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Abstract

In this paper we introduce a class of self-exciting threshold integer-valued autoregres-

sive models driven by independent Poisson-distributed random variables. Basic proba-

bilistic and statistical properties of this class of models are discussed. Moreover, param-

eter estimation is also addressed. Specifically, the methods of estimation under analysis

are the least squares-type and likelihood-based ones. Their performance is compared

through a simulation study.
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1 Introduction

In the analysis of stationary integer-valued time series the class of Poisson integer-valued au-

toregressive moving average models plays a central role. Such models, however, are unlikely

to provide a sufficiently broad class capable of accurately capturing features often exhibited

by time series of counts such as sudden burst of large values, volatility changes in time, high

threshold exceedances appearing in clusters, and the so-called piecewise phenomenon. Ad-

dressing some of these issues Hall et al. (2010) introduced a general class of models specially

devised for modeling non-negative integer-valued time series assuming low values with high

probability but exhibiting, at the same time, sudden burst of large positive values. Doukhan

et al. (2006) also gave a noticeable contribution by introducing a class of integer-valued

bilinear models. Extensions of Doukhan and co-authors’ work have been proposed by Drost

et al. (2008). However, in the field of integer-valued time series data no efforts have been

made so far to develop models for dealing with time series of counts exhibiting piecewise-type

patterns. To the best of our knowledge only one contribution is known, namely Thyregod et

al. (1999) who introduced a self-exciting threshold-based INAR (INteger-valued AutoRegres-

sive) model to analyze tipping bucket rainfall measurements. In the work of Thyregod et al.

(1999), however, a number of important issues related with the existence of the stationary

marginal distribution of the process, the existence of moments, and the asymptotic distribu-

tion of the maximum likelihood estimators are left as open questions. This paper aims to

give a contribution towards this direction.

Since their introduction by Tong (1977) much attention has been given to threshold models

partially because of their wide applicability to economy and finance (Boero and Marrocu,

2004; Pai and Pedersen 1999; Potter, 1995), hydrological (Fu et al. 2004), ocean engineering

(Scotto and Guedes Soares, 2000), electricity markets (Amaral et al., 2008) and physical

phenomena (Tong, 1990). Among the more successful threshold models we mention the Self-

Exciting Threshold AutoRegressive Moving Average (in short SETARMA) model (Tong,
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1983). The SETARMA model of order (k; p1, . . . , pk; q1, . . . , qk) takes the form

Xt =

k∑
i=1

ϕ(i)0 +

pi∑
j=1

ϕ
(i)
j Xt−j + Zt −

qi∑
r=1

ψ(i)
r Zt−r

 I(Xt−d ∈ Ri), t ∈ ZZ, (1)

where (Zt)t∈ZZ is a sequence of independent and identically distributed (i.i.d.) random vari-

ables (r.v.’s), Ri := [ri−1, ri) forms a partition of the real line such that −∞ = r0 < r1 <

· · · < rk = +∞, being ri the threshold values, d represents the threshold delay, pi and qi are

non-negative integers referred to the AR and MA orders, respectively, and ϕ
(i)
j and ψ

(i)
r are

unknown parameters, for j = 1, . . . , pi and r = 1, . . . , qi. Finally, I(·) is a Bernoulli random

process. Note that the SETARMA model is characterized by a piecewise linear structure

which follows a conventional linear ARMA model in each regime Ri with
∪k

i=1Ri = IR. It

is worth noting that this model is piecewise linear in the space of the threshold variable

rather than in time. The model in (1) is appealing from a physical perspective as many

physical systems are state dependent in the sense that the nature of their future evolution

is dependent on their current state. A number of such examples are discussed by Tong (1990).

It is worth to mention that all references given in the previous paragraph deal with the

case of conventional (id est, continuous-valued) threshold models. In contrast, however, the

analysis of integer-valued threshold models has not received much attention in the literature.

Motivation to include discrete data models comes from the need to account for the discrete

nature of certain data sets, often counts of events, objects or individuals. The analysis of

time series of counts has become an important area of research in the last two decades par-

tially because of its wide applicability to social science (McCabe and Martin, 2005), queueing

systems (Ahn et al., 2000), experimental biology (Zhou and Basawa, 2005), environmental

processes (Thyregod et al., 1999), economy (Brännäs and Quoreshi, 2010), statistical control

processes (Weiß, 2008c; Lambert and Liu, 2006), telecommunications (Weiß, 2008a), optimal

alarm systems (Monteiro et al., 2008), and in the biopharmaceutical industry (Alosh, 2009).

We refer to McKenzie (2003) for an overview of the early work in this area and to Jung and

Tremayne (2006, 2010) and Weiß (2008b) for recent developments.
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In this paper, we investigate basic probabilistic and statistical properties of the self-exciting

threshold integer-valued autoregressive model of order one with two regimes (hereafter re-

ferred to as SETINAR(2, 1)) defined by the recursive equation

Xt = ϕt ◦Xt−1 + Zt, t ∈ ZZ, (2)

with ϕt := α1It−1,1 + α2It−1,2, where the thinning operator ◦ is defined as

ϕt ◦Xt−1
d
= It−1,1

Xt−1∑
i=1

Ui,t(α1) + It−1,2

Xt−1∑
i=1

Ui,t(α2),

being (Ui,t(α1)) and (Ui,t(α2)), for i = 1, 2, . . . , i.i.d. sequences of Bernoulli random variables

with success probabilities P (Ui,t(α1) = 1) = α1 ∈ (0, 1) and P (Ui,t(α2) = 1) = α2 ∈ (0, 1),

respectively, which for each t both are independent of Xs for s ≤ t− 1. Moreover

It−1,1 :=

 1 Xt−1 ≤ R

0 Xt−1 > R
,

where R is the threshold level and It−1,2 = 1 − It−1,1. Furthermore, throughout the paper

we shall assume that R is known and that (Zt)t∈ZZ constitutes an i.i.d. sequence of Poisson-

distributed random variables with mean λ, which for each t, Zt is assumed to be independent

of Xt−1, ϕt and ϕt ◦ Xt−1. Note that the operator ◦ incorporates the discrete nature of

the variates and acts as the analogue of the standard multiplication used in the continuous-

valued processes. This operator was first introduced by Steutel and van Harn (1979), to

adapt the terms of self-decomposability and stability for integer-valued time series. Various

modifications of this thinning operator have been proposed to make the integer-valued models

based on thinning more flexible for practical purposes; see Weiß(2008b) for further details.

(Figure 1 about here)

Figure 1 shows two simulated sample paths from the SETINAR(2,1) model with (a):

λ = 7, α1 = 0.2, α2 = 0.65, R = 14 and (b): λ = 3, and α1 = 0.5, α2 = 0.65, R = 7,

respectively. The sample path in Figure 1(b) tends to move between regimes quite often

reflecting the fact that when α1 and α2 are close from each other, it becomes more difficult

to distinguish between the two regimes. This is in contrast with the sample path displayed is
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Figure 1(a) in which the presence of two regimes becomes more obvious. This feature is also

visible in Figure 2 in which the directed scatter diagrams for xt against xt−1 and xt against

xt−2 are displayed for the two simulated sample paths generated by the SETINAR(2,1)

models (a) and (b). Note that in Figure 2(a) there are only a few lines linking the two

regimes whereas in Figure 2(b) is more difficult to distinguish between them.

(Figure 2 about here)

The rest of the paper is organized as follows: in Section 2, we demonstrate the existence

of a strictly stationary SETINAR(2, 1)-process satisfying (2). Expressions for the mean and

variance are also given. Furthermore, we derive a set of equations from which the autocorre-

lation function can be obtained. Parameter estimation is covered in Section 3. In Section 4

the results are illustrated through a simulation study. Finally, some concluding remarks are

given in Section 5.

2 Basic properties of the SETINAR(2, 1) model

Let Xt be the process defined in (2). We first prove that there exists a strictly stationary

SETINAR(2, 1)-process satisfying (2).

Proposition 2.1. The process (Xt)t∈ZZ is an irreducible, aperiodic and positive recurrent

(and hence ergodic) Markov chain. Thus there exists a strictly stationary process satisfying

(2).

Proof. It is easy to see that Xt is a Markov chain with state space IN0 with the following

transition probabilities

P (Xt = j|Xt−1 = i) =

min(i,j)∑
m=0

Ci
m

(
It−1,1α

m
1 (1− α1)

i−m + It−1,2α
m
2 (1− α2)

i−m
)
e−λ λj−m

(j −m)!

= p(i, j, α1, λ)It−1,1 + p(i, j, α2, λ)It−1,2

= p(i, j, α1It−1,1 + α2It−1,2, λ),

where

p(i, j, αk, λ) :=

min(i,j)∑
m=0

Ci
mα

m
k (1− αk)

i−me−λ λj−m

(j −m)!
> 0, k = 1, 2. (3)
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From the expression above it follows that the chain is irreducible and aperiodic. Furthermore,

to show that Xt is positive recurrent it is sufficient to prove that
+∞∑
t=1

P t(0, 0) = +∞ (since

Xt is irreducible) with P
t(x, y) := P (Xt = y|X0 = x). Note that by iterating equation (2) it

follows that

Xt = ϕt ◦ ϕt−1 ◦ · · · ◦ ϕ1 ◦X0 +

t−1∑
i=1

ϕt−1 ◦ ϕt−2 ◦ · · · ◦ ϕt−i ◦ Zt−i + Zt,

which allow us to write

P t(0, 0) = P

(
t−1∑
i=1

ϕt−1 ◦ ϕt−2 ◦ · · · ◦ ϕt−i ◦ Zt−i + Zt = 0|X0 = 0

)
= P (Zt = 0, ϕt−1 ◦ Zt−1 = 0, . . . , ϕt−1 ◦ ϕt−2 ◦ · · · ◦ ϕ1 ◦ Z1 = 0|X0 = 0)

=

2∑
i2=1

. . .

2∑
it−2=1

2∑
it−1=1

P (ϕ2 = αi2 , . . . , ϕt−2 = αit−2 , ϕt−1 = αit−1 |X0 = 0)×

×P (Zt = 0, αit−1 ◦ Zt−1 = 0, . . . , αit−1 ◦ αit−2 ◦ · · · ◦ αi2 ◦ Z1 = 0|X0 = 0)

=
2∑

i2=1

. . .
2∑

it−2=1

2∑
it−1=1

P (ϕ2 = αi2 , . . . , ϕt−2 = αit−2 , ϕt−1 = αit−1 |X0 = 0)×

×e−λ(1+αit−1
+αit−1

αit−2
+···+αit−1

αit−2
...αi2

).

Note that the last expression implies that

e
−λ

1−max(α1,α2)
t

1−max(α1,α2) ≤ P t(0, 0) ≤ e
−λ

1−min(α1,α2)
t

1−min(α1,α2) .

Since P t(0, 0) > 0 it follows easily that

+∞∑
i=1

P t(0, 0) = +∞, by using the comparison criterion

for series convergence . This proves that Xt is a positive recurrent Markov chain and hence

ergodic which ensures the existence of a strictly stationary distribution of (2).

Remark 2.1. As in the conventional case, it is generally difficult to obtain an explicit analytic

formula for the stationary marginal distribution of the SETINAR process. In a companion

paper, this issue will be treated and discussed in detail.

The next lemma ensures that the first three moments exist. This lemma will be useful in

proving some asymptotic properties of the conditional least squares estimators.

Lemma 2.1. Let Xt be the process defined by the equation in (2). Then E(Xk
t ) ≤ C < ∞,

for some constant C > 0, for k = 1, 2, 3.
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Proof. Let the chain Xt start in 0 at t = 0. From Proposition 2.1 and the theory of Markov

chains it follows that Xt
d→ Z where Z follows the stationary (marginal) distribution.

For k = 1, the aim is to prove that

E(Xt) ≤ αt
maxE(X0) + µz

t−1∑
i=0

αi
max (4)

with αmax := max(α1, α2), for any value of t. It is easy to check that the above inequality

holds for E(X1). Furthermore, assume that is true for E(Xt−1), then

E(Xt) ≤ αmaxE(Xt−1) + µz

≤ αmax

(
αt−1
maxE(X0) + µz

t−2∑
i=0

αi
max

)
+ µz

≤ αt
maxE(X0) + µz

t−1∑
i=0

αi
max.

For k = 2, it follows that

E(X2
t ) ≤ α2t

maxE(X2
0 ) +

(
1

4
αt−1
maxE(X0) + 2µzE(X0)α

t
max

) t−1∑
i=0

αi
max +

+

(
σ2Z + µ2z +

µz
4(1− αmax)

+ 2
µ2zαmax

1− αmax

) t−1∑
i=0

α2i
max. (5)

Similarly, for k = 3

E(X3
t ) ≤ α3t

maxE(X3
0 ) +

(
3

2
+ 3α2

maxµz

)
× α2t−2

maxE(X2
0 )

t−1∑
i=0

αi
max +

+

{(
3

2
+ 3α2

maxµz

)
const1 +

1

2
+

3

4
µz + 3αmax(σ

2
Z + µz)

}
E(X0)α

t−1
max ×

×
t−1∑
i=0

α2i
max +

{(
3

2
+ 3α2

maxµz

)
const2+

+

(
1

2
+

3

4
µz + 3αmax(σ

2
Z + µz)

)
µz

1− αmax
+ E(Z3

t )

} t−1∑
i=0

α3i
max. (6)

In view of the fact that the chain starts at 0, by (4), (5) and (6) it follows that E(Xk
t ) <∞

for k = 1, 2, 3. Now, from the Portmanteau lemma (see e.g. Billingsley, 1979, Theorem 29.1,
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p. 329) for convergence in distribution the result follows

E(Zk) ≤ lim
t→∞

E(Xk
t ) <∞.

Remark 2.2. Note that E(Xk
t ) < ∞ implies m

(1)
k := E(Xk

t |It,1 = 1) < ∞ and m
(2)
k :=

E(Xk
t |It,2 = 1) <∞ for k = 1, 2, 3.

Now we are prepared to obtain the mean and the autocovariance function of the process.

For simplicity in notation we define p := P (Xt ≤ R), u1 := E(Xt|Xt ≤ R), u2 := E(Xt|Xt >

R), σ21 := V (Xt|Xt ≤ R), σ22 := V (Xt|Xt > R), and γ
(1)
k := Cov(Xt, Xt+k|Xt+k ≤ R) and

γ
(2)
k := Cov(Xt, Xt+k|Xt+k > R).

Lemma 2.2. The expectation of Xt is given by

u := E(Xt) = pα1u1 + (1− p)α2u2 + λ.

Moreover, the variance of Xt takes the form

σ2 := V (Xt) = p(α2
1σ

2
1 + α1(1− α1)u1) + (1− p)(α2

2σ
2
2 + α2(1− α2)u2) + λ+

+ p(1− p)(α1u1 − α2u2)
2.

Finally, the autocovariance function γ(k) := Cov(Xt, Xt+k) is given by

γ(k) =


pα1σ

2
1 + (1− p)α2σ

2
2 + pα1u1(u1 − u) + (1− p)α2u2(u2 − u) k = 1

pα1γ
(1)
k−1 + (1− p)α2γ

(2)
k−1 + pα1µ1(E(Xt|Xt+k−1 ≤ R)− u) k ̸= 1

+(1− p)α2u2(E(Xt|Xt+k−1 > R)− u)

.

Proof.

E(Xt) = E(ϕt−1 ◦Xt−1) + λ

= E(It−1,1

Xt−1∑
i=1

Ui,t(α1)) + E(It−1,2

Xt−1∑
i=1

Ui,t(α2)) + λ

= pα1E(Xt−1|Xt−1 ≤ r) + (1− p)α2E(Xt−1|Xt−1 > r) + λ

= pα1u1 + (1− p)α2u2 + λ.
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Moreover

V (Xt) = V (ϕt−1 ◦Xt−1) + λ

= V (It−1,1

Xt−1∑
i=1

Ui,t(α1) + It−1,2

Xt−1∑
i=1

Ui,t(α2)) + λ

= V (It−1,1

Xt−1∑
i=1

Ui,t(α1)) + V (It−1,2

Xt−1∑
i=1

Ui,t(α2)) +

+ 2Cov

It−1,1

Xt−1∑
i=1

Ui,t(α1), It−1,2

Xt−1∑
i=1

Ui,t(α2)

+ λ

= I + II + III + λ. (7)

The first term on the right-hand side of (7) is

I = V (E[It−1,1

Xt−1∑
i=1

Ui,t(α1)|Xt−1]) + E(V [It−1,1

Xt−1∑
i=1

Ui,t(α1)|Xt−1])

= V (It−1,1α1Xt−1) + E(It−1,1α1(1− α1)Xt−1)

= α2
1V (It−1,1Xt−1) + pα1(1− α1)u1

= α2
1E(It−1,1X

2
t−1)− α2

1p
2u21 + pα1(1− α1)u1

= α2
1p(σ

2
1 + u21)− α2

1p
2u21 + pα1(1− α1)u1

= p(α2
1σ

2
1 + α1(1− α1)u1) + p(1− p)α2

1u
2
1. (8)

By the same arguments as above, it follows that

II = (1− p)(α2
2σ

2
2 + α2(1− α2)u2) + p(1− p)α2

2u
2
2. (9)

Finally, III takes the form

III = −2

2∏
j=1

E

It−1,j

Xt−1∑
i=1

Ui,t(αj)

 = −2p(1− p)

2∏
j=1

αjuj . (10)

Thus, the second statement in Lemma 2.2 follows by replacing (8), (9), and (10) in (7). The

autocovariance function follows by similar arguments after some tedious calculations. We

skip the details.
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3 Parameters estimation

Let (X1, . . . , Xn) be a sequence of r.v’s satisfying (2) being θ := (θ1, θ2, θ3) ≡ (α1, α2, λ) the

vector of unknown parameters. The methods of estimation under analysis in this section are

the least squares and the conditional maximum likelihood. Recall from the introduction that

R is assumed to be known.

3.1 Conditional Least Squares Estimators (CLS)

The CLS-estimators θ̂CLS := (α̂1,CLS , α̂2,CLS , λ̂CLS) of θ are obtained by minimizing the

expression

Q(θ) :=
n∑

t=2

(Xt − g (θ, Xt−1))
2 =

n∑
t=2

U2
t (θ)

where

g (θ, Xt−1) := α1Xt−1It−1,1 + α2Xt−1It−1,2 + λ,

yielding the system

n∑
t=2

X2
t−1It−1,1 0

n∑
t=2

Xt−1It−1,1

0

n∑
t=2

X2
t−1It−1,2

n∑
t=2

Xt−1It−1,2

n∑
t=2

Xt−1It−1,1

n∑
t=2

Xt−1It−1,2 n− 1




α1

α2

λ

 =



n∑
t=2

XtXt−1It−1,1

n∑
t=2

XtXt−1It−1,2

n∑
t=2

Xt


.

The following result establishes the asymptotic distribution of the CLS-estimators.

Theorem 3.1. The CLS-estimators are strongly consistent and asymptotically normal, i.e.,

n
1
2 (θ̂CLS − θ)

d→ N(0, V −1WV −1),

where V and W are square matrices of order 3, with elements

Vij := E

[
∂

∂θi
g(θ, Xt−1)

∂

∂θj
g(θ, Xt−1)

]
and

Wij := E

[
U2
t (θ)

∂

∂θi
g(θ, Xt−1)

∂

∂θj
g(θ, Xt−1)

]
,

respectively.
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Proof. Consistency and asymptotic normality can be easily proved by using the results in

Klimko and Nelson (1978, Section 3). First, it is easy to check that g(θ, Xt−1),
∂g(θ,Xt−1)

∂θi
,

∂2g(θ,Xt−1)
∂θi∂θj

and ∂3g(θ,Xt−1)
∂θi∂θj∂θk

for i, j, k ∈ {1, 2, 3} satisfy all the regularity conditions in Klimko

and Nelson (1978, p. 634). Thus, Theorem 3.1 in Klimko and Nelson (1978) lead us to

conclude that the CLS-estimators are strongly consistent. Moreover, in proving asymptotic

normality we have to check first that the following conditions holds:

(A) E (Xt|Xt−1, Xt−2, . . . , X0) = E (Xt|Xt−1), t ≥ 1 a.e.;

(B) E
(
U2
t (θ)

∣∣∣ ∂
∂θi
g(θ, Ft−1)

∂
∂θj
g(θ, Ft−1)

∣∣∣) < ∞, i, j = 1, 2, 3, where Ut = Xt − g(θ, Ft−1),

Ft−1 = σ (Xs, s ≤ t− 1) and g(θ, Ft−1) ≡ g (θ, Xt−1);

(C) V is non-singular.

Condition (A) is satisfied since Xt is a first-order Markov chain. In order to prove condition

(B) we check that the Wij ’s for i, j = 1, 2, 3 are all finite.

W1,1 = E

(
U2
t (θ)

(
∂

∂α1
g(θ, Ft−1)

)2
)

= E
(
U2
t (θ)X

2
t−1It−1,1

)
= E

(
X2

t−1It−1,1E
(
U2
t (θ)|Xt−1

))
= E

(
X2

t−1It−1,1V (Xt|Xt−1)
)

= E
(
X2

t−1It−1,1(α1(1− α1)Xt−1It−1,1 + α2(1− α2)Xt−1It−1,1 + λ)
)

= α1(1− α1)E(X3
t−1It−1,1) + λE(X2

t−1It−1,1)

= pα1(1− α1)m
(1)
3 + pλm

(1)
2

< ∞ (by Remark 2.2).

Using the same arguments for α2 we obtain

W2,2 = E

(
U2
t (θ)

(
∂

∂α2
g(θ, Ft−1)

)2
)

= (1− p)α2(1− α2)m
(2)
3 + (1− p)λm

(2)
2

< ∞ (by Remark 2.2).
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Considering now i = 3 and j = 3, we have

W3,3 = E

(
U2
t (θ)

(
∂

∂λ
g(θ, Ft−1)

)2
)

= E (V (Xt|Xt−1))

= E ((α1(1− α1)Xt−1It−1,1 + α2(1− α2)Xt−1It−1,1 + λ))

= α1(1− α1)E(Xt−1It−1,1) + α2(1− α2)E(Xt−1It−1,2) + λ

= pα1(1− α1)E(Xt−1|Xt−1 ≤ R) + (1− p)α2(1− α2)E(Xt−1|Xt−1 > R) + λ

= u (by Lemma 2.2)

< ∞.

On the other hand

W1,2 =W2,1 = E

(
U2
t (θ)

∣∣∣∣ ∂∂α1
g(θ, Ft−1)

∂

∂α2
g(θ, Ft−1)

∣∣∣∣) = 0

and

W1,3 =W3,1 = E

(
U2
t (θ)

∣∣∣∣ ∂∂α1
g(θ, Ft−1)

∂

∂λ
g(θ, Ft−1)

∣∣∣∣)
= E

(
U2
t (θ)Xt−1It−1,1

)
= E (Xt−1It−1,1V (Xt|Xt−1))

= E (Xt−1It−1,1(α1(1− α1)Xt−1It−1,1 + α2(1− α2)Xt−1It−1,1 + λ))

= α1(1− α1)E(X2
t−1It−1,1) + λE(Xt−1It−1,1)

= pα1(1− α1)E(X2
t−1|Xt−1 ≤ R) + pλE(Xt−1|Xt−1 ≤ R)

< ∞ (by Remark 2.2);

W2,3 =W3,2 = E

(
U2
t (θ)

∣∣∣∣ ∂∂α2
g(θ, Ft−1)

∂

∂λ
g(θ, Ft−1)

∣∣∣∣)
= E

(
U2
t (θ)Xt−1It−1,2

)
= E (Xt−1It−1,2V (Xt|Xt−1))

= E (Xt−1It−1,2(α1(1− α1)Xt−1It−1,1 + α2(1− α2)Xt−1It−1,1 + λ))

= α2(1− α2)E(X2
t−1It−1,2) + λE(Xt−1It−1,2)

= (1− p)α2(1− α2)E(X2
t−1|Xt−1 > R) + (1− p)λE(Xt−1|Xt−1 > R)

< ∞ (by Remark 2.2).
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Therefore condition (B) is also satisfied. Finally, note that the determinant of V is

|V | = p(1− p)
(
m

(1)
2 m

(2)
2 − pu21m

(2)
2 − (1− p)u22m

(1)
2

)
= p(1− p)

(
σ21σ

2
2 + pσ21u

2
2 + (1− p)u21σ

2
2

)
> 0,

which lead us to conclude that V is invertible. Thus condition (C) is thereby satisfied. Finally

by Theorem 3.2 of Klimko and Nelson (1978) the CLS-estimators θ̂CLS are asymptotically

normal with

V =


pm

(1)
2 0 pu1

0 (1− p)m
(2)
2 (1− p)u2

pu1 (1− p)u2 1


and

W =


p[α1(1− α1)m

(1)
3 + λm

(1)
2 ] 0 p[α1(1− α1)m

(1)
2 + λu1]

0 (1− p)[α2(1− α2)m
(2)
3 + λm

(2)
2 ] (1− p)[α2(1− α2)m

(2)
2 + λu2]

p[α1(1− α1)m
(1)
2 + λu1] (1− p)[α2(1− α2)m

(2)
2 + λu2] u

 .

3.2 Conditional Maximum Likelihood Estimation (CML)

For a fixed value of x0 the conditional likelihood function for the SETINAR(2, 1) model can

be shown to be

L(θ) := P (X1 = x1, . . . , Xn = xn|x0)

=

n∏
t=1

P (Xt = xt|Xt−1 = xt−1)

=

n∏
t=1

p(xt−1, xt, α1It−1,1 + α2It−1,2, λ).

The CML-estimators θ̂CML := (α̂1,CML, α̂2,CML, λ̂CML) are obtained maximizing the condi-

tional log-likelihood function

l(θ) :=
n∑

t=1

log(p(xt−1, xt, α1It−1,1 + α2It−1,2, λ).

From the partial derivatives of first order we obtain the system

13





1
αi(1−αi)

n∑
t=1

It−1,i(xt − αixt−1)− λ
p(xt−1, xt − 1, αi, λ)

p(xt−1, xt, αi, λ)
It−1,i = 0, i = 1, 2

n∑
t=1

(
p(xt−1, xt − 1, α1, λ)

p(xt−1, xt, α1, λ)
It−1,1 +

p(xt−1, xt − 1, α2, λ)

p(xt−1, xt, α2, λ)
It−1,2

)
− n = 0

.

(11)

Analytical estimates for this system cannot be found. Thus to solve this system numer-

ical procedures have to be employed. The following results establish consistency and the

asymptotic distribution of the CLS-estimators.

Theorem 3.2. Let {Xt} be a SETINAR(2,1) process satisfying (C1)-(C6). Then, there

exists a consistent solution θ̂CML of (11) which is a local maximum of l(θ) with probability

going to one. Moreover, any other consistent solution of (11) coincides with θ̂CML with

probability going to one, when n tends to infinity.

Theorem 3.3. Under the assumptions of the Theorem 3.2 and for a fixed value of R the

CML-estimators are asymptotically normal, i.e.

√
n(θ̂CML − θ) =

√
n


α̂1,CML − α1

α̂2,CML − α2

λ̂CML − λ

 d→ N(0, I(θ)−1), (12)

where I(θ) is the Fisher information matrix.

Proof. of Theorems 3.2 and 3.3

In order to find large sample distribution of the CLM-estimators, we will use the same ar-

guments as in Franke and Seligmann (1993, pp. 324-5). The consistency and the asymptotic

distribution of the CLS-estimators for the INAR(1) process can be obtained by means of

Theorems 2.1 and 2.2 in Billingsley (1961, pp. 10-13). For completeness and reader’s con-

venience Conditions 1.1 and 1.2 of Theorems 2.1 and 2.2 in Billingsley (1961) are given below:

14



Let θ := (θ1, . . . , θr) be a parameter which ranges over an open subset Θ of r-dimensional

Euclidian space.

(A) For any ξ, the set of η for which f(ξ, η;θ) > 0 does not depend on θ. For any ξ and η,

fu(ξ, η;θ), fuv(ξ, η;θ) and fuvw(ξ, η;θ) exist and are continuous throughout θ. (Then

for any ξ, g(ξ, η;θ) = log f(ξ, η;θ) is well defined except on a set of p(ξ, ·;θ)-measure

0, and gu(ξ, η;θ), guv(ξ, η;θ) and guvw(ξ, η;θ) exist and are continuous in θ). For any

θ ∈ Θ there exists a neighborhood N of θ such that for any u, v, w, ξ,∫
X

sup
θ′∈N

|fu(ξ, η;θ′)|λ(dη) <∞;

∫
X

sup
θ′∈N

|fuv(ξ, η;θ′)|λ(dη) <∞;

Eθ( sup
θ′∈N

|guvw(x1, x2;θ′)|) <∞.

Finally, for u = 1, . . . , r

Eθ(|gu(x1, x2;θ)|2) <∞

and if σuv(θ) is defined by

σuv(θ) = Eθ(gu(x1, x2;θ)gv(x1, x2;θ))

then the r × r matrix σ(θ) = (σuv) is nonsingular.

(B) (i) For each θ ∈ Θ, the stationary distribution, which by assumption exists and is

unique, has the property that each ξ ∈ X, pθ(ξ, ·) is absolutely continuous with

respect to pθ(·):

pθ(ξ, ·) ≪ pθ(·).

(ii) There is some δ > 0 (which may depend on θ) such that for u = 1, . . . , r,

Eθ(|gu(x1x2;θ)|2+δ) <∞.

Note that in the context of the SETINAR(2;1) model conditions (A) and (B) have to be

adapted.

The first partial derivatives of the transition function are given by
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∂p(xt−1, xt)

∂λ
= It−1,1

∂p(xt−1, xt, α1, λ)

∂λ
+ It−1,2

∂p(xt−1, xt, α2, λ)

∂λ
(13)

and for i = 1, 2,

∂p(xt−1, xt)

∂αi
= It−1,i

xt−1

1− αi
{p(xt−1 − 1, xt − 1, αi, λ)− p(xt−1, xt, αi, λ)}. (14)

From expressions (13) and (14) it follows easily that the first derivatives of the logarithm of

the transition function are

∂ log p(xt−1, xt)

∂λ
=

2∑
i=1

It−1,i
∂

∂λ
log p(xt−1, xt, αi, λ) (15)

∂ log p(xt−1, xt)

∂αi
= It−1,i

∂

∂αi
log p(xt−1, xt, αi, λ), i = 1, 2. (16)

Equations (13)-(16) allow us to conclude that each regime falls into the INAR structure

considered by Franke and Seligmann (1993). These authors showed that for the Poisson

distribution, as the distribution of innovations, the following set of conditions hold:

(C1) The set {k : P (Zt = k) = f(k, λ) = e−λ λk

k! > 0} does not depend of λ;

(C2) E[Z3
t ] = λ3 + 3λ2 + λ <∞;

(C3) P (Zt = k) is three times continuously differentiable with respect to λ;

(C4) For any λ′ ∈ B, where B is an open subset of IR, there exists a neighborhood U of λ′

such as

1.

∞∑
k=0

sup
λ∈U

f(k, λ) <∞;

2.
∞∑
k=0

sup
λ∈U

∣∣∣∣∂f(k, λ)∂λi

∣∣∣∣ <∞, i = 1, . . . , n;

3.

∞∑
k=0

sup
λ∈U

∣∣∣∣∂2f(k, λ)∂λi∂λj

∣∣∣∣ <∞, i, j = 1, . . . , n.

Moreover for the SETINAR(2;1) model it is necessary to verify the following conditions

(analogous to conditions (C5) and (C6) in Franke and Seligmann (1993)):
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(C5) For any λ′ ∈ B there exists a neighborhood U of λ′ and the sequences ψ1(n) =

const1.n, ψ11(n) = const2.n2, and ψ111(n) = const3.n3, with const1, const2, const3

suitable constants, and n ≥ 0 such as ∀λ ∈ B e ∀m ≤ n, with P (Zt) non-vanishing,∣∣∣∣∂f(m,λ)∂λ

∣∣∣∣ ≤ ψ1(n)f(m,λ);∣∣∣∣∂2f(m,λ)∂λ2

∣∣∣∣ ≤ ψ11(n)f(m,λ);∣∣∣∣∂3f(m,λ)∂λ3

∣∣∣∣ ≤ ψ111(n)f(m,λ)

and with respect to the stationary distribution of the process (Xt)

E[ψ3
1(X1)] < ∞;

E[X1ψ11(X2)] < ∞;

E[ψi(X1)ψ11(X2)] < ∞;

E[ψ111(X1)] < ∞.

(C6) The Fisher information matrix I(θ) is non-singular, which guarantees that the param-

eters of SETINAR(2;1) model are not redundant.

The first set of conditions which are related with the innovations distributions were proved

by Franke and Seligmann (1993) and the set of conditions in (C5) related with the stationary

distribution of the SETINAR(2, 1) model follows by Lemmas 2.1 and 2.2. To prove condition

(C6), the determinant of the Fisher information matrix is given by

|I(θ)| =
2∑

i=1

P (IX1,3−i = 1)2P (IX1,i = 1)E[(
∂

∂αi
log p(X1, X2, αi, λ))

2|IX1,i = 1]× |A3−i|,

= p(1− p)

2∑
i=1

P (IX1,3−i = 1)E[(
∂

∂αi
log p(X1, X2, αi, λ))

2|IX1,i = 1]× |A3−i|,

where, for i = 1, 2,

(Ai)11 = (E[(
∂

∂αi
log p(X1, X2, αi, λ))

2|IX1,i = 1];

(Ai)12 = (Ai)21 = E

[
∂

∂αi
log p(X1, X2, αi, λ)

∂

∂λ
log p(X1, X2, αi, λ)|IX1,i = 1

]
;

(Ai)22 = E[(
∂

∂λ
log p(X1, X2, αi, λ))

2|IX1,i = 1].
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It is important to stress that matrices Ai, i = 1, 2, has the same structure as the Fisher

information matrix analyzed by Franke and Seligmann (1993), which implies that the same

arguments can be used to prove that Ai has positive determinant. The matrix Ai, i = 1, 2,

is, e.g., non-singular if the matrix with entries

∑
mi

(αi, λ) =


E

((
∂

∂αi
log p(X1,X2, αi, λ)

)2
∣∣∣∣X1 = mi

)
E

 ∂
∂αi

log p(X1, X2, αi, λ)×
∂
∂λ

log p(X1,X2, αi, λ)

∣∣∣∣∣∣X1 = mi


E

 ∂
∂αi

log p(X1,X2, αi, λ)×
∂
∂λ

log p(X1, X2, αi, λ)

∣∣∣∣∣∣X1 = mi

 E
((

∂
∂λ

log p(X1, X2, αi, λ)
)2∣∣∣X1 = mi

)


is non-singular for a set of mi, m1 ≤ R and m2 > R, with positive measure under the

stationary distribution. Franke and Seligmann (1993) proved that

p(m,n, αi, λ) = αip(m− 1, n− 1, αi, λ) + (1− αi)p(m− 1, n, αi, λ),

∂p(m,n, αi, λ)

∂αi
=

m

1− αi
[p(m− 1, n− 1, αi, λ)− p(m,n, αi, λ)]

∂p(m,n, αi, λ)

∂λ
=

(n
λ
− 1
)
p(m,n, αi, λ)−

(mαi

λ

)
p(m− 1, n− 1, αi, λ),

and considering D(m,n, αi) =
p(m− 1, n− 1, αi, λ)

p(m,n, αi, λ)
we have

λ2(1− αi)
2

m2
i

det
∑
mi

= V ar [(D(mi, X2, αi)− 1)(X2 − λ−miαiD(mi, X2, αi))]−

−Cov((D(mi, X2, αi)− 1)2, (X2 − λ−miαiD(mi, X2, αi))
2),

which is positive for a set of mi’s such that m1 ≤ R and m2 > R, with positive measure

under the stationary distribution, and therefore condition (C6) is also satisfied.

Since each regime of the SETINAR(2;1) model falls, in term of derivatives of log-likelihood,

into the INAR structure considered by Franke and Seligmann (1993), and according with

these authors conditions (C1)-(C6) imply the conditions (A) and (B) of Theorems 2.1.

and 2.2 in Billingsley (1961) and thus the results in Theorems 3.2 and 3.3 are also valid for

the SETINAR(2,1) process.
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4 Simulation study

The aim of this section is to illustrate the theoretical findings given in Section 3 and to

assess the small, moderate and large sample behavior of the CLS- and CML-estimators.

The simulation study contemplates the following combination of α’s and λ: α1 = {0.2, 0.8},

α2 = {0.1, 0.65} and λ = {3, 7}. For each combination of these parameters, the value of

R was chosen such that at least 50% of the observations are in the first regime. Hence we

consider eight distinct SETINAR(2, 1) models with Poisson innovations; see Table 1.

(Table 1 about here)

For each model, time series of length n = 50, 100, 200, 500 with 1000 independent repli-

cates were simulated. The results are summarized in Tables 2 and 3.

(Table 2 about here)

(Table 3 about here)

A closer look at the tables shows the superiority of the CML method in terms of both

bias and mean square error (MSE), with special relevance for small and moderate samples.

Figures 3 and 4 display the boxplots of CLS and CML estimates for each model.

(Figure 3 about here)

(Figure 4 about here)

Note that for α1 = 0.2 the biases are more scattered than for α1 = 0.8, regardless the

value of λ. As expected, both the bias and the skewness are also reduced when the sample size

increases. This is in agreement with the asymptotic properties of the estimators: unbiasedness

and consistency. Moreover, as larger the difference between α1 and α2, in absolute value, the

better the performance of both methods. This is in contrast with the case of values of α1

and α2 being too close from each other, since in this case it seems more difficult for both the

CLS and the CML methods to distinguish between the two regimes.
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5 Conclusions

This paper has introduced a class of self-exciting threshold integer-valued autoregressive mod-

els driven by independent Poisson-distributed random variables. The stationarity and ergod-

icity of the process are established. Least squares-type and likelihood-based estimators of the

model parameters were derived and their asymptotic properties obtained. Potential issues of

future research include to extend the results for general SETINAR (k; p1, . . . , pk; q1, . . . , qk)

models including an arbitrary number of threshold as well as autoregressive and moving

average parameters. This remains a topic of future research.
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Figure 1: Simulated sample paths from the SETINAR(2,1) model.

λ = 3 λ = 7

α1 α2 R α1 α2 R

A1 0.2 0.1 4 B1 0.2 0.1 8
A2 0.2 0.65 6 B2 0.2 0.65 14

A3 0.8 0.1 9 B3 0.8 0.1 21
A4 0.8 0.65 11 B4 0.8 0.65 27

Table 1: Parameters of the SETINAR(2, 1) models
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Figure 2: Directed scatter diagrams of the realizations in Figure 1.
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Figure 3: Boxplots of the biases for θ models A1, A2, B1 and B2, with respectively θ =

(0.2, 0.1, 3), θ = (0.2, 0.65, 3), θ = (0.2, 0.1, 7) and θ = (0.2, 0.65, 7).
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Figure 4: Boxplots of the biases for θ models A3, A4, B3 and B4, with respectively θ =

(0.8, 0.1, 3), θ = (0.8, 0.65, 3), θ = (0.8, 0.1, 7) and θ = (0.8, 0.65, 7).
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Model Par N
50 100 200 500

CLS CML CLS CML CLS CML CLS CML

α1 0.413 0.388 0.336 0.322 0.280 0.276 0.222 0.221
(0.095)(0.067) (0.051)(0.042) (0.031)(0.025) (0.011)(0.010)

α2 0.176 0.177 0.141 0.141 0.120 0.121 0.101 0.101
(0.020)(0.021) (0.010)(0.011) (0.005)(0.005) (0.002)(0.002)

A1 λ 2.556 2.565 2.762 2.765 2.880 2.873 2.991 2.986
(0.464)(0.422) (0.215)(0.201) (0.113)(0.107) (0.049)(0.045)

p 0.717 0.717 0.718 0.718

α1 0.243 0.249 0.201 0.219 0.193 0.208 0.192 0.198
(0.049)(0.024) (0.018)(0.012) (0.008)(0.006) (0.004)(0.003)

α2 0.585 0.609 0.622 0.635 0.635 0.643 0.643 0.646
(0.018)(0.014) (0.007)(0.005) (0.003)(0.002) (0.001)(0.001)

A2 λ 2.905 2.849 3.028 2.946 3.042 2.981 3.038 3.012
(0.530)(0.288) (0.237)(0.161) (0.123)(0.089) (0.055)(0.040)

p 0.698 0.673 0.661 0.655

α1 0.470 0.428 0.352 0.341 0.263 0.266 0.212 0.215
(0.120)(0.085) (0.052)(0.043) (0.019)(0.018) (0.008)(0.007)

α2 0.212 0.197 0.162 0.160 0.124 0.126 0.102 0.104
(0.027)(0.020) (0.013)(0.011) (0.005)(0.005) (0.003)(0.002)

B1 λ 5.630 5.831 6.252 6.293 6.700 6.677 6.965 6.943
(3.431)(2.462) (1.442)(1.197) (0.579)(0.563) (0.286)(0.254)

p 0.567 0.567 0.568 0.568 0.569 0.569 0.569 0.569

α1 0.219 0.237 0.191 0.209 0.186 0.200 0.192 0.198
(0.033)(0.020) (0.014)(0.010) (0.007)(0.006) (0.003)(0.002)

α2 0.599 0.616 0.617 0.628 0.632 0.640 0.643 0.646
(0.014)(0.011) (0.007)(0.006) (0.003)(0.002) (0.001)(0.001)

B2 λ 7.025 6.821 7.176 6.995 7.142 7.011 7.074 7.024
(2.116)(1.241) (1.079)(0.738) (0.575)(0.426) (0.249)(0.181)

p 0.673 0.673 0.684 0.684 0.688 0.688 0.688 0.688

Table 2: Sample mean and mean square error (in brackets) for models A1, A2, B1 and B2,

with θ = {(0.2, 0.1, 3), (0.2, 0.65, 3), (0.2, 0.1, 7), (0.2, 0.65, 7)}, respectively.
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Model Par N
50 100 200 500

CLS CML CLS CML CLS CML CLS CML

α1 0.820 0.804 0.813 0.805 0.805 0.803 0.800 0.799
(0.010) (0.005) (0.007)(0.003) (0.005)(0.002) (0.002) (0.001)

α2 0.117 0.110 0.106 0.103 0.101 0.101 0.099 0.099
(0.005) (0.004) (0.003)(0.002) (0.002)(0.001) (0.001) (0.001)

A3 λ 2.869 2.953 2.933 2.974 2.977 2.985 3.005 3.010
(0.388) (0.196) (0.264)(0.116) (0.175)(0.067) (0.074) (0.027)

p 0.796 0.796 0.795 0.795

α1 0.804 0.784 0.813 0.799 0.807 0.801 0.799 0.802
(0.014) (0.006) (0.010)(0.002) (0.006)(0.001) (0.003)(4.9e-4)

α2 0.396 0.387 0.403 0.396 0.402 0.400 0.398 0.400
(0.010) (0.006) (0.006)(0.003) (0.003)(0.001) (0.001) (0.001)

A4 λ 2.941 3.079 2.900 2.997 2.949 2.987 3.014 2.993
(0.878) (0.383) (0.592)(0.164) (0.363)(0.089) (0.172) (0.035)

p 0.749 0.747 0.747 0.745

α1 0.821 0.814 0.804 0.807 0.799 0.801 0.800 0.801
(0.008) (0.004) (0.006)(0.002) (0.003)(0.001) (0.001)(4.9e-04)

α2 0.112 0.109 0.103 0.105 0.098 0.100 0.100 0.100
(0.004) (0.002) (0.003)(0.001) (0.001)(0.001) (0.001)(3.4e-04)

B3 λ 6.733 6.808 6.947 6.897 7.025 6.986 6.998 6.988
(1.684) (0.935) (1.213)(0.549) (0.549)(0.269) (0.233) (0.114)

p 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783

α1 0.797 0.802 0.807 0.799 0.809 0.799 0.801 0.801
(0.033) (0.004) (0.016)(0.002) (0.006)(0.001) (0.003)(3.8e-04)

α2 0.645 0.643 0.655 0.647 0.655 0.648 0.650 0.650
(0.015) (0.004) (0.008)(0.002) (0.004)(0.001) (0.002)(3.1e-04)

B4 λ 7.017 6.988 6.765 7.023 6.782 7.019 6.975 6.984
(17.078)(2.241) (8.067)(1.047) (3.570)(0.581) (2.003) (0.234)

p 0.654 0.654 0.657 0.657 0.657 0.657 0.656 0.656

Table 3: Sample mean and mean square error (in brackets) for models A3, A4, B3 and B4,

with θ = {(0.8, 0.1, 3), (0.8, 0.65, 3), (0.8, 0.1, 7), (0.8, 0.65, 7)}, respectively.
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