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resumo 
 

 

Estudos recentes estabelecem uma ligação entre erros na tradução do mRNA 
e cancro, envelhecimento e neurodegeneração. RNAs de transferência 
mutantes que introduzem aminoácidos em locais errados nas proteínas 
aumentam a produção de espécies reactivas de oxigénio e a expressão de 
genes que regulam autofagia, ribofagia, degradação de proteínas não-
funcionais e protecção contra o stress oxidativo. Erros na tradução do mRNA 
estão portanto relacionados com stress proteotóxico. Sabe-se agora que o 
mecanismo de toxicidade do crómio está associado à diminuição da 
fidelidade de tradução e à agregação de proteínas com malformações que 
destabilizam a sua estrutura terciária. Desta forma, é possível que os efeitos 
do stress ambiental ao nível da degeneração celular possam estar 
relacionados com a alteração da integridade da maquinaria da tradução. 
 
Neste estudo procedeu-se a uma avaliação alargada do impacto do stress 
ambiental na fidelidade da síntese de proteínas, utilizando S. cerevisiae como 
um sistema modelo. Para isso recorreu-se a repórteres policistrónicos de 
luciferase que permitiram quantificar especificamente a supressão de codões 
de terminação e o erro na leitura do codão AUG em células exposta a 
concentações não letais de metais pesados, etanol, cafeína e H2O2. Os 
resultados sugerem que a maquinaria de tradução é na generalidade muito 
resistente ao stress ambiental, devido a uma conjugação de mecanismos de 
homeostase que muito eficientemente antagonizam o impacto negativo dos 
erros de tradução. A nossa abordagem quantitativa permitiu-nos a identificar 
genes regulados por uma resposta programada ao stress ambiental que são 
também essenciais para mitigar a ocorrência de erros de tradução, 
nomeadamente, HSP12, HSP104 e RPN4. A exposição prolongada ao stress 
ambiental conduz à saturação dos mecanismos de homeostase, contribuindo 
para a acumulação de proteínas contendo erros de tradução e diminuindo a 
disponibilidade de proteínas funcionais directamente envolvidas na 
manutenção da fidelidade de tradução e integridade celular. Ao contrário de 
outras Hsps, a Hsp12p adopta normalmente uma localização membranar em 
condições de stress, que pode modular a fluidez e estabilidade membranar, 
sugerindo que a membrana plasmática é um alvo preferencial da perda de 
fidelidade da tradução. 
 
Para melhor compreender as respostas celulares aos erros de tradução, 
células contendo deleções em genes codificadores das Hsps foram 
transformadas com tRNAs mutantes que introduzem alterações no proteoma. 
Os nossos resultados demonstram que para além da resposta geral ao 
stress, estes tRNAs induzem alterações a nível do metabolismo celular e um 
aumento de aminoacilação com Metionina em vários tRNAs, sugerindo um 
mecanismo de protecção contra espécies reactivas de oxigénio. Em 
conclusão, este estudo sugere um papel para os erros de tradução na gestão 
de recursos energéticos e na adaptação das células a ambientes 
desfavoráveis.   
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abstract 

 

 

Recent studies link mRNA mistranslation to cancer, neurodegeneration, aging 
and metabolic imbalances. It was shown previously that mutant tRNAs that 
mutagenise the proteome via mRNA misreading increase production of 
reactive oxygen species and up-regulate the expression of oxidative stress, 
autophagy and ribophagy genes, indicating that mistranslation is an important 
cause of proteotoxic stress. Interestingly, chromium toxicity is linked to 
increased mistranslation and protein aggregation suggesting that 
environmental stressors may cause cell degeneration and human disease 
through deregulation of protein synthesis fidelity.  
 
In this study, we investigate the impact of environmental on the fidelity of 
protein synthesis using S.cerevisiae as a model system. We used a dual 
luciferase reporter to quantify both AUG misreading and stop codon 
readthrough in cells exposed to sub-lethal concentrations of heavy metals, 
ethanol, caffeine and hydrogen peroxide. Our results suggest that the 
translational machinery is in general very resistant to environmental stress, 
due to a conjugation of homeostasis mechanisms that effectively antagonize 
the negative impact of protein synthesis errors to a level tolerated by cells. 
Additionally, our quantitative approach allowed us to identify genes under the 
control of the environmental stress response (ESR) that are essential to cope 
with induced amino acid misincorporation, namely HSP12, HSP104 and 
RPN4. Prolonged stress exposure drives saturation of protein homeostasis 
mechanisms, which contributes to accumulation of mistranslated protein into 
the cytoplasm and thereby decreases the availability of functional proteins 
directly involved in translational fidelity and cellular integrity. Unlike all other 
Hsps, Hsp12p associates with the plasma membrane under stress, which may 
help modulate membrane fluidity and stability, suggesting that protein 
synthesis errors target membrane components. 
 
To further understand the cellular responses to mistranslation and proteotoxic 
stress, cells harboring deletions in genes coding for small heat-shock proteins 
were transformed with a misreading tRNA. The data showed that besides a 
wide response to stress, constitutive mistranslation also promoted a shift in 
cellular metabolism. Finally, cells expressing misreading tRNAs show 
increased Met-misacylation, suggesting that methionine misincorporation into 
proteins protects against ROS. This study strongly supports a role for 
mistranslation in energy management and cell adaptation to suboptimal 
environmental conditions. 
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1.1 Central Dogma of Molecular Biology 

 

The information necessary for cell development, survival and division is contained in 

DNA and organized in genes. Dividing cells duplicate their genetic contend by DNA 

replication and the information is inherited and preserved by daughter cells. For all the 

fundamental processes in the cell to take place DNA must first be converted into 

messenger RNA (mRNA) that relocates to ribosomes where it can be used to produce 

unique sequences of amino acids. The final protein molecules lie at the heart of 

cellular metabolism and participate in virtually every process within cells. This 

understanding of how genetic information is transformed by the cell into a unique 

protein by an mRNA intermediate composes the Central Dogma of Molecular Biology.  

 

1.2. Genetic Code and Overview of the Translation Steps 

 

While DNA stores the information for protein synthesis and mRNA carries the genetic 

information copied from DNA, nearly all the activities in cells are accomplished by 

protein effectors. The rules that govern the transfer of genetic information from 

nucleic acids to proteins compose the genetic code. Three nucleotide residues of 

mRNA (one codon) are required to encode each amino acid and these triplets are read 

in a successive, non overlapping way by the ribosome, giving instructions for the 

incorporation of specific amino acids, resulting in synthesis of new protein.  

Triplet combination of the 4 ribonucleosides (adenosine or A, uridine or U, guanosine 

or G, cytidine or C) results in the 64 different codons that compose the genetic code. 

Of these, 61 identify individual amino acids and three are stop codons (see Figure 1.1). 

Most amino acids are encoded by more than one codon and the different codons for a 

given amino acid are synonymous. Because of these redundancies, the genetic code is 

degenerate (Lodish et al., 2000). 

http://en.wikipedia.org/wiki/Cell_%28biology%29
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Figure 1.1 - The standard genetic code table is composed of 64 codons. Of these, 61 identify 

individual amino acids (represented in colors) and three are stop codons. Multiple codons can 

code for the same amino acid. 

 

Translation is a cyclical process that takes place through four distinct stages in all 

living organisms, namely: Initiation, elongation, termination and recycling. The 

mechanisms and machinery are quite conserved, but have different features across 

the distinct branches of life. 

 

1.2.1. Key mechanistic players in translation 

 

Proteins have a leading role in cellular function, carrying out most of the biological 

activities. The accurate synthesis of proteins is thus vital to keep cellular homeostasis.  

The complexity of protein synthesis takes its shape by the distinct but cooperative 

contribution of at least three species of RNA: messenger RNA (mRNA), transfer RNA 

(tRNA) and ribosomal RNA (rRNA).  
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mRNA conveys sequence information from the genome to the protein synthesis 

machinery in the form of sequential codons, each one comprising three nucleotides 

that specify either one particular amino acid or synthesis termination.  Ribosomal RNA 

(rRNA) intricate association with proteins forms ribosomes, complex structures that 

catalyze peptide bond formation and mediate mRNA/tRNA interactions. tRNAs 

function as adaptor molecules between mRNA and protein.  

 

Anticodon interactions with the mRNA codon occur at one end of the tRNA and 

specifically assign an amino acid to the growing peptide chain, all in concerted action 

with another major partner, the ribosome. For every amino acid there is at least one 

tRNA and a specific aminoacyl-tRNA sintethase that recognizes the surface structure 

of each tRNA and assures that the cognate amino acid is charged. The resulting 

aminoacyl-tRNA then recognizes a codon in mRNA by complementary base pairing 

interactions and in that way carries its cognate amino acid to the growing 

polypeptide, ultimately linking the information on DNA to protein synthesis. The 

amino group of the amino acid is then involved in nucleophilic attack on the carbonyl 

group in the C-terminus of the growing peptide, culminating in formation of a new 

bond.  

 

1.2.1.1. Ribosome 

 

One of the key cellular players is the ribosome, which catalyzes the assembly of amino 

acids into proteins. In growing yeast there are nearly 200 000 ribosomes per cell, 

making it the most abundant cellular RNA-protein complex, composed of several 

different ribosomal RNA (rRNA) molecules and more than 50 proteins, organized into 

a large and a small subunit. rRNA makes up 80% of the total cellular RNA. Around 50% 

of RNA polymerase II transcription and 90% of mRNA splicing is devoted to ribosomal 

proteins (Warner, 1999).  

A functionally competent ribosome consists of two subunits, one of them about twice 

the size of the other, and named according to their sedimentation coefficients, in 

Svedberg units (S). Ribosomes from prokaryotic and eukaryotic cells differ in the size 
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of the subunits, because of the distinct composition and length of RNA molecules and 

proteins (Lodish et al., 2000). In prokaryotes the large subunit contains two rRNAs 

(23S and 5S) and 34 proteins (L1-L34), while the small subunit contains only one rRNA 

(16S) and 21 proteins (S1-S21). In eukaryotes the ribosomes are homologous but 

larger and include a higher number of components. The large subunit contains three 

rRNAs (28S, 5.8S and 5S) and the small subunit one 18S rRNA. 

Ribosomes actively catalyzing protein synthesis are 1:1 complexes of the two subunits 

that share mechanistic principles common to all organisms. Remarkably, the two 

subunits are functionally different. The small subunit mediates the codon-anticodon 

interaction and the large subunit contains the peptidyl-transferase centre (PTC), 

which catalyses the formation of peptide bonds in the growing polypeptide (Steitz, 

2008). Remarkably, both subunits can carry out their specific functions independently, 

even when not incorporated in a 1:1 complex (Moore & Steitz, 2011). During protein 

synthesis the ribosome moves along the mRNA in one-codon steps, each 

corresponding to addition of one amino acid to the growing polypeptide. There are 

three binding sites for tRNA in the ribosome: the A-site for aminoacyl-tRNA, the P-

site for peptidyl-tRNA and the E-site for the deacylated tRNA leaving the ribosome. 

 

1.2.1.2. Transfer RNA 

 

 tRNA molecules function as adaptor molecules, linking protein synthesis with the 

information stored in the nucleic acids. tRNA binds to a specific amino acid 

(aminoacylation) and recognizes the nucleotide encoding that amino acid in mRNA 

through a three base sequence (anticodon). This culminates with amino acid 

transference to the growing polypeptide.  

 

tRNA molecules consist of a single ribonucleic acid chain around  73 – 93 nucleotides 

long which can fold in short double helix regions stabilized by Watson-Crick base 

pairing (Holley, 1965). This arrangement defines several distinct stem-loops (D loop, 

anticodon loop and the TΨCG loop) together with an acceptor stem, so called because 
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it bears the 3’ single stranded CCA terminus, the site of aminoacylation. There is in 

addition a loop of variable size between the anticodon and the TΨCG that allows 

tRNAs categorization into two classes. tRNAs bearing a short variable loop of 4 or 5 

nucleotide residues are classified as type I (almost almost all existing tRNAs), and 

those having a long variable stem-loop 10 to 24 bases long, as type II (eukaryotic 

leucine and serine tRNAs) (Brennan & Sundaralingam, 1976). A group of noncanonical 

tRNAs lacking the D or T loops exists in mitochondria. These molecules can only be 

charged by their cognate mitochondrial synthetases (Cavarelli & Moras, 1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 – The structure of tipical tRNA a) secondary structure (cloverleaf – like model) b) 

terciary L-shapped structure. Loop 1 – D loop, loop 2 – anticodon loop and loop 3 - TΨCG loop. 

 

In three dimensions the tRNA is folded in a compact L shape with the anticodon loop 

in coaxial stacking with the TΨCG loop and the acceptor stem forming two discrete 

structural domains positioned around 76Å opposite from each other (Schimmel & 

Ribas de, 1995). This arrangement allows both optimized fit into the P and A-sites of 

the ribosome and recognition by aminoacyl-tRNA synthetases. A number of hydrogen 

bonding interactions between base-phosphate, base-ribose, phosphate-ribose and 

a) 

b) 
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ribose-ribose are formed during the tRNA maturation process and contribute to 

stability of this tertiary structure (Holley, 1965; Schimmel, 1991)(see Figure 1.2). 

 

1.2.1.2.a. tRNA synthesis and processing 

 

In eukaryotes, polymerase III transcribes small untranslated RNAs required for 

transcription regulation or translation, like 5S rRNA and tRNAs. The first protein that 

binds to newly synthesized pre-tRNAs in the nucleus is the La autoantigen, a highly 

abundant phosphoprotein that facilitates maturation of the 3’ terminus in newly 

synthesized transcripts. The La protein may function as a chaperone, to promote the 

formation of the correctly folded pre-tRNA structure. 

 

The 5’- leader sequence of pre-tRNAs is removed by RNase P, a ubiquitous 

ribonucleoprotein made up by a 350–450 nucleotides RNA component, which is 

accountable for the catalytic activity. At least nine protein subunits copurify with the 

nuclear RNAse P RNA subunit in Eukarya, being responsible for increased catalytic 

efficiency and substrate versatility (Hartmann & Hartmann, 2003; Mann et al., 2003).  

The 3’-terminal sequence is removed in a process mediated by a specific combination 

of endoribonucleases and exoribonucleases that differ according to the pre-tRNA. The 

3’-terminal sequence is capped with a CCA sequence, which in eukaryotes is 

synthesized in a template-independent manner by the enzyme ATP (CTP): tRNA 

nucleotidyltransferase, through AMP and CMP transfer from ATP and CTP to the 3’ 

ends of tRNA molecules. In E.coli this sequence is encoded in tRNA genes (Chen et al., 

1990).  

 

tRNA splicing occurs in Bacteria, Archaea, and Eukarya. In bacteria introns are self-

splicing, a mechanism completely unrelated from the other branches of life 

(Biniszkiewicz et al., 1994). Around 25% of Saccharomyces cerevisiae tRNA families 

have introns, placed immediately 3’ to the anticodon and devoid of splice-site 

consensus sequences. Contradicting initial evidences, pre-tRNA intron removal in 
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yeast occurs in the cytoplasm and most of the tRNA splicing endonuclease activity is 

localized in the cytosolic surface of the outer mitochondrial membrane (Yoshihisa et 

al., 2003).  

The reaction proceeds through three distinct steps, each one catalyzed by a different 

enzyme. In the first step the pre-tRNA is cleaved at its splice sites. Pre-tRNA 

molecules are then folded into a particular secondary structure similar to mature 

tRNAs. This brings the two intron-exon junctions into proximity, allowing for 

endonuclease recognition and subsequent intron excision to occur (Abelson et al., 

1998). Instantly after, the resulting tRNA half-molecules are joined by a ligase, using 

one ATP and one GTP molecule (Phizicky et al., 1986). After this process is complete, 

a 2’ – phosphate remains at the ligation junction and is moved to a NAD molecule by a 

nicotinamide adenine dinucleotide (NAD)-dependent phosphotransferase, finishing 

the splicing (McCraith & Phizicky, 1991). 

3’ and 5’ terminal maturation usually precedes splicing but for particular tRNAs the 

splicing might occur first, especially when yeast are grown at high temperature, 

linking the order of processing of at least some pre-tRNAs with growth conditions 

(Wolin & Matera, 1999). 

 

In vertebrates, tRNA post-transcriptional processing generally occurs in the nucleus 

(Lund & Dahlberg, 1998). In yeast, experimental evidences implicate tRNA 

aminoacylation defects in nuclear accumulation of spliced tRNAs (Shaheen & Hopper, 

2005), suggesting bidirectional movement of tRNAs between the nucleus and the 

cytoplasm (Shaheen & Hopper, 2005; Takano et al., 2005) (see Figure 1.3). This tRNA 

subcellular dynamics involves at least three members of the importin-β family: Los1, 

Msn5 and Mtr10. 

Los1, a yeast nuclear pore protein, has been implicated in the export of newly 

transcribed end-matured tRNAs from the nucleus to the cytoplasm as well as in tRNA 

re-export processes (Shaheen & Hopper, 2005; Murthi et al., 2010). During 

translocation through the nuclear pore, Los1p directly binds to the tRNA in a complex 

with Ran-GTP, which upon GTP hydrolysis releases the tRNA in the cytoplasm 
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(Phizicky & Hopper, 2010). LOS1 is not an essential gene in yeast, suggesting the 

existence of an alternative pathway involved in tRNA bidirectional movement. Mtr10, 

on the other hand, is implicated in retrograde tRNA nuclear import (Shaheen & 

Hopper, 2005), shown to be a constitutive process in yeast (Takano et al., 2005; Murthi 

et al., 2010). Msn5, a nutrient-responsive tRNA exportin, is primarily specialized in re-

export of aminoacylated tRNAs (Eswara et al., 2009; Murthi et al., 2010). 

 

 

 

Figure 1.3 – Mechanisms of tRNA synthesis and processing in S.cerevisiae. tRNA transcription 

is followed by 5’ end-processing in the nucleolus. 3’ processing, CCA addition and some 

nucleoside modifications occur next, immediately before intron-containing pre-tRNAs are 

exported to the cytoplasm by Los1. In the cytoplasm, processing is completed by addition of 

new modifications and aminoacylation, just after pre-tRNA splicing on the cytoplasmic surface 

of mitochondria. Retrograde tRNA flow to the nucleus occurs constitutively or as a proofreading 

mechanism and is mediated by Mtr10. Re-export of nuclear tRNAs to the cytoplasm also occur 

as part of the retrograde process, mediated by both Los1 and Msn5. Red circles - anticodon, 

purple circles - 5’ and 3’ end sequences, dark-blue circles - intron sequence, light-blue circles - 

CCA end. Image adapted from Phizicky and Hopper, 2010. 
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This tRNA shuttling serves two major purposes. The first is proofreading, to avert 

defective tRNAs from interacting with the translation machinery (Shaheen & Hopper, 

2005). In fact, a constitutive nucleus-located tRNA degradation system that 

recognizes aberrant tRNAs has been identified in yeast (Kadaba et al., 2004). Second, 

retrograde tRNA flow might work as a novel mechanism to regulate gene expression 

or as an element of regulatory response to certain physiological signals, such as amino 

acid starvation  (Shaheen & Hopper, 2005; Phizicky, 2005). Indeed, under a low 

nutrient status, repression of tRNA transcription (Ciesla et al., 2007) is followed by 

increased tRNA retrograde movement, by which tRNAs that were once located in the 

cytoplasm rapidly accumulate in the nucleus (Shaheen & Hopper, 2005; Hurto et al., 

2007; Whitney et al., 2007). 

 

Finally, several of the ribonucleotides are covalently modified by a set of enzymes that 

recognize specific features of tRNA structure (Phizicky & Hopper, 2010).  

 

1.2.1.2.b. tRNA modification: roles in translation and metabolism 

 

More than 100 distinct chemical modifications of nucleosides have been identified in 

all the different types of RNAs, but particularly in noncoding RNAs, such as rRNAs and 

especially tRNAs, which hold around 80% of these modifications.  

Some modifications can be found in all three domains of life and are conserved in 

specific tRNAs from organisms phylogenetically very distant. So far, 25 distinct 

ribonucleoside modifications have been identified in S.cerevisiae, targeting 34 

different positions and giving an average of 13 modifications per tRNA species (Sprinzl 

& Vassilenko, 2005; Chernyakov et al., 2008). In parallel, 50 genes encoding tRNA 

modifying enzymes have been uncovered, many of them operating under a specific 

sequence of events, as part of large multi-enzyme complexes.  

 

Modifications are positioned through the entire tRNA molecule, some in much 

conserved locations, but occur with particular frequency at positions 34 and 37, in the 

anticodon loop of the tRNA. The most prevalent tRNA modifications are simple base 
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or ribose methylations and isomerization of uridine into pseudouridine. Some are as 

complex as wybutosine, exhibiting highly branched conformations (Grosjean, 2009) 

(see Figure 1.4). 

 

By contributing to an increase in molecular structural diversity, modified nucleosides 

afford highly selective molecular recognition of specific tRNAs and play important 

roles in regulating RNA function, stability and lifetime, also influencing genetic 

decoding by involvement in translation mechanisms (Moore & Steitz, 2011). tRNA 

modifications bring order to the internal loops and hairpin structures of RNA. For 

example, the modified nucleosides of the anticodon restrict its conformational 

dynamics and define its shape. Consequently, the effort of the ribosome to constrain 

or remodel each tRNA to fit the decoding site is reduced. This diminishes the entropic 

price for translation and explains the conservation of RNA modifications in general 

(Agris, 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 – Nucleoside modifications in the cytoplasmic tRNAs of S. cerevisiae. Although 

modifications are relatively spread alongside the tRNA molecule, many concentrate around the 

anticodon region, especially at positions 34 and 37. Image adapted from Phizicky E and Hopper 

A, 2010. 
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Many of the genes responsible for tRNA modifications in the anticodon region are 

vital for viability and cell growth, however, the great majority of the tRNA 

modification enzymes are not essential for life and deletion of individual modification 

enzymes shows no serious growth phenotypes (Alexandrov et al., 2006). The 

implication that modifications beyond the anticodon can also contribute to base 

pairing and decoding by promoting molecular flexibility suggests a high level of 

functional redundancy (Alexandrov et al., 2006). 

 

Ribonucleoside secondary modifications occur both in the nucleus and the cytoplasm, 

being potentially involved in signaling for tRNA translocation or final cellular 

destination (Marechal-Drouard et al., 1988; Cavaille et al., 1999). Certain nucleotide 

modifications take place immediately on the newly synthesized pre-tRNA, some are 

added after 3’ and 5’ terminal maturation, and others occur only after splicing 

(Grosjean et al., 1997; Phizicky & Hopper, 2010). 

 

tRNA modifications can be determined by the abundance level of tRNAs and activity 

or location of the modifying enzymes, occurring many times in a very specific order. A 

given modified nucleoside in a specific position may actually not be present in all the 

molecules of a tRNA population and the degree of modification may vary according to 

physiological conditions, like temperature or availability of metabolic intermediates, 

creating molecular heterogeneity. Organelle tRNAs and rRNAs contain their own set 

of modified nucleosides, some of which are not present in cytoplasmic RNAs of the 

eukaryotic host cell (Grosjean, 2009). 

 

A hypomodified cognate tRNA is usually defective in the aminoacyl-tRNA (aa-tRNA) 

selection step and a wild type near-cognate tRNA can be accepted at the A-site 

instead. However, if a hypomodified tRNA is accepted at the A-site, the following 

nucleotide translocation into the P-site can eventually result in frameshifting. 

Therefore, tRNA modified nucleosides are vital for reading frame maintenance, 

improving the fidelity and efficiency of translation by regulating aa-tRNA selection 

rate and optimizing the fitness of the tRNA in the P-site (Bjork et al., 1999).  
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By definition, tRNA identity elements are ribonucleotides essencial for maintaining 

the specificity of the aminoacyl-tRNA synthetases recognition process. Several 

modifications play particular roles in this process. For example, in vitro transcribed and 

unmodified yeast tRNAAsp can still be charged with aspartate like the modified native 

tRNA, but it is also quite efficiently mischarged with arginine (Perret et al., 1990). Also 

in yeast, m2G10 affects the kinetics of tRNAPhe aminoacylation by stabilizing tRNA 

terciary structure in order to feature it as a better substract for PheRS (Roe et al., 

1973). Nevertheless, tRNA recognition by tRNA sinthethases may also involve the 

anticodon region and modifications in the surrounding nucleosides. An E. coli tRNA Ile 

has a modified nucleoside named lysidine (K2C) in the first position of the anticodon 

(position 34), which is essential for the specific recognition of the codon AUA. The 

absence of this modification causes mischarging by methionyl-tRNA synthetase 

(MetRS) (Muramatsu et al., 1988). 

 

Looking to a table representation of the genetic code, the first two codon letters 

create 16 possible combinations, each of which is displayed in a separate box. Eight of 

the codon boxes code for only a single amino acid (4-fold degenerate). The other 12 

amino acids have codons in 2-fold degenerate codon boxes, like asparagine and 

lysine, or have only one codon, like methionine and tryptophan (Agris, 2004; Agris, 

2008). Modified nucleosides in the anticodon region play an important role in the 

efficiency of codon reading by regulating conformational dynamics and wobbling. 

This happens by either restricting tRNA interaction to one or two codons or expanding 

the recognition to three or four synonymous codons by the same tRNA species. For 

example, mcm5s2U34 in yeast tRNAGlu limits the tRNA to pair with A. Also mnm5s2U, 

an E.coli wobble modification with similar structure found in tRNAGln and tRNALys, 

strongly favors base pair with A (Agris et al., 1973; Lustig et al., 1981). On the other 

hand, modified ribonucleosides at the wobble position might also extend the number 

of codons recognized by specific species of tRNA. For example, tRNAVal, tRNASer and 

tRNAAla from E.coli contain cmo5U34, allowing interaction with codons that have A, U 

and G at the wobble position (Murao et al., 1982).  
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In conclusion, tRNA modifications favor specific recognition and binding of the 

anticodon to cognate and wobble codons. This efficiency results in accuracy and 

energy saving, which might be of major importance for a quick response to 

environmental signals and stress, assuring cell survival under challenging conditions 

(Agris, 2008). 

 

1.2.1.3 Aminoacyl-tRNA synthetases 

 

The genetic code is robustly established through aminoacyl-tRNA synthetases (aaRS), 

which integrate two levels of cellular organization: nucleic acids and proteins. Amino 

acids are specifically recognized by their cognate aminoacyl-tRNA synthetase (aaRS), 

which then catalyze the synthesis of aminoacyl-tRNA (aa-tRNA) by esterification to 

the appropriate tRNA. Aminoacylation is a two step reaction. In the first step, the 

amino acid is combined with an ATP molecule by α-phosphate attack, forming an 

aminoacyl adenylate intermediate and inorganic pyrophosphate. In the second step, 

the amino acid moiety is transferred to the 3'-terminal ribose of a tRNA molecule 

(Arnez & Moras, 1997). 

 

Aminoacyl-tRNA synthetases catalyse the same basic reaction, but are nevertheless 

divided in two classes (class I and class II), each with 10 enzymes. Their classification is 

based on molecular size, quaternary structure (class I enzymes are usually monomers 

and the class II enzymes are organized in dimmers) and also on the existence of two 

different active sites, each with conserved sequence motifs and functional 

characteristics (Ludmerer & Schimmel, 1987; Cusack et al., 1990; Eriani et al., 1990). 

Class I and class II enzymes approach the anticodon of their cognate tRNAs from 

opposite sides, binding the acceptor arm and the 3'-terminal CCA of tRNA in a mirror 

symmetric fashion. Class I enzymes are responsible for tRNA aminoacylation at the 2’ 

OH group of the terminal ribose while enzymes from the class II family add the amino 

acid to the 3’OH group (Cusack et al., 1990; Sankaranarayanan & and Moras, 2001); 

(Arnez & Moras, 1997).  
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Within each class, the synthetases can also be arranged into three subclasses 

representing enzymes that are more closely related to each other in the same class, 

mostly due to higher conservation in their sequence (Sankaranarayanan & and Moras, 

2001). 

 

The aminoacylation reaction is extremely specific, due to the existence of both pre-

transfer and post-transfer editing pathways, encoded by a discrete domain that is 

distinct from the aminoacylation active site. Pre-transfer mechanisms involve the 

hydrolysis of misactivated aminoacyl adenylates, produced after the first step of the 

aminoacylation reaction (Baldwin & Berg, 1966), whereas post-transfer mechanisms 

determine the hydrolysis of the incorrect amino acid in mischarged tRNAs (Eldred & 

Schimmel, 1972; Martinis & Boniecki, 2010). Coexistence of pre- and post-transfer 

editing mechanisms within a single aaRS results in a redundancy of fidelity 

mechanisms. Defects in the editing activity cause mistranslation, which can be 

connected with mutagenicity and toxicity in bacteria as well as with severe 

pathologies in mammals (Lee et al., 2006). Therefore, it is thought that the efficiency 

of aaRSs was a determinant event during evolution by allowing sustainable cell 

homeostasis and consequently the development of the tree of life (Schimmel & Ribas 

de, 2000; Schimmel, 2008). 

 

1.2.2. Translation Initiation 

 

1.2.2.1. Prokaryotes 

 

Before incorporation into a nascent peptide, amino acids are delivered to the 

ribosome by tRNAs. During the initiation stage of protein synthesis, the ribosome 

subunits are assembled with the mRNA in the start codon, with a methionyl initiator 

tRNA bound in the peptidyl P-site, forming the translation complex. The AUG 

methionine codon functions as the start codon in the vast majority of mRNAs. The 

GUG valine and UUG leucine codons are used as alternative start codons in 

prokaryotes, around 14% and 3% of the times, respectively, but also get translated as 

methionine (Blattner et al., 1997). 
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Bacteria and eukaryotes contain two different methionine tRNAs. One that can bind 

to the P-site in the ribosome and initiate protein synthesis (Met-tRNAi
Met) and the 

other that only binds to the A-site in the ribosome, being responsible for methionine 

incorporation into growing protein chains. Both are charged by the same aminoacyl-

tRNA synthetase (MetRS). In Met-tRNAi
Met from Bacteria the amino group of the 

methionine is modified by addition of a formyl group and is called fMet-tRNAi
Met. 

However, Met-tRNAi
Met is usually used to designate the initiator tRNA in all cells 

(Lodish et al., 2000). 

Assembly of the translation complex during initiation comprises two steps and 

involves interactions with specific proteins referred to as initiation factors.  In bacteria, 

translation initiation involves the initiation factors IF1, IF2 and IF3.  IF2 has GTPase 

activity and together with IF3 enhances specific binding of the initiator tRNA to the P-

site in the small ribosomal subunit. Initially, IF3 binds strongly to the 30S subunit and 

prevents its association with the 50S subunit. At this point, IF1 is blocking the A-site of 

the small ribosomal subunit. Initiation factors then guide the small subunit and the 

initiator tRNA to a complementary sequence in the mRNA, the Shine-Dalgarno 

sequence. This sequence is located upstream and near the AUG start codon, is rich in 

purines and has on average six out of eight nucleotides complementary to the 3′-end 

sequence of 16S rRNA. This first step of initiation yields a 30S initiation complex. 

Following this process, IF1 is thought to induce a conformational change that prepares 

transition for subunit association. Addition of the large (50S) ribosomal subunit is then 

coupled with release of the IF1 and IF3 protein factors and hydrolysis of GTP bound to 

IF2, yielding elongation-competent 70S ribosomes (Ramakrishnan, 2002; Kapp & 

Lorsch JR, 2004). 

 

1.2.2.2. Eukaryotes 

 

The outcome of the Eukaryotic initiation process is the same as in bacteria, but the 

mechanisms and the machinery involved differ considerably, being much more 

complex. First, there is no Shine-Dalgarno sequence upstream of the initiation codon. 

Also, the mRNA has a 5’ cap consisting of a guanine nucleotide connected to the 
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mRNA via an unusual triphosphate linkage, which ensures molecular stability. Finally, 

there are at least 12 initiation factors in eukaryotes, which consist of at least 23 

different polypeptides. For many of those the function is not yet known (Kapp & 

Lorsch JR, 2004). 

 

The first step of the Eukaryotic initiation process comprises the assembly of an eIF2-

GTP-Met-tRNAi
Met ternary complex. At this point, the small (40S) ribosomal subunit 

binds simultaneously to eIF3, eIF1 and eIF1A. These initiation factors potentiate the 

binding of the ternary complex to the 40s ribosomal subunit, by increasing the 

stability of the resulting 43S preinitiation complex (Figure 1.5-1) (Pestova et al., 1998; 

Chaudhuri et al., 1999; Pestova et al., 2001). This is a crucial regulation point. When 

cells encounter stress conditions, protein kinases are activated to phosphorylate a 

serine residue on the eIF2 bound to GTP, causing a reduction of the eIF2-GTP-Met-

tRNAi
Met ternary complex and protein synthesis inhibition (Sonenberg & Hinnebusch, 

2009). Interaction of the 43s complex with the 5′-capped mRNA requires a set of 

factors that recognize and unwind secondary structures found in the 5’-untranslated 

region (UTR). This is accomplished through the ATP-dependent and cooperative 

action of eIF4F/eIF4B. eIF4F is a multiprotein complex tightly hold by eIF4G and 

bearing RNA helicase activity (eIF4A), cap-binding activity (eIF4E) as well as poly (A)-

binding protein (PAB). eIF4F is also known to be associated with eIF3 (situated in the 

43S complex). eIF4B promotes the ATPase activity and the ATP-dependent RNA 

unwinding activity of both eIF4-A. 

When the Poly (A)-binding protein (PAB) comes to scene it immediately binds to the 

3’-poly (A) tails of eukaryotic mRNAs (Preiss & Hentze, 2003). eIF4E is the rate-

limiting member of the eIF4F complex (Mamane et al., 2004) and associates with the 

5’ cap structure of the mRNA, which contains the 7-methyl-GTP (m7GTP) moiety. 

These interactions are responsible for the circularization of eukaryotic mRNAs, which 

in turn stimulates translation by facilitating loading of the 43S complex to the mRNA 

(Figure 1.5-3). This step also provides a quality control mechanism, since partially 

degraded mRNAs will not be translated efficiently (Jackson et al., 2010). 
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Figure 1.5 – Schematic representation of the Eukaryotic translation initiation and the role of 

the most important Initiation Factors (eIFs). eIF2–GTP–Met-tRNAiMet ternary complex 

associates with the 40S ribosomal subunit and with additional factors such as eIF3 and eIF1A 

(1A), which promote generation of a 43S pre-initiation complex. The eIF4F multiprotein complex 

unwinds the 5’ cap-proximal region of mRNA for ribosomal attachment eventually leading to 

circularization of eukaryotic mRNAs and promoting the binding of the 43S pre-initiation 

complex to the mRNA, producing a 48S pre-initiation complex. AUG scanning and GTP 

hydrolysis by eIF2 preclude the dissociation of factors from the 48S complex. Finally, eIF5B-GTP 

hydrolysis allows joining of the large (60s) subunit giving origin to elongation-competent 80S 

ribosomal complex. Image adapted from Klann and Dever, 2004. 

 

1) 

2) 

3) 

4) 
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After loading, the 43s complex slides along the mRNA in the 5’ to 3’ direction until 

recognition of the correct initiation codon. This is usually the first AUG codon in an 

optimum context, the consensus sequence GCC(A/G)CCAUGG, with a purine at the –3 

and a G at the +4 positions (Kozak, 1999; Kozak, 2002). This favorable context 

sequences are called Kozak signal sequences. Efficiency of translation initiation at a 

certain AUG codon depends on the strength of the signal sequence, weaker meaning 

more different from the consensus sequence. Much less frequently, the preinitiation 

complex binds to internal ribosome entry sites (IRES) within the mRNA sequence, far 

downstream of the 5’ end, and from there scans downstream for an AUG start codon 

(Kapp & Lorsch, 2004; Jackson et al., 2010). 

At this stage, eIF1 helps 43S complexes locating AUG codons that have a favorable 

context and also dissociates the ribosomal complexes that aberrantly assemble at 

such codons, therefore playing a key part in maintaining fidelity of initiation. Codon-

anticodon base pairing between the initiation codon and the initiator tRNA in the 

ternary complex triggers GTP hydrolysis by eIF2, a reaction facilitated by the GTPase-

activating protein (GAP) eIF5. Finally, after release of the Met-tRNAi into the P-site of 

the 40S subunit, eIF2-GDP, eIF1, eIF1A, eIF3, and eIF5 dissociate from the complex 

giving place to eIF2 and also eIF5B-GTP, a yeast homologue of bacterial IF2 (Kapp & 

Lorsch JR, 2004; Unbehaun et al., 2004). eIF5B not only facilitates the release of 

initiation factors from the complex but also the joining of the large (60s) subunit to the 

40S subunit, probably by changes in the subunit’s conformation (Pestova et al., 2000). 

GTP hydrolysis is not thought to be required for this assignment but instead, 

promotes the release of eIF5B from the 80S complex only after the subunit joining 

step has been complete and properly set up to start elongation (Figure 1.5 - 4) 

(Jackson et al., 2010). 
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1.2.3. Elongation 

 

Elongation is much more conserved across the three kingdoms of life than 

termination or initiation. The mechanisms are basically the same in eukaryotes, 

bacteria and archaea (see Figure 1.6). 

With an empty A-site and the initiating Met-tRNAi
Met bound at the P-site and base-

paired with the AUG start codon in the mRNA, bacterial 70S or eukaryotic 80S 

ribosome are ready to move along the mRNA towards its 3’-end. The in-frame 

stepwise addition of amino acids can then begin. Again, a set of special proteins, the 

elongation factors (EFs), are required to carry out the process. In bacteria, each 

aminoacyl-tRNA approaches the ribosome as a ternary complex with an EF-Tu-GTP 

molecule (EF1A-GTP in eukaryotes). If the anticodon of the incoming aminoacyl-tRNA 

correctly matches the positioned mRNA codon, this will result in a tight binding at the 

A-site and trigger GTP hydrolysis by EF-Tu (Kapp & Lorsch JR, 2004; Moore & Steitz, 

2011). Three 16S rRNA bases (A1492, A1493 and G530) are vital for decoding, greatly 

stabilizing the cognate tRNA-mRNA interaction at the A-site (Ogle et al., 2001). The 

tRNA then swings into the peptidyl transferase site, in a process called 

accommodation. Otherwise, the aminoacyl-tRNA simply diffuses away. 

 

1.2.3.1 The kinetic proofreading model 

 

It was initially thought that differences in the free energy of base-pairing were behind 

aa-tRNAs discrimination. However, the difference in free energy for binding between 

cognate and near-cognate tRNAs, which differ by a single codon-anticodon mismatch, 

is only - 3 kcal/mol. This value is insufficient to account for the observed translation 

fidelity (Uhlenbeck et al., 1971; Parker, 1989; Ogle & Ramakrishnan, 2005). The 

explanation for this discrepancy is presented by the kinetic proofreading model, which 

couples the rate of EF-Tu-dependent GTP hydrolysis to tRNA selection.  

 

http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7470/
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Figure 1.6 – Schematic representation of the elongation cycle in E.Coli. Elongation starts with 

70S ribosome containing an empty A-site and the initiating Met-tRNAi
Met

 (green) bound at the P-

site and base-paired with the AUG start codon. Each aminoacyl-tRNA (purple) approaches the 

ribosome as a ternary complex with an EF-Tu – GTP molecule (red). Codon–anticodon pairing 

activates the hydrolysis of GTP and propels the peptidyl-transferase reaction. The ribosome 

then shifts in the 3' mRNA direction to decode the next mRNA codon. Translocation is assisted 

by binding of the GTPase EF-G (dark blue), which allows the deacylated tRNA at the P-site (now 

yellow) to move to the E-site and the peptidyl-tRNA at the A-site to move to the P-site (now 

green). The deacylated tRNA in the E-site (now brown) is released on binding of the next 

aminoacyl-tRNA to the A-site. The ribosome is then ready for the next round of elongation. 

Image adapted from Lodish H et al., 2000. 
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Higher selectivity can be achieved in any process if it involves two very selective steps 

separated by an irreversible step. The ribosome has an important role in aa-tRNAs 

decoding, actively discriminating between correct and incorrect aa-tRNAs. High 

accuracy is achieved because there are two opportunities to examine and discard 

incorrect aa-tRNAs in the ribosome (Hopfield, 1974; Ninio, 1975). The GTPase activity 

efficiently separates selection into two stages, initial selection and proofreading, 

allowing multiple opportunities for rejection of incorrect tRNAs (Thompson & Stone, 

1977). 

 

tRNA selection at the initial selection step is tightly kinetically controlled. GTPase 

rates for cognate tRNAs are four orders of magnitude higher than the rates for non-

cognate tRNA (more than one codon mismatch) (Rodnina et al., 1996). This suggests 

that binding of cognate tRNA causes an increased rate of EF-Tu–dependent GTP 

hydrolysis, leading to preferential release of EF-Tu - GDP from ribosomes that contain 

cognate tRNA bound to the A-site (Pape et al., 1998). Discrimination against non-

cognate ternary complexes can therefore take place preceding EF-Tu–dependent GTP 

hydrolysis, with essentially no energetic cost. Discrimination against near-cognate 

ternary complexes is more difficult and takes place in the subsequent proofreading 

step, after irreversible EF-Tu–dependent hydrolysis of GTP is stimulated but before 

peptide bond formation (Rodnina et al., 1996; Rodnina & Wintermeyer, 2001). 

Remarkably, selection of cognate aminoacyl-tRNAs over near-cognate tRNAs can be 

accomplished by conformational changes in the decoding center, through an induced-

fit mechanism (Pape et al., 1999; Rodnina & Wintermeyer, 2001; Ogle et al., 2002).  

Cognate tRNA binding induces global domain movements in the 30S subunit, 

changing the conformational arrangement of A1492, A1493 and G530, universally 

conserved bases of 16S RNA (Ogle et al., 2001; Ogle et al., 2002). These 

reorganizations in the ribosome structure ultimately boost GTPase activation rate and 

result in higher rates of accommodation, a process in which the acceptor arm of the 

aa-tRNA swings into the peptidyl transferase site after its release from EF-Tu (Pape et 

al., 1999; Rodnina & Wintermeyer, 2001; Ogle et al., 2001), paving the way to peptide 

bond formation. Therefore, there is a high probability that near-cognate aa-tRNA will 
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dissociate at this stage. A specific domain in the large subunit of the ribosome, 

previously implicated in the control of elongation fidelity, was also identified as a 

GTPase-activating center (Sanbonmatsu et al., 2005). Conformational changes are 

transmitted from the decoding center to the large ribosomal subunit through the 

tRNA body (Cochella & Green, 2005a). Therefore, tRNAs are not merely a substrate 

during protein synthesis, revealing a very active contribution for translation accuracy 

through a role in the induced fit mechanism (Weinger et al., 2004). 

 

Remarkably, other ribosomal regions might have a role in the accuracy of codon 

recognition. According to a quite disputed allosteric model for ribosome function, the 

occupation of the E-site with a cognate tRNA decreases the affinity of the A-site, 

which under these conditions discriminates much more effectively against non-

cognate tRNA species (Nierhaus, 2006). 

 

1.2.3.2. Peptidyl Transferase and translocation 

 

Following accommodation, peptide bond formation occurs instantaneously. The α-

amino group of the A-site aminoacyl-tRNA amino acid attacks the ester bond 

between the peptide and the tRNA at the P-site, forming a new peptide bond. Peptide 

bond formation is catalyzed by ribozyme activity located in the peptidyl transferase 

center (Moore & Steitz, 2003) and is also substrate-assisted, due to participation of 

the 2’ hydroxyl group of A76 from the peptidyl-tRNA (Steitz, 2008). The ribosome 

conformation adjusts the position of the reacting groups relative to each other in 

order to decrease the activation entropy of this reaction and provides an optimal 

electrostatic environment by shielding the reaction environment against bulk water 

(Schmeing et al., 2005; Trobro & Aqvist, 2005).This process eventually results in 

deacylation of the P-site tRNA coupled with peptide chain transference to the A-site 

tRNA. Remarkably, the rate of the peptidyl transfer reaction is influenced by the 

nature of the amino acid side chain of the A-site substrate (Wohlgemuth et al., 2008). 
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Finally, in the last step of elongation, the tRNAs bound to the ribosome are 

translocated to the next adjacent position. Alongside, the mRNA is moved by three 

nucleotides, in order to place the next codon of the mRNA into the A-site. Ribosomal 

translocation does not occur at the same time in the large and small subunits (Moazed 

& Noller, 1989). During this process, the P-site bound tRNA changes to a hybrid state, 

with its acceptor end in the exit (E) site of the large ribosomal subunit and its 

anticodon end in the P-site of the small subunit. The A-site bound tRNA changes to a 

similar hybrid intermediate situation, with anticodon and acceptor end tilted between 

the P-site and the A-site of different subunits (Green & Noller, 1997). Complete 

translocation is catalyzed by EF-G - elongation factor 2 (EF2) in eukaryotes - at the 

expanse of GTP hydrolysis. By the end of this process the deacylated tRNA is moved 

to the exit (E) site on the ribosome and is released. The A-site becomes available for 

accepting another aminoacyl-tRNA, starting a new elongation round (Spiegel et al., 

2007). The deacylated tRNA in the E-site is released on binding of the next aminoacyl-

tRNA to the A-site. This cycle is repeated until an in frame stop codon is reached, 

which begins the termination process. 

 

1.2.4. Termination 

 

A stop codon occupying the ribosomal A-site is decoded by Release Factors (RF) 

through RNA-protein interactions that eventually promote the hydrolysis of the ester 

bond between the polypeptide chain and the P-site tRNA, culminating in release of 

the completed polypeptide (see Figure 1.7 a and b).  This reaction is also catalyzed by 

the peptidyl transferase center of the ribosome, in the large ribosomal subunit. 

Evidences from crystallography studies in E.coli highlight the role of 23S rRNA as a 

catalytic entity in the peptidyl transferase center. Thus, rRNA plays an important role 

in maintaining the efficiency of translation termination just as it plays a central role in 

the decoding process during polypeptide elongation (Moore & Steitz, 2003; Steitz & 

Moore, 2003; Polacek & Mankin, 2005). 
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Figure 1.7 - Schematic representation of translation termination. Image adapted from Petry 

et al., 2008. a) Prokaryotes - When a stop codon reaches the A-site (red hexagon) it is decoded 

by either release factor-1 (RF1) or RF2, giving origin to peptide release from the tRNA in the P-

site. Recruitment of RF3–GDP eventually results in RF1/2 release. RF3 is discharged due to 

exchange of GDP for GTP. The binding of ribosomal release factor (RRF) followed by EF-G 

elongation factor and GTP hydrolysis disassembles the ribosomal subunits. Initiation factor-3 

(IF3) is required to dissociate the deacylated tRNA from the P-site. b) Eukaryotes - eRF1 acts 

cooperatively with eRF3 to allow polypeptide chain release from the ribosome. An eRF1–eRF3 

complex binds to the A-site, where eRF1 directly interacts with the stop codon. This step induces 

structural rearrangements in the ribosome, eventually enhancing GTP hydrolysis by eRF3 and 

peptidyl-tRNA hydrolysis thereafter. It is not known how eukaryotic termination complexes are 

recycled for a new round of translation. 

 

a) 

b) 
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1.2.4.1. Prokariotes 

 

In bacteria, translation termination is mediated by two class I release factors (RF1 and 

RF2) that functionally and structurally mimic tRNA molecules (Ito et al., 1996). Class I 

Release Factors recognize stop codons at the A-site and interact with the peptidyl 

transferase activity of the ribosome, thereby stimulating release of the completed 

polypeptide chain. RF3, a class II Release Factor, makes no contribution to catalysis of 

peptide release but enhances the activity of RF1 and RF2, also promoting their 

recycling from the termination complex by a mechanism involving GTP hydrolysis 

(Freistroffer et al., 1997; Zavialov et al., 2001) (see Figure 1.7 a). 

RF1 decodes UAG and UAA stop codons with no difference in binding free energy, 

while RF2 decodes UGA and UAA codons with similar affinities but strongly 

discriminates against both the UAG (stop), due to a large energetic barrier (Scolnick et 

al., 1968; Kapp & Lorsch JR, 2004). The tripeptides Pro-Ala-Thr and Ser-Pro-Phe, hold 

respectively by RF1 and RF2, mediate the recognition and interaction with the stop 

codons. The first amino acid of the tripeptide discriminates the second purine base 

and the third amino acid independently discriminates the third purine base (Ito et al., 

2001). However, there is indication that other domains of the release factors also help 

define the codon recognition ability, by influencing the structure of the tripeptide 

discriminator (Sund et al., 2010). 

 

1.2.4.2. Eukaryotes 

 

In Eukaryotic organisms, translation termination is mediated through the action of a 

single class I release factor (eRF1) that recognizes all three stop codons (UAG, UAA, 

and UGA) (Bertram et al., 2001; Kisselev et al., 2003). The eukaryotic class II release 

factor (eRF3) carries out GTP hydrolysis and ensures rapid and efficient peptide 

release by forming a stable heterodimer with eRF1 (Stansfield et al., 1995; Alkalaeva 

et al., 2006; Pisareva et al., 2006) (see Figure 1.7 b). The crystal structure of human 

and Schizosaccharomyces pombe eRF1–eRF3 complexes suggest that this physical 
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interaction results in eRF1 resemblance to a tRNA molecule (Cheng et al., 2009) (see 

Figure 1.8).  

eRF1 proteins have three distinct functional domains. Domain 1 recognizes stop 

codons in the ribosomal A-site and contains the highly conserved TASNIKS motif. This 

heptapeptide cooperates with eRF3 to trigger conformational changes that enhance 

GTPase activity and thereby efficiently link stop codon recognition and peptide 

release (Frolova et al., 2002; Inagaki et al., 2002; Song et al., 2000). Domain 2 triggers 

peptidyl-tRNA hydrolysis by close interaction with the peptidyl transferase center of 

the large ribosome subunit (Frolova et al., 1999; Seit-Nebi et al., 2001; Song et al., 

2000) and domain 3 mediates eRF3 binding (Eurwilaichitr et al., 1999; Ito et al., 1998) 

(see Figure 1.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 – Representation of eRF1 structure and evidences of molecular mimicry with 

tRNA molecules. The spatial arrangement of domains 1, 2, and 3 in the eRF1 corresponds to 

tRNA anticodon loop, aminoacyl stem, and T stem, respectively. Image adapted from Song et 

al., 2000. 

 

It still remains obscure how eRF1 recognizes all three stop codons. Based on available 

experimental data, current models offer explanations that vacillate between stop 
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codon binding to the TASNIKS motif and the potential existence of cavities on eRF 

domain 1 that physically accommodate the stop codon (Merritt et al., 2010). 

eRF1 and eRF3 bind to each other also in the absence of the ribosome, and this 

interaction is required for optimum efficiency of termination in S. cerevisiae. In 

contrast, no such cytosolic complex was observed between RFs 1 or 2 and RF3 in 

bacteria (Stansfield et al., 1995; Ito et al., 1996). 

 

Translation termination appears to be similar between eukaryotes and Archea, as 

confirmed by the high homology between aRF1 and eRF1. However, until this 

moment no equivalent was found for eRF3 in Archea (Kapp & Lorsch, 2004). 

 

1.2.5. Recycling 

 

Translation is a cyclical process and therefore initiation is always preceded by 

recycling of post-termination ribosomal complexes (post-TCs), composed by the 80S 

ribosome still harboring the mRNA, as well as the P-site deacylated tRNA and eRF1. In 

eukaryotes, recycling is mediated by eIF3, in cooperation with its associated eIF3j 

subunit, eIF1 and eIF1A. The process starts with 60S and 40S dissociation. eIF1 and 

eIF3j then respectively promote release of deacylated tRNA and mRNA from the 40S 

subunits (Fraser et al., 2007). The role of eIF3, eIF1 and eIF1A is then to prevent re-

association of ribosomal subunits, by remaining linked with recycled 40S subunits. 

The 40S subunit is not released back into the cytoplasm, but instead shuttled back to 

the 5-end of the mRNA smoothing the progress of translation reinitiation (Jackson et 

al., 2010). 

In bacteria, post-TCs are recognized by ribosome release factor (RRF) that in 

conjunction with EF-G dependent GTP hydrolysis alters the structure of the ribosome, 

destabilizing the binding of tRNA and mRNA. IF3 then binds and facilitates complete 

subunit dissociation and release of the tRNA and mRNA (Karimi et al., 1999; Lancaster 

et al., 2002). 
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1.3. The fidelity of the biological flow of information 

 

Each of the steps from DNA replication to mRNA transcription and to protein 

synthesis must occur with considerable accuracy to ensure cell survival and viability. 

To maintain genome sequence stability organisms developed a variety of 

mechanisms, namely DNA proofreading, which ensure very low rates of genomic 

mutations during replication (10-10- 10-11 nucleotide exchanges per base pair in 

eukaryotes) (Kunkel & Bebenek, 2000; Goldsmith & Tawfik, 2009).Therefore, an 

almost error-free genome replication is possible, but perfectly synthesized proteomes 

never occur. In fact, the mechanisms leading to the synthesis of functional proteins 

are intrinsically error prone.   

 

The mutation rates of mRNA transcription and translation are 5 and 6 orders of 

magnitude higher, respectively, than that of DNA replication. The error rate for 

transcriptional misincorporation is estimated between 2 × 10–6 (in vitro) and 10-4 

(E.coli) per position, due to an apparent lack of proofreading and repair mechanisms in 

transcription. Inaccuracies in the process of transcription by the RNA polymerase, 

producing a flawed mRNA template then translated by the ribosomes, can be an 

important contribution for the total translation error rate (Goldsmith & Twafik, 2009). 

However, the eukaryotic cell has various mechanisms to deal with mRNAs that direct 

aberrant protein synthesis. Remarkably, mRNAs incorrectly processed because of 

gene mutations or defective synthesis can be very easily identified and eliminated by 

distinct quality control mechanisms—nonsense-mediated mRNA decay, nonstop 

mRNA decay or no-go mRNA decay (Isken & Maquat, 2007). 

 

Efficient translation requires both rapid binding of cognate aminoacyl-tRNAs to their 

respective codons and fast termination of protein synthesis at stop signals by RFs.  In 

E.coli, for every 1000 to 10000 codons translated one amino acid misincorporation 

occurs. Since the average E. coli coding sequence is 335 codons long, 15% of all 

average-length protein molecules contain at least one misincorporated amino acid 

(Parker, 1989; Drummond & Wilke, 2009). In S.cerevisiae, average error frequency 
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varies between 10-4 - 10-5 per codon. Depending on the codon or the sequence under 

study, yeast error frequency is lower than that of E. coli (Stansfield et al., 1998; 

Farabaugh & Björk, 1999; Kramer et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 – Translational errors. a) Missense errors - the substitution of one amino acid for 

another b) Ribossome Frameshifting - Slipage of the ribossome either backward or forward in 

mRNA altering their reading frame (usually +1 or -1) c) Stop codon readthrough – False 

recognition of termination codons as sense codons. 

 

No error 

 

No error 
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Translation elongation is very complex and the potential for the process to go wrong 

is very high. Errors can arise from substitution of one amino acid for another 

(missense, or misreading of sense codons), mostly due to selection of the incorrect 

tRNA by the ribosome or erroneous aminoacylation of tRNAs by aaRSs (misacylation) 

(see Figure 1.9 a). Besides missense, protein synthesis accuracy can also be affected 

by premature termination or stop codon readthrough, which occur with predicted 

error rates in the order of 10-4 to 10-3 per elongation event (Parker, 1989; Keeling et al., 

2004) (see Figure 1.9 c). Translational frameshifting affects processivity, resulting in 

synthesis of polypeptides sharing no homology with the normal product and many 

times truncated due to premature encounter of a termination codon in the shifted 

frame (Parker, 1989) (see Figure 1.9 b). 

 

1.3.1. Missense errors (sense codon misreading) 

 

The study of missense errors in vivo represents a major codon challenge. This is mainly 

related to the fact that aberrant proteins resulting from misreading have essentially 

the same size and amino acid composition as the native proteins (Parker, 1989). The 

few in vivo studies already carried out reported error frequencies ranging from 10-5 to 

10-4 per codon in yeast, a value three times lower than in E. coli, alerting for the 

existence of additional mechanisms that reduce missense errors (Stansfield et al., 

1998; Rakwalska & Rospert, 2004; Salas-Marco & Bedwell, 2005; Plant et al., 2007). 

However, these studies approach only a few codons, a limited number of contexts and 

a small range of all the amino acid changes that can occur at each codon. The most 

sensitive measurements generally rely on a reporter enzyme which is inactivated by a 

single point mutation. In such a system, a stimulation of enzymatic activity is assumed 

to reflect a decrease in the accuracy of the elongation process. Luciferase is many 

times chosen for these misincorporation reporter systems due to the availability of its 

crystal structure and the many genetic studies previously carried out with it (Salas-

Marco & Bedwell, 2005; Kramer & Farabaugh, 2006). 
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Error rate is strongly influenced by competition between cognate and near-cognate 

tRNA and a major cause of missense is low availability of the cognate tRNA. This 

might help explain codon usage bias (nonrandom choices of synonymous codons) in E. 

coli and yeast genomes (Ikemura, 1981; Ikemura & Ozeki, 1983). Codons recognized 

by low-abundance cognate tRNAs are more error-prone than the ones recognized by 

high-abundance tRNAs. The exception to this rule is when misreading involves a 

wobble error and then an abundant cognate tRNA might not be enough to reduce 

error (Kramer & Farabaugh, 2006; Kramer et al., 2010). Missense errors are stimulated 

by amino acid starvation, due to changes in tRNA charging that alter the competition 

between cognate and non-cognate aminoacyl-tRNAs, further supporting this idea 

(Farabaugh & Björk, 1999).  

 

1.3.2. Stop codon readthrough 

 

tRNA suppression of stop codons results in extension of translation and synthesis of 

elongated proteins that can be functional or not, an event that is energetically very 

expensive for cells (Fearon et al., 1994). 

Unlike peptide elongation, high termination fidelity is achieved without the help of a 

proofreading mechanism. The accuracy of termination arises from strong 

discrimination against sense codons in terms of release-factor binding efficiency 

(Sund et al., 2010; Freistroffer et al., 2000).  

 

UAA is preferentially used both in E.coli and S.cerevisiae and UAG is rarely used. The 

available data show that in E. coli, readthrough of UGA (at least 10-2 to 10-3) occurs at a 

higher frequency than that of UAG (7 x 10-3 to 1,1 x 10-4) and that both occur at a 

significantly higher frequency than that of UAA (9 x 10-4 to less than 1 x 10-5).  

Although termination codons represent only ~ 4.7% of all codons, mutations that 

affect fidelity of translation termination usually have very prominent phenotypes, 

including sensitivity to osmotic stress, chromosome instability, respiratory deficiency, 

and cytoskeletal and cell-cycle defects (Valouev et al., 2002). 
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Since in eukaryotes eRF1 is the sole release factor for the three stop codons, its 

activity is critical for translation termination. In yeast, eRF1 levels directly correlate 

with termination efficiency. However, mutations in the yeast genes encoding both 

eRF1 (SUP45) and eRF3 (SUP35) are responsible for suppression of translation 

termination at all three stop codons. Another condition that reduces the efficiency of 

translation termination in yeast is the [PSI+] cellular state, characterized by the 

conversion of eRF3 to a nonfunctional prion form that associates in large aggregates 

within yeast cells (Serio & Lindquist, 1999). As a result, [PSI+] strains experience 

increased level of readthrough due to depletion of functional eRF3. In addition, 

mutations within the small subunit (18S) and large subunit (25S) of ribosomal RNAs 

have also been shown to cause an increased rate of translational readthrough in yeast 

(Liu & Liebman, 1996; Velichutina et al., 2000). 

 

Codon context may also play an effect on the efficiency of translation termination in 

bacteria, yeast and mammals, and this is more striking in sub-groups of highly 

expressed genes (Brown et al., 1990; Mottagui-Tabar et al., 1994). The penultimate 

amino acid in the nascent peptide and the tRNA in the P-site exert regulatory 

influence on termination efficiency. Proximal sequences both upstream and 

downstream of the stop codon contribute to termination fine-tuning and can even act 

synergistically in S.cerevisiae. In yeast, the context influence on termination might 

extend as far as 3 - 6 nucleotides at the 3’ side and signals that mediate efficient 

translation termination are used much more frequently than inefficient signals, as 

would be expected if selective pressure maintained this bias (Bonetti et al., 1995; 

Namy et al., 2001; Keeling et al., 2004). 

The nucleotide context at the 3’ side of the stop codon has a much distinct influence 

on termination efficiency. The identity of the tetranucleotide termination signal, 

containing the stop codon and the first downstream nucleotide (Brown et al., 1990; 

Bonetti et al., 1995; Poole et al., 1995), profoundly influences stop recognition by 

release factors. In accordance, during termination the bacterial release factor RF2 was 
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shown to directly interact with the first nucleotide following the stop codon (Poole et 

al., 1998). 

 

1.3.2.1. Termination errors and cellular function 

 

Translational readthrough can be highly deleterious, but on the other hand it might 

also regulate gene expression by permitting the differential production of more than 

one polypeptide from a single gene (Williams et al., 2004). Also, extending the C-

termini of proteins by stop codon readthrough can markedly alter protein targeting, 

stability and activity, modulating the cellular proteome (Williams et al., 2004; Merritt 

et al., 2010).  

For example, stop codon supression is essencial during the synthesis of many viral 

proteins like the Tobacco Mosaic Virus (TMV) RNA replicase domain and the gag–pol 

fusion protein from the Murine leukaemia virus (MuLV) (Skuzeski et al., 1991). Also, 

some genes were identified in budding yeast and Drosophila where the stop codon 

terminating the ORF is followed by a significantly long (>200 nt) downstream ORF 

(dORF) (Steneberg & Samakovlis, 2001; Namy et al., 2003). 

 

The C-terminal of a protein can be an important determinant of targeting, stability 

and activity. Programmed stop codon readthrough results in proteins with additional 

amino acids at the C-termini and this has the potential to distinctly change the 

properties of the parent protein, ultimately imposing physiological changes for the 

cell.  For example, the yeast PDE2 gene encoding a cAMP phosphodiesterase is 

readthrough between 2.2 and 8%, enlarging the Pde2p protein by 20 amino acids. 

This leads to modifications in cAMP concentrations, changing cell signaling and stress 

responses (Namy et al., 2002). 

 

Alternatively, loss of translational accuracy could result in addition of even a small 

number of amino acids and end up completing a partial targeting signal already 

present at the C-terminus of a protein. This reprogramming event might represent a 
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gain of function that could potentially become genetically dominant and have 

phenotypic consequences for the cell (Williams et al., 2004). Therefore, by expanding 

the range of polypeptides encoded by a core set of genes, stop codon readthrough 

might be evolutionarily advantageous, potentially contributing to cell adaptation and 

survival under changing environments.  

 

The chemical properties of the amino acid selenocysteine (Sec) make it functionally 

essential at the active centre of selenoproteins, mostly involved in anti-oxidant 

activity. The ability to recode UGA codons from a translation termination signal to a 

selenocysteine (Sec) codon is present in all domains of life. This occurs in organisms in 

which UGA is also known to function efficiently as a stop codon and is related with the 

presence of a Selenocysteine Insertion Sequence (SECIS) element in mRNA. The 

SECIS element is defined by characteristic nucleotide sequences and secondary 

structure base-pairing patterns (Hatfield & Gladyshev, 2002). 

 

1.3.3. Frameshift  

 

The reading frame is established during initiation and in normal conditions is 

maintained in translocation events until the stop codon is reached. Frameshifting 

errors arise usually from 2-base translocations, due to a 5’ slip by the ribosome, or 4-

base translocations. A 2-base translocation is usually known as -1 frameshift and a 4-

base frameshift as a +1 frameshift. Polypeptides resulting from a frameshifting event 

have little homology with the normal product. The protein will most likely be non-

functional and shorter than the native protein, since stop codons are abundant in the 

alternative frames (Parker, 1989).  

 

Frameshifting errors are not very frequent. Values for spontaneous frameshifting 

range from 10-4 to 10-3 in bacteria and in eukaryotic cells from 10-5 (yeast) to 10-4- 10-3 

(higher eukaryotes) (Curran & Yarus, 1986; Parker, 1989). Mutations in EF-Tu or in the 

eukaryotic cognate EF-1α might increase the frequency of codon-anticodon 
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mispairing, thereby intensifying the occurrence of spontaneous frameshifting errors 

(Tucker et al., 1989). 

 

Frameshifting can be programmed to occur at rates from 1000- to 10000-fold higher 

than spontaneous frameshift. The expression of certain genes requires specific 

ribosomal frameshifting because the mRNA has coding information for protein in two 

different reading frames. In retroviruses, programmed frameshifting determines the 

synthesis of fusion peptides that function as structural elements. Such signals bypass 

the usual stop codon by shifting the ribosome out of frame by a single nucleotide, 

enabling the viral genome to increase its coding potential.  

Frameshifting may also be responsible for autogenous control, namely, of the release 

factor 2 (RF2). The prfB gene of E.coli, which encodes release factor 2 (RF2), was one 

of the first +1 programmed frameshifting signals to be identified. When RF2 levels are 

high, termination is efficient, and synthesis of RF2 is downregulated. On the other 

hand, low RF2 levels result in inefficient recognition of the UGA codon, stimulating 

frameshifting and RF2 synthesis in the +1 frame (Craigen & Caskey, 1986).  

 

There are general rules for programmed frameshifting. It generally occurs as a result 

of translational pausing, due to codon misreading or downstream secondary 

structures. The pause interferes with reading in the normal frame. During the pause, 

the tRNAs occupying the ribosomal decoding site briefly dissociate from the mRNA 

and rebind to a codon in a new reading frame (Parker, 1989; Farabaugh, 1996). 

The most common form of programmed frameshifting is a −1 simultaneous slippage 

first found in eukaryotic viruses. The signal for -1 frameshift can be broken down into a 

slippery sequence of the form X-XXY-YYZ (where X = G, A, U, or C; Y = A or U; and Z is 

species specific), a linker region of variable length and composition, and a 

downstream region of secondary mRNA structure, typically an mRNA pseudoknot 

(Farabaugh, 1996). 

Pseudoknots have several distinct folding topologies but are generally composed of 

two helical segments connected by single-stranded regions or loops. When the A- and 

P-sites of the ribosome are occupied by the slippery site sequence, the linker region 
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positions the pseudoknot on the surface of the ribosome, inducing elongating to 

pause. The slippery heptamer sequence has a repetitive nature that allows tRNAs 

decoding XXY-YYZ in the initial frame to shift to XXX-YYY in the −1 frame (Farabaugh, 

1996; Dinman, 2006). 

 

Starvation increases frameshifting, especially for certain amino acids like isoleucine, 

lysine, phenylalanine, proline, tryptophan or tyrosine. At first, a shortage of the 

cognate tRNA causes the ribosome to pause with an empty A-site. The suppressed 

codon is then read by an altered cognate tRNA or by a near-cognate tRNA, in those 

cases in which the mutated tRNA is unable to compete effectively for the A-site. 

Either way, a weak interaction is formed with the tRNA, and after normal nucleotide 

translocation the aberrant anticodon - codon interaction weakness prompts the 

peptidyl-tRNA to slip +1 in the P-site (Gallant & Lindsley, 1992). Ribosomes pausing at 

stop codons have a high propensity to frameshift, a situation analogous to 

frameshifting at hungry codons (Bertram et al., 2001).  

 

Programmed frameshifts have now been found in a very wide spectrum of organisms, 

apparently involving paused ribosomes, specific shifty sequences and equally shifty 

tRNAs. The mechanisms are diverse and are likely adapted to the ribosomes of each 

organism (Farabaugh, 1996). 

 

1.3.4 Ribosome Drop-off 

 

Elongation might be delayed at rare codons or due to interactions between the 

nascent peptide and the ribosome within the peptide tunnel. This holdup can cause 

dissociation of tRNA from the mRNA and concomitant ribosome drop-off. This is 

often followed by decay of the mRNA through endonucleolytic attack and destruction 

of the incomplete polypeptide (Buchan & Stansfield, 2007). 

In addition, the ribosome can also slide over hungry codons, resuming translation 

many nucleotides downstream, at an mRNA triplet complementary to the anticodon 
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of the peptidyl-tRNA. The resuming codon might not be in the original reading frame. 

Also, the efficiency of resuming declines with the length of the slide. There may be 

sequence contexts around or between the takeoff and landing sites that affect the 

frequency of sliding (Gallant & Lindsley, 1998). This tendency of ribosomes to ramble 

is greatly stimulated at hungry codons, but ribosomes in unstarved cells also stall or 

pause in vivo. E.coli ribosomes stalled at the rarely used arginine codon AGA do not 

resume under normal conditions, only when a tRNA that reads the codon is 

overproduced (Misra & Reeves, 1985). 

 

1.4. Translational Quality Control 

 

Gene expression represents a huge investment in energy, raw material and cellular 

resources. Selection for error minimization is a major driving force for genome 

evolution, constraining codon usage, codon context and major features of the 

translational machinery (Parker, 1989). A considerable effort is dedicated to 

optimizing the efficiency, responsiveness and accuracy of the translation process, 

since incorrectly synthesized proteins can critically interfere with processes essential 

to viability. Therefore, organisms developed mechanisms for reduction of error 

frequencies and also tolerance strategies that allow them to cope with the 

physiological consequences of protein-synthesis errors. 

 

1.4.1. Reduction of error frequency 

 

1.4.1.1. Double – sieve mechanism 

 

During translation, aaRSs play a crucial role in maintaining a high accuracy (Schimmel 

& Soll, 1979; Carter, Jr., 1993). Each amino acid is specifically recognized out of twenty 

by its cognate aminoacyl-tRNA synthetase and esterified to the appropriate tRNA to 

form an aminoacyl-tRNA. tRNA molecules are large enough to provide a considerable 

number of specific interactions with synthetases, smoothing their recognition (Giege 
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et al., 1998) to error values in the order of 10-6 or less. Amino acids are much smaller 

than tRNAs and for many of them the side chains are structurally and chemically quite 

similar, and therefore their specific recognition could be a major problem, as in the 

case of valine, isoleucine and threonine. Surprisingly, experimentally determined error 

rate in amino acid selection is quite low, in the range of 10–4 to 10–5 

(Sankaranarayanan & Moras, 2001). These values are explained by kinetic 

discrimination and proofreading (or editing) mechanisms occurring in two different 

catalytic sites of aaRSs, suggesting a double-sieve model of fidelity. This ensures that 

the correctly charged cognate tRNA is inserted into the A-site, contributing to the 

overall protein synthesis fidelity before peptide bond formation.  

 

In a first stage, the synthetic site of aaRS shows some specificity by recognizing 

specific properties in each amino acid and sterically excluding amino acids with larger 

side chains than the cognate. However, amino acids having similar properties and a 

smaller size than the cognate amino acid can still be wrongly activated by adenylation 

and even misacylated at too high frequencies (Sankaranarayanan & and Moras, 2001; 

Cochella & Green, 2005b).  

 

The solution for this discrimination problem became clear after the study of class I 

IleRS activity (Eldred & Schimmel, 1972). Valine is smaller than isoleucine by only a 

methylene group, being activated and charged on the tRNAIle quite frequently. To 

prevent the eventual misincorporation of valine instead of isoleucine in nascent 

polypeptides, these enzymes have evolved a second active site, distinct from its 

synthetic aminoacylation active site - the editing site. Editing may occur through 

hydrolysis of the incorrectly formed aminoacyl adenylate (pre-transfer mechanism) or 

clearance of mischarged tRNAs (post-transfer mechanism) (Eldred & Schimmel, 1972; 

Sankaranarayanan & Moras, 2001) (Figure 1.10). Pre- and post-transfer editing 

activities are usually redundant and co-exist in tRNA synthetases. However, one of the 

mechanisms is frequently more prevalent and the other one is activated only if the 

first is compromised to prevent loss of protein synthesis accuracy (Martinis & 

Boniecki, 2010). 
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 At first it was not clear how val-tRNAIle translocation occurs from the synthetic site to 

the editing site which is more than 25 Å away. There are now evidences that the tRNA 

molecule is directly involved in the translocation event (Schmidt & Schimmel, 1995). 

The CCA-end of the tRNA changes from a hairpin to a helical conformation in order to 

bend and shuttle the incorrectly added valine to the editing site, where it gets 

hydrolyzed. The mechanism of editing is very similar in a related class I enzyme, ValRS 

(Lin & Schimmel, 1996). 

 

 Figure 1.10 - Double-sieve mechanism for fidelity during tRNA aminoacylation. A non-

cognate amino acid (red) might be activated at the synthetic site of aaRS and immediately 

hydrolysed and released. However, the reaction might proceed, resulting in the synthesis of a 

mischarged aminoacyl-tRNA that might then be translocated into the editing site of the aaRS 

for hydrolysis. However, the release of mischarged aminoacyl-tRNA from the aaRS without 

being edited is also possible, but usually culminates in editing by trans-editing factors or EF-Tu 

(purple) discrimination. Image adapted from Reynolds et al., 2010. 

 

Not much is known about how class II enzymes discriminate against closely related 

amino acids. The most studied is the editing mechanism of ThrRS. ThrRS must 

discriminate threonine from the isosteric valine and from serine, which is smaller but 

has a γ- hydroxyl group like threonine. It is thought that the CCA-end conformation of 

the tRNA changes in order to bend towards the editing site, but from helical to 
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hairpin, in symmetry with the mechanism for class I enzymes (Sankaranarayanan & 

Moras, 2001). 

 

Some of the mischarged tRNA might dissociate from the aaRS instead of entering the 

editing site, escaping accuracy control. However, rather than being held directly by 

EF-Tu for protein synthesis, these released mischarged tRNAs can still rebind to the 

aaRS, allowing resampling by the editing site (Ling et al., 2009b). Trans editing also 

occurs through the action of autonomous factors like YbaK deacylase, which binds to 

ProRS and competes with EF-Tu for mischarged tRNAs, eventually hydrolyzing the 

non-cognate amino acid. In mammals, the trans-editing factor AlaX competes with 

EF-1α for Ser-tRNAAla in a process also dependent of AlaRS association, which plays a 

major role against neurodegeneration (Lee et al., 2006) (Figure 1.10). 

After aminoacylation, quality control of aminoacyl-tRNA might also be 

complemented by EF-Tu binding specificity. Experimental evidences confirm that EF-

Tu binds very weakly to misacylated tRNAs, such as Glu-tRNAGln and Asp-tRNAAsn, 

therefore preventing delivery in the ribosome and misreading of the corresponding 

codons (Stanzel et al., 1994; Roy et al., 2007; Ling et al., 2009a). 

Also, in higher eukaryotes aa-tRNA synthesis and proofreading takes place in 

multisynthetase complexes that also include translation elongation factors and 

associate with polysomal ribosomes. Some evidences suggest that this increases 

protein synthesis efficiency (Reynolds et al., 2010a). 

 

1.4.1.2. Quality control by the ribosome 

 

Missense errors might result in misfolded or non-functional proteins that must be 

refolded or destroyed after translation is finished. Remarkably, a new ribosome-

centred mechanism characterized recently monitors the fidelity of protein synthesis 

after the formation of a peptide bond. The ribosome seems to recognize errors by 

evaluating the codon–anticodon helix in the P-site of the small subunit. Once an error 

occurs, the ribosome becomes much less efficient at adding amino acids; a general 
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loss of specificity in the A-site of the ribosome then results in several consecutive 

position mismatches in the P-site, until synthesis eventually stops and the polypeptide 

chain is released from the translational machinery prematurely. RF2 and RF3 are key 

players in the process by substantially accelerating the rate constant for peptide 

release activity, enhancing even more the overall accuracy. It had already been shown 

that RF3 stimulates release on certain ribosome complexes containing a near-cognate 

stop codon in the A-site (Zaher & Green, 2009). This post-peptidyl transfer process 

might contribute an order of magnitude to fidelity in vivo.  

 

1.4.2. Increased tolerance – Proteostasis mechanisms 

 

At an error rate of 10–4 (global error rate), 18% of proteins expressed from an average 

length (~400-codon) gene contain at least one misreading substitution. Around ~10–

50% of random substitutions disrupt protein function but many more result in 

misfolding (Drummond & Wilke, 2008). Aberrant misfolded proteins expose natively 

buried hydrophobic residues and might bind to nonpolar exposed areas in other 

misfolded proteins, resulting in the formation of aggregates (Bucciantini et al., 2002). 

Protein aggregation has been linked to severe cytotoxic effects and to the 

pathogenesis of several neurodegenerative diseases. The buildup of protein 

aggregates is particularly deleterious to post-mitotic cells like neurons, presumably 

because they cannot dilute the toxic species during cell division (Ding et al., 2005; Lee 

et al., 2006).  

 

Whether a polypeptide folds correctly or aggregates after synthesis depends on the 

kinetic competition between folding and aggregation (Kopito, 2000). Under stress, 

protein homeostasis mechanisms function as an integrated network that efficiently 

buffers the effects of decreased translational accuracy by acting on newly synthesized 

misfolded proteins before they can negatively impact cellular processes (Garcia-Mata 

et al., 2002). Efficient and correct folding in vivo is strongly dependent on molecular 

chaperones (Figure 1.11). Chaperones interact transiently with misfolded or partially 
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folded intermediates, stabilizing exposed hydrophobic residues and preventing 

incorrect molecular interactions. This mechanism eventually allows the protein to 

achieve proper folding.  

The Hsp70 homolog Ssz1p and the Hsp40 homolog zuotin A compose a stable 

heterodimer, the ribosome-associated complex (RAC). Together with Ssb1/2p, 

another Hsp70 homolog, RAC are anchored to ribosomes and directly interact with 

nascent polypeptides, maintaining them in a folding-competent state and facilitating 

their transit through the ribosomal tunnel. Lack of functional RAC or Ssb1/2p causes 

severe problems in translational fidelity, which are strongly enhanced by 

paromomycin and correlated with growth inhibition (Rakwalska & Rospert, 2004). 

 

Protein aggregation is however inevitable in cells and exacerbated because of intrinsic 

and environmental conditions such as oxidative stress, resulting in protein oxidation 

and carbonylation, and stress caused by heat, pH variation, changes in ionic strength 

and heavy metals.  Aggregated proteins in the cytosol of S.cerevisiae are recovered by 

the coordinated action of the Hsp70 system (Ssa1/co-chaperone Ydj1) and the 

oligomeric ring-forming AAA+ chaperone Hsp104.  

Hsp104 is a hexameric member of the HSP100/Clp family of ATPases and unlike other 

chaperones is not involved in preventing unspecific aggregation, but in repair 

functions after stress, by disaggregating misfolded proteins (Glover & Lindquist, 

1998). Hsp104 is expressed at very low levels under normal conditions, but is induced 

under stress, enhancing cell survival from 100 to 1000-fold under extreme 

temperatures.  

Hsp104 chaperones are not able to disaggregate substrates effectively on their own. 

Hsp70 restricts the access of proteases to the aggregates and assigns their 

transference to the substrate-processing pore of Hsp104, discriminating in favor of 

protein refolding (Zietkiewicz et al., 2004). The polypeptides are then present to 

Hsp104 and unfolded in a process mediated by ATP hydrolysis, which generates the 

necessary force to pull the substrate into the central translocation channel. The 

unfolded polypeptides are released following translocation and refold either 
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spontaneously or with the assistance of chaperones (Weibezahn et al., 2004; Lum et 

al., 2004). 

 

The chaperone-mediated protein disaggregation process is also facilitated by direct 

interaction of small heat shock proteins (sHSPs) with protein aggregates (Haslbeck et 

al., 2005a). In the cytosol of S. cerevisiae two sHsps coexist, Hsp26 and Hsp42. The 

expression profiles of Hsp42 and Hsp26 are very similar. Both proteins are undetected 

during exponential growth and their synthesis is induced during diauxic shift and at 

heat shock temperatures (Haslbeck et al., 2004). 

Small heat shock proteins (sHsps) selectively bind to misfolded proteins, preventing 

their irreversible aggregation by trapping them in a folding-competent state and 

inducing a more efficient disaggregation by the Hsp70 – Hsp104 system (Haslbeck et 

al., 1999; Haslbeck et al., 2005b). Therefore, the sHSP–substrate complexes function 

as a reservoir of misfolded proteins during stress conditions. sHSP in multicellular 

eukaryotes might potentially allow Hsp70 chaperones to act on aggregates even 

without the cooperation of an Hsp104-like AAA+ chaperone. It is remarkable that in 

higher eukaryotes Hsp104 homologues exist only in the mitochondria or chloroplasts. 

However, various studies showed that animal cells can solubilize aggregates, 

demonstrating the subsistence of a disaggregation activity in the absence of Hsp104 

(Cohen et al., 2006; Tyedmers et al., 2010). 

 

Cellular proteins that are unable to fold properly can also be targeted for degradation 

by the ubiquitin-proteasome system (UPS). The proteasome is a multisubunit 

complex located in the cytosol and nucleus that mediates degradation of cytosolic, 

nuclear, secretory and transmembrane proteins. Degradation of proteins via the UPS 

involves two distinct steps: targeting by covalent conjugation of multiple moieties of 

ubiquitin and degradation of the tagged substrate. Substrates of the UPS are marked 

with ubiquitin in a three-step ATP-consuming mechanism catalyzed by the enzymes 

E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme) and E3 (ubiquitin 

protein ligase). The first two enzymes are responsible for activation and transfer of 

ubiquitin to E3 that then catalyzes formation of a polyubiquitin chain anchored to the 
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targeted protein. Polyubiquitination of some proteins also requires E4 enzymes that 

cooperate with E3 ligases to extend the polyubiquitin chain. Finally, the polyubiquitin-

tagged protein is degraded by the 26S proteasome, and free ubiquitin is released 

(Hershko & Ciechanover, 1998; Glickman & Ciechanover, 2002). 

 

In vitro studies show that members of the 70-kDa family of molecular chaperones 

(Hsc70) are required for ubiquitin conjugation in mammals and subsequent 

degradation of certain proteolytic substrates. Molecular chaperones might act by 

unfolding the substrate to expose an ubiquitin ligase-binding site. Also, the chaperone 

can form a complex with the target substrate that serves as an intermediate in the 

proteolytic process. Hsc70 and E3 act together to generate the ubiquitinated 

substrates that are recognized by the 26 S proteasome (Bercovich et al., 1997). 

 

Remarkably, protein aggregation directly impairs the function of the UPS, by 

saturating the capacity of molecular chaperones required for UPS function and 

causing accumulation of intracellular ubiquitin conjugates and UPS substrates (Bence 

et al., 2001). Therefore, in a positive feedback mechanism, protein aggregates can be 

simultaneously inhibitors of the pathway and the products that result from its 

inhibition, which results in an additional decline in UPS function. 

 

In mammalian cells under stress and rapidly accumulating unfolded proteins the 

capacity of the quality-control systems might be exceeded. Protein aggregates are 

then transported via microtubules to organelles named aggresomes, localized to an 

indentation of the nuclear envelope at the microtubule-organizing centre (MToC). 

Recognition and transport to aggresomes is usually mediated by substrate 

ubiquitynation, but other signals might also be involved. In addition to protein 

aggregates, aggresomes are enriched in molecular chaperones, ubiquitination 

enzymes and both 19S and 26S proteasome subunits (Johnston et al., 1998; Kopito, 

2000). Although prominent aggresomes are not normally seen in unstressed cells, this 

aggresome pathway might actually be a fundamental process that occurs 
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continuously to allow cells to deal with misfolded proteins that might escape other 

quality control mechanisms (Garcia-Mata et al., 2002). It is now known that clearance 

of aggregated protein sequestered in the aggresomes might be done by autophagy. 

How this process is regulated remains obscure (Pankiv et al., 2007; Rodriguez-

Gonzalez et al., 2008). Aggresomes have also been detected in yeast, with a 

constitution closely similar to the mammalian counterparts (Wang et al., 2009) . 

  

 

Figure 1.11 – Simplified schematic representation of the proteostasis network. Chaperones 

act at several levels, through the folding of newly synthesized proteins, remodelling of misfolded 

states and disaggregation. Protein degradation is mediated both by the UPS and autophagy 

pathways. Image adapted from Hartl et al., 2011.  

 

Autophagy occurs at a basal level in normal growing conditions but certain types of 

environmental stress can result in a dramatic induction. Autophagy is responsible for 

bulk sequestration of cellular material into autophagosomes, double-membrane 

vesicular structures that in the end deliver these contents to the lysosome for 

degradation by hydrolytic enzymes and eventual recycling of the resulting 
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macromolecules (Yorimitsu & Klionsky, 2005). Autophagy is envolved in cellular 

homeostasis and also in processes such as cellular differentiation, cell defense and 

adaptation to adverse environments and metabolic changes within the cell (Cuervo, 

2004). While UPS is essentially a fast degradation process, autophagy can therefore 

be a selective one (Kim et al., 2008) with a major role in removing excess or damaged 

organelles, parts of Golgi and endoplasmic reticulum, and even selective areas of the 

nucleus. Specific targeting mechanisms play a role in engulfment of mitochondria, 

peroxisomes, ribosomes and normally long-lived cytoplasmic substrates into 

autophagosomes. 

 

There is close cooperation between UPS and autophagy in yeast cells. Several reports 

propose that some substrates are degraded by more than one protein degradation 

pathway. During acute nutrient starvation in yeast, amino acids for synthesis of new 

proteins are provided mainly by the UPS system, whereas during prolonged starvation 

autophagy becomes the major amino-acid-mobilizing pathway. Apparently, when 

proteasomal degradation is blocked the intracellular amino acid pool diminishes, 

which facilitates autophagy activation (Mizushima, 2007). 

 

A buildup of cytosolic protein aggregates increases protein misfolding in the 

endoplasmic reticulum (ER), resulting is ER stress and induction of the unfolded 

protein response (UPR). The UPR involves upregulation of ER chaperones, promoting 

further degradation of misfolded polypeptides and might ultimately mediate 

apoptotic death, under conditions of extreme and prolonged ER stress (Rutkowski & 

Kaufman, 2004; Rochet, 2006). 
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1.5. Objectives of this work 

 

Protein effectors are involved in nearly all cellular activities, conveying gene 

expression programs and managing all the physiological needs as well as adaptation 

to unfavorable environments. Translational errors represent a high energetic cost and 

are usually involved in deleterious phenotypes. Recent studies link mRNA 

mistranslation to cancer, neurodegeneration, aging and metabolic imbalances, 

especially under conditions that hamper protein control mechanisms. Interestingly, 

chromium toxicity was recently linked to decrease in protein synthesis fidelity 

(Holland S et al., 2007), suggesting that environmental stressors may deregulate the 

translational machinery and disrupt protein homeostasis. 

 

In line with previous studies, this work focuses mainly on the disclosure of a general 

link between environmental stress and the fidelity of eukaryotic protein synthesis, 

also exploring a potential correlation with evolution. Four main objectives are 

addressed along this thesis: 

a) Quantify sense codon misreading and stop codon readthrough under 

environmental stress. 

b) Characterize the cellular tolerance to mistranslation, under several specific 

environmental contexts. 

c) Characterize mistranslation control mechanisms by exploring the effects of 

stress on key elements of the translational machinery. 

d) Characterize a model of constitutive mistranslation depleted of key 

homeostasis regulators. 
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2.1. Introduction 

 

2.1.1. mRNA mistranslation and proofreading 

 

The maintenance of homeostasis is pivotal for cell survival. Environmental stress, 

including the response to environmental chemicals and radiation, as well as nutrient 

restrictions, plays a key role in degeneration and disease. Cells have evolved efficient 

mechanisms for gene expression regulation that swiftly guarantee survival and 

development under changing and sometimes particularly adverse environments. 

Accordingly, the flow of biological information from DNA to mRNA and then to 

protein must occur accurately and yet at a biologically significant rate, to cope with 

physiological and environmental needs without affecting the protein output.  

To date, the effect of environmental stressors has been addressed mostly at the DNA 

mutagenesis level. Initially, mutagenesis was portrayed a random and stochastic 

process, blind to distinct environments. More recently, bacterial, yeast, and human 

cells were shown to possess mechanisms that stimulate mutagenesis rates specifically 

under the control of cellular stress responses. This stress-induced mutagenesis (SIM) 

allows cells to rapidly evolve and adapt to environmental changes (Galhardo et al., 

2007; Shee et al., 2011). 

 

During translation, both efficiency and accuracy conflicting demands are answered 

through the evolution of multiple accuracy mechanisms that block misincorporation 

events. Reducing translation error frequency to a minimum takes a huge but 

necessary kinetic price (Piepersberg et al., 1979). At least 95% of metabolic energy is 

consumed for protein synthesis in E. coli and S.cerevisiae (Jakubowski & Goldman, 

1992). Protein synthesis errors occur at an average low frequency of around 1 

misincorporated amino acid per 104 codons. This value reflects the cumulative fidelity 

of cognate tRNA aminoacylation and the decoding process performed by the 

ribosome. Remarkably, translational errors might in some cases represent the 

flexibility of alternative readings and became an advantage to organism evolution. 
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The spectrum of possible error types and mechanisms is quite diverse, however, not 

much is known about the effects of environmental stress on translation fidelity. 

 

The occurrence of sense codon misreading (missense errors) brings coding ambiguity 

to the cell and is typically related to a single-base-pair mismatch between codon and 

anticodon or to the use of erroneously charged tRNAs (misacylation). The substitution 

of one amino acid for another has been previously detected in cells whose metabolism 

is unbalanced both by amino acid limitation or high-level production of a particular 

protein, occurring more frequently at the first or third position of the codon (Parker et 

al., 1983; Parker & Precup, 1986). In addition, in E.coli, the amount of amino acid 

misincorporation can also be increased by exposure to aminoglycoside antibiotics, 

such as streptomycin and neomycin (Parker, 1989). Finally, according to recent 

studies, high rates of tRNA misacylation with methionine might occur in mammalian 

cells, primarily as a defense mechanism against reactive oxygen species (ROS) (Netzer 

et al., 2009;). Also, in vitro data shows that methionyl-tRNA synthetase (MetRS) from 

E.coli is sufficient to mismethionylate several tRNA species (Jones et al., 2011). 

Methionine residues act as catalytic antioxidants, thereby protecting both the protein 

where they are located and other macromolecules (Luo & Levine, 2009). 

 

Processivity errors such as premature termination and stop codon readthrough occur 

with a predicted error rate in the order of 10-4 to 10-3 per elongation event (Parker, 

1989; Valente & Kinzy, 2003; Keeling et al., 2004). Translational frameshifting also 

affects processivity and occurs by tRNA shift of one or two bases in either 5’ or 3’ 

direction (Farabaugh & Björk, 1999). Processivity errors occur up to an order of 

magnitude more frequently than sense codon misreading errors (Parker, 1989; 

Stansfield et al., 1998) and usually result in the synthesis of non functional or even 

deleterious polypeptide sharing no homology with the expected product. 

Efficient recognition of the standard genetic code is required for viability. However, in 

some viral genomes and several yeast genes, readthrough of stop codons is part of a 

regulated reprogramming mechanism, an important part of gene expression control 

(Namy et al., 2004). These events subvert the normal decoding rules by allowing the 



Chapter 2 

 

52 
 

synthesis of two related proteins from the same mRNA, sometimes with distinct 

biological functions, enhancing the coding potential of complex genomes (Namy et 

al., 2003). Reprogramming mechanisms might also lead to changes in both cell 

signaling and stress responses (Namy et al., 2002). Remarkably, increased levels of 

readthrough in [PSI+] yeast strains might under specific conditions confer a 

phenotypic advantage, namely by enhancing tolerance to environmental stress 

(Eaglestone et al., 1999). 

  

2.1.2. Protein homeostasis mechanisms 

 

Protein native and non-native conformations are separated by a surprisingly low 

energy barrier (Tyedmers et al., 2010). Both stress and defects in protein biogenesis 

greatly increase the risk of misfolding, with a concomitant loss of protein function. In 

order to better cope with costly protein-synthesis errors, organisms evolved strategies 

not only for improved accuracy but also for increased tolerance to unavoidable errors. 

Cells rely on molecular chaperones to capture and refold misfolded proteins. If 

refolding is unattainable, misfolded proteins are targeted for degradation. In cells with 

high degree of error-induced protein misfolding the buffering capacity of proteome 

quality control mechanisms is stimulated but might not be enough to prevent the 

buildup of protein aggregates (Garcia-Mata et al., 2002). This system overwhelm is 

linked to a number of disease states and might ultimately result in cell death (Dobson, 

2004). 

 

Small heat shock proteins (sHsps) like Hsp26 and Hsp24 are upregulated in response 

to conditions that increase protein unfolding and restrain the buildup of protein 

aggregates (Haslbeck et al., 2004). After heat shock, both Hsp26 and Hsp24 deletion 

mutants accumulate large amounts of cytosolic protein aggregates. In cells with the 

double deletion, an even higher increase of insoluble protein is observed (Liberek et 

al., 2008).  
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In S. cerevisiae, Hsp104 is induced under heat, ethanol, and sodium arsenite exposure 

(Sanchez et al., 1992). However, unlike other chaperones, Hsp104 is exclusively 

involved in repair functions after stress, by disaggregating misfolded proteins (Glover 

JR & Lindquist S, 1998). In this process, Hsp70 chaperones are first required to remove 

polypeptides from the aggregates, composed both of misfolded proteins and sHsps in 

stable complexes (Tyedmers et al., 2010).  

 

In eukaryotic cells, the ubiquitin–proteasome system (UPS) is the central pathway for 

eliminating misfolded proteins (Hershko & Ciechanover, 1998; Wolf & Hilt, 2004). 

Rpn4p expression is induced under a variety of stress conditions and is required for 

normal levels of intracellular proteolysis, functioning as a positive transcriptional 

regulator of genes encoding proteasomal subunits (Xie & Varshavsky, 2001; Holland et 

al., 2007; Thorsen et al., 2009; Xie & Varshavsky, 2001). Autophagy can also be 

activated for clearance of aggregated proteins. Atg5p is essential for autophagosome 

formation and acts at a very initial stage of the autophagic process (Yorimitsu & 

Klionsky, 2005; Codogno & Meijer, 2006).  

 

Changing environmental conditions often lead to a cellular adjustment in the number 

and quality of ribosomes. Under starvation, recent experimental evidences 

demonstrate the occurrence of ribophagy, a new form of autophagy by which the cell 

selectively degrades ribosomes. One of the proteins crucial for this process is Bre5p, 

identified as an ubiquitin protease cofactor (Kraft et al., 2008). Remarkably, this 

evidence strengthens the suggestion of a direct connection between the selective 

autophagy and the ubiquitin-proteasome pathway. Since both processes play an 

important role in many diseases such as Alzheimer’s or Parkinson’s, ribophagy is an 

important piece for a better understanding of many pathological mechanisms. 

 

2.1.3. Environmental Stress Response and protein homeostasis 

 

In yeast, many of the protein homeostasis mechanisms are induced as part of the 

Environmental Stress Response (ESR), a gene expression program strategically 

http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=45
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=45


Chapter 2 

 

54 
 

activated for cellular adaptation and survival after a shift to an unfavorable 

environment (Gasch et al., 2000). The ESR is defined by transient growth arrest and an 

overall translation repression of housekeeping genes, coupled with the selective 

induction of transcripts critical for safeguarding adjustment and survival. Program 

initiation is tightly controlled in response to each distinct environment change. 

Therefore, regulation of these expression changes is gene-specific and condition-

specific (Gasch AP, 2002). The magnitude of the changes in gene expression is directly 

linked to the extension of the environmental stress.   

 

Coordinated changes in expression of numerous chaperone genes are a common 

feature in response to many unfavorable environments (Werner-Washburne et al., 

1989; Kobayashi & McEntee, 1990; Susek & Lindquist, 1990). Among the most 

induced genes as part of the ESR are small heat shock proteins like HSP12 or HSP26, 

along with members of the Hsp70 family of chaperones (SSA4, SSE2) and HSP104 

(Gasch et al., 2000). Genes involved in both ubiquitin ligation and conjugation also 

participate in the ESR. Ubiquitination is essencial to target misfolded proteins for 

degradation in the proteasome (Glickman MH & Ciechanover A, 2002).  

 

2.1.4. Cellular stress and the translational machinery 

 

In S. cerevisiae the reprogramming of gene expression in response to stress is 

triggered by the highly coordinated and flexible action of several transcription factors, 

many of them acting in combination. The yeast activator protein (Yap) family of b-ZIP 

transcription factors includes eight members, each regulated in a specific and distinct 

manner. For example, Yap1p, Yap2p and Yap8p, are essential to guarantee 

homeostasis under exposure to oxidative stress (Fernandes et al., 1997; Temple et al., 

2005). The transcriptional activity of Yap1p is usually regulated by a change in cellular 

localization. High cellular levels of ROS activate cellular pathways that culminate in 

formation of an intramolecular disulfide bond in Yap proteins. The resulting 

conformational change allows their transit from the cytoplasm to the nucleus and 
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concomitant transcription of anti-oxidant genes like TRX2 and GSH1 (Gulshan et al., 

2005). 

 

Excess of ROS can lead to oxidation of cellular macromolecules, such as nucleic acids, 

proteins, and lipids, resulting in impairment of important physiological functions.  

Oxidative stress impacts cells at least partially through targeting the translational 

machinery and the protein quality control machinery. For example, oxidation of 

mRNA does not necessarily suppress protein synthesis but results in a loss of 

translational efficiency by promoting premature termination and synthesis of 

modified full-length non functional proteins. In either case, potentially deleterious 

misfolded protein species can be generated and contribute to accumulation of protein 

aggregates, especially under conditions of saturated quality control capacity (Ding et 

al., 2005). 

 

Chromate [Cr(VI)] is a highly toxic metal, classified as a carcinogen and a prevalent 

pollutant resulting from human activities.The major molecular mechanism of 

chromium toxicity was recently unveiled and linked to a decrease in translational 

accuracy. First, Cr exposure leads to sulfur starvation in yeast (Pereira et al., 2008) 

both by inhibiting sulfate uptake and by competition with the sulfate metabolism. 

This eventually results in depletion of the S-containing amino acids methionine (Met) 

and cysteine (Cys) (Pereira et al., 2008; Holland et al., 2010), altering the competition 

between cognate and non-cognate aminoacyl-tRNAs for codons and culminating in 

loss of translation accuracy (Farabaugh & Björk, 1999; Sørensen, 2001). Incorporation 

of erroneous amino acids originates misfolded proteins that might surpass protein 

homeostasis mechanisms and lead to the buildup of toxic protein aggregates (Holland 

et al., 2007).   

The mechanism of Cr toxicity brings new light to the study of a dynamic connection 

between cellular homeostasis, stress response and components of the translational 

machinery. A number of cellular degenerative effects have been associated to mRNA 

mistranslation, namely through the buildup of misfolded protein aggregates, that can 

eventually be responsible for free radical formation, disruption of membrane integrity 
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and loss of crucial ionic balances (Stefani & Dobson, 2003; Stefani, 2007). Protein 

aggregation can culminate with apoptosis and cell death. 

 

Common environmental contaminants might have an impact of unknown prevalence 

on translation machinery that seems important to reveal, for a better understanding 

of the tolerance mechanisms developed to prevent mistranslation induced cell 

degeneracy. Arsenic (As), cadmium (Cd), mercury (Hg), lithium (Li), ethanol, hydrogen 

peroxide and caffeine are well studied stressors associated with quite distinct 

tolerance and cellular responses in eukaryotes (Thorsen et al., 2009; Stanley et al., 

2010; Valko et al., 2005; Dichtl et al., 1997; Kuranda et al., 2006). However, much 

information is still lacking on the complete mechanisms of action. 

 

In this study we use the yeast model and bicistronic luciferase reporters to approach 

error quantification. Both wild-type cells and deletion mutants defective in protein 

homeostasis were tested under environmental stress conditions. Overall, our results 

demonstrate that the impact of the environmental stressors tested on the 

translational accuracy is quite low and concealed by the integrated activity of a 

number of protein homeostasis mechanisms, with a particular emphasis for 

proteasome activity. Hsp12, a stress protein with unique characteristics, is shown to 

assume an unexpected role in maintaining translational accuracy.  
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2.2. Material and Methods  

 

2.2.1. Strains and growth conditions 

 

The bacterial strains JM109 (endA1 glnV44 thi-1 relA1 gyrA96 recA1 mcrB+ Δ(lac-

proAB) e14- [F' traD36 proAB+ lacIq lacZΔM15] hsdR17(rK
-mK

+)) and DH5α (F- endA1 

glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, 

hsdR17(rK
- mK

+), λ–) were recurrently used in this study for plasmid amplification and 

grown at 37°C in Lysogeny Broth (LB) medium (Formedium) or LB 2% agar 

(Formedium), both supplemented with 50 µg/mL ampicillin when required. 

The S.cerevisiae strains used in this study and their genotype are specified in Table 2.1. 

 

Table 2.1 – S.cerevisiae strains used in the current error quantification study. 

Strain  Genotype  Source 

   

BY4743 MATa/MATα his3Δ 0/his3Δ 0; leu2Δ /leu2Δ 0; met15Δ 

0/MET15; LYS2/lys2Δ 0; ura3Δ 0/ura3Δ 0 

Euroscarf 

Δatg5  BY4743 ; YPL149W::kanMX4/YPL149W::kanMX4 Euroscarf 

Δrpn4 BY4743 ; YDL020C::kanMX4/YDL020C::kanMX4 Euroscarf 

Δbre5 BY4743 ; YNR051C::kanMX4/YNR051C::kanMX4 Euroscarf 

Δhsp26 BY4743 ; YBR072W::kanMX4/ YBR072W::kanMX4 Euroscarf 

Δhsp42 BY4743 ; YDR171W::kanMX4/ YDR171W::kanMX4 Euroscarf 

Δhsp104 BY4743 ; YLL026W::kanMX4/ YLL026W::kanMX4 Euroscarf 

Δhsp12 BY4743 ; YFL014W::kanMX4/ YFL014W::kanMX4 Euroscarf 

Δssb1Δssb2 BY4742 ; YDL229W::kanMX4/ YNL209W:: natMX Dombek K. et al., 2004 

Δtrm9 BY4743 ; YFL014W::kanMX4/ YML014W::kanMX4 Euroscarf 

Δyap1Δyap2 BY4742 ; YML007W::kanMX4/ YDR423C::HIS3 (Azevedo et al., 2007) 

   

 

Yeast cells were cultured at 30ºC/180 rpm in rich YPD medium (1% yeast extract, 2% 

Peptone and 2% Glucose) or selective minimal medium (MM – 0.67% yeast nitrogen 

base, 2% glucose and 0.2% Drop-out mix, lacking the amino acids corresponding to 

the selection markers). Geneticin (G418) was used in deletion strains at a 
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concentration of 200mg/L. Solid media required agar up to 2%. All media were 

sterilized by heat at 120 ºC for 15 – 20 min.  

 

2.2.2. Plasmids 

 

The S.cerevisiae plasmids used in this study are specified in Table 2.2.  

 

Table 2.2 – Luciferase plasmids used in the current study. 

Plasmid  Description Source 

   

pDB688 Yeast PGK promoter and CYC2 transcription 

terminator. 

Salas-Marco et al., 2005 

pDB690   CGA  at the readthrough cassette Keeling K. et al., 2004 

pDB691 UGA  at the readthrough cassette Keeling K. et al., 2004 

pDB722 CAA  at the readthrough cassette Keeling K. et al., 2004 

pDB723 UAA  at the readthrough cassette Keeling K. et al., 2004 

pUA312 Wt AGA (Arg 218) from F-luc mutated to AGC (Ser) This study 

   

 

The vectors from the pDB series (Table 2.2) contain a URA marker and are derived 

from the pYEplac195 expression plasmid. The pDB series bears copies of luciferase 

genes derived from the sea pansy Renilla reniformis (R-luc) and the firefly Photinus 

pyralis (F-luc), merged into a single reading frame with a yeast PGK promoter and the 

CYC1 transcription terminator. pDB pairs 690/691 and 722/723 express respectively 

either an in-frame stop codon or a cognate sense codon (control vector), positioned in 

a readthrough cassette between R-luc and F-luc genes, with the following sequence: 

 

ATG TCG ACG TGC GAT XXX NCG TTC GGA TCC 

 

where XXX is the sense / stop codon and N is a key position influencing termination 

efficiency. The plasmids used for this study hold a cytosine (C) at this position, 

favouring stop codon suppression (see Annexes 1 and 2). 

pUA312 was built from pDB688 by Site-Directed Mutagenesis, using the QuikChange 

Kit (Stratagene) according to the manufacturer’s instructions. For this purpose the 
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following oligonucleotides were designed and ordered from MWG-Biotech AG 

(Germany):  

 

oUA    - GAACTGCCTGCGTCAGCTTCTCGCATGCCAGAG 

oUA    - CTCTGGCATGCGAGAAGCTGACGCAGGCAGTTC 

 

The resulting colonies were picked and grown for minipreps in 5ml LB + ampicillin 

(QIAprep Spin Miniprep Kit, used according to Qiagen’s instructions). The mutation 

was then confirmed by DNA sequencing, using primers adjacent to the introduced 

mutation.  

 

2.2.3. Yeast transformation  

 

For efficient transformation of S.cerevisiae we adapted the LiAc/SS carrier DNA/PEG 

method (Gietz & Woods, 2006), with few modifications. Fresh yeast colonies were 

picked and grown overnight at 30ºC/180 rpm in YPD rich medium. Overnight cultures 

were then diluted 1:1000, grown to mid-log phase (OD600~0,5) and harvested by 

centrifugation at 4000rpm. After washing with 5mL of sterile mQ water, the cell pellet 

was resuspended in 50μL of 0.1M LiAc solution and the following reagents were 

added in the designated order : 500μL 50% (w/w) PEG, 25μL single-stranded carrier 

DNA (2mg/mL) previously denatured for 5min. at 95ºC and 0.1 – 1μg of luciferase 

plasmids. Tubes were vortexed immediately until the mixture was homogeneous and 

then subjected to heat-shock at 42ºC for 45 min. Cells were then harvested by 

centrifugation at 5000rpm, the supernatant was discarded, the pellet resuspended in 

100 μL of sterile mQ water and plated in selective minimal medium plates (MM – 

0.67% yeast nitrogen base, 2% glucose, 0.2% Drop-out mix lacking uracil and 2% agar) 

that were then incubated at 30ºC until colonies were visible.  

 

 

 



Chapter 2 

 

60 
 

2.2.4. Preparation of cell extracts and dual luciferase assays 

 

Individual yeast transformants carrying the dual luciferase vectors were picked and 

grown overnight at 30ºC/180 rpm to stationary phase in minimal medium lacking 

uracil (MM-Ura) and containing 200mg/L of geneticin (G418). Overnight cultures were 

then diluted 1:100 in MM-Ura, grown at 30ºC/180 rpm to mid – log phase (OD600 0,5-

0,6) and exposed for 4h to non lethal concentrations of the environmental stressors 

selected (see Table 2.3).  

 

Table 2.3 - Environmental stressors used during the current study and respective 

concentrations.  

Stressor Concentration 

  

As2O3 200 and 400µM 

CdCl2 125, 60 and 30µM 

HgCl2 25µM 

H2O2 3mM 

LiCl 40mM 

Ethanol 5% 

Caffeine 8mM 

  

 

 Cells were then recovered by centrifugation, washed twice and resuspended in 250µl 

ice cold PBS buffer. After addition of 2/3 volume of glass beads (0.5 mm diameter), 

cells were disrupted using a Precellys homogenizer (Bertin technologies) for 3 x 1 

minutes with 2 min. incubation on ice between each disruption cycle. Cell lysates were 

then centrifuged at 5000 rpm for 15 minutes at 4ºC to remove intact cells and the 

supernatant transferred to a new tube. The Luciferase assay was performed using the 

Dual-Luciferase Reporter Assay System (Promega). Briefly, 50µl Luciferase assay 

reagent II were added to 5 - 20µl of each lysate in a 96 white opaque multiwell plate. 

Relative luminescence units (RLUs) produced by F-luc activity was measured for 10s 

using an available Synergy™ 2 Microplate luminometer module (BioTek). Stop&Glo 

buffer (50µl) was then added to each well to quench F-Luc activity and activate R-Luc 
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that is used as an internal normalization control for both mRNA abundance and the 

efficiency of translation initiation. Control constructs were assayed in each strain to 

determine the theoretical maximal level of expression for reporter systems. 

 

Background measures were made with lysates of non-transformed BY4743 cells 

(lacking the Dual Luciferase Reporter Plasmid) and subtracted from test 

measurements. The ratio F-Luc/R-Luc is a measure of mistranslation and expressed in 

relative luminescence units (RLU). 

 

2.2.5. Viability assay of yeast exposed to environmental stress 

 

Yeast viability was accessed by the colony forming units (CFU) assay. Yeast cells 

harboring dual luciferase vectors (Table 2.2) were grown to mid-log phase (OD600 0,5-

0,6) and exposed for 4h to the indicated concentrations of environmental stressors 

(see Table 2.3). Cells were then collected by centrifugation and washed twice in PBS 

buffer. After counting, 100 cells were plated onto fresh MM-Ura plates.  The number 

of colony forming units (CFU) was determined following incubation at 30ºC for 3 days, 

giving a measure of viability under toxic exposure. 

 

2.2.6. Yeast growth under stress 

 

For growth measurements, exponential phase cultures of yeast cells harboring dual 

luciferase vectors were exposed for 4h to the indicated concentrations of 

environmental stressors (see Table 2.3). The total number of cells in culture was 

monitored using a Vi-Cell (Beckman Coulter) before toxic exposure and after 4h 

incubation at 30ºC. Growth fold changes induced by stress were calculated by the 

ratio between cell number increase and the corresponding incubation time and are 

represented as percentage fold change relatively to control (cells not exposed to 

stress). 
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2.2.7. Statistics 

 

Data is reported as mean±SEM. Significance was tested by one-way ANOVA and t-

test (GraphPad Prism 5). Differences are considered significant when p<0,05. 

 

2.3. Results 

 

2.3.1. An assay system for measuring translation accuracy in yeast 

exposed to environmental stress 

 

The search of a more extensive connection between stress exposure and accuracy of 

protein synthesis demanded a broader screening for potential toxic effectors, which 

we carried out in budding yeast.  S.cerevisiae is one of the most widely used eukaryotic 

model organisms, being extremely easy to grow and manipulate genetically. It is 

thought that up to 30% of genes implicated in human disease have orthologs in the 

yeast proteome (Karathia et al., 2011), making it especially fitted to untangle the 

molecular mechanisms of stress and tolerance or accuracy strategies. 

With this purpose, yeast cells were transformed with dual luciferase reporters specific 

for both stop codon suppression and sense codon misreading quantification. The basic 

features of the bicistronic dual luciferase reporter were originally described by 

Grentzmann et al. (1998) and since then suffered several adaptations. The 

readthrough reporter used here was developed by Keeling and Bedwell (2004) and 

consists of a translational fusion of the gene encoding Renilla reniformis luciferase (R-

luc) with a downstream gene encoding the Photinus pyralis (firefly) luciferase (F-luc). 

The two consecutive luciferase genes are under the control of the PGK promoter and 

separated by an in-frame linker sequence.  
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Figure 2.1 – Schematic representation of the dual luciferase Readthrough reporter system, 

initially described by Salas-Marco and Bedwell (2005). Renilla luciferase and firefly luciferase 

genes are under the transcriptional control of the PGK promoter. Supression of the stop codon, 

positioned in a cassette between the two genes, allows expression of both genes as a single 

polypeptide. Z represents any inserted amino acid. The activity from each luciferase can be 

measured independently in protein extracts, as they use different substrates. Rates of 

readthrough were calculated by dividing the ratio of firefly luciferase activity to Renilla luciferase 

activity from cells harbouring plasmids containing a premature stop codon by the ratio 

generated from cells with the plasmid having a sense codon between the two genes.  

 

Both enzymes are then synthesized as a single polypeptide but their activities can be 

measured sequentially in the same sample with very different reaction conditions. R-

luc serves as an internal normalization control for mRNA abundance and efficiency of 

translation initiation and so any differences accounted in the activity of F-luc relative 

to R-luc must be linked with changes in the activity of F-luc. In the particular case of 

the termination readthrought quantification reporter (Figure 2.1), a stop codon is 

placed in the linker sequence between the two luciferase genes. Stop codon 

suppression propels expression of F-luc and an increase in the ratio firefly/ Renilla 

luciferase activity.   
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S.cerevisiae BY4743 cells transformed with the readthrough reporter plasmid were 

grown to mid-log phase (OD600 0,5-0,6) in MM lacking uracil and exposed to stressors 

for 4h. Concentrations of Arsenic (As), Cadmium (Cd), Ethanol, Caffeine and H2O2 

induced a decrease in cell growth between 40-60% and a viability loss lower than 20%. 

Concentrations of lithium (Li) and mercury (Hg) were non-inhibitory (see Figure 2.2).  

 

 

Figure 2.2 – Viability of S.cerevisiae BY4743 cells exposed to environmental stress. 

Exponentially growing yeast cells were exposed to stressors at the indicated concentrations for 

4h. a) Colony forming units (CFU) assay – for each condition, the same number of cells was 

collected (100) and then plated onto fresh MM-Ura plates. The number CFU was determined 

after 3 days incubation at 30ºC and represented as a fold change relatively to control (plated cells 

not exposed to stress).b) Fold changes in yeast growth under stress - the total number of cells in 

culture was monitored using a Vi-Cell (Beckman Coulter) both before toxic exposure and after. 

Results are represented as percentage fold change relatively to control (cells not exposed to 

stress). * and *** represent values significantly different (P <0.05 and P<0.001, respectively; 

one-way ANOVA, Dunnett's post-test). Values are mean ± SEM of three biological replicates. 

 

Control constructs harboring only in-frame near-cognate sense codons in the 

sequence between luciferase genes were assayed in each strain and under each stress 

condition. These allowed verifying the theoretical maximal level of expression (100% 

readthrough) for these reporter systems and also to proceed with final readthrough 

correction, excluding any pleiotropic effects of mutations or stress on luciferase 
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activity. Results were expressed in relative light units (RLU) (Keeling et al., 2004). 

Negative controls containing all the reaction components except the cell lysate were 

used to correct background noise for each luciferase reaction. In all cases, the 

background noise was negligible.  

 

Although stop codon recognition by release factors is efficient, in certain 

circunstances stop codons are decoded instead by a near-cognate tRNA. Examples of 

tRNAs that decode stop codons include yeast tRNAGln
GUC (decodes CAG and UAG), 

and tRNAGln
UUG (decodes CAA and UAA). Two stop codons from S.cerevisiae were 

chosen for readthrough quantification in this work. UAA codon is the most efficient 

termination codon in yeast and also the most frequently used in highly expressed 

genes. On the other hand, UGA is the most error prone stop codon, and is rarely used 

in termination (Keeling et al., 2004; Liang et al., 2005).  Context takes enormous 

importance in readthrough accuracy. A C residue located at the first position following 

the stop codon in each of the readthrough constructs in this study seems to reduce 

the efficiency of termination around 20-fold (Brown et al., 1990; Bonetti et al., 1995). 

 

Previous studies with the dual luciferase reporter in yeast cells suggest that the UAG 

termination codon corresponds to a 2,5-fold increase in corrected readthrough 

relative to the UAA codon (Keeling et al., 2004). In our model, using however a distinct 

yeast background, we measured an increase of only 1,5-fold. The ribosome-targeting 

drug paromomycin was used as a positive control to confirm the reliability of our assay 

(Figure 2.3 c). Paromomycin is an aminoglycoside known to decrease translational 

accuracy in E. coli and yeast (Singh et al., 1979; Palmer et al., 1979). By binding to the 

small ribosomal subunit, paromomycin alters the kinetics of decoding, increasing the 

probability of near-cognate tRNA incorporation and blocking recognition of 

termination codons (Carter et al., 2000; Ogle et al., 2003). According to our results, 

paromomycin exposure increased stop codon readthrough approximately 1,7-fold, in 

accordance with the values already described in a similar system (Holland et al., 2007) 

(Figure 2.3 c).  
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Figure 2.3 - UAA readthrough levels do not significantly increase upon exposure to 

environmental stress. BY4743 cells were transformed with dual luciferase reporters containing 

either a UAA stop codon or a sense codon between the two genes, grown to mid-log and 

exposed to stress for 4h. The ratio of firefly to renilla luciferase activity is a measure of UAA stop 

codon readthrough and is expressed in relative light units (RLU). Renilla luciferase activity was 

used as an internal standard. For each stress, values were normalized with the firefly to renilla 

luciferase activity ratio measured in construct carrying a sense codon in place of UAA. a) and b) 

readthrough values were calculated relative to control (cells not exposed to stress). c) 

Paromomycin was used as a positive control. * represents values significantly different (P < 0.05; 

unpaired Student’s t-test) Values are mean ± SEM of at least four independent experiments 

done in triplicate.  

 

Overall, our results demonstrate that the environmental stressors studied did not 

significantly impact UAA reading accuracy, suggesting that the eukaryotic translation 

machinery is very resistant to environmental stress (Figure 2.3 a and b). However, 

readthrough of a leaky UGA stop codon under the same downstream context was 

increased (1,360 ±0,140) by exposure to 5% ethanol (Figure 2.4 b and c).  
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Figure 2.4 - UGA readthrough levels increase with exposure to ethanol. a) BY4743 cells were 

transformed with dual luciferase reporters containing either a UGA error prone stop codon or a 

sense codon between the two genes, grown to mid-log and exposed to stress for 4h. UGA stop 

codon readthrough is expressed in relative light units (RLU). Renilla luciferase activity was used 

as an internal standard. For each stress, readhtrought values were normalized with the firefly to 

renilla luciferase activity ratio measured in a strain that carried a sense codon in place of UGA. * 

represents a value significantly different from the control (P < 0.05; one-way ANOVA, Dunnett's 

test) b) and c) fold change in readthrough values relative to control (cells not exposed to stress). 

Values are mean ± SEM of at least four independent experiments. 

 

Under the same stress conditions, an analogous bicistronic reporter was used to 

measure arginine misincorporation at mutant AGC codons. In Wt firefly luciferase, the 

amino acid residue at position 218 is part of the catalytic site and utterly determines 

enzymatic activity. Remarkably, beyond arginine no other amino acid is active at this 

site of firefly luciferase (Branchini et al., 2001; Plant et al., 2007). Serine has a polar 

side chain like arginine, but lacks the positive charge and for this reason cannot 

substitute its catalytic function. Therefore, this position is valid for highly specific 
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monitoring of AGC misreading, by eliminating the possibility of functional 

replacement by other amino acids during quantification of arginine misincorporation. 

 

Figure 2.5 - AGC codon misreading is not significantly increased by exposure to 

environmental stress. a) Mutation of an arginine (AGA) to a serine (AGC) codon at the firefly 

luciferase active site ablates protein activity. AGC misreading might restore the enzymatic 

activity, allowing quantitative measurement of the error rate (adapted from Plant E. et al., 2007). 

BY4743 cells were transformed with dual luciferase contructs containing either AGA wild-type 

codon or the AGC codon at position 218 of firefly luciferase, grown to mid-log and exposed to 

stress for 4h. AGC misreading is expressed in relative light units (RLU). Renilla luciferase activity 

was used as an internal standard. Rates of misreading were calculated by dividing the ratio of 

firefly luciferase activity to Renilla luciferase activity from cells harboring the plasmid with the 

mutant AGC codon by the ratio generated with the plasmid with the wild-type codon. b) and c) 

fold change in AGC misreading values relative to control (cells not exposed to stress). Values are 

mean ± SEM of at least four independent experiments.  

 

Mutation of the wild-type AGA (Arg) codon to AGC (Ser) at position 218 represents a 

decrease of 4 orders of magnitude in the ratio of firefly to Renilla luciferase activities 

(Figure 2.5 b, Control).  At low level, restoration of the enzymatic activity can occur 
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through AGC near-cognate misreading during protein synthesis, allowing 

reincorporation of an arginine at that location and providing an important tool to 

quantify translational error rates (Figure 2.5 a) (Rakwalska & Rospert, 2004; Plant et 

al., 2007). The measured increment in luminescence will be directly proportional to 

arginine misincorporation at the AGC codon. For each of the strains or stress 

conditions tested, rates of sense codon misreading were corrected by dividing the F-

luc /R-luc activity ratio generated from cells harboring the missense construct by the 

ratio generated with the control non-inactivated construct (AGA wt codon at position 

218 of firefly luciferase). Again, this allowed verifying the theoretical maximal level of 

expression for the reporter systems and also correction of the misreading values, 

excluding any pleiotropic effects of mutations or stress on luciferase activity. Results 

were expressed in relative light units (RLU) (Plant et al., 2007). 

 

Sense codon misreading errors in both E. coli and in S. cerevisiae occur with an average 

frequency around 10-4 per codon (Stansfield et al., 1998; Salas-Marco & Bedwell, 2005; 

Kramer & Farabaugh, 2006). However, there is a wide variation in error frequencies 

between different codons (Kramer & Farabaugh, 2006; Kramer et al., 2010).  As 

already mentioned, the missense reporter used in the current study allowed 

monitoring a specific near-cognate event responsible for erroneous amino acid 

incorporation. We observed that none of the stressors tested significantly impacted 

AGC codon misreading levels (Figure 2.5 b and c), suggesting that the cell has 

developed very efficient mechanisms to avert near-cognate incorporations.  

 

Arginine misincorporation at AGC involves near-cognate decoding by the tRNAArg
UCU. 

This tRNA has a 5-methylcarbonylmethyluridine (mcm5U) wobble base produced by 

the tRNA methyltransferase 9 (Trm9) and known to regulate specific codon-anticodon 

interactions, conspicuously restricting anticodon pairing (Begley et al., 2007). 

Nevertheless, tRNAArg
UCU hypomidification by itself was not sufficient to cause a 

noticeable increment in AGC misreading relatively to the wt strain. Surprisingly, of all 

the stress conditions tested only exposure to a non-inhibitory lithium concentration 

significantly affected Δtrm9 translational accuracy (Figure 2.6 a).  
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Figure 2.6 - Deficiency in tRNA methyltransferase 9 (Trm9) increases AGC codon misreading 

by Arg tRNAUCU in cells exposed to lithium. This effect is linked with loss of anticodon pairing 

restriction by 5-methylcarbonylmethyluridine (mcm
5
U). Δtrm9 cells were transformed with dual 

luciferase reporters containing either AGA wild-type codon or the AGC codon at position 218 of 

firefly luciferase, grown to mid-log and exposed to stress for 4h. AGC misreading is expressed in 

relative light units (RLU). Renilla luciferase activity was used as an internal standard. Rates of 

misreading were calculated by dividing the ratio of firefly luciferase activity to Renilla luciferase 

activity from cells harboring the plasmid with the mutant AGC codon by the ratio generated with 

the plasmid with the wild-type codon. a) fold change in AGC misreading values relative to 

control (cells not exposed to stress). ** represents values significantly different (P<0.01; one-

way ANOVA, Dunnett's post-test). Values are mean ± SEM of at least four independent 

experiments. 

 

2.3.2. Protein homeostasis (proteostasis) and translational accuracy 

 

Evidence of unaltered translation accuracy in the presence of most of the 

environmental stressors tested drove us to a new approach. Accordingly, we tried to 

identify and characterize protein homeostasis mechanisms that disguise synthesis of 

aberrant proteins, potentiating the apparent resistance to stress.  Strains harboring 
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deletions in key genes encoding protein chaperones, components of proteasome 

activity and autophagy activation were tested. This helped to understand the 

integrated role of these mechanisms in minimizing the effects of stress on the 

translational machinery, mostly by preventing the ensuing buildup of misfolded 

proteins.  

Yeast Δatg5, Δrpn4, Δbre5, Δhsp26, Δhsp42, Δhsp104, Δhsp12 and Δssb1/ssb2, 

Δyap1/yap2 mutant cells transformed with the readthrough or with the sense codon 

misreading reporter plasmid were exposed to stressors as mentioned previously. 

Again, Arsenic (As), Cadmium (Cd), Ethanol, Caffeine and H2O2 induced a decrease in 

cell growth between 40 – 60% and a viability loss lower than 20%. Concentrations of 

lithium (Li) and mercury (Hg) produced no significant effect in viability or growth rate. 

The exceptions were Δbre5 and Δyap1/yap2 cells, which showed a higher susceptibility 

to environmental stress. H2O2 exposure caused a 70% growth and viability decrease in 

Δyap1/yap2 cells (see Figure A2 and A3, Annexes).  

 

 

Table 2.4 - Proteome quality control impairment is associated with increased levels of UAA 

readthrough under environmental stress. Deletion mutant cells were transformed with dual 

luciferase reporter and exposed to stress for 4h. The ratio of firefly to renilla luciferase activity is 

a measure of UAA stop codon readthrough and is expressed in relative light units (RLU). For 

each stress condition, readhtrought values were normalized with the firefly to renilla luciferase 

activity ratio measured in a strain that carried a sense codon in place of UAA. The fold changes in 

readthrough under stress are calculated relative to the basal level of readthrough measured in 

the corresponding strain. *, ** and *** represent values significantly different from the control 

(P <0.05, P<0.01 and P<0.001, respectively; one-way ANOVA, Dunnett's post-test). Values are 

mean ± SEM of at least four independent experiments done in triplicate. 
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 Table 2.4     
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In deletion mutants, the amount of mistranslated proteins was not significantly 

increased over the levels measured in BY4743 cells. However, under stress conditions 

F-luc activity increases in Δrpn4, Δhsp104 and mostly in Δhsp12 mutant cells, both due 

to readthrough and AGC misreading. Readthrough is specially related with ethanol, 

arsenic and lithium exposure but AGC misreading is particularly noticeable after 

growth in arsenic (Table 2.4 and 2.5). All the measured fold decreases in translational 

accuracy under stress were smaller than 1,5 - fold, which means that error rates are 

efficiently kept between the average general values already reported in vivo for 

S.cerevisiae, ranging from approximately 10-3 to 10-5 per codon (Stansfield et al., 1998; 

Rakwalska & Rospert, 2004; Salas-Marco & Bedwell, 2005; Plant et al., 2007; Kramer 

et al., 2010). Cells cope perfectly with this increase in error level and this tolerance is 

related with closely interconnected and many times redundant surveillance 

homeostatic mechanisms that buffer the effects of aberrant protein synthesis. 

 

Ssb1/2p yeast chaperones are Hsp70 homologs that by direct interaction with the 

nascent polypeptide in the ribosome preserve a folding-competent state crucial for 

achieving translational accuracy (Rakwalska & Rospert, 2004).  

 

 

Table 2.5 - Δhsp12 cells are prone to AGC codon misreading as shown by exposure to 

environmental stressors. Deletion mutant cells were transformed with the dual luciferase 

reporters containing either AGA wild-type codon or the AGC codon at position 218 of firefly 

luciferase, grown to mid-log and exposed to stress for 4h. AGC misreading is expressed in 

relative light units (RLU). Renilla luciferase activity was used as an internal standard. Rates of 

misreading were calculated by dividing the ratio of firefly luciferase activity to Renilla luciferase 

activity from cells harboring the plasmid with the mutant AGC codon by the ratio generated with 

the plasmid with the wild-type codon. *, ** and *** represent values significantly different from 

the control (P < 0.05, P<0.01 and P<0.001, respectively; one-way ANOVA, Dunnett's post-test). 

Values are mean ± SEM of at least four independent experiments done in triplicate. 
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According to previous studies, Δssb1/Δssb2 deletion mutants show a 1,2-fold increase 

in UAG readthrough, although no significant differences were detected in AGC 

misreading (Rakwalska & Rospert, 2004). Under the stress conditions tested here the 

synthesis of aberrant proteins in these cells is being further increased by non-lethal 

concentrations of lithium and mercury (Table 2.6). This observation may suggest a 

toxicity mechanism for lithium and mercury at least partly centered in the ribosome. 

Otherwise, it might be the result of changes in cation transport across the plasma 

membrane (Kim & Craig, 2005). 

 

 

Table 2.6 - UGA readthrough levels in measured in Δssb1/Δssb2 cells under stress. The fold 

changes in readthrough under stress are calculated relative to the basal level of readthrough 

measured in Δssb1/Δssb2cells at the corresponding stop codon. 
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Yeast AP-1 (YAP1) and Yeast AP-2 (YAP2) genes are basic leucine zipper (bZIP) 

transcription factors, responsible for activation of anti-oxidant genes (Fernandes et 

al., 1997). Yap1 contributes to the arsenic stress response through the expression of a 

vacuolar detoxification pathway and by maintenance of the redox homeostasis 

disturbed by inorganic arsenic compounds (Menezes et al., 2008). Yap1p and Yap2p 

share high homology as well as some functional overlap, coordinating their gene 

target expression in order to provide the cell with the ability to cope with stress (Vilela 

et al., 1998; Rodrigues-Pousada et al., 2010).  

 

 

Figure 2.7 - Increased susceptibility to ROS makes cells more prone to UGA readthrough by 

exposure to environmental stressors. Cells transformed with the AGC misreading reporter or 

the UGA readthrough reporter were grown to mid-log phase (OD600 0,5-0,6) in MM lacking uracil 

and exposed to stress for 4h. As depicted previously for these reporter systems the ratio of firefly 

to renilla luciferase activity is a measure of UGA stop codon readthrough or AGC misreading and 

is expressed in relative light units (RLU). ** and *** represent values significantly different from 

the control (P<0.01 and P<0.001, respectively; one-way ANOVA, Dunnett's post-test). Values are 

mean ± SEM of at least four independent experiments done in triplicate. 
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Yeast cells bearing disruptions in YAP1 or YAP2 genes are viable but show increased 

susceptibility to oxidative damage. Oxidative stress has the potential to modify the 

activity of translational machinery components (Avery, 2011) and an increase in 

reactive oxygen species (ROS) is known to occur in engineered mistranslating cells 

(Paredes J et al., in press). Prolonged exposure to high arsenic is known to induce 

severe oxidative damage in several YAP mutant cells (Menezes et al., 2008; Wysocki & 

Tamás, 2010). According to our report, Δyap1,2 cells are more prone to UGA 

readthrough under Cd (II) and As (III) exposure. However, no significant effect on error 

rates can be attributed to H2O2, a major oxidative toxicant (see Figure 2.7). These 

quite divergent results imply distinct mechanisms of action for each of the stressors, 

probably not exclusively related with oxidative damage.  

 

2.4. Discussion 

 

Protein synthesis fidelity is essential for life. Therefore, cells devote a considerable 

amount of time and energy in preserving translational accuracy through proofreading 

or editing mechanisms and regulation of protein homeostasis (proteostasis), 

minimizing the deleterious effects of aberrant protein accumulation. The 

demonstration of a direct link between mRNA mistranslation and chromium toxicity 

(Holland et al., 2007) prompted us to investigate the role of environmental stress on 

the accuracy of protein synthesis, both by direct influence on the translational 

machinery or through impairment of proteostasis mechanisms. 

 

In the current work we examined mistranslation under assorted environmental stress 

conditions in the yeast model system using a dual luciferase reporter. We selected 

seven well studied chemicals that possess distinct toxicological effects : Arsenic oxide 

(As2O3), cadmium chloride (CdCl2), ethanol (C2H5OH), hydrogen peroxide (H2O2), 

lithium chloride (LiCl), mercury chloride (HgCl2) and caffeine (C8H10N4O2). According 

to the colony-forming unit (CFU) assays performed, the stress conditions tested were 

not causing significant cell death. This allowed us to abolish pleiotropic effects that 

http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Oxygen
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could arise due to viability loss. Concentrations of As (III), Cd (II), Ethanol, Caffeine and 

H2O2 induced a decrease in cell growth between 40 – 60% (see Figure 2.2 and A3 

supplementary results). Such values imply a significant protein synthesis decrease and 

might probably cause an underestimation in error measurements Concentrations of 

Li+ and mercury Hg (II) were non-inhibitory (less than 10%). Both the toxicity 

phenotypes and the transcriptional response of yeast exposure to each one of these 

toxics have already been broadly studied (Dichtl et al., 1997; Valko et al., 2005; 

Kuranda et al., 2006; Thorsen et al., 2009; Stanley et al., 2010), however much 

information is still lacking on their complete mechanisms of action.  

 

2.4.1. Efficiency of dual luciferase reporters 

 

The dual luciferase reporter system is composed of tandem Renilla and firefly 

luciferase genes encoding a single bifunctional protein. The relative abundance of 

these light-emitting proteins allows monitoring translational efficiency. The activity of 

the distal firefly luciferase provides a quantitative measure of error and the activity of 

Renilla luciferase serves as an internal control for mRNA abundance. For example, it 

was previously revealed that the recognition of a premature stop codon induces 

Nonsense-mediated decay (NMD) and results in a decrease in the rate of translation 

initiation (Muhlrad & Parker, 1999). However, in our system expression of both R-luc 

and F-luc is initiated from the same AUG codon and so this effect could not influence 

the corrected readthrough results.  

 

Although a highly efficient and sensitive method for mistranslation quantification, 

dual luciferase reporters are codon specific and therefore average only a fraction of all 

potential translational errors. For these reason we carried our study using 

simultaneously three different reporters that allowed measuring both stop codon 

readthrough and sense codon misreading. Even so, many distinct mistranslating 

events have been excluded from this quantification analysis, underestimation global 

error rate and overlooking the specific effects of context or codon identity, limiting 
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the applicability of these conclusions to a limited and yet undetermined number of 

events in yeast.  

 

Since this study was based on increasing enzymatic activity as an indication of error it 

is necessarily indirect and consequently our measurements could result from errors at 

different steps in gene expression. Therefore, enzyme activity can be the outcome of 

transcriptional errors or, specifically in the case of the misreading reporter, 

misacylation events. Transcriptional errors are estimated to occur around an order of 

magnitude below the translational observed frequency, making their detection 

virtually impossible by the dual luciferase enzymatic system. On the other hand, 

environmental oxidative stress conditions have been linked to changes in the activity 

of MetRS, resulting in tRNA misacylation and a concomitant increase in the 

methionine content of proteins (Netzer N et al., 2009). So far this phenomenon has 

not been attributed to any other aaRS and therefore, for example, the measured 

arginine misincorporation at an AGC codon is most probably related with near-

cognate tRNA misreading in the ribosome. 

 

2.4.2. Stop codon readthrough 

 

Suppression of stop codons results in protein extension, an event that might lead to 

cellular toxicity or, on the other hand, act as a regulator of protein expression by 

expanding the range of polypeptides encoded and introducing new protein functions.  

In BY4743 cells UAA readthrough is not significantly increased under the stress 

conditions tested. UAA is the stop codon preferentially used in highly expressed genes 

of E.coli and yeast and this positive discrimination is probably related with its intrinsic 

low leakiness (Liang et al., 2005; Keeling et al., 2004). Indeed, the error prone UGA 

codon is the least frequent termination signal, probably due to the fact that it can be 

decoded by the near-cognate tRNATrp, as already confirmed in vitro (Parker, 1989).  

 

Context is a key modulator of termination efficiency. In yeast, the identity of the 

tetranucleotide termination signal, containing the stop codon and the first 
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downstream nucleotide (Bonetti et al., 1995; Poole et al., 1998) is critical for stop 

recognition by release factors. UGA and UAA termination efficiency is influenced by 

the first downstream nucleotide in the order (from most efficient to least efficient) G > 

U > A > C. Therefore, the UAA C or a UGA C reporters used in this study allowed in 

principal to more easily disclose the potential influence of environmental stress on 

stop codon readthrough. Nevertheless, choosing a poorly efficient context was not 

enough to amplify UAA readthrough under stress, at least not to levels detectable 

with the dual luciferase system. However, UGA readthrough was increased in the 

presence of 5% ethanol (1,360±0,140) (Figure 2.4). Taking in consideration the 

pleiotropic effects of ethanol, a number of distinct mechanisms might be behind this 

outcome. 

 

Ethanol is one of the major end products of yeast fermentation. Although S. cerevisiae 

is highly ethanol tolerant, high ethanol concentrations can have toxic effects, limiting 

cell growth and viability (Aguilera et al., 2006; Stanley et al., 2010).  The predominant 

targets of ethanol are membrane structure and function (Stanley et al., 2010). Yeast 

exposure to ethanol results in increased membrane fluidity with a concomitant 

decrease in integrity (Mishra & Prased, 1989; Swan TM & Watson K, 1997). However, 

yeast cells have evolved several resistance mechanisms against ethanol. Yeast survival 

and growth under ethanol stress is achieved through complex signal transduction 

pathways that result in deep gene expression adjustments (Gasch AP, 2002). Ethanol 

exposure increases the expression of genes linked with energy production, namely 

genes associated with glycolysis and mitochondrial function, necessary to fuel a costly 

stress response. Also, vacuole function is of major importantance for ethanol 

tolerance, probably allowing protein turnover and maintenance of ion homoeostasis 

(Stanley et al., 2010). 

 

Ethanol has previously been observed to reduce fidelity of poli (U) translation in rat 

brain cell-free extract and termination efficiency in cultured human amnion cells. In 

agreement to our results, this termination effect is more pronounced when the stop 

codon is UGA (Laughrea et al., 1984; Sogaard et al., 1999). This propensity for UGA 
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readthrough under the influence of ethanol is thought to reflect a greater tendency 

for the translational machinery to misread the third base of the stop codon. Some 

explanations can be presented for this fact. First, ethanol is less polar than water and 

therefore has a lower dielectric constant. This might stabilize the aa-tRNA-codon-

ribosome complex, favoring misreading. Also, the low dielectric constants of ethanol 

can reduce the solvation of Mg2+ ions, resulting in a more effective neutralization of 

the phosphate backbones of the codon-anticodon complex.  The repulsion between 

the phosphates would then decrease causing an additional stabilization of the codon-

anticodon interaction and further increasing misreading (Glukhova et al., 1975; 

Laughrea et al., 1984). 

 

Yeast strains overexpressing tryptophan biosynthesis genes showed enhanced 

tolerance to 5% ethanol. The addition of tryptophan to the culture medium had a 

similar effect. Furthermore, other studies have established a connection between 

amino acid biosynthesis, transport and ethanol stress tolerance. In fact, ethanol might 

be affecting the delivery of amino acids into the cell, probably by causing the 

disruption of membrane function (Pham & Wright, 2008; Yoshikawa et al., 2009). 

Ultimately, we can speculate that this might be causing depletion of specific amino 

acid pools, altering the competition between cognate and non-cognate aminoacyl-

tRNAs during translation. As already described elsewhere this amino acid unbalance 

can result in loss of accuracy (Farabaugh & Björk, 1999; Sørensen, 2001). Further work 

is needed to test this hypothesis.  

 

2.4.3. AGC codon misreading 

 

AGC is in theory a particularly error-prone codon (Plant et al., 2007). Recent evidences 

in E. coli suggest that codon bias evolved in order to reduce the costs of both missense 

and nonsense errors, minimizing the deleterious effects of aberrant decoding 

(Najafabadi et al., 2007). Accordingly, AGC codons in highly expressed yeast genes 

correspond to less than 2% of the total Ser incorporated. Misreading error rate is also 
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influenced by competition between cognate and near-cognate tRNA species (Kramer 

& Farabaugh, 2006). In fact, codons with higher levels of misreading are decoded by 

lower abundance tRNAs while the more accurate codons are decoded by more 

abundant tRNAs. In yeast, tRNA abundance correlates closely with tRNA gene copy 

number. As expected from an error-prone codon, AGC is decoded by a low abundance 

tRNA 
Ser

AGC (4 copies).  

 

 

 

 

 

 

 

 

 

 

Figure 2.8 - Near-cognate codon-anticodon interactions between AGC codons and the highly 

abundant tRNA
Arg

AGA. 

 

Finally, it is also essential to take in consideration the specific characteristics of the 

interaction between AGC codons and the highly abundant tRNAArg
AGA that might 

promote near-cognate misreading. The first two bases of the AGC Ser codon can be 

recognized by the mcm5UCU anticodon of this arginyl-tRNA. Quite remarkably, base 

pairing at the wobble positions is also possible through a N3-N3, 4- carbonyl-amino 

hydrogen bonding, providing the transient formation of a very stable mRNA:tRNA 

mini-helix (Lim et al., 2005; Plant et al., 2007) (Figure 2.8). 

 

Efficiency of translation can be modulated by covalent modification of nucleosides in 

the anticodon of tRNAs, especially at position 34 (wobble position) and position 37. In 

yeast, 25% of the cytosolic tRNA species are covalently modified with either 5 - 

carbamoylmethyl (ncm5) or 5 - methoxycarbonylmethyl (mcm5) added to the 59 
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carbon of U34. tRNA species containing  mcm5 usually decode codon boxes containing 

pyrimidine and purine-ending codons that correspond to different amino acids, like in 

the case of tRNAArg
UCU. So far, presence of these covalent modifications at the wobble 

position is known to improve reading of A- or G-ending codons and restrict the 

remaining codon-anticodon interactions, thereby assuring the fidelity of translation 

(Huang et al., 2005; Johansson et al., 2008). Therefore, unmodified yeast tRNAArg
UCU 

recognizes both AGA and AGG and has a higher chance of misreading codons ending 

with U or C, whereas the mcm5U34 modification greatly restricts recognition to the 

AGA codon.  

 

Synthesis of mcm5U occurs by a complex mechanism that requires at first 

components the Elongator complex and culminates in methyl esterification of cm5 by 

the Trm9p/Trm112p complex. Remarkably, the Elongator complex can also be found 

associated with RNA polymerase II and it is thought to be involved in the switch from 

transcription initiation to elongation (Krogan & Greenblatt, 2001).  

Deletion of the TRM9 gene results in complete loss of these modified wobble bases 

and increased sensitivity at 37°C to paromomycin. These results suggest a role for 

mcm5U under stress (Kalhor & Clarke, 2003). Surprisingly, Δtrm9 cells do not show a 

decrease in the level of tRNAs, suggesting that tRNAArg
UCU is not degraded like most 

tRNAs undermodified at other positions (Jablonowski et al., 2006). Since AGC 

misreading rates in Δtrm9 cells remain largely unchanged after stress exposure, it is 

likely that besides wobble modification additional mechanisms are tightly regulating 

AGC reading. A noticeable effect was however observed following growth under non-

inhibitory concentrations of LiCl.  

 

Lithium is not an essential element in nature and has low environmental toxicity.  

However, it is known to profoundly influence the development of various organisms. 

For example, it inhibits the formation of the dorsal–ventral axis in Xenopus laevis 

embryos and affects pattern formation in the unicellular ciliate Tetrahymena 

thermophila. It has been proposed that this effect of lithium on development is related 

to inhibition of RNA processing enzymes (RNA processing defects) (Dichtl et al., 1997). 
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Even at millimolar concentrations Li+ can also inhibit the activity of major 

phosphatases (Hal2 family) as well as sulphotransferases (Murguía et al., 1996).  In 

fact, in a cellular environment, lithium interacts with sodium and potassium binding 

sites and affects the activity of Mg2+ containing enzymes by competitively displacing 

Mg2+ from its binding site (Csutora et al., 2005). Lithium may also interfere directly 

with the translation process. Divalent metal ions are vital for the functional integrity of 

RNAs, either structurally or by involvement in catalytic functions. Ribosome activity is 

also dependent on the presence of divalent metal ions and Mg2+ ions have functional 

significance for the translational machinery probably being involved in the catalysis of 

the peptidyl transfer reaction (Winter et al., 1997; Dorner et al., 2005). In vitro 

evidences also suggest that the binding of aminoacyl-tRNA to ribosomes is inhibited 

by relatively high concentrations of lithium (0,2 – 0,5M) (Suzuka & Kaji, 1968). 

Therefore, one might hypothesize that tRNAArg
UCU wobble hipomodification in Δtrm9 

cells lowers the lithium concentration responsible for decoding interference in the 

ribosome to values as low as 40mM. 

 

2.4.4. Mistranslation and protein homeostasis mechanisms  

 

Translational errors are reported to occur at a lower rate in yeast than in E.coli, mostly 

in low-usage codons (Stansfield et al., 1998; Kramer et al., 2010). This strongly 

suggests that the eukaryotic translational machinery evolved for enhanced protein 

synthesis accuracy.  In this work we report a remarkable resistance of the eukaryotic 

translational machinery to environmental stress. Notably, yeast has evolved highly 

efficient mechanisms that not only boost accuracy at the translational level but also 

operate in trans as an integrated network to reduce the cellular impact of aberrant 

protein synthesis. Therefore, our major goal was to untangle the complex integration 

of protein homeostasis mechanisms acting in the outcome of protein synthesis under 

stress conditions. This allowed a more precise quantification of the actual effects 

exerted by environmental stress on translational machinery. 
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In yeast, the Environmental Stress Response (ESR) is activated for protection against 

environmental stress. This program includes a very coordinated change in gene 

expression and the recruitment of protein homeostasis effectors as a strategy for 

adaptation after a shift to an unfavorable environment (Gasch et al., 2000). The 

protein homeostasis genes studied here (ATG5, RPN4, BRE5, HSP26, HSP42, HSP104, 

HSP12 AND SSB1, SSB2, YAP1, YAP2) are quite frequently featured as part of the ESR 

under many different negative stimuli. In accordance with this observation, it is not 

surprising that deletion of each one of the mentioned genes results in reduced 

resistance to many of the stress conditions approached along this work. Under these 

conditions the function of the vacant chaperones and degradation mechanisms is 

more easily saturated. 

 

Hsp70 homolog Ssb1/2p chaperones are anchored to ribosomes and interact directly 

with nascent polypeptides by helping in native stabilization of nascent chains under 

both physiological or stress conditions and allowing their passage through the 

ribosome. Ssa1 and 2 are constitutively expressed and share 98% amino acid identity. 

In addition, over half of the non identical residues are conservative substitutions 

(Nelson et al., 1992; Mayer & Bukau, 1998; Sharma & Masison, 2008). Strains lacking 

Ssb1/2p are viable but have a low number of translating ribosomes, growing very 

slowly, and present a cold-sensitive phenotype (Craig & Jacobsen, 1985).  

 

Tanslational accuracy is decreased in Δssb1/Δssb2 yeast mutants, an effect strongly 

enhanced by paromomycin (Rakwalska & Rospert, 2004). Although Ssb1/2p 

chaperones are associated with the ribosome their location is quite distant from the 

decoding center. Therefore, the influence exerted on protein synthesis accuracy must 

be due to an unknown indirect effect that probably decrease the functional availability 

of key proteins directly involved in translational fidelity and cellular integrity.   

Our experimental observations are in agreement with these results and go further by 

showing that the amount of erroneously synthesized proteins is significantly 

increased in Δssb1/Δssb2 yeast mutants under exposure to both lithium and mercury 

(Figure 2.6). As already mentioned, lithium influence on translation accuracy is 
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potentially related with interference in RNA processing and ribosome integrity as well 

as inhibition of Mg2+ containing enzymes. Mercury atoms are known to link covalently 

with a small number of ribosomal proteins but no correlation has ever been 

established with decoding efficiency.  On the other hand, mercury has been linked 

with an increase in ROS by depleting free-radical scavengers such as glutathione 

(GSH) and protein-bound sulphydryl groups (Stohs & Bagchi, 1995; Ercal N et al., 

2001). GSH depletion can then change the redox environment and impair the 

activities of GSH-dependent enzymes, such as glutathione peroxidases and 

glutathione S-transferases, affecting innumerous cellular processes. These conditions 

might potentiate protein misfolding and loss of function eventually affecting proteins 

involved the mechanisms of translation.   

Due to the low number of translating ribosomes found in Δssb1,2 cells and the 

inhibitory effect of stress on translation, the amount of protein synthesized during the 

4h period of toxic exposure is probably low. Therefore, the error rates under stress 

might be underestimated. 

 

Atg5p, Rpn4p and Hsp104p are not though to directly interact with the decoding 

center of the ribosome. Therefore, the influence that gene deletions exerted on 

protein synthesis accuracy is indirect, probably due to a decrease in the degradative 

and folding cellular capacity. Due to an existing intricate network of cooperative and 

redundant protein homeostasis mechanisms (Drummond & Wilke, 2009; Tyedmers et 

al., 2010; Gidalevitz et al., 2011), the lack of each of these proteins per se is not enough 

to influence global translational error rate. However, the exposure to stress is 

obviously increasing the cellular burden caused by misfolded protein accumulation 

and aggregation, eventually exceeding the already wekened buffering capacity of 

proteome quality control mechanisms. Over time, this will most likely free 

mistranslated protein into the cytoplasm and decrease the availability of functional 

key factors directly involved in maintaining protein synthesis fidelity. A deeper 

analysis of protein homeostasis regulation and functional redundancy influencing 

translational error would required the construction of double or triple gene deletion 

mutants, encompassing numerous of the processes highlighted above. However, due 
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to the essential nature of many of these connections, it is difficult to predict if many of 

these strains would be viable.   

 

Surprisingly, Δhsp12 mutants stood-out in our measurements, showing decreased 

protein synthesis accuracy under various stress conditions. This susceptibility seems 

however hard to explain in light of the present knowledge on this chaperone. Hsp12p 

is only weakly expressed during exponential growth cultures but is induced 100-fold 

during entry into stationary phase and also by heat shock (Praekelt & Meacock, 1990). 

Interestingly, HSP12 is one of the most upregulated Hsps in yeast, particularly in 

presence of high ethanol concentrations, glucose starvation or cell wall stress 

(Jamieson et al., 1994; Varela et al., 1995; Kandror et al., 2004). However, Hsp12p 

exhibits only limited sequence homology with other sHsps (Hsp42 and Hsp26) and is 

both structurally and functionally very different. Unlike all other Hsps, Hsp12 is a 

natively unfolded protein in the cytoplasm and becomes structured when it interacts 

with the plasma membrane, adopting a helical structure and making cells more 

resistant to breakage. However, its biochemical function is still largely unknown. 

It is thought that its plasma membrane association might help in modulating 

membrane fluidity and stability under stress but without causing any detectable 

changes in the lipid composition of yeast cells (Welker et al., 2010). It is therefore 

possible to hypothesize that deletion of HSP12 might influence the activity of plasma 

membrane proteins, namely ionic channels and amino acid transporters, also 

increasing the permeability to toxicants. For example, alterations in the relative 

concentration of the amino acid pools are known to increase tRNA mischarging levels 

and lessen the effectiveness of editing mechanisms in aaRSs (Ling & Söll, 2010). 

Hsp12 also has an important role as a Hog1 MAP kinase target. Besides the response 

to osmotic stress and activation of cell wall integrity pathways, Hog1 is also known to 

mediate the cellular response to late stage ER stress. Under extreme and persistent 

stress conditions, UPR activation is not sufficient to alleviate stress and unfolded 

proteins start to accumulate in the endoplasmic reticulum (ER). At this point, Hog1 

MAP kinase becomes phosphorylated, translocates into the nucleus and regulates 
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gene expression in order to allow the ER to recover homeostasis (Bicknell et al., 2010). 

Among the induced genes are key autophagy components and HSP12. 

 

In conclusion, environmental stress might influence accuracy by directly targeting the 

translational machinery, by simply shifting the protein homeostasis balance, or both. 

However, the available mechanistic details are still poorly understood. 

Like Hg (II), Cd (II) is not a redox metal and has no participation in Fenton reactions 

(Stohs & Bagchi, 1995; Ercal N et al., 2001). However, even though Cd (II) cannot 

generate ROS directly, it might still induce oxidative damage by depleting free-radical 

scavengers such as glutathione (GSH) and protein-bound sulphydryl groups. Some 

evidences seem to argue against GSH depletion as a major Cd (II) toxicity mechanism 

in S. cerevisiae, since the metal concentrations necessary to significantly deplete 

cytosolic GSH are extremely high. Finally, Cd can also displace zinc from 

metalloproteins and cause the misfolding of Cu,Zn-superoxide dismutase (Sod1) 

protein, an abundant cytosolic enzyme that scavenges superoxide anions, altering its 

catalytic mechanism (Huang et al., 2006). Thereby, in cells particularly susceptible to 

oxidative damage, Cd (II) might be disturbing a number of vital cellular processes, 

causing a decrease in translational accuracy. In addition, the effects of Cd (II) - induced 

ROS might also target protein translation directly, by impacting the translation 

initiation factor eIF4E in human cell lines (Othumpangat et al., 2005). 

Arsenic [As (III)] – the most toxic form of As – inhibits major enzymatic functions 

through sulfhydryl group binding (Bergquist et al., 2009). Arsenic exposure causes 

morphologic changes in mitochondrial integrity and a concomitant decline of 

mitochondrial membrane potential. These mitochondrial alterations can be 

somewhat responsible for the generation of reactive oxygen species (ROS), most 

specifically superoxide anion. This effect might however to be exacerbate by a 

decrease in glutathione production and by As (III) ability to mediate iron release from 

the iron storage protein ferritin (Salnikow & Zhitkovich, 2008). Free iron catalyses the 

decomposition of hydrogen peroxide via the Fenton reaction, causing formation of 

hydroxyl radical (Jomova et al., 2011). Remarkably, after a prolonged toxic exposure, 

As (III) is found preferentially associated with ribosomes of human bladder epithelium 
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cells. Therefore, it might be possible that protein synthesis machinery itself is 

targeted by As (III) (Dopp et al., 2008). 
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3.1. Introduction  

 

3.1.1. Physiological and evolutionary consequences of protein 

aggregation 

 

Cell growth and adaptation are determined by the speed and accuracy of translation. 

Alterations in the primary structure of proteins caused by mutation or translational 

misincorporation are energetically expensive, leading to misfolding and to a 

subsequent loss of protein function (Buchberger A et al., 2010). At the basal error rate, 

protein quality control systems successfully maintain a stable proteome through the 

synthesis of chaperone and other cooperative systems that seize, refold, and degrade 

existing misfolded substrates before they can exert any negative impact on cellular 

processes (Parsell DA & Lindquist S, 1993). However, both internal and external stress 

factors might ultimately overwhelm the refolding or degradative capacity of a cell. 

This eventually culminates in development of protein aggregates, presented as highly 

toxic species that endanger cellular viability in a concentration-dependent manner 

(Drummond DA et al., 2005; Drummond DA & Wilke CO, 2008). For example, 

expression of aggregation-prone proteins in cell culture was shown to culminate in 

impairment of the ubiquitin proteasome pathway, leading to cellular dysfunction and 

death in response to aggregation (Bence et al., 2001). 

 

The impact of protein aggregation can be particularly severe in membranes. Protein-

membrane aggregation disturbs membrane integrity (Kourie & Henry, 2002; Stefani 

M & Dobson CM, 2003) probably through an initial electrostatic interaction, followed 

by structural changes that promote phospholipid insertion of exposed hydrophobic 

regions. This results in membrane permeability changes and is known to affect crucial 

ionic balances (e.g. Ca2+), influencing mitochondrial functionality, redox balances or 

even apoptotic signaling mechanisms (Cecchi et al., 2005; Stefani M., 2007).   

Misfolding leading to protein loss of function and aggregation has been linked to 

human disease. For example, mutations that affect the folding of the cystic fibrosis 

transmembrane conductance regulator (CFTR) impair the transport of this protein to 
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the plasma membrane, resulting in cystic fibrosis (Stefani M., 2004). Also, toxic 

deposits of fibrillar protein aggregates found as intracellular inclusions or extracellular 

plaques (amyloid) are a common trait in neurodegenerative diseases such as 

Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and 

amyotrophic lateral sclerosis (ALS) (Ross & Poirier, 2004). The onset of most amyloid 

diseases in humans is rather late, suggesting that the quality control machinery is very 

efficient in maintaining homeostatic balance throughout most of the life of the 

organism. However, factors like genetic mutations, stress, or the aging-induced 

decline in surveillance by the folding and degradation machineries, eventually yield 

catastrophic consequences for cell viability (McClellan et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 – Evolution favored protein robustness by discriminating against the huge cost of 

misfolded proteins. mRNA translated without errors produces mostly correctly folded protein. 

However, even under error-prone conditions highly expressed proteins can tolerate a broad 

range of amino acid substitutions (red dots) before losing their native folding and function 

(Adapted from Drummond, 2009). 

 

Protein aggregation is inevitable in cells. At an error rate of 10–4 (global error rate), 4–

12% of an average-length yeast protein is expected to misfold because of missense 

errors (Drummond DA & Wilke CO, 2008). Since the abundance of a protein ranges 

from fewer than 50 to more than 106 molecules per cell (Ghaemmaghami et al., 2003), 

the fitness impact of error-induced misfolding varies widely with the expression level. 
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Remarkably, highly expressed proteins evolve at rates fundamentally unrelated to 

their functions and by favoring robust sequences, termodinamically more stable, 

broadening the range of substitutions a protein can tolerate before misfolding (Bloom 

et al., 2005; Drummond DA et al., 2005) (see Figure 3.1). Eventually, this causes coding 

sequences to accumulate non synonymous (amino acid altering) substitutions at a 

slower rate than synonymous (amino acid preserving) substitutions.  

 

3.1.2. Translational machinery and disease 

 

Diseases can arise from mutations that hamper the function of essential translation 

machinery components, such tRNAs, amino-acyl-tRNA synthetases or ribosomes and 

also from alterations in the translation factors and cellular components that control 

them (Scheper et al., 2007). For example, mutations in the glycyl and tyrosyl -tRNA 

synthetase genes can trigger neurological disorders such as peripheral neuropathy 

(CMT), by affecting the activity and location of synthetases in granules within the cell 

bodies or neurite projections of neuronal cells (Jordanova et al., 2006; Antonellis et al., 

2003). A mouse mutation in the editing site of alanyl-tRNA synthetase results in 

tRNAAla charging with serine. Although all cells inherit the mutation, Purkinje cells 

show a degenerative phenotype, mostly due to unfolded protein buildup and 

formation of protein inclusions. This eventually culminates in apoptotic cell loss and 

ataxia, probably due to incapacity of Purkinje cells to dilute proteins by cell division 

(Lee et al., 2006). 

Diamond–Blackfan anaemia (DBA) might be related with mutations in components of 

the 40S ribosomal subunit (ribosomal proteins S19 and S24), responsible for binding 

to eIF2 (Draptchinskaia et al., 1999; Scheper et al., 2007). Another bone marrow 

failure syndrome, dyskeratosis congenital (DC), can be linked to mutations in the gene 

encoding dyskerin (DKC1), a pseudouridine synthase that mediates 

posttranscriptional modification of ribosomal RNA. This eventually affects regions of 

the ribosome involved in tRNA and mRNA binding, causing an increase in tumour 

susceptibility and premature aging (Heiss et al., 1998; Pandolfi, 2004). Remarkably, 
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tRNAi
Met overexpression due to induction of the Brf1 transcription factor is able to 

stimulate cell transformation and tumor formation in mice (Marshall et al., 2008). 

 

3.1.3. Environmental stress and the flow of biological information 

 

After an insult, biological homeostasis is maintained through the activation of a large 

number of response pathways. The onset is driven by changes in secondary 

modification of multiple signaling effectors and results in adjustment of gene 

transcription and several metabolic pathways (Gasch AP et al., 2000). Environmental 

stress exerts a share of influence in the function of essential translation machinery 

components, with yet unknown effects on protein synthesis accuracy.   

 

In general, tRNA modifications play a pivotal role in enhancing tRNA structure and 

function by modulating ribosome binding affinity and assuring translation fidelity 

(Bjork et al., 1999; Motorin & Helm, 2010). Recent findings suggest that individual 

tRNA modifications and their biosynthetic pathways work as modulators of cell 

proliferation and cell response to stress. In other words, dynamic reprogramming of 

tRNA modifications during cellular responses may work as part of a larger mechanism 

of translational control during the cellular stress response. Cells respond to stress 

exposure by modifying tRNA structure, enhancing the synthesis of proteins that are 

critical to cell survival (Agris, 2008; Chan et al., 2010). However, the impact of this 

biological reprogramming on translational accuracy under stress remains unknown, 

mostly due to the inherent complexity of the tRNA modification network. 

 

3.1.3.1. Cellular targets for ROS 

 

Reactive oxygen species are generated continuously during aerobic growth and are 

elevated by a range of different stress conditions, having the potential to cause 

oxidative deterioration of proteins, lipids, DNA and RNA. Oxidative damage is one of 

the major causes of aging and age-related diseases and organisms have evolved a 
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number of strategies to cope with this stress. Responses typically involve the up-

regulation of antioxidant proteins, such as ROS-scavenging peroxidases and 

superoxide dismutases, or enzymes that reverse oxidative damage, such as 

methionine sulfoxide redutases (Imlay, 2008; Avery SV., 2011). Surprisingly, increased 

levels of reactive oxygen species result in methionine misincorporation due to tRNA 

misacylation by a yet unkown mechanism involving the activity of MetRS. Instead of 

deleterious this is an adaptive mechanism, since Met residues work as ROS 

scavengers and protect proteins from ROS-mediated damage (Netzer et al., 2009; 

Jones et al., 2011).  

 

RNA is mostly single-stranded and its bases are scarcely protected by hydrogen 

bonding and proteins, making it much more susceptible to oxidative stress than DNA 

(Bregeon & Sarasin, 2005; Nunomura et al., 2006). The oxidation of rRNA, tRNA, and 

mRNA might impair the integrity of translational processes (Tanaka et al., 2007) 

resulting in synthesis of aberrant proteins, especially under conditions of saturated 

quality control (Ding Q et al., 2005), and was recently reported in post-mortem brains 

of patients with Alzheimer’s disease (AD) and Parkinson’s disease (PD) (Nunomura et 

al., 1999; Zhang et al., 1999). Remarkably, rRNA oxidation in neurons and glia is 

extensively promoted by low-level proteasome inhibition, dramatically altering RNA 

processing (Ding et al., 2004). Oxidative stress increases cellular dysfunction also by 

directly targeting proteins that regulate cell structure, cell signaling and various 

pivotal metabolic processes (Cecarini et al., 2007). Certain proteins are more 

susceptible to oxidative targeting due their relative content of sensitive amino acid 

residues, the presence of metal-binding sites, the specific molecular conformation or 

the rate of degradation. Remarkably, the group of oxidation-sensitive proteins 

includes mitochondrial proteins, chaperones, members of the ubiquitin-proteasome 

system and others associated with the energy metabolism (Avery SV., 2011). 

Protein oxidation often occurs as an irreversible damage that might result from ROS 

mediated cleavage of peptide bonds  or even from direct metal catalyzed oxidative 

(MCO) attack on the amino-acid side chains of proline, arginine, lysine and threonine 

(Nystrom, 2005; Cecarini et al., 2007). Metal-catalyzed oxidation (MCO) of proteins 
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requires the presence of ions such as Fe (III) or Cu (II) that bind to specific metal 

binding sites in the protein and react with H2O2. This results in generation of hydroxyl 

radicals that then attack nearby susceptible amino acid residues. Some amino acids 

might just be directly modified through side chain reactions with ROS, independently 

of metal ion presence. This group includes amino acids with aromatic or sulfhydryl 

side chains, which render them particularly susceptible to oxidative damage 

(Stadtman & Levine, 2003; Cecarini et al., 2007). 

One of the major consequences of amino acid oxidation is the production of 

irreparable carbonyl groups. These carbonylated proteins can be marked for 

degradation by the proteasome, but many times avoid this destiny and end up 

forming high molecular weight aggregates that are usually age-related. Aggregation 

is promoted by carbonyl reactivity towards α- amino groups of lysine residues, which 

leads to extensive formation of intra- or inter-molecular cross-links (Sohal, 2002; 

Nystrom, 2005; Cecarini et al., 2007). Parkinson’s disease, Alzheimer’s disease, cancer, 

cataractogenesis and diabetes are diseases associated with increased protein 

carbonylation (Levine, 2002; Dalle-Donne et al., 2003). 

 

The objective of this chapter was to evaluate the impact of misfolded proteins, 

generated through mistranslation and environmental stress, on components of the 

translational machinery. 

We report that As3O2 triggers protein aggregation, with concomitant decrease in the 

cellular concentration of eRF1/eRF3 available for termination. This phenotype might 

lead to stop codon readthrough, but does not solely determine it. Deletion of HSP12 

produces a unique tRNA modification pattern under exposure to oxidative damaging 

concentrations of As2O3. Also, cells mistranslating constitutively misacylate various 

tRNAs with Met, by a yet unknown mechanism.  

 

 

 

 

 



Chapter 3 

 

 
98 

3.2. Material and methods  

 

3.2.1. Strains and growth conditions 

 

The bacterial strain JM109 (endA1 glnV44 thi-1 relA1 gyrA96 recA1 mcrB+ Δ(lac-

proAB) e14- [F' traD36 proAB+ lacIq lacZΔM15] hsdR17(rK
-mK

+)) was used for plasmid 

amplification. It was grown at 37°C in Lysogeny Broth (LB) medium (Formedium) or 

LB 2% agar (Formedium), both supplemented with 50 µg/mL ampicillin (Sigma-

Aldrich) when required. 

 

The S.cerevisiae strains used in this study and their genotype are specified in Table 3.1. 

 

Table 3.1 – S.cerevisiae strains used to study the cellular response to mistranslation. 

Strain  Genotype  Source 

 

BY4742 

 

MATα ; his3Δ 1; leu2Δ 0; lys2Δ 0; ura3Δ 0 

 

Euroscarf 

Δrpn4 BY4742 ; YDL020C::kanMX4/YDL020C::kanMX4 Euroscarf 

Δhsp104 BY4742 ; YLL026W::kanMX4/ YLL026W::kanMX4 Euroscarf 

Δhsp12 BY4742 ; YFL014W::kanMX4/ YFL014W::kanMX4 Euroscarf 

Δyap1  BY4742 ; YML007W::kanMX4 Euroscarf 

HSP104 – GFP BY4742; HSP104-GFP (Huh WK et al., 2003) 

HSP104-GFP- Δrpn4 BY4742; YDL020C::kanMX4; HSP104-GFP This thesis 

HSP104-GFP- Δhsp12 BY4742; YFL014W::kanMX4; HSP104-GFP The thesis 

HSP104-GFP- Δyap1 BY4742; YML007W::kanMX4; HSP104-GFP This thesis 

   

 

Yeast cells were cultured at 30ºC in rich YPD medium (1% yeast extract, 2% Peptone 

and 2% Glucose) or selective minimal medium (MM – 0.67% yeast nitrogen base, 2% 

glucose and 0.2% Drop-out mix, lacking only the amino acids corresponding to the 

selection markers). Geneticin (G418) (Formedium) was used in deletion strains at a 

concentration of 200µg/L. Solid media required agar up to 2%. All media were 

sterilized by autoclave at 120 ºC for 15 – 20 min.  
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3.2.2. Plasmids 

 

The S.cerevisiae plasmids used in this study are specified in Table 3.2.  

 

Table 3.2 – Plasmids used to study the cellular response to mistranslation. 

Plasmid  Description Source 

   

pFA6a–GFP–His3MX Used as PCR template for C-terminal tagging of proteins 

by GFP at their chromosomal locations. Contains the S. 

pombe his5
+
 gene and permits selection of transformed 

strains in histidine-free media. 

(Wach A et al., 1997) 

pUKC815 Single-copy URA3 vector containing E.coli lacZ gene 

under the control of the PGK1 promoter. 

(Stansfield I et al., 1998) 

pRS315 Single-copy LEU2 vector (Santos MA et al., 1996) 

pUKC715 Single-copy LEU2 vector containing the C. albicans 

G33 Ser-tRNACAG gene. 

(Santos MA et al., 1996) 

   

 

3.2.3. Yeast transformation by the lithium acetate (LiAc) method 

 

Fresh yeast colonies were picked and grown overnight at 30ºC in YPD rich medium. 

Overnight cultures were then diluted 1:1000, grown to mid-log phase (OD600 ~0,5) and 

harvested by centrifugation at 4000 rpm. After washing with 5mL of sterile mQ water, 

the cell pellet was resuspended in 50μL of 0,1M LiAc solution and the following 

reagents were added in the designated order : 500μL 50% (w/w) PEG, 25μL single-

stranded carrier DNA (2mg/mL) previously denatured for 5 min. at 95ºC and 0,1 – 1μg 

of plasmid (Gietz RD & Woods RA, 2006). Tubes were vortexed immediately until the 

mixture was homogeneous and then subjected to heat-shock at 42ºC for 45 min. Cells 

were then harvested by centrifugation at 5000 rpm, supernatants were discarded, 

pellets resuspended in 100 μL of sterile mQ water and plated in selective media plates 

that were then incubated at 30ºC until colonies were visible.  
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3.2.4. Analysis of intracellular levels of cations 

 

Overnight cultures of individual yeast transformants were diluted 100x in MM-Ura, 

grown at 30ºC/180 rpm to mid-log phase (OD600 0,5 – 0,6) and then incubated for 4h in 

the absence or presence of 400 µM As2O3, 125µM CdCl2 and 40mM LiCl. 

Approximately 20 OD600 units of cells were then harvested for each condition, washed 

plentifully and resuspended in 500µl H2O mQ. After addition of 1 ml 6M HNO3, 

samples were digested for 20 min at 95ºC, centrifuged to remove cellular debris and 

aliquots of the supernatant were analyzed using a flame atomic absorption 

spectrophotometer (Perkin Elmer AAnalyst 100). 

 

3.2.5. Measurement of Hsp104 – GFP aggregates 

 

3.2.5.1. HSP104 – GFP strain construction 

 

Quantification of Hsp104 aggregates was performed as described previously (Erjavec 

et al., 2007). PFA6a–GFP (S65T)–His3MX plasmid was used as template to generate 

gene-specific cassettes containing a C-terminally positioned GFP tag and the S.pombe 

his5+ gene that allows selection of transformed strains in histidine-free media (Wach A 

et al., 1997; Huh WK et al., 2003). Amplification of the cassette was done by standard 

PCR with reaction mixes containing 0.2mM dNTPs, 2.5mM of MgCl2, 100 ng of 

template DNA, 0.04U/μL of Taq polymerase (Fermentas), 1 x Taq buffer (Fermentas) 

and 1pmol/μL of each of the following primers, designed to share sequence 

complementarity with the C-terminal coding region of Hsp104 gene: 

oUA2403  

GACGATAATGAGGACAGTATGGAAATTGATGATGACCTAGATGGTGACGGTGCTGGTTTA 

oUA2404 

GATTCTTGTTCGAAAGTTTTTAAAAATCACACTATATTAAATCGATGAATTCGAGCTCG 

  

The PCR program started with 2 min. at a temperature of 94ºC, followed by 35 cycles 

with the following parameters: 95ºC for 30 sec, 57ºC (primers specific annealing 
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temperature - Tm) for 30 sec and 72ºC for 1 min. A single final incubation was done at 

72ºC during 3 min.  

 

The PCR products were purified using QIAquick PCR Purification Kit (according to 

Qiagen’s instructions), quantified using the NanoDrop®1000 Spectrophotometer 

(Thermo Scientific) and at least 1 µg of DNA were then used for yeast transformation, 

carried out as described in 3.2.3. After selection of transformants in MM medium 

lacking histidine, insertion of the cassette by homologous recombination was verified 

by PCR of individual colonies with a GFP tag internal primer and an ORF-specific 

primer, designed to produce a product of approximately 500 bp (oUA2405 - 

CTTGAACATAACCTTCTGGC and oUA 2406 - GACTTCTTGGCCAAATATGG). 

 

3.2.5.2. Microscopic imaging of Hsp104 – GFP aggregates 

 

Overnight cultures of cells containing GFP tagged Hsp104p were diluted 1:100 in 5mL 

MM medium lacking histidine, grown at 30°C to mid-log phase (OD600  0,5-0,6) and 

then incubated for 4h in the absence or presence of several non lethal environmental 

stressors (200 or 400 µM As3O2; 5µM CdCl2; 0,1 or 3 mM H2O2; 40mM LiCl; 5% ethanol) 

(Sigma-Aldrich). Cells were recovered by centrifugation, washed and resuspended in 

1ml phosphate buffered saline (PBS). Fluorescence was visualized using an Axio 

Imager Z1 fluorescence microscope (Zeiss) equipped with GFP and brightfield filters, a 

63x oil-immersion objective and a camera for image acquisition. Quantification of cells 

containing aggregates was done with ImageJ (NIH). For each condition, 

approximately 500 cells were analyzed in 6 different images per biological replicate. 

  

3.2.6. Quantification of insoluble protein 

 

The analysis of protein aggregation was performed as previously described (Rand & 

Grant, 2006), with several modifications. Equivalent cell numbers (10 A600 units) were 

harvested by centrifugation, washed, and resuspended in 450 µl of lysis buffer (50 mM 
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potassium phosphate buffer, pH 7, 1 mM EDTA, 5% (v/v) glycerol, 1 mM 

phenylmethylsulfonyl fluoride, and complete Mini protease inhibitor cocktail (Roche 

Diagnostics). After addition of 2/3 volume of glass beads (0.5 mm diameter), cells 

were disrupted using a Precellys homogenizer (Bertin technologies) for 3 × 1 min, with 

2 min incubation on ice between each disruption cycle. Cell debris were removed by 

centrifugation of the crude extract at 5000 rpm at 4ºC and for 15 min. 350µl of the 

resulting supernatant were then removed to a new tube. A 50 µl sample was 

immediately denatured for 5 min at 95ºC in 6x gel loading buffer (50mM Tris-HCl pH 

6.8, 100mM DTT, 2% SDS, 0.1% bromophenol blue, 10% glycerol). Aggregated 

insoluble proteins were isolated from the remaining total protein fraction by 

centrifugation at 13000 rpm for 20 min. Membrane proteins were removed by washing 

the resulting pellet with lysis buffer containing 2% Triton X-100. The final pellet was 

resuspended in 100µl lysis buffer and 6x gel loading buffer, just before denaturing for 

5 min. at 95ºC. 

 

Total (6µl) and aggregated insoluble protein fractions (35µl) were analyzed under 

reducing conditions using 15% resolving SDS-polyacrylamide gels (PAGE). Resolving 

gels were made mixing water, 15% acrylamide/bisacrylamide mix, Tris/HCl pH 8, SDS 

and ammonium persulfate (APS) together with TEMED to start polymerization. 

Stacking gels are large pore gels (4% acrylamide) prepared using Tris/HCl pH 6,8 and 

cast over the resolving polymerized gels to increase the resolution of protein 

separation. Samples were fractionated in a Bio-Rad electrophoresis apparatus 

previously filled with running buffer (25mM Tris base, 250mM glycine pH 8.3, and 

0.1% SDS) for approximately 2h and 120V. Gels were then removed from the 

apparatus, stained in a 0,1% coomassie brilliant blue R250 (Sigma-Aldrich) solution 

(40% ethanol and 15% acetic acid) for 30 min with agitation and immediately 

distained in a solution of 10% Ethanol / 7,5% Acetic Acid. Gels were visualized and 

scanned using the ODYSSEY Infrared Imaging System (Li-Cor Biosciences). The 

intensity of the bands was determined using the Odyssey® 3.0 Application Software. 

For each condition, the amount of aggregated insoluble protein was normalized with 

total protein values. 
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3.2.6.1. eRF1 and eRF3 western blot detection  

 

Total (6µl) and aggregated protein (35µl) fractions were analyzed under reducing 

conditions by 15% SDS-PAGE and were blotted onto nitrocellulose membranes. The 

blots were run overnight at 30V, 4ºC in TGM buffer (25mM Tris base, 192mM glycine, 

12% methanol) using a Bio-Rad wet transferring system (assembled according to 

manufacturer’s instructions). Nitrocellulose membranes (GE Healthcare) were then 

blocked in TBS-T (20mM Tris-HCl; 127mM NaCl; 0,1% Tween) with 5% non-fat milk for 

1h and incubated for 2h at room temperature with primary antibody diluted in TBS-T 

1% non-fat milk (1:200 anti-eRF1 and 1:1000 anti-eRF3). After washing 3 x 10 minutes 

with TBS-T, bound primary antibody was visualized by incubating for 1 h in the dark 

with an IRDye680 goat anti-rabbit secondary antibody (Li-Cor Biosciences) at a 

1:10000 dilution. Detection was performed using the ODYSSEY Infrared Imaging 

System (Li-Cor Biosciences). The amount of eRF1 and eRF3 in the insoluble fraction 

was normalized with the values present in the total fraction. 

 

3.2.7. RNA extraction and tRNA isolation 

 

Yeast cells carrying the pRS315 single-copy plasmid  were grown at 30ºC to mid – log 

phase (OD600 ~0,5) in minimal medium (MM) lacking leucine and then incubated for 4h 

in the absence or presence of several selected non lethal environmental stressors (200 

or 400 µM As3O2; 40mM LiCl; 5% ethanol) (Sigma-Aldrich). After harvesting, cells 

were frozen at -80ºC overnight and thawed by resuspending in a 1:1 mixture of lysis 

buffer (10 mM Tris pH 7,5; 10 mM EDTA; 0,5% SDS) and acid phenol chloroform 5:1 

(pH 4,7) (Sigma-Aldrich), vortexing vigorously. Cells were then immediately incubated 

in a water bath at 65ºC, vortexing again every 10 min. After 1h, RNA aqueous phases 

were recovered by centrifugation at 8000xg for 30 min at 4ºC and then transferred to 

new tubes for additional re-extraction steps, first with 4ºC acid phenol chloroform 5:1 

(pH 4,7) and then with chloroform Isoamyl Alcohol 24:1 (Fluka). RNA was then 

precipitated overnight at -30ºC with 3 vol. of ethanol and 0,1 vol. of 3M NaOAc/HOAc 
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pH 5,2. After harvesting by centrifugation (at 8000xg for 30 min, 4ºC) RNA was 

washed in 70% ethanol, resuspended in 2 ml of 0,1M NaOAc/HOAc pH 4,5 with 1mM 

EDTA and stored a -80ºC. 

 

DEAE-cellulose columns equilibrated with the RNA ressuspension were used for tRNA 

isolation. Total RNA was added to the columns which were then washed with 10 vol. 

of 0,1 M NaOAc /0,3 M sodium chloride  pH 4,5. tRNAs were eluted with 2 vol. of 0,1 M 

NaOAc /1M sodium chloride pH4,5 and precipitated in 2,5 vol. 100% ethanol overnight 

at -30ºC, harvested by centrifugation and finally resuspended in 10 mM NaOAc pH 

4,5/1 mM EDTA and stored a -80ºC. 

 

3.2.8. Quantification of tRNA modifications 

 

Total tRNA preparations were enzymatically hydrolyzed so that individual modified 

ribonucleosides could be resolved by HPLC. Identification was then performed by high 

mass accuracy tandem mass spectrometry (MS/MS), through fragmentation patterns 

generated with collision-induced dissociation (CID) in a quadrupole time-of-flight 

mass spectrometer (QTOF – Agilent 6510) with an electrospray ionization source. 

Nucleosides were also identified by comparison with synthetic standards. For 

quantification of the previously identified tRNA modifications a HPLC column was 

coupled to an Agilent 6410 triple quadrupole mass spectrometer with an electrospray 

ionization source and operated in positive ion mode (LC-QQQ). The method allowed 

identification of 23 out of the 25 known ribonucleoside modifications of citoplasmic 

tRNAs from S. cerevisiae. Results are expressed as fold change of nucleoside level in 

cells exposed to stress relatively to levels in non-exposed cells. 

 

 These experiments were performed by collaborators in the laboratory of Prof. Peter 

C. Dedon at the Massachusetts Institute of Technology, Cambridge, Massachusetts, 

United States of America and according to the previously described protocol (Chan et 

al., 2010). 
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3.2.9. Quantification of intracellular reactive oxygen species 

 

Approximately 106 yeast cells were harvested by centrifugation, washed and 

resuspended in PBS, pH 7,4. Cells were then labeled with 15μg/mL dihydrorhodamine 

123 (DHR123) (Molecular Probes) (30ºC for 90 min in the dark) or 10μg/mL 

dihydroethidium (DHE) (Molecular Probes) (30ºC for 10 min in the dark). After washed 

in PBS, cells were analysed in a flow cytometer for ROS quantification as previously 

described (Almeida et al., 2007). Cells displaying higher values than a defined 

threshold of green fluorescence were considered as containing elevated intracellular 

ROS. 

 

3.2.10. Yeast 35S-Met pulse labeling to test for misacylation 

 

Cells expressing pRS315 or pUKC715 (misreading tRNA) were grown overnight in MM 

lacking leucine. Overnight cultures were diluted to an initial 0,1 OD600 and grown at 

30ºC to 0,4 OD600. Approximately 12 OD600 units of cells were then harvested for each 

condition, resuspended in MM lacking leucine/ methionine and incubated for 1h at 

30ºC/180rpm. Cells were again collected by centrifugation, resuspended in 300µl 

labeling medium [MM lacking leucine/ methionine plus 0.25 mCi 35S-Met 

(PerkinElmer) per sample] and incubated at 30ºC for 1 minute. 300 µl of ice cold 0,3 M 

NaOAc/HOAc/10 mM EDTA pH 4.8 were then immediately added to the culture. Cells 

were washed 3 times and finally ressuspended in 300µl ice cold 0,3 M NaOAc/HOAc/10 

mM EDTA pH 4,8.  

For RNA extraction, cells were transferred to a tube containing 2.8 mm ceramic 

(zirconium oxide) beads (Precellys, Bertin technologies) and 1 vol. acid phenol 

chloroform 5:1 equilibrated with NaOAc/HOAc, pH4,8 (mix 1 volume of phenol/CHCl3 

with 1/10th volume 5 M NaOAc/HOAc, pH 4.8).  Cells were disrupted using a Precellys 

homogenizer (Bertin technologies) for 4× 1 min, with 2 min incubation on ice between 

each disruption cycle. The aqueous layer was collected by centrifugation (14,000 rpm, 

for 15 min. at 4ºC) and transferred again to a tube containing 300µl 
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phenol/CHCl3/NaOAc/HOAc, pH4.8. The mixture was homogenized by vortexing for 

60 seconds. The aqueous layer extraction procedure was then repeated two more 

times and RNA was finally precipitated in 1 vol isopropanol, at -30°C for 20min, 

followed by centrifugation (14ooo rpm at 4o C for 15min). After resuspending in 100µl 

ice cold 0,3M NaOAc/HOAc/10 mM EDTA pH 4.8, RNA was again precipitated 

overnight in 2,7 volumes of 100% ethanol, at -30ºC . Finally, RNA was harvested by 

centrifugation, resuspended in 50µl of 10mM NaOAc/HOAc pH 4.8/1mM EDTA and 

stored a -80ºC. Quantification and RNA quality were accessed using 

the NanoDrop®1000 Spectrophotometer (Thermo Scientific). 

 

3.2.10.1. tRNA microarray analysis 

 

The procedure for tRNA microarray analysis using radioactive detection has been 

performed in the laboratory of Prof. Tao Pan at the University Of Chicago, United 

States Of America, as described in (Netzer et al., 2009; Jones et al., 2011). 

 

A total of 4 arrays were hybridized for each of the selected conditions. In a regular 

array total RNA (20 µg) is hybridized directly. For a modification control array, total 

RNA is first deacylated at pH 9 (0.1 M Tris-HCl) for 45 min so that signals from 

aminoacyl- and peptidyl-tRNAs are eliminated.  In a cross-hybridization control array, 

excess of DNA probes of cytosolic and mitochondrial tRNAMet are included in the 

hybridization mix. Finally, in a peptidyl-tRNA control array total RNA is treated with 

aminopeptidase-M at room temperature for 25 min, just before array hybridization, to 

remove signal from N-term peptidyl-tRNAs.  

 

The array contains 40 nuclear-encoded yeast tRNA probes (orange) and 24 

mitochondrial-encoded yeast tRNA probes (blue). In addition, the array includes 1 

blank control (yellow) and 31 E. coli tRNA probes (green), which serve as negative 

controls. Each probe has 8 replicates (see Figure A5 in Annexes). For 35S-labeled 

samples, essentially only S. cerevisiae spots showed signal, indicating that the array 

works well.  
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Total RNA was hybridized in 2xSSC (30mM tri-Sodium citrate, 0.3M NaCl) pH 4.8 at 

60ºC for 50 min using a Hyb4 station (Genomic Solutions). After hybridization, arrays 

were washed twice in 2xSSC, pH 4.8, 0.1% SDS and then in 0.1xSSC, pH 4.8, dryed and 

exposed to phosphorimaging plates (FujiMedicals) for up to 14 days. Spot intensity 

was quantified using Fuji Imager software. 

 

3.2.11. Statistics 

 

Data is reported as mean ± SEM or SD. Significance was tested by one-way ANOVA 

and t-test (GraphPad Prism 5). Differences are considered significant when p < 0,05. 

 

3.3. Results  

 

3.3.1. Cation influx and stress sensitivity 

 

Our previous results exposed translational accuracy defects in Δhsp104 but mostly in 

Δhsp12 cells under stress (see section 2.3.2). Both HSP12 and HSP104 are amongst the 

most upregulated genes normally included in the general stress response (Gasch AP et 

al., 2000). HSP104 is central for ethanol, arsenite and heat-shock tolerance (Sanchez 

et al., 1992). HSP12 is a plasma membrane protein that modulates membrane fluidity 

and stability under stress conditions (Welker S et al., 2010) and may influence the 

activity of numerous plasma membrane proteins, namely ionic channels and amino 

acid transporters.   

On the other hand, the cellular toxicity of a metal or metalloid element depends on its 

uptake mechanism, on the oxidation state, the intracellular distribution and also on 

the interactions with various macromolecules (Valko M et al., 2005; Summers, 2009; 

Wysocki R & Tamás MJ, 2010). Due to charge and molecular similarity, toxic metals 

and metalloids can enter cells through membrane permeases and channels involved in 

the uptake of essential metals such as Fe, Mn, Zn, and nutrients such as phosphate or 

sulphate. There is quite limited information on how metal sensing occurs in each of 

the strains and how this information is translated into suitable cellular responses, by 
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ultimately influencing translational accuracy. As a first approach, we decided to 

investigate whether the sensitivity of Δhsp104 and Δhsp12 cells might be related with 

increased intracellular levels of cations due to altered plasma membrane transport. 

However, no differences were observed in intracellular levels of As3+, Cd2+ or Li+ both 

in Δhsp12 and Δhsp104 cells, relatively to BY4742 control cells. Therefore, apparently, 

the environmental stress effects are not apparently linked with higher accumulation 

of toxic elements, but most probably with mechanisms more centered on 

translational machinery factors. 

 

 

 

 

 

 

 

 

 

Figure3.2 - Intracellular As
3+

, Cd
2+

 and Li
+ 

concentration is not significantly increased in 

Δhsp12 or Δhsp104 cells relatively to wt (BY4742) cells, after 4h treatment of log-phase 

cultures with 400 µM As2O3, 125µM CdCl2 and 40mM LiCl. Cells were washed and lysed as 

described in section 3.2.4. The concentrations of intracellular cations were measured by atomic 

absorption spectroscopy. Three independent experiments were performed. 

 

 

3.3.2. Effects of environmental stress on protein aggregation 

 

Protein aggregation is common in cells but can be exacerbated because of partial 

unfolding linked to intrinsic and environmental conditions that result in increased ROS 

production, thereby resulting in protein oxidation and carbonylation, and stress 

caused by heat, heavy metals and translational misincorporation (Buchberger A et al., 

2010). Under these conditions, the accumulation of damaged proteins can perturb 

cellular homeostasis eventually affecting mechanisms involved in translational 

accuracy.  
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Figure 3.3 – Environmental oxidative stressors are linked to an increase in Hsp104-

containing aggregates. BY4742 yeast cells labeled with an Hsp104 – GFP reporter were grown 

to mid-log and exposed to stress for 4h. a) Red arrows show the distribution of Hsp104-GFP 

agreggates in the cytoplasm as monitored by epifluorescence microscopy b) quantification of 

cells with Hsp104-GFP aggregates. *** (P<0.001) represents values significantly different from 

the control - cells not exposed to environmental stressors – (one-way ANOVA, Dunnett's post-

test). Values are mean ± SEM. Approximately 500 cells were analyzed in 6 different images for 

each condition. Three independent experiments were performed. 

a) 
BY4742 

b) 

   *** 
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Figure 3.4 – Hsp104-containing aggregates increase in Δhsp12 cells after As and Cd 

exposure. Yeast cells labeled with an Hsp104 – GFP reporter were grown to mid-log and 

exposed to stress for 4h. a) Red arrows show the distribution of Hsp104-GFP agreggates in the 

cytoplasm as monitored by epifluorescence microscopy b) quantification of cells with Hsp104-

GFP aggregates. ** (P<0.01) and *** (P<0.001) represent values significantly different from the 

control - cells not exposed to environmental stressors – (one-way ANOVA, Dunnett's post-test). 

Values are mean ± SEM. Approximately 500 cells were analyzed in 6 different images for each 

condition. Three independent experiments were performed. 

a) 

b) 

Δhsp12 

 ** 

   *** 
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Figure 3.5 – Environmental oxidative stressors extensively increase Hsp104-containing 

aggregates in cells with low oxidative stress tolerance. Δyap1 cells labeled with an Hsp104 – 

GFP reporter were grown to mid-log and exposed to stress for 4h. a) Red arrows show the 

distribution of Hsp104-GFP agreggates in the cytoplasm as monitored by epifluorescence 

microscopy b) quantification of cells with Hsp104-GFP aggregates. *** (P<0.001) represent 

values significantly different from the control (one-way ANOVA, Dunnett's post-test). Values are 

mean ± SEM. Approximately 500 cells were analyzed in 6 different images for each condition. 

Three independent experiments were performed. 

                                                  

a) Δyap1 b) 
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Figure 3.6 – Decreased proteasome activity leads to increase in Hsp104-containing 

aggregates in yeast. a) Red arrows show the distribution of Hsp104-GFP agreggates in the 

cytoplasm as monitored by epifluorescence microscopy b) quantification of cells with Hsp104-

GFP aggregates c) Deletion of RPN4 promotes a 3x fold increase in foci of Hsp104 associated 

aggregates relatively to BY4742 cells, even in the absence of stress exposure. *** (P<0.001) 

represent values significantly different from the control (one-way ANOVA, Dunnett's post-test). 

Values are mean ± SEM. Approximately 500 cells were analyzed in 6 different images for each 

condition. Three independent experiments were performed. 

a) Δrpn4 

 c) 

     *** 

b) 
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As mentioned before, dissociation and reactivation of aggregated proteins in S. 

cerevisiae is mediated by Hsp104p, which in the process changes its intracellular 

distribution. Therefore, stress severity induces an increase in Hsp104p expression and 

an accompanying pattern change, from a weak diffuse distribution over the entire cell 

to a distinct accumulation surrounding the perimeter of protein aggregates.  

Visualization and quantification of the Hsp104p associated aggregates can be done by 

epifluorescence microscopy in cells expressing a HSP104-GFP fusion reporter. This 

strategy allowed us to evaluate the involvement of some homeostasis genes in 

aggregate build-up, specifically under stress conditions previously associated with loss 

of translational accuracy.  In all the strains tested, As2O3 exposure greatly contributed 

to the buildup of intense Hsp104-GFP foci spread throughout the entire cytoplasm 

(see Figure 3.3 - 3.6), explaining the crucial role of Hsp104p in arsenic resistance in 

yeast. The Yap1p transcription factor is pivotal in the response to oxidative stress. The 

effect of As in Δyap1 cells is concentration dependent and can increase Hsp104-

containing aggregates 6-fold relatively to non exposed cells (figure 3.5). For that 

reason, the effect of As is most probably associated with oxidative damage to proteins 

(Wysocki R & Tamás MJ, 2010). 

CdCl2 also significantly increases the amount of Hsp104-containing aggregates in 

Δhsp12 and Δyap1 mutants, ~ 2 to 3 - fold (see figure 3.4 and 3.5).  Indeed, Cd impact 

on proteins occurs by binding via thiol groups of cysteine residues, inhibiting 

chaperone-assisted folding and function (Sharma et al., 2008). On the other hand, the 

effect of H2O2 in the buildup of Hsp104-GFP aggregates is only relevant under low 

oxidative stress tolerance (figure 3.5) or upon exposure to high H2O2 concentrations 

(0,7mM; results not shown). This is probably due to the high efficiency of the peroxide 

detoxification enzyme catalase (Jamieson, 1998).  

Deletion of RPN4 results in inhibition of proteasome activity and increases Hsp104-

GFP foci 3-fold relatively to BY4742 cells, even in the absence of stress exposure. 

Moreover, As2O3 exposure exacerbates protein aggregation in Δrpn4 cells (2-fold 

increase, see Figure 3.6), although less pronouncedly than in other strains. Deletion of 

RPN4 might increase Hsp104p expression, which is still slightly aggravated by stress 

exposure. This hyphothesis is consistent with previous studies which established a 



Chapter 3 

 

 
114 

correlation between exposure to a potent proteasome inhibitor (MG132) and a 

coordinated induction of many heat shock proteins (Lee & Goldberg, 1998). Taken 

together, our data suggests that deletion of RPN4 and concomitant inhibition of the 

degradative function saturates intracellular folding capacities. Hsp104-GFP foci were 

scarcely visible upon ethanol and lithium exposure, even though these conditions have 

also been associated with UAA readthrough and AGC misreading in deletion mutants 

under defective protein homeostasis (Chapter 2, table 2.4 and 2.5). This suggests that 

ethanol or lithium may not impact mistranslation through protein aggregation. 

In conclusion, stress or proteome quality control impairment might aggravate protein 

damage resulting in unfolding, followed by aggregation. Many of the aggregated 

proteins might be translation factors that regulate accuracy, like ribosomal proteins, 

elongation or release factors, resulting in synthesis of aberrant proteins that can 

further exacerbate cell degeneracy. 

 

3.3.2.1. Effects of environmental stress on aggregation of release factors 

 

Our previous results showed that environmental stress increases stop codon 

readthrough (Chapter 2, Figure 2.4 and Table 2.4) in the absence of homeostasis 

mechanisms. In eukaryotes, translation termination is mediated through the action of 

a single class I release factor (eRF1) that recognizes all three stop codons (UAG, UAA, 

and UGA) (Bertram G et al., 2001; Kisselev L et al., 2003). The eukaryotic class II 

release factor eRF3 facilitates eRF1 stop codon recognition and carries out GTP 

hydrolysis prior to polypeptide chain release (Salas-Marco J & Bedwell DM, 2005; 

Alkalaeva EZ et al., 2006), hence acting as an enhancing factor for the termination 

process. The efficiency of translation termination depends on competition between 

stop codon recognition by eRF1 and decoding of stop codons, by a near-cognate 

tRNAs. As a result, availability of eukaryotic release factors is determinant for 

termination accuracy (Stansfield et al., 1996) and any stress-induced damage on eRF1 

or eRF3 proteins likely leads to stop codon suppression.  
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c) Δhsp104 

b) Δhsp12 

a) BY4742 

Figure 3.7  
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Figure 3.7 – As2O3 increases eRF 1 and eRF3 in the insoluble protein fraction. Cells were grown 

to mid-log in Minimal Medium and exposed to stress for 4h. Equivalent cell numbers (10 A600 

units) were harvested by centrifugation, washed and resuspended in PBS. Aggregated insoluble 

proteins were isolated from soluble and membrane proteins by centrifugation at 13,000 rpm for 

20 min and by washing the pellet with lysis buffer containing Triton X-100, respectively. eRF1 

and eRF3 were separated by SDS-PAGE and detected by immunoblotting. a) wild-type BY4742 

cells, b) hsp12 null mutants, c) hsp104 null mutants. The amount of aggregated release factors 

was normalized with the values from the total protein fraction, * (P < 0.05), ** (P<0.01) and *** 

(P<0.001) represent values significantly different from the control (one-way ANOVA, Dunnett's 

post-test). Values are mean ± SEM of at least three independent experiments. 

 
 

Therefore, we have investigated whether stress affects protein synthesis accuracy by 

limiting the access of release factors to stop codons. In order to do so, the aggregated 

protein fraction was first separated from the soluble fraction by a prolonged ultra 

speed centrifugation and then from membrane proteins by washing with a non-ionic 

surfactant. Immunodetection showed that exposure to As2O3 significantly increases 

the amount of both eRF1 and eRF3 in the insoluble fraction, potentially diminishing 

their availability for termination in BY4742, Δhsp12 and Δhsp104 cells. Remarkably, 

As2O3 does not affect translational accuracy in BY4742 (WT) cells (Chapter 2, Figure 

2.3 and 2.4), suggesting that As2O3 induced aggregates do not exclusively result from 

decreased translational accuracy. On the other hand, eRF1/eRF3 solubility is not 

relevant to explain the effect of lithium or ethanol on protein synthesis, neither the 

differences observed in strain susceptibility. 

 

3.3.3. Reprogramming of tRNA modifications 

 

 
Modifications modulate tRNA binding affinity to ribosomes, thereby affecting the rate 

and fidelity of protein synthesis. In addition, tRNA modified mucleosides have also 

been strongly implicated in the cellular response to stress. Indeed, recent data 

indicates that deletion of TRM1 and TRM8 methyl transferase genes, involved in m2
2G 

and m7G synthesis, respectively, cause severe heat and antibiotic sensitivity in yeast 

(Gustavsson & Ronne, 2008; Sinha et al., 2008). 
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Figure 3.8  

a) 

  a) 

  b) 
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Figure 3.8 - Environmental stress affects tRNA modifications. Modified nucleoside levels after 

4h exposure to non-lethal concentrations of As2O3 (400µM), LiCl (40mM) and ethanol 5%. 

Changes were quantified by liquid chromatography coupled electrospray-tripe quadrupole mass 

spectrometry (LC/QQQ). Mass spectrometer signals were normalized against the internal 

standard ([
15

N5]-29-deoxyriboadenosine). a) wild-type, BY4742 cells b) hsp12 null mutants. The 

red circles indicate the most significant decreases in modified nucleosides. The green circles 

indicate the most significant increases. Results are expressed as fold change of nucleoside level 

in cells exposed to stress relatively to levels in non-exposed cells. Values are mean ± SD of two 

biological replicates.  

 

Newly discovered reprogramming of tRNA modifications under stress exposure is part 

of a translational control mechanism that assures cell survival responses (Chan et al., 

2010). These data prompted us to evaluate possible changes in the level of tRNA 

modified nucleosides under environmental stress conditions. We hyphotezised that 

such changes could explain the low-level mistranslation measured in chapter 2. For 

this, we took advantage of a previously developed liquid chromatography – coupled 

mass spectrometric (LC-MS/MS) method (Chan et al., 2010) that allows robust 

separation, characterization and quantification of 23 distinct modified tRNA 

nucleosides. Two of the 25 known S.cerevisiae modifications were not detected, 

namely ncm5Um and Ar(p). Signal intensities from each nucleoside were normalized 

by an internal standard ([15N5]-29-deoxyriboadenosine), allowing comparison across 

distinct samples. Cells were exposed to non – lethal concentrations of As2O3, LiCl and 

ethanol as previously described.  

 

Our data show reduction in the levels of mcm5S2U in BY4742 cells exposed to arsenic 

and a less pronounced decrease in the level of yW. Ethanol also decreased yW and 

mcm5S2U modifications, although less intensively in the case of mcm5S2U. 

Additionally, ethanol reduced the levels of t6A (see figure 3.8 a). On the other hand, 

Δhsp12 cells under stress present a unique spectrum of modified nucleosides. yW 

levels were significantly diminished after treatment with As2O3 , similarly to BY4742 

cells, while Um and Am levels varied in the opposite way (Figure 3.8 b). As2O3 

exposure also leads to a decline in a considerable number of modifications in Δhsp104 
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and Δyap1,2 cells. In Δhsp104, levels of I, m5U, mcm5U, m1G, t6A, m2
2G, i6A, yW and 

m1A were substantially decreased, as well as Gm, Um, Am, yW and m1A in Δyap1,2 

mutants (figure 3.9 a and b). Finally, exposure to non-inhibitory Li concentrations does 

not significantly alter the spectrum of tRNA modifications. Reprogramming is usually 

a dose-dependent response to more cytotoxic conditions (Chan et al., 2010). 

 

 

 

 
Figure 3.9 - Spectrum of tRNA modifications in Δhsp104 or Δyap1,2 cells exposed to As2O3. 

Changes were quantified by liquid chromatography coupled electrospray-tripe quadrupole mass 

spectrometry (LC/QQQ). Mass spectrometer signals were normalized against the internal 

standard ([
15

N5]-29-deoxyriboadenosine). a) Δhsp104 b) Δyap1,2. The red circles indicate the 

most significant decreases in modified nucleosides. Results were expressed as fold change of 

nucleoside level in cells exposed to stress relatively to levels in non-exposed cells. Values are 

mean ± SD of two biological replicates. 

a) 

b) 
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3.3.4. Misacylation of specific non-methionyl-tRNAs 

 

Previous studies have uncovered ununtecipated phenotypes associated with low-level 

mistranslation, namely increased ROS production and activation of oxidative stress 

response genes (Paredes et al., in press). Quantification of intracellular ROS levels in 

BY4742 and Δhsp12 cells illustrated a distinct response to constitutive mistranslation. 

Although there was a trend for increased ROS in both strains expressing misreading 

tRNAs, this increment was significant during stationary phase and mostly due to H2O2 

build-up in the Δhsp12 cells (Figure 3.10), while mistranslating BY4742 cells showed a 

4-fold increase both in H2O2 and superoxide during exponential phase. 

Methionine misacylation recently emerged as an important cellular defense response 

to increased levels of ROS (Luo & Levine, 2009; Netzer et al., 2009). Indeed, 

methionine residues in proteins work as ROS scavengers, protecting the function of 

many macromolecules (Luo & Levine, 2009). In mammalian cells, Met-misacylation 

occurs at a basal level of ~1% and increases up to 10-fold under innate immune 

activation and after oxidative stress induction, representing a very significant but 

tolerated impact on translational fidelity (Netzer et al., 2009). We therefore explored 

misacylation in BY4742 and Δhsp12 cells expressing misreading tRNAs. For this, total 

tRNA from exponentially growing cells radiolabeled with 35S-Met was hybridized to 

tRNA arrays, allowing detection of all the 40 chromosomal and 24 mitochondrial-

encoded yeast tRNAs (see section 3.2.10 and Figure A5 in Annexes). 35S-Met-tRNAs 

were then quantified by phosphorimaging analysis. As a control for 35S labeling of 

tRNAs with thio-modifications, a sample of total RNA was deacylated and hybridized 

by the same procedure. In Figure 3.11 a), b) and c), deacylation resistant signals are 

represented in the left column (blue). Yeast tRNAs such as tRNALys
UUU, tRNAGlu

UUC, 

tRNAArg
UCU and tRNAThr

IGU were detected after deacylation due to thio-modifications 

at the wobble position of the anticodon. However, signals from other tRNAs that do 

not contain known thio-modifications were detectable even after deacylation, namely 

tRNALys
CUU and tRNAIle IAG (Figure 3.11). 



Proteome quality control systems in the cellular response to mistranslation 

 

 
121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 - Mistranslation increases ROS levels (H2O2 and superoxide anion) in By4742 and 

Δhsp12 cells. The tRNA
Ser

CAG from C. albicans was expressed in S. cerevisiae cells, resulting in a 

correctly processed and functional misreading tRNA (mis. tRNA), as accessed by a β-Gal assay (see 

Figure A4 in Annexes). This unique tRNA contains the body (long variable arm and discriminator 

base) of a serine tRNA and the anticodon of a leucine tRNA (tRNA
Ser

CAG), decoding the leucina CUG 

codon as serine (Santos MA et al., 1996). Therefore, both the seryl- and the leucyl-tRNA synthetases 

(SerRS and LeuRS) recognize this hybrid tRNA, generating CUG ambiguity (Santos MA et al., 1996; 

Suzuki et al., 1997). ROS were quantified by flow cytometry after labelling cells with 

dihydrorhodamine 123 (DHR123) and DHE (dihydroethidium), respectively. ROS tendencially 

increase in strains expressing misreading tRNAs. This increase is substantially higher in BY4742 

(WT) cells and significant for Δhsp12 cells only during stationary phase. * (P < 0.05), ** (P<0.01) and 

*** (P<0.001) represent values significantly different from the control (non-mistranslating) cells 

(one-way ANOVA, Dunnett's post-test), as indicated by the dashed line. Results were expressed as 

mean ± SEM of three biological replicates.  
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Figure 3.11     
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Figure 3.11 - Methionine misacylation occurs in wild-type cells and is elevated by 

mistranslation. Cells expressing pRS315 or pUKC715 (misreading tRNA) were grown to exponential 

phase and labeled with 
35

S-met. Total RNA was extracted and hybridized to yeast tRNA arrays. 

After hybridization, arrays were washed, dryed and exposed to phosphorimaging plates for up to 14 

days (see Figure A5 and A6 in Annexes). Spot intensity was then quantified. Orange and red squares 

indicate tRNAs misacylated with Met. The 
35

S-signal intensity is calculated relatively to tRNA
Met

. 

Represented in the image are 40 nuclear-encoded and 24 mitochondrial-encoded yeast tRNAs, 

organized according to the nature of their cognate amino acid a) misreading tRNA (mis. tRNA) 

expression in wild-type (BY4742) cells increases Met-misacylation. Deacylation resistant signals are 

represented in the left column. The origin of these deacylation resistant signals is not known b) 

Δhsp12 increases Met-misacylation relative to wild-type basal levels, but no significant, additional 

increase is observed upon misreading tRNA expression. C) Δyap1,2 increases misacylation only upon 

misreading tRNA expression. Results were obtained from two biological replicates. 

 

 

The origin of these deacylation resistant 35S-signals remains unknown. Mistranslation 

induced by the misreading tRNA in BY4742 cells increased Met-misacylation (Figure 

3.11 a). Nevertheless, except for tRNALeu
UAG, misacylation sinals were weak. Met-

misacylation also increased in the Δhsp12 background, but remarkably, mistranslation 

did not result in an additional increment in these cells (Figure 3.11 b). As expected, 

misacylation also increased in Δyap1,2 cells under mistranslation, but in this case 

misacylation sinals are much stronger than in BY4742 or Δhsp12 cells (Figure 3.11 c). 

No misacilation was detected in mitochondrial-coded tRNAs. The misacylated tRNAs 

varied much according to the nature of their cognate amino acid, with a particular 

prevalence of tRNAs encoding polar residues, especially in Δyap1,2 cells. 

 

3.4. Discussion 

 

3.4.1. Impact of environmental stress on the plasma membrane 

 

Hsp12p is not a common small heat shock protein (sHsp). It differs from sHsp in 

almost all structural and functional characteristics. During exponential phase, Hsp12p 

is present in low concentrations in the cytosol and as a soluble protein with no 
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noticeable secondary structure. Under stress, increased expression allows its 

integration in the plasma membrane, where it can modulate membrane fluidity and 

stability without requiring changes in the lipid composition of yeast cells. 

Interestingly, homologs of Hsp12p are only found in fungi. WH11 from C.albicans 

shares 47% homology to the amino-terminal region of Hsp12 and is involved in 

phenotypic switching and virulence (Park et al., 2004). 

The role of Hsp12p in membrane integrity and organization was shown experimentally 

by the increased uptake of propidium iodide in Δhsp12 cells exposed to stress 

conditions (Welker S et al., 2010). The effect of Hsp12p on membrane organization 

may occur through interaction with protein components, including ion channels and 

transporters. With this in mind, we tested the influx of As, Cd and Li in Δhsp12 cells, in 

order to establish a potential connection with mistranslation. 

 

Toxic metal and metalloid cellular influx occurs through permeases and channels used 

normally for the transport of essential nutrients. However, there are several defense 

mechanisms intended to reduce this toxic influx both by downregulating the 

expression of relevant transporters at the transcriptional and post-transcriptional 

levels or by inhibiting their activity. For example, the aquaglyceroporin Fps1p, 

normally involved in efflux of glycerol and in uptake of acetic acid, is the main 

entrance pathway of As(III) into yeast cells (Wysocki et al., 2001). The MAPK Hog1p is 

activated in response to As(III) and reduces transport through Fps1p, therefore 

mediating an essential tolerance mechanism (Wysocki R & Tamás MJ, 2010). In 

addition, As (III) detoxification in S. cerevisiae can also occur via the Acr3p uniporter, 

allowing export of the As anion As(OH)2O- coupled to the membrane potential (Fu et 

al., 2009). 

 

One of the major Cd influx pathways is through Zrt1p, normally involved in the uptake 

of Zn (Gomes et al., 2002; Gitan et al., 2003). In the presence of high Cd 

concentrations Zrt1p is removed from the cell surface by a tolerance mechanism 

triggered by Rsp5p dependent ubiquitylation, followed by endocytosis and 

degradation in the vacuole (Gitan & Eide, 2000). Another resistance mechanism is 
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associated to the intracellular distribution of this metal ion. In S. cerevisiae, the ATP-

binding cassette (ABC) transporter Ycf1p, which is a YAP1 target, is involved in 

vacuolar sequestration of GSH-conjugated Cd and As.  

 

Plasma membrane transport and cation tolerance are determined by the action of 

Pma1p H+ pumping ATPases (Serrano et al., 1986) and Trk1/Trk2p K+ transporters, 

both of which are pivotal in establishing the electrical membrane potential in S. 

cerevisiae. The negative-inside membrane potential allows lithium (Li) to enter yeast 

cells via NSC1 (non-specific cation channel) by a yet unclear mechanism (Bihler et al., 

1998; Bihler et al., 2002). On the other hand, Li extrusion is dependent mainly on the 

ENA1-encoded efflux ATPase, which couples hydrolysis of ATP to the transport of 

cations against the electrochemical gradient. 

 

Deletion of the ribosome-associated chaperones Ssb1/2p and Zuo1p renders cells 

hypersensitive to a wide range of cations, mostly due to an altered plasma membrane 

transport and concomitant influx rate increase of both Na+ and Li+. Remarkably, many 

pleiotropic effects have been recognized in Δssb1/2 cells, including sensitivity to 

aminoglycosides and impairment of translational accuracy (Rakwalska M & Rospert S, 

2004; Kim SY & Craig EA, 2005). Our results on the intracellular quantification of As, 

Cd and Li failed however to explain differential propensity for low-level mistranslation 

in BY4742, Δhsp104 or Δhsp12 cells. After a 4h exposure, HSP12 and HSP104 deletions 

do not visibly increase accumulation of stressors in the cytoplasm relative to WT cells. 

It is therefore likely that the differences in stress sensitivity are due to mechanisms 

targeting the translational machinery or even protein degradation. 

However, cation influx or eflux defects cannot be completely excluded because 

intracellular ion quantification was carried out at a single point after prolonged stress 

exposure, disregarding the balance of ion movement across the plasma membrane. 

Future studies should focus on the time course of changes in intracellular ion 

concentration after addition and removal of stressors. It is also important to assess 

their distribution between cytoplasm and vacuole. This would allow evaluating the 

effectiveness of detoxification mechanisms in each of the strains. Finally, the 
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accumulation of As3+, Cd2+ or Li+ might affect the intracellular ion pools of essential 

ions such as K+ or Cd2+ (Blackwell K & Jobin J, 1999), imposing modifications to the 

electrochemical membrane gradient or interfering with the activation of major 

intracellular signaling pathways. Hypothetically, these mechanisms might influence 

the cellular response to stress and deregulate the mechanisms that assure 

translational accuracy. 

 

3.4.2. Impact of oxidative damage on protein aggregation and the 

translational machinery 

 

Molecular chaperones and the ubiquitin-proteasome degradation pathway form a 

highly intricate network, representing the main protection responses against the 

buildup of misfolded protein and aggregates. However, under stress misfolded 

proteins may aggregate forming a large number of non-compartmentalized foci of 

different sizes, dispersed throughout the cytoplasm and associated with chaperones. 

Most of these aggregated proteins can be refolded to the native state by the Hsp104–

Hsp70 bi-chaperone system.  

 

Interestingly, even though Li and ethanol exposures were previously associated with 

low-level mistranslation (Chapter 2), protein aggregates were not detected in 

chaperone deletion mutants or WT cells (in the case of ethanol), suggesting that 

proteostasis mechanisms are efficient at preventing the buildup of misfolded proteins. 

In the case of Li, ethanol and low concentrations of Cd, misfolded proteins might be 

degradated by the proteasome. The lack of aggregates in Δrpn4 mutants suggests 

that autophagy may play a compensatory role in UPS defective cells (Ding et al., 

2007). One possibility is that mistranslated proteins are removed by microautophagy, 

which involves direct uptake of cytoplasmic proteins at the vacuolar surface. Direct 

transport of misfolded proteins into yeast vacuoles has also been described in yeast by 

a mechanism related with Hsp70 (Horst et al., 1999). Interestingly, deletion in yeast 

genes related with protein targeting to vacuole has been implicated in decreased 

fitness defect under Li exposure (Hillenmeyer et al., 2008). 



Proteome quality control systems in the cellular response to mistranslation 

 

 
127 

Under stress, damaged proteins can also be seized into several distinct quality-control 

compartments, namely, aggresomes, the the juxtanuclear quality-control 

compartment (JUNQ) adjacent to the nuclear membrane or the insoluble protein 

deposit (IPOD) adjacent to the vacuole. Spatial sequestration can protect the cellular 

environment from potentially deleterious protein species (Arrasate et al., 2004; 

Lansbury & Lashuel, 2006) and even facilitate clearance by alternative mechanisms 

such as autophagy (Rubinsztein, 2006). Aggresomes are microtubule-dependent 

cytoplasmic structures found both in mammalian and yeast cells. Aggregated proteins 

sequestered in the aggresomes are usually cleared by autophagy (Pankiv et al., 2007). 

The JUNQ transiently concentrates misfolded ubiquitylated proteins that can be 

degraded by the UPS or rapidly exchanged with the surrounding cytoplasm for 

refolding by chaperones. On the other hand, the IPOD contains terminally insoluble 

aggregated proteins, including yeast prions, and interacts with the autophagy 

associated Atg8p. Molecular chaperones are thought to contribute to the formation of 

JUNQ and IPOD and to the partition of substrate proteins between these 

compartments. Remarkably, the chaperone Hsp104 co-localizes with both JUNQ and 

IPOD, allowing fragmentation of aggregates and thereby keeping proteins soluble for 

either refolding or degradation (Kaganovich et al., 2008).  

Cell exposure to As3O2, as well as deletion of YAP1, increase oxidative damage and 

formation of  cytosolic Hsp104-GFP containing foci (Figure 3.3-3.6), dispersed 

throughout the cytoplasm or sequestered into quality-control compartments 

(Wysocki R & Tamás MJ, 2010), but additional experiments are required to confirm 

wheter mistranslation is relevant for such increment in protein aggregation. 

Nevertheless, in our study the buildup of protein aggregates is being underestimated 

in many of the tested conditions, since not all the insoluble proteins co-localize with 

Hsp104 in the cytoplasm or quality-control compartments such as JUNQ or IPOD. The 

aggregates sequestered in aggresomes are probably not visualized by epifluorescence 

microscopy.  

 

 As (III) toxicity is thought to be associated with its ability to covalently bind protein 

sulfhydryl groups. However, mechanisms linked to formation of ROS have also been 
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proposed (Valko M et al., 2005). Indeed, As (III) exposure impairs mitochondrial 

integrity by harming protein biosynthesis or even genome maintenance and targets 

cellular ROS detoxification mechanisms by decreasing the availability of glutathione. 

Also, As (III) mediates iron release from the storage protein ferritin (Salnikow & 

Zhitkovich, 2008), a process that culminates with hydrogen peroxide decomposition 

by the Fenton reaction and with synthesis of the highly damaging hydroxyl radical 

(Jomova et al., 2011).  On the other hand, ROS are involved in the metal catalyzed 

introduction of carbonyl groups into the side chains of proline, arginine, lysine or 

threonine (Nystrom, 2005; Tyedmers J et al., 2010), which may happen under our 

experimental conditions. 

 

Mistranslated proteins appear to be more susceptible to protein damage. 

Carbonylation has been reported to occur independently of ROS accumulation, under 

conditions that favor a boost in production of aberrant proteins available for oxidative 

attack (Dukan et al., 2000; Ballesteros et al., 2001). For example, carbonylation 

increases upon treatment with ribosome-targeting antibiotics even if superoxide 

production is unaltered (Dukan et al., 2000). Therefore, cellular protein oxidation is 

limited both by available reactive oxygen species and by the levels of aberrant 

proteins. These observations suggest an unexpected link between reduced 

translational accuracy and protein oxidation. If so, the mechanism of As (III) toxicity 

may involve mostly protein homeostasis, which should be explored in future 

experiments. Rapid carbonylation followed by aggregation  guarantees that 

erroneous proteins promptly enter the degradation pathway and keep the cell free 

from mistranslated proteins (Dukan et al., 2000; Nystrom, 2005).  

 

ROS generated by exposure to environmental stressors may also mediate permanent 

deleterious modifications of protein structure or function, by targeting mRNA 

translation. ROS may induce oxidation of the Cys182 residue in threonyl-tRNA 

synthetase, resulting in an impairment of aminoacylation editing activity, leading to 

Ser-tRNAThr formation and eventually to growth inhibition in E.coli (Ling J & Söll D, 

2010).   
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Previously, a mass spectrometry analysis of metal - induced agresomes in mammalian 

cells revealed that approximately 26% of aggresome-enriched proteins are related to 

biosynthesis and protein translation, namely tRNA synthetases, translation initiation 

factors, and ribosomal proteins (Song et al., 2008). This establishes a connection 

between metal stress and the availability of translational factors. Our data on the 

impact of environmental stress on translational accuracy (Chapter 2) showed 

occurance of low-level mistranslation mostly at the expanse of stop codon 

readthrough. Therefore, we hypothesized that sequestration of eRFs into protein 

aggregates might shift the competition for stop codon recognition in favor of near-

cognate tRNAs, leading to stop codon readthrough. We identified both eRF1 and eRF3 

as components of the aggregate fraction that accumulate in As2O3 exposed cells. 

However, low-level stop codon readthrough also occurred under exposure to ethanol 

and lithium, where protein aggregation was not observed (Chapter 2, table 2.4 and 

2.5). This suggests that As2O3, ethanol and Li may influence mistranslation in different 

ways. 

 

3.4.3. Changes in the spectrum of tRNA modifications  

 

Post-transcriptional modifications are essential to guarantee the structural and 

functional features of tRNAs. The lack of modified nucleosides can lead to serious 

translational defects, which might be linked to disease, particularly in mitochondria 

(Kirino et al., 2005). Tumor cells possess a significantly different tRNA modification 

pattern than those in normal cells (Dirheimer et al., 1995). However, the precise 

biological role of each modification is sometimes difficult to classify because of 

functional redundancy of some methyl-based modifications and the absense of strong 

phenotypes for some of the tRNA methytransferase-deletion strains. In fact, although 

many modifications or modification enzymes are conserved, only few modification 

enzymes are essential for viability.  

 

A new biological function for ribonucleosides has recently begun to surface, mainly 

related with the cellular response to stress. Surprisingly, stress induces large changes 
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in the spectrum of ribonucleosides, as part of a dynamic translational control 

mechanism. This reprogramming is intended to enhance the synthesis of proteins that 

assure cell survival under unfavorable growth conditions (Chan et al., 2010). A recent 

example involves Trm9p – catalyzed modifications, known to modulate the cellular 

response to DNA damage. Trm9p is a methyltransferase that catalyzes the last step in 

the formation of mcm5U and mcm5s2U in tRNAArg
UCU and tRNAGlu

UUC, respectively. 

Remarkably, many of the genes involved in DNA damage responses are enriched in 

AGA and GAA codons (Begley U et al., 2007). Therefore, an increase in Trm9 

expression or a boost in the amount of cellular mcm5U and mcm5s2U ribonucleosides 

prevents cell death under exposure to DNA damaging agents. This occurs through an 

enhancement in tRNA binding to AGA and GAA codons, with a concomitant increase 

in translational efficiency of defense genes (Begley U et al., 2007). Also, the human 

protein kinase B (Akt) and ribosomal s6 kinase (RSK) can phosphorylate and inactivate 

Trm8, required for m7G modification of tRNA, corroborating a modification 

reprogramming occurring in the context of cellular regulatory responses (Cartlidge et 

al., 2005). 

 

We approached the dynamics of tRNA modifications in the scope of environmental 

stress conditions already shown to induce low-level mistranslation (Chapter 2). We 

hypothesized that changes in the spectrum of ribonucleosides might decrease protein 

synthesis accuracy, thereby creating proteome diversity. Both BY4742 cells and the 

deletion mutants were exposed to As3O2, LiCl and ethanol as described in section 

3.2.7. Remarkably, the pattern of stress-induced tRNA modification changes is distinct 

for each strain under study. Exposure of WT By4742 cells to As3O2 and ethanol results 

in an expressive decrease in the levels of mcm5s2U and yW (see figure 3.8 a), 

exclusively located respectively at position 34 and 37 in the anticodon region (see 

Table 3.3). Also t6A, located exclusively at position 37 in S.cerevisiae, was quite 

decreased upon exposure to ethanol. 

 

Most of the tRNA modifications are either located 3'-adjacent to the anticodon 

(position 37) or at the wobble position (position 34). These modifications enable 
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wobble base pairing and are a tool for efficient reading of degenerated codons. The 

wobble modifications at position 34 are pivotal for precise codon-anticodon decoding 

interactions, enabling wobble base pairing and efficient reading of degenerated 

codons. Modifications at position 37 have a large structural diversity. A total of 16 

different modified nucleosides, including 12 adenosine derivatives, have been 

identified at position 37 in tRNAs of organisms from all domains of life. Position 37 of 

the S.cerevisiae tRNAs usually contains a hyper-modified purine nucleoside, namely 

t6A, i6A or yW, the last one found specifically in tRNAPhe (see table 3.3). yW consists of 

a tricyclic base with a bulky side chain and is one of the most complex of the modified 

guanosine residues. Although it does not have any major influence on the 

aminoacylation of tRNAPhe (Thiebe & Zachau, 1968), yW stabilizes the first base pair 

of the codon–anticodon duplex in the ribosomal A site by base stacking (Konevega et 

al., 2004) and contributes to maintain reading frame. Indeed, a change at position 37 

of tRNAPhe from yW to a biosynthetic precursor such as m1G, resulted in a 3-fold 

increase of -1 programmed ribosomal frameshifting (Waas et al., 2007).  

We have observed a decrease in yW is also observed in Δhsp12 cells under ethanol and 

As3O2 exposure (see Figure 3.8 b) as well as in Δhsp104 and Δyap1,2 mutants, also in 

the presence of As3O2 (see Figure 3.9). Similar studies have identified an yW dose-

dependent decrease in WT yeast cells exposed to concentrations of methylmethane 

sulfonate (MMS), H2O2, and NaOCl, producing 50% and 80% cytotoxicity (Chan et al., 

2010). The fact that yW is only found in tRNAPhe (see table 3.3) makes the decrease 

effect more dramatic, because this variation change cannot be masked by an inverse 

change in the level of the modification in the remaining population of tRNA 

molecules. Therefore, the reduction in yW levels appears to be a general response to 

stress conditions, but no significant change in the levels of yW was identified upon 

exposure to Li.  

Changes in the spectrum of tRNA modifications promote precise and coordinated 

biological responses to adverse conditions, by altering the expression of specific stress 

proteins. Hypothetically, -1 frameshifting events induced by yW decrease might direct 

translating ribosomes to premature stop codons, thereby regulating the expression of 
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specific stress response proteins through a nonsense-mediated decay mechanism 

(NMD) (Waas et al., 2007).  

In yeast, a uridine at the wobble position is generally modified to ncm5U, ncm5Um, 

mcm5U or mcm5s2U. A mcm5s2U34 wobble nucleoside is essential for the function of 

tRNALys and tRNAGlu, both containing U34–U35 nucleosides in their anticodons and 

reading A/G-ending codons in split codon boxes. The unmodified U34–U35–U36 

anticodon sequence from the tRNALys has a poor stacking capacity and does not even 

form a normal anticodon loop unless it contains mcm5s2U (Ashraf et al., 1999; Durant 

et al., 2005). However, this modified base allows counteracting the usually weak 

interaction with the A-rich codons, thereby increasing the efficiency of cognate codon 

reading. Remarkably, mcm5s2U also mediates aminoacylation activity in tRNALys and 

tRNAGlu.  

A decrease in mcm5s2U occurs quite specifically in WT BY4742 cells under As3O2 and 

ethanol exposure, but the cellular consequences of this phenotype are still unknown. 

The last step in the synthesis of both mcm5s2U and mcm5U is catalized by the same 

enzyme but only one of the modifications is significantly reduced. Since their 

occurrence in tRNAs is distinct (see Table 3.3), this result indicates a specific 

degradation of tRNALys
AAA and tRNAGlu

GAA under stress exposure.  Endonucleolytic 

cleavage of tRNAs is also known to occur as a conserved response to several stress 

conditions in yeast, most remarkably oxidative stress (Thompson et al., 2008) or by 

other quality control degradation pathways activated in response to reduced levels of 

specific tRNA modifications (Alexandrov et al., 2006; Chernyakov et al., 2008).  

 

Both Δhsp104 and Δyap1,2 cells show a general decrease in the level of tRNA 

modification under As3O2 stress. Since quantification of tRNA modifications provides 

information mainly concerning population-level changes, the observed variations 

could result from changes in the activity and expression of modifying enzymes, tRNA 

degradation mechanisms or even changes in the number of tRNA copies. The distinct 

modification patterns observed for each strain under stress indicates differential 

cellular susceptibility and results from the activation of singular cytotoxicity or survival 

mechanisms, activated by each of the toxicants. 
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Table 3.3 - Identity and location of the tRNA modifications affected by the conditions tested 

in our study. Occurance is represented by the anticodon sequence. 
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Most of the modifications outside the anticodon loop are simple methylations or 

thiolations, which play many important roles in tRNA folding or stability, also 

establishing major synergistic structural interactions. Under As3O2 exposure, Δhsp12 

cells show a unique change in the level of 2’-O-methylation of the ribose sugar (see 

Figure 3.8 b), through an increase in Am and Um. These modifications are usually 

associated with a small number of long variable loop tRNAs , (see Table 3.3) and play a 

very important role in tRNA structure and stability (Kotelawala et al., 2008). Mature 

tRNASer
CGA and tRNASer

UGA from strains lacking Um and ac4C are preferential targets 

for degradation by 5’ – 3’ exonucleases (Kotelawala et al., 2008), by a mechanism 

known as rapid tRNA decay (RTD) (Alexandrov et al., 2006).  

 

3.4.4. Aminoacylation as a ROS target 

 

The main cellular source of ROS is the mitochondria, where multiple one-electron 

transfer reactions take place. Mistranslation increases ROS production 

(superoxide and H2O2), suggesting that it disrupts mitochondrial function (Lima-Costa 

T et al., unpublished). A small number of transit electrons within the electron 

transport chain might be diverted to oxygen at intermediate points, namely at 

complexes I and III. This will eventually lead to generation of superoxide radical 

anions, which are later transformed into mitochondrial H2O2 and other ROS (Merry, 

2004). Recent studies indicate that ROS may also be generated by soluble enzymes 

located at the mitochondrial matrix, such as pyruvate and α-ketoglutarate 

dehydrogenases (Starkov et al., 2004). Cells have acquired numerous defense 

mechanisms against ROS, such as superoxide dismutase and non-enzymatic 

reductant systems including glutathione (GSH) and thioredoxin (TRX), which can also 

work as cofactors for anti-oxidant enzymes. Permanent regeneration of reduced GSH 

or TRX is therefore essential and occurs through the action of NADPH-requiring GSH 

and TRX reductases (Jamieson, 1998). GSH and TRX are regenerated by NADPH-

requiring GSH and TRX reductases, making NADPH pivotal for efficient cellular anti-

oxidant defenses. 
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In the cytosol, the reduction of NADP+ to NADPH is catalyzed by enzymes in the 

pentose phosphate pathway, including glucose-6-phosphate dehydrogenase and 6-

phosphogluconate dehydrogenase (Pandolfi et al., 1995). The activity of Pos5p, a 

NADH kinase from the mitochondrial matrix, is one of the major NADPH sources in 

yeast (Outten & Culotta, 2003). Therefore, yeast mitochondria employ NADH 

preferentially over NADP+ for the generation of NADPH and seem to exploit 

numerous overlapping pathways for NADH recycling. 

Plasma membrane electron transport (PMET) is a ubiquitous property of living cells. 

The presence of a NADH-oxidizing pathway in S. cerevisiae in the form of PMET (Herst 

et al., 2008) might explain the lower accumulation of ROS in Δhsp12 mistranslating 

cells. Hypothetically, the role of Hsp12 in plasma membrane organization is somehow 

influencing the activity of the plasma membrane NADH – oxidizing pathway. HSP12 

deletion might therefore contribute to NADH accumulation and concomitantly to 

increased NADPH availability for defense mechanisms. Interestingly, a physical 

interaction between Hsp12p and Gnd2p was recently described (Tarassov et al., 2008). 

Gnd2p is a plasma membrane 6-phosphogluconate dehydrogenase that catalyzes a 

NADPH regenerating reaction in the pentose phosphate pathway and is therefore 

pivotal to protect yeast from oxidative damage (Izawa et al., 1998a). However, to 

confirm the above hypothesis it is necessary to quantificatify NAD+/NADH and 

NADP+/NADPH ratios in Δhsp12 mistranslating cells. 

 

Many methionine residues in proteins are strategically placed to act as catalytic anti-

oxidants, by readily reacting with a variety of ROS to form methionine sulfoxide and 

therefore protect both proteins and other macromolecules from permanent damage 

(Vogt, 1995; Luo & Levine, 2009). Cellular methionine sulfoxide reductases then 

catalyze the thioredoxin-dependent reduction of methionine sulfoxide back to 

methionine (Levine et al., 1996).  

The role of methionine residues as endogenous antioxidants was known for a while, 

but only recent studies showed how this protection mechanism works. In eukaryotes, 

the elongation factor EF-1α is not known to discriminate misacylated tRNAs, 

consistent with mismethionylated tRNAs being used in translation. Met-misacylation 
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results in methionine substitution mostly at surface-exposed residues or near the 

active site of target proteins. In mammalian cells, Met-misacylation is actively 

regulated upon exposure to oxidative damaging stresses (Netzer N et al., 2009).This 

surprisingly demonstrated that a certain level of misacylation may be beneficial to the 

cell. In addition, our results showed that induced codon misreading increases Met 

misacylation in WT By4742 and Δyap1,2 cells, most probably due to an increase in 

ROS. Indeed, the stronger misacylation signals were observed in Δyap1,2 

mistranslating mutants, which show a particular susceptibility to ROS, due to deficient 

anti-oxidant defense mechanisms.  

The observed tRNA misacylation can most likely be explained by MetRS mischarging 

of non-methionyl-tRNAs. Hypothetically, MetRS may exist in two forms with distinct 

aminoacylation accuracy. The transition from one form to the other could be 

mediated by reversible post-translational modification triggered in response to 

increased ROS. Oxidation of Met residues in MetRS is an appealing possibility, but 

further studies are needed to confirm this hypothesis. Reprogramming of tRNA 

modifications due to increased ROS production might also promote non-methionyl-

tRNAs acylation. Aditionally, subtle alterations in the amount of the individual 

misacylated tRNAs might occur due to stress-related degradation (Thompson et al., 

2008). The number of Met mischarged tRNAs in Δhsp12 non-mistranslating cells 

increased significantly relative to WT BY4742. HSP12 deletion might affect plasma 

membrane organization and therefore membrane permeability to amino acids, 

including 35S-methionine. However, expression of Hsp12p is typically low at 

exponential phase and therefore no observable effects were expected of the deletion.  

 

In conclusion, in this chapter we confirm that environmental stress impacts 

components of the translational machinery, both by triggering protein aggregation 

and by reprogramming of tRNA modifications. Future studies should focus on the link 

between these mechanisms and low-level mistranslation measured in chapter 2, 

mostly in Δhsp12 cells. On the other hand, constitutive mistranslation is linked with 

increased ROS in BY4742 cells and this promotes Met-misacylation, a protection 

mechanism that might determine adaptation to changing environmental conditions.  
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4.1. Introduction 

 

The proteome quality control mechanisms are multilayered, involving a complex 

network of players that act both during protein synthesis and downstream, controlling 

the fate of cellular misfolded proteins. In this study we destabilize the yeast proteome 

using a misreading tRNA from C. albicans (tRNACAG
Ser) which misincorporates 1,4% 

serine at leucine CUG codons (Silva et al., 2007). Previous studies showed that such 

mistranslation activates the general stress response mediated by the transcription 

factors Msn2p and Msn4p. Amongst the most up-regulated genes were HSP12, 

HSP26, HSP70 (SSA4), HSP104 and drug-resistance as well as protein degradation 

genes. Mistranslation also decreased sporulation and mating efficiency and produced 

cell population heterogeneity (Silva et al., 2007).  

Surprisingly, such translational errors are tolerated and may even be advantageous 

under adverse environments, by generating phenotypic and genetic diversity as well 

as promoting stress cross-protection (Santos et al., 1999; Silva et al., 2007). This might 

explain the deficient editing of non-cognate aminoacyl-tRNAs in pathogenic 

Mycoplasma spp. Similarly, substitutions in IleRS from Acinetobacter baylyi that favour 

mischarging of tRNAIle with Val favour cell growth under conditions of limiting Ile. 

Supposedly, high Val incorporation in the proteome balances the limited availability 

of Ile (Bacher et al., 2007). C.albicans, for example, can tolerate up to 28% of leu 

misincorporation at specific Ser sites ans uses such ambiguity for stress adaptation. 

Finally, as described in the last chapter, Met misacylation is known to increase in 

response to growing levels of ROS, in order to protect cells from the effects of 

oxidative damage. Remarkably, this mechanism is conserved from fungal to 

mammalian cells (Netzer et al., 2009). Therefore, biological systems are not error free 

and errors may even be beneficial in certain physiological conditions, promoting 

phenotypic variation and thereby potential evolutional improvement (Kvitek et al., 

2008; Lopez-Maury et al., 2008).  

Activation of the environmental stress response (ESR) program results in modulation 

of gene expression, to assure cellular adaptation, cross-protection and survival after a 



Characterization of Δhsp12 mistranslating yeast 

 

 
139 

shift to an unfavourable environment (Gasch AP et al., 2000). To our surprise, the 

response of Δhsp12 cells to environmental stress includes a significant increase in the 

measured rate of mRNA mistranslation (Chapter 2, table 2.4 and 2.5). However, in the 

light of present knowledge on Hsp12p such observations cannot be explained. To go 

deep into this question, Δhsp12 cells were transformed with the misreading 

tRNACAG
Ser to induce constitutive mistranslation. Phenotypic assays and DNA 

microarrays were used to obtain a global view of stress tolerance and gene expression 

responses. Surprisingly, more than an extensive response to stress, constitutive 

mistranslation induced a deep change in cellular metabolic networks involved in 

generation of energy and biosynthetic intermediates. 

 

 

4.2. Material and Methods 

 

4.2.1 Strains and growth conditions 

 

The bacterial strain JM109 (endA1 glnV44 thi-1 relA1 gyrA96 recA1 mcrB+ Δ(lac-

proAB) e14- [F' traD36 proAB+ lacIq lacZΔM15] hsdR17(rK
-mK

+)) was recurrently used 

for plasmid amplification and grown at 37°C in Lysogeny Broth (LB) medium 

(Formedium) or LB 2% agar (Formedium), both supplemented with 50 µg/mL 

ampicillin (Sigma-Aldrich) when required. 

 

Table 4.1 - S.cerevisiae strains used in the current study. 

Strain  Genotype  Source 

 

BY4742 

 

MATα ; his3Δ 1; leu2Δ 0; lys2Δ 0; ura3Δ 0 

 

Euroscarf 

Δhsp104 BY4742 ; YLL026W::kanMX4/ YLL026W::kanMX4 Euroscarf 

Δhsp12 BY4742 ; YFL014W::kanMX4/ YFL014W::kanMX4 Euroscarf 

Δyap1Δyap2 BY4742 ; YML007W::kanMX4/ YDR423C::HIS3 (Azevedo D. et al., 2007) 

   

 

Yeast cells were cultured at 30ºC in rich YPD medium (1% yeast extract, 2% Peptone 

and 2% Glucose) or selective minimal medium (MM – 0.67% yeast nitrogen base, 2% 



Chapter 4 

 

 
140  

glucose and 0.2% Drop-out mix, lacking only the amino acids corresponding to the 

selection markers). Geneticin (G418) (Formedium) was used at a concentration of 

200µg/L. Solid media required agar up to 2%. All media were sterilized by autoclave at 

120 ºC for 15 – 20 min.  

 

4.2.2. Plasmids 

 

The S.cerevisiae plasmids used in this study are specified in Table 4.2.  

 

Table 4.2 - Plasmids used in the current study. 

Plasmid  Description Source 

   

pRS315 Single-copy LEU2 vector (Santos MA et al., 1996) 

pUKC715  Single-copy LEU2 vector containing the C. albicans 

G33 Ser-tRNACAG gene. 

(Santos MA et al., 1996) 

   

 

 

4.2.3. Yeast transformation by the lithium acetate (LiAc) method 

 

For efficient transformation of S.cerevisiae we adapted the LiAc/SS carrier DNA/PEG 

method (Gietz RD & Woods RA, 2006), with a few modifications. Fresh yeast colonies 

were picked and grown overnight at 30ºC/180 rpm in YPD rich medium. Overnight 

cultures were then diluted 1:1000, grown to mid-log (OD600 0,5) and harvested by 

centrifugation at 4000rpm. After washing with 5mL of sterile mQ water, the pellet 

was resuspended in 50μL of 0,1M LiAc solution and the following reagents were 

added in the designated order : 500μL 50% (w/w) PEG, 25μL single-stranded carrier 

DNA (2mg/mL) previously denatured for 5min. at 95ºC and 0,1 – 1μg of the pRS315 or 

pUKC715 plasmids (Gietz RD & Woods RA, 2006). Tubes were vortexed immediately 

until the mixture was homogeneous and then subjected to heat-shock at 42ºC for 45 

min. Cells were then harvested by centrifugation at 5000rpm, the supernatant was 
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discarded, the pellet resuspended in 100 μL of sterile mQ water and plated in selective 

media plates that were then incubated at 30ºC until visible colonies appeared.  

 

4.2.4. Growth curves 

 

Yeast cells transformed with the pRS315 or pUKC715 single-copy plasmids were 

grown overnight at 30ºC in selective MM lacking leucine, as described in section 4.2.1. 

Overnight cultures were then diluted to an initial 0,01 OD600 and their growth at 

30ºC/180 rpm was followed until stationary phase by measuring OD600 at various time 

points. Growth rate was calculated in exponential phase as the slope of the log 

transformed ODs, according to (Toussaint & Conconi, 2006). 

 

4.2.5. Phenotyping assay 

 

Yeast cells carrying the pRS315 or the pUKC715 single-copy plasmids were grown at 

30ºC to mid – log (OD600 0,5). After harvesting, 1x107 cells were collected and 

resuspended in PBS. Five ten-fold dilutions were then plated in MM lacking leucine 

and containing the appropriate stress (table 4.3) or a no-stress control, using a liquid 

handling station (Caliper LifeSciences). Cells were grown at 30ºC and photographed 

after 4 days. Colony size was determined using an ImageJ colony detector plug-in 

(Patch Detector Plus). As a growth measure, a percentual score was obtained 

adopting a method previously described (Homann et al., 2009). Briefly, the average 

colony size obtained from the three lowest dilutions was calculated and normalized 

with the corresponding undiluted size value, for each strain and stress condition. The 

viability of each strain under stress was calculated relative to the no-stress control for 

each strain. All experiments were done with three biological replicates.  
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Table 4.3 - Environmental stressors used during the current phenotyping assay. 

Stressor Concentration 

As2O3 200 and 400µM 

CdCl2 125, 60 and 

30µM 

LiCl 40mM 

Ethanol 5% 

 

 

4.2.6. Statistics 

 

Data is reported as mean ± SEM or SD. Differences are considered significant when p 

< 0,05. Significance was tested by one-way ANOVA post Dunnett’s multiple 

comparison test or two-tailed unpaired Student’s t-Test, with CI 95%. Most of the 

statistical tools are available in the GraphPad Prism 5.0 software.  

 

4.2.7. RNA extraction 

 

Yeast cells carrying the pRS315 or the pUKC715 single-copy plasmid  were grown at 

30ºC to mid – log (OD600 0,5) in minimal medium lacking leucine, quickly harvested 

by centrifugation at 4000 rpm and immediately frozen by immersion in liquid 

nitrogen, before storing at -80ºC. Pellets were thawed by resuspending them in a 1:1 

mixture of lysis buffer (10 mM Tris pH 7,5; 10 mM EDTA; 0,5% SDS) and acid phenol 

chloroform 5:1 (pH 4,7) (Sigma-Aldrich) and vortexing vigorously. The cell suspensions 

were then immediately incubated in a water bath at 65ºC and vortexed every 10 min. 

After 1h, the RNA aqueous phase was recovered by centrifugation at 8000g for 30 min 

at 4ºC and then transferred to a new tube for new re-extraction, first with 4ºC acid 

phenol chloroform 5:1 (pH 4,7) and then with chloroform Isoamyl Alcohol 24:1 (Fluka). 

RNA was then precipitated overnight at -30ºC with 3 vol. of ethanol and 0,1 vol. of 3M 

NaOAc/HOAc pH 5,2. After harvesting by centrifugation (at 8000g for 30 min, 4ºC) 

RNA was washed in 70% ethanol and resuspended in mQ water to a final 

concentration of 1µg/µl. 
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4.2.8. One-Color Microarray-Based Gene Expression Analysis 

 

Microarray analysis was carried out with Agilent whole S.cerevisiae genome 

oligonucleotide microarrays. Synthesis of Cy3-labeled cRNA was performed with the 

Agilent's Low Input Quick Amp Labelling Kit, according to the manufacturer's 

recommendations (see figure 4.1 for a general workflow). Briefly, 200 ng of total RNA 

were first used as template for cDNA synthesis, which was then incubated with T7 

RNA polymerase for simultaneously amplification and cyanine 3-labeled CTP 

incorporation. The resulting cRNA was then mixed with ethanol 100% and purified on 

Qiagen’s RNeasy mini spin columns, also according to the manufacturer's 

recommendations. The cleaned cRNA sample was eluted from the columns with 

RNase-free water and quantified using the NanoDrop®1000 Spectrophotometer 

(Thermo Scientific). After determining the yield (μg) and specific activity (pmol Cy3 

per μg cRNA) of the labelling reactions, 600 ng of Cy3-lableled cRNA from each 

condition were prepared for hybridization. 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
Figure 4.1 - Workflow for sample preparation, array hybridization and analysis. 
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cRNA fragmentation (30 min. at 60ºC), array hybridization (17 hours at 65ºC) and 

washing steps (0.005% triton X-102 wash buffer) were also carried out as 

recommended by the one-color microarray gene expression protocol supplied by the 

manufacturer (Agilent Technologies). 

 

4.2.9. Microarray data analysis  

 

Images from the hybridized microarrays were acquired by using the Agilent G2565AA 

scanner. Row data extraction was performed with Agilent’s Feature Extraction 

software resorting to the recommended default extraction protocol file. Values were 

median normalized across arrays using BRB - ArrayTools v3.4.0, to correct the 

differences in labeling and hybridization efficiency. Data was then exported to 

MeV TM4.6.0 (TIGR, Rockville, MD) for calculation of log2 intensity ratios (M values) 

and discrimination of differentially expressed genes (p<0.05; fold change cut-off of 

1.5). Functional annotation analysis of expression data was done using DAVID 

Bioinformatics Resources (Modified Fisher Exact test; Benjamini-Hochberg correcton 

for multiple testing, p<0.05) (Hosack et al., 2003; Huang et al., 2009) and the 

PRomoter Integration in Microarray Analysis (PRIMA) tool, included in the Expander 

5.0 software (Fischer Exact test; Bonferroni correction for multiple testing, p<0.05) 

(Ulitsky et al., 2010). Results were presented as fold-enrichment for each GO term. 

The fold-enrichment for a GO term is defined as a ratio of two proportions. It 

represents the ratio between the numbers of genes differentially expressed belonging 

to a specific GO term and the total number of genes differentially expressed, which 

have at least one GO annotation. This ratio is then compared to the ratio between the 

total number of genes in the GO term and the total number of genes in the 

S.cerevisiae genome with at least one GO annotation. 
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4.3. Results 

 

4.3.1. Mistranslation and adaptation to environmental stress 

 

As mentioned previously, yeast cells adapt to stress challenges by reprogramming 

gene expression (Gasch AP et al., 2000). Each environmental change imposes specific 

cellular demands, triggering a unique expression program. Nonetheless, a large 

number of genes have been implicated in a general yeast response to a wide variety of 

stressful conditions (Mager & De Kruijff, 1995; Ruis & Schuller, 1995; Gasch AP et al., 

2000). HSP12 is part of this specific gene expression program and is important for 

survival under high temperature, high ethanol concentrations, glucose starvation and 

cell wall stress, amongst others (Piper et al., 1994; Varela JC et al., 1995; Kandror O et 

al., 2004). Our previous results showed that Δhsp12 cells exposed to environmental 

stress are particularly susceptible to mRNA mistranslation (Chapter 2, table 2.4 and 

2.5). No straight connection has yet been established between Hsp12p and the protein 

synthesis machinery and so, this effect on translational fidelity could be related with 

indirect changes in the function of proteins involved in translational fidelity. Cellular 

stress might contribute to this phenotype by wasting the degradative and folding 

machinery and probably even by a direct effect on the ribosome. 

 

Here, we analyzed phenotypic variation in mistranslating cells under exposure to 

As2O3 , CdCl2 and non-lethal concentrations of ethanol, LiCl and CrO3, associated 

previously with an increase in the rates of stop codon readthrough and/or AGC 

misreading (Chapter 2, table 2.4 and 2.5) (Holland S et al., 2007). These conditions 

decreased stress tolerance both in WT, Δhsp12 and Δhsp104 mistranslating cells 

relatively to controls (empty plasmid) from the isogenic strain (see figure 4.3 a). 

Δhsp12 shows particular susceptibility to ethanol exposure. On the other hand, 

BY4742, Δhsp104 and Δyap1,2 mistranslating cells show increasing tolerance to highly 

inhibitory cadmium concentrations (Figure 4.3 a and b). A similar effect was observed 

in Δyap1,2 cells exposed to inhibitory amounts of As2O3 (400µM) (Figure 4.3 b). 

However, mistranslation in Δhsp12 cells did not produce visible selective advantages 
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under these conditions. Generally, our results indicate that mild stress decreases the 

viability of mistranslating cells. However, under more severe stress conditions 

mistranslation increases the chances of cell survival. 

 

Figure 4.2 - Constitutive mistranslation slows yeast growth rate. a) growth of control cells 

with an empty plasmid (pRS315)  or cells expressing the misreading tRNACAG
Ser

 in MM lacking 

leucine was monitored by absorbance at 600 nm until stationary phase b) quantification of the 

fold change in growth rate under constitutive mistranslation. *** (P<0.001) represent values 

significantly different from cells harbouring an empty plasmid (two-tailed unpaired Student’s t-

Test). Values are mean ± SEM. The results correspond to three independent experiments. 
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Figure 4.3 - Phenotypic responses of mistranslating cells under environmental stress. 

Mistranslation impacts stress tolerance in BY4742 WT and gene deletion cells a) and b) heat map 

representing the percentage of stress tolerance in exposed cells relative to that of the 

unexposed cells from the isogenic strain. Control cells (empty plasmid) or cells expressing the 

C.albicans tRNACAG
Ser

 (misreading tRNA) were grown to mid-log (0,5 – 0,6 OD600 ) in MM lacking 

leucine and suspended in PBS buffer. Serial dilutions (10
7
 and 10

3
 cells/ml) were then spotted 

onto solid minimal media supplemented with the toxics in the mentioned concentrations.  

 

4.3.2. Transcriptomic analysis of Δhsp12 mistranslating cells 

 

The Δhsp12 mistranslating cells (see Figure A4 in Annexes) were further characterized 

using DNA microarrays. Surprisingly, only 45 of the yeast genes (~6200) were 

repressed in Δhsp12 mistranslating cells. Functional enrichment identified genes 

corresponding to nucleolar proteins related with ribosome biogenesis and rRNA 

processing (see figure 4.4), such as ESF1, RRP14, NOP13, UTP7, PXR1, FPR3, KRI1 or 

NHP2.  Genes coding large ribosomal subunit proteins such as RRP14, RPL36A, 
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RPL18A, RPL18B, RPL23A, RPL23B and RPL7A and mitochondrial ribosomal protein 

genes (VAR1) were also repressed. Since the ribosome cellular content is proportional 

to growth rate (Rudra & Warner, 2004), this gene repression is in agreement with 

previously described results (see figure 4.2). In addition, the repression of ribosomal 

protein genes is linked with numerous stress responses (Warner, 1999), functioning as 

a vital mechanism for conservation of resources and energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 - Functional Enrichment Analysis of down-regulated genes in Δhsp12 

mistranslating cells. Differentially expressed genes were calculated relative to BY4742 WT cells 

and analyzed for enriched functional classes using DAVID Bioinformatics Resources. Significant 

categories were determined based on a modified Fisher Exact Test with Benjamini-Hochberg 

multiple hypothesis correction (corrected p<0.05) (Hosack et al., 2003 and Huang D et al., 2009).  

 

A large number of genes were up-regulated by mistranslation. Functional enrichment 

analysis of these genes allowed identification of classes mostly related with cellular 

metabolic networks involved in generation of energy or biosynthetic intermediates, 
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namely carbohydrate and vacuolar protein catabolic processes, sulfur compound 

metabolic processes, tricarboxylic acid cycle (TCA cycle) and amino acid biosynthesis. 

Also noteworthy was the induction of genes involved in cofactor metabolism, most 

specifically vitamin biosynthesis and utilization of acetyl-CoA or NADH (see figure 

4.5). Facultative fermentative yeasts such as S.cerevisiae display a respiratory or 

fermentative metabolism depending on growth conditions, the type and 

concentration of sugars or oxygen availability. Under aerobic conditions and in the 

presence of high glucose concentrations, S.cerevisiae clearly diverges from other 

facultative fermentative yeasts by favouring alcoholic fermentation over an 

energetically more efficient respiratory dissimilation of glucose. This phenomenon is 

described as the Crabtree effect (Swanson & Clifton, 1948; Pronk et al., 1996), 

resulting from glucose transcriptional repression of respiratory enzymes synthesis and 

overflow of pyruvate into ethanol fermentation reactions (Kappeli, 1986). Glucose 

control of metabolic mechanisms might also occur by inhibition of enzyme activity. 

After uptake, each glucose molecule is broken through glycolysis into two molecules 

of pyruvate, with a net yield of two ATP. Pyruvate is located at a key metabolic 

branch-point between alcoholic fermentation, pulled by increasing glucose 

concentrations, and the respiratory breakdown of sugars, resulting in synthesis of 

acetyl-CoA. The tricarboxylic acid (TCA) cycle provides reducing equivalents to the 

respiratory chain through the oxidative decarboxylation of acetyl–CoA, but is glucose 

repressed in Crabtree-positive yeasts. Under these conditions, the TCA cycle operates 

in a branched fashion, functioning primarily to fulfil biosynthetic demands by 

providing the building blocks of essential molecules such as amino acids and 

nucleotide bases (Pronk et al., 1996; Gombert et al., 2001). Remarkably, our 

transcriptomic analysis portrays a distinct metabolic regulation. 
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Figure 4.5 - Functional Enrichment Analysis of up-regulated genes in Δhsp12 mistranslating 

cells. Differentially expressed genes were calculated relative to BY4742 WT cells and analyzed 

for enriched functional classes using DAVID Bioinformatics Resources. Significant categories 

were determined based on a modified Fisher Exact Test with Benjamini-Hochberg multiple 

hypothesis correction (corrected p<0.05) (Hosack et al., 2003 and Huang D et al., 2009). 
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A significant up-regulation of PKP2, coding for mitochondrial protein kinase, might 

negatively regulate the activity of the pyruvate dehydrogenase complex, diverging 

pyruvate to acetaldehyde synthesis by decarboxylation. However, our mRNA profile 

offers evidences of alternate pyruvate dehydrogenase bypass pathways, involving up-

regulation of minor isoforms of pyruvate decarboxylase (PDC5 and PDC6) and acetyl-

CoA synthetase (ACS1), tipically glucose regulated (Hohmann et al., 1991; de Jong-

Gubbels et al., 1997), as well as of carnitine acetyltransferase (YAT2), responsible for 

acetyl-CoA transport into the mitochondria (see figure 4.6). Our data further suggests 

that pyruvate might first be decarboxylated to acetaldehyde in the cytosol and then 

converted to acetate by the mitochondrial acetaldehyde dehydrogenases (ALD4 and 

ALD5), also significantly up-regulated. The acetate produced can be converted into 

acetyl-CoA in the cytosol or excreted in the culture medium (Boubekeur et al., 2001). 

ALD4 is glucose repressed, while ALD5, encoding a minor isoform, is constitutively 

expressed (Wang et al., 1998; Tessier et al., 1998). Furthermore, the up-regulation of 

genes corresponding both to the pyruvate decarboxylase (PYC1) and mitochondrial 

oxaloacetate carrier (OAC1) indicates increased influx of oxaloacetate in the TCA cycle 

(see figure 4.6). Indeed, our data show significant enrichment in a number of TCA 

cycle catalytic components, such as members of the mitochondrial alpha-

ketoglutarate dehydrogenase complex (KGD1), citrate synthase (CIT3) and isocitrate 

dehydrogenase (IDP1, IDP2) isoforms. 

The pyruvate descarboxylase reaction depends on the cofactor thiamine 

pyrophosphate (TPP), derived from vitamin B1. S.cerevisiae is able to synthesize 

thiamin pyrophosphate (TPP) de novo but can also efficiently uptake thiamin from the 

extracellular environment, using it to produce TPP (Wightman & Meacock, 2003).  

Indeed, our results indicate an up-regulation of THI5, THI11, THI12 and THI13, which 

compose a subtelomeric gene family responsible for the synthesis of thiamine 

precursors.  
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Figure 4.6 - Mistranslation induces metabolic reprogramming in Δhsp12 cells. Global analysis 

of gene expression allowed identification of induced genes involved in glycolysis, 

gluconeogenesis, the pentose phosphate pathway and the TCA cycle. The more relevant key 

metabolic intermediates are identified in the figure, together with the yeast genes encoding the 

enzymes that catalyze each metabolic step. All the significantly up-regulated genes are 

represented in red (adapted from Rodrigues et al., 20o6). 

 

Glucose can have additional catabolic fates besides the glycolytic breakdown to 

pyruvate. An alternative mode of glucose oxidation is the pentose phosphate 
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pathway, which in Crabtree positive yeasts such as S. cerevisiae is predominantly used 

for NADPH production (Blank & Sauer, 2004). Reducing equivalents in the form of 

NADPH are necessary for numerous biosynthetic enzymatic reactions such as 

production of amino acids and also to assure antioxidant mechanisms involving 

glutathione and thioredoxin (Juhnke et al., 1996; Izawa et al., 1998b). The first step in 

the pentose phosphate pathway is the irreversible dehydrogenation of glucose-6-

phosphate, with concomitant generation of NADPH from NADP+ through an 

oxidation/reduction reaction. ZWF1, corresponding to a cytoplasmic glucose-6-

phosphate dehydrogenase, is up-regulated in Δhsp12 mistranslating cells, as well as 

GND2. Likewise, GND2 encodes a key enzyme in the cytosolic oxidative branch of 

the pentose phosphate pathway, which catalyzes a second oxidative reduction of 

NADP+ to NADPH (Sinha & Maitra, 1992; Maaheimo et al., 2001). 

 

In mistranslating cells management of energy resources is of pivotal importance. 

Genes encoding glucose transporters, such as HXT4, HXT6, HXT7 and HXT10 are up-

regulated to increase import of external glucose into the cell. Besides ATP synthesis 

through glycolysis or NADPH regeneration by the pentose phosphate pathway, 

glucose is also apparently directed to glycogen storage. Remarkably, genes encoding 

enzymes that promote both the synthesis (GSY1, GLC3) and degradation (GPH1, 

GDB1) of glycogen are induced by mistranslation, probably to allow a more precise 

modulation of glycogen levels. Storage of glucose in the form of glycogen is known to 

be critical in response to a wide variety of stress conditions, conferring survival and 

reproductive advantages through mobilization of energy resources (Parrou et al., 

1997; Francois & Parrou, 2001). 

 

Our data show significant up-regulation of FBP1, which encodes a regulatory enzyme 

(fructose-1,6-bisphosphatase) at a critical branch point in metabolism, important to 

determine allocation of metabolites to gluconeogenesis. Also up-regulated is PFK27, 

which is involved in the synthesis of fructose-2,6- bisphosphate, a positive allosteric 

effector of the enzyme phosphofructokinase that directs carbon flux towards glucose 

and glycogen. The activation of gluconeogenesis is further corroborated by the up-

http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=5737
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=4345
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=4345
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=5829
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=9051
http://pathway.yeastgenome.org/YEAST/NEW-IMAGE?type=PATHWAY&object=PENTOSE-P-PWY
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=0042132
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=0008443
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regulation of PGM2, which is also pivotal for carbohydrate metabolism. PGM2 

encodes a major phosphoglucomutase isoform that catalyzes the interconversion of 

glucose-6-phosphate and glucose-1-phosphate (Boles et al., 1994). Aditionally, 

phosphoglucomutase is required for the synthesis of extracellular N-linked 

glycoproteins an is of major importance in stress adaptation (Dey et al., 1994; Masuda 

et al., 2001; Alexandre et al., 2001), also indirectly affecting cation uptake and calcium 

homeostasis (Fu et al., 2000; Mulet et al., 2004). 

 

We have also observed up-regulation of amino acid biosynthesis genes in 

mistranslating Δhsp12 cells (see Figure 4.5), suggesting that mistranslation diverts a 

substrantial portion of the metabolic machinery to the synthesis of amino acids by 

increasing the influx of metabolites through the TCA cycle and also the available 

amount of NADPH reducing equivalents. On the other hand, increased expression of 

sulfur metabolism genes is mostly characterized by deregulation in MET1 to MET5, 

MET10, MET14, MET17, MET16, STR2 and STR3, involved in the biosynthesis of 

methionine and cysteine. Remarkably, cysteine is essential for synthesis of 

glutathione, a crucial antioxidant that protects cells against damage induced by 

oxidative stress (Grant et al., 1997; Grant, 2001). 

 

Nitrogen-containing compounds such as amino acids can be synthesized from 

intermediates derived from glycolysis, the TCA cycle or the pentose phosphate 

pathway and ammonia. The nitrogen of ammonia is made available through 

incorporation into glutamate and glutamine, from which the other amino acids are 

synthesized. GDH1 and GDH3, both up-regulated under mistranslation, code for 

isoforms of NADP+-dependent glutamate dehydrogenase, which synthesizes 

glutamate from the condensation of ammonium and α – ketoglutarate, produced 

from the TCA cycle (Avendano et al., 1997; Deluna et al., 2001).  

 

Amino acid biosynthesis mostly involves complex molecular rearrangements, such as 

transamination, which are usually promoted by enzymes containing pyridoxal 

phosphate, a vitamin B6 derivative. Pyridoxal phosphate functions as an intermediate 
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carrier of amino groups at the active site of transaminases, and glutamate as the 

amino group donor for these biosynthetic pathways. Notably, mistranslation 

increased expression of both SNO1 and SNZ1 genes, involved in synthesis of the major 

vitamin B6 forms. Vitamin B6 is important for ROS resistance and essential in 

stationary phase, when cells are subjected to increased oxidative stress (Ehrenshaft et 

al., 1999). 

 

Also interesting was the up-regulation of iron binding and import genes in 

mistranslating Δhsp12 cells. Iron is an essential cofactor for many of the enzymes 

involved in major cellular metabolic processes, from oxidation of acetyl-CoA via the 

tricarboxylic acid cycle to the biosynthesis of amino acids, mostly in the form of Fe-S 

clusters (Shakoury-Elizeh et al., 2010). Iron is also essential for de novo biosynthesis of 

NAD from tryptophan. BNA1 and BNA2, both up-regulated by mistranslation, greatly 

contribute to this pathway (Bedalov et al., 2003). The first step in iron uptake involves 

reduction of ferric (Fe3+) to ferrous ions (Fe2+), which is followed by transport of the 

reduced ions through the plasma membrane (Stearman et al., 1996). Our data showed 

up-regulation of FRE2, FRE3 and other homologous genes such as FRE5, FRE6, FRE7 

and FRE8, which are involved or predicted to be involved in ferric reduction prior to 

uptake by transporters. Together with FRE1, FRE2 encodes a major plasma membrane 

metalloreductase that reduces extracellular oxidized forms of both iron and copper 

(Georgatsou & Alexandraki, 1994). FRE5 and FRE6, respectively, encode mitochondrial 

and vacuolar membrane ferric redutases (Sickmann et al., 2003; Huh WK et al., 2003). 

FET3, encoding a multicopper ferroxidase which receives reduced iron from Fre1p or 

Fre2p and transfers it to Ftr1p, an iron permease ultimately responsible for cellular 

import, was also up-regulated (Stearman R et al., 1996). 

 

Numerous transcription factors (TFs) are involved in regulating the expression of the 

up-regulated genes. The enrichment analysis of transcription factors showed a 

particular overrepresentation of genes under the control of transcriptional activator 

GCN4 (see Figure 4.7).  Gcn4p is known to bind the consensus sequence TGACTC, 

located upstream of several genes induced during amino acid starvation (Arndt & 
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Fink, 1986; Hinnebusch & Natarajan, 2002). In addition to the derepression of genes 

implicated in amino acid biosynthetic pathways, Gcn4p also appears to regulate the 

expression of genes related with purine biosynthesis, glycogen homeostasis, 

autophagy and multiple stress responses (Natarajan et al., 2001).  

 

Figure 4.7 - Functional Enrichment Analysis of transcription factors corresponding to the up-

regulated genes in Δhsp12 mistranslating cells. Differentially expressed genes were calculated 

relative to BY4742 WT cells and analyzed for enrichment in transcripton factors using the 

PRomoter Integration in Microarray Analysis (PRIMA) tool, included in the Expander 5.0 

software (Fischer Exact test; Bonferroni correction for multiple testing, p<0.05) (Ulitsky I et al., 

2010). 

 

Another significantly enriched transcription factor in Δhsp12 mistranslating cells was 

encoded by PUT3 (see figure 4.7). Put3p is a fungal specific transcriptional activator of 

the proline utilization pathway. Proline can serve as a nitrogen source in S. cerevisiae, 

in the absence of preferred nitrogen sources. Under nitrogen starvation, Put3p 

transcription of a set of genes encoding specific transporters and enzymes that 

convert proline to glutamate, a more usable nitrogen compound (des Etages et al., 

1996; Huang & Brandriss, 2000). The MIG1 encoded transcription factor, which is 

involved in glucose repression mechanisms (Lutfiyya et al., 1998) was also enriched. 
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LEU3 encodes a transcription factor that regulates genes involved in ammonia 

assimilation and branched-chain amino acid synthesis (Hu et al., 1995). Its expression 

is ultimately regulated by Gcn4p (Wang et al., 1999). Finally, Bas1p is involved in 

transcriptional regulation of genes implicated in the purine and histidine biosynthesis 

pathways (Daignan-Fornier and Fink, 1992). 

 

Our gene enrichment analysis also highlighted CAD1 (YAP2), MSN2 and MSN4 (see 

figure 4.7), which are normally activated in response to cellular stress. For example, 

Cad1p (Yap2p) is a transcriptional activator usually stimulated by aminotriazole and 

cadmium, being pivotal in metal and drug resistance (Fernandes L et al., 1997). 

However, increased expression of genes under the control of Cad1p does not seem to 

induce resistance to metals in Δhsp12 mistranslating cells (Figure 4.3 a). Some authors 

suggest an indirect influence of Cad1p on iron metabolism, through alterations of the 

cellular redox status (Lesuisse & Labbe, 1995).  

 

Msn2p and Msn4p are mainly functional redundant and are generically activated in 

response to environmental insults, regulating a large number of genes (~200 genes) 

(Martinez-Pastor et al., 1996). For these reasons, these transcriptional factors are 

called general stress response transcriptional factors. Among the general stress 

response genes induced by mistranslation in Δhsp12 cells are HSP26, HSP150, GRE1, 

HSP32, HSP33, SSA1, DDR2, HSP30, HSP31, SSA4, SSE2, UBC5 and HSP104, which 

encode mostly chaperones involved in unfolded protein binding, composing an 

important defence mechanism against proteome destabilization. Also significant is 

the deregulation of GTT2 and GTO3, both encoding proteins with glutathione-S-

transferase activity, involved in detoxification of electrophilic xenobiotics compounds 

by conjugation with the thiolate group of glutathione (GSH) (Collinson & Grant, 2003). 

In addition, glutathione transferase Gtt2p, seem to be pivotal in the response to H2O2 

stress (Mariani et al., 2008). Some oxidative stress response genes were also up-

regulated, namelly GPX1, CTT1 and PRX1. Gpx1p is a phospholipid hydroperoxide 

glutathione peroxidase that protects cells from damaged phospholipids during 

oxidative stress (Avery & Avery, 2001). Ctt1p is a cytosolic catalase involved in 
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hydrogen peroxide detoxification and Prx1p is a mitochondrial peroxiredoxin 

responsible for hydroperoxide reduction (Jamieson, 1998; Grant, 2001). 

 

4.4. Discussion 

 

Yeast cells respond to stress by activating the so called environmental stress response 

(ESR), which involves a coordinated deregulation of up to ~14% of the S.cerevisiae 

genes (Gasch et al., 2000; Ball et al. 2000; Blandin et al. 2000). Indeed, these gene 

expression changes have already been described in cells exposed to heat shock, 

osmotic shock, extreme pH, oxidative and reductive stress, non-fermentable carbon 

sources, ethanol, cadmium, arsenic and nutrient (amino acid, nitrogen, phosphate) 

starvation, among others (Boy-Marcotte et al., 1998; Gasch AP et al., 2000; Ogawa et 

al., 2000; Alexandre et al., 2001; Momose & Iwahashi, 2001). Nevertheless, in addition 

to the stereotyped ESR, distinct environmental changes also induce specific and 

unique gene expression responses, highlightening the precision of yeast stress 

adaptation. The duration and amplitude of the transcriptional deregulation also varies 

with the extent of the environmental change. Cells experiencing larger doses of stress 

respond more intensily than cells experiencing milder environmental changes (Gasch 

et al. 2000).  

Of the ~900 deregulated genes that compose the ESR in S.cerevisiae, ~600 genes are 

generally repressed and mostly encode proteins related with cell growth, DNA/RNA 

binding and translation mechanisms. Conversely, ~300 genes are upregulated and 

encode proteins involved in energy metabolism, transport, signaling, as well as 

protein protection, namely chaperones and DNA damage repair enzymes (Gasch et 

al., 2000). An important consequence of the general ESR is aqquisition of stress cross-

protection. Indeed, cells exposed to a mild stress become resistant to deleterious 

doses of other unrelated stresses (Flattery-O'Brien et al., 1993; Lewis et al., 1995).  

 

Mistranslation in S.cerevisiae induces changes in gene expression and triggers the 

general stress response, which may explain the increased resistence of mistranslating 

yeast to heat, heavy metals and drugs (Santos et al., 1996; Santos et al., 1999; Silva et 
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al., 2007). Among the genes most up-regulated by mistranslation were the molecular 

chaperones HSP12, HSP26, HSP70 (SSA4) and HSP104 (Silva et al., 2007), all part of 

the ESR.  We have also showed that hsp12 and hsp104 null mutants are translational 

error prone in presence of environmental stressors. Increased tolerance of BY4742, 

Δhsp104 and Δyap1,2 to highly inhibitory cadmium concentrations occurs by a cross-

protection mechanism that involves induction of the general stress response. The 

same effect occurs in Δyap1,2 cells exposed to inhibitory amounts of As2O3 (400µM). 

On the other hand, As2O3, CrO3, EtOH or LiCl exposure show synergistic effects with 

mistranslation on decreasing stress tolerance of Δhsp12 cells (see figure 4.3 a), which 

suggests the targeting of a common process in these cells. Our data further implies 

that mistranslation abrogates potential selective advantages in BY4742, Δhsp104 and 

Δyap1,2 exposed to non-lethal concentrations of stressors. Finally, genetic 

background and in particular molecular chaperones play a key role in stress 

adaptation of mistranslating cells. 

 

Our mRNA profiling data did not show significant gene expression deregulation 

between Δhsp12 control cells relative to BY4742 WT cells. This is not surprising, since 

Hsp12p in only weakly expressed during exponential phase in the absence of stress 

and is non essential under these conditions (Welker S et al., 2010). Remarkably, the 

extensive gene expression reprogramming induced in mistranslating Δhsp12 cells 

relative to BY4742 WT cells is mostly characterized by gene up-regulation. Of the 652 

significantly deregulated genes, only 45 were repressed and 587 up-regulated. The 

former are related to protein synthesis. This is probably connected with the decreased 

growth rate shown if figure 4.3 and may help to conserve energy (Warner, 1999; Gasch 

AP et al., 2000). Conversely, many of the genes induced in mistranslating Δhsp12 cells 

also integrate the ESR. These transcripts are involved in regulation of the 

carbohydrate metabolism, glycogen recycling and protein protection or stabilization. 

In addition, up-regulation of genes encoding cell wall proteins might intensify sensing 

of the surrounding environment and stimulate signaling transduction.  
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Analysis of the genes up-regulated by mistranslation in Δhsp12 cells allowed us to 

identify genes involved in amino acid biosynthetic processes, in line with enrichment 

of the GCN4 transcriptional regulator, which regulates the general amino acid control 

(GAAC) (Hinnebusch, 1986; Mirande & Waller, 1988; Hinnebusch & Natarajan, 2002) 

and GAP1, CAN1, BAP2 or AGP1, encoding plasma membrane amino acid permeases. 

Uncharged tRNAs accumulate in the cell under starvation conditions and stimulate 

activity of the Gcn2 kinase by binding to a regulatory domain structurally related to 

histidyl- tRNA synthetase (HisRS) (Wek et al., 1995). The sensor kinase Gcn2p then 

phosphorylates the translation initiation factor eIF2, resulting in efficient translation 

of GCN4 (Hinnebusch & Natarajan, 2002) and, therefore, promoting Gcn4p binding at 

sequence-specific responsive elements (Oliphant et al., 1989). However, Gcn4p is also 

induced under conditions of stress besides amino acid deprivation, such as glucose 

limitation, high salinity, growth on ethanol and non-fermentable carbon sources and 

treatment with rapamycin (inhibitor Tor1p and Tor2p) or H2O2 (Yang et al., 2000; 

Goossens et al., 2001; Valenzuela et al., 2001; Hinnebusch, 2005; Mascarenhas et al., 

2008). Thereby, Gcn4p controls the expression of a large set of genes from diverse 

functional categories and pathways, making up to 1/10 or more of the yeast genome 

(Jia et al., 2000; Natarajan et al., 2001). Most stress conditions impair synthesis of 

amino acids and interfere with their storage or uptake into the cells, increasing the 

concentration of uncharged tRNAs and the activity of Gcn2p kinase via the same 

conventional mechanism that takes place in amino acid-deprived cells (Yang et al., 

2000; Natarajan et al., 2001; Goossens et al., 2001). Additionally, ROS may also 

oxidize free amino acids and amino acids in proteins, causing imbalances in amino 

acid pool sizes and eventually affecting the levels of uncharged tRNAs (Stadtman & 

Levine, 2003). Finally, GCN4 can also be induced independently of Gcn2p, by a 

mechanism involving PKA activation (Engelberg et al., 1994), or due to defects in 

tRNA processing and nuclear export (Qiu et al., 2000; Hinnebusch & Natarajan, 2002). 

 

Mistranslating Δhsp12 cells showed a distinct induction of vacuolar and plasma 

membrane transporters, which manage the uptake and storage of essential nutrients 

such as glucose, nitrogen, sulphur and phosphate. Quite remarkably, both PHO89 - 
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coding for a Na+/ inorganic phosphate (Pi) co-transporter, and PHO84 - a high-affinity 

Pi transporter, are among the most up-regulated genes in mistranslating Δhsp12 cells 

(20-fold and 100-fold, respectively). Conversely, we also reported a 10-fold induction 

of PHO5, coding for a periplasmic acid phosphatase that mediates extracellular 

phosphate scavenging. Inorganic phosphate is an essential nutrient required for 

energy metabolism and synthesis of major cellular constituents such as nucleic acids, 

proteins or phospholipids. The intracellular concentration of free phosphate is usually 

quite low but subjected to dynamic fluctuations when yeast cells switch from 

respiratory to fermentative metabolism. Most of the phosphate in yeast is in the form 

of polyphosphates (poly P), a linear polymer that consists of phosphoanhydride linked 

phosphate residues (Kornberg et al., 1999). Poly P is environmentally ubiquitous and 

has multiple roles, from phosphate storage to energy supply, enzyme activation, gene 

expression, translation fidelity or even stress adaptation (Kornberg et al., 1999; 

Ogawa et al., 2000). Indeed, Poly P is known to sequester Cd2+and Hg2+, therefore 

mediating cellular resistance to toxic metals (Brown & Kornberg, 2004). In 

S.cerevisiae, phosphate sensing mediates signalling through the protein kinase A 

(PKA) pathway. Changes in PKA activity might impact stress resistence, storage of 

glycogen and expression of ribosomal genes (Giots et al., 2003; Mouillon & Persson, 

2006). 

 

Phosphate has been depicted as a coupling factor in yeast mitochondria, crucial in 

maintaining the inner membrane integrity against proton leakage and preserving the 

membrane potential of respiring yeast mitochondria (Balcavage & Mattoon, 1968; 

Janssen et al., 2002). Although the transcriptomic analysis of Δhsp12 mistranslating 

cells seems to point to an increase in the TCA cycle flux, we did not identify a 

significant induction of genes involved in cellular respiration. This suggests that 

cellular ATP is still mostly synthesized through a fermentative metabolism, whereas 

the TCA cycle functions largely for biosynthesis, namely of amino acid precursors. 

Moreover, previous studies showed that mistranslating BY4742 WT cells are unable to 

grow in non-fermentable carbon sources such as glycerol and have strong alterations 

in mitochondrial morphology and network structure (Lima-Costa et al., unpublished). 
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This might be related to the fact that mitochondrial proteins normally show different 

turnover rates. Indeed, only 5% to 10% of the yeast mitochondrial proteome is subject 

to degradation within a generation time (Augustin et al., 2005). Even thought 

mitochondrial dysfunction is still unverified in Δhsp12 mistranslating cells, we can 

hypothesize that the induction of both PHO89 and PHO84 might simply represent a 

mitochondrial protection mechanism.  

 

Our transcriptomic analysis revealed few differences in genetic deregulation between 

Δhsp12 and BY4742 mistranslating cells. However, functional enrichment analysis of 

BY4742 mistranslating cells allowed identifying genes involved in response to 

oxidative stress (Lima-Costa et al., unpublished). Amongst these genes are GRX1 

(encoding a disulfide oxidoreductase), GPX1 (glutathione peroxidise), TRX2 

(cytoplasmic thioredoxin), TSA1 (thioredoxin peroxidise), SRX1 (sulfiredoxin) and CTT1 

(cytosolic catalase). These observations are again consistent with data presented in 

the previous chapter (see figure3.10), showing a more expressive ROS increase in 

BY4742 cells than in Δhsp12 mistranslating cells. 

 

Deregulation of gene expression in response to stress causes changes in mRNA 

transcripts that might not correlate with protein levels. Remarkably, the expression 

level of proteins encoded by similarly abundant mRNAs can vary as much as 30-fold 

(Gygi et al., 1999).The discrepancies between mRNA and protein expression might 

occur due to post-transcriptional mechanisms controlling translation rates, variation 

in mRNA and protein half-lives (Varshavsky, 1996; Urlinger et al., 1997; Gygi et al., 

1999), differential recruitment of mRNAs to translating ribosomes (Halbeisen & 

Gerber, 2009) and even intracellular location of the proteins (Urlinger et al., 1997). 

Indeed, localizations such as the nucleolus typically present a high correlation 

between mRNA and protein levels, while other locations such as mitochondria present 

a lower correlation (Greenbaum et al., 2003). Interestingly, a considerable proportion 

of the induced genes in Δhsp12 mistranslating cells encode mitochondrial proteins 

(see figure 4.6). Remarkably, correlation between transcriptome and translatome is 

higher after a severe stress but decreases under milder stresses that do not affect cell 
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growth (Halbeisen & Gerber, 2009). Conversely, highly expressed genes result in more 

correlated level of protein than lower expressed ones (Greenbaum et al., 2003). 

 

Since proteins are the true cellular effectors, complementary measurements of 

relative mRNA and protein levels are pivotal for a complete understanding of how the 

cell works. Also, this analysis might be the key to understand which post-

transcriptional mechanisms determine the phenotypes of Δhsp12 and BY4742 cells 

under constitutive mistranslation and the specificity of their stress responses. A 

quantitative method such as real-time PCR should be used to confirm the mRNA 

levels of some key genes. In addition, a proteome analysis could be implemented by 

the combination of two-dimensional gel electrophoresis (2DE) - which allows 

separation, visualization, and quantification of proteins - with analytical methods for 

their large-scale identification, such as mass spectrometry. 
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5.1. General Discussion 

 

5.1.1. Strategies for protein synthesis accuracy 

 

The evolution of efficient proofreading and repair processes ensure DNA replication 

average error rates in the order of 10-8 to 10-11 nucleotide exchanges per base pair per 

replication cycle (Drake, 1991; Drake et al., 1998). The correlation between DNA 

mutation rate and genome size is strongly negative, but the mutation rates per 

genome differ only by a factor of two, for most of the organisms tested so far (Drake 

et al., 1998). On the other hand, translational errors (protein mutation) are 6 orders of 

magnitude more frequent than genetic mutations, ranging from 10-3 to 10-5 per codon 

in S.cerevisiae (Stansfield et al. 1998; Rakwalska & Rospert 2004; Salas-Marco and 

Bedwell 2005; Plant et al. 2007). An explanation for such difference in error rates is 

that DNA mutations are fixed and transmitted, while protein mutations introduced 

during mRNA decoding are not. 

 

In order to preserve cellular viability, translation must efficiently balance speed and 

accuracy (Parker 1989). There are several events determining fidelity of translation, 

including synthesis of cognate amino acid-tRNA pairs by aminoacyl-tRNA synthetases 

(aaRSs), binding and delivery of aminoacyl-tRNAs (aa-tRNAs) to the ribosome by 

elongation factors and selection of aa-tRNAs by the ribosome. Multiple substrate 

recognition and proofreading mechanisms are involved in these processes, to 

minimize error rate without negatively affecting the total protein output and optimal 

growth. For example, editing during aminoacylation lowers the error rate of this 

mechanism to 10-6 (Schulman, 1991). On the other hand, mRNA decoding accuracy at 

the ribosomal A-site is surveyed by the rate of EF-Tu GTPase activation (Rodnina et 

al., 2005). Also, in eukaryotic cells, mRNAs failing to accurately encode the original 

gene sequence are recognized and degraded rapidly by a nonsense-mediated mRNA 

decay (NMD) mechanism, before deleterious accumulation of aberrant protein 

products (Jaillon et al., 2008; Drummond & Wilke, 2009). Despite this, if we consider 
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an error rate of 5×10–4 and the average length of yeast proteins to be ~400 amino 

acids, around 18% of the synthesized molecules contain at least one misincorporated 

amino acid (Burger et al., 2006; Drummond et al., 2005). In addition, 10 - 50% of the 

overall random substitutions might result in protein misfolding and concomitant loss 

of function (Markiewicz et al., 1994; Guo et al., 2004), with deleterious effects in 4–

12% of the average-length yeast proteins (Drummond et al., 2005). 

 

Misfolded proteins are generally cytotoxic due to wasting of cellular metabolic 

resources and formation of aggregates (Bucciantini et al., 2002), known to ultimately 

promote senescence, neurodegeneration and cancer (Ballesteros et al., 2001; Lee et 

al., 2006; Brulliard et al., 2007). Remarkably, gene expression levels are negatively 

correlated with the protein aggregation rate measured in vitro. This seems to suggest 

that the most expressed proteins have evolved to fold properly and resist aggregation, 

functioning efficiently even under conditions that induce translational errors and 

misfolding (Drummond DA et al., 2005; Drummond DA & Wilke CO, 2008). In other 

words, selection optimizes codon usage in such a manner that highly expressed genes 

use preferred codons that are less prone to error. It also acts on protein robustness, 

favoring thermodynamically stable protein sequences that tolerate amino acid 

substitutions without imposing an unbearable fitness cost (Bloom et al., 2005; 

Drummond DA et al., 2005). 

 

Interestingly, loss of translational accuracy increases frequency of spontaneous 

mutations in E.coli, by promoting synthesis of mutant DNA polymerase molecules 

(Boe, 1992; Ninio, 1991), which replicate DNA inaccurately. Conversely, similar 

mechanisms might also explain the high DNA mutation rates associated with 

prolonged amino acid starvation (Hall, 1990; Boe, 1990), editing defects in translation 

(Bacher & Schimmel, 2007) or mutations in tRNA genes (Al Mamun et al., 2002). 

Remarkably, an editing defect in a single tRNA synthetase (isoleucyl-tRNA 

synthetase) increases mutation rate in aging bacteria, due to deficient DNA repair by 

the bacterial SOS response (Bacher & Schimmel, 2007). The activity of SOS-induced 
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enzymes is affected by accumulation of translational errors, potentially resulting in 

occurrence of free DNA ends (Kowalczykowski, 2000; Bacher & Schimmel, 2007). 

The E.coli mutator mutA and mutC alleles often result in expression of a tRNA that 

inserts glycine at approximately 1-2% of the aspartic acid codons. This also increases 

mutation frequency by promoting amino acid substitutions in DNA pol III that hamper 

the editing function of the enzyme (Slupska et al., 1996; Al Mamun et al., 2002).  

These data are in line with the controversial hypothesis that aging is mostly related 

with the buildup of random amino acid misincorporations. Such phenotype would 

then inevitably result in an exponential decrease in the accuracy of information flow 

from DNA to protein, by introducing errors in the sequence of proteins involved in 

translation and DNA replication (ORGEL, 1963). However, this hypothesis neglected 

the role of cellular homeostasis mechanisms, which recognize misfolded proteins 

resulting from mistranslation and target them for degradation or recovery. 

Nevertheless, mistranslation can potentially saturate protein quality control 

mechanisms, leading to disease and promoting aging. 

 

The demands on the quality control machinery diverge according to different growth 

conditions and are in some cases organelle or cell-specific. For example, besides the 

cytoplasmic PheRS, eukaryotes maintain a quite distinct mitochondrial form of the 

enzyme (mtPheRS), which lacks an editing domain and maintains the fidelity of 

aminoacylation through higher level of amino acid specificity (Roy et al., 2005; 

Reynolds et al., 2010b). Reducing the specificity of the mtPheRS blocked 

mitochondrial biogenesis. Nevertheless, this error-prone mtPheRS still supported 

cytoplasmic protein synthesis and normal growth when tested in the yeast cytoplasm, 

revealing distinct requirements for accuracy according to the cellular compartment 

(Reynolds et al., 2010b). In addition, also cellular physiology arises as an important 

determinant of translational quality control. For example, a missense mutation in the 

editing site of mouse AlaRS results in the accumulation of misfolded proteins and cell 

death exclusively in the non-dividing Purkinje neuronal cells, although all cells 

inherited the mutation (Lee et al., 2006). Previous studies with bacteria indicated that 

frameshifting increases transiently 3- to 10-fold upon entrance into the stationary 
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phase (Wenthzel et al., 1998). Altogether, an opposite effect was found in S.cerevisiae. 

There is not a general change in translational accuracy, but programmed 

frameshifting at particular sites decreases with a change from a fermentative to a 

respiratory metabolism (change from exponential to stationary phase). These 

mechanisms allow cells to coordinate the expression of a protein product with 

variations in cellular growth and physiology (Stahl et al., 2004).  

 

External factors might also modulate translational fidelity and cellular tolerance to 

protein synthesis errors. In E.coli, an increasing level of ROS reduces translational 

fidelity by oxidizing a critical Cys residue in the editing site of ThrRS, resulting in Ser-

tRNAThr formation and accumulation of misfolded proteins (Ling & Söll, 2010). On the 

other hand, starvation for particular amino acids stimulates missense errors, due to 

shortage of cognate tRNAs and competition with non-cognate aminoacyl-tRNAs 

(Farabaugh & Björk, 1999). These conditions lead the ribosome to frequently pause 

with an empty A-site, which eventually forces the peptidyl-tRNA to slip +1 in the P-site 

or even slide extensively over other hungry codons, resuming translation at a cognate 

codon many nucleotides downstream, in the same or in a distinct reading frame 

(Gallant & Lindsley, 1992; Gallant & Lindsley, 1998). In addition, exposure to 

chromium, a human carcinogen and widespread pollutant, results in mistranslation 

and concomitant buildup of toxic protein aggregates (Holland et al., 2007). 

 

Our study focused on the vulnerability of the eukaryotic translational machinery to 

environmental stress, encompassing a wide range of chemicals that possess distinct 

toxicological effects. We took advantage of distinct bicistronic luciferase reporters to 

quantify both stop codon readthrough and misreading in S.cerevisiae cells under non-

lethal conditions. Our results suggest that the eukaryotic translation machinery is 

generally very resistant to environmental stress. Cells do not harbor perfectly 

synthesized proteomes, but mistranslation is limited to a tolerable level that allows 

optimal growth under specific environmental conditions. This is not exclusively 

achieved by the mitigation of error frequencies, but by a conjugation of mechanisms 

that effectively reduce the costs of all unavoidable errors and the cellular impact of 
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aberrant protein synthesis. For example, both S.cerevisiae and E.coli cope with amino 

acid misincorporation by triggering the expression of protein chaperones and 

proteases, guaranteeing the presence of sufficient functional proteins (Silva et al., 

2007; Ruan et al., 2008). On the other hand, proteasomal activity is of crucial 

importance for cellular chromium (Cr) resistance, by attenuating the effects of protein 

aggregate accumulation (Holland et al., 2007). Therefore, for a precise quantification 

of the actual effects exerted by environmental stress on the translational machinery it 

is necessary to untangle the complex integration of protein homeostasis mechanisms 

acting on aberrantly synthezised products. 

 

5.1.2. Cellular strategies to preserve protein homeostasis 

 

The translational machinery is a potential target of common environmental or 

metabolic stressors, which might directly or indirectly decrease the accuracy of 

protein synthesis, resulting in protein misfolding and aggregation (Holland et al., 

2007; Balch et al., 2008; Haigis & Yankner, 2010). This phenotype is most particularly 

evident in cells missing key ribosome-associated molecular chaperones (Rakwalska M 

& Rospert S, 2004; Kim SY & Craig EA, 2005). In order to preserve the integrity of the 

proteome, cells must maintain the balance between the intrinsic and extrinsic factors 

that interfere with proper protein folding by adapting to an unfavorable environment. 

To face these challenges cells activate the environmental stress response (ESR), 

thereby increasing the expression of chaperones and other protective cellular 

components, which can actively promote protein refolding or determine their 

degradation by the ubiquitin-proteasome pathway (Gasch et al., 2000; McClellan et 

al., 2005; Tyedmers et al., 2010). Interestingly, the high mutation rate in cancer cells 

also results in accumulation of misfolded proteins and overexpression of chaperones, 

also inducing an ESR-like response (Whitesell & Lindquist, 2005). 

With the assistance of molecular chaperones, misfolded or aggregated proteins might 

be sequestered into specialized quality control compartments, such as juxtanuclear 

quality-control compartments (JUNQ), perivacuolar insoluble protein deposits (IPOD) 
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or aggresomes (Bagola and Sommer 2008; Kaganovich et al. 2008), thereby 

enhancing refolding or degradation and preventing a further build-up of toxic species.  

Compartmentalization also regulates the inheritance of toxic protein aggregates 

(Tyedmers J et al., 2010). Remarkably, aggregates distribute asymmetrically during 

cell division, being largely retained in the mother cell by a mechanism involving the 

participation of the actin cytoskeleton and the chaperone Hsp104. This occurrence has 

major implications in cellular ageing, freeing daughter cells of damaged proteins and 

favoring their rejuvenation (Aguilaniu et al., 2003; Erjavec et al., 2007). Aggregated 

proteins sequestered in the aggresomes are targeted for degradation by autophagy 

(Pankiv et al., 2007). On the other hand, the IPOD co-localize with the autophagy 

associated protein Atg8 (Kaganovich et al., 2008). Autophagy is mainly activated 

under persistent stress, when the capacity of immediate quality-control systems is 

exceeded, and consists of a bulk degradation pathway that ultimately delivers protein 

aggregates in the lysosome (Klionsky et al., 2010). Importantly, there are evidences of 

a functional relationship between proteasomal and autophagic degradation of 

misfolded proteins (Hara et al., 2006; Pandey et al., 2007). 

The buildup of protein aggregates in the cytosol might also induce protein misfolding 

in the endoplasmic reticulum (ER), thereby triggering ER stress and induction of the 

unfolded protein response (UPR), to avoid the exit of misfolded secretory and 

membrane proteins from the ER. The unfolded protein response (UPR) initiates a vast 

transcriptional program in a Hac1-dependent manner (Cox et al., 1993; Cox & Walter, 

1996; Mori et al., 1996). UPR target genes encompass protein translocation, folding 

(ER-resident molecular chaperones), components of the protein degradation 

machinery (ER-associated degradation) and autophagy (Spear et al., 2001). ER-

associated degradation (ERAD) substrates might be either misfolded domains in the 

lumen of the ER, membrane proteins with lesions in a membrane span or a cytosolic 

domain and misfolded cytosolic proteins unable to enter the secretory pathway (Taxis 

et al., 2003; Vashist & Ng, 2004; Carvalho et al., 2006). The UPR is also activated by 

mistranslation (Paredes et al., in press). Our transcriptomic analysis (chapter 4) 

identified up-regulation of IRE1, the ER endoribonuclease which splices the pre-mRNA 

of HAC1, the activator of UPR. 
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Under control of the ESR, both HSP12, HSP104 and RPN4 are among the most up-

regulated genes in mistranslating cells (Silva et al., 2007). In agreement with these 

results, our data show that deletion of these genes results in a significant decrease in 

translational accuracy. Indeed, both UAA/UGA stop codon readthrough and AGC 

misreading were increased between 20 – 40% relatively to the isogenic WT strain, 

mostly under ethanol, As2O3 and LiCl exposure (see table 2.4 and 2.5). Per se, none of 

the gene deletions tested contributed to a significant loss of translational accuracy. 

Therefore, saturation of protein homeostasis mechanisms under stress has a direct 

impact on protein synthesis fidelity, most likely by freeing mistranslated protein into 

the cytoplasm and decreasing the functional availability of key proteins directly 

involved in translational fidelity and cellular integrity. If so, our data suggests that the 

real rate of mistranslation is normally underestimated and should be determined 

under stress or homeostasis inhibitors. Hsp12p associates with the plasma membrane 

under stress, which may contribute to modulate both membrane fluidity and stability. 

Importantly, this may suggest that key membrane components are targets of protein 

synthesis errors. 

 

Remarkably, increased susceptibility to ROS further contributes to the buildup of 

protein aggregates in the presence of stress (see Figure 3.5). Indeed, conditions that 

favor oxidation of rRNA, tRNA, and mRNA, typically impair the integrity of 

translational processes (Tanaka et al., 2007), resulting in the synthesis of aberrant 

proteins under conditions of saturated quality control (Ding Q et al., 2005). Amino 

acid oxidation can lead to the production of aggregation-prone carbonyl groups, but 

several reports show that carbonylation can also occur independently of ROS, under 

conditions that favor production of mistranslated proteins (Dukan et al., 2000; 

Ballesteros et al., 2001). For example, carbonylation increases upon treatment with 

ribosome-targeting antibiotics even if superoxide production is unaltered (Dukan et 

al., 2000). Remarkably, the buildup of protein aggregates in our study is being 

underestimated, since not all the insoluble proteins co-localize with Hsp104 in the 
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cytoplasm. Some are probably sequestered in aggresomes, which are not known to 

co-localize with hsp104, and not visualized by epifluorescence microscopy.  

Carbonylated proteins accumulate mostly in the cytoplasm of aged yeast cells 

(Erjavec et al., 2007). This suggests a reduced capacity of ageing cells to manage 

protein quality control and eliminate misfolded proteins, a phenotype probably 

associated with the late age onset of Alzheimer’s and Parkinson’s disease (Tyedmers 

et al., 2010). Remarkably, the activity of the proteasome decreases during aging in 

human tissues as well as in senescent primary cultures due to accumulation of 

protease-resistant aggregates, which bind to it (Grune et al., 2004; Nystrom, 2005). 

Therefore, protein aggregates can inhibit the UPS and the products that buildup 

because of its inhibition, a positive feedback mechanism that results in additional 

cellular decline. 

 

5.1.3. The benefits of protein synthesis errors in stress resistance 

 

Surprisingly, in some organisms loss of quality control mechanisms and substantial 

decreased protein synthesis accuracy do not produced visible changes in grow rate. In 

specific conditions translational errors can even produce direct benefits and increase 

fitness. For example, stop codon readthrough contributes to cellular adaptation and 

survival under changing environments (Williams et al., 2004). Indeed, the yeast [PSI+] 

prion is associated with increased stop codon readthrough and variability. Prion 

induction increases several times in cells exposed to oxidative stress (H2O2) or high 

salt concentrations. The severity of stress and the frequency of [PSI+] induction are 

highly correlated (Tyedmers et al., 2008). Moreover, point mutations in the editing 

domains of LeuRS and PheRS genes from Mycoplasma parasites impair the ability of 

these enzymes to edit non-cognate amino acids. The resulting increase in the levels of 

mistranslation likely contributes to antigen diversity, allowing these organisms to 

escape host defense systems (Li et al., 2011). A unique tRNACAG
Ser found in Candida 

spp can be aminoacylated with both Ser and Leu, leading to ambiguous decoding of 

CUG codons. Leu misincorporation creates a statistical proteome and enhances 
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resistance to cadmium, arsenate and hydrogen peroxide exposure through a cross-

protection associated to the general stress response (Santos et al., 1996 and 1999; 

Miranda et al., 2006). In addition, amino acid substitutions in a TEM1-β-lactamase 

enzyme confer bacterial resistance to the antibiotic cephalosporin (Wang et al., 2002).  

Remarkably, our results demonstrate that Met-misacylation has a very significant 

impact in S.cerevisiae cells expressing misreading tRNAs (see Figure 3.11) , 

nevertheless preserving levels of translational fidelity that ensure cell viability. This 

event represents an adaptive benefit, since Met residues are ROS scavengers. Yeast 

MetRS is now known to be responsible for such extensive misacylation of non-

methionyl tRNAs, however, changes in tRNA modifications may also be involved in 

regulating this process. 

Large changes in the spectrum of ribonucleosides in cells exposed to environmental 

stress (Figure 3.8 and 3.9), are known to occur as part of a dynamic translational 

control mechanism that enhances the synthesis of proteins involved in cell survival 

and adaptation to unfavorable growth conditions (Chan et al., 2010). The degree of 

tRNA modification is most probably determined by changes in the activity and 

expression of modifying enzymes or by tRNA degradation mechanisms, as 

endonucleolytic cleavage of tRNAs is a conserved response to several stress 

conditions in yeast, including increased ROS (Thompson et al., 2008). Post-

transcriptional modifications are essential to guarantee the structural and functional 

features of tRNAs and by this means regulate gene expression and translational 

fidelity. However, no evidence point to the involvement of mistranslation in this cell 

defense mechanism.  
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5.2. Conclusions and future studies 

 

Environmental stress puts significant constraints on the components of the 

translational machinery to enssure accurate synthesis of proteins under suboptimal 

growth conditions. Our study took advantage of distinct bicistronic luciferase 

reporters to quantify both stop codon readthrough and misreading in S.cerevisiae 

under non-lethal concentrations of distinct environmental stressors. Our results imply 

that the eukaryotic translation machinery is in general very resistant to environmental 

stress. Error rates under stress are maintained at a tolerable level by a conjugation of 

homeostasis mechanisms that effectively reduce the cellular impact of aberrant 

protein synthesis. 

Protein homeostasis under environmental stress is guaranteed by a complex network 

of mechanisms, which can actively promote protein refolding and determine their 

degradation by the ubiquitin-proteasome pathway. Many of these defense pathways 

are determined by the expression of a comprehensive set of redundant genes under 

the control of the environmental stress response (ESR). Our quantitative approach 

allowed us to identify genes that are essential to counteract the negative impact of 

environmental stress on the translational machinery, namely HSP12, HSP104 and 

RPN4, which limit the accumulation of mistranslated protein into the cytoplasm and 

maintain the functional key factors directly involved in accuracy. Additionally, 

environmental stressors induced changes in the spectrum of tRNA ribonucleosides, 

which improve synthesis of cell survival and adaptation proteins, confirming that the 

translational machinery is a potential target of suboptimal environmental conditions.  

 

This study also allowed us to unravel some benefits of protein synthesis errors in 

resistance to stress. The ESR is activated in mistranslating cells and increased 

tolerance of BY4742, Δhsp104 and Δyap1,2 cells to high stressor concentrations by a 

cross-protection mechanism. Besides a wide response to stress, constitutive 

mistranslation also promoted a shift in cellular metabolism, which might have a role in 

energy management and cell adaptation. Finally, Met-misacylation increases in 
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mistranslating S.cerevisiae cells expressing misreading tRNAs (see Figure 3.11), 

providing protection for cellular proteins against ROS produced by dysfunctional 

mitochondria. 

 

Our data left innumerous unanswered biological questions, which can be the ground 

to future studies. First, quantification of sense codon misreading should be extended 

to a larger number of codons, both rare and abundant. Since the current reporter 

allows only a low number of possible substitutions in the active center of firefly 

luciferase, a more flexible reporter should be chosen. As an alternative, several 

endogenous proteins could be purified cells exposed to stress and analyzed by mass 

spectrometry.  

 

Since mitochondria are particularly susceptible to mistranslation, it would be 

interesting to focus on protein homeostasis mechanisms in this organelle. One of the 

hypotheses is the deletion of Hsp78p or Ssc3p, both chaperones involved in protein 

folding and refolding in the mitochondria.  

 

Δhsp12 cells show unique phenotypes under environmental stress and mistranslation 

which remain unexplained. Since this chaperone is a membrane protein, we suggest 

an evaluation of cellular permeability to amino acids, which is mediated by permeases 

and ion channels. 

 

Finally, further work is necessary to understand the influence of the tRNA 

modification profile on translational accuracy. A full characterization of deletion 

mutants for modification enzymes would allow us to reconstruct the link between 

accuracy, gene expression and survival mechanisms. 
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Annexe 1 – Map of the dual luciferase reporter plasmids 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1 - Plasmids pDB691/690, pDB723/722 and pDB688 expressing the dual luciferase 

reporter. Both Renilla and Firefly genes were subcloned from p2luc (Grentzmann G et al., 1998) 

and fused into a single open reading frame. A polylinker (readthrough cassette) was introduced 

between the two genes as a SalI/BamHI fragment. The reporter is flanked by the promoter of the 

constitutively expressed PGK gene and by the CYC1 transcriptional terminator. A segment of the 

2 µ circle confers the plasmid autonomous replication in S. cerevisiae and URA3
+ 

was used as the 

selectable marker
 
(adapted from Kramer E et al., 2010). 

 

 

 

 

 

 

 

 

 

pDB691/690 

pDB723/722 

     pDB688 

 

9076 bp 
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Annexe 2 - Sequence of the R-luc – F-luc gene fusion 

 

ATGACTTCGAAAGTTTATGATCCAGAACAAAGGAAACGGATGATAACTGGTCCGCAGTGGTGGG

CCAGATGTAAACAAATGAATGTTCTTGATTCATTTATTAATTATTATGATTCAGAAAAACATGC

AGAAAATGCTGTTATTTTTTTACATGGTAACGCGGCCTCTTCTTATTTATGGCGACATGTTGTG

CCACATATTGAGCCAGTAGCGCGGTGTATTATACCAGACCTTATTGGTATGGGCAAATCAGGCA

AATCTGGTAATGGTTCTTATAGGTTACTTGATCATTACAAATATCTTACTGCATGGTTTGAACT

TCTTAATTTACCAAAGAAGATCATTTTTGTCGGCCATGATTGGGGTGCTTGTTTGGCATTTCAT

TATAGCTATGAGCATCAAGATAAGATCAAAGCAATAGTTCACGCTGAAAGTGTAGTAGATGTGA

TTGAATCATGGGATGAATGGCCTGATATTGAAGAAGATATTGCGTTGATCAAATCTGAAGAAGG

AGAAAAAATGGTTTTGGAGAATAACTTCTTCGTGGAAACCATGTTGCCATCAAAAATCATGAGA

AAGTTAGAACCAGAAGAATTTGCAGCATATCTTGAACCATTCAAAGAGAAAGGTGAAGTTCGTC

GTCCAACATTATCATGGCCTCGTGAAATCCCGTTAGTAAAAGGTGGTAAACCTGACGTTGTACA

AATTGTTAGGAATTATAATGCTTATCTACGTGCAAGTGATGATTTACCAAAAATGTTTATTGAA

TCGGACCCAGGATTCTTTTCCAATGCTATTGTTGAAGGTGCCAAGAAGTTTCCTAATACTGAAT

TTGTCAAAGTAAAAGGTCTTCATTTTTCGCAAGAAGATGCACCTGATGAAATGGGAAAATATAT

CAAATCGTTCGTTGAGCGAGTTCTCAAAAATGAACAAATGTCGACGTGCGATXXXNCGTTCGGA

TCCTTCAACTTCCCTGAGCTCGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATC

CTCTAGAGGATGGAACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCC

TGGAACAATTGCTTTTACAGATGCACATATCGAGGTGAACATCACGTACGCGGAATACTTCGAA

ATGTCCGTTCGGTTGGCAGAAGCTATGAAACGATATGGGCTGAATACAAATCACAGAATCGTCG

TATGCAGTGAAAACTCTCTTCAATTCTTTATGCCGGTGTTGGGCGCGTTATTTATCGGAGTTGC

AGTTGCGCCCGCGAACGACATTTATAATGAACGTGAATTGCTCAACAGTATGAACATTTCGCAG

CCTACCGTAGTGTTTGTTTCCAAAAAGGGGTTGCAAAAAATTTTGAACGTGCAAAAAAAATTAC

CAATAATCCAGAAAATTATTATCATGGATTCTAAAACGGATTACCAGGGATTTCAGTCGATGTA

CACGTTCGTCACATCTCATCTACCTCCCGGTTTTAATGAATACGATTTTGTACCAGAGTCCTTT

GATCGTGACAAAACAATTGCACTGATAATGAATTCCTCTGGATCTACTGGGTTACCTAAGGGTG

TGGCCCTTCCGCATAGAACTGCCTGCGTCAGATTCTCGCATGCCAGAGATCCTATTTTTGGCAA

TCAAATCATTCCGGATACTGCGATTTTAAGTGTTGTTCCATTCCATCACGGTTTTGGAATGTTT

ACTACACTCGGATATTTGATATGTGGATTTCGAGTCGTCTTAATGTATAGATTTGAAGAAGAGC

TGTTTTTACGATCCCTTCAGGATTACAAAATTCAAAGTGCGTTGCTAGTACCAACCCTATTTTC

ATTCTTCGCCAAAAGCACTCTGATTGACAAATACGATTTATCTAATTTACACGAAATTGCTTCT

GGGGGCGCACCTCTTTCGAAAGAAGTCGGGGAAGCGGTTGCAAAACGCTTCCATCTTCCAGGGA

TACGACAAGGATATGGGCTCACTGAGACTACATCAGCTATTCTGATTACACCCGAGGGGGATGA

TAAACCGGGCGCGGTCGGTAAAGTTGTTCCATTTTTTGAAGCGAAGGTTGTGGATCTGGATACC

GGGAAAACGCTGGGCGTTAATCAGAGAGGCGAATTATGTGTCAGAGGACCTATGATTATGTCCG

GTTATGTAAACAATCCGGAAGCGACCAACGCCTTGATTGACAAGGATGGATGGCTACATTCTGG

AGACATAGCTTACTGGGACGAAGACGAACACTTCTTCATAGTTGACCGCTTGAAGTCTTTAATT

AAATACAAAGGATATCAGGTGGCCCCCGCTGAATTGGAATCGATATTGTTACAACACCCCAACA

TCTTCGACGCGGGCGTGGCAGGTCTTCCCGACGATGACGCCGGTGAACTTCCCGCCGCCGTTGT

TGTTTTGGAGCACGGAAAGACGATGACGGAAAAAGAGATCGTGGATTACGTCGCCAGTCAAGTA

ACAACCGCGAAAAAGTTGCGCGGAGGAGTTGTGTTTGTGGACGAAGTACCGAAAGGTCTTACCG

GAAAACTCGACGCAAGAAAAATCAGAGAGATCCTCATAAAGGCCAAGAAGGGCGGAAAGTCCAA

ATTGTAA 

 

The polylinker region (readthrough cassette) is represented in grey. The sequence in red is 

variable between pDB plasmids, according to table A1. In the pDB pairs 690/691 and 722/723 

XXX is the sense / stop codon and N is a key 3’ position influencing termination efficiency. 
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Table A1 - Polylinker variable region in pDB plasmids. 

 

pDB plasmid 
Variable codon 

and 3’ context 

690 CGA C 

691 UGA C 

722 CAA C 

723 UAA C 

688 CAA A 

 

The codon in yellow was mutated to AGC in pDB688, giving origin to pUA312. 
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Annexe 3 – Supplementary methods and results 

 

A3.1. – Viability assay of yeast exposed to environmental stress 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure A2  
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Figure A2 - Viability of yeast exposed to environmental stress by the colony forming 

units (CFU) assay (as described in section 2.2.5). Exponentially growing yeast cells were 

exposed to stressors at the indicated concentrations for 4h. Cells then collected and washed 

in PBS. The same number of cells (100) was then plated onto fresh plates. The number of 

colony forming units (CFU) was determined after 3 days incubation at 30ºC and represented 

as a fold change relatively to control (plated cells not exposed to stress). * and *** represent 

values significantly different (P <0.05 and P<0.001, respectively; one-way ANOVA, Dunnett's 

post-test). Values are mean ± SEM of three biological replicates. 
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A3.2. – Yeast growth under stress 
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Figure A3 - Fold changes in yeast growth under stress. Exponentially growing yeast cells 

were exposed to stressors at the indicated concentrations for 4h. The total number of cells in 

culture was monitored using the Vi-Cell (Beckman Coulter) just before toxic exposure and 

after 4h incubation at 30ºC (as described in section 2.2.6). Results are represented as 

percentage fold change relatively to control (cells not exposed to stress). * and *** represent 

values significantly different (P <0.05 and P<0.001, respectively; one-way ANOVA, Dunnett's 

post-test). Values are mean ± SEM of three biological replicates. 

 

 

A3.3. β-Galactosidase Activity Assay 

 

To monitor serine misincorporation caused by expression of the G33 tRNACAGSer, the E. coli 

LacZ gene was co-expressed in S.cerevisiae wt and deletions strains. LacZ gene contains 54 

CUG codons and serine insertion has severe costs for β-Gal thermal stability. In the cell β-gal 

catalyzes the cleavage of lactose to glucose. However, the synthetic compound o-

nitrophenyl-β-D-galactoside (ONPG) is also recognized as a substrate and cleaved into 

galactose and o-nitrophenol, which has a yellow color. When ONPG is in excess over the 

enzyme in a reaction, the production of o-nitrophenol per unit time is proportional to the 

concentration of active β-Gal. The enzyme fraction that remains functional after denaturation 

provides an indirect measure of misincorporation. 

 

Cells co-expressing pUKC815 and pRS315/pUKC715 were grown at 30ºC to mid – log (OD600 ~ 

0,5 – 0,6) in 5ml MM lacking uracil and leucine. Cells were then collected and immediately 

washed, resuspended and disrupted as described in section 2.2.4 and 3.2.6. Total protein 

from crude cell extracts was quantified using the BCA Protein Assay kit (Thermo Scientific), 

according to the manufacturer’s instructions. 10µl crude extracts were mixed (vortex) in 990 µl 

of Z-buffer (60mM Na2HPO4, 40mM NaH2PO4.2H2O, 10mM KCl, 1mM MgSO4.7H2O, 50mM 2-

mercaptoethanol, pH 7.0) and incubated at 52ºC for 30 min. to promote β-Gal unfolding. 

Immediately after, samples were kept on ice for 30 min for protein refolding. β-Gal activity 

was quantified at 37ºC. The assay tubes were incubated for 5min. at 37ºC and then 200µl of 

4mg/mL o-nitrophenyl-β-D-galactopyranoside (ONPG) (Calbiochem) substrate were added to 

each tube. Reactions were allowed to proceed for 10 min approximately, until a pale yellow 

color appeared, and stopped by the addition of 400 µl of 1M Na2CO3. β-gal specific activity 

was determined by monitoring o-nitrophenol synthesis at 420nm, using the following 

formula: OD420 X 1.7 / 0.0045 x protein concentration x extract volume x time, where OD420 is 
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the optical density of the product, ο-nitrophenol, at 420 nm. The factor 1.7 corrects for the 

reaction volume. The factor 0.0045 is the optical density of a 1 nmole/ml solution of ο-

nitrophenol. Protein concentration is expressed as mg/ml. Extract volume is the volume 

assayed in ml. Time is in minutes. Specific activity is expressed as nmoles/minute/mg protein. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4 - tRNACAG
Ser

 is expressed in wild-type and null deletion strains and has decoding 

activity, as assessed by a β-galactosidase thermal stability assay. The activity of the β- 

galactosidase fraction that remained functional after 30 min at 47ºC was determined by 

incubating cells at 37ºC in presence of ONPG and monitoring o-nitrophenol synthesis at 

420nm.** and *** represent values significantly different from the control (P < 0.01 and 

P<0.001, respectively; one-way ANOVA, Dunnett's post-test). Values are mean ± SEM of at least 

four independent experiments done in triplicate. 

 

A3.4. Methionine Misacylation of tRNA in S. cerevisiae  

 

The array contains 40 nuclear-encoded yeast tRNA probes (orange) and 24 

mitochondrial-encoded yeast tRNA probes (blue). In addition, the array includes 1 

blank control (yellow) and 31 E. coli tRNA probes (green), which serve as negative 

controls (see Figure A5). Each probe has 8 replicates. The S.cerevisiae nuclear-

encoded tRNA microarray probes are depicted in Table A2. 
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Figure A5 - Layout of the S.cerevisiae microarray 
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Table A2 - S.cerevisiae nuclear-encoded tRNA microarray probes. 
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Four arrays were performed for the selected RNA samples: a regular (total RNA is 

hybridized directly), a cross-hybridization control (excess of DNA probes of Met-

tRNAs are included in hybridization), a modification control (total RNA is first 

deacylated at pH 9 45 min) and a peptidyl-tRNA control (total RNA is treated with 

Aminopeptidase-M at room temperature for 25 min) (see section 3.2.10). Figure A6 

shows the results obtained with the regular array. 

 

 

 

Figure A6 – Total RNA from the 
35

S-Met pulse-labeled exponential phase S.cerevisiae cells was 

hybridized to a microarray with the layout showed in Figure A5. Potentially misacylated tRNAs 

are showed for a) BY4742 contro and mistranslating cells b) Δhsp12 control and mistranslating 

cells and c) Δyap1,2 control and mistranslating cells. 
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