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Movento, ecotoxicologia 

resumo 
 

 

A alocação de energia celular (CEA) é um biomarcador energético que integra 
a análise das reservas energéticas disponíveis (conteúdo total de proteínas, 
lípidos e carbohidratos) e da energia consumida pelo organismo (sistema de 
transporte de eletrões), fornecendo uma análise global do estado metabólico 
dos organismos.  
Neste trabalho, este biomarcador foi usado como uma potencial ferramenta 

para a avaliação de efeitos do Cádmio e do inseticida Movento em larvas da 
espécie Chironomus riparius. Alterações no CEA foram comparadas com 
efeitos no crescimento e emergência dos organismos, de modo a avaliar a 
sensibilidade e relevância do CEA como uma ferramenta na avaliação de risco 

ecológico. Cádmio e Movento tiveram efeitos negativos no crescimento e na 
emergência dos organismos e o biomarcador energético revelou uma menor 
sensibilidade que os outros parâmetros para ambos os contaminantes. 
Contrariamente à exposição ao inseticida, onde não foram observadas 
diferenças na alocação de energia, o cádmio causou um aumento na energia 
consumida – provavelmente devido a um maior gasto de energia para a 
destoxificação.  
Uma menor quantidade de energia disponível irá, provavelmente, provocar 
uma redução nas taxas de desenvolvimento com consequências na 
emergência, afetando assim a reprodução e a dinâmica da população. 
Alterações na alocação de energia, dependendo da sua magnitude, podem 
estar intimamente relacionadas com alterações nos parâmetros individuais do 
ciclo de vida dos organismos (crescimento e reprodução), podendo ter 
consequências negativas em níveis de organização biológica superiores. Isto 
pode reforçar a importância de utilizar estes biomarcadores energéticos como 
uma potencial ferramenta na avaliação de risco ambiental. Contudo, e apesar 
do CEA ser utilizado como um biomarcador sensível em diferentes espécies de 
invertebrados, os resultados deste trabalho mostram que a sua utilização e 
interpretação em organismos modelo com ciclos de vida rápidos e complexos, 
como C. riparius, deve ser feita de forma cuidadosa. 
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abstract 

 
The Cellular Energy Allocation (CEA) is an energetic biomarker that integrates 
the assessment of the available energy reserves (total content of protein, lipids 
and carbohydrates) and the energy consumed by the organism (electron 
transport system), providing an overall assessment of the metabolic status of 
the organisms.  
In this work, this biomarker was used as a prospective tool to assess the 

effects of Cadmium and the insecticide Movento to exposed midge larvae, 
Chironomus riparius. Alterations in CEA were compared to effects on growth 
and emergence in order to evaluate CEA’s relevance and sensitiveness as a 

tool in environmental risk assessment. Cadmium and Movento impaired the 
growth and emergence of the organisms and the energetic biomarker revealed 
less sensitivity than the other endpoints for both contaminants. Contrary to the 
insecticide exposure, where no differences in the energy allocation were 
observed, cadmium caused an energy allocation shift – towards the increase of 
the consumed energy - probably due to a higher energy demand for toxic 
defense purposes.  
Less energy available will most probably reduce development rates with 
consequences on the emergence thus affecting reproduction and population 
dynamics.  
Changes in the energy allocation, depending on their magnitude, are closely 
related to changes in the individual life cycle traits (growth and reproduction) 
and may therefore have major impacts in higher levels of biological 
organization. This may strengthen these energy based biomarkers as 
prospective tools in environmental risk assessment. Nevertheless and despite 
CEA’s potential use as a sensitive biomarker in different invertebrates species 
the results of this work call for a careful use and interpretation of CEA 
assessment in model test species, such as C. riparius, which have a rapid and 
complex life-cycle.  
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1. Main Introduction 

 

1.1.  Ecotoxicology testing 

 

The increasing pressure over ecosystems due to widespread contamination 

has led to a global concern about its immediate and longer-term effects on the 

environment and even on human health. In the past decades, this concern has led 

to growing efforts to develop tools to suit the environmental risk assessment 

needs.  

Ecotoxicology tests do not reproduce faithfully all natural environmental 

conditions of the organisms and its interactions, but, at the laboratory, they allow 

us to know the effect of toxic compounds in specific components of the 

ecosystems in a reproducible and controlled way (Di Giulio 2008). Short-time 

laboratory assays with the use of single species are advantageous for a fast 

acquisition of information about compounds’ toxicity and selectivity. They are also 

good for the selection of the most suitable parameters to be assessed in longer 

exposure tests. Long-time (or chronic) assays allow the evaluation of the effects of 

compounds over extended periods of time. They can also include the testing of 

substances in different stages of development e.g. throughout the whole life-cycle 

of the organisms, assessing the effects on the organisms’ reproduction and in 

sequential generations (Di Giulio 2008; Mortensen et al. 2010).  

In these assays, parameters such as reproduction, respiration and feeding 

rates, growth, development rate and biomarkers are analyzed (Vogt et al. 2007; 

Jungmann et al. 2009; Paumen et al. 2008; Lee and Choi 2009). The assessment 

of these life-cycle traits become relevant to the attempt to link the effects on lower 

levels of biological organization to changes in population dynamics (Forbes et al. 

2010).   
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1.2.  Biomarkers in ecotoxicology 

 

It is known that stress triggers the activation of cellular, physiological and/or 

behavioral mechanisms in order to minimize possible adverse effects to the 

organism (Servia et al. 2006; Sancho et al. 2009; Ribeiro et al. 2001; Erk et al. 

2011). These mechanisms require the use of some part of the energy 

accumulated by the organism, which together with the energy needed to maintain 

regular homeostasis affects the energetic balance of the organism, leading to less 

energy available for growth and reproduction (Smolders et al. 2004; Sokolova et 

al. 2012).  

The growing knowledge of invertebrate’s biochemistry allows, nowadays, a 

good interpretation of the information obtained by biochemical responses to a 

better evaluation of ecological risks (Choi 2004). Several types of biochemical 

markers have been increasingly used in investigations to obtain early signs of 

exposure to toxic substances. These markers enable the identification of 

contaminants’ effects at a sub-cellular level, even before they are visible at higher 

levels of biological organization (Lemos et al. 2010). However, in contrast to what 

it is often said in ecotoxicology, biomarkers do not provide direct information about 

the contaminants’ impacts on higher organization levels (Di Giulio 2008). In fact, 

they still require integration with a series of other biological, physiological and 

biochemical parameters in way to establish a connection between the different 

responses in different levels of biological organization (Domingues 2007; Crane 

2002). When it comes to organisms with complex life-cycles, there is a need to 

know the potential differential effects on the distinct stages of development 

(Forbes et al. 2006). This is particularly relevant once the impacts observed in 

other life-cycle traits (e.g. survival, fecundity, time to first reproduction) may have 

impact on population growth, although the effects on these life-cycle traits might 

not be linear or consistently causative of alterations on population dynamics 

(Forbes et al. 2010). Still, biomarkers are worthy evaluating since they can provide 

early information about the pollutant’s effect in such a way that become 

complementary tools to methods utilized in the ecological risk monitoring (Walker 

2004).  
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1.2.1. Energetic markers: Scope For Growth  

 

One of these biomarker tools is the Scope for Growth (SfG). This method 

rationale is based on the energetic balance of the organism and it quantifies the 

energy available for growth and reproduction, through the measurement of the 

energy gained after feeding and the energy expended by metabolic processes.  

SfG is given by the following formula as described by Winberg (1960): 

 

SfG = A – (R + U) 

 

where A is the energy assimilated through food consumption R is the energy lost 

through respiration and U is the energy lost through excretion. 

Scope for growth has been used to evaluate the effects of metals such as 

zinc, copper, lead and cadmium (Mubiana and Blust 2007; Naylor et al. 1989; 

Smolders et al. 2005; Munari and Mistri 2007) and also natural stressors as 

temperature, salinity, food limitation and oxygen levels (Wang et al. 2011; 

Smolders et al. 2005; Guzmán-Agüero et al. 2012). SfG has been successfully 

applied in laboratory and in situ ecotoxicity studies using, clams, mussels, bivalves 

and freshwater crustaceans (Juhel et al. 2006; Wang et al. 2011; Munari and Mistri 

2007; Verslycke et al. 2004b; Smolders et al. 2005; Naylor et al. 1989; Maltby et 

al. 1990a, b). Results in terms of SfG values can be either a positive or negative, 

meaning the organisms are able to grow under the implied conditions or not.  

 

 

1.2.2. Energetic markers: Feeding and respiration 

 

Over time SfG showed to be disadvantageous for being very laborious, 

because energy absorbed, assimilation efficiency, energy excreted and lost by 

respiration had to be measured in each organism (Bossuyt et al. 2005). This way, 

the assessment of energy changes evolved to separate measures of feeding rates 

and respiration.  
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Feeding, the major component in SfG, is a parameter that is easily 

assessed and at the same time is sensitive and reliable to be used in laboratory 

and field situations. Feeding rate has been used in laboratory and in field studies 

as an indicator of environmental alterations with several test organisms, such as 

crustaceans, bivalves and insects (Sancho et al. 2009; De Jonge et al. 2012; 

Felten et al. 2008; Buffet et al. 2011; Macedo-Sousa et al. 2007; Nilin et al. 2012; 

Leppänen et al. 1998; Soares et al. 2005; Pestana et al. 2007). 

In their study, Leppänen et al. (1998) have investigated the effect of metal-

polluted sediments on the feeding behavior of Chironomus riparius. The organisms 

were exposed to sediments collected from different polluted sites for 96h. The 

egestion rates of the organisms exposed to sediments with higher metal 

contamination were lower, suggesting a decreased feeding activity. Soares et al. 

(2005) addressed the postexposure feeding rates on C. riparius under light and 

dark conditions, concluding that their feeding rate was higher with light rather than 

in darkness. They also investigated the effect of temperature on feeding rate, 

observing a decrease in food consumption under exposure to 5ºC (Soares et al. 

2005). 

Along with feeding behavior, respiration is also a parameter tested in 

ecotoxicological studies. Respiration rates can be used as a proxy for metabolism 

and although laborious and implying the use of specific equipment are also 

sensitive measures used to address effects of chemical exposure in laboratory 

toxicity investigations (De Coen and Janssen 2003). This parameter has been 

assessed in organisms such as mussels, cockles, insects and crustaceans, 

exposed to e.g. metals, pesticides, acid mine drainage, hydrocarbons, biotic 

stressors and under different seasonal and spatial conditions (Widdows et al. 

2002; Widdows et al. 1997; Smaal et al. 1997; Pestana et al. 2009; Pestana et al. 

2007; Nilin et al. 2012; Macedo-Sousa et al. 2007).  

 Respiration rates of C. riparius have already been successfully used as a 

sensitive indicator of stress caused by simultaneous exposure to chemical 

(pesticide) and biotic (predation risk) stress (Pestana et al. 2009). Here, exposure 

to sub-lethal concentrations of the insecticide imidacloprid and of chemical cues 
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from predators caused significant increases of respiration rates of C. riparius 

larvae showing the metabolic costs of such exposures (Pestana et al. 2009).   

 

 

1.2.3. Cellular Energy Allocation 

 

The measurement of the amount of the different components of the energy 

budget (i.e. proteins, carbohydrates and lipids) is one possible tool to assess the 

effects of stressors on the energetic balance of the organisms (Verslycke et al. 

2003; Wang et al. 2012). 

Cellular Energy Allocation method (CEA) (De Coen et al. 1995) assesses 

the energy budget of the organisms by measuring the energy reserves available 

(Ea - total sugar, lipid and protein content) and the energy consumption (Ec - by 

electron transport system – ETS - activity) (Olsen et al. 2007). The ETS 

measurement is based on the activity of enzymes associated with oxidative 

phosphorylation and can be considered as a good indicator of energy consumption 

(Packard 1971; Packard 1985). Consumption of oxygen depends on biotic and/or 

abiotic factors that have specific effects and that may interact and influence the 

respiratory metabolism. Within biotic variables, age, weight and sex may have a 

major influence in respiration rates (Verslycke 2003). Glycogen is considered the 

main source of energy (Hamburger 1996), therefore, a decrease in glycogen 

content after stress conditions is related to an increase in its consumption derived 

from the need of higher amounts of energy in response to stress (Choi et al. 

2001). Also, changes in lipid and protein content reflect a response to 

perturbations of the organism homeostasis that lead to a higher consumption of 

energy reserves (Verslycke et al. 2004b). So, the energy consumption must be 

measured simultaneously with lipid, sugar and protein content (Verslycke et al. 

2004).  

Cellular Energy Allocation can be calculated by different forms. Samples for 

CEA analysis may be taken at different moments of the test, calculating the final 

CEA value by integration of the changes over the total time of exposure as 

suggested by De Coen and Janssen (2003). It can also be given by the difference 
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between Ea and Ec (CEA=Ea-Ec) (Rueda-Jasso et al. 2004) or by the ratio between 

Ea and Ec (CEA=Ea/Ec) (Verslycke et al. 2004b). 

The method of CEA has been applied in many ecotoxicology studies to 

assess the effect of chemical stressors such as metals, insecticides, biocides, 

(Muyssen et al. 2002; Verslycke et al. 2004b; Erk et al. 2008) as well as natural 

stressors as salinity, temperature and oxygen levels (Erk et al. 2011; Verslycke 

and Janssen 2002; Choi et al. 2001).  

The freshwater crustacean Daphnia magna has been object of several 

studies for the assessment of alterations in the energy budget caused by exposure 

to different stressors (De Coen and Janssen 2003; De Coen et al. 1995; Filho et 

al. 2011; Vandenbrouck et al. 2009; Bossuyt et al. 2005; De Coen et al. 2006). 

Other studies were performed with the mysid shrimp Neomysis integer (Erk et al. 

2008; Verslycke et al. 2003; Verslycke and Janssen 2002; Verslycke et al. 2004b; 

Verslycke et al. 2004a), gastropods (Moolman et al. 2007), mussels (Erk et al. 

2011; Gagne et al. 2007; Smolders et al. 2004) and insects (Choi et al. 2001; 

Bagheri et al. 2010). 

CEA has become a commom parameter in ecotoxicity studies since it 

measures energy consumption and energy allocation together, giving an energetic 

integrative analysis (Verslycke and Janssen 2002), i.e. instead of enzymatic 

measures that give a more instantaneous image of the organism’s status, CEA 

provides the visualization of changes in organism’s energy budget caused by 

different stressors . Other advantage is the transformation of the energy reserves 

available and energy consumption into energetic equivalents, allowing its 

integration in an overall energy budget value that can be compared between 

different organisms and stressors (De Coen and Janssen 2003). The simple 

measurement of ETS activity as a respiration parameter is also advantageous 

because it is much less laborious than measuring the whole-organism respiration 

rates, as it is done in SFG, and equally reliable since the electron transport system 

is directly related to the process of oxygen consumption (De Coen and Janssen 

2003). In fact, CEA has shown similar sensitivity when compared to the SfG 

technique (Verslycke et al. 2004b). 
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1.3.  Test-organism: Chironomus riparius 

 

The family Chironomidae includes a group of determinant species in aquatic 

systems, including the most ubiquitous species of insects (Faria et al. 2007). The 

species Chironomus riparius has been largely used in toxicity assays due to its 

wide geographic distribution and sensitivity to environmental stress, together with 

its easy laboratory culture and relative short life-cycle (Péry et al. 2003; Ha and 

Choi 2008). These organisms have an important role in the food chain, serving as 

food to fish and other vertebrates (Ha and Choi 2008). Communities of benthic 

organisms as C. riparius are exposed to different kind of organic and inorganic 

contamination suspended in the water or deposited in the sediment they inhabit 

(Mäenpää 2003). Their close association with sediment, where pollutant 

compounds can be accumulated, makes essential the study of the impact of toxic 

substances in these communities, because they are responsible for the transfer of 

energy, nutrients, and even contaminants to higher trophic levels (Langer-Jaesrich 

2010; Mäenpää 2003). 

Several studies have been performed on the biological and molecular 

responses of Chironomus riparius exposed to pesticides, metals, nanoparticles, 

antibiotics (Park 2009, 2010; Nair and Choi 2011; Nowak 2008; Dias et al. 2008; 

Azevedo-Pereira et al. 2011) and abiotic stressors as temperature, salinity and 

oxygen levels (Bervoets et al. 1995; Choi et al. 2000; Pestana et al. 2009). Some 

of the analyzed parameters include mortality (or survival), growth (larvae body size 

and body weight), feeding rate, respiration, adult sex ratio, adult emergence (time 

to emergence, emergence rate), reproduction (oviposition, number of egg per egg-

mass, number of egg-mass per female) and biomarkers (enzymatic/energetic 

responses) (De Haas et al. 2004; Leppänen et al. 1998;  arinkovi  et al. 2011; 

Paumen et al. 2008; Péry and Garric 2006; Vogt et al. 2007; Jungmann et al. 

2009).  
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1.4.  Contaminants 

 

1.4.1. Cadmium 

 

Cadmium is a toxic and widespread metal which has harmful effects on 

organisms (Henson and Chedrese 2004; Waisberg et al. 2003)  and it is originated 

from different sources, such as industrial and anthropogenic (Korte 1982). 

Cadmium accumulates in sediments (Jung et al. 2005) and affects the benthic 

biota causing negative effects such as oxidative stress, genotoxicity and 

impairment of growth, behaviour, emergence, reproduction and population growth 

rate of chironomids (Barata et al. 2005; Vogt et al. 2010;  arinkovi  et al. 2011; 

Nair and Choi 2011; Nair et al. 2011; Lee et al. 2006).  

 

 

1.4.2. Insecticide Movento  

 

Pesticides differ from other environmental pollutants by entering the 

environment due to their deliberate use by Man for specific purposes. When a 

pesticide is applied onto a crop, its majority is absorbed by plants and animals 

(Slikker 2010; Pretty 2005). Still, some of it is spread through the environment by 

being vaporized and rainfall leads to its accumulation in the soil. It also may reach 

surface and ground waters by runoff and leaching (Slikker 2010). This makes 

monitoring and minimization of the harmful effects of these compounds to the 

environment and to humans crucial (Costa 2008).  

Spirotetramat (Movento®) is a new insecticide of the tetramic acids’ class 

which acts by inhibiting lipid biosynthesis (Maus 2008). As a consequence of lower 

lipid content, juvenile organisms suffer an inhibition of their growth and see their 

reproduction compromised (Chen 2010).  Spirotetramat is thus highly effective 

against juvenile insects and decreases the fecundity  and fertility of adult females, 

promoting a decrease in insect populations (Brück 2009; Nauen 2008). Such 

properties make it an adequate compound to the control of persistent species and 

it is applied worldwide to eliminate pests as aphids (Aphis spp., Myzus spp., 
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Dysaphis spp., Toxoptera spp., Phorodon humuli), psyllids (Psylla spp., Paratrioza 

cockerelli) and whiteflies (Bemisia spp., Trialeurodes vaporariorum) (Nauen 2008). 

This insecticide remains active through a large range of temperatures and has a 

high residual activity, i.e., after its implementation on leaves it moves through the 

vascular system of the plants, acting in several sites during long periods of time. In 

this way, allows the control of roots attacking pests, also protecting leaves and 

new shoots after its implementation (Brück 2009).  

There is scarce information on the toxicity and ecological risk of Movento. 

The insecticide has shown a relatively fast degradation on sediment and water and 

a low toxicity for Daphnia magna and Chironomus riparius. In table I are described 

some of the properties of Movento. 
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Table I. Properties of the insecticide Movento (adapted from Bayer CropScience (2010), Brück et al. (2009) and Austrian 

Agency for Health and Food Safety (2012)). 

 

Commercial name Movento
®
 

Comum name Spirotetramat 

Chemical name (IUPAC) ethyl-cis-3-(2,5-dimethylphenyl)-8-methoxy-2-oxo-1-azaspiro[4.5]dec-3-en-4-yl carbonate 

Chemical formula C21H27NO5 

Molecular weight 373.45g/mol 

Melting point 142ºC 

Vapor pressure 1.5x10
-8

 Pa (25ºC) 

Water solubility 29.9 mg/L (pH=7) 

Log KOW 2.5 (pH=4, 7 and 9) 

Half-life 

32.5d (pH=4, 25ºC) 

8.6d (pH=7, 25ºC) 

0.32d (pH=9, 25ºC) 

Toxicity 

 

Daphnia magna NOEC = 20.3 mg a.i./L; EC50 > 42.7 mg a.i./L 

Chironomus riparius NOEC = 0.1 mg a.i./L; LC50 = 1.6 mg a.i./L 
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1.5.  Aim of the study 

 

The work presented in this thesis focused on the adaptation of cellular 

energy allocation methodology to C. riparius, a model species in ecotoxicological 

studies. After that the effects of Cadmium and Movento (spirotetramat) on CEA 

components were assessed on C. riparius larvae. To evaluate the sensitivity and 

relevance of this energetic biomarker, effects were simultaneously assessed with 

classic parameters such as growth or emergence. The objective was to investigate 

the suitability of CEA methodologies in ecotoxicological studies using C. riparius 

as test organisms. 
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2.1.  Abstract 

 

Cellular Energy Allocation is an energetic biomarker which is addressed 

through the ratio between the available energy and the energy consumed. The 

sum of total protein, carbohydrate and lipid content represents the energy of the 

available reserves and the energy consumed is given by the activity of the electron 

transport system. In this work this biomarker was used as a tool to assess the 

effects of sublethal concentrations of Cadmium Chloride and the insecticide 

Movento in exposed Chironomus riparius. The changes in the Cellular Energy 

Allocation were compared with classical endpoints (growth and emergence) in 

order to assess the sensitivity and relevance of this biomarker. The energetic 

budget biomarker revealed less sensitivity than the classic endpoints for both 

contaminants. Contrary to the insecticide exposure, where no differences in 

energy allocation were observed, exposure to cadmium resulted in an energetic 

allocation shift, caused by increased metabolic energy demand.  

Although CEA is used as a sensitive biomarker in different invertebrate 

species, care should be taken when using these methodologies in model test 

species, such as C. riparius, which have a rapid and complex life-cycle.  
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2.2. Introduction 

Cellular Energy Allocation (CEA) is a biomarker approach that allows the 

determination of the energy reserves available and the energy consumed by the 

organism, when exposed to any type of condition. Initially described by De Coen et 

al. (1995), CEA is an integrative measure of the total content of proteins, lipids and 

carbohydrates as the energy reserves available and the electron transport system 

(ETS) activity as the energy consumed, giving an overall assessment of the 

metabolic status of the organisms.  

When under stress, either by the presence of contaminants or other type of 

stressors, organisms tend to expend more energy in order to resist their action 

(Wang et al. 2012). As a result, the energy reserves decrease and essential 

functions such as growth or reproduction may be negatively affected (Moolman et 

al. 2007). CEA analysis provides us information about the energy costs, thus the 

metabolic status of the organism, through quantification of both fractions: energy 

available after stress exposure and energy consumption (Olsen et al. 2008; Choi 

et al. 2001).  

This methodology has been applied to different species and it has shown to 

be a sensitive endpoint in Daphnia magna exposed to contaminants such as 

copper, mercury, lindane, TBT, and binary metal mixtures (Bossuyt et al. 2005; 

Vandenbrouck et al. 2009; De Coen and Janssen 2003), for the estuarine mysid 

shrimp Neomysis integer exposed to the pesticide chlorpyrifos (Verslycke et al. 

2004), and for insects (Tassou and Schulz 2009) and silkworm larvae (Etebari et 

al. 2007) exposed to the insecticide pyriproxyfen. CEA has also been successfully 

tested on fish, mussels and gastropods exposed to different contaminants 

(Ayuningtias 2011; Erk et al. 2011; Wang et al. 2012; Rueda-Jasso et al. 2004). 

In this study, CEA methodology for Chironomus riparius was developed and 

the impacts of Cadmium and Movento’s short exposure on this integrative 

energetic biomarker are assessed. 

The midge larvae of the species Chironomus riparius have been shown to 

be a good sentinel of environmental pollution and are commonly used in laboratory 

assays to test the effect of contaminants due to their easy maintenance in the 

laboratory, short-life cycle, wide geographic distribution and sensitivity to 
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environmental stress (Faria et al. 2007; Dias et al. 2008; Vogt et al. 2007). 

Surprisingly, CEA methodology was never adapted for this model species.  

Cadmium is a non-essential metal which free ionic form (Cd2+) makes it 

more bioavailable  to aquatic organisms, and thus more toxic (Vellinger et al. 

2012). Cadmium has been proved to cause several effects on organisms, such as 

decreasing feeding rate and locomotor activity in the amphipod Gammarus pulex 

(Vellinger et al. 2012) and reduced growth, survival and reproduction in Daphnia 

magna (Smolders et al. 2005). Also C. riparius are known to suffer effects such as 

delayed emergence, decreased number of egg-masses per female and decreased 

population growth rate when exposed to cadmium (Vogt et al. 2010).  

 There is scarce information about the effects of Movento (Spirotetramat) 

on aquatic organisms. It acts by lipid synthesis inhibition and it has been labeled 

has a low-risk insecticide (Klempner 2008). It is effective against aphids and 

whiteflies, especially juveniles, decreasing the females’ fecundity and fertility 

(Varenhorst 2011; Klempner 2008). It is known to have no acute toxic effects on 

mammals and birds, however, it is toxic to fish (Maus 2008) and to fresh water 

invertebrates (National Registration Authority for Agricultural and Veterinary 

Chemicals 2009). Its toxicity for invertebrates as Daphnia magna and Chironomus 

riparius is considered to be low (Austrian Agency for Health and Food Safety 

2012). 

By using these two dissimilar acting contaminants, our main objective is to 

evaluate CEA sensitivity and relevance compared to classical endpoints (growth 

and midge emergence) in order to assess its suitability in ecotoxicity studies with 

C. riparius. 
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2.3. Materials & Methods 

 

2.3.1.  Laboratory culture and maintenance of Chironomus riparius 

 

Chironomus riparius Meigen (Diptera, Chironomidae) larvae were 

obtained from a laboratory culture established at the Biology Department, 

University of Aveiro, for more than 10 years. The culture is maintained in 

ASTM hard water medium in plastic containers with a 2cm sediment layer. 

The culture medium is changed every week and the larvae are fed every 

two days with a suspension of grounded TetraMin®. The culture is 

maintained at constant temperature (20  1ºC) and light conditions (16h 

light/ 8h dark).  

 

2.3.2. Organisms’ exposure to Cadmium and Spirotetramat 

(Movento)  

 

Organisms from the 3rd instar (8 days) were exposed to a gradient of 

concentrations of Cadmium chloride (technical grade, CASNo. 10108-64-2, 

Sigma-Aldrich, USA) (50, 100 and 200 µg/L) and Spirotetramat (Movento 

150 OD Insecticide, Bayer CropScience) (0.5, 3 and 18 µg/L). For each 

concentration and controls, 16 replicates were used, each with 15 

organisms, as it is showed below:  

 

 

8 replicates x 15 org + 4 replicates x 15 org + 4 replicates x 15 org 

CEA  Growth  Emergence 

 

48h  6 days  28 days 
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Eight replicates were used to assess CEA after 48 hours of exposure, 

four replicates to assess growth after 6 days and the remaining four 

replicates were used to check for emergence during 28 days of exposure. 

Mortality was registered after 2 and 6 days of exposure and at the end of 

the test. All the tests were performed in the same conditions as described 

for culturing. 

The organisms were placed in 1L flasks with a 2cm sediment layer 

each containing 600ml of each test solution. Water spiking was made from 

a stock solution of 15mg Cadmium/L and of 0.5mg Spirotetramat/L.  

 

 

2.3.3. Growth and emergence 

 

After 6 days of exposure, organisms were removed from each 

treatment and total body length and head capsule width were measured 

under a stereo dissecting microscope. The emergence of adults was 

recorded daily throughout the experiment, in order to calculate the 

cumulative percentage of emergence and the mean time to emergence of 

the organisms from all treatments.   

 

2.3.4. Cellular energy allocation analysis 

 

Organisms for CEA measurements were collected after 48h of 

exposure. Animals were quickly passed through filter paper to remove any 

superficial water, promptly weighed (fresh weight), and frozen in liquid 

nitrogen and kept at -80ºC until analysis.  

Energy available (sugars, lipids, and proteins) and energy consumption 

(ETS) were quantified following the method of De Coen et al. (1995) with 

minor modifications. Samples with pools of 15 larvae each were 

homogenized by sonication in 1000µl of ultra-pure water from which 300µl 
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portions each were taken for the analysis of sugar content, lipid content and 

ETS activity, and the remaining 100µl for protein quantification.  

All reagents used were of analytical or molecular grade and purchased 

from various suppliers (such as Scharlau, Panreac, Fisher Scientific and 

Sigma-Aldrich). All spectrofotometric measurements were performed in the 

microplate reader MultiSkan Spectrum (Thermo Fisher Scientific, USA) 

 

 

2.3.4.1. Energy available (Ea) 

 

The available energy (Ea) includes the following components: total 

carbohydrates, lipids and proteins.  

Total protein content was quantified by Bradford’s method after a 

4:1 dilution of the sample in ultra-pure water. After 30min incubation 

at 20ºC the absorbance was measured in the microplate at 592nm 

with bovine serum albumin as a standard. 

Carbohydrate content was quantified by adding 100µl of 15% TCA 

to the 300µl of homogenate and incubating at -20ºC for 10 min. After 

centrifugation (3500rpm, 10min, 4ºC) the supernatant was used for 

carbohydrate quantification. The measurement of carbohydrate 

content was made by adding 50µl of 5% phenol and 200µl of H2SO4 

to 50µl of the treated sample in the microplate. The samples were 

incubated at 20ºC for 30min and the absorbance was measured at 

492nm in the microplate with glucose used as a standard. 

Total lipid content was quantified by adding 500µl of chloroform 

(119.38M; ACS spectrophotometric grade, ≥99.8%, contains 0.5-

1.0% ethanol as stabilizer) and methanol (32.04M; ACS reagent, 

≥99.8%) to 300µl of the homogenized sample. After centrifugation 

(3500rpm, 5min, 4ºC) the top phase and the thin layer were 

discarded and 100µl of the remaining phase were transferred to 

glass tubes for lipid quantification. Then, 500µl of H2SO4 were added 

to each sample and incubated at 200ºC for 15min. After cooling 
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down to room temperature, 1500µl of ultra-pure water were added to 

each tube and the absorbance measured in the microplate at 375nm 

and tripalmitin used as a lipid standard. 

 

 

2.3.4.2. Energy consumed (Ec) 

 

Electron transport system activity was measured by adding 150µl 

of homogenization buffer (0.3M Tris; 150% (w/v) Poly Vinyl 

Pyrrolidone; 8mM MgSO4; 0.6% (v/v) Triton X-100) to 300µl of the 

initial homogenate. After centrifugation (3500rpm, 10min, 4ºC) the 

supernatant was removed for ETS activity measurement. Then, 50µl 

of each sample were transferred to the microplate and 150µl of a 

buffered solution B [2% (v/v) solution A (6.67M  Tris; 0.27% (v/v) 

Triton X-100); 1.8mM NADH; 280µM NADPH], and 100µl of INT 

solution (p-IodoNitroTetrazolium; 8mM) added. The absorbance was 

immediately measured kinetically at 490nm over a 3 min period.  

 

 

2.3.4.3. Cellular energy allocation calculation 

 

The fractions of the energy available were transformed into 

energetic values using the corresponding energy of combustion: 

39500 mJ/g lipid, 17500 mJ/g glycogen, 24000 mJ/g protein (De 

Coen & Janssen, 1997). The cellular oxygen consumption rate was 

determined by following the stoichiometrical relationship in which for 

2µmol of formazan formed, 1 µmol of oxygen is consumed. The 

calculation of the quantity of oxygen consumed was determined by 

using the formula of Lambert-Beer: A = ε x l x c (A = absorbance; ε 

for INT-formazan = 15900/M.cm; l = 0.9; c = oxygen consumed). The 

values obtained were then transformed into energetic values using 

the specific oxyenthalpic equivalent for an average lipid, protein and 
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carbohydrate mixture of 480 kJ/mol O2, giving us the final Ec value. 

Ea value is given by the sum of protein, carbohydrate and lipid 

fractions, and the final CEA value is obtained by the formula: CEA= 

Ea/Ec 

The energetic values obtained for lipid, protein and sugar content 

and ETS activity were adjusted to the weight of the organisms using 

the following allometric equation as suggested by (Penttinen and 

Holopainen 1995): 

 

Z = Y (M-0.71) 

 

where Y is the energetic value of lipid, protein or sugar content or 

ETS activity after transformation with the respective energy 

combustion values, M is the fresh weight of the sample and Z is the 

final value corrected to the weight of the organisms.  

 

 

 

2.3.5. Statistical analysis 

 

All data were checked for normality and homoscedascity. One-way 

analysis of variance (ANOVA) with Dunnett’s multiple comparison of means 

was employed to determine differences relatively to control treatment. For 

all statistical tests the significance level was set at p≤0.05 and all 

calculations were performed with SigmaStat software package (Systat 

Software Inc., 2006).  
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2.4.  Results 

 

2.4.1. Effects on C. riparius growth and emergence 

 

After 6 days exposed to cadmium the mean body length of larvae was 11.4 

0.49mm in the control with a significant decrease throughout the concentrations 

and the lowest size of 5.85 0.13mm in the highest concentration (table II). The 

same effect was observed for head capsule width, which decreased from a mean 

value of 0.52 0.006mm in the control treatment to 0.32 0.007mm at 200µg/L of 

cadmium. Larvae from the control, 50 and 100µg/L treatments changed to the 4th 

instar while the larvae from the highest concentration of cadmium remained in the 

3rd instar of development.  
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Fig.1. Cumulative percentage of emergence of Chironomus riparius exposed to cadmium. An 

asterisk indicates a significant difference from the control at p ≤ 0.05 (ANOVA, Dunnett’s test). 

 

 

 

* 

* 

* 



33 
 

Organisms exposed to cadmium also suffered a significant increase in the 

time to emergence which reached a mean value of 25.4 1.6 days in the highest 

concentration tested compared to 15.4 2.0 days in the control treatment (table II). 

The cumulative percentage of emergence suffered a significant decrease with 

cadmium concentrations from 95% in the control treatment to a minimum value of 

45% at 200µg/L (fig. 1). 
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Fig. 2. Cumulative percentage of emergence of Chironomus riparius exposed to Movento. An 

asterisk indicates a significant difference from the control at p ≤ 0.05 (ANOVA, Dunnett’s test) 

  

 

 Organisms exposed to Movento only showed significant effects in the body 

length of larvae exposed to 18µg/L which decreased from a mean value of 11.54 

0.26mm in the control treatment  to  9.16 0.19mm (table II). Despite the 

absence of statistically significant differences, Movento promoted a decrease in 

the number of surviving organisms at 18µg/L, both after 6 days of exposure and 

throughout the experiment, which consequently led to a low percentage of 

emerged adults in the highest concentration. Because only four larvae 

* 
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successfully emerged in this treatment time to emergence cannot be presented.  

(table II, fig. 2). No differences were observed for the other parameters and 

concentrations tested (table II). 
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Table II. Mean values ( SD) for survival and growth after 6 days of exposure and time to emergence of Chironomus riparius 

exposed to cadmium and Movento. An asterisk indicates a significant difference from the control at p≤0.05 (ANOVA, Dunnett’s 

test). 
 

 

 Concentration (µg/L) % Survival Body length (mm) Head capsule width (mm) Time to emergence (days) 

Cadmium 

0 94.44  0.96 11.4  0.49 0.52  0.006 15.37  2.04 

50 91.11  9.80 10.21  0.19* 0.49  0.016* 17.17  3.06* 

100 81.67  27.4 7.01  0.29* 0.35  0.029* 23.27  2.12* 

200 84.17  20.9 5.85  0.13* 0.32  0.007* 25.35  1.64* 

Movento 

0 95.28  3.37 11.54  0.26 0.50  0.006 15.71  2.82 

0.5 94.44  4.19 11.37  0.78 0.50  0.018 15.95  2.62 

3 95.00  5.00 11.62  0.31 0.50  0.008 17.26  3.22 

18 60.46  46.5 9.16  0.19* 0.50  0.004 --- a) 

a)
only four adults 
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2.4.2. Effects on C. riparius cellular energy allocation  

 

The levels of the different energy fractions of C. riparius exposed to 

cadmium and Movento are presented in table III. In the cadmium experiment, the 

carbohydrate content of the organisms significantly rose to a mean value of 715.3 

66.3 mJ/org at 50µg/L of cadmium, when comparing to control. Carbohydrate 

content began to decreased in the next concentration reaching a mean value of 

367.7 66.2 mJ/org at 200µg/L. Protein values remained similar among the 

concentrations, with no statistical differences. Lipid content significantly increased 

in the highest concentration of cadmium with a mean value of 1316.2 194.6 

mJ/org compared to control (1031.1 157.0). Ea values for cadmium (fig. 3) 

showed no differences between treatments and Ec values were significantly higher 

than control at 100 and 200µg/L (fig. 4). CEA suffered a significant reduction at 

100 and 200µg/L of cadmium as a result of the higher energy consumed (ETS 

activity) (fig. 5).  
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Fig. 3. Effect of 48h exposure to sub-lethal concentrations of cadmium
 
on the energy available of 

Chironomus riparius. Error bars represent standard error of the mean.  
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Fig. 4. Effect of 48h exposure to sub-lethal concentrations of cadmium
 
on the energy consumption 

of Chironomus riparius. Error bars represent standard error of the mean. An asterisk indicates a 

significant difference from the control at p ≤ 0.05 (ANOVA, Dunnett’s test). 
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Fig. 5. Effect of 48h exposure to sub-lethal concentrations of cadmium
 
on the cellular energy 

allocation of Chironomus riparius. Error bars represent standard error of the mean. An asterisk 

indicates a significant difference from the control at p ≤ 0.05 (ANOVA, Dunnett’s test). 
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Table III.  

Available energy fractions (mean  SD) in the total body of C. riparius exposed to sub-lethal concentrations of cadmium and 

Movento. An asterisk indicates a significant difference from the control at p ≤ 0.05 (ANOVA, Dunnett’s test). 

 

 
 

 

Concentration (µg/L) E(carbohydrates) (mJ/ mg org) E(proteins) (mJ/ mg org) E(lipids) (mJ/ mg org) 

Cadmium 

0 514.8  189.2 2329.0  319.9 1031.1  157.0 

50 715.3  66.3* 2408.7  256.8 857.5  94.2 

100 607.2  83.3 2194.0  382.1 954.1  115.7 

200 367.7  66.2* 1958.0  306.2 1316.2  194.6* 

Movento 

0 1171.0  437.8 3406.0  201.8 995.8  135.1 

0.5 869.0  446.6 3455.0  346.9 1137.6  261.2 

3 1226.5  258.9 3400.6  205.5 948.4  78.8 

18 1011.0  418.9 3529.0  395.2 1003.4  145.1 
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No differences were observed in any energy fraction of the organisms 

exposed to Movento, in any of the concentrations tested (table III).  Ec and Ea 

values for the organisms exposed to Movento presented thus no significant 

differences comparing to control (fig. 6 and fig. 7) which consequently resulted in 

the absence of effects also in CEA (fig. 8). 
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Fig. 6. Effect of 48h exposure to sub-lethal concentrations of Movento 
on the energy available of 

Chironomus riparius. Error bars represent standard error of the mean. 
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Fig. 7. Effect of 48h exposure to sub-lethal concentrations of Movento 
on the energy consumption 

of Chironomus riparius. Error bars represent standard error of the mean. 
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Fig. 8. Effect of 48h exposure to sub-lethal concentrations of Movento 
on the cellular energy 

allocation of Chironomus riparius. Error bars represent standard error of the mean. 
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2.5.  Discussion 

  

 Cellular Energy Allocation has been used to assess the effect of 

contaminants on the energy balance of several organisms (Erk et al. 2008; 

Smolders et al. 2004; Stomperudhaugen et al. 2009; Verslycke et al. 2004; De 

Coen et al. 1995; De Coen et al. 2001; De Coen and Janssen 2003). Its relevance 

before other biomarkers resides in the fact of combining the energy reserves of the 

organisms with the energy consumption, reflecting the energy status and giving a 

perspective of their overall condition (De Coen and Janssen 2003). 

 Cadmium has been proved to impair the development of Chironomus 

riparius (Vogt et al. 2010; Nair and Choi 2011). The present work supports this fact 

by showing a clear effect of cadmium exposure on the development and 

metabolism of C. riparius. A decrease of CEA may be due either to a reduction in 

the energy reserves (Ea) and/or increase of the energy consumed (Ec) (Olsen et al. 

2007). As expected, under cadmium contamination, C. riparius presented higher 

energy consumption than in control. This is coincident with a higher metabolic 

activity used to fight the contamination effects (Gagne et al. 2007; De Coen and 

Janssen 2003). So, despite no changes in the energy reserves were detected, the 

increasing ETS activity suggests a higher energy demand that caused a reduction 

in the energy available for growth (decrease in CEA values) (De Coen et al. 2000; 

De Coen and Janssen 2003; Smolders et al. 2004). The responses of C. riparius 

in terms of energy allocation are in line with what is observed in terms of reduced 

growth and development meaning that CEA results for cadmium were correlated 

with effects at higher levels of biological organization. It was also clear that 

metabolic expenditure (Ec) is the component responsible for this effect. The 

absence of similar effects on energy reserves (Ea) might be explained by 

compensatory mechanisms in terms of feeding and assimilation efficiency or by 

the reduced exposure period (48 hours). 

The primary source of energy are the carbohydrates followed by lipids and 

then proteins (Ayuningtias 2011). Thus, the absence of effects on the protein 

content in the presence of cadmium may be explained by the fact that proteins are 

the last fraction of energy that is consumed combined with the short exposure 
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period tested (Ayuningtias 2011; Erk et al. 2011; Smolders et al. 2004). However, 

there was an unexpected increase in carbohydrate and lipid content. Other studies 

have also reported unexpected shifts in the energy budget of test organisms 

(Verslycke and Janssen 2002; Verslycke et al. 2004; Bagheri et al. 2010; Filho et 

al. 2011). Increase in carbohydrate content was also observed in Bagheri et al. 

(2010) along with the absence of effect on lipid content. Here the authors assumed 

the argument from Cymborowski (1992) who has associated increasing lipid 

content to lipid accumulation resultant from changes in metabolic pathways. 

In the experiment with Movento the organisms did not suffer alterations in 

the energy budget and effects were only significant for body size and time to 

emergence for the highest concentration (18µg/L). The lack of a value for the time 

to emergence for the highest concentration of Movento is due to few adult 

organisms used for the calculation of the mean. In this concentration, only four 

larvae emerged, which was a result of the lower number of pupae found. In this 

concentration, 22 of the 60 larvae initially used were dead after 28 days of 

exposure (data not shown), suggesting that few larvae resisted the effect of the 

insecticide. However, 8 larvae were alive at day 28, which means that, if they were 

able to pupate and emerge, the mean time to emergence of the organisms from 

this concentration of Movento (18µg/L) would be higher than for the other 

concentrations. Spirotetramat thus clearly reduced growth and development rates 

of C. riparius. 

In the same reasoning as for the cadmium exposure, it was expected that 

Movento would induce an increase of energy consumption and/or decrease of the 

energy available. The absence of alterations in Ea and Ec components of 

organisms under Spirotetramat exposure may be associated with organisms’ 

defense strategy as described by De Coen et al. (1998). They have linked the 

conservation of energy reserves to an energy-saving strategy where the 

organisms under stress diminish their metabolic and feeding activity in order to 

save their available energy reserves. Another reason for the difference in ETS 

activity between cadmium and spirotetramat exposure may be the different mode 

of action of the contaminants. Cadmium it is known to cause oxidative stress, 

promoting several reactions with oxygen and reactive oxygen species, production 



43 
 

of enzymes that prevent oxidative damage (superoxide dismutase, peroxidase, 

catalase, glutathione peroxidase) and disruption of membrane-bound electron 

transport (Sun and Zhou 2008). This way it was expected that cadmium would 

readily affect the electron transport system due to a higher metabolic activity 

contrarily to spirotetramat which acts primarily by lipid biosynthesis inhibition. 

Again, altered assimilation efficiency could have contributed for the absence of 

effects on the energy allocation under spirotetramat exposure (Stoks et al. 2005). 

Moreover, a constant ETS activity may be explained by a short time of exposure to 

the contaminant (Filho et al. 2011; Moolman et al. 2007). In fact, Moolman et al. 

(2007) have applied longer exposure periods to their organisms so changes in 

energy reserves could be detected and associated with a chronic exposure. After 

a 2-week exposure of Melanoides tuberculata to different levels of cadmium and 

zinc it was observed a decrease of the energy reserves, except for lipids. The 

different exposure periods tested for CEA and growth measurements can thus 

explain why reduced growth was not correlated with effects on energy allocation 

despite the specific mode of action of Spirotetramat. 

Toxicity values of Movento (Spirotetramat) for C. riparius show a LC50 

value of 1.6mg/L (1600µg/L) according to the Austrian Agency for Health and Food 

Safety (2012). Following chronic endpoints, in here the organisms showed more 

sensitivity to this insecticide, being the growth and emergence significantly 

affected at 18µg/L.  

In general, and for both cadmium and Spirotetramat exposures, growth and 

emergence were more sensitive endpoints than CEA analysis.  

It should be noted that the absence of results in terms of Ea or Ec might be 

related to different factors related to the experimental methods used and with 

physiological characteristics of the test species used.  

First it should be noted that effects on CEA were assessed after 48 hours of 

exposure, whereas the other parameters were analyzed after longer exposure 

periods. Thus, prolonging the time of exposure for CEA analysis could allow the 

observation of effects on the energy allocation in lower concentrations. 

In terms of organisms’ physiology and as stated above, it should be kept in 

mind that physiological and or behavioral adaptations such as changes in feeding 
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or altered assimilation efficiency could affect energy acquisition and assimilation 

and thus complicate the interpretation of the effects of short exposure to 

contaminants. Food was provided during the exposure period mainly because it 

allowed us to exclude the hypothesis of changes in energy available as a result of 

starvation and to assess CEA, growth and emergence in the same conditions, in 

order to compare the results between the different parameters (Moolman et al. 

2007). Moreover providing food avoids cannibalism of larvae. 

It is also important to consider that in organisms with rapid and complex life-

cycles as C. riparius, which go through molting and metamorphosis, energy 

allocation is dependent on the molting period. Molting is an energy consuming 

process and it is assumed that organisms store energy reserves prior to molt, 

since during molt larvae stop feeding and spend the previous stored energy in the 

process of new cuticle synthesis (Lorenz and Gade 2009). In our experiments we 

tried to use a short exposure period (48 hours) but it might not have been sufficient 

to eliminate these differences even if the organisms were in the same instar. 

 

 

2.6. Conclusion 

 

The results presented show that classic endpoints such emergence or 

larvae growth are more sensitive than cellular energy allocation. Moreover only 

with exposure to cadmium it was possible to relate effects at the different levels of 

biological organization. 

Analysis of CEA suggests that Spirotetramat (Movento) did not cause 

effects on the metabolism of the organisms, since no dose-response relationship 

was observed. C.riparius’ growth and emergence were significantly reduced at 18 

µg/L. 

Although cellular energy allocation has been suggested as a sensitive and 

non specific energetic biomarker we advocated that for model species with rapid 

life cycles, classic parameters are more suitable to be used in environmental risk 

assessment. Growth and emergence of C. riparius are easily assessed in the 
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laboratory and showed higher sensitivity compared to effects of short exposures of 

cadmium and Spirotetramat on CEA. 

CEA is nevertheless a useful ecotoxicological tool and it can be used to 

investigate how organisms respond to chemical stressors with specific modes of 

action, as a proxy for growth in organisms with long life-cycles and to study 

resistance mechanisms comparing different energy allocation strategies in 

organisms showing different tolerance to contaminants. 
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3. General Discussion & Conclusion 

 

The permanent contamination of the environment has increased the need of 

ecotoxicological testing in order to find new tools to predict effects at higher levels 

of biological organization and serve the environmental risk assessment purpose.  

Energy based biomarkers like cellular energy allocation (CEA) have been 

proposed as non-specific biomarkers that are sensitive to a wide range of 

chemical stressors (Smolders et al. 2004) and that are directly linked with higher 

levels of biological organization (Smolders et al. 2004; De Coen and Janssen 

2003; Olsen et al. 2007). However, CEA methodology was until now never applied 

to C. riparius, a model test species in ecotoxicological investigations. This is 

surprising since one advantage of CEA is the fact that it can be directly linked with 

higher levels of biological organization (Smolders et al. 2004; Stomperudhaugen et 

al. 2009; De Coen and Janssen 2003). This energy based biomarker can thus be 

used to assess effects of any type of stressors, which gives the possibility to be 

compared between different stress situations. Still, the great advantage is based 

on the transformation of the results into energetic values that can be used to 

compare effects between different species.  

Thus the work presented consisted in adapting the CEA methodology to C. 

riparius evaluating the effects of two dissimilarity acting contaminants, cadmium 

and the insecticide spirotetramat. 

 The focus was the simultaneous assessment of three parameters: C. 

riparius larval growth (body size), emergence (cumulative percentage of 

emergence and time to emergence) and the energy based biomarker analysis. 

This allowed us to assess CEA’s sensitivity and relevance before classical 

endpoints commonly used in standard guidelines with this species. The results 

showed that cadmium and Movento caused negative effects on C. riparius 

development rates.  

The Cellular Energy Allocation method has proved to be relevant for the 

identification of changes in the metabolic status of these organisms caused by 

exposure to cadmium, but irresponsive for spirotetramat exposure.  
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With this work we also were able to gather new information on the toxicity of 

spirotetramat for aquatic biota. Despite the absence of effects on the cellular 

energy allocation, C. riparius showed to be sensitive to low concentrations of this 

insecticide.  

Concerning the suitability of using CEA in C. riparius, the results showed 

that classic endpoints such emergence or larvae growth are more sensitive than 

energy components of cellular energy allocation. Thus we conclude that CEA, at 

least for environmental risk purposes is not adequate. It is laborious compared to 

classic endpoints and no dose-response results were observed in energy reserves 

at least for the contaminants and exposure duration tested.  

The results presented and gathered during this thesis revealed that further 

research is needed in terms of using energy based biomarkers in species with 

rapid and complex life cycles. Particularly important would be to evaluate how the 

different components of CEA respond to stress across different larval stages and 

even in different stages within intermolt periods. The process of molting is an 

energetically costly physiological process and energy allocation during molting can 

complicate the evaluation of CEA results. 

  On the other hand changes in feeding behavior and assimilation rates can 

also add confusion to the interpretation of results and thus a more refined 

investigation is critical. In order to correctly validate and understand the 

mechanism of action of contaminants on an organism energy budget, we suggest 

that at least effects on feeding rates should be evaluated simultaneously with 

CEA. Only then can we correctly link energy based responses to effects at higher 

levels of biological organization and improve environmental risk assessment 

strategies.  

Nevertheless and when properly validated, CEA can be a sensitive and 

relevant ecotoxicological tool to investigate how organisms respond to chemical 

stressors with specific modes of action, as a proxy for growth in organisms with 

long life cycles and to study resistance mechanisms comparing different energy 

allocation strategies in organisms showing different tolerance to contaminants. 
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