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Abstract.
This paper aims to discuss some problems on state space models with estimated parameters. While existing research focus

on the prediction mean squared error, this work presents some results on bias propagation into forecast and filter predictions
when the mean vector of the state is taking with an estimation bias, namely, non recursive analytical expression for them. In
particular, it is discussed the impact of mean bias in invariant state space models.
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INTRODUCTION

Once the model is placed in the state space form, the most usual algorithm to predict the latent vector is the Kalman
filter (KF) algorithm. This algorithm is a procedure for computing, at each time t (t = 1,2, . . .), the optimal estimator
of the state vector based on the available information until t and its success lies on the fact that is an online estimation
procedure. Indeed, the main goal of the KF algorithm is to find estimates for the unobservable variables based on
observable variables related to each other through a set of equations forming the state space model. According to
the objectives of this work, and to simplify the explanation will be considered a class of state space models with a
stationary state vector. Such models are defined by the equations:

Yt = Htβββ t + et (1)
βββ t = µµµ +ΦΦΦ(βββ t−1−µµµ)+ εεε t . (2)

The general state space form applies to a multivariate time series Yt , a n×1 vector of observable variables, which
are related, via measurement equation (1), with the m× 1 vector of unobservable variables, βββ t , known as the state
vector. Ht is the system matrix, n×m, of known coefficients and et is a white noise n×1 vector, called measurement
error, of serially uncorrelated disturbances with mean zero and covariance matrix ΣΣΣe = E(ete′t). Although the elements
of βββ t are not observable, they are generated by a first-order Markov process according to (2), the transition equation.
It is assumed that the state vector βββ t is a stationary VAR(1) process with mean E(βββ t) = µµµ and transition matrix ΦΦΦ

with all eigenvalues inside the unit circle, i.e.,

|λi(ΦΦΦ)|< 1 for all λi such that |ΦΦΦ−λiI|= 0. (3)

The error εεε t is a white noise vector, m×1, with mean zero and covariance matrix ΣΣΣεεε = E(εεε tεεε
′
t). The disturbances

et and εεε t are assumed to be uncorrelated, that is, E(etεεε
′
s) = 0 for all t and s. The specification of the state space model

is completed by the assumption that the initial state vector βββ 0 has a mean of µµµ and a covariance matrix ΣΣΣ, that is
E(βββ 0) = µµµ and var(βββ 0) = ΣΣΣ, where ΣΣΣ is the solution of the equation ΣΣΣ = ΦΦΦΣΣΣΦΦΦ

′+ΣΣΣε .
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THE KALMAN FILTER ALGORITHM

Briefly, the Kalman filter is an iterative algorithm that produces, at each time t, an estimator of the state vector βββ t
which is given by the orthogonal projection of the state vector onto the observed variables up to that time.

Considering the model (1)-(2), let βββ t|t−1 denote the estimator of βββ t based on the observations y1,y2, . . . ,yt−1 and let
Pt|t−1 be its covariance matrix, i.e., the MSE matrix. Since the orthogonal projection is a linear estimator, the predictor
for the observable vector Yt is given by Yt|t−1 = Htβββ t|t−1.

When, at time t, Yt is available, the prediction error or innovation, ηηη t = Yt −Yt|t−1, is used to update the estimate
of βββ t (filtering) trough the equation

βββ t|t = βββ t|t−1 +Ktηηη t , (4)

where Kt is called the Kalman gain matrix and is given by

Kt = Pt|t−1H′t(HtPt|t−1H′t +ΣΣΣe)−1.

Furthermore, the MSE of the updated estimator βββ t|t , represented by Pt|t , verifies the relationship Pt|t = Pt|t−1−
KtHtPt|t−1. On the other hand, at time t, the forecast for the state vector βββ t+1 is given by the equation

βββ t+1|t = µµµ +ΦΦΦ(βββ t|t −µµµ) (5)

and its MSE matrix is Pt+1|t = ΦΦΦPt|tΦΦΦ
′+ΣΣΣε . For more details on Kalman filter algorithm see [3, 7].

STATE SPACE MODELS WITH ESTIMATED PARAMETERS

When the disturbances et and εεε t are normally distributed the KF estimators minimises the MSE when the expectation
is taken over all the variables because, in the normality case,

βββ t|t = E(βββ t |Yt ,Yt−1, ...). (6)

Thus, the conditional mean estimator is the minimum mean square estimator of βββ t and it is unbiased in the sense
that the expectation of the estimation error is zero ([3]). However, when the disturbances are not normally distributed
the equation (6) does not hold but, as orthogonal projection, the KF estimators are the minimum mean square linear
estimators. Nevertheless, when the real parameters of the state space model ΘΘΘ = {µµµ,ΦΦΦ,ΣΣΣe,ΣΣΣεεε} are, for instance,
substituted by their maximum likelihood (or other) estimates, Θ̂ΘΘ, the theoretical properties of KF estimators are no
longer valid. The usual approach in the analysis of the effects (implications) of applying estimates rather than using true
values is the computation of the mean squared errors Pt|t or Pt|t−1 taking into account that substitution. This approach
is discussed in the literature, for instance in [2, 4] or more recently in [6] and it relies on the fact that substituting the
model parameters by theirs estimates in the theoretical MSE expression that assumes known parameters values results
in underestimation of the true MSE.

Indeed, denoting by βββ t|t(Θ̂ΘΘ) the predictor obtained from βββ t|t defined in (4), and analogously to the forecast predictor,

by substituting ΘΘΘ by Θ̂ΘΘ, the MSE of the prediction error is

MSEt|t = E
{[

βββ t|t(Θ̂ΘΘ)−βββ t

][
βββ t|t(Θ̂ΘΘ)−βββ t

]′}
= Pt|t +E

{[
βββ t|t −βββ t|t(Θ̂ΘΘ)

][
βββ t|t −βββ t|t(Θ̂ΘΘ)

]′}
(7)

Usually, the existent literature investigates methodologies to the second parcel of (7), that is, the contribution to the
MSEt|t resulting from ’parameters uncertainty’. In [4] it is suggested the application of Monte Carlo techniques com-
bining with maximum likelihood estimation. Bootstraps procedures are applied to both parametric and nonparametric
methods in [6].



FORECAST AND FILTER BIAS

This paper intends initiating a research on the bias induced by taking parameters estimates instead of the true values.
As starting point of this research, it will be considered a state space model (1)-(2) where it will be admitted that all

parameters are known except the mean vector µµµ that is estimated with a bias, i.e.,

µ̂µµ = µµµ +λλλ , (8)

where λλλ is the estimation error.
As Kalman filter estimators are linear, the estimation error of µµµ will influence them additively. Indeed, the estimation

error of µµµ induces bias recursively as follow. The initial state vector β̂ββ 1|0 has a bias equal to λλλ , i.e., β̂ββ 1|0 =

βββ 1|0 +bias(β̂ββ 1|0) = βββ 1|0 +λλλ . The bias induced in forecast of Yt is given by

Ŷt|t−1 = Ht β̂ββ t|t−1 = Yt|t−1 +Htbias(β̂ββ t|t−1) (9)

which induces a bias in the filtering stage, namely,

β̂ββ t|t = β̂ββ t|t−1 +Kt(Yt − Ŷt|t−1) = βββ t|t +(Im−KtHt)bias(β̂ββ t|t−1). (10)

The bias of the state forecast as the form

β̂ββ t|t−1 = µ̂µµ +ΦΦΦ(β̂ββ t|t − µ̂µµ) = βββ t|t−1 +(Im−ΦΦΦ)λλλ +ΦΦΦbias(β̂ββ t−1|t−1). (11)

These results can be summarized through recursive equations in terms of bias

bias(β̂ββ 1|0) = λλλ ,bias(β̂ββ t|t) = (Im−KtHt)bias(β̂ββ t|t−1), and bias(β̂ββ t|t−1) = (Im−ΦΦΦ)λλλ +ΦΦΦbias(β̂ββ t−1|t−1). (12)

These equations allow obtaining non recursive analytical expressions, proved by mathematical induction, for
forecast and filter bias, namely,

bias(β̂ββ t|t−1) =

[
(Im−ΦΦΦ)+

(
t−2

∑
k=1

k

∏
i=1

ΦΦΦ(Im−Kt−iHt−i)

)
(Im−ΦΦΦ)+

t−1

∏
i=1

ΦΦΦ(Im−Kt−iHt−i)

]
λλλ (13)

and

bias(β̂ββ t|t) = (Im−KtHt)

{[
Im +

t−2

∑
k=1

k

∏
i=1

ΦΦΦ(Im−Kt−iHt−i)

]
(Im−ΦΦΦ)+

t−1

∏
i=1

ΦΦΦ(Im−Kt−iHt−i)

}
λλλ , (14)

where
n

∏
i=1

Ai = A1A2 . . .An.

Thus, it is proved that induced forecast and filter bias are proportional to mean vector bias whose constant of
proportionality is given by the expressions above. However, these expressions can be simplified to invariant models,
i.e. when matrices Ht do not depend on time.

INVARIANT STATE SPACE MODELS

Let the model (1)-(2) represents an invariant state space model, i.e. Ht = H for all t, and the stationarity condition (3)
holds. In this case, the Kalman filter converges fast to the steady-state Kalman filter.

Briefly, it means that the sequence {Pt|t−1} converges to a steady matrix Pt|t−1 which verifies the Riccati equation,
and the sequence {Kt} converges to a steady matrix K that verifies the equation K = PH(H′PH+ΣΣΣe), ([5]).

For simplicity, it will be considered a univariate state space model (m = 1). The limit of equation (13) when t goes
to infinity and admitting that the steady Kalman gain K is a good approximation of Kt for all t, is given by,

lim
t→+∞

bias(β̂ββ t|t−1) = lim
t→+∞

[
(1−Φ)+

(
t−1

∑
k=1

k

∏
i=1

Φ(1−Kt−iHt−i)

)
(1−Φ)+

t−1

∏
i=1

Φ(1−Kt−iHt−i)

]
λ (15)

≈ (1−Φ)

1−Φ(1−KH)
λ



and

lim
t→+∞

bias(β̂ββ t|t) = lim
t→+∞

(1−KtHt)

{[
1+

t−2

∑
k=1

k

∏
i=1

Φ(1−Kt−iHt−i)

]
(1−Φ)+

t−1

∏
i=1

Φ(1−Kt−iHt−i)

}
λ (16)

≈ (1−Φ)

1−Φ(1−KH)
(1−KH)λ .

Noting that in a steady state

KH =
PH2

PH2 +σ2
e
, (17)

that is 0 < KH < 1, it can be concluded that bias of filter prediction are smaller than forecast bias. When H is large
KH is approximately equal to 1, thus, in this case, filter and forecast bias are approximately zero and λ (1−Φ),
respectively. If H is small then KH is approximately zero and, in this case, both filter and forecast bias are equal to λ .
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