to clarify the mechanisms of 

damage subjacent to the herbicides genotoxic action. Accordingly, two different 

methodologies were applied: the comet and ENA assays. The comet assay measures 

DNA stand breaks, a repairable type of damage, while the ENA assay points out 

chromosomal lesions, signalizing a type of damage difficult of being repaired. The 

chapters II and V covered both genotoxic endpoints, considering different agents 

(commercial formulation Roundup® and the breakdown product of glyphosate – AMPA). 

Thus, both approaches indicated the genotoxic potential of the mentioned agents. The 

ENA assay reflected a late appearance of damage (when compared to comet assay), 

while the comet assay demonstrated to be able to point out the damage occurrence in a 

short period after the exposure, denoting an early nature of the damaging events. The 

results also showed that only ENA assay was able to distinguish between tested 

concentrations (considering both tested agents). The two parameters showed a positive 

correlation in Roundup® exposed fish, while the AMPA experiment revealed contradictory 
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results. Therefore, a hypothetical relation between the occurrence of DNA and 

chromosomal damage couldn’t be entirely demonstrated. Bearing this in mind, the 

importance of their jointly application was confirmed, since they provide complementary 

information, allowing a more effective genotoxic risk assessment. 

Chapters II to VII contributed to clarify the mechanisms underlying the genetic 

damage derived from exposures to Roundup® and Garlon® and their related compounds. 

In chapters II and III, the oxidative stress was hypothesized as a potential mechanism of 

damage exerted by Roundup®. Results concerning the blood and liver tissues revealed 

that neither enzymatic nor non-enzymatic antioxidant defenses provided evidence of a 

pro-oxidant challenge. On the other hand, gills pointed a punctual increase in CAT, 

signalizing an overproduction of H2O2, which may indicate that the DNA oxidation may 

play a role on the Roundup® capacity to exert genotoxicity. Another approach to elucidate 

the involvement of DNA oxidation in the genotoxicity of Roundup® and Garlon® and their 

components/by-products was adopted concerning the standard comet assay methodology 

upgraded with an extra-step involving incubation with repair enzymes (FPG and EndoIII) 

(chapters III to VII). This approach intended to clarify the eventual direct attack to DNA 

due to the presence of ROS (chapter IV and VII) even if the antioxidant system showed to 

be unresponsive, as observed in the hepatic cells after exposure to Roundup® (chapter 

III). Considering this, the oxidation of DNA might be considered as an underlying 

mechanism to the Roundup® genotoxicity (even when the threshold limit to induce the 

antioxidant system was not reached). This mode of action of Roundup® was predictable 

since the pro-oxidant properties of the organophosphate pesticides were already known 

(Banerjee et al. 2001). In relation to Garlon® and its active ingredient triclopyr (chapter VI), 

no significant levels of DNA oxidative damage were detected. 

Chapter VII intended to shed light in the transience and/or reversibility of DNA-

damaging effects, as an attempt to clarify the mechanisms involved after cessation of the 

exposure. Considering the Roundup® experiment, the post-exposure period revealed a 

decrease concerning the non-specific DNA damage (expressed by GDI parameter), but 

the recovery process was not expressed by GDIFPG and GDIEndoII parameters, since the 

persistence of damage was highlighted by the late appearance of DNA breaks 

corresponding to net-enzyme sensitive sites. Considering this, a progressive decay of cell 

antioxidant protection as well as the incapacity to repair this particular type of damage 

was suggested. Chapter VII also aimed the clarification of mechanisms determining 

Garlon® effects in a post-exposure period. Despite a tendency to damage decrease along 
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this period depicted by the GDI parameter, it couldn’t be regarded as an effective 

recovery. This slight indication was reinforced by the GDIFPG parameter, which revealed 

an effective recovery after 14 days of post-exposure. Thus, it became evident an efficient 

intervention of DNA repair enzymes specifically directed to oxidized purines. On the other 

hand, GDIEndoIII pointed out the damage maintenance along the post-exposure period. The 

most plausible interpretation pointed to a minor induction of purine bases oxidation as a 

result of Garlon® exposure, suggesting that the indication towards limited oxidative 

potential of this formulation presented in chapter VI requires further confirmation.  

 

 

8.4 Implications for the definition of biomonitoring strategies  

The biomonitoring strategies should be able to assess the condition of individuals in 

key moments, reflecting the extent and persistence of a given environmental risk. In this 

direction, the present research reinforced the usefulness of both genotoxic endpoints 

adopted as biomonitoring tools applied to fish in the detection of a genotoxic pressure 

resulting from the occurrence of herbicides in water systems. The standard comet assay 

proved to be a suitable tool applied to different fish tissues, being its sensitivity improved 

with the inclusion of DNA lesion-specific repair enzymes. The ENA assay also proved its 

ability to signal herbicide-induced damage, being its use recommended mainly in 

combination with comet assay. 

The intermittence of herbicides input in the water systems may represent an 

additional challenge to biomonitoring programs using wild specimens, since fish can be 

sampled in a moment that are no more under the action of the agrochemicals. In this 

context, it becomes determinant the knowledge about the persistence of key biological 

responses after cessation of exposure, which also means the knowledge on the possibility 

of fish responses to reflect recent contamination episodes. As a contribute in this 

direction, the present work (chapter VII) revealed that DNA integrity loss in blood cells 

associated to the tested herbicide formulations and measured by the comet assay 

remained for at least 14 days after cessation of exposure. This finding provided an 

additional substantiation towards the inclusion of this genotoxic endpoint in biomarker 

batteries in the framework of Ecological Risk Assessment (ERA) of pesticides 

contaminated areas. Moreover, the comet assay with DNA lesion-specific repair enzymes 

showed to represent a value-added in this context since it was able to detect a late 

appearance of oxidative DNA damage in the post-exposure period. 
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In the context of biomonitorization, it was stated by van der Oost (2003) that fish are 

generally considered as the most feasible organisms for pollution monitoring in aquatic 

systems. Their great sensibility allows signalling environmental risk, which may be then 

extrapolated to other species. Due to its characteristics, the European eel (Anguilla 

anguilla L.) have been successfully used is several studies in the evaluation of 

genotoxicity (Pacheco et al. 1993; Pacheco and Santos 1996, 1997, 1998, 2002; Ahmad 

et al. 2006; Oliveira et al. 2008). The high fat content and benthic feeding habits in 

continental waters make the eel vulnerable to the bioaccumulation of pollutants. The use 

of A. anguilla as test-organism in the present study confirmed its potential to perform this 

kind of approaches. Its sensitivity to genotoxicants allowed to detect responses to low 

contamination levels (in a range found in the environment), as well as to distinguish 

between different contaminant concentrations. In addition, it was also perceptible a tissue-

specificity, contributing to a more robust assessment concerning the 

toxicodinamics/toxicokinetics of the genotoxicant. 

Throughout the present study, both yellow (II and III) and glass (chapters IV to VII) 

eel stages were adopted. The alteration of the life stage was carried out, mainly, due to 

fact that glass eel facilitates the implementation of the experimental designs as a result of 

its small size. Hence, it was not intended to carry out a comparison of the effects in the 

two life stages, though that question is of interest and could be exploited in the future.  

 

 

8.5 Final Remarks  

The present research brought new perspectives concerning the hazard posed by 

herbicides to aquatic organisms. Thus, the genotoxicity to fish of both Roundup® and 

Garlon® formulations, at environmental concentrations, was undoubtedly recognized. In an 

attempt to identify the contribution of their constituents to the overall effect, it was 

demonstrated that, in the case of Roundup®, glyphosate and the surfactant POEA have 

comparable genotoxic potentials, though the sum of their individual effects was never 

observed. This observation emphasized the need to define regulatory thresholds for all 

the formulation components, recommending, in particular, the revision of the hazard 

classification of POEA (classified as “inert” until date). In what concerns to Garlon®, 

though triclopyr displayed a genotoxic potential individually, the formulation showed to be 

more genotoxic than the active ingredient. 

As an innovative perspective in the context of the assessment of herbicides impact, 

it was demonstrated that the products of environmental degradation of the active 
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ingredients can constitute a silent problem. This was highlighted by the observation that 

AMPA - the major breakdown product of glyphosate - has a genotoxic potential similar to 

its precursor. 

The comet and ENA assays were performed in order to differentiate the types of 

damage (DNA and chromosomal damage, respectively) exerted by the mentioned 

herbicides and their related products. The comet assay showed to reflect early damaging 

events in comparison with ENA assay. The latter endpoint showed a better capacity to 

discriminate tested concentrations. Hence, their jointly application is strongly 

recommended as they provide complementary information.  

The present findings also allowed understanding tissue-specificities concerning the 

DNA damage, with gills and blood proving to be more adequate to genotoxic evaluation, 

when compared to liver, due to their higher responsiveness. 

The comet assay upgraded with an extra-step involving incubation with repair 

enzymes (FPG and EndoIII) pointed out the oxidative DNA damage exerted namely by the 

formulation Roundup®. The standard comet procedure, detecting only non-specific DNA 

damage, displayed some limitations when compared to the previous methodology that 

reduced the possibility of false negative results. In relation to Garlon® and triclopyr, DNA 

oxidation was not perceived as a dominant mechanism of damage. 

The assessment of genotoxic endpoints in A. anguilla after removal of the 

contamination source revealed, for both formulations, a fish incapacity to completely 

recover in a period of 14 days. It was also recognized that blood cells of fish exposed to 

Roundup® were more successful in repairing damage with a non-specific cause, than that 

associated to bases oxidation. These findings emphasized the genetic hazard associated 

to the addressed agrochemicals, reinforcing the hypothesis of long-lasting damage. 

Overall, the results obtained provided useful recommendations for policy-making, 

contributing to (re)formulate regulatory procedures for protecting the health of aquatic 

environment. In this direction, the data gathered in this work point to the importance of 

performing a genotoxic evaluation in order to actually determine the hazard posed by 

herbicides and their by-products. The magnitude of risk detected for both formulations 

strongly advise the adoption of restrictive measures in relation to their application in the 

proximity of watercourses. As mitigation measures, the development of formulations 

incorporating adjuvants selected on the basis of their lower toxicity emerged as a 

recommended path. 
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