View metadata, citation and similar papers at core.ac.uk

KELLY PATRICIA
MURILLO

brought to you by .{ CORE

provided by Repositério Institucional da Universidade de Aveiro

Resultados de existéncia para equacdes elipticas
com termos singulares

Existence results for elliptic equations with singular
terms


https://core.ac.uk/display/15569968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

KELLY PATRICIA
MURILLO

Universidade de Aveiro Departamento de Matematica
2013

Resultados de existéncia para equacdes elipticas
com termos singulares

Existence results for elliptic equations with singular
terms

Dissertacao apresentada a Universidade de Aveiro e a Universidade do Minho
para cumprimento dos requisitos necessarios a obtencéo do grau de Doutor em
Matemética e Aplicacdes, realizada sob a orientagcdo cientifica do Doutor
Eugénio Alexandre Miguel Rocha, Professor Auxiliar do Departamento de
Matematica da Universidade de Aveiro e sob coorientacdo cientifica do Doutor
Jianging Chen, investigador do Departamento de Matematica da Universidade
de Aveiro.

Dissertation submitted to the University of Aveiro and University of Minho

in fulfillment of the requirements for the degree of Doctor of Philosophy in
Mathematics, under the supervision of Doctor Eugénio Alexandre Miguel
Rocha, Assistant Professor at the Department of Mathematics of the University
of Aveiro and under co-supervision of Doctor Jianging Chen, researcher at the
Department of Mathematics of the University of Aveiro.

ESTRATEGICO
N/—\LIONAL

AL2007.2013

* ¥ %
* *
B -
* *

* 4k

UNIAD EUROPEIA
procramA operacicnat POTENCIAL HUMANO Fundo Social Europeu

@F DE REFERENCA FCTFundga o Tecnologla




Dedico este trabalho aos meus dois maiores tesouros: a minha méae e o meu
marido.



o jari
presidente Doutor Anténio Manuel Melo de Sousa Pereira

Professor catedratico da Universidade de Aveiro

vogais Doutor Nikolaos Socrates Papageorgiou
Professor catedratico da Technical University of Athens, Grécia

Doutor Vasile Staicu
Professor catedratico da Universidade de Aveiro

Doutora Lisa Maria de Freitas Santos
Professora com agregagédo da Universidade do Minho

Doutor Eugénio Alexandre Miguel Rocha
Professor auxiliar da Universidade de Aveiro (Orientador)

Doutor Hugo Ricardo Nabais Tavares
Professor auxiliar convidado da Universidade de Lisboa

Doutor Jianging Chen
Investigador da Universidade de Aveiro (Coorientador)



agradecimentos

A Deus e a Virgem pela sua infinita misericordia.

Ao Professor Eugénio Rocha pela excelente orientacdo, paciéncia,
contribuicdo para o meu enriquecimento académico e o seu incondicional
apoio desde o inicio do curso.

Ao Professor Jianging Chen por ter aceite colaborar, de forma gentil com a
realizacao deste trabalho e partilhar os seus conhecimentos.

Aos meus amigos pelo apoio e as palavras de incentivo.
A minha adoravel familia, especialmente a minha méae Maria Winnies Murillo

e ao meu marido Bertolt Camilo Portocarrero Viveros, pelo seu infinito amor
e a doce companhia na conquista de meus sonhos.



palavras-chave

resumo

Métodos variacionais, equac8es diferenciais elipticas, equacao Laplaciana nao
homogénea, termo singular, solugBes positivas e nddais, termo concavo,
espaco de Lorentz, operador do tipo Leray-Lions.

Esta dissertacdo estuda em detalhe trés problemas elipticos: (I) uma classe de
equacdes que envolve o operador Laplaciano, um termo singular e néo-
linearidade com o exponente critico de Sobolev, (Il) uma classe de equacdes
com singularidade dupla, o expoente critico de Hardy-Sobolev e um termo
cbncavo e (lll) uma classe de equacdes em forma divergente, que envolve um
termo singular, um operador do tipo Leray-Lions, e uma funcdo definida nos
espacos de Lorentz.

As ndo-linearidades consideradas nos problemas (I) e (IlI), apresentam
dificuldades adicionais, tais como uma singularidade forte no ponto zero (de
modo que um "blow-up" pode ocorrer) e a falta de compacidade, devido a
presenca do exponente critico de Sobolev (problema (l)) e Hardy-Sobolev
(problema (Il)). Pela singularidade existente no problema (lll), a definicdo
padrdo de solucdo fraca pode ndo fazer sentido, por isso, é introduzida uma
nocao especial de solucéo fraca em subconjuntos abertos do dominio.

Métodos variacionais e técnicas da Teoria de Pontos Criticos séo usados para
provar a existéncia de solugfes nos dois primeiros problemas. No problema (1),
sdo usadas uma combinacdo adequada de técnicas de Nehari, o principio
variacional de Ekeland, métodos de minimax, um argumento de translacédo e
estimativas integrais do nivel de energia. Neste caso, demonstramos a
existéncia de (pelo menos) guatro solu¢des néo triviais onde pelo menos uma
delas muda de sinal. No problema (l), usando o método de concentracdo de
compacidade e o teorema de passagem de montanha, demostramos a
existéncia de pelo menos duas solu¢des positivas e pelo menos um par de
solugbes com mudanca de sinal. A abordagem do problema (Ill) combina um
resultado de surjectividade para operadores monétonos, coercivos e
radialmente continuos com propriedades especiais do operador de tipo Leray-
Lions. Demonstramos assim a existéncia de pelo menos, uma solugdo no
espaco de Lorentz e obtemos uma estimativa para esta solucéo.
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Variational methods, elliptic differential equations, inhomogeneous Laplacian
equation, singular term, sign-changing solution, concave term, Lorentz spaces,
Leray-Lions operator.

This dissertation study mainly three elliptical problems: (1) a class of equations,
which involves the Laplacian operator, a singular term and a nonlinearity with
the critical Sobolev exponent, (Il) a class of equations with double singularity,
the critical Hardy-Sobolev exponent and a concave term and (lll) a class of
equations in divergent form, which involves a singular term, a Leray-Lions
operator, and a function defined on Lorentz spaces.

The nonlinearities considered in problems (1) and (l1), bring additional difficulties
which, as the strong singularity at zero (so blow-up may occur) and the lack of
compactness due to the presence of a Sobolev critical exponent (problem (1))
and a Hardy-Sobolev critical exponent (problem (Il)). In problem (lll), the
singularity implies that the standard definition of weak solution may not make
sense. Therefore is necessary to introduce a special notion of weak solution on
open subsets of the domain.

Variational methods and Critical Point Theory techniques are used to prove the
existence of solutions in the two first problems. In problem (1), our method
combines Nehari's techniques, Ekeland's variational principle, minimax
methods, a translation argument and integral estimates of the energy level. In
this case, we prove the existence of (at least) four nontrivial solutions where at
least one of them is sign-changing. In problem (II), we prove the existence of at
least two positive solutions and a pair of sign-changing solutions, using the
concentration-compactness method and the mountain pass theorem. The
approach in problem (lll) combines a surjectivity result for monotone, coercive
and radially continuous operators with special properties of Leray-Lions
operators. We prove the existence of at least one solution in a Lorentz space
and obtain an estimative for the solution.
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Introduction

Partial Differential Equations of elliptic type have been studied by many authors, due
to their multiple applications in different contexts of sciences and engineering (see Brezis-
Nirenberg [16] and Debnath [50]). Recently, the study of existence results for elliptic
problems containing singularities have increased significantly (see for instance Abdellaoui-
Colorado-Peral [I], Abdellaoui-Felli-Peral [2], Azorero-Peral [59], Ghoussoub-Yuan [62],
Peral [97]). The methods used for solving such problems depend mainly on the type of

singularities and parameters involved.

The main goal of this thesis is the study of existence and multiplicity results for non-
linear elliptic problems that contain singularities and/or terms with a critical exponent.
We are interested in two classes of elliptic equations with critical exponent and nonlin-
earities defined on Sobolev spaces and one class of elliptic equations in divergence form
with nonlinearities defined on Lorentz spaces. Specifically, we consider Q C RY a bounded
domain with smooth boundary and we study the following three nonlinear problems with

Dirichlet boundary conditions.

(I) The problem P; (A, p, v, f,v) involving the Sobolev critical exponent, a Hardy-type

singular term and other two subcritical terms
—Au(z) — —mule) = [u(@) P Pu(z) + ple|*Pu() + f@)u(@)]?, in Q\{0},

where N > 3, and 2* = 2N/(N — 2) denotes the Sobolev critical exponent. The
function f € L*°(Q) and the positive parameters A, u, « and v satisfy additional

conditions.

(IT) The problem P»(\, ¢, q, s, f) involving the Hardy-Sobolev exponent, a concave term

and a double singularity on the boundary

~Au(z) - @Quu) = CF (@) fua) | 2u() +

where N > 3 and p*(s) = 2(N —s)/(N — 2) denotes the Hardy-Sobolev critical
exponent. Here f is a real function on {2 with an additional condition and the

parameters A, (,q and s are suitably defined.

(ITI) The problem Ps(1,a, f) in divergence form, involving a Leray-Lions operator and
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a term that may have a singularity
—div((z, u(z), Vu(x))) + alz)u(z) = f(z), in Q,

where 2 < p < N, a € L{2.(Q) satisfies an additional condition and f is a function

loc

defined in a Lorentz space L% (Q2) with suitable exponents ¢ and ¢;.

In problems P;(\, u, o, f,7y) and Py(\,(,q, s, f), we study nontrivial solutions in the
Sobolev space H{ (£2). Due to the presence of the term ﬁ in problem Py (\, p, «, f,7) and

JulP" =2
ER

the terms ﬁ and in problem P»(\,(,q,s, f), we have strong singularity at zero,
so blow-up may occur (see Smets [I11]). To make sense, we consider that the equation
hold on © with Q\{0} but still look for solutions on 0 € €. The singularity in both cases

is overcomed using the Hardy inequality (see|1.1.8]).

The problems Py (A, p, o, f,v) and Py(\,(,q, s, f) are variational, due to the Hardy-
Sobolev embedding (see Theorem and the Hardy inequality . Therefore we
use critical point theory (see Ambrosetti-Malchiodi [7], Costa [46], Rabinowitz [I01]) to
study them. By Caffarely-Kohn-Nirenberg inequality (see Theorem , the associ-
ated functionals are well defined on Hg () and there exists a one-to-one correspondence
between the critical points of the functionals and the solutions of the problems. Thus,
we say that the solutions of Py(\, i, o, f,y) and Pa(), ¢, q, s, f) are functions u € HZ (),

which correspond to critical points of the associated Euler functionals.

Since neither HE (Q)—L? (Q, |z|~2dz), H}(Q)—~L* () nor H (Q)—LP*() (Q, |z|~*dx)
are compacts, the action functionals associated to problems as Pj(\, i, a, f,7) and
Py(\,C,q,s, f), satisfy the Palais-Smale condition (Definition only in a suitable
range (see Brezis-Nirenberg [16], Chen [31], [35]). Furthermore, due to a lack of com-
pactness, generated by the presence of the Sobolev critical exponent and Hardy-Sobolev
critical exponent in problems Pj (A, u, o, f,7y) and Py(X,(,q, s, f) respectively, standard

variational arguments do not apply without some extra care.

We point out that, although the problems Pj(A, u, o, f,7) and Py(X,(,q,s, f) seem
similar, there is no intersection between them. In fact, we observe that, if we consider the
problem Py(\,(,q, s, f) plus the term p|x|* 2u(z) with ¢ = 1, s = 0, p * (s) = 2* and
q = v+ 1 for u positive and defining zero as a possible value for ¢; we have the same form
as the problem Pj(\, p,«, f,7y) when the function u is positive; but although we found
some similarities between these problems and we can do comparisons, it is not possible to
say that, one of them is a particular case of the other, due to the restrictions 0 <y < 1 in
P\ p,a, f,y) and v > 1in Py(A, C, q, s, f). On the other hand the hypotheses considered

for each problem are different.
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In problem P3(%,a, f), we study nontrivial solutions in the Sobolev space WO1 P(Q) N
L™%(Q) where 2 < p < N and L™*(2) is a suitable Lorentz space. This problem has an

o0

7o (€), the problem may have a sin-

additional difficulty since the function «a is defined in L
gularity on the boundary and therefore the standard definition of weak solution may not
make sense (i.e. with test functions in WO1 P(€1)). The singularity is overcomed considering
an increasing sequence of open subsets of the domain €2 (see Chapter |4} for more details).
The main point here is to take advantage of the best fitted embedding of the Sobolev
space I/VO1 P(Q) into a Lorentz space, compared with the standard Sobolev embedding into

a Lebesgue space.

In more detail, we prove that problem P;(\, p, «v, f,7y) under suitable hypotheses (Sub-
section , has two nontrivial solutions and under less strong hypotheses (Subsection
, has at least four nontrivial solutions in the Sobolev space H}(£2) where at least one
of them is sign-changing. The problem P»(A,(,q, s, f) has at least two positive solutions
and at least one pair of sign-changing solutions in Hg (). We prove the existence of at
least a solution u € WO1 P(Q) N L™*(Q) of problem P3(¢,a, f), the uniqueness under suit-
able conditions and also obtain an apriori estimate for the solution with respect to the

Lorentz space norm of f € L99(Q) for suitable values p, q,q1, 7 and s.

The techniques described later in the Chapters and [4 are mainly based or im-
provements of the results obtained in the works of Chen-Rocha [42] and Tarantello [118]
for the problem Pj(\, u,a, f,7). In addition to these works, we consider the results of
Bouchekif-Matallah [14] as a starting point for the problem P(\,(,q,s, f). For problem
Ps(1, a, f), the existence result generalizes some previous results, e.g. in Napoli-Mariani
[91], besides others.

At this point, we call the especial attention of the reader for the notation that we
will use for the different problems. We will consider the notation defined for the prob-
lems Pi(\, p, o, f,7), Pa(A\ ¢, q, 8, f) and P3(v,a, f) as standard and we give specifications
on the parameters when referring to subclasses. In this sense, for example, the problem
P1(0, 1,2, f,0) represents the problem Pj(A, u, o, f,y) when A =0, « =2 v =0, and p

and f are general but satisfy additional hypotheses, which may be different from ours.

The literature on elliptic problems is rather extensive. It would be impossible to cover
all different aspects of this type of problems even restricting it to some classes. Let us

describes the situation of a simple model for this type of equations. The solvability of the

problem
—Au(z) = |u@)|P?u(z) in Q,
u(z) >0 in Q, (1)
u(z) =0 on 09,

where Q € RY is a bounded domain with smooth boundary 9, depends on the value of
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p and sometimes is related with the shape of 2. Some results are well known:

(i) In the subcritical case, i.e. p < %, the problem admits solution. The existence of

positive and sign-changing solutions of problem does not depend on the shape of €;
(i7) In the supercritical case, i.e. p > 2%, Passaseo [96] proved that there exist con-
tractible domains (intuitively are spaces that can be continuously shrunk to a point),
where the number of positive solutions of problem is arbitraly large. For some exam-
ples of domains where problem has no solutions see Passaseo [94. [95];

(7i7) In the critical case, i.e. p = %, if €} is not contractible, then problem has a
solution for N = 3 (see Bahri-Coron [12]). If © is an annulus, problem (/1)) has a solution
(see Kazdan-Warner [80]). If Q has a "small hole”, problem has also a solution (see
Bahri-Coron [45]). If  is a star-shaped with p > % then problem has no solution.

This follows by the application of the Pohozaev identity (Pohozaev [100]).

These example clearly shows that the use of a critical exponent changes the problem
characteristics and its difficulty in proving the existence of solutions. Another model ex-
ample and one of the starting points for the study of elliptic problems is the well known
Yamabe’s problem (see Yamabe [123]), which is one of the celebrated problems in Differ-
ential Geometry and concerns the existence of a Riemannian metric with constant scalar
curvature for a given (compact) manifold. Such problem can be modeled as a Dirichlet

elliptic problem, for example written as P;(0, i, 2,0,0):

—Au(z) = lu(@)[* Pu(z) + pu(z) in Q,
u(z) >0 in Q,
u(z) =0 on 0.

Concerning this problem, we mention two relevant results about the existence of solu-
tions which show the importance of the geometry of the domain and the behavior of the

coefficients.

Theorem 0.1.1. (Brezis-Nirenberg [16]) Suppose Q@ C RN, (N > 3) and let 11 > 0 denote
the first eigenvalue of the operator (—A, H} (Q)) with homogeneous Dirichlet boundary
conditions:

(i) If N > 4, then for any p € (0,u1) there exists a (positive) solution of Yamabe’s
problem;

(i1) If N = 3, there exists ps € (0, p1) such that for any p € (ps, p1), Yamabe 's problem
admits a solution;

(iti) If N = 3 and Q = B1(0) C R®, then p, = £ and for p < Bl there is no solution to
Yamabe’s problem.

Theorem 0.1.2. (Ceramini-Solimini-Struwe [27]) Suppose @ = Bgr(0) is a ball in RY,
N > 7. Then for any p > 0, Yamabe “s problem admits infinitely many radially symmetric

solutions.
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In [75], Janelli considered the problem P (), ,2,0,0) and prove that there exist A such
that:

(i) fFO< A< A—1and 0 < p < pi(N), then the problem has at least a positive
solution, where p7(\) is the first eigenvalue of (—A — ﬁ, H (2)) with Dirichlet boundary

condition;

(ii) If A > 0 and A —1 < A < A, then there exists . (\) > 0 such that the problem has
at least a positive solution provided A\ € (ps(A), 1 (N)).

Now, concerning singular terms, one the best studied elliptic problems with a singular
term is a problem involving a term with a negative power of the solution, i.e. a problem

of form, under Dirichlet boundary condition,
—Apu(z) = B(z)u(z)”" + f(z,u(z)), withn >0,

which was first studied in the context of semilinear equations (p = 2). Among the first
works in this direction are the papers of Crandall-Rabinowitz-Tértar [48] and Stuart [114].
Since then, there have been several other papers on the subject. We mention the relevant
works of Coclite-Palmieri [44], Diaz-Morel-Oswald [51], Lair-Shaker [82], Shaker [L06], Shi-
Yao [107], Sun-Wu-Long [115], and Zhang [I125]. In particular, Lair-Shaker [82] assumed
that f = 0 and 8 € L?(2) and established the existence of a unique positive weak solution.
Their result was extended by Shi-Yao [I07] to the case of a "sublinear” reaction, namely
when
f(z,u) = "t with A >0and 1 <r < 2.

The case of a ”superlinear-subcritical” nonlinearity, i.e. when 2 < r < 2*, was investigated
by Coclite-Palmieri [44] under the assumption that 5 = 1. In both works (i.e. [44] and
[107]), it is shown that there exists a critical value \* > 0 of the parameter A, such that
for every A € (0,\*) the problem admits a nontrivial positive solution. Subsequently,
Sun-Wu-Long [I15] using the Ekeland variational principle (Proposition , obtained
two nontrivial positive weak solutions for more general functions 5. The work of Zhang
[125] extended their results to more general nonnegative superlinear perturbations, using
critical point theory on closed convex sets. For the same problem but driven by the p-
Laplacian, we mention the works of Agarwal-Lii-O’Regan [3], Agarwal-O’Regan [4], where
N =1 (ordinary differential equations), and Perera-Silva [98], Perera-Zhang [99], where

N > 2 (partial differential equations) and the reaction term has the parametric form
B(x)u(x)™" 4+ Af(z,u(x)) with A > 0.

For such a parametric nonlinearity, the authors prove existence and multiplicity results
(two positive weak solutions), valid for all A € (0, A*). Moreover, the perturbation term
f exhibits a strict (p — 1)-superlinear growth near +o0c and, more precisely, it satisfies

on [0, +00), the well-known Ambrosetti-Rabinowitz condition. Chen-Papageorgiou-Rocha



[40] considered the reaction term nonparametric and the perturbation as (p — 1)-linear
near +oo and proved the existence of an ordered pair of smooth positive strong solutions.

Existence results, for other type of singularities and particular results for the problems
Pi(\ o, f,7), Po(NC,q,s, f) and P3(v,a, f), are presented in the stated of art (Previ-
ous Results) of the Chapters and {4} respectively.

This document is organized as follows. In Chapter [1| we briefly introduce some of the
mathematical background needed for this work, namely basic notions of Critical Point
Theory and Theory of Monotone Operators.

In Chapter [2], by variational methods, careful integral estimates combined with Nehari
set techniques, we study multiplicity results for the problem Pj(\, i, «, f,7) in two parts:
(a) the existence of two nontrivial solutions (see Proposition and Proposition
and (b) the existence of four nontrivial solutions with less restrictive hypotheses (see
Theorem . In this part, minimax methods are used to prove the existence of a
sign-changing solution (see Proposition . A fourth solution (see Proposition
is obtained applying a translation argument and verifying that the mountain pass theorem
is satisfied in the range where the Palais-Smale condition holds.

In Chapter we study multiplicity results for the problem P»(\, ¢, g, s, f). Here we use
the concentration compactness principle (see Proposition to prove the existence of
the first solution and a mountain pass theorem (see Theorem for the second solu-
tion. The existence of sign-changing solutions are obtained combining Nehari techniques
(see Subsection with energy estimates, in which it is essential to know the exact
local behavior of the solution. We use the fact that the problem is odd to obtain other
solutions.

In Chapter [4] we replace the Laplacian operator by a more general nonlinear elliptic
second order partial differential operator with a divergence structure and we study the ex-
istence and uniqueness of solutions of problem P5(v, a, f), when the function f is defined
on a Lorentz space. The existence of a solution of this problem is obtained combining a
surjectivity result for monotone, coercive and radially continuous operators with special
properties of Leray-Lions operators, namely to be of type M and pseudomonotone. More-
over, we obtain an apriori estimate for the solution in terms of the norm of the nonlinearity
(see Theorem [4.3.13). Here we use some ideas of An et al [8] and Drivaliaris-Yannakakis
[52]. The proof of the estimate is inspired in Napoli-Mariani [91].

In Chapter [5] we present some final considerations on the three problems studied and
give some direction on a possible future research.

In Appendix [A] we make a breve introduction to the space of functions, considered in
this work: the Sobolev spaces (see Section and Lorentz spaces (see Section, both
play an important role in the theory of interpolation of operators and in partial differential

equations. In Appendix [B], we present some integral estimates relevant to our results.



Chapter 1

Preliminary results for the
solvability of nonlinear elliptic

equations

In this chapter we present some mathematical preliminaries that are relevant for the
understanding of our work. The literature on this subjects is quite extensive for instance
for Critical Point Theory see Ambrosetti-Malchiodi [7], Costa [46], Rabinowitz [101] and
Struwe [I13]. For Theory of Monotone Operators see Showalter [I08], Zeidler [124] and
Zuchi-Xiaodong [126].

1.1 Variational approach for elliptic equations

In this section, we give some concepts directly related to Critical Point Theory.

In the study of second order semilinear elliptic boundary value problems, the following
result due to Rabinowitz [I01], is frequently used to establish when an class of functionals
is C*(HY(Q);R).

Proposition 1.1.1. Let Q be a bounded domain in RN whose boundary is a smooth

manifold. Let p be a function which satisfy:
(P1) p € C(Qx R;R);

(P2) There are constants ai,as > 0 such that |p(z,&)] < a1 + azlé|®, where 0 < s <
(N +2)(N—-2)"t and N > 3.

If
I(u) i/ %\Vu|2 — P(x,u)dz,
Q

1
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where P(x,§) = fo x,t)dt, then I € CY(HL(Q);R) and
I'(u)p = / Vu -V —p(z, u)pds
Q

for all ¢ € H§(). Moreover J(u) = [, P( ))dz is weakly continuous and J'(u) is

compact.

1.1.1 Nehari’s set method

The Nehari method, introduced by Z. Nehari [92], 03], is very useful in Critical Point

Theory and plays an important role in obtaining ours results.

Definition 1.1.2. Let E be a Hilbert space and I : E — R be of class C'(E;R). We
define

M = {u € E\{0} : (I'(u),u) = 0}.

M is called the Nehari set associated with the functional I.

We set Sg = {u € E : |lul|; = 1}. Under some assumptions, we can see that M is a
differentiable manifold homeomorphic to the unit sphere of £ and bounded away from 0
(see Szulkin-Weth [I16]). Consider the assumptions:

(7) There exists a normalization function ¢ (i.e ¢(0) = 0, ¢ is strictly increasing and

©(t) = 0o as t — 0o) such that

l[ull

wes ) = [ el

0

¢ € CY(E\{0};R), J = ¢’ is bounded on bounded sets, and (J(u),u) = 1 for all
u € Sg;

(74) For each u € E\ {0} there exists ¢ = t(u) such that if ay,(t) = I(tu) then

al,(t) >0, for 0<t<t,
al,(t) <0, for t > t;

(77i) There exists 6 > 0 such that ¢ > ¢ for all u € Sg;

(iv) For each compact subset K C Sp, there exists a constant ¢ such that ¢ < ¢ for all
u € K.

The following result guarantees that M # ().

Lemma 1.1.3. (Szulkin-Weth [116]) Suppose I satisfies (ii), then for any
u € Wol’p(Q)\{O} there exists a unique t = t(u) € R such that tu € M.
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By (iii), M is closed in E and bounded away from 0. We also have the following result.
Proposition 1.1.4. (Szulkin-Weth [116]) Suppose I satisfies (iii) — (iv), then
(a) The mapping o : E\ {0} — M defined by ., (t) = tu is continuous.
(b) The mapping 5 : Sg — M defined by 5 = a|s, s a homeomorphism and the inverse

of B is given by B (u) = 4

lJullg "

Remark 1.1.5. Under assumptions which imply that the functional I satisfies:
(v) I € C*(E;R);

(vi) (I"(u)u,u) # 0,

is possible to guarantee that the set M is a manifold. In fact, set G (u) = (I'(u),u), so
M = G7Y0)\ {0} and G € CL(E;R). Now, considering u € M, since (v) and (vi) hold,
one has

(G'(u),u) = (I"(w)u,u) + (I'(u),u) = (I"(u)u,u) # 0. (1.1)

Thus, G'(u) # 0 for all uw # 0 and this implies using the Implicit Function theorem that
M is a Ct-manifold of codimension one (see Ambrosetti-Malchiodi [7], Guillemin-Pollack
[64)], Szulkin-Weth [1106]).

Now, we emphasize the application of the Nehari method. The main idea of this
technique is the following: Consider the existence of functions u € I/VO1 P(Q) satisfying the

following variational problem (P):

Lu(z) = f(z,u(z)) in Q,

where L is a nonlinear second order differential operator.

Let I : Wol’p(Q) — R, with I € Cl(Wol’p(Q);]R) be the Euler functional associated to
problem (P).
There exists a one to one correspondence between the critical points of Euler functional
I and the solutions of problem (P). Then, we say that u € WO1 P(Q) is a solution of
problem (P), if and only if, u is a critical point of the Euler functional I. Therefore we

are interested in the following set of solutions
S ={ueWyP(Q): (I'(u),v) = 0 for any v € W,*(Q)}.

Here (-, -) represents the duality between the spaces W, 1P /(Q) and I/VO1 P(Q).
We define, the Nehari set

M = {u e WyP()\{0} : (I'(u),u) = 0}.

Remark 1.1.6. Note that u is a nontrivial critical point of I if and only if u € M and

u s a critical point of the restriction of I to M. In fact, suppose that u is a nontrivial



4 1.1. Variational approach for elliptic equations

critical point of 1, i.e., I'(a) =0 and w # 0. Then (I'(u),u) = 0. Hence u € M.
Conversely, if u is a critical point of I on M, by method of Lagrange multipliers (see Costa
[46]), there holds that I'(u) = A\G'(@) and

(I'(w),u) = NG (a), ).
Since (I'(w),u) = 0 and by (1.1), (G'(a),a) # 0. Then it follows that X\ = 0 and hence
I'(u) =0.
In view of the previous remark, one may apply Critical Point Theory on M, in order

to find critical points of 1.

Now, we choose wisely some sets M; C M, and study the corresponding minimization
problems on them

; = inf I(u).
g T

The main idea is then to prove the existence of critical points u; such that ¢; = I'(u;).

1.1.2 Ekeland’s variational principle

The following principle was proven by I. Ekeland in [54]. This principle has been a very
useful tool in studying of optimization problems in Control Theory, Differential Geometry

and Differential Equations.

Proposition 1.1.7. Let (M,d) be a complete metric space and ¢ : M — R U {400} be a
lower-semicontinuous function which is bounded from below. Suppose ¢ > 0 and u € M

(0] < 1 (0] + E.

Then, given any A > 0, there exists v € M such that:
(1) ¢(v) < @(u);
(@) d(u,v) <X

(i1) ¢(v) < o(w) + Sd(v,w) for any v # w.

1.1.3 Some inequalities

The following is a classical result essentially due to Hardy (see Hardy-Littewood-Polya
[66]).

Lemma 1.1.8. Let Q@ C RY be a bounded domain. If u € H} (), then

(i) o € L2(Q);

|=[*

(i1) (Hardy inequality) fﬁ% < [(N_712)2/4]f I7ul?.
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Remark 1.1.9. The Hardy inequality, can be extended to functions in the space D“2(R™N)
which is the completion of C§(Q) with respect to the norm |lul|3, = S~ [Vul*da.

Remark 1.1.10. By the Hardy inequality, for 0 < X\ < A = (N — 2)%/4 the norm

u2 1/2
= ([ 19 -2
RN ||

18 equivalent to the usual norm

1/2
lullngey = | [, 190l da]

The following inequality is an extension of the Hardy and Sobolev inequalities due to
Caffarelli-Kohn-Nirenberg [18].

Lemma 1.1.11. For 1 < p < N and any u € C§°(RYN), there exists a constant k such

that
p/q
( / \:c|-bq|u|q> < [leervup
RN

RN

(N—-p) = Np
whereOSaST,a§b<a+1 andq—m>p-

1.1.4 Compactness analysis

The following definition is a compactness condition, which is a tool used in the proof

of existence of critical points of functionals defined in Banach spaces.

Definition 1.1.12. Let ¢ € R, E be a Banach space and I € C'(E,R). We say that
I satisfies the Palais-Smale condition at ¢, which we denote by (PS).-condition, if any
sequence (un)nen in E satisfying I(uy) — ¢ and ||I'(uy)| g—1 — 0 has a convergent sub-
sequence. We say that I satisfies the (PS)-condition if I satisfies the (PS).-condition for
every c € R.

To establish a local version of the Palais-Smale condition, we introduce an important
principle due to Lions [85] [86] 87, 8], which is similar to that of [I03], 109, 110]. But

before we recall the following notion of convergence.

Definition 1.1.13. Let (X, u) be a measure space. A sequence (fn)nen of measurable real

value functions is said to converge in measure to a measurable real-function f if

lim ({2 € X : [fu(z) — f(x)] 2 a}) =0
n—oo
for each a > 0, where p is a measure.

Lemma 1.1.14. Let Q be a bounded domain and {u,} C H}(Q) a bounded sequence.

There then exist two nonnegative and bounded measures on 2, 7, v, and there exists a
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subsequence of {uy}, still denoted by {uy}, such that

2 P
[V, |? — A s and Junl” v
|z[? Ed
weakly in the sense of measures.

Now, let us introduce the so-called concentration compactness principle.

Proposition 1.1.15. Let {u,} C H}(Q) be such that u, — u weakly in Hg (L),

2 p*(s)
U U
[V, |? — A =T and Junl” v

|z Ed
weakly in the sense of measures, where T and v non-negative and bounded measures on Q.
Then there exist some at most countable index set J and a family {x; : j € J} of points
in Q such that:

[ulP" ()

('L) v = EIB + Zl/j(sxj;
jeJ

(i1) 7> |Vul* = Atz + 700,
jeJ

(iii) 75 > SV,

where 0y, is the Dirac measure at xj, {7; : j € J} is a family of positive numbers and
S = inf{|jull, : v € H}(), [ 9 _ 1}, for 0 < s < 2 and p*(s) = 2(N — s)/(N — 2).

In particular ny/p* < o0, s €10,2).
JjeJ

||

One common result used to find critical points is the mountain pass theorem of A.
Ambrosetti and P. Rabinowitz.

Theorem 1.1.16. (Rabinowitz [101)]) Let E be a Hilbert space and I € C*(E;R) be a
functional that satisfies the Palais-Smale condition. Suppose I(0) =0 and

(i) There exist positive constants p and o; such that I(u) > o when ||u||p = p;

(23) There is an element w € E such that ||w|| 5 > p and I(w) < 0.

then there is a critical value ¢ > o of I.
Moreover

¢ = inf sup I(g(t
Inf Sup, (9(¢))

where ' ={g € C([0,1], E) : g(0) = 0,9(1) = w}.
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1.1.5 Pseudo-gradient flow

Definition 1.1.17. A functional J : E — R is said to be locally Lipschitz provided that,
for every u € E, there exists a neighborhood V' of u and a positive constant k = k(V),

depending on V', such that
[J(v) = J(w)| < kflv —w]|

for each v,w € V.

Definition 1.1.18. Let E be a Hilbert space and J : E — R be of class C*(E,R). Consider
the set
Ey={u€E:J(u)#0}

A pseudo-gradient vector field for J on Ey is a locally Lipschitz continuous map X such
that the following conditions hold

(1) X ()l <2[lJ"(u)];
(i) (T (u), X (u)) > [ (w)]]*;
for all u € Ey.

Lemma 1.1.19. (Rabinowitz [101]) Any functional J € C'(E;R) admits a pseudo-
gradient vector field for J on Ejy.

1.1.6 Strong maximum principle
Consider the semilinear equation

—Au(z) + B(u(z)) = f(z) in x € Q,

where  is a domain in RV (N > 1), B is a nondecreasing real function with B(0) = 0 and
f>0a.e. in .

Proposition 1.1.20. (Vazquez [122]) Let u € L}, (Q) be such that
(i) Au € L} () in the sense of distributions in §;
(17) u>0 a.e. in

(17i) Au < B(u) a.e. in{zx € Q:0 < u(z) < a}, where a is a positive constant and

B :[0,a] — R is a continuous nondecreasing function with B(0) = 0.

Under the assumption that B(S) =0 for some S >0 or

(B(S)S) 2 dS = oo

O\w\m
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if B(S) > 0 for S > 0, then either u =0 a.e. in Q or u is strictly positive in § in the
sense that for every compact subset K C Q there is a constant ¢ = ¢(K) > 0 such that
u>cae K.

In particular if u vanishes a.e. in a set of positive measure, it must vanish a.e. in 2.

1.1.7 Spectrum of the negative Dirichlet p-Laplacian

Let us briefly recall some basic facts about the spectrum of the negative Dirichlet p-
Laplacian.

We consider the following nonlinear eigenvalue problem

—Apu(z) = AMu(@) P2 u(z), in Q;
u =0, on 0f).

A number X € R for which the above problem has a nontrivial solution is said to be an
eigenvalue of the negative Dirichlet p-Laplacian. The set of eigenvalues is called their
spectrum.

The smallest eigenvalue \; is positive, isolated, simple and admits the following vari-

ational characterization

- Vul/?
Alzinf{” Iy : uEWol’p(Q), u;é()}. (1.2)

ully

The infimum in (1.2)) is attained on the corresponding one-dimensional eigenspace.

We say that a dimension N is critical for a second order linear elliptic positive operator

L, if there exists a smooth bounded domain Q C RY in which the equation

Lu= f(x,u) + fu, in
u > 0, in €;
u =0, on 0,

has no solution for some 5 € (0, 1), where f; is the first eigenvalue of L and f(z,u) is a

nonlinear term critical with respect to L.

Now, we study the operator —A— -5 with Dirichlet boundary condition. When A < A,

|z[*
where A is the best constant in the Hardy inequality, the spectrum is contained in the

positive semi-axis, each eigenvalue )\, (k > 1) is isolated and has finite multiplicity. The
smallest eigenvalue )\; is simple and Ay — 0o, as k — oo, moreover all eigenfunctions (for

any such \;) belong to the space H{ () (see Egnell [53], Ferrero-Gazzola [57]). Thus as

a consequence of the Hardy inequality, the linear elliptic operator —Au — ﬁu is positive
and has discrete spectrum if A < A = (%)2 On the other hand, the conditions under

which critical dimension occur for operator —A — ‘x% is when A > A — 1.
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1.1.8 Sign-changing solution

Let Q be a smooth bounded domain in RY. For u € L%(Q), we define ut(z) =
max{u(z),0} € L?(Q) and v~ (z) = min{u(x),0} € L*(Q). If u € HZ(Q), then ut,u~ €
H{(Q) (see Kinderlehrer-Stampacchia [81]).

Definition 1.1.21. (Castro-Cossio-Neuberger [2]]) We say that u € L?(Q) is sign-changing
if ut #0 and u™ # 0. For u # 0 we say that u is positive (and write u > 0) if u= = 0,

and similarly, u is negative (u < 0), if u™ = 0.

1.2 Elliptic equations in divergence form
In this section, we present some results for more general elliptic operators of second-
order having a divergence structure i.e. operator of the form

N
Lu = Z 0/0x; (aij (x)@u/@xy) + lower order terms

4,j=1

1.2.1 Operators of monotone type
The theory of monotone operators applied to boundary value problems, has its origin

in the works of Minty [90], Browder [I7], Leray-Lions [83] and Hartman-Stampacchia [67].

Let Q C RN be a bounded domain with smooth boundary, X be a separable reflexive
Banach space and X* its dual space. We write (u*,u) for u* € X* and v € X, denoting
the dual product in X™* x X.

Definition 1.2.1. Let B : X — X* be an operator, then B is said to be

. . B
e Coercive when lim * ||Z’”"> = +o0;
[|u]|—o00

Monotone when (Bu — Bv,u —v) > 0, for all u,v € X;

Strictly monotone when (Bu — Bv,u —v) > 0, for all u,v € X with u # v;

Hemicontinuous when A € R — (B(u + A\v),w) is continuous, for all u,v,w € X;

Radially continuous: if A € R — (B(u + Av),v) is continuous, for all u,v € X.

A prototype of a nonlinear monotone coercive operator is the p-Laplacian Ap, 1 < p <
oo, defined by
Apu = div (|Vu\p72 Vu)

where Vu = (0u/0z1, ...,0u/0zy) is the gradient of u.
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Definition 1.2.2. Let B : X — X* be an operator, then B is said to be pseudomonotone,
if up, — u and limsup (B(uy,), u, —u) < 0 imply

n—oo

lim inf (Buy,, up, — v) > (Bu,u — v)

n—oo

forallv e X.

Lemma 1.2.3. (Zeidler [12])]) Let A,B : X — X* be some given operators on the real
reflexive Banach space X, then it holds:

(i) If A is monotone and hemicontinuous, then A is pseudomonotone;
(i) If A is completely continuous, the A is pseudomonotone;
(7i1) If A and B are pseudomonotone, then A + B is pseudomonotone.

Now, we introduce another important class of operators, which is very stable under

perturbations.

Definition 1.2.4. Let B : X — X* be an operator, then B is said to be a (Sy)-type
operator, if u, — u and
lim sup (Buy, un, — u) < 0
n—oo
imply uy — u.

In this work, we will use the following notion M—type operator, restricted to a subspace.

Definition 1.2.5. Let V' be a linear subspace of X and A: X xV — R, then A is said
to be of type M with respect to V' if for any sequence (vy)xen CV, w € X and v* € V*,

we have

(a) vy — w;

(b) A(vy,v) — (v*,v) for allv e V;

(c) A(vr,vy) = (0%, w), where v* is the extension of v* on the closure of V;
imply that A(w,v) = (v*,v) for allveV.

Lemma 1.2.6. (Zeidler [12])]) Any monotone and hemicontinuous operator is a M —type

operator.

Now we introduce a class of operators of monotone type, the Leray-Lions operator,
which appear in the functional analytical treatment of nonlinear elliptic and parabolic

problems. In what follows, we introduce these operators and give some examples.

The operator ¥ : X — X* defined by ¥(u) = —div(¢(z,u(x), Vu(zx))) is called a

Leray-Lions operator if satisfies the following conditions:
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(i) The map 1 : Q x R x RN — R is a Carathéodory function, i.e.

— the map z — (z, 5,£) is measurable for all (s, &) € R x RY;

— the map (s,&) — ¥(z, s,€) is continuous for almost all x € €;

(ii) Elliptic condition: there exists « > 0 such that

Y(z,s,§)E = algl?
for all (z,s,€) € Q x R x RY;

(i43) Growth condition: there exist > 0 and a € LP () such that

(2, 5,6)| < alx) + B(|s[P~! + €7
for all (z,s,&) € Q x R x RY;

(iv) Monotonicity condition: for £,m € RN, ¢ # 1 and almost all 2 € 2, we have

[¢<$787§) - 1#(%&”)](5 - 77) > 0.

Common examples of Leray-Lions operators are the generalized mean curvature operator

U(z,5,6) = (14 [¢*)P=2/2¢

and the p-Laplacian
w(w,s,8) = [§F7%,

but weighted versions of this operators can also be considered, beside others.

Lemma 1.2.7. (Zeidler [12]|]) Any Leray-Lions operator is pseudomonotone and a (S )—
type operator.

1.2.2 Existence theorems

The following is a version of the so-called Browder-Minty theorem.

Lemma 1.2.8. (Gajewski-Greger-Zacharias [58], Roubick [102]) Let V bet a reflexive
Banach space and A : V — V* be a radially continuous, coercive and monotone operator,

then A is surjective.

Since the monotonicity assumption made in the above theorem is general not easy to
test, we introduce a weaker condition. The following main Lemma on pseudomonotone

operators is due to Brézis [15].
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Lemma 1.2.9. Let X be a real reflexive Banach space and let A : X — X* be a pseu-
domonotone, bounded and coercive operator, and b € X*, then there exists a solution of

the equation Au = b.

As a very special case of Browder-Minty theorem, one gets another important result

known as the Lax-Milgram theorem.

Theorem 1.2.10. Let H be a Hilbert space with the inner product (-,-) : H x H — R,
and b : Hx H — R be a bilinear form on H. Further, assume that there exist constants
C1,Cy > 0, such that

(i) blu,u) > C ||ul|3;, for all u € H;
(1) [b(u,v)| < Collullg [|v]| g, for all u,v € H,

then for every bounded linear functional f : H — R there exists a unique element u € H,
such that
(f,v) =b(u,v) forallve H.

The following Lemma is a result of An et al. [§], that will be applied in our work.

Lemma 1.2.11. Let X bet a reflexive Banach space over R, (X, )nen be a increasing

sequence of closed subspaces of X, and V = UNXn. Suppose that
ne
A: X xV =R

is a real-valued function on X x V' for which the following hold:
(a) An = Alx, xx, 5 a bounded bilinear form, for all n € N;
(b) A(-,v) is a bounded linear functional on X, for allv € V;

(¢) There exists ¢ > 0 such that for allv €V,

A(v,0) > clfv]]?,
then, for each bounded linear functional v* on V', there exists u € X such that A(u,v) =
(v*,v) for allv e V.

The following result is a nonlinear extension of Lemma [1.2.11] due to Drivaliaris-
Yannakakis [52].

Lemma 1.2.12. Let X bet a reflexive Banach space, let A be a directed set, let {X)}aen
be an upwards directed family of closed subspaces of X, and let V = )\UAX)\. Suppose that
€

A: X xV =R

is a function for which the following hold:
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(a) A is of type M with respect to V;
(0) limyg| oAz, z) /||| = oo;

(¢) Ax(z,-) € X5; for all X € A and all x € Xy, where Ay is the restriction of A on
X)\ X X)\,'

(d) the operator Ty : Xy — X3 defined by (Thx,y) = Ax(z,y) for all x,y € X}, is

monotone and hemicontinuous for all X € A,

then, for each v* € V*, there exists x € X such that
A(z,v) = (v*,v)

forallveV.



Chapter 2

Multiplicity results for a class of
singular elliptic equations with the

critical Sobolev exponent

Here, we consider N > 3 and study the existence of solutions u € H}(€2) of a second
order elliptic problem, on a bounded smooth domain © C R, that involves a singular

term, i.e. the problem P;(\, p,a, f,7):

{ —Au(z) - pru(z) = lu(@)? " Pu(e) + ple]*Pul@) + f@)u(@)] i Q\{0},
u(z) =0 on 09,
(2.1)
where 2* = 2N/(N — 2) denotes the critical Sobolev exponent in the sense that the em-
bedding H}(Q)—L? () is continuous but is not compact.

Here we consider f € L°°(Q2), which may be sign-changing, and the parameters
0 <~v<1,0< X< A, where A is the best constant in the Hardy inequality (see
Lemma (1.1.8) and suitable values for a and p.

The problem P; (A, i, «, f,y) has loss of compactness and so the corresponding func-
tional does not satisfy globally the classical Palais-Smale condition in H}(2). In fact,
as we have mention before the non-linearity has critical growth at the limiting exponent
2* — 1 for the Sobolev embedding H}(Q)— L% () (see Cerami-Fortunato-Struwe [26]).
On other hand, due to term #u(w) the problem has strong singularity at zero and the
non-compactness of the embedding H} ()~ L? (Q, |x|_2dx) even locally in any neighbor-
hood of zero, brings us to the question of the possibility of blow-up. To make sense,
we define the equation on Q\{0}, but still we assume that 0 € 2. Moreover the presence

of term p|x|*~2u(z) plays an important role, because it allows to control the singular term.

14



2.1. Previous results 15

Considering suitable hypotheses and using special techniques, for overcoming the dif-
ficulties in dealing with problems like P; (A, u, «v, f,7y), we prove the existence of two non-
trivial solutions and under less strong hypothesis we prove the existence of (at least) four

nontrivial solutions u € HS(Q) and we prove that at least one of them is sign-changing.

The results obtained in this chapter are related with the publication Chen-Murillo-
Rocha [39] and Chen-Murillo-Rocha [36].

2.1 Previous results

Equations that involve the critical Sobolev exponent, have been extensively investi-
gated, since that, when p = {2 the Sobolev embedding H{ (Q) — LPF!(Q) is not
compact. Hence the Euler functional, does not satisfy the (PS)-condition globally, lead-
ing to difficulties in finding critical points by standard variational methods. Thus, if we

consider the Yamabe’s problem

~Au(e) = @) Pu(z) + fuz) i 9,
u(z) >0 in Q (2.2)
u(z) =0 on 01,

the functional associated to problem

1 2 1 2*+1_1/ 2
vty =5 [19uf = gy [t = [,

may lose compactness. However in a range, which is determined by the best constant for
the Sobolev embedding Hg (Q2) — LP*! (), Brezis-Nirenberg [16], proved that, some com-
pactness will hold. These type of equations have been studied by many other authors (e.g.,
see Kang-Deng [77] and Chaudhuri-Ramaswamy [29]). For the problem P; (0,0, «, f,7)
and odd nonlinearity, Li-Zou [84] obtained infinitely many solutions. For more related re-
sults, we refer the interested readers to Costa-Silva [47], Ruiz-Willem [103] and Sang [104].

Elliptic equations containing simultaneously the critical exponent and a singular term
(X # 0), which are particular cases of the problems Pj(\, u, a, f,7y), were considered in
the literature as Ferrero-Gazzola [57]. They established the existence of solutions for the
problem P (A, i1,2,0,0) which depends the spatial dimension N and suitable restrictions
on the coefficient of the singularity A (for N >4 with A< A—1land A—1 <A <A).

Other relevant studies, are the works of He-Zou [70] for the problem Pj(\,0,«, f,7)
and the works of Tarantello [I18] and Chen [31], for the problem P;(\, p,2,0,) under
some conditions on f(x,u). For problem P (0, u,2, f,0) with Neumann condition, Taran-
tello [I19] proved the existence of three solutions, one of which necessarily changes sign.

When N > 7, Kang-Deng [77] proved the existence of two nontrivial solutions of the prob-
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lem Py (A, i1,2, f,0) provided f satisfies some additional conditions.

Since we are facing with the singular term ﬁ and critical nonlinearity, we need to
use the exact local behavior for the solutions of the problems obtained in Chen [31] and
Chen [34] to estimate the energy, which is essential in the process of getting sign-changing
solution. We also point out that similar techniques have been used in Chen-Rocha [42] to

study

A 4 - _
—Au(z) — WU(:B) = u(@)| 72 u(@) + Xa|* P u(@) + f(@),
x
where the existence of four nontrivial solutions was proved and at least one of them is

sign-changing solution under some further conditions on A\, « and f.

In the present chapter, we emphasize in the results of Tarantello in [119] for the problem

—Au(z) = lu(@)|* Pu(z) + f(z) n Q
{ u(z) =0 on 09, (2:3)

where Q € RY is an open bounded set and f € H~(Q) with f # 0 satisfying the following

suitable condition

/ fu < C(|Vul) (2.4)

for all u € H}(2) such that |julj2+ = 1 and an adequate positive constant C. She defined

Ho = ui?*le{ (IVel2) /fu}

and proved that for f # 0, uo is achieved. Moreover, in particular if f satisfies the more

the infimum:

restrictive assumption

/ fu < C(|Vul2) (2.5)

for all u € H(Q) such that ||ulj2« = 1, one gets that g > 0.

=5 [ v =5 [ = [ ru

associated to problem [2.3]is bounded below in the manifold

The functional

A={ue Hj(Q):(I'(u),u) =0}.
The main result in Tarantello [119] is the following:

Theorem 2.1.1. The problem , admits at least two weak solutions ug,u; € HE(Q)
for f # 0 satisfying ; and at least one weak solution for f satisfying . Moreover
ug >0, uy >0 for f > 0.

The following Lemma is very important for solving the problem (2.3 and permits to
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characterize these solutions in the subsets of Nehari:

At = {u e A | Vul)?— (2 —1)|fu

§:>0}

and

A= {u e R | Vul?— (2 — 1) |Jul2 < o}

Lemma 2.1.2. Let f # 0 satisfy . For every u € H} (), u # 0 there exists a unique
tT =1t% (u) > 0 such that t'u € A=. In particular:

= tmax

s [ |Vull
(

1/(2°~2)
2 1) ||Vu ]

2*
2

and I (tTu) = max I (tu).

7tmax

Moreover, if [ fu >0, then there exists a unique t~ =t~ (u) > 0 such that t"u € AT.
Q

In particular

1/(2*-2)

t>[ [Vl ]

* 2
(2 = DIVl

and I (t7u) < I (tu) for all [0, tmax]-

Remark 2.1.3. To prove the Lemma[2.1.9, Tarantello defined the function

put = || Vully =t Jlull3.

which achieves its maximum at

1
B 71
maxr — % PE .
@ 1)l

For better understand this Lemma, we can see graphically, the behavior of function @,t
(see Figure 1). Note that for all t > 0, if holds, there exists a unique t. Moreover,

if we consider u, such that | fu > 0 there exists one additional point t_.

Remark 2.1.4. The solutions ug and uy in the Theorem|2.1.1| of Tarantello are such that
up € AT and uy € A~. Indeed, to prove the existence of ug, Tarantello suppose that f # 0
satisfies and using Ekeland variational principle prove that [ fu > 0. Then from
Lemma she conclude that there exists a unique t~ such that t 1y = ug € AT, for
g € HY (). For the existence of uy. Tarantello suppose f # 0 satisfies and using
the Lemma conclude that there exists a unique t* such that ttiy = ug € A~. In

other words, Tarantello proved that there exists a unique function ug € H(% (Q), such that



18 2.2. Multiplicity results

t_ bmax b4

— 9y (tmax) \

Figure 2.1: Behavior of the function ¢, t

2.2  Multiplicity results

The aim goal of this section is to study the existence of nontrivial solutions of problem

Pi(\ p, a0, f,y). We will start introducing some notation and remarks.

Define the functionals

T(w) = [ [Vul? = (s + ule]*=2) [ul?
Uw) = g, Flu) = [ flul™w,
Qu) = T(u) = U(u) = F(u),

G(u) =2T(u) —2*U(u) — (v + 1) F(u).

Let p; be the infimum defined in Chaudhuri-Ramaswamy [29]:

y A "
" —mf{/ <|vu2—W\u|2) :/m 2@\?—1} >0

and define the value )
E *
Sap = inf{<T(u)> ;/\u|2 = 1} (2.6)

Lemma 2.2.1. If0 < A < A and 0 < pu < py, then Sy, > 0, T(u) > 0 for all u €
H}()\{0} and T(0) = 0.

Proof. For any u # 0, we have from the assumption 0 < p < @1 and the Hardy inequality

that
s 2) (- ) (-2 e
<1 _ :1) (1 _ 2) /\vqu < T(u) < / V2. (2.7)

Thus
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Note that the best Sobolev constant (see Definition [A.1.9))

S(Q) = inf{/|Vu2 :/|u|2* _ 1} > 0.

Thus, from (2.7)), we have

0<8(Q) < /|Vu|2 < <1 - Z>_l (1 - i) _lT(u)

for all u € H(Q) such that [|u[?" = 1. Therefore 0 < T'(u) for all u € HZ(Q) such that
[ |u* =1 and therefore S, , > 0. O

Remark 2.2.2. (i) By the Gagliardo-Nirenberg-Sobolev inequality (see Lemma [A.1.6]),
exists KU > 0 such that U(u) < KY|u|* .
(ii) For all u € H} (),

Flu) < ' JE

1 .
< loollelly s < Ul lloo Esa) ull "t = K [fuf 7+, (2.8)

since f € L™, using the Holder inequality and the Sobolev embedding of HL(Q) in L7T1(Q)
with constant K1 > 0.

Define the following Euler-Lagrange energy functional

Definition 2.2.3 (weak solution). We say that u € H(Q) is a (weak) solution of the
problem Py (A, p, a, f,7) if w is a critical point of the Euler functional I, i.e. for any
v € HE(Q) there holds

A *
/(VUVU - WUU — plz]* 2w — |u)? "2uw — fluTv) = 0. (2.9)

Remark 2.2.4. (i) We can rewritte the problem Pi(\, p, v, f,7) as

#Pu(z) + f@)|u(@)]?, in Q\{0}.

~Au(e) = (o) - plal*Hua) = (o)

Then \
—Au® = g — ple] e = [ul* “2u® + (@) ul"u, in Q\{0}.
Since f € L*(Q), we have

f(@)|uTu o o
a2z = |flu[7 7 < clu 1,

for some ¢ > 0. Then f(x)|u|"u is a lower-order perturbation of |u|?> ~2u?, in the sense
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that _L@lulu

|u]2" —2u()?
[101)(see Proposition , that I € C*(HE(Q),R);
(13) If u is solution of problem Pi(\, u,«, f,0), we have I'(u) = 0, then (I'(u),u) =0 and
therefore uw € M.

— 0 as |u| — oo, and we get for standard arguments due to Rabinowitz

For any u € H}(Q)\{0} and t € R. Define ¢, (t) = [¢t|=7 (I'(tu),u) + F(u), i.e.
Bult) = £ T(u) — |72 U ). (2.10)

This function attains its maximum at the positive value

N—-2

4

tmax = tmax(u) = (21__77_1 T(u) U(u)—l)

We define ¢y, (tmax) = @« (u), where @, (u) is the functional ®, : H}(Q)\{0} — R given by

2% —~y—1 1—

D (u) = tmaX(u)l_A/ T(u) - tmax(U)Q*_v_l Uu) = C%NT(U) 2¥-2 U(u)fﬁ,

EiS
Let the set B. = {w € H} () : |w| < €}, the infimum

pr= inf {®.(u)—|F
ir = nt (20~ [FQ))

and the infimum introduced by Tarantello:

. 2" —y—1

Remark 2.2.5. (i) If iy > 0 then puy > 0. Indeed, since

2% —y—1 1—~

F(u) < |[F(u)| < ®,(u) = Cy nT(u) T2 U(u) 22,

we have
2%~ 1 e
CyNT(u) =2 U(u) =2 — F(u) > 0.

Therefore

. 2*:7—1
up = yint { €T T - Fw)}

2% —y—1 1—~
= U(in)g1 {C%NT(U) =2 U(u) 72 — F(u)} > 0.
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In the following three subsections, in order for obtains the results, we introduce some
auxiliary results which are relevant to prove the results of this chapter, namely briefly
describe the solution of an auxiliary problem, the local behavior of the solutions of the

problem Pj(\, pu, «, f,7) and some integral estimates.

2.2.1 Auxiliary problem

From Catrina-Wang [25], we have the following proposition:

Proposition 2.2.6. For 0 < A\ < A =(&32)2, the problem
122y z € RM\{0}, wu(z)— 0 as |z| — +oo, (2.11)

has a family of solutions

_ He(A = NN/(N - 2)]"5
Ue(x) = VA |x|“/2/ﬂ]¥ fore >0,

where v1 = VA — VA =X, 72 = VA + VA —X. Moreover, U, is the extremal function of

the minimization problem

Sy = inf / |Vul|? — Lu2 dz : u € DYA(RY), / lul* de =17}, (2.12)
RN |[? RN

Clearly,
/ |U(x)|2*dx:/ VU, \tiU? de = S
RN RN : 2|2 ¢ A

2.2.2 Local behavior of the solution

The local behavior of the solution of problem P;(\, u,«, f,7), permits to calculate
important estimates, that guaranties that the solutions obtained for the problem are dif-
ferent. The following proposition has been proved in Chen [33] and Chen [34], using the
method of Moser iteration (see Chou-Chu43] and Han-Lin [65]).

Proposition 2.2.7. Let 0 < A < A. We have that

e if u € HE(Q) is a solution of the problem Py(\, i, , f,v), then there holds
u(z)| < Ky~ VAVA=N g e BL(0)\{0} (2.13)

for some positive constant K1 and sufficiently small r > 0;

e if u € H}(Q) is a positive solution of the problem Py(\, u, a, f,7), then there holds
Kolz|~VAVAN < u(a)] < Kylo|"VAVATN g€ B(0)\{0} (2.14)

for r > 0 sufficiently small and some positive constants K1, Ks.
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Remark 2.2.8. Let u be a positive solution of the problem Py(\, u, «, f,7)
(i) When X\ =0, u(0) is positive and we come back to the usual case.

(ii)) When 0 < A\ < A, the singular order at x = 0 of u stated in Proposition m
coincide with the singularity of the explicit form U.(x).

(iii) When X — A, the singularity of the positive solutions become more and more

stronger.

2.2.3 Integral estimates

The following estimates are very relevant for obtaining of the results and to overcome

the difficulties created by the singular term.

Define a cut-off function ¢(z) = 1 if |z| < 4, ¢(z) = 0 if |x| > 26, ¢(z) € CL(Q) and
lp(z)] < 1, [Vo(z)| < C. Let ve(x) = ¢p(x)Us(x), where U (z) is the family of solutions
defined above.

From the work of Chen-Rocha [42], we have:

Proposition 2.2.9. Let 0 < A\ < A and w € HL(Q) be a solution of the problem
P\, f,7), then for e > 0 small enough we have that:

/wz*_lvg — 0" and /wug*—ldm _ 0N, (2.15)

/ (]Vv52 - ‘2'2@ —SF +0(Y) + 0T (2.16)
/03* =57 oY), (2.17)

/!x\a_Q 2 = 0(523{%), when 0 < a < 2V/A — \; (2.18)

/vg =0 1), (2.19)

/wva =0 T); (2.20)

Remark 2.2.10. We emphasize that in the estimate (2.18), the local behavior of the
solution of problem Py(\, u, a, f,7y) played on essential role.
2.2.4 Existence of two nontrivial solutions
We consider the following hypotheses (Hs):
(1)) 0<A<AO0<pu<p,0<a<VvVA-XN0<y<1, feL>®(Q)and iy > 0;

(74) ﬁﬁ% <y <1, fis continuous at 0 € Q and f(0) > 0;
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(iii) f > 0.

We say that hypotheses (Hs) hold if (H2)(7) holds and one of the hypotheses (Hs)(i4)
or (Hj)(iii) holds.

We start stabilizing when the condition g1y > 0 is satisfied.

Lemma 2.2.11. Let & = % and B = 5%. If

[fllsc < Ciyny(E1 )M (KY) PR 17, (2.21)

A=y
where C( Ny = (%) e (237;271), KT = <1 — :1> <1 — X) KV and K. are the
best Sobolev constant for the embedding of H(Y) into L* (); and HE(Q) into L7TH(Q)
respectively. Then jiy > 0.

Proof. From 1D and Remark there exist positive constants K41, K 1T and KV
such that F(u) = || flloo K41 /ul]"*t, T(u) > K17|ju||? and U(u) < KY||u||*". Then

. (1) = Cpo (K1) > (K) 7 lul| =7 = Cy iy (KM ET) ™ Jul 7
Now, if the inequality holds, from we have
F(u) < Cpy,ny (B ) (KY) 77 Ju 7+
and therefore F'(u) < ®,(u). Now we consider two cases

o If F(u) > 0, we have —®,(u) < —F(u) < F(u) < ®.(u) and |F(u)] < ®s(u).
Therefore g1y > 0.

o If F(u) <0, we have F(u) = —|F(u)|, then

fir =m0 ) [F@) = (.0) + ().

Since F'(u) < ®4(u) and ®,(u) > 0, we have ®,(u) + F(u). Thus 1y > 0.

Therefore, we have iy > 0. O

As the energy functional I is not bounded below on H{ (), we consider the functional

on the Nehari set
M = {u € Hy()\{0} : Q(u) = 0}.

and the subsets of M defined by the sign of G (second derivative of I)

MT ={ueM:Gu)>0}, M’ ={ucM:Gu)=0}, M ={ucM:Gu) <D0}
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For uw € M, the functionals I and GG, can be rewritten as

1—7x 2* —~y—1
T (u) = _WT(U) + WU(U%

Gu(u) =1 =7)T(u) = (2" =7 =1 U(u),

where we have denoted the restrictions of I and G, to the set M, by Iy and Gy, respec-
tively.

Remark 2.2.12. (a) I(u) is bounded from below in M. In fact for any u € M, we have

1 1 1 1
I =(=-—— T - __—_— \F
Ml = (5 -5 ) T+ (5 - 7 ) Fw
2* —~v—1
> ST () = (Gt KTl
22+ 2% (y + 1)
using @ From , we have
1—=—)(1=-=] —— —|—K v
(-2 (-2) s ]
1 1 * 1_i -2 -y 1KT
4 1 A) 22¢ 2*(y+1)

(b) For any u € H}(Q)\{0}, we have I(tu) — —oco as |t| — oc.

v

v

The following Lemma is a generalization of Lemma 2.1 of Tarantello [119]:

Lemma 2.2.13. Suppose the hypothesis (Hz2)(i) holds. For any u € H}(2)\{0}, define
sy = sign F(u) € {—1,41}. Then there exist three values to = to(u) € R, t— =t_(u) € R,
ty =ti(u) € R such that:

(1) t4 >0, thu € M™, t4 > tmax and I(tyu) = maxe>e,, I (tu);

(1) spt— >0, t_u € M*, 0 < spt_ < tmax and I(t_u) =min_¢ <<y, I(tu);
(791) to < 0, tou € M ™, to < —tmax and I(tou) = maxi<_¢,, I (tu).

Proof. Let t € R. Define the function ¢, (t) = [t|~7 (I'(tu), u) + F(u), i.e.
Gu(t) = t[t| Y T(u) —t|t|> 772U (u). (2.22)

From the definition of ¢,,, we have ¢,(0) = lim,_,g+ ¢, (t) =0,

limy 400 Pu(t) = —00, ¢u(—t) = —¢y(t) for all t > 0, and ¢//(t) < 0 for all t > 0, so
¢y (restricted to t > 0) is a concave function which attains its maximum at ¢y and
Gu(tmax) = x(u) > 0.

For simplicity of presentation, we first assume sy = +1.

(7) Since ¢y, (for t > 0) is a concave and continuous function and 0 < F(u) < ¢y (tmax),
there exists a unique t4 > tyax such that ¢,(t+) = F(u) > 0. This implies, from the
definition of ¢y, that [t4|™7 (I'(t; u),u) = 0 so Q(t+u) = 0 and t; u € M. Moreover,
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from ¢! (t;) < 0ie. T(u) < (25 —y—1)(1—7) " |tL|> "2 U(u), we have Gps(tyu) < 0; thus
tyu € M~ and I(tyu) > I(tu) for all t > tmax. The last statement is true because, if we
set r(t) = I(tu), then /(t) = t71Q(tu) so 7’(ty) = 0, and from 7/(¢) = 7 (¢y(t) — du(t1))
we have 7/(t) > 0, when tax <t < t4, and /() <0, when ¢ > t4.

(7i) By similar arguments to the ones used in (i), there exists a unique ¢t— > 0 such that
—tmax < 0 < t— < tmax and ¢y (t—) = F(u) > 0 so t_u € M and, from ¢/ (t—) > 0,
t_u € M™T. From r'(t) = t7(¢py(t) — du(t_)), we have r'(t) > 0, when t_ < t < tpay, and
r'(t) < 0, when —tpax <t < t_. Therefore, at least, I(t_u) < I(tu) for all —tpax <t <
tmax-

(#7i) Note that limy oo du(t) = +00, Pu(—tmax) = —Pu(u) < 0, ¢),(t) < 0 for all ¢t <
—tmax, and @l (t) > 0 for all ¢ < 0, hence there exists a unique tyg < —tmax < 0 such
that ¢, (to) = F(u) > 0 so tou € M and, from ¢),(t9) < 0, tou € M~. From r/(t) =
t7(pu(t) — Pu(to)), we have r’'(t) > 0, when t < tg, and 7'(t) < 0, when ¢ty < t < —tmax-
Therefore, I(tou) > I(tu) for all t < —tmax.

For the general situation sy € {—1,+1}, it is enough to observe that (s;)~! = sy, (s7)? =
1, pu(sgt) = spou(t) for t € R, F(spu) = sy F(u), Gu(spu) = Gu(u), and r'(syt) =
sgr'(t) for t € R. O

1

Remark 2.2.14. The above Lemma can be further improved. In fact, @) (fttmax) = 0,
&L (t) > 0 when —tmax < t < tmax and ¢.,(t) < 0 otherwise. So in fact, under the same
hypotheses, we can say: (i) I(tyu) = maxy>; I(tu); (4i) I(t—u) = ming<i<¢, I(tu); and
(73i) I(tou) = maxi<; I(tu).

Remark 2.2.15. For 0 < v < 1, beside the situation in Lemmal[2.2.13, i.e. when |F(u)| <
O, (u) where we have three values to, t— and ty, other situations are: (a) for F(u) = ®.(u)
we have two values tg < 0 and t— =ty = tymax > 0; (b) F(u) = —¢p«(u) we have two
values tg = t— = —tmax < 0 and t1 > 0; (¢) for F(u) > ®.(u) we have one value
to < 0; and (d) for F(u) < ®.(u) we have one value t; > 0. Therefore, we can rewrite

Lemma in the following (more general) way.

Lemma 2.2.16. Let 0 <y < 1. For any u € H}(Q)\{0}, we have:

(0) if F(u) < @u(u), exists t+ > 0 such that tou € M™, t4 > tmax and I(tyu) =
maxg>e,. I (tu);

(i1) if —Py(u) < F(u) < ®u(u), exists t— € R such that spt— >0, t_ue MT,0<spt_ <
tmax and I(t_u) =min_;  <¢<¢.. I(tu);

(737) if F(u) > —Pu(u), exists to < 0 such that tou € M~, tg < —tmax and I(tou) =

maxXt<—tax I(tu) .
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bu(t) 0=y<1

\ o

F(u)

to t_ tmax T4

—p.(u) \

Figure 2.2: Behavior of the function ¢,

Pul®) $u(0)
A

17 (w)] [ IF ()|
< r:7 \ tL >t <

o+
A 4

Figure 2.3: Behavior of the function ¢, for different values
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Remark 2.2.17. For better understand this Lemma, we can see graphically the behavior
of function ¢, (see Figure . Note that for 0 <y < 1, ¢y (tmax) = ¢.(u) and if

0 < |F(u)| < ¢«(u), we have three values ty, t— and t4.If we consider Other values for ~y,
the behavior of the function ¢, (t) is quite different (see Figure . When v =1, we have
limy_,o+ ¢ (t) = £T(u) and limy_ 100 Py (t) = Foo, thus: (a) for |F(u)| < T(u), we have
two values t— < 0 and t1 > 0; (b) for F(u) > T'(u), we have one value t_ < 0; and (c)
for F(u) < —T'(u), we have one value t+ > 0. When v > 1, we have lim;_,y+ ¢y, () = F00
and limy—s 100 ¢y (t) = 0, thus: (a) for F(u) > 0, we have one value t > 0; and (b) for
F(u) <0, we have one value t_ < 0.

We prove the existence of two nontrivial solution, using Ekeland variational principle

and Nehari techniques.

Set

cr = uéﬁ% I(u) and c_ = uél]l\;* I(u).

Let u € H}(2)\{0}. From Lemma [2.2.13] there is a real value ¢t = ¢ (u) such that tu € M~
so M~ #  (following the same idea M+ # ()) and M # (). Recall M is a manifold, and [
is continuous and bounded from below on M.

Ekeland’s variational principle [I.1.7] applied to the optimization problem

cop = Jél]\f/ll(u) (2.23)

gives a bounded minimizing sequence (uy)neny C M satisfying:
(Ea) co < I(un) < co+ 1

(Ey) I(u) > I(uy) — L|ju — uy|| for all u € M.

n

The following result will be used below, in a contradiction argument, to show that the

minimizing sequence converges strongly in H&(Q)

Proposition 2.2.18. Assume hypothesis (H3)(i) holds. Let u € H}(Q), (un)neny C M~
be such that u, — u weakly in H}(Q) and I(u,) — ¢ € R but u, does not converge
strongly to w in H(Q). Recall the definitions of sy = sy(u), t4 = t4(u) and t— = t_(u)
in Lemma[2.2.13. Then the following holds:

(i) Ifu#0 and t4 <1, then ¢ > I(tyu);

(i) If u # 0 and t4 > 1, then ¢ > I(t_u) + %S%;

(iii) If u =0, then ¢ > %SA%

Proof. Firstly, following the same idea of Chen-Li-Li [37], (Lemma 2.6), we prove that

up, — u and [ |z|*2|u, —ul? = 0 as

n — Q.
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Let {u,} C H} (Q) be bounded. We may assume that, up to a subsequence,
Up — uin H} (), u, — u a.e in Q.

Then u, — w in LP(Q) for 1 < p < 2*. So that, letting Ni]o\f—Q < s < 2%, we have from

Hoélder inequality that

2 s—2
s (a—2)s s
[l = < ( / \un—uf) ( [l )

(a—2)s
and from the choice of s, [|z| s=2 < oo holds. It follows from [ |u, —u|® — 0 asn — oo

that
/Iw!H w2 = 0.

We may assume that there exist a,b > 0 such that

A
T(uy —u) = /(|Vun — Vul? - W\un —ul?) +o(1) — d?,
x
and [ |u, — ul* — b*". Note that, since u, does not converge strongly to u, we have
a # 0. On the other hand, from f € L° and the compactness of the Sobolev embedding,
we have [ flu, — u|7(u, —u) — 0.

For t € R, we set

") = I, B = e =

and 0(t) = r(t) + (). So, for t > ¢,

r(t) = (I'(tu),u) =7 <</>u(t) - /f(flf)!WU) =17 (¢u(t) = dult+)) <0, (2.24)

since ¢, is a decreasing function for ¢ > ¢t,. From

I(twn) — 08)| = | 22T () — £ | HQ*—”“/fr Tt — I(tu) — B(2)
U, =13 U, T Up || 5« o— Up | U, U

1 tr
’2t2T(un —u) — —

IN

2*
o~ I - 610)
we see that I(tu,) — 6(t) as n — +o0o. We now prove the three statements:

(i) Suppose u # 0 and ¢4 < 1. From (2.24), 7'(1) < 0. Since @ (uyn) = (I'(up), un) —
0'(1) and u, € M, we have @ (u,) = 0 and ¢'(1) = 0. Thus £(1) > 0 and hence
a? — %" > 0. So, we have

B(ty) =¥ o > 0.
2 2



2.2. Multiplicity results 29

Since I(tuy,) — 6(t), then I(u,) — 6(1) and hence
c=0(1) > 0(t4) = I(tyu) + B(t4u) > I(tyu).

(ii) Suppose u # 0 and ¢4 > 1. First, from ¢4y > 1, b # 0. Indeed, since 0 = @ (u,) =
(I'(up), up) — 0'(1) and u, € M, then ¢'(1) = 0 and 0”(1) < 0. If b = 0, we have
(1) = —a® < 0 and

(1) =0"(1) —a® — (2" = 1)b* < —a® <0,

which contradicts to t; > 1. So we have b # 0. We know that § attains its maximum
at t, = (aQ/bQ*)ﬁ and B'(t) > 0 for 0 < t < t, and B'(t) < 0 for ¢t > t.. Therefore
B(ts) = %(a/b)N. Now, since

S <\Vu|2 - #ﬁ) dx . a2

SA = inf B) = 2
(Jen |ul? dz)? (v)*
*\ =
we have a? > Sy <b2 )2 and
* 2 2
N 2%\ 2%
1 2\ 2 1 Sy(b 1 N
ﬁ(t*):N<ZQ> N (62) Z NN

Next, we show that ¢, < ¢,. Suppose this is not the case, i.e., 1 <ty <t,. As0>6'(t) =
r'(t) + B'(t) for all t > 1, we have r'(t) < —p'(t) < 0 for ¢t € (1,t,), which contradicts to
1<ty <tyandr'(ty) =0. So, in fact, t, < t,.

Note that (1) = li_>m I(uy,) and I(u,) = max I(tuy,). Hence, we obtain
n—o0 >

n—oo \ t>0

0(1) = lim (max[(tun)> > nlLrgOI(t*un) = 0(t.)

and | x
c=0(1) > 0(t,) = I(tsu) + B(ts) > I(teu) + NSE.
Moreover, from t, < t; and I(t_u) = min I(tu) (see Remark [2.2.14)), we have ¢ >

0<t<t,

N N
I(tiu) + £52 > I(t_u)+ £52.
(iii) Suppose u = 0. Since u,, € M~ C M, we have

J 09l = tual?) = [ fual? o
1 , A L) 1 .
ez 5 [ (90 = Zalunl) = 52 [ lual? o)

and
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Using the fact that Sy|v
that

2. < [(|Vv]? = ﬁ]vm for all v € H}(Q) and v # 0, we obtain

11 s AL o 1 _x
> (- — AR > g2
c_<2 2*)/(Ww |WW”)+“”—N%

The proof is complete. O

We recall the definition of set
Be={we Hj(Q):|w|] <e}.

Lemma 2.2.19. Suppose hypotheses (Hz)(i) holds, then:
(i) For everyu € M, Gpr(u) = (1 —~)T(u) — (2 — v — 1D)U(u) #0, i.e. M° = 0;

(13) For any sequence (up)neny C M, we have

lim Guy(up,) =0 = liminf |u,| = 0;
n—+oo n—+o00

(iii) Given u € M, there exists ¢ > 0 and a differentiable function t : H} (Q) — R,
satisfying t(w) > 0 for all w € B, t(0) =1, t(w)(u — w) € M for all w € B, and

/ <2Vqu — 2%|2ufw — 2u|w | 2uw — 2% |u)? "2uw — (1 + fy)f|u]7fw)

|
<t/(0), w> = Gt ()

(2.25)

Proof. (i) Assume, by contradiction, that (1 —~)T'(u) — (2* — v — 1)U(u) = 0 for some
u € M, then we have

1
1— 73
a2 U@F > (5 0) >0

for some constant C' > 0, by using the Gagliardo-Nirenberg-Sobolev inequality. On the

other hand, since u € M, we have

Recall the definition of @, in Lemma [2.2.13] and define U, (u) = ®.(u) — F(u) for all
u € M. Hence, W, (su) = sV, (u), for any s > 0 and v € M, and

U, (u) >  inf \Il*uzsiﬂ( inf \P*U>>Silj,+7 .
@, v ) 2 sy

Let K = 2*17_7;1. Thus, from gy > 0, we have

2% —y—1

0< st < W,() < [K‘ 1-K) K72 —(K— 1)} U(a) < 0.

This is a contradiction. Therefore (1 — )T (u) — (2* — v — 1)U(u) # 0 for all u € M.
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(73) Arguing by contradiction again, assume there exists a subsequence (uy)neny C M
such that

(1 =7)T(un) = (2" =7 = DU (un) = o(1)

L
=

and ||u,|| > s for all n € N and some s > 0. Hence, s,, = U(uy)2* > 0 for all n € N.

Since u, € M, we get
Fun) = T(un) = Ulun) = [(27 = 2)/(1 = )] U(un) + o(1).

These together with p1p > 0 and W, (u,) > inf  W,(u) > se s implies

U(u)l/2* =s,,,
0<sitTup < Wu(uy) < (1—K?)Uluy) + o(1) <0,

which is a contradiction, so (1 — )T (un) — (2* —v — 1)U (upn) = o(1) and ||u,| = o(1).
(iii) Let u € M and ¢ : R x H}(Q) — R be defined by

o(t,w) = t|t| VT (u — w) — t|t)> 72U (u — w) — Fu —w).

Note that %gf)(l,O) = Gp(u) # 0 (by (i)) and ¢(1,0) = Q(u) = 0. Hence applying the
implicit function theorem at the point (1,0), we have that there exists a function t = t(w)
with ¢(0) =1 and

(#0).0) =~ 5-00.0)(560.0))

O
The following result prove the existence of a first solution for the problem P; (A, i, «, f, )

Proposition 2.2.20. Suppose hypotheses (H2)(i) hold. We have co < 0, there is a critical
point wg € M of I such that I(wg) = co, and wo is a local minimizer for I. Moreover,
wo > 0 whenever that f > 0.

Proof. Let u € M+ # () (see Lemma [2.2.13). From G(u) > 0, we have

Ulu) < 2*1__77_1T(u), (2.26)

(3- 1) 70~ (3 - =57 ) v
(o () (=
(i:ly) <21* — 1) T(u) < 0.

Hence ¢y < 0, since ¢4 = inf, e+ L(u) < I(t_u) < 0.

S0,
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Moreover,
co = inf I(u) < inf I(u) <O.

ueM ueM+
From Ekeland’s variational principle there exists a bounded minimization sequence
(un)nen C M. We need to show that [|1'(un)|| -1y — 0 as n — oco.

Choosing n where I'(uy) # 0, applying the item (ii) of Lemma [2.2.19] for § > 0 suffi-
ciently small and setting u = uy,, w = 5”%2";“, we have that exists ¢, (0) = ¢ <5IIIE "§”>
such that

. e — I'(uy)
s 2 0 0) (un — ey ) € v

On the other hand, by (Fp) and the Taylor expansion of I, we have

*Hwa—unll>< (ws) , un — ws) + o ([lun — wsl)

—“@wﬂmu—%wm+<uwm%ww1WM>>

1 (un)|
+0< > .

sl 2 (1 10 (90) () )+ 000 ) { ) o) Y 4 09). 227

Up — by (0) Up + 07— I (un) Uy,

[ ()

Hence

Dividing (2.27)) by 6 > 0 and passing to the limit as § — 0, we have

l u , (L I/(Un) — ' (u
(1l 1 O 2 () ) = )

Since (un)nen is a bounded sequence,

I (un) | < = (1 + [Junl| [[#n (O)[]) < = (1 4 [[#n (0)]])

3\'—‘
S|Q

for a suitable positive constant C' > 0. Note that ¢, (0) = <t’(0) IIIE g‘ > Then by (2.25),

since (up)nen is a bounded sequence and ||w|| = 4, we have

. Cl
o O S (=T ) = (@ =~ DU ()

for a suitable positive constant C;. From Lemma we have

liminf [(1 — )T (un) — (2 — 5 — 1)U (un)] > 0.

n—-+o0o

Thus [t;, (0)] < Ky, for a suitable constant Ky > 0 and therefore |[I'(un) || g-1(q) — 0 as

n — oQ.

Let wg be the weak limit in H} (Q) of (a subsequence of) the minimizing sequence u,.
Then wy € M. Indeed, suppose that wg € M~ (since M? = (}), from Lemma|[2.2.13| there
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exists ¢4 = t4(wp) such that t; > 0 and tywy € M~. But wgp € M~ implies t; = 1. In
this case, there exists also t— = t_ (wg) € (—tmax, tmax) Such that t_ < ¢ty = 1. Thus, we
have

i] (twp)

dt = (I'(t-wo) ,wo) = (t-)~'Q (t-wp) =0

t=t_

and

2
Lolttwy)| = S o) - F)| = (7 [6u(t) — bule )

t=t_ t=t_ t=t_

=y [t [fu(to) = du(t)] + [ty (t-) = [t- "¢, (=) > 0.

Hence, there exists ¢ € R such that t— < ¢ < ¢y and I (fwg) > I (t—wp). But from

Remark
I(t_wo) <T (fwo) < I(t+’wo) = I(wo) = Cp.

This is a contradiction. Therefore wg € M™T. This implies that F'(wg) > %U (wp) > 0.

We have that wg is a weak solution of the problem, since I{u,) — 0 as n — oo, we
have (I{wg),w) = 0, for all w € H} (Q). Therefore

co < I(wp) < lim I (uy) = cp.

n—oo

Then u,, — wo (converges strongly) in H} () and I(wg) = co = infyens I(u).
We now show that wp is a local minimum for /. From Lemma [2.2.13] for all u € M,
there exists t_(u) € R such that t_(u) < tpax(u), t—(u)u € M and

I(t—(u)u) < I(€u), forall 0 <& < tmax(u). (2.28)
So, from wg € M ™, we have
tmax (wo) > t_(wo) = 1. (2.29)

Let € > 0 be sufficiently small. From item (ii7) of Lemma exists a differentiable
function ¢ : H}(Q) — R such that t(w) > 0, ¢(0) = 1 and t(w)(wy — w) € M for all
|w|| < e. From (2.29), the continuity of tymax(u) and t(w) — 1 as ||w| — 0, we can always
find a sufficiently small ¢ > 0 for which #(w) < #max (wo —w) for all w € H}(Q) with
|lw|| < e.

Note that t(w)(wo — w) € M so t(w) = t—(wy — w) and t(w) < tmax(wo — w). From

(2.28]), with u = wg — w, and the fact that wy is a local minimum, we have
I(§(wo — w)) > I(t(w)(wo — w)) = I(wo).

Now taking & = 1, we conclude that I(wo —w) > I(wp), for all w € H} () with |Jw]| < e.

Therefore, wy is a local minimum for I.

From Lemma [2.2.13 for |wo| € H}(S2), there exists a unique value ¢_(|wo|) € R such
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that ¢t— (Jwo|) |wo| € M, t— (Jwo|) < tmax (|wo]) = tmax (wo) and

I(t— (fwol) hwol) = min —I(t(Jwol) [wol).

Since wy € M, then t_(wg) = 1. Thus

<I(t_ = i I < I(t_ .
co < I(t- (wo) wo) L (two) < I(t— (|wol) wo)

Note that, from f > 0, we have I(t_ (Jwol|) |wo|) < I(t— (Jwo|)wo) < ¢o. Therefore

I(t— (wo) wp) = co and we can always take wg > 0. O

Remark 2.2.21. From Proposition |2.2.20, we have that there is a critical point wg of I
such that I(wg) = co. Hence, since co = infyeps I(u), e = infycp+ I(u) and wg € M,

we have that cg = c4.
If |F(u)] < ¢«(u), from Remark [2.2.21] there exists t_u € M ™ such that
I(t_u) = infucpy+I(u) = infueml(u).

Lemma 2.2.22. Suppose hypotheses (Hs)(i) hold, then there is so > 0 and € > 0 suffi-
ciently small such that wo + sgv. € M~ , where wg € M is a critical point of I and v, is

a truncated function.

Proof. We use the same argument as in the Proposition 2.2 of Tarantello [119].
Set
v ={ueH @) |ully =T (w? =1}

and U : ¥ — M~ a map, such that ¥ (u) = ¢4 (u)u, where t4(u) is defined as Lemma

R213).

First, note that M~ is closed. In fact, if u € M ~, we have

-~
U(u) > mT(u)

Since exists K{ > 0 such that Kf||u|]i]1(9
0
Uu) < KY[ul|?>", we have

) < T(u) and KY > 0 such that

=~ =~ —v KT127-2 S
Q) > K, where K = [2*1_7711714 7 > 0. Therefore in view of Lemma

(2.2.19), every sequence (u,) in M~ satisfies

Then Hu||Hé(

lim Gp(uy) < 0.

n—-+o0o
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This is M~ is closed. By the uniqueness and extremal property (see Lemma (2.2.13)),

t4(u) is a continuous function. Thus V¥ is continuous with continuous inverse

u

1 __u
=

Hence, the map ¥ defined a homeomorphism.

Now, suppose u such that ¢ (ﬁ) = ||u|lp. Then
T

( “) LT
+ —_— = ||U _— =
Tl ) Tlly =~ e Ty

and from the Lemma (2.2.13]), we have

+ (U> Y e M.
lullr/ lullr

Hence u € M~. Thus M~ disconnects HY () in exactly two components:

_ . u
U :{u:Oouu;réO:HuHT<t+<HuH)},
T

Ut = {u ully >ty <”:|‘|T> } .

Note that M+ Cc U~. In fact, if u € M,

1—~ 1
T 1
and since that N
- -~ T AR
b () > e (0) = (G T U™ )
we have
N-2
U 1—7 U u \ M\ ?
()
(IIUHT> 22—y =1 \Jullp HUHT
_ L= iz ||T
2 _’y_ 2*U
[lull7
= ul Ttw)
— i 2% — u
> [luflp-

This is v € U™. From Lemma (2.2.13)), if F'(u) > 0, and ¢2 # 0 is a critical point of

Gu(t) = [tV T(u) — ¢t 72 U(u);
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we have

(T (a2
w=(7) (mu%’i)

and unique values t_ (u) and ¢4 (u) such that 0 < t_ (u) < tmax (u) < t4 (u) and

2*
[ull ) *=2
[[ull,-

Now, we consider the function wy+sv., where s > 0. We can assume that F' (wg + sv;) > 0.

In fact,
F(wy + sv.) = /f (x) |wo + sve|” (wo + sve)

for & small enough. If f(x) is positive near 0, F (wp + sve) > 0. If f(x) is negative, we

replace wo + svz by wg — sv.. Therefore for F' (wg + sv.) > 0, we have

_2*

2% -2

. <wo+sv> < <llwo+8vllT> R Y
||w0+8vs||T ||wo+svs||2*

Hence for Ry > 0 sufficiently large and ¢¢ > 0 sufficiently small, we have

2
S =sups |ty _Wot S 15> Ry, 0<e<egyp <oo.
[lwo + sve| 7

N
Thus for s > ¢S + Rp and ¢ small, we have

A
T (wo + sv:) = T (wo) + s°T (v:) + 25 /(VU)OVQE - Wwovg — plz|*2wov.)

= (w) + 7 (0) + 25 [ (o uoee + f(z)fuof'v.)

=T (wo) + 8°T (v2) + 25 [0(="7") + O(7)],

where v, = 7. (7). Note that, from Proposition [2.2.9, T'(v.) = S + O(e2vA=>) for ¢
small.
We get that

N[

wo + SV
wg + sv =T (wg + sv >ty | 77—,
” 0 EHT ( 0 6) + (”wo + 31}5“7")
which implies that wg + sv. € UT. Thus we have 7o € (0,1) such that wg + yosve € M.
The conclusion follows by choosing sy = ~gs. O

N
Lemma 2.2.23. If hypotheses (Ha) hold, then c— < ¢y + %Sf )

Proof. From Lemma [2.2.22] we know that there is sg > 0 and € > 0 sufficiently small such
that wg + spve € M, by using the arguments in Proposition 2.2 of Tarantello [119]. To
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N N
prove c_ < ¢y + %S >, we only need to prove that sup,.q I(wo + sv:) < ¢o + %S 2 since

c— = inf I(u) < I(wo+ sove) < sup I(wo + sve).
ueM~— >0

Moreover, we only need to consider bounded values for s, since, I(wg + sve) — —o0 as

s — +oo implies that there is sg > 0 such that

sup I(wg + sve) < sup I(wo + sve).
s>0 0<s<sg

First, since wy is a solution of P;(\, p, «, f,7)., we get from direct computations that

1 1 1
I(wy + sve) = §T(w0 + sve) — ?U (wo + sve) — ﬁF (wo + sv¢)

= I(wo)+ I(sve) + / lwol? ~2wo(sv2:) + / f(z)|wo|7 (sve)
e [0 o 4 502) = U ) — U (sve)]

—m [F (’LUO + SUE) - F (wU) - F (SUS)] .

Suppose hypotheses (H2)(ii) hold. Using the elementary inequality
lla -+ bJ7 = Jal? = [bl7] < dy |||~ o] + |a] [o]*"]
for a,b € R and ¢ > 1, we obtain that
Two+s0) < o)+ 2(s00) + [ [wol” = s02) 4 |l [ ol (502
+dy / Jwol* | sve| + ds / |wol |sve*

+d4/|wor”svg|+d5/|wo||svsw,

where, here and below, d; for j € N denote positive constants.

Secondly, since f is continuous at 0 and f(0) > 0, there exist dg > 0 and dy > 0 such
that f(x) > dg for any x € Bs,(0), the ball with center at 0 and radius dgp. Hence, we have

1 1 *
sup I+ sv2) < wn) +5up | 37(s0) = 92U (50| + o [ ol
s>0 s>0 2 2

o / ol Joe]2~ + diy / o[- + daz / oo

—d7/ oI+ dg/ v
Bs, (0) Q\Bs, (0)
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Note that for € small enough,

and

[N=(v+1)VA]VA
/ U;Y+1 =0 (g 2/A—X > .
Bs, (0)

N—vVA
VA+VA=X

We obtain from the assumption < 7 < 1 and Proposition [2.2.9| that

1 N 1 N
Sslifo)f(wo +sve) < I(wp)+ NS)\Q =co+ Ns)\z )
When hypotheses (Hy)(4ii) hold, instead of (H3)(ii), the proof is similar so we omit the
detalils. -

The following result prove the existence of a second solution for the problem

Pl(A7M7a7f77)'

Proposition 2.2.24. If hypotheses (Hs) hold, then there is a critical point w1 € M~ of
I such that I(w1) = c—. Moreover, if f >0, then wy > 0.

Proof. First we will prove that there is wy € M~ of I such that I(w;) = c_. Here
we will use the same idea of the proof of the Proposition 3.7 in Chen-Rocha [42]. Let
(un)neny € M~ and I(u,) — c—. Then by direct calculations we know that

0 < inf T'(uy) < supT(uy,) < 0o.

The definition of 1 and 0 < p < p1 implies that (up)nen is bounded in H}(£2). We may
assume that (up)nen converges weakly to some wi. By Proposition [2.2.18 we have that
wyp # 0. Now suppose that (u,)nen does not converge to wi. Then by (1) and (2) of

Proposition [2.2.18 we get that c¢— > I(t4(wq)wq) or

1.z 1.z
c_ > I(t,(wl)wl)%—NS)\ >co+ NSA .

In any case we get a contradiction since c_ < ¢y + %SA% . Therefore (u,)nen converges
strongly to w;. This means wy € M~ and I(wy) = c_.

Next we will show that such w is a weak solution of equation in problem Pj(\, i, a, f, 7).
Choose any v € HJ (). For any p € (0,1) we set t, = t4 (w1 +pv) (where t (w1 +pv) is de-
fined according to Lemma. Since wr, t,(wi+pv) € M~ and I(wy) = inf,ep- I(u),



2.2. Multiplicity results 39

we have
I(ty(wr + pv)) > I(wy).

On the other hand from w; € M~, we have that for any ¢ > 0, I(w;) > I(twy). In
particular, I(wq) > I(t,w1). Thus we have for any p € (0,1),

I(ty(wy + pv) > I(t,wn).

Hence, we get that

0 < ;‘)<I(tp(w1 +pv)) — I(tpw1)>

From Lemma ({2.2.13)), for all u € M , there exists t4 = ¢4 (u) > 0 such that ¢4 (u)u € M.
If w; € M, then ty(w;) = 1. Thus for p — 0T, ¢, = t4 (w1 + pv) — 1. Letting p — 0%,

we obtain

1
0< lim — <I(tp(w1 + pv)) — I(tpw1)>
p—0Tp

. I (wy),v A o .
= 1_1>%1+<(11)> = / <Vw1Vv - lev — plz]* 2wy — |wy |F 2w — f(x)|w1|’yv>.
p

As v is arbitrarily, we get that
_ L _ a—=2 _ 2*-2 _ Ty | —
Vw; Vo |$|2wlv plx|* " “wiv — Jwi|* " wiv — f(z)|wi[Tv ) = 0.
Which means that w; is a solution of the problem Pj(\, i, a, f,7).

Now, we will show that w; > 0, if f > 0. From Lemma [2.2.13] there exists t; (w;) € R,
such that s¢ty (Jwi]) > 0, t4 (|wi]) |wi| € M, spty (Jwi]) > tmax (|wi]) = tmax (w1) and
I(ty (Jwi]) [wi]) = maxs >0 I(t (Jwi]) [wi]). Since wy € M~, then t(w;) = 1. Thus

I(ty (w1)wr) = I(wy) = max I(twy) > I(t4 (Jwi|) wr).

spt>0

Note that, since f > 0, we have

I(ts (Jwr]) wi) = I(ty (Jwn]) fwr]) = e

Therefore I(t4 (wy)wi) = c— and we can always take wy > 0. O

Now, we are ready for the multiplicity theorem for problem P; (A, u, o, f, 7).

Theorem 2.2.25. Suppose hypotheses (Hz) holds, then Py (A, u, o, f,7y) has two nontrivial

solutions in HZ(Q). Moreover, if (Hz)(iii) hold, then both solutions are positive.

Proof. This result is direct consequence from Proposition|2.2.20|and Proposition ]
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2.2.5 Multiplicity theorem with less restrictive hypotheses

In this section, we will prove the existence of other solutions for the problem
Py (A, p, «, f,y) under less restricts hypotheses. As described in the introduction, the proof
is divided into three steps. We start proving the existence of two nontrivial solutions; we
prove the existence of a third solution which is a sign-changing solution and we prove the

existence of a fourth solution using translated argument.
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We consider the following hypothesis (Hz):
(1) 0<SA<AO<pu<p,0<a<VA-XN0<y<1, feL>®(Q)and iy > 0;
(1) O0<a<yvA—A and0<’y§m%m—l.
We say that hypotheses (H3) hold if (Hs)(i) holds and the hypotheses (Hs)(ii) holds.

Under the above hypotheses we prove that the problem Pj(\, i, «, f,7) has at least

four nontrivial solutions in H{(£2) and at least one of them is sign-changing.

Existence of two nontrivial solution
We consider as before

= inf I d c- = inf I(u).
0= Bl 1) and e = nl 1)

Proposition 2.2.26. Suppose hypotheses (Hs)(i) hold. We have ¢y < 0, there is a critical
point wg € M of I such that I(wg) = co, and wo is a local minimizer for I. Moreover,

wo > 0 whenever f > 0.

Proof. Since the hypothesis (H2)(4) is equal to the hypothesis (H3)(7), the proof is the
same as Proposition [2:2.20 O

In the rest of this section, we fix wg which is obtained in the proposition
On this point, we emphasize the importance of the estimate calculated in Appendix B,

which guarantees that the solutions obtained are different.
N
Lemma 2.2.27. If hypotheses (Hz) hold, then c— < co + 75, .

Proof. First, from Lemma , we know that there artj%v sg > 0 and € > 0 sufficiently
small such that wy 4+ sove € M~. To prove c_ < ¢g + %S?, we only need to prove that
Supg~o I (wo + sv:) < ¢o + %S%, since c— = inf,cp- I(u) < I(wo+ sove) < supg~g L (wo +
sve). Moreover, we only need to consider bounded values for s, since, I(wy + sve) — —00

as s — +oo implies that there is sy > 0 such that

sup I(wo + sve) < sup 1I(wo + sve).
5>0 0<s<sp
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Firstly, since wy is a solution of the problem P(\, u, «, f,7), we get

1 1
I(wy + sve) = §T(wo + sv:) — §U (wo + sve) — ﬁF (wo + sve)
1 .
=3 {T (wo) + 2T (ve) + 2s /(]w0]2 2wove + f(a:)]w0]7va)]
1

— 57U (w0 -+ 50) = —F (un + s2)

= 1) + 2(s02) + [ Juol” Zwn(s02) + [ fa)un] (s0)
LU o+ ) U () U ()

[F (w0 + sv:) — F (w0) — F (30.)]

v+1

Using the elementary inequality
lla -+ bJ7 = Jal? = [bl7] < dy ||l o] + [a] [o]""] (2.30)
for a,b € R and ¢ > 1, we obtain that

T(wo + sv2) < I(wo) + I(sve) + / ol (s02) + 1] ey / o[ (sv2)
—i—dg/\wo\Z*_llsng-dg/|w0]\sv5\2*_1

dy / fwo||sve] + ds / fwol [svel”

where, here and below, d; for j € N denote positive constants.

Note that

1 1 1 1 1 ~
I(sve) = §T(sv€) — 2—*U (sve) — mF(sva) < §T(svg) — §U (sve) + K/svgﬂ,

where K is a positive constant. Thus,

1 1 .
I(wo + sv:) < I(wp) + §T(sv5) — ?U (sve) + Ks/vgJr1 + 1 fl 1o () / |wo ™ (sve)
+(s+dzs)/\w0\2*_1v€+(d382*_1)/]onva\Q*_l

T (das) / ool ve + (d5s7) / jwolo?
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and
1 1 »
sup I (wo + sve) < I(wo) +sup |=T(sve) — =—=U (sve)| +dg [ v7
>0 s>0 [ 2 2%
+dr [ oo+ ds [ funP e
—i—dg/\ngvg\Q*1+d1o/|w0|vg.
Let
1 2 ¥
g(s) = ;T(sve) ?U (sve) = —T(ve) ?U(Us)
Then

g'(s) = sT(ve) — s U (ve)
Let s = [T(’UE)U(UE)_I]ﬁ, where §is such that: ¢'(s) =0,if s =73; ¢'(s) > 0,if 0 <s < s

and ¢'(s) <0, if s > 5. Thus 5 is the maxima of ¢(s) on (0, c0) and

supg(s) = g(3)
s>0

= STV AT ) — S0 ) U )
2 2
1 1 N N-2
= (- DT ()
1 -
= T30
S0 .
sup I (sv:) < —T(fug)%U(vE)l_%.
>0 N
Therefore
1 1 1. o AR oy
sg% iT(svg) — gU(sve) < NT(vg) 2 (U (ve) < NSA — O(e2vA=x).

N-2
4

Note that for e small enough, [ |wo|Tv: = O(e" 7 ), [ |wolvd = O(5¥7). Hence, from

Proposition [2.2.9] we have

1~ oA .
sup I(wo + sve) < I(wp) + NS)‘Q —O(e2va=x) +dg | v]
s>0
N—-2 —2
+d7;0(e7 )+dsO(e 7))
+dgO(e"T ) + dyoO(e T )

Thus,

1 N aVA )
sup I (wg + svz) < I(wp) + NS)? — O(e2VA=x) + dﬁ/vng .
5>0
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For € small enough,

T2 (r+D)
O(aN 1)) 1<1+7<f+ﬁ,
N2yt _
/U;H-l — O(E ’Y |1I1€|) 1 +"}’ = \ﬂ-&-\/ﬁ’ (231)
[N=(v+1)VA]VA N
O<62,r_x ), m<1+fy<2.
Then:
. N
DIfl+v< Vi e have
1 X avA N-2
sup I(wo + sve) < I(wp) + NS’\2 —O(exa=X)+0(e 1 7).
5>0
aVA
Note that for a,b > 0, we have O(e%) — O(e?) < 0, if and only if a > b, so —O(e2vA—x) +
O(e%ﬂ < 0. if « is such that 2\02\/% < M2+ that is
a<yVA =

Hence, we obtain from the assumption (Hs)(ii) that

sup I (wo + sve) < I(wg) + S)\ =co+ 52

s>0
i) If 14~ = ﬁ then [2.31] implies that
avVA N—2
sup I(wo + sve) < I(wp + 5’ z —0(exA=x) 4+ O(e 7 "|lne|).

s>0

Therefore, we obtain from the assumption (Hz3)(ii) again that

sup I (wg + sve) < I(wg) + S/\ =co+ S : (2.32)
s>0
The proof is complete. O

Proposition 2.2.28. If (H3) hold, then there is a critical point wy € M~ of I such that
I(wy) = c—. Moreover, if f >0, then wy > 0.

Proof. First, we show that there is w; € M~ such that I(w;) = c— and w; is a solution of
Py(\, p,«, f,) for that, we use the item (i) and (i7) of Proposition and the same
idea of the proof of the Proposition We omit the details here.
Next we will show that wy > 0, if f > 0. From Lemma [2.2.13] there exists ¢, (w1) € R,
such that
b4 (Jun) > 0,

ty (Jwi) [wn| € M7,
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ty (Jwi]) > tmax (|w1]) = tmax (w1)

and
I(ty (Junl) fwn ) = max It (jwa]) [wa]).

Since wy € M, then ¢4 (w;) = 1. Thus
Ity (wi) wi) = I(wr) = ntflzagd(twl) > I(t4 (Jwi]) wr).
Note that, since f > 0, we have
Ity (lwr]) wr) = I(ty (Jwi) [wi]) = c-.

Therefore I(t4 (w1)wi) = c— and we can always take w; > 0. O

Existence of sign-changing solution

In this subsection we will study the existence of sign-changing solution of the problem
Pi(\, i, @, f,y). We denote ut = max{0,u} and u~ = max{0, —u}, for u € H}(Q). Then
ut, um € HYQ) and u = vt —u™.

Following Tarantello [I19], we define
M; ={ueM; uw"eM} and M, ={ueM; —-u €M }.
Set also M,” = M, N M, and we have:

Lemma 2.2.29. If (H3)(i) hold, then M # 0.

Proof. We will to prove that there exist sy > 0 and ¢ty € R such that
50(w1 — t0U5)+ €M~ and -— 50(w1 — toUE)_ e M,

where Uy is defined as in Subsection 2.2.1. For this, we define

. . Wy . w1
t1 = min — and {3 = max —

av{oy Ue ooy Ue’

For t € (t1,t2), we denote by st (¢) and s~ (t) the positive values given by Lemma [2.2.13[i)
and associated with the ¢, (u) value of u = (w; —tU:)" and u = —(wy —tU.) ", respectively.

Hence, we have
sT(t)(wy —tU)T € M~ and —s (t)(wy —tU.)” € M.

Note that s (¢) and s~ (¢) are continuous with respect to ¢ and satisfy:
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li t(t)= lim ¢ —tU.) =t -0,
e (0= Ji gt v 1) =t i =00 < e,

lim s (t) = lim t4(—(tU: —wy)) = t4(taUs —w1) < o0,
t—t2—0 t—t2—0

lim s (t) =400 and lim s*(t) = 4o0.
t—t1+0 t—t2—0

The continuity of s*(¢) and s~ (¢) implies that there is a point ty € (t1,t2) such that
st(tp) = s~ (to) = sp > 0. This proves the Lemma. O

Lemma 2.2.30. If (H3)(i) hold, then M{, M, C M~.

Proof. Let uw € My ,ie. u € M and ut € M~. Then
Gur(u) = —(2° — 2)T(u) + (2° — v — 1) F(u).

Since gty > 0, we have

5
1 - =2 (2% —2 e -
[F(u)| < Pu(u) = <2*7> <2*> T(u) 77 Uu) 72,
Thus,

2% —~y—1

Gu(u) < (28 —2)T(u) 72

From u™ € M—, we have
1-9)Tu") -2 —y-1)U") <0
and from the definition of Sy ,, we have U(u) < S>\7M_1T(u)%. Therefore, we obtain
Tt < 20 )y < X202 g e, (2.33)

Thus
Sxu (2.34)

and using U(u)~! = S)\’HT(U)%, we have
2=l 1—~ 72 _1
~T(ut)?=2 + <2_7_1> Uut) 22 <0
Therefore

*

2" —y-—1

Gu(u) < (28 —=2)T(u) 72

2 —vy—1

1—v
—T(u+)% + <17> U(u+)M] < 0.

ie. w € M~. This proves that M, C M~. By a similar argument we can prove that
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My, Cc M. ]
Define

c, = inf I(u).
ueM,

N
Lemma 2.2.31. If (H3) hold, then c; < c_ + %5 .

Proof. We will estimate I(swy — tU;) for s > 0 and ¢t € R, since that M, # @ (Lemma
2.2.29). Since at this time, € can be sufficiently small, we replace U, by v. = ¢(x)Us
defined as before. The structure of I, guarantees that there is R > 0 possibly large such
that I(sw; —tv.) < c_ for all s2+1> > R?. Thus it suffices to estimate I(sw; — tv.) for all
52 +t2 < R%. Since w is a solution of the problem P(\, u, a, f,7), from inequality (2.30)),
we obtain for positive constants e; with j € N that
I(swy —tve) < I(swy)+ I(tve) — / |swy|? 7 (tve)
_ ‘f‘L‘”(Q) / |sw1]7 (tve) + eo / |swi > |tvz| + es / |swi | ‘tv6’2*_1

+e4/\sw1\'y\tv5]+e5/\sletUEW

and for positive constants g; with j € IV we have

I(swy —tvs) < I(swy)+I(tve) + g1 / w1 |2 0. + g2 | flLeo @) / w1 |v.

g3 / o 02 + g4 / " [oe]

g5 / o [oe |

Note that since wy € M, we have I(swy) < I(wq) for all s > 0, we have

Iswn — o) < Twn) + 1000+ g1 [ furl 7' (00) + 2Pl [ n(02)
+gs / o [oel? "+ ga / [ o]
g5 / o o]

Thus, from Proposition the Proposition [B.0.9| and following the similar argument
that Lemma we obtain that

1 X 1 X
1 —t 1 —5 4+ =52
Jnax (swy — tve) < I(wy) + NS)‘ <c_+ NS)‘
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The following result prove the existence of a third solution for the problem P; (A, u, o, f, 7).

Proposition 2.2.32. If (Hs) hold, then there is wo € M, such that I(w2) = ¢, and ws
is a sign-changing solution of the problem Py(\, p, «, f,7).

Proof. We will prove that there is we € M, such that I(ws) = ¢;. Let (up)nen be a

*

sequence with u,, € M, such that I(u,) — ¢, . Note that (u,}),en is bounded, using the
fact that uf € M,
0 < inf [|u,f || < sup Ju} || < +oo,

and Sobolev inequality. Similar idea applies to (u,, )nen-
We consider (u,})nen and (u,, Jnen such that u,f — vt and u,, — u™ in H}(Q).
Let I(u) — dy, I(u,;) — do and ¢y = dj + do.
Note that u™ # 0 and u~ # 0. ByNProposition we have that: N
If ut =0 and v~ =0, then d; > %SE, do > %Sf and hence ¢, > %SE
If um =0 and v~ # 0, then d; > %S)\%, dy > c_ordy > co+ %Sg, which implies that

N N
Cy 20_+%S)\2 or ¢, > co+%S/\2.

2

N N
If u™ # 0 and v~ = 0, the dy > %Sf ,dy > c_ordy > cy+ %SQ, which implies that

N N
Cy 207—&—%5’)\2 or ¢, > co—i—%Sf.

All the above three cases contradict Lemma [2.2.27] and Lemma 2.2.311 Therefore
ut # 0 and u~ # 0. Thus according to (1) and (2) of Proposition [2.2.18| we have one of
the following:

(i) (u)nen converges strongly to u™;
(ii) dy > I(ty(ut)u™);
N
(iii) di > I(t—(u)ut) + &S
and, similarly, we have one of the following:
(iv) (u,, )nen converges strongly to u™;
(v) d2 > I(=ty(—u")u");
(vi) do > I(—t_(—u")u~) + %Sy .

The key point is that only cases (i) and (iv) hold. In fact, all the following situations are

contradictions.
If (ii) and (v) hold, then ¢, (u™)u* —t; (—u")u~ € M, and

¢ < Ittt — b (—u)um) = Ity (whut) + Ity (—u”)u”)

<dy+dy=c,.



2.2. Multiplicity results 49

If (iii) and (vi) hold, then ¢_(u™)ut —t_(—u~)u~ € M™ and hence

1 ¥ 2 ¥ oyt N
C_+NS)\ <CO+NS/\ < I(t—(u)u —t_(—; )z]j )+NS)\
=I(t—(u)u) + I(—t_(u")u") + st

<di+dy=c,.

If (ii) and (vi) hold, then ¢ty (ut)ut —t_(—u")u~ € M~ and

1 X 1 N
c— + NS)? < Ity (uNut +t_(u)u™) + NS)? <di+dy=c;.

If (i) and (v) hold, then u™ — ¢ty (—u")u~ € M, and
ey <I(ut —ti(—u)u")<dy +da=c;.

All the above cases leave to a contradiction, therefore both (u;"),en and (u;, )nen converge

strongly to u™ and u ™, respectively and we get that u*, v~ € M.
Let wo = ut —u~. We have I(ws2) = ¢, since I(w2) = [(u™ —u~) = I(u) and I(u,)
converge strongly to c; .

Next we show that ws is a critical point of I. For that we suppose that ws is not a

critical point of I and we define

where: (i) V' (u) is the pseudo-gradient vector field for I(u):

V() = 9100~ (VI Tt e M
since that I € C1(H{(Q),R) and (VQ(u),u) < 0.
The pseudo-gradient V(u) satisfies
V)l <207l (2:35)
V() > [T (236)

(ii) ¥p: M~ — [0,1] is a Lipschitz mapping such that

b(v) 1 forve M~ with |jv—ws| <4,
v) =
0 forve M~ with |v—ws| > 20,

where § € (0, min{[lut], [lu=|}/3) is such that |[V(v) — V(ws)|| < LV (ws)| for cach



50 2.2. Multiplicity results

v e M~ with [[v — ws| < 26.

Let n: [0,s0] x M~ — M~ denote the pseudo-gradient flow associated to I on H}(€2),

that is the solution of the differential equation

§0.0) =0, Snls,v) = ~Ws(u(s,v), (2.37)

for some positive number so and (s,v) € [0, so] x M.
Since Ws(u) is locally Lipschitz continuous and ||[Ws(u)|| < 1, then (2.37) has a unique

solution depending continuously on v.

For 0 <t <1, we set

X(t) =t (L=tju’ —tu”) - (1= tju” —tu”) and £(t) = n(so, x(t))

By the definition of Ws(u) and (2.36)), we have,

The last inequality, means that I(n(s,v)) < I(n(0,v)) for any s > 0.
Thus, if t € (0,1/2) U (1/2,1) then

I(&t) =1 (n(sox(t)))
< I(n(0,x(t)))
=I(x(t)) =I(x®)") + I(x(t)") < I(u™) + I(u") = I(w2).

>

and I (£(1/2)) < I(x(1/2)) = I(w3). Therefore I(£(t)) < I(ws) for t € (0,1).
Note that, as t — 0+,

t(E)T) =t (=€) ) = nlso, t+(x(®)T) = to(—x()7)) = —o0

and ast — 17,

t(€)T) = e (=€(6)7) = n(s0, t+ (x (1)) =t (=x(t) 7)) — o0

Hence, the continuity of n(so, 4 (x(t)") —t+(—x(t))) implies that there is t; € (0,1) such
that £ ((t1)") = t+(=¢(t) 7).
Thus, &(t1) = £(t1)T — &(t1)~ € M, and I(£(t1)) < I(ws), which is a contradiction with

I(we) =c; = infueM; I(u). Therefore ws is a critical point of 1. O
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Existence of a fourth solution

In this subsection, we prove the existence of another solution for the problem
Pi(\ p,a, f,y) by a translated argument. For this, we need to prove a local Palais-Smale

condition, due to non-compactness of the embedding H}(Q)— L% (Q).

Let wp as before and we define a C! functional I : H}(Q) — R by
I(v) = I(wo+v") — I(wo)

for v € H}(2). Thus, we have (I'{v), ¢) = (I{wo+v"), ¢). Therefore, if v is a critical point
of I, then wg + vt is a critical point of I.

Consider the following minimax value

¢ = inf sup I(y(t)),
Inf, sup, (v(1))

where I' = {y € C([0,1], H}()) : v(0) =0, v(1) = kv.} with suitable ¢ and k.
Lemma 2.2.33. If (H3)(i) hold, we have ¢ < %SA%
Proof.
I(v) :I;T(wo + v;r) — 21*U(w01+ o) — vl—HF(wo +o™)
—5 1 (wo) + 5 U (wo) + ﬁF(wo)-
Note that for v.(z) = ¢(x)U(x), defined as before,

sup I(sv) = sup[l(wo + svF) — I(wp)]

>0 5>0
= sup[I (wo + sv])] — co.
>0

From (2.32)), we have

1 N 1 N
sup I (wo + sv) <I(w0)—|—N5’)\2 :cO+NS)\2.
>0

Hence, by the definition of ¢, we have

_ 1 N 1 N
¢ <supI(sv}) =sup[I(wo+ sv})]—co<co+ =S —cop=—=852.
>0 >0 N N
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Lemma 2.2.34. The origin is a local minimum of I.

Proof. Let v € H}(Q) and v = v* —v~. We have

1 1 1
I(w) = 5T(wo+v") = U wo +v7) =~ Flwo + v*) = I(wo)

1 1 1
= -T(wo+v+v")— —Uwy+v") — ——F(wg +v") — I(wp)

% . 2% v+1
= 5T(wo +v) + §T(v*) + 2/ (V(wp +vT)V(v7)

Q

A 1
—W(wo + ) (v7) = | (wo +v7)(v7) = L Uwo +07)

1
_ - (0 +y - +y
_%T(wo+v)+2?( v7) 2*1U(wo+v ) 7+11F(wo+v ) — I(wp)
_ - + Iy AT S W R Y +\
_%T(wo+v )+2T( v7) 2*U(w0+v ) 7+1F(w0+v ) — I(wp)
= §T(—U_) + I{wo +vT) — I(wo).

Since wyg is a local minimum of I, then exists ¢ > 0, such that I(w) > I(wp), for all
|w — wol < e, w e H). Thus, in particular for wy + vt € H}(2), we have that
I(wp +vT) — I(wp) > 0 and

as |[v]| <e. O

We will prove the existence of a four solution of the problem Pj (A, u, a, f,7) by con-
tradiction. Assume that v = 0 is the only critical point of I in HE(12).

Lemma 2.2.35. If 0 is the only critical point of I. Then I satisfies the (PS).-condition

N
for any ¢ < %S; .

Proof. Let v, C H (), such that
I_ n — ¢,
{ ,(” ) e (2.38)

Then I(v,) = ¢+ o(1) and (I(vy,), ¢) = o(1)| ||

First we prove that v, is bounded in HE(Q2). Note that
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2*c+0(1) 4+ o(1)||wo + v;F ||

= Tf(”ﬂ) - <I7(vn),w0 + U;D
= 2"I(wo +v,7) — 2°I(wo) — (I'(wo + v,}), wo + v} )

:?T(wo%—v:)—U(wo%—vﬁ)—W+1F(w0+v:{)_2*](wo)
—T(wo+v,) +U(wo + v) + Flwy +v,})
2 2 i}
Z(5—1)T(w0+vi)+(1—7+1)F(w0+7}:{)—2 I(wo)
2 2
2(5—1)T(w0+v;)+(1—’er Ywo + v |7 — 2% I (wp)
= (& )T (wp + va) + (1= ——)lJwp + [T — 27T (o)
9 n 7_{_1 0 .

Note that for all u # 0, from assumption 0 < pu < p1, 0 < A < A and the Hardy inequality,

02 (1= £) (- )= - 2)-2) o

2*c+ o(1) + o(1)||wo + vy |

we have

Hence

> (5 = DL )1 = 3) S IV (w0 + v+ (1= Zp)lhwo + 7 — 2 (wo)
> (% = (1 = £)(1 = Dllwo + vall? + (1= ) lwo + v 7 = 2T (wo)
> (%~ 1)(1— )0 Dl + (1 2y o741~ 2 ).

Therefore v;, is bounded in H{ ().
Now, we prove that (v,)neny — 0 in Hg(Q). Since v, is bounded in H}(£2), we can assume

if necessary to a subsequence that

v, — o in H}(Q),
v, — o aeinQ, (2.39)
v, —o in LYQ),1<t< 2%

Denote u,, = v, — o, then Brezis-Lieb Lemma (see Costa [46]), implies that

/|an|2 :/|Vun|2+/]VU|2+o(1),
/W n /| 2l W" S+ oll),
[ el = [lal 2 4 [ ulal-20 4 o)
:/|un|2* +/|o|2* +o(1)
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and (I'(0),¢) = 0 for any ¢ € H}(Q2). That is o is a weak solution of Pi(\, u, a, f,7).
Therefore I{o) = 0 and I{wy + o+) = 0, that is o is a critical point of I in H}(Q2) and
wo+o7 is a critical point of I in Hg (9

we have ¢ = 0. Then v, — 0 in L!(Q),1 < ¢ < 2*. By the Brezis-Lieb Lemma

/\woﬂﬁ* —/|w0|2* —/yv;y? +o(1). (2.40)

I(vy) = I(wo+v;5) — I(wp)
= 1T(wo +v;}) — LU(wo —|— ’U+> — L F(wo + v*) — I(wp)

y+1
= 3T (wo+v,}) — 5 [ |vf g+ [ [wol®” = 45 F(wo + v;f)
—I(wp) + o(1).

). Since o is a critical point of I, by the assumption,

Then

Note that, since 1 < v+ 1 < 2*, we have v, — 0 in LY*1(Q). Thus

Flwp +vf) = / F@)l(wo + v (wo + v)
- / F(@) o + v (wp + 1) + o(1)
— [ £@ ol () + of1) = Flun) + of1).

Therefore, since wy is a solution of P; (A, u, «, f,7), by the previous result and

T(wo + ) = T(wo) + T (v, —|—2/|wg|2 wov,, +2/f|w0|711n )

we have
— 1 1 * 1
I(v,) = 2T(w0+v / 2*/|w0|2 —ﬁF(MO‘f‘U;{)
—1I( )+0(1)
1 .
:§T(w0 + T /|wo|2 wov,) +/fwo|7vn */|v;f|2
1 9%
- =Y plwg) -1 1)
5 [ 1wl = = o) = Twa) +o(1)

1 *_ *
= 5T+ [ oo 2wt + [ Aot - o0 [P+ o)

Then since, v, — 0 in LY(Q2) for 1 < t < 2* we have

= 1 1 «
Ion) = 5T = 55 [ WP+ o0t
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Now,

(I{vn),wo +v,5) = (Iwo +v,), wo + v,7)
:T(wo+vf{)—U(wo+v:{)—F(wo+U7J{).

=T(wo) + T(v;) +2/\w0 2w, 4—2/]“"|wo|wvn+

—/|wo+v+2* — F(wo +v;})

= T(wo) + T(v,; +2/\w0|2 wov,, +2/f|w0|70n
= 1t = [ ol = Fun) + o).

Since wy is a solution of Pi(\, u,a, f,7) and v, — 0in L}(),1 <t < 2*, we have
(Ivp), wo +v,f) = T(vy) — U(v;F) +0(1) = 0

We assume that T'(v,) — d and U(v;}) = [ |v;/|>" — d. We will prove that d = 0. Note
that, since v, € M and v, — o = 0 in H}(£2), we have

/ (IVon? — ervnm - / o+ o(1).

We assume that d # 0. Using the fact, that Sy|v[3. < [(|[Vv|*> — \;%’UP) for all v € H}(Q)
and v # 0, where

A x
Sy = inf { / <]Vu|2 - 2u2> dz : ue DY (RY), / lul? dx = 1},
RN |z RN

we obtain that

S [ 1o E0F < Q9 = gl = [ 4o

_2* N
Then Syd2* < d and d > S7 2 = S, . Thus

2 2 y+1
11

> o(1) + 21d - ?d

=o(1)+ Nd

> 8¢

N
Which contradicts ¢ < %S . Then d = 0.
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Now, by the Hardy inequality again, and since 0 < p < 1 and A < A,

T(o,) > (1 - :1> (1— i) / (\wn\?) > [ <|wn|2) = ol

Therefore, since T'(v,,) — d = 0, we have ||v,]|> — 0. Hence v, — 0 € Hg (). The proof

is complete. ]

Proposition 2.2.36. If (Hs)(i) hold, there exists a critical point w11 € H () of I such

that wi1 > wo in 2. Moreover, wa # w1 1.

Proof. By Lemma [2.2.34] and since I(tv) — —oo, t — oo we have the conditions (i) and

(ii) of mountain pass theorem (Theorem [1.1.16]) respectively. Thus by Lemmas [2.2.33
and [2.2.35] we obtain that there is a critical point v # 0 of I. By the Strong Maximum

Principle (Theorem [1.1.20]), we have that v > 0 in .
Set w1 = wo + vT. Then w11 is a critical point of I and wi 1 > wp in €.
We will prove that wy # w1 1. Suppose that ws = wq 1. Note that:

i) Since —w; € M~ and wy € M, we have
_ 27—y -1 _
T(-wy) < <1—'y> U(—wy)

and

respectively.
Since 0 > —w, = wi,1 > —w, > wo, then U(—w; ) > U(—w;y) > U(wy) Therefore, we
get, that

ii) Since wy € M ' and from the definition of Sy (see (2.12))), we have
U(u) = S;lT(u)% and

o) > (F2 o) = (E2 )y

Then
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For other hand, since —w; € M ™, we have

1 1—7
T(— —— ] S).
(—wy )z > (2*_7_1) A
Hence
1-— Y 2 2 _
T(wo) < 2*_77_1 S)\ < T(—U}2 )
Thus by (i) and (ii) we have a contradiction. Therefore, we have proved wg # wq ;. O

Proposition 2.2.37. If (Hs3)(i) hold, there exists a critical point wy 2 € H}(Q) of I such

that wi 2 < wo in ). Moreover, wy # w1 2.

Proof. For v € H}(Q2), we define the following functional

~

I(v) = I(wo +v™) — I(wo).

Now using the same procedure as in getting the solution w; i, we can easily get the

existence of a critical point w19 € Hg(Q) of I and wy o satisfies all the requirement of

Proposition L]

We are now ready for the multiplicity theorem for problem P; (A, p, «, f, ) under strong
less hypothesis.

Theorem 2.2.38. Suppose hypotheses (Hs) hold, then Pi(\, p, «, f,7). has at least four

nontrivial solutions in H} () and at least one of them is sign-changing.

Proof. From the previous subsections, we got five weak solutions of the problem

Pi(\ o, f,7), ie. wo, wi, wa, wy and wi 2. However, since we are not able to prove
that wy is different from wy; or w2, we can only state the existence of (at least) four
different solutions wp, wa, w1 and wiz of Pi(A, u,«, f,). Moreover, we know wy is

sign-changing. O



Chapter 3

Multiplicity results for a class of
singular elliptic equations with
critical Hardy-Sobolev exponent

and involving a concave term

Let Q ¢ RY be a bounded domain with N > 3 and 0 € . Here, we study the existence
of multiple positive and sign-changing solutions u € H}(Q) of the problem Py(\,(, g, s, f):
*(s)—
—Au — ﬁu = Cf (@) |u|T2u + W in Q\ {0},
u =0 on 052,

where p*(s) = 2(N —s)/N — 2, is the critical Hardy-Sobolev exponent, 1 < ¢ < 2,
0 < s <2, fis areal function on €2, and the parameters A and { are positive. Note that,

B . _ 2N
when s = 0, we have the critical Sobolev exponent p* = 5.

The problem P (A, (,q, s, f) is constituted by a semilinear elliptic equation with critical

|u|p*(5)72u . . oy . by
, which in addition with the term GEY leads to the

nonlinearity, due to the term B

problem showing a double singularity at zero. This singularity and the non-compactness of
the embeddings H(Q)—L? (€ |z|~2dz) and HY(Q)—LP ) (Q; |2|~*dx), even locally in
any neighborhood of zero, brings us to the possibility of blow-up (Smets [I11]). However,
we will see that the presence of the term (f(z)|u|?"?u controls this question.

Without the critical term lu‘pT;Ti_Qu

Euler functional of problem Pa()\, (,q,s, f) satisfies the Palais-Smale condition and exis-

, it should be easy to deduce that the associated
tence results are obtained under some proper assumptions. To overcome the compactness

issue, we use the concentration compactness principle in order to obtain the existence

solutions, under some certain hypotheses.

58
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The starting point of this study is the work of Bouchekif et al. [14], which studied the
subclass Py(A, (,q,s,1) and established the following result.

Theorem 3.0.39. If0 € Q,0<A<A—-1,1<¢g<2,and0<s <2, then there is A > 0
such that Py(),(,q,8,1) has at least two positive solutions in H(Q) for ¢ € (0,A).

The purpose here is to prove, under suitable assumptions, that Pa(),(,q, s, f) not
only has two positive solutions, but exists A* such that also possesses an additional pair
of sign-changing solutions for ¢ € (0,A*). Note that our result extends Bouchekif et al.

[14] even in the case of f = 1.

The results obtained in this chapter are related with the work of Chen-Murillo-Rocha
in [38].

3.1 Previous results

In the literature, there are some very known results related with problems involving

concave and convex nonlinearity. The problem

{—Au =AMul P u+ [uf Ty, in Q, (3.1)

u =0, on 0f),

where Q C RV, was studied by Ambrosetti-Brezis-Cerami [6] with the following result:

Theorem 3.1.1. There exists \* > 0, such that for all X € (0, X*),

(i) if0 <g<1l<p< %, the problem has infinitely many solutions with
negative energy.

(i) if0 < g<1l<p< %, the problem has infinitely many solutions with

positive energy.

One particular case of problem (3.1]), is just considering positive solutions, i.e. when

u > 0. In this case, we have the following result by Ambrosetti-Malchiodi [7].

Theorem 3.1.2. Let 0 < ¢ < 1 < p, then there exists A > 0 such that one has
(i) for all X € (0, A), the problem has a positive solution;
(ii) for all A = A , the problem has at least a weak positive solution;
(iii) for all X > A , the problem has no solutions.

Theorem 3.1.3. Let 0 < g <1 <p< %, then for all X\ € (0,A) , the problem

has at least two positive solutions.

Problems of the same type as Pa(), (,q, s, f) have been a central theme in the past
several years. We refer the interested readers to Ambrosetti-Brezis-Cerami [6], Bouchekif-
Matallah [14], Cao-Kang [21], Ekeland-Ghoussoub [55] and Ferrero-Gazzola [57] for similar

equations with Dirichlet boundary condition and Chabrowski [28] for a similar equation
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with Neumann boundary condition.

Problems involving a Hardy—type singular term —ﬁu, where 0 € 2, a term with the
critical exponent (compactness loss) and singularity —pu™? with 0 < ¢ < 1, were stud-
ied by Chen-Rocha [41], showing the existence of two positive solutions under adequate
hypotheses. In that work, Nehari optimization techniques and precise estimates of the
energy of critical points are important tools.

|u\P*(S)—2u

When the problem does not involve the term , Garcia—Azorero-Peral-Primo

|=[*
[60] obtained a pair of positive solutions, under the condition 0 < A < A; see also

Abdellaoui-Colorado-Peral [1], where a similar problem with a class of more general oper-

. . p*(s)—
ators was considered. The problem P (), (, ¢,0,0) without the term |“|p|x‘s 2“, when ﬁu
has the form ﬁu’", where 1 <71 < %, was studied recently by Davila-Peral [49]. They

proved that the existence of positive solutions depends on the geometry of the domain,
specifically, using Pohozaev’s identity, proved that there are no energy solutions, when the
domain is star-shaped, but via a perturbation argument, they proved that the problem
has solutions in dumbbell domains.

There are also in the literature some results about problems with double singular-
ity, which generally involve the critical Hardy-Sobolev exponent with 0 < s < 2. When

0 < XA < A—4, Chen [31] proved that for any ¢ > 0, the problem P5(\, (,2, s, 1) possesses a

—s g(N=s)/(2-s)
) 2(%\7—5) S)\ s )

nontrivial solution with critical level in the range of (O , where S),  is

the best constant defined in 1) For f =1 and max {2, \/K+]\\;m’ Nfz\va A=A o q < 2%,

Kang-Peng [78] proved that problem Py(), (, g, s, f) has a positive solution in H} () when

0 < A < A. He-Zou [70] proved using the same condition on A, the existence of infinitely
many solutions for a suitable positive number ¢, when the term ¢ f(z)|u|?2u has the form

Cf(z,u), where f(z,0) = 0 and f(z,u) is a lower order perturbation of u?"(*)=1 in the
f(zu)

sense that RGO 0 as |u| — oo uniformly.
u u

3.2 Multiplicity results

This section is concerned with the existence of solutions of problem P5(\,(,q, s, f).

We define the minimization problem

A P*(S)
Sy,s = inf {/ (\Vu]Q — 2u2>dac T u € Dl’Z(RN)7 / i dr = 1} (3.2)
RN ‘«T| RN |x‘s

and denote

_2-q N _*(s ‘o)
A* = ( 2—q >” (5)=q < p*(s) —2 ),Q‘qpf@())shﬁ*ﬁsi_é
p*(s) —q (p*(s) — @) floo ’
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where [Q] is the measure of (.

Since Py(A, (,q, s, f) is variational in nature, we use variational methods to solve it and
our main result is obtained by studying several minimization problems. For this, define
the functional J : H}(2) — R, associated to problem Py(\,(,q, s, f), by

s = [ (1vurt = Z?) = [l - s [EEEL g

Definition 3.2.1 (weak solution). We say that uw € H() is a solution of problem
Py(\, ¢, q, 8, f) if for any ¢ € HY(Q) there holds

|z[*

A p*(s)—2
.= [ (vms - ppudds = Cf(@)uf'~2ug — M) o,
Remark 3.2.2. The problem P2(\,(,q,s, f) can be rewritten as
+ g(z,u), in Q\{0},

where g(x,u) = Cf(z)|u(z)|?2u(z). Note that g is a lower perturbation of |ulP"(*)=2u. In
fact, since f € L*(Q2), we have

—1
o(, ) (rurp*<5>-2u) < Il < cfulr,

2

thus g is a lower-order perturbation of |uP”()=2u, in the sense that

-1
g(x,u) <\u|p*(3)2u) — 0 as |u] — oc.

Therefore we get from Proposition due to Rabinowitz [101)]), that J € C1(H}(Q),R).
We consider the following hypotheses (Hy):

(1) O§A<A—4,\]/VX++7 ‘1/%<q<2,0§5<2;

(ii)  There is §; > 0 such that f(x) > & for all z € Q and f € C(Q).

We define the functional

[ul?” (s)

j]*

G =) [ (I9uP - 2p?) - ) -0

Motivated by Tarantello [I19], we define

M = {u € Hy(\{0} : (J'(u),u) = 0}
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and consider the following subsets of M, defined by the sign of G' (second derivative of .J)
Mt ={ueM:Gu) >0}, M°={ueM:Gu) =0}, M ={uelM:Gu)<O0}.

In what follows, for u € HE(Q) we use the norm

A
Juli = [ (IVu!2 - ﬂu)

We present now, a equivalent result to Lemma [2.2.13] for problem Py(X,(,q,s, f),

which correspondents to a generalization of Lemma 2.1 of Tarantello [119].

Lemma 3.2.3. Let ¢ € (0,A*) and suppose (Hy) hold. For any u € H} (Q) and u #
1

HOED
0, there exist values t— (u),ty (u) and tymax = ( ((2 q)y”‘*p (S)> such that 0 <
(p*(s)

t— (u) < tmax < t4 (u). Moreover,
+ _
t_(w)ue M and J (t— (u)u) = O<ItIi1tl3naxJ (tu),

ty (w)ue M~ and J (t4 (u)u) = max J (tu).

tztn'lax

Proof. The proof is similar to the one in Chapter 2, following Chen [32] and Tarantello
[118]. Since

1 1 tulP"®)
J@w=2/<WW —|uy> /fwﬂ HLS

we have
o.J p*(s)—1
e (tu) = /<t|Vu| —tu> C/f AT —/ (5)_1Mmu.
Thus
p(s)
%Z(tu):tq_l <t2—‘I/(!w| - )tp /'“' C/f ulq>
]
The function ¢ () = 279 [ (]Vu\z — ﬁﬁ) “(s)=a f |“|p , achieves its maximum
at the point L
R R (e
max — |u\p*(s) )

(p*(s) —q) f ER

and ¢ (t) > 0 if t < tyax and ¢’ (t) < 0 if £ > tyax. Moreover,

—2

- 2=a)/ (" ()=2) / x(y 2(p* (5)—a) p*(s)\ 72

Qb(tmax) = ( 2 g > <p*(8) 2> ||U||/\p*<s)72 ‘u| 35 .
p*(s) —q p*(s) —q ||
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Using the definition of S) 5, we have

2— *(s)—2 * *(s —
b (tm) > 2—q \ZO/@E=2 rpeg) — 9 55<5*ZS$§ ]
max/) — p*(s)—q p*(s)—q A8 A

Now for ¢ € (0,A*), we obtain by Hélder inequality and the definition of Sy ; that

q

C/f (@) [ul? < CIf]o0 17 Sy i3 [l < b (tmax) - (3.4)

It follows that there are ¢4 = t4 (u) > tmax > t— = t_ (u) such that

¢@H=C/f@WW=¢@)

and
¢ (1) <0< ().

Equivalently, we have tyu € M~ and t_u € M™. Also J (tyu) > J (tu), for any t > t_
and J (t_u) < J (tu) for any t € [0,t4]. O

Remark 3.2.4. Using a similar idea to Chapter 2, we can see graphically the behavior of
function ¢ defined in the Lemma . Consider t > 0 and define F(u) = ¢ [ f(z)|u]?.
From , if ¢ € (0,A*), then F(u) < ¢ (tmax). For % < q < 2, we have two
values t_ and ti (see Figure . If we consider other values for q, the behavior of
the function ¢ is quite different (see Figure . When q = 2, we have ¢(t) = ||lul3 —
2 [ Timy gx ¢(t) = £[ull3 and limy o0 $u(t) = Foo, thus, since F(u) < ¢ (tmax),
we have one value t; > 0. When q¢ > 2, we have ¢(t) = t~@ 2|} — =2 [ \ZIZ,

lim,_,o+ ¢(t) = Foo and limy 100 ¢(t) = 0, thus for F(u) > 0, we have one value t, > 0.
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N+yA=4
ol VA+vA-z 1°°
Stma) | _ﬂ ________________________
Fa)
: >
L fmax b =
][nun;] }
v
Figure 3.1: Behavior of the function ¢
SO d“;\
g=2 q>2

i
> ¢ <
1

| \;= {[uuuil [ f %Hj

L\ J

o+

Figure 3.2: Behavior of the function ¢ for different values of q.
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Proposition 3.2.5. Assume 0 < ( < A*,0 < A < A —4. Let (up)ney C M~ be such
that u, — u weakly in H} (Q) and J(u,) — ¢ but u,, does not converge strongly to u in
H} (Q). Then the following holds:

(i) > J (t4 (u) uw) in the case u # 0 and ty4 (u) < 1;
(i) c > J( (u)u)+ %SA7S%Z'71 the case uw # 0 and t4 (u) > 1;
(

N—s
i1i) ¢ S)S 2=s in the case u = 0.

Proof. Keep the expression of J in mind. Note that from u,, — u, we have
/f(a;)un—u|q—>Oasn—>oo.

We may assume that

_ 1P (s)
|| tn qui — a? and /|unus

— "),
|z

for some a,b € R. Since u,, does not converge strongly to u in H} (), we have a # 0. Set

r(t) = J(tu), B(t) = —t* —

and 0 (t) = r(t) + p(t), then J (tu,) — 0 (t) as n — +00. We consider three situations:
(1) Suppose u # 0 and ¢4 (u) < 1. We use the notation as in the proof of Lemma

For this v and
o |u’p*(8)
¢t:t2q/<v - )—tp 5
(0 Vul? o
o(t

+ (). From ¢(ty (w) = C [ f (2) |ul?

we have ¢’ (t) < 0 for t > tyax. Therefore ¢(1) <

and )= Ly = 07 <¢<t> ¢ [1@) |urq) ,

we obtain /(1) < 0. Since u, € M~ for any n € N, we have #/(1) = 0. Thus (1) > 0
and hence a® — b*"(*) > 0. Hence S (t4 (u)) > 0 and

¢ > 6(1) > 0ty () = J (t+ (W) + B (s (w) > T (b4 (u) u).

(74) Suppose u # 0 and ¢4 (u) > 1. Firstly, from ¢4 (u) > 1 we claim that b # 0.
Indeed if b = 0 then, on one hand, from the proof of Lemma[3.2.3| we know that 7/(t) < 0
for t > t4 (u) or t € (0,t_ (u)). On the other hand from (1) = 0 and 6”(1) < 0, we have
that /(1) = —a? < 0 and r”(1) < —a? < 0, which contradicts ¢, (u) > 1. Thus we prove
that b # 0.

Denote
1
te = (a®/b?) 72
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We know that 3 attains its maximum at ¢, and §'(t) > 0 for 0 < ¢ < ¢, and §'(¢) < 0 for
t > t4. Therefore we obtain from S ,\,st < a? that

1 1 2 /12 75(*()3)2 2-s e
f [ — s)=2 > —s
) = (5 iy ) @7 2 508

Next, we show that ¢, < ¢4 (u). Suppose this is not the case, i.e., 1 < t4 (u) < ts. As
0> 6() =7(t)+ 0 (t) for all ¢ > 1, we have 7'(t) < —f'(t) < 0 for t € (1,t,), which
contradicts 1 < t4 (u) < t, and /(¢4 (u)) = 0. We have shown that ¢, < ¢4 (u). Hence we
obtain

2—s N—s

c=0(1) 2 0(t) = J (teu) + B (t) = J (¢ (u)u) +

This implies that (i7) holds.
(741) Suppose u = 0. Since u, € M~ C M, we have

A uy, p*(s)
(e gpte’) = [ M s o

2
|U p*(s) \ P*(5) A
N ( ) (e e

for all v € H} () and v # 0, we obtain

1 / ( Y 2> 1 |y [P
c > = Vul” — — |uy, — — +o(1
2\l W‘ )y ) e .

(2 S (= o) et 2 g™

The proof is complete. O

Using the fact that

For ¢ € (0,A*), denote

cof = uérj}%J(u) and ¢j = uér]g:](u)

Remark 3.2.6. In the case of f =1, Bouchekif-Matallah [1])] have proved that

2—s N—s

S)\’S 2-s (3.5)

co1<0andci1 <cp1+ ————
0,1 1,1 0,1 2(N — )
and cp;1 and c11 achieve their minimum at vy and vy, respectively, i.e. coq1 = J(vg) and

c11 = J(v1). Moreover, vg and v1 are positive solutions of Py(\,C,q, s, f) in the case of

f=1
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3.2.1 Local behavior of the solution

Since we are facing with the singular term ﬁu and a critical nonlinearity, to proceed

with, we need to use the exact local behavior for the solutions of the problem P, (), (, q, s, f)
to estimate the energy. We point out that Smets [I11] has essentially proved that for any
positive solution u of Py(A,(,q,s, f), there holds u € L"(2) for any r < 2* VA

VA-VA-X'
However from Chen [31] and Chen [34], we have the following refined result.

Proposition 3.2.7. Let 0 < A < A—4 and 0 < s < 2. Ifu € H}(Q) is a positive solution
of the problem Py(\,(,q, s, f), then there holds

Ky |o|"VAYAN < () < Koo ~VATVATN 4 e B,(0)\{0} (3.6)

for p > 0 sufficiently small and some positive constants Kiand Ks.

3.2.2 Integral estimates

From Catrina et al [25] and Chou et al [43], we have that Sy ¢ is achieved by a family

of functions with parameters € > 0,

A
<2aB(N—s)) -9
A

Us(z) = -
T Rl ]R3

where A = v/A and B = VA — \. Moreover, there holds

A p* N—s
/ IVU|? = =5 U2 |do = / 0P (8) 4 S2r. (3.8)
RN || Ry |zl° ’

For further details, see also Chen [31].

Next, choose d2 > 0 such that B(0,2d2) C € and 262 < p (p is as in Proposition [3.2.7)).
Define a cut-off function ¢ € C3 (Q) satisfying

1, x| < b9,
Y (z) = = = %
O, |l‘|2252,

| (z)| <1, and |V (x)] < C for some positive constant C. Denote u. (z) = ¢ (z) Ue (z).

Using Proposition we have the following integral estimates which will play an essen-

tial role in what follows.

Proposition 3.2.8. If0<A<A—-1,1<¢<2,0<s5<2andw € H(Q) is a positive
solution of Py(\,C,q, s, f), then for € small enough, there holds

luc|l3 = S5 +o(e%), e 5 g5 _o<g§f§) (3.9)

[
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p*(s)—1 p*(s)— s
/W:O €2N ) /|“| 0(542fvz—s>) (3.10)
(q )\f
furamo(). [ure-o(=)

and
= i1 N
e ) il <a< A
avA .
/yusyq = O <g2 s \lnd) if ¢ = 77\:\%7 ) (3.12)

(N—avVM)VA N
2—s)VA—=X f 4V

O(E( W >, Zfﬁ+\/ﬁ<q<2'

Proof. For the proofs of (3.9) and (3.10)) see Chen [31]. We use Proposition to

estimate | |w\q_1 us. Hence, we get

N—

|x|q(\ﬂ—\/ﬁ) <z—:—{— |x|(2 s)ﬁ) 2=s

N

/wq_lug = Kgze2—s 4+ K

M
| E— |
|
AN
™
[V
s
QL
8

B(0,52) [

s N-—21—1
VA 2 (2—s)vVA=X 2—s VA
= Kze?— + K/ [pq(ﬁ‘”‘*) (5 +p VA ) ] 275 pN=1dp.
0

>

Since =1+ N — ¢ — q(v/A — VA —=X) —2¢/A — X > —1, we get that

N-2q-—1
/ |1:]q(‘avaf)‘) (s+ ]:1:|(2 E > - 5£daz =0 (82\“&) .
B(0,62)

Therefore
VA
/[w|q_1 ue =0 <528> .
The proofs of [ luc|7 ! Jw|dz and (3.12) are similar. We omit the details. O

3.2.3 Existence of two nontrivial solutions

We will prove the existence of two nontrivial solutions for problem Py (A,(,q,s, f),
following the same ideas in Bouchekif-Matallah [I4]. The first solution is obtained using
the concentration-compactness method, introduced by Lions (see [1.1.15)) and the second

solution by contradiction, applying the mountain pass theorem.
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Lemma 3.2.9. Suppose (H4)(ii) holds. If there exists a constant C = C(N,,q,s) > 0,
such that, for all sequences (up)nen in HE(Y) satisfying

J(un) > ¢ < =5 g3 _¢ (3.13)
tn 2N —s) N '
and

J (up) =0 in H1(Q), (3.14)

then there exists a subsequence strongly convergent in H&(Q)

Proof. First we prove that the sequence (uy,)nen is bounded in H} (Q2) and therefore u,, —
win H} (Q). In fact, for (u,)nen in Hg (), we have

Hu) = 5 [0Vl = Zalu) =S [ Al - wl 345
= c+o(1)

and

! _ 1 " Z—LU AN w9 — |un|q
Tu) = 5 [Vl = Zghun) = [ g = [F25 (310
= o{1) Junl.

It follows from and - ) that
1 1 1 |t |2 1 1
J(un) — = J/unvun = <_> _C<_)/funq
= c+o(1) [Juy|

i.e. we have

(i -3) [l = c(3=3) [ tualt+ s oty

1 =g
< ¢ <q - ) Flool @17 8,0 lunllg + ¢+ 0(1) [funl

Then

unq 1 1 — *q —-q
Jleb < oG- ) el T8 3 g + e oD fuall. (317

On the other hand

¢+ 0(1) lunll = J(un)
_ 1 2 A C/ q_ |tn
1 —q 1 |un |
> = unl|? floo|€2 *<s>SAsz un || — . (3.18
> Mlun§ - |r O S = s [ e (318)
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Then by (3.17) and (3.18) imply that (u,)nen is bounded in H{ (). Therefore going if

necessary to a subsequence we may assume that

u, — o in H}(Q),

U, — o a.e. in €,

u, —o in LY(Q),1 <t < 2% (3.19)
u, — o in L2(Q,|z|"2dx),

u, — o in LP"G)(Q, |z|~*dx).

Denote v, = u,, — o, then Brezis-Lieb Lemma (see Costa [46]) implies that

/CUnIQ_/;UnIQ /‘;0’2 0(1)7
T 0 == T 9o T 9o 1
/’ |2un /| |2vn+ | |20 +0( ),

2 2 2
[ [amrow

and (J'(c), ¢) = 0 for any ¢ € H}(Q2). That is 0 € HZ(Q) is a weak solution of the problem
Py(X\,¢,q, s, f). From concentration compactness principle and the Hardy-Sobolev
inequality, we get a subsequence still denoted by (uy,)nen, an at most countable set D, a
set of distinct points (z;);ep C € and sets of nonnegative numbers (u;);ep and (v;);ep
such that:
(a) [Viun|? — )\% L a> |Vol - A% +jEZD 0,

N7y — | S . .

for all j € D. Here d,, is the Dirac mass at x. We assume that there exists some j € D
such that u; # 0. Let € > 0 and ¥ be a cut-off function centered at x; with

W(z) = 1, if. |z — x| < 3e,
0, if |z —xj]>c¢,

and [VU¥| < 2. Then (J'(uy), Pu,) — 0, ie.

_ . . /
0 = e11_r>r(1)nll_>n(r)1o (J'(un), Yup,)
; : 2 Ao q ’un|p*(s) v
= lim lim V| " U + 1, Vu, VU — —un W — (f (2) [up [T ¥ — ———5— | dz
e—+0n—o0 ]ac\ ’$|
> Uy — v
> aj . S/\—i?*(s)ﬂaﬁ?*(s)/?.
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2-p*(s) _ .
Thus u u; 2 <8 Z; ()/2 and since ZPT(S) < 0, we have

)

SYOI -2 _ gN=s2s g

Therefore u uj =0or u] > S —s/2- %

From ( and - we have

T () = 0 () )

= 5 (wml = ) < [l - tt
_p*tS) / <|vu”|2 - |;’2 ‘u"’2> - Cp (s) P ts
- <; p* t )) / <qun|2 - |;|2 ‘u"‘2> ¢ <; - p*l(S)) /f‘u"‘q

Using (3.4), we obtain

|p* (s)

(J (un) ,un) 2—s 2 11 1——4 _a
_am il s 220 2= - 197G Sy, 9

(
2 s ) 11
> TN s Junlly — ¢ <q — p*(8)> C lunll4

Thus there exists C' = C(N, , q, s) such that

2-5 11\ - S
2N ) ‘<<q‘w@))“’z‘cC

for all t > 0. If we assume that u; # 0 for some j € D, then

2—5 N_s2s  2—35 ) <1 1 >/
c > /S +———olli—¢|-— ol
SN ) h s = =\ )
2—s N—s/2—s 2
st e,

>

which contradicts our assumption (3.13[). Consequently

uj =0 for all j € D and u, — o strongly in H}(Q) as n goes to + oo.

Remark 3.2.10. Using , the Sobolev and Hardy inequalities we have

1 2 1 *
T(w) 2 5 ull} = —Cen lullf = ez ul} ®)

1
p*(s)



72 3.2. Multiplicity results

Let p = |lul|,. By the above inequality, we can choose two positive constants py and A,
such that, for ¢ € (0,A*), J(u) is bounded from below in By(po) (the ball centered at 0
with radius py) and J(u) > r > 0 for ||ully = po. Let ¢ € Hy(Q) such that ||ull, = 1.
Then, fort > 0, we have

1, " () P (s)
J(t¢) = 5t° — q/dﬂ— ) /le(s)

Thus, there is to < po such that J(t¢) < 0 for 0 <t < ty. then

co, f =1inf J(u) < 0.
u€Bo(po)

The above Lemma, implies that J can achieves its minimun ¢p ¢ at the function o = wy
ie., cop = J(wo).
Let wg be as before and define w; = wg + v with v > 0 in H&(Q) We have

AU

—Av—
]

= Cf () |wo + 0|7 (wo + v) — Cf (x) [wol T wo

o + 0”2 (wy +0)  Jurgf” " g
' § T

| |z

Let us define the map g¢ : 2 x R — R for { > 0 by

Cf (@) lwo + t77% (wo +t) = ¢ f (%) [wo|*™* wy
g¢ (w,t) = O 1 B ) i if ¢>0;

|=[* |=[* ’

0, if t <0;

Define also "

Ge (z,v) = /gg (x,t)dt
0

and

<
—~

(4
N—

1

3 Il = [ Ge (ot @)

_ ;/<|VU\2—/|;|21)2> —/GC (2, 0" (2)) -

Lemma 3.2.11. The origin v = 0 is a local minimum of J.

Proof. Since wy is a local minimum of J, there exists £; > 0, such that J(wg) < J(wp+v),
for all |lwo +v — wo|| < e1, v € H}(R). On the other hand [[v*]| < |Jv]| < &; for all
v € H}Q). Thus

J(v) = J(wo +v) — J(wo) > 0.

Therefore 0 = J(0) < J(v), for all v such that |Jv|| < 1. Then simply choose ¢ > 0 such
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that 0 < & < g1 and we obtain J(0) = 0 < J(v), for all v such that ||0 — v| < e. O
Now, we prove the existence of a second solution of problem P(\,(,q,s, f).

Lemma 3.2.12. Ifv = 0 is the only critical point of J, then J satisfies the (PS).-condition

for any ¢ < 2(2 S)S/\SS/Q %

Proof. Let (vy)nen be a sequence in Hg (), such that

{ J(vy) —ec WlthC<2(N )S)\S —s/2=s, (3.20)

J'(vy) —0 in HY(Q) as n — .

Hence, (vn)nen is bounded in H{ (). Now, we prove that v, — 0 € H(Q2). Since v, is

bounded in HE (), we can assume, if necessary passing to a subsequence, that

v, — v in HY(Q),

vp — v a.ein (),

vy, — v in LYQ),1 <t <2*

vy, — v in LT(Q, |z|"%dx),2 < r < p*(s)

(3.21)

From the assumptions, we have that v = 0. On the other hand, from the definition of the

functional J, we have
(J'(vn), wo +vp) = /an (wo + vp) — / |x)\’2vn (wo +v,) +0(1) (3.22)

—¢ [ @) o+ 072 (o 00) = ¢ [ £ () o (g + 1)

+ / |x1’5 (wo + v+)p*(s)_2 (wo + vn) — /wop*(s)_2 (wo + vp) .

A A
= /anVwo + /val - / anwo — Wui +o(1)
—C/f (z) (wo + v*)q*2 (wo + vp,) — C/f () wol 2wy
_C/f (z) wo? vy, — /‘;’s (wo + v+)p*(8)_2 (wo + vn)

1 *(5)— 1 *(s)—
—/W(wo)p() 2w0—/m(’wo)p() 2 .

Since wy is a solution and v, € H} (), we have

P (s)=2
/ vaVUn—/’)\‘gwovn—/Cf (z) |w0|q—2w0vn_/\wo\ o Woln _
T

Thus, since v, — v =0 in L" () and L" (Q, |z|* dz) for 2 < r < p*(s), then

p*
/VwOan—/ wovn—g/f |wg|q Woly, — /|w0| oy — 0. (3.23)
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Moreover v, — v =0 in L' (Q), 1 <t < 2* then

C/f@ﬂwﬁwm*a@m+ﬂﬁ=C/f@ﬂmﬁ4w0+dn (3.24)

and

c/f@mw*@m+mnzc/f@wm*%m+wn.

Then substituting (3.23)), (3.24)) in (3.22)) and using Ghoussoub-Yuan’s relation

[wo + v > / Jwol”" ) / o [P
— = 1 2
e o] oW 329
we have .s)
_ A £y s
<J/(vn),w0+vn>:/VvZ—/QUTQL—/ %—l—o(l).
|| o |zl

Thus (J'(vy), wo + vn) — 0 as n — co. We can assume that exists d > 0 such that

[vn

‘p*(S)
— d, when n — oo.
Edl

||vn\|?\ — d and /

If d # 0, by using the fact, that

2

+1p*(8)\ 77(s)
S)\,s( o p >p §/<|an|2—/\2|vn|2>
|| ||

for all v, € HY(R), we obtain that d > Sy /™. Thus

c =o(1)+ J(vy)

1 ) 1 o [P ()
=—|v - +o(1
>1/2d — 2—*d

2—s N—s/2—s
>
— 2(N — S)SA’S ’

which contradicts the assumption ¢ < 2(?\]153) Sﬁ\vgs/ =) Therefore d = 0 and the proof

is complete. ]
Let

. p*(s)\ ~1/P7(s)

with 0 < U (z) <1, ¥ (z) =1 for |z| < p, ¥ () = 0 for |z| > 2p, where p is chosen as in
Proposition and ¥ (z) € C§° ().
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N-—s

Lemma 3.2.13. If (H4) hold, we have supJ(tv.) < ﬁsﬁ
t>0 ’

Proof. Recall the elementary inequality, for p > 1 and a,b > 0,
(a+b)? > aP + b + pa?~'b.

Then, we have

ge(z,ve) = Cf () |wo + ve|T72 (wo + ve) — Cf (2) [wol?™> wo
o+ e o v) o g
|z|® |z|°
+p*(s)—1 p*(s)—2
Ve * |w0’ +
> ———— +@(s)—1) Uy -
|z| || :
and 0 (s) (5)-2
PO () - D 02 g
Ge (x,tve) > — T 5 v ).
(1) 2 S T 5 R %)

Since wy € H (Q) is a positive solution of problem Py(\,(,q,s, f), by the Proposition

we have
wo (x) > Ky 2| (VAN o e B\ {0}

for p > 0 sufficiently small and

o ja - AVAY

(p"(s) —1) > (p*(s) = 1) K1

|

*(s)
Note that [ ’UT;Tls =1 and

t2
Ty = Gleli - [ Gclotwn
+2 ) P (s) ,UIE’*(S) (p*(s) — 1)t2 |wO|P*(5)—2 U;r
< Slvely= | 557 ;
2 p*(s) |zl 2 |z

2 p*(s) 12
= Sl - - o
2 p*(s) 2 c

*

Ll o B
2 1A p(s) 2 <

B0 = ¢ el =2 R 2],

Thus, from S. (t) = 0, we have

1
_ p*(s)—2
u—@mﬁ—m/@}

Let
Be (1)

Then
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with
max/3 (t) =p (ta) .

t>0

So

J(tve) < B(te)
*(s)
1 2 s 2 GOk 2 1 2 = 2 -2
— g - &[] el = s el - [
2
1 - p*(s)—2 _
5 = [T R 2
2
1 - PF(s)—2 -
= 5 [ F 2] [ - & [ 2
p*(s)

1 9 — 9 p*(s)—2
—m [Hva‘,\ —Kl/%}
(s)

1 2 _ 5 SO 1 2 _ 5z pris)=2
o Lt R ml [P e S

p*(s)
11 \1 2 o [ g7
= (s-—=]5 - K
(5 ) 3 [l - K [ 22

and using the estimates from Proposition [3.2.8 we have

*

p*(s)
- 1 1 1 - p*(s)—2
i) = (55 3 [leli = o [ 2]
1 1 SN*S O N-—s 0 %
= _—— 2—s 2— 2—s —
s ) 55 HoEF06 )

N
Ifm<q<2,weget

supJ(tv.) < ——° g5
u v = .
tzg : Z(N—S)

Consider the following minimax value

¢ = inf sup J(y(t)),
vel o<i<1

where

r= {7 e C([0, 1), HY(©)) : 4(0) = 0, (1) = k}

with suitable € and k.
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Proposition 3.2.14. If (Hy) hold, the minimum co ¢ and ¢ 5 are achieved by wo and wy

respectively. Moreover, wy and wy are positive solutions of Py(X,(,q, s, f).

Proof. From Lemma J achieves its minimum ¢ § at wo and from Remark wo
is a positive solution of Py(\,(,q,s, f). From Lemma v = 0 is a local minimizer of
J, then there exists a sufficiently small positive number p such that J(v) > 0 for ||v]|, =
7.

Since J(tv.) — —oo as t — oo, then there exists 7' > 0 such that ||Tv.|[, > p > 0
and J(tve) < 0. For ¢ < ﬁ&%, (PS).-condition is satisfied by (3.2.12), then we

conclude by (|3.2.13)) that

- - 2—-s5 A=
¢ <supJ(Tv:) <supJ(tv.) < ———
=0 (Tee) < 20 (fve) 2(N —s)

Hence applying the mountain pass theorem whenever ¢ > 0 and the Ghoussoub-Preiss
version whenever ¢ = 0 (see Ghoussoub-Preiss [61]), we obtain a nontrivial critical point

v of J. Set wi = wg + v, then wy is a critical point of J and w; > wg > 0 in Q. O

3.2.4 Existence of sign-changing solutions

We define two subsets of M~ as

My ={ueM:uteM} and My  ={u€M:—u €M },

where 4™ = max{0,u}, v~ = max{0,—u} and v = u" —u~. Set M, = M; N M, and
co = inf J(u). (3.26)
ueEM,

We prove that cg is achieved by some we € M, which must be a sign-changing solu-
tion of problem Py (A, (, ¢, s, f). Since the associated functional of this problem is odd with
respect to u, we have that —ws is also a sign-changing solution. In order to solve the min-
imization problem (3.26), we combine some ideas from Tarantello [I19] and the methods
recently developed in Castro-Cossio-Neuberger [24], Chen-Rocha [42] and Hirano-Shioji
[71].

Lemma 3.2.15. If (Hy) hold,
co < C1,f + ﬁ

Proof. In the first place, we prove that M, # (). To see this it suffices to prove that there

is g and 7 such that
ro(ue —row1)™ € M~and  — ro(ue — row1)” € M, (3.27)

where wy is a positive solution of Pa (X, (,q, s, f) with J(wi) = ¢y ¢.
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Denote

Ty = maxﬁ and 7] = min Ye (3.28)
Q\{o} w1 Q\{o} w1

Then, from Proposition 71 and 7y are finite. For any given 7 € (71, 72), we obtain
from Lemma that there are positive values r4(7) and r_(7) such that

() (ue —Tw))t € M~ and  —r_(7)(ue — Tw1)” € M. (3.29)
Note that r4 is continuous with respect to 7 and satisfies
limT%TfLT+(T) =t (ue — mmw1)T < +oo  and limT%T;m_(T) = +00. (3.30)
Similarly, r_ is continuous with respect to T,
limT_)le“_(T) =400 and lz’mT_W;r_(T) = tT(ue — mwy) T < +o0. (3.31)
The continuity of 74 (7) imply that there is 79 € (71, 72) such that

r+(70) =1-(70) = 70 > 0.

Therefore M, # (). In the second place, we estimate cz. From the previous proof, we only
need to estimate J(rus —tw;) for r > 0 and ¢t € R. By the structure of J, we find Ry > 0
large enough such that J(ru. —twy) < ¢; for all 22> R%. Thus it suffices to estimate
J(rue — twy) for all r? +¢2 < R?. Recalling the elementary inequality

lay + ag|™ > |a1|™ + |ag|™ — K (Ja1|™ " |ag| + a1 laz|™ 1), Yaiaz € R, m > 1

we have from Proposition and the assumption on ¢ that

p*(s)—1
J (rue —twy) < J(rug) + J (twy) — rtéq /wlug_l — rt/uemswl +
rug?” O rug| [tw [P
+K/| el S! 1|+K |rue| | 1S| .
|z |z|

+K/|rw1|q_1 |t | +K/|tu5q_1 |rw |

IN

VA (a—D)VA
J (rwr) + J (tus) + O <52—S) +0 <£ 2=s )

(a—=DVA
= J(rwy)+ J(tu.) + O <5 2=s ) .

Writing ¢(r) = J(ru:) + gf f(z)|rue|?, we have that
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ER

that 2Z(T*u.) = 0. It follows from (3.12) that

PP (s)—2
attains its maximum at Tyqr = <Hu5|| i/ w2 (s) ) and there is TT > T4z such

Tq
maxJ (rue) < @(Tmax) — maxK4/|uE|q
r>0
2—s

N-—s
< 270 g K ‘
S o 4/’“5’

2 s g N-_s o ng
< =" Gy 2 — 2= .
= a(N—s) M ( >

In here we have used the assumption on ¢ and the integral estimates in Proposition [3.2.8

to compare the error order of €. Thus we can say that, for € > 0 sufficiently small,

max_J (rus — twy)

r>0,teR
(¢—1)VA (N—gVA)VA

< maxJ (rue) + maxJ (twy) + O <6 2=s > -0 (6 (2=)VA=X >

r>0 teR

2—s Nes [ N+VA—-) )
< e ft——S\s2 5 | since ————— < qg<2]|.
= W TN ( VA+vax !
The proof is complete. O

Proposition 3.2.16. If (H4) hold and ¢ € (0,A*), then there is we € M, such that
J(we) = ¢co and wy is a sign-changing solution of problem Pa(\, (. q, s, f).

Proof. In the first step, we prove that there is wo € M, such that J(ws) = c3. Let
(un)nen C M, be such that J(u,) — co. Using the fact that (u;}),ey € M~ and by the
Hardy-Sobolev inequality, one has

0 < inf [Ju,}||x < sup [Ju||x < +oo.

Similarly, we have ||u,,||x is bounded with respect to n. Going if necessary to a subse-
quence, we may assume that u,7 — u™ and u, — u~ in H}(Q) and that J(u}) — di,
J(u,, ) — do with co = dj + da.

We claim that u™ # 0 and v~ # 0. By Proposition we have that

(a) If ut =0 and u~ =0, then

2—s 2—-s A= 2—-s =
B> 25 52 gy > 275 g3 g > 2% g
1_2(N—s)8>‘5 2_2(N 5 oA an eHCGCQ_Z(N_S) Ns
(b) If u™ =0 and u~ # 0, then
2 — N—s 2 — N—
dy > ° S, dy > ¢y pordy > co g+ i S,

2(N —s)
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which implies that

2—s 2—s5 3=
622617f+m5/\78 or CQZCOJ“}‘mS}\,S ;
(c) fu™ # 0 and u~ = 0, then
2—5 N—s 2—8 N-—s
CQch,f+mS)\2;s or C2ZCO’f+2(N—s)S>\2,_S

All the above three cases contradict (3.5) and the Lemma [3.2.15] Therefore u™ # 0
and u~ #Z 0. According to (1) and (2) of Proposition we have one of the following:

(i) (u)nen converges strongly to u™;

(i) di > J(ts (uwtut);

N—s
(ilf) di > J(t—(uM)ub) + 552550,
and we also have one of the following:
(iv) (u;, )nen converges strongly to u™;
(v) da > J(—ty (—uJu )

N—s
(Vi) d2 > J(—t—(—u")u") + o575 55" -
We will prove that only cases (i) and (iv) hold. For example, in the situation (ii)+ (v),

we have
t(uHut —ty (—u)u” € M
and, hence
o < Jtp(uNut —ti(—u)u")
= J(ts(u")u") + T (e (—u)u”)
<di +da = c.

which is a contradiction. Case (i) + (vi), we have ¢t_(ut)u™ —t_(—u")u~ € M+ and

hence
2—s N—s 2—s N—s
SRR Ty LSRR 7o v o R
< J(t_ ()t — o (—uYu) + a5y B
< J(E-(u)u” —t(—u")u )+2(N—s) As
+\ .+ _ 2—s N—s
=Jt_(u)u") + J(t-(u)u )+2(N—S)S’\’5275

Sd1+d22627

which contradicts Lemma |3.2.15] Case (i7) + (vi), we have
ty(uh)ut —t_(—u")u~ € M~ and hence

2(?\7__83)51;; < Tt (whut + o)) + 2&__‘:)

N-—s
cif+ Sh,s 275 < di +dy = ca,
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which again contradicts Lemma [3.2.15 If (i) and (v) hold, then u™ — ¢, (—u™)u™ € M,
and hence
co < Jut —ty(—u)u") <dy +dy = co,

which is also a contradiction. For other situations (i)+(vi), (ii)+(iv), (i13)+(v), (4i7)+(iv),
we can get a contradiction by a similar argument. Therefore we proved that only (i) + (iv)
hold. Hence both (u;})nen and (u;, )nen converge strongly to u™ and u™, respectively and
ut, u~ € M~. Denote we = u* — u~. Therefore, J(ws) = cs.

Next we show that ws is a critical point of J. Suppose that ws is not a critical point of
J, i.e. VJ(wz) # 0. Denote

) uP” ()
Q) =l —¢ [ f@ypult = [ e
Note that for u € M, we have
uP” ()

(VQ(u),u) = (2 —q) Jul} = ("(s) = a) I 0.

Hence, we can define

Viu) =VJ(u) — <VJ(U) VQ(u) > VQ(U)

.
VoWl /TVew,  “€M

Choose 6 € (0, min{|lu™||x,[|u"[x}) such that ||V (v) — V(w2)|x < ||V (wg)|x for each
v e M™ with [[v —ws||x < 26. Let ¢p: M~ — [0, 1] be a Lipschitz mapping such that

¥(v) 1 forve M~ with ||v—wsl[x <9,
V)=
0 forve M~ with [jv—ws|x> 296,

Let 1 : [0, s0] x M~ — R be the solution of the differential equation Cauchy problem
d
77(07’0) =, %77(871]) = —¢(ﬁ(sav)))v(77(svv)) (332)
for some positive number sy and (s,v) € [0, s0] x M~. We set
X(t) =t (1= thu” —tu”)((1 = t)u” —tu™) and &) = n(so, x(1)),

for 0 < ¢ < 1. Keep the definition of u™ = maz{u,0} and u~ = maz{—wu,0} in mind. We
have that if ¢ € (0,1) U (3,1) then
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s(et3)) < 7(x(3) = T(az).

Therefore J(£(t)) < J(wg) for t € (0,1).

Since

and

tr(E)T) =t (=€(1)7) = nlso, t+(x(®) ) = to(—x()7)) = —o0

as t — 0 from the right hand side and

L (€)=t (=€) ) = nls0, t+(x(O)F) =t (=x(H) 7)) = o0

ast —1—0, we get a t; € (0,1) such that ¢4 (£(t1)T) = t+(—£&(t1) 7). So
E(t1) = &(t)T —&(t1)” € My and J(&(t1)) < J(ws), which is a contradiction. Hence,
it is true that VJ(w2) = 0. O

We are now ready for the multiplicity theorem of problem P»(\,(,q,s, f).

Theorem 3.2.17. If (H4) hold, then Py(X\,(,q,s, f) has at least two positive solutions
and at least one pair of sign-changing solutions in H}(Q) for ¢ € (0,A*).

Proof. By Proposition [3.2.14] we know that problem P(\,(,q, s, f) has two positive so-
lutions wy and wy. It is deduced from Proposition [3.2.16| that Py(\, (, g, s, f) possesses a
sign-changing solution ws. Since Py(A,(,q, s, f) is odd with respect to u, we know that

—ws is an additional sign-changing solution of Py(\, (,q, s, f). O



Chapter 4

Existence of solutions for a class of
singular equations in Lorentz

space

Let Q ¢ RY be a bounded domain with smooth boundary and satisfying the uniform
exterior sphere condition. In this chapter, we study the existence of solutions u € I/VO1 P(Q)
for the Dirichlet nonlinear problem Ps3(%, a, f):

{—dz‘u(w(x,u(:ﬂ),w(x)))+a(ﬂ?)U(fE> =flz) in &, (4.1)

u(z) =0 on Of),
where 2 <p < N, ¥(u) = —div(y(z,u(x), Vu(x))) is a Leray-Lions operator, a € LS (£2)
with a(z) > 0 forall x € Q, and f € L%9(Q) is a function in a Lorentz space with suitable
exponents ¢ and ¢q;.

As we have mention before, Problem P3(¢,a, f) has a difficulty since a € LS (€), so
the standard definition of weak solution may not make sense (i.e. with test functions in
VVO1 P(Q)). Therefore, it is necessary to introduce a special notion of weak solution in-
volving open subsets of 2. Moreover, we study an approximation problem P(£2,), where
Q, C Q is suitably defined for each n € N. Then, we prove that there exists a solution
of P(§),) for each n € N and that the sequence of solutions converges to the solution of

problem P3(1,a, f).

Our approach combines a surjectivity result for monotone, coercive and radially con-
tinuous operators with special properties of Leray-Lions operators. In this chapter, we
prove that if f € L?7(Q) (¢ < ¢1), then there exists (at least) one solution u in the space
WO1 P(Q) N L™*(Q2) with suitable exponents r and s. Moreover we find an estimate for the

solution. We also prove the uniqueness of the solution under some conditions.

83
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The structure of this chapter is the following: In the Section 4.1, we present relevant
results of particular cases of our problem. In the Section 4.2, we prove the existence of
solution for the problem with a linear operator. In the Section 4.3, we prove an existence
result for the nonlinear case, in three steps: existence, uniqueness and estimate for the
solution. The results obtained in this chapter are related to the work of Huang-Murillo-
Rocha in [73].

4.1 Previous results

The commom framework for elliptic problems are Sobolev spaces. Problems with
terms defined in Lorentz spaces are considerably less common, mainly because the use of
non-increasing rearrangements in their definition limits the application of several standard
techniques. However the embedding of the Sobolev space VVO1 P(Q) into a Lorentz space
improves the standard Sobolev embedding into a Lebesgue space. So in some sense, the

results on elliptic equations and system may be improved using Lorentz spaces.

To continuation, we present some interesting results in Lorentz spaces. Consider the
degenerate linear version of problem P;(v,a, f) without singularity, i.e. a = 0 and the
Leray-Lions operator ¢ (z,£) = M(z)¢, where M is a symmetric matrix in L>(Q)V*V

satisfying the ellipticity condition, i.e. there exists o > 0 such that for z € Q and £ € RV
M(x)é - € > al¢l.

Let Q@ ¢ RY (N > 2) be a bounded domain with smooth boundary. Napoli and
Mariani [91] proved the existence of a unique solution in H3(€2) N L™%(€2) of the problem

(4.2)

—div(¢(z, Vu(z))) =divF(z) in Q,
u(z) =0 on 01,

with suitable exponents 7 and s. If F' € (L?(Q2))", using the Lax-Milgram lemma they
obtained the existence of a unique solution in H}(€2) for the problem (4.2)). Moreover for
F € L1(Q), with ¢ > 2 used the Stampacchia argument (Theorem 4.2 in Stampacchia

[112]) to improve summability.

Consider the nonlinear problem

{—dz’v(w(x,u(x),vu(w))) = divF(z) in (4.3)

u(x) =0 on Of.

For F € L‘Lqu(Q) for some ¢ and ¢*, Napoli and Mariani [91], proved that there exists a
unique solution of the problem (4.3)) in I/VO1 P(Q) N L™%(Q) for suitable exponents 7 and 5.
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For the particular set of equations

(aij(2)ua,)a; = (fi)z;, in O

where 0 C RY (N > 3) is an open set and the functions a; ;(x) (i, j = 1, ...,n) are bounded
measurable, and satisfy the ellipticity condition, Karch-Ricciardi [79], showed that weak
solutions are differentiable almost everywhere when v € H (Q) and % fe L;Lo’cl(Q) The

space LZN} () is the local version of Lorentz space, consisting of all measurable functions
g € Q2 such that g,, € LP4(Q) for each compact set A € €.

For other type of singularities, we mention the work of Giachetti-Segura de Leon [63]
in Sobolev spaces, in which they obtained for a problem involving a Leray-Lions operator

plus the term
sig(u — 1)

1
|U—1|K |VU|2—f,

the existence of a weak solution u € H}(Q2) when f € L™(Q), with m > ]\2[—12 By using
Stampacchia theorem, Giachetti-Segura de Leon showed that the gradient of u goes to

zero faster than |u — 1|/¥ so, in fact, the term does not blow-up.

4.2 The linear case

In this section, we study the problem P;(v, a, f) considering a linear operator instead

of the Leray-Lions operator V. First, we introduce a geometric condition on §2.

Definition 4.2.1. We say that Q@ C RY satisfy the uniform exterior sphere condition, if
there exists a real number r > 0, such that for each z € OS) there exists a close ball B of
radius r with BN Q = {z}.

Remark 4.2.2. Any open bounded set C? contained in RN, satisfies the uniform exterior

sphere condition.

Let Q ¢ RY be a bounded domain with smooth boundary and satisfying the uniform
exterior sphere condition. Here, we study the existence of solutions u € H&(Q) that
satisfies the problem Ps(M,a, f):

{—div(M(x)Vu(w))+a($)U($) = f(x) in Q (4.4)

u(z) =0 on 09,

where a € LS (Q) is such that a(xz) > 0 for all x € Q and M (x) is a symmetric matrix in
L>®(Q)N*N satisfying the ellipticity condition

M(z)¢- € > algf,



86 4.2. The linear case

for all z € Q and ¢ € RV (a > 0).

As described before, since a € Lj5 (€2), we need a special notion of solution of the

problem.

Lemma 4.2.3. Let Q C RN be a open bounded set that satisfies the uniform exterior
sphere condition, then there exists (Qm)men of open sets such that Qn C Qi1 C Q,
Q= OleQm and the boundary 0N is a smooth subvariety C*° of dimension N — 1 for

m=
m > 1.

From the Lemma we can consider (£2,,),, oy an increasing sequence of open subsets
of 2, such that
J— o0
Qp, € Qpa1 and Q = Ulﬁn.
n=

Definition 4.2.4. The weak formulation of problem is: find u € HL(Q) with
/ M (z)VuVy + a(z)updr = / fedx, (4.5)
Q Q

for all p € OL_le&(Qn)

Remark 4.2.5. The first integral in has sense, since u,p € H}(Q) and the second
integral has sense when f € L?(Q). Note that, if 2 < q < % and q < q1, from the Lorentz

scale (Lemma[A.2.9), we have L1 (Q) C L*().

4.2.1 Existence of the solution

To prove the existence of solution of problem P3(M,a, f), we apply the Lemma |1.2.11
due to An et al. [§].

Proposition 4.2.6. Let N > 4, 2 < q < %, o= (N—-2¢9)71, po = o(N — 2)q and
a € L (G RY). If f € L9#2(Q) then there exists (at least) one solution u € H}(Q) for

loc

the problem P3(M, a, f).

Proof. Let (Q,)nen be an increasing sequence of open subsets of 2, such that €, C Q11
and () = EJOlQn. We consider
n=

X = H}(Q) and X,, = H}(Q).

Note that we can consider each X, as a closed subspace of X by extending its elements
by zero outside €),. Let V = OLclen.

n—=
Let A: H(Q) x V — R be the bilinear map defined by

Alu, p) = /QM(x)Vchp + a(z)updz,
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for all w € H}(Q) and p € V.
Let A, = X, x X;, = R be defined by

Then we have:
(a) A, is a bounded bilinear form for all n € N

In fact, note firstly that, since a € LS (Q) it follows that a € L*>(£2,,) and there exists a
constant ¢, such that

ess sup |a(x)| < ¢q.
:L‘EQn

Thus

/Q (M(2)VuVep + a(z)up)dr < / |(M(z)VuVe + a(z)up)|dz

n

IN

cM/ ]VuHVap\dm—l—/ la(x)||up|dx
Qn

n

1/2 1/2
cM </ |Vu|2d:n) (/ |V<,0]2d1:> +C_a/ lup|dz

< emlVullpz @) Vel + callullllell-

IN

By the Poincaré inequality, [|Vu||z2(q,) is equivalent to the norm of H(Qy). Then

/Q M(2)VuVyp + a(z)upds < exrllulllel)

where ¢y = cpr + Eq.
(b) A(+, ) is a bounded linear functional on X, for all ¢ € V.

For any ¢ € V, there exists some ng € N such that ¢ € X,,, = H&(Qno) and

Au, ) = /QM(x)VuVLp—l—a(:z:)ucpdx

= / M(z)VuVy + a(x)updz.
Qg

Using the idea in (a), we can get that A(-, ) is a bounded linear functional on X.

(c) A is coercive. In fact,

Alu,u) = /M(m)Vu - Vu + a(z)ude > a/ \Vul® dz > ajul|?.
Q Q

We have verified all the hypotheses of Theorem |1.2.11] so if F' € V* is defined by F(¢) =
Jo fedz, there exists u € H(Q) such that
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for all ¢ € V. Thus u satisfies the problem P3(M,a, f). O

4.3 The nonlinear case
The hypotheses (H.¢) that we consider here are:
(1)  Y(u) =—div(y(z,u(z), Vu(x))) is a Leray-Lions operator;
loc

(i) a€ LR

(#41)  f is a function defined in the Lorentz space L9 (Q), where p’ < g < % and
q1 =0(N —p)g, witho = (N —pg)~,2<p< Nand p = p%l.

The hypotheses (Hs) are the same as (HL?) when, in (ii), we replace a € LS (€ R)
by a € L®(Q;RY).

Problem Ps(1, a, f) is well defined since (by standard arguments) the left-hand side of
Py(¢,a, f) is in W= (Q) and, for f € L@ (Q), f € W17 (Q). In fact, since p’ < ¢ < q1,
from the Lorentz spaces scale (see Lemma , we have L9 (Q) c L% (Q), for any
q < q, so for g = p’ we get

ferrn@) c I (9) = 17 (9) = (@) < (We (@) = w7 (9).

Definition 4.3.1. (weak solution) We use the following notion of solution.
We say that u € Wol’p(Q) is a weak solution of problem P3(v,a, f) if satisfies

/ (6 (@, (2), Vu (2)) Voo + a (x) up) di = / fods (4.6)
Q Q

for all ¢ € OLj)lWOl’p(Qn).
n=

Recall that by problem (Pq,) we mean the same problem as P3(1), a, f) but defined on
Q.

4.3.1 Existence of solution

The following proof is motivated by the Lemma [1.2.12| due to Drivaliaris- Yannakakis
[52].

Proposition 4.3.2. If (H¢) hold then there exists (at least) one solution u € Wy (Q)
of problem Ps3(1,a, f).

Proof. We do the proof by steps, showing several claims. We define

X = WyP(Q) and X,, = Wy (Q)



4.3. The nonlinear case &9

for each n € N. Each X, is a closed subspace of X by extending its elements by zero
outside €2,. Define V = OleXn and the map T : X — X* by
n=

T(u)(z) = ¥(u)(x) + a(z)u(z) = —div((z,u(x), Vu(z)) + a(z)u(z),

for all x € 2 and u € X, and the operator A: X x V — R by

Au,v) = (T(u),v) v x = /Ql/)(x,u(m),Vu(m))Vv(x) + a(x)u(z)v(z) dx

for all u € X and v € V. We also consider the operators A, : X, x X,, - R, withn € N,
defined by

Ap(u,v) = (T(u),v) x, - x, :/Q Y(z,u(x), Vu(z))Vo(z) + a(z)u(z)v(z) de

for all u,v € X,,. Note that A: X x V — R is well defined. In fact, for any v € V there
exists a k € N such that v € X and

A(u,v) = A Y(z,u(z), Vu(x))Vo(z) + a(z)u(z)v(z) dr < oo.

Claim 4.3.3. The operators A, are coercive for any n € N.

From the elliptic condition, we have for u € X,,

Ap(u,u) > a/ ]Vu|pdx+/ au2dx2aHqu—|—/ au?dz.
Qn Qn Q

n

Thus, since a > 0, we get

An 9 . —
lim (u,v) > lim aulP! = oo

llull o0 || J[ul|—o00

Claim 4.3.4. We have Ay, (u,-) € X,,* for alln € N and u € X,.

From a € L*(,), there exists a constant ¢, > 0 such that

Ap(u,v) g/ \1/J(x,u(x),Vu(m))Vv|d$+ca/ luv|dx.
Since 9(x, u(x), Vu(z)) € LV (Q,) and Vv € LP(£,), we can apply Holder inequality in
the first term. For the second term, since p’ = p%l, p > 2, and p’ < p, we use the
embedding LP(§2,,) C Lp’(QnO), ie. if u € LP(Qy,), we can apply the Holder inequality
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with u € LP' (€,) and v € LP(£2,,). Additionally from the Poincaré inequality, we obtain

Anu,0) < [l ule), Val@)ll o, ol Lo@g) + calltl g 0]l o)

(I (@ (@), V@) o, ) + ol ) 1olzon)

IN

er (b, ule), Vu(@) | ) + callull e,y ) 1900 n(0)

= el

for some c1,co > 0. Hence, we get that A, (u,-) are bounded linear functionals on X,*.
Since each A, (u,-) is a bounded linear functional on X,,*, the operators Ty —are well
defined for all n € N.

Claim 4.3.5. The operators Ty are monotone and hemicontinuous for all n € N.

This is clear from the fact that T'|y ~are the sum between a Leray-Lions operator and a

linear operator, i.e. each one is monotone and hemicontinuous.
Claim 4.3.6. There ezists a solution u, € X,, for each problem (Pq,,).

Since any hemicontinuous operator is radially continuous and T| x, are monotone and

coercive operators, 7| x,, satisfy the conditions of the Browder-Minty theorem, so
Jun, € Xy st (T(un), V) ey = (55 0) xpexy forallveV. (4.7)

Recall that for any v € V = U2, X, there exists 7 € N such that v € X;. By the
definition of X,,, we know that (X,,)nen is an upwards direct family of closed subspaces
of X and hence for any n > n, v € X,,. Hence, by (4.7)), we consecutively have

Aup,v) — (f*v) foralln>n, (4.8)
A(up,v) — (ffv) forallveV, (4.9)
A(up,w) — (f*,w) forallwe X, (4.10)

since V is dense in X and fQ avw dx = an avwdr for all v € X, and w € X.

Claim 4.3.7. The sequence of solutions u, of (Pq,) converges weakly in X, i.e. exists

u € X such u, — u.

From equation (4.7)), setting v = wy,, we have (T'(up), un) = (f*, un), which together with
the coercivity of the operator T'|y ~gives that the sequence (un)nen is bounded. If not,

suppose that ||u,| — oo then

) wn) o el

lunll=oo  |lunl 7 flunll—oo  [Jun]

=17l < o0,

which is a contradiction with the fact that the operator is coercive. Hence, since X =

VVO1 P(Q) is a separable reflexive Banach space, using Alaouglus lemma we have that
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(un)nen bounded implies u,, — u € Wol’p(Q).
Claim 4.3.8. The sequence (up)nen converges strongly in X.

By the weak convergence of the sequence (up)nen to u € X, we have (f*, u,) — (f*, u).

So, using (4.9) with v = u,,, we have
Alun, un) = (% un) = (f* ). (4.11)

Using the compactness of the embedding X = I/VO1 P(Q) in L¥ (Q), we conclude the strong
convergence of u,, — u in X.

Alternatively the strong convergence of the sequence (up)neny C X is ensured by the
fact that the Leray-Lions operator V¥ is a (S4)-type operator, u,, — u and, by , we
have

lim sup (T'(up), un — u) = (f*, up — u) = 0. (4.12)

n—0o0

Note also that, since the Leray-Lions operator V is a pseudo-monotone operator and (4.12)),

then U(u,) — ¥(u) when u, — u.

Claim 4.3.9. The map A : X xV — R defined by A(u,v) = (T'(u),v) x«y x 5 M-type
with respect to V.

Let (va)aea C V, w € X and v* € V*. Assume the conditions (a)-(c) of Definition [1.2.5
then
A(vy,v) = (T(vy),v) + (av,vy) = (T(w),v) + (av,w) = A(w,v)

since vy — w and ¥(v)) — ¥(w), which merging with (b) gives A(w,v) = (v*,v) for all
veV.
Therefore, the existence of a solution u € X is a direct consequence of Claim (4.9),

(4.11), and Claim m -

4.3.2 Uniqueness of the solution

In this subsection, we establish a sufficient condition for the solution of problem
Ps(1,a, f) to be unique. Since a € L (Q; Ry ), we have a € L>®(£2,; R for each compact

loc

Q, C Q,n € N. Here we modify this condition and suppose a € LOO(Q;]R(J{) , i.e. we use
hypotheses (Hs) for obtaining uniqueness.

Proposition 4.3.10. Suppose (Hs) hold, then there exists a unique solution u of problem
Py(¢,a, f) and [, fudz > 0.

Proof. Let J : Wol’p(Q) — R be defined by J(u) = ¥(u) + a(x)u(z) — f(x). Suppose
Uy, ug € ng’p(Q) are two solutions of problem P3(¢, a, f). Thus (J(u1),v) = (J(uz2),v) =0
for all v € W,”(Q2). In particular, we have

<J(U2) — J(ul),u2 — U1> = 0

< (U(ug) — VU(uy),ug — uy) + (aug — auy,ug —ug) =0,
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and U is a monotone operator, i.e. (U(ug) — ¥(uy),us —u1) > 0, which implies
(a(ug —u1),ug —up) <0,

, hence us = uy. Moreover, by the ellipticity condition, if u is the solution of problem
Ps(1,a, f) we have

(J(u),u) =0 < /qu—auzdac—/gw(x,u,Vu)Vudx

= /fu—au2d1:2a/|Vu|pdm20.
Q Q

So a > 0implies [, fudz > 0. Therefore f > 0 implies u cannot be a negative solution. [J

4.3.3 Estimate for the solution

In this subsection, we will study an estimate for the solution of problem P3(1,a, f).
To obtain the apriori estimate for the solution, we use truncation functions as the main
tool. For k > 0 and x € R define the truncating function Tj : R — R by

—k ifao<—k
Ty (z) = x if -k <ax <k,
k it z > k.

For any u : Q — R, by Tx(u) we mean the map Tg(u) : Q@ — R defined by = — Ty (u(z)).
Lemma 4.3.11. (see Napoli-Mariani [91]) The truncation function T} satisfies

(i) For any k > 0, we have zTy(x) > 0;

(i) If || T (u)HLp,q(Q) < C for any k > 0, then u € LP4(Q) and HuHLM(Q) <C.

Proposition 4.3.12. If (H!¢) hold, then the solution of problem Ps(v,a, f) satisfies the
apriori estimate
'/
[ullzro@y < CllfI[paas )  (for some C > 0), (4.13)

where r = oN(q—1)q and s =o(N —p)(p — 1)q.

Proof. Let u be a solution of problem Ps(1,a, f) and set

1

1 | T (uw) P Tr(u)xq,, foranyn e N andsome m €N, (4.14)
m

On =
P

where s is the characteristic function of the subset S € RY, i.e.

1, zeS,
XY 0, zerMS.
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From the definition of Ty (u) and u € Wol’p(Q), we get that ¢, € V = oleXn and
n=

Vn = \Tk(uﬂpm V (Tg(u)) xq, a.e. in .

It follows from (|4.6]) that

/ (¥ (@, u(x), Vu(x)) T (u) "V (Tk () dz

1
pm+1

/Q (2 )ul T ()P T () e,

1 pm
- — /Q @) [Ty T (4.15)

We denote the first, second and last term in (4.15)), respectively, by I;, Is and I3. Again
from the definition of T (u) and the ellipticity condition, we have

I :/Q Y(x,u(z), VT (u)) [T (w) "™ VT (u)dz > a/\VTk(U)\p\Tk(U)’pm dz.

Note that T ()™ T (1) \ |
m u
e e | K.
and so
I > a/ c <|Tk(u)|mTk(u)) 8 H|Tk " () [P
- Ja, m+1 m+1 WP (@)

From the embedding of Sobolev spaces into Lorentz spaces (see Lemma , We obtain

m + 1 LP 2 (Q,) m —|— 1 WP (@)
Thus
(u)|™ T (u) || & o
' om+l T mt 1) 416
12 m+1 P p () (m + 1) H ( )”LP *(m41),p(m+1)(Q,,) * ( )

It follows from Remark {.3.17] that

1
pm +1

I, = /Q a(z)u|Tg(u)|P™ Tg(u)dz > 0.
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Using (d) and (e) of Lemma we have

1
Iy < pnk+1(/'f|1m<u»m”+ldx (1.17)
< pm“‘ ,
- pm+1 I/ e wl L7 1(Qn)

1
W HfHLq’ql (Qn) ||Tk(u)||Lq/(pm+1),q/1(pm+l)pm+1(9n) N

Combining (4.15))-(4.17)) we arrive at

a 11) 1 +1
Zaiﬂﬂ|<M@%Mwmmmm<§;:ﬂmmm®ywumwamy (4.18)

Let p*(m + 1) and p(m + 1). Now we choose the exponents ¢, r and s such that:
(i) r=4q (pm+1);

) 5 = dipm + 1)

Since p* = N — and q = Ll from (i) we obtain

m = [Np(g—1) = q(N —p)lp~"o.
where 0 = (N — pg)~!. Replacing the value of m, we obtain
r=oN(g—1)g and s=o(N —p)(p—1)g.

From (ii), we have

@ =o(N —p)qg.
Therefore, from (4.18)), we get

a m
ITeIG)) <

- pm+1

then
HT/C( )HLTS <CHfHLq111(Q

By Remark [4.3.11], we have u € L™ (€,,) and
[ll gy < C I dh 0 (4.19)
Now, for fixed s > 0, by the monotone convergence properties of measures, we obtain

d¢, (s) increasingly converges to dg(s) as n — oo.

Therefore

ugy, (s) increasingly converges to ug (s) as n — oo.
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Thus it follows from Levi theorem (see Bartle [13]) that

. . & 1 1/a
A el = lim </0 CUAO) >
o 1/q
_ 1/p 1: ok E @
- ( /0 (S A “Qn(3)> s > (4.20)

=(f (o))

= HUHL“S(Q)'

<
ISH
VA

From (4.19)) and (4.20) we get

lull sy < CIARLE @

We are now ready for the multiplicity theorem for problem P3(1),a, f).

Theorem 4.3.13. If hypotheses (HXC) hold, then there exists (at least) one solution
u € Wol’p(Q) NL™5(Q) of problem P3(1, a, f) and the solution satisfies the apriori estimate

'
lull Lrs ) < C”f”it:fn(n) (for some C' > 0), (4.21)

where r = oN(q —1)q and s = o(N — p)(p — 1)q. Suppose (Hs) hold, then the solution u
is unique and [ fu > 0.

Proof. From the Proposition we have the existence of a solution for the problem
Ps(1, a, f), the uniqueness from Proposition 4.3.10| and the estimate for the solution from

Proposition O
Additionally, we have the following result for problems P({2,,).

Lemma 4.3.14 (Aproximation of the solution). Let u € Wol’p(Q) be the solution given in
Theorem . For any n € N, the problem P(Qy,) has a unique solution u,, € Wol’p(Qn)

and the sequence (up)nen C Wol’p(Q) converges strongly to u.

Proof. The statements are precisely Claims and O

Remark 4.3.15. Using the same idea of the subsection|{.5.9 and|4.5.5, we obtain unique-

ness for the linear case P3(M, a, f) and an apriori estimate for the solution. Thus, we

have the following similar result.

Theorem 4.3.16 (Linear case). Let N > 4,2 < ¢ < &, 0= (N -2¢)71, y1 = oNg,
p2 = o(N —2)q and a € L (G RY). If f € L¥#2(Q) then there exists (at least) one
solution u € HE(Q) N LA#H2(Q) for the problem P3(M,a, f), which satisfies the apriori
estimate

[ull vz ) < Cllfllpanz () (for some C > 0).



Chapter 5

Some considerations and future

research

In this last chapter, we present some final comments about problems under study
and we give some final remarks regarding the problems studied and discuss some possible

directions of future research.

5.1 Some considerations

5.1.1 Problems P(\ pu,«, f,7) and P(A,(,q,s, f)

(i) As we mentioned in Chapter 1, from the Hardy inequality, the linear elliptic opera-
tor —Au — ﬁu is positive and has discrete spectrum if A < A = (%)2 This condition
was considered in the problem P;(\, p, o, f,7). For the problem P»(A,(,q,s, f), the con-
dition 0 < A < A — 4 was considered because we were dealing with the critical nonlinear

term ]w\*slu(:r)]%u(:r) where N > 6.

(ii) The parameter «, which corresponds to a subcritical term in P; (A, i, «, f,7y), has
a direct relation with the values of A and g, in fact we consider 0 < av < v/A — X to ensure
that the functional T" has a good behavior and we can use the estimate of local behavior
of the solution. The condition on « is used explicitly for proving that the two nontrivial

solutions wg and wy are different.

(iii) In obtaining solutions to the problems Pj(\, u, a, f,7) and Py(A,(,q,s, f), the
Lemmas[2.2.13|and [3.2.3|respectively, play an important role. To continuation, we describe
in detail how these Lemmas were applied. The Lemma was applied to find each
solution in Py (A, p, «, f,7y) as follows.

e For the first solution wg € M ™, we say that for all u € M, there exists t_(u) € R such
that t_(u) < tmax(u), t_(u)u € M+ and (2.28), we have

I(t—(u)u) < I(&u), for all 0 <& < tmax(u).

96



5.1. Some considerations 97

Moreover from Lemma for |wo| € HE(Q), there exists a unique value t_(Jwo|) € R
such that t_ (Jwo]) Jwo] € M, t— (Jwo|) < tmax (Jwo|) = tmax (wo) and
I (o) wol) =, min 10t o) o],

e For the second solution wy € M ™, we say that for all u € M |, there exists t; = ¢4 (u) >0
such that ¢4 (u)u € M~ and there exists t € R, such that sy t4 (Jwi1]) > 0, t4 (Jw1]) |w1| €
M7, syte (lwi]) > tmax (|wi]) = tmax (w1) and (¢4 (Jwi]) [wi]) = maxs;e>0 1t (Jwi]) [wil).
e For the third solution wy € M, = M; N M, , where M; ={ue M; u" € M~} and
My ={ue M; —u~ € M~} the values t; and ¢_ are used explicitly in the Proposition
2218

e For the fourth solution w; € HE(Q) we don’t use explicitly the values t_ or t,, we use

wy € Mt and —w, € M~ to prove that wy; > 0 and wa # wy 1.

In the case of problem Py(\,(,q,s, f), the values t_ and ¢4 from Lemma have
the following characterization

+ _ .
t_(w)ue M™ and J (t_ (u)u) = Osgr%rimg] (tu),

ty (w)ue M~ and J (t4 (u)u) = max J (tu) .

These values are only used for obtaining the sign-changing-solution wy. In fact, this
solution is obtained as result of the Proposition and the Lemma in which
the values t_ and ¢, are vital. Specifically, in Proposition we proved under some
considerations on the function J and the value ¢ that: (1)c > J (¢4 (u)u) in the case
u##0and ty (u) <1;and (2)c > J(t— (u)u)+ (ﬁ) S)HS% in the case u # 0 and
t4+ (u) > 1. The Lemma is obtained, because for any given 7 € (71, 72), we obtain

from Lemma that there are positive values r; (7) and r_(7) such that
ro (1) (ue —Tw))t € M~, and  —r_(7)(ue — Tw1)” € M. (5.1)

5.1.2 Problem P3(¢,a, f)

(i) We use the idea of Lemma due to Drivaliaris-Yannakakis [52], because its
necessary to guarantee that the definition of the function A makes sense, i.e. its vanishing
on the boundary and hence permits to overcome the difficulty of the singularity. Note
that A: X x X — R has not sense, but

A: XXV —R, A:VxV —Rand A:VxX —R

. 17p . oo
has sense with W;""(Q) and V' = ngn.

(iii) The method for estimating the solution used in the Chapter 3, cannot be directly
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applied to elliptic systems, since it is difficult to find suitable functions ¢, (see [4.14)).

(iv) Since we need to apply Holder inequality to show that A, is bounded linear func-

tional on X, we consider p > 2.

v) We use a Lorentz scale argument to obtain f € L% (Q) c L? (Q) with p’ < q (see
(v) g P <gq
4.3.12). For that, we consider the test function

1
©n = |Tr(uw) P Tr(u)xq,, foranyn €N andsome m €N, (5.2)

:pm—|—1

and posteriori we find the suitable value of m

Np(g—1) —q(N —p)
p(N —pq) '

m =

So, we need p(N — pq) > 0 and thus we have ¢ < %. Note that, when ¢ = % the test

function ceases to exist.

5.2 Some directions of future research

The classes of elliptic problems, studied in this work, are quite rich in the research
point of view. We now describe some possible directions of future investigation, which
turn to be some kind of generalization of already obtained results, situations not already

considered, or adjacent problems which interest was increased during our current research.

5.2.1 Problem P;(\, u,«, f,) with more general conditions

Note that the functionals T'(u), U(u), Q(u) and J(u), defined in the Chapter 2, satisfy

more general conditions (Hi):

(i) T : H}(Q) — Ry positive away from zero; exists a > 0 such that T'(su) = |s|*T(u)
for any s € R and u € H}(), and there exist K7, KI > 0 such that

K?HUH%OI(Q) <T(u) < Kg”“”?{é(gﬁ

(i3) U : HY(Q) — R{ positive away from zero; exists 3 > 0 such that U(su) = |s|°U(u)
for any s € R and u € H}(f2), and exists KV > 0 such that U(u) < KUHqu{l(Q);
0
(iii) F : H}(2) — R with F(0) = 0; exists v > 0 such that F(su) = s|s|7F(u) for any
s € Rand u € H}(Q), exists K¥' > 0 such that F(u) < KF||qu;[%Q),
0

(iv) a<Pandy<pf—1

Our situation, in Chapter 2, is the particular case a =2, 8 =2" and 0 < v < 1. The
inequalities in (H1)(7) are valid by Lemma inequality (H7y)(i7)
Nirenberg-Sobolev inequality (Theorem |[A.1.6)), and inequality (H;)

is valid by Gagliardo-
(#i7) is valid by (2.8)).
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It may be interesting to study the possibility of existence of solution for our problem,

when only these general conditions are consider.

5.2.2 Problem P;(\, p,«, f,v) with even nonlinearity

A variant of Py (), i, , f,7) is changing the term f|u|” to f|u[Y~!u. In this case, the
associated functional will be even, meaning that if w is a solution, —u is also a solution.
It would be interesting to study this problem and also if an infinite number of solutions

exist, which is a typical situation for some even functionals.

5.2.3 Problem P(\, u,«, f,v) with different conditions on v and f

We have considered 0 < v < 1. It may be of some interest to study also v > 1 for
which the behavior of ¢, is represented in Figure Another direction is to study if the
problem without the condition fi (see|2.2)) still to have the existence of one solution since
t4 and ty can be used (see Figure

5.2.4 Problem P;(\ u,«, f,7) and Py(\, (,q,s, f) considering others values
of t

Note that, we never use in problem P (A, i, e, f,7y) the value ¢y, obtained from Lemma
2.2.13 (see [5.1.1)). One interesting future research is to analyze if the value ¢y allows to
obtain another solution. On the other hand, since the problem P5(,(,q, s, f) is odd, we
can study the existence of other values ¢t < 0 (see Lemma in order to find other

solutions (see [5.1.1]).

5.2.5 Problem P;(¢,a, f) with f defined in a weighted Lorentz space

One natural generalization of problem Ps(¢,a, f) is to consider f defined in a weight
Lorentz space. In other words, study the problem P3(¢,a, f) when w(s) # s9/P~1 so
A(w) # LP1.

5.2.6 Supercritical exponent in a Lorentz setting

We know that, the solvability of problem
—Au(z) = |u(z)P"2u in Q,

when p > 2* and u is defined in the Sobolev space H{(€2), depends on the shape of (2.
However, from Brezis-Nirenberg [16], some perturbations of this problem by lower order
terms can guarantee the existence of positive solutions independently of the shape of €.
The main idea is to consider v in a suitable Lorentz space and to investigate which is the

critical hyperbola under different conditions on the nonlinearity f.



100 5.2. Some directions of future research

We recall that the embedding of HJ(Q) into a Lorentz space is some how more fit
than into a Lebesgue space. In fact, this turn to be more relevant to elliptic systems
than to elliptic equations. The key point then is, by using a Lorentz space setting where
the functional is defined on the cartesian product of Sobolev spaces over different Lorentz
spaces, to determine the properties of the critical hyperbola and establish the true maximal

admissible growth for some classes of systems.



Appendix A

Spaces of functions

Here we state some notions which are standard but help to clarify the reader. We start
by defining the spaces where we will work, i.e. Sobolev spaces and Lorentz spaces with

special emphasis on the embedding.

A.1 Sobolev spaces

Let Q € RY be an open set and f : 2 — R a continuous function. The support of f
is denoted by supp(f), i.e. the closure in Q of the set {z € Q; f (z) # 0}.

A vector of nonnegative integers o = (v, ..., o) is called a multi-index and its order
is defined by |a| = a1 + ... + ay,.

Denote by D® the operator of derivation of order |«|, that is,

Hlal

o L —
o Qan *
0z ...0xn"

For a = (0,0, ...,0), set D% = u, for all function u.
By C§° (2) we mean the space of infinitely differentiable functions with compact sup-

port in 2.

Definition A.1.1. We say that a sequence (), oy in Cg° (2) converge to ¢ in C§° (),

when the following conditions hold:

(i) There exists a compact K of € such that supp(y¢) C K and supp(p,) C K,V n € N,

(1i) D%pp — D@ uniformly in K, for all multi-indices .

The space C§° (£2), provided with the notion of convergence above defined, will be
denoted by D (2) and called space of test functions.

A distribution (scalar) on € is a linear continuous, functional on D (£2).

We denote the value of a distribution 7" in ¢ by (T, ). The set of all distributions on

), with the usual operations, is a vectorial space, which is represented by D’ (€2).

101
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Definition A.1.2. We say that a sequence (Ty),cy in D' () converge to T in D' (),
when the numerical sequence ((T5,,¢)), ey converge to (T',p) in R, for all p € D ().

Definition A.1.3. Let T be a distribution on 2 and o be a multi-index. The derivative

DT (in the sense of distributions) of order || of T is the functional defined in D (€2) by
(DT, ¢) = (—=1)"UT, D), VpeD(Q).

Given an integer m > 0, by WP (Q) for 1 < p < oo, we represent the Sobolev space
of order m on €2, that is the space of all functions u € LP (2) such that D%u € LP (Q), for

all multi-index a with |o| < m.

The space W™P () provided with the norm

3=

— /Q Du(@)Pda | for 1< p< oo
|| <m
and

[ullprm.oo ) = Z sup ess | D% (z)|, for p = oo,
la|<m €

is a Banach space.

Now, we summarize some basic properties of Sobolev spaces stated in the next theorem.

Theorem A.1.4. Let Q@ C RY be a bounded domain with N > 1, then we have the
following:

(1) W™P (Q) is separable for 1 < p < oco;

(ii) W™P (Q) is reflexive for 1 < p < oo;

(13i) Let 1 < p < 00, then C™ () N W™P (Q) is dense in W™P (Q), where C™ () is the

spaces of infinitely differentiable functions in €.
The space Wy"" denotes the closure of D(§2) with the norm of W™#(Q).

Heuristically, the space WP (2) consists of all functions in WP ({2) that ”vanish” on

the boundary 92 together with all their derivatives up to order m — 1.

Remark A.1.5. When p = 2, the space WP (Q) will be denoted by H™ (), provided
with inner product
— (@) @)
(4, 0) ; (#29)

is a Hilbert space. Denote by HJ" () the closure, in H™ (), of D () and by H™™ ()
the topological dual of Hy(€2).



A.1. Sobolev spaces 103

A.1.1 Sobolev embedding

Lemma A.1.6. [Gagliardo-Nirenberg-Sobolev inequality, see Evans [56]] Let p such that
1 <p< N. There is a constant ¢ > 0 that depends only on p and N such that

[l e ®N) = ¢ HVUHLP(RN)

for allu e C§ (RY). Here

is the critical Sobolev exponent.
The following is the known Rellich-Kondrachov Lemma (see Struwe [113]).

Lemma A.1.7. Let Q be a bounded domain with smooth boundary, the

. 2N
(i) If N > pm, where W™ () <% L9 (), where g € [1’ N 2m> |

(ii) If N = pm, where W™ (Q) < L7 (), where q € [1,+00) .

(iii) If pm > N where W™P (Q) < C¥ (Q), where k <m — (n/p) <k+1.

Remark A.1.8. Whenm = 1, from Sobolev embedding theorem (see Ambrosetti-Malchiodi
[7]), we have:

(6) Hy () € L¥(Q);

(i2) [[ull 2= () < cllull gy (qy for some ¢ >0,

(1ii) There are bounded sequences in HZ(Q) that are not precompact in L (Q);

i.e. the inclusion H}(Q)—L? () is continuous but is not compact.

A.1.2 The best Sobolev constant

Definition A.1.9. Set DV2(RN) = {u € L* (RY) : Vu € L2(RN)}. The best Sobolev
constant for the embedding D?(RN) — L* (RY) is defined by
S~ [Vul*da

S = inf 5
ueDL2(RN)\{0} (fRN \u]Q*dx) 2%

It is well known that S is independent of Q C RY in the sense that if

2
d

S@= o alVulde
ueH} (2)\{0} (fQ \u|2*dm) ¥

then S () = S (RN) = S (see Ferrero-Gazzola [57]).
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A.2 Lorentz spaces

Lorentz spaces LP9()) were introduced by George G. Lorentz [89] in 1950. These
spaces are relevant examples of rearrangement invariant function spaces and are a gener-

alization of Lebesgue spaces.

In the last years a line of development for treating nonlinear elliptic problems is to

employ the Lorentz spaces, in place of the standard Lebesgue spaces LP(12).

Let (92, S, 1) be a o-finite measure space. For a measurable function f : Q — R, we

define the distribution function dé(t) :[0,00) — [0, 0) as
dh(t) = p{w € Q1 |f(@)] > 1}).

The distribution function satisfies the following properties (see Talenti [117]):

° dé is a non-increasing, right continuous function;

o d}\(0) = p(supp(f));

o df(+00) =0.

The non-increasing rearrangement of f is defined by

fo(s) =sup {t >0: d{z(t) > s} = inf {t >0: dé(t) < s}

with 0 < s < |Q|, and satisfies the following properties (see Talenti [117]):

o f&(s) is right continuous;

* [(0) = supess|f];

o fo(+00) = 0;

o t < f&(s) if and only if s < d{z(t);

o di(1) = dh (o)

af
o fo=dg'(t);
o o7 fals)ds = [§7 dg(t)dt = [57 | fldp.

Lemma A.2.1. [Hardy-Littlewood-Pdlya inequality]

/ | fgldu < / F&(s) g8 (s)ds.
0 0
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The Lorentz space LP4(2) is the collection of all measurable functions f on € such

that || f1| . a() < 00, where the norm is given by

(> (7)) " it1<q <o,

11l ooy =
wm»{ﬂf(ﬁ} if ¢ = o0

with 1 < p < oo and f**(s _lfo fo(@)

The following lemma presents the main properties of these spaces.

Lemma A.2.2. (Hunt [7])], Talenti[117]) For Lorentz spaces, we have the following re-

sults:

(a) LPP(Y) coincides with the Lebesgue space LP(Q) and [[ull pop(o) = |ull o) for u €
Lo (9);

(b) (Duality) Let 1 < p < q < oo then
(170()" = 17 (@),
where (LP1(Q))* denotes the space of all bounded linear functionals on LP9(Q);
(c) Let 1 < q1 < p < qa < oo and p1 < p, then the following inclusions hold
IP0(Q) C IPP(Q) = IM(©) € IP(0) € IP() € L (9);
(d) The following (Hélder type) inequality

1 f9llrac) < [1fllrra @) llgllLreaa )

_ 1,1

1_ 1 1
where 5= + . and TR

141
pr P
(e) If f € LP™T™(Q) with m > 0, then |f|™ € LP4(Q) and

H‘f|m”LPaq(Q) = ”fH?pm,qm(Q) .

Lemma A.2.3. Suppose that E; are pairwise disjoint measurable subsets of Q0 and f €
L™1(Q), 1 <q<m. Then

S x| T < I -
J

Definition A.2.4. For 0 < q < oo, the weighted Lorentz Space A%(w) is defined as the

set of all measurable functions f such that

T ( | Gt ds) <o,

S
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where f&(s) denotes the non.increasing rearrangement of f and w is a weight in RY.

Remark A.2.5. The weights for which A(w) is a Banach space were first characterized
by Arino-Muckenhoupt [10], and it is known as the Bp-condition: there exists C > 0 such

that, for all r > 0,
o0 T
Tq/ Mdz < C/ w(z)dz.
T xd 0

A.2.1 Inclusions into Lorentz spaces

Lemma A.2.6. Suppose 1 < m,q, M,Q < co.

(@) a4 < Q. then | fllna < C 1 Fll s
(b) 1 m < M, then ()" | fllma < € ((1(2)

S

) 1 lze -

The following result improves the classical result of the Sobolev embedding and it is

relevant when, working with critical cases.

Lemma A.2.7. (Talenti [117]) Let 1 <p < N then WLP(RN) C LP"P(RN) with contin-
uous embedding, Wol’p(Q) C LP"P(Q) with continuous embedding, and when 09 € C1 ()
the same result applies to W1P(£2).

Remark A.2.8. Note that if u € WHP(Q) by the Sobolev embedding we have
u € Lp*(Q) = Lp*’p*(Q);

but by the embedding to Lorentz spaces we have u € LP9(Q) with p < q < p*. Hence there

is an tmprovement in using this embedding.



Appendix B

Some integral estimates

In this chapter, we calculate some integral estimates, that will allow us to guarantee

that the solutions of problem P; (A, u, «, f, ) are different.

Proposition B.0.9. For ¢ small enough, we have

T2 (r+D) N
0T, 1<ity <yl
/vz“ —J 0T Ime]), 149 = grlas (B.1)
[N=(v+1)VA]VA N
19) (52\/7/\—/\ ) D TAVES <l4+y<2
Proof. We recall the definition of v.(z) = ¢(z)U:(x), where
[4e(A = N)N/(NV —2)] "+
— — 4
Uc(x) = < for e > 0,

[z /VA 4 |z|2/VE) T

with 71 = VA — VA =X, 72 = VA + VA =X, and ¢ is such that ¢(z) = 1 if |z| < 6,
¢(z) = 0if [z] > 26, ¢(x) € CF(Q) and |p(z)| < 1, [Vo(z)| < C for some positive constant
C.

From estimate (1.12) (Proposition [2.2.9)), we have that

/vg+1 :/ vl +/ Ut = (e T (D) +/ Ut
O\ B(0,0) B(0,5) B(0,6)

Now, we estimate the last integral. Let p and # € SN~! being the polar coordinates,
where SV~! is the unit sphere in RY. For z = (z1,...,2x5) € RY and (p,01,...,0n) €
(0,00) x (0,0) x ... x (0,¢) x (0,2¢) we have

x1 = pcos(By)
xg = psen(6)cos(0y

xn_1 = psen(B1)sen(0)...sen(On_2)cos(On_1)
xn = psen(01)sen(0z)...sen(On_1).
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Thus dz = pV = (sen(61))V ~2(sen(2))V ~3...sen(0n_2)dpdf. Briefly, we write z = pw and
w = (wy,...,wy) then |w| = 1, which means that w belong to the unit sphere SV~ in RV

and dx = pV~'dpdw, where dw is the measure on SN~!. Therefore

u'y-i-l
(0.6) B04) [¢ mm/\f_‘_ ‘xpz/f] 2y+1

_ / / e - OV DT
SN-1 |pw|’71/\ﬁ+\pw|72/‘f]¥7+l

0 [s|pr + \pW Je st

If we set, w, as the surface area of the (N — 1)-sphere SV~! then

/ U2 da
B(0,5)
ae(h — NN/ - [ G y
= wp[de(A — - —
EloP V4 e VA
:K.€<N42)(7+1)/5 pN_ldp |
0 [5p71/\ﬂ+p’yz/\ﬂ](N*2)(vTH)
Since
y+1 Y+1\ [ 2VA =X
MNN-2) — ) = (N —
VR -2 (150) = v - (1) (2
we have
[Ep’yl/\/j\ + pWQ/I](N_Q)(WTH)
:(5,071/\“)(N_2)(i)[1+ -1 2v /\F](N 2)(i)
Thus,
/ UXtldx
B(0,9) S
K.t p"dp
0o eN-2)(F) (71/f)(N 2)(i)[1_|_6 1p2VA=A/VA| (N~ 2)(H)”
In general f05 xMdx = O&L 27 dx, hence
/ Ugﬂdx — K.E(NZQ)('YH).
B(O,&)\F
A
/55 2VA—x S%pN_ldp
0 o 2)(W+1)62\/\%W1(N;\2F1\(~/+1)p(yl/\/K)(N72)('YT+1)[1_I_pQ\/iA—)\/\/X](N,Z)(,YTH)-

Now we consider the different possibilities for 1 4 ~.
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) If1+y= since the order of p in the integrand is

___ N
VA+VA=XN?

N =1~ (m/VAN = 2)(357) = 2(vVA = X/ VAN = 2)(*5)
=N -1-((VA= VA=) /VA)(N )(L“)—%/ MVA)N —2)(75)

=-1

and the order of € is

NVA (N —2)(f*

2v/A—X 2
= s~ (N =2)(F) - 5 25 (VA = VA= D) VBN —2)(F)
= A AN - 2)(3) — (N - 2)(2P)
_ (N—Q)[ N  ( A*)\+\/K)(7+1)]
2 2V A=A 2V A=A
=0

VA
(N-2) T 2vA=
we have fB(O 5) UdHde = K - ¢ ST () fo& VA %dp. Then for € small enough

/1}57+1 = O<5 7 O+ |1nz-:|>

Now, if 1 4+~ # ﬁ, the order of p in the integrals is

N =1~ (m/VAO(N = 2)(%57) = 2(vVA = X/ VAN = 2)(7F7)
=N —1— (VA= VE=X)/VA)(N = 2)(7F) = 2(VA = A/ VAN —2)(F7)
<-1

and the order of € is

AL — (N = 2)(F) — 7K (n VRN - 2) ()

H -
2
= s~ (N =2 - RS (VA = VA= 2)VAY(N — 2) ()

_ (N—Q)[ N (VA= \/K)(V‘H)]
2 /o /A=X 2vA-X

< 0.

It follows that

/ Utz
B(0,6)
— — VA=XHVA) (v+1
_ g ARO[ - VA0

oo pN—1dp
“Jo 1N (N=2)(y+1) A1
p 2vVA [1+p2\/A7>\/\/K](N—2)(72 )

N-—2 N-2 N (VA=X+VA) (v+1)
— 0 T O ) e 2vas ]>
[N—(+1)vVA (N52)
=0|e¢ 2VA—X

< [N—(~/+1)\/X}\ﬂ>
Ole 2VA=X



110 B. Some integral estimates

and since
[N—(v+1)VA]VA

/ VI Tde = K- 2VA=
B(0,9)

/U;H-l :/ vg+1+/ Ug—i—l
Q\B(0,5) B(0,9)

- VA
-0 (SNZQWH)) + O(sw\)

we get that

Thus,

i Ifl<l4+vy< we have N > (1 +9)vVA + (1 ++)v/A — X and

___ N
VA+VASXN?

_ (L+NVA+ (1 +9)VA=X) VA _
= (2745\12\?&>[ 2VA — A ) =(7+1)\§:(7+1)N4 3

/Ug—&-l _ O<€N;2(v+1)>

<1+7<2, wehave N < (1+7)VA+ (1+7)vV/A—Xand

Then for € small enough

N
(1) T 3 VA=

) (1+)VA+ (1 +9)VA=A| VA -

4
Then for € small enough

[N—(v+1)VA]VA
/UQ—H =0 <6 2V/A=X > .

Proposition B.0.10. We have

1 N -3 1 N aVh
NT(Ua) 2 <U (Us)) < NS; — 0(52 AfA)'
Proof. From Proposition we obtain

N (V) o

N

1 (s}v +0(e%) + 05 - 0@2%)) (Sg - O(Eg)> i

Since (N —2)/2 < N/2, we have e(N=2)/2 4 ¢N/2 c(N=2)/2 and, by (N —2)/2 > 23\%, we

have

N N N N
)77 < —0(e2)7 7

O(EWN=2/2) — 0(e) )’
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Thus

1/ N s oA N R
< N<S>‘2 +0(e2 ) — O(e2VA=3 )) (5’)\2 - 0(82)>
1 % avV A % % N 17%
< N<S’\ —O(EQ\/A—/\)> Sy —O(aZ))
1

Since (1—a)™ = 3 (1)1~ (=a)', O(c%) + O(e%) = O(maa(s,")), and & > <4, if

b < a, we have

as € — 0 and

Then

N aVv A
<+SZ(1- O(eWA)>
1o 1a> ol
= NS¢ — ¥SN 0(e2A7)
N aV A
= %S;’ — O(e2vA=x)
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