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SUMMARY: 

In the present paper a simplified model is proposed for the force-deformation behaviour of reinforced concrete 

members under biaxial loading combined with axial force. The starting point for the model development was an 

existing fixed-length plastic hinge element model that accounts for the non-linear hysteretic behaviour at the 

element end-sections, characterized by trilinear moment-curvature laws. To take into account the section biaxial 
behaviour, the existing model was adopted for both orthogonal lateral directions and an interaction function was 

introduced to couple the hysteretic response of both directions. 

To calibrate the interaction function it were used numerical results, obtained from fibre models, and 

experimental results. For the parameters identification, non-linear optimization approaches were adopted, 

namely: the gradient based methods followed by the genetic, evolutionary and nature-inspired algorithms. 

Finally, the simplified non-linear model proposed is validated through the analytical simulation of biaxial test 

results carried out in full-scale reinforced concrete columns. 
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1. INTRODUCTION 

 
The non-linear models should reproduce the influence of the structural system’s geometry and also of 

the distribution of mass and stiffness, in particular the effect of irregularities in terms of stiffness 

and/or mass, in plan and in elevation. A vast number of models have been developed to represent the 

material’s non-linear behaviour and are typically divided into different categories, namely global 
models, microscopic models and discrete finite element (member) models (H Rodrigues et al., 2010; 

Scott et al., 2008; Taucer et al., 1991). 

The importance of study of the tridimensional response of RC buildings is recognized, associated with 
tridimensional earthquake actions or to building irregularities, which induces a biaxial bending 

demand combined with axial load in the columns. Different modelling strategies have been proposed 

for the simulation of the biaxial cyclic behaviour of RC elements with axial force. However, it is 

recognized that the available biaxial models are not mature enough to be used in practice, nor to be 
incorporated into codes/standards as has occurred with uniaxial simplified models. Detailed reviews of 

the models available can be found in the CEB Report Nº220, “RC Frames under Earthquake Loading – 

State of the Art Report” (CEB, 1996), and in Fardis (Fardis, 1991). Besides the theory of fibre models 
(Petrangeli et al., 1999; Spacone et al., 1992; Taucer et al., 1991), existing analytical models follow 

the concepts of classical plasticity (Pecknold, 1974), Mroz’s theory of multi-surface plasticity 

(ElMandooh Galal & Ghobarah, 2003; Powell & Chen, 1986; Takizawa et al., 1976), Bouc-Wen 
(Wen, 1976), hysteresis modelling (Casciati, 1989; Kunnath & Reinhorn, 1990; Romão et al., 2004; C. 

H. Wang & Wen, 2000), bounding surface plasticity (Bousias et al., 2002; M.G. Sfakianakis & M.N.   

Fardis, 1991; M.G.  Sfakianakis & M.N. Fardis, 1991) or lumped damage models (M.E.  Marante & 
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Flórez-López, 2002; Maria Eugenia Marante & Flórez-López, 2003; Mazza & Mazza, 2008). 

The present paper proposes an upgraded simplified model for the representation of the biaxial bending 

response of columns with axial force, which is based in an existing uniaxial hysteretic Costa-Costa 

model (Costa & Costa, 1987). 
The general formulation of the proposed model is established in the analogy and comparison with the 

biaxial formulation of the Bouc-Wen smooth hysteretic model [9]. Although retaining most of the 

physical meaning embodied in the Bouc-Wen model, the structural modelling strategy adopted retains 
the simplicity and versatility of the original piecewise linear (PWL) numerical tool. 

 

 

2. COSTA AND COSTA UNIAXIAL HYSTERETIC MODEL 

 

For the development and validation of the simplified biaxial model, the Costa-Costa uniaxial 

hysteretic model (CEB, 1996; Costa & Costa, 1987) was adopted, which is briefly described in the 
next paragraph. 

This model represents a generalisation of the original Takeda model (CEB, 1996; Takeda et al., 1970) 

with a trilinear skeleton curve for monotonic loading, defined by the cracking point (dc;Fc) and the 
yield point (dy;Fy), and includes pinching, stiffness degradation and strength degradation effects. 

Unloading-reloading loops prior to yielding in either direction are bilinear, with slopes equal to those 

of the pre-cracking and post-cracking branches in the virgin loading branch. After yielding, pinching is 
modelled by a bilinear reloading curve. The first branch of the reloading stage has an inferior slope 

(see Figure 1 - branch 8), while the second branch heads to the most extreme point of any previous 

post-yield excursion in the direction of the reloading. For this the stiffness Ks is multiplied by the 

factor (dy/dm)

, where dy represents the yield displacement, dm the maximum response displacement 

and  is a positive constant. Thus: 

 
my
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where Fm is the force at the previous maximum response point and d0 is the deformation at the load 
reversal point. 

 

 
Figure 1. Pinching effect in the Costa-Costa (Costa & 

Costa, 1987) model 

 
Figure 2. Unloading stiffness in the Costa-Costa 

(Costa & Costa, 1987) model 

 
The unloading stiffness Kd, after yielding, is reduced relative to the elastic stiffness Ke by the factor 

(dy/dm)

, where  is a positive constant (see Figure 2). 

Post-yield strength and stiffness degradation with cycling loading is modelled by directing the 

reloading branch, after modification for pinching, towards a point at a displacement equal to dm and at 

a force F
’
m=(1-)·Fm, where  is the Wang and Shah damage index (M. L. Wang & Shah, 1987). After 

reaching this end point of the reloading branch, further loading takes place parallel to the post-yielding 

stiffness of the virgin loading curve. 
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3. THE BIAXIAL BOUC-WEN MODEL 

 

The original formulation of the Bouc-Wen model, cast within the endochronic theory framework was 

presented by Bouc (Bouc, 1971), for uniaxial behaviour representation (in terms of Force-
Displacement, F-u), and it was later generalized by Wen (Wen, 1976). The generalized model 

expresses the restoring force as a combination of an elastic force and a plastic force: 
Z

y
FuK  )1(F   (3.1) 

where K is the initial stiffness,  the post-yielding stiffness ratio, Fy the yielding force, and Z is a 
hysteretic parameter. 

 

Later, this uniaxial formulation was extended by Park, Wen and Ang (Park et al., 1986; Wen, 1976) to 
define a biaxial force-deformation model with coupled differential equations. This model was then 

used and modified by Kunnath and Reinhorn (Kunnath & Reinhorn, 1990) to model the behaviour of 

RC columns under biaxial loads. Later on, the model was generalised by Casciati (Casciati, 1989) and 
also by Wang and Wen (C. H. Wang & Wen, 2000), which resulted in two different formulations of 

the initial biaxial model. Since the Wang and Wen (C. H. Wang & Wen, 2000) formulation is simpler, 

it was selected for to implementing the biaxial model proposed in this work. Nevertheless, the same 
mathematical reasoning can be applied to the Casciati (Casciati, 1989) form. 

 

The biaxial construction of the Bouc-Wen model in the Wang and Wen (C. H. Wang & Wen, 2000) 

form follows the same general idea as for the uniaxial case. The restoring forces for both directions are 
defined by: 

 
(3.2) 

in which the involved parameters have the same meaning as for the uniaxial case, but are now referred 

to the two orthogonal directions X and Y, by the subscripts x and y respectively. The hysteretic 
parameters Zx and Zy are then defined by the following coupled differential equations, where all the 

parameters involved have also the same meaning as for the uniaxial case and sign() refers to the 

mathematical signum function. 

 

(3.3) 

 
As for the case of the uniaxial model, Equation 3.2 can also be reformulated into an incremental form: 

 
(3.4) 

considering that the global restoring forces 
ixF  and 

iyF  result from: 

 
(3.5) 

 

Considering now the definition of the incremental orthogonal forces 
ixF  and 

iyF  given by, the first 

part of this system can be written, by a simple mathematical transformation, as: 

 

(3.6) 
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which matches to the uniaxial incremental restoring forces calculated for each direction without 

biaxial interaction. In order to simplify the notation, these incremental forces will be denoted as 

ixuniF 
  and 

iyuniF 
 , respectively. The remaining part of the system corresponds to the correction 

factors 
ifxC  and 

ifyC  accounting for the interaction between the two loading directions: 

 
(3.7) 

Therefore, based on Equations 3.6 and 3.7, a condensed form of Equation 4 can be written as: 
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 (3.8) 

Considering that the incremental forces 
ixuniF 

  and 
iyuniF 

  can be obtained with any uniaxial hysteretic 

model (particularly with well-established PWL models), the presented framework introduces a simple 
and flexible form to represent biaxial bending in columns. This formulation requires the same 

information needed for the corresponding uniaxial PWL model, only introducing an additional 

correction term which couples the two loading directions. 

Since the uniaxial hysteretic model that may be considered to obtain the incremental forces 
ixuniF 

  and 

iyuniF 
  could be very different from the original uniaxial Bouc-Wen formulation, the type and level of 

biaxial interaction between the two orthogonal directions can be also different. Romão et al. (Romão 

et al., 2004) proposed an additional parameter , which was included in Equation 3.8 in order to scale 
the level of interaction between the two loading directions. The final formulation of the proposed 
method is then defined as written in Equation 3.9, which states that for each incremental 

displacements vector  
iyix uu  ; , the incremental forces 

ixuniF 
  and 

iyuniF 
  can be separately calculated, 

as: 

 
(3.9) 

The values of the scaling interaction factor  will be defined as for the best-fitting of the numerical 

results to the experimental results obtained with biaxial tests, additional information about the 
presented formulation can be found in the literature (Romão et al., 2004).  

 

 

4. PARAMETER IDENTIFICATION FOR THE SCALING INTERACTION FACTOR 

 

4.1 Optimization method 

 
Numerical non-linear simplified models may play an important role in the design of new structures 

and in the assessment of existing ones. More complex techniques and models have been developed to 

simulate, with increasing accuracy, the behaviour of different materials and structures. However, many 
of these simulation models require the determination and calibration of a large number of parameters 

adjusted to the specific material and structural problem. 

The identification of parameters for the mathematical models adopted to describe the behaviour of 
physical systems is a common problem in engineering. The complexity of the models, as well as the 

number of parameters associated, normally increases with the complexity of the physical system. The 

determination of these parameters should be based on the comparison of the mathematical model 

results and experimental results. However, when the required number of experimental tests and 
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parameters increases, it may become impractical to identify the accurate parameters (Andrade-Campos 

et al., 2007; Bruhns & Anding, 1999). In these cases, it may be used an inverse formulation for the 

identification of parameters. This approach often leads to the resolution of a non-linear optimization 

problem. 
In this work, aiming at calibrating the parameters for the hysteretic biaxial model based on uniaxial 

models with an interaction function, a gradient based-method (Levenberg-Marquardt (LM) method) 

was adopted, sequentially associated with an evolutionary algorithm method (real search space EA), 
grouped. With these global cascade algorithms, it is intended to aggregate the advantages of both 

algorithms and to minimise their disadvantages (Andrade-Campos et al., 2009). 

For the application of these models, the SDL/SiDoLo optimisation lab computer program was used 
(Andrade-Campos, 2011). The program was designed for specific engineering inverse problems, such 

as parameter identification and initial shape optimization problems. It inherits the wealth of experience 

gained in such problems by the previous SIDOLO code, and adds the latest developments in direct 

search optimization algorithms (Andrade-Campos, 2011; Andrade-Campos et al., 2007). 
 

4.2 Prediction and optimization of the scaling factor equation 

 
The calibration of the interaction function, using the optimization strategies presented in the previous 

section, was performed in two phases. In the first phase, it was intended to select the analytical 

expression-type most suitable for the interaction scaling factor () function. After the expression type 
selection, the second phase, consists in the calibration of the parameters of the interaction function as 

well as of the interaction scaling factor. The parameters’ calibration corresponds to the best-fit of the 
results for a group of numerical analyses. 

In order to define the interaction scaling factor () which characterizes the level of interaction, as a 
function dependent of the section properties and loading direction, a set of numerical analyses was 

performed. To this aim, twenty seven rectangular RC columns were defined, varying in cross-section 

dimensions (30x30, 30x50 and 30x60), reinforcing steel ratio (1%, 1.5% and 2%) and axial load ratio 
(0.1, 0.2 and 0.3). For the column, a cantilever 1.5m high was considered. The response of each 

column was obtained with pushover analysis for different directions Columns were modelled with a 

force-based element formulation and considering a fibre discretization at the section level. Two 
uniaxial (0º and 90º) and five biaxial (at 11.25º, 22.5 º, 45 º, 67.5 º, 78.75 º angles) pushover analyses 

were performed using the computer program SeismoStruct (SeismoSoft, 2004). 

An interaction scaling factor was determined for each biaxial response of each column, based on the 

Costa-Costa uniaxial model coupled with the proposed interaction function previously presented in 
Equation 3.9. For these analyses, a gradient-based optimization algorithm was used (Andrade-Campos 

et al., 2007). In order to reduce the number of variables, for the shape factors (γ,  and n) necessary to 

calculate 
ifxC  and 

ifyC  were assumed equal to the values suggested by Kunnath and Reinhorn were 

adopted ( 5.0  and 2n ). 

 

Aiming at evaluating the goodness-of-fit of the given interaction scaling factor, for each column and 

for each direction calculation are made for, the difference between the simulated response with the 
simplified (sim) model (with the interaction function parameters) and with the refined numerical 

model (reference values, ref). These differences are evaluated for each direction (X or Y) by the 

Relative Global Error (RGEdirection), as given in Equation 4.1. The combination of the error for the 

two directions (RGEtotal) is calculated as presented in Equation 4.2. 

            [ ]     ∑(  
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(4.1) 

         √     
      

  (4.2) 

where   
    and   

    are, respectively, the simulated and reference values of the potential energy 

associated with each pushover response. 
 



After obtained the optimal values of the scaling factor () for each analysis (each column and each 

direction), an expression type was selected (see Equation 4.3), which depends on the column 
properties, namely the cross-section dimensions (h and b), the axial load ratio (ν); and loading 

direction (α). 

     (
 

 
)
  

       (    )   (4.3) 

The four constants (C1, C2, C3, and C4) are to be obtained by optimization for all pushover curves, as 

will be shown in the following Section. 

 

With the adopted equation for the scaling factor, the interaction function parameters were optimized 
for all biaxial pushover curves, using a cascade optimization strategy. 

At this stage, the Levenberg-Marquardt (LM) gradient-based method and an evolutionary method (real 

search space EA) were grouped in sequential/cascade strategies. Thus, as mentioned before, in order to 
combine the advantages of both algorithms and minimise their disadvantages, the following sequence 

LM+EA+LM was used. 

 

An important aspect in a cascade algorithm is the choice of the criteria to switch from one optimizer to 
another. In the present case, a heuristic approach was adopted based on numerical experiments. The 

criteria, as suggested in (Andrade-Campos et al., 2009), were: i) Switching from LM to EA: if, from 

one iteration to another, the relative decrease in the quadratic objective function is less than 1×10-15, 
or the maximum admissible iteration number (predetermined value) is reached. ii) Switching from EA 

to LM: if stagnation of more than 500 generations is observed or the relative decrease in the quadratic 

objective function is less than 1×10-15 or the maximum admissible iteration number (predetermined 
value) is reached. The obtained results are summarized in Table 1 and the convergence evolution of 

the cascade optimization strategies in the parameter identification are presented in Figure 3. 
 
 
Table 1. Parameters achieved by the cascade 

optimization strategy 

Parameter Value 


 

0.37 

  0.90 

n 2.00 

C1 1.00 

C2 0.23 

C3 0.45 

C4 -0.52 
 

 
Figure 3. Convergence evolution of the cascade optimization 

strategies in the parameter identification 

 
 

Figure 4 shows the plot of the Relative Global Error, calculated for each direction (using Equation 
4.1), for two situations, in order to compare the reference simulation with the simplified model results, 

with and without considering the interaction function, represented in the figure with filled and unfilled 

marks respectively). By comparing the Relative Global Errors for the two situations the error 
reduction in each direction is clear when the interaction function is considered. 

 

Figure 5 includes a selected group of examples of pushover curves for different columns and different 

pushover loading angles. In each plot, for both directions, the obtained pushover curves are 
represented: i) by the refined numerical fibre model (reference curves – blue lines with square marks); 

ii) by the simplified model without the biaxial bending interaction function (red lines with trianglular 

marks); and iii) by the simplified model but with the interaction function (the optimised solution – 
green lines with diamond marks). Also, the examples in Figure 5 confirm the error reductions, in both 

column directions, obtained by adopting the interaction function combined with the optimized scaling 

factor. 
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Figure 4. Relative Global Error (X and Y column directions) of the simplified model results, with (filled marks) 

and without (unfilled marks) interaction function, compared with the refined numerical model results 

 

  

  

Figure 5. Examples of pushover curves for different columns and different pushover loading angles for the 
refined numerical model, the simplified model without the biaxial bending interaction function and the 

simplified model with the interaction function 

 

 

5. VALIDATION OF THE MODEL WITH RESULTS FROM CYCLIC TESTS 
 

5.1 Introduction 

 
For the validation of the proposed simplified model with interaction functions, the experimental results 

of cyclic tests on 8 RC columns were used of the test campaign (H. Rodrigues et al., 2012; H. 

Rodrigues, 2012). First, the uniaxial tests were modelled in order to obtain the primary skeleton curves 
for each independent direction. Then, using the obtained curves, the biaxial tests were simulated and 

the results of the numerical model with the interaction function are compared with the test results. 

 

5.2 Analysis of the results 

 

For the validation of the proposed simplified interaction model, a trilinear envelope curve was 

considered for the primary curve of each column direction, by best-fit adjustment to the uniaxial 
experimental results. 

 

For all uniaxially tested columns, the experimental results were well reproduced with the adjusted 

0 50 100 150 200 250

0

50

100

150

200

250

300

350

400

450

500

 With interaction function optimized  -  11.25º

 With interaction function optimized  -   22.50º

 With interaction function optimized  -  45.00º

 With interaction function optimized  -  67.50º

 With interaction function optimized  -  78.75º

 

 

 Without interaction function -  11.25º

 Without interaction function -  22.50º

 Without interaction function -  45.00º

 Without interaction function -  67.50º

 Without interaction function -  78.75º

R
el

at
iv

e 
G

lo
ba

l 
E
rr

or
 i
n 

di
re

ct
io

n 
Y

 (
%

)

Relative Global Error in direction X (%)

0.00 0.01 0.02 0.03 0.04 0.05
0

50

100

150

200

250

300

350

400

450

500

550

M26

30x60cm
2

 = 0.2

As  = 2.0% Ac

Pushover - 11.25
o

 

 

B
as

e 
Sh

ea
r 

(k
N

)

Horizontal  Displacement (m)

 Fibre model (X direction)

 Fibre model (Y direction)

 Original (X)

 Original (Y)

 Optimized solution (X)

 Optimized solution (Y)

0.00 0.01 0.02 0.03 0.04 0.05
0

50

100

150

200

250

300

350

 

 

B
as

e 
Sh

ea
r 

(k
N

)

Horizontal  Displacement (m)

 Fibre model (X direction)

 Fibre model (Y direction)

 Original (X)

 Original (Y)

 Optimized solution (X)

 Optimized solution (Y)

M16

30x50cm
2

 = 0.1

As  = 1% Ac

Pushover - 22.5
o

0.00 0.01 0.02 0.03 0.04 0.05
0

50

100

150

200

250

300

350

400

M22

30x60cm
2

 = 0.1

As  = 1.5% Ac

Pushover - 45
o

 

 

B
as

e 
Sh

ea
r 

(k
N

)

Horizontal  Displacement (m)

 Fibre model (X direction)

 Fibre model (Y direction)

 Original (X)

 Original (Y)

 Optimized solution (X)

 Optimized solution (Y)

0.00 0.01 0.02 0.03 0.04
0

50

100

150

200

250

300

350

M14

30x50cm
2

 = 0.2

As  = 1.5% Ac

Pushover - 45
o

 

 

B
as

e 
Sh

ea
r 

(k
N

)

Horizontal  Displacement (m)

 Fibre model (X direction)

 Fibre model (Y direction)

 Original (X)

 Original (Y)

 Optimized solution (X)

 Optimized solution (Y)



uniaxial trilinear curves and with the hysteretic rules of the original model, as represented in Figure 6. 

In the figures the following are plotted for each column: the numerical calculations with the 

interaction model (blue); the experimental results (red); and the trilinear primary curve (green). 

 
As observed in these figures, the strength degradation is difficult to represent, particularly for the last 

cycles of the experimental response. However, significant differences are only observed for demands 

corresponding to drifts greater than 2.5%. The energy dissipation evolution is also well represented. 
Again, only for the last cycles (associated with the differences in terms of strength degradation), an 

overestimation of the dissipated energy is obtained with the numerical model. 

 
In order to validate the rules and parameters of the interaction model for the simulation of the biaxial 

response of the tested RC columns, the trilinear curve adjusted to the uniaxial test results was 

considered for the primary curve in each direction. 

 
The prediction of the experimental biaxial response obtained with the simplified interaction model for 

the tested RC columns is represented in Figures 7, 8 and 9. The same line legend is adopted as for the 

uniaxial cases. 
 

As can be observed, the maximum strength was properly obtained with the simplified biaxial model. 

For the columns strong directions, a underestimation of the maximum strength of 15% was observed, 
while overestimation of 25% is reached in the weak direction. The unloading stiffness and the 

pinching effect were reasonably reproduced in most cases. 

The strength degradation was also reasonably approximately in the examples under analysis. Only in 

the latter stages of the columns’ response, close to the columns’ failure, considerable differences were 
detected in terms of strength degradation. 

 

The evolution of the accumulated energy dissipation is reasonable well simulated until noticeable 
strength degradation is observed. In the stronger column direction an overestimation of around 20% 

was reached and in the weak direction the underestimation is around 25%. 

 

In general, a good agreement between the predicted numerical results and the experimental hysteretic 
response was observed, indicating that the proposed strategy may be suitable to simulate the response 

of columns to biaxial loading based on uniaxial behaviour curves associated with properly calibrated 

coupling interaction functions. 

 
Figure 6 – Base-shear versus drift of column N13 – Uniaxial test 

 

 
Figure 7. Base-shear versus drift of column N14 – Biaxial test, rhombus displacement pattern 



 
Figure 8. Base-shear versus drift of column N15 – Biaxial test, quadrangular displacement pattern 

 
Figure 9. Base-shear versus drift of column N16 – Biaxial test, circular displacement pattern 

 
 

6. CONCLUSIONS AND FINAL COMMENTS 

 

There are still a number of unsolved problems associated with modelling of RC elements under biaxial 
loading. Simplified biaxial models may be adopted if they can adequately reproduce the main 

characteristics of the element’s response (such as the strength and stiffness degradation, ductility, and 

energy dissipation capacity) relative to the columns uniaxial response. 
 

In the present paper, a simplified interaction model for the response of RC columns to biaxial loading 

is described, based on existing uniaxial models. The proposed model corresponds to an upgrade of the 
existing Costa-Costa uniaxial hysteretic model, and adopts an interaction function based on the Bouc-

Wen biaxial hysteretic model, coupling the two loading directions. The model parameters were 

calibrated using optimization techniques, based on the results of a parametric study on the 

tridimensional response of RC columns models with a refined model. The validity of the proposed 
model was demonstrated through the analytical simulation of biaxial tests on RC columns. The 

obtained numerical results were adequate and proved the efficiency of the model, which is a simple 

tool capable of reproducing the response of RC elements considering the biaxial interaction. 
 

The proposed simplified model can be a useful tool in the design and assessment of RC structures 

where the response is dependent on biaxial bending of the elements. This non-linear model accounts 

for mechanical features such as hysteretic behaviour rules, strength and stiffness degradation, and the 
pinching effect. However, additional research is still necessary to objectively define the interaction 

function parameters, which establish the coupling of the response in the two loading directions. 

Moreover, the model application to experimental results obtained by other authors should be made. 
The implementation of the proposed model in a structural analysis program to obtain the response of 

RC multi-storey buildings (which strongly depends on the biaxial response of the columns) is another 

important task that should be archived. 
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