
Cyclic response of RC beam-column joints reinforced 

 

with plain bars: An experimental testing campaign 

 
 

 

J. Melo & H. Varum 
Dept. of Civil Engineering, University of Aveiro, Portugal 

 

T. Rossetto 
Dept. of Civil, Environmental & Geomatic Eng., University College of London, UK 

 

A. Costa 
Dept. of Civil Engineering, University of Aveiro, Portugal 

 

 

 
SUMMARY: 

Existing reinforced concrete (RC) buildings constructed until the mid-70’s, with plain reinforcing bars, are 

expected to behave poorly when subjected to earthquake actions. This paper describes an experimental program 

designed to investigate the influence of poor detailing on the cyclic behaviour of RC beam-column joint 

elements. 

Cyclic tests were performed on five interior and five exterior full-scale beam-column joints with different 

detailing characteristics and reinforced with plain bars. An additional joint of each type was built with deformed 

bars for an evaluation of the influence of bond properties on the cyclic response of the structural element. The 

force-displacement global response, energy dissipation, equivalent damping and damage behaviour of the joints 

was investigated and the main results are presented and discussed. The experimental results indicate that the 

bond-slip mechanism has significantly influenced the cyclic response of the beam-column joints. The specimens 

built with plain bars showed lower energy dissipation, stiffness and equivalent damping. 
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1. INTRODUCTION 

 

A significant number of existing reinforcing concrete (RC) structures in seismic Mediterranean 

regions were designed and built before the 1970s, using plain reinforcing bars, prior to the 

enforcement of the modern seismic-oriented design codes. As a consequence of absence of any 

capacity design principles in design and poor detailing, a significant lack of ductility, at both the local 

and global levels, is expected for these structures, resulting in inadequate structural performance even 

under moderate seismic excitations (Pampanin et al. 2002). The hysteretic behaviour of RC structures 

built with plain reinforcing bars is particularly sensitive to bond properties. Cyclic load reversals, like 

the ones induced by earthquakes, produce progressive concrete-steel bond degradation that leads to 

significant bar slippage. This process can lead to failure at a cyclic stress level lower than the ultimate 

stress under monotonic loading (CEB 1996). The poor bond capacity has a strong contribution on 

fixed-end rotations and normally increases its contribution to the element deformation. The bond-slip 

mechanism may represent up to 80%~90% of the element overall deformability on elements built with 

plain bars (Melo et al. 2011; Verderame et al. 2008a, 2008b, 2010). 

 

The number of experimental tests developed on RC elements built with plain bars is reduced when 

compared with the available data for elements with deformed bars (for example, Rodrigues et al. 

2012). More tests are needed to characterize with precision the cyclic behaviour of RC elements built 

with plain bars. Moreover, the existing literature on bond mechanisms of RC elements with plain 

reinforcing bars is much less rich and detailed than the one available for deformed bars, especially 

regarding the aspects of cyclic and post-elastic nature (Verderame et al. 2009). Recent reports on 

experimental tests conducted on beams and beam-column joints with plain reinforcing bars can be 

found in Fernandes et al. (2011a,b,c), Bedirhanoglu et al. (2010) and Pampanin et al. (2002). 



In this paper are presented the results of the cyclic tests carried out on twelve full-scale beam-column 

joints, representative of typical beam-column joints in existing RC building structures built with plain 

reinforcing bars and without adequate reinforcement detailing for seismic loading. Six specimens 

represent interior beam-column joints and the other corresponds to exterior beam-column joints. Two 

monotonic tests were performed on the exterior beam-column joints to establish the comparison 

between the cyclic and corresponding monotonic tests. One specimen of each beam-column type was 

built with deformed bars, to establish the performance comparison with the specimens built with plain 

bars. The influence of bond properties, lap-splice, beam anchorage reinforcing bars details, load type, 

slab participation, and bent-up bars in the beam, are investigated. 

 

 

2. SPECIMENS DETAILS, MATERIAL PROPERTIES AND TEST SETUP 

 

2.1. Details of Beam-Column Joints Specimens 

 

Interior and exterior beam-column joints were made to characterize the cyclic behaviour of old RC 

elements. The experimental campaign consisted in the unidirectional cyclic test of several full-scale 

specimens that represented interior and exterior beam-column joints with different reinforcing details 

and geometry. Monotonic tests were made on the exterior beam-column joints to compare the results 

with the results obtained in similar specimens under cyclic loading. The beam-column joints simulated 

the first floor connection between beams of 4m span and columns with 3m height, of a four storeys 

building structure. The specimen nomenclature adopted is: i) the first letter, I or T, refers to the interior 

or exterior beam-column joints, respectability; ii) the second letter (P or D) refers to the reinforcing 

steel type, plain (P) or deformed (D); iii) the third letter refers to the type of reinforcing details, and 

the cross-section type. 

 

The geometrical characteristics and reinforcing detailing of the specimens are presented in Figure 1. 

All the interior beam-column joints had the same column cross-section with dimensions 0.30x0.30m2 

and the same beam cross-section with dimensions 0.30x0.50m2. Specimen IPF had also a slab in one 

side with 0.15m thickness. All the exterior beam-column joints had the same column and beam cross-

sections with dimensions 0.25x0.25m2 and 0.25x0.40m2, respectively. The anchorage detailing of 

reinforcing plain bars were designed according to the first Portuguese codes RBA (1935) and REBA 

(1967) for reinforced concrete structures. The bar anchorage consist of end hooks. The lap-splice 

length adopted in specimens IPB, TPB-1 and TPB-2 were also defined according to the above 

mentioned Portuguese codes. 

 
Table 1. Mean values of the material mechanical properties 

Specimen Type of steel 

Concrete 
Steel 

Ø 8 mm Ø 12 mm 

(MPa) (MPa) (GPa) (MPa) (GPa) 

fcm ftcm fyk fuk Eym fyk fuk Eym 

IPA-1 

A235 - Plain 

21.5 2.4 

410 495 198 405 470 199 

IPB 24.5 3.5 

IPD 18.5 2.3 

IPE 21.2 2.4 

IPF 22.5 2.3 

TPA-1 24.2 2.3 

TPA-2 25.8 2.5 

TPB-1 15.8 2.0 

TPB-2 27.3 2.9 

TPC 23.8 2.6 

ID 
A400NRSD - Deformed 

20.8 2.4 
470 605 198 465 585 199 

TP 21.5 2.4 

 

Specimens IPA-1, TPA-1 and TPA-2 are the standard beam-columns joints with continuous 

longitudinal bars. Specimens IPB, TPB-1 and TPB-2 were similar to the standard specimens but 



included lap splicing in the upper column. Specimen IPD had lap-splice in the beams and columns. 

Specimen IPE had less longitudinal bars in the beam than the other specimens and it had bent-up bars 

in the beam. Specimen IPF had a 0.15m thick slab in one side (0.56m width). Specimens ID and TD 

had the same reinforcing details than the corresponding standard specimens but were built with 

deformed bars. In specimen TPC the anchorage of the beam longitudinal bars in the joint consists of 

end hooks instead 90º bents, as in specimens TPA and TPB. 
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Figure 1. Geometry, dimensions and reinforcement detailing of specimens 

 

Table 1 summarize the mean values of the material properties. Compressive tests of concrete cylinder 

samples (Ø150mmx300mm) and steel tensile strength tests were made for determining the materials 

properties used in each specimen. All concrete specimens were tested after 90 days of curing. 



 

2.2. Test Setup and Loading History 

 

The test setup adopted, the supports, the loading conditions idealized and the lateral displacements 

history imposed at the top of the upper column adopted for the interior beam-column tests are 

illustrated in Figure 2. The specimens were tested in the horizontal position and four high load 

carrying capacity and reduced friction devices were placed below the specimen to carry the elements’ 

self-weight. The tests were performed under displacement controlled conditions. The lateral 

displacements (dc) and the axial force (N) were imposed by two hydraulic actuators at the top of the 

upper column. The cyclic lateral displacement history adopted consisted in: three cycles applied for 

each of the following peak drift values (± %): 0.1, 0.2, 0.3 and than 0.5 to 4.0 with 0.5 increments 

(Figure 2-a). In specimens TPA-1 and TPB-1, an increasing displacement demand was applied 

monotonically in the negative direction up to 5% drift. The axial force was constant and equal to 

450kN and 200kN in the interior and exterior beam-column joints, respectively. The test setup and 

loading history used on the exterior beam-column joint tests were the same that were used on the 

interior beam-column joint tests. 

 

2.00m2.00m

1
.5

0
m

1
.5

0
m

N

F
C

d
C

-125

-100

-75

-50

-25

0

25

50

75

100

125

D
is

p
la

c
e
m

e
n

t,
 d

C
 (

m
m

)

Step
-4

-3

-2

-1

0

1

2

3

4

 D
ri

ft
 (

%
)

 

N

2.00m2.00m

1
.5

0
m

1
.5

0
m

 COLUMN

Fc

BEAM

HYDRAULIC
ACTUATORS

dc

+ Direction

-- Direction

 

a) 

 
b) c) 

 

Figure 2. Interior beam-column joint test setup: a) support and loading conditions idealized, and lateral 

displacement history imposed; b) general view; c) test setup schematics 

 

 

3. EXPERIMENTAL RESULTS 

 

In this section, the main results from the experimental campaign are presented. The envelopes of the 

force-displacement diagrams and the evolution of the hysteretic dissipated energy with the drift are 

presented. Moreover, the equivalent damping-displacement ductility relationships are provided. 

Several comparisons are established between the cyclic test results, in terms of force-displacement 

relationships to show the influence of the bond properties (plain or deformed bars), detailing of 

reinforcing steel (lap-splice, bent-up bars and anchorage details) and slab on the cyclic behaviour. 

Finally, the damage pattern is represented and discussed. The hysteretic dissipated energy was 

computed for all cyclic tests performed as the sum of the area under the force-displacement diagrams. 

In the hysteretic dissipated energy diagrams the large mark corresponds to the ultimate point. The 

equivalent damping (ξeq) was computed according to Varum (2003) and Priestley et al. (2007). The 



displacement ductility (µΔ) corresponds to the ratio between the imposed displacement (dc) and the 

yielding displacement (Δy). The yielding force and yield displacement were computed according to 

Annex B.3 of Eurocode 8 (considering an idealized elasto-perfectly plastic force-displacement 

relationship). The ultimate strength was determined for a point corresponding to a strength reduction 

of 20% relatively to the maximum strength, as adopted by Park and Ang (1987). 

 

3.1. Experimental Results from the Tests on Interior Beam-Column Joints 

 

3.1.1. Global results 

The force-displacement envelopes, evolutions of the dissipated energy and the equivalent damping-

displacement ductility diagrams obtained from the experimental results are shown in Figure 3. In 

Table 2 the values of maximum lateral force (Fc,max) and the corresponding drift (DriftFc,max), the 

ultimate force (Fc,ult) and corresponding drift (DriftFc,ult), and also the yielding force and yielding 

displacement, are presented. 

 

-125 -100 -75 -50 -25 0 25 50 75 100 125

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60  IPA-1

 IPB

 IPD

 IPE

 IPF

 ID

F
o

rc
e
, 

F
C
 (

k
N

)

Displacement, d
C
 (mm)

-4 -3 -2 -1 0 1 2 3 4

 Drift (%)

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

5

10

15

20

25

30

35

40

D
is

si
p

a
te

d
 E

n
e
rg

y
 (

k
N

.m
)

Drift (%)

 IPA-1

 IPB

 IPD

 IPE

 IPF

 ID

 
0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

10

11

12

13

 

 


eq,IPE

 = 2.76ln(


) + 5.56


eq,ID

 = 2.93ln(


) + 4.47
eq,IPD

 = 2.27ln(


) + 5.64


eq,IPB

 = 2.09ln(


) + 5.85


eq,IPA-1

 = 2.06ln(


) + 5.70

E
q

u
iv

a
le

n
t 
d

a
m

p
in

g
, 


eq
 (

%
)

Displacement ductility, 


 IPA-1

 IPB

 IPD

 IPE

 IPF

 ID


eq,IPF

 = 1.46ln(


) + 5.78

 

a) b) c) 

 

Figure 3. Global results of interior beam-column joints: a) force-displacement envelopes; b) hysteretic 

dissipated energy evolution; c) equivalent damping-displacement ductility diagram 

 
Table 2. Maximum and ultimate force, drift values and yielding displacement of interior beam-column joints 

Specimen 
Max. force, Fc,max 

(kN) 

DriftFc,max 

(%) 

Ult. force, Fc,ult 

(kN) 

DriftFc,ult 

(%) 

Yielding 

force (kN) 

Δy 

(mm) 

IPA-1 53.6 1.5 42.8 2.93 48.7 15.7 

IPB 54.2 2.0 43.4 3.19 49.5 15.1 

IPD 54.6 1.5 43.6 3.12 52.4 15.5 

IPE 51.4 2.0 41.1 3.09 44.8 15.2 

IPF 57.4 2.0 45.9 3.50 53.3 14.9 

ID 61.5 1.5 49.2 2.86 56.6 20.0 

 

The initial stiffness is similar in all specimens and the maximum force had a variation between 51.4kN 

and 61.5kN for all specimens, and it was achieved for a drift equals to 2.0%, except in specimens  

IPA-1, IPD and ID that was 1.5%. The ultimate force was achieved for a drift value between 2.86% 

and 3.5% in all specimens. The yielding displacement values for the specimens with plain bars were 

similar (between 14.9mm and 15.7mm). However, the yielding displacement in specimen ID was 

20.0mm. Specimen ID display a peak force 15% larger, a larger strength degradation, 4% larger 

dissipated energy, lower displacement ductility and larger increase in equivalent damping with 

displacement ductility than specimen IPA-1. Specimen IPB shows similar maximum strength, strength 

degradation and equivalent damping-displacement relationship, and 25% larger dissipated energy 

(until the ultimate point) than specimen IPA-1 (standard specimen). Specimen IPD showed a cyclic 

response similar to specimen IPA-1, but it dissipates until the ultimate point 30% more energy than 

specimen IPA-1. Specimen IPE shows lower peak force and lower stiffness after cracking than 

specimen IPA-1, because had less amount of steel in the beams. Finally, specimen IPF displays larger 

stiffness after cracking, greater peak force, 45% larger dissipated energy and lower equivalent 

damping than specimen IPA-1. 
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Figure 4. Force-displacement diagrams comparison of interior beam-column joints 

 

As far as the cyclic behaviour is concerned (see Figure 4), all specimens displayed similar response in 

terms of pinching and the unloading and reloading stiffness is also identical. The inferior column of 

specimen IPD failed at 3.5% of drift, and therefore the 4.0% of drift was not imposed as for the other 

specimens. 

 

3.1.1. Damage observed 

Figure 5 displays the damage state observed at the end of the tests in the interior beam-column joints. 

The core joint of all specimens failed at the end of the tests, except in specimen IPD. Due to the beam 

lap-splice in specimen IPD (larger amount of beam reinforcing steel in the core joint), it failed at the 

inferior column and not in the core joint. 
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IPE IPF ID 

   
 

Figure 5. Damage state at the end of the tests for the interior beam-column joints 



In specimen IPE the damage was more concentrated in the core joint than in specimen IPA-1. 

Specimen IPF displayed more cracks in the top face than in the inferior face of the beam due to the 

slab that increased the stiffness in that zone and the damages are more distributed. In specimen ID, the 

damage was more distributed along the elements’ spans than for the specimens with plain bars. 

 

3.2. Experimental Results from the Tests on the Exterior Beam-Column Joints 

 

3.2.1. Global results 

In Figure 6 is shown the force-displacement envelopes, hysteretic dissipated energy evolutions and 

equivalent damping-displacement ductility relationship. Table 3 shows the peak force and 

corresponding drift value, the ultimate force and corresponding drift value, and also the yielding force 

and yielding displacement. All specimens had similar stiffness until the peak force. However, after the 

peak force the strength degradation took different shapes. Specimen TPB-2 displayed lower strength 

degradation, 8% greater dissipated energy (until ultimate point), and lower equivalent damping than 

specimen TPA-2. Specimen TPC shown larger strength degradation, lower dissipated energy (64% 

until ultimate point), lower displacement ductility and larger damping than specimen TPA-2. 

Specimen TD presented a peak force 6% larger, a larger strength degradation, 16% larger dissipated 

energy and also greater increase in equivalent damping with displacement ductility than specimen 

TPA-2. Specimens TPA-1 and TPB-1, tested monotonically, had similar stiffness that specimens 

tested cyclically until the peak force. After peak force, Specimen TPA-1 had strength degradation and 

achieved the ultimate point for a drift value equals to 4.31%. Specimen TPB-1 didn’t have strength 

degradation until 5% of drift. The monotonic tests were made in the negative direction, because is the 

direction which develops compression stresses on the unconfined concrete in the core joint (weak 

direction). These compression stresses controlled the fail mechanism. Therefore, the specimens 

achieve firstly the ultimate point in negative direction. 
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Figure 6. Global results of exterior beam-column joints: a) force-displacement envelopes; b) hysteretic 

dissipated energy evolution; c) equivalent damping-displacement ductility diagram 

 
Table 3. Maximum and ultimate force, drift values and yielding displacement of exterior beam-column joints 

Specimen 
Max. force, Fc,max 

(kN) 

DriftFc,max 

(%) 

Ult. force, Fc,ult 

(kN) 

DriftFc,ult 

(%) 

Yielding 

force (kN) 

Δy 

(mm) 

TPA-1 18.8 1.3 15.0 4.31 17.7 17.3 

TPA-2 19.6 1.5 15.7 2.55 17.6 17.8 

TPB-1 18.5 1.7 - - 18.3 19.7 

TPB-2 19.7 1.5 15.7 2.90 17.4 17.9 

TPC 18.2 1.0 14.6 1.40 16.0 17.5 

TD 20.8 1.3 16.6 2.49 18.7 17.9 

 

Figure 7 shows the force-displacement diagrams comparison. The pinching effect is similar in 

specimens TPA-2, TPB-2 and TD. In specimen CPC the pinching effect is more marked than in 

specimen CPA-2. Specimen CPC achieved the ultimate point for a lower drift value comparing to the 

other tests, due to the poor confinement of the concrete in the core joint. The large strength 



degradation of specimen TPC is evident in Figure 7c comparing to specimen TPA-2. 
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Figure 7. Force-displacement diagrams comparison of exterior beam-column joints 

 

3.2.1. Damage observed 

Figure 8 shows the damage state at the end of the tests. Specimens with lap-splice didn’t display shear 

cracks in the core of the joint because the damage was more concentrate at the column-core joint 

interface. However specimens without lap-splice had large damage in the core of the joint and in 

specimen TPC the shear cracks in the core of the joint was evident. Specimens TPA and TPB showed 

concrete spalling on the exterior face of the joint but in specimen TPC was not limited to the cover but 

included part of the core of the joint due to the weak concrete confinement in the joint. In the 

specimens built with plain bars the damage in the beams was concentrated mainly in two cracks but 

specimen built with deformed bars (TD) showed large number of cracks along the beam. In all 

specimens the fail mode was the same, concrete spalling in the core of the joint followed by buckling 

of the longitudinal reinforcing bars of the column in joint region. 

 
TPA-1 TPA-2 TPB-1 

   

TPB-2 TPC TD 

   
 

Figure 8. Damage state at the end of the tests for the exterior beam-column joints 

 

 

4. FINAL COMMENTS 

 

Experimental tests were performed to assess the cyclic and monotonic behaviour of full-scale beam-

column joints with plain bars and poor reinforcement detailing. The influence of bond properties, lap-

splice, and reinforcement detailing on the cyclic behaviour of the elements was investigated. Tests 



results were analyzed in terms of initial stiffness, maximum strength, strength degradation, hysteretic 

dissipated energy, equivalent damping function of displacement ductility and damage state at the end 

of the tests. From the comparisons established between the tests results, the following main 

conclusions can be drawn: 

 

 Interior beam-column joints showed larger (approximately 50% more) displacement ductility 

than exterior beam-column joints. Exterior beam-column joints displayed larger equivalent 

damping than the interior beam-column joints; 

 In the exterior beam-column joints the differences on the cyclic behaviour due to the bond 

properties (plain or deformed bars) were more evident than in interior beam-column joints; 

 Specimens with lap-splice displayed larger dissipated energy than specimens with continuous 

longitudinal bars; 

 The force-drift relationship of the monotonic tests was similar to the envelopes of the cyclic 

tests until the maximum strength. 

 

The differences observed between the cyclic response of the specimens built with plain bars and with 

deformed bars, make clear the influence of the bond properties in the cyclic response of RC beam-

column joints. 

 

The experimental data obtained from the work performed will allow to upgrade and to calibrate 

numerical models for the adequate simulation of the cyclic behaviour of existing RC structures built 

with plain reinforcing bars. 
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