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Geometry and dynamics of vortex
sheets in 3 dimensions

D.A. Burton* R.W. Tucker'

Abstract

We consider the properties and dynamics of vortex sheets from a
geometrical, coordinate-free, perspective. Distribution-valued forms
(de Rham currents) are used to represent the fluid velocity and vor-
ticity due to the vortex sheets. The smooth velocities on either side
of the sheets are solved in terms of the sheet strengths using the lan-
guage of double forms. The classical results regarding the continuity
of the sheet normal component of the velocity and the conservation
of vorticity are exposed in this setting. The formalism is then applied
to the case of the self-induced velocity of an isolated vortex sheet. We
develop a simplified expression for the sheet velocity in terms of rep-
resentative curves. Its relevance to the classical Localized Induction
Approximation (LIA) to vortex filament dynamics is discussed.

1 Introduction

1.1 Notation and conventions

Let M be a C*° manifold and let ¢ : [0, 1]» — M be an oriented p-chain on
M. The image of ¢ shall be labelled D. and bD, = Dgy,.. Distributions (de
Rham currents) on the space of test forms on M shall be distinguished by
a D subscript. Our attention will be focussed on tensors on subsets of R3,
with ¢ and V being the standard metric and Levi-Civita connection on R?
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respectively. The metric dual of a vector field X, more precisely g(X, —),
is written X. Similarly, the metric dual of a 1-form «, ¢~ !(c, —), is written
&. The length of X (respectively «), written | X| (respectively |al), is equal
to v/g(X, X) (respectively /g~ '(a, a)). Furthermore, x is the Hodge map
associated with g. We may indicate the degree of a homogenous form,
homogenous chain or homogenous distribution by writing it underneath the
form, chain or distribution. The interior, or contraction, operation on a form
a, taken with respect to the vector field X, is denoted txa. Most tensor
fields, chains and distributions in this article are implicitly one-parameter
families with ¢, the Newtonian time, as the parameter.

Vorticity and the Euler equations

Before turning to the main focus of this article, we recall a few concepts
regarding classical fluid flows. Consider a Newtonian, inviscid and incom-
pressible fluid modelled by a smooth flow velocity vector V' on an open
bounded region Do C R?® described by the 3-chain €. That the fluid is
incompressible means that

d+xV =0. (1)

That the fluid is Newtonian and inviscid means that V satisfies the Euler
equation of motion (see, for example, [1, 3, 7, 10])

oV + VvV =—dp (2)

where p is the fluid pressure. The fluid density is assumed to be constant,
and so has been normalised to unity. The archetypal boundary condition
for such a flow is the no-through-flow condition,

g(N,V 0 (3)

) ‘bDQ:

where N is normal to bDg. In terms of the Hodge map * this can be written

o0 x V = 0. (4)

The vorticity 2-form of V' is

w=dV. (5)

One can show that 1
ViV = LyV — 5d]V|2 (6)
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and so acting with the exterior derivative on (2) yields
Ow + Lyw = 0. (7)
A 2-chain ¥ that comowves with the fluid satisfies

d
— [ a= /(8toz+ﬁva) ()
for any differential form a. Therefore, for any comoving ¥
d
— =0 9

and so the vortex strength I'[¥] in X,

F[Z]E/Ew
:/82‘7

is a conserved quantity. This is one of the Helmholtz vortex theorems [1, 3,
7, 10].

(10)

On modelling vortex sheets

In many practical cases the vorticity is concentrated in certain regions of
Dq. In what follows we are concerned entirely with vorticity that is confined
to thin sheets. One way to proceed is to consider idealized sheets that are
arbitrarily thin and model them as 2-dimensional submanifolds of Dg,. These
submanifolds partition Dg, into distinct regions, each of which has a smooth
fluid velocity vector defined on it. The fact that the flow velocity vector is
chosen to be discontinuous across the submanifolds leads to a non-zero fluid
vorticity. The fluid velocities in each region will be related by a junction
condition across the submanifolds obtained via a distribution-valued flow
velocity 1-form f/D in M D Dgq that satisfies

dxVp =0. (11)

Using a generalization of Green’s identities [5] that apply to differential
forms we express the fluid velocity vector in terms of the velocity disconti-
nuities. The distribution-valued vorticity 2-form wp given by

wWp = d‘N/D (12)
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is shown to satisfy
8th + »CUWD = 0, (13)

over test forms on Dgq, if the pressure is continuous across the sheets and
where U is the sheet velocity. We conclude this article by presenting a
simple, but illuminating, approximation to the fluid velocity vector due to
a vortex sheet in an unbounded flow.

2 The self-induced velocity of a set of vortex
sheets

2.1 de Rham’s unification of forms and chains

The objects in de Rham’s unified description of differential forms and chains
[6] are known as currents. A current (or distribution-valued form) 7» on
M is a linear functional T[-] defined on the vector space of all C*° forms
¢ with compact support (also known as test forms). If Tp[¢] = 0 for each
homogenous test form which is not of degree p then the degree of T)p is n—p.
Canonical examples of currents stem from homogenous p-chains,

J.o  p=q
cplo] = @ @ (14)
0 L pFa

and locally integrable homogenous forms,

A : =n-—-0p,
fM(f) o ATy (15)

0 S qg#En—p.

Bplé] =

Note that if ¢ is a p-chain then ¢p is an (n — p)-current, but that if 5 is a
p-form then (p is a p-current.
The exterior product of a current Tp and a C* form « is defined by

TDAQ[¢] ETD[OK/\d)] (16)

and also satisfies
« /\TD = (—1)quD/\Oé (17)
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for a p-form a and ¢-current Tp. The boundary 0Tp of a current Tp is
defined by

dTple] = Tp[dg] (18)

and the exterior derivative dTp of Ty is
dTp = (0Tp)" (19)

where
Tp" = (—=1)PTp. (20)
(p)

Likewise, the boundary da of a C*° form « is
da = (da)" (21)

where

((;4)’7 = (—1)Pa. (22)

Using (18) and (19) one can show that
d(Tp Na) =dTp Na+ T} Ada (23)
or, equivalently,
ITp Na) =0Tp ANa" +Tp A Oa. (24)
The symmetry condition

aAxf =0 AN*a, (25)
() ) () (p)

is used to define the Hodge dual (or adjoint) *Tp of a current Tp. Specifi-
cally, we demand that
Tp Axa = a AN*Tp, (26)
(p) ® (0 (p)

and are lead to the definition of *1T’p
*Iplg] = Tplx¢] (27)
where

at = (—1)P g, (28)
(»)
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Using (27) one can show that

*(Tp Na) = Tp A *a. (29)
(0) (0)

The interior operator ¢ty is defined on currents to be
txTplg] = =Tplexd) (30)
where X is a smooth vector field. Equations (18), (19), (30) and the identity
Lxa = txdo+ dixa, (31)
are used to obtain the Lie derivative of Tp
LxTpl¢] = —Tp[Lx ). (32)

Furthermore, the partial derivative 9;Tp of a current Tp is

d

9/Iple] = E(TDW)D — Tp[0,9]. (33)

2.2 Fluid flow velocity as a current

As we mentioned in the introduction, in order to model the dynamics of
an arbitrarily thin sheet of vorticity we represent the fluid in terms of
distribution-valued forms, i.e. currents. More specifically, we consider cur-
rents over test forms with compact support in M C R3 where M D Dgq. Let
Dq, be partitioned into the open sets {Dg), Do), - - -, Doy}, N € ZT, by
a set of 2-chains that will represent the vortex sheets (see figure 1). Then,
for each j € I C Z* let V{;y be a smooth vector field defined over Dg;) with
the properties

dVij =0, (34)
d* Vi) = 0. (35)

Consider the current Vp with compact support in M given by

VD = Z QD(j) A ‘7(j) (36)

jel
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T
v/
2

Figure 1: The bounded region Dy has been partitioned into
{Dan), Doy, Dags)}- The thick lines indicate vortex sheets, across which
the velocity field is discontinuous.

subject to )
dxVp =0 (37)
and introduce the vorticity 2-current wp,
Wp = dVD (38)
Using (23) and (19) to expand (38) and (37) we find that
wp ==Y 0 A Vi), (39)
jel
Z 8QD(j) A *‘7(]-) =0. (40)

jEI
The junction condition across the sheets

One can gain more insight into the structure of (39) and (40) by writing
{0Qq),...,0Q)} in terms of their component 2-cubes. Introduce S =
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{oay, ..., own}, where M € Z*. Each vortex sheet has two elements of
S associated with it. The criterion defining the pair {0y, 0r)} is that
a?a)a = 0, for any O form o on M. Let the elements of I, C Z*

index all such pairs, and let those of I, C Z" index the remaining elements
of S (those that correspond to a solid boundary). Hence, if n is the number
of elements of I, and m is the number of elements of I, then 2n +m = M.
Denote the kth pair as {U?,;), 0y} and introduce the 2-cube X (with image
Ds(x)) where

(e = 0G50

. (41)
dOR

for all C'* forms on M and for all k € I,. Let {DT, D~} be the two subsets
of Dq partitioned by Dyy. Then if {AT, A~} are C™ tensors defined on

{D*,D} and 2t € D, 2~ € D™, the discontinuity in A across Dy is

[A] *) () = lim AT(27) — lim A~ (z7) (42)

zt—z T —T

at any point x € D). The orientation of each ;) can be chosen such
that (39) and (40) can be written in the form

wp =Y Eow A V] = D on@ A Viw (43)
kel, a€ls

> Zoy A [KV] gy = > 9@ A Ve =0 (44)

kel, a€ls

where each Vyq), a € I, is a smooth vector field that coincides with the solid
boundary value of the fluid velocity. Equation (43) shows the individual
contributions to wp due to the vortex sheets (the discontinuities in the fluid
velocity) and the presence of the physical boundary.

Equation (44) deserves closer scrutiny. If we act with (44) on test forms
that vanish on Dxyy), Yk € I, — {l}, and vanish on bDg we find that

/ V] ne=0. (45)
0

Since ¥(;) annihilates the 1-form N(l),

5, Ny = 0, (46)



Geometry and dynamics of vortex sheets in 3 dimensions 63

where N(;) is normal to ¥, it follows that

/Z My, [<V] Ao =0 (47)
)

where the idempotent IIx is the X-orthogonal projection map

Iy X =0, (48)
Ixa(Y) = a(lxY), (49)
Hx(a®B) =lxa®xf. (50)

Equation (47) holds for all such ¢, most notably for a ¢ coinciding with
#1n,, [*V] 0 in Dy where # is the induced Hodge map on Dyy;y. Thus,
we obtain the junction condition

Iy, [¥V] = 0. (51)
Equation (51) expresses the fact that the normal component of the flow
velocity is continuous across each vortex sheet. Similarly, by choosing test
forms that vanish on Dyyy), Vk € I,, it can be shown that

Iy, * V=0 (52)
where IV, is normal to 6D, and V}, is a piecewise smooth vector field satisfying
Vi(z) = Vi) () (53)

at ¥ € Dy(q) for a € I,. Thus the normal component of Vj, must vanish at the
physical boundaries, which is just the traditional no-through-flow boundary
condition. Within this formalism one can view the solid boundary as a
collection of vortex sheets with zero fluid velocity® outside of Dg. The next
step is to construct a representation of a particular solution to (34) and

(35).

!This observation is the basis of the boundary-integral methods [3, 7] used for con-
structing flows in bounded regions.
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2.3 Double forms

Let M and N be two manifolds. Then a double form [5, 6] on M x N is a
differential form on M with coefficients that are differential forms on N or,
equivalently, a differential form on N with coefficients that are differential
forms on M. Let M and N have dimensions m and n and let z € M and
y € N be points with coordinates {z',..., 2™} and {y',...,4™} in a local
chart on M and in a local chart on N respectively. Then a degree (p,q)
double form  on M x N shall be written locally

’Y(ZE, y) = Yai...ap|b1...bg (ZL’, y)(dxal ARERNAN d'rap> © (dybl ARRRNA dybq)7 (54>

where the Einstein summation convention has been adhered to i.e. repeated
labels are implicitly summed over. The symbol © indicates a “symmetric”
product where

(a@OB)AN(AOB)=(aNA)®(BAB) (55)

for forms o and A on M and 8 and B on N. Hence, if a is a (p, q) double
form and [ is a (p/, ¢') double form then

aAf=(—1)+a)8 A g (56)

In this article we only need to consider situations when M = A/, and will
sometimes refer to forms defined on M, as opposed to M x M, as single
forms. One can define symmetric double forms, i.e. those that satisfy

B(z,y) = By, v) (57)

for (z,y) € M x M. Given a chain ¢ on M and a double form o on M x M
one can integrate with respect to x over ¢,

[ ata) (58)

c(z)

or with respect to y over c,

[t (59)

c(y)
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which will in general yield different single forms on M. For our purposes
we only need to consider double forms that can be written as the exterior
product of single forms and a symmetric double form. For simplicity of
notation, when we integrate such forms we will write

/ o (60)

[

where the integration is with respect to x if the single forms are written as
functions of x within the integrand. The same rule holds with respect to y.
For example, if « is a symmetric double form and £ is a single form then

/ (an B)(z) = / a(z,y) A B(y). (61)

c c(y)

2.4 The Poisson-Beltrami equation on R"

The Laplace-Beltrami operator A = —(dd 4 dd) gives rise to what we call
the Poisson-Beltrami equation,

—AD = A, (62)
where ® and A are, in general, inhomogenous forms on M C R", dim(M) =
n. Solutions to this equation are given in terms of the fundamental solution
7 to the Laplace-Beltrami equation [5],

Ay = 0. (63)

where v is the double inhomogenous form on M x M
a,y) = fz.9)0a5ES (x) © Ef)(y) (64)
p=0

where {E(lp), E?p), s B Y a=nl/(pl(n—p)!), is a p-form basis constructed
entirely from a Cartesian coframe {dz',dx?, ... dz"}, that is

da® A xdx® = 5% x 1. (65)
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@ -

Figure 2: There are three distinct cases to consider when constructing the
solution to the Poisson-Beltrami equation. In each case the point at which
the solution is to be calculated is at the centre of the open n-ball B.. The

thick line indicates the image Dvy. = bDg — B. of the one-parameter family
of (n — 1)-chains T..

The double scalar f is

1 1 ) _
5- In Don=2,

L L~ n>2,
flay) = {(“)”“ o (66)
)

where v,,_; is the volume of the unit (n — 1)-sphere in R and

r(@,y) = Vowlz® —y*) (@ — o). (67)

Let Q be an n-chain that describes the open set Do C M. Furthermore, let
B. C M be a one-parameter family of open n-balls of radius ¢ > 0 whose
centres are at the same point v € M for all . There are three distinct
possibilities regarding the location of = (see figure 2). The point x is either
inside Dq, outside Dg, or in bDg. Let Q. and Y. be chains that describe
Dq. = Dq — B. and Dy. = bDg — B, respectively. One can show that a



Geometry and dynamics of vortex sheets in 3 dimensions 67

particular solution of (62) satisfies [5] :

0 x ¢ Da,
U(x) =1 id(z) : x€bDq, (68)
@(ZL‘) x € Dq

(69)

—lir% (5<I>/\*7—7/\*d<1>—57/\*<I>—|—<I>/\*d7)(x).
e=0 Jy_

Equations (68) and (69) together are a generalization of Green’s identity
applicable to inhomogenous differential forms.

2.5 An integral representation of the fluid velocity

Equations (34) and (35) lead trivially to

AV = 0. (70)
Therefore using (68), (69), (34) and (35) we find that
0 + # & Dayy),
Viy(e) = {3V (@) € bDog), (71)
Vip(z) =z € Dag)

where, for the 2-chain T ;). that describes the region bDq;) — B:,

\If(j)(iB) = lim (5’7 A *f/(j) — f/(j) A *d'y) (x). (72)

0.

If we act with Vp on a test form ¢ we find that

VDMZZ/Q Vi Ao

jel 723)
=) / Vi) A G (73)
jer Y

IZ/M‘I’(j)/\cb

jel
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using (71) and observing that bDgy ) is a set of measure zero for each j € 1.
Thus,

Vnlg] = /M < > liy (67 AV = Vi) /\*dfy)) Ao (T4)

We now identify pairs of the component 2-cubes of {Y).,..., Ty} as we
did earlier for {0Qq)y,...,0Qw}. If {a(k ¢ O (gt 18 such a pair then we
introduce ). via

E* 504 — +*E
(k) (k) (75)

(k)€
for any C*° form a. Then,

Sting [ (v ]y = [P0 m)) Ao

hely 0 S0 (76)

+/M(/BQ((57/\*V2,—%/\*dV)> A .

Applying the junction condition (51) and the boundary condition (52) gives

/ (th/ /\*dv) A ¢

kel, S(k)e (77)

(L)

Therefore, it is natural to introduce a piecewise fluid velocity vector V/

) > tim fo V]

V((L’) = kel, e—0YBm)e B
0 . T Q DQ
(78)

*) A *dy(z faﬂ%/\*dy() . x € Dq,

on M, which satisfies
Vol = [ Vo (79)
M
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Once the discontinuities in the fluid velocity and its values on the physical
boundaries are specified, the velocity of any point x € Dg can be calculated
via (78). Finally, referring back to (71), we note that at any point € Dy

Vi) = %( lim V() + lim V5 (27) (80)

zt—z (k) T —x )

where {V(;g), Vi) are the smooth fluid velocities on either side of D).
Equations (78) and (80) are intrinsic versions of well-known expressions
used to model the dynamics of vortex sheets (see, for example, [1, 3, 7, 10]).
Note that the limit in (78) can be taken before evaluating the integral if
x & U where

U=\ Dsw. (81)

Conservation of vorticity

Let U be a smooth vector field on Dg that satisfies U(z) = V(z) at each
x € U. The U-convective derivative on C* forms a on M

& = o+ Lya (82)
induces, using (32) and (33), the relation

d
:E(

on currents in M. For a chain ¢ to have velocity U means that

% ca:/cd (84)

and so, for a current cp to have velocity U, where

epld] = / 5 (35)

Tp[¢] Tplg]) — Tplé] (83)

means that
¢p = 0. (86)

Up to now we have considered currents over test forms with compact support
on M. For the purposes of this subsection only we restrict ourselves to
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test forms with compact support on Dg in order to focus on the vortex
sheets rather than the properties of the flow at the solid boundary. We now
demonstrate that vorticity is conserved in the sense that

8th + EUwD =0 (87)

over test forms with compact support on Dg if the pressure is continuous
across each sheet. The flow on either side of each sheet is composed of the
same fluid, and so the surface tension at each sheet should be zero. This
also implies that the pressure is continuous (see, for example, page 513 of

[1]).

The Euler equations are satisfied in each Dq;y,
Vi) + Vv, Vi) = —dpyy), (88)
where p;) is the fluid pressure on Dgy;), and so using
LxX =VxX + %d|X|2 (89)
for any smooth vector field X one can show that
AV + Ly, Vi = —dP) (90)

where |
Py =pg) — §|V(j)|2- (91)

If ¢ is a test form with compact support on Dy, then

wplg] = dVp[g),
= Vp[dg),

:Z/ﬂ Vig) A de.

jel V)

So far we have not said anything regarding the ¢-dependence of {21), ..., Q) }-

Let us choose them to have velocity U. Using (83) and (92),

%(WDM) = Z/Qm ‘L/(j) A dp + wp|g], (93)

jel
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and so

onle) =Y [ Vi ndo. (94)

jeI Y@

By applying (90) and (91) to (94) one can show that

ople) =Y [ fyynds (95)
jel Yo%)
where ]
fo) = =po) +wVo) = 51Vl (96)

As before, let us write (95) in terms of the vortex sheet 2-cubes :

olél == [ 11l 0 (o7)

kely,

However, since

Ur) = %( lim Vi (z7) + lim V(;)(x_)) (98)

zt—zx T —x
for x € Dy ) one can show that
[f] &~ 7] (k)" (99)
Hence, if the pressure is continuous across each sheet,
wp =20 (100)

over test forms with compact support in Dg,.

3 Self-induced velocity of a single vortex sheet

Using (78) the self-induced velocity U of a single closed vortex sheet, mod-
elled by the 2-cycle ¥, in an unbounded flow is

Uz) = lm [ [V]Axdy(z) (101)

E—00 »
€
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at © € Dyx. Let the vector field N be the outward-pointing normal to Ds.
The integral curves of the vector field x,

f=x(NA[V]), (102)

are known as sheet vortez lines [10]. It may be prudent, when evaluating
(101), to work in a coordinate chart adapted to the sheet vortex lines. The
vorticity 2-current wp of Vp is

wp =p A [V] (103)

and since both wp and Xp are closed

de =0
=-YpAd[V] (104)
=-YpAd[V]
we see that
d[V] =0 (105)

where d is the exterior derivative on forms on Dy. Locally [f/} = dI" where,
using (102), I' is constant along each sheet vortex line. Moreover, using
(100) it can be shown that I" can be chosen to be t-independent. Therefore,
a natural choice of coordinate chart on the sheet for all ¢ involves assigning
a unique value of I' to each sheet vortex line?. Let us assume that the
geometry of ¥ permits this choice at a global level.

For practical calculations, such as those involved in the modelling of the
fluids flows present during vortex-induced vibration (see, for example, [2])
of a slender elastic structure, one expects the Frenet curvature of the sheet
vortex lines to be much less than the sheet curvature in the s-orthogonal
direction. The key idea in the evaluation of (101) is to treat the integrations
over I' and the sheet vortex lines differently. The sheet is sliced up into n
regions each of whose boundaries are described by sheet vortex lines. The
slices are replaced by a set of n curves {C(y), ..., C)}, called representatives,
that are themselves sheet vortex lines. The dynamics of the representatives

2For a curve of vorticity in 2-dimensions this approach leads to the Birkhoff-Rott
expression [10] for the vortex curve velocity.
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is dictated by an approximate evaluation of (101) over each slice. It is
assumed that the width w; (x) of the jth sheet slice,

Al

I

wi)(x) = (z), (106)

where AT'(;) is the strength of the jth slice, is much less than the radius of
curvature of C;) at x € D¢yj). For w(j)(:v)/-ig.) (r) < 1 one obtains

Up(x) == (%M) (k)(l’)

A X|?
"Tﬂ X1 (107)
_ F\ F 7
ypm (Afln(wm ) B> (j)(x)

at the point x € D¢(;). Note that the objects in each term of (107) depend
on the point z € D¢y at which U is required and also on a representa-
tive (which may or may not be the jth representative). The representative
dependence is indicated by a subscript. The vector field T(x(x) is the nor-
malized tangent to C(y) where y € D¢y is the point of closest approach
to . The Frenet curvature and binormal of C(;) at x € D¢y;) are ng)(x)
and By;)(x) respectively.

The contribution of each representative Cy, k # j to the velocity of C(;) at
x € D¢y ) is identical to that given by a rectilinear line vortex of strength
AT'() aligned along the tangent to C, at the point of closest approach to
2 € D¢(;). The self-induced contribution to the velocity is of the same form
as that obtained for a vortex filament with an O(w; (x)) radius, 1/56)(:1:)
local radius of curvature and strength AT in the Localised Induction Ap-
prozimation (LIA), first discovered by Da Rios and Levi-Civita near the
beginning of the twentieth century. It is interesting to note that their work
remained almost entirely unknown to the rest of the applied mathematics
community until more recent times. During the latter half of the twenti-
eth century the LIA has been independently rediscovered by a number of
authors (see [8] and [9] for the history, and the mathematics, of this discov-
ery.)

A very similar equation to (107) has been shown by Klein, Majda and
Damodaran [4] to hold for the dynamics of arbitrarily long and nearly par-
allel vortex filaments.
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Conclusion

The geometry and dynamics of vortex sheets in 3 dimensions have been
examined from an intrinsic viewpoint. The velocity of a set of vortex sheets
has been derived using two basic ingredients. The first is a generalization of
Green’s identity for the Poisson-Beltrami equation. The second is a junction
condition expressing the continuity of the normal component of the fluid
velocity across the sheets. The latter was obtained by representing the
fluid velocity as a de Rham current. Conservation of the vorticity 2-current
followed from the continuity of pressure across the vortex sheets. A brief
summary indicating the route to an approximate expression of the self-
induced velocity of an isolated vortex sheet was given. Its relevance to the
classical LIA of vortex filaments was discussed. A detailed presentation of
the calculation leading to (107) will be given elsewhere.
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Geometrija i dinamika trodimenzionalnih vrtloznih
povrsi

UDK 514.7, 532.59

Posmatramo osobine i dinamiku vrtloznih povrsi sa geometrijskog stanovista
bez uvodjenja koordinata. Forme sa distribucionim vrednostima (de Rham-
ove struje) se koriste za reprezentaciju brzine i vrtloznosti fluida koje poticu
od vrtloznih povrsi. Glatke brzine na obe strane ovih povrsi su resene u za-
visnosti od jac¢ine povrsi koris¢enjem jezika dvostrukih formi. Na ovaj nacin
su izrazeni klasiéni rezultati koji se odnose na neprekidnost komponente
brzine u pravcu normale na povrs i konzervacija vrtloznosti. Formalizam je
tada primenjen na sluc¢aj samo-indukovane brzine neke izolovane vrtlozne
povrsi. Razvijen je uproscéeni izraz za brzinu povrsi preko reprezentativnih
krivih. Njegova veza sa klasicnom aproksimacijom lokalizovane indukcije
(LIA) dinamike vrtloznih niti je diskutovana.



