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resumo 
 

 

Enquanto áreas de transição, os sistemas costeiros apresentam uma enorme 
variedade e riqueza, proporcionando importantes atividades económicas e 
sociais. Atualmente, uma das ameaças a estes sistemas é o aumento do nível 
médio do mar, uma vez que o seu impacto poderá ter efeitos nos seus padrões 
hidrodinâmicos e, consequentemente, no seu valor ecológico e biológico. 
O estuário do Tejo e a Ria de Aveiro constituem dois dos sistemas costeiros 
mais importantes em Portugal. O estuário do Tejo é um dos maiores estuários 
da europa e é a zona húmida mais extensa do território português. Por sua 
vez, a Ria de Aveiro, é a mais extensa laguna do país e a mais dinâmica em 
termos de processos físicos e biogeoquímicos. Ambos apresentam extensas 
zonas de sapal, os quais representam um dos mais produtivos ecossistemas 
da biosfera. 
Os sapais são importantes áreas de interface entre a terra e o mar, fornecendo 
um habitat único para um vasto número de espécies, o que os torna num 
elemento fundamental na estrutura ecológica dos sistemas costeiros. No 
entanto, a interação de alguns aspetos físicos e biológicos bem como os 
efeitos do aumento do nível do mar, são ainda difíceis de explicar. 
Um dos objetivos deste estudo foi, recorrendo a um modelo numérico 
bidimensional, avaliar a influência de certos parâmetros hidrodinâmicos na 
dinâmica dos sapais do estuário do Tejo e da Ria de Aveiro, nomeadamente 
nas plantas de sapal, considerando quer o nível médio do mar atual quer um 
cenário de aumento do nível médio do mar. Os parâmetros hidrodinâmicos 
estudados foram a circulação residual, a assimetria de maré e a dissipação de 
energia. Para atingir estes objetivos, além de recorrer a simulações 
hidrodinâmicas, foi monitorizado um sapal de três em três meses em cada 
sistema durante um ano e amostras de sedimento e da planta Spartina 
maritima foram recolhidos para assim determinar a área de cobertura e a 
biomassa aérea e subterrânea da planta e a matéria orgânica e a humidade 
relativa do sedimento. Os resultados do modelo indicam que os parâmetros 
hidrodinâmicos em análise poderão explicar as diferentes características 
bióticas e abióticas que foram encontradas nos dois sapais, em resposta às 
diferentes condições hidrodinâmicas. Os resultados indicam ainda que o 
aumento do nível médio do mar poderá afetar significativamente a 
hidrodinâmica destes sistemas, mostrando como podem evoluir neste cenário. 
Adicionalmente, as alterações na hidrodinâmica poderão induzir modificações 
nos parâmetros bióticos e abióticos que, por sua vez, influenciam os sapais. 
Deste modo, o atual equilíbrio destes ecossistemas poderá ser afetado. 
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abstract 

 
The importance of the coastal systems such as estuaries and lagoons has 
been recognized a long time ago. As interface areas, these systems are highly 
variable and rich, supporting important economic and social activities. The sea 
level rise impact in coastal systems is an important concern, once it might 
represent important effects in these systems hydrodynamics and consequently 
in theirs ecological and biological values.  
Two of the more important coastal system of Portugal are the Tagus estuary 
and the Ria de Aveiro lagoon. Tagus estuary is one of the largest estuaries of 
Europe and is the most extensive wetland area of Portuguese territory. 
Likewise, Ria de Aveiro lagoon is the most extensive shallow lagoon system in 
Portugal and the most dynamic in terms of physical and biogeochemical 
processes. Both systems have extensive intertidal areas, including salt 
marshes, which are among the most productive ecosystems of the biosphere. 
Salt marshes are a critical interface between land and sea, providing a unique 
habitat for a large number of species, being an essential element in coastal 
systems ecological structure. However, the knowledge of some physical and 
biological interactions within salt marshes, as well as sea level rise effects in 
these ecosystems, are still difficult to explain. 
One of the main goals of this work was to evaluate the influence of the 
hydrodynamic patterns of Tagus estuary and Ria de Aveiro lagoon in their salt 
marsh dynamics, namely, in salt marsh plants, considering the actual sea level 
and also the sea level rise (SLR), through the analysis of a 2D numerical model 
results.  The hydrodynamic features that were considered usefull to this study 
were the residual circulation, tidal asymmetry and tidal dissipation.  
To reach these objectives, besides the hydrodynamic simulations, one salt 
marsh of each system was monitored during one year, and plant and sediment 
samples of Spartina maritima were colleted quaterly in order to determinate the 
vegetation coverage, above and belowground biomass, organic matter and 
sediment moisture. The model results suggest that the studied hydrodynamics 
parameters might explain the different characteristics of S.maritima found in the 
salt marshes, as a response to the difference hydrodynamic situations. 
Through the analysis of the model results, it was also intended to improve the 
knowledge about those hydrodynamic parameters in both systems and the 
possible effects of the SLR in their patterns. The SLR results indicate important 
differences, demonstrating how this estuaries hydrodynamics could evolve in 
case of sea level rising. Moreover, with the SLR and its effects in the 
hydrodynamic parameters, some abiotic features could be modified and, once 
salt marsh plants depend on them, their present status could be affected. 
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2                                                                           1. Introduction 
 

1.1. Motivation and aims  

Coastal regions are dynamic interface zones where land, water and atmosphere interact in 

a dynamic balance that is constantly being changed by natural and human influence. They 

represent extremely productive areas and accessible to people and, thus, are densely populated 

which intensify the anthropogenic pressures (Lopes et al., 2011b). Natural pressures are also 

being intensified as a result of climate change. An important consequence of climate change is sea 

level rise (SLR). Moreover, global mean sea level has been rising since the last century and it is 

expected to continue rising during the 21st century at a higher rate (Lopes et al., 2011a). 

Therefore, studies considering the SLR scenario should be performed to predict its impacts on 

coastal areas.  

The importance of the coastal systems such as estuaries and lagoons has been recognized a 

long time ago not only by the scientific community, but also by the populations who live around 

these areas (Vaz, 2007). As interface areas, these ecosystems are highly variable and rich, 

supporting important economical and social activities. As such, besides scientific motivations, 

estuaries and lagoons environments have an enormous historical importance, being fundamental 

for the human development. Thus, almost 60% of the most important cities in the world are 

located near or around this systems (Geophysics Study Commitee, 1997).  

The scientific knowledge about these systems can be used to develop solutions to several 

problems such as the hydrographic basin’s changes, the identification of sedimentation areas that 

can affect navigation, the computation of the residence time of substances within these areas, the 

study of water properties patterns to support aquaculture projects, among others  (Vaz, 2007). In 

terms of estuarine hydrodynamics, tidal currents structure analysis is essential to understand 

problems such as dispersion, rate of pollutants, sediment transport and erosion processes 

(Prandle, 1982). Moreover, tidal asymmetries and residual circulation have an influence on 

nutrient balances, sediment loads, particles and pollutants transportations, etc (Aldridge, 1997). 

Therefore, the understanding of the central processes lined by the tidal wave seemed to be 

crucial to obtain an overview concerning to the different uses of the coastal systems. As such, in 

the present work, one of the main goals is to evaluate the patterns of certain hydrodynamic 

features in two different estuaries and the possible effects of the SLR (an actual and important 

issue) in those features.  

The  coastal systems studied were Tagus estuary and Ria de Aveiro lagoon. Tagus estuary is 

located in the highest population density area of Portugal, crossing the capital Lisbon, is one of 

the largest estuaries of Europe and is the most extensive wetland area of portuguese territory 

(Dias, 1993). Likewise, Ria de Aveiro lagoon constitutes a very important area, being the most 

extensive shallow lagoon system in Portugal and the one most dynamic in terms of physical and 

biogeochemical processes (Picado et al., 2010).  
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Both systems provides natural conditions for economic activities, like industry, navigation 

and recreation, enduring pressure from the large human population that inhabits its margins and 

depends upon its resources (Vaz, 2007; Araújo et al., 2008). The Ria de Aveiro is classified under 

the Natura 2000 Network, being considered as a Special Protected Area (SPA), by the Birds 

Directive and by the Habitats Directive (Alves et al., 2011). Tagus estuary is classified as a Natural 

Reserve since 1976 (Ramsar Convention on Wetlands) and is also classified as a Special Protection 

Zone for Wild Birds and a Site of Community Interest – Natura Network 2000 (Sumares, 2007). 

Both systems have extensive intertidal areas, including salt marshes, which provide an important 

service through the production of biomass. In fact, coastal ecosystems including salt marshes are 

among the most productive ecosystems of the biosphere (Vernberg , 1993; Mitsch and Gosselink, 

2000; Lefeuvre et al., 2003; Sousa et al., 2010b).  

The vital importance of salt marshes is recognised worldwide in such a way they have been 

recently admitted in the Water Framework Directive (WFD). The biological productivity, 

hydrologic flux regulation, biogeochemical cycling of metals and nutrients and habitat for fish and 

wildlife, are among the several essential ecological functions (ecosystems services) supported by 

these ecosystems (Válega et al., 2008). Salt marsh dynamics are the result of complex interactions 

among hydrodynamics, sediment transport and biology processes. There have been various 

attempts to develop a fuller understanding of the inter-relationship between physical and 

biological processes within salt marshes, but some physical and biological interacions as well as 

antropogenic effects or seal level rise are still subjects difficult to explain (Townend et al., 2011). 

Futhermore, considering the importance of salt marsh and the possible effects of the global 

changes in this ecosystems, becomes important to know the present status of salt marshes, 

namely the role of the hydrodynamic parameters in its dynamics, and how their important 

services to the overall ecosystem will behave in a climate change scenario (Sousa et al., 2010a). 

According to Sousa et al. (2010a), global climate change will affect salt marshes in terms of 

photosynthesis, growth, biomass allocation and nutrient uptake by plants and, consequently, salt 

marsh services are likely to be affected.  

One of the main goals of this work is to evaluate the influence of the hydrodynamics 

patterns of Tagus estuary and Ria de Aveiro lagoon in their salt marsh dynamics, namely, in salt 

marsh plants, considering the actual sea level and also the sea level rise (SLR), through the 

analysis of numerical model results.  The hydrodynamic features that were considered usefull to 

this study are the residual circulation, tidal asymmetry and tidal dissipation. To reach these 

objectives, besides the hydrodynamic simulations, one salt marsh of each system (Tagus estuary 

and Ria de Aveiro lagoon) was monitored during one year and plant and sediment samples of 

Spartina maritima were colleted quaterly in order to determinate the vegetaion coverage, above 

and belowground biomass, organic matter and sediment moisture. 

Consequently, this work was motivated not only by the possibility to improve the 

knowledge about the residual circulation, tidal asymmetry and dissipation patterns in Tagus 

estuary and Ria de Aveiro lagoon and the possible effects of the SLR in their patterns, but also by 

the understanding of the effects of these hydrodynamic features in the salt marshes dynamics.  
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1.2. Structure of this work 

For an overall understanding of the items studied and mentioned in this work, some of the 

main characteristics of estuaries and lagoons, of salt marshes, of the hydrodynamic features in 

study (residual circulation, tidal asymmetry and tidal dissipation) and of the actual concern about 

SLR are presented in this first chapter. Moreover, this chapter also includes the description of the 

main characteristics of the study areas in order to understand their principal morphologic and 

hydrodynamic features, as well as the state of the art of both systems, regarding mainly the 

hydrodynamic features in analysis. The state of the art of the numerical model used (Mohid) is 

also presented.  

The second chapter describes the methodologies followed, which includes the field 

procedures and the consequently laboratory measurements regarding to the salt marsh plant in 

study, S.maritima. The numerical model, the simulations features and the hydrodynamic 

parameters calculations are also explained.  

Model results and their discussion are presented in the third chapter. The residual 

circulation results are presented in first with the analysis of the different rivers discharges effects 

and also the impact of SLR in this parameter. The results and their interpretations for tidal 

asymmetry are next presented, following by tidal dissipation, including the results for actual and 

SLR scenarios. The results of the abiotic and biotic parameters for S. maritima evaluated in this 

work (sediment moisture, coverage area, ratio below/aboveground biomass and organic matter 

content) and the discussion of how can the hydrodynamic features help to explain the values 

founded represent the last issue of this chapter.   

Finally, in chapter four are presented the most important ideas discussed in this work, as 

well as the main conclusions.  

 

1.3. Estuaries and lagoons 

According to Pritchard (1967), an estuary is defined as a half-closed water body which has a 

free connection with the open sea. In its interior, the salty water incoming from the ocean dilutes 

with the fresh water from the rivers. Frequently, the interaction can become more complex due 

to tidal action, whose amplitude varies as the tide spreads in the estuary. The water movements 

and the turbulent mixture that result from these forcing actions express problems and interesting 

challenges in the hydrodynamic field. Estuaries can be found under several forms and therefore 

their classification can include different types. However, all estuaries share common 

characteristics as result of being regions where salt water from the ocean and fresh water from 

rivers meet and interact (Miranda et al., 2002). 
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Coastal lagoons are semi-enclosed water bodies, characterized by small river flows and the 

influence of tides. These systems are typically shallow, with high salinities and may be enclosed by 

several barrier islands, as well as sand spits, or linked to the sea by one or more channels, which 

are small relative to the lagoon, like the Ria de Aveiro, located in northern Portugal (Barnes, 

1980). Due to their narrow connection to the open ocean lagoons are, among other coastal 

systems, the most sensitive to human disturbances. Moreover, their restricted connections to the 

open sea, as well as the often partial stability of these inlets can disrupt the lagoons ecosystems, 

reducing the system’s ability to flush exogenous substances leading to poor water renewal, 

eutrophication and other water quality problems. Besides, the low water renewal rates can also 

inhibit the function of the lagoons as nurseries. Hence, understanding water circulation within 

lagoons and their exchanges with the open sea becomes an important issue (Fortunato and 

Oliveira, 2005).  

Furthermore, estuaries and lagoons constitute highly attractive places owing to their 

abundant natural and recreational resources, sheltered areas and/or beautiful landscapes. As 

ecosystems, estuaries and lagoons present many vital functions such being the natural habitat of 

birds, mammals and fish and the environment spawning and rearing of many biological 

communities.  Moreover, these systems also play an important role in the migration routes of fish 

with commercial value (Ketchum, 1950). Therefore, estuaries and lagoons are known as areas 

with a large biodiversity and one of the most important ecosystems constituting these coastal 

areas are the salt marshes.  

 

1.4. Salt marshes  

Coastal ecosystems, including salt marshes found in estuaries and lagoons, are among the 

most productive ecosystems of the biosphere (Vernberg, 1993; McLusky and Elliot, 2004; Sousa et 

al., 2010a). Likewise, salt marshes have multiple ecological and economic values as such these 

habitats are used for recreational and educational purposes by millions of people (Vernberg, 

1993).  

Salt marshes are coastal systems occupied by halophytic vegetation (plants adapted to 

coastal environments, being tolerant to salinity) exposed to low hydrodynamic conditions and 

tidal flooding (Simas et al., 2001). Resulting from alluvial, sandy and muddy sediment deposits, 

those systems occur in coastal areas with low tidal fluxes, where the suspended sediments and 

debris deposition is possible. This process allows the mud banks formation which, in turn, allows 

the vegetation progress (Válega et al., 2008). The characteristics of salt marshes are determined 

by a wide range of physical and biological controls and processes, including climate, shoreline 

configuration and wave climate, tidal range, sediment sources and volume of sediment input, sea 

level history and vegetation characteristics and dynamics (McLusky and Elliot, 2004; Van Proosdij 

et al., 2006). They also depend on an adequate soil salinity and chemistry (Simas et al., 2001).  
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Morphologically, salt marshes consist of a gently sloping vegetated platform, dissected by a 

network of tidal creeks that increase in width and depth seaward, presenting both vertically and 

horizontally grow. Salt marsh development is commonly pictured as beginning with the 

colonization of intertidal sand or mud flats by vascular plants that are both halophytic and 

tolerant of repeated submergence for periods of up to several hours. The establishment of plants 

then encourages the deposition of fine sediments and the accumulation of organic matter leading 

to the vertical growth of the developing marsh surface and the integration of the tidal creek 

network into the salt marsh (Davidson-Arnott et al., 2002).  

 Salt marsh vegetation is usually divided into a low marsh community, which is often 

dominated by a single species such as Spartina maritima, and a more diverse high marsh 

community, which grades into upland plant communities. Vegetation growth occurs down to 

about the mean tide level. Plants in the low marsh are subject to inundation by almost every tide 

and during six or more hours. High marsh plants may only be submerged for brief periods during 

spring tides or at the upper end only a few times a year during extreme astronomical tides and/or 

storm surges (Davidson-Arnott et al., 2002). Therefore, salt marsh halophyte communities are 

spatially distributed according to the marsh’s topography, which determines the frequency and 

duration of tidal submersion, the physical and chemical characteristics of the sediment and the 

interspecific competition conditions (Sousa et al., 2010a). 

As result of the water, sediment and vegetation interactions, salt marshes present a 

dynamic nature, having a wide geographical distribution (Válega, 2009), colonizing the upper 

intertidal zones in latitudes ranging from the Arctic to the subtropics, including back barrier 

lagoons and bays, river mouths, estuaries and deltas, natural embayments and sheltered areas. 

They may also develop on open coasts where wave energy is dissipated over a wide and shallow 

nearshore (Davidson-Arnott et al., 2002). Tidal amplitude, in relation to slope and elevation of the 

shore, is a determining factor for the location of salt marshes once they are located in areas 

receiving both inundation by sea water and exposure to air. In fact, tidal range and the tidal 

regime (semidiurnal, mixed or diurnal) influence the hydrodynamics of flow in tidal creeks and 

over the marsh surface, as well as the extent and duration of inundation, which influence the 

vertical and horizontal extent over which salt marsh development takes place (McLusky and Elliot, 

2004; Davidson-Arnott et al., 2002). 

By occupying zones of transition between terrestrial and marine ecosystems, marshes play 

a critical role in sediment exchange with adjacent mud flats and open coastal waters, acting as 

sinks for fine sediments and for the accumulation of organic matters (Davidson-Arnott et al., 

2002). 

Ecologically, salt marshes are generally areas of high primary productivity and species 

diversity, representing habitat for migratory waterfowl, transient fish species and indigenous flora 

and fauna (Simas et al., 2001; McLusky and Elliot, 2004). The export of organic matter from the 

marsh is an important component of the food chain of the adjacent coastal waters and mud flats, 

ultimately supporting large populations of finfish and shellfish. Salt marshes also provide staging 
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and wintering habitats for a wide variety of shorebirds and waterfowl (Davidson-Arnott et al., 

2002). Moreover, commercially, these ecosystems provide important resources as nursery 

grounds for several fish and crustacean fisheries (Simas et al., 2001).  

Salt marsh plants provide an important service through the production of biomass, 

contributing to a greater stability and lower erosion of the coastal areas and increasing pollution 

retention (Vernberg, 1993; McLusky and Elliot, 2004). Moreover, nitrogen and phosphorous 

uptake from sediment interstitial waters and their incorporation in this plant biomass leads to the 

nutrient sequestration and retention, thus decreasing its availability in the water column and 

potentially reducing eutrophication. Furthermore, carbon fixation by photosynthesis in salt 

marshes helps decrease atmospheric CO2, which in turn contributes to ecosystem health (Sousa et 

al., 2010a).  

In warm-temperate estuaries, such as Tagus estuary and Ria de Aveiro lagoon, salt marshes 

are often colonized by the halophytes Spartina maritima, Scirpus maritimus, Halimione 

portulacoides, Sarcocornia fruticosa and Sarcocornia perennis (Sousa et al., 2010a).  

After the recognition of this ecological significance, the potential threats to marshes by 

human activities become a concern. Halophyte vegetation is responsible for the majority of the 

wave energy dissipation found in these environments, providing a form of sea defence, reducing 

the need of sea walls or dikes to protect the hinterland (Townend et al. 2011). However, salt 

marsh vegetation is very sensitive to the inundation frequency (Suchrow and Jensen, 2010). In 

fact, it is expected that changes in relative sea level play an important role in the development, 

maintenance and long-term health of salt marshes (Kolker et al., 2008).   

 

1.5. Hydrodynamic parameters 

1.5.1. Residual circulation 

In coastal systems, the sediment transport is a long-term process dependent on linear 

interactions between flow and bathymetry. Long-term residual currents play an important role in 

the transport of sediment, nutrients and organic matter from lagoons and estuaries, namely, their 

exportation toward coastal seas or their retention inside the water bodies. In these systems, 

residual transport and circulation are essentially dominated by tidal asymmetries, although rivers 

and wind influence are also important. Bottom friction effects and vorticity advection also 

induced residual circulation (Lopes and Dias, 2011).  

Because of the nonlinearity of these processes, numerical models have been found to be an 

appropriate tool to investigate the tidal and residual flow in several systems, as for instance in the 

Gulf of California (Dworak and Gómes-Valdés, 2002), Shark Bay in the Western Australia (Burling 

et al., 2003) and in the Ria de Aveiro in Portugal (Sousa and Dias, 2007; Lopes and Dias, 2011). 
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1.5.2. Tidal asymmetry 

A symmetrical tide occurs when the rise and fall of the tide have identical duration, with 

approximately equal maximum velocities attained, resulting in no net overall sediment transport. 

Tidal asymmetry happens when the ebb and flood durations are unequal and is caused by tidal 

wave distortion during propagation into shallow water, along the coastal shelf and on entry into 

shallow water systems. This phenomenon is ruled by the mechanism of the nonlinear effect of 

tidal propagation. As the tidal wave approaches the coast, it is travelling as a shallow water wave 

and therefore, the phase speed is proportional to the square root of the water depth and the 

crest travels faster than the trough due to the greater water depth under the crest. Consequently, 

information of tidal asymmetry may become very useful to determine the patterns of currents, 

including the prevalence of current flood or ebb (Sivakholundu et al., 2006). For instance, the 

navigability of the estuarine channels and estuaries geological evolution are affected by tidal 

asymmetry (Aubrey and Speer, 1985) which is, therefore, a fundamental factor for morphological 

development in tidal basins. 

Tidal asymmetry has important implications for estuarine sediment transport, water 

contaminants dispersal and, on geological time scales, estuarine stability (Aubrey and Speer, 

1985; Pugh, 2004). Flood dominant estuaries tend to accumulate coarse sediments in their 

channels whereas ebb dominant estuaries tend to flush seaward the near-bed sediments. 

Friedrichs and Aubrey (1994) referred that tidal distortion in shallow estuaries can be the result of 

two effects: frictional interaction of the tide with the bottom and storage of water on intertidal 

flats and saltmarshes. These authors concluded that the ratio M4/M2 is primarily controlled by the 

first effect in flood dominant estuaries and by the second effect in ebb dominant estuaries.  

1.5.3. Tidal dissipation 

According to Dias (1993), the values of the average rate of energy dissipation arise, in 

general, associated with areas where the boundary friction is high or where a sudden change of 

estuary geometry occurs. Thus, changes in estuary bathymetry and geometry could have a 

substantial effect in the way that the tidal wave energy is dissipated and may even be responsible 

for the tidal wave distortion.  

 

1.6. Sea level rise 

Sea level change is an important consequence of climate change due to its impact on 

society and ecosystems. The anthropogenic pressures in coastal zones are being intensified as a 

result of climate change (Lopes et al., 2011a). Several studies such the one performed by Church 

and White (2006) reveal that global mean sea level has been rising during the 20th century at a 

rate of 1.7 ± 0.5 mm/year and it is expected to continue rising during the 21st century at an 
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increasing rate. In fact, for the 21st century, Meehl et al. (2007), for example, indicates a global 

rise ranging between 0.18 and 0.59 m and a higher rise was predicted by Rahmstorf (2007), 

between 0.5 and 1.4 m. 

Various causes are associated to mean sea level change: thermal expansion, related with 

the reaction of the ocean to global atmospheric temperature rise; mass exchange due to the 

melting of mountain glaciers and ice caps and changes in Greenland and Antarctic ice sheets; 

dynamic changes as a consequence of density gradients; land subsidence, that is, the vertical 

movements in the solid earth associated to tectonics and isostatic adjustment (Chao et al., 2002). 

While some of these causes have global effects, long-term dynamic changes and land subsidence 

affect mean sea level locally. Hence, the sea level is not changing uniformly around the world. The 

response of each coastal region to SLR depends on the physical features of the coastal system and 

on the rate of local relative SLR. Thus, the effects of SLR should be evaluated locally in order to 

improve the tools for vulnerability assessment (Lopes et al., 2011a).   

Regarding to Portuguese coast, the areas that will probably be the most affected by an 

accelerated SLR are the Ria de Aveiro and the Ria Formosa lagoons and the Tagus and Sado 

estuaries (Lopes et al., 2011a). Lately, Lopes et al. (2011a) projected the local mean sea level 

change for Portuguese coast for the period 2091–2100 relative to 1980–1999. The future climates 

were simulated imposing different emission scenarios of greenhouse gases developed by 

Intergovernmental Panel on Climate Change (IPCC) and three scenarios of the Special Report on 

Emission Scenarios (SRES) were considered, based on a range of possible behaviours of society, 

economy and technology. These projections revealed an increase in the mean sea level of 0.35 m, 

0.28 m and 0.42 m. In the present work, in order to evaluate the impact of sea level rise in some 

hydrodynamic features of Ria de Aveiro and Tagus estuary, only the worst scenario is considered 

(0.42 m) because it has the highest potential impacts in coastal regions, as referred by Lopes et al. 

(2011a). 

 

1.7. Study areas 

The main characteristics of Tagus estuary and the Ria de Aveiro lagoon, namely their 

morphology and hydrodynamic features, are presented in the present section.  

Figure 1 indicates the salt marshes studied in the present work, which location is indicate 

by the arrows. The salt marshes studied in Ria de Aveiro and Tagus estuary are called Barra salt 

marsh and Rosário salt marsh, respectively.  
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1.7.1. Tagus estuary 

The Tagus estuary (Fig.1) is one of the largest estuaries of the west coast of Europe and is 

located in the most populated area of Portugal, including the capital Lisbon. The estuary occupies 

a mean volume of 1900 ×106 m3 and a surface area of about 320 km2 (Valente and Silva, 2009). 

According to Gameiro et al. (2007) Tagus estuary presents a large diversity of resident and 

migratory fishes and constitutes the natural habitat for a large resident and migratory bird 

population. Several groups of primary producers can be found in the estuary ecosystem. Although 

diatoms are the predominant group, other relevant primary producers can be found, namely, 

microphytobenthos.  

 

Figure 1: Ria de Aveiro lagoon (left) and Tagus estuary (right). The arrows indicate the salt marsh areas 
analysed in this work (arrow on the left: Barra salt marsh, in Ria de Aveiro lagoon; arrow on the right: 
Rosário salt marsh, in Tagus estuary).  
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1.7.1.1. Morphology  

Tagus estuary width varies between 2 and 15 km, it has an average depth of 10.6 m and can 

be divided in two distinct regions, the lower and the upper estuary, that present different 

morphologies and properties. The lower estuary connects with the Atlantic Ocean and is a 

channel of about 30 m depth, 2 km of width and 12 km length that opens in a large bay (upper 

estuary) on the east side. The upper estuary (also called bay), extending from Vila Franca de Xira 

to the end of the main channel (Fig.1), is wide (more than 10 km in some places) and shallow (15 

m of maximum depth) and is characterized by extensive zones of tidal flats and salt marshes, 

small islands and a net of narrow channels, sometimes only ten meters width (Dias and Valentim, 

2011; Fortunato et al., 1997). 

About 40% of the estuary’s total area is tidal flats (Fortunato et al., 1999) which is an 

important feature of many estuaries from varied point of view. For example, at the physical level, 

they slow the tidal propagation and dissipate large amount of tidal energy or, from an ecological 

perspective, they contribute significantly to primary production. In fact, tidal flats effects on 

hydrodynamics can have repercussions on the ecosystem and inclusively affects biological cycles 

(Dias and Valentim, 2011). 

1.7.1.2. Hydrodynamic features  

The hydrography of the estuary is modulated by the tidal propagation and fluvial discharge 

from the major rivers, Tagus, Sorraia and Trancão. In general, the system is well-mixed and has an 

average tidal prism of 600×106 m3 (Vaz et al., 2011). 

Tagus is a mesotidal estuary and tides are semi-diurnal. According to Fortunato et al. 

(1999), M2 is the dominant tidal constituent with amplitudes of the order of 1 m. The tidal range 

within the estuary varies from 0.8 m (neap tide) to 4.0 m (spring tide) and increases towards the 

estuary’s interior (Portela and Neves, 1994; Fortunato et al., 1997). More precisely, the 

amplitudes of astronomic constituents grow rapidly in the lower estuary and more steadily in the 

upper estuary and then decrease up to Vila Franca de Xira (Fortunato et al., 1999). 

Tagus is ebb dominated, with floods typically one hour longer than ebbs, and this behaviour 

leads to stronger velocities during ebbs, and thus to a net export of sediments. However, there is 

a reduction of the sediment flux into the shelf, which could be partially responsible for both the 

erosion at the mouth of the estuary, and the accretion in the upper estuary (Fortunato et al., 

1999). The area affected by tides reaches 80 km landward of Lisbon and the maximum current 

speed induced by the tides is around 2.0 ms-1 (Gameiro et al., 2007). 

According to Oliveira (1993), the tidal amplitude inside the Tagus estuary is larger than 

offshore as a result of a small resonance effect, and therefore this estuary can be 

hydrodynamically interpreted as a greater tidal basin connected to the ocean by a relatively 

straight and narrow channel. Other authors also mentioned this effect, such as Neves (2010) and 

Fortunato et al. (1997), for example. The last one refers that tidal form number decrease along 
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the system due to a resonant mode that increases the amplitudes of semi-diurnal waves by 

roughly 40% in the upper estuary, leaving the diurnal waves mostly unchanged.   

The major source of freshwater is the Tagus river and the discharge usually shows a 

pronounced dry/wet season signal and a large inter-annual (Valente and Silva, 2009). The annual 

average flow is approximately 400 m3/s, but varies greatly from summer to winter between 

approximately 30 m3/s in a dry summer and 2000 m3/s in a wet winter (Neves, 2010). Other 

freshwater inputs to the estuary, the Sorraia and Trancão rivers, are comparatively small, with 

average annual discharges of about 35 and 2.5 m3s-1, respectively (Neves, 2010).  

The influence of the river discharge seasonal variability is evidenced by several estimates 

for the water residence time within the Tagus estuary (Neves, 2010). For example, Martins et al. 

(1983) reported a residence time between 6 and 65 days, respectively, for a river discharge 

between 2200 and 100 m3s-1, and 23 days for a mean river discharge of 350 m3s-1. 

Tagus river is the highest nutrient source to the estuary, although Sorraia and Trancão 

rivers also represent significant nutrient contributions to the system. Salt marshes areas also 

function as nutrient source mostly in summer (Cabeçadas et al., 2000). The estuary also receives 

effluent discharges, mainly from several urban, industrial and agricultural sources (Vaz et al., 

2011). 

 The wind regime in the region exhibits a marked seasonal pattern, presenting south 

southwest predominant winds during the wet seasons, rotating to north/northwest during the dry 

season (Vaz et al., 2011).  

1.7.1.3. Rosário salt marsh  

According to Caçador et al. (2009), about 40% of the Tagus estuary is composed of 

intertidal mudflats and the southern and eastern shores contain extensive areas of salt marshes 

colonized mainly by S. fruticosa, S. perennis, H. portulacoides and S. maritima. Within the estuary, 

salt marshes occupy approximately 20 km2 (ca. 6%) (Pedro et al., 2008).  

According to Simas and Ferreira (2007) and Sousa et al. (2010b), in Tagus estuary, salt 

marsh plants are responsible for 25% of the total primary production. Nevertheless, only a small 

fraction of the produced biomass is accumulated within the marsh since the majority is exported 

to other areas of the system, to adjacent coastal waters or can also be degraded.  

Rosário salt marsh, covering an area of 200 ha, is located in the southern shoreline of the 

Tagus estuary (Fig. 1) and is characterized by a typical zonation with homogeneous stands of S. 

maritima as a pioneer species, colonizing bare mud in the lower marsh area. Pure stands of H. 

portulacoides follow S. maritima while S. fruticosa and S. perennis are found in the upper salt 

marsh. This marsh is fully inundated twice a day by tidal action through a highly branched system 

of channels. These channels have 0.5–1.5 m depth which promotes the inundation of the higher 

marsh even at low amplitude tides (Caçador et al., 2009). 



1. Introduction      13                                                                        
                                                                         

1.7.2. Ria de Aveiro lagoon 

The Ria de Aveiro (Fig. 1) constitutes a very important coastal system in the Portuguese 

west coast. Covering an area of 83 km2 at high tide (spring tide) and 66 km2 at low tide (Dias and 

Lopes, 2006), it is the most extensive Portuguese lagoon system and the one most dynamic in 

terms of physical and biogeochemical processes (Picado et al., 2010).  

Biologically, it is considered rich in nutrients and organic matter and is, therefore, a highly 

productive environment, providing a habitat for birds and several commercially important fish 

and invertebrate species (Araújo et al., 2008). 

1.7.2.1. Morphology 

The lagoon is 45 km long, 10 km wide and is connected to the sea by a 350 m wide inlet, 

fixed by two jetties (Picado et al., 2010). Four main branches radiate from this sea entrance: Mira, 

S. Jacinto, Ílhavo and Espinheiro channels. The Mira channel is an elongated shallow arm 

presenting 20 km length, S. Jacinto channel is about 29 km long and Ílhavo and Espinheiro are 15 

and 17 km long, respectively (Dias, 2001). Mira and Ílhavo channels are located in the southern 

region, S. Jacinto channel, in its northern region, and the Espinheiro channel, in a very complex 

central area of the lagoon. Therefore, the system is characterized by a large number of channels 

between which lie significant intertidal areas, essentially mudflats, salt marshes and old salt pans 

(Picado et al., 2010).  

Hydrologically, each of the main channels present features of separate estuaries, providing 

typical salinity and water temperature estuarine longitudinal gradients, with values close to the 

characteristics of the oceanic water near to the inlet and close to freshwater furthest upstream 

(Dias et al., 1999). 

The average depth of the lagoon relative to the mean sea level is about 3 m although the 

inlet channel can exceed 28 m deep, due to dredging operations that are frequently carried out to 

allow the navigation. Due to the small depth and to the significant tidal amplitude there are 

zones, especially along the borders of the lagoon and in its central area, which are alternately 

wetted and dried during each tidal cycle (Picado et al., 2010). 

1.7.2.2. Hydrodynamic features  

The lagoon receives sediments and freshwater of several small streams and several rivers. 

The major fluvial input comes from the Vouga (50 m3s−1 average flow), which is responsible for 

about 66% of the freshwater input in the lagoon, and Antuã rivers (5 m3s−1 average flow) and the 

total mean estimated freshwater input is approximately 1.8x106 m3 during a tidal cycle (Moreira et 

al., 1993). The tidal prism of the lagoon for maximum spring tide and minimum neap tide is 

estimated as 136.7x106 m3 and 34.9x106 m3, respectively (Dias, 2001). Hence, the total mean 
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estimated freshwater input is very small (2.5%), when compared to the mean tidal prism at the 

mouth (approximately 70x106 m3) (Picado et al., 2010).  

In Ria de Aveiro lagoon tides are predominantly semidiurnal with a mean tidal range of 

about 2.0 m, mainly influenced by the lunar semi-diurnal constituent (M2), with 88% of the total 

tidal energy (Dias et al., 1999). The minimum tidal range is 0.6 m (neap tides), and the maximum 

tidal range is about 3.2 m (spring tides), corresponding to a maximum and a minimum water level 

of 3.5 and 0.3 m, respectively (Dias et al., 2000). The strongest currents are observed at the inlet 

channel, reaching values higher than 2 ms-1 (Vaz et al., 2009a).  

Dias (2001) and Lopes et al. (2006) characterized the first half of the main channels of the 

Ria de Aveiro lagoon as ebb dominant and the second half as flood dominant. The ratio between 

the amplitudes of the M4 and the M2, regarded as a measure of tidal asymmetry, is very small 

near the lagoon mouth increasing along the channels (Picado et al., 2010). 

Wind is very significant in Aveiro considering periods from a few hours to a few days, when 

can become an important influence on lagoon circulation. Extreme conditions of strong wind may 

induce particular circulation patterns mainly in shallow areas and wide channels (Dias, 2001). 

The evolution of the Ria de Aveiro during the 20th century has been characterized by the 

erosion of these intertidal areas and widening of most channels. These changes, together with 

other anthropogenic contributions, are believed to have modified the tidal dynamics of the 

system, making it more vulnerable to risks of flooding and to sea level rise (Silva and Duck, 2001).  

1.7.2.3. Barra salt marsh 

The salt marshes of the lagoon are mainly vegetated by H. portulacoides, S. perennis subsp. 

perennis, S. ramosissima,  Puccinellia maritima, Juncus maritimus and Triglochin maritima, as 

referred in the studies performed by Silva et al. (2007, 2009). 

The Barra salt marsh (Fig. 1), located in the mid-low salt marsh near to a main channel of 

the lagoon (Mira Channel), occupies about 2.2 vegetated hectares and is inundated twice a day by 

the tide (Silva et al., 2009). The salt marsh vegetation found in these salt marshes is dominated by 

Spartina maritima, Halimione portucaloides, Juncus maritimus and Sarcocornia perennis subsp. 

perennis. 

1.8. State of the art 

The importance of coastal environments is recognized all around the world by the scientific 

community. Consequently, numerous studies of estuaries were published focusing on their 

hydrology, biology and ecological classification, hydrodynamic features, etc.  In this section are 

referred a few examples of the numerous studies that have been performed in the study areas of 

http://www.sciencedirect.com/science/article/pii/S0278434310002694#bib12
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the present work and are also referred some of the most import studies performed by the 

application of the model Mohid, once it is the numerical tool used in this study. 

1.8.1. Tagus estuary 

In Tagus estuary, according to Rodrigues da Silva (2003), the first important study was the 

one performed by Baldaque da Silva (1893), motivated by the need to assure the easy and safe 

navigability within the system. The first integrated study on this estuary was carried out by 

Arantes and Oliveira (1941), who analysed the hydrodynamic and salinity distribution processes 

and the water quality. These two studies are worth mentioning due to their historical importance.  

Studies on biological parameters such the work developed by Costa (1986) showed the 

importance of the estuary as a nursery for some fish species with economic importance. The 

impact of pollution caused by mercury, for example, was also analysed in studies performed by 

Canário et al. (2005, 2010), for example. These and several other projects have been carried out 

on the Tagus estuary, using in situ measurements, physical and numerical modelling or remote 

detection, which resulted on publications in different areas such as: development of numerical 

models (e.g. Rodrigues et al., 1986; Âmbar and Backhaus, 1983); morphodynamics (e.g. Freire et 

al., 2006); suspended sediments (e.g. Vale and Sundby, 1987; Portela and Neves, 1994) 

hydrodynamics (e.g. Fiadeiro, 1987; Dias, 1993; Vaz et al., 2011); circulation and tidal propagation 

(e.g. Fortunato et al., 1997, 1999; Dias and Valentim, 2011); monitoring and operational 

modelling (e.g. Anjos et al., 2003; Fernandes et al., 2004); estuarine plume (e.g. Valente and Silva, 

2009; Vaz et al., 2009b); phytoplankton (e.g. Gameiro et al., 2007), and so on.  

Despite all these examples of studies development concerning Tagus estuary, the amount 

of work dedicated recently to its hydrodynamics is limited (Dias and Valentim, 2011). Dias (1993) 

performed the deepest study on the Tagus estuary hydrodynamics and the most significant work 

was developed by Fortunato et al. (1997) concerning the numerical study of the 3-dimensional 

currents at the mouth of the estuary.  

Recently, Neves (2010) analysed the results of several monitoring programmes performed 

along the Tagus estuary, studying its dynamics and hydrology. Their results indicate that the Tagus 

dynamics and hydrology is strongly dependent on the tidal forcing and seasonal changes of the 

river inflow. The author also conclude that the fortnightly cycle was the main forcing mechanism 

for the residual circulation, but the bottom topography and the coastline morphology play an 

important role on the estuarine circulation, complementing the fortnightly tide on the 

establishment of different residual circulation patterns. Similarly, in the study performed by Dias 

and Valentim (2011), tidal propagation within the system was resolved through the application of 

a 2D model and the results showed that the tidal dynamics of Tagus estuary is extremely 

dependent on the estuarine topography and coastline geometry, resulting essentially from a 

balance between convergence/divergence and bottom friction effects. 
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Regarding to tidal asymmetry, Dias (1993), Fortunato et al. (1999) and Neves (2010) noticed 

that this system is dominated by the ebb. The existence of asymmetry in the tide within the Tagus 

estuary is evidenced by ebbs being shorter than floods.  

Therefore, the Tagus estuary has been widely studied but there are still many aspects that 

need additional clarification and, for example, the relation between estuary’s circulation and its 

main forcing mechanisms (tide, wind and river discharge) can still be further investigated (Neves, 

2010). Likewise, Tagus salt marshes have been studied in the last years and a significant amount 

of work was dedicated to the nutrient cycling (e.g. Sousa et al. 2008a,b) or metal retention (e.g, 

Caçador et al., 2009; Duarte et al., 2010), but studies devoted to the hydrodynamic features that 

could affect salt marsh plants are rare.  

1.8.2. Ria de Aveiro lagoon 

Ria de Aveiro lagoon was largely studied from a biological and chemical perspective and 

several publications regarding to bacterioplancton, zooplankton, benthic biodiversity, pollution 

impacts, fisheries, among several others issues were performed (e.g. Morgado et al., 2003; Lopes 

et al., 2010; Anjum et al., 2012; Pereira et al., 2011; Pires et al., 2012; Ahmad et al., 2012). 

Like in the case of Tagus estuary, Ria de Aveiro salt marshes have been studied in the last 

years.  A substantial amount of work was dedicated to the nutrients cycling (e.g. Lillebø et al., 

2010) and metal contamination (Válega et al., 2008; Marques et al., 2011; Sousa et al., 2011) .  

Silva et al. (2009), studying salt marshes in Tagus estuary and Ria de Aveiro lagoon, demonstrate 

that the type of salt marsh surface coverage is not the main factor that contributes to the 

consolidation of sediments and the position of stations (species/unvegetated areas) and related 

abiotic conditions are determining factors of variation to take into account in the studies related 

with the stabilization and survival of salt marshes. Silva et al. (2007) evaluated aspects of 

population dynamics and salinity tolerance of the salt marsh plant Salicornia ramosissima in two 

salt marshes of Ria de Aveiro lagoon. However, once again, studies devoted to the hydrodynamic 

features that could affect salt marsh plants are not so commun. 

Over the last years, Ria de Aveiro hydrodynamics has been studied using several model 

implementations and distinct parameters were analysed. Several studies were performed to 

investigate matters such as the tidal propagation in the lagoon (Dias et al., 2000; Dias and 

Fernandes, 2006) and, for example, Dias et al. (2000) pointing out that the tidal amplitude 

decreases at the upstream locations, while the phase lag in the high and low water increases. The 

Lagrangian transport of particles (Dias et al., 2001) and the sediment transport (Dias et al., 2003; 

Lopes et al., 2006, 2011b) are also issues analysed. Vaz et al. (2005), combining field 

measurements and modelling results, revealed the importance of the river flow in the 

establishment of the thermohaline horizontal patterns in the central area of the lagoon. 

Moreover, Vaz et al. (2005; 2007) implemented the Mohid-2D in order to evaluate the role of the 

major forcings (tides and river inflow) in the hydrodynamics and hydrographic features of the 

central area of the Ria de Aveiro. Picado et al. (2010) investigated the possible tidal changes 
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induced by local geomorphologic modifications such as the total degradation of the abandoned 

salt pans within the Ria de Aveiro lagoon. A 3D baroclinic model (Mohid) was used by Vaz et al. 

(2009a) and Vaz and Dias (2011) to perform simulations for the Espinheiro channel in Ria de 

Aveiro. All of these studies are just some examples of the large number of works developed in the 

last years concerning the different approaches of the lagoon’s hydrodynamics. 

Regarding to lagoon hydrodynamics, a prior study evaluated by Dias et al. (1999) reveals 

some of the main features of the Ria de Aveiro like the tidal wave propagation in the lagoon that 

has the characteristics of a damped progressive wave or the vertically homogeneous features of 

this lagoon. Araújo (2005) has analysed sea level changes in Ria de Aveiro lagoon and has 

concluded that there was a general increase in the amplitude and a phase decrease, for most of 

harmonic constituents.  

Concerning the residual circulation Dias (2001) and Lopes and Dias (2007), through the 

application of a hydrodynamic model, conclude that residual currents and transport are stronger 

at S. Jacinto and Espinheiro channels (Fig.2), as well as at the lagoon mouth (Barra), and are 

directed downstream toward the open ocean, contributing to net water and particles exports. The 

residual circulation induced by river freshwater inputs may experience an important increase 

during the rainfall season, due to the increase of the input from the main freshwater tributaries, 

influencing therefore, the lagoon channels dynamics. These authors referred that the residual 

circulation pattern in Ria de Aveiro lagoon evolves continually in time, as result of the bottom 

sediment dynamics and of the anthropogenic activities related to the dredging operation in 

several channels, as well as the exploitation of the lagoon sediments. Once, the bottom 

topography evaluation is crucial to the long-terms dynamic studies in lagoons and estuaries. Also, 

the flooding-drying process over the intertidal areas tends to enhance the asymmetry of tidal 

currents over a tidal cycle, during the spring–neap cycle, resulting in a relatively large residual 

flow along the estuary. This mechanism amplifies the tidal asymmetries inside the lagoon, 

enhancing the residual currents. The neap–spring cycle may, therefore, play an important role in 

the long-term sediment transport in the central areas of the lagoon. In these areas, the residence 

time is small and the ebb currents are strong, resulting in a residual transport toward the lagoon 

mouth. 

Likewise, Dias (2001), Lopes et al. (2006) and Araújo et al. (2008) characterized the first half 

of the main channels of the Ria de Aveiro lagoon as ebb dominant and the second half as flood 

dominant. All these studies show that the ratio between the amplitudes of the M4 and the M2, 

considered as a measure of tidal asymmetry, is very small near the lagoon mouth increasing along 

the channels (Picado et al., 2010). 

1.8.3. Numerical model 

In this work was used the numerical model Mohid – Water Modelling System, originally 

developed by the MARETEC – Marine and Environmental Technology Center group of the Instituto 

Superior Técnico (Martins et al., 1998). Mohid is a 3D baroclinic finite volume marine model, 
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designed for coastal and estuarine shallow water applications (Vaz, 2007), like the study of Ria de 

Aveiro and Tagus estuary dynamics. 

Mohid has been applied to different coastal and estuarine areas, showing its capability to 

simulate complex flows features. In Portugal, numerous estuarine systems have been studied 

such as:  

 Douro (Silva, 1996) and Mondego rivers (Saraiva et al., 2007)  

 Ria de Aveiro lagoon (Trancoso et al., 2005; Vaz et al., 2005, 2007) 

 Óbidos lagoon (Santos et al., 2006; Malhadas et al., 2009)  

 Ria Formosa lagoon (Silva et al., 2002)  

 Tagus estuary (Braunschweig et al., 2003; Vaz et al., 2009b, 2011) 

 Sado estuary (Martins et al., 2001) 

 Guadiana estuary (Saraiva et al., 2007) 

Moreover, Mohid has been implemented in other Iberian Peninsula systems such in the 

Galician Rias (i.e. Villarreal et al., 2002; Taboada et al., 1998; Montero, 1999) and also in open sea: 

on the Iberian Coast, including the Portuguese coastal circulation (Coelho et al., 2002), slope 

Cantabrian current (Villarreal et al., 2004), Algarve coastal circulation (Leitão et al., 2005) and on 

the North Sea (Bernardes, 2007). 

All this extensive number of studies in several coastal environments with different 

resolutions indicates that the numerical model Mohid has capabilities to simulate the 

hydrodynamics of coastal systems such Ria de Aveiro lagoon and Tagus estuary. 
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2.1 Salt marsh field measurements and laboratory analysis 

S.maritima is an herbaceous perennial plant distributed along the coasts of western, 

southern, and south-eastern Europe, and western Africa. This species colonizes low marshes 

(Sousa et al., 2010a). In this study, S.maritima is the salt marsh plant analysed because is present 

in both salt marshes of the two estuaries and is a pionner spicies, which means that colonizes the 

low salt marsh (Sousa et al., 2010a) and, therefore, is the species that is closest to the water. 

The percentage vegetation coverage, above and belowground biomass, sediment moisture 

and organic matter sediment content was determined for Rosário and Barra salt marshes through 

the application of the following steps that includes the field and further laboratory 

measurements: 

 

► Above and belowground biomass determination (based on Reboreda and Caçador (2007)) 

 

 S. maritima was sampled at low tide quarterly during one year, from January 2010 to 

December 2011;  

 Specimens were collected in the salt marsh, in three different places in pure stands 

of S.maritima, chosen randomly;  

 The aboveground material was determined by clipping the vegetation at ground level 

in 0.3 x 0.3 m2 squares (three replicates);  

 After cutting the aboveground material and removing the detritus, one sediment 

core was taken in the three places where the aboveground biomass had been collected using a 

tube with  7 cm diameter and 100 cm length; 

 The belowground biomass was sorted out from the sediment cores to a depth of 40 

cm, where the roots and rhizomes are present;  

 The collected aboveground plant material was transported to the laboratory, rinsed 

with demineralised water and dried to constant weight at 80ᵒC;  

 Belowground material was separated from the sediment using a 250 µm mesh sieve 

and demineralised water; the remaining plant material was dried to constant weight at 80ᵒC; 

 After this steps, plant material was weight with an accuracy of 0.01 g and the 

biomass was expressed as kg.m-2 through the following equations: 

                             
                  

            
       (1) 

 



2. Methodology     21                                                                      
 

                             
                  

     
         (2) 

where r=0.07 m (core radius) 

 

► Organic matter and relative moisture (based in Duarte et al. (2010)) 

 

 Relative moisture of the sediment between roots and rhizomes was determined and  

expressed as percentage of total weight; 

 Approximately 2 g of the sediment was dried at 60ᵒC for 72 h and the moisture was  

calculated by the application of the next equation: 

 

             
                         

            
           (3) 

 The dried sediment was grinding and sieving for removing organic waste (branches, 

roots, fauna). In order to determine the organic matter, 0.5 g of sediment was placed in a 

previously weigh crucible; 

 After incineration at 600ᵒC during 3 h, the crucible was transferred to a desiccator for 

cool down; 

 Then, the crucible with the incinerated sediment was weigh and organic matter was 

determined using the formula: 

 

                    

 
                                                                                 

                                 
               (4) 

 

 

► Vegetation coverage area (based on Caçador et al. (2004)) 

 

 A transect 130 m long and 1 m wide was established perpendicular to the channel in 

order to represent the main vegetation areas in the salt marshes; 

 Sampling was conducted quarterly between January 2010 to December 2011; 
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 Floristic composition and species abundance were determined based on visual 

estimation of species cover using the Braun Blanquet abundance scale. For the present work only 

the coverage percentage of S. maritima was considered. 

These procedures have been performed in Rosário salt marsh by Bernardo Duarte, from the 

Oceanographic Institute (Lisbon). The sampling results for Rosário salt marsh were then kindly 

provided in order to reach the objectives of this thesis.   

2.2. Numerical model  

A mathematical model can be considered as an approximate reconstruction of a real 

phenomenon, but all parameterizations and approximations used in models lead to deviations of 

the model results from nature. Nowadays, two-dimensional vertically integrated (2DH) models 

can be considered as reliable tools for the study of shallow coastal waters (Dias et al., 2003). In 

this work, the Mohid-2D model, previously successfully calibrated and implemented for Tagus 

estuary (Vaz et al., 2011) and Ria de Aveiro lagoon (Vaz et al., 2007) was applied. 

2.2.1. The numerical model equations 

Mohid solves the three-dimensional incompressible primitive equations. Hydrostatic 

equilibrium is assumed as well as the Boussinesq and Reynolds approximations. A detailed 

derivation of the model equations was presented in several studies and can be consulted in Vaz 

(2007), for example. 

The momentum and mass balance equations are: 
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              (6) 

where    are the velocity vector components in the horizontal Cartesian    directions (i = 1; 2), 

   are the velocity vector components in the three Cartesian directions    (j = 1-3),      is the 

atmospheric pressure and   is the turbulent viscosity. ρ is the specific mass, ρ’ is its anomaly, ρ0 is 

the reference specific mass, ƞ is the free surface level, ρ (ƞ) represents the specific mass at the 

free surface, g is the acceleration of gravity, t is the time, Ω is the Earth’s velocity of rotation and ε 

is the alternate tensor. Integrating Eq. (6) over the whole water column (between the free surface 

elevation ƞ (x,y) and the bottom –h, the free surface equation is obtained: 
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where h is the depth. 

The bottom shear stress,  ⃗, is represented as a quadratic function of velocity (Eq. (8)) and 

the drag coefficient (CD) can be parameterized in terms of Manning’s friction coefficient (n), by 

applying Eq. (9): 

 ⃗    | |⃗⃗ ⃗⃗ ⃗⃗      (8) 

             (9) 

where  ⃗⃗ is the horizontal velocity vector and H (H = h + ƞ) is the total depth of the water column. 

The model discretization is fully described in Martins et al. (2001). 

2.2.2. Model simulations 

Some points in the model simulations were similar for Tagus estuary and Ria de Aveiro 

lagoon. The wind forcing was not considered once is essentially important in short periods of 

time in the two systems. Therefore, the main forcing were the tide and river discharges.  

Simulations were performed for 32 days (May 2nd to June 3th 2011) but a second period of 

14 days, 18 hours, 32 minutes and 24 seconds was also simulated (in order to calculate the 

residual circulation). The spin-up time was 2 days. 

For SLR simulations, the model parameters were kept except the value of the tide 

elevation. Instead of 2.08 m (considered for the actual scenario simulations) was considered a sea 

level rise of 0.42 m, that is, the initial elevation value considered for SLR simulations was 2.50 m. 

The sea level rise value of 0.42 m was adopted because it is a predictable value for the sea level 

rise in Portuguese coast (Lopes et al., 2011a). 

Moreover, with the purpose of evaluate the effects of the rivers in the residual 

circulation patterns, four discharges scenarios were simulated: Maximum, Minimum, Typical 

and No Discharges, both for actual as for SLR situation 

2.2.2.1. Tagus estuary simulations 

For Tagus estuary, the numerical model was validated by Vaz et al., (2011), comparing 

harmonic analysis results of measured and model predicted sea surface height for 12 stations 

covering the whole estuary. The data used in this process was measured in 1972, covering the 

entire estuary. The model results for sea level height reveal small differences with observations, 

lower than 5% of the local variation, both in amplitude and phase, in almost stations. Therefore 
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an accurate validation of the tidal propagation was achieved. Hence, the author concluded that 

the implementation of this model was successful and its application is able to contribute to 

increase the knowledge of the estuary processes. Consequently, the methodology regarding the 

simulations for Tagus estuary through the application of Mohid was performed based in this study 

(Vaz et al., 2011). 

In the present work, the numerical model (2D barotropic) includes a three level nesting 

model (Vaz et al., 2011). The first domain (D1) is a tidal driven model that uses the FES2004 global 

solution as forcing and has variable horizontal resolution (0.06ᵒ). This model domain covers most 

of the Atlantic coast of Iberia and Morocco. The second domain (D2) has 0.0100ᵒ horizontal 

resolution and is similar to D1. The third domain (D3) has 0.002-0.004ᵒ horizontal resolution and 

includes the Tagus Promontory area and it is directly coupled to D2 at the open boundaries (Vaz 

et al., 2011). The numerical grid of the third domain presents 335 x 212 cells of 200 m each (Fig.2). 

On the open ocean boundary of D3, the model input was the tidal forcing from D2 (Vaz et al., 

2011) and rivers inflow were imposed in the landward boundaries considering the values of the 

Table 1  (Neves, 2010).  

The time step of the model was 15 s and a horizontal viscosity of 5 m2 s-1 and a rugosity of 

0.0025 were considered. 

 

 

Figure 2: Numerical bathymetry considered in the model simulations for Tagus estuary. 
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Table 1: River discharges values considered for Tagus estuary simulations. 

 

 

 

 

2.2.2.2. Ria de Aveiro lagoon simulations 

Regarding to Ria de Aveiro lagoon, the model was calibrated and validated by Vaz et al. 

(2007). For the calibration process, the authors used as a first approach a qualitative comparison 

of the temporal evolution of sea surface elevation (SSE) data measured in 1987/1988 at 9 

stations. In general, the disagreement between the computed and observed SEE was low with 

values lower than 5% of the local tidal range. Therefore, after obtained a good match for all the 

stations the model’s accuracy was evaluated through the determination of the root mean square 

(RMS) error and also through the comparison between amplitude and phase of the main tidal 

constituents determined from harmonic analysis of the observed and computed data. The 

validation procedure was performed using two independent data sets, which includes 

observations of current velocities at 10 stations and SSE values (1997 data) at 11 stations and 

measured water fluxes at the lagoon’s inlet for the period of October 2002. According to the 

results obtained in this study performed by Vaz et al. (2007), Mohid-2D was successfully 

implemented, revealing an accurate reproduction of the tidal propagation within Ria de Aveiro. 

Consequently, the authors concluded that model could be used in future studies concerning the 

lagoon’s hydrodynamics. Therefore, in the present work, the methodology regarding the 

simulations for Ria de Aveiro lagoon through the application of Mohid was performed based in 

the study by Vaz et al. (2007). 

The time step of the model was 6 s and a horizontal viscosity of 20 m2 s-1 was considered. In 

the calibration and implementation processes, the best adjustment between model results and 

field observations was achieved through bottom roughness parameterized from Manning’s 

coefficients ranging between 0.022 and 0.045. Consequently, a varying Manning’s coefficient was 

considered. 

Ria de Aveiro grid has 429 x 568 cells, with dimensions of 40 x 40 m in the central area of 

the lagoon and 40 x 100 m in the north and south areas (Fig.3).  At the sea open boundary, water 

elevation over the reference level was imposed using tidal harmonic constituents determined 

using T_TIDE package (Pawlowicz et al., 2002) and rivers inflow were imposed in the landward 

boundaries considering the values of the Table 2.  

Discharges (m3s-1) Tagus Sorraia Trancão 

Maximum 2000 200 20 

Typical  400 40 5 

Minimum 40 4 1 
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Figure 3: Numerical bathymetry considered in the model simulations for Ria de Aveiro lagoon. 

River discharges values were obtained from the Ria de Aveiro Polis Litoral program, which 

considered the data present in the Plano de Bacia Hidrográfica (www.arhcentro.pt). In Ria de 

Aveiro Polis Litoral, the mensal average discharges for the main rivers were defined, in average 

and dried year. Therefore, in the present study, the mean values of the rivers discharges were 

calculated averaging the series values for each river, which corresponds to the “Typical” numbers 

on the Table 2. After that, the higher discharge value of each river series were considered as the 

“Maximum” value. For the “Minimum” values, it was considered reasonable that 20% of the 

average values were a good representation of the minimums values rivers discharges. 
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Table 2: River discharges values considered for Ria de Aveiro lagoon simulations. 

 

 

2.3. Hydrodynamic parameters 

Once one of the main goals of the present work was to study the SLR effects in the local 

hydrodynamic parameters, two scenarios related with sea level value were evaluated in the 

numerical simulations: the first one, considering an initial mean level of 2.08 m and, the second 

one, considering the mean level as 2.50 m, with the respective rise of 0.42 m. For the residual 

circulation calculations, for each scenario, different situations of river discharges, for both 

systems, were considered in order to determine the role of the freshwater in this parameter. 

Moreover, the values of the residual circulation were obtained directly by the model results 

defining a simulation period of 14 days, 18 hours, 32 minutes and 24 seconds, once this is a 

multiple period of the tidal constituents M2 and S2. With this procedure, the main tidal 

constituents are filtered, including the fortnight constituents related with the spring and neap tide 

cycle. For a clear understanding of this methodology, the Figure 4 illustrates the conditions and 

scenarios considered. 

To determine the tidal asymmetry, a simulation period of 32 days was considered and the 

simulations were performed considering the Typical freshwater inflows, once this typical inflow 

was admitted as the mean values of the rivers discharges in the estuaries. For the tidal dissipation 

calculations, only a period of 12 hours was necessary to considered and consequently, series of 12 

h were evaluated. For a better understanding of these steps, Figure 5 demonstrates the 

conditions and scenarios considered in this case. A more specific explanation of how these 

parameters were determinate is also hereafter explained. 

 

Discharges (m3s-1) Vouga Antuã Boco Caster Rª dos Moinhos 

Maximum 517.0 39.0 8.6 13.8 25.6 

Typical  60.0 4.5 1.0 1.6 3.0 

Minimum 12.0 0.8 0.2 0.3 0.5 
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Tidal Asymmetry 

Tidal Dissipation (12h) 

 

Figure 4: Scheme of the methodology followed to obtain the results for residual circulation under the 
different conditions and scenarios considered. 

Figure 5: Scheme of the methodology followed to obtain the results for tidal asymmetry and tidal 
dissipation under the different scenarios considered. 
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In many coastal worldwide areas where the tide is semi-diurnal, as in the Ria de Aveiro 

lagoon and Tagus estuary, the dominant tidal constituent is M2 and thus the shallow water most 

significant constituent is the M4, the first harmonic of M2.  M4 is generated due to the effects of 

the depth and geometry local alterations in shallow water systems on advective terms, which can 

change the local tide harmonic effects. Tidal distortion (asymmetry) can be represented by 

harmonics of astronomical tidal constituents (Aubrey and Speer, 1985). Thus, the ratio of M4 and 

M2 amplitude (which corresponds to the value of Ar) can be analyzed to determinate the 

magnitude of the tidal asymmetry generated within the Tagus estuary and Ria de Aveiro lagoon. 

Similarly, the relative phase of M2 and M4 determines the type of asymmetry. Therefore, the 

asymmetrical coefficients Ar (amplitude ratio) and φ (relative phase) can be represented by the 

following equations (Dias and Sousa, 2009): 

   
   

   

       (10) 

       
       

      (11) 

 

where Ar is the amplitude,   indicates the phase and M4 and M2 correspond to the tidal 

constituents. According Dias and Sousa (2009), the flow is flood dominant if 0ᵒ< φ<180ᵒ and ebb 

dominant if 180ᵒ<φ<360ᵒ.   

Regarding to tidal dissipation, in this study, the mean rate of dissipation of energy per unit 

area due to the bottom friction was estimated from the application of the following equation 

(Burling et al., 2003): 

  
 

 
∫          

 

                       
 

 
(12) 

 

where U and V are the x and y components of the current, respectively and C represents 

the Chézy coefficient determined from de Manning friction coefficient n. The integration 

presented in the equation (12) was taken over one tidal cycle for neap and spring tide cases.  

Horizontal fields for residual circulation, tidal asymmetry and dissipation were performed 

for all the scenarios and situations simulated and are present in the next chapter. Moreover, 

absolute and percentage differences between the results for actual and SLR situations were 

calculated in order to achieve a better interpretation of the SLR effects in the patterns of the 

hydrodynamic parameters. 
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3.1. Residual circulation 

Residual circulation analysis is important because it determines the long-term transport in 

estuaries and lagoons and, therefore, is a key parameter in the dynamical behavior of these 

coastal systems. These currents are typically one or two orders of magnitude lower than the 

instantaneous currents, and are generated through the interaction of the tidal currents with 

topographic features (Pugh, 1987). 

In this work, four distinct scenarios of freshwater inputs were considered (Maximum, 

Typical, Minimum and No Discharges) in order to evaluate the importance of the freshwater in 

this hydrodynamic parameter. The scenario with No Discharge allows the understanding of the 

tidal forcing in the systems residual circulation patterns and, thus, a quickly perception of the 

rivers influence. For SLR results, the situation of Minimum Discharges was not considered once is 

very similar with the scenario of Typical Discharges. 

3.1.1. Residual circulation in Tagus estuary 

3.1.1.1. The effect of rivers discharges 

The model results reveal that, generally, residual circulation is two orders of magnitude 

lower than the tidal current, as was expected.  

Figure 6 presents the residual circulation results for the four scenarios of river discharges. 

For a better interpretation, in this case, the difference between Typical Discharges and each one 

of the others scenarios were also calculated and present both in absolute value as in percentage 

(Fig.7). These calculations allow a quickly perception of the effect of each river discharge scenario 

in the overall pattern of residual circulation. 

The observation of the results presented in the Figure 6 reveals that residual current 

direction is outwards the system, as it is possible to confirm by the currents direction representing 

by the arrows. 

In the four scenarios under analysis, the area where residual circulation is higher is the 

upper estuary, probably due to the proximity of the main rivers inflow (Fig.6). In a significant part 

of Tagus estuary, residual circulation is not higher than 5 cm/s (blue areas) but can rise to more 

than 20 cm/s in the main channels of the upper bay as in the system mouth (red colours). Face to 

Typical inflow, in Maximum scenarios, residual circulation value increases from about 7 to more 

than 10 cm/s in the deepest channels of the upstream part of the upper estuary and, in the zone 

closest to the river (Vila Franca de Xira), the values rise from about 14 to more than 30 cm/s. In 

Maximum Discharges scenario, the influence of topography and system morphology is notorious 

by the presence of strongest currents in the deepest channels of the system. With higher rivers 
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inflow, residual circulation rises significantly, being stronger than in other scenarios, 

demonstrating the importance of the freshwater inflow in this hydrodynamic parameter.   

Considering average values, in the main channel, residual circulation is approximately 3.5 

cm/s, 6.1 cm/s, 3.1 cm/s and 2.9 cm/s in Typical, Maximal, Minimum and No Discharges 

scenarios, respectively. In the deeper channels of middle bay, values reach 4.1 cm/s, 7.0 cm/s  2.6 

cm/s and 2.5 cm/s and in the channel close to the river mouth, reach 9.5 cm/s, 23.9 cm/s, 7.9 

cm/s and 7.6 cm/s in Typical, Maximal, Minimum and No Discharges scenarios, respectively 

(Fig.6). 

From the analysis of the absolute differences (Fig.7), the higher differences between the 

scenarios are more important in the upper bay, as expected, due to the freshwater inputs in that 

area. While the differences between Typical and Maximum Discharges could be more than 10 

cm/s, in Typical and Minimum Discharges, the difference are not higher than 2 cm/s for the 

majority estuary.  

The comparison between Typical and No Discharges scenarios (Fig.7), considering the 

percentage differences, shows that river effect could rise residual current intensity more than 

30%, namely in the upper estuary (from 2cm/s to more than 6 cm/s higher in the lower and upper 

bay, respectively, in Typical Discharges) which, once again, reveal the strength of Tagus river. 

Typical and Minimum Discharges maximal differences could be higher than 30% particularly near 

the rivers discharges, with Typical Discharges situation presenting the higher values.   

Model results indicate that rivers discharges effect cannot be unconsidered once residual 

currents intensity could be 40% higher in Typical inflow than in No Discharges scenario. As such, 

Tagus river can influence significantly the residual circulation patterns and in Maximum 

Discharges, residual current intensity could be more than 100% higher than in Typical inflow 

situation.  

Regarding to Rosário salt marsh, Figure 8 demonstrates that the direction of the flow 

remains similar in the four situations. Generally, residual circulation is less than 2 cm/s in the salt 

marsh area. In Typical and Maximal Discharges is about 1.29 cm/s, 1.23 in Minimal Discharges 

and 1.35 cm/s in No Discharge situation. These results mean that, in the salt marsh area, residual 

circulation is 5% less in Minimum Discharges than in Typical Discharges (Fig.9). No Discharges 

situation means an increase of about 5% relatively to Typical freshwater inflow (Fig.9). The 

residual circulation results reveal that the freshwater inflow is not significant in the Rosário salt 

marsh possible because Rosário is located in a secondary channel, in a shelter area. 
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Figure 6: Residual circulation (cm/s) in Tagus estuary for the different study cases: typical discharges 
(upper, left), maximum discharges (upper, right), no discharges (base, right) and minimum discharges 
(base, left). The amplified figures allow a better observation of the current direction. 
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Figure 7: Absolute (left) and percentage (right) difference of residual circulation intensity between 
typical discharges and the different studied scenarios for Tagus estuary discharges; from upper to the 
base are represented the comparison between typical and maximum, minimum and no discharge 
scenarios, respectively.  
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Figure 9: Absolute (left) and percentage (right) difference of residual circulation intensity  between 
typical discharges and the different studied scenarios for Rosário salt marsh (Tagus estuary); from upper 
to the base are represented the comparison between typical and maximum, minimum and no discharge 
scenarios, respectively.  

 

  

Figure 8: Residual circulation (cm/s) in the especific Tagus estuary salt marsh study area (Rosário). From 
letf to rigth are represented typical and maximum discharges (upper) and  minimum and no discharges 
scenarios (lower). 
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3.1.1.2. Sea level rise effects in residual circulation  

Generally, sea level rise results for residual circulation in Tagus estuary (Fig.10) reveal that 

the patterns of this parameter in the system remain similar to those found in the actual sea level 

scenario. 

A first observation of the absolute difference (Fig.11) reveals that residual circulation 

increase about 1 cm/s in some areas of the system mouth and in some shallow areas of the bay 

(blue areas), while in the deepest channels of the bay residual circulation decrease 1 or even 

more than 3 cm/s in SLR scenario.  

In Typical Discharges, SLR scenarios show residual circulation values between 10 and 30% 

lower for actual scenarios, namely in the upper bay. In Maximum scenarios, differences are not so 

high and SLR results present a maximal decrease of 20%, showing for the majority of the bay area 

values 9% lower than in actual sea level scenarios. The difference pattern in Typical and No 

Discharges scenarios are similar, while in Maximum Discharges the differences are more 

homogeneous.  

As concluded before, the salt marsh is not significantly affected by the rivers inflow, 

therefore the different rivers discharges scenarios are similar for all situations (Fig.12). Thus, in 

Rosário salt marsh, in Typical, Maximum and No Discharges scenarios, residual circulation 

increase in average about 20%, but in some places sea level rise scenario induces values more 

than 40% higher for than actual scenario. Therefore, with SLR, considering average values, 

residual circulation rise from about 1.30 cm/s to about 1.60 cm/s.  
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Figure 10: Residual circulation values (cm/s) for sea level rise scenario for Tagus estuary. From upper to 
base are represented typical, maximum and no discharges situations, respectively. In the right side are 
presented an amplification of the results for Rosário salt marsh. 
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Figure 11: Absolute (left) and percentage (right) difference of residual circulation values between actual 
and sea level rise scenarios for the different discharges situations in Tagus estuary; from upper to the 
base are represented typical, maximum and no discharge scenarios, respectively. 
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3.1.2. Residual circulation in Ria de Aveiro lagoon 

3.1.2.1. The effect of rivers discharges  

Figures 13 and 15 present the residual circulation model results for the four scenarios of 

river discharges in the case of Ria de Aveiro lagoon and for the Barra salt marsh, respectively. As 

performed for Tagus estuary, for a better interpretation, the difference between Typical 

Discharges and each one of the others scenarios was calculated and is presented both in absolute 

value as in percentage (Figs. 14, 16).  

Vouga and Antuã rivers are the main freshwater sources of Ria de Aveiro, although the 

effects of the other freshwater should also be considered. Considering the mean values of this 

rivers inflow, the river discharges influence is moderate in terms of the general circulation of the 

lagoon, but it is expected a significant influence in the lagoon residual circulation (Lopes and Dias, 

2011).                       

Figure 12: Absolute (left) and percentage (right) difference of residual circulation intensity between 
actual and sea level rise scenarios for the different discharges situations in Rosário salt marsh (Tagus 
estuary); from upper to the base are represented typical, maximum and no discharge scenarios, 
respectively. 
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Residual circulation induced by the tide, presented in Figure 13, generally, has two orders 

of magnitude less than tidal currents, as it was verified by other authors such Lopes and Dias 

(2011). In this work, it is also observed that residual current is ebb dominated, through the 

analysis of the current direction (figures amplification presented in Figure 13).  

In the central area of the lagoon, in Typical flows condition (Fig.13), is in the S. Jacinto 

channel that residual circulation raises its higher intensity, reaching 9 cm/s in some places. Mira 

and Espinheiro channel also shows considerable values of residual circulation, higher than 6 cm/s 

in certain areas. Close to Vouga river mouth, residual circulation could reach 30 cm/s, because of 

the proximity of the river input. The pattern found in Mininum Discharges is similar, but in the 

Vouga river area values are not so high (an average of 5 cm/s). 

In Maximum Discharges scenario (Fig.13), residual circulation rises to more than 10 cm/s in 

the lagoon mouth, Espinheiro and S.Jacinto channels and also in some channels close to Vouga 

and Antuã rivers mouth.  In Espinheiro channel and Vouga river zone, values can be higher than 

17 cm/s. Residual circulation in S. Jacinto channel rises to 14 cm/s, but the Espinheiro channel is 

now where residual current reaches its maximum value, more than 18 cm/s. 

Considering the situation of No Discharges (Fig.13), in general, is observed that the stronger 

values of residual circulation decrease in the entire system comparing to the other scenarios. 

A first observation of the comparison between the absolute differences scenarios (Fig.14) 

shows that the main differences occur in the deepest areas of the main channels. The comparison 

between Typical and No Discharges, demonstrate the influence of rivers inflow in residual 

circulation. The No Discharges scenario, in general, present values 20% lower in the entire lagoon 

relatively to Typical Discharges. In Typical situation, in some places, such as the middle zone of S. 

Jacinto channel, values can be almost 80% higher than those found in No Discharge scenario. Near 

the rivers sources, the differences are higher because the comparison is between no freshwater 

incoming with Typical Discharge values. 

The differences between scenarios are minimal for Typical and Minimum Discharges, being 

lower than 10% in a large area which means a difference less than 1 cm/s in almost system.  

Results of Maximum Discharge scenarios indicate that, under this condition, residual 

circulation suffers a significance alteration in the Ria de Aveiro. In fact, in Espinheiro channel and 

in the first half of S.Jacinto channel, residual circulation could be 70% higher than that one found 

in Typical Discharges (could reach 17 cm/s in lagoon’s mouth and in Espinheiro channel, instead of 

9 cm/s in Typical Discharges scenario, and 14 cm/s instead of 9 cm/s in S.Jacinto channel, for 

example). 

Figure 14 shows that in Minimum Discharges residual circulation is lower than 5% of the 

typical value in practically all system, and a Maximum Discharges means an increase of at least 

60% of Typical Discharges residual circulation in most system. 
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Figure 15 indicates that in Barra salt marsh the flow direction is similar in the four 

scenarios. In the salt marsh area, the average value of the residual circulation is close to 3.9 cm/s, 

2.9 cm/s, 2.7 cm/s and 2.3 cm/s in Maximum, Typical, Minimum and No Discharges scenarios, 

respectively, which demonstrate the effects of the Ribeira dos Moinhos discharges (Fig.1). These 

results indicate that residence time increase from Maximum to No Discharges situations. This 

situation suggests that in Minimum Discharges the renewal of water properties could be lower 

and salt marsh plants could experience a stress situation. Figure 15 also shows that transport is 

outward of the salt marsh area. This pattern was also found in Rosário salt marsh.  

According to Figure 16, the results suggest that at Maximum Discharges scenario the 

residual circulation is about 35% higher, which means 1 cm/s higher than for Typical Discharges. 

For Minimum Discharges, residual circulation is approximately 8% lower, decreasing 0.1 cm/s 

comparing to the Typical flow. Once again, the comparison between Typical and No Discharges 

show the importance of the freshwater in the lagoon: residual circulation decrease almost 20% in 

the salt marsh in No Discharges situation. Comparing to the results found for Rosário salt marsh, 

Barra salt marsh is visibly more affected by the freshwater inflow. 
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Figure 13: Residual circulation (cm/s) in Ria de Aveiro for the different study cases: typical discharges 
(upper, left), maximum discharges (upper, right), minimum discharges (base, left) and no discharges 
(base, right). The amplified figures allow a better observation of the current direction. 

. 
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 Figure 14: Absolute (upper) and percentage (base) difference of residual circulation intensity between 
typical discharges and the different studied scenarios for Ria de Aveiro lagoon discharges; from left to 
the right are represented the comparison between typical and no, minimum and maximum discharge 
scenarios, respectively.  
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Figure 15: Residual circulation (cm/s) in the especific Ria de Aveiro lagoon salt marsh study area (Barra). 
From letf to rigth are represented typical and maximum discharges (upper) and  minimum and no 
discharges scenarios (base). 

5 

 
5 

Figure 16: Absolute (left) and percentage (right) difference of residual circulation intensity between 
typical discharges and the different studied scenarios for Barra salt marsh (Ria de Aveiro); from upper to 
the base are represented the comparison between typical and maximum, minimum and no discharge 
scenarios, respectively.  
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3.1.2.2. Sea level rise effects in residual circulation 

The interpretation of Figures 17, 18 and 19 indicates that, in sea level rise scenario, the 

patterns are similar with that found for the actual scenarios but residual circulation decrease for 

the entire lagoon. This situation could be explained by the lower bottom friction effect due to the 

higher water column in SLR scenario. 

Generally, with sea level rise, residual circulation decrease approximately 20 %, 15% and 

10% in Typical, Maximum and No Discharges, as observed in the yellow areas. The places where 

residual circulation will increase are the narrow and shallow channels in the complex areas of the 

lagoon (blue colours) (Fig.16). 

More precisely, results indicate that, for example, in S.Jacinto channel, considering the 

average values, residual circulation will decrease 16 %, 7 % and 5%, that is, decrease 0.9 cm/s, 0.8 

cm/s and 0.2 cm/s in Typical, Maximum and No Discharges scenarios, respectively. In Espinheiro 

channel, residual circulation will decrease 11%, 17% and 1.3%, i.e., decrease about 0.10 cm/s, 2.5 

cm/s and 0.03 cm/s in Typical, Maximum and No Discharges scenarios, respectively. Therefore, 

the less significant differences were found in No Discharges scenario proving, once again, the 

importance of the rivers in determining the residual circulation of the lagoon. 

In Barra salt marsh, results indicate that residual circulation will decrease about 11%, 15 % 

and 2.5%, which corresponds to a decrease of 0.60 cm/s, 0.85 cm/s and 0.07 cm/s in Typical, 

Maximum and No Discharges scenarios, showing both the importance of the SLR and rivers inflow 

in this area. 
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Figure 17: Residual circulation results (cm/s) for sea level rise scenario in Ria de Aveiro lagoon (upper) 
and Barra salt marsh (base). From left to right are represented typical, maximum and no discharges 
situations, respectively.  
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Figure 18: Absolute (upper) and percentage (base) difference of residual circulation values between 
actual and sea level rise scenarios for the different discharges conditions in Ria de Aveiro lagoon; from 
left to the right are represented typical, maximum and no discharge scenarios, respectively. 
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3.2. Tidal asymmetry 

According to Dias and Sousa (2009), the flood or ebb dominance situations induced by the 

tidal asymmetry creates net sediment transport over a tidal cycle. Flood-dominated currents 

results in net sediment transport into the estuary and, in the other side, under ebb dominant 

conditions, the opposite happens and net seaward transport will take place causing sediment 

export from the estuary. In fact, tidal asymmetry is frequently the dominant factor determining 

net sediment transport and deposition, which results in sediment trapping in coastal areas and 

estuaries (Castaing and Allen, 1981), which is an important factor for salt marsh plants.  

3.2.1. Tidal asymmetry in Tagus estuary 

Figures 20 and 21 show the amplitude ratio (Ar) and relative phase (φ) for actual and SLR 

scenarios. The absolute and percentage differences between the two scenarios are also presented 

in Figure 22.  

Figure 19: Absolute (left) and percentage (right) difference of residual circulation intensity between actual 
and sea level rise scenarios for the different discharges situations in Barra salt marsh (Ria de Aveiro 
lagoon); from upper to the base right are represented typical, maximum and no discharge scenarios, 
respectively. 
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As referred by Fortunato et al. (1997), the amplitude ratio increases within the system and, 

in this case, this pattern is found for both scenarios. In actual scenario (Fig.20), the amplitude 

ratio ranges between 0.02 and 0.08, increasing progressively within the estuary, except in the 

upper bay. With sea level rise (Fig.20), Ar decreases, varying now between 0.02 and 0.06, which 

demonstrate that shallow water effects become less important possible, to the increase of the 

water column height induced by the sea level rise. Thus, M4 amplitude decrease and 

consequently, amplitude ratio also decreases. Globally, in SLR scenarios the values decrease 12% 

in main channel and 30% in the bay (Fig.22). In Rosário salt marsh, generally, in SLR scenarios the 

values decrease almost 20% (Figure 23), being 0.70 in actual scenario and approximately 0.58 

(Fig.20) in SLR. 

Regarding to relative phase, as expected, Figure 21 indicates that Tagus estuary is ebb 

dominated once values are higher than 180ᵒ in almost system. Once again, this trend is observed 

in both scenarios. Figure 22 shows that the differences between the two scenarios are not enough 

to change the ebb dominance. In general, differences are lower than 10ᵒ. In Rosário salt marsh, 

with SLR, the relative phase decreases, possible due to the higher water column that reduces the 

shallow water effects and, consequently the ebb dominance. These results could indicate that 

flood durations might increase in salt marsh with SLR, which is a recognizable stress factor to salt 

marsh plants.  
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Figure 20: Tidal asymmetry results of amplitude ratio Ar for actual (left) and sea level rise scenarios 
(right) in Tagus Estuary and in Rosário salt marsh, in detail (base). 

Figure 21: Tidal asymmetry results of relative phase φ (in degrees (ᵒ)) in Tagus estuary and in Rosário salt 
marsh, in detail (base). 
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Figure 22: Difference in the tidal asymmetry results (amplitude ratio Ar, on the left; relative phase φ, in 
degrees (ᵒ), on the right) between actual and sea level rise scenarios in Tagus estuary. Difference results 
are presented in absolute value (upper) and in percentage (base). 

 

Figure 23: Difference in the tidal asymmetry values (amplitude ratio Ar, on the left; relative phase φ, in 
degrees (ᵒ), on the right) between actual and sea level rise scenarios in Rosário salt marsh (Tagus 
estuary). Difference results are presented in absolute value (upper) and in percentage (base). 
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3.2.2. Tidal asymmetry in Ria de Aveiro lagoon 

Analysing the tidal asymmetry results for actual and SLR scenarios, the results presented in 

Figure 24 reveals that in actual scenario, except for the main channels head, the amplitude ratio 

ranges between 0.03 and 0.06. Espinheiro channel presents the higher values, higher than 0.06. In 

S.Jacinto channel, Ar decreases within the channel and it is lower than 0.05, excluding the final 

areas of the channel. With sea level rise, the amplitude ratio decreases, varying now between 

0.02 and 0.05, demonstrating that shallow water effects become less important, possible due to 

the increase of the water column height. The differences between the two scenarios are more 

evident in the channels in the middle of the lagoon, where for the sea level rise scenario the 

values are at least 25% lower than for the actual scenario (Fig.26). In the largest area of S.Jacinto 

channel for example, are found values 80% higher in actual scenario (red colours). Differences are 

minimal essentially close to the system mouth, once the distortion of the tidal wave increases 

with the propagation within the system. 

Globally, in SLR scenario values decrease about 20% in channels closest to system mouth 

and 60% in the distant areas (Fig.26).  

In Barra salt marsh, in SLR scenarios the Ar values decrease almost 30% (Fig. 27), being 0.04 

in actual scenario and approximately 0.03 in SLR (Fig.24). Such as in Rosário, in Barra salt marsh 

amplitude ratio decrease may be related with the higher water column, that reduce the shallow 

water effects, and consequently, the ebb dominance. Hence, these results might indicate that 

flood durations might increase with SLR, which is an important factor for the salt marsh plants. 

Regarding the relative phase, according to the model results (Fig.25) there are both ebb 

(relative phase between 180 and 360ᵒ) and flood dominated (relative phase less than 180ᵒ) areas 

in Ria de Aveiro, in accordance with the results presented by Dias (2001) and Picado (2008). This 

trend is observed in both scenarios, being the central part of the lagoon ebb dominated and the 

remote zones flood dominated. Figure 26 shows that the differences between the two scenarios 

are minimal in the areas close to the system mouth, becoming in the largest area of S. Jacinto 

channels more significant: in SLR, relative phase could decrease 50% in this area. Still, the ebb and 

flood dominance is not modified with SLR scenarios. 

Barra salt marsh is located in an ebb dominated area (Fig.25). In Barra salt marsh, for SLR 

scenario the values are 3% lower than for actual sea level rise (Fig.27) maintaining the ebb 

dominance pattern. 
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Figure 24: Tidal asymmetry results of amplitude ratio Ar for actual (on the left) and sea level rise 
scenarios of Ria de Aveiro lagoon and in Barra salt marsh, in detail (base). 
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Figure 25: Tidal asymmetry results of relative phase φ, in degrees (ᵒ) in Ria de Aveiro lagoon and in Barra 
salt marsh, in detail (base). 

.  
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Figure 26: Difference in the tidal asymmetry results (amplitude ratio Ar, on the left; relative phase φ, in 
degrees (ᵒ), on the right) between actual and sea level rise scenarios in Ria de Aveiro. Difference results 
are presented in absolute value (upper) and in percentage (base). 
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3.3. Tidal dissipation 

3.3.1. Tidal dissipation in Tagus estuary 

Figures 28 and 29 show the spatial-logarithmic distribution of the average energy 

dissipation in neap and spring tides in the Tagus estuary. Energy dissipation values were analysed 

calculating the logarithm of ε for a better interpretation of results. 

Figure 28 indicates that in actual and SLR scenarios, in general, tidal dissipation is higher in 

spring tides, as expected, once in neap tides tidal currents are weaker. Tidal dissipation is larger in 

the deepest zones of the estuary, that is, in the main channel (lower estuary) and in the deepest 

channels of the bay (upper estuary), where the current velocities are higher. In the upper bay, 

near to the Tagus river mouth, tidal dissipation is higher, possible due to the higher ebbing 

current that exists in this area due to the freshwater incoming. With the divergence of the bay, 

the current velocity decrease and therefore, also decrease the tidal dissipation. 

According to Figure 28, in actual scenario, energy dissipation is about 0.0120 W/m2 in 

spring tides, in the main channel, and 0.004 W/m2 in neap tides. In the lower bay, these values 

Figure 27: Difference in the tidal asymmetry values (amplitude ratio Ar, on the left; relative phase φ, in 
degrees (ᵒ), on the right) between actual and sea level rise scenarios in Barra salt marsh (Ria de Aveiro). 
Difference results are presented in absolute value (upper) and in percentage (base). 
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decrease to 0.0070 W/m2 in spring tides and 0.0023 W/m2 in neap tides. These results reveal that 

tidal dissipation in neap tides is about 30% of the dissipation in spring tides, as observed in Figure 

29. Maximum values of 0.0200 W/m2 are found in the main channel and about 0.0170 W/m2 are 

reached in the bay in spring tides. In neap tides, maximum values decreases to 0.0060 W/m2 (in 

the main channel) and 0.0040 W/m2 (in the deepest bay channels) (Fig.28). Without considering 

the wetting/drying areas, the remaining places in the estuary present green areas that gradually 

turn to blue tones, close to minimal dissipation, suggesting that dissipation decreases 

progressively with depth decreasing. 

Generally, in sea level rise scenario (Fig.28), energy dissipation is about 0.0140 W/m2 in 

spring tides and 0.0048 W/m2 in neap tides in the main channel. In the lower bay, these values 

decrease to 0.0078 W/m2 in spring tides, and to 0.0027W/m2 in neap tides. These results reveal 

that for SLR scenarios the tidal dissipation in spring tide is about 14% higher relatively to the 

actual scenario, while for neap tide it is around 20% higher (Fig.29). The higher water column due 

to the SLR scenario will induce higher current velocities, as such, tidal dissipation increase. 

However, in the upper bay, near to freshwater sources, tidal dissipation decreases almost 20% in 

SLR scenario (Fig.29). This pattern may be explained by the higher tidal flooding due to the 

increase in water column height that balances the rivers inflow, promoting a weaker ebbing 

current in those areas comparatively to the actual scenario.  

Regarding to Rosário salt marsh results, from Figures 30 and 31, it is observed that in neap 

tide there are differences around 10% between the two scenarios (with tidal dissipation values 

being 10% lower in sea level rise scenario (close to 7.4 x 10-5 W/m2) relatively to actual scenario 

(about 8.4 x 10-5 W/m2)). In spring tide, differences for this salt marsh are 8% (with tidal 

dissipation values being 8% lower in sea level rise scenario (around 2.3 x 10-4 W/m2) than in actual 

scenario (approximately 2.5 x 10-4 W/m2)). In this case, tidal dissipation will decrease with SLR 

once the water column height increase and, therefore, bottom friction effect is minor and, 

consequently, tidal dissipation decrease. 

Summarizing, in SLR scenario, the patterns remain unchanged but, globally, tidal dissipation 

values increase (i.e., higher in SLR in both neap and spring tide situations). Figure 29 suggests that 

shallowest areas are the more affected, with differences that can be higher than 40 %. In the main 

channel and lower bay, tidal dissipation could be around 15% higher in SLR scenario. However, in 

the upper bay, near to freshwater sources, values decrease almost 30% in SLR scenario, which 

could be explained by the rivers effects. 
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Figure 28: Tidal dissipation results (W/m
2
) for actual (upper) and sea level rise scenarios (base) in Tagus 

estuary. On the left are presented the Spring Tide values and on the rigth are displayed Neap Tide. For a 
better interpretation, the results are presented in log10 ԑ. 
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Figure 29: Differences of tidal dissipation results between actual and sea level rise scenarios in Tagus 
estuary. On the left are presented the Spring Tide values and on the rigth are displayed Neap Tide values.  

 

Figure 30: Tidal dissipation results (W/m
2
) for actual (upper) and sea level rise scenarios (lower) in 

Rosário salt marsh (Tagus estuary). On the left are presented the Spring Tide values and on the rigth are 
displayed Neap Tide. Results are presented in log10 ԑ. 
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Figure 31: Differences in absolute value (upper) and in percentage (base) of tidal dissipation values 
between actual and sea level rise scenarios in Rosário salt marsh (Tagus estuary). On the left are 
presented the Spring Tide values and on the rigth are displayed Neap Tide values.  

 

 

 

 

 

 

 

 

 

 

3.3.2. Tidal dissipation in Ria de Aveiro lagoon 

Figures 32 and 34 show the spatial-logarithmic distribution of the average energy 

dissipation in neap and spring tides in the Ria de Aveiro lagoon, both for the entire system as for 

the Barra salt marsh area, respectively. Once again, energy dissipation values were analysed 

calculating the logarithm of ε for a better interpretation of results. 

In general, in both scenarios, results indicate that tidal dissipation is higher in spring tides, 

as expected, due to the weaker tidal currents found on neap tides which lead to a smaller energy 

dissipation (Fig.32).  

Maximum values of tidal dissipation are founded in the lagoon mouth, Espinheiro and 

S.Jacinto channels: 0.592 in neap tides and 1.692 W/m2 in spring tides, in actual scenario; 0.864 in 

neap tides and 2.296 W/m2 spring tides, in SLR scenario (Fig.32). Moreover, taking to account 

Figure 33, these results suggest that, in those places, tidal dissipation in SLR scenarios present 

values about 35% (spring tides) and 45% (neap tides) higher relatively to actual scenario. The 

remaining areas of the lagoon (green to yellow colours) present tidal dissipation values between 

and 0.010 and 0.100W/m2 (except the narrow shallowest channels where tidal dissipation is 

minimum, as represented by the dark blue colours – tidal dissipation values lower than 0.003 

W/m2). 
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In the complex central areas of the lagoon, including the net of narrow and shallow water 

channels near Vouga and Antuã rivers, tidal dissipation decrease in SLR scenario (Fig.33). The 

current velocity in those areas induced by the rivers inputs found in actual scenario could be 

balanced by the elevation of the water column height due to the SLR, which could reduce the 

current velocity in those places. Therefore, tidal dissipation decreases.  

Regarding to the Barra salt marsh area (Figs. 34 and 35), it was observed that in neap tide 

differences of 11% between the two scenarios were founded (with tidal dissipation values being 

11% lower in sea level rise scenario (close to 0.034 W/m2) relatively to actual scenario (about 

0.038 W/m2)). In spring tide, Barra salt marsh presents differences of 18% (with tidal dissipation 

values being 18% lower in sea level rise scenario (approximately 0.032 W/m2) than in actual 

scenario (around 0.039W/m2). 
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Figure 32: Tidal dissipation results (W/m
2
) for actual (upper) and sea level rise scenarios (base) in Ria de 

Aveiro lagoon. On the left are presented the Spring Tide values and on the rigth are displayed Neap Tide 
values. For a better interpretation, the results are presented in log10 ԑ. 
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Figure 33: Differences in absolute value (upper) and in percentage (base) of tidal dissipation values 
between actual and sea level rise scenarios in Ria de Aveiro lagoon. On the left are presented the Spring 
Tide values and on the rigth are displayed Neap Tide values.  
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Figure 35: Differences in absolute value (upper) and in percentage (base) between actual and sea level 
rise scenarios in Barra salt marsh (Ria de Aveiro lagoon). On the left are presented the Spring Tide values 
and on the rigth are displayed Neap Tide tidal values.  
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Figure 34: Tidal dissipation results (W/m
2
) for actual (upper) and sea level rise scenarios (base) in Barra 

salt marsh (Ria de Aveiro lagoon). On the left are presented the Spring Tide values and on the rigth are 
displayed Neap Tide tidal dissipation results. For a better interpretation, the results are presented in log10 

ԑ. 
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3.4. Spartina maritima 

Many authors have referred the important role of vegetation in the consolidation of salt 

marsh sediments, but the particular and unique conditions of each salt marsh must be considered 

in the study of the role of vegetation in the stabilization and survival of these areas (Silva et al., 

2009). 

Saltmarsh processes are very dependent on abiotic factors, such as salinity, which in turn 

depend on a great variety of conditions, like the extent and frequency of tidal flooding, 

evapotranspiration and vegetation. The tidal regime contributes very strongly to the 

heterogeneity of salt marshes, once it affects chemical and physical factors, such as salinity and 

nutrient concentration. Environmental stress, i.e. salinity and flooding, may induce species to 

develop resistance mechanisms, thus adapting to the environment during their evolution 

(Vernberg 1993). 

Some works show that S. maritima above and belowground production is influenced and 

determined by physicochemical characteristics, such as soil salinity, tidal inundation, nutrient 

availability, oxygen levels, drainage, sediment type, maturity of the salt marsh, among others. 

Thus, S. maritima productivity depends on the complex interaction of all these factors, which 

inherently varies according to the particular characteristics of each salt marsh (Ibañez et al., 2000; 

Sousa et al., 2009a, 2010). 

The following table indicates the results for the parameters analysed in both salt marshes 

relatively to S.maritima. 

 
Barra salt marsh Rosário salt marsh 

 Spring Summer Autumn Winter Spring Summer Autumn Winter 

Organic matter (%) 10.5 16.5 11.1 12.2 23.0 19.6 23.4 18.1 

Sediments  
moisture (%) 47.9 39.4 50.4 51.2 8.1 21.5 35.1 33.3 

Ratio  
below/abovegroun
d biomass (kg/m

2
) 

14.2 14.7 10.1 13.9 8.1 13.7 5.9 7.4 

Vegetation 
 coverage (%) 19 19 19 19 12 12 12 12 

Table 1: S.maritima results (mean values; n=3) for Barra (Ria de Aveiro) and Rosário (Tagus estuary) salt 

marshes for the different parameters studied. 
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For a better interpretation of Table 3, the hydrodynamic results for each of salt marshes 

should be considered. Summarizing, residual circulation is higher in Barra salt marsh than in 

Rosário. With SLR scenarios, model results suggest that residual circulation will increase in 

Rosário, but will decrease in Barra salt marsh. Concerning tidal asymmetry, the amplitude ratio is 

higher in Rosário. In SLR scenarios, Ar values decrease in both salt marshes. Also, both salt 

marshes are located in an ebb dominance area. The amplitude ratio decreasing could indicate a 

lower tendency for ebb dominance, therefore flood durations might increase. Consequently, the 

inundation period in these salt marshes may increase. Finally, tidal dissipation is considerably 

higher in Barra salt marsh than in Rosário. In SLR scenarios, tidal dissipation will decrease in both 

salt marshes.  

In salt marshes, the nature of any tidal asymmetry is significant in determining the delivery 

of sediments (Townend et al., 2012). Rosário and Barra salt marshes are ebb dominant, which 

encourage the export of sediments, but lower values of amplitude ratio were found in Barra salt 

marsh. This situation could indicate a lower tendency for ebb dominance in Barra than in Rosário 

salt marsh and, therefore, higher flood duration can occur. This scenario might justify the elevate 

sediment moisture in Barra salt marsh (Table 3).  

The higher values of sediment moisture at Barra may be responsible for the increase of the 

physiological stress of S.maritima. This situation could leads to S. maritima attempt adaptation by 

investing in the belowground biomass as referred by Sousa et al. (2009a; 2010), once the 

development of belowground biomass is enhanced by halophytes under environmental stress like 

tidal inundation. Therefore, the ratio below/aboveground biomass could function as an indicator 

revealing which salt marsh is under more stress conditions, where the plant belowground biomass 

investment is higher. In fact, the apparent higher stress conditions of Barra salt marsh, indicated 

by the higher values of sediment moisture, could explain the higher ratio of below/aboveground 

biomass found in this salt marsh (Table 3).  

Moreover, the higher values of residual circulation and lower tidal dissipation found in 

Barra salt marsh relatively to Rosário suggest a trend to erosion and resuspension at Barra. This 

situation may be responsible for the exportation of sediment which could explain the lower values 

of organic matter found in this salt marsh (Table 3).  

The higher organic matter at Rosário may be responsible for the upstream establishment 

of other dominant species, such as H. portulacoides and S. perennis, therefore reducing the 

coverage percentage of S.maritima at this salt marsh, as shown by the results on Table 3. These 

results are in accordance with the “competition-to-stress hypothesis”, referring that the upstream 

limits of plant distributions are determined by competition, and the downstream limits by abiotic 

stress, namely flooding. According to Bertness et al. (1992) and Pennings and Bertness (2001) 

competitive dominants (e.g. H. portulacoides) are typically unable to survive in physically harsh 

conditions (e.g. frequent flooding), while stress-tolerant, but competitively subordinate plants 

(e.g. S.maritima) grow in more stressful habitats because they are displaced from less stressful 

habitats by dominant competitors. However, studied species may have a physiological 
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requirement for some nutrients for optimal growth, which may be scarce in upstream conditions 

(Guo and Pennings, 2012). 

Analysing the hydrodynamic values in SLR scenario, according to the model results, residual 

circulation will decrease in Barra and increase in Rosário salt marsh. This increase in Rosário 

indicates a decrease in the residence time and consequently could increase the water properties 

renovation. This situation may induce changes in the nutrients and sediments patterns and, thus, 

the percentage of vegetation coverage will be probably affected once production and salt marsh 

zonation are affected by nutrients and sediments availability, which is associated, among other 

factors, with sea level rise (Valiela and Teal, 1974; Townend et al., 2011). In fact, nutrients and 

environmental characteristics, such as sediments inputs and seawater inundation, are major 

contributors to production and zonation of salt marsh vegetation (Fox et al., 2012). 

According to Reed et al. (1999), halophyte vegetation is very sensitive to the inundation 

frequency and the persistence of these coastal wetlands depends upon sediment deposition that 

controls the vertical position of the marsh surface. Also, tidal inundation affects the salt marsh 

plants distribution. Moreover, the proportion of sand and mud deposited, which can change the 

nature of salt marsh plant community by altering the drainage conditions, is related with 

sediment supply and also with tidal inundation (Townend et al, 2011). In this study, SLR model 

results also show a decrease in tidal asymmetry amplitude in both salt marshes, probably due to 

the increase in the water column height associated to the SLR scenario, reducing the shallow 

water effects and consequently the wave distortion. This situation will decrease the ebb 

dominance tendency and, as such, will increase the flood duration. Therefore, sediment moisture 

might increase causing a stress condition to the plants and, in turn, the ratio below/aboveground 

biomass could increase and this rate is critical to their survival under conditions of accelerated sea 

level rise (Cahoon et al., 2004; Townend et al., 2011) 

Finally, model results indicate that tidal dissipation will decrease in both salt marshes, due 

to the reduction of the bottom friction effects induced by the higher water column height. This 

situation may reduce the dynamics of these areas and, consequently, decrease sediment 

resuspension which, in terms of abiotic conditions, may cause an increase in organic matter 

contents and deposition.  

In general, processes that tend to increase the local concentration of suspended sediments 

will increase the minerogenic contribution to accretion. Therefore, tidal velocity, increased coastal 

erosion and changes in tidal asymmetry may all alter the availability of sediment (Friendrichs and 

Perry, 2001; Townend et al., 2011). 

According to Townend et al. (2011), there is considerable evidence that marsh morphology 

is close to equilibrium over time scales of decades to a few centuries which indicates their ability 

to rapidly respond to changes in the forcing conditions. However, it is expected a sea level rise at 

a higher rate during the 21th
 century, which represents an uncertain in the salt marsh response to 

this threat.  
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The alterations in the SLR scenarios demonstrated by the model results indicate that some 

abiotic features could be modified and, once salt marsh plants depend on these parameters, their 

present status could be affected. However, this approach only presents the possible changes 

based on some of the large number of factors that influence salt marsh plants. In fact, it is 

necessary to remember that salt marshes processes are governed by physical, geological, and 

chemical factors, biotic factors (including productivity of vascular plants, phytoplankton, 

epibenthic algae; secondary production of primary and secondary consumers; and 

decomposition), biogeo-chemical cycling and the interaction with adjacent ecosystems (Vernberg, 

1993). Therefore, the model results presented in this study give only some indications about what 

could happen in a climate change scenario. 
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All the proposed objectives for this work were achieved. The model results allowed to 

understand the general patterns of the residual circulation, tidal asymmetry and tidal dissipation 

in Tagus estuary and in Ria de Aveiro lagoon, both in actual mean sea level and sea level rise 

scenarios. The exploration of the SLR results indicates how the systems will evolve in this scenario, 

showing that the hydrodynamic parameters in study will suffer important changes under climate 

change context. Moreover, the S.maritima results suggest that the hydrodynamic parameters 

might explain the different plant characteristics found in each salt marsh, as a response to the 

different conditions. 

For Tagus estuary, results showed that rivers discharges effect cannot be unconsidered in 

the long term system’s hydrodynamic analysis, once residual currents intensity could be 40% 

higher in Typical inflow than in No Discharges scenario and can even be 100% higher in Maximum 

inflow scenario. The SLR scenario induces a significant decrease in residual circulation in this 

estuary. Although residual circulation slightly increases in some areas of the estuary mouth, it 

decreases almost 30% in Typical Discharges and 10% in Maximum Discharges in the bay.  

Also, in Ria de Aveiro lagoon, the rivers inputs represent an important forcing for the long 

term processes. Face to No Discharge scenario, residual circulation is about 20% higher in Typical 

Discharges. Maximum Discharge means an increase of at least 60% in the residual circulation in 

most system comparing to Typical Discharges, which confirms the significant influence of rivers 

discharge in the general circulation of the lagoon. In Tagus estuary the river inflow has a higher 

effect, mostly in the upper bay, near to the river mouth. However, in Ria de Aveiro lagoon, 

probably due to its complex morphology and to the large number of inflowing rivers, their impact 

seems to have a more global effect, once it influences extends far from the rivers’ mouth reaching 

the areas close to the lagoon’s mouth. In SLR scenario, results indicate a decrease of residual 

circulation in the entire lagoon, approximately 20% and 15% in Typical and Maximum, 

respectively. 

In both systems, residual circulation’s direction is outward, revealing the trend of these 

estuaries to export sediments, nutrients and organic matter. Considering the predicted changes in 

this hydrodynamic parameter, long-term transport in the estuaries could be altered and therefore 

the surrounding ecosystems might be affected, once residual circulation is a key parameter in the 

dynamical behavior of coastal systems.  

The tidal asymmetry results show that the amplitude ratio increases progressively within 

Tagus estuary, except in the upper bay, for both actual and SLR scenarios. Regarding the relative 

phase, as expected, Tagus estuary is ebb dominant, which is observed in both scenarios. In Ria de 

Aveiro lagoon, Espinheiro channel presents the highest values for the amplitude ratio. With sea 

level rise, globally, values decrease about 20% in the channels closest to system’s mouth and 60% 

in the distant areas. According to the model results, there are both ebb and flood dominated 

areas in the lagoon. In fact, the central area of the lagoon in ebb dominated, while the channels 

heads are flood dominated, which is in accordance with results presented previously by other 

authors. This trend is observed in both scenarios. 
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The amplitude ratio reduction in both systems in the SLR scenario may be explained by the 

decrease of the shallow water effects, due to the increase of the water column height. Therefore, 

the amplitude of M4 was found less important and consequently, the amplitude ratio decreases. 

Tidal asymmetry is frequently the dominant factor in causing net sediment transport and 

deposition, resulting in sediment trapping in coastal areas and estuaries, which is an important 

factor for salt marsh plants development. Once ebb dominant conditions lead to a seaward 

transport, Tagus estuary presents a net exportation behavior, while Ria the Aveiro lagoon 

presents both exportation and importation areas.  

Moreover, following the amplitude ratio decreases in SLR scenario, in Tagus estuary the 

ebb dominated tendency will decrease and consequently, the flood duration will increase. In the 

Ria the Aveiro lagoon, this will also occur in the ebb dominated areas, while the opposite will 

occur in the flood dominated areas. Changes in the tidal asymmetry are an important issue, once 

this parameter has essential implications also in the water contaminants dispersal, on geological 

time scales and estuarine stability, among others.  

Like residual circulation and tidal asymmetry, the tidal dissipation results demonstrate the 

rule of the systems morphology and topography, as well as the importance of the rivers inflow 

and tidal forcing balance in the estuaries hydrodynamics. Tidal dissipation is higher in spring tides, 

in the deepest zones of both systems, where the tidal current’s velocity is stronger. In Tagus 

estuary, tidal dissipation increases about 14% and 20% in spring and neap tides, respectively, in 

SLR scenarios, possible due to the higher water column that induces higher currents velocity. 

However, tidal dissipation decreases about 20% in the upper bay, probable due to the effects of 

Tagus river discharges. In Ria de Aveiro lagoon, tidal dissipation is much higher than in Tagus 

estuary, possible because of the lower depth of most of its channels that make the bottom 

friction more important, promoting a higher energy dissipation. In SLR scenario, tidal dissipation 

present values about 35% (spring tides) and 45% (neap tides) higher relatively to actual scenario.  

The hydrodynamic model results could be further explored in the frame of different 

research topics. Considering the main objectives of this work, the model results interpretation 

was conducted considering essentially the salt marshes dynamics. As future studies, these results 

may be additionally analysed in order to complete the information about the hydrodynamic 

patterns in the Tagus estuary and Ria de Aveiro lagoon, namely the possible effects of the SLR in 

this patterns. 

Regarding to the salt marshes analysis, results suggest that the studied hydrodynamic 

parameters might explain the different characteristics found for S.maritima, namely the 

belowground biomass, as a response to the different conditions.  

 The apparent higher stress conditions of Barra salt marsh, due to the higher values of 

sediment moisture found here, could explain the higher ratio of below/aboveground biomass 

reported in this salt marsh, once a stress situation could leads to S. maritima attempt adaptation 

by investing in the belowground biomass.  
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The lower values of organic matter found in Barra could be explained by the higher trend to 

erosion and resuspension in this salt marsh, due to the higher values of residual circulation and 

lower tidal dissipation. The higher organic matter at Rosário may be responsible for the upstream 

establishment of other dominant species, such as H. portulacoides and S. perennis, therefore 

reducing the coverage percentage of S.maritima at this salt marsh. This pattern is in concordance 

with the “competition-to-stress hypothesis”, referring that the upstream limits of plant 

distributions are determined by competition and the downstream limits by abiotic stress, namely 

flooding.  

In SLR scenario, residual circulation, tidal asymmetry and dissipation present differences 

that, interacting with other factors, might represent a stress factor to the biologic communities 

that exist in those systems and are adapted to the present hydrodynamic conditions. 

According to the model results, residual circulation will decrease in Barra and increase in 

Rosário salt marsh in sea level rise context. This increase in Rosário indicates a decrease in the 

residence time and consequently could increase the water properties renovation. This situation 

could lead to changes in the nutrients and sediments patterns and, thus, the percentage of 

vegetation coverage would be probably affected, once production and salt marsh zonation are 

affected by nutrients and sediments availability, which is associated, among other factors, with 

sea level rise.  

In this study is demonstrated that SLR also induces a decrease in amplitude ratio in both 

salt marshes. This situation might decrease the ebb dominance tendency and, as such, will 

increase the flood duration. The sediment moisture might increase causing a stress condition to 

the plants and, in turn, the ratio below/aboveground biomass could increase, and this rate is 

critical to their survival under conditions of accelerated sea level rise. 

Finally, results indicate that tidal dissipation will decrease in both salt marshes, which may 

reduce the dynamics of these areas and, consequently, decrease sediment resuspension which, in 

terms of abiotic conditions, may cause an increase in organic matter contents and deposition.  

The expected sea level rise in response to climate changes represents an uncertain in the 

salt marsh future development and stability. The alterations in the SLR scenario predicted in this 

study indicate that some abiotic features could be modified and, once salt marsh plants depend 

on these parameters, their present status could be affected. However, this approach only 

presents the possible variation of some of the many factors that influence salt marsh plants 

development and it is also necessary to considerer the interaction between those factors. The 

results give only some indications of what could happen in a climate change scenario. Therefore, 

as future work, a more complete approach should be performed in order to support and complete 

these results. The application of a biogeochemical model, with the possibility to include others 

parameters that could help to complete this analysis, will represent an important tool that 

certainly will help to improve the knowledge about the different processes occurring in these 

areas.
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