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resumo 
 

 

Esta dissertação estuda em detalhe três problemas elípticos: (I) uma classe de 
equações que envolve o operador Laplaciano, um termo singular e não-
linearidade com o exponente crítico de Sobolev, (II) uma classe de equações  
com singularidade dupla, o expoente crítico de Hardy-Sobolev e um termo 
côncavo e (III) uma classe de equações em forma divergente, que envolve um 
termo singular, um operador do tipo Leray-Lions, e uma função definida nos 
espaços de Lorentz. 
 
As não-linearidades consideradas nos problemas (I) e (II), apresentam 
dificuldades adicionais, tais como uma singularidade forte no ponto zero (de 
modo que um "blow-up" pode ocorrer) e a falta de compacidade, devido à 
presença do exponente crítico de Sobolev (problema (I)) e Hardy-Sobolev 
(problema (II)). Pela singularidade existente no problema (III), a definição 
padrão de solução fraca pode não fazer sentido, por isso, é introduzida uma 
noção especial de solução fraca em subconjuntos abertos do domínio. 
 
Métodos variacionais e técnicas da Teoria de Pontos Críticos são usados para 
provar a existência de soluções nos dois primeiros problemas. No problema (I), 
são usadas uma combinação adequada de técnicas de Nehari, o princípio 
variacional de Ekeland, métodos de minimax, um argumento de translação e 
estimativas integrais do nível de energia. Neste caso, demonstramos a 
existência de (pelo menos) quatro soluções não triviais onde pelo menos uma 
delas muda de sinal. No problema (II), usando o método de concentração de 
compacidade e o teorema de passagem de montanha, demostramos a 
existência de pelo menos duas soluções positivas e pelo menos um par de 
soluções com mudança de sinal. A abordagem do problema (III) combina um 
resultado de surjectividade para operadores monótonos, coercivos e 
radialmente contínuos com propriedades especiais do operador de tipo Leray-
Lions. Demonstramos assim a existência de pelo menos, uma solução no 
espaço de Lorentz e obtemos uma estimativa para esta solução. 
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abstract 

 
This dissertation study mainly three elliptical problems: (I) a class of equations, 
which involves the Laplacian operator, a singular term and a nonlinearity with 
the critical Sobolev exponent, (II) a class of equations with double singularity, 
the critical Hardy-Sobolev exponent and a concave term and (III) a class of 
equations in divergent form, which involves a singular term, a Leray-Lions 
operator, and a function defined on Lorentz spaces. 
 
The nonlinearities considered in problems (I) and (II), bring additional difficulties 
which, as the strong singularity at zero (so blow-up may occur) and the lack of 
compactness due to the presence of a Sobolev critical exponent (problem (I)) 
and a Hardy-Sobolev critical exponent (problem (II)). In problem (III), the 
singularity implies that the standard definition of weak solution may not make 
sense. Therefore is necessary to introduce a special notion of weak solution on 
open subsets of the domain. 
 
Variational methods and Critical Point Theory techniques are used to prove the 
existence of solutions in the two first problems. In problem (I), our method 
combines Nehari's techniques, Ekeland's variational principle, minimax 
methods, a translation argument and integral estimates of the energy level. In 
this case, we prove the existence of (at least) four nontrivial solutions where at 
least one of them is sign-changing. In problem (II), we prove the existence of at 
least two positive solutions and a pair of sign-changing solutions, using the 
concentration-compactness method and the mountain pass theorem. The 
approach in problem (III) combines a surjectivity result for monotone, coercive 
and radially continuous operators with special properties of Leray-Lions 
operators. We prove the existence of at least one solution in a Lorentz space 
and obtain an estimative for the solution. 
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Introduction

Partial Differential Equations of elliptic type have been studied by many authors, due

to their multiple applications in different contexts of sciences and engineering (see Brezis-

Nirenberg [16] and Debnath [50]). Recently, the study of existence results for elliptic

problems containing singularities have increased significantly (see for instance Abdellaoui-

Colorado-Peral [1], Abdellaoui-Felli-Peral [2], Azorero-Peral [59], Ghoussoub-Yuan [62],

Peral [97]). The methods used for solving such problems depend mainly on the type of

singularities and parameters involved.

The main goal of this thesis is the study of existence and multiplicity results for non-

linear elliptic problems that contain singularities and/or terms with a critical exponent.

We are interested in two classes of elliptic equations with critical exponent and nonlin-

earities defined on Sobolev spaces and one class of elliptic equations in divergence form

with nonlinearities defined on Lorentz spaces. Specifically, we consider Ω ⊂ RN a bounded

domain with smooth boundary and we study the following three nonlinear problems with

Dirichlet boundary conditions.

(I) The problem P1(λ, µ, α, f, γ) involving the Sobolev critical exponent, a Hardy-type

singular term and other two subcritical terms

−∆u(x)− λ

|x|2
u(x) = |u(x)|2∗−2u(x) + µ|x|α−2u(x) + f(x)|u(x)|γ , in Ω\{0},

where N ≥ 3, and 2∗ =̇ 2N/(N − 2) denotes the Sobolev critical exponent. The

function f ∈ L∞(Ω) and the positive parameters λ, µ, α and γ satisfy additional

conditions.

(II) The problem P2(λ, ζ, q, s, f) involving the Hardy-Sobolev exponent, a concave term

and a double singularity on the boundary

−∆u(x)− λ

|x|2
u(x) = ζf(x)|u(x)|q−2u(x) +

|u(x)|p∗(s)−2u(x)

|x|s
, in Ω\{0},

where N ≥ 3 and p∗(s)
.
= 2(N − s)/(N − 2) denotes the Hardy-Sobolev critical

exponent. Here f is a real function on Ω with an additional condition and the

parameters λ, ζ, q and s are suitably defined.

(III) The problem P3(ψ, a, f) in divergence form, involving a Leray-Lions operator and



vi

a term that may have a singularity

−div(ψ(x, u(x),∇u(x))) + a(x)u(x) = f(x), in Ω,

where 2 ≤ p < N , a ∈ L∞loc(Ω) satisfies an additional condition and f is a function

defined in a Lorentz space Lq,q1(Ω) with suitable exponents q and q1.

In problems P1(λ, µ, α, f, γ) and P2(λ, ζ, q, s, f), we study nontrivial solutions in the

Sobolev space H1
0 (Ω). Due to the presence of the term λ

|x|2 in problem P1(λ, µ, α, f, γ) and

the terms λ
|x|2 and |u|ps−2

|x|s in problem P2(λ, ζ, q, s, f), we have strong singularity at zero,

so blow-up may occur (see Smets [111]). To make sense, we consider that the equation

hold on Ω with Ω\{0} but still look for solutions on 0 ∈ Ω. The singularity in both cases

is overcomed using the Hardy inequality (see 1.1.8).

The problems P1(λ, µ, α, f, γ) and P2(λ, ζ, q, s, f) are variational, due to the Hardy-

Sobolev embedding (see Theorem A.1.6 and the Hardy inequality 1.1.8). Therefore we

use critical point theory (see Ambrosetti-Malchiodi [7], Costa [46], Rabinowitz [101]) to

study them. By Caffarely-Kohn-Nirenberg inequality (see Theorem 1.1.11), the associ-

ated functionals are well defined on H1
0 (Ω) and there exists a one-to-one correspondence

between the critical points of the functionals and the solutions of the problems. Thus,

we say that the solutions of P1(λ, µ, α, f, γ) and P2(λ, ζ, q, s, f) are functions u ∈ H1
0 (Ω),

which correspond to critical points of the associated Euler functionals.

Since neitherH1
0 (Ω)↪→L2

(
Ω, |x|−2dx

)
, H1

0 (Ω)↪→L2∗(Ω) norH1
0 (Ω)↪→Lp∗(s) (Ω, |x|−sdx)

are compacts, the action functionals associated to problems as P1(λ, µ, α, f, γ) and

P2(λ, ζ, q, s, f), satisfy the Palais-Smale condition (Definition 1.1.12) only in a suitable

range (see Brezis-Nirenberg [16], Chen [31, 35]). Furthermore, due to a lack of com-

pactness, generated by the presence of the Sobolev critical exponent and Hardy-Sobolev

critical exponent in problems P1(λ, µ, α, f, γ) and P2(λ, ζ, q, s, f) respectively, standard

variational arguments do not apply without some extra care.

We point out that, although the problems P1(λ, µ, α, f, γ) and P2(λ, ζ, q, s, f) seem

similar, there is no intersection between them. In fact, we observe that, if we consider the

problem P2(λ, ζ, q, s, f) plus the term µ|x|α−2u(x) with ζ = 1, s = 0, p ∗ (s) = 2∗ and

q = γ+ 1 for u positive and defining zero as a possible value for q; we have the same form

as the problem P1(λ, µ, α, f, γ) when the function u is positive; but although we found

some similarities between these problems and we can do comparisons, it is not possible to

say that, one of them is a particular case of the other, due to the restrictions 0 ≤ γ < 1 in

P1(λ, µ, α, f, γ) and γ > 1 in P2(λ, ζ, q, s, f). On the other hand the hypotheses considered

for each problem are different.
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In problem P3(ψ, a, f), we study nontrivial solutions in the Sobolev space W 1,p
0 (Ω) ∩

Lr,s(Ω) where 2 ≤ p < N and Lr,s(Ω) is a suitable Lorentz space. This problem has an

additional difficulty since the function a is defined in L∞loc(Ω), the problem may have a sin-

gularity on the boundary and therefore the standard definition of weak solution may not

make sense (i.e. with test functions in W 1,p
0 (Ω)). The singularity is overcomed considering

an increasing sequence of open subsets of the domain Ω (see Chapter 4, for more details).

The main point here is to take advantage of the best fitted embedding of the Sobolev

space W 1,p
0 (Ω) into a Lorentz space, compared with the standard Sobolev embedding into

a Lebesgue space.

In more detail, we prove that problem P1(λ, µ, α, f, γ) under suitable hypotheses (Sub-

section 2.2.4), has two nontrivial solutions and under less strong hypotheses (Subsection

2.2.5), has at least four nontrivial solutions in the Sobolev space H1
0 (Ω) where at least one

of them is sign-changing. The problem P2(λ, ζ, q, s, f) has at least two positive solutions

and at least one pair of sign-changing solutions in H1
0 (Ω). We prove the existence of at

least a solution u ∈ W 1,p
0 (Ω) ∩ Lr,s(Ω) of problem P3(ψ, a, f), the uniqueness under suit-

able conditions and also obtain an apriori estimate for the solution with respect to the

Lorentz space norm of f ∈ Lq,q1(Ω) for suitable values p, q, q1, r and s.

The techniques described later in the Chapters 2, 3 and 4, are mainly based or im-

provements of the results obtained in the works of Chen-Rocha [42] and Tarantello [118]

for the problem P1(λ, µ, α, f, γ). In addition to these works, we consider the results of

Bouchekif-Matallah [14] as a starting point for the problem P2(λ, ζ, q, s, f). For problem

P3(ψ, a, f), the existence result generalizes some previous results, e.g. in Napoli-Mariani

[91], besides others.

At this point, we call the especial attention of the reader for the notation that we

will use for the different problems. We will consider the notation defined for the prob-

lems P1(λ, µ, α, f, γ), P2(λ, ζ, q, s, f) and P3(ψ, a, f) as standard and we give specifications

on the parameters when referring to subclasses. In this sense, for example, the problem

P1(0, µ, 2, f, 0) represents the problem P1(λ, µ, α, f, γ) when λ = 0, α = 2 γ = 0, and µ

and f are general but satisfy additional hypotheses, which may be different from ours.

The literature on elliptic problems is rather extensive. It would be impossible to cover

all different aspects of this type of problems even restricting it to some classes. Let us

describes the situation of a simple model for this type of equations. The solvability of the

problem 
−∆u(x) = |u(x)|p−2u(x) in Ω,

u(x) > 0 in Ω,

u(x) = 0 on ∂Ω,

(1)

where Ω ∈ RN is a bounded domain with smooth boundary ∂Ω, depends on the value of
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p and sometimes is related with the shape of Ω. Some results are well known:

(i) In the subcritical case, i.e. p < 2N
N−2 , the problem admits solution. The existence of

positive and sign-changing solutions of problem (1) does not depend on the shape of Ω;

(ii) In the supercritical case, i.e. p > 2N
N−2 , Passaseo [96] proved that there exist con-

tractible domains (intuitively are spaces that can be continuously shrunk to a point),

where the number of positive solutions of problem (1) is arbitraly large. For some exam-

ples of domains where problem (1) has no solutions see Passaseo [94, 95];

(iii) In the critical case, i.e. p = 2N
N−2 , if Ω is not contractible, then problem (1) has a

solution for N = 3 (see Bahri-Coron [12]). If Ω is an annulus, problem (1) has a solution

(see Kazdan-Warner [80]). If Ω has a ”small hole”, problem (1) has also a solution (see

Bahri-Coron [45]). If Ω is a star-shaped with p ≥ 2N
N−2 then problem (1) has no solution.

This follows by the application of the Pohozaev identity (Pohozaev [100]).

These example clearly shows that the use of a critical exponent changes the problem

characteristics and its difficulty in proving the existence of solutions. Another model ex-

ample and one of the starting points for the study of elliptic problems is the well known

Yamabe’s problem (see Yamabe [123]), which is one of the celebrated problems in Differ-

ential Geometry and concerns the existence of a Riemannian metric with constant scalar

curvature for a given (compact) manifold. Such problem can be modeled as a Dirichlet

elliptic problem, for example written as P1(0, µ, 2, 0, 0):
−∆u(x) = |u(x)|2∗−2u(x) + µu(x) in Ω,

u(x) > 0 in Ω,

u(x) = 0 on ∂Ω.

Concerning this problem, we mention two relevant results about the existence of solu-

tions which show the importance of the geometry of the domain and the behavior of the

coefficients.

Theorem 0.1.1. (Brezis-Nirenberg [16]) Suppose Ω ⊂ RN , (N ≥ 3) and let µ1 > 0 denote

the first eigenvalue of the operator (−∆, H1
0 (Ω)) with homogeneous Dirichlet boundary

conditions:

(i) If N ≥ 4, then for any µ ∈ (0, µ1) there exists a (positive) solution of Yamabe’s

problem;

(ii) If N = 3, there exists µ∗ ∈ (0, µ1) such that for any µ ∈ (µ∗, µ1), Yamabe´s problem

admits a solution;

(iii) If N = 3 and Ω = B1(0) ⊂ R3, then µ∗ = µ1

4 and for µ ≤ µ1

4 there is no solution to

Yamabe’s problem.

Theorem 0.1.2. (Ceramini-Solimini-Struwe [27]) Suppose Ω = BR(0) is a ball in RN ,

N ≥ 7. Then for any µ > 0, Yamabe´s problem admits infinitely many radially symmetric

solutions.
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In [75], Janelli considered the problem P1(λ, µ, 2, 0, 0) and prove that there exist λ̄ such

that:

(i) If 0 ≤ λ < λ̄ − 1 and 0 < µ < µ1(λ), then the problem has at least a positive

solution, where µ1(λ) is the first eigenvalue of (−∆− λ
|x|2 , H

1
0 (Ω)) with Dirichlet boundary

condition;

(ii) If λ > 0 and λ̄− 1 < λ < λ̄, then there exists µ∗(λ) > 0 such that the problem has

at least a positive solution provided λ ∈ (µ∗(λ), µ1(λ)).

Now, concerning singular terms, one the best studied elliptic problems with a singular

term is a problem involving a term with a negative power of the solution, i.e. a problem

of form, under Dirichlet boundary condition,

−∆pu(x) = β(x)u(x)−η + f(x, u(x)), with η ≥ 0,

which was first studied in the context of semilinear equations (p = 2). Among the first

works in this direction are the papers of Crandall-Rabinowitz-Tártar [48] and Stuart [114].

Since then, there have been several other papers on the subject. We mention the relevant

works of Coclite-Palmieri [44], Diaz-Morel-Oswald [51], Lair-Shaker [82], Shaker [106], Shi-

Yao [107], Sun-Wu-Long [115], and Zhang [125]. In particular, Lair-Shaker [82] assumed

that f ≡ 0 and β ∈ L2(Ω) and established the existence of a unique positive weak solution.

Their result was extended by Shi-Yao [107] to the case of a ”sublinear” reaction, namely

when

f(x, u) = λur−1 with λ > 0 and 1 < r ≤ 2.

The case of a ”superlinear-subcritical” nonlinearity, i.e. when 2 < r < 2∗, was investigated

by Coclite-Palmieri [44] under the assumption that β ≡ 1. In both works (i.e. [44] and

[107]), it is shown that there exists a critical value λ∗ > 0 of the parameter λ, such that

for every λ ∈ (0, λ∗) the problem admits a nontrivial positive solution. Subsequently,

Sun-Wu-Long [115] using the Ekeland variational principle (Proposition 1.1.7), obtained

two nontrivial positive weak solutions for more general functions β. The work of Zhang

[125] extended their results to more general nonnegative superlinear perturbations, using

critical point theory on closed convex sets. For the same problem but driven by the p-

Laplacian, we mention the works of Agarwal-Lü-O’Regan [3], Agarwal-O’Regan [4], where

N = 1 (ordinary differential equations), and Perera-Silva [98], Perera-Zhang [99], where

N ≥ 2 (partial differential equations) and the reaction term has the parametric form

β(x)u(x)−η + λf(x, u(x)) with λ > 0.

For such a parametric nonlinearity, the authors prove existence and multiplicity results

(two positive weak solutions), valid for all λ ∈ (0, λ∗). Moreover, the perturbation term

f exhibits a strict (p − 1)-superlinear growth near +∞ and, more precisely, it satisfies

on [0,+∞), the well-known Ambrosetti-Rabinowitz condition. Chen-Papageorgiou-Rocha
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[40] considered the reaction term nonparametric and the perturbation as (p − 1)-linear

near +∞ and proved the existence of an ordered pair of smooth positive strong solutions.

Existence results, for other type of singularities and particular results for the problems

P1(λ, µ, α, f, γ), P2(λ, ζ, q, s, f) and P3(ψ, a, f), are presented in the stated of art (Previ-

ous Results) of the Chapters 2, 3 and 4, respectively.

This document is organized as follows. In Chapter 1, we briefly introduce some of the

mathematical background needed for this work, namely basic notions of Critical Point

Theory and Theory of Monotone Operators.

In Chapter 2, by variational methods, careful integral estimates combined with Nehari

set techniques, we study multiplicity results for the problem P1(λ, µ, α, f, γ) in two parts:

(a) the existence of two nontrivial solutions (see Proposition 2.2.26 and Proposition 2.2.28)

and (b) the existence of four nontrivial solutions with less restrictive hypotheses (see

Theorem 2.2.25). In this part, minimax methods are used to prove the existence of a

sign-changing solution (see Proposition 2.2.32). A fourth solution (see Proposition 2.2.36)

is obtained applying a translation argument and verifying that the mountain pass theorem

is satisfied in the range where the Palais-Smale condition holds.

In Chapter 3, we study multiplicity results for the problem P2(λ, ζ, q, s, f). Here we use

the concentration compactness principle (see Proposition 1.1.15) to prove the existence of

the first solution and a mountain pass theorem (see Theorem 1.1.16) for the second solu-

tion. The existence of sign-changing solutions are obtained combining Nehari techniques

(see Subsection 1.1.1) with energy estimates, in which it is essential to know the exact

local behavior of the solution. We use the fact that the problem is odd to obtain other

solutions.

In Chapter 4, we replace the Laplacian operator by a more general nonlinear elliptic

second order partial differential operator with a divergence structure and we study the ex-

istence and uniqueness of solutions of problem P3(ψ, a, f), when the function f is defined

on a Lorentz space. The existence of a solution of this problem is obtained combining a

surjectivity result for monotone, coercive and radially continuous operators with special

properties of Leray-Lions operators, namely to be of type M and pseudomonotone. More-

over, we obtain an apriori estimate for the solution in terms of the norm of the nonlinearity

(see Theorem 4.3.13). Here we use some ideas of An et al [8] and Drivaliaris-Yannakakis

[52]. The proof of the estimate is inspired in Napoli-Mariani [91].

In Chapter 5, we present some final considerations on the three problems studied and

give some direction on a possible future research.

In Appendix A, we make a breve introduction to the space of functions, considered in

this work: the Sobolev spaces (see Section A.1) and Lorentz spaces (see Section A.2), both

play an important role in the theory of interpolation of operators and in partial differential

equations. In Appendix B, we present some integral estimates relevant to our results.



Chapter 1

Preliminary results for the

solvability of nonlinear elliptic

equations

In this chapter we present some mathematical preliminaries that are relevant for the

understanding of our work. The literature on this subjects is quite extensive for instance

for Critical Point Theory see Ambrosetti-Malchiodi [7], Costa [46], Rabinowitz [101] and

Struwe [113]. For Theory of Monotone Operators see Showalter [108], Zeidler [124] and

Zuchi-Xiaodong [126].

1.1 Variational approach for elliptic equations

In this section, we give some concepts directly related to Critical Point Theory.

In the study of second order semilinear elliptic boundary value problems, the following

result due to Rabinowitz [101], is frequently used to establish when an class of functionals

is C1(H1
0 (Ω);R).

Proposition 1.1.1. Let Ω be a bounded domain in RN whose boundary is a smooth

manifold. Let p be a function which satisfy:

(P1) p ∈ C(Ω̄× R;R);

(P2) There are constants a1, a2 > 0 such that |p(x, ξ)| ≤ a1 + a2|ξ|s, where 0 ≤ s <

(N + 2)(N − 2)−1 and N ≥ 3.

If

I(u)
.
=

∫
Ω

1

2
|∇u|2 − P (x, u)dx,

1
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where P (x, ξ)
.
=
∫ ξ

0 p(x, t)dt, then I ∈ C1(H1
0 (Ω);R) and

I ′(u)ϕ =

∫
Ω
∇u · ∇ϕ− p(x, u)ϕdx

for all ϕ ∈ H1
0 (Ω). Moreover J(u)

.
=
∫

Ω P (x, u(x))dx is weakly continuous and J ′(u) is

compact.

1.1.1 Nehari’s set method

The Nehari method, introduced by Z. Nehari [92, 93], is very useful in Critical Point

Theory and plays an important role in obtaining ours results.

Definition 1.1.2. Let E be a Hilbert space and I : E → R be of class C1(E;R). We

define

M = {u ∈ E\{0} : 〈I ′(u), u〉 = 0}.

M is called the Nehari set associated with the functional I.

We set SE = {u ∈ E : ‖u‖E = 1}. Under some assumptions, we can see that M is a

differentiable manifold homeomorphic to the unit sphere of E and bounded away from 0

(see Szulkin-Weth [116]). Consider the assumptions:

(i) There exists a normalization function ϕ (i.e ϕ(0) = 0, ϕ is strictly increasing and

ϕ(t)→∞ as t→∞) such that

u 7→ ψ(u)
.
=

‖u‖E∫
0

ϕ(t)dt

ϕ ∈ C1(E\ {0} ;R), J
.
= ψ′ is bounded on bounded sets, and 〈J(u), u〉 = 1 for all

u ∈ SE ;

(ii) For each u ∈ E\ {0} there exists t ≡ t(u) such that if αu(t)
.
= I(tu) then{

α′u(t) > 0, for 0 < t < t,

α′u(t) < 0, for t > t;

(iii) There exists δ > 0 such that t > δ for all u ∈ SE ;

(iv) For each compact subset K ⊂ SE , there exists a constant ck such that t ≤ ck for all

u ∈ K.

The following result guarantees that M 6= ∅.

Lemma 1.1.3. (Szulkin-Weth [116]) Suppose I satisfies (ii), then for any

u ∈W 1,p
0 (Ω)\{0} there exists a unique t ≡ t(u) ∈ R such that tu ∈M .
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By (iii), M is closed in E and bounded away from 0. We also have the following result.

Proposition 1.1.4. (Szulkin-Weth [116]) Suppose I satisfies (iii)− (iv), then

(a) The mapping α : E\ {0} →M defined by αu(t)
.
= tu is continuous.

(b) The mapping β : SE →M defined by β
.
= α |SE is a homeomorphism and the inverse

of β is given by β−1(u) = u
‖u‖E

.

Remark 1.1.5. Under assumptions which imply that the functional I satisfies:

(v) I ∈ C2(E;R);

(vi) 〈I ′′(u)u, u〉 6= 0,

is possible to guarantee that the set M is a manifold. In fact, set G (u)
.
= 〈I ′(u), u〉, so

M = G−1(0)\ {0} and G ∈ C1(E;R). Now, considering u ∈ M , since (v) and (vi) hold,

one has

〈G′(u), u〉 = 〈I ′′(u)u, u〉+ 〈I ′(u), u〉 = 〈I ′′(u)u, u〉 6= 0. (1.1)

Thus, G′(u) 6= 0 for all u 6= 0 and this implies using the Implicit Function theorem that

M is a C1-manifold of codimension one (see Ambrosetti-Malchiodi [7], Guillemin-Pollack

[64], Szulkin-Weth [116]).

Now, we emphasize the application of the Nehari method. The main idea of this

technique is the following: Consider the existence of functions u ∈W 1,p
0 (Ω) satisfying the

following variational problem (P ):

Lu(x) = f(x, u(x)) in Ω,

where L is a nonlinear second order differential operator.

Let I : W 1,p
0 (Ω) → R, with I ∈ C1(W 1,p

0 (Ω);R) be the Euler functional associated to

problem (P ).

There exists a one to one correspondence between the critical points of Euler functional

I and the solutions of problem (P ). Then, we say that u ∈ W 1,p
0 (Ω) is a solution of

problem (P ), if and only if, u is a critical point of the Euler functional I. Therefore we

are interested in the following set of solutions

S = {u ∈W 1,p
0 (Ω) : 〈I ′(u), v〉 = 0 for any v ∈W 1,p

0 (Ω)}.

Here 〈·, ·〉 represents the duality between the spaces W−1,p′

0 (Ω) and W 1,p
0 (Ω).

We define, the Nehari set

M = {u ∈W 1,p
0 (Ω)\{0} : 〈I ′(u), u〉 = 0}.

Remark 1.1.6. Note that u is a nontrivial critical point of I if and only if u ∈ M and

u is a critical point of the restriction of I to M . In fact, suppose that ū is a nontrivial
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critical point of I, i.e., I ′(ū) = 0 and ū 6≡ 0. Then 〈I ′(ū), ū〉 = 0. Hence ū ∈M .

Conversely, if ū is a critical point of I on M , by method of Lagrange multipliers (see Costa

[46]), there holds that I ′(ū) = λG′(ū) and

〈I ′(ū), ū〉 = λ〈G′(ū), ū〉.

Since 〈I ′(ū), ū〉 = 0 and by (1.1), 〈G′(ū), ū〉 6= 0. Then it follows that λ = 0 and hence

I ′(ū) = 0.

In view of the previous remark, one may apply Critical Point Theory on M , in order

to find critical points of I.

Now, we choose wisely some sets Mi ⊆M , and study the corresponding minimization

problems on them

ci =̇ inf
u∈Mi

I(u).

The main idea is then to prove the existence of critical points ui such that ci = I(ui).

1.1.2 Ekeland’s variational principle

The following principle was proven by I. Ekeland in [54]. This principle has been a very

useful tool in studying of optimization problems in Control Theory, Differential Geometry

and Differential Equations.

Proposition 1.1.7. Let (M,d) be a complete metric space and φ : M → R ∪ {+∞} be a

lower-semicontinuous function which is bounded from below. Suppose ε > 0 and u ∈ M
are such that

φ(u) ≤ inf
M
φ+ ε.

Then, given any λ > 0, there exists v ∈M such that:

(i) φ(v) ≤ φ(u);

(ii) d(u, v) ≤ λ;

(ii) φ(v) < φ(w) + ε
λd(v, w) for any v 6= w.

1.1.3 Some inequalities

The following is a classical result essentially due to Hardy (see Hardy-Littewood-Polya

[66]).

Lemma 1.1.8. Let Ω ⊂ RN be a bounded domain. If u ∈ H1
0 (Ω), then

(i) u
|x|2 ∈ L

2(Ω);

(ii) (Hardy inequality)
∫

u2

|x|2 ≤
1

[(N−2)2/4]

∫
|5u|2.
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Remark 1.1.9. The Hardy inequality, can be extended to functions in the space D1,2(RN )

which is the completion of C∞0 (Ω) with respect to the norm ‖u‖2D =
∫
RN |∇u|

2dx.

Remark 1.1.10. By the Hardy inequality, for 0 ≤ λ < Λ = (N − 2)2/4 the norm

‖u‖λ =

(∫
RN
|∇u|2 − λ u

2

|x|2
dx

)1/2

is equivalent to the usual norm

‖u‖H1
0 (Ω) =

[∫
RN
|∇u|2 dx

]1/2

.

The following inequality is an extension of the Hardy and Sobolev inequalities due to

Caffarelli-Kohn-Nirenberg [18].

Lemma 1.1.11. For 1 < p < N and any u ∈ C∞0 (RN ), there exists a constant k such

that ( ∫
RN

|x|−bq|u|q
)p/q

≤ k
∫
RN

|x|−ap|∇u|p

where 0 ≤ a ≤ (N−p)
p , a ≤ b < a+ 1 and q = Np

N−(p(a+1−b)) > p.

1.1.4 Compactness analysis

The following definition is a compactness condition, which is a tool used in the proof

of existence of critical points of functionals defined in Banach spaces.

Definition 1.1.12. Let c ∈ R, E be a Banach space and I ∈ C1(E,R). We say that

I satisfies the Palais-Smale condition at c, which we denote by (PS)c-condition, if any

sequence (un)n∈N in E satisfying I(un) → c and ‖I ′(un)‖E−1 → 0 has a convergent sub-

sequence. We say that I satisfies the (PS)-condition if I satisfies the (PS)c-condition for

every c ∈ R.

To establish a local version of the Palais-Smale condition, we introduce an important

principle due to Lions [85, 86, 87, 88], which is similar to that of [103, 109, 110]. But

before we recall the following notion of convergence.

Definition 1.1.13. Let (X,µ) be a measure space. A sequence (fn)n∈N of measurable real

value functions is said to converge in measure to a measurable real-function f if

lim
n→∞

µ ({x ∈ X : |fn(x)− f(x)| ≥ α}) = 0

for each α > 0, where µ is a measure.

Lemma 1.1.14. Let Ω be a bounded domain and {un} ⊂ H1
0 (Ω) a bounded sequence.

There then exist two nonnegative and bounded measures on Ω̄, τ , ν, and there exists a
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subsequence of {un}, still denoted by {un}, such that

|∇un|2 − λ
u2
n

|x|2
⇀ τ and

|un|p
∗(s)

|x|s
⇀ ν

weakly in the sense of measures.

Now, let us introduce the so-called concentration compactness principle.

Proposition 1.1.15. Let {un} ⊂ H1
0 (Ω) be such that un ⇀ u weakly in H1

0 (Ω),

|∇un|2 − λ
u2
n

|x|2
⇀ τ and

|un|p
∗(s)

|x|s
⇀ ν

weakly in the sense of measures, where τ and ν non-negative and bounded measures on Ω̄.

Then there exist some at most countable index set J and a family {xj : j ∈ J} of points

in Ω̄ such that:

(i) ν = |u|p∗(s)
|x|s +

∑
j∈J

νjδxj ;

(ii) τ ≥ |∇u|2 − λ u2

|x|2 +
∑
j∈J

τjδxj ;

(iii) τj ≥ Sνp/p
∗

j ,

where δxj is the Dirac measure at xj, {τj : j ∈ J} is a family of positive numbers and

S
.
= inf{‖u‖λ : u ∈ H1

0 (Ω),
∫ |u|p∗(s)

|x|s = 1}, for 0 ≤ s < 2 and p∗(s)
.
= 2(N − s)/(N − 2).

In particular
∑
j∈J

ν
p/p∗

j <∞, s ∈ [0, 2).

One common result used to find critical points is the mountain pass theorem of A.

Ambrosetti and P. Rabinowitz.

Theorem 1.1.16. (Rabinowitz [101]) Let E be a Hilbert space and I ∈ C1(E;R) be a

functional that satisfies the Palais-Smale condition. Suppose I(0) = 0 and

(i) There exist positive constants ρ and α; such that I(u) ≥ α when ‖u‖E = ρ;

(ii) There is an element w ∈ E such that ‖w‖E > ρ and I(w) ≤ 0.

then there is a critical value c ≥ α of I.

Moreover

c =̇ inf
g∈Γ

sup
0≤t≤1

I(g(t))

where Γ =̇ {g ∈ C([0, 1], E) : g(0) = 0, g(1) = w}.
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1.1.5 Pseudo-gradient flow

Definition 1.1.17. A functional J : E → R is said to be locally Lipschitz provided that,

for every u ∈ E, there exists a neighborhood V of u and a positive constant k ≡ k(V ),

depending on V , such that

|J(v)− J(w)| ≤ k‖v − w‖

for each v, w ∈ V.

Definition 1.1.18. Let E be a Hilbert space and J : E → R be of class C1(E,R). Consider

the set

E0 = {u ∈ E : J ′(u) 6= 0}.

A pseudo-gradient vector field for J on E0 is a locally Lipschitz continuous map X such

that the following conditions hold

(i) ‖X(u)‖ < 2‖J ′(u)‖;

(ii) 〈J ′(u), X(u)〉 > ‖J ′(u)‖2;

for all u ∈ E0.

Lemma 1.1.19. (Rabinowitz [101]) Any functional J ∈ C1 (E;R) admits a pseudo-

gradient vector field for J on E0.

1.1.6 Strong maximum principle

Consider the semilinear equation

−∆u(x) +B(u(x)) = f(x) in x ∈ Ω,

where Ω is a domain in RN (N ≥ 1), B is a nondecreasing real function with B(0) = 0 and

f ≥ 0 a.e. in Ω.

Proposition 1.1.20. (Vazquez [122]) Let u ∈ L1
loc (Ω) be such that

(i) ∆u ∈ L1
loc (Ω) in the sense of distributions in Ω;

(ii) u ≥ 0 a.e. in Ω;

(iii) ∆u < B(u) a.e. in {x ∈ Ω : 0 < u(x) < a}, where a is a positive constant and

B : [0, a]→ R is a continuous nondecreasing function with B(0) = 0.

Under the assumption that B(S) = 0 for some S > 0 or

a
2∫

0

(B (S)S)−
1
2 dS =∞
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if B(S) > 0 for S > 0, then either u ≡ 0 a.e. in Ω or u is strictly positive in Ω in the

sense that for every compact subset K ⊂ Ω there is a constant c ≡ c(K) > 0 such that

u ≥ c a.e. in K.

In particular if u vanishes a.e. in a set of positive measure, it must vanish a.e. in Ω.

1.1.7 Spectrum of the negative Dirichlet p-Laplacian

Let us briefly recall some basic facts about the spectrum of the negative Dirichlet p-

Laplacian.

We consider the following nonlinear eigenvalue problem{
−∆pu(x) = λ̄ |u(x)|p−2 u(x), in Ω;

u = 0, on ∂Ω.

A number λ̄ ∈ R for which the above problem has a nontrivial solution is said to be an

eigenvalue of the negative Dirichlet p-Laplacian. The set of eigenvalues is called their

spectrum.

The smallest eigenvalue λ̄1 is positive, isolated, simple and admits the following vari-

ational characterization

λ̄1 = inf

{
‖∇u‖pp
‖u‖pp

: u ∈W 1,p
0 (Ω) , u 6= 0

}
. (1.2)

The infimum in (1.2) is attained on the corresponding one-dimensional eigenspace.

We say that a dimension N is critical for a second order linear elliptic positive operator

L, if there exists a smooth bounded domain Ω ⊂ RN in which the equation
Lu = f(x, u) + βu, in Ω;

u > 0, in Ω;

u = 0, on ∂Ω,

has no solution for some β ∈ (0, β1), where β1 is the first eigenvalue of L and f(x, u) is a

nonlinear term critical with respect to L.

Now, we study the operator −∆− λ
|x|2 with Dirichlet boundary condition. When λ < Λ,

where Λ is the best constant in the Hardy inequality, the spectrum is contained in the

positive semi-axis, each eigenvalue λ̄k (k ≥ 1) is isolated and has finite multiplicity. The

smallest eigenvalue λ̄1 is simple and λ̄k →∞, as k →∞, moreover all eigenfunctions (for

any such λ̄k) belong to the space H1
0 (Ω) (see Egnell [53], Ferrero-Gazzola [57]). Thus as

a consequence of the Hardy inequality, the linear elliptic operator −∆u− λ
|x|2u is positive

and has discrete spectrum if λ < Λ =
(
N−2

2

)2
. On the other hand, the conditions under

which critical dimension occur for operator −∆− λ
|x|2 is when λ > Λ− 1.
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1.1.8 Sign-changing solution

Let Ω be a smooth bounded domain in RN . For u ∈ L2(Ω), we define u+(x) =

max{u(x), 0} ∈ L2(Ω) and u−(x) = min{u(x), 0} ∈ L2(Ω). If u ∈ H1
0 (Ω), then u+, u− ∈

H1
0 (Ω) (see Kinderlehrer-Stampacchia [81]).

Definition 1.1.21. (Castro-Cossio-Neuberger [24]) We say that u ∈ L2(Ω) is sign-changing

if u+ 6= 0 and u− 6= 0. For u 6= 0 we say that u is positive (and write u > 0) if u− = 0,

and similarly, u is negative (u < 0), if u+ = 0.

1.2 Elliptic equations in divergence form

In this section, we present some results for more general elliptic operators of second-

order having a divergence structure i.e. operator of the form

Lu
.
=

N∑
i,j=1

∂/∂xi

(
aij(x)∂u/∂xj

)
+ lower order terms

1.2.1 Operators of monotone type

The theory of monotone operators applied to boundary value problems, has its origin

in the works of Minty [90], Browder [17], Leray-Lions [83] and Hartman-Stampacchia [67].

Let Ω ⊂ RN be a bounded domain with smooth boundary, X be a separable reflexive

Banach space and X∗ its dual space. We write 〈u∗, u〉 for u∗ ∈ X∗ and u ∈ X, denoting

the dual product in X∗ ×X.

Definition 1.2.1. Let B : X → X∗ be an operator, then B is said to be

• Coercive when lim
‖u‖→∞

〈Bu,u〉
‖u‖ = ±∞;

• Monotone when 〈Bu−Bv, u− v〉 ≥ 0, for all u, v ∈ X;

• Strictly monotone when 〈Bu−Bv, u− v〉 > 0, for all u, v ∈ X with u 6= v;

• Hemicontinuous when λ ∈ R 7→ 〈B(u+ λv), w〉 is continuous, for all u, v, w ∈ X;

• Radially continuous: if λ ∈ R 7→ 〈B(u+ λv), v〉 is continuous, for all u, v ∈ X.

A prototype of a nonlinear monotone coercive operator is the p-Laplacian ∆p, 1 < p <

∞, defined by

∆pu = div
(
|∇u|p−2∇u

)
where ∇u = (∂u/∂x1, ..., ∂u/∂xN ) is the gradient of u.
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Definition 1.2.2. Let B : X → X∗ be an operator, then B is said to be pseudomonotone,

if un ⇀ u and lim sup
n→∞

〈B(un), un − u〉 ≤ 0 imply

lim inf
n→∞

〈Bun, un − v〉 ≥ 〈Bu, u− v〉

for all v ∈ X.

Lemma 1.2.3. (Zeidler [124]) Let A,B : X → X∗ be some given operators on the real

reflexive Banach space X, then it holds:

(i) If A is monotone and hemicontinuous, then A is pseudomonotone;

(ii) If A is completely continuous, the A is pseudomonotone;

(iii) If A and B are pseudomonotone, then A+B is pseudomonotone.

Now, we introduce another important class of operators, which is very stable under

perturbations.

Definition 1.2.4. Let B : X → X∗ be an operator, then B is said to be a (S+)–type

operator, if un ⇀ u and

lim sup
n→∞

〈Bun, un − u〉 ≤ 0

imply un → u.

In this work, we will use the following notionM–type operator, restricted to a subspace.

Definition 1.2.5. Let V be a linear subspace of X and A : X × V → R, then A is said

to be of type M with respect to V if for any sequence (vλ)λ∈Λ ⊂ V , w ∈ X and v∗ ∈ V ∗,
we have

(a) vλ ⇀ w;

(b) A(vλ, v)→ 〈v∗, v〉 for all v ∈ V ;

(c) A(vλ, vλ)→ 〈v̄∗, w〉, where v̄∗ is the extension of v∗ on the closure of V ;

imply that A(w, v) = 〈v∗, v〉 for all v ∈ V .

Lemma 1.2.6. (Zeidler [124]) Any monotone and hemicontinuous operator is a M–type

operator.

Now we introduce a class of operators of monotone type, the Leray-Lions operator,

which appear in the functional analytical treatment of nonlinear elliptic and parabolic

problems. In what follows, we introduce these operators and give some examples.

The operator Ψ : X → X∗ defined by Ψ(u) = −div(ψ(x, u(x),∇u(x))) is called a

Leray-Lions operator if satisfies the following conditions:
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(i) The map ψ : Ω× R× RN → RN is a Carathéodory function, i.e.

– the map x 7→ ψ(x, s, ξ) is measurable for all (s, ξ) ∈ R× RN ;

– the map (s, ξ) 7→ ψ(x, s, ξ) is continuous for almost all x ∈ Ω;

(ii) Elliptic condition: there exists α > 0 such that

ψ(x, s, ξ)ξ ≥ α|ξ|p

for all (x, s, ξ) ∈ Ω× R× RN ;

(iii) Growth condition: there exist β > 0 and a ∈ Lp′(Ω) such that

|ψ(x, s, ξ)| ≤ a(x) + β(|s|p−1 + |ξ|p−1)

for all (x, s, ξ) ∈ Ω× R× RN ;

(iv) Monotonicity condition: for ξ, η ∈ RN , ξ 6= η and almost all x ∈ Ω, we have

[ψ(x, s, ξ)− ψ(x, s, η)](ξ − η) > 0.

Common examples of Leray-Lions operators are the generalized mean curvature operator

ψ(x, s, ξ) = (1 + |ξ|2)(p−2)/2ξ

and the p-Laplacian

ψ(x, s, ξ) = |ξ|p−2ξ,

but weighted versions of this operators can also be considered, beside others.

Lemma 1.2.7. (Zeidler [124]) Any Leray-Lions operator is pseudomonotone and a (S+)–

type operator.

1.2.2 Existence theorems

The following is a version of the so-called Browder-Minty theorem.

Lemma 1.2.8. (Gajewski-Greger-Zacharias [58], Roubick [102]) Let V bet a reflexive

Banach space and A : V → V ∗ be a radially continuous, coercive and monotone operator,

then A is surjective.

Since the monotonicity assumption made in the above theorem is general not easy to

test, we introduce a weaker condition. The following main Lemma on pseudomonotone

operators is due to Brézis [15].
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Lemma 1.2.9. Let X be a real reflexive Banach space and let A : X → X∗ be a pseu-

domonotone, bounded and coercive operator, and b ∈ X∗, then there exists a solution of

the equation Au = b.

As a very special case of Browder-Minty theorem, one gets another important result

known as the Lax-Milgram theorem.

Theorem 1.2.10. Let H be a Hilbert space with the inner product (·, ·) : H × H → R,

and b : H ×H → R be a bilinear form on H. Further, assume that there exist constants

C1,C2 > 0, such that

(i) b(u, u) ≥ C1 ‖u‖2H , for all u ∈ H;

(ii) |b(u, v)| ≤ C2 ‖u‖H ‖v‖H , for all u, v ∈ H,

then for every bounded linear functional f : H → R there exists a unique element u ∈ H,

such that

〈f, v〉 = b (u, v) for all v ∈ H.

The following Lemma is a result of An et al. [8], that will be applied in our work.

Lemma 1.2.11. Let X bet a reflexive Banach space over R, (Xn)n∈N be a increasing

sequence of closed subspaces of X, and V = ∪
n∈N

Xn. Suppose that

A : X × V → R

is a real-valued function on X × V for which the following hold:

(a) An = A|Xn×Xn is a bounded bilinear form, for all n ∈ N;

(b) A(·, v) is a bounded linear functional on X, for all v ∈ V ;

(c) There exists c > 0 such that for all v ∈ V ,

A(v, v) ≥ c‖v‖2,

then, for each bounded linear functional v∗ on V , there exists u ∈ X such that A(u, v) =

〈v∗, v〉 for all v ∈ V .

The following result is a nonlinear extension of Lemma 1.2.11 due to Drivaliaris-

Yannakakis [52].

Lemma 1.2.12. Let X bet a reflexive Banach space, let Λ be a directed set, let {Xλ}λ∈Λ

be an upwards directed family of closed subspaces of X, and let V = ∪
λ∈Λ

Xλ. Suppose that

A : X × V → R

is a function for which the following hold:
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(a) A is of type M with respect to V ;

(b) lim‖x‖→∞A(x, x)/‖x‖ =∞;

(c) Aλ(x, ·) ∈ X∗λ; for all λ ∈ Λ and all x ∈ Xλ, where Aλ is the restriction of A on

Xλ ×Xλ;

(d) the operator Tλ : Xλ → X∗λ defined by 〈Tλx, y〉 = Aλ(x, y) for all x, y ∈ Xλ, is

monotone and hemicontinuous for all λ ∈ Λ,

then, for each v∗ ∈ V ∗, there exists x ∈ X such that

A(x, v) = 〈v∗, v〉

for all v ∈ V .



Chapter 2

Multiplicity results for a class of

singular elliptic equations with the

critical Sobolev exponent

Here, we consider N ≥ 3 and study the existence of solutions u ∈ H1
0 (Ω) of a second

order elliptic problem, on a bounded smooth domain Ω ⊂ RN , that involves a singular

term, i.e. the problem P1(λ, µ, α, f, γ):

{
−∆u(x)− λ

|x|2u(x) = |u(x)|2∗−2u(x) + µ|x|α−2u(x) + f(x)|u(x)|γ in Ω\{0},
u(x) = 0 on ∂Ω,

(2.1)

where 2∗ =̇ 2N/(N − 2) denotes the critical Sobolev exponent in the sense that the em-

bedding H1
0 (Ω)↪→L2∗(Ω) is continuous but is not compact.

Here we consider f ∈ L∞(Ω), which may be sign-changing, and the parameters

0 ≤ γ < 1, 0 ≤ λ < Λ, where Λ is the best constant in the Hardy inequality (see

Lemma 1.1.8) and suitable values for α and µ.

The problem P1(λ, µ, α, f, γ) has loss of compactness and so the corresponding func-

tional does not satisfy globally the classical Palais-Smale condition in H1
0 (Ω). In fact,

as we have mention before the non-linearity has critical growth at the limiting exponent

2∗ − 1 for the Sobolev embedding H1
0 (Ω)↪→L2∗ (Ω) (see Cerami-Fortunato-Struwe [26]).

On other hand, due to term λ
|x|2u(x) the problem has strong singularity at zero and the

non-compactness of the embedding H1
0 (Ω)↪→L2

(
Ω, |x|−2dx

)
even locally in any neighbor-

hood of zero, brings us to the question of the possibility of blow-up. To make sense,

we define the equation on Ω\{0}, but still we assume that 0 ∈ Ω. Moreover the presence

of term µ|x|α−2u(x) plays an important role, because it allows to control the singular term.

14
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Considering suitable hypotheses and using special techniques, for overcoming the dif-

ficulties in dealing with problems like P1(λ, µ, α, f, γ), we prove the existence of two non-

trivial solutions and under less strong hypothesis we prove the existence of (at least) four

nontrivial solutions u ∈ H1
0 (Ω) and we prove that at least one of them is sign-changing.

The results obtained in this chapter are related with the publication Chen-Murillo-

Rocha [39] and Chen-Murillo-Rocha [36].

2.1 Previous results

Equations that involve the critical Sobolev exponent, have been extensively investi-

gated, since that, when p = N+2
N−2 the Sobolev embedding H1

0 (Ω) ↪→ Lp+1 (Ω) is not

compact. Hence the Euler functional, does not satisfy the (PS)-condition globally, lead-

ing to difficulties in finding critical points by standard variational methods. Thus, if we

consider the Yamabe’s problem
−∆u(x) = |u(x)|2

∗−2u(x) + ξu(x) in Ω,

u(x) > 0 in Ω,

u(x) = 0 on ∂Ω,

(2.2)

the functional associated to problem

ψ(u) =
1

2

∫
|∇u|2 − 1

2∗ + 1

∫
|u|2

∗+1 − 1

2

∫
ξ |u|2 ,

may lose compactness. However in a range, which is determined by the best constant for

the Sobolev embedding H1
0 (Ω) ↪→ Lp+1 (Ω), Brezis-Nirenberg [16], proved that, some com-

pactness will hold. These type of equations have been studied by many other authors (e.g.,

see Kang-Deng [77] and Chaudhuri-Ramaswamy [29]). For the problem P1(0, 0, α, f, γ)

and odd nonlinearity, Li-Zou [84] obtained infinitely many solutions. For more related re-

sults, we refer the interested readers to Costa-Silva [47], Ruiz-Willem [103] and Sang [104].

Elliptic equations containing simultaneously the critical exponent and a singular term

(λ 6= 0), which are particular cases of the problems P1(λ, µ, α, f, γ), were considered in

the literature as Ferrero-Gazzola [57]. They established the existence of solutions for the

problem P1(λ, µ, 2, 0, 0) which depends the spatial dimension N and suitable restrictions

on the coefficient of the singularity λ (for N ≥ 4 with λ ≤ Λ− 1 and Λ− 1 < λ < Λ).

Other relevant studies, are the works of He-Zou [70] for the problem P1(λ, 0, α, f, γ)

and the works of Tarantello [118] and Chen [31], for the problem P1(λ, µ, 2, 0, γ) under

some conditions on f(x, u). For problem P1(0, µ, 2, f, 0) with Neumann condition, Taran-

tello [119] proved the existence of three solutions, one of which necessarily changes sign.

When N ≥ 7, Kang-Deng [77] proved the existence of two nontrivial solutions of the prob-
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lem P1(λ, µ, 2, f, 0) provided f satisfies some additional conditions.

Since we are facing with the singular term λ
|x|2 and critical nonlinearity, we need to

use the exact local behavior for the solutions of the problems obtained in Chen [31] and

Chen [34] to estimate the energy, which is essential in the process of getting sign-changing

solution. We also point out that similar techniques have been used in Chen-Rocha [42] to

study

−∆u(x)− λ

|x|2
u(x) = |u(x)|

4
N−2 u(x) + λ |x|α−2 u(x) + f(x),

where the existence of four nontrivial solutions was proved and at least one of them is

sign-changing solution under some further conditions on λ, α and f .

In the present chapter, we emphasize in the results of Tarantello in [119] for the problem{
−∆u(x) = |u(x)|2

∗−2u(x) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(2.3)

where Ω ⊂ RN is an open bounded set and f ∈ H−1(Ω) with f 6= 0 satisfying the following

suitable condition ∫
fu ≤ C(‖∇u‖2)

N+2
2 (2.4)

for all u ∈ H1
0 (Ω) such that ‖u‖2∗ = 1 and an adequate positive constant C. She defined

the infimum:

µ0 =̇ inf
‖u‖2∗=1

{
C(‖∇u‖2)

N+2
2 −

∫
fu

}
.

and proved that for f 6= 0, µ0 is achieved. Moreover, in particular if f satisfies the more

restrictive assumption ∫
fu < C(‖∇u‖2)

N+2
2 (2.5)

for all u ∈ H1
0 (Ω) such that ‖u‖2∗ = 1, one gets that µ0 > 0.

The functional

I(u)
.
=

1

2

∫
|∇u|2 − 1

2∗

∫
|u|2

∗
−
∫
fu,

associated to problem 2.3 is bounded below in the manifold

Λ̄
.
=
{
u ∈ H1

0 (Ω) :
〈
I ′(u), u

〉
= 0
}

.

The main result in Tarantello [119] is the following:

Theorem 2.1.1. The problem (2.3), admits at least two weak solutions u0, u1 ∈ H1
0 (Ω)

for f 6= 0 satisfying (2.4); and at least one weak solution for f satisfying (2.5). Moreover

u0 ≥ 0, u1 ≥ 0 for f ≥ 0.

The following Lemma is very important for solving the problem (2.3) and permits to
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characterize these solutions in the subsets of Nehari:

Λ̄+ .
=
{
u ∈ Λ̄ : ‖∇u‖22 − (2∗ − 1) ‖u‖2

∗

2∗ > 0
}

and

Λ̄−
.
=
{
u ∈ Λ̄ : ‖∇u‖22 − (2∗ − 1) ‖u‖2

∗

2∗ < 0
}

Lemma 2.1.2. Let f 6= 0 satisfy (2.5). For every u ∈ H1
0 (Ω), u 6= 0 there exists a unique

t+ = t+ (u) > 0 such that t+u ∈ Λ̄−. In particular:

t+ >

[
‖∇u‖22

(2∗ − 1) ‖∇u‖2∗2∗

]1/(2∗−2)
.
= tmax

and I (t+u) = max
t≥tmax

I (tu).

Moreover, if
∫
Ω

fu > 0, then there exists a unique t− = t− (u) > 0 such that t−u ∈ Λ̄+.

In particular

t− >

[
‖∇u‖22

(2∗ − 1) ‖∇u‖2∗2∗

]1/(2∗−2)

and I (t−u) ≤ I (tu) for all [0, tmax].

Remark 2.1.3. To prove the Lemma 2.1.2, Tarantello defined the function

ϕut
.
= t ‖∇u‖22 − t

(2∗−1) ‖u‖2
∗

2∗ ,

which achieves its maximum at

tmax
.
=

[
‖∇u‖22

(2∗ − 1) ‖u‖2∗2∗

] 1
2∗−2

.

For better understand this Lemma, we can see graphically, the behavior of function ϕut

(see Figure 1). Note that for all t > 0, if (2.5) holds, there exists a unique t+. Moreover,

if we consider ū, such that
∫
fū > 0 there exists one additional point t̄−.

Remark 2.1.4. The solutions u0 and u1 in the Theorem 2.1.1 of Tarantello are such that

u0 ∈ Λ̄+ and u1 ∈ Λ̄−. Indeed, to prove the existence of u0, Tarantello suppose that f 6= 0

satisfies (2.5) and using Ekeland variational principle prove that
∫
fu > 0. Then from

Lemma 2.1.2, she conclude that there exists a unique t− such that t−ū0 ≡ u0 ∈ Λ̄+, for

ū0 ∈ H1
0 (Ω). For the existence of u1. Tarantello suppose f 6= 0 satisfies (2.4) and using

the Lemma 2.1.2, conclude that there exists a unique t+ such that t+ū0 ≡ u0 ∈ Λ̄−. In

other words, Tarantello proved that there exists a unique function ū0 ∈ H1
0 (Ω), such that

ū0 ≡ u1
t+

= u0
t−

.
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Figure 2.1: Behavior of the function ϕut

2.2 Multiplicity results

The aim goal of this section is to study the existence of nontrivial solutions of problem

P1(λ, µ, α, f, γ). We will start introducing some notation and remarks.

Define the functionals

T (u) =̇
∫
|∇u|2 −

(
λ
|x|2 + µ|x|α−2

)
|u|2

U(u) =̇ ‖u‖2∗2∗ , F (u) =̇
∫
f |u|γu,

Q(u) =̇ T (u)− U(u)− F (u),

G(u) =̇ 2T (u)− 2∗ U(u)− (γ + 1)F (u).

Let µ1 be the infimum defined in Chaudhuri-Ramaswamy [29]:

µ1 =̇ inf

{∫ (
|∇u|2 − λ

|x|2
|u|2
)

:

∫
|x|α−2|u|2 = 1

}
> 0

and define the value

Sλ,µ =̇ inf

{(
T (u)

) 1
2

:

∫
|u|2∗ = 1

}
(2.6)

Lemma 2.2.1. If 0 ≤ λ < Λ and 0 < µ < µ1, then Sλ,µ > 0, T (u) > 0 for all u ∈
H1

0 (Ω)\{0} and T (0) = 0.

Proof. For any u 6= 0, we have from the assumption 0 < µ < µ1 and the Hardy inequality

that

T (u) ≥
(

1− µ

µ1

)∫ (
|∇u|2 − λ

|x|2
|u|2
)
≥
(

1− µ

µ1

)(
1− λ

Λ

)∫
|∇u|2.

Thus (
1− µ

µ1

)(
1− λ

Λ

)∫
|∇u|2 ≤ T (u) ≤

∫
|∇u|2. (2.7)
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Note that the best Sobolev constant (see Definition A.1.9)

S(Ω) =̇ inf

{∫
|∇u|2 :

∫
|u|2∗ = 1

}
> 0.

Thus, from (2.7), we have

0 < S(Ω) ≤
∫
|∇u|2 ≤

(
1− µ

µ1

)−1(
1− λ

Λ

)−1

T (u)

for all u ∈ H1
0 (Ω) such that

∫
|u|2∗ = 1. Therefore 0 < T (u) for all u ∈ H1

0 (Ω) such that∫
|u|2∗ = 1 and therefore Sλ,µ > 0.

Remark 2.2.2. (i) By the Gagliardo-Nirenberg-Sobolev inequality (see Lemma A.1.6),

exists KU > 0 such that U(u) ≤ KU‖u‖2
∗
.

(ii) For all u ∈ H1
0 (Ω),

F (u) ≤
∣∣∣∣∫ f |u|γu

∣∣∣∣ ≤ ‖f‖∞‖u‖γ+1
γ+1 ≤ (‖f‖∞Kγ+1) ‖u‖γ+1 =̇ KT ‖u‖γ+1, (2.8)

since f ∈ L∞, using the Hölder inequality and the Sobolev embedding of H1
0 (Ω) in Lγ+1(Ω)

with constant Kγ+1 > 0.

Define the following Euler–Lagrange energy functional

I(u) =̇
1

2
T (u)− 1

2∗
U(u)− 1

γ + 1
F (u).

Definition 2.2.3 (weak solution). We say that u ∈ H1
0 (Ω) is a (weak) solution of the

problem P1(λ, µ, α, f, γ) if u is a critical point of the Euler functional I, i.e. for any

v ∈ H1
0 (Ω) there holds∫

(∇u∇v − λ

|x|2
uv − µ|x|α−2uv − |u|2∗−2uv − f |u|γv) = 0. (2.9)

Remark 2.2.4. (i) We can rewritte the problem P1(λ, µ, α, f, γ) as

−∆u(x)− λ

|x|2
u(x)− µ|x|α−2u(x) = |u(x)|2∗−2u(x) + f(x)|u(x)|γ , in Ω\{0}.

Then

−∆u2 − λ

|x|2
u2 − µ|x|α−2u2 = |u|2∗−2u2 + f(x)|u|γu, in Ω\{0}.

Since f ∈ L∞(Ω), we have

f(x)|u|γu
|u|2∗−2u2

≤ |f ||u|γ+1−2∗ ≤ c|u|γ+1−2∗ ,

for some c > 0. Then f(x)|u|γu is a lower-order perturbation of |u|2∗−2u2, in the sense
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that f(x)|u|γu
|u|2∗−2u(x)2 −→ 0 as |u| −→ ∞, and we get for standard arguments due to Rabinowitz

[101](see Proposition 1.1.1), that I ∈ C1(H1
0 (Ω),R);

(ii) If u is solution of problem P1(λ, µ, α, f, 0), we have I ′(u) = 0, then 〈I ′(u), u〉 = 0 and

therefore u ∈M .

For any u ∈ H1
0 (Ω)\{0} and t ∈ R. Define φu(t) =̇ |t|−γ 〈I ′(tu), u〉+ F (u), i.e.

φu(t) = t |t|−γ T (u)− t |t|2∗−γ−2 U(u). (2.10)

This function attains its maximum at the positive value

tmax ≡ tmax(u) =̇

(
1− γ

2∗ − γ − 1
T (u)U(u)−1

)N−2
4

We define φu(tmax) = Φ∗(u), where Φ∗(u) is the functional Φ∗ : H1
0 (Ω)\{0} → R given by

Φ∗(u) =̇ tmax(u)1−γ T (u)− tmax(u)2∗−γ−1 U(u) = Cγ,NT (u)
2∗−γ−1

2∗−2 U(u)−
1−γ
2∗−2 ,

with Cγ,N =̇
(

1−γ
2∗−γ−1

) 1−γ
2∗−2

(
2∗−2

2∗−γ−1

)
.

Let the set Bε =̇
{
w ∈ H1

0 (Ω) : ‖w‖ < ε
}
, the infimum

µ̃f =̇ inf
u∈H1

0 (Ω)
{Φ∗(u)− |F (u)|}

and the infimum introduced by Tarantello:

µf =̇ inf
U(u)=1

{
Cγ,NT (u)

2∗−γ−1
2∗−2 − F (u)

}
.

Remark 2.2.5. (i) If µ̃f > 0 then µf > 0. Indeed, since

F (u) ≤ |F (u)| < Φ∗(u) = Cγ,NT (u)
2∗−γ−1

2∗−2 U(u)−
1−γ
2∗−2 ,

we have

Cγ,NT (u)
2∗−γ−1

2∗−2 U(u)−
1−γ
2∗−2 − F (u) > 0.

Therefore

µf := inf
U(u)=1

{
Cγ,NT (u)

2∗−γ−1
2∗−2 − F (u)

}
= inf

U(u)=1

{
Cγ,NT (u)

2∗−γ−1
2∗−2 U(u)−

1−γ
2∗−2 − F (u)

}
> 0.
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In the following three subsections, in order for obtains the results, we introduce some

auxiliary results which are relevant to prove the results of this chapter, namely briefly

describe the solution of an auxiliary problem, the local behavior of the solutions of the

problem P1(λ, µ, α, f, γ) and some integral estimates.

2.2.1 Auxiliary problem

From Catrina-Wang [25], we have the following proposition:

Proposition 2.2.6. For 0 < λ < Λ =̇ (N−2
2 )2, the problem

−∆u− λ

|x|2
u = |u|2∗−2u x ∈ RN\{0}, u(x)→ 0 as |x| → +∞, (2.11)

has a family of solutions

Uε(x) =
[4ε(Λ− λ)N/(N − 2)]

N−2
4

[ε|x|γ1/
√

Λ + |x|γ2/
√

Λ]
N−2

2

for ε > 0,

where γ1 =
√

Λ−
√

Λ− λ, γ2 =
√

Λ +
√

Λ− λ. Moreover, Uε is the extremal function of

the minimization problem

Sλ = inf

{∫
RN

(
|∇u|2 − λ

|x|2
u2

)
dx : u ∈ D1,2(RN ),

∫
RN
|u|2∗dx = 1

}
. (2.12)

Clearly, ∫
RN
|Uε(x)|2∗dx =

∫
RN

(
|∇Uε|2 −

λ

|x|2
U2
ε

)
dx = S

N
2
λ .

2.2.2 Local behavior of the solution

The local behavior of the solution of problem P1(λ, µ, α, f, γ), permits to calculate

important estimates, that guaranties that the solutions obtained for the problem are dif-

ferent. The following proposition has been proved in Chen [33] and Chen [34], using the

method of Moser iteration (see Chou-Chu[43] and Han-Lin [65]).

Proposition 2.2.7. Let 0 ≤ λ < Λ. We have that

• if u ∈ H1
0 (Ω) is a solution of the problem P1(λ, µ, α, f, γ), then there holds

|u(x)| ≤ K1|x|−(
√

Λ−
√

Λ−λ), x ∈ Br(0)\{0} (2.13)

for some positive constant K1 and sufficiently small r > 0;

• if u ∈ H1
0 (Ω) is a positive solution of the problem P1(λ, µ, α, f, γ), then there holds

K2|x|−(
√

Λ−
√

Λ−λ) ≤ |u(x)| ≤ K1|x|−(
√

Λ−
√

Λ−λ), x ∈ Br(0)\{0} (2.14)

for r > 0 sufficiently small and some positive constants K1, K2.
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Remark 2.2.8. Let u be a positive solution of the problem P1(λ, µ, α, f, γ)

(i) When λ = 0, u(0) is positive and we come back to the usual case.

(ii) When 0 < λ < Λ, the singular order at x = 0 of u stated in Proposition 2.2.7

coincide with the singularity of the explicit form Uε(x).

(iii) When λ → Λ, the singularity of the positive solutions become more and more

stronger.

2.2.3 Integral estimates

The following estimates are very relevant for obtaining of the results and to overcome

the difficulties created by the singular term.

Define a cut-off function φ(x) = 1 if |x| ≤ δ, φ(x) = 0 if |x| ≥ 2δ, φ(x) ∈ C1
0 (Ω) and

|φ(x)| ≤ 1, |∇φ(x)| ≤ C. Let vε(x) = φ(x)Uε(x), where Uε(x) is the family of solutions

defined above.

From the work of Chen-Rocha [42], we have:

Proposition 2.2.9. Let 0 ≤ λ < Λ and w ∈ H1
0 (Ω) be a solution of the problem

P1(λ, µ, α, f, γ), then for ε > 0 small enough we have that:∫
w2∗−1vε = O(ε

N−2
4 ) and

∫
wv2∗−1

ε dx = O(ε
N−2

4 ); (2.15)∫ (
|∇vε|2 −

λ

|x|2
v2
ε

)
= S

N
2
λ +O(ε

N
2 ) +O(ε

N−2
2 ); (2.16)∫

v2∗
ε = S

N
2
λ −O(ε

N
2 ); (2.17)∫

|x|α−2v2
ε = O(ε

α
√

Λ
2
√

Λ−λ ), when 0 < α < 2
√

Λ− λ; (2.18)∫
vε = O(ε

N−2
4 ); (2.19)∫

wvε = O(ε
N−2

4 ); (2.20)

Remark 2.2.10. We emphasize that in the estimate (2.18), the local behavior of the

solution of problem P1(λ, µ, α, f, γ) played on essential role.

2.2.4 Existence of two nontrivial solutions

We consider the following hypotheses (H2):

(i) 0 ≤ λ < Λ, 0 < µ < µ1, 0 < α <
√

Λ− λ, 0 ≤ γ < 1, f ∈ L∞(Ω) and µ̃f > 0;

(ii) N−
√

Λ√
Λ+
√

Λ−λ < γ < 1, f is continuous at 0 ∈ Ω and f(0) > 0;
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(iii) f > 0.

We say that hypotheses (H2) hold if (H2)(i) holds and one of the hypotheses (H2)(ii)

or (H2)(iii) holds.

We start stabilizing when the condition µ̃f > 0 is satisfied.

Lemma 2.2.11. Let ᾱ = 2∗−γ−1
2∗−2 and β = 1−γ

2∗−2 . If

‖f‖∞ < C(γ,N)(K1
T )ᾱ(KU )−βKγ+1

−1, (2.21)

where C(γ,N) =
(

1−γ
2∗−γ−1

) 1−γ
2∗−2

(
2∗−2

2∗−γ−1

)
, K1

T =

(
1− µ

µ1

)(
1− λ

Λ

)
; KU and Kγ+1 are the

best Sobolev constant for the embedding of H1
0 (Ω) into L2∗(Ω); and H1

0 (Ω) into Lγ+1(Ω)

respectively. Then µ̃f > 0.

Proof. From (2.7) and Remark 2.2.2, there exist positive constants Kγ+1, K1
T and KU

such that F (u) = ‖f‖∞Kγ+1‖u‖γ+1, T (u) ≥ K1
T ‖u‖2 and U(u) ≤ KU‖u‖2∗ . Then

Φ∗(u) ≥ C(γ,N)(K1
T )ᾱ‖u‖2ᾱ(KU )−β‖u‖−2∗β = C(γ,N)(K1

T )ᾱ(KU )−β‖u‖γ+1.

Now, if the inequality (2.21) holds, from (2.8) we have

F (u) ≤ C(γ,N)(K1
T )α(KU )−β‖u‖γ+1

and therefore F (u) < Φ∗(u). Now we consider two cases

• If F (u) > 0, we have −Φ∗(u) < −F (u) < F (u) < Φ∗(u) and |F (u)| < Φ∗(u).

Therefore µ̃f > 0.

• If F (u) < 0, we have F (u) = −|F (u)|, then

µ̃f = inf
u∈H1

0 (Ω)
{Φ∗(u)− |F (u)|} = inf

u∈H1
0 (Ω)
{Φ∗(u) + F (u)} .

Since F (u) < Φ∗(u) and Φ∗(u) > 0, we have Φ∗(u) + F (u). Thus µ̃f > 0.

Therefore, we have µ̃f > 0.

As the energy functional I is not bounded below on H1
0 (Ω), we consider the functional

on the Nehari set

M =̇ {u ∈ H1
0 (Ω)\{0} : Q(u) = 0}.

and the subsets of M defined by the sign of G (second derivative of I)

M+ =̇ {u ∈M : G(u) > 0}, M0 =̇ {u ∈M : G(u) = 0}, M− =̇ {u ∈M : G(u) < 0}.
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For u ∈M , the functionals I and G, can be rewritten as

IM (u) = − 1− γ
2(γ + 1)

T (u) +
2∗ − γ − 1

2∗(γ + 1)
U(u),

GM (u) = (1− γ)T (u)− (2∗ − γ − 1)U(u),

where we have denoted the restrictions of I and G, to the set M , by IM and GM , respec-

tively.

Remark 2.2.12. (a) I(u) is bounded from below in M . In fact for any u ∈M , we have

IM(u) =

(
1

2
− 1

2∗

)
T (u) +

(
1

2∗
− 1

γ + 1

)
F (u)

≥ 2∗ − 2

2 2∗
T (u)−

(
2∗ − γ − 1

2∗(γ + 1)
KT

)
‖u‖γ+1,

using (2.8). From (2.7), we have

IM(u) ≥
(

1− µ

µ1

)(
1− λ

Λ

)
2∗ − 2

2 2∗
‖u‖2 −

[
2∗ − γ − 1

2∗(γ + 1)
KT

]
‖u‖γ+1

≥ −1

4

[(
1− µ

µ1

)(
1− λ

Λ

)
2∗ − 2

2 2∗

]−1 [2∗ − γ − 1

2∗(γ + 1)
KT

]2

.

(b) For any u ∈ H1
0 (Ω)\{0}, we have I(tu)→ −∞ as |t| → ∞.

The following Lemma is a generalization of Lemma 2.1 of Tarantello [119]:

Lemma 2.2.13. Suppose the hypothesis (H2)(i) holds. For any u ∈ H1
0 (Ω)\{0}, define

sf =̇ signF (u) ∈ {−1,+1}. Then there exist three values t0 ≡ t0(u) ∈ R, t− ≡ t−(u) ∈ R,

t+ ≡ t+(u) ∈ R such that:

(i) t+ > 0, t+u ∈M−, t+ > tmax and I(t+u) = maxt≥tmax I(tu);

(ii) sf t− > 0, t−u ∈M+, 0 < sf t− < tmax and I(t−u) = min−tmax≤t≤tmax I(tu);

(iii) t0 < 0, t0u ∈M−, t0 < −tmax and I(t0u) = maxt≤−tmax I(tu).

Proof. Let t ∈ R. Define the function φu(t) =̇ |t|−γ 〈I ′(tu), u〉+ F (u), i.e.

φu(t) = t |t|−γ T (u)− t |t|2∗−γ−2 U(u). (2.22)

From the definition of φu, we have φu(0) = limt→0± φu(t) = 0,

limt→+∞ φu(t) = −∞, φu(−t) = −φu(t) for all t > 0, and φ′′u(t) < 0 for all t > 0, so

φu (restricted to t > 0) is a concave function which attains its maximum at tmax and

φu(tmax) = Φ∗(u) > 0.

For simplicity of presentation, we first assume sf = +1.

(i) Since φu (for t > 0) is a concave and continuous function and 0 < F (u) < φu(tmax),

there exists a unique t+ > tmax such that φu(t+) = F (u) > 0. This implies, from the

definition of φu, that |t+|−γ 〈I ′(t+ u), u〉 = 0 so Q(t+ u) = 0 and t+ u ∈ M . Moreover,
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from φ′u(t+) < 0 i.e. T (u) < (2∗−γ−1)(1−γ)−1|t+|2
∗−2 U(u), we have GM (t+u) < 0; thus

t+u ∈ M− and I(t+u) ≥ I(tu) for all t ≥ tmax. The last statement is true because, if we

set r(t) = I(t u), then r′(t) = t−1Q(t u) so r′(t+) = 0, and from r′(t) = tγ(φu(t)− φu(t+))

we have r′(t) > 0, when tmax ≤ t < t+, and r′(t) < 0, when t > t+.

(ii) By similar arguments to the ones used in (i), there exists a unique t− > 0 such that

−tmax < 0 < t− < tmax and φu(t−) = F (u) > 0 so t−u ∈ M and, from φ′u(t−) > 0,

t−u ∈ M+. From r′(t) = tγ(φu(t) − φu(t−)), we have r′(t) > 0, when t− < t ≤ tmax, and

r′(t) < 0, when −tmax ≤ t < t−. Therefore, at least, I(t−u) ≤ I(tu) for all −tmax ≤ t ≤
tmax.

(iii) Note that limt→−∞ φu(t) = +∞, φu(−tmax) = −Φ∗(u) < 0, φ′u(t) < 0 for all t <

−tmax, and φ′′u(t) > 0 for all t < 0, hence there exists a unique t0 < −tmax < 0 such

that φu(t0) = F (u) > 0 so t0u ∈ M and, from φ′u(t0) < 0, t0u ∈ M−. From r′(t) =

tγ(φu(t) − φu(t0)), we have r′(t) > 0, when t < t0, and r′(t) < 0, when t0 < t < −tmax.

Therefore, I(t0u) ≥ I(tu) for all t < −tmax.

For the general situation sf ∈ {−1,+1}, it is enough to observe that (sf )−1 = sf , (sf )2 =

1, φu(sf t) = sf φu(t) for t ∈ R, F (sf u) = sf F (u), GM (sf u) = GM (u), and r′(sf t) =

sf r
′(t) for t ∈ R.

Remark 2.2.14. The above Lemma can be further improved. In fact, φ′u(±tmax) = 0,

φ′u(t) > 0 when −tmax < t < tmax and φ′u(t) < 0 otherwise. So in fact, under the same

hypotheses, we can say: (i) I(t+u) = maxt≥t− I(tu); (ii) I(t−u) = mint0≤t≤t+ I(tu); and

(iii) I(t0u) = maxt≤t− I(tu).

Remark 2.2.15. For 0 ≤ γ < 1, beside the situation in Lemma 2.2.13, i.e. when |F (u)| <
Φ∗(u) where we have three values t0, t− and t+, other situations are: (a) for F (u) = Φ∗(u)

we have two values t0 < 0 and t− = t+ = tmax > 0; (b) F (u) = −φ∗(u) we have two

values t0 = t− = −tmax < 0 and t+ > 0; (c) for F (u) > Φ∗(u) we have one value

t0 < 0; and (d) for F (u) < Φ∗(u) we have one value t+ > 0. Therefore, we can rewrite

Lemma 2.2.13 in the following (more general) way.

Lemma 2.2.16. Let 0 ≤ γ < 1. For any u ∈ H1
0 (Ω)\{0}, we have:

(i) if F (u) < Φ∗(u), exists t+ > 0 such that t+u ∈ M−, t+ > tmax and I(t+u) =

maxt≥tmax I(tu);

(ii) if −Φ∗(u) < F (u) < Φ∗(u), exists t− ∈ R such that sf t− > 0, t−u ∈M+, 0 < sf t− <

tmax and I(t−u) = min−tmax≤t≤tmax I(tu);

(iii) if F (u) > −Φ∗(u), exists t0 < 0 such that t0u ∈ M−, t0 < −tmax and I(t0u) =

maxt≤−tmax I(tu).
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Figure 2.2: Behavior of the function φu

Figure 2.3: Behavior of the function φu for different values
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Remark 2.2.17. For better understand this Lemma, we can see graphically the behavior

of function φu (see Figure 2.2). Note that for 0 ≤ γ < 1, φu(tmax) = φ∗(u) and if

0 < |F (u)| < φ∗(u), we have three values t0, t− and t+.If we consider Other values for γ,

the behavior of the function φu(t) is quite different (see Figure 2.3). When γ = 1, we have

limt→0± φu(t) = ±T (u) and limt→±∞ φu(t) = ∓∞, thus: (a) for |F (u)| < T (u), we have

two values t− < 0 and t+ > 0; (b) for F (u) ≥ T (u), we have one value t− < 0; and (c)

for F (u) ≤ −T (u), we have one value t+ > 0. When γ > 1, we have limt→0± φu(t) = ±∞
and limt→±∞ φu(t) = 0, thus: (a) for F (u) > 0, we have one value t+ > 0; and (b) for

F (u) < 0, we have one value t− < 0.

We prove the existence of two nontrivial solution, using Ekeland variational principle

and Nehari techniques.

Set

c+ =̇ inf
u∈M+

I(u) and c− =̇ inf
u∈M−

I(u).

Let u ∈ H1
0 (Ω)\{0}. From Lemma 2.2.13, there is a real value t ≡ t (u) such that tu ∈M−

so M− 6= ∅ (following the same idea M+ 6= ∅) and M 6= ∅. Recall M is a manifold, and I

is continuous and bounded from below on M .

Ekeland’s variational principle 1.1.7 applied to the optimization problem

c0 =̇ inf
u∈M

I(u) (2.23)

gives a bounded minimizing sequence (un)n∈N ⊂M satisfying:

(Ea) c0 ≤ I(un) < c0 + 1
n ;

(Eb) I(u) ≥ I(un)− 1
n‖u− un‖ for all u ∈M .

The following result will be used below, in a contradiction argument, to show that the

minimizing sequence converges strongly in H1
0 (Ω).

Proposition 2.2.18. Assume hypothesis (H2)(i) holds. Let u ∈ H1
0 (Ω), (un)n∈N ⊂ M−

be such that un ⇀ u weakly in H1
0 (Ω) and I(un) → c ∈ R but un does not converge

strongly to u in H1
0 (Ω). Recall the definitions of sf ≡ sf (u), t+ ≡ t+(u) and t− ≡ t−(u)

in Lemma 2.2.13. Then the following holds:

(i) If u 6≡ 0 and t+ ≤ 1, then c > I(t+u);

(ii) If u 6≡ 0 and t+ > 1, then c ≥ I(t−u) + 1
N S

N
2
λ ;

(iii) If u ≡ 0, then c ≥ 1
N S

N
2
λ .

Proof. Firstly, following the same idea of Chen-Li-Li [37], (Lemma 2.6), we prove that

un ⇀ u and
∫
|x|α−2|un − u|2 → 0 as

n→∞.
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Let {un} ⊂ H1
0 (Ω) be bounded. We may assume that, up to a subsequence,

un ⇀ u in H1
0 (Ω) , un → u a.e in Ω.

Then un → u in Lp (Ω) for 1 < p < 2∗. So that, letting 2N
N+α−2 < s < 2∗, we have from

Hölder inequality that

∫
|x|α−2 |un − u|2 ≤

(∫
|un − u|s

) 2
s
(∫
|x|

(α−2)s
s−2

) s−2
s

and from the choice of s,
∫
|x|

(α−2)s
s−2 <∞ holds. It follows from

∫
|un − u|s → 0 as n→∞

that ∫
|x|α−2 |un − u|2 → 0.

We may assume that there exist a, b ≥ 0 such that

T (un − u) =

∫
(|∇un −∇u|2 −

λ

|x|2
|un − u|2) + o(1)→ a2,

and
∫
|un − u|2

∗ → b2
∗
. Note that, since un does not converge strongly to u, we have

a 6= 0. On the other hand, from f ∈ L∞ and the compactness of the Sobolev embedding,

we have
∫
f |un − u|γ(un − u)→ 0.

For t ∈ R, we set

r(t)
.
= I(tu), β(t)

.
=
a2

2
t2 − b2

∗

2∗
t2
∗

and θ(t)
.
= r(t) + β(t). So, for t > t+,

r′(t) =
〈
I ′(tu), u

〉
= tγ

(
φu(t)−

∫
f(x)|u|γu

)
= tγ (φu(t)− φu(t+)) < 0, (2.24)

since φu is a decreasing function for t > t+. From

|I(tun)− θ(t)| =
∣∣∣∣12 t2T (un)− t2

∗

2∗
‖un‖2

∗

2∗ −
tγ+1

γ + 1

∫
f |un|γun − I(tu)− β(t)

∣∣∣∣
≤
∣∣∣∣12 t2T (un − u)− t2

∗

2∗
‖un − u‖2

∗

2∗ − β(t)

∣∣∣∣
we see that I(tun)→ θ(t) as n→ +∞. We now prove the three statements:

(i) Suppose u 6= 0 and t+ ≤ 1. From (2.24), r′(1) ≤ 0. Since Q (un) = 〈I ′(un), un〉 →
θ′(1) and un ∈ M , we have Q (un) = 0 and θ′(1) = 0. Thus β′(1) ≥ 0 and hence

a2 − b2∗ ≥ 0. So, we have

β(t+) = b2
∗

(
t+

2

2
−
t2
∗

+

2∗

)
> 0.
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Since I(tun)→ θ(t), then I(un)→ θ(1) and hence

c = θ(1) ≥ θ(t+) = I(t+u) + β(t+u) > I(t+u).

(ii) Suppose u 6= 0 and t+ > 1. First, from t+ > 1, b 6= 0. Indeed, since 0 = Q (un) =

〈I ′(un), un〉 → θ′(1) and un ∈ M−, then θ′(1) = 0 and θ′′(1) ≤ 0. If b = 0, we have

r′(1) = −a2 < 0 and

r′′(1) = θ′′(1)− a2 − (2∗ − 1)b2
∗ ≤ −a2 < 0,

which contradicts to t+ > 1. So we have b 6= 0. We know that β attains its maximum

at t∗ = (a2/b2
∗
)

1
2∗−2 and β′(t) > 0 for 0 < t < t∗ and β′(t) < 0 for t > t∗. Therefore

β(t∗) = 1
N (a/b)N . Now, since

Sλ = inf

∫
RN

(
|∇u|2 − λ

|x|2u
2
)
dx(∫

RN |u|2
∗dx
) 2

2∗
≤ a2(

b2∗) 2
2∗
,

we have a2 ≥ Sλ
(
b

2∗
) 2

2∗
and

β(t∗) =
1

N

(
a2

b2

)N
2

≥ 1

N

Sλ
(
b

2∗
) 2

2∗

b2


N
2

≥ 1

N
S
N
2
λ .

Next, we show that t∗ ≤ t+. Suppose this is not the case, i.e., 1 < t+ < t∗. As 0 > θ′(t) =

r′(t) + β′(t) for all t > 1, we have r′(t) ≤ −β′(t) < 0 for t ∈ (1, t∗), which contradicts to

1 < t+ < t∗ and r′(t+) = 0. So, in fact, t∗ ≤ t+.

Note that θ(1) = lim
n→∞

I(un) and I(un) = max
t>0

I(tun). Hence, we obtain

θ(1) = lim
n→∞

(
max
t>0

I(tun)

)
≥ lim

n→∞
I(t∗un) = θ(t∗)

and

c = θ(1) ≥ θ(t∗) = I(t∗u) + β(t∗) ≥ I(t∗u) +
1

N
S
N
2
λ .

Moreover, from t∗ ≤ t+ and I(t−u) = min
0≤t≤t+

I(tu) (see Remark 2.2.14), we have c ≥

I(t∗u) + 1
N S

N
2
λ ≥ I(t−u) + 1

N S
N
2
λ .

(iii) Suppose u ≡ 0. Since un ∈M− ⊂M , we have∫
(|∇un|2 −

λ

|x|2
|un|2) =

∫
|un|2

∗
+ o(1).

and

c ≥ 1

2

∫ (
|∇un|2 −

λ

|x|2
|un|2

)
− 1

2∗

∫
|un|2

∗
+ o(1)
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Using the fact that Sλ|v|22∗ ≤
∫

(|∇v|2 − λ
|x|2 |v|

2) for all v ∈ H1
0 (Ω) and v 6= 0, we obtain

that

c ≥
(

1

2
− 1

2∗

)∫ (
|∇un|2 −

λ

|x|2
|un|2

)
+ o(1) ≥ 1

N
S
N
2
λ .

The proof is complete.

We recall the definition of set

Bε =̇
{
w ∈ H1

0 (Ω) : ‖w‖ < ε
}
.

Lemma 2.2.19. Suppose hypotheses (H2)(i) holds, then:

(i) For every u ∈M , GM (u) =̇ (1− γ)T (u)− (2∗ − γ − 1)U(u) 6= 0, i.e. M0 = ∅;
(ii) For any sequence (un)n∈N ⊂M , we have

lim
n→+∞

GM (un) = 0 ⇒ lim inf
n→+∞

‖un‖ = 0;

(iii) Given u ∈ M , there exists ε > 0 and a differentiable function t : H1
0 (Ω) → R,

satisfying t(w) > 0 for all w ∈ Bε, t(0) = 1, t(w)(u− w) ∈M for all w ∈ Bε and

〈
t′(0), w

〉
=

∫ (
2∇u∇w − 2 λ

|x|2uw − 2µ|x|α−2uw − 2∗|u|2∗−2uw − (1 + γ)f |u|γw
)

GM (u)
.

(2.25)

Proof. (i) Assume, by contradiction, that (1 − γ)T (ū) − (2∗ − γ − 1)U(ū) = 0 for some

ū ∈M , then we have

sū =̇ U(ū)
1

2∗ ≥
(

1− γ
2∗ − γ − 1

C

) 1
2∗−2

> 0

for some constant C > 0, by using the Gagliardo-Nirenberg-Sobolev inequality. On the

other hand, since ū ∈M , we have

F (ū) =
2∗ − 2

1− γ
U(ū).

Recall the definition of Φ∗ in Lemma 2.2.13, and define Ψ∗(u) =̇ Φ∗(u) − F (u) for all

u ∈M . Hence, Ψ∗(su) = s1+γΨ∗(u), for any s > 0 and u ∈M , and

Ψ∗(ū) ≥ inf
U(u)1/2∗=sū

Ψ∗(u) = s1+γ
ū

(
inf

U(v)1/2∗=1
Ψ∗(v)

)
≥ s1+γ

ū µf .

Let K =̇ 2∗−γ−1
1−γ . Thus, from µf > 0, we have

0 < s1+γ
ū µf ≤ Ψ∗(ū) ≤

[
K−

1−γ
2∗−2 (1−K)K

2∗−γ−1
2∗−2 − (K − 1)

]
U(ū) < 0.

This is a contradiction. Therefore (1− γ)T (u)− (2∗ − γ − 1)U(u) 6= 0 for all u ∈M .
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(ii) Arguing by contradiction again, assume there exists a subsequence (un)n∈N ⊂ M

such that

(1− γ)T (un)− (2∗ − γ − 1)U(un) = o(1)

and ‖un‖ > s for all n ∈ N and some s > 0. Hence, sun =̇ U(un)
1

2∗ > 0 for all n ∈ N .

Since un ∈M , we get

F (un) = T (un)− U(un) = [(2∗ − 2)/(1− γ)]U(un) + o(1).

These together with µf > 0 and Ψ∗(un) ≥ inf
U(u)1/2∗=sun

Ψ∗(u) ≥ s1+γ
un µf implies

0 < s1+γ
un µf ≤ Ψ∗(un) ≤

(
1−K2

)
U(un) + o(1) < 0,

which is a contradiction, so (1− γ)T (un)− (2∗ − γ − 1)U(un) = o(1) and ‖un‖ = o(1).

(iii) Let u ∈M and φ : R×H1
0 (Ω)→ R be defined by

φ(t, w) =̇ t|t|−γT (u− w)− t|t|2∗−γ−2U(u− w)− F (u− w).

Note that ∂
∂tφ(1, 0) = GM (u) 6= 0 (by (i)) and φ(1, 0) = Q(u) = 0. Hence applying the

implicit function theorem at the point (1, 0), we have that there exists a function t ≡ t(w)

with t(0) = 1 and 〈
t′(0), w

〉
= − ∂

∂w
φ(1, 0)

(
∂

∂t
φ(1, 0)

)−1

.

The following result prove the existence of a first solution for the problem P1(λ, µ, α, f, γ)

Proposition 2.2.20. Suppose hypotheses (H2)(i) hold. We have c0 < 0, there is a critical

point w0 ∈ M+ of I such that I(w0) = c0, and w0 is a local minimizer for I. Moreover,

w0 > 0 whenever that f > 0.

Proof. Let u ∈M+ 6= ∅ (see Lemma 2.2.13). From G(u) > 0, we have

U(u) <
1− γ

2∗ − γ − 1
T (u), (2.26)

so,

IM(u) =

(
1

2
− 1

γ + 1

)
T (u)−

(
1

2∗
− 1

γ + 1

)
U(u)

<

(
γ − 1

γ + 1

)
T (u) +

(
2∗ − γ − 1

2∗ (γ + 1)

)(
1− γ

2∗ − γ − 1

)
T (u)

=

(
1− γ
γ + 1

)(
1

2∗
− 1

)
T (u) < 0.

Hence c+ < 0, since c+ =̇ infu∈M+ I(u) ≤ I(t−u) < 0.
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Moreover,

c0 =̇ inf
u∈M

I(u) ≤ inf
u∈M+

I(u) < 0.

From Ekeland’s variational principle there exists a bounded minimization sequence

(un)n∈N ⊂M . We need to show that ‖Í (un)‖H−1(Ω) → 0 as n→∞.

Choosing n where Í (un) 6= 0, applying the item (iii) of Lemma 2.2.19 for δ > 0 suffi-

ciently small and setting u ≡ un, w ≡ δ Í(un)
‖Í(un)‖ , we have that exists tn (δ) =̇ t

(
δ Í(un)
‖Í(un)‖

)
such that

wδ =̇ tn (δ)

(
un − δ

Í (un)

‖Í (un)‖

)
∈M.

On the other hand, by (Eb) and the Taylor expansion of I, we have

1

n
‖wδ − un‖ ≥ 〈Í (wδ) , un − wδ〉+ o (‖un − wδ‖)

= 〈Í (wδ) , un (1− tn (δ))〉+

〈
Í (wδ) , tn (δ) δ

Í (un)

‖Í (un)‖

〉
+ o

(∥∥∥∥un − tn (δ)un + δ
Í (un)

‖Í (un)‖
un

∥∥∥∥) .
Hence

1

n
‖wδ − un‖ ≥ (1− tn (δ)) 〈Í (wδ) , un〉+ δtn (δ)

〈
Í (wδ) ,

Í (un)

‖Í (un)‖

〉
+ o (δ) . (2.27)

Dividing (2.27) by δ > 0 and passing to the limit as δ → 0, we have

1

n
(1 + ‖un‖ ‖t́n (0)‖) ≥

〈
Í (un) ,

Í (un)

‖Í (un)‖

〉
= ‖Í (un)‖ .

Since (un)n∈N is a bounded sequence,

‖Í (un)‖ ≤ 1

n
(1 + ‖un‖ ‖t́n (0)‖) ≤ C

n
(1 + ‖t́n (0)‖)

for a suitable positive constant C > 0. Note that t́n (0) =
〈
t́ (0) , Í(un)

‖Í(un)‖

〉
. Then by (2.25),

since (un)n∈N is a bounded sequence and ‖w‖ = δ, we have

|t́n (0)| ≤ C1

|(1− γ)T (un)− (2∗ − γ − 1)U(un)|

for a suitable positive constant C1. From Lemma 2.2.19, we have

lim inf
n→+∞

[(1− γ)T (un)− (2∗ − γ − 1)U(un)] > 0.

Thus |t́n (0)| ≤ K1, for a suitable constant K1 > 0 and therefore ‖Í (un)‖H−1(Ω) → 0 as

n→∞.

Let w0 be the weak limit in H1
0 (Ω) of (a subsequence of) the minimizing sequence un.

Then w0 ∈M+. Indeed, suppose that w0 ∈M− (since M0 = ∅), from Lemma 2.2.13 there
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exists t+ ≡ t+(w0) such that t+ > 0 and t+w0 ∈ M−. But w0 ∈ M− implies t+ = 1. In

this case, there exists also t− ≡ t− (w0) ∈ (−tmax, tmax) such that t− < t+ = 1. Thus, we

have
d

dt
I (tw0)

∣∣∣∣
t=t−

= 〈Í (t−w0) , w0〉 = (t−)−1Q (t−w0) = 0

and

d2

dt2
I (tw0)

∣∣∣∣
t=t−

=
d

dt
(|t|γ [φu(t)− F (u)])

∣∣∣∣
t=t−

=
d

dt
(|t|γ [φu(t)− φu(t−)])

∣∣∣∣
t=t−

= γ |t−|γ−2t− [φu(t−)− φu(t−)] + |t−|γφ′u(t−) = |t−|γφ′u(t−) > 0.

Hence, there exists t ∈ R such that t− < t < t+ and I
(
tw0

)
> I (t−w0). But from

Remark 2.2.14,

I (t−w0) < I
(
tw0

)
< I (t+w0) = I (w0) = c0.

This is a contradiction. Therefore w0 ∈M+. This implies that F (w0) > 2∗−2
1−γ U (w0) > 0.

We have that w0 is a weak solution of the problem, since Í(un) → 0 as n → ∞, we

have 〈Í(w0), w〉 = 0, for all w ∈ H1
0 (Ω). Therefore

c0 ≤ I(w0) ≤ lim
n→∞

I (un) = c0.

Then un → w0 (converges strongly) in H1
0 (Ω) and I(w0) = c0 = infu∈M I(u).

We now show that w0 is a local minimum for I. From Lemma 2.2.13, for all u ∈ M ,

there exists t−(u) ∈ R such that t−(u) < tmax(u), t−(u)u ∈M+ and

I (t−(u)u) ≤ I(ξu), for all 0 < ξ < tmax(u). (2.28)

So, from w0 ∈M+, we have

tmax (w0) > t−(w0) = 1. (2.29)

Let ε > 0 be sufficiently small. From item (iii) of Lemma 2.2.19 exists a differentiable

function t : H1
0 (Ω) → R such that t(w) > 0, t(0) = 1 and t(w)(w0 − w) ∈ M for all

‖w‖ < ε. From (2.29), the continuity of tmax(u) and t(w)→ 1 as ‖w‖ → 0, we can always

find a sufficiently small ε > 0 for which t(w) < tmax (w0 − w) for all w ∈ H1
0 (Ω) with

‖w‖ < ε.

Note that t(w)(w0 − w) ∈M+ so t(w) = t−(w0 − w) and t(w) < tmax(w0 − w). From

(2.28), with u = w0 − w, and the fact that w0 is a local minimum, we have

I(ξ(w0 − w)) ≥ I(t(w)(w0 − w)) ≥ I(w0).

Now taking ξ = 1, we conclude that I(w0 −w) ≥ I(w0), for all w ∈ H1
0 (Ω) with ‖w‖ < ε.

Therefore, w0 is a local minimum for I.

From Lemma 2.2.13, for |w0| ∈ H1
0 (Ω), there exists a unique value t−(|w0|) ∈ R such
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that t− (|w0|) |w0| ∈M+, t− (|w0|) < tmax (|w0|) = tmax (w0) and

I(t− (|w0|) |w0|) = min
−tmax≤t≤tmax

I(t (|w0|) |w0|).

Since w0 ∈M+, then t−(w0) = 1. Thus

c0 ≤ I(t− (w0)w0) = min
−tmax≤t≤tmax

I(tw0) ≤ I(t− (|w0|)w0).

Note that, from f > 0, we have I(t− (|w0|) |w0|) ≤ I(t− (|w0|)w0) ≤ c0. Therefore

I(t− (w0)w0) = c0 and we can always take w0 > 0.

Remark 2.2.21. From Proposition 2.2.20, we have that there is a critical point w0 of I

such that I(w0) = c0. Hence, since c0 =̇ infu∈M I(u), c+ =̇ infu∈M+ I(u) and w0 ∈ M+,

we have that c0 = c+.

If |F (u)| < φ∗(u), from Remark 2.2.21, there exists t−u ∈M+ such that

I(t−u) = infu∈M+I(u) = infu∈MI(u).

Lemma 2.2.22. Suppose hypotheses (H2)(i) hold, then there is s0 > 0 and ε > 0 suffi-

ciently small such that w0 + s0vε ∈M−, where w0 ∈M+ is a critical point of I and vε is

a truncated function.

Proof. We use the same argument as in the Proposition 2.2 of Tarantello [119].

Set

Σ
.
=
{
u ∈ H0

1 (Ω) : ‖u‖T = T (u)
1
2 = 1

}
and Ψ : Σ → M− a map, such that Ψ (u) = t+(u)u, where t+(u) is defined as Lemma

(2.2.13).

First, note that M− is closed. In fact, if u ∈M−, we have

U(u) ≥ 1− γ
2∗ − γ − 1

T (u) .

Since exists KT
1 > 0 such that KT

1 ‖u‖2H1
0 (Ω)
≤ T (u) and KU > 0 such that

U(u) ≤ KU‖u‖2∗ , we have

[
1− γ

2∗ − γ − 1

KT
1

KU

] 1
2∗−2

≤ ‖u‖.

Then ‖u‖
H1

0 (Ω)
≥ K̃, where K̃ =

[
1−γ

2∗−γ−1
KT

1

KU

] 1
2∗−2

> 0. Therefore in view of Lemma

(2.2.19), every sequence (un) in M− satisfies

lim
n→+∞

GM (un) < 0.
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This is M− is closed. By the uniqueness and extremal property (see Lemma (2.2.13)),

t+(u) is a continuous function. Thus Ψ is continuous with continuous inverse

Ψ−1 (u) =
u

‖u‖T
.

Hence, the map Ψ defined a homeomorphism.

Now, suppose u such that t+

(
u
‖u‖T

)
= ‖u‖T . Then

t+

(
u

‖u‖T

)
u

‖u‖T
= ‖u‖T

u

‖u‖T
= u

and from the Lemma (2.2.13), we have

t+

(
u

‖u‖T

)
u

‖u‖T
∈M−.

Hence u ∈M−. Thus M− disconnects H0
1 (Ω) in exactly two components:

U−
.
=

{
u = 0 ou u 6= 0 : ‖u‖T < t+

(
u

‖u‖T

)}
,

U+ .
=

{
u : ‖u‖T > t+

(
u

‖u‖T

)}
.

Note that M+ ⊂ U−. In fact, if u ∈M+,

1− γ
2∗ − γ − 1

T (u)U(u)−1 > 1,

and since that

t+ (u) > tmax (u)
.
=

(
1− γ

2∗ − γ − 1
T (u)U(u)−1

)N−2
4

;

we have

t+

(
u

‖u‖T

)
>

(
1− γ

2∗ − γ − 1
T

(
u

‖u‖T

)
U

(
u

‖u‖T

)−1
)N−2

4

=

 1− γ
2∗ − γ − 1

1
‖u‖2T

T (u)

1

‖u‖2∗T
U(u)

 1
2∗−2

= ‖u‖T
(

1− γ
2∗ − γ − 1

T (u)

U(u)

) 1
2∗−2

> ‖u‖T .

This is u ∈ U−. From Lemma (2.2.13), if F (u) > 0, and t2 6= 0 is a critical point of

φu(t) = t |t|−γ T (u)− t |t|2∗−γ−2 U(u);
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we have

t2 =

(
T (u)

U(u)

) 1
2∗−2

=

(
‖u‖2T
‖u‖2∗2∗

) 1
2∗−2

and unique values t− (u) and t+ (u) such that 0 < t− (u) < tmax (u) < t+ (u) and

t+ (u) ≤
(
‖u‖T
‖u‖2∗

) 2∗
2∗−2

.

Now, we consider the function w0+svε, where s > 0. We can assume that F (w0 + svε) > 0.

In fact,

F (w0 + svε) =

∫
f (x) |w0 + svε|γ (w0 + svε) ,

for ε small enough. If f (x) is positive near 0, F (w0 + svε) > 0. If f (x) is negative, we

replace w0 + svε by w0 − svε. Therefore for F (w0 + svε) > 0, we have

t+

(
w0 + svε
‖w0 + svε‖T

)
≤
(
‖w0 + svε‖T
‖w0 + svε‖2∗

) 2∗
2∗−2

→ 1, as s→∞ and ε→ 0+.

Hence for R0 > 0 sufficiently large and ε0 > 0 sufficiently small, we have

ς = sup

{[
t+

(
w0 + svε
‖w0 + svε‖T

)]2

: s ≥ R0, 0 < ε < ε0

}
<∞.

Thus for s ≥ ςS
N
2
λ +R0 and ε small, we have

T (w0 + svε) = T (w0) + s2T (vε) + 2s

∫
(∇w0∇vε −

λ

|x|2
w0vε − µ|x|α−2w0vε)

= T (w0) + s2T (vε) + 2s

∫
(|w0|2

∗−2w0vε + f(x)|w0|γvε)

= T (w0) + s2T (vε) + 2s
[
O(ε

N−2
4 ) +O(εγ∗)

]
,

where γ∗ ≡ γ∗ (γ). Note that, from Proposition 2.2.9, T (vε) = S
N
2
λ + O(ε

α
√

Λ
2
√

Λ−λ ) for ε

small.

We get that

‖w0 + svε‖T = T (w0 + svε)
1
2 > t+

(
w0 + svε
‖w0 + svε‖T

)
,

which implies that w0 + svε ∈ U+. Thus we have γ0 ∈ (0, 1) such that w0 + γ0svε ∈M−.

The conclusion follows by choosing s0 = γ0s.

Lemma 2.2.23. If hypotheses (H2) hold, then c− < c0 + 1
N S

N
2
λ .

Proof. From Lemma 2.2.22, we know that there is s0 > 0 and ε > 0 sufficiently small such

that w0 + s0vε ∈ M−, by using the arguments in Proposition 2.2 of Tarantello [119]. To



2.2. Multiplicity results 37

prove c− < c0 + 1
N S

N
2
λ , we only need to prove that sups>0 I(w0 + svε) < c0 + 1

N S
N
2
λ , since

c− = inf
u∈M−

I(u) ≤ I(w0 + s0vε) ≤ sup
s>0

I(w0 + svε).

Moreover, we only need to consider bounded values for s, since, I(w0 + svε) → −∞ as

s→ +∞ implies that there is s0 > 0 such that

sup
s>0

I(w0 + svε) ≤ sup
0<s<s0

I(w0 + svε).

First, since w0 is a solution of P1(λ, µ, α, f, γ)., we get from direct computations that

I(w0 + svε) =
1

2
T (w0 + svε)−

1

2∗
U (w0 + svε)−

1

γ + 1
F (w0 + svε)

= I(w0) + I(svε) +

∫
|w0|2

∗−2w0(svε) +

∫
f(x)|w0|γ(svε)

− 1

2∗
[U (w0 + svε)− U (w0)− U (svε)]

− 1

γ + 1
[F (w0 + svε)− F (w0)− F (svε)] .

Suppose hypotheses (H2)(ii) hold. Using the elementary inequality

||a+ b|q − |a|q − |b|q| ≤ d1

[
|a|q−1 |b|+ |a| |b|q−1

]
for a, b ∈ R and q > 1, we obtain that

I(w0 + svε) ≤ I(w0) + I(svε) +

∫
|w0|2

∗−1(svε) + |f |L∞(Ω)

∫
|w0|γ(svε)

+d2

∫
|w0|2

∗−1|svε|+ d3

∫
|w0| |svε|2

∗−1

+d4

∫
|w0|γ |svε|+ d5

∫
|w0| |svε|γ ,

where, here and below, dj for j ∈ N denote positive constants.

Secondly, since f is continuous at 0 and f(0) > 0, there exist d6 > 0 and δ0 > 0 such

that f(x) ≥ d6 for any x ∈ Bδ0(0), the ball with center at 0 and radius δ0. Hence, we have

sup
s>0

I(w0 + svε) ≤ I(w0) + sup
s>0

[
1

2
T (svε)−

1

2∗
U (svε)

]
+ d9

∫
|w0|2

∗−1vε

+d10

∫
|w0| |vε|2

∗−1 + d11

∫
|w0|γvε + d12

∫
|w0|vγε

−d7

∫
Bδ0 (0)

vγ+1
ε + d8

∫
Ω\Bδ0 (0)

vγ+1
ε .
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Note that for ε small enough, ∫
|w0|γvε = O(ε

N−2
4 ),

∫
Ω\Bδ0 (0)

vγ+1
ε = O(ε

N−2
4

(γ+1)),

∫
|w0|vγε = O(ε

N−2
4
γ)

and ∫
Bδ0 (0)

vγ+1
ε = O

(
ε

[N−(γ+1)
√

Λ]
√

Λ

2
√

Λ−λ

)
.

We obtain from the assumption N−
√

Λ√
Λ+
√

Λ−λ < γ < 1 and Proposition 2.2.9 that

sup
s>0

I(w0 + svε) < I(w0) +
1

N
S
N
2
λ = c0 +

1

N
S
N
2
λ .

When hypotheses (H2)(iii) hold, instead of (H2)(ii), the proof is similar so we omit the

details.

The following result prove the existence of a second solution for the problem

P1(λ, µ, α, f, γ).

Proposition 2.2.24. If hypotheses (H2) hold, then there is a critical point w1 ∈ M− of

I such that I(w1) = c−. Moreover, if f > 0, then w1 > 0.

Proof. First we will prove that there is w1 ∈ M− of I such that I(w1) = c−. Here

we will use the same idea of the proof of the Proposition 3.7 in Chen-Rocha [42]. Let

(un)n∈N ⊂M− and I(un)→ c−. Then by direct calculations we know that

0 < inf T (un) ≤ supT (un) <∞.

The definition of µ1 and 0 < µ < µ1 implies that (un)n∈N is bounded in H1
0 (Ω). We may

assume that (un)n∈N converges weakly to some w1. By Proposition 2.2.18 we have that

w1 6= 0. Now suppose that (un)n∈N does not converge to w1. Then by (1) and (2) of

Proposition 2.2.18, we get that c− > I(t+(w1)w1) or

c− ≥ I(t−(w1)w1) +
1

N
S
N
2
λ ≥ c0 +

1

N
S
N
2
λ .

In any case we get a contradiction since c− < c0 + 1
N S

N
2
λ . Therefore (un)n∈N converges

strongly to w1. This means w1 ∈M− and I(w1) = c−.

Next we will show that such w1 is a weak solution of equation in problem P1(λ, µ, α, f, γ).

Choose any v ∈ H1
0 (Ω). For any ρ ∈ (0, 1) we set tρ = t+(w1+ρv) (where t+(w1+ρv) is de-

fined according to Lemma 2.2.13). Since w1, tρ(w1 +ρv) ∈M− and I(w1) = infu∈M− I(u),
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we have

I(tρ(w1 + ρv)) ≥ I(w1).

On the other hand from w1 ∈ M−, we have that for any t > 0, I(w1) ≥ I(tw1). In

particular, I(w1) ≥ I(tρw1). Thus we have for any ρ ∈ (0, 1),

I(tρ(w1 + ρv)) ≥ I(tρw1).

Hence, we get that

0 ≤ 1

ρ

(
I(tρ(w1 + ρv))− I(tρw1)

)
From Lemma (2.2.13), for all u ∈M , there exists t+ = t+(u) > 0 such that t+(u)u ∈M−.

If w1 ∈ M−, then t+(w1) = 1. Thus for ρ→ 0+, tρ = t+(w1 + ρv)→ 1. Letting ρ→ 0+,

we obtain

0 ≤ lim
ρ→0+

1

ρ

(
I(tρ(w1 + ρv))− I(tρw1)

)
= lim

ρ→0+

〈I ′ (w1) , v〉
1

=

∫ (
∇w1∇v −

λ

|x|2
w1v − µ|x|α−2w1v − |w1|2

∗−2w1v − f(x)|w1|γv
)

.

As v is arbitrarily, we get that∫ (
∇w1∇v −

λ

|x|2
w1v − µ|x|α−2w1v − |w1|2

∗−2w1v − f(x)|w1|γv
)

= 0.

Which means that w1 is a solution of the problem P1(λ, µ, α, f, γ).

Now, we will show that w1 > 0, if f > 0. From Lemma 2.2.13, there exists t+(w1) ∈ R,

such that sf t+ (|w1|) > 0, t+ (|w1|) |w1| ∈ M−, sf t+ (|w1|) > tmax (|w1|) = tmax (w1) and

I(t+ (|w1|) |w1|) = maxsf t≥0 I(t (|w1|) |w1|). Since w1 ∈M−, then t+(w1) = 1. Thus

I(t+ (w1)w1) = I(w1) = max
sf t≥0

I(tw1) ≥ I(t+ (|w1|)w1).

Note that, since f > 0, we have

I(t+ (|w1|)w1) ≥ I(t+ (|w1|) |w1|) ≥ c−.

Therefore I(t+ (w1)w1) = c− and we can always take w1 > 0.

Now, we are ready for the multiplicity theorem for problem P1(λ, µ, α, f, γ).

Theorem 2.2.25. Suppose hypotheses (H2) holds, then P1(λ, µ, α, f, γ) has two nontrivial

solutions in H1
0 (Ω). Moreover, if (H2)(iii) hold, then both solutions are positive.

Proof. This result is direct consequence from Proposition 2.2.20 and Proposition 2.2.24
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2.2.5 Multiplicity theorem with less restrictive hypotheses

In this section, we will prove the existence of other solutions for the problem

P1(λ, µ, α, f, γ) under less restricts hypotheses. As described in the introduction, the proof

is divided into three steps. We start proving the existence of two nontrivial solutions; we

prove the existence of a third solution which is a sign-changing solution and we prove the

existence of a fourth solution using translated argument.
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We consider the following hypothesis (H3):

(i) 0 ≤ λ < Λ, 0 < µ < µ1, 0 < α <
√

Λ− λ, 0 ≤ γ < 1, f ∈ L∞(Ω) and µ̃f > 0;

(ii) 0 < α < γ
√

Λ− λ and 0 < γ ≤ N√
Λ+
√

Λ−λ − 1.

We say that hypotheses (H3) hold if (H3)(i) holds and the hypotheses (H3)(ii) holds.

Under the above hypotheses we prove that the problem P1(λ, µ, α, f, γ) has at least

four nontrivial solutions in H1
0 (Ω) and at least one of them is sign-changing.

Existence of two nontrivial solution

We consider as before

c0 =̇ inf
u∈M

I(u) and c− =̇ inf
u∈M−

I(u).

Proposition 2.2.26. Suppose hypotheses (H3)(i) hold. We have c0 < 0, there is a critical

point w0 ∈ M+ of I such that I(w0) = c0, and w0 is a local minimizer for I. Moreover,

w0 > 0 whenever f > 0.

Proof. Since the hypothesis (H2)(i) is equal to the hypothesis (H3)(i), the proof is the

same as Proposition 2.2.20.

In the rest of this section, we fix w0 which is obtained in the proposition 2.2.26

On this point, we emphasize the importance of the estimate calculated in Appendix B,

which guarantees that the solutions obtained are different.

Lemma 2.2.27. If hypotheses (H3) hold, then c− < c0 + 1
N S

N
2
λ .

Proof. First, from Lemma (2.2.22), we know that there are s0 > 0 and ε > 0 sufficiently

small such that w0 + s0vε ∈ M−. To prove c− < c0 + 1
N S

N
2
λ , we only need to prove that

sups>0 I(w0 + svε) < c0 + 1
N S

N
2
λ , since c− = infu∈M− I(u) ≤ I(w0 + s0vε) ≤ sups>0 I(w0 +

svε). Moreover, we only need to consider bounded values for s, since, I(w0 + svε)→ −∞
as s→ +∞ implies that there is s0 > 0 such that

sup
s>0

I(w0 + svε) ≤ sup
0<s<s0

I(w0 + svε).
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Firstly, since w0 is a solution of the problem P (λ, µ, α, f, γ), we get

I(w0 + svε) =
1

2
T (w0 + svε)−

1

2∗
U (w0 + svε)−

1

γ + 1
F (w0 + svε)

=
1

2

[
T (w0) + s2T (vε) + 2s

∫
(|w0|2

∗−2w0vε + f(x)|w0|γvε)
]

− 1

2∗
U (w0 + svε)−

1

γ + 1
F (w0 + svε)

= I(w0) + I(svε) +

∫
|w0|2

∗−2w0(svε) +

∫
f(x)|w0|γ(svε)

− 1

2∗
[U (w0 + svε)− U (w0)− U (svε)]

− 1

γ + 1
[F (w0 + svε)− F (w0)− F (svε)] .

Using the elementary inequality

||a+ b|q − |a|q − |b|q| ≤ d1

[
|a|q−1 |b|+ |a| |b|q−1

]
(2.30)

for a, b ∈ R and q > 1, we obtain that

I(w0 + svε) ≤ I(w0) + I(svε) +

∫
|w0|2

∗−1(svε) + |f |L∞(Ω)

∫
|w0|γ(svε)

+ d2

∫
|w0|2

∗−1|svε|+ d3

∫
|w0| |svε|2

∗−1

+ d4

∫
|w0|γ |svε|+ d5

∫
|w0| |svε|γ ,

where, here and below, dj for j ∈ N denote positive constants.

Note that

I(svε) =
1

2
T (svε)−

1

2∗
U (svε)−

1

γ + 1
F (svε) <

1

2
T (svε)−

1

2∗
U (svε) + K̃

∫
svγ+1
ε ,

where K̃ is a positive constant. Thus,

I(w0 + svε) ≤ I(w0) +
1

2
T (svε)−

1

2∗
U (svε) + K̃s

∫
vγ+1
ε + |f |L∞(Ω)

∫
|w0|γ(svε)

+ (s+ d2s)

∫
|w0|2

∗−1vε + (d3s
2∗−1)

∫
|w0| |vε|2

∗−1

+ (d4s)

∫
|w0|γvε + (d5s

γ)

∫
|w0|vγε
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and

sup
s>0

I(w0 + svε) ≤ I(w0) + sup
s>0

[
1

2
T (svε)−

1

2∗
U (svε)

]
+ d6

∫
vγ+1
ε

+ d7

∫
|w0|γvε + d8

∫
|w0|2

∗−1vε

+ d9

∫
|w0| |vε|2

∗−1 + d10

∫
|w0|vγε .

Let

g(s) =
1

2
T (svε)−

1

2∗
U (svε) =

s2

2
T (vε)−

s2∗

2∗
U(vε).

Then

g′(s) = sT (vε)− s2∗−1U(vε)

Let s̃ = [T (vε)U(vε)
−1]

1
2∗−1 , where s̃ is such that: g′(s) = 0, if s = s̃; g′(s) > 0, if 0 < s < s̃

and g′(s) < 0, if s > s̃. Thus s̃ is the maxima of g(s) on (0,∞) and

sup
s>0

g(s) = g(s̃)

=
1

2
[T (vε)U(vε)

−1]
1

2∗−1T (vε)−
1

2∗
[T (vε)U(vε)

−1]
2∗

2∗−1U(vε)

= (
1

2
− 1

2∗
)T (vε)

N
2 U(vε)

−N−2
2

=
1

N
T (vε)

N
2 U(vε)

−N−2
2 ,

so

sup
s>0

I(svε) ≤
1

N
T (vε)

N
2 U(vε)

1−N
2 .

Therefore

sup
s>0

[
1

2
T (svε)−

1

2∗
U (svε)

]
≤ 1

N
T (vε)

N
2

(
U (vε)

)1−N
2

<
1

N
S
N
2
λ −O(ε

α
√

Λ
2
√

Λ−λ ).

Note that for ε small enough,
∫
|w0|γvε = O(ε

N−2
4 ),

∫
|w0|vγε = O(ε

N−2
4
γ). Hence, from

Proposition 2.2.9, we have

sup
s>0

I(w0 + svε) ≤ I(w0) +
1

N
S
N
2
λ −O(ε

α
√

Λ
2
√

Λ−λ ) + d6

∫
vγ+1
ε

+ d7O(ε
N−2

4 ) + d8O(ε
N−2

4 )

+ d9O(ε
N−2

4 ) + d10O(ε
N−2

4
γ).

Thus,

sup
s>0

I(w0 + svε) ≤ I(w0) +
1

N
S
N
2
λ −O(ε

α
√

Λ
2
√

Λ−λ ) + d6

∫
vγ+1
ε .
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For ε small enough,

∫
vγ+1
ε =


O(ε

N−2
4

(γ+1)), 1 < 1 + γ < N√
Λ+
√

Λ−λ ;

O(ε
N−2

4
(γ+1)| ln ε|), 1 + γ = N√

Λ+
√

Λ−λ ;

O

(
ε

[N−(γ+1)
√

Λ]
√

Λ

2
√

Λ−λ

)
, N√

Λ+
√

Λ−λ < 1 + γ < 2.

(2.31)

Then:

i) If 1 + γ < N√
Λ+
√

Λ−λ , we have

sup
s>0

I(w0 + svε) ≤ I(w0) +
1

N
S
N
2
λ −O(ε

α
√

Λ
2
√

Λ−λ ) +O(ε
N−2

4
γ).

Note that for a, b ≥ 0, we have O(εa)−O(εb) < 0, if and only if a > b, so −O(ε
α
√

Λ
2
√

Λ−λ ) +

O(ε
N−2

4
γ) < 0. if α is such that α

√
Λ

2
√

Λ−λ <
N−2

4 γ, that is

α < γ
√

Λ− λ.

Hence, we obtain from the assumption (H3)(ii) that

sup
s>0

I(w0 + svε) < I(w0) +
1

N
S
N
2
λ = c0 +

1

N
S
N
2
λ .

ii) If 1 + γ = N√
Λ+
√

Λ−λ , then 2.31 implies that

sup
s>0

I(w0 + svε) ≤ I(w0 +
1

N
S
N
2
λ −O(ε

α
√

Λ
2
√

Λ−λ ) +O(ε
N−2

4
γ | ln ε|).

Therefore, we obtain from the assumption (H3)(ii) again that

sup
s>0

I(w0 + svε) < I(w0) +
1

N
S
N
2
λ = c0 +

1

N
S
N
2
λ . (2.32)

The proof is complete.

Proposition 2.2.28. If (H3) hold, then there is a critical point w1 ∈M− of I such that

I(w1) = c−. Moreover, if f > 0, then w1 > 0.

Proof. First, we show that there is w1 ∈M− such that I(w1) = c− and w1 is a solution of

P1(λ, µ, α, f, γ) for that, we use the item (i) and (ii) of Proposition 2.2.18, and the same

idea of the proof of the Proposition 2.2.24. We omit the details here.

Next we will show that w1 > 0, if f > 0. From Lemma 2.2.13, there exists t+(w1) ∈ R,

such that

t+ (|w1|) > 0,

t+ (|w1|) |w1| ∈M−,
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t+ (|w1|) > tmax (|w1|) = tmax (w1)

and

I(t+ (|w1|) |w1|) = max
t≥0

I(t (|w1|) |w1|).

Since w1 ∈M−, then t+(w1) = 1. Thus

I(t+ (w1)w1) = I(w1) = max
t≥0

I(tw1) ≥ I(t+ (|w1|)w1).

Note that, since f > 0, we have

I(t+ (|w1|)w1) ≥ I(t+ (|w1|) |w1|) ≥ c−.

Therefore I(t+ (w1)w1) = c− and we can always take w1 > 0.

Existence of sign-changing solution

In this subsection we will study the existence of sign-changing solution of the problem

P1(λ, µ, α, f, γ). We denote u+ =̇ max{0, u} and u− =̇ max{0,−u}, for u ∈ H1
0 (Ω). Then

u+, u− ∈ H1
0 (Ω) and u = u+ − u−.

Following Tarantello [119], we define

M−1 =̇ {u ∈M ; u+ ∈M−} and M−2 =̇ {u ∈M ; −u− ∈M−}.

Set also M−∗ =̇ M−1 ∩M
−
2 and we have:

Lemma 2.2.29. If (H3)(i) hold, then M−∗ 6= ∅.

Proof. We will to prove that there exist s0 > 0 and t0 ∈ R such that

s0(w1 − t0Uε)+ ∈M− and − s0(w1 − t0Uε)− ∈M−,

where Uε is defined as in Subsection 2.2.1. For this, we define

t1 =̇ min
Ω̄\{0}

w1

Uε
and t2 =̇ max

Ω̄\{0}

w1

Uε
.

For t ∈ (t1, t2), we denote by s+(t) and s−(t) the positive values given by Lemma 2.2.13(i)

and associated with the t+(u) value of u = (w1−tUε)+ and u = −(w1−tUε)−, respectively.

Hence, we have

s+(t)(w1 − tUε)+ ∈M− and − s−(t)(w1 − tUε)− ∈M−.

Note that s+(t) and s−(t) are continuous with respect to t and satisfy:
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lim
t→t1+0

s+(t) = lim
t→t1+0

t+(w1 − tUε) = t+(w1 − t1Uε) < +∞,

lim
t→t2−0

s−(t) = lim
t→t2−0

t+(−(tUε − w1)) = t+(t2Uε − w1) < +∞,

lim
t→t1+0

s−(t) = +∞ and lim
t→t2−0

s+(t) = +∞.

The continuity of s+(t) and s−(t) implies that there is a point t0 ∈ (t1, t2) such that

s+(t0) = s−(t0) = s0 > 0. This proves the Lemma.

Lemma 2.2.30. If (H3)(i) hold, then M−1 , M
−
2 ⊂M−.

Proof. Let u ∈M−1 , i.e. u ∈M and u+ ∈M−. Then

GM (u) = −(2∗ − 2)T (u) + (2∗ − γ − 1)F (u).

Since µ̃f > 0, we have

|F (u)| < Φ∗(u) =̇

(
1− γ

2∗ − γ − 1

) 1−γ
2∗−2

(
2∗ − 2

2∗ − γ − 1

)
T (u)

2∗−γ−1
2∗−2 U(u)−

1−γ
2∗−2 ,

Thus,

GM (u) ≤ (2∗ − 2)T (u)
2∗−γ−1

2∗−2

[
−T (u)

γ−1
2∗−2 +

(
1− γ

2∗ − γ − 1

) 1−γ
2∗−2

U(u)−
1−γ
2∗−2

]
.

From u+ ∈M−, we have

(1− γ)T (u+)− (2∗ − γ − 1)U(u+) < 0

and from the definition of Sλ,µ, we have U(u) ≤ Sλ,µ−1T (u)
1
2 . Therefore, we obtain

T (u+) ≤ 2∗ − γ − 1

1− γ
U(u+) ≤ 2∗ − γ − 1

1− γ
Sλ,µ

−1T (u+)
1
2 . (2.33)

Thus

T (u+)
1
2 ≤ 2∗ − γ − 1

1− γ
Sλ,µ

−1 (2.34)

and using U(u)−1 = Sλ,µT (u)
−1
2 , we have

−T (u+)
γ−1
2∗−2 +

(
1− γ

2∗ − γ − 1

) 1−γ
2∗−2

U(u+)−
1−γ
2∗−2 < 0

Therefore

GM (u) ≤ (2∗ − 2)T (u)
2∗−γ−1

2∗−2

[
−T (u+)

γ−1
2∗−2 +

(
1− γ

2∗ − γ − 1

) 1−γ
2∗−2

U(u+)−
1−γ
2∗−2

]
< 0.

i.e. u ∈ M−. This proves that M−1 ⊂ M−. By a similar argument we can prove that
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M−2 ⊂M−.

Define

c−∗ =̇ inf
u∈M−∗

I(u).

Lemma 2.2.31. If (H3) hold, then c−∗ < c− + 1
N S

N
2
λ .

Proof. We will estimate I(sw1 − tUε) for s ≥ 0 and t ∈ R, since that M−∗ 6= ∅ (Lemma

2.2.29). Since at this time, ε can be sufficiently small, we replace Uε by vε = φ(x)Uε

defined as before. The structure of I, guarantees that there is R > 0 possibly large such

that I(sw1− tvε) ≤ c− for all s2 + t2 ≥ R2. Thus it suffices to estimate I(sw1− tvε) for all

s2 + t2 ≤ R2. Since w1 is a solution of the problem P (λ, µ, α, f, γ), from inequality (2.30),

we obtain for positive constants ej with j ∈ N that

I(sw1 − tvε) ≤ I(sw1) + I(tvε)−
∫
|sw1|2

∗−1(tvε)

− |f |L∞(Ω)

∫
|sw1|γ(tvε) + e2

∫
|sw1|2

∗−1|tvε|+ e3

∫
|sw1| |tvε|2

∗−1

+e4

∫
|sw1|γ |tvε|+ e5

∫
|sw1| |tvε|γ

and for positive constants gj with j ∈ N we have

I(sw1 − tvε) ≤ I(sw1) + I(tvε) + g1

∫
|w1|2

∗−1vε + g2 |f |L∞(Ω)

∫
|w1|γvε

+g3

∫
|w1||vε|2

∗−1 + g4

∫
|w1|γ |vε|

+g5

∫
|w1| |vε|γ .

Note that since w1 ∈M , we have I(sw1) ≤ I(w1) for all s ≥ 0, we have

I(sw1 − tvε) ≤ I(w1) + I(tvε) + g1

∫
|w1|2

∗−1(vε) + g2 |f |L∞(Ω)

∫
|w1|γ(vε)

+g3

∫
|w1||vε|2

∗−1 + g4

∫
|w1|γ |vε|

+g5

∫
|w1| |vε|γ .

Thus, from Proposition 2.2.9, the Proposition B.0.9 and following the similar argument

that Lemma 2.2.27, we obtain that

max
s>0, t∈R

I(sw1 − tvε) < I(w1) +
1

N
S
N
2
λ < c− +

1

N
S
N
2
λ .
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The following result prove the existence of a third solution for the problem P1(λ, µ, α, f, γ).

Proposition 2.2.32. If (H3) hold, then there is w2 ∈ M−∗ such that I(w2) = c−∗ and w2

is a sign-changing solution of the problem P1(λ, µ, α, f, γ).

Proof. We will prove that there is w2 ∈ M−∗ such that I(w2) = c−∗ . Let (un)n∈N be a

sequence with un ∈M−∗ such that I(un)→ c−∗ . Note that (u+
n )n∈N is bounded, using the

fact that u+
n ∈M−,

0 < inf ‖u+
n ‖ ≤ sup ‖u+

n ‖ < +∞,

and Sobolev inequality. Similar idea applies to (u−n )n∈N.

We consider (u+
n )n∈N and (u−n )n∈N such that u+

n ⇀ u+ and u−n ⇀ u− in H1
0 (Ω).

Let I(u+
n )→ d1, I(u−n )→ d2 and c−∗ = d1 + d2.

Note that u+ 6= 0 and u− 6= 0. By Proposition 2.2.18, we have that:

If u+ = 0 and u− = 0, then d1 ≥ 1
N S

N
2
λ , d2 ≥ 1

N S
N
2
λ and hence c−∗ ≥ 2

N S
N
2
λ .

If u+ = 0 and u− 6= 0, then d1 ≥ 1
N S

N
2
λ , d2 ≥ c− or d2 ≥ c0 + 1

N S
N
2
λ , which implies that

c−∗ ≥ c− + 1
N S

N
2
λ or c−∗ ≥ c0 + 2

N S
N
2
λ .

If u+ 6= 0 and u− = 0, the d2 ≥ 1
N S

N
2
λ , d1 ≥ c− or d1 ≥ c0 + 1

N S
N
2
λ , which implies that

c−∗ ≥ c− + 1
N S

N
2
λ or c−∗ ≥ c0 + 2

N S
N
2
λ .

All the above three cases contradict Lemma 2.2.27 and Lemma 2.2.31. Therefore

u+ 6= 0 and u− 6= 0. Thus according to (1) and (2) of Proposition 2.2.18, we have one of

the following:

(i) (u+
n )n∈N converges strongly to u+;

(ii) d1 > I(t+(u+)u+);

(iii) d1 > I(t−(u+)u+) + 1
N S

N
2
λ ;

and, similarly, we have one of the following:

(iv) (u−n )n∈N converges strongly to u−;

(v) d2 > I(−t+(−u−)u−);

(vi) d2 > I(−t−(−u−)u−) + 1
N S

N
2
λ .

The key point is that only cases (i) and (iv) hold. In fact, all the following situations are

contradictions.

If (ii) and (v) hold, then t+(u+)u+ − t+(−u−)u− ∈M−∗ and

c−∗ ≤ I(t+(u+)u+ − t+(−u−)u−) = I(t+(u+)u+) + I(−t+(−u−)u−)

< d1 + d2 = c−∗ .
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If (iii) and (vi) hold, then t−(u+)u+ − t−(−u−)u− ∈M+ and hence

c− +
1

N
S
N
2
λ < c0 +

2

N
S
N
2
λ ≤ I(t−(u+)u+ − t−(−u−)u−) +

2

N
S
N
2
λ

= I(t−(u+)u+) + I(−t−(u−)u−) +
2

N
S
N
2
λ

≤ d1 + d2 = c−∗ .

If (ii) and (vi) hold, then t+(u+)u+ − t−(−u−)u− ∈M− and

c− +
1

N
S
N
2
λ ≤ I(t+(u+)u+ + t−(u−)u−) +

1

N
S
N
2
λ < d1 + d2 = c−∗ .

If (i) and (v) hold, then u+ − t+(−u−)u− ∈M−∗ and

c−∗ ≤ I(u+ − t+(−u−)u−) < d1 + d2 = c−∗ .

All the above cases leave to a contradiction, therefore both (u+
n )n∈N and (u−n )n∈N converge

strongly to u+ and u−, respectively and we get that u+, u− ∈M−.

Let w2 = u+ − u−. We have I(w2) = c−∗ , since I(w2) = I(u+ − u−) = I(u) and I(un)

converge strongly to c−∗ .

Next we show that w2 is a critical point of I. For that we suppose that w2 is not a

critical point of I and we define

Wδ(u) = ψ(u))V (u),

where: (i) V (u) is the pseudo-gradient vector field for I(u):

V (u) = ∇I(u)−
〈
∇I(u),

∇Q(u)

‖∇Q(u)‖

〉
∇Q(u)

‖∇Q(u)‖
, u ∈M−,

since that I ∈ C1(H1
0 (Ω),R) and 〈∇Q(u), u〉 < 0.

The pseudo-gradient V (u) satisfies

‖V (u)‖ ≤ 2‖Í(u)‖, (2.35)

Í(u)V (u) ≥ ‖Í(u)‖2. (2.36)

(ii) ψ : M− → [0, 1] is a Lipschitz mapping such that

ψ(v) =

{
1 for v ∈M− with ‖v − w2‖ ≤ δ,
0 for v ∈M− with ‖v − w2‖ ≥ 2δ,

where δ ∈ (0,min{‖u+‖, ‖u−‖}/3) is such that ‖V (v) − V (w2)‖ ≤ 1
2‖V (w2)‖ for each
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v ∈M− with ‖v − w2‖ ≤ 2δ.

Let η : [0, s0]×M− →M− denote the pseudo-gradient flow associated to I on H1
0 (Ω),

that is the solution of the differential equation

η(0, v) = v,
d

ds
η(s, v) = −Wδ(η(s, v)), (2.37)

for some positive number s0 and (s, v) ∈ [0, s0]×M−.

Since Wδ(u) is locally Lipschitz continuous and ‖Wδ(u)‖ ≤ 1, then (2.37) has a unique

solution depending continuously on v.

For 0 ≤ t ≤ 1, we set

χ(t) = t+((1− t)u+ − tu−) · ((1− t)u+ − tu−) and ξ(t) = η(s0, χ(t))

By the definition of Wδ(u) and (2.36), we have,

d

ds
I(η(s, v)) = Í(η(s, v))ή(s, v)

= −Í(η(s, v))Wδ(η(s, v))

= −Í(η(s, v))ψ(η(s, v))V (η(s, v))

= −ψ(η(s, v))Í(η(s, v))V (η(s, v))

≤ −ψ(η(s, v))‖Í(η(s, v))‖2

≤ 0.

The last inequality, means that I(η(s, v)) ≤ I(η(0, v)) for any s ≥ 0.

Thus, if t ∈ (0, 1/2) ∪ (1/2, 1) then

I (ξ(t)) = I (η(s0, χ(t)))

≤ I(η(0, χ(t)))

= I(χ(t)) = I(χ(t)+) + I(χ(t)−) < I(u+) + I(u−) = I(w2).

and I (ξ(1/2)) < I (χ(1/2)) = I(w2). Therefore I(ξ(t)) < I(w2) for t ∈ (0, 1).

Note that, as t→ 0+,

t+(ξ(t)+)− t+(−ξ(t)−) = η(s0, t+(χ(t)+)− t+(−χ(t)−))→ −∞

and as t→ 1−,

t+(ξ(t)+)− t+(−ξ(t)−) = η(s0, t+(χ(t)+)− t+(−χ(t)−))→∞

Hence, the continuity of η(s0, t+(χ(t)+)−t+(−χ(t)−)) implies that there is t1 ∈ (0, 1) such

that t+(ξ(t1)+) = t+(−ξ(t1)−).

Thus, ξ(t1) = ξ(t1)+ − ξ(t1)− ∈ M−∗ and I(ξ(t1)) < I(w2), which is a contradiction with

I(w2) = c−∗ = infu∈M−∗ I(u). Therefore w2 is a critical point of I.



2.2. Multiplicity results 51

Existence of a fourth solution

In this subsection, we prove the existence of another solution for the problem

P1(λ, µ, α, f, γ) by a translated argument. For this, we need to prove a local Palais-Smale

condition, due to non-compactness of the embedding H1
0 (Ω)↪→L2∗ (Ω).

Let w0 as before and we define a C1 functional Ī : H1
0 (Ω)→ R by

Ī(v) =̇ I(w0 + v+)− I(w0)

for v ∈ H1
0 (Ω). Thus, we have 〈Ī́(v), φ〉 = 〈Í(w0 +v+), φ〉. Therefore, if v is a critical point

of Ī, then w0 + v+ is a critical point of I.

Consider the following minimax value

c̄ =̇ inf
γ∈Γ

sup
0≤t≤1

Ī(γ(t)),

where Γ =̇ {γ ∈ C([0, 1], H1
0 (Ω)) : γ(0) = 0, γ(1) = kvε} with suitable ε and k.

Lemma 2.2.33. If (H3)(i) hold, we have c̄ < 1
N S

N
2
λ .

Proof.

Ī(v) =
1

2
T (w0 + v+)− 1

2∗
U(w0 + v+)− 1

γ + 1
F (w0 + v+)

−1

2
T (w0) +

1

2∗
U(w0) +

1

γ + 1
F (w0).

Note that for vε(x) = φ(x)Uε(x), defined as before,

sup
s>0

Ī(sv+
ε ) = sup

s>0
[I(w0 + sv+

ε )− I(w0)]

= sup
s>0

[I(w0 + sv+
ε )]− c0.

From (2.32), we have

sup
s>0

I(w0 + sv+
ε ) < I(w0) +

1

N
S
N
2
λ = c0 +

1

N
S
N
2
λ .

Hence, by the definition of c̄, we have

c̄ < sup
s>0

Ī(sv+
ε ) = sup

s>0
[I(w0 + sv+

ε )]− c0 < c0 +
1

N
S
N
2
λ − c0 =

1

N
S
N
2
λ .
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Lemma 2.2.34. The origin is a local minimum of Ī.

Proof. Let v ∈ H1
0 (Ω) and v = v+ − v−. We have

Ī(v) =
1

2
T (w0 + v+)− 1

2∗
U(w0 + v+)− 1

γ + 1
F (w0 + v+)− I(w0)

=
1

2
T (w0 + v + v−)− 1

2∗
U(w0 + v+)− 1

γ + 1
F (w0 + v+)− I(w0)

=
1

2
T (w0 + v) +

1

2
T (v−) + 2

∫
Ω

(∇(w0 + v+)∇(v−)

− λ

|x|2
(w0 + v+)(v−)− µ|x|α−2(w0 + v+)(v−)− 1

2∗
U(w0 + v+)

− 1

γ + 1
F (w0 + v+)− I(w0)

=
1

2
T (w0 + v) +

1

2
T (−v−)− 1

2∗
U(w0 + v+)− 1

γ + 1
F (w0 + v+)− I(w0)

=
1

2
T (w0 + v+) +

1

2
T (−v−)− 1

2∗
U(w0 + v+)− 1

γ + 1
F (w0 + v+)− I(w0)

=
1

2
T (−v−) + I(w0 + v+)− I(w0).

Since w0 is a local minimum of I, then exists ε > 0, such that I(w) ≥ I(w0), for all

‖w − w0‖ ≤ ε, w ∈ H1
0 (Ω). Thus, in particular for w0 + v+ ∈ H1

0 (Ω), we have that

I(w0 + v+)− I(w0) ≥ 0 and

Ī(v) ≥ 1

2
T (v−) ≥ 0 = Ī(0)

as ‖v‖ ≤ ε.

We will prove the existence of a four solution of the problem P1(λ, µ, α, f, γ) by con-

tradiction. Assume that v = 0 is the only critical point of Ī in H1
0 (Ω).

Lemma 2.2.35. If 0 is the only critical point of Ī. Then Ī satisfies the (PS)c-condition

for any c < 1
N S

N
2
λ .

Proof. Let vn ⊂ H1
0 (Ω), such that {

Ī(vn) → c,

Ī́(vn) → 0.
(2.38)

Then Ī(vn) = c+ o(1) and 〈Ī́(vn), φ〉 = o(1)‖φ‖.

First we prove that vn is bounded in H1
0 (Ω). Note that
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2∗c+ o(1) + o(1)‖w0 + v+
n ‖

= 2∗Ī(vn)− 〈Ī ′(vn), w0 + v+
n 〉

= 2∗I(w0 + v+
n )− 2∗I(w0)− 〈I ′(w0 + v+

n ), w0 + v+
n 〉

=
2∗

2
T (w0 + v+

n )− U(w0 + v+
n )− 2∗

γ + 1
F (w0 + v+

n )− 2∗I(w0)

− T (w0 + v+
n ) + U(w0 + v+

n ) + F (w0 + v+
n )

≥ (
2∗

2
− 1)T (w0 + v+

n ) + (1− 2∗

γ + 1
)F (w0 + v+

n )− 2∗I(w0)

≥ (
2∗

2
− 1)T (w0 + v+

n ) + (1− 2∗

γ + 1
)‖w0 + v+

n ‖γ+1 − 2∗I(w0)

= (
2∗

2
− 1)T (w0 + vn) + (1− 2∗

γ + 1
)‖w0 + v+

n ‖γ+1 − 2∗I(w0).

Note that for all u 6= 0, from assumption 0 < µ < µ1, 0 ≤ λ < Λ and the Hardy inequality,

we have

T (u) ≥
(

1− µ

µ1

)∫ (
|∇u|2 − λ

|x|2
u2

)
≥
(

1− µ

µ1

)(
1− λ

Λ

)∫
|∇u|2.

Hence

2∗c+ o(1) + o(1)‖w0 + vn‖
≥ (2∗

2 − 1)(1− µ
µ1

)(1− λ
Λ)
∫
|∇(w0 + vn)|2 + (1− 2∗

γ+1)‖w0 + v+
n ‖γ+1 − 2∗I(w0)

≥ (2∗

2 − 1)(1− µ
µ1

)(1− λ
Λ)‖w0 + vn‖2 + (1− 2∗

γ+1)‖w0 + v+
n ‖γ+1 − 2∗I(w0)

≥ (2∗

2 − 1)(1− µ
µ1

)(1− λ
Λ)‖vn‖2 + (1− 2∗

γ+1)‖w0 + v+
n ‖γ+1 − 2∗I(w0).

Therefore vn is bounded in H1
0 (Ω).

Now, we prove that (vn)n∈N → 0 in H1
0 (Ω). Since vn is bounded in H1

0 (Ω), we can assume

if necessary to a subsequence that
vn ⇀ σ in H1

0 (Ω),

vn → σ a.e in Ω,

vn → σ in Lt(Ω), 1 < t < 2∗.

(2.39)

Denote un = vn − σ, then Brezis-Lieb Lemma (see Costa [46]), implies that∫
|∇vn|2 =

∫
|∇un|2 +

∫
|∇σ|2 + o(1),

∫
λ

|x|2
v2
n =

∫
λ

|x|2
u2
n +

∫
λ

|x|2
σ2 + o(1),∫

µ|x|α−2v2
n =

∫
µ|x|α−2u2

n +

∫
µ|x|α−2σ2 + o(1),∫

|vn|2
∗

=

∫
|un|2

∗
+

∫
|σ|2∗ + o(1)
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and 〈Ī ′(σ), φ〉 = 0 for any φ ∈ H1
0 (Ω). That is σ is a weak solution of P1(λ, µ, α, f, γ).

Therefore Ī́(σ) = 0 and Í(w0 + σ+) = 0, that is σ is a critical point of Ī in H1
0 (Ω) and

w0 +σ+ is a critical point of I in H1
0 (Ω). Since σ is a critical point of Ī, by the assumption,

we have σ = 0. Then vn → 0 in Lt(Ω), 1 < t < 2∗. By the Brezis-Lieb Lemma∫
|w0 + v+

n |2
∗ −

∫
|w0|2

∗
=

∫
|v+
n |2

∗
+ o(1). (2.40)

Then
Ī(vn) = I(w0 + v+

n )− I(w0)

= 1
2T (w0 + v+

n )− 1
2∗U(w0 + v+

n )− 1
γ+1F (w0 + v+

n )− I(w0)

= 1
2T (w0 + v+

n )− 1
2∗

∫
|v+
n |2

∗ − 1
2∗

∫
|w0|2

∗ − 1
γ+1F (w0 + v+

n )

−I(w0) + o(1).

Note that, since 1 < γ + 1 < 2∗, we have vn → 0 in Lγ+1(Ω). Thus

F (w0 + v+
n ) =

∫
f(x)|(w0 + v+

n )|γ(w0 + v+
n )

=

∫
f(x)|(w0 + v+

s )|γ(w0 + v+
s ) + o(1)

=

∫
f(x)|w0|γ(w0) + o(1) = F (w0) + o(1).

Therefore, since w0 is a solution of P1(λ, µ, α, f, γ), by the previous result and

T (w0 + v+
n ) = T (w0) + T (v+

n ) + 2

∫
|w0|2

∗−2w0v
+
n + 2

∫
f |w0|γvn+,

we have

Ī(vn) =
1

2
T (w0 + v+

n )− 1

2∗

∫
|v+
n |2

∗ − 1

2∗

∫
|w0|2

∗ − 1

γ + 1
F (w0 + v+

n )

−I(w0) + o(1)

=
1

2
T (w0) +

1

2
T (v+

n ) +

∫
|w0|2

∗−2w0v
+
n +

∫
f |w0|γvn+ − 1

2∗

∫
|v+
n |2

∗

− 1

2∗

∫
|w0|2

∗ − 1

γ + 1
F (w0)− I(w0) + o(1)

=
1

2
T (v+

n ) +

∫
|w0|2

∗−2w0v
+
n +

∫
f |w0|γvn+ − 1

2∗

∫
|v+
n |2

∗
+ o(1).

Then since, vn → 0 in Lt(Ω) for 1 < t < 2∗ we have

Ī(vn) =
1

2
T (v+

n )− 1

2∗

∫
|v+
n |2

∗
+ o(1).
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Now,

〈Ī́(vn), w0 + v+
n 〉 = 〈Í(w0 + v+

n ), w0 + v+
n 〉

= T (w0 + v+
n )− U(w0 + v+

n )− F (w0 + v+
n ).

= T (w0) + T (v+
n ) + 2

∫
|w0|2

∗−2w0v
+
n + 2

∫
f |w0|γvn+

−
∫
|w0 + v+

n |2
∗ − F (w0 + v+

n )

= T (w0) + T (v+
n ) + 2

∫
|w0|2

∗−2w0v
+
n + 2

∫
f |w0|γvn+

−
∫
|v+
n |2

∗ −
∫
|w0|2

∗ − F (w0) + o(1).

Since w0 is a solution of P1(λ, µ, α, f, γ) and vn → 0 in Lt(Ω), 1 < t < 2∗, we have

〈Ī́(vn), w0 + v+
n 〉 = T (vn)− U(v+

n ) + o(1)→ 0

We assume that T (vn) → d and U(v+
n ) =

∫
|v+
n |2

∗ → d. We will prove that d = 0. Note

that, since vn ∈M and vn ⇀ σ = 0 in H1
0 (Ω), we have∫

(|∇vn|2 −
λ

|x|2
|vn|2) =

∫
|vn|2

∗
+ o(1).

We assume that d 6= 0. Using the fact, that Sλ|v|22∗ ≤
∫

(|∇v|2− λ
|x|2 |v|

2) for all v ∈ H1
0 (Ω)

and v 6= 0, where

Sλ = inf

{∫
RN

(
|∇u|2 − λ

|x|2
u2

)
dx : u ∈ D1,2(RN ),

∫
RN
|u|2∗dx = 1

}
,

we obtain that

Sλ(

∫
|v+
n |2

∗
)

2
2∗ ≤

∫
(|∇v+

n |2 −
λ

|x|2
|v+
n |2) =

∫
|v+
n |2

∗
+ o(1).

Then Sλd
2

2∗ ≤ d and d ≥ S
2∗

2∗−2

λ = S
N
2
λ . Thus

c = o(1) + Ī(vn)

= o(1) +
1

2
T (vn)− 1

2∗

∫
|v+
n |2

∗ − 1

γ + 1

∫
f(x)|(v+

n )|γ(v+
n ) + o(1)

> o(1) +
1

2
d− 1

2∗
d

= o(1) +
1

N
d

≥ 1

N
S
N
2
λ .

Which contradicts c < 1
N S

N
2
λ . Then d = 0.
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Now, by the Hardy inequality again, and since 0 < µ < µ1 and λ < Λ,

T (vn) ≥
(

1− µ

µ1

)(
1− λ

Λ

)∫ (
|∇vn|2

)
≥
∫ (
|∇vn|2

)
= ‖vn‖2.

Therefore, since T (vn) → d = 0, we have ‖vn‖2 → 0. Hence vn → 0 ∈ H1
0 (Ω). The proof

is complete.

Proposition 2.2.36. If (H3)(i) hold, there exists a critical point w1,1 ∈ H1
0 (Ω) of I such

that w1,1 > w0 in Ω. Moreover, w2 6= w1,1.

Proof. By Lemma 2.2.34 and since I(tv) → −∞, t → ∞ we have the conditions (i) and

(ii) of mountain pass theorem (Theorem 1.1.16) respectively. Thus by Lemmas 2.2.33

and 2.2.35, we obtain that there is a critical point v 6= 0 of Ī. By the Strong Maximum

Principle (Theorem 1.1.20), we have that v > 0 in Ω.

Set w1,1 = w0 + v+. Then w1,1 is a critical point of I and w1,1 > w0 in Ω.

We will prove that w2 6= w1,1. Suppose that w2 = w1,1. Note that:

i) Since −w−2 ∈M− and w0 ∈M+, we have

T (−w−2 ) <

(
2∗ − γ − 1

1− γ

)
U(−w−2 )

and

T (w0) >

(
2∗ − γ − 1

1− γ

)
U(w0)

respectively.

Since 0 ≥ −w−2 = w1,1 ≥ −w−0 ≥ w0, then U(−w−2 ) ≥ U(−w−0 ) ≥ U(w0) Therefore, we

get that

T (−w−2 ) <

(
2∗ − γ − 1

1− γ

)
U(−w−2 )

≤
(

2∗ − γ − 1

1− γ

)
U(−w0−)

≤
(

2∗ − γ − 1

1− γ

)
U(w0)

< T (w0).

ii) Since w0 ∈M+ and from the definition of Sλ (see (2.12)), we have

U(u) = S−1
λ T (u)

1
2 and

T (w0) >

(
2∗ − γ − 1

1− γ

)
U(w0) =

(
2∗ − γ − 1

1− γ

)
S−1
λ T (w0)

1
2 .

Then

T (w0)
1
2 <

(
1− γ

2∗ − γ − 1

)
Sλ.
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For other hand, since −w−2 ∈M−, we have

T (−w−2 )
1
2 >

(
1− γ

2∗ − γ − 1

)
Sλ.

Hence

T (w0) <

(
1− γ

2∗ − γ − 1

)2

S2
λ < T (−w−2 ).

Thus by (i) and (ii) we have a contradiction. Therefore, we have proved w2 6= w1,1.

Proposition 2.2.37. If (H3)(i) hold, there exists a critical point w1,2 ∈ H1
0 (Ω) of I such

that w1,2 < w0 in Ω. Moreover, w2 6= w1,2.

Proof. For v ∈ H1
0 (Ω), we define the following functional

Î(v) =̇ I(w0 + v−)− I(w0).

Now using the same procedure as in getting the solution w1,1, we can easily get the

existence of a critical point w1,2 ∈ H1
0 (Ω) of I and w1,2 satisfies all the requirement of

Proposition 2.2.37.

We are now ready for the multiplicity theorem for problem P1(λ, µ, α, f, γ) under strong

less hypothesis.

Theorem 2.2.38. Suppose hypotheses (H3) hold, then P1(λ, µ, α, f, γ). has at least four

nontrivial solutions in H1
0 (Ω) and at least one of them is sign-changing.

Proof. From the previous subsections, we got five weak solutions of the problem

P1(λ, µ, α, f, γ), i.e. w0, w1, w2, w1,1 and w1,2. However, since we are not able to prove

that w1 is different from w1,1 or w1,2, we can only state the existence of (at least) four

different solutions w0, w2, w1,1 and w1,2 of P1(λ, µ, α, f, γ). Moreover, we know w2 is

sign-changing.



Chapter 3

Multiplicity results for a class of

singular elliptic equations with

critical Hardy-Sobolev exponent

and involving a concave term

Let Ω ⊂ RN be a bounded domain with N ≥ 3 and 0 ∈ Ω. Here, we study the existence

of multiple positive and sign-changing solutions u ∈ H1
0 (Ω) of the problem P2(λ, ζ, q, s, f): −∆u− λ

|x|2u = ζf (x) |u|q−2 u+ |u|p
∗(s)−2u
|x|s in Ω\ {0} ,

u = 0 on ∂Ω,

where p∗(s)
.
= 2(N − s)/N − 2, is the critical Hardy-Sobolev exponent, 1 < q < 2,

0 ≤ s < 2, f is a real function on Ω, and the parameters λ and ζ are positive. Note that,

when s = 0, we have the critical Sobolev exponent p∗ = 2N
N−2 .

The problem P2(λ, ζ, q, s, f) is constituted by a semilinear elliptic equation with critical

nonlinearity, due to the term |u|p∗(s)−2u
|x|s , which in addition with the term λ

|x|2u leads to the

problem showing a double singularity at zero. This singularity and the non-compactness of

the embeddings H1
0 (Ω)↪→L2

(
Ω; |x|−2dx

)
and H1

0 (Ω)↪→Lp∗(s)(Ω; |x|−sdx), even locally in

any neighborhood of zero, brings us to the possibility of blow-up (Smets [111]). However,

we will see that the presence of the term ζf(x)|u|q−2u controls this question.

Without the critical term |u|p∗(s)−2u
|x|s , it should be easy to deduce that the associated

Euler functional of problem P2(λ, ζ, q, s, f) satisfies the Palais-Smale condition and exis-

tence results are obtained under some proper assumptions. To overcome the compactness

issue, we use the concentration compactness principle in order to obtain the existence

solutions, under some certain hypotheses.
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The starting point of this study is the work of Bouchekif et al. [14], which studied the

subclass P2(λ, ζ, q, s, 1) and established the following result.

Theorem 3.0.39. If 0 ∈ Ω, 0 ≤ λ < Λ− 1, 1 < q < 2, and 0 ≤ s < 2, then there is Λ̄ > 0

such that P2(λ, ζ, q, s, 1) has at least two positive solutions in H1
0 (Ω) for ζ ∈ (0, Λ̄).

The purpose here is to prove, under suitable assumptions, that P2(λ, ζ, q, s, f) not

only has two positive solutions, but exists Λ∗ such that also possesses an additional pair

of sign-changing solutions for ζ ∈ (0,Λ∗). Note that our result extends Bouchekif et al.

[14] even in the case of f ≡ 1.

The results obtained in this chapter are related with the work of Chen-Murillo-Rocha

in [38].

3.1 Previous results

In the literature, there are some very known results related with problems involving

concave and convex nonlinearity. The problem{
−∆u = λ |u|q−1 u+ |u|p−1 u, in Ω,

u = 0, on ∂Ω,
(3.1)

where Ω ⊂ RN , was studied by Ambrosetti-Brezis-Cerami [6] with the following result:

Theorem 3.1.1. There exists λ∗ > 0, such that for all λ ∈ (0, λ∗),

(i) if 0 < q < 1 < p ≤ N+2
N−2 , the problem (3.1) has infinitely many solutions with

negative energy.

(ii) if 0 < q < 1 < p < N+2
N−2 , the problem (3.1) has infinitely many solutions with

positive energy.

One particular case of problem (3.1), is just considering positive solutions, i.e. when

u > 0. In this case, we have the following result by Ambrosetti-Malchiodi [7].

Theorem 3.1.2. Let 0 < q < 1 < p, then there exists Λ̄ > 0 such that one has

(i) for all λ ∈ (0, Λ̄), the problem (3.1) has a positive solution;

(ii) for all λ = Λ̄ , the problem (3.1) has at least a weak positive solution;

(iii) for all λ > Λ̄ , the problem (3.1) has no solutions.

Theorem 3.1.3. Let 0 < q < 1 < p ≤ N+2
N−2 , then for all λ ∈ (0, Λ̄) , the problem (3.1)

has at least two positive solutions.

Problems of the same type as P2(λ, ζ, q, s, f) have been a central theme in the past

several years. We refer the interested readers to Ambrosetti-Brezis-Cerami [6], Bouchekif-

Matallah [14], Cao-Kang [21], Ekeland-Ghoussoub [55] and Ferrero-Gazzola [57] for similar

equations with Dirichlet boundary condition and Chabrowski [28] for a similar equation
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with Neumann boundary condition.

Problems involving a Hardy–type singular term − λ
|x|2u, where 0 ∈ Ω, a term with the

critical exponent (compactness loss) and singularity −µu−q with 0 < q < 1, were stud-

ied by Chen-Rocha [41], showing the existence of two positive solutions under adequate

hypotheses. In that work, Nehari optimization techniques and precise estimates of the

energy of critical points are important tools.

When the problem does not involve the term |u|p∗(s)−2u
|x|s , Garcia–Azorero-Peral-Primo

[60] obtained a pair of positive solutions, under the condition 0 ≤ λ < Λ; see also

Abdellaoui-Colorado-Peral [1], where a similar problem with a class of more general oper-

ators was considered. The problem P2(λ, ζ, q, 0, 0) without the term |u|p∗(s)−2u
|x|s , when λ

|x|2u

has the form λ
|x|2u

r, where 1 < r < N+2
N−2 , was studied recently by Davila-Peral [49]. They

proved that the existence of positive solutions depends on the geometry of the domain,

specifically, using Pohozaev’s identity, proved that there are no energy solutions, when the

domain is star-shaped, but via a perturbation argument, they proved that the problem

has solutions in dumbbell domains.

There are also in the literature some results about problems with double singular-

ity, which generally involve the critical Hardy-Sobolev exponent with 0 ≤ s < 2. When

0 ≤ λ < Λ−4, Chen [31] proved that for any ζ > 0, the problem P2(λ, ζ, 2, s, 1) possesses a

nontrivial solution with critical level in the range of
(

0, 2−s
2(N−s)S

(N−s)/(2−s)
λ,s

)
, where Sλ,s is

the best constant defined in (3.2). For f ≡ 1 and max
{

2, N√
Λ+
√

Λ−λ ,
N−2

√
Λ−λ√

Λ

}
< q < 2∗,

Kang-Peng [78] proved that problem P2(λ, ζ, q, s, f) has a positive solution in H1
0 (Ω) when

0 ≤ λ < Λ. He-Zou [70] proved using the same condition on λ, the existence of infinitely

many solutions for a suitable positive number ζ, when the term ζf(x)|u|q−2u has the form

ζf(x, u), where f(x, 0) ≡ 0 and f(x, u) is a lower order perturbation of up
∗(s)−1, in the

sense that f(x,u)

|u|p∗(s)−2u
→ 0 as |u| → ∞ uniformly.

3.2 Multiplicity results

This section is concerned with the existence of solutions of problem P2(λ, ζ, q, s, f).

We define the minimization problem

Sλ,s = inf

{∫
RN

(
|∇u|2 − λ

|x|2
u2

)
dx : u ∈ D1,2(RN ),

∫
RN

|u|p∗(s)

|x|s
dx = 1

}
(3.2)

and denote

Λ∗
.
=

(
2− q

p∗(s)− q

) 2−q
p∗(s)−q

(
p∗(s)− 2

(p∗(s)− q)|f |∞

)
|Ω|

q−p∗(s)
p∗(s) Sλ,s

p∗(s)−q
p∗(s)−2
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where |Ω| is the measure of Ω.

Since P2(λ, ζ, q, s, f) is variational in nature, we use variational methods to solve it and

our main result is obtained by studying several minimization problems. For this, define

the functional J : H1
0 (Ω)→ R, associated to problem P2(λ, ζ, q, s, f), by

J(u) =̇
1

2

∫ (
|∇u|2 − λ

|x|2
u2

)
− ζ

q

∫
f(x)|u|q − 1

p∗(s)

∫
|u|p∗(s)
|x|s

. (3.3)

Definition 3.2.1 (weak solution). We say that u ∈ H1
0 (Ω) is a solution of problem

P2(λ, ζ, q, s, f) if for any φ ∈ H1
0 (Ω) there holds

〈J ′(u), φ〉 ≡
∫ (
∇u∇φ− λ

|x|2
uφdx− ζf(x)|u|q−2uφ− |u|

p∗(s)−2uφ

|x|s

)
= 0.

Remark 3.2.2. The problem P2(λ, ζ, q, s, f) can be rewritten as

−∆u(x)− λ

|x|2
u(x) =

|u|p∗(s)−2u

|x|s
+ g(x, u), in Ω\{0},

where g(x, u) = ζf(x)|u(x)|q−2u(x). Note that g is a lower perturbation of |u|p∗(s)−2u. In

fact, since f ∈ L∞(Ω), we have

g(x, u)

(
|u|p∗(s)−2u

)−1

≤ ζ|f ||u|q−p∗ ≤ c|u|q−p∗ ,

thus g is a lower-order perturbation of |u|p∗(s)−2u, in the sense that

g(x, u)

(
|u|p∗(s)−2u

)−1

−→ 0 as |u| −→ ∞.

Therefore we get from Proposition 1.1.1 due to Rabinowitz [101]), that J ∈ C1(H1
0 (Ω),R).

We consider the following hypotheses (H4):

(i) 0 ≤ λ < Λ− 4, N+
√

Λ−λ√
Λ+
√

Λ−λ < q < 2, 0 ≤ s < 2;

(ii) There is δ1 > 0 such that f(x) > δ1 for all x ∈ Ω and f ∈ C(Ω̄).

We define the functional

Ḡ(u) =̇ (2− q)
∫ (
|∇u|2 − λ

|x|2
u2

)
− (p∗(s)− q)

∫
|u|p∗(s)
|x|s

.

Motivated by Tarantello [119], we define

M =̇ {u ∈ H1
0 (Ω)\{0} : 〈J ′(u), u〉 = 0}
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and consider the following subsets of M , defined by the sign of Ḡ (second derivative of J)

M+ =̇ {u ∈M : Ḡ(u) > 0}, M0 =̇ {u ∈M : Ḡ(u) = 0}, M− =̇ {u ∈M : Ḡ(u) < 0}.

In what follows, for u ∈ H1
0 (Ω) we use the norm

‖u‖2λ =

∫ (
|∇u|2 − λ

|x|2
u2

)
.

We present now, a equivalent result to Lemma 2.2.13, for problem P2(λ, ζ, q, s, f),

which correspondents to a generalization of Lemma 2.1 of Tarantello [119].

Lemma 3.2.3. Let ζ ∈ (0,Λ∗) and suppose (H4) hold. For any u ∈ H1
0 (Ω) and u 6=

0, there exist values t− (u) , t+ (u) and tmax
.
=

(
(2−q)‖u‖2λ

(p∗(s)−q)
∫ |u|p∗(s)

|x|s

) 1
p∗(s)−2

such that 0 <

t− (u) < tmax < t+ (u). Moreover,

t− (u)u ∈M+ and J (t− (u)u) = min
0≤t≤tmax

J (tu) ,

t+ (u)u ∈M− and J (t+ (u)u) = max
t≥tmax

J (tu) .

Proof. The proof is similar to the one in Chapter 2, following Chen [32] and Tarantello

[118]. Since

J (tu) =
1

2

∫ (
|∇tu|2 − λ

|x|2
|tu|2

)
− ζ

q

∫
f |tu|q − 1

p∗(s)

∫
|tu|p

∗(s)

|x|s

we have

∂J

∂t
(tu) =

∫ (
t |∇u|2 − λ

|x|2
tu2

)
− ζ

∫
f(x)tq−1 |u|q−1 u−

∫
tp
∗(s)−1 |u|

p∗(s)−1

|x|
u.

Thus

∂J

∂t
(tu) = tq−1

(
t2−q

∫ (
|∇u|2 − λ

|x|2
u2

)
− tp∗(s)−q

∫
|u|p

∗(s)

|x|s
− ζ

∫
f (x) |u|q

)
.

The function φ (t)
.
= t2−q

∫ (
|∇u|2 − λ

|x|2u
2
)
− tp∗(s)−q

∫ |u|p∗(s)
|x|s , achieves its maximum

at the point

tmax
.
=

 (2− q) ‖u‖2λ
(p∗(s)− q)

∫ |u|p∗(s)
|x|s

 1
p∗(s)−2

,

and φ′ (t) > 0 if t < tmax and φ′ (t) < 0 if t > tmax. Moreover,

φ (tmax) =

(
2− q

p∗(s)− q

)(2−q)/(p∗(s)−2)(p∗(s)− 2

p∗(s)− q

)
‖u‖

2(p∗(s)−q)
p∗(s)−2

λ

(∫
|u|p

∗(s)

|x|s

) q−2
p∗(s)−2

.
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Using the definition of Sλ,s, we have

φ (tmax) ≥
(

2− q
p∗(s)− q

)(2−q)/(p∗(s)−2)(p∗(s)− 2

p∗(s)− q

)
S
p∗(s)(2−q)
2(p∗(s)−2)

λ,s ‖u‖qλ .

Now for ζ ∈ (0,Λ∗), we obtain by Hölder inequality and the definition of Sλ,s that

ζ

∫
f (x) |u|q ≤ ζ |f |∞ |Ω|

1− q
p∗(s) Sλ,s

− q
2 ‖u‖qλ < φ (tmax) . (3.4)

It follows that there are t+
.
= t+ (u) > tmax > t−

.
= t− (u) such that

φ (t+) = ζ

∫
f (x) |u|q = φ (t−)

and

φ′ (t+) < 0 < φ′ (t−) .

Equivalently, we have t+u ∈ M− and t−u ∈ M+. Also J (t+u) ≥ J (tu), for any t ≥ t−

and J (t−u) ≤ J (tu) for any t ∈ [0, t+] .

Remark 3.2.4. Using a similar idea to Chapter 2, we can see graphically the behavior of

function φ defined in the Lemma 3.2.3. Consider t > 0 and define F̄ (u) =̇ ζ
∫
f(x)|u|q.

From (3.4), if ζ ∈ (0,Λ∗), then F̄ (u) < φ (tmax). For N+
√

Λ−λ√
Λ+
√

Λ−λ < q < 2, we have two

values t− and t+ (see Figure 3.1). If we consider other values for q, the behavior of

the function φ is quite different (see Figure 3.2). When q = 2, we have φ(t) = ‖u‖2λ −
tp−2

∫ |u|p
|x|s , limt→0± φ(t) = ±‖u‖2λ and limt→±∞ φu(t) = ∓∞, thus, since F̄ (u) < φ (tmax),

we have one value t+ > 0. When q > 2, we have φ(t) = t−(q−2)‖u‖2λ − tp−q
∫ |u|p
|x|s ,

limt→0± φ(t) = ∓∞ and limt→±∞ φ(t) = 0, thus for F̄ (u) > 0, we have one value t+ > 0.
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Figure 3.1: Behavior of the function φ

Figure 3.2: Behavior of the function φ for different values of q.
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Proposition 3.2.5. Assume 0 < ζ < Λ∗, 0 < λ < Λ − 4. Let (un)n∈N ⊂ M− be such

that un ⇀ u weakly in H1
0 (Ω) and J(un) −→ c but un does not converge strongly to u in

H1
0 (Ω). Then the following holds:

(i) c > J (t+ (u)u) in the case u 6= 0 and t+ (u) ≤ 1;

(ii) c ≥ J (t− (u)u) + 2−s
2(N−s)Sλ,s

N−s
2−s in the case u 6= 0 and t+ (u) > 1;

(iii) c ≥ 2−s
2(N−s)Sλ,s

N−s
2−s in the case u = 0.

Proof. Keep the expression of J in mind. Note that from un ⇀ u, we have∫
f (x) |un − u|q → 0 as n→∞.

We may assume that

‖un − u‖2λ → a2 and

∫
|un − u|p

∗(s)

|x|s
→ bp

∗(s),

for some a, b ∈ R. Since un does not converge strongly to u in H1
0 (Ω), we have a 6= 0. Set

r(t)
.
= J (tu) , β(t)

.
=
a2

2
t2 − bp

∗(s)

p∗(s)
tp
∗(s)

and θ (t)
.
= r(t) + β(t), then J (tun)→ θ (t) as n→ +∞. We consider three situations:

(i) Suppose u 6= 0 and t+ (u) ≤ 1. We use the notation as in the proof of Lemma 3.2.3.

For this u and

φ(t)
.
= t2−q

∫ (
|∇u|2 − λ

|x|2
u2

)
− tp∗(s)−q

∫
|u|p

∗(s)

|x|s
,

we have φ′ (t) < 0 for t > tmax. Therefore φ(1) ≤ φ(t+ (u)). From φ(t+ (u)) = ζ
∫
f (x) |u|q

and

r′(t) =
∂

∂t
J (tu) = tq−1

(
φ(t)− ζ

∫
f (x) |u|q

)
,

we obtain r′(1) ≤ 0. Since un ∈ M− for any n ∈ N, we have θ′(1) = 0. Thus β′(1) ≥ 0

and hence a2 − bp∗(s) ≥ 0. Hence β (t+ (u)) > 0 and

c ≥ θ(1) ≥ θ (t+ (u)) = J (t+ (u)u) + β (t+ (u)) > J (t+ (u)u) .

(ii) Suppose u 6= 0 and t+ (u) > 1. Firstly, from t+ (u) > 1 we claim that b 6= 0.

Indeed if b = 0 then, on one hand, from the proof of Lemma 3.2.3, we know that r′(t) < 0

for t > t+ (u) or t ∈ (0, t− (u)). On the other hand from θ′(1) = 0 and θ′′(1) ≤ 0, we have

that r′(1) = −a2 < 0 and r′′(1) ≤ −a2 < 0, which contradicts t+ (u) > 1. Thus we prove

that b 6= 0.

Denote

t∗
.
=
(
a2/b2

) 1
p∗(s)−2 .
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We know that β attains its maximum at t∗ and β′(t) > 0 for 0 < t < t∗ and β′(t) < 0 for

t > t∗. Therefore we obtain from Sλ,sb
2 ≤ a2 that

β(t∗) =

(
1

2
− 1

p∗(s)

)(
a2/b2

) p∗(s)
p∗(s)−2 ≥ 2− s

2(N − s)
Sλ,s

N−s
2−s .

Next, we show that t∗ ≤ t+ (u) . Suppose this is not the case, i.e., 1 < t+ (u) < t∗. As

0 > θ′(t) = r′(t) + β′ (t) for all t > 1, we have r′(t) ≤ −β′ (t) < 0 for t ∈ (1, t∗), which

contradicts 1 < t+ (u) < t∗ and r′(t+ (u)) = 0. We have shown that t∗ ≤ t+ (u). Hence we

obtain

c = θ (1) ≥ θ (t∗) = J (t∗u) + β (t∗) ≥ J (t− (u)u) +
2− s

2(N − s)
Sλ,s

N−s
2−s .

This implies that (ii) holds.

(iii) Suppose u ≡ 0. Since un ∈M− ⊂M , we have

∫ (
|∇u|2 − λ

|x|2
|un|2

)
=

∫
|un|p

∗(s)

|x|s
+ o(1).

Using the fact that

Sλ,s

(∫
|v|p

∗(s)

|x|s

) 2
p∗(s)

≤
∫ (
|∇v|2 − λ

|x|2
|v|2
)

for all v ∈ H1
0 (Ω) and v 6= 0, we obtain

c ≥ 1

2

∫ (
|∇u|2 − λ

|x|2
|un|2

)
− 1

p∗(s)

∫
|un|p

∗(s)

|x|s
+ o(1)

≥
(

1

2
− 1

p∗(s)

)∫ (
|∇u|2 − λ

|x|2
|un|2

)
+ o(1) ≥ 2− s

2(N − s)
S
N−s
2−s .

The proof is complete.

For ζ ∈ (0,Λ∗), denote

c0,f
.
= inf

u∈M+
J(u) and c1,f

.
= inf

u∈M−
J(u).

Remark 3.2.6. In the case of f ≡ 1, Bouchekif-Matallah [14] have proved that

c0,1 < 0 and c1,1 < c0,1 +
2− s

2(N − s)
Sλ,s

N−s
2−s , (3.5)

and c0,1 and c1,1 achieve their minimum at v0 and v1, respectively, i.e. c0,1 = J(v0) and

c1,1 = J(v1). Moreover, v0 and v1 are positive solutions of P2(λ, ζ, q, s, f) in the case of

f ≡ 1.
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3.2.1 Local behavior of the solution

Since we are facing with the singular term λ
|x|2u and a critical nonlinearity, to proceed

with, we need to use the exact local behavior for the solutions of the problem P2(λ, ζ, q, s, f)

to estimate the energy. We point out that Smets [111] has essentially proved that for any

positive solution u of P2(λ, ζ, q, s, f), there holds u ∈ Lr(Ω) for any r < 2∗
√

Λ√
Λ−
√

Λ−λ .

However from Chen [31] and Chen [34], we have the following refined result.

Proposition 3.2.7. Let 0 ≤ λ < Λ−4 and 0 ≤ s < 2. If u ∈ H1
0 (Ω) is a positive solution

of the problem P2(λ, ζ, q, s, f), then there holds

K1|x|−(
√

Λ−
√

Λ−λ) ≤ u(x) ≤ K2|x|−(
√

Λ−
√

Λ−λ), x ∈ Bρ(0)\{0} (3.6)

for ρ > 0 sufficiently small and some positive constants K1and K2.

3.2.2 Integral estimates

From Catrina et al [25] and Chou et al [43], we have that Sλ,s is achieved by a family

of functions with parameters ε > 0,

Uε(x) =

(
2εB(N−s)

A

) A
(2−s)

|x|A−B(ε+ |x|(2−s)
B
A )

N−2
2−s

(3.7)

where A =
√

Λ and B =
√

Λ− λ. Moreover, there holds∫
RN

(
|∇Uε|2 −

λ

|x|2
U2
ε

)
dx =

∫
RN

|Uε|p
∗
(s)

|x|s
dx = S

N−s
2−s
λ,s . (3.8)

For further details, see also Chen [31].

Next, choose δ2 > 0 such that B(0, 2δ2) ⊂ Ω and 2δ2 < ρ (ρ is as in Proposition 3.2.7).

Define a cut-off function ψ ∈ C2
0 (Ω) satisfying

ψ (x) =

{
1, |x| ≤ δ2,

0, |x| ≥ 2δ2,

|ψ (x)| ≤ 1, and |∇ψ (x)| ≤ C for some positive constant C. Denote uε (x) = ψ (x)Uε (x).

Using Proposition 3.2.7, we have the following integral estimates which will play an essen-

tial role in what follows.

Proposition 3.2.8. If 0 ≤ λ < Λ− 1, 1 < q < 2, 0 ≤ s < 2 and w ∈ H1
0 (Ω) is a positive

solution of P2(λ, ζ, q, s, f), then for ε small enough, there holds

‖uε‖2λ = S
N−s
2−s +O

(
ε
N−s
2−s
)
,

∫
uε
|x|s
≥ S

N−s
2−s −O

(
ε
N−s
2−s
)

(3.9)
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∫
|w|p

∗(s)−1 |uε|
|x|s

= O
(
ε
N−s

2(2−s)
)
,

∫
|uε|p

∗(s)−1 |w|
|x|s

= O
(
ε
N−s

2(2−s)
)

(3.10)

∫
|w|q−1 uε = O

(
ε
√

Λ
2−s

)
,

∫
|uε|q−1 |w| = O

(
ε

(q−1)
√

Λ
2−s

)
(3.11)

and

∫
|uε|q =



O

(
ε
q
√

Λ
2−s

)
, if 1 < q < N√

Λ+
√

Λ−λ ,

O

(
ε
q
√

Λ
2−s |ln ε|

)
, if q = N√

Λ+
√

Λ−λ ,

O

(
ε

(N−q
√

Λ)
√

Λ

(2−s)
√

Λ−λ

)
, if N√

Λ+
√

Λ−λ < q < 2.

(3.12)

Proof. For the proofs of (3.9) and (3.10) see Chen [31]. We use Proposition 3.2.7 to

estimate
∫
|w|q−1 uε. Hence, we get

∫
wq−1uε = K3ε

√
Λ

2−s +K

∫
B(0,δ2)

[
|x|q(

√
Λ−
√

Λ−λ)
(
ε+ |x|

(2−s)
√

Λ−λ√
Λ

)N−2
2−s
]−1

ε
√

Λ
2−sdx

= K3ε
√

Λ
2−s +K

∫ δ2

0

[
ρq(
√

Λ−
√

Λ−λ)
(
ε+ ρ

(2−s)
√

Λ−λ√
Λ

)N−2
2−s
]−1

ε
√

Λ
2−s ρN−1dρ.

Since −1 +N − q − q(
√

Λ−
√

Λ− λ)− 2
√

Λ− λ > −1, we get that

∫
B(0,δ2)

[
|x|q(

√
Λ−
√

Λ−λ)
(
ε+ |x|

(2−s)
√

Λ−λ√
Λ

)N−2
2−s
]−1

ε
√

Λ
2−sdx = O

(
ε
√

Λ
2−s

)
.

Therefore ∫
|w|q−1 uε = O

(
ε
√

Λ
2−s

)
.

The proofs of
∫
|uε|q−1 |w| dx and (3.12) are similar. We omit the details.

3.2.3 Existence of two nontrivial solutions

We will prove the existence of two nontrivial solutions for problem P2(λ, ζ, q, s, f),

following the same ideas in Bouchekif-Matallah [14]. The first solution is obtained using

the concentration-compactness method, introduced by Lions (see 1.1.15) and the second

solution by contradiction, applying the mountain pass theorem.
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Lemma 3.2.9. Suppose (H4)(ii) holds. If there exists a constant C ≡ C(N,Ω, q, s) > 0,

such that, for all sequences (un)n∈N in H1
0 (Ω) satisfying

J(un)→ c <
2− s

2(N − s)
S
N−s
2−s
λ,s − C (3.13)

and

J ′(un)→ 0 in H−1 (Ω) , (3.14)

then there exists a subsequence strongly convergent in H1
0 (Ω).

Proof. First we prove that the sequence (un)n∈N is bounded in H1
0 (Ω) and therefore un ⇀

u in H1
0 (Ω). In fact, for (un)n∈N in H1

0 (Ω) , we have

J(un) =
1

2

∫
(|∇un|2 −

λ

|x|2
|un|2)− ζ

q

∫
f |un|q −

1

p∗(s)

∫
|un|q

|x|s
(3.15)

= c+ o(1)

and

〈
J ′(un), un

〉
=

1

2

∫
(|∇un|2 −

λ

|x|2
|un|2)− ζ

∫
f |un|q −

∫
|un|q

|x|s
(3.16)

= o(1) ‖un‖ .

It follows from (3.15) and (3.16) that

J(un)− 1

2

〈
J ′(un), un

〉
=

(
1

p∗(s)
− 1

2

)∫
|un|q

|x|s
− ζ

(
1

q
− 1

2

)∫
f |un|q

= c+ o(1) ‖un‖

i.e. we have(
1

p∗(s)
− 1

2

)∫
|un|q

|x|s
= ζ

(
1

q
− 1

2

)∫
f |un|q + c+ o(1) ‖un‖

≤ ζ

(
1

q
− 1

2

)
|f |∞|Ω|1−

q
p∗(s)Sλ,s

−q
2 ‖un‖qλ + c+ o(1) ‖un‖ .

Then ∫
|un|q

|x|s
≤ ζ

(
1

q
− 1

2

)
|f |∞|Ω|1−

q
p∗(s)Sλ,s

−q
2 ‖un‖qλ + c+ o(1) ‖un‖ . (3.17)

On the other hand

c+ 0(1) ‖un‖ = J(un)

=
1

2

∫
(|∇un|2 −

λ

|x|2
|un|2)− ζ

q

∫
f |un|q −

1

p∗(s)

∫
|un|q

|x|s

≥ 1

2
‖un‖qλ −

ζ

q
|f |∞|Ω|1−

q
p∗(s)Sλ,s

−q
2 ‖un‖qλ −

1

p∗(s)

∫
|un|q

|x|s
. (3.18)
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Then by (3.17) and (3.18) imply that (un)n∈N is bounded in H1
0 (Ω). Therefore going if

necessary to a subsequence we may assume that

un ⇀ σ in H1
0 (Ω),

un → σ a.e. in Ω,

un → σ in Lt(Ω), 1 ≤ t < 2∗,

un ⇀ σ in L2(Ω, |x|−2dx),

un ⇀ σ in Lp
∗(s)(Ω, |x|−sdx).

(3.19)

Denote vn = un − σ, then Brezis-Lieb Lemma (see Costa [46]) implies that∫
|∇un|2 =

∫
|∇vn|2 +

∫
|∇σ|2 + o(1),

∫
λ

|x|2
u2
n =

∫
λ

|x|2
v2
n +

∫
λ

|x|2
σ2 + o(1),

∫
u2
n

|x|s
=

∫
v2
n

|x|s
+

∫
σ2

|x|s
+ o(1),

and 〈J ′(σ), φ〉 = 0 for any φ ∈ H1
0 (Ω). That is σ ∈ H1

0 (Ω) is a weak solution of the problem

P2(λ, ζ, q, s, f). From concentration compactness principle 1.1.15 and the Hardy-Sobolev

inequality, we get a subsequence still denoted by (un)n∈N, an at most countable set D, a

set of distinct points (xj)j∈D ⊂ Ω and sets of nonnegative numbers (ûj)j∈D and (v̂j)j∈D

such that:

(a) |∇un|2 − λ |un|
2

|x|2 ⇀ û ≥ |∇σ|2 − λ |σ|
2

|x|2 +
∑
j∈D

ûjδxj ;

(b) |un|
p∗(s)

|x|s ⇀ v̂ = |σ|p
∗(s)

|x|s +
∑
j∈D

v̂jδxj ;

(c) v̂
2

p∗(s)
j ≤ S−1

λ,sûj

for all j ∈ D. Here δxj is the Dirac mass at x. We assume that there exists some j ∈ D
such that ûj 6= 0. Let ε > 0 and Ψ be a cut-off function centered at xj with

Ψ(x)
.
=

{
1, if |x− xj | ≤ 1

2ε,

0, if |x− xj | ≥ ε,

and |∇Ψ| ≤ 4
ε . Then 〈J ′(un),Ψun〉 → 0, i.e.

0 = lim
ε→0

lim
n→∞

〈
J ′(un),Ψun

〉
= lim

ε→0
lim
n→∞

∫ (
|∇un|2Ψ + un∇un∇Ψ− λ

|x|2
u2
nΨ− ζf(x) |un|q Ψ− |un|

p∗(s) Ψ

|x|s

)
dx

≥ ûj − v̂j
≥ ûj − S−p

∗(s)/2
λ,s û

p∗(s)/2
j .
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Thus û
2−p∗(s)

2
j ≤ S−p

∗(s)/2
λ,s and since 2−p∗(s)

2 < 0, we have

S
p∗(s)/p∗(s)−2
λ,s = S

N−s/2−s
λ,s ≤ ûj .

Therefore ûj = 0 or ûj ≥ SN−s/2−sλ,s .

From (3.13) and (3.14) we have

J (un)− 1

p∗(s)
〈J ′ (un) , un〉

=
1

2

∫ (
|∇un|2 −

λ

|x|2
|un|2

)
− ζ

q

∫
f |un|q −

1

p∗(s)

∫
|un|p

∗(s)

|x|s

− 1

p∗(s)

∫ (
|∇un|2 −

λ

|x|2
|un|2

)
− ζ 1

p∗(s)

∫
f |un|q −

1

p∗(s)

∫
|un|p

∗(s)

|x|s

=

(
1

2
− 1

p∗(s)

)∫ (
|∇un|2 −

λ

|x|2
|un|2

)
− ζ

(
1

q
− 1

p∗(s)

)∫
f |un|q

=
2− s

2 (N − s)
‖un‖2λ − ζ

(
1

q
− 1

p∗(s)

)∫
f |un|q .

Using (3.4), we obtain

J (un)− 〈J
′ (un) , un〉
p∗(s)

≥ 2− s
2 (N − s)

‖un‖2λ − ζ
(

1

q
− 1

p∗(s)

)
|f |∞ |Ω|

1− q
p∗(s) Sλ,s

− q
2 ‖un‖qλ

≥ 2− s
2 (N − s)

‖un‖2λ − ζ
(

1

q
− 1

p∗(s)

)
C̄ ‖un‖qλ

Thus there exists C ≡ C(N,Ω, q, s) such that

2− s
2 (N − s)

t2 − ζ
(

1

q
− 1

p∗(s)

)
C̄tq ≥ −Cζ

2
2−q

for all t ≥ 0. If we assume that ûj 6= 0 for some j ∈ D, then

c ≥ 2− s
2 (N − s)

S
N−s/2−s
λ,s +

2− s
2 (N − s)

‖σ‖2λ − ζ
(

1

q
− 1

p∗(s)

)∫
fσq

≥ 2− s
2 (N − s)

S
N−s/2−s
λ,s − Cζ

2
2−q ,

which contradicts our assumption (3.13). Consequently

ûj = 0 for all j ∈ D and un −→ σ strongly in H1
0 (Ω) as n goes to +∞.

Remark 3.2.10. Using (3.4), the Sobolev and Hardy inequalities we have

J(u) ≥ 1

2
‖u‖2λ −

1

q
ζc1 ‖u‖qλ −

1

p∗(s)
c2 ‖u‖p

∗(s)
λ
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Let ρ = ‖u‖λ. By the above inequality, we can choose two positive constants ρ0 and Λ,

such that, for ζ ∈ (0,Λ∗), J(u) is bounded from below in B0(ρ0) (the ball centered at 0

with radius ρ0) and J(u) ≥ r > 0 for ‖u‖λ = ρ0. Let φ ∈ H ‘
0 (Ω) such that ‖u‖λ = 1.

Then, for t > 0, we have

J(tφ) =
1

2
t2 − ζtq

q

∫
φq − tp

∗(s)

p∗(s)

∫
φp
∗(s)

|x|(s)

Thus, there is t0 ≤ ρ0 such that J(tφ) < 0 for 0 < t < t0. then

c0, f = inf J(µ)
u∈B0(ρ0)

< 0.

The above Lemma, implies that J can achieves its minimun c0,f at the function σ = w0

i.e., c0,f = J(w0).

Let w0 be as before and define w1 = w0 + v with v > 0 in H1
0 (Ω). We have

−∆v − λv

|x|2
= ζf (x) |w0 + v|q−2 (w0 + v)− ζf (x) |w0|q−2w0

+
|w0 + v|p

∗(s)−2 (w0 + v)

|x|s
− |w0|p

∗(s)−2w0

|x|s

Let us define the map gζ : Ω× R→ R for ζ > 0 by

gζ (x, t) =


ζf (x) |w0 + t|q−2 (w0 + t)− ζf (x) |w0|q−2w0

+ |w0+t|p
∗(s)−2(w0+t)
|x|s − |w0|p

∗(s)−2w0

|x|s , if t ≥ 0;

0, if t < 0;

Define also

Gζ (x, v)
.
=

v∫
0

gζ (x, t) dt

and

J̄ (v)
.
=

1

2
‖v‖2λ −

∫
Gζ
(
x, v+ (x)

)
=

1

2

∫ (
|∇v|2 −

∫
λ

|x|2
v2

)
−
∫
Gζ
(
x, v+ (x)

)
.

Lemma 3.2.11. The origin v = 0 is a local minimum of J̄ .

Proof. Since w0 is a local minimum of J , there exists ε1 > 0, such that J(w0) ≤ J(w0 +v),

for all ‖w0 + v − w0‖ ≤ ε1, v ∈ H1
0 (Ω). On the other hand ‖v+‖ ≤ ‖v‖ ≤ ε1 for all

v ∈ H1
0 (Ω). Thus

J̄(v) = J(w0 + v+)− J(w0) ≥ 0.

Therefore 0 = J̄(0) ≤ J̄(v), for all v such that ‖v‖ ≤ ε1. Then simply choose ε > 0 such
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that 0 < ε ≤ ε1 and we obtain J̄(0) = 0 ≤ J̄(v), for all v such that ‖0− v‖ ≤ ε.

Now, we prove the existence of a second solution of problem P2(λ, ζ, q, s, f).

Lemma 3.2.12. If v ≡ 0 is the only critical point of J̄ , then J̄ satisfies the (PS)c-condition

for any c < 2−s
2(N−s)S

N−s/2−s
λ,s .

Proof. Let (vn)n∈N be a sequence in H1
0 (Ω), such that{

J̄(vn) → c with c < 2−s
2(N−s)Sλ,s

N−s/2−s,

J̄ ′(vn) → 0 in H−1(Ω) as n→∞.
(3.20)

Hence, (vn)n∈N is bounded in H1
0 (Ω). Now, we prove that vn → 0 ∈ H1

0 (Ω). Since vn is

bounded in H1
0 (Ω), we can assume, if necessary passing to a subsequence, that

vn ⇀ v in H1
0 (Ω),

vn → v a.e in Ω,

vn → v in Lt(Ω), 1 < t < 2∗

vn → v in Lr(Ω, |x|−sdx), 2 ≤ r < p∗(s)

(3.21)

From the assumptions, we have that v ≡ 0. On the other hand, from the definition of the

functional J̄ , we have

〈
J̄ ′(vn), w0 + vn

〉
=

∫
∇vn∇ (w0 + vn)−

∫
λ

|x|2
vn (w0 + vn) + o (1) (3.22)

−ζ
∫
f (x) (w0 + v)q−2 (w0 + vn)− ζ

∫
f (x)w0 (w0 + vn)

+

∫
1

|x|s
(
w0 + v+

)p∗(s)−2
(w0 + vn)−

∫
w0

p∗(s)−2 (w0 + vn) .

=

∫
∇vn∇w0 +

∫
∇v2

n −
∫

λ

|x|2
vnw0 −

∫
λ

|x|2
v2
n + o (1)

−ζ
∫
f (x)

(
w0 + v+

)q−2
(w0 + vn)− ζ

∫
f (x)w0

q−2w0

−ζ
∫
f (x)w0

q−2vn −
∫

1

|x|s
(
w0 + v+

)p∗(s)−2
(w0 + vn)

−
∫

1

|x|s
(w0)p

∗(s)−2w0 −
∫

1

|x|
(w0)p

∗(s)−2 vn.

Since w0 is a solution and vn ∈ H1
0 (Ω), we have∫

∇w0∇vn −
∫

λ

|x|2
w0vn −

∫
ζf (x) |w0| q−2w0vn −

∫
|w0| p

∗(s)−2w0vn
|x|s

= 0.

Thus, since vn → v ≡ 0 in Lr (Ω) and Lr
(
Ω, |x|−s dx

)
for 2 ≤ r < p∗(s), then

∫
∇w0∇vn −

∫
λ

|x|2
w0vn = ζ

∫
f (x) |w0|q−2w0vn −

∫
|w0| p

∗(s)−2w0v

|x|s
→ 0. (3.23)
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Moreover vn → v ≡ 0 in Lt (Ω), 1 < t < 2∗ then

ζ

∫
f (x) (w0 + vn)q−2 (w0 + v+

n

)
= ζ

∫
f (x) |w0|q−2w0 + o (1) (3.24)

and

ζ

∫
f (x)w0

q−2
(
w0 + v+

n

)
= ζ

∫
f (x)w0

q−2w0 + o (1) .

Then substituting (3.23), (3.24) in (3.22) and using Ghoussoub-Yuan’s relation∫
|w0 + v+

n |2
∗

|x|s
−
∫
|w0|p

∗(s)

|x|s
=

∫
|v+
n |p

∗(s)

|x|s
+ o(1), (3.25)

we have 〈
J̄ ′(vn), w0 + vn

〉
=

∫
∇v2

n −
∫

λ

|x|2
v2
n −

∫
Ω

(v+
n )

p∗(s)

|x|s
+ o (1) .

Thus
〈
J̄ ′(vn), w0 + vn

〉
→ 0 as n→∞. We can assume that exists d ≥ 0 such that

‖vn‖2λ → d and

∫
|v+
n |p

∗(s)

|x|s
→ d, when n→∞.

If d 6= 0, by using the fact, that

Sλ,s

(∫
|v+
n |p

∗(s)

|x|s

) 2
p∗(s)

≤
∫ (
|∇vn|2 −

λ

|x|2
|vn|2

)

for all vn ∈ H1
0 (Ω), we obtain that d ≥ SN−s/(2−s)λ,s . Thus

c = o(1) + J̄(vn)

=
1

2
‖vn‖2λ −

1

p∗(s)

∫
|v+
n |p

∗(s)

+|x|s
+ o(1)

> 1/2d− 1

2∗
d

≥ 2− s
2(N − s)

S
N−s/2−s
λ,s ,

which contradicts the assumption c < 2−s
2(N−s)S

N−s/(2−s)
λ,s . Therefore d = 0 and the proof

is complete.

Let

vε (x)
.
= Ψ (x)Uε

(∫
|Ψ (x)Uε|p

∗(s)

|x|s

)−1/p∗(s)

with 0 ≤ Ψ (x) ≤ 1, Ψ (x) = 1 for |x| ≤ ρ, Ψ (x) = 0 for |x| ≥ 2ρ, where ρ is chosen as in

Proposition 3.2.7 and Ψ (x) ∈ C∞0 (Ω).
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Lemma 3.2.13. If (H4) hold, we have sup
t≥0

J̄(tvε) <
2−s

2(N−s)S
N−s
2−s
λ,s .

Proof. Recall the elementary inequality, for p > 1 and a, b ≥ 0,

(a+ b)p ≥ ap + bp + pap−1b.

Then, we have

gζ(x, vε) = ζf (x) |w0 + vε|q−2 (w0 + vε)− ζf (x) |w0|q−2w0

+
|w0 + vε|p

∗(s)−2 (w0 + vε)

|x|s
− |w0|p

∗(s)−2w0

|x|s

≥ v
+p∗(s)−1
ε

|x|s
+ (p∗(s)− 1)

|w0|p
∗(s)−2

|x|s
v+
ε .

and

Gζ (x, tvε) ≥
tp
∗(s)

p∗(s)

v
+p∗(s)
ε

|x|s
+

(p∗(s)− 1)t2

2

|w0|p
∗(s)−2

|x|s
(
v+
ε

)2
.

Since w0 ∈ H1
0 (Ω) is a positive solution of problem P2(λ, ζ, q, s, f), by the Proposition

3.2.7, we have

w0 (x) ≥ K1 |x|−(
√

Λ−
√

Λ−λ) , x ∈ Bρ(0)\ {0} ,

for ρ > 0 sufficiently small and

(p∗(s)− 1)
|w0|p

∗(s)−2

|x|s
≥ (p∗(s)− 1)K1

|x|−(
√

Λ−
√

Λ−λ)

|x|s
≥ K̄1 > 0.

Note that
∫
v
p∗(s)
ε
|x|s = 1 and

J̄(tvε) =
t2

2
‖vε‖2λ −

∫
Gζ (x, tvε)

≤ t2

2
‖vε‖2λ −

∫
tp
∗(s)

p∗(s)

v
p∗(s)
ε

|x|s
+

∫
(p∗(s)− 1)t2

2

|w0|p
∗(s)−2 v+

ε

|x|s

=
t2

2
‖vε‖2λ −

tp
∗(s)

p∗(s)
− K̄1t

2

2

∫
v2
ε .

Let

βε (t) =
t2

2
‖vε‖2λ −

tp
∗(s)

p∗(s)
− K̄1t

2

2

∫
v2
ε .

Then

β′ε (t) = t

[
‖vε‖2λ − t

p∗(s)−2 − K̄1

∫
v2
ε

]
.

Thus, from β′ε (t) = 0, we have

tε =

[
‖vε‖2λ − K̄1

∫
v2
ε

] 1
p∗(s)−2
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with

max
t≥0

β (t) = β (tε) .

So

J̄(tvε) ≤ β (tε)

=
1

2

[
‖vε‖2λ − K̄1

∫
v2
ε

] 2
p∗(s)−2

‖vε‖2λ −
1

p∗(s)

[
‖vε‖2λ − K̄1

∫
v2
ε

] p∗(s)
p∗(s)−2

−1

2

[
‖vε‖2λ − K̄1

∫
v2
ε

] 2
p∗(s)−2

K̄1

∫
v2
ε

=
1

2

[
‖vε‖2λ − K̄1

∫
v2
ε

] 2
p∗(s)−2

[
‖vε‖2λ − K̄1

∫
v2
ε

]

− 1

p∗(s)

[
‖vε‖2λ − K̄1

∫
v2
ε

] p∗(s)
p∗(s)−2

=
1

2

[
‖vε‖2λ − K̄1v

2
ε

] p∗(s)
p∗(s)−2 − 1

p∗(s)

[
‖vε‖2λ − K̄1

∫
v2
ε

] p∗(s)
p∗(s)−2

=

(
1

2
− 1

p∗(s)

)
1

2

[
‖vε‖2λ − K̄1

∫
v2
ε

] p∗(s)
p∗(s)−2

and using the estimates from Proposition 3.2.8, we have

J̄(tvε) =

(
1

2
− 1

p∗(s)

)
1

2

[
‖vε‖2λ − K̄1

∫
v2
ε

] p∗(s)
p∗(s)−2

=

(
1

2
− 1

p∗(s)

)
S
N−s
2−s +O(ε

N−s
2−s )O(ε

(N−q
√

Λ)
√

Λ

2−s
√

Λ−λ ).

If N√
Λ+
√

Λ−λ < q < 2, we get

sup
t≥0

J̄(tvε) <
2− s

2(N − s)
S
N−s
2−s .

Consider the following minimax value

c̄ =̇ inf
γ∈Γ

sup
0≤t≤1

J̄(γ(t)),

where

Γ =̇

{
γ ∈ C([0, 1], H1

0 (Ω)) : γ(0) = 0, γ(1) = kvε

}
with suitable ε and k.
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Proposition 3.2.14. If (H4) hold, the minimum c0,f and c1,f are achieved by w0 and w1

respectively. Moreover, w0 and w1 are positive solutions of P2(λ, ζ, q, s, f).

Proof. From Lemma 3.2.9 J achieves its minimum c0,f at w0 and from Remark 3.2.10, w0

is a positive solution of P2(λ, ζ, q, s, f). From Lemma 3.2.11, v ≡ 0 is a local minimizer of

J̄ , then there exists a sufficiently small positive number ρ such that J̄(v) > 0 for ‖v‖λ =

ρ.

Since J̄(tvε) → −∞ as t → ∞, then there exists T > 0 such that ‖Tvε‖λ > ρ > 0

and J̄(tvε) < 0. For c̄ < 2−s
2(N−s)S

N−s
2−s
λ,s , (PS)c-condition is satisfied by (3.2.12), then we

conclude by (3.2.13) that

c̄ ≤ sup
t≥0

J̄(Tvε) ≤ sup
t≥0

J̄(tvε) <
2− s

2(N − s)
S
N−s
2−s
λ,s .

Hence applying the mountain pass theorem whenever c̄ > 0 and the Ghoussoub-Preiss

version whenever c̄ = 0 (see Ghoussoub-Preiss [61]), we obtain a nontrivial critical point

v of J̄ . Set w1 = w0 + v+, then w1 is a critical point of J and w1 > w0 > 0 in Ω.

3.2.4 Existence of sign-changing solutions

We define two subsets of M− as

M1
− =̇ {u ∈M : u+ ∈M−} and M2

− =̇ {u ∈M : −u− ∈M−},

where u+ =̇ max{0, u}, u− =̇ max{0,−u} and u = u+ − u−. Set M−∗ =̇ M−1 ∩M
−
2 and

c2 =̇ inf
u∈M−∗

J(u). (3.26)

We prove that c2 is achieved by some w2 ∈ M−∗ which must be a sign-changing solu-

tion of problem P2(λ, ζ, q, s, f). Since the associated functional of this problem is odd with

respect to u, we have that −w2 is also a sign-changing solution. In order to solve the min-

imization problem (3.26), we combine some ideas from Tarantello [119] and the methods

recently developed in Castro-Cossio-Neuberger [24], Chen-Rocha [42] and Hirano-Shioji

[71].

Lemma 3.2.15. If (H4) hold,

c2 < c1,f +
2− s

2(N − s)
S
N−s
2−s
λ,s .

Proof. In the first place, we prove that M−∗ 6= ∅. To see this it suffices to prove that there

is r0 and τ0 such that

r0(uε − r0w1)+ ∈M−and − r0(uε − r0w1)− ∈M−, (3.27)

where w1 is a positive solution of P2(λ, ζ, q, s, f) with J(w1) = c1,f .
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Denote

τ2 = max
Ω̄\{0}

uε
w1

and τ1 = min
Ω̄\{0}

uε
w1
. (3.28)

Then, from Proposition 3.2.7, τ1 and τ2 are finite. For any given τ ∈ (τ1, τ2), we obtain

from Lemma 3.2.3 that there are positive values r+(τ) and r−(τ) such that

r+(τ)(uε − τw1)+ ∈M− and − r−(τ)(uε − τw1)− ∈M−. (3.29)

Note that r+ is continuous with respect to τ and satisfies

limτ→τ+
1
r+(τ) = t+(uε − τ1w1)+ < +∞ and limτ→τ−2

r+(τ) = +∞. (3.30)

Similarly, r− is continuous with respect to τ ,

limτ→τ+
1
r−(τ) = +∞ and limτ→τ−2

r−(τ) = t+(uε − τ2w1)+ < +∞. (3.31)

The continuity of r±(τ) imply that there is τ0 ∈ (τ1, τ2) such that

r+(τ0) = r−(τ0) = τ0 > 0.

Therefore M−∗ 6= ∅. In the second place, we estimate c2. From the previous proof, we only

need to estimate J(ruε − tw1) for r ≥ 0 and t ∈ R. By the structure of J , we find R1 > 0

large enough such that J(ruε− tw1) ≤ c1 for all r2 + t2 ≥ R2
1. Thus it suffices to estimate

J(ruε − tw1) for all r2 + t2 ≤ R2
1. Recalling the elementary inequality

|a1 + a2|m ≥ |a1|m + |a2|m −K(|a1|m−1 |a2|+ |a1| |a2|m−1), ∀a1,a2 ∈ R, m > 1

we have from Proposition 3.2.8 and the assumption on q that

J (ruε − tw1) ≤ J (ruε) + J (tw1)− rtζ1

∫
w1u

q−1
ε − rt

∫
u
p∗(s)−1
ε w1

|x|s
+

+K

∫
|ruε|p

∗(s)−1 |tw1|
|x|s

+K

∫
|ruε| |tw1|p

∗(s)−1

|x|s
+

+K

∫
|rw1|q−1 |tuε|+K

∫
|tuε|q−1 |rw1|

≤ J (rw1) + J (tuε) +O

(
ε
√

Λ
2−s

)
+O

(
ε

(q−1)
√

Λ
2−s

)
= J (rw1) + J (tuε) +O

(
ε

(q−1)
√

Λ
2−s

)
.

Writing ϕ(r)
.
= J(ruε) + ζ

q

∫
f(x)|ruε|q, we have that

ϕ(r) =
r2

2

∫ (
|∇uε|2 −

λ

|x|2
u2
ε

)
dx− rp

∗
(s)

2p∗(s)

∫
up
∗
ε (s)

|x|s
dx
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attains its maximum at Tmax =

(
‖uε‖2λ/

∫ up
∗
ε (s)
|x|s

) 1
p∗(s)−2

and there is T+ > Tmax such

that ∂J
∂r (T+uε) = 0. It follows from (3.12) that

max
r>0

J (ruε) ≤ ϕ(Tmax)− T qmax

q
K4

∫
|uε|q

≤ 2− s
2(N − s)

Sλ,s
N−s
2−s −K4

∫
|uε|q

≤ 2− s
2(N − s)

Sλ,s
N−s
2−s −O

(
ε

(N−q
√

Λ)
√

Λ

(2−s)
√

Λ−λ

)
.

In here we have used the assumption on q and the integral estimates in Proposition 3.2.8

to compare the error order of ε. Thus we can say that, for ε > 0 sufficiently small,

max
r>0,t∈R

J (ruε − tw1)

≤ max
r>0

J (ruε) + max
t∈R

J (tw1) +O

(
ε

(q−1)
√

Λ
2−s

)
−O

(
ε

(N−q
√

Λ)
√

Λ

(2−s)
√

Λ−λ

)
≤ c1,f +

2− s
2(N − s)

Sλ,s
N−s
2−s

(
since

N +
√

Λ− λ√
Λ +
√

Λ− λ
< q < 2

)
.

The proof is complete.

Proposition 3.2.16. If (H4) hold and ζ ∈ (0,Λ∗), then there is w2 ∈ M−∗ such that

J(w2) = c2 and w2 is a sign-changing solution of problem P2(λ, ζ, q, s, f).

Proof. In the first step, we prove that there is w2 ∈ M−∗ such that J(w2) = c2. Let

(un)n∈N ⊂ M−∗ be such that J(un) → c2. Using the fact that (u+
n )n∈N ⊂ M− and by the

Hardy-Sobolev inequality, one has

0 < inf ‖u+
n ‖λ ≤ sup ‖u+

n ‖λ < +∞.

Similarly, we have ‖u−n ‖λ is bounded with respect to n. Going if necessary to a subse-

quence, we may assume that u+
n ⇀ u+ and u−n ⇀ u− in H1

0 (Ω) and that J(u+
n ) → d1,

J(u−n )→ d2 with c2 = d1 + d2.

We claim that u+ 6≡ 0 and u− 6≡ 0. By Proposition 3.2.5, we have that

(a) If u+ = 0 and u− = 0, then

d1 ≥
2− s

2(N − s)
S
N−s
2−s
λ,s , d2 ≥

2− s
2(N − s)

S
N−s
2−s
λ,s and hence c2 ≥

2− s
2(N − s)

S
N−s
2−s
λ,s ;

(b) If u+ = 0 and u− 6= 0, then

d1 ≥
2− s

2(N − s)
S
N−s
2−s
λ,s , d2 ≥ c1,f or d2 ≥ c0,f +

2− s
2(N − s)

S
N−s
2−s
λ,s ,
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which implies that

c2 ≥ c1,f +
2− s

2(N − s)
S
N−s
2−s
λ,s or c2 ≥ c0,f +

2− s
2(N − s)

S
N−s
2−s
λ,s ;

(c) If u+ 6= 0 and u− = 0, then

c2 ≥ c1,f +
2− s

2(N − s)
S
N−s
2−s
λ,s or c2 ≥ c0,f +

2− s
2(N − s)

S
N−s
2−s
λ,s .

All the above three cases contradict (3.5) and the Lemma 3.2.15. Therefore u+ 6≡ 0

and u− 6≡ 0. According to (1) and (2) of Proposition 3.2.5, we have one of the following:

(i) (u+
n )n∈N converges strongly to u+;

(ii) d1 > J(t+(u+)u+);

(iii) d1 > J(t−(u+)u+) + 2−s
2(N−s)S

N−s
2−s
λ,s ;

and we also have one of the following:

(iv) (u−n )n∈N converges strongly to u−;

(v) d2 > J(−t+(−u−)u−);

(vi) d2 > J(−t−(−u−)u−) + 2−s
2(N−s)S

N−s
2−s
λ,s .

We will prove that only cases (i) and (iv) hold. For example, in the situation (ii)+(v),

we have

t+(u+)u+ − t+(−u−)u− ∈M−∗

and, hence

c2 ≤ J(t+(u+)u+ − t+(−u−)u−)

= J(t+(u+)u+) + J(−t+(−u−)u−)

≤ d1 + d2 = c2.

which is a contradiction. Case (iii) + (vi), we have t−(u+)u+ − t−(−u−)u− ∈ M+ and

hence

c1,f +
2− s

2(N − s)
Sλ,s

N−s
2−s < c0,f +

2− s
2(N − s)

Sλ,s
N−s
2−s

≤ J(t−(u+)u+ − t−(−u−)u−) +
2− s

2(N − s)
Sλ,s

N−s
2−s

= J(t−(u+)u+) + J(t−(u−)u−) +
2− s

2(N − s)
Sλ,s

N−s
2−s

≤ d1 + d2 = c2,

which contradicts Lemma 3.2.15. Case (ii) + (vi), we have

t+(u+)u+ − t−(−u−)u− ∈M− and hence

c1,f +
2− s

2(N − s)
S
N−s
2−s ≤ J(t+(u+)u+ + t−(u−)u−) +

2− s
2(N − s)

Sλ,s
N−s
2−s < d1 + d2 = c2,
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which again contradicts Lemma 3.2.15. If (i) and (v) hold, then u+ − t+(−u−)u− ∈ M−∗
and hence

c2 ≤ J(u+ − t+(−u−)u−) < d1 + d2 = c2,

which is also a contradiction. For other situations (i)+(vi), (ii)+(iv), (iii)+(v), (iii)+(iv),

we can get a contradiction by a similar argument. Therefore we proved that only (i)+(iv)

hold. Hence both (u+
n )n∈N and (u−n )n∈N converge strongly to u+ and u−, respectively and

u+, u− ∈M−. Denote w2 = u+ − u−. Therefore, J(w2) = c2.

Next we show that w2 is a critical point of J . Suppose that w2 is not a critical point of

J , i.e. ∇J(w2) 6= 0. Denote

Q(u)
.
= ‖u‖2λ − ζ

∫
f(x) |u|q −

∫
up
∗(s)

|x|s
.

Note that for u ∈M−, we have

〈∇Q(u), u〉 = (2− q) ‖u‖2λ − (p∗(s)− q)
∫
up
∗(s)

|x|s
< 0.

Hence, we can define

V (u)
.
= ∇J(u)−

〈
∇J(u),

∇Q(u)

‖∇Q(u)‖λ

〉
∇Q(u)

‖∇Q(u)‖λ
, u ∈M−,

Choose δ ∈ (0, 1
3 min{‖u+‖λ, ‖u−‖λ}) such that ‖V (v) − V (w2)‖λ ≤ 1

2‖V (w2)‖λ for each

v ∈M− with ‖v − w2‖λ ≤ 2δ. Let ψ : M− → [0, 1] be a Lipschitz mapping such that

ψ(v) =

{
1 for v ∈M− with ‖v − w2‖λ ≤ δ,
0 for v ∈M− with ‖v − w2‖λ ≥ 2δ,

Let η : [0, s0]×M− → R be the solution of the differential equation Cauchy problem

η(0, v) = v,
d

ds
η(s, v) = −ψ(η(s, v)))V (η(s, v)) (3.32)

for some positive number s0 and (s, v) ∈ [0, s0]×M−. We set

χ(t)
.
= t+((1− t)u+ − tu−)((1− t)u+ − tu−) and ξ(t)

.
= η(s0, χ(t)),

for 0 ≤ t ≤ 1. Keep the definition of u+ = max{u, 0} and u− = max{−u, 0} in mind. We

have that if t ∈ (0, 1
2) ∪ (1

2 , 1) then

J(ξ(t)) = J(η(s0, χ(t)))

≤ J(η(0, χ(t)))

= J(χ(t)) = J(χ(t)+) + J(χ(t)−) < J(u+) + J(u−) = J(w2).
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and

J

(
ξ(

1

2
)

)
< J

(
χ(

1

2
)) = J(w2

)
.

Therefore J(ξ(t)) < J(w2) for t ∈ (0, 1).

Since

t+(ξ(t)+)− t+(−ξ(t)−) = η(s0, t+(χ(t)+)− t+(−χ(t)−))→ −∞

as t→ 0 from the right hand side and

t+(ξ(t)+)− t+(−ξ(t)−) = η(s0, t+(χ(t)+)− t+(−χ(t)−))→∞

as t→ 1− 0, we get a t1 ∈ (0, 1) such that t+(ξ(t1)+) = t+(−ξ(t1)−). So

ξ(t1) = ξ(t1)+ − ξ(t1)− ∈M−∗ and J(ξ(t1)) < J(w2), which is a contradiction. Hence,

it is true that ∇J(w2) = 0.

We are now ready for the multiplicity theorem of problem P2(λ, ζ, q, s, f).

Theorem 3.2.17. If (H4) hold, then P2(λ, ζ, q, s, f) has at least two positive solutions

and at least one pair of sign-changing solutions in H1
0 (Ω) for ζ ∈ (0,Λ∗).

Proof. By Proposition 3.2.14, we know that problem P2(λ, ζ, q, s, f) has two positive so-

lutions w0 and w1. It is deduced from Proposition 3.2.16 that P2(λ, ζ, q, s, f) possesses a

sign-changing solution w2. Since P2(λ, ζ, q, s, f) is odd with respect to u, we know that

−w2 is an additional sign-changing solution of P2(λ, ζ, q, s, f).



Chapter 4

Existence of solutions for a class of

singular equations in Lorentz

space

Let Ω ⊂ RN be a bounded domain with smooth boundary and satisfying the uniform

exterior sphere condition. In this chapter, we study the existence of solutions u ∈W 1,p
0 (Ω)

for the Dirichlet nonlinear problem P3(ψ, a, f):{
−div(ψ(x, u(x),∇u(x))) + a(x)u(x) = f(x) in Ω,

u(x) = 0 on ∂Ω,
(4.1)

where 2 ≤ p < N , Ψ(u) = −div(ψ(x, u(x),∇u(x))) is a Leray-Lions operator, a ∈ L∞loc(Ω)

with a(x) ≥ 0 for all x ∈ Ω, and f ∈ Lq,q1(Ω) is a function in a Lorentz space with suitable

exponents q and q1.

As we have mention before, Problem P3(ψ, a, f) has a difficulty since a ∈ L∞loc(Ω), so

the standard definition of weak solution may not make sense (i.e. with test functions in

W 1,p
0 (Ω)). Therefore, it is necessary to introduce a special notion of weak solution in-

volving open subsets of Ω. Moreover, we study an approximation problem P (Ωn), where

Ωn ⊂ Ω is suitably defined for each n ∈ N. Then, we prove that there exists a solution

of P (Ωn) for each n ∈ N and that the sequence of solutions converges to the solution of

problem P3(ψ, a, f).

Our approach combines a surjectivity result for monotone, coercive and radially con-

tinuous operators with special properties of Leray-Lions operators. In this chapter, we

prove that if f ∈ Lq,q1(Ω) (q < q1), then there exists (at least) one solution u in the space

W 1,p
0 (Ω) ∩ Lr,s(Ω) with suitable exponents r and s. Moreover we find an estimate for the

solution. We also prove the uniqueness of the solution under some conditions.

83
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The structure of this chapter is the following: In the Section 4.1, we present relevant

results of particular cases of our problem. In the Section 4.2, we prove the existence of

solution for the problem with a linear operator. In the Section 4.3, we prove an existence

result for the nonlinear case, in three steps: existence, uniqueness and estimate for the

solution. The results obtained in this chapter are related to the work of Huang-Murillo-

Rocha in [73].

4.1 Previous results

The commom framework for elliptic problems are Sobolev spaces. Problems with

terms defined in Lorentz spaces are considerably less common, mainly because the use of

non-increasing rearrangements in their definition limits the application of several standard

techniques. However the embedding of the Sobolev space W 1,p
0 (Ω) into a Lorentz space

improves the standard Sobolev embedding into a Lebesgue space. So in some sense, the

results on elliptic equations and system may be improved using Lorentz spaces.

To continuation, we present some interesting results in Lorentz spaces. Consider the

degenerate linear version of problem P3(ψ, a, f) without singularity, i.e. a ≡ 0 and the

Leray-Lions operator ψ(x, ξ) = M(x)ξ, where M is a symmetric matrix in L∞(Ω)N×N

satisfying the ellipticity condition, i.e. there exists α > 0 such that for x ∈ Ω and ξ ∈ RN

M(x)ξ · ξ ≥ α|ξ|2.

Let Ω ⊂ RN (N > 2) be a bounded domain with smooth boundary. Napoli and

Mariani [91] proved the existence of a unique solution in H1
0 (Ω)∩Lr,s(Ω) of the problem{

−div(ψ(x,∇u(x))) = divF (x) in Ω,

u(x) = 0 on ∂Ω,
(4.2)

with suitable exponents r and s. If F ∈ (L2(Ω))N , using the Lax-Milgram lemma they

obtained the existence of a unique solution in H1
0 (Ω) for the problem (4.2). Moreover for

F ∈ Lq(Ω), with q > 2 used the Stampacchia argument (Theorem 4.2 in Stampacchia

[112]) to improve summability.

Consider the nonlinear problem{
−div(ψ(x, u(x),∇u(x))) = divF (x) in Ω,

u(x) = 0 on ∂Ω.
(4.3)

For F ∈ Lq,q](Ω) for some q and q], Napoli and Mariani [91], proved that there exists a

unique solution of the problem (4.3) in W 1,p
0 (Ω) ∩ Lr̄,s̄(Ω) for suitable exponents r̄ and s̄.
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For the particular set of equations

(ai,j(x)uxi)xj = (fi)xi , in Ω

where Ω ⊂ RN (N ≥ 3) is an open set and the functions ai,j(x) (i, j = 1, ..., n) are bounded

measurable, and satisfy the ellipticity condition, Karch-Ricciardi [79], showed that weak

solutions are differentiable almost everywhere when u ∈ H1
loc(Ω) and ∂

∂xi
f ∈ Ln,1loc (Ω). The

space Ln,1loc (Ω) is the local version of Lorentz space, consisting of all measurable functions

g ∈ Ω such that gχA ∈ Lp,q(Ω) for each compact set A ∈ Ω.

For other type of singularities, we mention the work of Giachetti-Segura de Leon [63]

in Sobolev spaces, in which they obtained for a problem involving a Leray-Lions operator

plus the term
sig(u− 1)

|u− 1|K
|∇u|2 − f,

the existence of a weak solution u ∈ H1
0 (Ω) when f ∈ Lm(Ω), with m ≥ 2N

N+2 . By using

Stampacchia theorem, Giachetti-Segura de Leon showed that the gradient of u goes to

zero faster than |u− 1|K so, in fact, the term does not blow-up.

4.2 The linear case

In this section, we study the problem P3(ψ, a, f) considering a linear operator instead

of the Leray-Lions operator Ψ. First, we introduce a geometric condition on Ω.

Definition 4.2.1. We say that Ω ⊂ RN satisfy the uniform exterior sphere condition, if

there exists a real number r > 0, such that for each z ∈ ∂Ω there exists a close ball B̄ of

radius r with B̄ ∩ Ω̄ = {z}.

Remark 4.2.2. Any open bounded set C2 contained in RN , satisfies the uniform exterior

sphere condition.

Let Ω ⊂ RN be a bounded domain with smooth boundary and satisfying the uniform

exterior sphere condition. Here, we study the existence of solutions u ∈ H1
0 (Ω) that

satisfies the problem P3(M,a, f):{
−div(M(x)∇u(x)) + a(x)u(x) = f(x) in Ω,

u(x) = 0 on ∂Ω,
(4.4)

where a ∈ L∞loc(Ω) is such that a(x) ≥ 0 for all x ∈ Ω and M(x) is a symmetric matrix in

L∞(Ω)N×N satisfying the ellipticity condition

M(x)ξ · ξ ≥ α|ξ|2,



86 4.2. The linear case

for all x ∈ Ω and ξ ∈ RN (α > 0).

As described before, since a ∈ L∞loc(Ω), we need a special notion of solution of the

problem.

Lemma 4.2.3. Let Ω ⊂ RN be a open bounded set that satisfies the uniform exterior

sphere condition, then there exists (Ωm)m∈N of open sets such that Ωm ⊆ Ωm+1 ⊆ Ω,

Ω =
∞
∪
m=1

Ωm and the boundary ∂Ω is a smooth subvariety C∞ of dimension N − 1 for

m ≥ 1.

From the Lemma 4.2.3, we can consider (Ωn)n∈N an increasing sequence of open subsets

of Ω, such that

Ωn ⊆ Ωn+1 and Ω =
∞
∪
n=1

Ωn.

Definition 4.2.4. The weak formulation of problem (4.4) is: find u ∈ H1
0 (Ω) with∫

Ω
M(x)∇u∇ϕ+ a(x)uϕdx =

∫
Ω
fϕdx, (4.5)

for all ϕ ∈
∞
∪
n=1

H1
0 (Ωn).

Remark 4.2.5. The first integral in (4.5) has sense, since u, ϕ ∈ H1
0 (Ω) and the second

integral has sense when f ∈ L2(Ω). Note that, if 2 < q < N
2 and q < q1, from the Lorentz

scale (Lemma A.2.2), we have Lq,q1(Ω) ⊂ L2(Ω).

4.2.1 Existence of the solution

To prove the existence of solution of problem P3(M,a, f), we apply the Lemma 1.2.11

due to An et al. [8].

Proposition 4.2.6. Let N > 4, 2 ≤ q < N
2 , σ = (N − 2q)−1, µ2 = σ(N − 2)q and

a ∈ L∞loc(Ω;R+
0 ). If f ∈ Lq,µ2(Ω) then there exists (at least) one solution u ∈ H1

0 (Ω) for

the problem P3(M,a, f).

Proof. Let (Ωn)n∈N be an increasing sequence of open subsets of Ω, such that Ωn ⊆ Ωn+1

and Ω =
∞
∪
n=1

Ωn. We consider

X =̇ H1
0 (Ω) and Xn =̇ H1

0 (Ωn).

Note that we can consider each Xn as a closed subspace of X by extending its elements

by zero outside Ωn. Let V =̇
∞
∪
n=1

Xn.

Let A : H1
0 (Ω)× V → R be the bilinear map defined by

A(u, ϕ) =̇

∫
Ω
M(x)∇u∇ϕ+ a(x)uϕdx,
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for all u ∈ H1
0 (Ω) and ϕ ∈ V .

Let An = Xn ×Xn → R be defined by

An(u, ϕ) = A|Xn×Xn(u, ϕ).

Then we have:

(a) An is a bounded bilinear form for all n ∈ N

In fact, note firstly that, since a ∈ L∞loc(Ω) it follows that a ∈ L∞(Ωn) and there exists a

constant c̄a such that

ess sup
x∈Ωn

|a(x)| ≤ c̄a.

Thus∫
Ωn

(M(x)∇u∇ϕ+ a(x)uϕ)dx ≤
∫

Ωn

|(M(x)∇u∇ϕ+ a(x)uϕ)|dx

≤ cM

∫
Ωn

|∇u||∇ϕ|dx+

∫
Ωn

|a(x)||uϕ|dx

≤ cM

(∫
Ωn

|∇u|2dx
)1/2(∫

Ωn

|∇ϕ|2dx
)1/2

+ c̄a

∫
Ωn

|uϕ|dx

≤ cM‖∇u‖L2(Ωn)‖∇ϕ‖L2(Ωn) + c̄a‖u‖‖ϕ‖.

By the Poincaré inequality, ‖∇u‖L2(Ωn) is equivalent to the norm of H1
0 (Ωn). Then∫

Ωn

M(x)∇u∇ϕ+ a(x)uϕdx ≤ c̄M‖u‖‖ϕ‖,

where c̄M = cM + c̄a.

(b) A(·, ϕ) is a bounded linear functional on X, for all ϕ ∈ V .

For any ϕ ∈ V , there exists some n0 ∈ N such that ϕ ∈ Xn0 ≡ H1
0 (Ωn0) and

A(u, ϕ) =

∫
Ω
M(x)∇u∇ϕ+ a(x)uϕdx

=

∫
Ωn0

M(x)∇u∇ϕ+ a(x)uϕdx.

Using the idea in (a), we can get that A(·, ϕ) is a bounded linear functional on X.

(c) A is coercive. In fact,

A(u, u) =

∫
Ω

M(x)∇u · ∇u+ a(x)u2dx ≥ α
∫
Ω

|∇u|2 dx ≥ α‖u‖2.

We have verified all the hypotheses of Theorem 1.2.11, so if F ∈ V ∗ is defined by F (ϕ) =∫
Ω fϕdx, there exists u ∈ H1

0 (Ω) such that

A(u, ϕ) = F (ϕ)
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for all ϕ ∈ V . Thus u satisfies the problem P3(M,a, f).

4.3 The nonlinear case

The hypotheses (H loc
5 ) that we consider here are:

(i) Ψ(u) = −div(ψ(x, u(x),∇u(x))) is a Leray-Lions operator;

(ii) a ∈ L∞loc(Ω;R+
0 );

(iii) f is a function defined in the Lorentz space Lq,q1(Ω), where p′ ≤ q < N
p and

q1 = σ(N − p)q, with σ = (N − pq)−1, 2 ≤ p < N and p′ = p
p−1 .

The hypotheses (H5) are the same as (H loc
5 ) when, in (ii), we replace a ∈ L∞loc(Ω;R+

0 )

by a ∈ L∞(Ω;R+
0 ).

Problem P3(ψ, a, f) is well defined since (by standard arguments) the left-hand side of

P3(ψ, a, f) is in W−1,p′(Ω) and, for f ∈ Lq,q1(Ω), f ∈W−1,p′(Ω). In fact, since p′ ≤ q ≤ q1,

from the Lorentz spaces scale (see Lemma A.2.2), we have Lq,q1(Ω) ⊂ Lq̄,p
′
(Ω), for any

q̄ < q, so for q̄ = p′ we get

f ∈ Lq,q1(Ω) ⊂ Lp′,p′(Ω) ≡ Lp′(Ω) ≡ (Lp(Ω))∗ ⊂
(
W 1,p

0 (Ω)
)∗
≡W−1,p′(Ω).

Definition 4.3.1. (weak solution) We use the following notion of solution.

We say that u ∈W 1,p
0 (Ω) is a weak solution of problem P3(ψ, a, f) if satisfies

∫
Ω

(ψ (x, u (x) ,∇u (x))∇ϕ+ a (x)uϕ) dx =

∫
Ω
fϕdx (4.6)

for all ϕ ∈
∞
∪
n=1

W 1,p
0 (Ωn).

Recall that by problem (PΩn) we mean the same problem as P3(ψ, a, f) but defined on

Ωn.

4.3.1 Existence of solution

The following proof is motivated by the Lemma 1.2.12 due to Drivaliaris-Yannakakis

[52].

Proposition 4.3.2. If (H loc
5 ) hold then there exists (at least) one solution u ∈ W 1,p

0 (Ω)

of problem P3(ψ, a, f).

Proof. We do the proof by steps, showing several claims. We define

X =̇ W 1,p
0 (Ω) and Xn =̇ W 1,p

0 (Ωn)
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for each n ∈ N. Each Xn is a closed subspace of X by extending its elements by zero

outside Ωn. Define V =̇
∞
∪
n=1

Xn and the map T : X → X∗ by

T (u)(x) =̇ Ψ(u)(x) + a(x)u(x) = −div(ψ(x, u(x),∇u(x)) + a(x)u(x),

for all x ∈ Ω and u ∈ X, and the operator A : X × V → R by

A(u, v) =̇ 〈T (u), v〉X∗,X =

∫
Ω
ψ(x, u(x),∇u(x))∇v(x) + a(x)u(x)v(x) dx

for all u ∈ X and v ∈ V . We also consider the operators An : Xn ×Xn → R, with n ∈ N,

defined by

An(u, v) =̇ 〈T (u), v〉Xn∗,Xn =

∫
Ωn

ψ(x, u(x),∇u(x))∇v(x) + a(x)u(x)v(x) dx

for all u, v ∈ Xn. Note that A : X × V → R is well defined. In fact, for any v ∈ V there

exists a k ∈ N such that v ∈ Xk and

A(u, v) =

∫
Ωk

ψ(x, u(x),∇u(x))∇v(x) + a(x)u(x)v(x) dx <∞.

Claim 4.3.3. The operators An are coercive for any n ∈ N.

From the elliptic condition, we have for u ∈ Xn,

An(u, u) ≥ α

∫
Ωn

|∇u|p dx+

∫
Ωn

a u2 dx ≥ α ‖u‖p +

∫
Ωn

a u2 dx.

Thus, since a ≥ 0, we get

lim
‖u‖→∞

An(u, u)

‖u‖
≥ lim
‖u‖→∞

α ‖u‖p−1 =∞.

Claim 4.3.4. We have An(u, ·) ∈ Xn
∗ for all n ∈ N and u ∈ Xn.

From a ∈ L∞(Ωn), there exists a constant ca ≥ 0 such that

An(u, v) ≤
∫

Ωn

|ψ(x, u(x),∇u(x))∇v|dx+ ca

∫
Ωn

|uv|dx.

Since ψ(x, u(x),∇u(x)) ∈ Lp′(Ωn) and ∇v ∈ Lp(Ωn), we can apply Hölder inequality in

the first term. For the second term, since p′ = p
p−1 , p ≥ 2, and p′ < p, we use the

embedding Lp(Ωn0) ⊂ Lp
′
(Ωn0), i.e. if u ∈ Lp(Ωn0), we can apply the Hölder inequality
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with u ∈ Lp′(Ωn) and v ∈ Lp(Ωn). Additionally from the Poincaré inequality, we obtain

An(u, v) ≤ ‖ψ(x, u(x),∇u(x))‖Lp′ (Ωn0 )‖v‖Lp(Ωn0 ) + ca‖u‖Lp′ (Ωn0 )‖v‖Lp(Ωn0 )

=
(
‖ψ(x, u(x),∇u(x))‖Lp′ (Ωn0 ) + ca‖u‖Lp′ (Ωn0 )

)
‖v‖Lp(Ωn0 )

≤ c1

(
‖ψ(x, u(x),∇u(x))‖Lp′ (Ωn0 ) + ca‖u‖Lp′ (Ωn0 )

)
‖∇v‖Lp(Ωn0 )

≤ c2‖v‖W 1,p
0 (Ωn0 )

for some c1, c2 ≥ 0. Hence, we get that An(u, ·) are bounded linear functionals on Xn
∗.

Since each An(u, ·) is a bounded linear functional on Xn
∗, the operators T |Xn are well

defined for all n ∈ N.

Claim 4.3.5. The operators T |Xn are monotone and hemicontinuous for all n ∈ N.

This is clear from the fact that T |Xn are the sum between a Leray-Lions operator and a

linear operator, i.e. each one is monotone and hemicontinuous.

Claim 4.3.6. There exists a solution un ∈ Xn for each problem (PΩn).

Since any hemicontinuous operator is radially continuous and T |Xn are monotone and

coercive operators, T |Xn satisfy the conditions of the Browder-Minty theorem, so

∃un ∈ Xn s.t. 〈T (un), v〉Xn∗×V = 〈f∗, v〉Xn∗×V for all v ∈ V. (4.7)

Recall that for any v ∈ V =̇ ∪∞n=1Xn, there exists n̄ ∈ N such that v ∈ Xn̄. By the

definition of Xn, we know that (Xn)n∈N is an upwards direct family of closed subspaces

of X and hence for any n ≥ n̄, v ∈ Xn. Hence, by (4.7), we consecutively have

A(un, v) → 〈f∗, v〉 for all n ≥ n̄, (4.8)

A(un, v) → 〈f∗, v〉 for all v ∈ V, (4.9)

A(un, w) → 〈f∗, w〉 for all w ∈ X, (4.10)

since V is dense in X and
∫

Ω avw dx =
∫

Ωn
avw dx for all v ∈ Xn and w ∈ X.

Claim 4.3.7. The sequence of solutions un of (PΩn) converges weakly in X, i.e. exists

u ∈ X such un ⇀ u.

From equation (4.7), setting v = un, we have 〈T (un), un〉 = 〈f∗, un〉, which together with

the coercivity of the operator T |Xn gives that the sequence (un)n∈N is bounded. If not,

suppose that ‖un‖ → ∞ then

lim
‖un‖→∞

〈T (un), un〉
‖un‖

≤ lim
‖un‖→∞

‖f∗‖‖un‖
‖un‖

= ‖f∗‖ <∞,

which is a contradiction with the fact that the operator is coercive. Hence, since X ≡
W 1,p

0 (Ω) is a separable reflexive Banach space, using Alaouglus lemma we have that
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(un)n∈N bounded implies un ⇀ u ∈W 1,p
0 (Ω).

Claim 4.3.8. The sequence (un)n∈N converges strongly in X.

By the weak convergence of the sequence (un)n∈N to u ∈ X, we have 〈f∗, un〉 → 〈f∗, u〉.
So, using (4.9) with v = un, we have

A(un, un)→ 〈f∗, un〉 → 〈f∗, u〉. (4.11)

Using the compactness of the embedding X ≡W 1,p
0 (Ω) in Lp

′
(Ω), we conclude the strong

convergence of un → u in X.

Alternatively the strong convergence of the sequence (un)n∈N ⊂ X is ensured by the

fact that the Leray-Lions operator Ψ is a (S+)–type operator, un ⇀ u and, by (4.10), we

have

lim sup
n→∞

〈T (un), un − u〉 = 〈f∗, un − u〉 = 0. (4.12)

Note also that, since the Leray-Lions operator Ψ is a pseudo-monotone operator and (4.12),

then Ψ(un) ⇀ Ψ(u) when un ⇀ u.

Claim 4.3.9. The map A : X × V → R defined by A(u, v) =̇ 〈T (u), v〉X∗×X is M -type

with respect to V .

Let (vλ)λ∈Λ ⊂ V , w ∈ X and v∗ ∈ V ∗. Assume the conditions (a)-(c) of Definition 1.2.5,

then

A(vλ, v) = 〈Ψ(vλ), v〉+ 〈a v, vλ〉 → 〈Ψ(w), v〉+ 〈a v,w〉 = A(w, v)

since vλ ⇀ w and Ψ(vλ) ⇀ Ψ(w), which merging with (b) gives A(w, v) = 〈v∗, v〉 for all

v ∈ V .

Therefore, the existence of a solution u ∈ X is a direct consequence of Claim 4.3.7, (4.9),

(4.11), and Claim 4.3.9.

4.3.2 Uniqueness of the solution

In this subsection, we establish a sufficient condition for the solution of problem

P3(ψ, a, f) to be unique. Since a ∈ L∞loc(Ω;R+
0 ), we have a ∈ L∞(Ωn;R+

0 ) for each compact

Ωn ⊂ Ω, n ∈ N . Here we modify this condition and suppose a ∈ L∞(Ω;R+
0 ) , i.e. we use

hypotheses (H5) for obtaining uniqueness.

Proposition 4.3.10. Suppose (H5) hold, then there exists a unique solution u of problem

P3(ψ, a, f) and
∫

Ω fu dx ≥ 0.

Proof. Let J : W 1,p
0 (Ω) → R be defined by J(u) =̇ Ψ(u) + a(x)u(x) − f(x). Suppose

u1, u2 ∈W 1,p
0 (Ω) are two solutions of problem P3(ψ, a, f). Thus 〈J(u1), v〉 = 〈J(u2), v〉 = 0

for all v ∈W 1,p
0 (Ω). In particular, we have

〈J(u2)− J(u1), u2 − u1〉 = 0

⇔ 〈Ψ(u2)−Ψ(u1), u2 − u1〉+ 〈au2 − au1, u2 − u1〉 = 0,
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and Ψ is a monotone operator, i.e. 〈Ψ(u2)−Ψ(u1), u2 − u1〉 ≥ 0, which implies

〈a (u2 − u1), u2 − u1〉 ≤ 0,

, hence u2 = u1. Moreover, by the ellipticity condition, if u is the solution of problem

P3(ψ, a, f) we have

〈J(u), u〉 = 0 ⇔
∫

Ω
fu− au2 dx =

∫
Ω
ψ(x, u,∇u)∇u dx

⇒
∫

Ω
fu− au2 dx ≥ α

∫
Ω
|∇u|p dx ≥ 0.

So a ≥ 0 implies
∫

Ω fu dx ≥ 0. Therefore f > 0 implies u cannot be a negative solution.

4.3.3 Estimate for the solution

In this subsection, we will study an estimate for the solution of problem P3(ψ, a, f).

To obtain the apriori estimate for the solution, we use truncation functions as the main

tool. For k > 0 and x ∈ R define the truncating function Tk : R→ R by

Tk (x) =̇


−k if x < −k,
x if −k ≤ x ≤ k,
k if x > k.

For any u : Ω→ R, by Tk(u) we mean the map Tk(u) : Ω→ R defined by x 7→ Tk(u(x)).

Lemma 4.3.11. (see Napoli-Mariani [91]) The truncation function Tk satisfies

(i) For any k > 0, we have xTk(x) ≥ 0;

(ii) If ‖Tk (u)‖Lp,q(Ω) ≤ C for any k > 0, then u ∈ Lp,q (Ω) and ‖u‖Lp,q(Ω) ≤ C.

Proposition 4.3.12. If (H loc
5 ) hold, then the solution of problem P3(ψ, a, f) satisfies the

apriori estimate

‖u‖Lr,s(Ω) ≤ C‖f‖
p′/p

Lq,q1 (Ω) (for some C > 0), (4.13)

where r = σN(q − 1)q and s = σ(N − p)(p− 1)q.

Proof. Let u be a solution of problem P3(ψ, a, f) and set

ϕn =̇
1

pm+ 1
|Tk(u)|pm Tk(u)χΩn , for any n ∈ N and some m ∈ N, (4.14)

where χS is the characteristic function of the subset S ⊂ RN , i.e.

χS =

{
1, x ∈ S,
0, x ∈ RN\S.
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From the definition of Tk(u) and u ∈W 1,p
0 (Ω), we get that ϕn ∈ V =̇

∞
∪
n=1

Xn and

∇ϕn = |Tk(u)|pm∇ (Tk(u))χΩn a.e. in Ω.

It follows from (4.6) that∫
Ωn

(ψ(x, u(x),∇u(x)) |Tk(u)|pm∇ (Tk(u)) dx

+
1

pm+ 1

∫
Ωn

a(x)u|Tk(u)|pmTk(u)χΩndx

=
1

pm+ 1

∫
Ωn

f(x) |Tk(u)|pm Tk(u)dx. (4.15)

We denote the first, second and last term in (4.15), respectively, by I1, I2 and I3. Again

from the definition of Tk(u) and the ellipticity condition, we have

I1 =

∫
Ωn

ψ(x, u(x),∇Tk(u)) |Tk(u)|pm∇Tk(u)dx ≥ α
∫
Ω

|∇Tk(u)|p |Tk(u)|pm dx.

Note that

|∇ (Tk(u))|p |Tk(u)|pm =

∣∣∣∣∇( |Tk(u)|m Tk(u)

m+ 1

)∣∣∣∣p ,
and so

I1 ≥ α
∫

Ωn

∣∣∣∣∇( |Tk(u)|m Tk(u)

m+ 1

)∣∣∣∣p dx = α

∥∥∥∥ |Tk(u)|m Tk(u)

m+ 1

∥∥∥∥p
W 1,p

0 (Ωn)

.

From the embedding of Sobolev spaces into Lorentz spaces (see Lemma A.2.7), we obtain∥∥∥∥ |Tk(u)|m Tk(u)

m+ 1

∥∥∥∥p
Lp∗,p(Ωn)

≤ C
∥∥∥∥ |Tk(u)|m Tk(u)

m+ 1

∥∥∥∥p
W 1,p

0 (Ωn)

.

Thus

I1 ≥ α̃
∥∥∥∥ |Tk(u)|m Tk(u)

m+ 1

∥∥∥∥p
Lp∗,p(Ωn)

=
α̃

(m+ 1)p
‖Tk(u)‖p(m+1)

Lp
∗(m+1),p(m+1)(Ωn)

. (4.16)

It follows from Remark 4.3.11 that

I2 =
1

pm+ 1

∫
Ωn

a(x)u |Tk(u)|pm Tk(u)dx ≥ 0.
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Using (d) and (e) of Lemma A.2.2, we have

I3 ≤ 1

pm+ 1

∫
Ωn

|f | |Tk(u)|pm+1 dx (4.17)

≤ 1

pm+ 1
‖f‖Lq,q1 (Ωn)

∥∥∥|Tk(u)|pm+1
∥∥∥
Lq
′,q′1 (Ωn)

=
1

pm+ 1
‖f‖Lq,q1 (Ωn) ‖Tk(u)‖

Lq
′(pm+1),q′1(pm+1)pm+1

(Ωn)
.

Combining (4.15)-(4.17) we arrive at

α̃

(m+ 1)p
‖Tk(u)‖p(m+1)

Lp
∗(m+1),p(m+1)(Ωn)

≤ 1

pm+ 1
‖f‖Lq,q1 (Ωn) ‖Tk(u)‖pm+1

Lr,s(Ωn) . (4.18)

Let p∗(m+ 1) and p(m+ 1). Now we choose the exponents q1, r and s such that:

(i) r = q′ (pm+ 1);

(ii) s = q′1(pm+ 1).

Since p∗ = pN
N−p and q′ = q

q−1 , from (i) we obtain

m = [Np(q − 1)− q(N − p)]p−1σ.

where σ = (N − pq)−1. Replacing the value of m, we obtain

r = σN(q − 1)q and s = σ(N − p)(p− 1)q.

From (ii), we have

q1 = σ(N − p)q.

Therefore, from (4.18), we get

α̃

(m+ 1)p
‖Tk(u)‖p(m+1)

Lr,s(Ωn) ≤
1

pm+ 1
‖f‖Lq,q1 (Ωn) ‖Tk(u)‖pm+1

Lr,s(Ωn) ,

then

‖Tk(u)‖p−1
Lr,s(Ωn) ≤ C ‖f‖Lq,q1 (Ωn) .

By Remark 4.3.11, we have u ∈ Lr,s (Ωn) and

‖u‖Lr,s(Ωn) ≤ C ‖f‖
p′/p
Lq,q1 (Ωn) . (4.19)

Now, for fixed s ≥ 0, by the monotone convergence properties of measures, we obtain

duΩn(s) increasingly converges to duΩ(s) as n→∞.

Therefore

u∗∗Ωn(s) increasingly converges to u∗∗Ω (s) as n→∞.
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Thus it follows from Levi theorem (see Bartle [13]) that

lim
n→∞

‖u‖Lr,s(Ωn) = lim
n→∞

(∫ ∞
0

(
s1/pu∗∗Ωn(s)

)q ds
s

)1/q

=

(∫ ∞
0

(
s1/p lim

n→∞
u∗∗Ωn(s)

)q ds
s

)1/q

=

(∫ ∞
0

(
s1/pu∗∗Ω (s)

)q ds
s

)1/q

= ‖u‖Lr,s(Ω).

(4.20)

From (4.19) and (4.20) we get

‖u‖Lr,s(Ω) ≤ C‖f‖
p′/p
Lq,q1 (Ω)

We are now ready for the multiplicity theorem for problem P3(ψ, a, f).

Theorem 4.3.13. If hypotheses (H loc
5 ) hold, then there exists (at least) one solution

u ∈W 1,p
0 (Ω)∩Lr,s(Ω) of problem P3(ψ, a, f) and the solution satisfies the apriori estimate

‖u‖Lr,s(Ω) ≤ C‖f‖
p′/p

Lq,q1 (Ω) (for some C > 0), (4.21)

where r = σN(q − 1)q and s = σ(N − p)(p− 1)q. Suppose (H5) hold, then the solution u

is unique and
∫
fu ≥ 0.

Proof. From the Proposition 4.3.2, we have the existence of a solution for the problem

P3(ψ, a, f), the uniqueness from Proposition 4.3.10 and the estimate for the solution from

Proposition 4.3.12.

Additionally, we have the following result for problems P (Ωn).

Lemma 4.3.14 (Aproximation of the solution). Let u ∈W 1,p
0 (Ω) be the solution given in

Theorem 4.3.13. For any n ∈ N, the problem P (Ωn) has a unique solution un ∈W 1,p
0 (Ωn)

and the sequence (un)n∈N ⊂W 1,p
0 (Ω) converges strongly to u.

Proof. The statements are precisely Claims 4.3.6 and 4.3.8.

Remark 4.3.15. Using the same idea of the subsection 4.3.2 and 4.3.3, we obtain unique-

ness for the linear case P3(M,a, f) and an apriori estimate for the solution. Thus, we

have the following similar result.

Theorem 4.3.16 (Linear case). Let N > 4, 2 ≤ q < N
2 , σ = (N − 2q)−1, µ1 = σNq,

µ2 = σ(N − 2)q and a ∈ L∞loc(Ω;R+
0 ). If f ∈ Lq,µ2(Ω) then there exists (at least) one

solution u ∈ H1
0 (Ω) ∩ Lµ1,µ2(Ω) for the problem P3(M,a, f), which satisfies the apriori

estimate

‖u‖Lµ1,µ2 (Ω) ≤ C‖f‖Lq,µ2 (Ω) (for some C > 0).



Chapter 5

Some considerations and future

research

In this last chapter, we present some final comments about problems under study

and we give some final remarks regarding the problems studied and discuss some possible

directions of future research.

5.1 Some considerations

5.1.1 Problems P1(λ, µ, α, f, γ) and P2(λ, ζ, q, s, f)

(i) As we mentioned in Chapter 1, from the Hardy inequality, the linear elliptic opera-

tor −∆u− λ
|x|2u is positive and has discrete spectrum if λ < Λ =

(
N−2

2

)2
. This condition

was considered in the problem P1(λ, µ, α, f, γ). For the problem P2(λ, ζ, q, s, f), the con-

dition 0 ≤ λ < Λ − 4 was considered because we were dealing with the critical nonlinear

term |x|−s|u(x)|
4−2s
N−2 u(x) where N > 6.

(ii) The parameter α, which corresponds to a subcritical term in P1(λ, µ, α, f, γ), has

a direct relation with the values of λ and µ, in fact we consider 0 < α <
√

Λ− λ to ensure

that the functional T has a good behavior and we can use the estimate of local behavior

of the solution. The condition on α is used explicitly for proving that the two nontrivial

solutions w0 and w1 are different.

(iii) In obtaining solutions to the problems P1(λ, µ, α, f, γ) and P2(λ, ζ, q, s, f), the

Lemmas 2.2.13 and 3.2.3 respectively, play an important role. To continuation, we describe

in detail how these Lemmas were applied. The Lemma 2.2.13 was applied to find each

solution in P1(λ, µ, α, f, γ) as follows.

• For the first solution w0 ∈ M+, we say that for all u ∈ M , there exists t−(u) ∈ R such

that t−(u) < tmax(u), t−(u)u ∈M+ and (2.28), we have

I (t−(u)u) ≤ I(ξu), for all 0 < ξ < tmax(u).
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Moreover from Lemma 2.2.13, for |w0| ∈ H1
0 (Ω), there exists a unique value t−(|w0|) ∈ R

such that t− (|w0|) |w0| ∈M+, t− (|w0|) < tmax (|w0|) = tmax (w0) and

I(t− (|w0|) |w0|) = min
−tmax≤t≤tmax

I(t (|w0|) |w0|).

• For the second solution w1 ∈M−, we say that for all u ∈M , there exists t+ = t+(u) > 0

such that t+(u)u ∈M− and there exists t+ ∈ R, such that sf t+ (|w1|) > 0, t+ (|w1|) |w1| ∈
M−, sf t+ (|w1|) > tmax (|w1|) = tmax (w1) and I(t+ (|w1|) |w1|) = maxsf t≥0 I(t (|w1|) |w1|).
• For the third solution w2 ∈ M−∗ =̇ M−1 ∩M

−
2 , where M−1 =̇ {u ∈ M ; u+ ∈ M−} and

M−2 =̇ {u ∈M ; −u− ∈M−}, the values t+ and t− are used explicitly in the Proposition

2.2.18.

• For the fourth solution w̄1 ∈ H1
0 (Ω) we don’t use explicitly the values t− or t+, we use

w0 ∈M+ and −w−2 ∈M− to prove that w1,1 > 0 and w2 6= w1,1.

In the case of problem P2(λ, ζ, q, s, f), the values t− and t+ from Lemma 3.2.3 have

the following characterization

t− (u)u ∈M+ and J (t− (u)u) = min
0≤t≤tmax

J (tu) ,

t+ (u)u ∈M− and J (t+ (u)u) = max
t≥tmax

J (tu) .

These values are only used for obtaining the sign-changing-solution w2. In fact, this

solution is obtained as result of the Proposition 3.2.5 and the Lemma 3.2.15, in which

the values t− and t+ are vital. Specifically, in Proposition 3.2.5 we proved under some

considerations on the function J and the value c that: (1) c > J (t+ (u)u) in the case

u 6= 0 and t+ (u) ≤ 1; and (2) c ≥ J (t− (u)u) +
(

2−s
2(N−s)

)
Sλ,s

N−s
2−s in the case u 6= 0 and

t+ (u) > 1. The Lemma 3.2.15 is obtained, because for any given τ ∈ (τ1, τ2), we obtain

from Lemma 3.2.3 that there are positive values r+(τ) and r−(τ) such that

r+(τ)(uε − τw1)+ ∈M−, and − r−(τ)(uε − τw1)− ∈M−. (5.1)

5.1.2 Problem P3(ψ, a, f)

(i) We use the idea of Lemma 1.2.12 due to Drivaliaris-Yannakakis [52], because its

necessary to guarantee that the definition of the function A makes sense, i.e. its vanishing

on the boundary and hence permits to overcome the difficulty of the singularity. Note

that A : X ×X −→ R has not sense, but

A : X × V −→ R, A : V × V −→ R and A : V ×X −→ R

has sense with W 1,p
0 (Ω) and V =̇

∞
∪
n=1

Xn.

(iii) The method for estimating the solution used in the Chapter 3, cannot be directly
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applied to elliptic systems, since it is difficult to find suitable functions ϕn (see 4.14).

(iv) Since we need to apply Hölder inequality to show that An is bounded linear func-

tional on X∗n, we consider p ≥ 2.

(v) We use a Lorentz scale argument to obtain f ∈ Lq,q1 (Ω) ⊂ Lp′ (Ω) with p′ ≤ q (see

4.3.12). For that, we consider the test function

ϕn =̇
1

pm+ 1
|Tk(u)|pm Tk(u)χΩn , for any n ∈ N and some m ∈ N, (5.2)

and posteriori we find the suitable value of m

m =
Np(q − 1)− q(N − p)

p(N − pq)
.

So, we need p(N − pq) > 0 and thus we have q < N
p . Note that, when q = N

p the test

function ceases to exist.

5.2 Some directions of future research

The classes of elliptic problems, studied in this work, are quite rich in the research

point of view. We now describe some possible directions of future investigation, which

turn to be some kind of generalization of already obtained results, situations not already

considered, or adjacent problems which interest was increased during our current research.

5.2.1 Problem P1(λ, µ, α, f, γ) with more general conditions

Note that the functionals T (u), U(u), Q(u) and J(u), defined in the Chapter 2, satisfy

more general conditions (H1):

(i) T : H1
0 (Ω)→ R+

0 positive away from zero; exists α > 0 such that T (su) = |s|αT (u)

for any s ∈ R and u ∈ H1
0 (Ω), and there exist KT

1 ,K
T
2 > 0 such that

KT
1 ‖u‖αH1

0 (Ω)
≤ T (u) ≤ KT

2 ‖u‖αH1
0 (Ω)

;

(ii) U : H1
0 (Ω)→ R+

0 positive away from zero; exists β > 0 such that U(su) = |s|βU(u)

for any s ∈ R and u ∈ H1
0 (Ω), and exists KU > 0 such that U(u) ≤ KU‖u‖β

H1
0 (Ω)

;

(iii) F : H1
0 (Ω) → R with F (0) = 0; exists γ > 0 such that F (su) = s|s|γF (u) for any

s ∈ R and u ∈ H1
0 (Ω), exists KF > 0 such that F (u) ≤ KF ‖u‖γ+1

H1
0 (Ω)

;

(iv) α < β and γ < β − 1.

Our situation, in Chapter 2, is the particular case α = 2, β = 2∗ and 0 ≤ γ < 1. The

inequalities in (H1)(i) are valid by Lemma 2.2.1, inequality (H1)(ii) is valid by Gagliardo-

Nirenberg-Sobolev inequality (Theorem A.1.6), and inequality (H1)(iii) is valid by (2.8).
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It may be interesting to study the possibility of existence of solution for our problem,

when only these general conditions are consider.

5.2.2 Problem P1(λ, µ, α, f, γ) with even nonlinearity

A variant of P1(λ, µ, α, f, γ) is changing the term f |u|γ to f |u|γ−1u. In this case, the

associated functional will be even, meaning that if u is a solution, −u is also a solution.

It would be interesting to study this problem and also if an infinite number of solutions

exist, which is a typical situation for some even functionals.

5.2.3 Problem P1(λ, µ, α, f, γ) with different conditions on γ and f

We have considered 0 ≤ γ < 1. It may be of some interest to study also γ > 1 for

which the behavior of φu is represented in Figure 2.3. Another direction is to study if the

problem without the condition µ̃f (see 2.2) still to have the existence of one solution since

t+ and t0 can be used (see Figure 2.2)

5.2.4 Problem P1(λ, µ, α, f, γ) and P2(λ, ζ, q, s, f) considering others values

of t

Note that, we never use in problem P1(λ, µ, α, f, γ) the value t0, obtained from Lemma

2.2.13 (see 5.1.1). One interesting future research is to analyze if the value t0 allows to

obtain another solution. On the other hand, since the problem P2(λ, ζ, q, s, f) is odd, we

can study the existence of other values t < 0 (see Lemma 3.2.3) in order to find other

solutions (see 5.1.1).

5.2.5 Problem P3(φ, a, f) with f defined in a weighted Lorentz space

One natural generalization of problem P3(φ, a, f) is to consider f defined in a weight

Lorentz space. In other words, study the problem P3(φ, a, f) when w(s) 6= sq/p−1 so

Λq(w) 6= Lp,q.

5.2.6 Supercritical exponent in a Lorentz setting

We know that, the solvability of problem

−∆u(x) = |u(x)|p−2u in Ω,

when p ≥ 2∗ and u is defined in the Sobolev space H1
0 (Ω), depends on the shape of Ω.

However, from Brezis-Nirenberg [16], some perturbations of this problem by lower order

terms can guarantee the existence of positive solutions independently of the shape of Ω.

The main idea is to consider u in a suitable Lorentz space and to investigate which is the

critical hyperbola under different conditions on the nonlinearity f .
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We recall that the embedding of H1
0 (Ω) into a Lorentz space is some how more fit

than into a Lebesgue space. In fact, this turn to be more relevant to elliptic systems

than to elliptic equations. The key point then is, by using a Lorentz space setting where

the functional is defined on the cartesian product of Sobolev spaces over different Lorentz

spaces, to determine the properties of the critical hyperbola and establish the true maximal

admissible growth for some classes of systems.



Appendix A

Spaces of functions

Here we state some notions which are standard but help to clarify the reader. We start

by defining the spaces where we will work, i.e. Sobolev spaces and Lorentz spaces with

special emphasis on the embedding.

A.1 Sobolev spaces

Let Ω ⊂ RN be an open set and f : Ω −→ R a continuous function. The support of f

is denoted by supp(f), i.e. the closure in Ω of the set {x ∈ Ω; f (x) 6= 0} .
A vector of nonnegative integers α = (α1, ..., αn) is called a multi-index and its order

is defined by |α| = α1 + ...+ αn.

Denote by Dα the operator of derivation of order |α| , that is,

Dα =
∂|α|

∂xα1
1 ...∂xαnn

.

For α = (0, 0, ..., 0), set D0u = u, for all function u.

By C∞0 (Ω) we mean the space of infinitely differentiable functions with compact sup-

port in Ω.

Definition A.1.1. We say that a sequence (ϕn)n∈N in C∞0 (Ω) converge to ϕ in C∞0 (Ω) ,

when the following conditions hold:

(i) There exists a compact K of Ω such that supp(ϕ) ⊂ K and supp(ϕn) ⊂ K, ∀ n ∈ N,

(ii) Dαϕn → Dαϕ uniformly in K, for all multi-́ındices α.

The space C∞0 (Ω), provided with the notion of convergence above defined, will be

denoted by D (Ω) and called space of test functions.

A distribution (scalar) on Ω is a linear continuous, functional on D (Ω) .

We denote the value of a distribution T in ϕ by 〈T, ϕ〉. The set of all distributions on

Ω, with the usual operations, is a vectorial space, which is represented by D′ (Ω) .

101
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Definition A.1.2. We say that a sequence (Tn)n∈N in D′ (Ω) converge to T in D′ (Ω) ,

when the numerical sequence (〈Tn, ϕ〉)n∈N converge to 〈T, ϕ〉 in R, for all ϕ ∈ D (Ω) .

Definition A.1.3. Let T be a distribution on Ω and α be a multi-index. The derivative

DαT (in the sense of distributions) of order |α| of T is the functional defined in D (Ω) by

〈DαT, ϕ〉 = (−1)|α| 〈T,Dαϕ〉 , ∀ϕ ∈ D (Ω) .

Given an integer m > 0, by Wm,p (Ω) for 1 ≤ p ≤ ∞, we represent the Sobolev space

of order m on Ω, that is the space of all functions u ∈ Lp (Ω) such that Dαu ∈ Lp (Ω), for

all multi-index α with |α| ≤ m.

The space Wm,p (Ω) provided with the norm

‖u‖Wm,p(Ω) =

 ∑
|α|≤m

∫
Ω
|Dαu (x)|p dx

 1
p

, for 1 ≤ p <∞

and

‖u‖Wm,∞(Ω) =
∑
|α|≤m

sup ess
x∈Ω

|Dαu (x)| , for p =∞,

is a Banach space.

Now, we summarize some basic properties of Sobolev spaces stated in the next theorem.

Theorem A.1.4. Let Ω ⊂ RN be a bounded domain with N ≥ 1, then we have the

following:

(i) Wm,p (Ω) is separable for 1 ≤ p <∞;

(ii) Wm,p (Ω) is reflexive for 1 < p <∞;

(iii) Let 1 ≤ p <∞, then C∞ (Ω) ∩Wm,p (Ω) is dense in Wm,p (Ω), where C∞ (Ω) is the

spaces of infinitely differentiable functions in Ω.

The space Wm,p
0 denotes the closure of D(Ω) with the norm of Wm,p(Ω).

Heuristically, the space Wm,p
0 (Ω) consists of all functions in Wm,p(Ω) that ”vanish” on

the boundary ∂Ω together with all their derivatives up to order m− 1.

Remark A.1.5. When p = 2, the space Wm,p (Ω) will be denoted by Hm (Ω), provided

with inner product

(u, v)Hm(Ω) =

m∑
j=0

(
u(j), v(j)

)
L2(Ω)

is a Hilbert space. Denote by Hm
0 (Ω) the closure, in Hm (Ω) , of D (Ω) and by H−m (Ω)

the topological dual of Hm
0 (Ω).
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A.1.1 Sobolev embedding

Lemma A.1.6. [Gagliardo-Nirenberg-Sobolev inequality, see Evans [56]] Let p such that

1 ≤ p < N . There is a constant c > 0 that depends only on p and N such that

‖u‖Lp∗ (RN ) ≤ C ‖5u‖Lp(RN )

for all u ∈ C1
0

(
RN
)
. Here

p∗ =
pN

N − p
is the critical Sobolev exponent.

The following is the known Rellich-Kondrachov Lemma (see Struwe [113]).

Lemma A.1.7. Let Ω be a bounded domain with smooth boundary, the

(i) If N > pm, where Wm,p (Ω)
c
↪→ Lq (Ω) , where q ∈

[
1,

2N

N − 2m

)
.

(ii) If N = pm, where Wm,p (Ω)
c
↪→ Lq (Ω) , where q ∈ [1,+∞) .

(iii) If pm > N where Wm,p (Ω)
c
↪→ Ck

(
Ω
)
, where k < m− (n/p) ≤ k + 1.

Remark A.1.8. When m = 1, from Sobolev embedding theorem (see Ambrosetti-Malchiodi

[7]), we have:

(i) H1
0 (Ω) ⊂ L2∗(Ω);

(ii) ‖u‖L2∗ (Ω) ≤ c ‖u‖H1
0 (Ω) for some c > 0,

(iii) There are bounded sequences in H1
0 (Ω) that are not precompact in L2∗(Ω);

i.e. the inclusion H1
0 (Ω)↪→L2∗(Ω) is continuous but is not compact.

A.1.2 The best Sobolev constant

Definition A.1.9. Set D1,2(RN ) = {u ∈ L2∗(RN ) : ∇u ∈ L2(RN )}. The best Sobolev

constant for the embedding D1,2(RN ) ↪→ L2∗
(
RN
)

is defined by

S = inf
u∈D1,2(RN )\{0}

∫
RN |∇u|

2dx(∫
RN |u|2

∗dx
) 2

2∗
> 0.

It is well known that S is independent of Ω ⊂ RN in the sense that if

S (Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω |∇u|

2dx(∫
Ω |u|2

∗dx
) 2

2∗
> 0,

then S (Ω) = S
(
RN
)

= S (see Ferrero-Gazzola [57]).
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A.2 Lorentz spaces

Lorentz spaces Lp,q(Ω) were introduced by George G. Lorentz [89] in 1950. These

spaces are relevant examples of rearrangement invariant function spaces and are a gener-

alization of Lebesgue spaces.

In the last years a line of development for treating nonlinear elliptic problems is to

employ the Lorentz spaces, in place of the standard Lebesgue spaces Lp(Ω).

Let (Ω,S, µ) be a σ-finite measure space. For a measurable function f : Ω → R, we

define the distribution function dfΩ(t) : [0,∞) −→ [0,∞) as

dfΩ(t)
.
= µ({x ∈ Ω : |f(x)| > t}).

The distribution function satisfies the following properties (see Talenti [117]):

• dfΩ is a non-increasing, right continuous function;

• dfΩ(0) = µ(supp(f));

• dfΩ(+∞) = 0.

The non-increasing rearrangement of f is defined by

f∗Ω(s)
.
= sup

{
t > 0 : dfΩ(t) > s

}
= inf

{
t > 0 : dfΩ(t) ≤ s

}
with 0 ≤ s ≤ |Ω|, and satisfies the following properties (see Talenti [117]):

• f∗Ω(s) is right continuous;

• f∗Ω(0) = sup ess|f |;

• f∗Ω(+∞) = 0;

• t < f∗Ω(s) if and only if s < dfΩ(t);

• df
∗
Ω

Ω (t) = dfΩ(t);

• f∗Ω = d
dfΩ
Ω (t);

•
∫∞

0 f∗Ω(s)ds =
∫∞

0 dfΩ(t)dt =
∫∞

0 |f |dµ.

Lemma A.2.1. [Hardy-Littlewood-Pólya inequality]∫ ∞
0
|fg|dµ ≤

∫ ∞
0

f∗Ω(s)g∗Ω(s)ds.
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The Lorentz space Lp,q(Ω) is the collection of all measurable functions f on Ω such

that ‖f‖Lp,q(Ω) <∞, where the norm is given by

‖f‖Lp,q(Ω) =


(∫

0
∞ (

s1/pf∗∗(s)
)q ds

s

) 1
q

if 1 ≤ q <∞,

sups>0

{
s

1
p f∗∗(s)

}
if q =∞;

with 1 ≤ p <∞ and f∗∗(s) = 1
s

∫
0
s
f∗Ω(t)dt.

The following lemma presents the main properties of these spaces.

Lemma A.2.2. (Hunt [74], Talenti[117]) For Lorentz spaces, we have the following re-

sults:

(a) Lp,p(Ω) coincides with the Lebesgue space Lp(Ω) and ‖u‖Lp,p(Ω) = ‖u‖Lp(Ω) for u ∈
Lp,p(Ω);

(b) (Duality) Let 1 < p < q <∞ then

(Lp,q(Ω))∗ = Lp
′,q′(Ω),

where (Lp,q(Ω))∗ denotes the space of all bounded linear functionals on Lp,q(Ω);

(c) Let 1 ≤ q1 < p < q2 <∞ and p1 < p, then the following inclusions hold

Lp,q1(Ω) ( Lp,p(Ω) ≡ Lp(Ω) ( Lp,q2(Ω) ( Lp,∞(Ω) ( Lp1,q1(Ω);

(d) The following (Hölder type) inequality

‖fg‖Lp,q(Ω) ≤ ‖f‖Lp1,q1 (Ω)‖g‖Lp2,q2 (Ω),

where 1
p = 1

p1
+ 1

p2
and 1

q = 1
q1

+ 1
q2

.

(e) If f ∈ Lpm,qm(Ω) with m > 0, then |f |m ∈ Lp,q(Ω) and

‖|f |m‖Lp,q(Ω) = ‖f‖mLpm,qm(Ω) .

Lemma A.2.3. Suppose that Ej are pairwise disjoint measurable subsets of Ω and f ∈
Lm,q(Ω), 1 ≤ q ≤ m. Then ∑

j

∥∥fχEj∥∥mLm,q ≤ ‖f‖mLm,q .

Definition A.2.4. For 0 < q < ∞, the weighted Lorentz Space Λq(w) is defined as the

set of all measurable functions f such that

‖f‖Λq(w) =

(∫
0

∞
w(s) (f∗Ω(s))q

ds

s

) 1
q

<∞,
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where f∗Ω(s) denotes the non.increasing rearrangement of f and w is a weight in R+.

Remark A.2.5. The weights for which Λq(w) is a Banach space were first characterized

by Arino-Muckenhoupt [10], and it is known as the Bp-condition: there exists C > 0 such

that, for all r > 0,

rq
∫
r

∞w(x)

xq
dx ≤ C

∫
0

r

w(x)dx.

A.2.1 Inclusions into Lorentz spaces

Lemma A.2.6. Suppose 1 ≤ m, q,M,Q ≤ ∞.

(a) If q < Q, then ‖f‖Lm,Q ≤ C ‖f‖Lm,q ;
(b) If m < M , then (µ(Ω))−

1
m ‖f‖Lm,q ≤ C

(
(µ(Ω))−

1
M

)
‖f‖LM,Q .

The following result improves the classical result of the Sobolev embedding and it is

relevant when, working with critical cases.

Lemma A.2.7. (Talenti [117]) Let 1 ≤ p < N then W 1,p(RN ) ⊂ Lp
∗,p(RN ) with contin-

uous embedding, W 1,p
0 (Ω) ⊂ Lp

∗,p(Ω) with continuous embedding, and when ∂Ω ∈ C1(Ω)

the same result applies to W 1,p(Ω).

Remark A.2.8. Note that if u ∈W 1,p(Ω) by the Sobolev embedding we have

u ∈ Lp∗(Ω) ≡ Lp∗,p∗(Ω);

but by the embedding to Lorentz spaces we have u ∈ Lp∗,q(Ω) with p ≤ q ≤ p∗. Hence there

is an improvement in using this embedding.
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Some integral estimates

In this chapter, we calculate some integral estimates, that will allow us to guarantee

that the solutions of problem P1(λ, µ, α, f, γ) are different.

Proposition B.0.9. For ε small enough, we have

∫
vγ+1
ε =


O(ε

N−2
4

(γ+1)), 1 < 1 + γ < N√
Λ+
√

Λ−λ ,

O(ε
N−2

4
(γ+1)| ln ε|), 1 + γ = N√

Λ+
√

Λ−λ ,

O

(
ε

[N−(γ+1)
√

Λ]
√

Λ

2
√

Λ−λ

)
, N√

Λ+
√

Λ−λ < 1 + γ < 2.

(B.1)

Proof. We recall the definition of vε(x) = φ(x)Uε(x), where

Uε(x) =
[4ε(Λ− λ)N/(N − 2)]

N−2
4

[ε|x|γ1/
√

Λ + |x|γ2/
√

Λ]
N−2

2

for ε > 0,

with γ1 =
√

Λ −
√

Λ− λ, γ2 =
√

Λ +
√

Λ− λ, and φ is such that φ(x) = 1 if |x| ≤ δ,

φ(x) = 0 if |x| ≥ 2δ, φ(x) ∈ C2
0 (Ω) and |φ(x)| ≤ 1, |∇φ(x)| ≤ C for some positive constant

C.

From estimate (1.12) (Proposition 2.2.9), we have that∫
vγ+1
ε =

∫
Ω\B(0,δ)

vγ+1
ε +

∫
B(0,δ)

Uγ+1
ε = O(ε

N−2
4

(γ+1)) +

∫
B(0,δ)

Uγ+1
ε .

Now, we estimate the last integral. Let ρ and θ ∈ SN−1 being the polar coordinates,

where SN−1 is the unit sphere in RN . For x = (x1, ..., xN ) ∈ RN and (ρ, θ1, ..., θN ) ∈
(0,∞)× (0, φ)× ...× (0, φ)× (0, 2φ) we have

x1 = ρcos(θ1)

x2 = ρsen(θ1)cos(θ2)

xN−1 = ρsen(θ1)sen(θ2)...sen(θN−2)cos(θN−1)

xN = ρsen(θ1)sen(θ2)...sen(θN−1).
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Thus dx = ρN−1(sen(θ1))N−2(sen(θ2))N−3...sen(θN−2)dρdθ. Briefly, we write x = ρw and

w = (w1, ..., wN ) then |w| = 1, which means that w belong to the unit sphere SN−1 in RN

and dx = ρN−1dρdw, where dw is the measure on SN−1. Therefore

∫
B(0,δ)

Uγ+1
ε dx =

∫
B(0,δ)

[4ε(Λ− λ)N/(N − 2)]
N−2

4
γ+1

[ε|x|γ1/
√

Λ + |x|γ2/
√

Λ]
N−2

2
γ+1

dx

=

∫ δ

0

∫
SN−1

[4ε(Λ− λ)N/(N − 2)]
N−2

4
γ+1

[ε|ρw|γ1/
√

Λ + |ρw|γ2/
√

Λ]
N−2

2
γ+1

ρN−1dρdw

=

∫ δ

0

[4ε(Λ− λ)N/(N − 2)]
N−2

4
γ+1

[ε|ρ|γ1/
√

Λ + |ρ|γ2/
√

Λ]
N−2

2
γ+1

ρN−1dρ

∫
SN−1

dw.

If we set, wn as the surface area of the (N − 1)-sphere SN−1, then∫
B(0,δ)

Uγ+1
ε dx

= wn[4ε(Λ− λ)N/(N − 2)]
N−2

4
γ+1

∫ δ

0

ρN−1

[ε|ρ|γ1/
√

Λ + |ρ|γ2/
√

Λ]
N−2

2
γ+1

dρ

= K · ε
(N−2)

4
(γ+1)

∫ δ

0

ρN−1dρ

[εργ1/
√

Λ + ργ2/
√

Λ](N−2)( γ+1
2

)
.

Since

(γ1

√
Λ)(N − 2)

(
γ + 1

2

)
= (N − 2)

(
γ + 1

2

)(
2
√

Λ− λ√
Λ

)
we have

[εργ1/
√

Λ + ργ2/
√

Λ](N−2)( γ+1
2

)

= (εργ1/
√

Λ)(N−2)( γ+1
2

)[1 + ...+ (εργ1/
√

Λ)−(N−2)( γ+1
2

)(ργ2/
√

Λ)]

= (εργ1/
√

Λ)(N−2)( γ+1
2

)[1 + ε−1ρ2
√

Λ−λ/
√

Λ](N−2)( γ+1
2

).

Thus,∫
B(0,δ)

Uγ+1
ε dx

= K · ε
(N−2)

4
(γ+1)

∫ δ

0

ρN−1dρ

ε(N−2)( γ+1
2

)ρ(γ1/
√

Λ)(N−2)( γ+1
2

)[1 + ε−1ρ2
√

Λ−λ/
√

Λ](N−2)( γ+1
2

)
.

In general
∫ δ

0 x
mdx =

∫ δa
0

xm

am+1dx, hence∫
B(0,δ)

Uγ+1
ε dx = K · ε

(N−2)
4

(γ+1)·

∫ δε
−
√

Λ
2
√

Λ−λ

0

ε
N
√

Λ
2
√

Λ−λ ρN−1dρ

ε
(N−2)(γ+1)

2 ε

√
Λ

2
√

Λ−λ
γ1(N−2)(γ+1)

2
√

Λ ρ(γ1/
√

Λ)(N−2)( γ+1
2

)[1 + ρ2
√

Λ−λ/
√

Λ](N−2)( γ+1
2

)
.

Now we consider the different possibilities for 1 + γ.
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(i) If 1 + γ = N√
Λ+
√

Λ−λ , since the order of ρ in the integrand is

N − 1− (γ1/
√

Λ)(N − 2)(γ+1
2 )− 2(

√
Λ− λ/

√
Λ)(N − 2)(γ+1

2 )

= N − 1− ((
√

Λ−
√

Λ− λ)/
√

Λ)(N − 2)(γ+1
2 )− 2(

√
Λ− λ/

√
Λ)(N − 2)(γ+1

2 )

= −1

and the order of ε is

N
√

Λ
2
√

Λ−λ − (N − 2)(γ+1
2 )−

√
Λ

2
√

Λ−λ(γ1/
√

Λ)(N − 2)(γ+1
2 )

= N
√

Λ
2
√

Λ−λ − (N − 2)(γ+1
2 )−

√
Λ

2
√

Λ−λ((
√

Λ−
√

Λ− λ)/
√

Λ)(N − 2)(γ+1
2 )

= N
√

Λ
2
√

Λ−λ −
√

Λ
2
√

Λ−λ(N − 2)(γ+1
2 )− (N − 2)(γ+1

4 )

= (N−2
2 )[ N

2
√

Λ−λ −
(
√

Λ−λ+
√

Λ)(γ+1)

2
√

Λ−λ ]

= 0

we have
∫
B(0,δ) U

γ+1
ε dx = K · ε

(N−2)
4

(γ+1)
∫ δε− √

Λ
2
√

Λ−λ

0
1
ρdρ. Then for ε small enough

∫
vγ+1
ε = O

(
ε
N−2

4
(γ+1)| ln ε|

)
.

Now, if 1 + γ 6= N√
Λ+
√

Λ−λ , the order of ρ in the integrals is

N − 1− (γ1/
√

Λ)(N − 2)(γ+1
2 )− 2(

√
Λ− λ/

√
Λ)(N − 2)(γ+1

2 )

= N − 1− ((
√

Λ−
√

Λ− λ)/
√

Λ)(N − 2)(γ+1
2 )− 2(

√
Λ− λ/

√
Λ)(N − 2)(γ+1

2 )

< −1

and the order of ε is

N
√

Λ
2
√

Λ−λ − (N − 2)(γ+1
2 )−

√
Λ

2
√

Λ−λ(γ1/
√

Λ)(N − 2)(γ+1
2 )

= N
√

Λ
2
√

Λ−λ − (N − 2)(γ+1
2 )−

√
Λ

2
√

Λ−λ((
√

Λ−
√

Λ− λ)/
√

Λ)(N − 2)(γ+1
2 )

= (N−2
2 )[ N

2
√

Λ−λ −
(
√

Λ−λ+
√

Λ)(γ+1)

2
√

Λ−λ ]

< 0.

It follows that∫
B(0,δ)

Uγ+1
ε dx

= K · ε
N−2

4
(γ+1)+(N−2

2
)[ N

2
√

Λ−λ−
(
√

Λ−λ+
√

Λ)(γ+1)

2
√

Λ−λ ] ·
∫∞

0
ρN−1dρ

ρ
γ1(N−2)(γ+1)

2
√

Λ [1+ρ2
√

Λ−λ/
√

Λ](N−2)(
γ+1

2 )

= O

(
ε
N−2

4
(γ+1)+(N−2

2
)[ N

2
√

Λ−λ−
(
√

Λ−λ+
√

Λ)(γ+1)

2
√

Λ−λ ]
)

= O

(
ε

[N−(γ+1)
√

Λ](N−2
2 )

2
√

Λ−λ

)
= O

(
ε

[N−(γ+1)
√

Λ]
√

Λ

2
√

Λ−λ

)
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and since ∫
B(0,δ)

vγ+1
ε dx = K · ε

[N−(γ+1)
√

Λ]
√

Λ

2
√

Λ−λ ,

we get that ∫
vγ+1
ε =

∫
Ω\B(0,δ)

vγ+1
ε +

∫
B(0,δ)

Uγ+1
ε

= O

(
ε
N−2

4
(γ+1)

)
+O

(
ε

[N−(γ+1)
√

Λ]
√

Λ

2
√

Λ−λ

)
.

Thus,

(ii) If 1 < 1 + γ < N√
Λ+
√

Λ−λ , we have N > (1 + γ)
√

Λ + (1 + γ)
√

Λ− λ and

N − (γ + 1)
√

Λ
√

Λ

2
√

Λ− λ
>

[
((1 + γ)

√
Λ + (1 + γ)

√
Λ− λ

)√
Λ

2
√

Λ− λ
= (γ+ 1)

√
Λ

2
= (γ+ 1)

N − 2

4
.

Then for ε small enough ∫
vγ+1
ε = O

(
ε
N−2

4
(γ+1)

)
(iii) If N√

Λ+
√

Λ−λ < 1 + γ < 2, we have N < (1 + γ)
√

Λ + (1 + γ)
√

Λ− λ and

[N − (γ + 1)
√

Λ
√

Λ]

2
√

Λ− λ
<

[
(1 + γ)

√
Λ + (1 + γ)

√
Λ− λ

]√
Λ

2
√

Λ− λ
= (γ + 1)

√
Λ

2
= (γ + 1)

N − 2

4

Then for ε small enough ∫
vγ+1
ε = O

(
ε

[N−(γ+1)
√

Λ]
√

Λ

2
√

Λ−λ

)
.

Proposition B.0.10. We have

1

N
T (vε)

N
2

(
U (vε)

)1−N
2

<
1

N
S
N
2
λ −O(ε

α
√

Λ
2
√

Λ−λ ).

Proof. From Proposition 2.2.9, we obtain

1

N
T (vε)

N
2

(
U (vε)

)1−N
2

= 1
N

(
S
N
2
λ +O(ε

N
2 ) +O(ε

N−2
2 )−O(ε

α
√

Λ
2
√

Λ−λ )

)N
2
(
S
N
2
λ −O(ε

N
2 )

)1−N
2

.

Since (N − 2)/2 < N/2, we have ε(N−2)/2 + εN/2 ε(N−2)/2 and, by (N − 2)/2 > α
√

Λ
2
√

Λ−λ , we

have

O(ε(N−2)/2)−O(ε
N
2 )1−N

2 < −O(ε
N
2 )1−N

2 .
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Thus

1

N

(
S
N
2
λ +O(ε

N
2 ) +O(ε

N−2
2 )−O(ε

α
√

Λ
2
√

Λ−λ )

)N
2
(
S
N
2
λ −O(ε

N
2 )

)1−N
2

<
1

N

(
S
N
2
λ +O(ε

N−2
2 )−O(ε

α
√

Λ
2
√

Λ−λ )

)N
2
(
S
N
2
λ −O(ε

N
2 )

)1−N
2

<
1

N

(
S
N
2
λ −O(ε

α
√

Λ
2
√

Λ−λ )

)N
2
(
S
N
2
λ −O(ε

N
2 )

)1−N
2

=
1

N

(
S
N
2
λ

)N
2
(

1− O(ε
α
√

Λ
2
√

Λ−λ )

S
N
2
λ

)N
2
(
S
N
2
λ

)1−N
2
(

1− O(ε
N
2 )

S
N
2
λ

)1−N
2

=
1

N
S
N2

4
+N

2 (1−N
2 )

λ

(
1−O(ε

α
√

Λ
2
√

Λ−λ )

)N
2
(

1−O(ε
N
2 )

)1−N
2

=
1

N
S
N
2
λ

(
1−O(ε

α
√

Λ
2
√

Λ−λ )

)N
2
(

1−O(ε
N
2 )

)1−N
2

.

Since (1− a)m =
m∑
i=0

(
m
i

)
1m−i (−a)i, O(εa) + O(εa) = O(max(εa, εb)), and εb > εa, if

b < a, we have (
1−O(ε

α
√

Λ
2
√

Λ−λ )

)N
2

=

(
1− N

2
(O(ε

α
√

Λ
2
√

Λ−λ )

)
as ε→ 0 and (

1−O(ε
N
2 )

)1−N
2

=

(
1− (1− N

2
)O(ε

N
2 )

)
.

Thus, since kO(εa) = O(εa) for a constant k and O(εa)O(εb) = O(εa+b)

1

N
T (vε)

N
2

(
U (vε)

)1−N
2

< 1
N S

N
2
λ

(
1− N

2 O(ε
α
√

Λ
2
√

Λ−λ )

)(
1−

(
1− N

2

)
O(ε

N
2 )

)
.

Then

1

N
T (vε)

N
2

(
U (vε)

)1−N
2

< 1
N S

N
2
λ

(
1− N

2 O(ε
α
√

Λ
2
√

Λ−λ )

)(
1−

(
1− N

2

)
O(ε

N
2 )

)
< 1

N S
N
2
λ

(
1−O(ε

α
√

Λ
2
√

Λ−λ )

)
= 1

N S
N
2
λ −

1
N S

N
2
λ O(ε

α
√

Λ
2
√

Λ−λ )

= 1
N S

N
2
λ −O(ε

α
√

Λ
2
√

Λ−λ ).
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330.

[62] N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDES involving the

critical Sobolev and Hardy exponents. Transactions of the American Mathematical

Society 352 (2000), 5703–5743.

[63] D. Giachetti and S. Segura de Leon, Problemas estacionarios con un termino depen-

diente cuadraticamente del gradiente y conteniendo singularidades. XXI Congreso de

Ecuaciones Diferenciales y Aplicaciones (2009), 1–6.

[64] V. Guillemin and A. Pollack, Differential topology. Prentice-Hall, Englewood Cliffs,

1974.

[65] Q. Han and F. Lin, Elliptic partial differential equations. Courant Lect. Notes, Amer.

Math. Soc., Providence, R. Island, 1997.



BIBLIOGRAPHY 117

[66] L G. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge University Press,

Cambridge, 1934.

[67] P. Hartman and G. Stampacchia, On some non-linear elliptic differential functional

equations. J. Acta Math. 115 (1966), 271–310 .

[68] T. L. Hayden, The extension of bilinear functionals. Pacific J. Math. 22 (1967),

99–108.

[69] T. L. Hayden, Representation theorems in reflexive Banach spaces. Math. Z. 104

(1968), 405–406.

[70] X. He and W. Zou, Infinitely many arbitrarily small solutions for sigular elliptic

problems with critical Sobolev–Hardy exponents. Proc. Edinb. Math. Soc. 52 (2009),

97–108.

[71] N. Hirano and N. Shioji, A multiplicty result including a sign changing solution

for an inhomogeneous Neumann problem with critical exponent. Proceedings of the

Royal Society of Edinburgh, Section: A Mathematics 137 (2007) 333–347.

[72] T. Hsu and H. Lin, Multiple positive solutions for singular elliptic equations with

concave-convex nonlinearities and sign changing weights. Boundary Value Problems,

DOI:10.1155/2009/584203, (2009).

[73] L. Huang, K. Murillo and E.M. Rocha, Existence of solutions of a class of nonlinear

singular equations in Lorentz space, Operator Theory: Advances and Applications,

229 (2012), 195–208.

[74] R. A. Hunt, On L(p,q) spaces. Enseign. Math. 2 (1966), 249–276.

[75] E. Jannelli, The role played by space dimension in elliptic critical problems. Journal

of Differential Equations 156 (1999) 407–426.

[76] R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma

and its applications to elliptic equations. Journal of Functional Analysis 225 (2005),

352–370.

[77] D. Kang and Y. Deng, Multiple solutions for inhomogeneous elliptic problems in-

volving critical Hardy-Sobolev exponents. Journal of Mathematical Analysis and

Applications 60 (2005), 729–753.

[78] D. Kang and S. Peng, Existence of solutions for elliptic problems with critical Hardy-

Sobolev exponents. Israel Journal of Mathematics 143 (2004), 281–297.

[79] G. Karch and T. Ricciardi Note on Lorentz spaces and differentiability of weak

solutions to the elliptic equations. Bull. Polish Acad. Sci. 45 (1997), 1–5.



118 BIBLIOGRAPHY

[80] J. Kazdan, L. and F. Warner, Remarks on some quasilinear elliptic equations. Com-

munications on Pure and Applied Mathematics 28 (1975), 567–597.

[81] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and

their applications. Academic Press, New York, 1980.

[82] A. V. Lair and A. W. Shaker, Classical and weak solutions of a singular semilinear

elliptic problem. Journal of Mathematical Analysis and Applications 211 (1997),

371–385.

[83] J. Leray and J. L. Lions, Quelques resultats de Visik sur les problemes elliptiques

non lineaires par les methodes de Minty-Browder. Bull. Belg. Math. Soc. 93 (1965),

97–107.

[84] S. Li and W. Zou, Remarks on a class of elliptic problems with critical exponents.

Nonlinear Analysis: Theory, Methods and Applications 32 (1998), 769–774.

[85] P.-L. Lions, The concentration compactness principle in the calculus of variations.

The locally compact case, Part 1. Ann.Inst.H.Poincare, Analyse non lin´eaire 1:2,

109-145 (1984).

[86] P.-L. Lions, The concentration compactness principle in the calculus of variations.

The locally compact case, Part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 1:4
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