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resumo 
 
 

Em Portugal, o tirame é um dos fungicidas mais utilizados, cujas vendas 
aumentaram significativamente nos últimos anos, sendo também um dos 
fungicidas mais utilizados em todo o mundo. No entanto, em comparação com 
outros pesticidas, existe falta de informação na literatura sobre o seu compor-
tamento em sistemas ambientais, nomeadamente, no que diz respeito à sua 
degradação no solo ou em águas e produtos a que dá origem. Neste contexto, 
o objetivo deste trabalho foi estudar a influência das substâncias húmicas e 
iões cobre no comportamento e destino do tirame no meio ambiente. Foram 
realizados vários estudos para analisar o comportamento do tirame em solos 
com diferentes conteúdos de matéria orgânica e de iões cobre, e em águas 
naturais, estudando como as substâncias húmicas, os iões cobre e a luz solar 
podem afetar a sua degradação. Os estudos de adsorção-desadsorção do 
tirame nos solos revelaram que a matéria orgânica do solo e o conteúdo de 
cobre afetavam os processos de adsorção-desadsorção do tirame, influenci-
ando a sua lixiviação e persistência no solo. De facto, verificou-se que o teor 
de cobre do solo tinha um efeito bastante marcante no processo de adsorção-
desadsorção do tirame. Verificou-se a ocorrência de reações entre o tirame e 
os iões cobre, cuja extensão durante os estudos de adsorção pode ser forte-
mente dependente do teor de cobre do solo e da concentração inicial de tirame 
em solução. Assim, a escolha do tempo de equilíbrio em estudos de adsorção 
e a determinação das isotérmicas de adsorção ao solo torna-se uma tarefa 
difícil. Além disso, os complexos formados com o cobre existente no solo são 
persistentes, não sendo facilmente lixiviados para as águas subterrâneas. 
Conclui-se que os iões cobre(II) podem contribuir para a imobilização do tirame 
no solo e o aumento da persistência dos seus resíduos ligados ao cobre. A 
partir de estudos de recuperação do tirame em águas naturais verificou-se a 
ocorrência de uma rápida degradação do tirame, devido provavelmente aos 
iões metálicos, nomeadamente, iões cobre. Verificou-se que dependendo da 
razão tirame:Cu podiam ocorrer dois processos: (i) complexação entre o tirame 
e o cobre, quando não há excesso de iões cobre, sendo o complexo formado 
mais persistente que o tirame; (ii) ou, quando há um grande excesso de iões 
cobre, a degradação do tirame e a estabilização dos produtos de degradação 
por complexação, podendo formar-se complexos que permanecem sem altera-
ção em solução durante pelo menos dois meses. No geral, foi possível, pela 
primeira vez, identificar alguns dos complexos de cobre formados ao longo do 
tempo. Por fim, estudou-se a cinética de fotodegradação do tirame em solução 
aquosa sob a ação da luz solar e identificaram-se, pela primeira vez, três foto-
produtos. Verificou-se um aumento da velocidade de fotodegradação do tirame 
na presença de substâncias húmicas. Assim, podemos concluir que a matéria 
orgânica, os iões cobre(II) e a luz solar têm um efeito importante no compor-
tamento do tirame no meio ambiente. Contudo, os iões cobre têm um efeito 
mais marcante na degradação e persistência dos produtos que são formados. 
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abstract 
 

In Portugal thiram is one of the most used fungicides, whose sales have 
increased significantly along the years and it is also one of the most used 
fungicides all over the world. However, comparing to other pesticides, there is a 
lack of information in the literature about the behaviour of thiram in 
environmental systems, namely, in what concerns its degradation in soil or in 
water systems and products formed. 
In this context, the aim of this work was to assess the influence of humic 
substances and copper ions on the behaviour and fate of thiram in the 
environment. Different studies were performed to assess the behaviour of 
thiram in soils, with different organic amendments and with different copper 
contents, and in natural water, studding how humic substances, copper ions 
and sunlight can affect its degradation.  
Adsorption-desorption studies of thiram onto soil revealed that organic mater 
and soil copper contents affect thiram adsorption-desorption processes, 
influencing its leachability and persistence in soil. In fact, soil copper content 
has a marked effect on the sorption process of thiram onto soil. Reactions 
between thiram and copper ions occur and the extent of their occurrence during 
adsorption studies may be strongly dependent on the soil copper content and 
on the initial thiram concentration in solution making the choice of the 
equilibration time for batch sorption studies and adsorption isotherms 
determination a difficult task. The complexes formed with copper in soil are 
persistent, and they are not easily leached from soil to groundwater. Thus, we 
can conclude that copper may contribute to the immobilization of thiram in soil.  
Thiram recovery from natural waters showed rapid thiram degradation in 
environmental matrices, probably due to metal ions, namely copper. Depending 
on the Thi:Cu ratio two processes can occur: (i) when there is no excess of 
copper ions there will be the complexation between thiram and copper ions and 
the complex formed is more persistence than thiram; (ii) in the presence of a 
large excess of copper ions, which is the more probable situation in natural 
waters, thiram degradation can occur and then the degradation products are 
stabilized by complexation, forming complexes which can persist in aqueous 
solutions for at least two months. It was possible, by the first time, to identify 
some copper complexes formed. 
The kinetics of the photodegradation of thiram in aqueous solutions, under 
sunlight, was studied and three photodegradation products were identified for 
the first time. Besides, it was shown that humic substances enhance the thiram 
photodegradation rate.  
Thus, we can conclude from this work that the organic matter, copper ions and 
sunlight have important effects on the behaviour and fate of thiram in the 
environment. However it should be highlighted that copper ions have an 
extremely marked effect on the degradation of thiram and persistence of 
products which are formed. 
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Chapter 1 
 

1 Introduction 
 
 
 
 
1.1 Background 

 
At the begining of 1940, organic compounds obtained from plant extracts and 

inorganic compounds containing heavy metals were the most widely used pesticides. 

During the 1940s decade, the use of pesticides has increased significantly, due to the 

introduction of synthetic chemicals and generalization of their use. Among the different 

applications of pesticides, the main and most important application is in agriculture in 

order to increase the productivity, quality and quantity of the foodstuffs, allowing to 

mantain yields and so contributing to the economic viability of agriculture. Most are 

complex compounds that can be released directly and/or indirectly to the surrounding 

environment what may be of some environmental concern, because of their production 

quantities, toxicity, persistence, tendency to bioaccumulate and of their potentially harmful 

metabolites. Today, the public demands more and more a safe environment, free from 

chemicals and pesticides. Consequently, many efforts have been done in order to protect 

environment and safely manage hazardous substances, resulting in the worldwide decision 

to registrate the new chemicals before their commercial use, as stated on the Regulation 

(EC) Nº 1107/2009 of the European Parliament and of Council of 21 October 2009 

concerning the placing of plant protection products on the market and repealing Council 

Directives 79/117/EEC and 91/414/EEC (Information available at http://europa.eu/ 

legislation_summaries/food_safety/plant_health_checks/sa0016_en.htm; last accessed on 

20th November 2012).  

Besides, understanding the sources, fate, behaviour and effects of these chemicals in 

the environment becomes essential for society to accept risks of adverse ecological or 

human health effects inherent to their use. So, the composition of pesticides, transport 

processes and migration in and between the various environments must be completely 

understood, especially when factors, such as, pesticide properties, soil properties, hydraulic 
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loading on the soil and crop management practices, are determinant on contamination of 

air, water and soil systems. 

On the other hand, the chemistry of pesticides has been constantly growing, with new 

effects in both environmental and public health to be detected, demanding the development 

of new analytical methodologies, allowing the detection of small amounts in different 

matrices and the identification of their metabolites. Finally, the regulatory agencies are 

more and more demanding, providing more complex guidelines, requiring more tests and 

restrictions on the use of newer chemicals as well as of the oldest. Consequently, the 

research in this field has intensified greatly due to the need for consistent and meaningful 

environmental data and their respective interpretation. 

According to the U.S. Environmental Protection Agency (EPA) (information 

available at http://www.epa.gov/pesticides/about/index.htm; last accessed on 20th 

November 2012) “A pesticide is any substance or mixture of substances intended for 

preventing, destroying, repelling, or mitigating any pest” (Racke, 2003, Estéves et al., 

2008). It is a generic term which covers a wide range of biologically active substances. 

There are various ways by which pesticides can be classified: based on their target (the 

pests that they control) (Table 1.1), according to their mode of action (the way they control 

the pest) (Table 1.2) or chemical group (Tables 1.3).  

 

Table 1.1. Pesticides classification according the type of pest. 
 

Pesticide type Pest/function 

Algicides  
 

Control algae in water systems (lakes, canals, swimming pools) 

Antifouling agents  
 

Kill or repel organisms that attach to underwater surfaces, such as 
boat bottoms.  

Antimicrobials Microorganisms (such as bacteria and viruses).  

Bactericides (disinfectants 
and sanitizers) 

Kill or inactivate disease-producing microorganisms on 
inanimate objects 

Fumigants Produce gas or vapor intended to destroy pests in buildings or 
soil. 

Fungicides Fungi (including blights, mildews, molds, and rusts).  

Herbicides Weeds and other plants that grow where they are not wanted  

Insecticides Insects and other arthropods 

Miticides (or acaricides) Mites that feed on plants and animals.  

Microbial pesticides 
 

Microorganisms that kill, inhibit, or out compete pests, including 
insects or other microorganisms.  
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Table 1.2. Pesticides classification according the type of pest (continuation). 
 

Pesticide type Pest/function 

Molluscicides Snails and slugs.  

Nematicides 
 

Nematodes (microscopic, worm-like organisms that feed on plant 
roots).  

Pheromones Biochemicals used to disrupt the mating behaviour of insects. 

Plant growth regulator Control the crop growth processes. 

Repellents Repel pests, including insects and birds.  

Rodenticides Control mice and other rodents as rats.  

Wood preservative Wood-destroying organisms. 
 

Table 1.3. Pesticide classification according to their mode of action. 
  

Pesticide type  Description of action mode 

Contact poison 
The pesticide enters the body of pests via their epidermis upon 
contact and causes death 

Fumigation 
The pesticide in gas form enters the body of pests via their 
respiration system and causes death. 

Stomach poison 
The pesticide enters the body of pests via their mouthpart and 
digestive system and causes death 

Systemic action 
Pesticides consumed by a host organism will stay in its body fluids. 
Pests feeding on the body fluids of the host organism will then be 
killed by poisoning.  

 
Table 1.4. Pesticides classification according to their chemical group. 
 

Pesticide type Chemical group 

Fungicides Benzimidazoles  
Dicarboximides 
Carbamates  
Phenylamides 

Diazols and triazols 
Dithiocarbamates  
Copper based fungicides 
Sulfur-based fungicides 

Herbicides Amides 
Nitrophenols 
Chlorophenoxys 
Dipyridyls 

Carbamates  
Uracils 
Triazines 
Ureas 

Insecticides and 
acaricides 

Carbamates 
Organochlorines 

Organophosphates  
Pyrethroids 

Nematodicides Carbamates 
Organophosphates 

Rodenticides Organochlorines 
Organophosphates  

Pirimidinaminas 
Ureas  
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1.2 Ditiocarbamate fungicides 

 

Fungicides are chemical compounds extensively used in industry (suppression of 

mildews that attack painted surfaces; control of slime in paper pulps), in medicine (control 

human fungal diseases) and agriculture for a number of purposes. It is known that fungi 

may seriously damage plants, either during growth or after harvesting, resulting in a 

decrease of production and/or in the product quality. Thus, fungicides are extensively used 

in agriculture, where they are very effective against fungi without harming the crop. Their 

use includes protection of seed grains during storage, shipment and germination; 

protection of mature crops, berries, seedling, flowers and grasses in the fields or during 

their storage and shipment. 

According to 2002-2010 reports of Direção-Geral de Agricultura e Desenvolvimento 

Rural, the Portuguese Official Agency of Agriculture, (DGADR), the fungicide group 

represents, in Portugal, about 75-80% of pesticide market sales (Figure 1.1A) (Vieira, 

2004, 2005a, 2005b, 2005c, 2006, 2007, 2008; Abreu et al., 2009; Abreu and Mourão, 

2010, Abreu, 2011). From the different chemical groups of fungicides, the inorganic-

based fungicides are the largest contributor to fungicides sales with ~86% (corresponding 

~80% to the sulphur-based fungicides and ~6% to the copper-based fungicides), while, 

within the organic group, dithiocarbamates are the major group, contributing with ~10% 

of the total fungicide sales (Figure 1.1B). 

According to the literature (Thorn and Ludwing, 1962), dithiocarbamates have a 

great effect on biological systems, due to their metal binding capacity or ability to interact 

with compounds containing sulfhydryl groups. Although they were first used in medicine 

for the control of dermatophytes and in chronic alcoholism correction (Hald and Jacobsen, 

1948), dithiocarbamates have also been extensively employed in biochemical 

investigation as inhibitors of enzymes and mainly in the agriculture field. The mechanism 

of action associated with the pesticide activity of the dithiocarbamates is the inhibition of 

metal-dependant and sulfhydryl enzyme systems in fungi, bacteria, plants, and insects, as 

well as mammals (Miller, 1982).  
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Figure 1.1 – Mean values of percentage sales in Portugal between 2002 and 2010 of (A) pesticides 

by type of pest and (B) fungicides by active substance  
 

Among the various dithiocarbamates available, very few have acceptance as 

commercial fungicides (Table 1.4). Among them, those derived from dialkylamines, only 

the iron (1) and zinc (2) salts of dimethyldithiocarbamic acid and tetramethylthiuram 

disulfide (3), known as ferbam, ziram and thiram, respectively, are widely used. Other 

compounds, such as disodium ethyenebisdithiocarbamate, known as nabam (4), and its 

zinc and manganese polymeric salts, named zineb (5), maneb (6) and mancozeb (7) are 

also used as fungicides Thorn and Ludwing (1962) make an extensive review of the main 

characteristics of the dithiocarbamates and their activity in the different fields of 

application. 
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Table 1.5. Dithiocarbamates used as fungicides 
 

Chemical Structure 

DMDTC’s= dimethyldithiocarbamates 

Ferbam   (1) NH3CH3C C SS- Fe3+
 

Ziram     (2) NH3CH3C C SS- Zn2+
 

Thiram   (3) NH3CH3C C SS S C N CH3CH3S
 

EBDC’s=ethylene-(bis)-dithiocarbamates 

Nabam       (4) NN S S-HH
S S-Na+Na+

 

Zineb        (5) Zn2+NN S S-HH
S S-

 

Maneb      (6) NN S S-HH
S S- Mn2+

 

Manconzeb (7) NN S S-HH
S S- Mn2+ 9:1)X:Y ,((Zn 2+ )Y

 

2 

3 

X X 

X 

X 
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According to the 2002-2010 available reports (Vieira, 2004, 2005a, 2005b, 2005c, 

2006, 2007, 2008; Abreu et al., 2009; Abreu and Mourão, 2010, Abreu, 2011) among the 

various dithiocarbamates used in agriculture, the mancozeb, thiram and ziram are the 

fungicides most sold in Portugal (Figure 1.2).  
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Figure 1.2 – Mean values of percentage sales of thiram, ziram and mancozeb, as the main used 
dithiocarbamates in Portugal between 2002 and 2010. 

 

During this period, thiram selling rate registered a significant increase until 2007, 

with a slight decrease in 2008 and 2009 that follows the downward trend of the fungicide 

sales between 2008 and 2009. With mancozeb as only exception, pesticides in general 

showed a fall of 27% between 2007 and 2009, probably because of unfavourable climatic 

and agronomic conditions. In 2010, sales of thiram have increased significantly again, 

showing that thiram still occupies a relevant position in the sales of fungicides in Portugal. 

According to information supplied by DGADR at the moment there is no information 

about distribution of pesticide sales by the various regions of Portugal. However, they are 

working on the implementation of the Regulation (EC) 1185/2009 of the European 

Parliament and of the Council of 25 November 2009 concerning statistics on pesticides 

(Information available at http://eur-lex.europa.eu/en/index.htm; last accessed on 20th 

November 2012) in order to have statistics about the use of pesticides based in both crops 

and country regions.  

Thus, thiram is a dithiocarbamate compound registered in Annex I of the Directive 

91/414/CEE, regarding the placing of plant protection products on the market since 2003 
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(Chapter 11, Supplementary information, section 11.1) that was replaced by the EC 

Directive 1107/2009 (Information available at http://dgadr.pt/default.aspx; http://ec. 

europa.eu/food/plant/protection/evaluation/stat_active_subs_3010_en.xls; last accessed on 

20th November 2012). In April of 2012 the list of the plant protection products authorized 

for sale in Portugal was updated by the DGADR and thiram continues to be part of that list 

(Information available at http://madrp.dgadr.pt/; last accessed on 20th November  2012).   

 

1.3 Thiram characteristics and applications 

 

Thiram or tetra-methyl-thiuram disulfide is a dithiocarbamate compound that has 

been used as a contact fungicide with preventive action. It is a compound that acts in 

breath activity of fungi inhibiting spore’s germination. It is one of the contact fungicides 

most widely used to prevent crop damages, either in the field or during its transport and 

storage (Roberts and Hutson, 1999; Sharma et al., 2003). It is used to protect seeds, fruits, 

vegetables and ornamental plants from a variety of fungi (such as, Botrytis spp., 

Anthracnosis, Fusarium and Manilia) in lettuce, spinach, tomatoes, strawberry, peach, 

apple and pear. In addition, it is also used as a repellent to protect the fruit and ornamental 

trees from damages caused by rabbits and rodents (Sharma et al., 2003). Table 1.5 shows a 

list of thiram uses, adapted from the review report for the active substance thiram finalised 

in the Standing Committee on the Food Chain and Animal Health at its meeting on 4th 

July 2003 in view of the inclusion of thiram in Annex I of Directive 91/414/EEC 

(European commission, Thiram 6507/VI/99, 2003).  

 
Table 1.6. List of thiram uses (adapted from European commission, Thiram 6507/VI/99, 2003). 
 

Crop  Application 
Pests or group of pests 

controlled 
Country 

Apple Outdoor or field; use foliar. 

Venturia inaequalis (Scab) 
Monilia 

Gloeosporium 

Gloeodes pomigena 

Schizothirium pomi 

All Europe 

Almond Outdoor or field; use foliar. 
Monilia spp. 

Coryneum 

Taphrina 

South-
Europe 
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Table 1.7. List of thiram uses (adapted from European commission, Thiram 6507/VI/99, 2003) 
(continuation). 
 

Crop  Application 
Pests or group of pests 

controlled 
Country 

Pear Outdoor or field; use foliar. 

Venturia pirina (Scab) 
Stemphylium vesicarium 

Monilia 

Gloeosporium 

Gloeodes pomigena 

Schizothirium pomi 

All Europe 

Peach Outdoor or field; use foliar. 

Monilia spp 

Fusicladium. 

Taphrina deformans 

Coryneum beijerinckii 

(Stigmina 

carpophila) 

Fusicoccum amygdali 

All Europe 

Wine grapes Outdoor or field; use foliar. Botrytis 

Colletotrichum 
All Europe 

Strawberry 
(indoor & outdoor) 

Outdoor or field use glasshouse  
application; use foliar. 

Botrytis 

Colletorichum 

Mycosphaerella 
All Europe 

Ornamentals 

(indoor & outdoor) 

Outdoor or field use glasshouse 
application;use foliar. 

Botrytis All Europe 

Ornamentals 

bulbs 
Outdoor or field; use foliar. Sclerotinia All Europe 

Seed Outdoor or field; use foliar. Bird repellent All Europe 

Beans Outdoor or field; use foliar. soil / seed borne fungi All Europe 

Celery Outdoor or field; use foliar. soil / seed borne fungi All Europe 

Cucumber Outdoor or field; use foliar. soil / seed borne fungi All Europe 

Grass Outdoor or field; use foliar. soil / seed borne fungi All Europe 

Lettuce Outdoor or field; use foliar. soil / seed borne fungi All Europe 

Maize Outdoor or field; use foliar. soil / seed borne fungi 
animal repellency 

All Europe 

Wheat Outdoor or field; usefoliar soil / seed borne fungi 
animal repellency 

All Europe 

 

Thiram is also used in industry as accelerator and antioxidant in rubber production 

and more recently, used as precursor of films with semiconducting and luminescent 

properties (Ivanov et al., 2007). Thiram is available as dust, flowable, wettable powder, 

water dispersible granules, and water suspension formulations, and in mixtures with other 

fungicides. Table 1.6 shows the main characteristics of thiram (information available in 

http://www.eu-footprint.org/, last accessed on 20th November 2012). 
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Table 1.8. Thiram characteristics. 
 

Chemical name Thiram 

Chemical structure 

N C
S S

C N
CH3

CH3S

H3C

H3C

S

(1)
 

IUPAC name dimethylcarbamothioylsulfanyl N,N-dimethylcarbamodithioate 
tetramethylthiuram disulfide 

Commercial name (in Portugal) Pomarsol Ultra D (Bayer CropScience) 

CAS 137-26-8 

Physical state White to yellow crystalline powder 

Molecular mass (g mol-1) 240.4 

Melting point 146 ºC 

Log Kow 1.73 

Vapor pression 2.3 mPa at 25 ºC 

Solubility in water 30 mg L-1 (25 ºC); 16.5 mg L-1 (20ºC) 

Solubility in other solvents Soluble: acetone (69.7 g L-1 25°C), chloroform (205 g L -1 25°C) and 
most organic solvents.  
Slightly soluble: carbon disulfide, diethyl ether and ethanol (<10 g L-1 
25°C). 
Insoluble: dilute alkali, gasoline and aliphatic hydrocarbons  

pKa 8.19 at 25 ºC (weak acid) 

Soil degradation DT50(a) (days) DT50 typical: 15.2; DT50 laboratory at 20ºC: 4.6; DT50 field: 15 

Aqueous photolysis(b) (days) DT50: 0.4 at pH 7 

GUS leaching potential índex(c) 0.02 (Low leachability) 
(a)DT50 is the time required for the pesticide concentration under defined conditions to decline to 50% of the amount at 
application. Usually DT50 is in a field or laboratory soil sample. However, three DT50 parameters are given. Typically 
data is derived from laboratory studies, but when the substance is persistent in soil under laboratory conditions, field 
studies may be carried out. ‘Typical values’ quoted are those given in the general literature and are often a mean of all 
studies field and laboratory. This is the value normally used in the regulatory modelling studies and is for aerobic 
conditions.  
(b) is the rate of chemical decomposition in the aquatic environment induced by light or other radiant energy expressed as 
a DT50.  
(c) GUS index (Groundwater Ubiquity Score) is a very simple indicator of a chemical potential for leaching into 
groundwater. It is based on the environmental fate properties of the chemical and takes no account of environmental 
conditions. It is not a substitute for modelling and risk assessment studies. It is calculated from the soil degradation rate 
(DT50) and the Organic-carbon sorption constant (Koc) where: GUS = log(DT50) x (4 - log (Koc))  
If GUS > 2.8 = pesticide likely to leach; If GUS < 1.8 = pesticide unlikely to leach; If GUS 1.8 - 2.8 = leaching potential 
is marginal  

 

It is worth to notice that, despite the fact that Table 1.6 includes some information 

relatively to soil degradation and aqueous photolysis, we did not find information about 

the experiments which gave rise to these data. The data refer only to the desapearence of 

thiram and there is no information about degradation products. Besides, these processes 

may be strongly influenced by the soil characteristics or the composition of natural waters 

and the information about these subjects is very scarce, as discussed later in this chapter. 
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1.4 Determination of thiram 

 
The most recognized method for dithiocarbamate determination, namely thiram, is 

based on hot mineral acid decomposition of these compounds to amine and carbon 

disulfide (CS2) and subsequent analysis of the CS2 released (Thorn and Ludwig, 1962; 

Cullen, 1964). The analysis of CS2 can be carried out spectrophotometrically or directly by 

gas chromatography (Thorn and Ludwig, 1962; Cullen, 1964; AOAC official methods, 

1997a; Kesari et al., 1998; Caldas et al., 2001; Royer et al., 2001; Vryzas et al., 2002; 

Caldas et al., 2004; Qin et al., 2010; EPA-Method 630; EPA-Method 630.1). In brief, 

spectrophotometric analysis of the CS2 released consisted on a few colorimetric reactions 

involving the gas complexation with suitable reagents. The most popular method is based 

on CS2 absorption in an ethanolic solution, forming, in the presence of diethanolamine, a 

yellow complex with copper (II) that absorbs at 435 nm (Thorn and Ludwig, 1962; Cullen, 

1964; Caldas et al., 2001; Caldas et al., 2004; EPA-Method 630). As alternative, the 

determination of thiram in water, vegetables and wheat grains may be carried out after the 

CS2 absorption in an ethanolic sodium hydroxide solution, forming a xanthate that, in  

presence of potassium iodine and leuco crystal violet, results  in a product that absorbs at 

595 nm (Kesari et al., 1998) or, as suggested by the AOAC official method (1997a), for the 

determination of thiram in formulations, the xanthate can be determined after 

neutralization, by titration with a standard solution of I2. 

The methods referred above have the inconvenient of determining the total level of 

dithiocarbamates without identifying or quantifying the compounds individually, so that 

the value of the maximum residue level is usually expressed in terms of CS2. Despite this 

limitation, this is the method currently used in Portugal to determine the content of 

dithiocarbamates in foods, with either spectrophotometric detection or analysis by gas 

chromatography with MS detection, according to the European standard EN 12396-1:1998 

and EN 12396-2:1998 (information available at http://www.cen.eu/cen/Sectors/Technical 

CommitteesWorkshops/CENTechnicalCommittees/Pages/Standards.aspx?param=6256&tit

le=CEN/TC%20275, last accessed on 20th November 2012). However, with the increase of 

the thiram sales, the risks associated to the use of this fungicide should be properly 

evaluated not only in foods but also in other natural resources such as soil and water and 

more specific and selective analytical methods are needed to cover, quantify and confirm 

thiram residues in various matrices. Analytical techniques, such as, spectrophotometry, 
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chromatography, voltammetry, capillary electrophoresis, have been used in the analysis of 

thiram in water, soils, food and biological fluids. Although some review works have been 

published about quantitative analysis of some dithiocarbamates in various matrices (Thorn 

and Ludwing, 1962; Malik and Faubel, 1999; Szolar, 2007; Crnogorac and Schwack, 2009) 

as far as we know, only one work has been published about thiram (Sharma et al., 2003). 

The information about the methods for determination of thiram in different matrices, 

retrieved from works published in the last years is compiled in Chapter 11, Supplementary 

information (section 11.2). 

 

1.5 Thiram in environmental matrices  

 
Comparing to other pesticides, there is a lack of information in the literature about 

the environmental impact of the worldwide use of thiram in agriculture. Pesticides fate in 

the environment is ruled by transformation processes, which can include pesticide 

molecule breakdown by chemical, photochemical or biological degradation, which affect 

the persistence, or by transfer processes, such as adsorption/desorption, runoff, 

volatilisation and leaching, affecting the pesticide mobility (Andreu and Picó, 2004; 

Gavrilescu, 2005). Both types of physicochemical processes are influenced by the 

properties of the pesticide, soil environment and site conditions like weather, local flora 

and application method (Figure 1.3). 
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Figure 1.3 – Schematic representation of the potential fates of the pesticides in environment and 
some of the most important agents responsible of transfer and degradation phenomena. 
 

1.5.1 Adsorption-desorption of thiram  

The study of pesticides sorption onto soils is a commonly used method to evaluate 

mobility of pesticides in soil, providing essential information about the pesticide 

distribution between soil and water systems (Senesi, 1992; Aboul-Kassim et al., 2001a). 

Even though, comparing to other pesticides, the adsorption studies of thiram onto soils or 

soil components are very scarce and the physicochemical parameters have not been yet 

properly evaluated (Stathi et al., 2006). During the last three decades, only three studies 

have  been reported about adsorption of thiram onto soils from three distinct geographical 

points, one in Mediterranean (Valverde-Garcia et al., 1988) and, more recently, others in 

India (Sharma et al., 2011) and in Chile (Copaja et al., 2012). On the other hand, there are 

some published studies about adsorption of thiram onto specific adsorbents, such as lignins 

(Rupp and Zuman, 1992), SiO2 particles (Stathi et al., 2006), activated carbon (Gonzalez-

Pradas et al., 1987, Zahoor, 2010), wastes resulting from a coal mine (Misirli at al., 2004), 

sepiolite (Gonzalez-Pradas et al., 1987) or activated bentonite (Gonzalez-Pradas et al., 

1988). More recently, Stathi et al. (2007) have studied in detail the mechanism of thiram 
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interaction with natural humic acids (HA), either in aqueous solution or immobilized onto 

SiO2 particles. The role of carboxylate groups of the humic macromolecules on the 

interaction with thiram was also studied using two syntectic systems with mono- or di-

carboxylic moieties covalently immobilized SiO2  (SiO2-COOH or SiO2-(COOH)2). 

In most of the published works, the adsorption data obtained for thiram are adjusted 

to the most common mathematical models, Freundlich and Langmuir isotherms, obtaining 

the respective empirical parameters by regression methods and using them to describe and 

predict the adsorption phenomena of thiram onto the several matrices. Table 1.7 shows a 

summary of the sorption studies of thiram published in literature in the last 25 years. 

 

Table 1.9. Adsorption-desorption studies of thiram onto different adsorbents. 
 

Adsorbent Observations Reference 

Mediterranean soils 
(Almeria, Spain) 

Batch conditions: 1:8.3 soil:solution ratio, 24 h equilibration at 
30 ºC; equilibrium concentrations lower than 
12 mg L-1. 

Isotherm: Freundlich isotherm (linearised form);  KF values in 
the range 4.8 – 13.7 and correlated with the organic 
matter content; 

Valverde-
Garcia et al., 
1988 

Indian soils 

Batch conditions:  2 g soil, 24 h equilibration; equilibrium 
concentrations 24-72 mg L-1. 

Isotherm: Freundlich isotherm (linearised form); KF values in 
the range 5.3 – 7.7. 

KD values: 4.4, 4.0, and 4.7 for soil I, soil II, and soil III, 
respectively; 

According to the Groundwater Ubiquity Score (GUS) score, 
which is a model that relates half life and adsorption in soil 
(Koc), thiram is a non-leacher pesticide (GUS = 1.8). 

Sharma et al., 
2011 

Chilen soils 

Batch conditions:  1:10 soil:solution ratio, 24 h equilibration; 
equilibrium concentrations 0-1000 mg L-1. 

Isotherm: Freundlich isotherm (linearised form); KF values in 
the range 5.3 – 12 for natural soils; KF values in the 
range 8.0 – 20 for incubated soils with biosolids; . 

KD values: 0.2-3 L g-1 (calculated as the average between all 
the points of the curve). 

Copaja et al., 
2012 

Lignin 

Batch conditions: pH 7; 1:50 adsorbent:solution ratio, 4h 
equilibration; equilibrium concentrations 
lower than 2 mg L-1; desorption time between 
15 min and 18 h. 

KD values: 0.15 – 0.20 L g-1; 

Rupp and  
Zuman,  
1992 

Activated carbon and 
sepiolite 

Isotherm: L type, Langmuir isotherm (linearised form) 
Gonzalez-
Pradas 
et al., 1987 

Activated bentonite 
Isotherm: L type, Freundlich isotherm (linearised form); KF  

range 230-2010, depending the temperature. 

Gonzalez-
Pradas  
et al., 1988 
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Table 1.10. Adsorption-desorption studies of thiram onto different adsorbents (continuation). 
 

Adsorbent Observations Reference 

Activated carbon 

Batch conditions: 0.01:250 adsorbent:solution ratio, 220 min 
of equilibration at 20, 30, 40 and 50 ºC; 
equilibrium concentrations lower than 15 mg 
L-1. 

Isotherm: Langmuir and Freundlich isotherms (linearised 
forms); Qmax = 169.5-1, KL = 2.68 L mg-1, KF = 
0.0087 and N = 0.838 

Zahoor, 
2010 

Waste resulting from a 
coal mine 

Batch conditions: 1:25 adsorbent:solution ratio, 70 min 
equilibration; equilibrium concentrations 
lower than 15 mg L-1. 

Isothem: H type, (the adsorbent has high affinity to 
                 thiram); Langmuir and Freundlich isotherms  
                 (linearised forms) 
KD value: 4.4 L g-1 ( Ceq= 2.3 mg L-1) 

Misirli at al., 
2004 

Dissolved humic 
acids 

 

Batch conditions: 3:100 (w/w) HA:pesticide, 20 min of 
equilibration; equilibrium concentrations 
lower than 10 mg L-1. 

Isotherm: Langmuir, KL = 0.4 

Stathi et al. 
2007 

Humic acids 
immobilized SiO2 

Batch conditions: 1:6.7 adsobent:solution ratio, 20 min of 
equilibration; equilibrium concentrations 
lower than 10 mg L-1. 

Isotherm: Langmuir, KL = 0.7 

Stathi et al. 
2007 

Mono- or di-
carboxylic moieties 

covalently 
immobilized SiO2 

Batch conditions: 1:6.7 adsobent:solution ratio, 20 min of 
equilibration; equilibrium concentrations 
lower than 10 mg L-1.  

Isotherm: Langmuir, KL = 0.2 

Stathi et al. 
2007 

 
In the published works concerning the adsorption of thiram onto soil, the linearized 

form of the Freundlich equation was fitted to the data by linear regression analysis. 

However, this approach may be criticised, since “the conversion of non-linear isotherm 

equations to linear forms implicitly alters their error structure and may also violate the 

error variance and normality assumptions of least square method” (Ho, 2004). Thus, the 

calculated parameters may be incorrect. Besides, the equilibration time used in these 

studies was 24 hours but kinetic studies are not shown.  

Recent works have shown that the copper content in soil can influence the 

adsorption of other pesticides onto soils (Arias et al., 2006; Dousset et al., 2007; Liu et al., 

2007; Pateiro-Moure et al., 2007). However, despite the well known affinity of thiram for 

copper, there are no studies about the influence of the soil copper content on thiram 

adsorption. Thus, we can conclude that more studies are needed about the factors which 

can influence the sorption of thiram onto soils.  
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1.5.2 Persistence of thiram  

In what concerns the study of the persistence of thiram in the environment, the 

information in the literature, when the present work was started, was practically inexistent 

and continues to be scarce. Usually the persistence of a compound is evaluated by the half-

life time, t1/2, defined as the time required for one-half of the original amount of the 

compound to react/break down. Pesticides can be divided into three categories based on the 

respective soil half-life times: nonpersistent pesticides with a typical soil half-life of less 

than 30 days, moderately persistent pesticides with a typical soil half-life of 30 to 100 

days, or persistent pesticides with a typical soil half-life of more than 100 days. 

Very recently, Gupta et al. (2012a) conducted a study to evaluate the persistence of 

thiram in water and soil under controlled conditions and on two plants, namely, tomato and 

radish, in field conditions. According to the authors, the decay of thiram in water depends 

upon the nature of medium and environmental conditions. So, studies conducted in water 

at different experimental conditions revealed that thiram persistence decreases as pH, 

temperature and organic matter content increased. Among the three variables, it is the 

organic matter which has a more pronounced effect. For a pesticide:humic acid ratio of 1:1 

at pH 8 and 30 ºC the half-life of thiram was 0.5 d, while in the absence of humic acids the 

half life was 2.4 d. It must be noticed, however, that the concentration of thiram used in 

these studies is not clearly indicated, but from Figure 1 of the paper it seems that a 

concentration as high as 50 mg L-1 has been used, which is higher than thiram solubility in 

water, and the percentage of organic solvent (from the stock solution) in the final solutions 

is not referred. In the three different types of soils studied, with pH 5.1 to 8.1, the half-life 

of thiram was in the range 7.7 to 4.6 days. The relationship observed between thiram decay 

and pH was explained by the authors as a consequence of the faster kinetics in alkaline 

medium of thiram cleavage into DMDTC, besides for higher pH values the persistence of 

DMDTC, more toxic than thiram, increased significantly (Weissmahr and Sedlak, 2000). 

Moreover, other authors (Sherif et al., 2011) observed that the half life of thiram in soil 

(52% clay, 47% silt, 1% sand, 0.18% total N, 0.36% O.C and pH 7.8.) was 10 days. The 

influence of copper on the thiram persistence has not been evaluated. 
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1.5.3 Photochemical degradation 

Photodegradation is one of the transformation processes that can affect the behaviour 

of organic pollutants mainly in surface waters exposed to the sunlight. In fact, many 

studies are reported in the literature about photodegradation of organic pollutants and how 

the natural organic and inorganic major components of natural waters can influence their 

degradation (Guerard et al., 2009, Mao et al., 2011). In a water system, a pesticide can 

undergo direct photochemical transformation which involves direct capture of photons by 

the target molecule, or indirect photochemical transformation involving the energy 

captured and carried by another molecule present in the natural water – a photosensitizer.  

In spite of the wide thiram application, and in comparison to other pesticides 

(Burrows et al. 2002), the information about photodegradation of thiram in aquatic 

matrices is scarce (Thomas, 2001; Harino and Langston, 2009). Most of the studies 

published in the literature refer to the photodegradtion of thiram in the presence of 

synthetic catalysts or photosensitizers, such as TiO2 (Haque and Muneer, 2005; Thakare 

and Bhave, 2005; Kaneco et al., 2009) or rose Bengal (Crack and Morsyidi, 1992), and are 

focused on wastes treatment. Samanidou et al. (1988), have studied the degradation of 

thiram in natural waters, at a concentration of 48 mg L-1 (2×10-4 mol L-1), which is higher 

than thiram aqueous solubility (probably some organic solvent was added with the spike). 

The authors observed the complete degradation of thiram in 24 h under UV irradiation (> 

290 nm) and after 7 days of exposure to the sunlight. Furthermore, Samanidou et al. (1988) 

have observed differences in degradation rate of thiram depending on the source of natural 

waters. Thus, under sunlight, the rate of degradation of thiram followed the order river 

water > lake water > seawater, while, under UV irradiation, the degradation followed the 

order river water ≈ seawater > lake water. These observations have stressed the importance 

of the matrix components on degradation phenomena. Still, the authors referred the 

occurrence of two non identified photodegradation products. As far as we know there are 

no other studies about photodegradation of thiram by sunlight in natural waters or in 

aqueous solutions containing natural photosensitizers such as humic substances. 

Thus, more studies are needed in order to evaluate the influence of components of 

natural waters on the photodegradtion of thiram in water, as well as to identify the 

photodegradation products which can be formed. The photodegradation pathways 

identified in other studies of the photocatalytic or chemical degradation of thiram may be 
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useful for future work concerning the identification of photoproducts formed in natural 

waters. Thus, relevant information obtained so far may be found summarized in Table 1.8. 

 

Table 1.11. Identification of the major products of thiram degradation. 
 

Authors Degradation products 

Crack and Morsyidi, 1992 
 
Solution: ethanolic solutions of 
thiram (4 g L-1) and Rose Bengal 
(as photosensitizer)  
Photodegradation: 
UV light (presence/absence O2) 
Visible photosensitized oxidation  
Technique: GC-MS 
 
 

CS2 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

H3C
N

H3C

C

S

N

CH3

CH3  
 

Carbon disulfide 
 
 
Dimethylamine 
 
 
 
Tetramethylhydrazine 
 
 
 
N,N-dimethylthioformamide 
 
 
 
 
Tetramethylthiourea 

Kodoma et al., 1999 
 

Solution: aqueous solutions of 
thiram (0.72 mg L-1) 
Chemical degradation: 
sodium hypochlorite 
(0-100 mg L-1 free chlorine) 
Technique: LC-MS and ionic 
chromatography (dimethylamine 
identification)  
 

 
 

 

 
 

 
 

N

H3C

H3C

O

S S

N

CH3

CH3O  
 

 
 

 

 
Dimethylamine 
 

 

 

N,N-dimethylcarbamoyl-N,N-
dimethylthiocarbamoyldisulphide 
 
 
 
 
 
Bis(dimethylcarbamoyl) 
disulphide 
 
 

 

 

 

Bis(dimethylcarbamoyl) 
trisulphide 
 

 

 

 

HN
CH3

CH3

N
H3C

H3C
N

CH3

CH3
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Table 1.12. Identification of the major products of thiram degradation (continuation). 
 

Authors Degradation products 

Haque and Muneer, 2005 
 

Solution: aqueous thiram 
solutions (120 mg L-1) 
Photocatalytic degradation: 
UV light in the presence of  TiO2 
(1 g L-1)  
Technique: GC-MS 

 
 
 

 

   

 

                  

 

 
 

 

 

1.6 Research objectives 

 

The overall goal of this work was to achieve a better understanding of thiram in 

environmental matrices, namely in soil and natural waters, and the role of organic matter 

and copper ions in its behaviour and fate. 

 

The specific objectives of this study were: 

a) To study the relevance of organic matter on the adsorption-desorption of thiram 

onto soils. For this, adsorption-desorption studies were performed using humic 

substances and samples of a luvisol soil submitted to different long-term organic 

amendments. 

b) To study the effect of soil copper content on the adsorption-desorption of thiram 

onto soil. 

c) To study the influence of humic substances and copper ions on the analytical 

determination of thiram, for future studies of the influence of these parameters 

on the thiram behaviour in water 
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d) To study the persistence of thiram in aqueous solutions and identify the 

byproducts by mass spectrometry. 

e) To study the photodegradation of thiram under simulated sunlight in aqueous 

solutions and identify the photodegradation products by mass spectrometry. 

f) To compare the behaviour of pure thiram with a commercial formulation 

 

Chapters of the present thesis have been written as papers for international peer- 

reviewed journals. All these papers have been reworked, so that they are presented in a 

consistent style and format in this thesis. In addition, introductions and some experimental 

sections have been modified to eliminate repetition. 

The thesis includes 10 chapters; in the 1st chapter the state of the art concerning the 

knowledge about the behaviour of thiram in soils and natural waters is presented; chapters 

2,3,4,5 and 6 are focused on the various adsorption-desorption studies of thiram in 

different conditions that were performed; chapters 7,8 and 9 refer to the behaviour of 

thiram in aqueous solutions and natural waters evaluating the effect of organic matter, 

copper ions and sunlight in its determination, degradation and persistence; and, finally, 

chapter 10 summarizes the main conclusions of this work. 

 

Thus, Chapter 1 is a review focused on the behaviour and fate of thiram in 

environmental matrices. This chapter is part of a review paper being prepared to be 

published as   

Filipe, O.M.S., Vidal, M.M., Santos E.B.H. “Thiram: analytical methods and 
environmental behaviour – a review”. In preparation  

 

Chapter 2 describes the development of a solid phase extraction procedure (SPE) 

with a C18 column for clean-up of thiram from aqueous solutions equilibrated with 

commercial humic acids or soils. This chapter was published as  

Filipe, O.M.S., Vidal, M.M., Duarte, A.C., Santos E.B.H. 2007. A solid-phase 
extraction procedure for the clean-up of thiram from aqueous solutions 
containing high concentrations of humic substances. Talanta, 72, 1235-1238. 

 

Chapter 3 presents a comparison between linear and non-linear regression analysis 

applied to the fitting of Langmuir, Freundlich and Brunauer-Emmett-Teller isotherms to 

experimental adsorption data. Thiram adsorption data onto commercial humic acids (HA) 
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and a soil sample amended with organic compost (COM soil) are presented and used to 

estimate accuracy of the mathematical model chosen. This chapter was submitted as  

Filipe, O.M.S., Vidal, M.M., Santos, E.B.H. Modelling adsorption isotherm 
data: effect of fitting methods. Submitted to the J. Agric. Food Chem. in 
October 2012. 

 

Chapter 4 presents the studies of the adsorption-desorption behaviour of thiram onto 

solid humic substances. Batch adsorption-desorption experiments were also made using 

commercial formulations containing thiram in order to compare the adsorption phenomena 

when using thiram in its pure form or in a commercial formulation. This chapter was 

published as  

Filipe, O.M.S., Vidal, M.M., Duarte, A.C., Santos, E.B.H. 2009. Adsorption-
Desorption behavior of thiram onto humic acid. J. Agric. Food Chem., 57, 
4906-4912.  

 

Chapter 5 describes the influence of different organic amendments on the 

adsorption-desorption of thiram onto a luvisol soil derived from loess when compared to 

mineral fertilizer. This chapter was published as  

Filipe, O.M.S., Vidal, M.M., Duarte, A.C., Scherer, H.W., Schneider, R.J., 
Santos, E.B.H. 2010. Effect of long term organic amendments on adsorption–
desorption of thiram onto a luvisol soil derived from loess. Chemosphere. 80, 
293-300. 

 

Chapter 6 investigates the influence of copper ions on the adsorption and desorption 

of thiram from soil in order to clarify the occurrence of reactions with copper ions which 

can affect the persistence and mobility of thiram in soil. This chapter was published as   

Filipe, O.M.S., Costa, C.A.E, Vidal, M. M., Santos E.B.H. 2013. Influence of 
soil copper content on the kinetics of thiram adsorption and on thiram 
leachability from soils. Chemosphere, 90, 432-440. 

 

Chapter 7 presents a study on the use of a C18-SPE procedure combined with HPLC-

UV for thiram analysis in river water. The influence of aquatic fulvic acids and copper ions 

on thiram recoveries was studied. This chapter was published as  

Filipe, O.M.S., Vidal, M.M., Duarte, A.C., Santos, E.B.H. 2008. Influence of 
fulvic acids and copper ions on thiram determination in water” J. Agric. Food 

Chem., 56 (16), 7347–7354 
 



Introduction 

 

22 

Chapter 8 investigates the persistence of thiram in aqueous solution along time, in 

the absence and presence of copper ions. HPLC-MS/MS was used to identify the 

compounds in solution. This chapter is being prepared to be published as 

Filipe, O.M.S., Santos, S.A.O., Domingues, M.R.M., Vidal, M. M., Silvestre 
A.J.D., C.P. Neto, Santos, E.B.H. 2012. Effect of copper ions in the 
degradation and persistence of thiram in environmental matrices. In 

preparation 

 

Chapter 9 studies the degradation of thiram under simulated sunlight radiation in 

aqueous solutions, and the influence of humic substances is evaluated. Kinetics studies 

were performed and the photodegradation of pure thiram was compared with that of the 

commercial formulation of thiram. Photodegradation products were identified by HPLC-

MS/MS and a photodegradation pathway mechanism is proposed. This chapter was 

accepted  for publication as  

Filipe, O.M.S., Santos, S.A.O., Domingues, M.R.M., Vidal, M. M., Silvestre 
A.J.D., C.P. Neto, E.B.H. Santos. Photodegradation of the fungicide thiram in 
aqueous solutions. Kinetic studies and identification of the photodegradation 
products by HPLC-MS/MS. Chemosphere. Under revision. 
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Chapter 2 
 

2 A solid-phase extraction procedure for the clean-up 
of thiram from aqueous solutions containing high 

concentrations of humic substances1 
 
 
 
 
 
 
A simple solid-phase extraction (SPE) procedure with octadecyl bonded phase silica (C18) 
was developed for clean-up of the fungicide thiram from aqueous solutions containing 
high concentrations of humic substances, for future studies of thiram adsorption onto solid 
humic substances or soils. Suspensions of humic acids and soil, in aqueous 0.01 mol L-1 
CaCl2 solution, were prepared and used as samples. These extracts were spiked with thiram 
and immediately applied to a C18-SPE cartridge. Thiram was eluted with chloroform and 
its concentration measured by spectrophotometry at 283 nm. Non-spiked aqueous extracts 
(blanks) and a control sample of thiram in 0.01 mol L-1 CaCl2 aqueous solution were also 
prepared and submitted to the same SPE procedure. The results show that humic 
substances are extensively retained by the C18 cartridge but are not eluted with CHCl3. 
Recoveries of 100–104% were obtained for thiram in the presence of humic substances. 
The SPE procedure described in this work is an efficient clean-up step to remove the 
interference of humic substances absorbance and to be coupled to any spectrophotometric 
or HPLC–UV method, usually used for thiram analysis in food extracts. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1Adapted from: Olga M. S. Filipe, M.M. Vidal, A.C. Duarte, E. Santos (2007) “A solid-phase extraction procedure for the clean-up 
of thiram from aqueous solutions containing high concentrations of humic substances” Talanta, 72, 1235-1238. 



A solid-phase extraction procedure for the clean-up of thiram from aqueous solutions containing high 

concentrations of humic substances  

 

32 

2.1 Introduction 
 

The progressive increase in the application of chemicals for agriculture has lead to a 

rise in concern for the problem of soil contamination and for the risk of contaminants 

leaching to ground and surface waters. Adsorption studies are very important and useful to 

provide essential information about mobility of chemicals and their distribution in soil, 

water and air. The information supplied by this kind of studies can be used, for example, 

in the prediction or estimation of the availability of a chemical for degradation, 

transformation and bioavailability, leaching through the soil profile, volatility from soil 

and run-off from land surfaces into natural waters. However, in spite of the intensive use 

of thiram worldwide, physicochemical parameters for its adsorption onto soils have not 

been evaluated, as highlighted by Stathi et al. (2006). Studies of its adsorption on lignin 

(Rupp and Zuman, 1992), specific adsorbents (e.g., waste resulting from a coal mine, SiO2 

particles, actived carbon or sepiolite) (Gonzalez-Pradas et al., 1987; Misirli at al., 2004; 

Rupp et al., 1992; Stathi et al., 2006) and soils (Valverde-Garcia et al., 1988) have been 

reported, but there are no studies about its adsorption on humic substances, which 

constitute 60–70% of the organic matter in soils (Aiken, 1985) and which have been 

reported to interact with several other pesticides, influencing their fate in the environment 

(Celi et al., 1996; Ferreira et al., 2002; Liu et al., 2002; Prosen et al., 2007; Iglesias et al., 

2009; Kovaios et al., 2011). Adsorption studies of organic contaminants on soil and on 

humic substances are usually performed by mixing and equilibrating a known amount of 

soil or solid humic substances with a known volume of pesticide standard solutions in 

0.01 mol L-1 CaCl2 (OECD, 2000; Ferreira et al., 2002; Liu et al., 2002; Wauchoupe et al., 

2002; Arias et al., 2005, Kovaios et al., 2011). The amount of pesticide adsorbed is then 

calculated from the difference between the initial and equilibrium pesticide concentrations 

in solution. The solutions equilibrated with soil or humic substances do contain high 

concentrations of UV–Vis absorbent organic matter which can interfere in the analytical 

determination of the pesticide. Thus, for studying the adsorption of thiram either on soils 

or on humic substances, a clean-up procedure is required to remove these substances from 

solution before thiram analysis by any UV–Vis spectrophotometric method or by HPLC–

UV.  

Solid-phase extraction (SPE) has already been used for clean-up of the aqueous 

solutions of other pesticides after equilibration with soils (Konda et al., 2002; Mahommed 
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and Baugh, 2003, Ramezania et al., 2009). SPE with C18 stationary phase has been also 

applied by other authors (Tovar and Santos Delgado, 1995; Garcia et al, 1996; Blasco et 

al., 2004) to the extraction and preconcentration of thiram from aqueous standard 

solutions. Good recoveries were obtained using dichloromethane/methanol (Blasco et al., 

2004) or acetonitrile (Tovar and Santos Delgado, 1995) as eluents. However, very few 

applications to aqueous solutions containing humic substances, such as natural waters, 

have been published (Tovar and Santos Delgado, 1995; Garcia et al, 1996), and the results 

obtained were contradictory. Garcia et al. (1996) did successfully apply a C18 cartridge to 

the extraction/concentration of thiram from river water. On the other hand, Tovar and 

Santos-Delgado (1995) did apply the same stationary phase as adsorbent of several 

carbamate pesticides (carbaryl, propoxur, propham, methiocarb and thiram) from river 

water, and the same authors observed that thiram was the only pesticide that was not 

recovered. As far as we know there are no published results concerning the applicability 

of C18-SPE cartridge as a clean-up procedure of thiram in aqueous solutions with high 

concentrations of humic matter.  

The main goal of this work was to test a C18–SPE procedure for clean-up of thiram 

from aqueous solutions equilibrated with commercial humic acids or soils, for future 

studies of thiram adsorption. 

 

2.2 Experimental 

 

2.2.1 Chemicals  

All chemicals used were of analytical grade. Thiram (97%) was purchased from 

Aldrich and commercial humic acids (ash 10–15%, Mr 600–1000) were supplied by 

Fluka. Methanol and chloroform (HPLC grade) were obtained from Riedel-de Haen and 

LabScan, respectively. An aqueous 0.01 mol L-1 CaCl2 solution was prepared from CaCl2 

anhydrous (Fluka, p.a.). Ultra pure water for aqueous solutions was obtained with a Milli-

Q water purification system (Millipore). A stock solution of 15 mg L-1 of thiram in 0.01 

mol L-1 CaCl2 was used to prepare spiked aqueous humic and soil extracts. A stock 

solution of 25 mg L-1 thiram in CHCl3 was used to prepare standard solutions of thiram 

for calibration of absorbance measurements.  



A solid-phase extraction procedure for the clean-up of thiram from aqueous solutions containing high 

concentrations of humic substances  

 

34 

2.2.2 Soil 

The soil sample used in this work was kindly provided by Prof. H.W. Scherer from 

the Agrikulturchemisches Institute of the University of Bonn (Germany) and it was 

collected from the top soil layer (0–30 cm) of a field situated in Meckenheim (15 km 

southwest of Bonn). It is a luvisol derived from loess (sand 6.9%, silt 77.1%, clay 16%), 

which has been amended with farmyard manure since 1959. 

 

2.2.3 Apparatus 

The absorbance measurements were performed with an UV–Vis Shimadzu 

spectrophotometer, in a 1.00 cm cell. 

 

2.2.4 Preparation of aqueous humic acid and soil extracts 

Soil suspensions were prepared using a ratio of 5 g of soil to 25 mL of 0.01 mol L-1 

CaCl2, in a pyrex centrifuge tube, while humic substances suspensions were prepared 

using a ratio of 25 mg of humic acids to 5 mL of solution. These ratios are in agreement 

with those used in the literature concerning adsorption studies of other pesticides onto 

soils or humic substances (Celi et al., 1996; Ferreira et al., 2002; Liu et al., 2002; Kovaios 

et al. 2011). Both suspensions were centrifuged during 30 min at 4000 rpm and the 

supernatants were filtered through a 0.2 µm filter. These filtered extracts were used as 

samples. Spiked samples were prepared by addition of a known volume of the 15 mg L-1 

thiram stock solution (0.01 mol L-1 CaCl2). 

 

2.2.5 SPE clean up procedure 

Commercial Supelclean envi-18 cartridges (Supelco) of 500 mg, 75 Å pore diameter 

and 56 µm particle size were set up in a 12-place manifold from Phenomenex in order to 

perform the SPE experiments. Before use, all the cartridges were washed with 3 mL of 

CHCl3, the solvent used for thiram elution. Before sample application, the cartridges were 

preconditioned with 6 mL of methanol, 6 mL of Milli-Q water and 6 mL of 0.01 mol L-1 

CaCl2 (the sample matrix). Next, an aliquot of 2 mL of the spiked extracts was percolated 

through the cartridge at a flow rate of 2 mL min-1 under vacuum 6 kPa. Before elution, the 

SPE cartridge was rinsed with 3 mL of Milli-Q water in order to remove any residual 

sample and subsequently dried under nitrogen, during 30 min. Thiram was then eluted 
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with 3 mL of CHCl3, which was collected in a graduated tube, and its concentration was 

determined by spectrophotometry at 283 nm against CHCl3. Non-spiked soil or humic 

extracts were used as blanks and a control sample of thiram in 0.01 mol L-1 CaCl2 aqueous 

solution (not equilibrated with soil or humic acids) was also prepared. Both the blanks and 

the control sample were submitted to the same SPE procedure. 

 

2.3 Results and discussion 

 
2.3.1 Measurement of thiram by UV spectrophotometry 

Thiram quantification in the CHCl3 eluates from the SPE cartridges was performed 

by absorbance measurements at 283 nm (Figure 1.1A). Calibration curves were obtained 

with standard solutions in CHCl3 with concentrations in the range of 0.5–25 mg L-1 

(Figure 2.1B).  
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Figure 2.1 - (A) UV-Vis spectra of 24.2 mg L-1 thiram solution in CHCl3; (B) Calibration curve of 
thiram in CHCl3  

 

The limit of detection (LOD) was calculated from each calibration curve as 

mSLOD xy /3 /=           (2.1) 

 where m is the slope of the linear regression and Sy/x is the statistical parameter which 

estimates the random errors in the y axis (signal) (Miller and Miller, 2005), 
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where 
∧∧∧∧

−−−− ii yy  are the y-residuals, the 
∧∧∧∧

iy values are the y-values calculated from the 

fitted equation and corresponding to the individual x-values used in the calibration, while 

n is the number of points. A mean value of 0.33 mg L-1 (S.D. = 0.14 mg L-1, n = 6) was 

obtained for LOD, which is of the same order of magnitude as those obtained by other 

authors in the determination of thiram using UV–Vis spectrophotometry (Tunceli et al., 

2001; Sharma et al., 2004) and HPLC–MS (Barrek et al., 2003). 

 

2.3.2 Testing of the C18–SPE procedure with solutions containing only humic acids 

or thiram 

The aqueous phase from suspensions of humic acids in 0.01 mol L-1 CaCl2, after a 

dilution of 1:100, still has an absorbance of about 0.125 at 283 nm, which would 

correspond to an absorbance of about 12.5 in the original solution, as shown in Figure 

2.2a. Such high absorbance would interfere in thiram analysis by any UV–Vis 

spectrophotometric method or by HPLC–UV. The SPE procedure was applied to these 

non-spiked aqueous extracts of humic acids (blanks), and their retention was evaluated by 

measurement of the absorbance of the aqueous solution applied to the cartridge and of the 

solution collected at the outlet during the sample application and washing with water, 

before elution. Taking into account the dilution factor (volume applied/volume collected), 

the retention of organic matter absorbing at 283 nm was of about 75%. Figure 2.2b shows 

the high decrease of absorbance of the solutions after percolation through the SPE 

cartridge. 

Chloroform was used as eluent since it is a very good solvent for thiram. Such is the 

reason why chloroform is the most used solvent for extraction of thiram from fruits and 

vegetables (Cassella et al., 2000; Sharma et al., 2004). But it is also required that the 

eluent does not elute the humic substances retained by the C18 cartridge. Experimental 

results obtained with the blanks showed that humic acids were not eluted by chloroform. 

The absorbance of the blank eluates was measured at 283 nm and its mean value is 0.015, 

which is less than 0.2% of the absorbances of the aqueous extracts before clean-up. 
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Figure 2.2 – UV-Vis spectra of non-spiked aqueous extracts of humic acids before (a) and after 
(b) application to the C18 cartridge (absorbances were measured after adequate dilution of the 
solutions and were then multiplied by the dilution factor).  
 

The C18 cartridge capacity and the overall procedure were also tested for the thiram 

extraction, using a control aqueous solution containing only thiram in 0.01 mol L-1 CaCl2. 

As in adsorption studies thiram solutions are shaken during 24 h with soil or humic 

substances, the control solution was applied to the SPE column, immediately after 

preparation (Thi0), and after 24 h of shaking (Thi24). Table 2.1 shows that the SPE 

procedure allows to completely recover thiram from these standard solutions (Thi0 and 

Thi24).  

 

Table 2.1. Thiram recoveries (R) and respective standard deviations, for the control aqueous 
solution containing only thiram in 0.01 mol L-1 CaCl2, after applied to a C18 SPE cartridge: Thi0 – 
immediately after preparation and Thi24 – after 24 h of shaking. 
 

Samples 
[Thiram] 

(mg L-1) 
R (%) 

Thi0 2.1-10.4 103 ± 6 (n=7) 

Thi24 3.6-14.8 97 ± 6 (n=7) 
 

The comparison of the results for Thi0 and Thi24 allows concluding that there are no 

losses of thiram by degradation, adsorption on the flaskwalls, or during centrifugation and 

filtration steps. Still it allowed establishing that a chloroform volume of 3 mL is enough 

for the complete elution of thiram. 



A solid-phase extraction procedure for the clean-up of thiram from aqueous solutions containing high 

concentrations of humic substances  

 

38 

2.3.3 SPE as a clean-up step of thiram from aqueous solutions equilibrated with 

humic acid or soil samples 

The SPE procedure was then applied to spiked extracts in order to evaluate if thiram 

was completely recovered in the presence of humic matter. The concentration of thiram 

added to the filtered extracts is in agreement with those usually used in adsorption studies 

of other pesticides, usually in the range of 0.25–100 mg L-1 (Celi et al., 1996; Ferreira et 

al., 2002; Konda et al., 2002; Liu et al., 2002; Mahommed and Baugh, 2003; Arias et al., 

2005; Kovaios et al., 2011). Thus, a spike of thiram was done to the filtered soil and 

humic extracts, in order to obtain thiram concentrations of 2.1 and 10.4 mg L-1 in the soil 

extracts and 7.6 mg L-1 in the humic acids extracts. Non-spiked extracts were also 

submitted to the SPE procedure for calculation of recoveries. The values found for the 

non-spiked extracts were lower than the LOD (<0.33 mg L-1 in the cartridge eluates). 

Figure 2.3 shows the UV–Vis spectra of the CHCl3 eluates obtained from the SPE 

treatment of spiked and non-spiked extracts. Thiram recoveries of 100–104% were 

obtained, as shown in Table 2.2. 
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Figure 2.3 – UV-Vis spectra of CHCl3 eluates of the C18-SPE cartridges after application of: (A) 
humic acid extract non-spiked and spiked with thiram ([Thi]=7.6 mg L-1); (B) soil extract non-
spiked and spiked with thiram ([Thi]=10.4 mg/L). 
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Table 2.2. SPE recoveries (R) of thiram and respective standard deviations for both humic acid 
and soil extracts. Cad - concentration of thiram added to the extract 

 

Samples 
Cad  

(mg L-1) 
R (%) 

Aqueous HA 
extract  

7.6 103 ± 5 (n=3) 

2.1 100 ± 3 (n=3) Aqueous soil 
extract  10.4 104 ± 3 (n=3) 

 

2.4 Conclusions 

 

In the present work, the efficiency of a C18–SPE procedure for isolation and clean-

up of thiram from aqueous samples with high concentrations of humic substances was 

evaluated. The application of C18 cartridges to aqueous soil and humic extracts non-spiked 

and spiked with thiram has shown that:  

(i) humic substances are extensively retained by the C18 cartridge but are not eluted 

with CHCl3;  

(ii) thiram is retained by the C18 cartridge and eluted with CHCl3, in the presence of 

natural organic matter, with recoveries not significantly different from 100%. 

 

Thus, we can conclude that the SPE procedure described in this work can be applied 

as a clean-up step which removes the interference of humic matter absorbance in the 

analysis of thiram by any spectrophotometric method. Several spectrophotometric and 

HPLC–UV methods published in the literature were developed and applied for thiram 

analysis in food extracts, which do not contain humic matter (Sharma et al., 2003; Sharma 

et al., 2004). Coupling of those methods to this clean-up procedure will allow their 

application to aqueous solutions containing high concentrations of humic matter, such as 

those used in adsorption studies. A solvent change from CHCl3 to a more adequate solvent 

for the analytical method, if required, can be done by evaporating CHCl3 to dryness and 

dissolving the residue in the other solvent.  
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Chapter 3 
 

3  Modelling adsorption isotherm data: effect of 

fitting methods2  
 
 
 
 

This paper carries out a comparative and critical study of the procedures used to fit 
different adsorption models to experimental adsorption data and to evaluate the goodness 
of the fitting. The experimental data used for this study were obtained for the adsorption of 
the fungicide thiram onto both commercial humic acids (HA) and a luvisol soil amended 
with compost (COM soil). The Freundlich, Langmuir and Brunauer–Emmett–Teller (BET) 
isotherms were fitted to the adsorption data by linear regression analysis using the least 
squares method and by non-linear regression analysis. Five linearized forms of adsorption 
isotherms, which included the Freundlich equation, two forms of the Langmuir equation 
and two of the BET equation, and three non-linear isotherm equations, were discussed in 
this work. In order to determine the best fitting model, seven error functions that are 
usually used to estimate the deviations between experimental and estimated data were 
tested. In addition, another error function, the adjusted R2 ( 2

AdjR ), was included in this 

study to assess its suitability as a tool to evaluate isotherm model fitness. Depending on the 
procedure used to fit a given isotherm model to the data, different isotherm parameters for 
thiram adsorption onto both HA and COM soil were obtained. The results show that the 
non-linear method is the best way to obtain the isotherm which best fits to the data.  
 

 

 

 

 

 

 

 

 

 

                                                           
2 Adapted from: Filipe O.M.S., Vidal M. M., Santos E.B.H. Modelling adsorption isotherm data: effect of 
fitting methods. Submitted J Food Agric. Chem. (October 2012) 
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3.1 Introduction 

 

Pesticide adsorption studies have been reported as an important tool to evaluate 

pesticide/soil affinity. Information about a large number of pesticides and their tendency to 

adsorb onto soil or soil components is available in the literature. In general, information 

provided by studies of the adsorption phenomena is used to predict pesticide run-off into 

natural waters, evaluating the substance retention from the aqueous media to a solid phase, 

or mobility in the opposite direction, at a constant temperature. Usually, adsorption 

phenomena are studied by batch equilibration, putting well known quantities of the solid 

and an aqueous solution of the pesticide into contact, at a constant temperature, until 

equilibrium is attained. The adsorption isotherm is the plot of concentration adsorbed onto 

the solid phase versus the concentration that remains in solution, after a certain contact 

time (Tan, 1998; Aboul-Kassim and Simoneit, 2001a; Aboul-Kassim and Simoneit, 

2001b). Throughout the years, a wide range of equilibrium isotherm models have been 

used to describe the data generated by pesticide adsorption studies, contributing to the 

enlightenment on pesticide behaviour and fate throughout the environment. Freundlich and 

Langmuir isotherms are among the most commonly used equations to describe pesticide 

adsorption phenomena onto soil (Tan, 1998; Aboul-Kassim and Simoneit, 2001a; Foo and 

Hameed, 2010). Literature shows that, due to their non-linear nature, these equations are 

used after mathematical linearization in the majority of the adsorption studies (Tan, 1998; 

Aboul-Kassim and Simoneit, 2001b). After the mathematic transformation, the linearized 

equations are then fitted to the experimental data by linear regression using the method of 

least squares, in order to determine the parameters of the models, which are calculated 

from the slope and the Y-intercept. The coefficient of determination of the fitting is usually 

used to decide which is the model that best fits the data. However, as referred by Ho 

(2004), “the conversion of non-linear isotherm equations to linear forms implicitly alters 

their error structure and may also violate the error variance and normality assumptions of 

least squares method” and depending on the way as the isotherm equations are linearized, 

the error distribution changes either the worse or the better, distorting the isotherms 

parameters. So, depending on the way of fitting the adsorption models, as linearized or 

non-linearized equations, different adsorption parameters are obtained and, so far, such 

differences have not been properly discussed in the literature.  
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Information about the way of choosing the adsorption isotherm model which best fits 

the data and about the fitting method is scarce in the literature. During these last six years, 

however, some studies have been emerging in the literature about problems associated with 

the isotherm equation linearization methods  (Kumar, 2006, 2007; Kumar and Sivanesan, 

2006a, 2006b, 2008; Kumar et al., 2008a, 2008b; Ncibi, 2008; Subramanya and Das, 2009; 

Chowdhury et al., 2011). Moreover, since 2005, Kumar et al. (Kumar, 2006, 2007; Kumar 

and Sivanesan, 2006a, 2006b, 2008; Kumar et al., 2008a, 2008b) have been suggesting that 

isotherm data should be adjusted to Freundlich and Langmuir original equations by non-

linear regression analysis, which, according to this author, gives rise to rather better values 

for the isotherm parameters. However, despite this statement, it is still very common to 

find in the literature adsorption studies in different solid matrixes which continue to use the 

linearized forms of the isotherms (Larsbo et al., 2009; Gamiz et al., 2010; Alonso et al., 

2011; Smaranda et al., 2011; Hiller et al., 2012; Marin-Benito et al., 2012; Tang et al., 

2012; Wu et al., 2012) maybe due to their simplicity. In the present work, a comparative 

study between linear and non-linear regression analysis applied to the Langmuir, 

Freundlich and Brunauer-Emmett-Teller (BET) isotherms is carried out. Experimental data 

were obtained in studies about Thiram, a fungicide widely used in our country, Portugal 

(Information available at http://www.dgadr.pt/default.aspx; last accessed on October 22nd 

2012). Thiram adsorption data on commercial humic acids (HA) and on a soil sample 

amended with organic compost (COM soil) are presented and used to estimate accuracy of 

the mathematical model chosen to adjust experimental data.  

 

3.2 Isotherm Models 

 
3.2.1 Freundlich isotherm  

The Freundlich model is an empirical adsorption model that has been widely used in 

adsorption studies and is expressed as (Tan, 1998; Aboul-Kassim and Simoneit, 2001a; 

Foo and Hameed, 2010) 

N

eqF CKQ  =              (3.1) 

where KF and N are constants determined by fitting the equation to the experimental data 

of Q and Ceq. KF ((mg g-1)(dm3 g)N), defined as Freundlich constant, has been considered 

as indicative of the adsorption strength (Aboul-Kassim and Simoneit, 2001a) or related to 
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adsorption capacity (Subramanya and Das, 2009; Chowdhury et al., 2011). The N constant 

has been described as the degree of linearity (for N =1 the adsorption is linear) (Tan, 1998; 

Aboul-Kassim and Simoneit, 2001a; Aboul-Kassim and Simoneit, 2001b) and has been 

considered indicative of the heterogeneity of the adsorbent (Crini et al., 2007; Subramanya 

and Das, 2009; Foo and Hameed, 2010; Chowdhury et al., 2011). Thus, the Freundlich 

isotherm is widely applied to describe the adsorption onto heterogeneous materials, 

containing sites with different binding energies on the adsorbent surface. So, the amount 

adsorbed is the sum of adsorption on all sites (each having a specific binding energy), with 

the stronger binding sites being occupied first and the adsorption energy exponentially 

decreasing until the completion of the adsorption process. The closer the value of N is to 

zero, more heterogeneous is the system 

The linearized form of the equation (3.1) can be obtained by taking logarithms on both 

sides: 

eqF CNKQ logloglog +=          (3.2) 

When this form of the equation is used, KF and N are determined by fitting equation (3.2) 

to the experimental data of log Q vs. log Ceq.  

 

3.2.2 Langmuir isotherm model 

Langmuir adsorption isotherm is another model widely used to describe the 

adsorption of many compounds on various solid surfaces. It has been originally developed 

to describe gas–solid-phase adsorption onto activated carbon (Langmuir, 1916). This 

model assumes that the adsorbent is homogeneous and sorption takes place at specific sites 

which are all identical and energetically equivalent. It assumes a monolayer formation with 

no lateral interaction between the adsorbed molecules (the forces of interaction between 

sorbed molecules are negligible) (Tan, 1998; Kassim and Simoneit, 2001a; Foo and 

Hameed, 2010). Graphically, it is characterized by a plateau, an equilibrium saturation 

where, once each site is occupied by an adsorbate molecule, no further adsorption can 

takes place. The Langmuir model is described as 

eqL

eqL

CK

CKQ
Q

+
=

1

 max              (3.3) 
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where KL is the adsorption equilibrium constant, also known as Langmuir constant, and 

Qmax is the maximum adsorption capacity (mg g-1). According to the literature the 

Langmuir isotherm can be linearized in at least four different manners (Foo and Hameed, 

2010). In the present work we used only the two equations which, according to the 

literature, are the linearized forms most used (Foo and Hameed, 2010). The Langmuir-I is 

obtained by the ratio between Ceq/Q and is expressed as  

 

eq

L

eq
C

QKQQ

C
×+=

maxmax

11                 (3.4) 

and the Langmuir type II is the inverse of equation 3.3 and is expressed as  

eqL CKQQQ

1111

maxmax

×+=                (3.5) 

 

3.2.3 Brunauer–Emmett–Teller (BET) isotherm  

The BET isotherm was originally developed for gas phase adsorption (Tan, 1998) 

and has the form: 
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Where P is the partial pressure of the adsorbate and PS is the saturation pressure of the 

adsorbate. Brunauer et al. (1938) assumed that Q tends to infinite as P tends to PS, i.e. the 

adsorbate will condensate on the surface of the adsorbent when P attains P
S. As P

S 

resembles the maximum possible concentration of the adsorbate in the gas phase, a number 

of researchers, when applying BET equation to liquid phase adsorption, have used CS, the 

solubility of the adsorbate, or saturation concentration of the adsorbate in the liquid phase, 

instead of PS, and Ceq was used instead of P (Ebadi et al., 2009). Thus, equation 3.6 gives 

rise to the equation 3.7.  
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where Qmax (µg g-1) corresponds to the monolayer adsorption capacity i.e., maximum of 

adsorption of the 1st layer, CS is the saturation concentration for adsorbate in solution (mg 

L-1), and K is an empirical constant.  

Recently, Ebadi et al. (2009) have claimed that a more correct form of the BET 

equation for liquid adsorption is: 

)1)(1( **
max

eqSeqLeqL

eqS

CKCKCK

CKQ
Q

+−−
=          (3.8) 

where, KS is the equilibrium constant of adsorption for the first layer and *
LK  is the 

equilibrium constant of adsorption for upper layers. This equation is equivalent to equation 

3.7 making 
*

1

L

S
K

C =  and 
*
L

S

K

K
K = . 

The linearised form of the BET equation is expressed as, 
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          (3.9) 

what means that the Cs value has to be assumed as a constant. Assuming CS as saturation 

concentration, then, according to the EXTOXNET data base (information available at 

http://extoxnet.orst.edu/pips/thiram.htm; last accessed on 20th November 2012) CS for 

thiram is 30 mg L-1 at 25ºC and 16.5 mg L-1 at 20 ºC in FOOTPRINT data base 

(information available at http://www.eufootprint.org; last accessed on 20th November 

2012). In this work we linearised the BET equation using the two values of Cs that appears 

in the literature, 30 and 16.5 mg L-1. 

Concerning to the non-linear regression analysis, the BET equation 3.7 can be re-

arranged to the equation 3.10 in order to facilitate the curve fitting (Hinz, 2001)  
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3.3 Experimental 

 
3.3.1 Chemicals 

All chemicals were of analytical grade. Thiram (97%) was purchased from Aldrich 

and commercial humic acids (Ash 10-15%, Mr 600-1000) were supplied by Fluka. 

Methanol and acetonitrile (HPLC grade) were obtained from Riedel-de Haen and LabScan, 

respectively. An aqueous 0.01 mol L-1 CaCl2 solution was prepared from CaCl2 anhydrous 

(Fluka, p.a.). Ultra pure water for aqueous solutions was obtained with a Milli-Q water 

purification system (Millipore). 

Standard stock solutions of thiram (~20 mg L-1) were prepared by previous 

dissolution of the solid in acetonitrile (1% of the final solution volume) followed by 

dilution with 0.01 mol L-1 CaCl2 aqueous solution. Further dilutions were made in 0.01 

mol L-1 CaCl2. A stock solution of 100 mg L-1 thiram in acetonitrile was used to prepare 

more diluted standard aqueous solutions of thiram for the HPLC-UV method calibration.  

  

3.3.2 Adsorption studies 

Batch adsorption experiments were carried out according to the standard batch 

equilibrium technique, described on the OECD guideline (2000). Adsorption studies were 

performed using portions of both grounded commercial humic acids (30 mg) (Filipe et al., 

2009) and grounded soil samples (1.2 g) (Filipe et al., 2010). Each portion was accurately 

weighed into 10 mL Pyrex centrifuge tubes and mixed with 6 ml of thiram standard 

solution with the concentration within the ranges 2-28 and 2-35 mg L-1 for HA and soil, 

respectively. A 0.01 mol L-1 CaCl2 aqueous solution was used as solvent to prepare the 

standard solutions of thiram in order to enhance phase separation and to simulate natural 

soil solution ionic strength. The tubes were capped and shaken at 100 rpm and 21 ± 1 ºC 

(Heidolph Reax shaker), during a 15 h period, after which they were centrifuged at 4000 

rpm for 30 min. Finally, the supernatant was filtered using a 0.2 µm filter, cleaned-up 

using the SPE method previously described by Filipe et al. (2008, 2009) and analysed by 

HPLC-UV at 270 nm. The amount of thiram adsorbed by unit mass of the adsorbent 

obtained for the studied equilibration time (Q; mg g-1 or µg L-1 for HA or soil, respectively) 

was calculated from the initial thiram aqueous phase concentration (C0; mg L-1) and the 

thiram equilibrium concentration after adsorption (Ceq; mg L-1), 
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where V0 (L or mL for HA or soil, respectively) is the aqueous phase volume in contact 

with the adsorbent (HA or soil) during  adsorption experiments and m (g) is the adsorbent 

mass used in each essay. Thiram initial concentration, C0, was obtained from control 

samples performed as described above except with no use of adsorbent at all (only thiram, 

without HA or soil). Non simultaneous triplicate essays were made for each initial 

concentration, as well as blanks (essays without thiram) while control samples (only 

thiram) have been performed in every sample batch.  

 

3.3.3 SPE clean up procedure  

The SPE clean up procedure was adapted from one described previously by Filipe et 

al. (2007). The SPE cartridges (500 mg commercial supelclean, Supelco) were set up in a 

12-place manifold from Phenomenex and pre-conditioned with 6 mL of methanol, 6 mL of 

Milli-Q water and 6 mL of 0.01 mol L-1 CaCl2 aqueous solution (to match the sample 

matrix). Finally, an aliquot of 5 mL of the CaCl2 supernatant was percolated through the 

cartridge at a flow rate of 2 mL min-1 under vacuum 6 kPa. Before elution, the SPE 

cartridge was rinsed with 3 mL of milli-Q water in order to remove any residual sample 

and subsequently dried under nitrogen, during 30 min. Thiram was then eluted with 5 mL 

of acetonitrile and collected in a 5 mL volumetric flask, and the respective thiram 

concentration was determined by HPLC-UV at 270 nm. 

 

3.3.4 HPLC-UV analysis of thiram 

Thiram was determined by a Jasco HPLC apparatus equipped with a PU-980 Pump, 

a detector UV-Vis Barspec operating at 270 nm, a phenomenex C18 column (150x4.60 

mm, 5 µm, 110 Å) and a Rheodyne injector with a 20 µL loop. The mobile phase was 

acetonitrile:water 70:30 (v/v) flowing at 0.7 mL/min, previously filtered by a membrane 

filter 0.2 µm NL16 (Schleicher & Schuell).  
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3.3.5 Error functions: statistical tools for choosing the best isotherm  

In order to evaluate the goodness of the fit of the isotherm to the experimental data, 

statistical tools are required. Usually, in most of the adsorption studies, the coefficient of 

determination (R2) is the error function widely used to predict the optimum isotherm model 

(Bermúdez-Couso et al., 2011a, 2011b, 2012; Liang, et al, 2011). The best fitting isotherm 

is selected based on the magnitude of the R2, i.e., the R2 value closest to the unity. 

However, in recent years some authors have been aware of the need of several error 

functions to predict which isotherm model is the most adequate. According to the literature 

(Ncibi, 2008; Foo and Hameed, 2010; Chowdhury et al., 2011) the most commonly used 

error functions are presented in Table 3.1.  

 

Table 3.1. Mathematical error functions to predict the best fit isotherm. 
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*where Qexp is the amount of thiram adsorbed by unit mass of HA or soil obtained experimentally, Qest is the amount of 
thiram adsorbed by unit mass of HA or soil estimated from the model, Q  is the mean of the Qexp values, n is the number 

of data points and p  is the number of adjustable parameters in the model.  
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In the present study, besides the error functions presented in Table 3.1, we decided 

to employ another function, the R2 adjusted ( 2
AdjR ), to investigate the best-fitting isotherm. 

The 2
AdjR  evaluates the goodness of fitting taking into account the number of adjustable 

parameters of each model, as the MPSD function, and is defined as (Miller and Miller, 

2005) 



















−

−−=

pn

SS
n

SS

R
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residual

Adj

112       (3.12) 

where, 2
exp )( estresidual QQSS −=∑ , 2

exp )( QQSS total −=∑ ; Qexp is the amount of thiram 

adsorbed by unit mass of humic acids obtained experimentally, Qest is the amount of thiram 

adsorbed by unit mass of humic acids estimated from the model, Q  is the mean of the Qexp 

values, n is the number of data points and p  is the number of adjustable parameters in the 

model. 2
AdjR  can take on any value less than or equal to 1, with a value closer to 1 

indicating a better fit. According to the literature (http://www.graphpad.com; last accessed 

on 20th November 2012), “Negative values can occur when the model contains terms that 

do not help to predict the response. Note that R
2
 is not really the square of anything. If 

SSresidual is larger than SStotal, R
2 

will be negative. While it is surprising to see something 

called "squared" have a negative value, it is not impossible (since R
2
 is not actually the 

square of R). R
2
 will be negative when the best-fit curve fits the data even worse than does 

a horizontal line”. Normally, error functions are used to minimize the error distribution 

between the experimental data and predicted isotherms. Thus, the best fitting isotherm was 

selected based on the error distribution that will be minimized either by minimizing the 

error function or by maximizing the error function depending on the error function type. 

However, when the authors use the linearized forms of the isotherm equations, the 

goodness of the fit is usually evaluated on the basis of the determination coefficient of the 

linear regression, i.e., the linear determination coefficient, r2 (Alonso et al., 2011; 

Smaranda, et al., 2011; Hiller et al., 2012; Tang et al., 2012), which is the square of the 

Pearson correlation coefficient, calculated according to equation (3.13) 
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This determination coefficient evaluates whether there is a linear relation between the 

experimental values of Y and X, which are calculated from the experimental Q and Ceq 

values. For example, in the case of the Freundlich isotherm, yi are the values of “log Qexp”, 

and xi are the values of “log Ceq”. 

 

3.3.6 Data analysis 

Linear and non-linear regression analysis was performed using the program 

GraphPadPrism5® (Trial version; http://www.graphpad.com; last accessed on 20th 

November 2012). Several non simultaneous replicates of adsorption batch equilibration 

studies were performed and all the individual values of Qexp and Ceq were used for the 

fittings. 

 

3.4 Results and discussion 

 

3.4.1 Measurement of thiram by HPLC-UV   

Thiram quantification was performed by HPLC with UV detection at 270 nm. 

Calibration curves were obtained with thiram standard solutions with concentrations 

within the range 0.5-4.5 mg L-1, showing correlation coefficients higher than 0.999 

(Figure 3.1). The LOD was calculated from each calibration curve as described previously 

in Chapter 2. A mean value of 0.088 mg L-1 (SD=0.034 mg L-1, n=24) was obtained for 

the LOD.  Relative standard deviation for replicate injections was lower than 5% (same 

sample). 
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Figure 3.1 – Thiram calibration curve and HPLC chromatograms of thiram standard solutions: (a) 0.56 mg 
L-1 (b) 1.10 mg L-1 (c) 2.23 mg L-1 (d) 3.34 mg L-1 (e) 4.56 mg L-1. 
 

3.4.2 Modelling the adsorption isotherms 

The thiram experimental adsorption isotherms, obtained according to the 

experimental conditions previously described, are shown as dark symbols in Figure 3.2 

HA and 3.3 COM soil. Linear regression analysis, based on the least-squares method was 

used to fit the linearized forms of the Langmuir, Freundlich and BET isotherms to the data 

(see Table 3.2 for a summary of the used equations). As already mentioned, this method is 

widely used in the literature on batch adsorption studies of different compounds not only 

onto soil but also onto various adsorbents. The linearized forms of the isotherms adjusted 

to the experimental values of Y and X of each of those linear equations, are shown in 

Figure 3.2 and 3.3, together with the experimental data. The linear correlation coefficients 

obtained (r2) are also shown in Figure 3.2 and 3.3.  
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Figure 3.2 - Adsorption isotherm of thiram onto commercial HA. Linearized forms of the 
Freundlich, Langmuir and BET isotherms adjusted to the experimental values of Y and X by the 
least-squares method. 
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Figure 3.3 - Adsorption isotherm of thiram onto COM soil. Linearized forms of the Freundlich, 
Langmuir and BET isotherms adjusted to the experimental values of Y and X by the least-squares 
method. 
 

 

 

 



 

 

 
 
Table 3.2. Linear and non-linear equations to which experimental data were adjusted following the three mathematical models: Freundlich, Langmuir 
and Brunauer-Emmett-Teller isotherms.  
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* where KF and KL are the Freundlich and Langmuir constants, respectively, which are a measure of sorption capacity, N reflects the degree of linearity, Qmax is the maximum adsorption 
(mg g-1), which corresponds to the maximum of adsorption of the first layer in the BET isotherm model, CS is the saturation concentration for adsorbate in solution (mg L-1), and K is an 
empirical constant. 
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As above referred, in many studies, the goodness of the fit is evaluated on the basis 

of the value of r2. According to this criterion, the Langmuir isotherm would be discarded as 

a model for adsorption of thiram onto both commercial HA and COM soil if the Langmuir 

I linearized equation was used to fit the data, but it could be considered as a reasonable 

model if the linearized Langmuir II equation was used, since a r2 = 0.9346 (p<0.0001) was 

obtained for commercial HA. In many papers in the literature, the linear equation of the 

Freundlich isotherm (equation 3.2) is fitted to the experimental data, and whenever an r2 

close to the unit is obtained, the adsorption data are considered to be adequately modelled 

by the Freundlich isotherm, even without comparison to other isotherms (Crini et al., 2007; 

Hiller et al., 2012; Marín-Benito et al., 2012; Wu et al., 2012). Some authors have 

considered an r2 > 0.92 high enough to conclude that the data were adequately modelled by 

the Freundlich isotherm (Hiller et al., 2012), and only some of them have also analysed the 

significance of the linear correlation (p value lower than 0.05) (Marín-Benito et al., 2012). 

If a similar approach was applied to our data of the adsorption of thiram onto commercial 

HA or COM soil, one would conclude that the data were well fitted by the Freundlich 

isotherm since r2 values are higher than 0.95 and p<0.001 (cf. Figure 3.2 and 3.3). Besides, 

the comparison of the values of r2 for the linear regression of the linearized forms of 

different types of isotherms would allow us to conclude that this is the isotherm which best 

fits the data of adsorption onto commercial HA.  

In the case of the BET isotherm the use of a linearized equation requires the previous 

knowledge of CS and, as can be seen in Figure 3.2, the use of the two different limit values 

found in the literature for thiram aqueous solubility give rise to a drastic change of the 

quality of the fitting (r2=0.7671 for CS=30 mg L-1 and r2=0.1776 for CS=16.5 mg L-1). For 

the BET isotherm a non-linear curve fitting does not require the knowledge of CS since this 

is one of the adjusted parameters. 

The non-linearized equations of the adsorption isotherms above referred (equations 

3.1, 3.3 and 3.10) were then fitted to the data by non-linear regression and the curves 

obtained are presented in Figure 3.4. Using the isotherm parameters calculated from the 

intercept and the slope of the linearized equations of the same isotherms, fitted by linear 

regression analysis, the values of Qest for each Ceq were calculated and were also plotted in 

Figure 3.4.  
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Figure 3.4 – Adsorption isotherm modelling of thiram onto both commercial HA and COM soil 
using linear and non-linear regression analysis.  

 

The calculated isotherm parameters for adsorption of thiram onto both commercial 

HA and COM soil using the linear and non-linear regression analysis are shown in Table 

3.3. From Table 3.3 we can see that the estimates of the isotherm parameters depend on the 

method of regression analysis. 
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Table 3.3. Isotherm parameters obtained for thiram adsorption onto HA and COM soil using the linear and non- linear method.  

Linear method Non-linear method 
Isotherm 

Commercial HA COM soil Commercial HA COM soil 

Freundlich 
KF = 0.185 ± 0.007 

N = 0.85 ± 0.02 
KF = 16.2 ± 0.60 

N = 0.45 ± 0.02 
KF = 0.129 ± 0.008 

N = 1.04 ± 0.025 
KF = 10.5 ± 1.01 
N = 0.67 ± 0.04 

Langmuir I 
KL = 0.018 ±  0.006 L mg-1 

Qmax= 8.77 ±  2.93 mg g-1 
KL = 0.168 ± 0.03 L mg-1 

Qmax= 80.2 ± 9.36 µg g-1 

Langmuir II 
KL = 0.109 ± 0.014 L mg-1 

Qmax= 2.01 ±  0.26 mg g-1 
KL = 1.58 ± 0.21 L mg-1 

Qmax= 36.4 ± 3.48 µg g-1 

Ambiguous fit 
KL = 0.035 ± 0.012 L mg-1 

Qmax= 194 ± 48.6 µg g-1 

BET 

CS = 30 mg L-1 
Qmax= 1.32 ± 0.07 mg g-1 

K = 4.06 ± 0.29 
 

CS = 16.5 mg L-1 
Qmax= 1.88 ± 0.13 mg g-1 

K = 1.40 ± 0.15 

 

Qmax= 32.9 ± 1.01 µg g-1 

K = 23.4 ± 4.42 
 

 

Qmax= 54.9 ± 5.10 µg g-1 

K = 4.05 ± 0.76 

CS = 28.7 ± 1.95 mg L-1 
Qmax= 1.32 ± 0.35 mg g-1 

K = 3.71 ± 0.92 

CS = 29.7 ± 1.25 mg L-1 

Qmax= 32.6 ± 10.6 µg g-1 

K = 23.9 ± 6.08 
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3.4.3 Error estimation using statistical tools 

In order to determine which is the isotherm, among those studied, that best fits to the 

data, we used seven well known and usually applied error functions (SSE, SAE, ARE, σσσσ, 

MPSP, χ2, R2) and another function, R2 adjusted. Table 3.4 and 3.5 show the results for 

commercial HA and COM soil, respectively. 

 

Table 3.4. Isotherm error deviation data related to the adsorption of thiram onto commercial HA. 
 

 
        Error 

Isotherm 
SSE SAE ARE σσσσ MPSD χχχχ2 R2 

2
AdjR  

Freundlich 1.245 5.703 11.08 13.63 16.37 14.38 0.9414 0.9405 

Langmuir I 46.39 46.07 82.89 83.21 84.76 413.5 -1.184 -1.217 

Langmuir II 6.636 11.37 15.88 31.47 22.04 26.23 0.6876 0.6829 

BET 
(Cs=30 mgL-1) 0.4641 4.115 10.62 8.323 15.76 14.42 0.9782 0.9778 L

in
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m

et
h
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d

 

BET 
(Cs=16.5 mgL-1) 8972 203.0 159.6 1157 500.0 -210.0 -421.4 -427.8 

Freundlich 0.5566 4.986 14.27 9.115 19.95 20.42 0.9738 0.9734 

Langmuir - - - - - - - - 

N
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n
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BET 0.4111 4.006 10.81 7.833 15.84 15.34 0.9800 0.9806 

 
Table 3.5. Isotherm error deviation data related to the adsorption of thiram onto COM soil 

 
        Error 

Isotherm SSE SAE ARE σσσσ MPSD χχχχ2 R2 
2
AdjR  

Freundlich 1.12 e-3 0.1144 10.54 0.6329 13.34 0.0226 0.8970 0.8932 

Langmuir I 0.0419 0.9521 95.25 0.3867 100.5 70.023 -2.843 -2.986 

Langmuir II 6.11 e-3 0.2772 24.99 1.477 30.09 0.1809 0.4391 0.4183 

BET 
(Cs=30 mgL-1) 

3.51e-

04 
0.0868 0.203 0.3540 18.64 0.0203 0.9678 0.9666 

L
in

ea
r 

m
et

h
o

d
 

BET 
 (Cs=16.5mg L-1) 1.214 2.425 149.5 20.82 279.9 -1.095 -110.5 -114.6 

Freundlich 
5.09e-

04 
0.0972 19.38 0.4263 25.55 0.0433 0.9533 0.9515 

Langmuir 
8.49e-

04 
0.1238 23.47 0.5508 38.57 0.2018 0.9220 0.9191 

N
o

n
-l

in
ea

r 

m
et

h
o

d
 

BET 
1.20e-

03 0.1105 13.14 0.6558 19.86 0.0365 0.9679 0.9654 
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According to the values of the error functions presented in Table 3.3, the BET model 

is the most suitable model to describe the adsorption of thiram onto commercial HA. In 

fact, the highest R2 and 2
AdjR  and the lowest SSE, SAE, ARE, σσσσ and MPSP were found 

when modelling the experimental equilibrium data using the BET equation estimated both 

by linear and non-linear regression analysis. As referred above, when the linearized forms 

of the isotherm equations are used and the goodness of the fit is evaluated on the basis of 

the linear determination coefficient, r2, as made by several authors (Larsbo, et al., 2009; 

Gamiz, B et al., 2010; Alonso, et al., 2011; Smaranda, et al., 2011 ; Hiller, et al., 2012; 

Marín-Benito, et al., 2012 ; Tang, et al., 2012; Wu, et al., 2012), one can conclude that the 

Freundlich isotherm is the one which best fits the data of adsorption onto commercial HA. 

However, using the parameters KF and N estimated by linear regression, the values of Qest 

were calculated and plotted versus Ceq. The adjustment of the curve to the experimental 

data (Figure 3.4) does not reflect the r2 value obtained for the linearized Freundlich 

isotherm, r2 = 0.9541. The r2 value is higher for the linear form of the Freundlich isotherm 

than for the linear form of the BET isotherm with CS=30 mg L-1, but the error functions for 

the corresponding Qest vs. Ceq curves show that the data are better fitted by the BET 

isotherm (Table 3.4). Thus, we can conclude that, when linear methods are used, the Qest 

vs. Ceq should be plotted and additional error functions should be taken into account, 

besides the usually used linear coefficient of determination r2.  

Moreover, it seems that, in that specific case, by using non-linear regression analysis 

there are no problems with transformation of non-linear BET isotherm equation to linear 

form, since the CS values obtained, 28.7 ± 1.95 mg L-1 for HA and 29.7 ± 1.25 mg L-1 for 

COM soil are very similar to the value of 30 mg L-1 reported in the literature. The 

disagreement observed by Ebadi et al. (2009) between estimated and experimental CS 

values was probably due to the fact that the experimental equilibrium concentrations data 

used to fit the BET equation were much lower than the solubility of the compounds (Ebadi 

et al., 2009; Filipe et al., 2010).  

For adsorption of thiram onto COM soil (Table 3.5), the results obtained by using 

non-linear regression analysis were similar to those obtained for adsorption onto 

commercial HA, i.e., the best fitting model was the BET isotherm, with the R2 and 

2
AdjR values closest to the unity and the other error functions with the lowest values. For the 

curves calculated with the parameters obtained by linear regression analysis, the results 
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presented in Table 3.5 show that among the eight investigated statistical tools, only the 

ARE and MPSD functions do not agree with the fact that the BET equation is the most 

appropriate isotherm to fit the experimental adsorption data.  

In general, the results obtained show us that more statistical functions are valid for 

non-linear than linear analysis. The same behaviour was also observed by Subramanya et 

al. (2009) and Ncibi (2008). Such tendency could be explained by the difference between 

the equilibrium data estimated using linear and non-linear regression analysis. In fact, the 

linearization of a non-linear expression alters the experimental error, producing, 

consequently, an inherent error estimation problem which limits the validity of the studied 

statistical tools. The linear regression method assumes that the vertical scatter of points 

around the line follows a Gaussian distribution, and the error distribution is constant at 

every value of X. However, that is basically impossible since that assumption applies to the 

Qexp values and in the linearized forms of the isotherms the Y and the X values plotted for 

regression analysis are not Qexp and Ceq. So, the transformation of a non-linear equation to 

a linear form may change its error distribution. In fact, the linear regression analysis is not 

a suitable method to get isotherm parameters. Instead, it is better to fit the non-linear 

equations of the isotherms, by non-linear regression analysis, since the Y values (Q) have a 

uniform error distribution for the whole range of experimental adsorption data, Qexp and 

Ceq.  

Relatively to the new statistical tool used in this work, R2 adjusted, the results 

obtained agree with the other functions. However, we would like to highlight that the 2
AdjR  

takes into account the residual degrees of freedom of each model, being very important 

when isotherms with a different number of inner parameters are compared. So, we 

recommend the use of 2
AdjR  instead of the coefficient of determination R2.  

 

3.5 Conclusions 

 
Adsorption of pesticides onto different systems, namely onto soil or soil components 

such as humic substances, is usually estimated by using the linearization of the isotherm 

models due probably to the simplicity in these estimation. The present work highlights the 

variation in isotherm parameters which occurs when different procedures, namely linear 

and non-linear regression analysis, are used to fit the same isotherm model. The results 
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presented in this work advice against linearization, which may lead to incorrect results and 

erroneous conclusions about the best fitting model. So, the use of non-linear regression 

analysis in sorption studies is, as far as practicable, the better way to find the isotherm 

parameters and to find the best model that describes the experimental adsorption data. In 

case of application of the linearized equations of the models, the results must be considered 

as approximate, and the adsorption parameters determined by linear regression analysis 

should be used to estimate the non-linear curve, Q vs. Ceq, whose adjustment to the 

experimental data must be evaluated. 
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4 Adsorption-desorption behaviour of thiram onto 

humic acid3 
 
 
 
 
 
 
The adsorption/desorption behaviour of pure thiram (Thi-P) and formulated thiram (Thi-
F) onto commercial humic acids (HA) was studied using a batch equilibration procedure. 
Results of adsorption kinetic experiments showed that thiram adsorption is a fast process 
since 85 % of the equilibrium concentration is reached within two hours. Experimental KD 
values between 0.110 to 0.210 L g-1 were obtained for the adsorption of both Thi-P and 
Thi-F onto HA, suggesting that thiram is strongly sorbed by humic acids. In general, for 
both Thi-P and Thi-F, the lower the initial thiram concentration, the stronger is its 
adsorption (higher KD and percentage adsorption values). The adsorption isotherms were 
found to match the BET model. The results show that thiram adsorption onto condensed 
humic acids can not be explained only in terms of specific interactions, such as those 
identified in studies of adsorption of thiram with humic acids in solution. The comparison 
of sorption and desorption results allowed the observation of hysteresis phenomena. 
Desorption KD(des) values were consistently higher than those for adsorption at the same 
equilibrium concentration. Hysteresis was lower for the formulated thiram suggesting that 
adsorption is more reversible in the presence of the formulation components turning the 
pesticide more susceptible to be leached.  
 

 

 

. 
 

 

 

 

 

 

                                                           
3Adapted from: Filipe, O.M.S., Vidal, M.M., Duarte, A.C., Santos, E.B.H., 2009. Adsorption-Desorption behaviour of thiram onto 

humic acid. J. Agric. Food Chem., 57, 4906-4912.  
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4.1 Introduction  

 

With the intensive application of chemicals in agriculture, the contamination of 

soils, ground waters and surface waters has become a subject of environmental concern. 

As the fate of chemicals and the potential risk of contamination of aquatic systems depend 

on the distribution of contaminants between the aqueous and the solid phases, it is 

important to understand the interaction mechanisms with soil, by establishing the 

influence of each individual component of the soil system.  

Humic substances are one of the major and important components of soil organic 

matter; they are the most ubiquitous natural component in the environment accounting for 

50-80% of the carbon in soil, natural water and sediments. Due to their characteristics, 

such as polyfunctionality, polydispersive nature and polyelectrolytic character, combined 

with their content of hydrophobic active sites, such as aliphatic side chains and aromatic 

lignin derived moieties, those substances can interact with both metal ions and organic 

contaminants by different modes (Senesi, 1992: Senesi and Miano, 1995).  

Although thiram is one of the most used fungicides in Portugal (Information 

available at http://dgadr.pt/default.aspx; last accessed on 20th November 2012) and all 

over the world (Sharma et al., 2003), few data are available about the sorption behaviour 

of thiram onto soils or onto some specific adsorbents. The literature reports adsorption 

studies of thiram onto soils of Almeria (Spain), lignins and specific adsorbents (e.g. waste 

resulting from a coal mine or SiO2 particles) (Valverde-Garcia et al., 1988; Rupp and 

Zuman, 1992; Misirli et al, 2004; Stathi et al., 2006). Recently, Stathi et al. (2007) have 

studied the mechanism of thiram interaction with natural humic acids (HA), either in 

aqueous solution or immobilized onto SiO2 particles, and emphasized the role of 

carboxylate groups of the humic macromolecules on the interaction. That type of specific 

interaction was properly modelled by Langmuir sorption isotherms (see supplementary 

material from reference Stathi et al. (2007)).  

However, either in the condensed form or in the soil system, humic substances may 

form aggregates providing an organophilic medium for sorption of hydrophobic molecules 

from water (Pignatello, 1998). It is recognized, in the literature, that soil organic matter 

acts as a partition medium for non-ionic organic contaminants (Chiou and Kile, 1998). 

Linear sorption isotherms would be expected if partition was the only interaction 
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mechanism, but deviations from linearity have been observed by several authors 

(Spurlock and Biggar, 1994; Pignatello, 1998; Chiou and Kile, 1998; Chiou et al., 2000). 

Several hypotheses have been forwarded to explain the non-linear solute sorption 

observed at equilibrium concentrations under the contaminant solubility level (Chiou and 

Kile, 1998). Those deviations are higher for more polar organic contaminants (Chiou and 

Kile, 1998) and one possible cause for these deviations is the existence of specific 

interactions with functional groups of the organic matter (Spurlock and Biggar, 1994). 

Stathi et al. (2007) emphasized the role of specific interactions on thiram adsorption, but, 

as referred above, these authors have studied the interactions of thiram with humic 

substances in solution or immobilized at the surface of silica and other mechanisms of 

interaction may be present when condensed humic substances, isolated or in the soil 

system, are considered (Pignatello, 1998).  

Thus, the sorption-desorption behaviour of thiram onto solid humic substances is 

investigated using the standard batch equilibration procedure, that has been applied for 

studying the sorption of many other organic contaminants onto humic substances (Benoit 

et al., 1996; Piccolo et al., 1996; Ferreira et al., 2002; Liu et al., 2002; Wang et al., 2005). 

Different models for fitting adsorption-desorption isotherms were compared. Results are 

compared with other similar studies involving humic substances and other than thiram 

organic contaminants. Batch adsorption-desorption experiments were also made using 

commercial formulations containing thiram in order to compare the adsorption 

phenomena when using thiram in its pure form (Thi-P) or in a commercial formulation 

(Thi-F). 

 

4.2 Experimental  

 

4.2.1 Chemicals  

All chemicals were of analytical grade. Pure thiram, Thi-P, (pure substance, 97%) 

was purchased from Aldrich and commercial humic acids (Ash 10-15%, Mr 600-1000) 

were supplied by Fluka. A commercial formulation of thiram, Thi-F was obtained from 

Bayer (Pomarsol ultra D, 80% thiram active substance). Methanol and acetonitrile (HPLC 

grade) were obtained from Riedel-de Haen and LabScan, respectively. An aqueous 0.01 
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mol L-1 CaCl2 solution was prepared from CaCl2 anhydrous (Fluka, p.a.). Ultra pure water 

for aqueous solutions was obtained with a Milli-Q water purification system (Millipore). 

Standard stock solutions of Thi-P and Thi-F (~20 mg L-1) were prepared by previous 

dissolution of the solids in acetonitrile, followed by dilution with 0.01 mol L-1 CaCl2 

aqueous solution (percentage of acetonitrile in the final solution was always under 1%). 

Further dilutions were made in 0.01 mol L-1 CaCl2. Both stock solutions were prepared 

just before application to solid humic acids. A stock solution of 100 mg L-1 thiram in 

acetonitrile was used to prepare more diluted standard aqueous solutions of thiram for the 

HPLC-UV method calibration.  

 

4.2.2 Adsorption studies 

Each batch adsorption experiment was carried out using the standard batch 

equilibration technique, performed according to an OECD guideline (2000). A 0.01 mol  

L-1 solution of CaCl2 was used as aqueous phase, making the phase separation easier and 

simulating the ionic strength of a soil solution. Portions of commercial HA of 30 mg each, 

previously grounded, were taken into 10 mL Pyrex centrifuge tubes. Then, 6 ml of thiram 

solutions (Thi-P or Thi-F), within the concentration range of 2-28 mg L-1, were added. 

The tubes were stoppered and shaken on an end-over-end shaker (Heidolph Reax) at 100 

rpm, during 15 h at 21 ± 1 ºC. The time needed for reaching equilibrium was based on the 

study of the adsorption kinetics, described in kinetic section (4.2.4). After reaching 

equilibrium, suspensions were centrifuged at 4000 rpm for 30 min, the supernatant was 

filtered using a 0.2 µm filter and cleaned-up using SPE as described in Chapter 3, section 

3.3.3. The concentration of thiram in the supernatant was determined by HPLC-UV at 270 

nm as described in Chapter 3, section 3.3.4. The difference of pesticide concentration 

between the initial and the final equilibrium solutions was assumed to be due to the 

adsorption, and the amount of thiram adsorbed was then calculated. In order to test 

reproducibility at least two batch experiments have been done in different occasions. In 

each batch experiment, triplicates have been done for each initial concentration and for the 

blank (without thiram). Control samples (only thiram, without HA) have been performed 

for every sample batch.  
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4.2.3 Desorption studies 

Desorption studies were also carried out in triplicate and were performed 

immediately after adsorption equilibrium. After the adsorption period and centrifugation 

of the aqueous suspensions, the supernatant was decanted; the residual supernatant that 

could not be removed was determined by gravimetry. Thiram concentration in this 

residual solution was considered to be the same as that measured in the bulk supernatant. 

A 6 mL of fresh 0.01 mol L-1 CaCl2 solution (without thiram) was added to the centrifuge 

tubes. The tubes were shaken for another 15 h, centrifuged at 4000 rpm for 30 min and the 

supernatants were collected and submitted to the same procedure as described in the 

adsorption experiment. The CaCl2 desorption cycle was repeated once more. At last, a 

desorption cycle using 5 mL of methanol instead of CaCl2 0.01 mol L-1 was also 

performed. All experiments were done at 21 ± 1ºC. In order to confirm that thiram does 

not degrade during all the adsorption-desorption process, thiram solutions 4.6 and 22.9 mg 

L-1, without HA, were shaken during four days at the same temperature of the 

adsorption/desorption studies, and the recoveries of thiram obtained were always higher 

than 94 %.  

 

4.2.4 Kinetic study 

Aliquots of 6 ml of approximately 3 or 12 mg L-1 Thi-P solution in 0.01 mol L-1 

CaCl2 were added to 30 mg of commercial humic acids in the pyrex centrifuge tubes and 

shaken at 100 rpm, during 0, 0.5, 1, 2, 4, 8, 12, 20, 24 and 36 h. For each equilibration 

time, triplicate assays were conducted and processed as described above for adsorption 

studies. 

 

4.2.5 Calculation of distribution of thiram 

The amount of thiram adsorbed by unit mass of humic acids during the equilibration 

time (Q; mg g-1) was calculated from the difference between initial aqueous phase 

concentration (C0; mg L-1) and the thiram equilibrium concentration after adsorption (Ceq; 

mg L-1), 

HA

eq

m

VCC
Q

00 )( ×−
=                     (4.1) 
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 where V0 (L) is the initial volume of the aqueous phase in contact with HA during the 

adsorption experiments and mHA (g) is the mass of humic acids used in each essay. C0 was 

obtained from the control sample (only thiram, without HA).  

The percentage of thiram adsorbed onto HA was calculated according to the 

equation  

100
)(

%
0

0
×

−
=

C

CC
Ads

eq              (4.2) 

The distribution coefficient (KD; L g-1) was calculated as the ratio of the adsorbed 

concentration of thiram onto HA and its equilibrium concentration after adsorption, 

eq

D
C

Q
K =                (4.3) 

The amount of thiram desorbed (mdes; mg) after the first desorption cycle was 

calculated using the following equation:  

( ) rr

Des

eqdes mVVCm −+×= 0                 (4.4) 

where, Des

eqC  (mg L-1) is the thiram equilibrium concentration in solution after desorption, 

and mr (mg) is the amount of thiram in the residual solution after the adsorption 

experiment, calculated from:  

reqr VCm ×=              (4.5) 

where Vr is the residual volume of the supernatant that could not be removed prior to 

desorption and which was gravimetrically determined. 

The percentage of thiram desorbed from HA was calculated according to the 

equation  

100% ×=
ads

des

m

m
Des       (4.6) 

where mads is the mass of thiram adsorbed onto HA during the adsorption experiment.  

The adsorption-desorption hysteresis was quantified using the Hysteresis Index (HI) 

(Huang et al., 1998a; Huang et al., 1998b), 

Ceq

Ads

AdsDes

Q

QQ
HI

−
=     (4.7) 
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where, Ads
Q and Des

Q refer to the solid phase thiram concentrations (mg g-1) after 

adsorption and after a single desorption cycle experiment, respectively, corresponding to a 

predetermined aqueous solute concentration Ceq. 

 

4.2.6 Isotherms models  

The adsorption and desorption data were fitted to the Linear isotherm (equation 4.8) 

by linear regression analysis  

Linear equation                 eqD CKQ  =                                         (4.8) 

where KD, the distribution coefficient, is assumed as constant. 

The experimental data were also fitted to the Freundlich, Langmuir and Brunauer-

Emmett-Teller (BET) isotherms by non-linear regression analysis, as described in Chapter 

3, section 3.2. 

 

4.2.7 Statistical analysis 

The experimental adsorption data were fitted to linear isotherm by linear regression 

analysis, using the least square method, and to Freundlich, Langmuir and BET isotherms 

using the non-linear regression analysis. It was used the linear and non-linear regression 

analysis from the program GraphPadPrism5® (Trial version; http://www.graphpad.com; 

last accessed July 15th 2012). According to the results obtained in Chapter 3 we decide to 

use R2 adjusted ( 2
AdjR ) to evaluate the goodness of fitting, which taking into account the 

residual degrees of freedom of each model, instead of the coefficient of determination R2. 

The program GraphPadPrism5® was also used for the paired t-test, which was used to 

compare the HI data from Thi-P and Thi-F, being the level of significance indicated by the 

p value. 

 

4.3 Results and discussion 

 
4.3.1 Kinetic studies 

Figure 4.1 shows the adsorption percentages of thiram onto solid HA (% Ads, 

calculated according to equation 4.2) for different equilibration times, for thiram initial 

concentrations of 3.3 mg L-1 and 12 mg L-1.  
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Figure 4.1 - Effect of equilibrium time on the % of adsorption of Thi-P onto humic acids. 

 

According to these results, thiram is quickly adsorbed during the first two hours, 

since, for both initial concentrations of thiram, 85 % of the equilibrium extent adsorption 

is reached within this contact time. The equilibrium state was considered attained after 15 

h of equilibration since the variations in adsorbed percentages did not change more than 

5%, when the equilibration time was increased from 12 h until 35 h (Monkiedje and 

Spiteller, 2002). Based on such results, further studies for the establishment of both 

adsorption and desorption thiram behaviour were conducted for 15 h of equilibrium time 

(overnight equilibration). In previous studies, other authors observed a similar kinetic 

behaviour for the adsorption of atrazine and some of its metabolites onto soil (Abate et al., 

2004). 

 
4.3.2 Adsorption isotherms 

Adsorption isotherms for both Thi-P and Thi-F onto commercial HA are presented 

in Figure 4.2. Also in the same Figure 4.2, the distribution coefficients (KD; L g-1) are 

plotted against thiram equilibrium concentration. Those KD values are within the range 

0.110 – 0.210 L g-1, decreasing with the increase of thiram concentration in solution. 

Those values are quite comparable to the KD values for thiram adsorption onto natural 

lignin (0.15 – 0.20 L g-1, as calculated from Figure 3.4 in reference Rupp and Zuman, 

1992). Besides, KD values for Thi-P are not significantly different from those for Thi-F 

(p=0.63). The experimental KD values obtained in this work, compared to values for the 

adsorption of other organic contaminants onto other humic acid samples (Table 4.1) 

suggest that thiram is strongly sorbed by humic acids. 
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Figure 4.2 – Adsorption isotherm of both Thi-P and Thi-F onto HA and respective KD values 

 

Table 4.1. KD values for the adsorption of various pesticides onto humic acids. 

Pesticide Adsorbent KD (L g-1) Water Solubility  

(mg L-1) 

Ref 

2,4-dichloropheno-
xyacetic acid 

Soil humic acid 0.080 900 (25 °C) Benoit et al., 1996 

Glyphosate Soil humic acid 0.006-0.057 Very soluble Piccolo et al., 1996 

Imazaquin Soil humic acid 0.088-0.922 60 (25ºC) Ferreira et al., 
2002 

Imidacloprid Soil humic acid 0.005 510 (20ºC) Liu et al., 2002 

2,4,6-
Trichlorophenol 

Soil and peat humic 
acid 

0.100-0.200 negligible Wang et al., 2005 

Thiram Commercial humic 
acid 

0.110-0.210 30 (21 ºC) this work 

 

As referred, KD values are not constant, decreasing as the equilibrium concentration 

of thiram increases up to approximately 6 mg L-1, remaining approximately constant for 
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higher concentrations. This behaviour is confirmed by the values of the percentage of 

adsorption, which follow the same trend, varying between 52 and 35%. This deviation 

from linearity for low thiram concentrations suggests that adsorption can not be explained 

only by a partition mechanism (Chiou et al., 2000). Several types of isotherm equations 

have been used for fitting the experimental adsorption data of pesticides onto soils and 

humic substances. The Linear, Langmuir, and Freundlich isotherm equations are the most 

frequently applied (Benoit et al., 1996; Piccolo et al., 1996; Ferreira et al., 2002; Liu et al., 

2002; Monkiedje abd Spiteller, 2002; Abate et al., 2004; Cruz-Guzmán et al., 2004; Gupta 

and Gajbhiye, 2004; Morillo et al., 2004; Wang et al., 2005; He et al., 2006). According to 

Hinz (2001), in order to choose the isotherm equation to fit a given adsorption data set, it 

is useful to begin by identifying the class and subgroup of the isotherm, according to the 

Giles classification. Following the qualitative approach recommended by Hinz (2001) it 

was concluded that the sorption isotherm of thiram onto humic acids is an ‘L3’ type (class 

L, subgroup 3). ‘L’ type isotherms are characterized by an initial decrease of KD as the 

solution concentration increases and the subgroup 3 is characterized by the existence of a 

plateau followed by an inflection point in the Q versus Ceq plot. Thus, the Brunauer-

Emmett-Teller model (BET model), which describes multi-layer Langmuir adsorption and 

is classified as an L3 isotherm, was also tested to fit the experimental sorption data of 

thiram onto HA. Thus, in the present work, the four isotherm equations have been tested 

to fit the data. The parameters for each isotherm equation were determined by non-linear 

curve fitting and are presented in Table 4.2, considering adsorption data for both pure 

(Thi-P) and formulated thiram (Thi-F). "Ambiguous" is a GraphPad term to describe a fit 

that doesn't really nail down the values of all the parameters and when many combinations 

of parameter values lead to curves that fit equally well (Trial version; 

http://www.graphpad.com; last access 15 July 2012). According to R2 adjusted values, the 

BET equation is the most suitable to model the adsorption of thiram onto commercial 

humic acids, discarding clearly the Langmuir isotherm. Such a result highlights that the 

sorption of thiram onto condensed humic substances can not be explained only in terms of 

a specific interaction with the carboxyl groups as proposed by Stathi et al. (2007) for the 

interaction with dissolved humic acids or humic acids immobilized on the surface of silica 

particles, since that would give rise to a Langmuir isotherm (see supplementary material 

from Stathi et al. (2007)). 
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Also the Linear model is rejected on the basis of R2 adjusted values. Several authors 

attributed the non-linearity of adsorption isotherms to a dual mode adsorption mechanism 

(Chiou and Kile, 1998; Huang et al., 1998). In the present case, as the adsorption data are 

described by a BET isotherm, the mechanism may include specific adsorption with a 

limited number of adsorption sites, and the occurrence of pesticide-pesticide interactions 

after saturation of those sites (multilayer adsorption). As referred above, specific 

interactions between thiram and carboxyl groups of humic substances have been identified 

by others (Stathi et al., 2007) and may be responsible for the concave downward shape of 

the sorption isotherm at low concentration, while the upward shape of the isotherm for 

high concentrations can be due to pesticide-pesticide interactions (multilayer adsorption). 

A similar behaviour was observed for the adsorption of thifluzamide onto soil, and the 

upward nature of the isotherm for higher concentrations was also attributed to pesticide-

pesticide interactions (Gupta and Gajbhiye, 2004).   

 

Table 4.2. Adsorption equilibrium data of Thi-P and Thi-F fittings to Linear, Freundlich, 
Langmuir and BET isotherm modelsª.  
 

 Thi-P Thi-F 

Linear 
Isotherm 

KD = 0.141 ± 0.004 L g-1 

2
AdjR  = 0.987 

KD = 0.117 ± 0.005 L g-1 

2
AdjR  = 0.963 

Freundlich 
Isotherm 

KF = 0.130 ± 0.011 
N = 1.04 ± 0.04 

2
AdjR  = 0.988 

KF = 0.199 ± 0.019 
N = 0.80 ± 0.05 

2
AdjR  = 0.968 

Langmuir 
Isotherm 

Ambiguous fit 

KL = 0.037 ± 0.013 L mg-1 

Qmax= 4.63 ± 1.26 mg g-1 

2
AdjR  = 0.962 

BET 

Isotherm 

CS = 28.2 ± 1.83 mg L-1 
Qmax= 1.27 ± 0.351 mg g-1 

K = 3.99 ± 1.01 
2
AdjR  = 0.992 

CS = 22.7 ± 4.13 mg L-1 
Qmax= 0.839 ± 0.467 mg g-1 

K = 6.93 ± 3.35 
2
AdjR  = 0.970 

a fitting parameters and their respective errors for a 95% confidence interval are presented. 

 

4.3.3 Desorption isotherms 

The extent of desorption of both pure and formulated thiram was determined using 

two consecutive desorption cycles of 15 h in aqueous solution 0.01 mol L-1 CaCl2 and a 
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desorption cycle of 15 h in methanol. % Des and KD(des) results for each desorption cycle 

are presented in Table 4.3.  

 

Table 4.3. Experimental data of adsorption-desorption isotherms of both Thi-P and Thi-F onto 
humic acids. 
 

Desorption 

1st cycle
a
 2nd cycle

a
 3rd cycle

b
  

Ci  
(mg L-1) 

% Ads 

(% Des)* KD (L g-1) (% Des)* KD (L g-1) (% Des)* 

Total 
(%)* 

 

2.155 47.8 ± 0.8 19.9 ± 1.8 0.626 ± 0.050 <LOD <LOD nd - 

2.708 49.4 ± 1.0 30.9 ± 0.6 0.399 ± 0.016 <LOD <LOD 25.5 ± 0.9 56.4 ± 0.8 

4.309 41.9 ± 0.9 33.2 ± 1.0 0.339 ± 0.011 <LOD <LOD nd - 

5.417 45.9 ± 1.3 34.5 ± 1.7 0.337 ± 0.030 12.9 ± 0.0 0.729 ± 0.035 21.0 ± 2.7 68.4 ± 2.6 

6.464 38.5 ± 2.0 38.4 ± 0.4 0.271 ± 0.007 10.9 ± 1.9 0.810 ± 0.170 nd - 

8.125 43.5 ± 0.6 36.4 ± 2.4 0.312 ± 0.029 13.8 ± 1.0 0.651 ± 0.065 22.4 ± 0.7 72.6 ± 2.8 

8.619 43.4 ± 6.3 35.2 ± 0.0 0.299 ± 0.000 10.0 ± 0.0 0.901 ± 0.000 nd - 

10.77 40.2 ± 4.0 38.2 ± 1.1 0.269 ± 0.014 12.2 ± 0.2 0.705 ± 0.005 23.7 ± 1.5 74.1 ± 2.4 

10.83 40.4 ± 0.7 36.8 ± 0.6 0.296 ± 0.011 13.1 ± 1.3 0.678 ± 0.072 22.3 ± 2.4 72.2 ± 3.9 

12.93 40.9 ± 0.7 35.6 ± 1.1 0.302 ± 0.013 12.7 ± 0.3 0.720 ± 0.039 28.5 ± 1.6 76.8 ± 1.2 

13.54 40.7 ± 0.6 36.5 ± 0.9 0.291 ± 0.007 15.1 ± 0.4 0.579 ± 0.005 24.4 ± 2.5 76.0 ± 2.6 

T
h

i-
P

 

16.25 41.1 ± 1.3 36.3 ± 0.8 0.313 ± 0.010 14.8 ± 1.3 0.583 ± 0.015 25.8 ± 0.1 76.9 ± 1.1 

3.512 46.6 ± 2.1 32.8 ± 1.9 0.365 ± 0.027 <LOD <LOD 32.9 ± 6.1 65.7 ± 5.2 

4.332 46.4 ± 1.6 34.9 ± 1.7 0.327 ± 0.016 15.8 ± 1.4 0.559 ± 0.077 21.0 ± 1.8 71.7 ± 4.8 

7.023 42.6 ± 2.1 36.9 ± 0.9 0.297 ± 0.015 14.6 ± 3.2 0.628 ± 0.003 24.4 ± 0.0 75.9 ± 0.5 

8.665 39.0 ± 2.3 39.9 ± 1.3 0.250 ± 0.011 17.2 ± 1.5 0.437 ± 0.057 28.3 ± 0.1 85.5 ± 2.8 

10.54 39.1 ± 0.9 39.1 ± 1.1 0.270 ± 0.010 18.4 ± 1.5 0.476 ± 0.065 22.0 ± 6.2 79.6 ± 6.8 

13.00 39.1 ± 0.3 37.1 ± 1.4 0.273 ± 0.08 16.2 ± 1.1 0.472 ± 0.081 27.7 ± 4.2 81.0 ± 6.3 

14.05 37.4 ± 1.3 39.2 ± 0.2 0.261 ± 0.007 17.6 ± 0.6 0.442 ± 0.032 27.6 ± 1.1 84.4 ± 1.8 

17.33 39.0 ± 0.7 36.6 ± 2.6 0.280 ± 0.044 16.3 ± 0.7 0.526 ± 0.066 29.1 ± 1.4 82.1 ± 4.6 

T
h

i-
F

 

17.56 38.6 ± 0.8 37.1 ± 1.0 0.294 ± 0.016 17.8 ± 1.3 0.475 ± 0.039 26.9 ± 2.0 81.8 ± 2.2 

*Desorption value represent % of the amount initially adsorbed (LOD – limit of detection, nd-not 
determined); (a) 0.01 mol L-1 CaCl2; 

(b) methanol 
 

The results show that the percentage of thiram that is desorbed (% Des) decreases as 

the initial thiram concentration decreases, suggesting, once more, a stronger adsorption for 

low concentrations (in agreement with the results obtained in the adsorption studies). 

However, the adsorption-desorption isotherms for both Thi-P and Thi-F, which are 

compared in Figure 4.3, show that desorption behaviour is deviated from that 
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corresponding to the adsorption isotherm, which indicates that thiram sorption onto HA 

was not completely reversible. The desorption KD values after each desorption cycle were 

consistently higher than those for adsorption at the same equilibrium concentrations, which 

strongly suggests the irreversibility of the thiram adsorption onto HA, i.e., hysteresis 

phenomena. The experimental desorption data of the first cycle were fitted to Linear, 

Freundlich, Langmuir, and BET isotherms, and the results are shown in Table 4.4. 
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Figure 4.3 – Adsorption-desorption isotherms of Thi-P and Thi-F onto commercial humic acids  
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Table 4.4. First desorption equilibrium data of Thi-P and Thi-F fitting to Linear, Freundlich, 
Langmuir and BET isotherm models; fitting parameters and their respective errors for a 95% 
confidence interval. 
 

 Thi-P Thi-F 

Linear 
Isotherm 

KD = 0.274 ± 0.013 L g-1 

2
AdjR  = 0.974 

KD = 0.263 ± 0.015 L g-1 

2
AdjR  = 0.976 

Freundlich 

Isotherm 

KF = 0.316 ± 0.016 
N = 0.923 ± 0.067 

2
AdjR  = 0.966 

KF = 0.287 ± 0.018 
N = 0.962 ± 0.070 

2
AdjR  = 0.973 

Langmuir 
Isotherm 

Ambiguous fit Ambiguous fit 

BET 
Isotherm 

CS = 4.48 ± 0.31 mg L-1 

Qmax= 0.366 ± 0.162 mg g-1 
K = 7.70 ± 2.91 

2
AdjR  = 0.983 

CS = 5.51 ± 0.63 mg L-1 

Qmax= 0.440 ± 0.258 mg g-1 

K = 5.91 ± 3.06 
2
AdjR  = 0.984 

 

The results obtained point out that the Langmuir model should be discarded and 

indicate the BET equation as the best fitting method for the first desorption cycle. The 

irreversibility of adsorption onto soils and humic acids has been attributed by several 

authors to micropore deformation at high concentration levels due to penetration of 

adsorbate molecules and entrapment when the solution concentration is abruptly decreased 

during desorption (Lu and Pignatello, 2002; Braida et al., 2003; Oren and Chefetz, 2005). 

Hysteresis due to a capillary phase separation mechanism (Miyahara et al., 1994; Dural 

and Chen, 1997) may also occur in humic acid mesopores. 

For comparing the irreversibility of adsorption-desorption for both Thi-P and Thi-F, 

the HI indices at 21ºC and at some equilibrium concentrations were calculated using 

equation (4.7) (Table 4.5). For each Ceq value, the values of Qads and Qdes used in equation 

(4.7) were calculated by application of the isotherm equation which best fitted the 

adsorption and the first desorption data, i.e., the BET equation. 
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Table 4.5. Hysteresis indices (HI) for both Thi-P and Thi-F onto humic acids. 

HI Ceq 
(mg L-1) 

Thi-P Thi-F 

1.0 0.927 0.434 

1.2 0.847 0.415 

1.5 0.781 0.407 

1.8 0.767 0.421 

2.0 0.785 0.441 

2.2 0.824 0.471 

2.5 0.928 0.535 

 
HI values for Thi-P are consistently higher than for Thi-F. Applying the paired t-test 

to the HI data it was concluded that hysteresis was significantly higher for Thi-P than for 

Thi-F (p<0.0001), i.e. desorption of thiram is more facilitated in its formulation form than 

in its pure form. These results suggest that thiram formulation components have an 

influence on the desorption process of thiram from humic acids, turning the pesticide 

more susceptible to be leached. Such conclusion highlights the need for performing 

adsorption-desorption studies into soils using commercial formulations of the pesticides 

and not only the active ingredient. 

 

4.4 Conclusions 

 

The present work assesses the behaviour of pure thiram (Thi-P) and formulated 

thiram (Thi-F) onto commercial humic acids (HA). Experimental KD values suggesting 

that thiram is strongly sorbed by humic acids. Adsorption of thiram onto commercial HA 

was found to conform to BET isotherm, indicating a multilayer adsorption and adsorbate-

adsorbate interactions after the saturation of the surface layer. The comparison of sorption 

and desorption results indicated a hysteresis phenomena. Desorption KD values were 

consistently higher than those for adsorption at the same equilibrium concentration. 

Additionally, hysteresis was lower for the formulated thiram suggesting that adsorption is 

more reversible in the presence of the formulation components turning the pesticide more 

susceptible to be leached. 
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Chapter 5 
 

5 Effect of long term organic amendments on 

adsorption-desorption of thiram onto a luvisol soil 

derived from loess4 
 
 
 
 
 
 
The objective of this work was to assess the influence of soil organic amendments on the 
sorption properties of the fungicide thiram. The organic amendments studied were organic 
household compost (COM), sewage sludge from municipal water treatment facilities 
(SLU) and farmyard manure (FYM), which were compared to mineral fertilizer 
application (MIN). Sorption−desorption experiments were performed using the batch 
method and the results indicated that the adsorption isotherms were non-linear and were 
found to conform to the Brunauer-Emmett-Teller (BET) model, suggesting multilayer 
adsorption and adsorbate-adsorbate interactions after the saturation of the surface layer. In 
general, distribution coefficient values, KD, are dependent on, but not proportional to, the 
initial concentration of thiram. For a fixed thiram initial concentration, a significant 
correlation (r2>0.851; p<0.001) between KD values and the soil organic carbon content 
(OC) was observed. The highest value of KD was observed for the soil amended with 
compost, which is the one with the highest organic carbon content. KD values were 
divided by the soil organic carbon contents in order to obtain organic carbon partition 
coefficients KOC. Comparing KOC means from 3 (initial concentrations) x 4 (soil organic 
matter compositions) x 3 (replicates) factorial ANOVA allow us to conclude that there is a 
significant but not proportional influence of the initial concentration of thiram on those 
values, but changes in the soil organic matter composition, associated to different soil 
amendments, have no significant influence on adsorption of thiram. To evaluate the 
reversibility of thiram adsorption, two consecutive desorption cycles were performed with 
CaCl2 0.01 mol L-1. The desorption KD values were consistently higher (approximately 
twice) than those for adsorption at the same equilibrium concentrations for all soil samples 
supporting the existence of hysteresis in the adsorption-desorption behaviour of thiram. 
Despite the fact that the adsorption KD values were proportionally increased with 
increasing total organic carbon content, this was not the case for the desorption KD values. 
 

 

                                                           
4 Adapted from: Filipe, O.M.S., Vidal, M.M., Duarte, A.C., Scherer, H.W., Schneider, R.J., A.C., Santos, E.B.H., 2010. Effect of long 
term organic amendments on adsorption–desorption of thiram onto a luvisol soil derived from loess. Chemosphere 80, 293-300.  
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5.1 Introduction 

 

Pesticide fate in the environment can be ruled by transformation processes, which 

can include pesticide molecule breakdown by chemical, photochemical or biological 

degradation, or by transfer processes, such as adsorption/desorption, runoff, volatilisation 

and leaching. Among transfer processes, sorption is a key process that extensively 

controls the behaviour of pesticides in soil, determining its distribution between soil and 

water systems (Senesi, 1992; Aboul-Kassim et al., 2001). In a previous work, we have 

reported a strong interaction between thiram and humic acids, suggesting the relevance of 

the soil organic matter on thiram sorption onto soils (Filipe et al., 2009). Other published 

works have reported adsorption studies of thiram onto lignins (Rupp and Zuman, 1992), 

specific adsorbents (e.g., waste resulting from a coal mine, SiO2 particles, actived carbon 

or sepiolite) (Gonzalez-Pradas et al., 1987; Misirli at al., 2004; Stathi et al., 2006) and 

soils (Valverde-Garcia et al., 1988). However, so far, and to the best of our knowledge, 

there are no studies reported in the literature about the effects of organic amendments on 

thiram sorption onto soil. The application of organic wastes, such as municipal solid waste 

compost, sewage sludge, and farmyard manure, to agricultural soils is a common practice 

nowadays, being an economically attractive solution to waste disposal, with benefits in 

terms of improvement of soil properties and fertility (Tejada et al. 2007). However, if it is 

true that organic amendments improve soil fertility by enhancing organic matter levels, 

maintaining soil health, nutrition, fertility and crop productivity, it is also true that some of 

the amendments, such as sewage sludge, are prone to introduce several potentially toxic 

metals and organic contaminants in soils. Recently, an increasing interest has been 

focused on the effects of these organic amendments on pesticides behaviour in soils 

(Briceño et al., 2007) and it has been demonstrated that organic amendments can 

significantly change pesticide sorption behaviour onto the soil (Dolaptsoglou et al., 2007; 

El-Aswad, 2007; Ghosh et al., 2009; Majumdar et al., 2007). 

In the present work, we investigate the influence of different organic amendments on 

the adsorption of thiram onto a luvisol soil derived from loess when compared to mineral 

fertilizer. The studied organic amendments were municipal solid waste compost, sewage 

sludge from municipal water treatment facilities and farmyard manure.   
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5.2 Experimental  

 
5.2.1 Chemicals 

All chemicals were of analytical grade. Thiram (pure substance, 97%) was 

purchased from Aldrich, methanol and acetonitrile (HPLC grade) were obtained from 

Riedel-de Haen and LabScan, respectively. An aqueous 0.01 mol L-1 CaCl2 solution was 

prepared from anhydrous CaCl2 (Fluka, p.a.). Ultra pure water for aqueous solutions was 

obtained with a Milli-Q water purification system (Millipore). 

Standard stock solutions of thiram (~35 mg L-1) were prepared by previous 

dissolution of the solid in acetonitrile, followed by dilution with 0.01 mol L-1 CaCl2 

aqueous solution (percentage of acetonitrile in the final solution was always lower than 

1%). Further dilutions were made in 0.01 mol L-1 CaCl2. The stock solution and the 

diluted ones were prepared just before application to soil samples. A stock solution of 100 

mg L-1 thiram in acetonitrile was used to prepare more diluted standard aqueous solutions 

of thiram for the HPLC-UV method calibration.  

 

5.2.2 Soils 

Soils used in this study were collected on an agricultural field systematically 

submitted to controlled fertilization since 1962 (Scherer et al., 2002). It is a luvisol soil 

derived from loess (17.8 % clay, 76.3 % silt, 5.9 % sand) that has followed a cereal-root 

crop sequence. The field was divided in to plots which were treated with different organic 

amendments and with a regular mineral fertilizer (MIN), this one acting as the control 

fertilization. The organic fertilizers were: organic household compost (COM, 58 t ha-1), 

sewage sludge from municipal water treatment facilities (SLU, 14.9 t ha-1) and farmyard 

manure (FYM, 9 t ha-1). These amounts, given on a dry weight basis, were applied every 

second year until 1997, then the amounts were changed to 90 t ha-1 for COM and 10 t ha-1 

for SLU once in 3 years. The amendments were distributed in a completely randomized 

block design. A total of 12 samples were collected for the present work, corresponding to 

3 replicates (3 different plots) for each of the four soil amendment treatments. Soil 

samples were taken from the topsoil layer (0-30 cm) of each plot. They were air-dried, 

ground, passed through a 2 mm mesh size sieve, and stored in plastic containers until 

further use.  
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Some properties of the soils were determined by Lima et al. (2009). The total 

organic carbon contents (TOC) are 2.8, 2.0, 1.5 and 1.2 % for COM, SLU, FYM and MIN 

soils, respectively. 

 

5.2.3 Kinetic Study 

Aliquots of 6 mL of approximately 20 mg L-1 Thi solution in 0.01 mol L-1 CaCl2 

were added to 1.2 g of soil in the pyrex centrifuge tubes and shaken at 100 rpm, during 0, 

1, 3, 5, 8, 10, 12, 15, 20 and 24 h. For each equilibration time, duplicate assays were 

conducted and processed as described for the adsorption studies. 

 

5.2.4 Batch adsorption/desorption studies 

Batch adsorption studies were performed using a soil:solution ratio of 1:5, according 

to OECD guideline (OECD, 2000). Portions of 1.2 g of soil were taken into 10 mL Pyrex 

centrifuge tubes and mixed with 6 mL of a thiram solution prepared in 0.01 M CaCl2. The 

concentration of thiram used was in the range 3-35 mg L-1. The centrifuge tubes were 

shaken on an end-over-end shaker (Heidolph Reax) at 100 rpm, during 15 h at 21 ± 1 ºC 

to achieve equilibrium. Next, the suspensions were centrifuged at 4000 rpm for 30 min 

and the supernatant was filtered by 0.22 µm filters (Millex-GV, PVDF membrane) and 

cleaned-up using a SPE procedure described in Chapter 3 (section 3.3.3). The thiram 

concentration in the supernatant was then determined by HPLC-UV, with detection at 270 

nm following a procedure described in Chapter 3 (section 3.3.4). For each batch 

experiment, a blank (without thiram) and a control sample (only thiram, without soil) have 

been performed.   

Desorption studies were performed immediately after adsorption equilibrium. After 

the adsorption period and centrifugation of the aqueous suspensions, the supernatant was 

decanted; the residual supernatant that could not be removed was determined by 

gravimetry. Thiram concentration in this residual solution was considered to be the same 

as that measured in the bulk supernatant. Three sets of desorption experiments were done: 

(i) for the soil samples equilibrated with the initial concentration of thiram of 22 mg 

L-1 a 6 mL portion of fresh 0.01 mol L-1 CaCl2 solution (without thiram) was added to the 

centrifuge tubes; the tubes were shaken for another 15 h, centrifuged at 4000 rpm for 30 

min and the supernatants were collected and submitted to the same clean-up and analysis 
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procedure as described in the adsorption experiment; the CaCl2 desorption cycle was 

repeated once more followed by two desorption cycles using 5 mL of methanol (4 h) and 

5 mL of acetonitrile (48 h); (ii) for the soil samples equilibrated during 15 h with the 

initial concentration of thiram of 22 mg L-1, a desorption cycle with 5 mL of acetonitrile 

(24 h) was performed; (iii) for both COMoriginal and COMextracted soil samples a CaCl2 

desorption cycle was performed, for all range of thiram initial concentrations, adding 6 ml  

of fresh 0.01 mol L-1 CaCl2 to the centrifuge tubes; the tubes were shaken for another 15 h, 

centrifuged at 4000 rpm for 30 min and the supernatants were collected and submitted to 

the clean-up procedure as described previously. After the desorption period, the organic 

extracts were immediately centrifuged, filtered and analysed by HPLC-UV without any 

previous clean-up procedure. All experiments were done at 21 ± 1 ºC.   

 

5.2.5 EDTA extraction of copper ions from COM soil  

Approximately 10 g of COM soil sample was equilibrated with 70 mL of a 0.05 mol 

L-1 EDTA during 24 h at room temperature. Soil-EDTA suspension was centrifuged and 

filtered. The residue was washed with deionised water to remove the EDTA solution and 

centrifuged; the supernatant was discarded and soil residue dried during 24 h at 40ºC. The 

soils was grounded and stored in a desiccator prior to use. The extracts were kept at 4ºC 

until copper content measurement by flame atomic absorption spectrophotometry. Total Cu 

content in the original COM soil sample (COMoriginal) was 39 mg kg-1 and about 58% of the 

copper content was removed by EDTA extraction (COMextracted). 

 

5.2.6 Calculation of thiram distribution between aqueous phase and soil 

The amount of thiram adsorbed by unit mass of soil during the equilibration time (Q; 

µg g-1) was calculated from the difference between initial aqueous phase concentration 

(C0; mg L-1) and the thiram equilibrium concentration after adsorption (Ceq; mg L-1), 

1000
)( 00

×
×−

=
soil

eq

m

VCC
Q                     (5.1)  

where V0 is the initial volume (L) of the aqueous phase in contact with soil during the 

adsorption experiments and  msoil (g) is the soil mass used in each essay. C0 was obtained 

from the control sample. 
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The distribution coefficient (KD; mL g-1) was calculated as the ratio of the adsorbed 

concentration of thiram onto soil and its equilibrium concentration in solution, 

eq

D
C

Q
K =                (5.2) 

The distribution coefficients KD are often reported as normalised to the content of 

organic carbon (%OC), and represented as organic carbon partition coefficients KOC  

100
%

×=
OC

K
K D

OC       (5.3) 

The amount of thiram desorbed (mdes; mg) after each desorption cycle was calculated 

using the following equation:  

( )( )
rr

Des

eqdes mVVCm −+×= 0        (5.4) 

where, Des

eqC (mg L-1) is the thiram equilibrium concentration in solution after desorption, 

and mr (mg) is the amount of thiram in the residual solution after the adsorption 

experiment, calculated from reqr VCm ×= , where Vr (L) is the residual volume of the 

supernatant that could not be removed prior to desorption and which was gravimetrically 

determined. 

The percentage of thiram desorbed from soil was calculated according to the 

equation  

100% ×=
ads

des

m

m
Des       (5.5) 

where mads is the mass of thiram adsorbed onto soil during the adsorption experiment.  

 

5.2.7 Models for the adsorption isotherms 

The adsorption data were fitted to the Freundlich and Brunauer-Emmett-Teller 

(BET) isotherms as described in Chapter 3, section 3.2. 

 

5.2.8 Statistical analysis  

The experimental adsorption data were fitted to Freundlich and BET isotherms using 

the non-linear regression analysis from the program GraphPadPrism5® (Trial version; 

http://www.graphpad.com; last accessed on November 20th 2012). R
2 adjusted ( 2

AdjR ), 

which takes into account the degrees of freedom of each model, was used to assess the 
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suitability of the fitting process and is well described in Chapter 3. Linear regression 

analysis, relating KD or KF values with soil organic carbon contents, was performed using 

also GraphPadPrism5® software. The value of the square of correlation coefficient (r2) is 

presented in each case, as well as the level of significance of the correlation which is 

indicated by the p value. The two-way analysis of variance (ANOVA), applied to the KD 

and KOC values for adsorption, and the total desorption percentages, were performed using 

the SPSS software package, Version 15. To identify where differences between each 

factor lie, the Least Significant Difference (LSD) was calculated through the application 

of equation: 

Pn

RMS
tLSD df

×

×
=

2
)05.0(       (5.6) 

where RMS is the residual mean square, n is the number of replicates, P is the number of 

levels of each factor and tdf(0.05) is the t-Student value for df degrees of freedom of the 

residual mean square. Unpaired and paired-t tests were also performed using 

GraphPadPrism5® software. 

 

5.3 Results and discussion  

 
5.3.1 Kinetic studies 

Figure 5.1 shows the adsorption percentages of thiram ~20 mg L-1 onto COM soil 

for different equilibration times.   
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Figure 5.1 – Percentage of thiram adsorbed of onto COM soil as a function of the contact time. C0 
= 20.4 (± 1.0) mg L-1. 
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According to these results, thiram is quickly adsorbed during the first hour (about 

65% of the equilibrium concentration is reached within this contact time). An 

equilibration time of 15 h was chosen for determination of adsorption isotherms because 

the change of adsorption percentage between 15 and 24 h of equilibration was less than 

5% (difference not significant, p=0.10). 

 

5.3.2 Adsorption studies 

Thiram adsorption isotherms onto luvisol soil samples submitted to different types 

of fertilization are shown in Figure 5.2.  
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Figure 5.2 – Thiram adsorption isotherms onto a luvisol soil submitted to different controlled 
amendments: experimental data (open symbols) and line (------) corresponding to the fitted BET 
model. Desorption data are represented by black symbols.  

 

These experimental isotherms exhibit an initial concave shape followed by an 

inflexion point after which they become convex, approaching an asymptotic value. This 
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shape is typical of a BET isotherm (Ebadi et al. 2009), which assumes multilayer 

adsorption. Then, the BET isotherm was fitted to the data and compared to the fitting by 

the Freundlich isotherm, which is much more frequently used to fit experimental data for 

the adsorption of pesticides onto soils. Besides, the Freundlich isotherm has also been 

used by Valverde-Garcia et al. (1988) to fit adsorption data for thiram onto eight 

Mediterranean soils typical of Almeria (East-Andalucía, Spain). Parameters for each 

isotherm equation were determined by non-linear curve fitting of adsorption data for every 

soil (Table 5.1).  

 

Table 5.1. Fitting parameters for thiram adsorption equilibrium data to Freundlich and BET 
isotherms and respective errors within a 95% confidence interval. 
 

Soil 
Freundlich 

Isotherm 
BET Isotherm 

COM 

KF = 10.5 ± 1.0 
N = 0.67 ± 0.04 

2
AdjR = 0.951 

CS = 29.7 ± 1.2 mg L-1 

Qmax= 32.6 ± 10.6 µg g-1 

K = 23.9 ± 6.1 
2
AdjR = 0.955 

SLU 

KF = 4.94 ± 1.25 
N = 0.85 ± 0.10 

2
AdjR   = 0.871 

CS = 25.7 ± 0.33 mg L-1 
Qmax= 18.9 ± 4.9 µg g-1 

K = 37.2 ± 7.2 
2
AdjR   = 0.989 

FYM 

KF = 4.90 ± 0.84 
N = 0.83 ± 0.07 

2
AdjR  = 0.928 

CS = 29.6 ± 0.6 mg L-1 
Qmax= 21.2 ± 4.8 µg g-1 

K = 23.1 ± 4.1 
2
AdjR  = 0.990 

MIN 

KF = 1.25 ± 0.41 
N = 1.34 ± 0.13 

2
AdjR   = 0.855 

CS = 24.2 ± 0.5 mg L-1 
Qmax= 15.9 ± 9.0 µg g-1 

K = 18.3 ± 8.0 
2
AdjR   = 0.946 

 
Analysis of values presented in Table 5.1, particularly 2

AdjR values, suggests BET 

model to best fit the experimental adsorption data for soil samples (see Figure 5.2). This 

isotherm shape has also been found by Sánchez et al. (2003) for the adsorption of an 

organophosphorus insecticide, methiathion, onto sewage sludge and it implies the 

occurrence of multilayer adsorption and adsorbate-adsorbate interactions after the 

saturation of the surface layer. The same type of adsorption isotherm was also observed in 

a previous study of thiram adsorption onto humic acids (Filipe et al., 2009). Gonzalez-
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Pradas et al. (1987) did also observe a similar isotherm for the adsorption of thiram onto 

activated carbon, with an asymptotic increase after a plateau, indicating multilayer 

adsorption. Since Valverde-Garcia et al. (1988) fitted their experimental adsorption data 

of thiram onto Almeria soils using the linearised Freundlich equation, as an example, we 

showed in Figure 5.3 the experimental adsorption data of thiram onto FYM soil fitted to 

both BET and Freundlich model (Figure 5.3a and 5.3b).  
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Figure 5.3 – Experimental adsorption data of thiram onto FYM soil fitted to both BET (a) and 
Freundlich model (b) and (c).Ceq range: a) and b) 0 to 21 mg L-1; c) 0 to 12 mg L-1. 

 

It seems clearly that, for the thiram equilibrium concentration range studied (0.3 - 21 

mg L-1) the BET isotherm is the best model to describe adsorption of thiram onto studied 

soils instead of the usual Freundlich isotherm used by Valverde-Garcia et al. (1988). 

However, the data obtained by these authors correspond to equilibrium concentrations 

lower than 12 mg L-1, while our data go up to an equilibrium concentration of 21 mg L-1. 

Removing our data for equilibrium concentrations higher than 12 mg L-1, a better fitting of 

the Freundlich equation is obtained (Figure 5.3c) showing that this isotherm fits well the 
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data for low equilibrium concentrations. The asymptotic increase of adsorbed thiram for 

concentrations higher than 12 mg L-1, which suggests the occurrence of multilayer 

adsorption, can be fitted only by the BET model which assumes two types of interactions 

responsible for the adsorption: interactions with soil adsorption sites, followed by 

adsorbate-adsorbate interactions after saturation of the adsorbent surface layer. The KF 

values obtained by Valverde-Garcia et al. (1988) for thiram adsorption onto Almeria soils 

were in the range 4.8 – 13.7 and were correlated with the organic matter content. Fitting 

the Freundlich equation to our experimental data in the same range of thiram equilibrium 

concentration, i.e., discarding the data corresponding to Ceq > 12 mg L-1, the KF values 

obtained (7.3- 13.7) are in the same range as those obtained by Valverde-Garcia et al. 

(1988). Besides, a significant correlation (r2 = 0.946; p = 0.0274) between these KF values 

and the organic carbon content of the soil samples was obtained:  

KF = 3.92(±0.66) × OC + 3.2(±1.3) 

However, the above mentioned values of KF are lower than 108, which is the value 

reported in FOOTPRINT pesticide database (Information available at http:/www.eu-

footprint.org; last access March 30, 2010). That can be due to the fact that KF values 

depend on the soil properties and on the experimental conditions, namely, on the 

soil:solution ratio used in the adsorption studies (Cox et al., 1998). Considering the 

experimental data fitting to BET model, it is worth to notice that the saturation 

concentration for adsorbate in solution, i.e., the Cs average value obtained (27.3 ± 2.8 mg 

L-1) is not far from those reported in the literature: 30 mg L-1 at 25 ºC in EXTOXNET data 

base (information available at http://extoxnet.orst.edu/pips/thiram.htm; last accessed on  

20th November 2012) and 16.5 mg L-1 at 20 ºC in FOOTPRINT data base (Information 

available at http:/www.eu-footprint.org; last accessed on 20th November 2012). Slight 

differences between our results and those from literature can occur due to differences in 

the solution matrix, such as the content of some organic matter solubilised from the soil. 

According to Ebati et al. (2009) CS is the reverse of KL and does not correspond to the 

adsorbate solubility. The authors have fitted the BET equation to the adsorption data of 

several organic compounds from aqueous solution onto different types of adsorbent such 

as activated carbon, or perfluorooctyl aluminas and carbonized bark, and they have shown 

that the values of CS obtained were quite different from the solubility data published in the 

literature. That difference was particularly high for the most soluble compounds, being the 



Effect of long term organic amendments on adsorption-desorption of thiram onto a luvisol 

soil derived from loess 

 

98 

equilibrium concentrations of the experimental data used to fit the BET equation much 

lower than the solubility of those compounds. Thiram is much less soluble than those 

compounds (phenol and methyl tert-butyl ether) and, in the present work, the upper limit 

of the range of equilibrium concentrations used approaches thiram solubility. That may be 

the reason why such a big difference between CS and the solubility values for thiram 

reported in the literature was not observed.  

In what concerns Qmax values, which correspond to the saturation of the first 

adsorption layer, it is not possible to establish any significant correlation between those 

values and organic carbon content due to the errors associated to the fitting and their 

propagation during calculations. The uncertainties associated to the values of Qmax are 

high and probably mask the effects of fertilizations. Thus, we decided to compare the 

values of KD and KOC. Plots (Figure 5.4) of KD and KOC values obtained for each soil 

versus thiram initial concentration (for all the range of initial concentrations used) show 

that those values decrease as the initial concentration of thiram increases up to 12-15 mg 

L-1 (equilibrium concentration 6-9 mg L-1), remaining approximately constant for higher 

concentrations.  
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Figure 5.4 - Plots of (a) KD and (b) KOC values obtained for each soil versus thiram initial 
concentration 

 

Values of KD and KOC for three different levels of the initial thiram concentration are 

shown in Table 5.2. For each of the concentration levels a significant correlation 

(r2>0.815; p<0.001) between KD values and the soil organic carbon content was observed. 

Both KD and KF are a measure of the extent of adsorption and it is worth to notice that this 

trend observed for KD values is similar to the one above mentioned for the KF values. 
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Comparing the calculated KOC means from the 3 (initial concentrations) x 4 (soil organic 

matter compositions) x 3 (replicates) factorial ANOVA allow us to conclude that there is a 

significant, but not proportional, influence of the initial thiram concentration (in 

agreement with the above mentioned trend observed in the plots of KOC versus thiram 

concentration), but KOC values are not influenced by the organic amendments applied to 

the soils. It is worth to notice that KOC values are KD values normalized to the soil OC 

content, thus it is expected that they do not change with soil OC content. Any changes of 

KOC values between soils submitted to different amendments, if they existed, should be 

attributed to different characteristics of soil organic matter and not to its quantity. 

ANOVA shows that KOC values do not change with soil amendment, thus, the 

characteristics of soil organic matter, which have been shown to change with soil 

amendment (Lima et al., 2009), do not have a significant influence on thiram adsorption. 

However, as above shown, the concentration of organic matter has a significant influence 

on thiram adsorption, which increases with soil OC content. That effect of the soil organic 

carbon content is in agreement with results reported for the adsorption of other pesticides 

onto soil (Krishna et al., 2008; Shareef et al., 2008). 

 
Table 5.2. Distribution coefficients (KD) and organic carbon normalized distribution coefficients 
(KOC) of thiram adsorption onto COM, SLU, FYM and MIN soils obtained at three initial 
concentration levels. 
 

KD (mL g-1) KOC (mL g-1 of OC) 
C0 

(mg L-1) 
MIN FYM SLU COM 

Overall 

mean 
MIN FYM SLU COM 

Overall 

mean 

3.69 ±±±± 0.05 

4.12 
2.82 
9.15 

8.25 
7.87 
7.22 

10.7 
6.19 
10.1 

19.5 
21.2 
16.2 

10.28 
333 
228 
739 

560 
534 
490 

541 
312 
510 

704 
764 
584 

525 

14.8 ±±±± 0.20 

2.16 
1.97 
2.54 

2.93 
2.89 
2.97 

3.66 
3.02 
3.06 

5.15 
6.14 
4.51 

3.42 
175 
159 
205 

199 
197 
202 

184 
152 
154 

186 
221 
163 

183 

22.2 ±±±± 0.30 

2.62 
2.63 
3.21 

2.94 
3.09 
2.87 

2.84 
2.92 
2.91 

4.75 
4.81 
4.46 

3.34 
212 
212 
259 

200 
210 
195 

143 
147 
147 

171 
173 
161 

186 

Overall 
mean 

3.47 4.56 5.04 9.64  280 310 254 347  

amendment 

Factor 

Significant effect (p<0.001) 
LSD = 1.4 

No significant effect (p=0.190) 

Initial 

conc. 

Factor 

Significant effect (p<0.001 ) 
LSD = 1.2 

Significant effect (p<0.001) 
LSD = 89 
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5.3.3 Desorption studies 

Valverde-Garcia et al. (1988) did not assess the reversibility of the adsorption of 

thiram onto the soils studied. Thus, in the present work, to evaluate the reversibility of 

thiram adsorption, two consecutive desorption cycles were performed with CaCl2 0.01 mol 

L-1 (aqueous desorption) using the second highest initial thiram concentration (ca. 22 mg 

L-1). If the adsorption was completely reversible, the data (Q, Ceq), obtained after 

equilibration of the soil with fresh solution of CaCl2 0.01 mol L-1 should fall on the 

adsorption isotherm curve. Those points are represented in Figure 5.2 (black symbols) and 

show that, for the same concentration of thiram in solution, the concentration of thiram 

adsorbed which is in equilibrium with it is higher for the desorption cycle, indicating the 

occurrence of hysteresis phenomena. In Table 5.3 the KD values obtained for the 1st 

desorption cycle are presented together with the adsorption KD values, calculated for the 

same equilibrium concentration Ceq.  

 
Table 5.3. Experimental KD data for desorption of thiram from soils and calculated adsorption KD 
values for the same thiram equilibrium concentrate 
 

KD  (mL g-1) 
Soil 

Ceq 

(mg L
-1

) 
Adsorption 1st desorption 

Plot 1 
3.36 
3.16 

 
8.22 
8.53 

 
11.3 
13.7 

COM 
Plot 2 

3.23 

3.07 

 
8.42 
8.68 

 
12.1 
14.0 

Plot 1 
2.45 
2.31 

 
6.81 
7.08 

 
13.4 
16.5 

SLU 
Plot 2 

2.45 
2.33 

 
6.81 
7.04 

 
14.2 
15.1 

Plot 1 
3.18 
2.94 

 
5.50 
5.76 

 
9.23 
10.8 

FYM 
Plot 2 

2.78 
2.74 

 
5.94 
5.99 

 
12.6 
11.8 

Plot 1 
3.12 
2.92 

 
4.27 
4.43 

 
6.74 
7.67 

MIN 
Plot 2 

2.97 

2.69 

 
4.39 
4.63 

 
10.0 
12.1 
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For each Ceq value, the value of Q was calculated by application of the BET equation 

(Chapter 3, section 3.2.3, equation 3.7) with the parameters from Table 5.1, followed by 

application of equation 5.2 to obtain KD values for adsorption of thiram onto soils. The 

desorption KD values were consistently higher than those for adsorption at the same 

equilibrium concentrations for all soil amendments. These results confirm the hysteresis 

also shown in Figure 5.2. It is interesting to notice that the KD values for desorption, 

presented in Table 5.3, are not so strongly correlated with soil OC as the KD values for 

adsorption, presented in the same Table. 

Immediately after the aqueous desorption cycle, thiram remaining in the soil was 

desorbed with organic solvents: 4 h in methanol and 48 h in acetonitrile. Figure 5.5a 

shows the total thiram recovery after all desorption cycles, and the recoveries for each 

individual cycle. Another set of experiments were performed in which CH3CN was used 

to desorb thiram from soil immediately after adsorption, and the recovery percentages 

obtained are shown in  Figure 5.5b.  
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Figure 5.5 – Percentage of thiram desorbed (a) in each individual desorption cycle and after all 
desorption cycles and (b) in a unique desorption step with CH3CN. Desorption values represent the 
% of the amount initially adsorbed. [Thi]0 = 22 mg L-1. 

 

Comparing the total recovery means from the 4 (soil amendments) × 2 (desorption 

procedures) × 2 (replicates) factorial ANOVA allow us to conclude that there is a 

significant influence of the soil amendment (p=0.0016) as well as an extremely significant 

influence of the desorption procedure (p<0.001) on thiram recovery. The recovery of 

thiram is higher when the acetonitrile is applied immediately after adsorption. Besides, it 

was observed that when acetonitrile was applied at the end of the sequence of desorption 
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cycles, i.e. 4 days after the adsorption, it presented a yellow colour and a new peak was 

observed in the chromatograms. That peak appears at the same retention time of one peak 

which was previously attributed to a Cu complex formed in thiram-copper solutions 

(Filipe et al, 2008). The yellow colour and the new peak were absent (MIN, FYM, SLU) 

or weak (COM) when acetonitrile was applied immediately after adsorption. These results 

suggest that thiram reacts along time, perhaps with metal ions in soil. In fact, as we can 

see in Table 5.4, thiram recovery from COM soil was significantly lower than those 

obtained from FYM and MIN soils.  

 

Table 5.4. Total thiram recovery obtained from two different desorption procedures. 

Thiram recovery (%) 

Soil 
Sequential 

desorption 

One step 

CH3CN  

desorption 

Overal

l mean 

COM 
55.0 
54.3 

74.9 
73.5 

64.4 

SLU 
56.2 
58.5 

81.8 
84.0 

70.1 

FYM 
65.7 
61.3 

91.2 
87.2 

76.4 

MIN 
75.8 
61.0 

100.5 
85.1 

80.6 

Overall mean 61.0 84.8  

Amendment 

factor 

Significant effect (p=0.016) 
LSD = 6.5 

Desorpotion 

procedure factor 
Significant effect (p<0.001) 

 

The tendency of recoveries is in agreement with the results for total Cu contents of 

these soils, since COM is the soil with the highest copper content (Santos et al., 2010). 

According to FOOTPRINT database, thiram degradation half-life (DT50) in soil is 4,6 

days (in lab conditions at 20ºC). It is possible that, after the 4 days of sequential 

desorption, some thiram has been degraded to dimethyldithiocarbamate anion (DMDTC), 

which forms a complex with copper ions, probably the complex corresponding to the 

above mentioned new peak which occurs in the HPLC chromatograms. In order 

investigate the effect of copper on thiram adsorption and desorption, its transformation 

and its byproducts persistence in soil along time some experiences were performed.  
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5.3.4 Effect of copper ions on hysteresis 

Batch adorption-desorption studies of thiram onto a soil submitted to the EDTA 

extraction (COMextracted) and with the original COM soil were performed. Original COM 

soil has a copper content of 39 mg kg-1 and after EDTA extraction about 58% of the initial 

copper content was removed. Figure 5.6 shows the adsorption-desorption isotherms 

obtained. BET equation (solid line) fits both adsorption and desorption isotherms and the 

corresponding fitting parameters are listed in Table 5.5. 
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Figure 5.6 – Adsorption-desorption isotherms of thiram onto (A) COMoriginal soil and (B) 
COMextracted soil.  
 

Table 5.5. Fitting parameters for thiram adsorption-desorption data to BET isotherm and 
respective errors within a 95% confidence interval 
 

Sample Adsorption Isotherm Desorption Isotherm 

COMoriginal 

CS = 21.2 ± 1.2 mg L-1 
Qmax= 24.1 ± 13.1 µg g-1 

K = 31.1 ± 13.0 
2
AdjR  = 0.981 

CS = 8.93 ± 0.70 mg L-1 
Qmax= 31.5 ± 13.8 µg g-1 

K = 273 ± 88 
2
AdjR = 0.985 

COMextracted 

CS = 20.9 ± 1.2 mg L-1 
Qmax= 20.9 ± 9.9 µg g-1 

K = 17.8 ± 6.63 
2
AdjR = 0.984 

CS = 6.03 ± 0.56 mg L-1 
Qmax= 14.5 ± 16.2 µg g-1 

K = 33.8 ± 28.7 
2
AdjR = 0.930 

 

In general, the adsorption of thiram onto soil with less copper content is slightly 

lower than in the original soil, although statistically there is no significative effect of 

copper ions considering all thiram concentration range (p=0.2911). In Figure 5.7, 
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experimental distribution coefficients (KD; mL g-1) obtained for both adsorption and 1st 

desorption cycle are plotted against thiram initial concentration.  
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Figure 5.7 – Experimental distribution coefficients (KD) data for adsorption and desorption of 
thiram from COMoriginal soil (●) and COMextracted soil (○). 
 

Adsorption KD values are within the range 17.5 – 4.3 mL g-1 for original COM soil 

and 9.7 – 3.8 mL g-1 for extracted COM soil decreasing with the increase of thiram 

concentration in solution. KD values for adsorption of thiram onto original COM soil are 

not significantly different from those for extracted COM soil (p>0.1), however, it is worth 

to notice that for the lowest initial thiram concentration the KD values for original COM 

soil are twice the values for extracted COM soil, showing the strong effect of the presence 

of copper ions on the adsorption of thiram onto soil and how important is the ratio Thi:Cu 

in the adsorption of thiram onto soils, since the influence of the Cu soil content is more 

notorious for the lowest concentration of thiram, where the Cu:Thi ratio is higher.  

In what concerns the desorption of thiram from these soils, KD values (Figure 5.7) 

are within the range 210 – 15 mL g-1 for original COM soil and 25 – 8 mL g-1 for 

extracted COM soil. So, desorption KD values are consistently higher than those for 

adsorption for both original and extracted COM soils, which confirms the hysteresis 

phenomenon also shown by the plots in Figure 5.6. The irreversibility of thiram 

adsorption in the presence of copper ions was also compared calculating the hysteresis 

index (HI). The adsorption-desorption hysteresis was quantified using the Hysteresis 

Index (HI) (Huang et al., 1998a; Huang et al., 1998b), 
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Ceq

Ads

AdsDes

Q

QQ
HI

−
=     (5.7) 

where, Ads
Q and Des

Q refer to the solid phase thiram concentrations (mg g-1) after 

adsorption and after a single desorption cycle experiment, respectively, corresponding to a 

predetermined aqueous solute concentration Ceq. HI values for each soil studied were 

calculated, for the thiram equilibrium concentration range 1.0 – 3.0 mg L-1, using equation 

5.7 and the BET adsorption and desorption parameters listed in Table 5.5, and the results 

are plotted in Figure 5.8.  
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Figure 5.8 – Hysteresis indices (HI) for thiram onto original COM soil (●) and extracted COM soil 
(○). 

 

HI values for thiram in original COM soil are consistently higher (twice) than for 

thiram in extracted COM soil. Applying the paired t-test to the HI data, it was concluded 

that hysteresis was significantly higher in the soil with higher copper content (p<0.0001), 

i.e., desorption of thiram is more hindered in soils with higher copper content. These 

results suggest a decrease of the leachability of the fungicide with the increase of the 

copper content of the soils. 
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5.4 Conclusions 

 

The present work assesses the effect of different soil amendments on the adsorption-

desorption behaviour of thiram in a luvisol soil. Adsorption of thiram onto soil samples 

was found to conform to BET isotherm, indicating a multilayer adsorption and adsorbate-

adsorbate interactions after the saturation of the surface layer. This study revealed that 

organic amendments greatly affect thiram adsorption-desorption processes. The 

magnitude of adsorption, characterized by the KD values, was found to be in the order: 

COM>SLU>FYM>MIN, which is consistent with the organic carbon content of the 

different soils samples. Desorption studies with CaCl2 0.01 mol L-1 revealed the existence 

of an hysteresis phenomenon. Additionally, the comparison of thiram recoveries with 

organic solvents applied immediately after adsorption or after the aqueous desorption 

suggests that thiram reacts in soil along time, what can influence their leachibility and 

persistence in soil. Adsorption-desorption experiments performed with one of the soil 

samples in its original form and after metals extraction with EDTA showed that those 

reactions involve metal cations in soil, most probably copper ions. 
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Chapter 6 
 

6 Influence of soil copper content on the kinetics of 

thiram adsorption and on thiram leachability 

from soils5 
 
 
 
 
This work aimed to assess the influence of soil copper content on the sorption processes of 
thiram, a fungicide widely used in agriculture, most of the times together with copper. Two 
different types of studies were performed: (1) desorption studies of thiram with acetonitrile 
after batch adsorption equilibration, and ageing of the wet soil for a variable period of 
time; (2) kinetic studies of thiram adsorption performed using the soil in its original form 
and after fortification with copper ions. In the desorption studies, with the increase of the 
ageing time, a decrease of the thiram peak and a simultaneous increase of a new peak, 
assigned to a copper complex, were observed in the chromatograms. This new peak 
increases sharply until an ageing period of about 4 d and then this area is maintained 
approximately constant until 18 d, the maximum ageing period studied. These results 
indicate that thiram reacts with copper ions along time giving rise to the formation of 
relatively persistent copper complexes in soil. Desorption studies with CaCl2 0.01 mol L-1 
solution showed that this complex is not extracted. Thus, it is not easily leached to ground 
and surface waters and copper may contribute to thiram immobilization in soil. The kinetic 
studies of thiram adsorption were performed in both soils and for two initial thiram 
concentrations (~7 and 20 mg L-1). For the soil fortified with copper the percentage of 
adsorbed thiram is higher than observed for the original soil at the same initial 
concentrations and equilibration times and 100% of adsorption is attained in 15 h or 48 h, 
depending on the thiram initial concentration. Four kinetic equations, the pseudo first- and 
second-order equations, the Elovich and the intraparticle diffusion equations were selected 
to fit the kinetic data of the adsorption process of thiram onto both original and fortified 
soil. The best model to describe the kinetics of thiram adsorption onto the original soil is 
the intraparticle diffusion model. For the soil fortified with copper ions we verified that for 
the highest initial thiram concentration, the best model is also the intraparticle diffusion 
model, however, for the lower initial thiram concentration the best model is the pseudo 
second-order kinetic equation, suggesting that, for a high Cu:Thi ratio, a chemical reaction 
of thiram with copper ions on the soil surface can occur, and it may be the rate controlling 
step. Since the kinetics of adsorption depends on both soil copper content and the initial 
thiram concentration in solution, i.e. depends on Cu:Thi ratio, it is difficult to choose a 
fixed batch equilibration time for adsorption studies of thiram. 
 

                                                           
5 Adapted from: O. M. S. Filipe, Carina A.E Costa, M. M. Vidal, E. B. H. Santos. 2013. Influence of soil copper content on the kinetics 
of thiram adsorption and on thiram leachability from soils. Chemosphere, 90, 432-440.   
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6.1 Introduction 

 

In a previous work, (Filipe et al., 2009) we have reported a strong interaction 

between thiram and commercial humic acids, suggesting the relevance of the organic 

matter content on thiram sorption onto soils. That effect of soil organic matter on thiram 

sorption and desorption has been confirmed on a later study about the effect of organic 

amendments on thiram sorption onto a luvisol soil (Filipe et al., 2010), but the results 

obtained in this second study suggested that metals ions, namely copper ions, could have 

also a relevant effect on thiram desorption. Although many studies have been published on 

the adsorption of pesticides and heavy metals independently, little attention has been given 

to the phenomena which take place when both are present together. As far as we know, the 

first studies on the possible influence of copper ions on the adsorption and mobility of 

organic pesticides in soils were focused on glyphosate (Morillo et al., 1997, 2000, 2002). 

More recently, some studies about the effect of soil copper ions on other pesticides 

adsorption and degradation have emerged in the literature (Arias et al., 2006; Dousset et 

al., 2007; Liu et al., 2007; Pateiro-Moure et al., 2007). However, to our knowledge, no 

studies have been reported on the effects of heavy metals, namely copper ions, on thiram 

sorption and desorption onto/from soil. Copper ions are very important since several 

copper-based fungicides have been extensively used for more than 100 years and many 

thousands of tons are consumed annually all over the world to prevent plant diseases 

(Borkow and Gabbay, 2005). Besides, the supply of organic amendments, namely sewage 

sludge and municipal waste compost to agricultural land, which is an usual and 

economically attractive practice nowadays, can represent an important source of 

contamination with this metal (Santos et al., 2010). Thus, in the present work, a systematic 

study of the influence of copper ions on the adsorption and desorption of thiram from soil 

was performed in order to clarify the occurrence of reactions with copper ions which can 

affect the persistence and mobility of thiram. 

 

6.2 Kinetic equations 

 

Thiram adsorption kinetics onto soils was analysed using pseudo first-order, pseudo 

second-order, Elovich and intraparticle diffusion equations. 
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6.2.1 The pseudo first-order equation (Lagergren’s equation) 

The Lagergren’s equation was the first kinetic equation presented to describe the 

adsorption in solid–liquid systems based on the sorption capacity of solids and is used 

when the rate of occupation of binding sites is proportional to the number of unoccupied 

sites on the sorbent (Ho, 2004; Lagergren, 1898). It is assumed that one molecule of 

adsorbate is adsorbed onto one sorption site on the adsorbent surface and is generally 

expressed as follows 

)(1 te
t QQk

dt

dQ
−=                 (6.1) 

where, Qe and Qt are the sorption capacities at equilibrium and at time t, respectively (µg g-

1) and k1 is the rate constant of pseudo-first order sorption (h-1). After integration and 

applying boundary conditions t = 0 to t = t and Qt = 0 to Qt = Qt, the integrated form of 

equation 6.1 becomes: 

)1( 1tk
et eQQ

−−=                (6.2) 

 

6.2.2 The pseudo second-order equation 

The most commonly applied form of the pseudo second-order equation is expressed 

as (Ho and MacKay, 2000, Ho, 2006): 

2
2 )( te

t QQk
dt

dQ
−=                   (6.3) 

where k2 is the rate constant of pseudo second-order adsorption (g µg-1 min-1). For the 

boundary conditions t = 0 to t = t and Qt = 0 to Qt = Qt, the integrated form of equation 6.3 

becomes: 

tQk

tkQ
Q

e

e
t

2

2
2

1+
=                                 (6.4) 

 

6.2.3 The Elovich equation 

The base of this equation is that a continuous and specific range of site reactivities 

are hypothesized. So, no physicochemical model is associated to the Elovich equation, i.e. 

it is an empiric equation as is generally expressed as: 

)( tBQt Ae
dt

dQ −=                                     (6.5) 
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where A is the initial adsorption rate (µg g-1 min-1) and, B is the desorption constant  

(g µg-1) during any one experiment. Given that Qt = Qt at t = t and Qt = 0 at t = 0, the 

integrated form of equation 6.5 is  

00 ln
1

)ln(
1

t
B

tt
B

Qt 







−−








=                         (6.6) 

where 
AB

t
1

0 = . 

 

6.2.4 The intraparticle diffusion model 

The intraparticle diffusion model is originated from Fick’s second law and is 

expressed as  

CtkQ it += 2
1

                                  (6.7) 

where ki is the intraparticle diffusion rate constant (µg (g h)-1/2) that can be obtained for the 

slope of the plot Qt vs. t1/2 and C is a constant (µg g-1). 

According to the literature (Mezenner and Bensmaili, 2009; Wu et al., 2009) if 

intraparticle diffusion is involved in the adsorption process the plot Qt vs. t
1/2 results in a 

straight line whose slope is the intraparticle diffusion rate constant ki. However three 

situations can occur: (i) the straight line pass through the origin, indicating that 

intraparticle diffusion is the rate controlling step; (ii) multi-linearity in the Qt vs. t1/2 plot 

indicating that adsorption occurs in various steps, i.e. instantaneous adsorption occurs in 

the first step, due to external surface adsorption; the second step is the gradual adsorption 

where intraparticle is controlled and the third step is the final equilibrium where the solute 

moves slowly causing a slow adsorption rate; and (iii) the straight line don’t pass through 

the origin, i.e. there is a intercept (C), indicating that the intraparticle diffusion is not the 

only rate-limiting step, i.e., the process is very complex with more than one mechanism 

limiting the rate of adsorption.  

 

6.3 Experimental 

 

6.3.1 Chemicals 

All chemicals were of analytical grade. Thiram (pure substance, 97%) was purchased 

from Aldrich; HNO3 (65%) was obtained from Riedel-de Haen; methanol and acetonitrile 
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(HPLC grade) were obtained from Riedel-de Haen and LabScan, respectively. An aqueous 

0.01 mol L-1 CaCl2 solution was prepared from anhydrous CaCl2 (Fluka, p.a.). Ultra pure 

water for aqueous solutions was obtained with a Milli-Q water purification system 

(Millipore). Standard solutions of thiram were prepared by previous dissolution of the solid 

in acetonitrile, followed by dilution with 0.01 mol L-1 CaCl2 aqueous solution (percentage 

of acetonitrile in the final solution was always lower than 1%). Thiram solutions were 

prepared just before application to soil samples. A stock solution of 100 mg L-1 thiram in 

acetonitrile was used to prepare more diluted standard aqueous solutions of thiram for the 

HPLC-UV method calibration. Cu, Zn, Pb, Cd and Cr atomic spectroscopy standards 1000 

mg L-1 were from BDH Chemicals, Lta. 

 

6.3.2 Soil 

Soil used in this study was kindly supplied by Professor Scherer of the Institute of 

Agricultural Chemistry, University of Bonn and was collected on an agricultural field 

systematically submitted to controlled fertilization since 1962 (Scherer et al., 2002). It is a 

luvisol soil derived from loess (17.8 % clay, 76.3 % silt, 5.9 % sand) that follows a cereal-

root crop sequence. The field was divided into plots which were treated with different 

organic amendments and with a regular mineral fertilizer. The fertilizer was distributed in a 

completely randomized block design. For this study we selected two different and aleatory 

soil plots that were treated with 58 t ha-1 of compost from organic household waste 

(designated as COM soil). Soil samples (1000 g) were taken from the topsoil layer (0-30 

cm) of each plot. They were air-dried, ground, sieved through a 2 mm mesh size, and 

stored in a plastic container until further use. Some characteristics of COM soil are pH = 

7.1, TOC = 2.8 %, OM = 5.4 %, [Cu]total = 39 mg Kg-1, [Pb]total = 100 mg Kg-1; [Zn]total = 

177 mg Kg-1 (Santos et al, 2010), [Cr]total = 35 mg Kg-1, [Ni]total = 23 mg Kg-1 (Costa, 

2009). 

 

6.3.3 Batch adsorption-desorption studies of thiram  

Although three different sets of adsorption–desorption experiments were performed 

(Experiment 1, Experiment 2 and Experiment 3), the general conditions for all of them 

follow a procedure described previously (Filipe et al., 2010). Briefly, 1.2 g of soil was 

mixed with 6 mL of a 0.01 M CaCl2 solution with a known initial thiram concentration in a 
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Pyrex centrifuge tube. For each batch experiment, a blank (without thiram) and a control 

sample (only thiram, without soil) have been performed. The centrifuge tubes were shaken 

on an end-over-end shaker at 100 rpm. Next, suspensions were centrifuged at 4000 rpm for 

30 min and the supernatant was filtered by a syringe filter unity (0.2 mm, Millex-GV) and 

cleaned up using an SPE procedure described in Chapter 3 (section 3.3.3). The thiram 

concentration in the supernatant was then determined by HPLC-UV, with detection at 270 

nm following a procedure described in Chapter 3 (section 3.3.4). The residual supernatant 

that could not be removed was determined by gravimetry and thiram concentration in this 

residual solution was considered to be the same as that measured in the bulk supernatant. 

Thiram was desorbed from the residual wet soil with 5 mL of acetonitrile and shaking 

during 24 h. After the desorption cycle the extracts were centrifuged at 4000 rpm for 30 

min, filtered by a syringe filter unit (0.2 mm, Millex-GV) and submitted to thiram analysis 

by HPLC–UV (Filipe et al., 2008). All experiments were done at 21 ± 1 ºC. Experiments 

using 6 mL of CaCl2 0.01 M for desorption of thiram were also performed. The procedure 

was the same but the aqueous extract was previously cleaned up, as previously described,   

before analysis by HPLC–UV.  

The specific conditions for the different sets of experiments are as follows; 

Experiment 1: batch adsorption equilibration for 15 h, with a single initial thiram 

concentration (20.0 mg L-1), followed by an ageing period of 0, 1, 2, 3, 4, 8 and 18 days 

before desorption; Experiment 2: batch adsorption equilibration for different time periods 

with two initial thiram concentrations (6.83 and 18.6 mg L-1), followed by immediate 

desorption; Experiment 3: batch adsorption equilibration during 4, 15 and 48 h with 

thiram concentrations in the range 3-25 mg L-1, followed by immediate desorption. 

 

6.3.4 Study of adsorption kinetics 

Aliquots of 6 mL of approximately 7 or 20 mg L-1 Thi solution in 0.01 mol L-1 CaCl2 

were added to 1.2 g of COM soil and COM soil after fortification with copper (described 

in section 6.3.5) in the Pyrex centrifuge tubes and shaken at 100 rpm, during 0, 1, 3, 5, 8, 

10, 12, 15, 20, 24 and 48 h. For each equilibration time, duplicate assays and a control 

sample (only thiram) were conducted and processed. The centrifuge tubes were shaken on 

an end-over-end shaker at 100 rpm. Next, suspensions were centrifuged at 4000 rpm for 30 

min and the supernatant was filtered by a syring filter unit (0.2 µm, Millex-GV) and 
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cleaned up using an SPE procedure described in Chapter 3 (section 3.3.3) and elsewhere 

(Filipe et al., 2010). The thiram concentration in the supernatant was determined by HPLC-

UV with detection at 270 nm as also described in Chapter 3 (section 3.3.4) and elsewhere 

(Filipe et al., 2008).   

 

6.3.5 Adsorption of copper ions onto soil  

Each soil plot sample (10 g) was equilibrated with 100 mL of a 50 mg L-1 or 4 mg L-1 

Cu(NO3)2.5H2O on an end-over-end shaker at 60 rpm, during 24 h at room temperature. 

The suspensions were centrifuged during 8 min at 6500 rpm and were filtered by 0.45 µm 

membrane filters (Millipore), in order to measure copper content by flame atomic 

adsorption spectrophotometry (FAAS). The amount of Cu adsorbed in the soil was 

calculated as the difference between that initially added and that remaining in solution after 

equilibration. The residue was washed and stirred during 5 min with deionised water to 

remove any excess of copper solution, and, after separation by centrifugation during 10 

min at 6500 rpm, the soil was dried during 12 h at 40 ºC. The soil samples were grounded 

and stored in a desiccator for at least 1 month prior to use in thiram adsorption studies. The 

soil copper content is an estimative based on the original copper content of COM soil (39 

mg kg-1) plus the quantity of copper adsorbed. Thus, the soil plots treated with copper are 

referred here as COM_Cu500 or COM_Cu80, depending on the copper concentration in soil, 

500 mg kg-1 and 80 mg kg-1 respectively. A control sample, without soil, was also 

performed.  

 

6.3.6 Analysis of metal ions in the soil organic extracts 

All measurements were performed by flame atomic absorption spectroscopy (FAAS), 

using a Perkin–Elmer AAnalyst 100 absorption spectrophotometer with an air–acetylene 

flame. Detection of Cu, Zn, Pb, Cd and Cr was made at 324.8, 213.9, 283.3, 228.8 and 

357.9 nm, respectively. The relative standard deviations of all measured absorbances were 

always below 5% (n = 5). Calibrations were performed using mixed standard calibration 

solutions of Cu and Zn, Cr and Cd, and Pb, which were prepared by dilution of commercial 

standard solutions, for atomic spectroscopy, in nitric acid 0.4%. The acetonitrile of the 

organic extracts from soil was evaporated and the residue was redissolved in 0.4% HNO3 

solution. 
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6.3.7 Calculation of thiram distribution between aqueous phase and soil 

The amount of thiram adsorbed by unit mass of soil during the equilibration time (Q; 

µg.g-1) was calculated from the difference between initial aqueous phase concentration 

(C0; mg L-1) and the thiram equilibrium concentration after adsorption ( eqC ; mg.L-1), 

1000
)( 00

×
×−

=
soil

eq

m

VCC
Q                 (6.8) 

where V0 is the initial volume (L) of the aqueous phase in contact with soil during the 

adsorption experiments and msoil (g) is the soil mass used in each assay. C0 was obtained 

from the control sample. 

The percentage of thiram adsorbed onto soil was calculated according to the 

equation  
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%
0

0
×

−
=

C

CC
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eq              (6.9) 

The amount of thiram desorbed (mdes; mg) was calculated using the following 

equation:  

( )( )
rr

Des

eqdes mVVCm −+×= 0       (6.10) 

where, Des

eqC  (mg.L-1) is the thiram equilibrium concentration in solution after desorption, 

and mr (mg) is the amount of thiram in the residual solution after the adsorption 

experiment, calculated as reqr VCm ×= , where Vr is the residual volume of the supernatant 

that could not be removed prior to desorption and which was gravimetrically determined. 

The percentage of thiram desorbed from soil was calculated according to the 

equation  

100% ×=
ads

des

m

m
Des       (6.11) 

where mads is the mass of thiram adsorbed onto soil during the adsorption experiment.  

 

6.3.8 Models for the adsorption isotherms 

The adsorption data were fitted to the Langmuir and Brunauer-Emmett-Teller (BET) 

isotherms as described in Chapter 3, section 3.2. 
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6.3.9 Statistical analysis 

Experimental kinetic adsorption data were fitted to the equation models by non-

linear regression analysis using the program GraphPadPrism5® (Trial version; 

http://www.graphpad.com; last accessed on 20th November 2012), except for the 

intraparticle diffusion model to which the experimental data were fitted by linear 

regression analysis. R
2 adjusted ( 2

AdjR ), which takes into account the residual degrees of 

freedom of each model, was used to assess the suitability of the fitting process and is well 

defined in Chapter 3 (section 3.3.5). The two-way analysis of variance (ANOVA) was 

performed using also the program GraphPadPrism5® (Trial version; 

http://www.graphpad.com; last accessed on July 15th 2012). The limit of detection (LOD, 

mg L-1) of each metal was calculated according to the equation 2.1 defined in Chapter 2. 

LOD’s of 0.076, 0.014, 0.476, 0.098 and 0.018 mg L-1 were obtained for Cu, Zn, Pb, Cd 

and Cr, respectively.  

 

6.4 Results and discussion  

 

6.4.1 The influence of ageing period on thiram desorption percentage 

Figure 6.1 shows the HPLC chromatograms for the acetonitrile extracts obtained 

after different ageing periods.  

As we can see in the chromatograms, with the increase of the ageing time, there is a 

decrease of the thiram peak and a simultaneous increase of a new peak. The area of this 

new peak increases markedly until an ageing period of about 4 days, after which it is 

maintained approximately constant from 4 until 18 days, the maximum ageing period 

studied (Figure 6.2). A slight increase (~5%) occurs from 4 to 8 days and then a slight 

decrease (~13%) occurs from 8 to 18 days. 
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Figure 6.1 – HPLC-UV chromatograms for the acetonitrile extracts obtained for different ageing 
periods: a) 0, b) 1, c) 2, d) 3, e) 4, f) 8 and g) 18 days; 
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Figure 6.2 – Peak area profile of free thiram and copper complex. 

 

This new peak was already assigned previously to a copper complex (Thi:Cu or a 

complex with a degradation product of thiram, the dimethyldithiocarbamate – 

DMTDC:Cu) (Filipe et al., 2008, 2010). This attribution was confirmed in the present 
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work by the analysis of metal ions in the organic extracts; the contents of the analysed 

metal ions in the acetonitrile extract of the original COM soil were lower than the LOD; 

however, after thiram adsorption (initial concentration approximately 20 mg L-1) and an 

ageing period of 4 days, only copper increased to a concentration of about 3 mg L-1 in the 

acetonitrile extract, while the concentration of the other metal ions continued to be lower 

than the LOD. Desorption studies with CaCl2 0.01 M, immediately after adsorption with an 

equilibration time of 15 h, showed that only free thiram is desorbed and none copper 

complex is present in solution, while after an ageing period of 8 days, no free thiram or 

complex were detected in the extracts (results not shown). Taking into account that free 

thiram is practically inexistent after 8 days, as shown in Figure 6.2, the desorption studies 

with CaCl2 0.01 M show that the copper complex formed is not easily leached and that 

copper may contribute to thiram immobilization in soil.  

According to the literature (Aboul-Kassim and Simoneit, 2001; Rudzinski and 

Plazinski, 2007; Plazinski et al., 2009; Boparai et al., 2011) when a solute in solution 

adsorbs on porous adsorbents the following consecutive steps can be involved: (i) film or 

surface diffusion where the adsorbate molecules are transported from the bulk solution to 

the external surface of the adsorbent solid phase particle across the boundary layer or 

surface film; (ii) intraparticle or pore diffusion, where adsorbate molecules move into the 

interior of adsorbent particles, and (iii) adsorption of the adsorbate molecules on the 

interior sites of the adsorbent by physical or chemical bindings. Usually the adsorption step 

is considered very quick, and so, as not limiting the overall adsorption rate (Boparai et al., 

2011). However, the results presented above show that reactions with copper occur, thus 

the extent of their occurrence during adsorption studies may be strongly dependent on the 

copper content and availability in the soil and on the thiram concentration in solution 

(Cu:Thi ratio). If these reactions are unmeasurably slow during the kinetic adsorption 

studies due probably to the few available copper sites in the surface, a pseudo-equilibrium 

can be attained, due to a slow gradual diffusion of the solute into soil micropores, and the 

adsorption mechanism will not involve these reactions, but, in certain conditions, i.e. a 

large Cu:thi ratio, it is possible that the reaction with copper may occur in a measurable 

extent, being the rate limiting step of the adsorption, since the amount of available copper 

sites relatively to the solute molecules is higher. 
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In order to verify if these complexes are already involved in the initial adsorption 

step, a set of batch adsorption experiments onto original COM soil with different 

equilibration times were performed followed by a desorption cycle of 24 h with acetonitrile 

(Experiment 2). The desorption with acetonitrile immediately after the adsorption step will 

recover all the free thiram and indicate the presence of copper complex by the appearance 

of a chromatographic peak at about 6 min already attributed to a copper complex (Filipe et 

al., 2008, 2010). Desorption percentages obtained for free thiram are shown in Figure 

6.3A. For both initial thiram concentrations studied, a desorption percentage of free thiram 

higher than 80% was obtained for an equilibration time of 4 and 8 h. However, for an 

equilibration time of 15 and 48 h thiram mean desorption percentages in the range 61–73% 

and 48–65% were obtained, respectively (Figure 6.3A). The comparison of the desorption 

percentages by a 2 (initial concentrations) x 3 (equilibration time: 8, 15 and 48 h) x 2 

(replicates) factorial ANOVA allows us to conclude that there is an extremely significant 

influence of both the initial thiram concentration and equilibration time (p<0.001) on 

thiram desorption percentage. The areas of the complex peak in the chromatograms of the 

organic extracts (Fig. 6.3B) show that the complex is present even for a low batch 

equilibration time, but when this time increases to 48 h the peak area increases and, as 

thiram reacts with copper, the desorption percentage of free thiram decreases. These results 

show that, in fact, during the equilibration time in batch adsorption studies, there is not 

only an adsorption of thiram, which allows its recovery during the desorption step with 

acetonitrile, but also an irreversible chemical reaction of thiram which gives rise to the 

formation of a complex of copper ions with thiram, or with DMTDC, a product of thiram 

degradation (Kumarasamy and Raghu, 1976). The rate and extent of the reactions with 

copper may depend on the initial concentrations of thiram in solution and copper ions in 

soil, and may or not occur during batch adsorption studies of thiram onto soils, raising 

some difficulty in the choice of the equilibration time for those studies. 
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Figure 6.3 – (A) Percentage of free thiram desorbed with acetonitrile and (B) area of the copper 
complex in the HPLC chromatograms of the acetonitrile extracts as a function of the equilibration 
time for two initial aqueous thiram concentrations, C0 = 6.83 mg L-1 (�) and C0 = 18.6 mg L-1 (    ).  
Desorption values represent the % of the amount initially adsorbed.  

 

In the adsorption studies of thiram and other pesticides onto soil the equilibration 

time frequently used is 24 h, which is usually considered long enough to attain the 

equilibrium. In several works published in the literature this equilibration time is used 

without any kinetic previous studies (Arias et al., 2005; Konda et al., 2002; Larsbo et al., 

2009; Rodríguez-Rubio et al., 2006) and in several others a kinetic study with only one 

initial pesticide concentration was performed (Ghosh and Singh, 2009; He et al., 2006; 

Lima et al. 2010; Vischetti et al., 2010).  In our previous work (Chapter 5, section 5.3.1) an 

equilibration time of 15 h was used based on kinetic studies of the adsorption of thiram 

onto humic acids (Filipe et al., 2009) and on a study of the kinetics of adsorption of thiram 

(initial concentration ~20 mg L-1) onto the COM soil sample. This study revealed that the 

change of adsorption percentage between 15 and 24 h of equilibration was less than 5% 

(difference not significant, p = 0.10), reason why 15 h was the equilibration time selected 

for determination of adsorption isotherms. However, the occurrence of the above 

mentioned reactions with copper in soil along time, rises the question of knowing how the 

kinetics of adsorption depends on the initial concentrations of thiram in solution and 

copper in soil. Thus, in the present work, the kinetics of adsorption was studied for the 

same soil, but using an initial concentration of thiram much lower (~7 mg L-1) and for the 

same initial concentration of thiram (~20 mg L-1) but using the COM soil after fortification 

with copper. 
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6.4.2 Influence of copper content in soil and initial concentration of thiram in 

solution on the adsorption kinetics of thiram. 

Figure 6.4 compares the adsorption kinetics of thiram onto COM soil for an initial 

concentration of thiram of ~7 mg L-1 with the kinetics for an initial concentration of thiram 

of ~20 mg L-1.  
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Figure 6.4 – Percentage of thiram adsorbed onto COM soil as a function of the contact time  
 

It is possible to observe that there is a rapid adsorption followed by a slow increase of 

the percentage of adsorption with time. When the equilibration time changes from 15 to 48 

h, the adsorption percentage increases from 50 ± 3% )6  ,( =± nx σ  to 59 ± 3% 

)5  ,( =± nx σ , when the initial concentration of thiram is ~20 mg L-1, and from 68 ± 4% to 

97 ± 4% )4  ,( =± nx σ , when the initial concentration is ~7 mg L-1. Thus, a kinetic study 

performed with the initial thiram concentration of 20 mg L-1 and a maximum equilibration 

time of 24 h (the maximum time usually used) would suggest that equilibrium was attained 

after 15 h (the difference in the percentage adsorbed between 15 h and 24 h is less then 

5%; difference not significant p=0.10). However, for the thiram initial concentration of ~7 

mg L-1, it is clear that equilibrium was not attained after 15 h. Thus the kinetic study with 

only one initial concentration may be not enough to choose the equilibration time for batch 

adsorption studies. In order to study the effect that soil copper ions could have during the 

equilibration of thiram in batch adsorption experiments, an adsorption kinetic study of 

thiram onto COM soil fortified with copper (COM_Cu80, 80 mg kg-1 of copper) was 
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performed using the same initial aqueous thiram concentrations as those of the study above 

described (Figure 6.5). 
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Figure 6.5 - Percentage of thiram adsorbed onto COM soil fortified with copper (COM_Cu80) as a 
function of the contact time. 

 

For the same initial concentrations and equilibration times, the percentage of 

adsorbed thiram is higher for COM soil fortified with copper, COM_Cu80, than observed 

for the original COM soil. Besides, it is observed that 100% of adsorption is attained in 15 

h or 48 h, depending on the thiram initial concentration. In fact, for a soil fortified with a 

great excess of copper (500 mg kg-1) a 100% of adsorption was obtained for a contact time 

of 4 h and both initial thiram concentrations (results not shown). 

Four different kinetic equations were used to fit the experimental kinetic data of 

thiram adsorption onto both original COM soil and COM soil fortified with copper. Since 

there is evidence that a chemical reaction occurs, as mentioned above in section 6.4.1, and, 

depending on the content of copper in soil and initial thiram concentration, the rate limiting 

step of the adsorption may or not involve the chemical reaction between copper ions and 

the molecules of thiram, we decided to use three kinetic equations that have usually been 

used as models for chemical reaction based adsorption (Kumar and Gaur, 2011; Qiu et al., 

2009; Rudzinski and Plazinski, 2007). According to the literature (Rudzinski and Plazinski, 

2006; Rudzinski and Plazinski, 2007; Plazinski, et al., 2009) the Lagergren empirical 

equation and the second-order equation, have been the most widely used rate equations for 

describing the kinetics of sorption controlled by a surface reaction. In addition, the Elovich 

equation, also considered an empirical equation, has been used in the description of 
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chemical adsorption mechanisms in various heterogeneous systems, such as soil (Aharoni 

et al., 1991; Wu et al. 2009a). On the other hand, under certain conditions, these reactions 

between thiram and copper ions can be unmeasurably slow during the kinetic adsorption 

studies, and, consequently, the adsorption mechanism will not involve these reactions, and 

may be controlled by intraparticle diffusion, reason why the equation usually used to 

model intraparticle diffusion has also been considered in this work (Kumar and Gaur, 

2011; Qiu et al., 2009; Wu et al., 2009b). Table 6.1 shows the adsorption kinetic 

parameters obtained by non-linear fitting of the experimental data to the pseudo 1st order, 

pseudo 2nd order and Elovich kinetic equations and by linear regression analysis of the 

intraparticle diffusion model. The adjustment of the several models to the experimental 

data can be seen in Figure 6.6. According to the 2
ajR  values and the adjustment shown in 

Figure 6.6, the best model to describe the kinetics of thiram adsorption onto COM soil is 

the intraparticle diffusion model.  

 

Table 6.1.. Kinetic parameters for the adsorption of thiram onto COM and COM_Cu80 soils. 
 

COM soil COM_Cu80 soil 

Soil 
C0 = 6.99 ± 0.35 

mg L-1 
C0 = 20.4  ± 1.0 

mg L-1 
C0 = 6.66 ± 0.25 

mg L-1 
C0 = 20.0  ± 0.7 

mg L-1 

Qe,exp  (µµµµg g
-1

) 34.1 63.6 34.5 103.1 

Pseudo 1
st 

order 

Qe, (µg g-1) 
k1 (h

-1) 
2
ajR  

 
28.0 ± 2.6 

0.18 ± 0.06 
 

0.393 

 
46.0 ± 2.8 
1.4 ± 0.6 

 
0.250 

 
31.4 ± 1.4 

0.64 ± 0.14 
 

0.747 

 
81.0 ± 7.0 

0.47 ± 0.18 
 

0.452 

Pseudo 2
st 

order 

Qe, (µg g-1) 
K2 (g µg-1h-1)× 10-2 

2
ajR  

 
30.5 ± 2.9 

1.02 ± 0.50 
 

0.586 

 
51.4 ± 3.2 

2.25 ± 1.06 
 

0.522 

 
33.8 ± 0.9 

2.95 ± 0.55 
 

0.935 

 
89.7 ± 7.1 

0.69 ± 0.33 
 

0.705 

Elovich equation 

A, (µg.g-1.h-1) 
B (g.µg-1) 

2
ajR  

 
39.3 ± 28.1 
0.20 ± 0.03 

 
0.734 

 
303 ± 243 

0.13 ± 0.02 
 

0.823 

 
423 ± 324 

0.24 ± 0.03 
 

0.934 

 
239 ± 155 

0.07 ± 0.01 
 

0.917 

Intraparticle diffusion 
ki, (h

-1) 
C  (µg g-1) 

2
ajR  

 
3.72 ± 0.25 
8.98 ± 0.93 

 
0.945 

 
5.94 ± 0.47 
24.6 ± 1.7 

 
0.928 

 
2.49 ± 0.58 
19.8 ± 5.3 

 
0.740 

 
9.28 ± 0.53 
38.7 ± 2.0 

 
0.981 
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Comparing the intraparticle rate constant values, ki, it is observed that the ki value 

increases with the initial thiram concentration, as has been observed for the adsorption of 

other compounds onto porous adorbents controlled by intraparticle diffusion (Mezenner 

and Bensmaili, 2009; Smaranda et al., 2011). Relatively to the adsorption kinetics of 

thiram onto COM soil fortified with copper ions (COM_Cu80 soil), and according to the 

2
ajR  values presented in Table 6.1 and the graphics of Figure 6.6, we verified that for the 

highest initial thiram concentration, the best model is also the intraparticle diffusion model 

( 2
ajR  = 0.981). However, for the lower initial thiram concentration the best model is the 

pseudo second-order kinetic equation ( 2
ajR  = 0.935) and the obtained Qe value is very 

close to experimental Q value for 48 h of equilibration. This suggests that, for a high 

Cu:Thi ratio, the chemical reaction can occur during the time range of the adorption kinetic 

studies and it may be the rate controlling step. It is also worth to notice that in the cases for 

which the intraparticle diffusion model is the best model, the straight line adjusted to the 

experimental data of Q versus t1/2 doesn’t pass through the origin (intercepts C are in the 

range 9-39 µg g-1, see Table 6.1), suggesting that adsorption involves intraparticle 

diffusion but this is not the only rate limiting mechanism.  
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Figure 6.6 – Experimental kinetic adsorption data of thiram onto soil fitted to (▬) pseudo 2nd 
order, (▬) Elovich and (▬) intraparticle diffusion equations. 

 

According to the literature (Wu et al., 2009b) this intercept (C) indicates the 

occurrence of a rapid adsorption within a short period of time. Wu et al. (2009b) 

investigated this initial adsorption using the intercept C to define an initial adsorption 

factor (Ri),   

 














−=

ref
i

Q

C
R 1    (6.12) 

where C is the intercept of the Qt vs. t
1/2 plot and Qref (µg g-1) is the adsorbed amount at 

time tref; tref  is the longest time in adsorption process (48 h in this case). According to 

these authors, Ri value can be divided into four zones, as presented in Table 6.2.  

 

COM soil COM_Cu80  soil 
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Table 6.2. Initial adsorption factor (Ri) and kinetic behaviour based on intraparticle diffusion 
model. 

Ri Initial adsorption behaviour 

Ri = 1 
1 > Ri > 0.9 
0.9 > Ri > 0.5 
0.5 > Ri > 0.1 
Ri < 0.1 

No initial adsorption 
Weakly initial adsorption 
Intermediately initial adsorption 
Strongly initial adsorption 
Approaching completely initial adsorption 

 

Ri values between 0.57 and 0.74 were obtained suggesting that there is a considerably 

strong initial adsorption in a short time (Table 6.3). In the present work, the intercept (C 

value) increases with increasing copper soil content, indicating that the soil with high 

copper content has a large initial adsorption. These results suggest that some binding to 

copper ions which are distributed onto the outer surface or in very accessible sites of the 

soil particles may be involved in this initial adsorption and complexation may occur in 

some extension. This is in agreement with Figure 6.3B, related to desorption after batch 

adsorption of thiram to the COM soil, which shows that some complex is formed even 

after only 4 h of batch equilibration time. 

 

Table 6.3. Initial adsorption factor (Ri) and kinetic behaviour based on intraparticle diffusion 
model for thiram adsorption onto both COM and COM_Cu80 soils. 

 

Soil C0 (mg L
-1

) Ri Initial adsorption behaviour 

COM 6.99 ± 0.35  
20.4  ± 1.0  

0.74 
0.57 

Intermediately initial adsorption 

COM_Cu80 6.66 ± 0.25 
20.0  ± 0.7 

---- 
0.63 

------ 
Intermediately initial adsorption 

 

All the results obtained in this work converge towards the same point, thiram 

adsorption process is widely dependent on the soil copper content and initial thiram 

concentration, which means that the ideal equilibration time that should be used in batch 

sorption studies of thiram onto soils can not be chosen based on a kinetic study with only 

one initial concentration or knowing copper concentration. Besides, the reactions with 

copper may involve thiram degradation into dimethyldithiocarbamate (DMDTC) which 

complex with copper (Kumarasamy and Raghu, 1976). Those reactions may be considered 

as degradation of thiram in soil and it is difficult to define the equilibration time for 

adsorption studies since degradation may begin before adsorption equilibrium is attained.  
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6.4.3 Isotherms at different contact times 

In order to show how the adsorption equilibration time used in batch studies can 

influence the isotherm model that describes the experimental data of adsorption of thiram 

onto soil, we selected an equilibrium time of 4 and 48 h for batch adsorption of thiram onto 

original COM soil (Experment 3) (Figure 6.7). Simultaneously, a desorption cycle of 24 h 

with acetonitrile was performed after the adsorption period (Figure 6.7B).  
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Figure 6.7 – (A) Adsorption isotherm of thiram onto COMoriginal soil. (B) Percentage of thiram 
desorbed with CH3CN as a function of initial thiram concentration. Desorption values represent the 
% of the amount initially adsorbed.  

 

With an adsorption equilibration time of 4 h, more than 75% of the free thiram is 

recovered for all initial concentration range, i.e. recoveries between 74 and 98 % were 

obtained. In 4 h of equilibration, thiram molecules are transported from the bulk solution to 

the external surface of sorbent where they are preferentially adsorbed, occurring the 
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chemical reaction in low extent with the copper ions which are distributed onto the outer 

surface of the soil particles. So, considering all the initial concentration range, the 

percentage of thiram that complex with copper ions can be considered insignificant as 

compared with the amount of thiram that adsorbs onto soil. Thiram diffuses to the interior 

of the soil particles but does not have time to react with less accessible copper and is 

almost completly recovered during the desorption cycle. On the other hand, for an 

equilibration time of 48 hours less than 50% of the free thiram is recovered for initial 

concentrations up to 15.6 mgL-1. For the two highest initial concentrations recoveries 

between 58 and 70 % were obtained. Considering all the initial concentration range, we 

can not ignore the percentage of thiram that complexes with copper ions. It is curious to 

notice that the sum of the chromatographic areas of thiram and complex gives always 

100% of the initial area of total thiram, suggesting a conversion of free thiram into a 

complex of thiram or thiram degradation product. The adsorption isotherms obtained using 

these two different equilibration times are also represented in Figure 6.7. As we can see the 

isotherm model depends on the equilibration time during batch adsorption studies. For a 

contact time of 4 h, the isotherm is an L type (Langmuir) which assumes monolayer 

adsorption on a homogeneous surface with a finite number of adsorption sites. Once a site 

is filled, no further adsorption can take place at that site. Consequently, the surface will 

eventually reach saturation where the maximum adsorption (Qmax) of the surface will be 

attained. The experimental data are well fitted by the Langmuir model ( 2
ajR  = 0.990) with a 

Qmax = 86.6 ± 7.7 µg g-1 and a KL = 0.0621 ± 0.009 L mg-1. In these 4 h there is only a 

physical surface adsorption (monolayer) while complexation occurs in low extent i.e. the 

reaction is not measurable at that time. For a contact time of 48 h the isotherm is H type 

(high affinity) which is indicative of strong adsorbent-adsorbate interactions such as inner-

sphere complexes (Aboul-Kassim and Simoneit, 2001). The experimental data fits well the 

BET model ( 2
ajR  = 0.956), with a maximum adsorption of the 1st layer (Qmax) of 44.4 ± 

24.6 µg g-1, a thiram saturation concentration in solution (CS) of 31.3 ± 4.6 mg L-1 (very 

close of the theoretical value) and a constant K of 300 ± 123. Usually, BET isotherm 

describes a multilayer adsorption involving weak Van der Wall interactions, characteristic 

of a physical adsorption. However, in our case we can not explain that result based only on 

physical adsorption, since we have shown clearly the existence of a chemical reaction 
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between thiram and copper ions which, depending on their initial concentrations, is or is 

not involved in the adsorption.  

Considering a soil fortified with a great excess of copper, COM_Cu500, in a batch 

adsorption study performed with an equilibration time of 15 h, we obtained a high-affinity 

adsorption isotherm (H type) (Figure 6.8). In this type of isotherm the molecules are 

completely adsorbed, or at least there is no measurable amount remaining in solution, 

being the initial part of the isotherm vertical (Giles et al, 1960). This behaviour is usually 

found for chemisorption.  
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Figure 6.8 – (A) Adsorption isotherm of thiram onto COM soil fortified with Cu (500 mg kg-1). 
Equilibration time of 15 h (B) Linear plot of the complex area vs. thiram concentration initially 
adsorbed 

 

As we can see in Figure 6.8  the isotherm obtained for the adsorption of thiram onto 

COM_Cu500 soil is a high affinity isotherm with a vertical line for the entire range of 

concentrations and not only for the lower concentrations as represented in Figure 6.7. A 

desorption cycle of 24 h with acetonitrile performed after adsorption period did not recover 

any thiram for all initial concentration range, instead we recovered the complex with 

copper ions, whose peak area is proportional to the initial thiram concentration (Figure 

6.8B).This behaviour may be attributed to the excess of copper available. 

 

6.5 Conclusions 

 

This paper shows that the soil copper content, which may be increased by the use of 

copper based fungicides or by the application of certain organic amendments, has a marked 
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effect on the sorption process of thiram onto soil. The experimental results showed that 

reactions between molecules of thiram and copper ions occur and the extent of their 

occurrence during adsorption studies may be strongly dependent on the soil copper content 

and on the initial thiram concentration in solution (Cu:Thi ratio). For a certain equilibration 

time, the percentage of thiram adsorption increases with the increase of Cu:thiram ratio. 

Kinetic studies performed with a soil amended with compost (COM soil) and the same soil 

after fortification with copper ions (COM_Cu80 soil) showed that there is an extremely 

significant influence of both the initial thiram concentration and the soil copper content on 

the kinetics of thiram sorption onto soil. Thus, the choice of the equilibration time for 

batch sorption studies and adsorption isotherms determination is a difficult task, namely 

because the reactions with copper may involve thiram degradation which may begin during 

batch adsorption studies not allowing to distinguish between adsorption and degradation.  

So, the results obtained give rise the question how we must choose the equilibrium 

time when we performed sorption studies of thiram onto soils with different soil copper 

contents?  

Our results have also shown that the complexes formed with copper in soil 

(Thiram:Cu or DMDTC:Cu) are persistent, at least until 18 days (the maximum ageing 

period studied), but they are not easily leached from soil to groundwater, since they are not 

extracted by CaCl2 solution. Thus, copper may contribute to the immobilization of thiram 

in soil.  
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 Chapter 7 
 

7 Influence of fulvic acids and copper ions on thiram 

determination in water6 
 
 
 
 
 
 
The literature concerning the application of solid-phase extraction (SPE) to the 
concentration of thiram (bis(dimethyldithiocarbamoyl) disulfide) from natural waters is 
scarce, the available results being contradictory or with no analytical significance. To 
clarify these contradictory results, a C18-SPE procedure combined with HPLC-UV was 
applied to thiram analysis in river water, and the influence of several factors on recoveries 
was studied. This procedure gave thiram recoveries of about 100% when applied to thiram 
standard solutions. However, when the same procedure was applied to river water samples 
spiked with thiram, the recoveries depended on the equilibration time after spiking. The 
influence of river fulvic acids (FAs) and Cu(II) on thiram recoveries from standard 
solutions was studied as a possible interference for such a result. In the presence of FA, 
thiram recoveries were always higher than 85%. In the presence of Cu(II), thiram recoveries 
decreased significantly, due to complexation, but the addition of an excess of EDTA before 
C18-SPE eliminated that interference, and thiram was completely recovered. However, in 
river water samples the addition of EDTA had to be done before thiram spiking to obtain a 
recovery > 90%. Thiram standard solutions containing both river FA and Cu(II) showed a 
behaviour similar to the one observed in river water samples. On the basis of these results, 
the catalytic effect of Cu(II) on the degradation of thiram by FA, with formation of a 
Cu(II)-dimethyldithiocarbamate complex, was hypothesized. 
 

 

 

 

 

 

 

 

 

                                                           
6 Adapted from: Filipe, O.M.S., Vidal, M.M., Duarte, A.C., Santos, E.B. 2008. Influence of fulvic acids and copper ions on thiram 
determination in water. J. Agric. Food Chem. 56, 7347–7354. 
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7.1 Introduction 

 

Dithiocarbamates are a group of organosulfur compounds extensively used due to 

their wide range of applications in agriculture and industry (Malik and Faubel, 1999; 

Sharma et al., 2003, Szolar, 2007). Among them, thiram is one of the most used in Portugal 

as a fungicide (Information available at http://dgdr.pt; last accessed on 20th November 

2012) and it is also one of the most largely applied worldwide (Szolar, 2007). According to 

the U.S. EPA (Environmental Protection Agency) “thiram is expected to be sufficiently 

mobile and persistent in some cases to reach surface waters in concentrations high enough 

to impact aquatic life” (Information available at http://www.epa.gov/oppsrrd1/ 

reregistration/thiram/, document RED Fact Sheet; last accessed on 20th November 2012) To 

evaluate the risks of its intensive use, thiram determination in environmental matrixes is 

necessary, as well as the study of its reactions in the environment. 

Frequently, dithiocarbamates are determined using methods based on their 

decomposition to carbon disulphide, which is then measured either by spectrophotometry or 

by chromatographic techniques coupled with different types of detection (EPA methods 603 

and 603.1; Royer et al., 2001; Vryzas et al., 2002; Caldas et al, 2004). These methods are 

able to measure the total content of dithiocarbamates in samples but they fail to distinguish 

between the individual compounds. Thus, more selective analytical methods have been 

developed to allow discrimination and quantification of one or more dithiocarbamates 

(Gustafsson and Thomson, 1981; Weissmahr et al., 1998; Blasco et al., 2004; Nakazawa et 

al., 2004). Many analytical methods have been applied to thiram analysis in fruits and 

vegetables (Silva et al., 1999; Cassella et al, 2000; Fernandez et al., 1996; Ekroth et al., 

1998; Malik et al., 1998; Sharma et al., 2003; Blasco et al., 2004; Sharma et al., 2004) but 

only a few studies have been published concerning thiram analysis in natural waters (Tovar 

and Santos-Delgado, 1995; Garcia et al, 1996; Tunçeli et al., 2001; Aulakh et al, 2005; 

Sasaki et al., 2006). 

The low concentrations expected in natural waters require an enrichment step before 

the analysis and solid phase extraction (SPE), with C18 adsorbent, has been the most used 

procedure for extraction and enrichment of several non-polar pesticides from liquid samples 

(Liska, 2000; Pichon, 2000). However, its application to the enrichment of thiram from 

natural waters has been referred in very few published works and the results obtained were 
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contradictory (Tovar and Santos-Delgado, 1995; Garcia et al, 1996). Garcia et al (1996) 

obtained a thiram recovery of 70% from 1 L of river water spiked with thiram (5 µg L-1). 

On the other hand, Tovar and Santos-Delgado (1995), using also a C18-SPE procedure, did 

not recover thiram from tap, natural and ground water samples spiked with thiram and other 

pesticides. The authors attributed this fact to the complexation of thiram by metals in 

natural waters, since they obtained recoveries of 50 to 90% when the same procedure was 

applied to a standard mixture of the same pesticides. More recently, Sasaki et al. (2006) 

used an on-line SPE method combined with LC/TOF-MS for analysis of 21 pesticides, 

including thiram, from river water and observed that thiram was the only pesticide with low 

recoveries (lower than 25 %). The authors assumed that these low values were due to the 

decomposition of thiram during the sample-preparation procedure. 

The aim of this paper was to clarify the contradictory results of the literature 

concerning the recoveries of thiram during its analysis in natural waters, and contribute to 

gain a better insight on the reactions involving thiram in natural waters. For that, a C18-SPE 

procedure combined with HPLC-UV was used for thiram analysis in river water, and the 

influence of aquatic fulvic acids and copper ions on thiram recoveries was studied. The 

metal ion chosen for this study was Cu(II), since it is usually applied in agriculture as 

inorganic fungicides, frequently in conjunction with, or during the same season as thiram is 

used. Besides, in Portugal, Cu(II) based fungicides are in third place among the most used 

fungicides while dithiocarbamates are in second (Information available at http://dgdr.pt; last 

access 15 July 2012). 

 

7.2 Experimental 

 

7.2.1 Chemicals  

All chemicals were of analytical grade. Thiram (97%) was purchased from Aldrich, 

sodium dimethyldithiocarbamate solution (purum, ~40% in H2O) was purchased from Fluka 

and Fulvic Acids (FA) were extracted from River Vouga water, collected at Carvoeiro 

(Aveiro, Portugal), by Santos and Duarte  (1998). Methanol (HPLC grade) was obtained 

from Riedel-de Haen and acetonitrile (HPLC grade) was obtained from LabScan. Ultra-pure 

water was obtained using a Milli-Q water purification system (Millipore). Thiram standard 

solutions were prepared by dilution, with Milli-Q water, of a 100 mg L-1 stock solution of 
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thiram prepared in acetonitrile. This stock solution was also used to spike water samples. 

Aqueous solutions of 0.05 mol L-1 EDTA and 1000 mg L-1 Cu(II) were prepared from 

disodium salt dihydrate (Merck, p.a.) and cupric perchlorate hexahydrate salt (Fluka, purum 

> 98%), respectively. Solutions of FA from River Vouga were prepared by dissolving, in 

Milli-Q water, 2 mg of FA isolated from the river water (final concentration was 2 mg L-1, 

which is within the concentration range usually found in river waters (Thurman, 1985). The 

pH of these solutions was measured and it was about 6.  

 

7.2.2 C18-SPE-HPLC-UV procedure 

Commercial Supelclean envi-18 cartridges (Supelco) of 500 mg, 75 Å pore diameter 

and 56 µm particle size were used and a 12-place manifold from Phenomenex was used to 

execute the SPE procedure. The SPE cartridge was pre-conditioned with 6 mL of methanol 

and 6 mL of deionised water. After loading 1 L of sample at 15-20 mL min-1, by means of a 

vacuum pump, the cartridge was washed with 3 mL of ultra-pure water, and dried under N2 

during 30 min. Thiram was then eluted with 5 mL of acetonitrile and analysed by HPLC-

UV at 270 nm as described previously in Chapter 3 (section 3.34). Thiram concentrations 

were calculated from the average of the peak areas of at least three injections. 

 

7.2.3 Samples 

Water samples from River Vouga (Aveiro, Portugal) were collected at Carvoeiro, near 

a water collection facility where the dissolved organic carbon (DOC) concentration is 

around 1 mg L-1 (Santos and Duarte, 1998). Samples were collected in June and October of 

2006, and March and April of 2007, in 5 L glass bottles, previously washed with NaOH 1 

M, distilled water and rinsed with river water immediately before sample collection. 

Samples were immediately filtered through a 0.45 µm filter (Gelman Sciences), stored at 4 

ºC and analysed within a period of time as short as possible (less than 2 weeks). 

Three types of aqueous solutions were also prepared: an aqueous solution containing 

only Cu (II) (0.01 mg L-1), an aqueous solution containing only FA (2 mg L-1) and aqueous 

solutions containing both FA (2 mg L-1) and Cu (II) (0.01 mg L-1). A copper concentration 

of 0.01 mg L-1 was chosen according to the mean values reported for copper concentration 

in River Vouga, at Carvoeiro (information available at htpp://snirh.pt; last acces at 15 July 

2012). 
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All river water samples and synthetic aqueous solutions (as referred above) were 

spiked with the stock solution of thiram. Although this stock solution used to spike samples 

was prepared in acetonitrile, the final content of this solvent in the samples was always 

lower than 0.01%. 

 

7.3 Results and Discussion 

 

7.3.1 Thiram pre-concentration on C18-SPE cartridge: effect of flow rate  

The low levels of pesticides in waters require a high pre-concentration factor. 

Therefore a large volume of sample must be applied to the cartridge and pesticides must be 

recovered in a small volume of solvent.  The SPE procedure described in section 7.2.2 was 

tested with 1 L of standard solution of thiram in milli-Q water and an elution volume of 5 

ml of acetonitrile (pre-concentration factor of 200). This pre-concentration step would take 

about 3 hours using a flow rate of 5 mL min-1 as used by Garcia et al. (1996). In order to 

reduce the time of pre-concentration, we studied the effect of the flow rate on thiram 

recovery from standard solutions. Several experiments were done with the highest flow rate 

in order to be sure that thiram is completely recovered with those high flow rates which do 

decrease the time for pre-concentration. Some of the standard solutions were analysed 

immediately after preparation (Thi0) while others were stored for 24 h in the dark (Thi24), in 

order to evaluate the stability of thiram in solution and any losses by adsorption on the flask 

walls. Table 7.1 shows thiram recoveries obtained from those standard solutions pre-

concentrated at different flow rates.  

 

Table 7.1. Thiram recoveries (R) from 1 L of thiram standard solution after C18-SPE procedure at 
 different flow rates* 
 

Samples 
[Thi]ad 

(µµµµg L
-1

) 

Flow rate 

(mL min
-1

) 

R ± SD 

(%) 

2.87 10 99.9 
Thi0 

11.0 20 99.6 ± 3.9 (n=2) 

2.87 10 106.4 

11.2 20 102.3 Thi24 

2.87 25 97.3 ± 2.9 (n=5) 
*SD=standard deviation, n=number of experiments performed in each case. 
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As we can see, there are no losses of thiram either by changing flow rates up to 25 mL 

min-1 or by adsorption on the flask walls, with thiram recoveries not different from 100% 

for practical purposes, even for the lowest studied concentration, 2.9 µg L-1. Thus, the 

results show that it is possible to obtain a pre-concentration factor of 200 using flow rates 

up to 25 mL min-1, and concentrations as low as 2.9 µg L-1. In this work, flow rates between 

15 and 20 mL min-1 were used, representing a significant time improvement relatively to 

the procedure described in the literature by Garcia et al. (1996).  

 

7.3.2 Application of SPE-HPLC-UV procedure to river water samples 

The SPE-HPLC-UV procedure described previously was applied to the analysis of 

thiram in fortified river water samples. Firstly, aliquots of 1 L of filtered river water were 

submitted to C18-SPE–HPLC-UV analytical procedure and the presence of thiram was not 

observed, as shown in Figure 7.1.  
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Figure 7.1 – HPLC-UV chromatogram of 1 L of river water sample after C18-SPE procedure. 
 

Then, river water samples were spiked with the thiram stock solution, obtaining 

concentrations of ca. 3 and 11 µg L-1. Spiked river water samples were analysed both 

immediately after preparation (River0) and after 24 h and 48 h periods of storage in the dark 

(River24 and River48). Table 7.2 shows thiram recoveries obtained from spiked river water 

samples, after different equilibration periods of time.  
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Table 7.2. Thiram recoveries ® from 1 L of river water sample spiked with thiram* 

Sampling 

Date 

Monthly 

precipitation 

(mm) 

Equilibration 

time (h) 

[Thi] 

 (µµµµg L
-1

) R ± SD (%) 

2.82 77.6 ± 1.4 (n=3) 
0 

11.3 79.6 ± 1.1 (n=2) 

2.82 < LOD (n=2) 
Jun 2006 88 

24 
11.3 40.9 ± 2.4 (n=2) 

0 11.1 98.0 ± 1.3 (n=2) 
Oct 2006 244 

24 11.1 41.8 ± 0.8 (n=2) 

0 11.2 98.8 

24 11.2 61.3 ± 6.3 (n=6) Mar 2007 187 

48 11.2 25.0 

0 11.2 83.1 

24 11.2 20.1 ± 2.7 (n=3) Apr 2007 54 

48 11.2 < LOD (n=3) 
*SD=standard deviation, n=number of experiments performed in each case. 

 

Independently of the thiram initial concentration, water samples immediately analysed 

(for equilibration time equal to 0 h) showed thiram recoveries higher than 76 %. Such 

results are in agreement with those obtained by Garcia et al.
 for river water samples 

(R=70±8%, using C18-cartridges, 1L of sample and 5 µg L-1 of thiram) (Garcia et al., 1996). 

On the other hand, thiram recoveries decreased significantly when aliquots of the same 

water samples were spiked with thiram and equilibrated for 24 or 48 h before analysis 

(Table 7.2). In fact, at low concentrations or longer equilibration times, thiram was not even 

detected. These results agree with those presented in the literature by Tovar and Delgado 

(1995) who did not recover thiram by C18-SPE from fortified natural waters. These authors 

did not refer the equilibration time after sample spiking and attributed the recovery failure 

to complexation of thiram with metal ions in solution. This could be also suggested by the 

analysis of the chromatograms shown in Figure 7.2. After equilibration of thiram with the 

river water, the peak of thiram decreases, appearing a new peak at about 6 min. It was 

observed that the height of this new peak depends on the initial thiram concentration, 

equilibration time and dilution of river solutes by the river flow increase due to the rainfall 

(rainfall data can be found at http://snirh.pt). 
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Figure 7.2 – HPLC-UV chromatograms of the natural water sample spiked with 11.2 µg L-1 thiram 
and equilibrated during 0 and 24 h, following SPE procedure. 

 

For example, after 24 h of equilibration, for thiram concentrations of 2.8 µg L-1, the 

peak of thiram disappears and only the new peak is visible (Figure 7.3) while for 11.2 

µg L-1 thiram concentration, the peak of thiram decreases but its presence is still noteworthy 

(Figure 7.2). It should be highlighted that a small peak at 6 min is already present in the 

chromatogram of one of the samples showed in Figure 7.2 (June of 2006), even when it was 

analysed immediately after spiking. The same was observed for the sample collected in 

April of 2007 (chromatogram not shown). Those were the samples where the lowest 

recoveries for equilibration time zero were obtained (see Table 7.2). Such results are 

probably related to the fact that those samples were collected during a dry period of summer 

and spring seasons (see Table 7.2, monthly precipitation data). That may be associated to 

higher concentrations of river water solutes available to react with thiram. 

 



Influence of fuvic acids and copper ions on thiram determination in water                                                 147 

 

0 1 2 3 4 5 6 7
-0.005

0.000

0.005

0.010

 

t (min)

new peak

A
b

so
rb

a
n

ce

 

Figure 7.3 – HPLC-UV chromatogram of the natural water sample spiked with 2.8 µg L-1 thiram 
and equilibrated during 24 h, following SPE procedure. 

 

Next, in this work, complexing properties of EDTA were explored as a means to 

overcome the interference of thiram complexation by metallic ions. Thus, an excess of 

EDTA (10-3 molL-1) was added to the water samples in two different ways: (i) addition of 

EDTA to the river water sample and equilibration for 24 h before thiram spike, 

[(River+EDTA)24+Thi]24; (ii) addition of EDTA to the river water sample previously 

equilibrated during 24 h with thiram, [(River+Thi)24+EDTA]24. The samples were analysed 

by SPE-HPLC-UV. Thiram recovery results are shown in Table 7.3, while some examples 

of the obtained chromatograms are presented in Figure 7.4.   

 
Table 7.3. Effect of EDTA (1 mM) in thiram recoveries (R) from 1 L of river water sample spiked 
with thiram and submitted to SPE*  
 

Samples 
Sampling 

Date 
[Thi] (µµµµg 

L
-1

) 
R ± SD (%) 

Oct 2006 11.1 96.1 ± 5.0 (n=4) 
[(River+EDTA)24+Thi]24 

Mar 2007 11.2 95.6 ± 0.8 (n=2) 

Mar 2007 11.2 47.3 ± 4.4 (n=4) 
[(River+Thi) 24+EDTA]24 

Apr 2007 11.2 <LOD (n=3) 
*SD=standard deviation, n=number of experiments performed in each case. 
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Figure 7.4 – Chromatograms of the river water samples collected in March of 2007: (a) 
(River+Thi)24, (b) [(River+EDTA)24+Thi]24 and (c) [(River+thi)24+EDTA]24 samples. [EDTA] = 
10-3 mol L-1, [Thi] = 11.2 µg L-1 (The samples were submitted to the SPE-HPLC-UV analytical 
procedure). 

 

When EDTA was previously added to water samples, before thiram spike, 

[(River+EDTA)24+Thi]24, thiram was completely recovered (>90%), while in the absence of 

EDTA, the recoveries were only ca. 42 and 61%, respectively (see Table 7.2, results for 

October of 2006 and March of 2007 after a 24 h equilibration period of time). This suggests 
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that metal ions are somehow involved in reactions originating the low recoveries of thiram. 

However, when EDTA was added after a previous equilibration time between the river 

water and thiram, [(River+Thi)24+EDTA]24, recovery levels were always lower than 51%. If 

the low recoveries were due to a simple complexation of thiram with metals ions, the 

addition of EDTA should overcome the interference even after previous equilibration of 

thiram with metals ions in river water. Thus, the results suggest that a different reaction 

involving metal ions is the cause of the low recoveries that was registered.  

Figure 7.4 shows the chromatograms obtained for the sample collected in March of 

2007, in the absence, (River+Thi)24, and in the presence of EDTA, before 

[(River+EDTA)24+Thi]24 and after a 24 h time period of equilibration between thiram and 

river water [(River+Thi)24+EDTA]24. With the addition of EDTA the new peak at 6 min 

disappeared, suggesting that this peak corresponds to a complex which is destroyed by 

EDTA. However, when EDTA was added only after previous equilibration of thiram with 

the river water during 24 h, the new peak at 6 min disappeared, but the thiram peak did not 

recover the area expected for the concentration added to the sample. These results suggest 

that, besides its complexation with metallic ions, a partial degradation of thiram also occurs 

when it is equilibrated with the river water. To clarify the interferences for such low 

recoveries in river waters, the behaviour of thiram in aqueous solutions containing river FA, 

a metal ion or both was further studied. The metal ion focused on this study was Cu(II), 

since it is usually applied in agriculture as inorganic fungicides, frequently in conjunction 

with, or during the same season as thiram is used. 

 

7.3.3 Effect of copper ions on thiram recoveries by C18-SPE 

Tovar and Santos Delgado (1995) suggested that thiram was not recovered from river 

water by C18-SPE preconcentration due to its complexation with metal ions in the sample. 

Hence, we have decided to investigate the interference of metals to find a way to minimize 

it. Standard solutions containing 2.4 mg L-1 thiram and an excess of Cu(II) were analyzed 

by HPLC-UV without C18-SPE preconcentration, while standard solutions containing 2.8 

or 11.2 µg L-1 thiram and an excess of Cu(II) were analyzed by C18-SPE-HPLC-UV. In 

both cases an excess of Cu (II) was guaranteed, according to data presented in Table 7.4 

and Figure 7.5. The results in Table 7.4 show that thiram recoveries decrease significantly 

in the presence of Cu(II), depending on the Thi-Cu(II) ratio. 
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Table 7.4.Thiram recovery (R) from 1 L standard solutions in the presence and absence of Cu(II) 
after C18-SPE procedure*. 
 

Samples 
[Thi] 

(µµµµg/L) 

[Cu
2+

]ad 

(mg/L) 

Molar ratio 

Cu/Thi 
R ± SD (%) 

2.82 - 97.4 ± 4.1 (n=2) 
(Thi)24 

11.2 - 
- 

96.2 ± 3.6 (n=5) 

2.82 0.035 < LOD (n=3) 

11.2 0.15 
45 

17.5 ± 6.6 (n=6) (Thi + Cu
2+

)24 

11.1 0.01 3 55.5 ± 0.91 (n=3) 

*SD is the standard deviation and n is the number of experiments performed in each case. 
 
In the chromatograms of the solutions not submitted to SPE (Figure 7.5), the intensity 

of the thiram peak at ca. 4 min (peak 1) decreases as the Thi-Cu(II) equilibration time 

increases and a new peak, attributable to a Thi-Cu(II) complex, appears at about 6 min 

(peak 2) (Figure 7.5). After 8 h of equilibration, peak 1 disappears completely. 
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Figure 7.5 - HPLC-UV chromatograms of a standard solution of thiram 2.4 mg L-1 (a) in the 
absence of Cu(II) and (b-d) in the presence of Cu(II) (16 mg L-1) at different times of equilibration: 
b) t = 20 min, c) t = 2 h and d) t = 8 h. 
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In the chromatograms of the solutions submitted to SPE (Figure 7.6), peak 1 

decreases in intensity or even disappears after 24 h of equilibration with Cu(II) in the dark. 

The absence of peak 2 in these chromatograms (Figure 7.6) suggests that the Thi-Cu(II) 

complex is strongly retained in the C18 cartridge and is not eluted with acetonitrile. In fact, 

a yellow color, due to the complex, remains in the cartridge after elution. To elute the 

yellow-colored complex from the cartridge, CHCl3 was tested as an eluent (5 mL). After 

CHCl3 elution, the eluate was evaporated under a N2 atmosphere until dryness, and the 

residue was redissolved in acetonitrile and analyzed by HPLC-UV (Figure 7.7). The 

chromatogram exhibited only one peak, with the retention time and the UV spectrum 

characteristic of peak 2 (cf. Figure 7.5). These results confirm that the 

preconcentration/extraction of thiram from aqueous solutions is strongly affected by the 

presence of metals, such us Cu(II), since Cu(II) forms a hydrophobic complex with thiram 

that is retained in the C18 cartridge and not eluted with acetonitrile.  
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Figure 7.6 – HPLC-UV chromatograms of thiram standard solutions, in the absence and in the 
presence of Cu(II), after equilibration for 24 h and SPE treatment. 
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Figure 7.7 – HPLC-UV chromatogram of yellow coloured complex Thi-Cu(II) retained in the C18 
cartridge after elution with CHCl3, drying under N2 atmosphere and re-dissolution of the residue in 
acetonitrile.  

 

Still, the Thi-Cu(II) nature of peak 2 was also confirmed by using the complexing 

properties of EDTA. Solutions of thiram and Cu(II), 11.2 µg L-1 and 0.15 mg L-1, 

respectively, previously equilibrated for 24 h, were treated with a solution of 10-5 mol L-1 

EDTA and left for another 24 h to equilibrate ([(Thi + Cu2+)24 + EDTA]24). The results 

show that EDTA eliminates the Cu(II) interference, allowing good recoveries of thiram 

(>83%). However, complexation with Cu(II) does not explain the behaviour observed in 

river water, since the addition of EDTA to river water equilibrated with thiram did not 

allow good recoveries. 

 

7.3.4 Effect of river Fulvic Acid and Cu(II) on thiram recoveries by C18-SPE 

Aqueous solutions containing FA from River Vouga (2 mg L-1) and Cu(II) (0.01 mg 

L-1) in concentrations similar to those usually found in the rivers were prepared and stored 

in the dark during 24 h for equilibration before thiram spike, [(FA+Cu2+)24+Thi]24. 

Solutions containing only FA and spiked with thiram were also prepared and analysed by 

SPE-HPLC-UV for comparison. Figure 7.8 shows the HPLC chromatograms of the 

solutions spiked with thiram and the UV/Vis spectra of each chromatographic peak.  
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Figure 7.8 – Chromatograms obtained in the analysis of aqueous solutions: (a) (FA+Thi)24, (b) 
[(FA+Cu2+)24+Thi]24 and (c) [((FA+Cu2+)24+Thi)+EDTA]24, and UV-Vis spectrum of the peaks. 
[FA] = 2 mg L-1, [Cu] = 0.01 mg L-1, [EDTA] = 10-5 mol L-1, [Thi] = 11.2 µg L-1. 

 

As shown in Figure 7.8b, in the solutions containing both FA and Cu(II), there is a 

significant decrease of the thiram peak height (relatively to the sample without Cu(II), 
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Figure 7.8a) and the peak at about 6 min appears, as observed in spiked river water samples 

after 24 h of equilibration (Figure 7.6b). This additional peak at 6 min appears at the same 

retention time of peak 2 observed in the chromatograms of Thi-Cu(II) solutions without 

SPE treatment (Figure 7.5) and it could perfectly result from formation of a thiram/Cu 

complex. However, these samples were submitted to the SPE procedure and peak 2 

disappeared from the chromatograms of Thi-Cu(II) solutions when they were submitted to 

SPE (Figure 7.6), since the complex was irreversibly retained by the C18 cartridge. When 

EDTA was added to the standard solutions containing both FA and Cu(II) (Figure 7.8c) the 

peak at ca. 6 min disappeared but the thiram peak height is lower than expected for the total 

concentration of thiram added to the solution. So, the addition of EDTA destroys that 

complex but since thiram is not totally recovered, it is clearly an indication of its 

irreversible degradation. 

As shown in Table 7.5, the recovery of thiram in the presence of FA and Cu(II) is 

lower than the LOD, while recoveries in the presence of only FA, at the same 

concentrations, were approximately 90%. When EDTA was added to the aqueous solutions 

of FA and Cu(II), equilibrated with thiram, [((FA+Cu)24+Thi)24+EDTA]24, only a small 

fraction of thiram was recovered, suggesting that it had been degraded. Once more, when 

EDTA is added before equilibration with thiram, [((FA+Cu)24+EDTA)24+Thi]24, the result 

showed that EDTA eliminates the Cu (II) interference, allowing good recoveries of thiram. 

Such behaviour is similar to the one observed in the river water samples (Figure 7.4c) 

clearly indicating that the degradation of thiram only occurs when both FA and Cu(II) are 

present together in the same solution.  

 

Table 7.5. Thiram recoveries (R) from standard solutions ([FA] = 2 mg L-1, [Cu2+] =0.01 mg L-1, 
EDTA= 10-3 mol L-1)* 
 

Samples 
[Thi]ad 

(µµµµg L
-1

) 
R ± SD(%) 

(FA+Thi)0 11.3 92.8 ± 1.9 (n=2) 

(FA+Thi)24 11.2 89.8 ± 4.3 (n=5) 

[(FA+Cu)24+Thi]24 11.2 <LOD (n=4) 

[((FA+Cu)24+Thi)24+EDTA]24 11.2 24.6 ± 2.6 (n=4) 

[((FA+Cu)24+EDTA)24+Thi]24 11.2 88.0 ± 3.5 (n=4) 
*SD=standard deviation; n=number of experiments performed in each case. 

 

 



Influence of fuvic acids and copper ions on thiram determination in water                                                 155 

 

These results support the hypothesis of thiram reduction by FA catalysed by Cu(II), in 

river waters. According to the literature (Victoriano, 2000; Victoriano, 2000a), thiram can 

be reduced by some reagents and scission of the S-S bond occurs, leading to the formation 

of dimethyldithiocarbamate anions (DMDTC, (CH3)2NCSS-) which have chelating 

properties. It is also known that FA may act as electron donors (Xie ey al., 2005; Bauer et 

al., 2007). Therefore, when thiram is equilibrated with solutions of FA and Cu(II), the 

reduction of thiram by FA, catalysed by Cu(II) may occur, leading to the formation of 

DMDTC anions whose complex with Cu(II) gives rise to the additional peak at 6 min in the 

chromatograms. Solutions of DMDTC anions (11.2 µg L-1) and Cu(II) (0.01 mg L-1) were 

prepared and submitted to the SPE procedure. The HPLC-UV chromatograms of the 

solutions eluted from de cartridge (with acetonitrile) exhibited an intensive peak at 6 min, 

which was absent in the chromatograms of the solutions thiram/Cu after SPE treatment 

(Figure 7.6). This also supports the hypothesis of thiram degradation into DMDTC anions. 

According to Weissmahr and Sedlak (2000) the complexation of DMDTC anions with 

Cu(II) stabilizes them in solution increasing their persistence. Thus, these results highlight 

the need for monitoring not only thiram but also its degradation products when the risks of 

thiram contamination are evaluated. At this very moment studies are being made with the 

aim to better clarify the nature of this degradation and to identify the product. 

 

7.4 Conclusions 

 
In this work, we evaluated the effects of natural organic matter and metal ions on the 

determination of thiram in natural waters by a C18-SPE-HPLC-UV method. River water 

samples were spiked with thiram, and recoveries higher than 76% were obtained, when 

samples were analyzed immediately after spiking. However, a significant decrease of the 

thiram recoveries was observed when river water samples were equilibrated with thiram, for 

24 h or more, before the analysis. This suggests an interference of the natural components 

of river waters, such as organic matter and metals ions. In the present paper it has been 

shown that copper ions decrease considerably the recovery of thiram by SPE, but the 

addition of EDTA eliminates its interference and thiram is completely recovered. However, 

when EDTA was added to the river water previously equilibrated with thiram, the 

recoveries continued to be low, suggesting a partial degradation of thiram. Studies in 

standard aqueous solutions, containing both FA and copper ions at concentrations similar to 
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those found in the river, showed a behaviour similar to the one observed in the river water 

suggesting that in the presence of both FA and Cu(II) thiram is reduced, leading probably to 

the formation of DMDTC anions, which then complex with copper ions in solution.  
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Chapter 8 
 

8 Effect of copper ions on the degradation and 

persistence of thiram in aqueous solutions7 
 
 
 
 
 
 

The aim of this work was to examine the effect of copper ions on the degradation of thiram 
in aqueous solutions, since the literature focused on this effect is scarce or inexistent and 
copper based fungicides can be applied together or during the same season to agriculture 
crops, increasing the fungicidal activity. The effect of copper ions on the thiram 
degradation was followed by UV-Vis spectrophotometry and by HPLC-MS/MS. Thiram 
degradation in aqueous solutions at pH ~ 6  was monitored by UV-Vis during one month 
and, after a stability period of ~ 7 days, the decay follows a 1st order kinetics, 
corresponding to a total half life of 19-20 days. The presence of copper ions in solution has 
a strong influence on the thiram persistence along time. For thiram solutions 2 mg L-1 

containing an excess of thiram, a complex is slowly formed and then it precipitates and 
leaves some free thiram in solution which degrades along time. In the presence of an 
excess of copper ions, a Thi:Cu complex 1:1 is formed as confirmed by HPLC-MS/MS 
analysis. This complex degrades along time at a rate which depends on the Thi:Cu ratio 
and on the initial concentrations. In the presence of a large excess of copper ions, the UV-
Vis spectra analysis suggested that a copper complex 1:1 is formed with the anion dimethyl 
dithiocabamate (DMDTC), i.e., [CuDMDTC]+, since the spectra of Thi-Cu solutions (1:50) 
after 1 day are identical to the spectra of DMDTC-Cu solutions (1:25). The spectra do not 
suffer any changes for a period as long as 56 days. The results suggest that, depending on 
Thi:Cu ratio, the persistence of thiram in solution is affected by copper ions and that 
copper ions stabilise the principal product of thiram degradation, the anion DMDTC. 
However, the presence of [CuDMDTC]+ complex was not confirmed by HPLC-MS/MS 
analysis. In addition, MS/MS data confirmed the existence of other copper complexes in 
both DMDTC:Cu and Thi:Cu solutions with an excess of copper ions. 

 

 

 

                                                           
7 Adapted from: Filipe, O.M.S., Santos, S.A.O., Domingues, M.R.M., Vidal, M.M., Silvestre, A., Neto, C.P., Santos, E.B.H. 2012. 
Effect of copper ions on the degradation and persistence of thiram in aqueous solutions. In preparation. 
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8.1 Introduction 

 

There are few studies on the degradation of thiram in waters. Very recently, Gupta et 

al. (2012) conducted a study to evaluate the persistence of thiram in water and soil under 

controlled conditions and on two plants, namely, tomato and radish, in field conditions. 

According to the authors, the decay of thiram (100 mg L-1) depends upon the nature of 

medium and the environmental conditions. So, studies conducted in water at different 

temperature, pH and organic content revealed that thiram persistence decreases with the 

increase in all the three variables, and among the three variables, it is the organic matter 

which has a more pronounced effect. In both studies there is no reference to the possible 

effect of metal ions, namely copper ions. 

In our previous work (Filipe et al., 2008), data about thiram recovery from natural 

waters showed rapid thiram degradation in environmental matrices. Thiram was well 

recovered from samples when analysed immediately after spike but scarcely recovered 

when analysed one or two days after. However, if EDTA was added previously to the 

thiram spike, thiram was always completely recovered, but that did not occur if EDTA was 

added after the thiram spike. These results suggested that metal ions, namely copper ions, 

were involved in thiram degradation. 

Cu(II) based fungicides have been widely used for more than a century and many 

thousands of tons are consumed annually all over the world to prevent plant diseases 

(Borkow and Gabbay, 2005); in Portugal they are in third place among the most used 

fungicides as mentioned above. Because of its worldwide use, some considerations about 

copper effects on behaviour of some pesticides in environmental matrices have been object 

of attention (Dousser et al., 2007; Moure et al., 2007; Ting-feng et al., 2007; Liu et al., 

2009).  

Thus, the aim of this work was to examine the effect of copper ions on the 

degradation and persistence of thiram in aqueous solutions, since the literature focused on 

this effect is scarce or inexistent and Cu(II) based fungicides can be applied together or 

during the same season to agriculture crops, increasing the effectiveness of fungicidal 

activity. Moreover, the ability of dithiocarbamates to form very stable complexes with 

some transition metals is well documented (Thorn, 1962). The effect of copper ions was 

studied during a month following up the spectral changes in the range of 200 nm to 700 nm 
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of different thiram-Cu(II) mixtures in which thiram concentration was kept constant and  

the copper content varied. The identification of different complexes formed along time was 

also studied by HPLC-MS/MS. 

 

8.2 Experimental 

 

8.2.1 Chemicals and solutions 

All chemicals used were of analytical grade and ultra-pure water was obtained using a 

Milli-Q water purification system (Millipore). A 20 mg L-1 aqueous thiram stock solution 

(Thi) was prepared by previous dissolution of thiram (97%, Aldrich) in acetonitrile (HPLC 

grade, LabScan) followed by dilution with water (percentage of acetonitrile in the final 

solution always lower than 1%). Aqueous solution of 1000 mg L-1 Cu(II) was prepared  

from solid cupric perchlorate hexahydrate (> 98%, Fluka). Thiram standard solutions, 2.0 

mg L-1 were prepared with increasing copper contents by dilution of both 20 mg L-1 thiram 

and 1000 mg L-1 Cu(II) standard solutions, obtaining the following Thi:Cu(II) ratios: 1:0, 

1:0.3, 1:1, 1:3, 1:10, 1:25 and 1:50. A 0.5 g L-1 sodium dimethyldithiocarbamate stock 

solution (DMDTC) was prepared by dilution with water of commercial DMDTC solution (~ 

40% in H2O, Fluka). DMDTC standard solutions 2.0 mg L-1 with increasing copper 

contents were prepared by dilution of both 0.5 g L-1 DMDTC and 1000 mg L-1 Cu(II) 

standard solutions, obtaining the following DMDTC:Cu(II) ratios: 1:0, 1:0.3, 1:1, 1:3, 1:10 

and 1:25. Thiram aqueous solutions 11 µg L-1 were also prepared in the presence and 

absence of Cu (II). Aqueous solution of EDTA 0.05 mol L-1 was prepared from the 

ethylenediaminetetraacetic acid disodium salt dihydrate (Merck).  

 

8.2.2 Apparatus  

UV-Vis spectra of 2.0 mg L-1 thiram standard solutions and 2.0 mg L-1 DMDTC 

standard solutions and respective mixtures with ion copper were recorded in a UV-Vis 

Shimadzu Spectrophotometer using a 1.00 cm cell. pH values of the solutions were 

measured using the pH-meter. Thiram was determined by HPLC-UV as described in 

Chapter 3 (section 3.3.3). 

 



Effect of copper ions in he degradation and persistence of thiram in environmental matrices 

 

164 

8.2.3 C18-SPE-HPLC-UV procedure 

The pre-concentration procedure used for 1L of thiram aqueous solutions 11 µg L-1 is 

described previously in Chapter 7, section 7.2.2. 

 

8.2.4 Identification of degradation products by HPLC-MS/MS  

The HPLC system consisted of a variable loop Accela autosampler (set at a 

temperature of 16 °C), an Accela 600 LC pump and an Accela 80 Hz PDA detector 

(Thermo Fisher Scientific, San Jose, Ca, USA). Analyses were carried out by using a 

Discovery® C18 (150×2.1 mm, 5 µm) column supplied by Supelco (Agilent Technologies, 

Waldbronn, Germany). The separation of the compounds was carried out with a mobile 

phase of acetonitrile:water (70:30, v/v) with 0.1% HCOOH at a flow rate of 0.2 ml min−1, 

at 25ºC. The injection volume in the HPLC system was 15 µl. Single online detection was 

carried out in PDA detector, at 270 nm, and UV spectra in a range of 200-600 nm were 

also recorded.  

The HPLC was coupled to a LCQ Fleet ion trap mass spectrometer (ThermoFinnigan, 

San Jose, CA, USA), equipped with an ESI source and operating in positive mode. The 

flow rate of nitrogen sheath and auxiliary gas were 40 and 5 (arbitrary units), respectively. 

The spray voltage was 5 kV and capillary temperature 300°C. The capillary and tune lens 

voltages were set at -28 V and -115 V, respectively. CID8-MSn experiments were 

performed on mass-selected precursor ions in the range of m/z 100–1000. The isolation 

width of precursor ions was 1.0 mass unit. The scan time was equal to 100 ms and the 

collision energy was optimized between 15-40 (arbitrary units), using helium as collision 

gas. The data acquisition was carried out by using Xcalibur® data system 

(ThermoFinnigan, San Jose, CA, USA). 

 
8.3 Results and Discussion 

 
8.3.1 Evaluation of thiram stability in aqueous solution  

To evaluate thiram stability in an aqueous solution, UV-Vis spectra and pH values of 

a 2.0 mg L-1 thiram aqueous solution were monitored during a month (Figures 8.1A and 

8.1B, respectively). 

                                                           
8 Collision-induced dissociation (CID): fragmentation method for MS/MS 
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Figure 8.1 - (A) UV-Vis spectra of a 2.0 mg L-1 thiram aqueous solution registered during ca. a 
month: (▬) time 0 to 5 days, (▬) 7, (▬) 11, (▬) 19 and (▬) 34 days; (B) pH values of a 2.0 mg 
L-1 thiram aqueous solution along solution aging time. 
 

As shown in Figure 8.1, the spectrum of a thiram fresh solution exhibits 2 peaks, one 

at 220 nm and other at 272 nm, showing no significant changes up to the 7th storage day 

(Figure 8.1A, curve a). For periods longer than one week, the absorbance at 272 nm begins 

to decrease and a new peak appears at 207 nm (Figure 8.1A, curve ─). From the 11th day, 

there is a sharp rise of pH, suggesting a reaction with the H+ consumption, in accordance to 

the reactions presented in Scheme 8.1 (Thorn and Ludwig, 1962).  

 

Scheme 8.1 

 

 

 

 

 

 

 

 

 

 

 

 

The observed changes suggest that, at room temperature and in the absence of light, 

thiram solutions prepared in milli-Q water, keep stable during the first 7 days of storage. 

From that day on, thiram degrades following a 1st order kinetics (R2 = 0.9591 for the non-
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linear regression analysis). Using the data between 7 and 42 days a kinetic rate constant of 

0.057 ± 0.006 d-1 and a half life of 12 days were obtained. Considering the initial period of 

thiram stability, a global half life time of 19 days was obtained for thiram in milli-Q water, 

meaning an improved stability with respect to thiram solutions prepared in natural waters 

(Filipe et al., 2008). According to this previous work, thiram recovery from spiked river 

samples decreases with the contact time between thiram and water. Significant decreases 

are observed when thiram is analysed one day after thiram spiking, though, nearly total 

recoveries were observed if EDTA was added previously to thiram spike, clearly indicating 

the metallic ion interference. 

 

8.3.2 Changes in the composition of thiram:copper solutions along time  

Figure 8.2 shows the modifications observed on the UV-Vis spectrum of a 2.0 mg L-1 

thiram solution due to the copper ion presence in solutions with 1:0.3 and 1:1 Thi:Cu(II) 

ratios. The UV-Vis spectra, obtained on the 1st day of thiram and copper mixing, show two 

new bands, one at 420 nm, giving rise a yellowish colour of the solution, and other at 260 

nm, with the simultaneous disappearance of the characteristic thiram band at 272 nm. The 

increase of the band at 420 nm with the increase of copper content in the mixture suggests 

that a reaction between thiram and copper ion (Figure 8.2, 1st day) occurs, while the 

enhancement of this band indicates the progress of the reaction up to the 7th day (Figure 

8.2, 7th day). On the 14th day after the mixture preparation, an orange precipitate is formed 

that, settling down, gives rise to the elimination of the bands at 420 nm and 260 nm in the 

UV-Vis spectra of the supernatant solutions which exhibit the same spectral features of 

pure thiram solutions after the same ageing time (Figure 8.2, 14th day). At the end of one 

month, the precipitates were removed by filtration and redissolved in acetonitrile and both 

bands at 260 nm and 425 nm were observed. The solutions were also analysed by HPLC, 

being the chromatograms obtained characterized by a peak with the retention time 

characteristic of the Thi-Cu(II) complex and the absence of the thiram peak (see Chapter 7, 

section 7.3.3)  
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Figure 8.2 – UV-Vis spectra of a 2.0 mg L-1 thiram solution in the presence of copper ion 
registered at 1, 7, 14 and 34 days after thi:Cu(II) mixing, (▬) thiram, (▬) thi:Cu 1:0.3 and (▬) 
thi:Cu 1:1 ratio (UV-vis spectra of 3th and 4th graphs were obtained after filtration).  
  

In order to study the effect of higher contents of copper, thiram-Cu(II) mixtures of 

1:3, 1:10, 1:25 and 1:50 Thi:Cu(II) ratios were prepared (Figure 8.3). The UV-Vis spectra, 

registered during the 1st day of mixing show the increase of the absorption band at 420 nm 

with increasing copper content. That band seems to reach a maximum intensity for the 1:25 

ratio, exhibiting a shoulder for shorter wavelength, while for the 1:50 ratio, there is the 

replacement of the band at 420 nm by a new band at 385 nm. For longer periods of time, 

the replacement of the band at 420 nm is also observed for the other Thi:Cu ratios, so that, 

at the end of the 14th day, only the bands at 385 and 260 nm are present in the respective 

UV-Vis spectra (Figure 8.3, 14th day).  
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Figure 8.3 – UV-Vis spectra of a 2.0 mg L-1 thiram solution in the presence of copper ion 
registered at 1, 7, 14 and 34 days after thi:Cu(II) mixing; (▬) thiram, (▬) thi:Cu 1:3, (▬) thi:Cu 
1:10, (▬) thi:Cu 1:25 and (▬) thi:Cu 1:50 ratio.   
 

Therefore, in the presence of an excess of thiram (Thi:Cu ratios 1:0.3) or in an 

equimolar ratio (Thi:Cu ratio 1:1) a complex between thiram and copper ions, responsible 

for the band at 420 nm, is formed, precipitating at the end of some time. The fact that, for 

higher copper contents no precipitate was observed, suggests that the band at 385 nm 

corresponds to another complex, probably with some product of thiram degradation. Some 

experiences were then performed with dimethyldithiocarbamate anion (DMDTC) which, 

according to the literature (Roberts, T.R., Hutson D.H. 1999), is considered as the principal 

product of thiram degradation.   

Figure 8.4 shows the spectra of the 2.0 mg L-1 DMDTC solution registered during 

one month. The spectrum of the solution after preparation exhibited 2 bands: one at 254 

and the other at 280 nm, showing both a significant decrease at the end of the 1st day, 

coincident with the appearance of a band at ca. 207 nm, previously observed for thiram 

degradation (Figure 8.1A). Complete degradation is observed in 2 days (Figure 8.4, curve 

d). 
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Figure 8.4 – UV-Vis spectra of a 2.0 mg L-1 DMDTC solution registered with time: (a) time 0, (b), 
3 hours, (c) 1, (d) 2 to 28 days. 
 

It is interesting to notice that, as can be seen in Figure 8.1A, the bands at 250 and 280 

nm, characteristic of DMDTC do not appear in the spectra of thiram solutions after several 

ageing times, suggesting that, if DMDTC is a degradation product of thiram, it is only an 

intermediate which quickly degrades into smaller molecules, in agreement with its fast 

degradation observed in water. In order to clarify the possibility of the degradation of the 

thiram in the presence of an excess of copper and consequent complexation and 

stabilization of the degradation product by copper ions, some experiences were performed 

with solutions containing 2.0 mg L-1 DMDTC and copper ion at the following DMDTC:Cu 

molar ratios: 1:0.3; 1:1, 1:3, 1:5, 1:10 and 1:25. Figure 8.5 shows the changes of the UV-

Vis spectra of a 2.0 mg L-1 DMDTC solution due to the presence of copper ions at 1:0.3 

and 1:1 DMDTC:Cu(II) ratios. 
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Figure 8.5 – UV-Vis spectra of a 2.0 mg L-1 DMDTC solution in the presence of copper ion 
registered at 0, 1, 11 and 28 days after DMDTC:Cu(II) solutions preparation. (▬) DMDTC, (▬) 
DMDTC:Cu 1:0.3 and (▬) DMDTC:Cu 1:1 ratio.       

 

The UV-Vis spectra, obtained immediately after DMDTC:Cu(II) mixing (t=0 days), 

exhibit three new bands, one at 450 nm, giving rise to a yellowish colour, other at 303 and 

another at 275 nm, with the simultaneous disappearance of the characteristic DMDTC 

bands at 254 and 280 nm. In fact, in the presence of an excess of DMDTC, i.e. 

DMDTC:Cu(II) 1:0.3 ratio, these three bands remain for 28 days, moreover after the 28th 

day the absorbance of these three bands is still about 54-70% of the original absorbance 

(Figure 8.5, 28th day). This suggests that DMDTC is completely complexed with copper 

ions and that the complexes formed are much more stable than free DMDTC. However, a 

different behaviour is observed if there is an equilomar DMDTC:Cu(II) ratio; the spectra 

registered immediately after DMDTC:Cu(II) mixing (Figure 8.5, t = 0 day) show the same 

bands at 450 and 303 nm, but the band at 275 appears slightly shifted to 262 nm. In fact, at 

the end of 28 days the band at 450 nm completely disappears, the band at 303 nm 

decreases and a new band appears at 385 nm. In addition, after the 28th day, the absorbance 

of the band at 262 nm is still about 25% of the original absorbance (Figure 8.5, 28th day).  
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Experiences with higher copper contents were performed in order to investigate the 

Cu(II) complexes which are formed and their changes along time. Figure 8.6 shows the 

UV-Vis spectra for the mixtures of 1:3, 1:10 and 1:25 of DMDTC:Cu(II). The UV-Vis 

spectra, registered during one month for the DMDTC:Cu(II) 1:10 and 1:25 show only the 

bands at 385 and 262 nm, even at time zero (Figure 8.6, time 0 hours). For a 

DMDTC:Cu(II) 1:3 ratio and time zero it is visible, besides the bands at 262, 303 and 

450nm, a new shoulder at 385 nm; for longer periods of time, the 450 nm band 

replacement is observed, so that, at the end of the 28th day, only the bands at 385 and 260 

nm are present in the respective UV-Vis spectra (Figure 8.6, 28th day).  
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Figure 8.6 – UV-Vis spectra of a 2.0 mg L-1 DMDTC solution in the presence of copper ions 
registered at 0, 1, 11 and 28 days after solutions preparation.(▬) DMDTC, (▬)DMDTC:Cu 1:3, 
(▬)DMDTC:Cu 1:10, (▬) DMDTC:Cu 1:25 ratio.   
 

Table 8.1 shows the percentage of absorbance decrease (% Absd) of the bands at 260 

and 385 nm during 28 days for DMDTC:Cu(II) 1:3, 1:10 and 1:25 ratios.  
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Table 8.1. Percentage of decrease (%Absd) in the absorbance intensity of the bands at 260 and 385 
nm after 28 days for DMDTC:Cu(II) 1:3, 1:10 and 1:25 ratios. 
 

Absorbance λλλλ peak 

(nm) DMDTC:Cu 
0 1

st
 11

st
 28

th
 

% Absd 

1:3 0.152 0.135 0.097 0.075 51 

1:10 0.198 0191 0.171 0.163 18 260 

1:25 0.203 0.208 0.204 0.190 6.4 

1:3 0.026 0.036 0.023 0.017 53 

1:10 0.038 0.044 0.037 0.035 20 385 

1:25 0.040 0.047 0.042 0.038 19 

 

After 28 days the absorbance of both bands is still about 47-94% of the original 

absorbance, depending of the DMDTC:Cu(II) ratio. Thus, the results obtained allow us to 

conclude that in the presence of a high excess of copper ions, DMDTC:Cu 1:25, the 

complexes responsible for the absorption at 260 and 385 nm are immediately formed and 

more than 80% of their initial concentration still remains in solution after 28 days, 

suggesting a high persistence of these complexes (as we can also see in Figure 8.7).  
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Figure 8.7 - UV-Vis spectra of (A) 2 mg L-1 DMDTC solution and (B) DMDTC:Cu 1:25 solution 
registered at time zero (▬) and 28th day after solutions preparation (▬). 
 

Comparing the DMDTC-Cu spectra (Figure 8.6, 28th days) with the spectra 

previously obtained for Thi-Cu (Figure 8.3, > 30th days) we conclude that they are very 

similar for high copper ion ratios. At the end of approximately 30 days after the 

preparation of the solutions both spectra exhibit only two bands at 260 and 385 nm. As two 

molecules of DMDTC are equivalent to one thiram molecule in terms of electron-donor 

atoms, we compared the spectra of solutions containing Thi:Cu 1:50 with the spectra of 

solutions DMDTC:Cu 1 1:25 (Figure 8.8). All the spectra exhibit two bands at 262 and 385 
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nm whose absorbances are maintained approximately constant during 2 months of the 

solution preparation. Thus, we can conclude that in the presence of an excess of copper 

ions there is a degradation of thiram to DMDTC (or DMDTC degradation products) which 

form highly persistent complexes with copper ions. Weissmahr et al., (1998) obtained a 

spectrum identical to the one of Figure 8.7B for a aqueous solution of DMDTC:Cu 1:100 

and they attributed it to a complex DMTC:Cu 1:1, i.e. [CuDMDTC]+. However the authors 

did not perform any further structural characterization to identify the complex formed.  
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Figure 8.8 - UV-Vis spectra of a DMDTC and Thi solution in the presence of copper ions 
registered at different days after solutions preparation. [DMDTC] = [Thi] = 2 mg L-1; (▬) Thi:Cu 
1:50, (▬) DMDTC:Cu 1:25. 
 

8.3.3 Copper influence on thiram persistence in aquatic environment  

In order to clarify the attribution of the UV-Vis bands observed in the solutions of 

thiram:Cu and the contribution of copper to the degradation of thiram at more realistic 

concentrations for natural waters, several experiments with 1 L of 11 µg L-1 thiram 

solution in the presence of an excess of copper (Thi:Cu ratio 1:25) were prepared and left 

to equilibrate during one and five days. Thiram solutions without copper ions were also 
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prepared for comparison. The effect of the addition of an excess of EDTA to the Thi:Cu 

solutions after 1 and 5 ageing days was also studied. After the equilibration time the 

samples were analysed by HPLC-UV after SPE pre-concentration and the percentage of 

thiram recovery was evaluated. According to the UV-Vis spectra showed previously in 

Figure 8.3, the greater the Cu:Thi ratio, the earlier the band at 420 nm “disappears” and, 

consequently, the band at 385 nm appears. For Thi:Cu 1:25 solutions, the band at 385 nm 

is evident at the 4th day. So, the ageing times 1 and 5 days were chosen since they 

correspond to the presence in the spectrum of just one of the bands, 420 or 385 nm, and 

those ageing times are shorter than the time needed for the beginning of thiram degradation 

when it is alone in solution. However, an equilibration time of 22 days was also performed. 

Thus, EDTA was added to the solutions after the ageing time and the solution was 

analysed by HPLC-UV after SPE pre-concentration. The recoveries of thiram are shown in 

Table 8.2.  

 

Table 8.2. Thiram recovery of 1 L of 11.0 µg L-1 thiram solution in the presence of an excess of 
copper (Thi:Cu ratio 1:25) 
 

Sample 
Recovery 

(%) 
Sample 

Recovery 

(%) 
Sample 

Recovery 

(%) 

(Thi)1d 
94.7 ± 1.5 

(n=4) 
(Thi)5d 

93.9 ± 0.14 
(n=2) 

(Thi)22d 
50.8 ± 1.0 

(n=2) 

(Thi + Cu)1d <LOD (n=3) (Thi + Cu)5d <LOD (Thi + Cu)22d <LOD (n=2) 

[(Thi + Cu)1 + 
EDTA]1d 

91.3 ± 2.2 
(n=2) 

[(Thi + Cu)5d + 
EDTA]1d 

59.8 ± 3.0 
(n=2) 

[(Thi + Cu)22d + 
EDTA]1d 

<LOD (n=2) 

 

From the results of Table 8.2 we can conclude that after 1 day of equilibration a 

complex Thi-Cu(II) is present in solution, since thiram is completely recovery (> 90%) 

after EDTA addition. When EDTA is added to Thi:Cu solutions after 5 days of 

equilibration, only approximately 60% of free thiram is recovered, which means that part 

of the thiram was degraded and the degradation product can complex with copper ions. 

These solutions were too diluted to obtain their UV-Vis spectra. The fact that some thiram 

has been recovered, means that the disappearance of the band at 420 nm was probably not 

completed, suggesting that the degradation of thiram is slower than observed in the 

solution of Thi:Cu containing 2 mg L-1 of thiram. Indeed, we made the same experiments 

described in Figure 8.3 with Thi:Cu 1:25 but using 0.2 mg L-1 of thiram instead of 2 g L-1, 

and we observed that after 7 days a band at 385 nm was present but a shoulder at 420 nm 
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was still observed. Thus, in conclusion, the band at 420 nm can be attributed to a complex 

of thiram with copper, 1:1 as will be confirmed by mass spectra in the following section. 

This complex degrades into other copper complex (or complexes) which gives raise to the 

band at 385 nm. The degradation rate of the complexes increases when the Thi:Cu ratio 

decreases and when the concentrations of the solutions are higher.  

 

8.3.4 Identification of the complexes by HPLC-MS/MS 

A Thi:Cu (1:3) solution in Milli-Q water was analysed 6 hours and 4 and 10 days 

after its preparation by HPLC-MS and HPLC-MS/MS. Simultaneously, a thiram solution 

without copper ions (2 mg L-1) was used as control. Table 8.3 summarizes the number of 

compounds obtained at each retention time, identified by HPLC-MS, as well as the mass of 

each molecular ion and the product ions obtained by HPLC-MS/MS in further MSn 

fragmentation. In some cases, it was necessary to confirm m/z peaks and their 

fragmentation patterns by direct injection in the MS/MS, since the solutions were too much 

diluted. Since, in the previous section, the results obtained allow us to conclude that in the 

presence of an excess of copper ions there is a degradation of thiram to DMDTC (or 

DMDTC degradation products) which complexes with copper ions, a DMDTC:Cu 1:25 

solution was also prepared and the HPLC-MS analysis of the solution was performed (cf. 

Table 8.3).  

 

Table 8.3. Thi:Cu (1:3) and DMDTC:Cu (1:25) byproducts identified and corresponding HPLC-
MS/MS and MSn fragmentation profiles 
 

Solution Compound  Retention 

time (min) 

[M]
+ 

m/z 

MS
2
 

m/z 

MS
3 
m/z MS

4
 

m/z 

control Thiram (1)  241 196,152,120,88 120  

 2.74     

Thiram (1) 3.07 241 196,152,120,88 152,120,88  

2 3.33 
303 

 

260 (15) 
227 (30) 
202 (40) 

184 (100) 
151 (20) 
88 (25) 

n.d 
183,151,124,88 

184 
88 

108 

 
108 
88 

T
h

i:
C

u
 (

6
 h

) 

3 4.68 303 

260 (15) 
227 (30) 
202 (40) 

184 (100) 
151 (20) 
88 (25) 

n.d 
183,151,124,88 

184 
88 

108 

 
108 
88 
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Table 8.4. Thi:Cu (1:3) and DMDTC:Cu (1:25) byproducts identified and corresponding HPLC-
MS/MS and MSn fragmentation profiles (continuation). 
 

Solution Compound  Retention 

time (min) 

[M]
+ 

m/z 

MS
2
 

m/z 

MS
3 
m/z MS

4
 

m/z 

4 2.62 271 Weak signal 

2 2.96 303 

260 (10) 
227 (30) 
202 (40) 

184 (100) 
151 (15) 
88 (25) 

202,184 
183,151,124 

184 
88 

108 

 
108 
88 

T
h

i:
C

u
  

(4
 d

) 

3 4.40 303 

260 (10) 
227 (30) 
202 (40) 

184 (100) 
151 (15) 
88 (25) 

202,184 
183,151,124 

184 
88 

108 

 
108 
88 

4 2.62 271 
253 (100) 
239 (20) 
88 (80) 

235,211  

2 2.96 303 
259 (30) 
227 (25) 

184 (100) 

  

5  315* 274 230,212 168 

6  204* 
187 (100) 
163 (60) 

169 
148,122 

137,123 
122,104 

7  190* 145 104  

T
h

i:
C

u
 (

1
0

 d
) 

8  145* 104   

8 145 104   

7 
1.93 

190 145 104  

6 2.10 204 163 148,122 122,104 

4 2.62 271 253,144 235  

D
M

D
T

C
:C

u
 

2 2.96 303 

262 (10) 
227 (30) 
202 (40) 

184 (100) 
151 (25) 
88 (30) 

  

* direct injection in MS/MS for fragmentation; m/z in bold was subjected to MSn analysis 

 

As we can see in Table 8.3, it is possible to identify different compounds in the 

Thi:Cu 1:3 solution depending on the ageing period. For the solution analysed after 6 hours 

and 4 days there were no differences concerning the compounds identified (compounds 2 

and 3, m/z 303), since the fragmentation profiles are the same. However, it was possible to 

identify an additional ion at m/z 271 in the solution after 4 days but the signal was too 

weak to do its fragmentation. The abundance of this ion (m/z 271, compound 4) intensifies 
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after 10 days and the M+ at m/z 303 (compound 2) almost disappears; simultaneously other 

compounds with M+ at m/z 315, 204, 190 and 145 (compounds 5,6,7 and 8) were 

identified. Besides, comparing the HPLC-MS data of the DMDTC:Cu 1:25 solution with 

the HPLC-MS data of Thi:Cu 10 days solution, we obtained the same compounds, i.e. 

compounds 2,4,6,7 and 8. The MS spectra of both solutions were also similar and quite 

different from the MS spectrum of the initial Thi:Cu solution (Figure 8.9).  
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Figure 8.9 – ESI-MS spectra of a (A) 6 h Thi:Cu 1:3 solution, (B) 10 days Thi:Cu 1:3 solution and 
(C) DMDTC:Cu 1:25 solution. 
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These results are in agreement with the results obtained by Uv-Vis spetrophotometry 

in section 8.3.2. In fact, comparing the UV-Vis spectrum of a 10 days Thi:Cu 1:3 solution 

with the spectrum of the DMDTC:Cu (1:25) solution we can confirmed that they are 

similar (Figure 8.10). Since the MS spectra were done in the positive mode, the anion of 

DMDTC is not detected. 
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Figure 8.10 - UV-Vis spectra of a DMDTC and Thi solution in the presence of copper ions 
registered at different days after solutions preparation. [DMDTC] = [Thi] = 2 mg L-1. 

 

A tentative of identification of the several products formed in the Thi:Cu 1:3 solution 

along time was performed based in each MSn fragmentation profile. After 6 hours, the 

aqueous Thi:Cu solution exhibits the presence of thiram (compound 1, [M+H]+ ion at m/z 

241) confirmed by the HPLC-MS analysis of thiram aqueous solution (2 mg L-1) used as 

control. The identification of thiram (1) was also confirmed by the MSn fragmentation 

profile (Scheme 8.2). Thus, MS2 of [M+H]+ ion at m/z 241 shows product ions at m/z 196, 

152 and 120, corresponding, respectively, to the loss of the dimethylamine group (-45 Da, 

HN(CH3)2), the loss of the two dimethyamine groups (-45 Da, HN(CH3)2 and -44 Da, 
•N(CH3)2) and the loss of the dimethyldithiocarbamate (-121 Da, acid N,N-

dimethyldithiocarbamic). In addition, the MS3 of the product ion at m/z 196 gave a product 

ion at m/z 120, due to the loss of the carbon disulphide (-76 Da, -CS2). The product ion at 

m/z 120, by the loss of a sulphur atom (-32 Da), gives rise the product ion at m/z 88 

identified as N,N-dimethylthioformamide. These product ions at m/z 196, 120 and 88 have 
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been also identified in mass spectra of thiram obtained by other authors using EI-MS9 

(Kodoma et al.1999) and 10DESI-MS2, Cajka et al., 2011). 

 

Scheme 8.2 

Proposed fragmentation pathways for Thiram (bis(dimethylthiocarbamoyl) disulfide) (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compounds 2 and 3 (m/z 303) were identified as Thi:Cu(I) complexes, and appear at 

two different retention times in the HPLC-MS, as can be seen in Table 8.3. The MSn 

fragmentation pattern is the same for both compounds 2 and 3, suggesting that these two 

complexes can be isomers. It is worth to notice that although we are in the presence of a 

solution containing Cu(II), meaning that the complex formed in solution would be 

[CuThi]2+, the molecular ion m/z 303 was identified as a Cu(I) complex, i.e. [CuThi]+. This 

                                                           
9 EI-MS: Electron Impact Mass Spectrometry;  
10 DESI-MS2: Desorption Electrospray Ionization Mass Spectrometry. 
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means that in some way, during the ionization process (ESI), Cu(II) ions can capture one 

electron being reduced to Cu(I): 

Cu2+ (aq) + Thi (aq)                  [CuThi]2+ (aq)                          [CuThi]+ (g)  

This reduction behaviour has already been described in literature for Cu(II) pyridil chelates 

(Gianelli et al. 2001), Cu(II)-resveratrol complexes (Tamboli et al., 2011) and dinuclear 

Cu(II) complexes of isomeric bis-(3-acetylacetonate)benzene ligands (Rancan et al., 2012). 

According to the literature this process can be due to one charge transfer between the 

solvent and the metal complex in the gas phase. It is worth highlighting that the 

electrospray ion source can be viewed as a particular electrolytic cell, in which electrolysis 

maintains the charge balance allowing the continuous production of charged droplets 

(Blades et al., 1991, Kebarle and Verkerk, 2010). The identification of the Thi:Cu(I) 

complex (compounds 2 and 3) was confirmed by the MSn fragmentation profile (Scheme 

8.3). Thus, MS2 of the compounds 2 and 3 (m/z 303) gives the product ions at m/z 260, 227, 

202, 184, 151 and 88: 

product ion at m/z 260: corresponds to the loss of N-methylmethanimine (-43 Da, -

CH2NCH3), and its MS3 gives a product ion at m/z 184 attributed to the complex DMDTC-

Cu(I), which is formed by loss of carbon disulphide (-76 Da, -CS2); 

product ion at m/z 227: attributed to the loss of carbon disulphide (-76 Da, -CS2) (Scheme 

(8.4)). Besides, the MS3 spectrum of the product ion at m/z 227 gives rise to three product 

ions at m/z 183, 151 and 124, which may correspond, respectively, to the loss of 

dimethylamine (-44 Da, -•N(CH3)2), carbon disulphide (-76 Da, -CS2) and to the loss of a 

neutral with 103 Da; 

product ion at m/z 151: may correspond to a copper complex with 2 dimetilamine radicals 

formed from the original compounds 2 and 3 (m/z 303) by the loss of two molecules of 

carbon disulphide (-152 Da) and it is also observed in the MS3 of the product ion at m/z 

227.  

the product ion at m/z 88: identified as N,N-dimethylthioformamide radical, was detected 

not only in the MS2 of compounds 2 and 3 (m/z 303)  but also in the MS3 of the product ion 

at m/z 227 (fragmentation (a) of scheme 3) and in the MS3 of the product ion at m/z 184. 

 

 

 

ESI 

(ionization) 
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Scheme 8.3 

Proposed fragmentation pathways for Thi:Cu(I) complex (2, 3) 
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Scheme 8.4 

 Propose mechanism for the loss of CS2 from the M+ ion at m/z 303  

 

 

 

After 10 days, as we previously refereed the Thi:Cu complex (m/z 303) is almost 

absent and the most abundant molecular ions have m/z 271 (20%), 204 (20%), 190 (100%) 

and 145 (70%). Molecular ions at m/z 271 (very weak signal), 204 (100%), 190 (50%) and 

145 (50%) were also detected in the HPLC-MS analysis of the DMDTC:Cu solution. 

These results are not in agreement with the degradation of Thi:Cu into a [CuDMDTC]+ 

complex as suggested by UV-Vis analysis (section 8.2). Indeed, none of the molecular ions 

detected can be attributed to this complex. If, as occurred with the Thi:Cu complex, the 

Cu(II) ions capture one electron being reduced to Cu(I) during the ionization process (ESI), 

the DMDTC:Cu complex would be uncharged and not detected. However the MS/MS data 

confirm the existence of other copper complexes in the solution, since the molecular ions 

exhibit the typical copper isotope pattern. 

The compound 4 (m/z 271), which was only detected in the solution of Thi:Cu after 4 

days ageing and in the DMDTC:Cu solution but in a very small relative percentage, 

presents the MSn fragmentation pattern shown in Scheme 8.5 and may be assigned to a 

copper complex formed with a thiram molecule which was previously oxidised. It is worth 

to notice that this oxidation product of thiram was also detected during photodegradation 

of thiram aqueous solutions as will be shown in Chapter 9.  The MS2 of the molecular ion 

at m/z 271 gives the product ions at m/z 253, 239, 211 and 88: 

product ion at m/z 253: corresponds to the loss of one molecule of water (-18 Da, H2O), 

which MS3 gives a product ion at m/z 235, due to the loss of one other molecule of water (-

18 Da, H2O) and a product ion at m/z 211 attributed to the loss of -42 Da; 

product ion at m/z 239: can be assigned to the loss of one sulphur (-32 Da); 

product ion at m/z 211: can be attributed to the loss of carbonyl sulphide (-60 Da, OCS). 
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Further studies are under way in order to identify the major compounds at m/z 204, 

190 and 145 that were observed in the MS spectrum, and to which the complex 

thiram:copper gives rise over time and which are also present in the DMDTC:Cu solution. 

 

Scheme 8.5 

Proposed fragmentation pathways for Compound 5, a copper complex formed with 

oxidised thiram 
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8.4 Conclusions 

In the present work the effect of copper ions on the degradation and persistence of 

thiram in aqueous solutions was assessed. For thiram solutions 2 mg L-1 containing an 

excess of thiram, a copper complex with thiram is slowly formed, which precipitates after 

some time. The results obtained for solutions containing an excess of Cu(II), which is the 

situation most probable in natural waters, it was observed that a complex Thi:Cu 1:1 is 

formed, as confirmed by HPLC-MS/MS, and that complex degrades at a rate which  

depends on the ratio Thi:Cu and on the initial concentration of the solutions. For a 2 mg L-1 

solution containing a Thi:Cu ratio of 1:3, this complex was still present in solution after 7 

days and then started to degrade, but for a ratio 1:50, the complex was immediately 

degraded during the first day after preparation of the solution, giving rise to copper 

complexes which are quite persistent, since no changes were observed in their UV-Vis 

spectra during a period of time as long as 56 days. The UV-Vis spectra of Thi-Cu solutions 

(1:50) after 30 or 56 days are identical to the UV-Vis spectra of DMDTC-Cu solutions 

(1:25), suggesting that the degradation of the Thi:Cu complex gave rise to a very persistent 

DMDTC:Cu complex 1:1. However, the analysis of the degraded solutions of Thi:Cu 

solutions 1:3 by HPLC:MS revealed the presence of other degradation products which can 

be formed.  

These results have important implications on the evaluation of risks associated to the 

presence of thiram in waters, because of the high persistence of the degradation products 

formed in the presence of an excess of copper ions. 
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Chapter 9 
 

9 Photodegradation of the fungicide thiram in 
aqueous solutions. Kinetic studies and identification of 

the photodegradation products by HPLC-MS/MS11 
 
 
 
 
 
 

In this study, the relevance of photodegradation processes on the persistence of the 
fungicide thiram in waters was investigated. Different experiments were carried out, under 
simulated solar irradiation, using synthetic aqueous solutions of thiram and river water 
spiked with thiram. In all the experimental conditions studied, the photodegradation of 
thiram followed a pseudo-first order kinetics. The comparison of the kinetics of 
photodegradation of pure thiram (Thi-P) with one of its commercial formulations (Thi-F) 
suggested that the formulation components have a significant effect on the 
photodegradation of thiram. The photodegradation of thiram in aqueous solutions 
containing commercial humic acids (HA) or fulvic acids (FA) from river water was also 
studied. The results allowed us to conclude that FA and HA enhance the photodegradation 
rate of thiram, however the rate constant values for the degradation of thiram in the 
presence of HA and FA are similar. In addition, photodegradation of thiram in natural river 
water showed that there is a significant (p<0.0001) enhancement of the degradation rate 
constant of thiram photodegradation relatively to Milli-Q water, corresponding to a 
decrease of about 38% in its half-life time. The enhancement of the degradation rate in 
river water seems to be higher than that observed in the presence of fulvic acids, 
suggesting that beyond organic matter other natural river components can be influencing 
the photodegradation of thiram. HPLC-MS/MS was used to identify the products of the 
photodegradation of thiram in aqueous solution. Three compounds were identified and 
their structure was corroborated by the MSn spectra fragmentation profile. The main 
photodegradation pathway of thiram involves the oxidation of C=S bonds to C=O. Detailed 
mechanism for the formation of the products from thiram photodegradation are proposed 
and discussed.  
 

 

 

                                                           
11 Adapted from: Filipe, O.M.S., Santos, S.A.O., Domingues, M.R.M., Vidal, M.M., Silvestre, A., Neto, C.P., Santos, E.B.H. 2012. 
Photodegradation of the fungicide thiram in aqueous solutions. Kinetic studies and identification of the photodegradation products by 
HPLC-MS/MS. Chemosphere. Under revision. 
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9.1 Introduction 

 

The environmental impact of organic pollutants, such as pesticides, has raised a 

growing concern over the years, mainly due to the world wide application of intensive 

agriculture methods and to the development of the agrochemical industry. Thus, 

information about possible degradation pathways of pesticides in the environment is 

important in order to understand their transport and fate in surface and ground waters and 

to identify the degradation products to which they can give rise. Photodegradation is one of 

the factors that can affect the environmental behaviour and persistence of organic 

pollutants mainly in surface waters exposed to sunlight. In fact, many studies report the 

photodegradation of organic pollutants and how the natural organic and inorganic major 

components of natural waters can influence their degradation (Guerard et al., 2009, Mao et 

al., 2011). Once present in water systems the pesticides can undergo direct photochemical 

transformation when exposed to sunlight by direct photons absorption, or indirect 

photoreactions i.e., photo-transformations indirectly caused by the excitation of other 

chromophoric compounds present in natural waters.  

In spite of the wide thiram application, and in comparison to other pesticides, there is 

a lack of information available in the literature about photodegradation of thiram in aquatic 

matrices (Thomas, 2001; Harino and Langston, 2009). According to the literature, thiram is 

degraded within 24 h by UV irradiation (> 290 nm) and within 7 days by sunlight, in 

natural waters (Samanidou et al., 1988). Furthermore, Samanidou et al (1988) observed 

that the characteristics of the water body affect the degradation rate of thiram, i.e., the 

degradation rate of thiram decreases in the order river>lake>sea water (Samanidou et al., 

1988). These authors referred the occurrence of two non identified photodegradation 

products. As far as we know there are no other studies of photodegradation of thiram by 

sunlight in natural waters or in aqueous solutions containing natural photosensitizers, such 

as humic substances (HS). However, some works have been published about the TiO2 

photocatalytic degradation of thiram (Haque and Muneer, 2005; Thakare and Bhave, 2005; 

Kaneco et al., 2009). Haque and Muneer (2005) have identified three degradation products, 

but Kaneco et al. (2009) observed the formation of dimethylamine and monomethylamine 

and proposed the formation of intermediate products different from those identified by 

Haque and Muneer (2005).  
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Thus, the pathways of photodegradation of thiram in water and the influence of 

natural organic matter have not been studied and even the products formed by 

photocatalytic degradation in the presence of TiO2 are not clarified. The main objective of 

the present work is to fulfil this lack of information about pathways and products of thiram 

photodegradation in natural waters. Thiram photodegradation in aqueous solutions was 

studied, pure thiram (Thi-P) was compared to its commercial formulation (Pomarsol Ultra 

D, Bayer) (Thi-F) and the influence of humic substances, major components of dissolved 

organic matter in natural waters, was evaluated. Then, thiram photodegradation in natural 

river water was also studied. 

 

9.2 Experimental 

 

9.2.1 Reagents and solutions 

All chemicals used were of analytical grade. Pure thiram, Thi-P, (pure substance, 

97%) was purchased from Aldrich and a commercial formulation of thiram, Thi-F, was 

obtained from Bayer (Pomarsol ultra D, 80% thiram active substance). Commercial humic 

acids (HA) were supplied by Sigma-Aldrich as sodium salt and fulvic acids (FA) were 

extracted from River Vouga water, collected at Carvoeiro (Aveiro, Portugal), by Santos 

and Duarte (1998). Acetonitrile (HPLC grade) was obtained from LabScan. Ultra pure 

water for aqueous solutions was obtained with a Milli-Q water purification system 

(Millipore). Standard stock solutions of both Thi-P and Thi-F (~40 mg L-1) were prepared 

by previous dissolution of the solid in acetonitrile followed by dilution with Milli-Q water 

(maximum of 1% acetonitrile in the final solution). Stock solutions of 100 mg L-1 FA from 

River Vouga and commercial HA were prepared by dissolving the solid in Milli-Q water. 

The pH of these solutions was measured to be about 6. 

 

9.2.2 Water samples 

Water samples from River Vouga (Aveiro, Portugal) were collected at Carvoeiro, 

near a water collection facility where the dissolved organic carbon (DOC) concentration is 

around 1 mg L-1 (Santos and Duarte, 1998). The samples were collected on March 2012, in 

5 L glass bottles, previously washed with 1 M NaOH and distilled water and rinsed with 
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river water immediately before sample collection. The samples were immediately filtered 

through a 0.45 µm filter within a period of time as short as possible (less than 2 weeks).  

 

9.2.3 Irradiation apparatus 

Irradiations were carried out in  25 cm quartz tubes with an internal diameter of 1.5 cm. 

Samples were irradiated under simulated solar radiation using a Solarbox 1500 (Co.fo.me.gra, 

Italy) equipped with a 1500 W arc xenon lamp and outdoor filters that restrict the light 

transmission with wavelengths below 290 nm. During the experiments the irradiance was 55 

W m-2 (290-400 nm). Lamp spectrum is presented in Figure 9.1. A multimeter (Co.fo.me.gra, 

Italy), equipped with a temperature sensor and a UV 290-400 nm large band sensor, was used 

in order to monitor the levels of temperature and irradiance, respectively. During the 

experiments the irradiance was 55 Wm-2 in the range 290-400 nm, corresponding to 550 W 

m-2 in the whole spectrum. The quartz tubes were suspended inside the chamber using a 

home-made metallic support which allows a homogeneous irradiation.   

 
Figure 9.1 – Spectral Irradiance of the 1500 W arc xenon lamp when using an outdoor UV filter, as 
given by the manufacturer (Solarbox 1500, Co.fo.me.gra, Italy). The spectrum is referred to a total 
irradiance of 550 W m-2 between 290-800 nm, the conditions used during the irradiation 
experiments. 
 

9.2.4 Photodegradation of Thi-P and Thi-F 

Thiram samples (Thi-P and Thi-F) with different concentrations, 2 and 10 mg L-1 

were prepared by diluting the stock solution of ~40 mg L-1, in water Milli-Q. Sample 

aliquots of 20 mL were placed in the 50 mL quartz tubes and irradiated during different 
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time periods, depending on thiram concentration. Simultaneously, dark controls were also 

prepared with the same thiram concentrations, inside tubes covered with several layers of 

aluminium foil and irradiated in the same conditions. The samples were always analysed 

within 2 hours by HPLC-UV at 270 nm, using a phenomenex C18 column (150x4.60 mm, 

5 µm, 110 Å) and a mobile phase of acetonitrile:water 70:30 (v/v) flowing at 0.7 mL min-1, 

previously filtered by a membrane filter 0.2 µm NL16 (Schleicher & Schuell). Details 

about apparatus, calibration and limits of detection (LOD) were described in Chapter 3.  

Photodegradation of Thi-P was also performed in natural river water. Thus, 2 mg L-1 

thiram solutions were prepared by diluting the stock solution in natural river water, instead 

of Milli-Q water. Next, sample aliquots of 20 mL were placed in the 50 mL quartz tubes 

and irradiated during 120 min at maximum. 

 

9.2.5 Photodegradation of Thi-P in the presence of natural fulvic and commercial 

humic acids 

Thiram solutions for photodegradation were prepared as described above with the 

exception that humic acids (HA) were added to achieve a final concentration of 10 mg L-1 

and natural fulvic acids (FA) were added to achieve a final concentration of 10 or 24 mg 

L-1.  

 

9.2.6 Identification of photodegradation products by HPLC-MS/MS  

The HPLC-MS/MS system used for the identification of the phototodegradation 

products is described in Chapter 8 (section 8.2.4.)  

 

9.2.7 Statistical analysis 

Experimental kinetic data were fitted by non-linear regression analysis using the 

program GraphPadPrism5® (Trial version; http://www.graphpad.com; last accessed on July 

20th 2012). The same statistical program was used for the t-test, which was used to 

compare the mean values of k and t1/2, for the different experimental conditions studied, 

after the pseudo-first order model be fitted to the data of each replicate of the kinetic study, 

with the level of significance being indicated by the p value. The two-way analysis of 

variance (ANOVA) applied to the photodegration of thiram in presence of FA and in 

natural river water, was performed using also the program GraphPadPrism5®. Besides the 
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two geral approaches mentioned above to perform statistical comparisons between the 

same model parameters before and after changing the experimental conditions, there is one 

more statistical tool that was used to compare the thiram photodegradation in different 

experimental conditions (Christopoulos and Lew, 2000; www.graphpad.com/faq/view 

faq.cfm?faq=1765). This third tool uses all the experimental data generated in different 

experimental conditions. The method compares entire curves using the following approach: 

i) Fit each data set to a model separately; 

ii) Take the total the sum-of squares (SS) and the degrees of freedom (df) 

from the two fits. 

iii) Sum the SS resulting from each fit to give a new “total” sum-of-squares 

value (SSA). Similarly, sum the two degrees of freedom values from each 

fit to give a “total” degrees of freedom (dfA). 

iv) Combine the two data sets (the data sets obtained with different 

experimental conditions) into one big data set on a new table and analyze 

the data using the same fitted equation. 

v) Take the new sum-of squares and the degrees of freedom of this combined 

data set, SSB and dfB, respectively. 

vi) Calculate the following F ratio: 

( )
( )

A

A

AB

AB

df

SS

dfdf

SSSS

F
−

−

=              (9.1) 

vii) Calculate the corresponding p value, using for example the Excel, i.e. 

=FDIST(Fvalue, df of the numerator, df of the denominator). 

 

A small p value (i.e., large F value) indicates that there is difference between the two 

experimental conditions treated curves overall, i.e, the two curves are different. Since this 

method compares the entire curve, it doesn't help us focus on which parameter(s) differ 

between the two different experimental conditions (unless, of course, you only fit one 

variable).  It just tells us that the curves differ overall. 
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9.3 Results and discussion 

 
9.3.1 Photodegradation of thiram (Thi-P) and thiram formulation (Thi-F) in 

aqueous solution 

Most of studies about degradation of pesticides are focused on the active substance, 

being scarce the information in literature about its commercial formulations. Therefore, the 

consequences of the use of commercial formulations on the environment are unknown. In a 

previous work, Filipe et al. (2009) compared the adsorption-desorption behaviour of pure 

thiram (Thi-P) and one of its formulations (Thi-F) onto commercial humic acids. The 

authors concluded that thiram formulation components influence the desorption process of 

thiram from humic acids, turning the pesticide more susceptible to be leached. Recently, 

some studies using the commercial formulations of pesticides have emerged in the 

literature, and it has been shown that some coadjuvants in formulations may also influence 

the photodegradation of some pesticides (Malouki et al., 2009). Thus, the direct 

photodegradation of thiram in aqueous solution (~2 mg L-1) was studied using both Thi-P 

and Thi-F. Figure 9.2 shows that thiram photodegradation follows a pseudo-first order 

kinetics for both Thi-P and Thi-F, as confirmed by the good fitting of the equation (9.2) to 

the data  

kt
eCtC

−= 0)(   (9.2) 

where C0 is the initial concentration of thiram at time zero (mg L-1) and k is the reaction 

rate constant (min-1). Figure 9.2 also shows that there are no variations of thiram 

concentration along irradiation time for the dark controls, confirming that thiram 

degradation is induced by light and does not occur in the dark.  
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Figure 9.2 – Direct photodegradation curves of 2 mg L-1 thiram (Thi-P and Thi-F) in aqueous 
solutions: black circles are the experimental data and the lines are the graphic representation of the 
first order equation (equation 9.2) fitted to the mean values of C vs. time. Open circles are the dark 
controls. 
 

Table 9.1 shows the values of the kinetic parameters obtained fitting curve (9.2) to 

the mean values of C vs. time.  

The half-life time, t1/2, in the case of pseudo-first order kinetic is expressed as  

k
t

2ln
2/1 =       (9.3) 

The rate of the reaction is proportional to the rate constant; thus the larger the rate constant, 

the shorter the half-life. 

 
 
Table 9.1. Kinetic parameters for the photodegradation of Thi-P and Thi-F in aqueous solutions. 
 

Kinetic parameters [Thi]0  

(mgL
-1

) Thi-P Thi-F 

2.0 

k = 0.025 ± 0.002 min-1 

t1/2 = 27.9 ± 2.0 min 
n = 6 

R2 = 0.927 

k = 0.030 ± 0.003 min-1 

t1/2 = 23.6 ± 2.4 min 
n = 3 

R2 = 0.986 

10.0 

k = 0.014 ± 0.003 min-1 

t1/2 = 48.3 ± 9.4 min 
n = 1 

R2 = 0.965 

k = 0.015± 0.001 min-1 

t1/2 = 45.9 ± 4.1 min 
n = 3 

R2 = 0.985 
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In order to evaluate whether the kinetics of photodegradation was different for Thi-P 

and Thi-F, equation (9.2) was fitted to the data of each replicate of the kinetic study and 

the mean values of k and t1/2 for thiram photodegradation were compared by the t-test. The 

results showed that k is significantly higher for Thi-F than for Thi-P (p=0.02) suggesting 

that the formulation components have a significant enhancement effect on the 

photodegradation of thiram. 

 

9.3.2 Effect of humic substances in the photodegradation of Thi-P 

Photodegradation of Thi-P was studied in the presence of natural FA and commercial 

HA. Dark controls, obtained in the same conditions were performed for all the irradiation 

experiments and we observed that there was no degradation of thiram during the irradiation 

period. The photodegradation of pure thiram in the presence of either FA or HA follows a 

pseudo-first order kinetics, as shown in Figure 9.3.  
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Figure 9.3 - Photodegradation curves of 2 mg L-1 thiram in the presence and absence of 10 mg L-1 
natural FA and commercial HA; circles are the experimental data and the lines are the graphic 
representation of the first order equation (equation 9.2) fitted to the mean values of C vs. time.  
 

Table 9.2 shows the kinetic parameters obtained by non-linear curve fitting of 

equation (9.2) to the mean values of C vs. time, for the photodegradation of thiram in the 

presence and absence of HS in aqueous solutions. 
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Table 9.2. Kinetic parameters for the photodegradation of 2 mg L-1 thiram in presence of humic 
substances in aqueous solutions, obtained by non-linear regression of equation (9.2) to the mean 
values of C vs. time (95% confidence intervals are presented). The number of replicates used to 
calculate the mean values of C for each irradiation time is indicated between parentheses. 
 

Humic substances Kinetic parameters
 

C = 10 mg L
-1 

k = 0.032 ± 0.003 min-1 

t1/2 = 21.5 ± 2.0 min 

R2 = 0.980 (n=2) 
FA 

 

C = 24 mg L
-1

 

k = 0.035 ± 0.006 min-1 

t1/2 = 19.6 ± 3.6 min 

R2 = 0.980 (n=1) 

HA 

 
C = 10 mg L

-1 
k = 0.032 ± 0.008 min-1 

t1/2 = 21.8 ± 5.9 min 
R2 = 0.9637 (n=1) 

Absence ---- 

k = 0.025 ± 0.002 min-1 

t1/2 = 27.9 ± 2.1 min 
R2 = 0.972 (n = 6) 

 

In order to evaluate whether the presence of FA in solution had any effect on the 

kinetics of degradation of thiram, mean values of k and t1/2 for thiram photodegradation in 

the presence and absence of FA were compared by the t-test. The results allowed to 

conclude that natural river FA have a significant enhancement effect on degradation 

(p=0.002 for k and p=0.004 for t1/2). The comparison of the rate constant values (Table 9.2) 

for the degradation of thiram in the presence of HA and FA shows that the kinetics of 

degradation of thiram is similar in the presence of both samples of humic matter. Thus, 

these results do not point to an influence of the nature of humic matter, since natural river 

fulvic acids or commercial humic acids enhance photodegradation of thiram in the same 

way. However, as shown by the results of the t-test and as one can observe in Table 9.2, 

humic substances induce a slight increase (~25%) of the kinetic rate constant of 

photodegradation of thiram in aqueous solution. The role of humic substances on the 

photodegradation of other organic pollutants is well documented and two contradictory 

effects can be observed (Canonica and Laubscher 2008; Guerard et al., 2009). On one hand 

they can inhibit photodegradation due to inner filter effects (competition for photons) or 

binding to the contaminants (Rav-Acha and Redhun, 1992; Doll and Frimmel, 2003; 

Dimou et al., 2005). On the other hand, humic substances can act as photosensitizers 

enhancing photodegradation, since they are excited by solar light absorption giving rise to 
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triplet excited states which can directly react with the contaminants or which can give rise 

to the sensitized formation of several reactive oxygen species, mainly singlet oxygen and 

hydroxyl radicals (Aguer et al., 1999). It is known that humic substances vary considerably 

in structural composition and distribution of chromophores which means that their role on 

photochemical reactions can change considerably with their origin and composition 

(Guerard et al., 2009). However, the results obtained in the present work do not point to a 

variation of the effects of humic substances with their origin and composition in the case of 

thiram. 

In natural waters, besides humic matter, there are other components, such as nitrate, 

Fe(III) and bicarbonate ions, which can influence the photodegradation of contaminants 

(Espinoza et al., 2007). In order to verify the effect of the environmental matrices on the 

photodegradation of thiram, two non-simultaneous experiments were done using natural 

river water samples collected at the same site of river Vouga, where water samples had 

been collected for FA isolation. Figure 9.4 shows the photodegradation curve of thiram in 

natural river water sample, in comparison with the direct photodegradation in Milli-Q 

water and in an aqueous solution containing 10 mg L-1 of FA.  
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Figure 9.4 - Photodegradation of 2 mg L-1 thiram in milli-Q water, in the presence of FA and in 
natural river water. (•) Control samples of thiram in natural river water. Symbols represent the 
mean values of replicates of the kinetic studies for each condition. The curves were obtained by 
non-linear regression of equation (9.2) to the mean values of C vs. time 
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The photodegradation of thiram in river water also follows a pseudo-first order 

kinetics of degradation (R2 = 0.986) with k = 0.040 ± 0.004 min-1 and t1/2 = 17.6 ± 1.8 min 

(95% confidence intervals are presented). Dark controls (••••), obtained in the same 

conditions, suggested that there was no degradation of thiram due to thermal or hydrolytic 

processes. The t-test was applied to compare the means of the values of k and t1/2 obtained 

in Milli-Q water (6 replicates) and in natural river water (2 replicates). The results allowed 

to conclude that there is a significant (p<0.0001) enhancement of the degradation rate 

constant of thiram photodegradation in the river water relatively to Milli-Q water, 

corresponding to a decrease of about 38% in thiram half-life. The enhancement of the 

degradation rate in river water seems to be higher than that observed in the presence of FA, 

suggesting that other components of natural river water besides FA, are influencing thiram 

photodegradation. However, the comparison of the mean values of k and t1/2 in the presence 

of FA and in river water by the t-test does not allow to obtain clear conclusions about the 

significance of that difference (p=0.056 for k; p = 0.046 for t1/2)). However, by applying 

the F ratio (equation 9.1) we obtained a very small p value (p=0.0004), which is indicative 

that the individual fits (FA and river water) are better than the pooled fit, i.e., the thiram 

photodegradation in the presence of FA and the photodegradation of thiram in natural river 

water resulted in a significant difference in the model parameters between the two data 

sets. On the other hand, the comparison of mean values of C/C0 by two way ANOVA (8 

times x 2 conditions: FA and river water x 2 replicates) indicates a strong interaction 

between factors, and thus the p values (p<0.0003) are difficult to interpret. 

 It must be noticed that the concentration of fulvic acids in the river is lower than 10 

mg L-1. More studies must be done in order to evaluate the influence of the concentration 

of humic substances and of other components of river water, besides humic substances, on 

thiram photodegradation. 

 

9.3.3 Identification of the photoproducts of the direct degradation of thiram 

The HPLC chromatograms of the thiram solutions with detection at several 

wavelengths revealed the occurrence of new peaks, attributable to photodegradation 

products. Then, we performed the irradiation of a more concentrated thiram solution (10 

mg L-1) in Milli-Q water, in order to better detect and identify the photodegradation 

products. One kinetic study was performed and it was observed that the photodegradation 
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rate constant was lower (k=0.014±0.003) but the additional peaks observed were the same 

(same retention times) as those observed during photodegradation of the solution 2 mg L-1. 

In order to iendtify the structure of these new photodegradation, HPLC-PDA-MS and MSn 

analysis was performed. Figure 9.5A shows the HPLC-UV chromatogram with detection at 

230 nm, of a ~10 mgL-1 thiram solution after direct photolysis during 120 min. To obtain 

the HPLC-PDA chromatogram shown in Figure 9.5B, 8 mL of each of 4 replicates of the 

solution of thiram irradiated for 120 minutes were combined, lyophilised and then 

redissolved in 600 µL of methanol. The final solution was injected in the HPLC-UV-MS 

instrument. In Figure 9.5A it is possible to see the thiram peak at ~3.8 min and two new 

peaks at 3.2 and 4.4 min. These two peaks can be attributed to photodegradation products 

of thiram. For the lowest thiram concentration these two peaks are only visible with 

detection at 207 nm (results not shown). However, in the HPLC-PDA chromatogram of 

Figure 9.5B it is possible to identify four peaks corresponding to thiram (compound II) and 

three different degradation products (compounds I, III and IV). In addition, the results 

obtained by in Figure 9.5B by HPLC-PDA-MS validate the attribution of the peaks at 3.3 

and 4.5 min of the chromatogram of Figure 9.5A, to photoproducts of thiram. 
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Figure 9.5 – (A) HPLC-UV at 230 nm chromatograms of a 10 mgL-1 thiram solution after direct 
photolysis during 120 min and (B) HPLC-PDA at 270 nm chromatogram of the same irradiated 
solution after pre-concentration, obtained using the HPLC-PDA- MS/MS instrument 

 

The identification of the photodegradation products was performed by comparing the 

HPLC-MS spectra of the irradiated sample with spectra of the control sample, allowing the 
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identification of the [M+H]+ ions of the new photodegradation products, which were then 

analysed in detail by MS/MS and MSn experiments as summarised in Table 9.3. 

 

Table 9.3. Thiran and photodegradadtion products identified and corresponding LC-MS/MS and 
MSn fragmentation profiles. 
 

Compound  Retention 

time (min) 

Identification [M+H]
+ 

m/z 

MS
2
 

m/z 

MS
3
 

m/z 

MS
4
 

m/z 

I 2.74 N,N-dimethylcarbamoyl-
N,N-dimethylthiocarbamoyl 
disulphide 

225 180 152 88 

II 3.23 Thiram 
(bis(dimethylthiocarbamoyl) 
disulfide) 

241 196 
152 
120 
88 

152,120  

III 3.30 bis(dimethylcarbamoyl) 
disulphide 

209 164
 

88 
72 

136, 88, 72  

IV 3.92  335 271 
184 

256, 88 224, 183 

m/z in bold was subjected to MSn analysis 

 

The aqueous solution of thiram after 120 min of irradiation showed, the presence of 

thiram (II, [M+H]+ ion at m/z 241) and the formation of three byproducts with [M+H]+ 

ions at m/z 225 (I), m/z 209 (III) and m/z 335 (IV). Each [M+H]+ ions were subjected to 

further LC-MSn, in order to elucidate their structural features. As referred above, 

compound II was identified as thiram. The identification of thiram was confirmed by the 

MSn spectra fragmentation profile and is described in Chapter 8, section 8.3.4.  

Compound I was identified as N,N-dimethyl carbamoyl-N,N-dimethyl thiocarbamoyl 

disulphide formed by oxidation of C=S group to C=O. The identification of this compound 

was confirmed by the MSn spectra fragmentation profile (Scheme 9.1). Thus, MS2 of 

[M+H]+ ion at m/z 225 gives a product ion at m/z 180, due to the loss of the dimethylamine 

group (-45 Da, HN(CH3)2). Furthermore, the MS3 of the product ion at m/z 180 gave a 

product ion at m/z 152, due to the loss of the carbonyl group (-28 Da, -CO), which, by 

MS4, generates a product ion at m/z 88 identified as N,N-dimethylthioformamide.  
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Scheme 9.1 

Proposed fragmentation pathways for N,N-dimethyl carbamoyl-N,N-dimethyl 

thiocarbamoyl disulphide (I) 

 

 

 

 

 

 

 

 

 

Compound III was identified as bis(dimethylcarbamoyl) disulphide formed by 

oxidation of the two C=S groups to C=O. The identification of this compound was also 

corroborated by the MSn spectra fragmentation profile (Scheme 9.2).   

 

Scheme 9.2 

Compound III: bis(dimethylcarbamoyl) disulphide 
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The MS2 of [M+H]+ ion at m/z 209 gives three product ions at m/z 164, 88 and 72. 

The product ion at m/z 164 corresponds to the loss of the dimethylamine group (-45 Da, 

HN(CH3)2) of the compound bis(dimethylcarbamoyl) disulphide (m/z 209); the MS3 of the 

product ion at m/z 164 generates a product ion at m/z 136, formed by the loss of carbonyl 

group (-28 Da, -CO), and the product ions at m/z 72 and 88 identified as N,N-

dimethylformamide and N,N-dimethylthioformamide, respectively.  

Compound IV was tentatively assigned to a photodegradation derivative of 

compound I based on its fragmentation patterns observed by MSn spectra. This adduct 

(Scheme 9.3) results from compound I linked to an extra -SCH2SSH moiety. The 

formation of this structure may involve the radical (a). Although the mechanism leading to 

the formation of IV from I and radical (a), is still unclear, the structure of this compound 

was corroborated by the MSn spectra fragmentation profile (Scheme 9.4).  The MS2 of ion 

at m/z 335 gives one product ion at m/z 271 corresponding to the loss of S2 (-64 Da, -S, -S); 

the MS3 of the product ion at m/z 271 generates a product ion at m/z 256, due to the loss of 

the methyl group (-15 Da, -•CH3), and the product ion at m/z 88 identified, previously, as 

N,N-dimethylthioformamide. Furthermore, the MS3 of the product ion at m/z 256 generates 

a product ion at m/z 224, corresponding to the loss of one sulphur atom (-32 Da, -•S), and a 

product ion at m/z 183, corresponding to the simultaneous loss of N-methylmethanimine (-

43 Da,-CH2=NCH3) and the two methyl groups (- 30 Da, -2 •CH3). 

 

Scheme 9.3 

Proposed Compound IV from of the photodegradation of thiram (I) bonded to a small 

structural moiety resulting from photodegradative oxidation of thiram 
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Scheme 9.4 

Proposed fragmentation pathways for Compound IV a derivative of the photodegradation 

of thiram  
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Observing the profile of the area of the chromatographic peaks of the compounds I 

and IV along time (Figure 9.6) we can see that compound IV only appears after the 

formation of the compound I, which is consistent with formation of IV from I shown in 

Scheme 9.3. This compound IV is easily degraded when compared with the compound I, 

since at the end of 160 min of irradiation it is completely degraded. 
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Figure 9.6 – Plot of the area of peak I and peak IV along photodegradation time with an initial 
thiram concentration of C0 = 10 mg L-1. 

 

The photoproducts with [M+H]+ ions at m/z 225, N,N-dimethylcarbamoyl-N,N-

dimethylthiocarbamoyl disulphide (I) and m/z 209, bis(dimethylcarbamoyl) disulphide 

(III) have been identified by Kodoma et al (1999) when studying the chemical degradation 

of thiram in the presence of sodium hypochlorite. On the other hand, Kaneco et al (2009), 

on the basis of molecular orbital simulation of frontier electron density, proposed these 

same products as intermediate degradation products of the TiO2 photocatalytic degradation 

of thiram. However, Haque and Muneer (2005) presented contradictory results about TiO2 

photocatalytic degradation of thiram, since they identified three compounds corresponding 

to the loss of the methyl groups in the amine group (N-dealkylation) and involvement of 

electron transfer reactions and reaction with hydroxyl radicals (compounds 1,2 and 3).  
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Crank and Mursyidi (1992) identified a variety of products, such as, carbon disulfide, 

tetramethylthiourea, N,N-dimethylthioformamide, tetramethylhydrazine, and 

dimethylamine by UV photolysis, photo-oxidation and visible photosensitized (rose 

Bengal) oxidation of thiram but in ethanolic solution. Very recently, Gupta et al. (2012) 

              (1)                                                      (2)                                              (3) 
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studied the degradation of thiram (100 mg L-1) in deionised water (pH 8.0 and 5.5), soils 

(pH 5.1 and 8.1) and plants (radish leaves, roots and tomato fruits) and identified a large 

number of metabolites at different time intervals of incubation. According to the authors 

the degradation products identified can be generated by different processes such as, 

hydrolysis, oxidation, N-dealkylation, S-methylation, sulfuration, desulfuration, cyclization 

and photodegradation, which indicate a complex degradation pathway of thiram. The two 

intermediate products, N,N-dimethylcarbamoyl-N,N-dimethylthiocarbamoyl disulphide and 

bis(dimethylcarbamoyl) disulphide, identified by Kodoma et al. (1999) as products of 

thiram oxidation by sodium hypochlorite and by Kaneco et al (2009) in the photocatalytic 

degradation of thiram, were also identified by Gupta et al. (2012). The authors identified 

these two products in aqueous solutions of thiram (pH 8.0 and 5.5) after an ageing period 

of 11 and 30 days. They also detected the presence of these two compounds at the end of 

the 11th day in the Sriganganagar soil (pH 8.1). In what concerns the photodegradation 

process, the authors only attributed the formation of the compound 1,1,3,3-tetramethyl-2-

thiourea (compound 4) to photodegradation of thiram. According to the authors the 

photodegradation of thiram gives rise to N,N-dimethyl thiocarbamoyl and dimethyl amine 

moieties which react to form the above mentioned product, which can be oxidized to the 

compound 5, 1,1,3,3-tetramethylurea. 
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9.4 Conclusions 

 

In this work the importance of photodegradation processes on the persistence of the 

fungicide thiram was assessed. First, it has been shown that thiram is susceptible to 

photodegradation, showing a half-life time of about 28 min. It was also observed that the 

commercial formulation components and humic substances (natural FA or commercial 

HA) slightly enhance the photodegradation of thiram in aqueous solution, decreasing its 

half-life time to 24 and 22 min, respectively. Nevertheless, the most significant 

 (4)                                                          (5)                                              
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enhancement of the degradation rate of thiram was observed when the thiram 

photodegradation was performed in natural river water (half-life time of about 18 min). 

Moreover, one of the main focuses of this work consisted on the identification of the 

photodegradation products of thiram in aqueous solutions, by mass spectrometry. Overall, 

it was possible to identify for the first time 3 photodegradation products. Thus, this work 

constitutes a valuable approach to the study of environmentally relevant photodegradation 

processes of thiram since the pathways of thiram photodegradation in the absence of 

synthetic catalysers, and the influence of natural organic matter on thiram 

photodegradation have not been studied before.  
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Chapter 10 
 

10 Final conclusions 
 
 
 
 

Thiram is a dithiocarbamate compound widely used in Portugal as fungicide in 

agriculture. According to the Direção Geral de Agricultura e Desenvolvimento Rural, the 

Portuguese Official Agency of Agriculture, (DGADR), it is the second most popular 

contact fungicide among of the dithiocarbamates group and in the period 2002-2010, 

thiram selling rate showed a significant increase, mainly in the last year. However, in spite 

of the reported burst on thiram application, and in comparison to other pesticides, there 

was a lack of information on thiram behaviour in environmental matrices, namely, in soils 

and water systems.  

 

The aim of this work was to achieve a better understanding of thiram behaviour in 

environmental matrices, namely, in soil and natural waters, and of the role of organic 

matter and copper ions in its behaviour and fate. For that, there was the need of optimizing 

some experimental details. First, a solid phase extraction (SPE) procedure for the clean up 

of the organic extracts from soil and for water samples pre-concentration was successfully 

developed and, second, a HPLC-UV method for the determination of thiram was 

optimized. 

 

In this context, adsorption-desorption studies of thiram onto humic acids and onto 

soils with different organic amendments and copper contents were performed in order to 

investigate the role of each soil constituent in the sorption behaviour and fate of thiram. 

The studies revealed that thiram was strongly sorbed by humic acids and the results 

obtained indicated a multilayer adsorption and adsorbate-adsorbate interactions after the 

saturation of the surface layer. Adsorption-desorption studies of thiram onto a luvisol soil, 

submitted to different organic amendments, also converged to the same point, the import 

role of the organic matter on the sorption of thiram. However, besides of the importance of 



Final Conclusions 

 

210 

soil organic matter, this work showed a marked effect of the soil copper content on the 

adsorption-desorption of thiram onto soil. The experimental results put into evidence that 

reactions between molecules of thiram and copper ions occur along time and the extent of 

their occurrence during adsorption studies may be strongly dependent on the soil copper 

content and on the initial thiram concentration in solution (Thi:Cu ratio). For a certain 

equilibration time, the percentage of thiram adsorption increases with the increase of 

Cu:Thi ratio. Kinetic studies, performed with a soil with and without fortification with 

copper ions, showed that there was an extremely significant influence of both the initial 

thiram concentration and the soil copper content on the kinetics of thiram sorption onto 

soil. Thus, it was possible to conclude that the choice of the equilibration time for batch 

sorption studies and adsorption isotherms determination is a difficult task, mainly because 

the reactions with copper may involve thiram degradation into dimethyldithiocarbamate 

(DMDTC) that can complex with copper, which may begin during batch adsorption studies 

not allowing to distinguish between adsorption and degradation. Our results also show that 

the complexes formed with copper in soil (Thi:Cu or DMDTC:Cu) were persistent but not 

easily leached from the soil to groundwater. Thus, we can conclude that copper ions may 

contribute to the immobilization of thiram in soil, giving rise to persistent thiram bound 

residues.  

 

For the study of the role of natural organic matter and copper ions in the persistence 

of thiram in natural waters, the effects of those components on the determination of thiram 

in natural waters by a C18-SPE-HPLC-UV method were first studied. The present work 

showed that copper ions decreased considerably the recovery of thiram by SPE, but the 

addition of EDTA eliminated this interference. However, when EDTA was added to the 

river water samples previously equilibrated with thiram, the recoveries continued to be 

low, suggesting a partial degradation of thiram leading probably to the formation of 

DMDTC anions, which then complex with copper ions in solution. So, the effect of copper 

ions was studied in aqueous solutions containing different Thi:Cu ratios and followed by 

UV-Vis spectrofotometry and HPLC-MS/MS. The results obtained suggested that for an 

excess of thiram, a copper complex with thiram is slowly formed, which precipitates after 

some time. However, since most of natural waters have concentrations of Cu(II) of at least 

0.01 mg L-1, the most probable situation to be found in natural waters is that of an excess 
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of Cu(II) relatively to thiram, even because thiram application in agriculture is frequently 

associated to the use also of copper fungicides. In the present work, for an excess of Cu(II) 

it was observed that a complex Thi:Cu 1:1 is formed, confirmed by HPLC-MS/MS, and the 

degradation rate of that complex depends on the ratio Thi:Cu and on the initial 

concentration of the solutions. The results obtained by UV-Vis suggested that a copper 

complex 1:1 is formed with the anion DMDTC, i.e., [CuDMDTC]+, since the spectra of 

Thi-Cu solutions (1:50) after 1 day are identical to the spectra of DMDTC-Cu solutions 

(1:25). In fact, it was possible to conclude that these copper complexes are quite persistent, 

since no changes were observed in their UV-Vis spectra during a period of time of about 2 

months. So, depending on the Thi:Cu ratio, the persistence of thiram in solution is affected 

by copper ions and copper ions stabilise the principal product of thiram degradation, the 

anion DMDTC. However, the presence of [CuDMDTC]+ complex could not be confirmed 

by HPLC-MS/MS analysis. In addition, MS/MS data confirmed the existence of other 

copper complexes in both DMDTC:Cu and Thi:Cu solutions with an excess of copper ions. 

Some of the complexes formed were identified for the first time by HPLC-MS/MS. These 

results highlight the importance of evaluating the risks associated to the presence of thiram 

in waters, because of the high persistence of the degradation products formed in the 

presence of an excess of copper ions. 

 

One of the important degradation pathways of pesticides is photodegradation 

induced by the sunlight. So, due to the lack of information about thiram photodegradation 

in aqueous solutions and the effect of natural organic matter, the photodegradation of 

thiram in aqueous solutions was also subject of study. In general, the thiram degradation 

follows a pseudo-first order kinetics and in the presence of humic substances (natural FA 

from river Vouga or commercial HA) its degradation rate was enhanced about 28% in 

comparison to the rate in the absence of humic substances, putting into evidence the role of 

humic substances as natural photosensitizers. However, when the thiram photodegradation 

was made in natural river water (Rio Vouga, Carvoeiro, Aveiro) there was a significative 

enhancement of the degradation rate of thiram (~65%), suggesting that other matrix 

components besides FA may be responsible for the enhancement of thiram 

photodegradation. Overall, it was possible to identify for the first time three 

photodegradation products. 
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Most of the studies about degradation of pesticides are focused on the active 

substance, being the information in literature about its commercial formulations scarce. 

Therefore, the consequences of the use of commercial formulations on the environment are 

unknown. In order to compare the behaviour of thiram in its pure form with one of its 

commercial formulations used in agriculture (Pomarsol Ultra D, 80% thiram from Bayer), 

adsorption-desorption studies onto commercial humic substances and photodegradation 

studies in aqueous solutions were performed. The results obtained allow us to conclude 

that thiram formulation components have an influence on the desorption process of thiram 

from humic acids, turning the pesticide more susceptible to be leached. Furthermore, the 

formulation components have a significant enhancement effect on the photodegradation of 

thiram in water. 

 

Thus, this work constituted a valuable approach to the study of environmental 

relevance of thiram and contributed to fulfil some gaps identified in the existent literature 

about its behaviour and fate in the environment. In what concerns the soil systems it was 

possible to clarify the role of organic mater and, by the first time, the high importance of 

soil copper ions content on the sorption, persistence and mobility of thiram. Relatively to 

the water systems, some relevant conclusions were obtained mainly about the effect of 

copper ions on the degradation rate of thiram, which is increased, and on the persistence of 

the degradation products (copper complexes) formed, which remain unaltered in solution 

for at least 2 months. Also, by the first time, it was demonstrated that humic substances 

(natural FA or commercial HA) do increase the photodegradation rate of thiram in aqueous 

solution, and evidence for the possible sensitizing role of other components of natural 

waters was also obtained. 

Finally, some thiram degradation products which can be formed in natural waters 

were identied for the first time 

 

Future work should include the continuation of the thiram photodegradation 

experiments in order to study the effect of various scavengers on the degradation rate of 

thiram to clarify the thiram degradation pathways and the photosensitizing role of humic 

substances. 
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Soil incubation studies with both pure thiram and formulated thiram using soils with 

different copper contents and/or soils submitted to thiram application in the field should be 

made. With these studies it would be possible to better know the persistence of copper 

complexes formed and the role of formulation components on the persistence of these 

complexes. The identification of copper complexes formed in soil during the ageing 

periods, by HPLC-MS/MS, is also extremely important and must be done.  

Furthermore, the toxicological properties of these complexes are also very important, 

since they are more persistent than the parent molecule. So, it would be very interesting to 

explore the effect of these complexes in some organisms. 

Moreover, the know-how acquired with this work is a positive feature for the study of 

other dithiocarbamates in order to reach information about the role of organic matter and 

metal ions and, consequently, understand their behaviour and fate, namely, their mobility, 

persistence and degradation, in different environmental systems, and, consequently, 

identify their degradation products. 
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Chapter 11 
 

11 Supplementary information 
 
 
 
 
11.1 DIRECTIVE 2003/81/CE  

 

COMMISSION DIRECTIVE 2003/81/CE of 5 de September 2003 amending Council 

Directive 91/414/EEC to include molinate, thiram and ziram as active substances. 
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11.2 Summary of the principal methods used for determination of thiram 

in several matrices 

 

 
Table 11.1. Determination of thiram in various matrices. 
 

Sample 
Analytical 

method 
Observations* Ref 

Formulations and 
wheat and rice 
grains  

UV-Vis  

Extraction: Chloroform 
Linear: up to 8 mg L-1  
Recovery: 97-99 % (formulations) and 92-96 % 
(grain samples) for thiram concentrations between 
10 and 150 µg 

Verma et al., 
1984 

Synthetic 
mixtures, wheat 
grains,vegetables  

UV-Vis  
 

Extraction: Chloroform 
Linear: 0.44-13.25 mg L-1 
RSD: 0.86% (n=10, 88.3 µg) 

Malik et al., 
1998 

Polluted water, 
vegetables and 
wheat grains 

UV-Vis  
 

Extraction: Chloroform 
Linear: 0.02-0.20 mg L-1 
Recovery: 93-99 % 

Kesari and 
Gupta, 1998 

Wheat grains and 
formulations 

UV-Vis  
  

Extraction: Chloroform 
Linear: 2-40 mg L-1; LOD: 0.3 µg mL-1. 

Sharma et al. 
2004 

River waters UV-Vis  
 

Pre-concentration: Saccharomyces cerevisiae 

immobilized on sepiolite 
Linear: up to 20 mg L-1: LOD: 0.161 mg L-1 
Recovery: 96.1 % (n=5; 5-15 µg/100 mL) 

Tunçeli et al., 
2001 

Formulations and 
soil samples 

FIA-FTIR Extraction: Chloroform 
Linear: 0.5-10 mg L-1; LOD: 0.098 mg L-1 
Recovery: 93-100 % 

Cassela et al., 
2000 

Apples HPLC-UV Extraction: Chloroform 
Clean up: silica gel column 
HPLC column: Nucleosil RP-C18 (200x4mm, 
5µm) 
Mobile phase: H2O/CH3CN (30:70, v:v), flow rate 
of 0.8 ml min-1 
UV detection: 272 nm 
Linear: 0.02-1.4 mg L-1; LOD: 0.01 mg L-1 
Recovery: 88% (1 mg L-1) 

Gustafsson 
and 
Thompson, 
1981 

Water HPLC-UV Clean up: minicolumn C18 (27x7mm; 70 µm) 
HPLC column: RP-ODS (250x4.6mm) 
Mobile phase: H2O/CH3CN 40:60 (v/v), flow rate 
of 1 ml min-1 
UV detection: 270 nm 
Recovery: 87% (5 µg L-1) 

Suzuki et al., 
1993 

*Limit of detection (LOD); Limit of quantification (LOQ); Relative standard deviation (RSD); Solid phase extraction (SPE); Solid 
phase micro extraction (SPME); Ultrasphere octadecylsilane reversed-phase column (RP-ODS); Cetytrimethylammonium bromide 
(CTAB); Matrix solid-phase dispersion (MSPD); Atmospheric pressure chemical ionization (APCI); Electrospray ionization (ESI);  
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Table 11.2. Determination of thiram in various matrices (continuation). 
 

Sample 
Analytical 

method 
Observations* Ref 

Water HPLC-UV Pre-concentration: SPE- C18  
HPLC column: Spherisorb ODS (200x4 mm; 5 
µm) 
Mobile phase: H2O/CH3CN 58:42 (v/v), flow rate 
of 1.5 ml min-1 
UV detection: 220 nm 
Linear: up to 2.3 g L-1;  LOD: 0.093 mg L-1 
RSD: 0.48 % (1.3-10 mg L-1, n=7) 
Recovery: ~50% in milli-Q water (2.0 µg L-1) and 
not recovery in tap, natural and underground water 
samples 

Tovar and 
Santos-
Delgado, 
1995 

Water HPLC-UV Pre-concentration: SPE- C18  
HPLC column: Spherisorb ODS-2 (100x4 mm; 3 
µm) 
Mobile phase: 10mM CTAB aqueous solution 
buffered with phosphate (10 mM):acetonitrile 
80:20 (v/v), flow rate  of 1 mL min-1; 
UV detection: 254 nm 
Linear: up to 30 mg L-1; LOD: 25 µg L-1 
RSD: 5 % (0.2 mg L-1, n=5) 
Recovery: 70% (5 µg L-1) 

Garcia et al., 
1996 

Fruits and 
vegetables 

HPLC-UV Extraction: Ethyl acetate/cyclo-hexane 10:30 (v/v) 
in an ultrasonic bath 
HPLC column: Apex II diol (150x4.6 mm; 3 µm ) 
Mobile phase: (A) cyclohexane, (B) 
cyclohexane/2-propanol/methanol/10 µL of 25% 
ammonia per 250 mL of solution (80+15+5+0.01 
v/v/v/v), and (C) 2-propanol; gradient program of 
95% of A and 5% of B and after 18 min changed 
to 54% of A, 20% of B and 26% of C, flow rate of 
0.65 mL min-1 
UV detection: 225, 240, 283 and 330 nm 
LOQ: 0.1-0.2 mg kg-1 (0.1-1 mg kg-1) 
Recovery: 40-92% ((0.1-1.3 mg kg-1) 

Ekroth et al., 
1998 

Water HPLC-UV Extraction/clean up: SPE-active carbon 
Linear: 0.01-0.5 mg L-1; LOD: 4.5 µg L-1 

RSD: 4.9-5.3% (2.5 µg L-1)  
Recovery: 89-94 % (2.5 µg L-1) 

Kitami et al., 
2002 

Water HPLC-UV Pre-concentration: SPME 
HPLC column: C18 (250x4.6 mm; 5 µm ) 
Mobile phase: H2O/CH3CN 30:70 (v/v), flow rate 

of 0.7 mL min-1; 
UV detection: 254 nm 
Linear: 5-600 µg L-1; LOD: 1 µg L-1 
RSD: 2.6 % (20-40 µg L-1, n=3) 
Recovery: 96-98% (20-40 µg L-1) 

Aulakh et al., 
2005 

*Limit of detection (LOD); Limit of quantification (LOQ); Relative standard deviation (RSD); Solid phase extraction (SPE); Solid 
phase micro extraction (SPME); Ultrasphere octadecylsilane reversed-phase column (RP-ODS); Cetytrimethylammonium bromide 
(CTAB); Matrix solid-phase dispersion (MSPD); Atmospheric pressure chemical ionization (APCI); Electrospray ionization (ESI);  
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Table 11.3. Determination of thiram in various matrices (continuation). 
 

Sample 
Analytical 

method 
Observations* Ref 

Formulations, 
Soil samples and 
soybean 

HPLC-UV Extraction: acetone and dichloromethane  
HPLC column: RP-C18 (RP-C18e Purosphere 
STAR and RP-Select B Lichrospher) (250x4 mm; 
5 µm) 
Mobile phase: H2O/CH3OH 35:65 (v/v), flow rate 

of 0.75 mL min-1; 
UV detection: 217 nm 
Linear: 2-200 mg L-1; LOD: 0.2 mg L-1 
RSD: 1.55 % (100 mg L-1, n=6) 
Recovery: 86.9-99 % (50-100 mg L-1) 

Walia et al., 
2009 

Water, soil, 
plants 

HPLC-UV Extraction: Ethyl acetatefor for water samples, 
acetonitrile for soil samples and dichloromethane 
for plants 
HPLC column: RP-C18 (250x4.6 mm; 5 µm) 
Mobile phase: H2O/CH3CN 30:70 (v/v), flow rate 

of 1 mL min-1; 
UV detection: 223 nm 
Linear: 1-200 mg L-1 
Recovery: 90 ± 5% for water and soil samples 

Gupta et al., 
2012a 

Apples HPLC-EC Extraction: Chloroform 
HPLC column: Lichrosorb RP18 (100x4.6 mm, 5 
µm) 
Mobile phase: 0.01 mol L-1 phosphate buffer pH 
7.4/CH3CN (55:45, v:v), flow rate of 2 ml min-1 
Detection: graphite electrode modified with 
poly(tetrafluoroethylene) (Teflon) 
Linear: 1-10 mg L-1; LOD: 0.14 mg L-1 
Recovery: 97% (0.5 mg Kg-1) 

Fernandez et 
al., 1996 

Apples and 
grapes 

HPLC-EC Extraction: Chloroform 
HPLC column: Sperisorb ODS-2 (150x3.9 mm, 5 
µm) 
Mobile phase: H2O/methanol (60:40, v/v) 
containing ammonium acetate buffer (pH 5), flow 
rate of 0.9 ml min-1 
Detection: glassy carbon electrode 

Linear: up to 10 mg L-1; LOD: 0.7 mg L-1 
Recovery: 79.3% (0.203 µg g-1) for apples samples 
and 83.0% (0.180 µg g-1) for grapes samples  

Silva et al. 
1999 

Tap water and 
beetroot juice 

HPLC-EC Extraction: Acetonitrile (beetroot juice) 
HPLC column: Diaspher C16 (150x4.6 mm, 5 
µm) 
Mobile phase: CH3CN/0.1% aqueous solution of 
phosphoric (40:60, v/v), flow rate of 0.7 ml min-1 
Detection: glassy carbon electrode 

Linear: 0.01-0.15 or 0.006-50 mg L-1  
LOD: 3 or 0.6 µg L-1; RSD: 2 % (10 µg L-1, tap 
water, n=3); 4 % (20 µg L-1, beetroot juice, n=3) 
Recovery: 98% (10 µg L-1, tap water, n=3); 90 % 
(20 µg L-1, beetroot juice, n=3) 

Shapovalova 
et al., 2009 

*Limit of detection (LOD); Limit of quantification (LOQ); Relative standard deviation (RSD); Solid phase extraction (SPE); Solid phase micro extraction 
(SPME); Ultrasphere octadecylsilane reversed-phase column (RP-ODS); Cetytrimethylammonium bromide (CTAB); Matrix solid-phase dispersion 
(MSPD); Atmospheric pressure chemical ionization (APCI); Electrospray ionization (ESI);  
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 Table 11.4. Determination of thiram in various matrices (continuation). 
 

Sample 
Analytical 

method 
Observations* Ref 

Fruits, cereals 
and  vegetables 

HPLC-APCI-
MS 

Extraction: MSPD � ENVICarb, CH2Cl2/CH3OH 
(80:20, v/v);  

HPLC column: C8 Phenomenex (150x4.6mm, 5 
µm) 
Mobile phase: water and methanol, whose 
gradient is: t = 0, 10% methanol, t = 7.5 min, 70% 
methanol, t = 12.5 min, 90% methanol and t = 15 
min, 90% methanol, flow rate of 0.8 ml min-1 
MS Detection: ionization source was positive 
polarity atmospheric pressure APCI 
Linear: 0.25-50 mg L-1; LOD: 0.05 mg L-1  
Recovery: 70-101% (n=5; 2.5 mg mL-1); 65-104% 
(n=5; 25 mg mL-1). 

Blasco et al., 
2004 

River waters HPLC-TOF-
MS 

Pre-concentration: SPE  
HPLC column: C18 Atlantis (150x4.6mm, 5 µm) 
Mobile phase: Water, acetonitrile and acid formic 
2%, whose gradient is: t = 0 min, 95% water and 
5% acid formic 2%, t = 2 min, 60% water, 30 
acetonitrile and 5% acid formic 2%, t = 12 min, 95 
acetonitrile and 5% acid formic 2% and t = 17 min, 
95% water and 5% acid formic 2%, flow rate of 1 
ml min-1 
MS Detection: positive polarity atmospheric 
pressure ESI 
Linear: 1-500 µg L-1; LOD: 0.18 µg L-1  
Recovery:  < 25 % 

Sasaki et al., 
2006 

Olive oil HPLC-MS Extraction: Tetrahidrofurano 
HPLC column: C18 Chrompack (150x3 mm, 5 
µm) 
Mobile phase: water (buffered at pH 4.5 with 
acetic acid and 10-3 mol L-1 amonium acetate) and 
methanol, whose gradient was 2 to 100% 
acetonitrile in 32min, flow rate of 0.4 ml min-1 
UV Detector: 210 nm 
MS Detection: ionization source was positive 
polarity atmospheric pressure electrospray (ESI) 
Linear: 0.8-10 mg L-1; LOD: 0.4 mg L-1  
Recovery: not recovery 

Barrek et al., 
2003 

Pears MS Direct analysis in real time (DART) combined 
with medium-high resolution/accurate mass time-
of-flight mass spectrometry (TOF-MS) and high-
resolution/accurate mass Orbitrap MS: calibration 
levels: 1 mgkg-1 

 

Desorption electrospray ionization (DESI) 
combined with tandem-in-time mass spectro-metry 
(MS2): calibration levels: 0.1 mg kg-1

 

Cajka et al., 
2011 

*Limit of detection (LOD); Limit of quantification (LOQ); Relative standard deviation (RSD); Solid phase extraction (SPE); Solid 
phase micro extraction (SPME); Ultrasphere octadecylsilane reversed-phase column (RP-ODS); Cetytrimethylammonium bromide 
(CTAB); Matrix solid-phase dispersion (MSPD); Atmospheric pressure chemical ionization (APCI); Electrospray ionization (ESI);  
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Table 11.5. Determination of thiram in various matrices (continuation). 
 

Sample 
Analytical 

method 
Observations* Ref 

Water and soils Adsortive 
cathodic 
stripping 
voltammetry 

Extraction: chloroform (soil samples), SPE-C18 
(water samples) 
Electrode: Dropping mercury electrode 
Accumulation time: 120 and 600 s at -0.2 V 

Linear: 0.1 – 5 µg L-1; LOD: 0.3 and 0.03 µg L-1 
for 120 and 600 s of accumulation time, 
respectively  
Recovery: 88-96% (1-5 µg L-1, water samples); 
89-94% (1-20 µg L-1, soil samples) 

Procopio et 
al., 1988 

Strawberries Linear sweep 
voltammetry, 

Extraction: chloroform 
Electrode: graphite-poly (tetrafluoroethy-lene) 
composite electrodes 
Accumulation time: 300 s at 0 V 

Linear: 0.05 – 2.4 mg L-1; LOD: 13.1 µg L-1 
Recovery: 97% (1.17 mg L-1, n=5) 

Fernandez et 
al., 1995 

Synthetic 
samples 

Voltammetry, 
Carbon 
electrode 

Electrode: carbon paste electrode modified with 
iron (II) and cobalt(II) phthalocyanines 

Recovery: 97 % (10 µM, n=6) 

Shaidarova et 
al., 2001 

Water leachates 
from soil, bean 
seed samples 

Ampereometric  
 

Extraction: chloroform 
Electrode: Glassy carbon electrode 
Linear: 6.7-24 µg L-1; LOD: 2.4 µg L-1 

Recovery:  47 % (bean seed samples) 

Priyantha and  
Weliwegamage, 
2005 

Synthetic 
samples 

Polarography Electrode: 

Linear: 2.4-240 µg L-1; LOD: 0.5 µg L-1 
RSD: 1.2% (n = 10);  
Recovery:  83.8% - 91.4%. 

Wang et al., 
2008 

Formulations, 
grains residues 
(wheat and rice), 
aqueous samples 

Differential 
pulse 
polarography 

Extraction: chloroform 
Electrode: Dropping mercury electrode 
Linear: 0.08 - 4 mg L-1;  RSD: 1.2%; 
Recovery:  97% - 99% (Formulations); 86% - 
91% (Wheat); 84% - 94% (Rice); 93% - 99% 
(Water). 

Sharma et al., 
2011 

Wheat grains Capillary  
electrophoresis  

Extraction: chloroform 
LOD: 0.5 mg L-1; Recovery: 98.8%  

Malik and 
Faubel, 2000. 

Sintethic samples ELISA Linear: 0.02-40 mg L-1 

LOD: 30 µg L-1. 
Gueguen et 
al. 2000 

Lettuces ELISA Extraction: acetone/water (50:50 v/v) 
LOD: 5 or 40 µg L-1, depending of the 
imunoassays used (microwell plates or tube based 
assay) 
Recovery: 80-120 % (1.7-27 mg L-1) 

Queffelec et 
al., 2001 

*Limit of detection (LOD); Limit of quantification (LOQ); Relative standard deviation (RSD); Solid phase extraction (SPE); Solid 
phase micro extraction (SPME); Ultrasphere octadecylsilane reversed-phase column (RP-ODS); Cetytrimethylammonium bromide 
(CTAB); Matrix solid-phase dispersion (MSPD); Atmospheric pressure chemical ionization (APCI); Electrospray ionization (ESI);  

 
 
 
 



Supplementary information 

 

226 

Table 11.6. Determination of thiram in various matrices (continuation). 
 

Sample 
Analytical 

method 
Observations* Ref 

Honeybees Chemilumines-
cence -ELISA 

Extraction: liquid-liquid or SPE with graphitized 
carbon; 
Linear: 0.009-15 mg L-1; 
LOD: 17 µgL-1  (liq-liq extract) and  19 µgL-1  
(SPE extraction) 
Recovery: 60 % (75 µgL-1, liq-liq extract); 72 % 
(75 µg L-1, SPE extraction). 

Girotti et al., 
2008 

Natural waters Flow-injection 
chemiluminesce
detection (FI-
CL) 

Pre-concentratio: SPE- C18 
Linear: 7.5 –2500 µg L-1; LOD: 7.5 µg L-1; 
RSD: 2.5% (n=10, 500 µg L-1 thiram) 
Recovery: 99-104% (25-100 µg L-1) 

Waseem et al, 
2010 

Tomatoes  High-
performance 
thin layer chro-
matographic 
(HP-TLC) 

Extraction: mechanical vibration with acetone-
dichloromethane 1:1 (v/v);  
TLC: glass-backed silica gel 60F (254) HPTLC 
plates. 
Eluent: hexane/acetone (60:404,v/v)  
Linear: 10-300 ng; LOD: 30 ng 
RSD: 4.6-22 % (0.2-5 mg Kg-1, n=3) 
Recovery: 67 – 98 % (RSD =0.13-22.06%) 

Fan et al., 2007 

*Limit of detection (LOD); Limit of quantification (LOQ); Relative standard deviation (RSD); Solid phase extraction (SPE); Solid 
phase micro extraction (SPME); Ultrasphere octadecylsilane reversed-phase column (RP-ODS); Cetytrimethylammonium bromide 
(CTAB); Matrix solid-phase dispersion (MSPD); Atmospheric pressure chemical ionization (APCI); Electrospray ionization (ESI);  
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