

 Universidade de Aveiro

2006
Departamento de Economia, Gestão e Engenharia
Industrial

Ana Sofia de Almeida
Simaria

Balanceamento de linhas de montagem - novas
perspectivas e procedimentos

Assembly line balancing - new perspectives and
procedures

 Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Gestão Industrial, realizada sob
a orientação científica do Professor Doutor Pedro Manuel Moreira da Rocha
Vilarinho, Professor Auxiliar do Departamento de Economia, Gestão e
Engenharia Industrial da Universidade de Aveiro.

 Apoio financeiro da FCT e do FSE no
âmbito do III Quadro Comunitário de
Apoio (PRAXIS XXI / BD / 19554 / 99).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15569077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

o júri

presidente Doutor José Carlos da Silva Neves
professor catedrático da Universidade de Aveiro

 Doutor Joaquim José Borges Gouveia

professor catedrático da Universidade de Aveiro

 Doutor José Manuel Vasconcelos Valério de Carvalho

professor catedrático da Escola de Engenharia da Universidade do Minho

 Doutor José Fernando da Costa Oliveira

professor associado da Faculdade de Engenharia da Universidade do Porto

 Doutor Rui Manuel Moura de Carvalho Oliveira

professor associado do Instituto Superior Técnico da Universidade Técnica de Lisboa

 Doutor Pedro Manuel Moreira da Rocha Vilarinho

professor auxiliar da Universidade de Aveiro (orientador)

agradecimentos

Gostaria de expressar o meu reconhecimento:

Ao meu orientador, Professor Doutor Pedro Manuel Moreira da Rocha
Vilarinho, pela dedicação e empenho que colocou no acompanhamento desta
dissertação bem como pela forte motivação dada ao longo da sua realização.

Ao Departamento de Economia, Gestão e Engenharia Industrial da
Universidade de Aveiro, na pessoa do presidente do conselho directivo
Professor Doutor Joaquim José Borges Gouveia, pela disponibilização das
condições necessárias à realização deste trabalho.

À Fundação para a Ciência e a Tecnologia pelo apoio financeiro.

Às minhas colegas e aos meus colegas do DEGEI pelo apoio e amizade.

À minha Família, pelo infinito amor, apoio e incentivo.

Dedico este trabalho à Ana João.

palavras-chave

Balanceamento de linhas de montagem, optimização combinatória,
meta-heurísticas.

resumo

No presente trabalho é apresentado um conjunto de procedimentos para o
balanceamento de linhas de montagem de modelo-misto. Linhas de
modelo-misto eficientes representam um factor chave de competitividade no
actual ambiente de mercado, em que a crescente procura de produtos
personalizados requer uma resposta flexível dos sistemas de produção.
Os procedimentos propostos, baseados nas meta-heurísticas ‘simulated
annealing’, ‘algoritmos genéticos’ e ‘optimização por colónias de formigas’, são
capazes de abordar algumas características do processo de montagem
presentes nas linhas reais (e.g., utilização de postos paralelos, restrições de
zona, linhas de dois lados, linhas em forma de U) que a maioria das técnicas
existentes na literatura não considera. Isto constitui uma contribuição relevante
quer para o conhecimento científico quer para o conhecimento industrial na
área do balanceamento de linhas de montagem.
Alguns dos procedimentos foram utilizados no balanceamento de linhas de
montagem reais com o objectivo de testar a sua flexibilidade de adaptação às
condições de operação em ambientes industriais.

keywords

Assembly line balancing, combinatorial optimisation, meta-heuristics.

abstract

In this work a set of procedures to efficiently balance mixed-model assembly
lines is proposed. Efficient mixed-model lines represent a key factor of
competitiveness in the actual market environment, in which the growing
demand for customised products increases the pressure for manufacturing
flexibility.
The proposed procedures, based on the meta heuristics ‘simulated annealing’,
‘genetic algorithms’ and ‘ant colony optimisation’, are able to address some
particular features of the assembly process very common in real mixed model
assembly lines (e.g., use of parallel workstations, zoning constraints, task side
constraints, U-shaped layouts) that most of the techniques existing in the
literature do not consider. This is a major contribution to the scientific and
industrial knowledge on the line balancing subject.
Some of the procedures were applied to real assembly lines in order to test
their flexibility to cope with real industrial settings, as they may differ
significantly from theoretical problems.

 i

Index
1. Introduction ... 1

1.1 Relevance of the problem .. 3

1.2 Objectives of the thesis .. 5

1.3 Structure of the thesis .. 5

2. Overview of the mixed-model assembly line balancing problem........................ 7

2.1 Chapter introduction .. 9

2.2 Main characteristics of assembly line systems .. 9

2.3 The mixed-model assembly line balancing problem 12

2.4 Particular features of the assembly process ... 15

2.4.1 Variability of task processing times .. 15

2.4.2 Assignment constraints.. 16

2.4.3 Layout.. 17

2.4.4 Parallelism ... 19

2.5 Assembly line performance measures ... 20

3. Meta-heuristics for assembly line balancing: characterisation and review of

existing procedures .. 23

3.1 Chapter introduction .. 25

3.2 Simulated annealing algorithms... 26

3.2.1 Overview ... 26

3.2.2 SA approaches for assembly line balancing 28

3.2.2.1 Initial solution... 29

3.2.2.2 Neighbouring solutions .. 29

3.2.2.3 Objective function .. 29

3.3 Genetic algorithms... 30

3.3.1 Overview ... 30

3.3.2 GA approaches for assembly line balancing 33

3.3.2.1 Codification and genetic operators 34

3.3.2.2 Fitness function .. 38

3.3.2.3 Other features ... 40

 ii

3.4 Ant colony optimisation algorithms ...40

3.4.1 Overview ..40

3.4.2 ACO approaches for assembly line balancing45

3.5 Taboo search algorithms...48

3.4.1 Overview ..48

3.4.2 Taboo search approaches for assembly line balancing48

3.6 Chapter conclusions..49

4. Balancing straight assembly lines ...51

4.1 Chapter introduction...53

4.2 Definition of the mixed-model ALBP with parallel workstations53

4.2.1 Problem assumptions and constraints ..53

4.2.2 Objective function ..57

4.2.3 Complete mathematical programming model60

4.3 Simulated annealing based approach..62

4.3.1 The first stage ...63

4.3.1.1 Initial solution ...63

4.3.1.2 Solution evaluation criterion ...64

4.3.1.3 Neighbouring solutions ...64

4.3.2 The second stage ..65

4.3.2.1 Neighbouring solutions ...65

4.3.3 Parameter settings ..67

4.3.4 Numerical illustration...67

4.4 Genetic algorithm based approach ...70

4.4.1 Representation of solutions ..70

4.4.2 Initial population and fitness ..71

4.4.3 Selection and genetic operators..72

4.4.4 Stopping criteria ...74

4.5 Ant colony optimisation based approach ...76

4.5.1 Initial version of ANTBAL..76

4.5.1.1 How does an ant build a sequence of tasks?77

4.5.1.2 Procedure to obtain a balancing solution78

4.5.1.3 Solution quality ...79

 iii

4.5.1.4 Pheromone release strategy .. 80

4.5.2 Modifications of ANTBAL ... 80

4.5.2.1 Problems with the initial version of ANTBAL 80

4.5.2.2 New role of the ants.. 81

4.5.2.3 New pheromone release strategy...................................... 82

4.5.2.4 Building a balancing solution... 83

4.5.2.5 Parameter settings... 85

4.6 Addressing the problem of type II ... 87

4.6.1 First approach .. 88

4.6.2 Second approach.. 89

4.7 Computational experience ... 90

4.7.1 Type I... 90

4.7.2 Type II ... 96

4.7.3 Additional goals... 98

4.8 Chapter conclusions... 99

5. Balancing U-shaped assembly lines ... 101

5.1 Chapter introduction .. 103

5.2 Characteristics of U-shaped assembly lines... 103

5.2.1 Literature review of approaches to solve the U-ALBP 105

5.3 Definition of the mixed-model U-ALBP... 106

5.3.1 Problem assumptions and constraints.. 108

5.3.2 Objective function ... 111

5.3.3 Complete mathematical programming model 114

5.4 U-ANTBAL: an ant colony optimisation based approach......................... 115

5.4.1 Use of parallel workstations .. 117

5.4.2 Numerical illustration.. 118

5.5 Computational experience ... 121

5.6 Chapter conclusions... 122

6. Balancing 2-sided assembly lines ... 123

6.1 Chapter introduction .. 125

6.2 Characteristics of 2-sided assembly lines .. 125

 iv

6.2.1 Literature review of approaches to solve the 2-ALBP...................127

6.3 Definition of the mixed-model 2-ALBP...127

6.3.1 Problem assumptions and constraints ..128

6.3.2 Objective function ..131

6.3.3 Complete mathematical programming model132

6.4 2-ANTBAL: an ant colony optimisation based approach133

6.4.1 Building a balancing solution...135

6.4.1.1 Available tasks ..136

6.4.1.2 Selecting a task for assignment137

6.4.1.3 Assigning tasks to workstations139

6.4.2 Pheromone release strategy..140

6.4.3 Numerical example ..140

6.5 Computational experience ..142

6.6 Chapter conclusions..144

7. Real world applications ...147

7.1 Chapter introduction...149

7.2 Case 1 – Combining heuristic procedures and simulation models for

balancing a PC camera assembly line ..149

7.2.1 The PC camera assembly line ..150

7.2.2 Balancing the mixed-model assembly line.....................................153

7.2.3 Development of the simulation models..158

7.2.4 Simulation experiment and results ...160

7.2.5 Conclusions ..164

7.3 Case 2 – Improving the performance of an assembly line by sequentially

solving type I and type II problems..164

7.3.1 Characteristics of the assembly line ...165

7.3.2 Two-step procedure for balancing the assembly line.....................167

7.3.3 Implementation of the proposed solutions169

7.3.4 Conclusions ..169

7.4 Case 3 – Increasing flexibility by turning a straight line into a U-shaped

line ..170

7.4.1 Problems with the actual assembly line ...170

 v

7.4.2 Using U-ANTBAL to build a U-shaped layout............................. 171

7.4.3 Adding flexibility to the line ... 172

7.4.4 Conclusions ... 174

7.5 Case 4 – Balancing a ‘n-sided’ assembly line ... 174

7.5.1 Characteristics of the assembly process .. 174

7.5.2 Adaptation of 2-ANTBAL to balance the assembly line 176

7.5.3 Addressing the assembly line planner’s preferences..................... 177

7.5.4 Conclusions ... 178

7.6 Chapter conclusions... 179

8. Conclusion .. 181

8.1 Final remarks ... 183

8.2 Future developments.. 185

References .. 187

Appendix 1

Demonstration of the maximum and minimum values of functions Bb and Bw........ 197

Appendix 2

Characteristics of the MALBP data sets... 201

Appendix 3

Computation of LBpmix for problems with maximum task processing time less or

equal to 2C.. 209

Appendix 4

Demonstration of the maximum and minimum values of functions U
bB and U

wB 215

Appendix 5

Computation of LBpmix for problems with maximum task processing time less or

equal to 5C.. 219

 vi

Index of Figures
Figure 2.1 Example of a precedence diagram ... 10

Figure 2.2 Types of assembly lines ... 11

Figure 2.3 An example of a combined precedence diagram ... 13

Figure 2.4 Binary integer programming model for the MALBP..................................... 14

Figure 2.5 Assignment of tasks in straight and U-shaped assembly lines....................... 18

Figure 2.6 Configuration of a C-shaped assembly line ... 18

Figure 2.7 Illustration of the use of parallel workstations ... 20

Figure 3.1 Structure of a simulated annealing algorithm .. 26

Figure 3.2 Annealing schedule .. 27

Figure 3.3 Codification of a solution of a binary knapsack problem 31

Figure 3.4 Tournament selection ... 31

Figure 3.5 A crossover example .. 32

Figure 3.6 Standard encoding and the corresponding balancing solution 34

Figure 3.7 Example of crossover specific for standard encoding.................................... 35

Figure 3.8 Two-point order crossover ... 36

Figure 3.9 Partially mapped crossover .. 36

Figure 3.10 Group encoding .. 37

Figure 3.11 Crossover in grouping genetic algorithms ... 37

Figure 3.12 The double bridge experiment.. 41

Figure 4.1 Example of the variation of functions Bb and Bw for different scenarios 60

Figure 4.2 Mathematical programming model for the mixed-model ALBP with parallel

workstations ... 62

Figure 4.3 The two-stage simulated annealing based procedure..................................... 63

Figure 4.4 Combined precedence diagram of the numerical example 68

Figure 4.5 Application of the SA based procedure to the numerical example 69

Figure 4.6 Global structure of the genetic algorithm based approach............................. 70

Figure 4.7 Generation of two offspring through crossover ... 72

Figure 4.8 An application of the reassignment procedure... 73

Figure 4.9 Variation of the fitness function in GA for two test problems....................... 75

Figure 4.10 Outline of the first version of ANTBAL.. 76

 vii

Figure 4.11 Procedure to convert a sequence of tasks into a balancing solution............... 79

Figure 4.12 Problems with the initial version of ANTBAL .. 81

Figure 4.13 Outline of the modified version of ANTBAL .. 82

Figure 4.14 Procedure carried out by an ant to build a feasible solution........................... 84

Figure 4.15 Variation of the objective function in ANTBAL for two test problems 86

Figure 4.16 First approach to address MALBP-II ... 88

Figure 4.17 SA smoothing procedure for the MALBP-II.. 89

Figure 4.18 An example of the variation of the workload balance functions.................... 99

Figure 5.1 Mixed-model production on a U-shaped assembly line 107

Figure 5.2 Possible combinations of models in a workstation in the same cycle. 112

Figure 5.3 Mathematical programming model for the U-MALBP................................ 115

Figure 5.4 Outline of U-ANTBAL .. 116

Figure 5.5 Building a balancing solution in U-ANTBAL ... 117

Figure 5.6 Straight and U-shaped line configurations for the numerical example 119

Figure 6.1 Configuration of a 2-sided assembly line ... 125

Figure 6.2 Interference in 2-sided assembly lines.. 126

Figure 6.3 Mathematical programming model for the 2-MALBP................................. 134

Figure 6.4 Outline of 2-ANTBAL ... 135

Figure 6.5 Building a balancing solution for the 2-MALBP ... 136

Figure 6.6 Representation of a balancing solution for the 2-sided line 141

Figure 7.1 Exploded view of the PC camera ... 151

Figure 7.2 Combined precedence diagram for the three PC camera models................. 152

Figure 7.3 Animation of the actual PC camera assembly system.................................. 160

Figure 7.4 Simulation results for the average usage rate ... 162

Figure 7.5 Precedence diagrams of the five models .. 165

Figure 7.6 Combined precedence diagram for the five models 166

Figure 7.7 Two-step procedure for balancing the assembly line 168

Figure 7.8 Precedence diagram of one of the models .. 172

Figure 7.9 Assignment of operators to workstations for different production volumes 173

Figure 7.10 A wire harness assembly jig ... 175

Figure 7.11 Illustration of the wire harness assembly line .. 175

Figure 7.12 Precedence diagram for one model .. 178

 viii

Index of Tables
Table 4.1 Processing times and average positional weights for the numerical example 68

Table 4.2 Main characteristics of the MALBP data set with typical task times 91

Table 4.3 Computational results for the MALBP-I data set... 92

Table 4.4 MALBP data set with random processing times.. 94

Table 4.5 Computational results for the MALBP-I data set with random times............ 95

Table 4.6 Number of optimal solutions and maximum deviation obtained for Scholl’s

data set.. 96

Table 4.7 Computational results for the MALBP-II data set ... 98

Table 5.1 Task assignments and workload values for the two U-line solutions 120

Table 5.2 Computational results (number of operators) of U-ANTBAL for the two

MALBP data sets ... 121

Table 6.1 Task processing times of models A and B ... 141

Table 6.2 Actions of the side-ants to build a balancing solution 142

Table 6.3 Results of the computational experience for 2-ANTBAL 144

Table 7.1 Task processing times .. 152

Table 7.2 Set of pairs of incompatible tasks .. 153

Table 7.3 Number of units to be produced for each demand level 153

Table 7.4 Demand values and cycle times for the different production scenarios....... 154

Table 7.5 Initial solution for scenario 1 ... 155

Table 7.6 Final line configurations for the different demand scenarios....................... 156

Table 7.7 Comparison of theoretical and real cycle times ... 157

Table 7.8 Comparison of solutions with the lower bounds (LBpmix)............................ 157

Table 7.9 Simulation results for the average flow time ... 161

Table 7.10 Average usage rate and standard deviation .. 163

Table 7.11 Task processing times for the five models (t.u.) .. 166

Table 7.12 Results of the two-step procedure .. 168

Table 7.13 Comparison of performance measures between straight and U-shaped

configurations... 174

1
Introduction

Contents
• Relevance of the problem

• Objective of the thesis

• Structure of the thesis

Chapter 1: Introduction 3

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

1.1 Relevance of the problem

The dynamics and intense competition in the current global marketplace together with

the increased pace of technological change has led to shortening product life cycles and to

a proliferation of product variety. Companies must be able to provide a higher degree of

product customisation to fulfil the needs of the increasingly sophisticated customer

demand (Su et al, 2005). Moreover, responsiveness in terms of short and reliable delivery

lead times is demanded by a market where time is seen as a key driver. Mass customisation

is a response to this phenomenon. It refers to the design, production, marketing and

delivery of customised products on a mass basis. This means that customers can select,

order and receive especially configured products, often selecting from a variety of product

options, to meet their individual needs. On the other hand, customers are not willing to pay

high premiums for these customised products compared to competing standard products in

the market. They want both flexibility and productivity from their suppliers (Rudberg and

Wikner, 2004).

As forecasting and planning become very complex, producing and storing all types of

finished goods based on forecasts will lead to a high risk of stock out and obsolescence,

while lead time often makes build-to-order impossible (Yang and Burns, 2003).

Postponement arises as a strategy to contribute to the achievement of mass customisation.

The concept of postponement is about delaying activities in the supply chain until real

information about the market is available. The underlying logic is that the delay leads to

the availability of more information and thus the risk and uncertainty of those activities can

be reduced or even eliminated. In a postponement strategy uncertainty is seen as an

opportunity instead of a problem (Yang et al, 2004, 2005).

Manufacturing postponement or delayed product differentiation is a type of

postponement that seeks to delay the final formulation of a product until customer orders

are received (Skipworth and Harrison, 2004). For example, in the automotive industry

(high-volume vehicles), customers are allowed to choose their vehicle from a wide set of

options. Customer involvement takes place only in the final assembly stage (Coronado et

al, 2004).

Chapter 1: Introduction 4

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Delayed product differentiation involves shipping the products in a semi-finished state

from the manufacturing facility to a downstream facility where final customisation occurs,

normally as an assembly process. This strategy allows companies to standardise

components and create a variety of products. Here, modularity plays an important role for a

good performance of the system. It is an approach for efficiently organise complex

products and processes by decomposing complex tasks into simpler portions so that they

can be managed independently and yet operate together as a whole (Mikkola and

Skjott-Larsen, 2004). Modularity consists in the breakdown of a complex part into simple

and functionally independent components which are assembled to make customised parts.

Although the number of parts in the modular design is larger than in the integral design,

the total time of machining operations and manufacturing costs are more likely to decrease

in the modular design. Nevertheless, modular designs increase the number of assembly

operations and the assembly time and, hence, may require additional assembly stations in

the system (He and Babayan, 2002).

Delayed product differentiation benefits the manufacturing process in two ways: it

increases flexibility by enabling to commit the work-in-process to a particular end-product

at a later time, and it decreases costs of complexity by reducing the variety of components

and processes within the system (Nair, 2005).

The role of assembly lines has been changing through time. Assembly lines were firstly

created to produce a low variety of products in high volumes. They allow low production

costs, reduced cycle times and accurate quality levels. These are important advantages

from which companies can benefit if they want to remain competitive. However,

single-model assembly lines, designed to carry out a single homogenous product, are the

least suited production system for high variety demand scenarios. As manufacturing is

shifting from high-volume/low-mix production to high-mix/low-volume production,

mixed-model assembly lines, in which a set of similar models of a product can be

assembled simultaneously, are better suited to respond to the new market demands.

Instead of an inflexible production system, like they have been before, assembly lines

are now an important piece of the supply chain, essential to support manufacturing

postponement strategies. On one hand, assembly lines have the ideal structure to perform

final product customisation tasks under a mass customisation concept. On the other hand,

Chapter 1: Introduction 5

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

as they are labour intensive, assembly lines can be easily located geographically closer to

the final customer marketplace.

The efficient design and operation of mixed-model assembly lines is, therefore, a

crucial factor for the success of the supply chain in delivering customised products at low

costs.

1.2 Objective of the thesis

The main objective of this thesis is to present a set of procedures to efficiently tackle

different types of mixed-model assembly line balancing problems.

The proposed procedures based on the meta-heuristics, such as simulated annealing,

genetic algorithms and ant colony optimisation algorithms, are able to address some

particular features of the assembly process very common in real mixed-model assembly

lines (e.g., use of parallel workstations, zoning constraints, task side constraints, U-shaped

layouts) that most of the techniques covered in the current literature do not consider. This

is a major contribution to scientific and industrial knowledge on the assembly line

balancing subject.

Some of the procedures were applied to real assembly lines in order to test their

efficiency to cope with real industrial settings, as they may differ significantly from

theoretical problems. So, another goal of this thesis is to share the experience (successful

applications and difficulties) of dealing with the conditions of real production systems.

1.3 Structure of the thesis

This thesis is divided in eight chapters. The present chapter briefly introduces the theme

of the study, points out the relevance of the problem and presents the main objectives of

the work.

The second chapter gives an overview of the assembly line balancing problem. It

presents the main characteristics of assembly line systems and defines the assembly line

balancing problem, emphasising the mixed-model perspective. Different types of assembly

line configurations and particular features of the assembly process that may restrict the

configuration of the lines are also presented.

Chapter 1: Introduction 6

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

The third chapter is dedicated to review the available literature reporting meta-heuristic

based approaches to tackle the assembly line balancing problem. It firstly describes the

main characteristics of the selected meta-heuristics (simulated annealing, genetic

algorithms and ant colony optimisation) and then presents a literature review of their

applications to line balancing problems.

The fourth chapter presents the models and algorithms developed in this work for

balancing mixed-model assembly lines with a linear configuration. A mathematical

programming model was built to formally describe the problem and three heuristic

procedures were developed to solve the problems. The procedures are based on

well-known meta-heuristics, such as simulated annealing, genetic algorithms and ant

colony optimization. A comparison between the performances of the three procedures,

based on a set of computational experiments, is also provided.

In the fifth and sixth chapters mathematical programming models and heuristic

procedures for balancing U-shaped assembly lines and 2-sided assembly lines,

respectively, are presented. Conclusions about the heuristics’ performance are withdrawn,

based on a set of computational experiments.

In the seventh chapter four industrial case studies are presented. They resulted from the

analysis of real assembly lines and consequent application of the proposed heuristic

procedures to improve the lines’ efficiency.

Finally, conclusions and directions for future research are pointed out in the eighth

chapter.

2
2. Overview of the mixed-model assembly

line balancing problem

Contents
• Chapter introduction

• Main characteristics of assembly line systems

• The mixed-model assembly line balancing problem

• Particular features of the assembly process

• Assembly line performance measures

Chapter 2: Overview of the mixed-model assembly line balancing problem 9

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

2.1 Chapter introduction

This chapter aims to provide an overview of the main features of production systems

organised as assembly lines and to introduce the main concepts required to understand the

mixed-model assembly line balancing problem – the object of the research presented in

this work.

The chapter begins by introducing the main characteristics of assembly line systems, in

order to point out the importance of mixed-model production, and the general

mixed-model assembly line balancing problem is briefly described. Then, some particular

features of the assembly line process that may be present in real assembly lines are

described and the most common line performance measures are presented.

2.2 Main characteristics of assembly line systems

An assembly line is a set of sequential workstations connected by a material handling

system, usually a conveyor belt. Manufacturing a product in an assembly line requires

partitioning the total amount of work into a set of elementary operations called tasks. In

each workstation a set of tasks is performed using a predefined assembly process, in which

the following issues are defined:

 the task processing time: the time required to perform each task;

 a set of precedence constraints that, due to technological or organisational

conditions, determine the sequence in which the tasks can be performed.

Figure 2.1 shows an example of a precedence diagram, in which the nodes represent

tasks and the arcs express the precedence relationships between the tasks. For example,

task 12 can only be performed after tasks 8 and 9 are completed (tasks 8 and 9 are direct

predecessors of task 12).

In a typical workstation the work is performed manually by human operators using

simple tools or by semi-automated machines controlled by those operators. The time

required to perform all tasks assigned to a workstation is termed workload.

Chapter 2: Overview of the mixed-model assembly line balancing problem 10

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Figure 2.1 – Example of a precedence diagram

In a paced assembly line each workstation has a predefined amount of time to complete

all the tasks assigned to it: the cycle time. When this time is elapsed the sub-assembly

must be moved to the next workstation and the workstation receives a new sub-assembly

from the previous workstation. Thus, the cycle time determines the production rate of the

assembly line. Since tasks are indivisible work elements, the cycle time cannot be less than

the maximum task processing time (for assembly lines with no parallel workstations, as it

will be explained in section 2.4.4). The difference between the cycle time and the workload

is called workstation idle time. The sum of the idle times of all the workstations in the

assembly line is the line idle time or total idle time.

In unpaced assembly lines there is no fixed time for a workstation to complete its tasks.

All workstations operate at an individual speed so that sub-assemblies may have to wait

before they can enter the next workstation and/or workstations may get idle waiting to

receive a sub-assembly from the previous workstation. To avoid these difficulties, buffers

between workstations are normally introduced in order to keep in-process inventories. The

work developed in the present study only addresses paced assembly lines.

Considering the number of products to be assembled and the way they are processed,

there are, basically, three types of assembly lines:

 single-model assembly lines, in which a single homogenous product is

continuously assembled in large quantities;

 mixed-model assembly lines, in which a set of similar models of a product can be

assembled simultaneously, in an arbitrarily intermixed sequence;

 multi-model assembly lines, in which batches of similar models are assembled

with intermediate setup operations.

Chapter 2: Overview of the mixed-model assembly line balancing problem 11

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Figure 2.2 illustrates the different line types, where geometrical shapes symbolize the

different models assembled on the line.

Figure 2.2 – Types of assembly lines

Single-model assembly lines are suitable for large-scale production, since they ensure

very low production costs. High productivity is achieved by manufacturing a single

product in very large quantities, using the principles of specialisation and division of work

among operators. But long gone are the days when everyone could purchase a low priced

car of ‘any colour as long as it was a black Model T Ford’.

The recent market trends show that there is a growing market demand for customised

products, increasing the pressure for industries to diversify their production mix with more

models and optional features being offered. Here it is evident the need for flexible systems,

able to produce different versions of the same product without, however, increasing the

costs excessively. This is the reason for companies to implement assembly line

configurations, with specific measures being taken to make the system suitable for the

production of different models. Assembly systems must still achieve high productivity,

uniform quality and low assembly costs. Flexibility is also essential to cope with shorter

product life cycles, low production volumes, changing demand patterns and a higher

variety of product models and options.

In some cases multi-model lines are used: they can produce batches of different models

with relatively low setup times. The line configuration is unique for each model so that

tasks must be reassigned whenever the production changes from one model to another.

When more flexibility is required the most suitable system is a mixed-model assembly line,

in which setup is almost non-existent, allowing for the production of very small batches

(even one-unit batches) in any sequence.

Chapter 2: Overview of the mixed-model assembly line balancing problem 12

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

According to Zhao et al (2004), there are two basic issues to address in mixed-model

assembly lines: (i) at the ‘design’ level, the assignment of tasks to workstations in order to

optimise a given ‘design measure’ and (ii) at the ‘operational’ level, the determination of

the sequence in which the difference models are launched into the line, in order to optimise

a given ‘operational performance measure’. The first is the balancing problem that must

be addressed before building the line and the second is the sequencing problem that must

be addressed everyday when implementing a production plan.

The present work addresses the balancing problem, which is defined in the following

section.

2.3 The mixed-model assembly line balancing problem

The simple assembly line balancing problem (SALBP) was first mathematically

formulated by Salveson (1955) and it consists in assigning a set of tasks, required to

assemble a single homogenous product, to a set of workstations in order to minimise the

number of workstations in the line or minimising the cycle time of the line (both these

objectives are equivalent to minimise the idle time of the line). The assignment of tasks to

workstations must ensure that the product demand is met and verify the following set of

conditions (Shtub and Dar-El, 1990):

 a task is indivisible and therefore must be totally performed in a single workstation;

 the sequence of the assigned tasks must respect the technological precedence

constraints;

 all workstations have conditions to perform any task;

 the task processing times are known and are independent of the workstation to

which they are assigned;

 the sum of the processing times of the tasks assigned to each workstation cannot

exceed the cycle time, determined by the product’s demand.

The following characteristics are specific for the mixed-model assembly line balancing

problem (MALBP):

 a set of similar models is simultaneously assembled on the line;

 each model has a predefined demand over a planning horizon;

Chapter 2: Overview of the mixed-model assembly line balancing problem 13

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

 the cycle time of the line is given by the ratio between the planning horizon and the

total demand of the different models;

 each model has its own set of precedence relationships, but it is possible to

combine all the relationships into only one precedence diagram – the combined

precedence diagram, as exemplified in Figure 2.3;

 the time required to perform a task may vary between the models;

 workstations are flexible enough to perform their tasks on the different models.

Figure 2.3 – An example of a combined precedence diagram

According to the pursued goal, the MALBP can be classified into two different types,

which are referred as dual problems (Scholl, 1999):

 MALBP-I: minimises the number of workstations, for a given cycle time;

 MALBP-II: minimises the cycle time, for a given number of workstations.

In type I problems, the cycle time, and, consequently the production rate, has to be

pre-specified, so it is more frequently used in the design of a new assembly line for which

the demand can be easily forecasted. Type II problems deal with the maximisation of the

production rate of an existing assembly line and are applied when, for example, changes in

the assembly process or in the product range require the line to be redesigned. Both types

of problems have the same mathematical formulation. The only difference is in what is

given as input and what is the decision variable. While for type I the cycle time is given

Chapter 2: Overview of the mixed-model assembly line balancing problem 14

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

and the number of workstations is to be determined, for type II the opposite occurs, i.e., the

number of workstations is given and the cycle time is to be determined.

The MALBP can be formulated as a binary integer programming model, as presented in

Figure 2.4, in which:

 N is the number of tasks of the combined precedence diagram;

 M is the number of models assembled on the line;

 Dm is the demand of model m over the planning horizon, P;

 qm is the overall proportion of the number of units of model m being assembled,

given by ∑
=

M

p
pm DD

1

/ ;

 S is the number of workstations;

 C is the line cycle time computed by ∑
=

M

m
mDP

1

/ ;

 tim is the processing time of task i for model m;

 Suci is the set of tasks that cannot be performed before task i is completed

(successors of task i), derived from the combined precedence diagram;

⎩
⎨
⎧

=
 otherwise 0,

on workstati toassigned is task if 1, ki
xik

{ })5(,...,1 ;,...,11,0

)4(,...,1 ;,...,1

)3(,0

)2(,...,11

:subject to

)1(Minimise

1

1 1

1

1 1 1

SkNix

MmSkCxt

SucjNikxkx

Nix

xtqC

ik

N

i
ikim

i

S

k

S

k
jkik

S

k
ik

S

k

M

m

N

i
ikimm

==∈

==≤

∈∈≤−

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∑

∑ ∑

∑

∑ ∑ ∑

=

= =

=

= = =

Figure 2.4 – Binary integer programming model for the MALBP

Chapter 2: Overview of the mixed-model assembly line balancing problem 15

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

The objective function (1) minimises the weighted idle time of the assembly line,

considering each model’s production share. This goal is equivalent to minimise the number

of workstations for a given cycle time in MALBP-I and to minimise the cycle time for a

given number of workstations in MALBP-II. The set of constraints (2) ensures that each

task is assigned to only one workstation of the station interval and consequently tasks that

are common to several models are performed on the same workstation. The precedence

constraints are handled by the set of constraints (3) which guarantees that no successor of a

task is assigned to an earlier station than that task. Constraints (4) are called capacity

constraints and ensure that the workload of a workstation does not exceed the cycle time,

regardless of the model being assembled. Finally the set of constraints (5) defines the

domain of the decision variables.

The binary integer programming model becomes very complex even for small size

problems, which makes it impossible to be solved to optimality in acceptable time. The

problem is NP-hard (Scholl, 1999), which explains the interest of researchers in the

development of heuristic procedures to address the problem.

Although the minimisation of the idle time is the main goal of the MALBP, additional

goals, like the workload balance between and within workstations, are also important to

obtain good balancing solutions. Later in this work these goals will be described in detail

and included in the proposed approaches.

2.4 Particular features of the assembly process

In order to better reflect the operating conditions of real assembly lines, some relevant

issues of the assembly process need to be included when addressing an assembly line

balancing problem. Scholl (1999) and Becker and Scholl (2006) present a comprehensive

explanation on some particular features of the assembly process. Here, only a briefly

description of these aspects is provided.

2.4.1 Variability of task processing times

The variability of task processing times depends on the nature of the tasks and

operators. While for simple tasks the expected variance is very small, the processing time

Chapter 2: Overview of the mixed-model assembly line balancing problem 16

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

of complex and failure sensitive tasks may have significant variability, especially if

performed by human operators, influenced by physical, psychological and social factors.

The use of deterministic values for the task processing times is justified when the

expected variance is low. In most assembly lines using human workforce the number of

tasks assigned to each operator is small and each task is usually very simple. Also,

operators are especially trained to perform efficiently that small set of tasks. This way, the

variability inherent to the human nature of the work is reduced by the simplicity of tasks

and qualification of operators. The increased automation is also able to reduce the

variability of task processing times, by using computer-controlled machines and robots

able to work at constant speed.

If the tasks performed by human operators are long or complex, the variability of the

task processing times should be considered when modelling the problem because the

variance may significantly affect the system’s performance. In the case of automated lines,

in which processing times are almost constant, there is a need to deal with the occurrence

of machine breakdowns, by incorporating in the model a stochastic component of the task

times reflecting the probability of machine breakdowns and the duration of repair

processes.

When installing a new assembly line or introducing a new product in the line, the

operators may have an adjustment period in which they take longer time to perform the

tasks than after they are fully adapted. Dynamic task processing times may be used when

learning effects allow systematic reductions or successive improvements of the production

process.

2.4.2 Assignment constraints

Assignment constraints reduce the set of workstations to which tasks can be assigned.

Several types of assignment constraints can be included in an assembly line balancing

problem.

Zoning constraints force or forbid the assignment of different tasks to the same

workstation, being called positive or negative zoning constraints, respectively. Positive

zoning constraints are normally related with the use of common equipment or tooling. For

example, if two tasks need the same equipment or have similar processing conditions

Chapter 2: Overview of the mixed-model assembly line balancing problem 17

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

(temperature, pressure, operator qualification level, etc.) it is desirable that they are

assigned to the same workstation. Negative zoning constraints are usually imposed by

technological issues like, for example, when it is necessary to have a minimum time

between the execution of the tasks or when it is not possible to perform them in the same

workstation, for safety reasons.

Workstation related constraints are needed if special equipment is only available at a

determined workstation. Then the tasks that need that equipment must be assigned to that

workstation.

In the case of large and heavy products (like cars, washing machines, etc.) the

workpieces have a fixed position and cannot be turned. So, it may be necessary to perform

tasks, for example, at both sides of the line. In this case a 2-sided line is used. It is,

therefore, convenient to include position related constraints that group tasks according to

the position in which they are performed.

When tasks require different levels of skills, depending on their complexity, operator

related constraints are needed to ensure that a sufficiently qualified operator is assigned

to a determined task. The qualification of an operator is determined by the most complex

task assigned to its workstation. For ergonomic reasons, more monotonous tasks and more

variable tasks should be combined in the same workstation in order to induce higher levels

of job satisfaction and motivation.

2.4.3 Layout

In traditional or straight assembly lines, workstations are physically arranged along a

linear conveyor belt and operators perform tasks on a continuous portion of the line. The

implementation of just-in-time principles in industrial facilities made companies to switch

from straight to U-shaped assembly lines. In a U-shaped line both ends of the line are

closely together forming a ‘U’ and operators can move between the two legs of the line to

perform combinations of tasks that would not be allowed in a straight line. It is an

attractive alternative for assembly systems since operators become multi-skilled by

executing tasks located at different parts of the assembly line. It improves visibility and

communication between operators, which may facilitate problem solving. Also, a

U-shaped line configuration allows for more possibilities on the assignment of tasks to

Chapter 2: Overview of the mixed-model assembly line balancing problem 18

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

workstations, so the number of workstations may be reduced, when compared with the

number of workstations needed for a straight line. Figure 2.5 illustrates the differences

between the assignment of tasks in straight and U-shaped assembly lines. A more detailed

description of U-shaped assembly lines is provided in chapter 5.

Figure 2.5 – Assignment of tasks in straight and U-shaped assembly lines

Other assembly line layouts may be found in industrial facilities, like the C-shaped

layout, illustrated in Figure 2.6 (Aase et al, 2004).

Figure 2.6 – Configuration of a C-shaped assembly line

Chapter 2: Overview of the mixed-model assembly line balancing problem 19

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

2.4.4 Parallelism

The implementation of parallel lines to assemble one or several products allows

increasing flexibility and decreasing failure sensitivity of the production system. Parallel

lines facilitate quick responses to product demand variations as the number of working

lines can be easily changed. Also, the risk of production stoppage due to machine

breakdowns is significantly reduced. Moreover, the cycle time can be increased, which

brings additional advantages such as (i) better line balances, due to the higher number of

possible task combinations and (ii) job enrichment, as the operators perform a larger

number of different tasks.

The strategic problem of determining the optimal number of parallel line is of major

importance as the duplication of lines involves increasing capital investment. However,

when parallel lines are introduced, the number of tasks performed by each worker

increases, the limit being one worker at each line performing all the tasks of the assembly

process. This contradicts one of the main advantages of using assembly lines: the use of

low skilled labour that can be easily trained (due to the strict division of labour). So, this

aspect must be considered when installing parallel lines.

Even in single lines, parallelism can be implemented. When the production rate required

to meet the demand is so high that the processing times of some of the tasks exceed cycle

time, the implementation of parallel workstations is necessary to achieve the desired

production rate. In parallel workstations, different workpieces are distributed among

several operators who perform the same tasks. The local cycle time in these workstations is

a multiple of the global cycle time, depending on the number of replicas installed. An

example of the use of parallel workstations is shown in Figure 2.7. The longest task

processing time of this example is 45, which limits the cycle time in the first configuration

where no parallel workstations are used. With the use of parallel workstations it is possible

to decrease the cycle time, for the same number of operators (seven), as it is shown in the

second line configuration.

The use of parallel workstations is a common practice that allows a more flexible

assignment of tasks and a reduction of the line cycle time. However, as for parallel lines, if

the replication of workstations is not controlled, the advantage of the strict division of

labour inherent to assembly lines can be lost.

Chapter 2: Overview of the mixed-model assembly line balancing problem 20

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

1 98765432

w-1 w-2 w-5 w-6 w-7

45 20 5 20 15 35 45 25 30

start end

line without parallel workstations: cycle time =45

145 20 5start end

w-1

2 3

145 20 52 3 20 154 5

w-2

635 45

30

7
9635 45 257 8

w-3 w-4 w-5

line with parallel workstations: cycle time =40

w-3 w-4

Figure 2.7 – Illustration of the use of parallel workstations

2.5 Assembly line performance measures

The implementation of an assembly line requires high capital investments, so it is very

important that the line is designed and balanced to work as efficiently as possible. Also,

re-balancing an existing assembly line is necessary when changes in the production process

or demand structure occur. To assess the performance of the line, several criteria of

technical and economical nature can be included in assembly line balancing problems.

According to Gosh and Gagnon (1989) the most widely used criteria of technical nature

are related with the maximisation of the capacity utilisation which is measured by the line

efficiency (the percentage of productive time in the line). Among them are (i) the

minimisation of the number of workstations, for a given cycle time, (ii) the minimisation of

cycle time, for a given number of workstations and (iii) the minimisation of the idle time of

the line. Other capacity related criterion is the smoothing of workloads between the

workstations, important to ensure similar workloads for all operators (see, for example,

Merengo et al, 1999, Matanachai and Yano, 2001, Vilarinho and Simaria, 2002).

The economical nature criteria seek to minimise the total costs of the line, including

long-term investment costs and short-term operating costs. Both installation and operation

Chapter 2: Overview of the mixed-model assembly line balancing problem 21

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

costs depend mainly on the cycle time and the number of workstations. As stated by Scholl

(1999), the most important cost categories are (i) costs of machinery and tools, (ii) labour

costs, (iii) materials costs, (iv) idle time costs, (v) penalties for not meeting the demand,

(vi) incompletion costs, (vii) setup costs and (viii) inventory costs.

Several authors present multi-objective approaches. Shtub and Dar-El (1990) consider

simultaneously (i) the minimisation of the line idle time and (ii) the minimisation of the

number of parts at each workstation.

Malakooti (1991) includes (i) the number of workstations, (ii) the cycle time and (iii)

the line operation costs, in his multi-criteria approach. In Malakooti (1994) the previous

work is extended to include the size of buffers in the assembly line as another goal.

McMullen and Frazier (1998) use multi-objective criteria that comprise (i) the cost of

labour and equipment, (ii) the workload balance between workstations and (iii) the

probability of lateness.

Ponnambalam et al (2000) consider (i) the number of workstations, (ii) the workload

balance between workstations and (iii) the assembly line efficiency as criteria to evaluate

line balancing solutions.

Zhao et al (2004) aim to minimise the operational performance measure ‘total overload

time’, i.e., the amount of time that exceeds the cycle time of the line, when considering

mixed-model production. These authors state that the total overload appropriately reflects

the relevant additional operating cost of the line, as when overload occurs the unfinished

work has to be completed offline or the conveyor must be temporarily stopped to finish the

tasks.

Besides capacity and cost related objectives, social goals may be important to fulfil,

such as (i) job enrichment, avoiding the assignment of many monotonous tasks to an

operator and (ii) job enlargement, increasing the number of tasks performed by an

operator.

Although a wide variety of objectives may be included in line balancing approaches, the

fact is that most of the objectives described in this section are basically influenced by the

number of workstations and the cycle time of the line. Thus, this two goals can be

considered the most important when balancing an assembly line.

3
3. Meta-heuristics for assembly line

balancing: characterisation and review of
existing procedures

Contents
• Chapter introduction

• Simulated annealing algorithms

• Genetic algorithms

• Ant colony optimisation algorithms

• Taboo search algorithms

• Chapter conclusions

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 25

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

3.1 Chapter introduction

The assembly line balancing problem was firstly formulated by Salveson (1955) and,

since then, numerous procedures have been developed to solve the problem. The literature

on the subject is extensive and it focuses mainly on the simple version of the assembly line

balancing problem. Comprehensive literature reviews on both exact and heuristic solution

techniques for the different types of assembly line balancing problems are presented by

Gosh and Gagnon (1989), Erel and Sarin (1998), Scholl (1999) and more recently by

Becker and Scholl (2006) and Scholl and Becker (2006).

Although many optimising methods have been proposed, mainly branch-and-bound and

dynamic programming procedures, their application is only possible for very restricted

versions of the assembly line balancing problem, as the problem is NP-hard. To better

reflect the characteristics of real world assembly lines, additional constraints must be

included when solving the problem and this only increases its complexity. So, instead of

exact procedures that find optimal solutions for simplified problems, heuristic procedures

are used to find good solutions for much more complex problems. A large variety of

heuristic approaches have been proposed in the literature. According to Scholl and Becker

(2006), the development of constructive procedures, based on priority rules, to build one or

more feasible solutions was presented in the literature until the mid nineties. In the last

decade, the focus of researchers has been on improvement procedures using

meta-heuristics like simulated annealing (Kirkpatrick et al, 1983), genetic algorithms

(Holland, 1975, Goldberg, 1989), taboo search (Glover, 1989, 1990), and more recently,

ant colony optimisation algorithms (Dorigo et al, 1996).

Meta-heuristics are general search principles organised in a general search strategy used

to solve combinatorial optimisation problems (Pirlot, 1996). They are able to search large

regions of the solution’s space without being trapped in local optima, a major disadvantage

of pure local search algorithms. As the research carried out for this work involves the

application of meta-heuristics to mixed-model assembly line balancing problems, this

chapter will focus on (i) the description of the main characteristics of the selected

meta-heuristics (simulated annealing, genetic algorithms and ant colony optimisation

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 26

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

algorithms) and on (ii) the literature review of their application to assembly line balancing

problems.

3.2 Simulated annealing algorithms

3.2.1 Overview

Simulated annealing (SA) is a randomised search technique that draws its inspiration

from the physical annealing of solids. In this process, a solid is brought to its lowest energy

state by first heating it to a very high temperature (usually the melting point temperature)

and then cooling it at a very slow rate, to a very low temperature. When this heating and

subsequent slow cooling occur, the particles within the solid rearrange themselves in such

a way that the solid acquires some desired attribute, such as high strength or surface

hardness.

The SA algorithm was introduced by Kirkpatrick et al (1983) to solve NP-hard

combinatorial optimisation problems, by using the analogy with the simulation of the

physical annealing of solids, in order to optimise the value of an objective function. Figure

3.1 presents the structure of a general SA algorithm.

Figure 3.1 – Structure of a simulated annealing algorithm

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 27

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

It starts from an initial solution to the problem, S0 and a control parameter, T, which is

set to an initial temperature value, T0. During the algorithm, the value of T is systematically

decreased according to an annealing schedule as shown in Figure 3.2. In this schedule the

following issues are defined: (i) a temperature reduction function and (ii) the length of each

temperature level, L, that determines the number of solutions generated at a certain

temperature.

Figure 3.2 – Annealing schedule

At each temperature level, and as the temperature decreases, neighbouring solutions of

the current solution are generated. A neighbouring solution, SV, is accepted, i.e., replaces

the current solution, if it is not worse than the current solution, S, (F(SV) ≤ F(S), where F is

the general objective function to minimise). If the neighbouring solution is worse than the

current solution (F(SV) > F(S)), it still may be accepted with a certain probability, p=e-∆/T

where

100
)(

)()(
×

−
=∆

V

V

SF
SFSF (3.1)

This probability of accepting inferior solutions allows the simulated annealing

algorithm to escape from local minima.

S* is the best solution found by the algorithm.

The performance of the algorithm depends on the definition of the following annealing

schedule parameters:

(i) The initial temperature, T0, should be high enough so that in the first iteration of

the algorithm the probability of accepting worst solutions is, at least, 80%

(Kirkpatrick et al, 1983).

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 28

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

(ii) The most commonly used temperature reduction function is geometric: Ti=aiTi-1

(ai<1 and constant). Typically, 0.8≤ ai ≤ 0.99 (Eglese, 1990).

(iii) The length of each temperature level, L, determines the number of solutions

generated at each temperature, T, and its value usually depends of the dimension

of the problem.

(iv) The stopping criterion defines when the system has attained a desired energy

level. Some of the most common stopping criteria are based on:

 the total number of solutions generated;

 the temperature at which the desired energy level is attained (freezing

temperature);

 the acceptance ratio (the ratio between the number of solutions accepted and

the number of solutions generated).

Naturally, each of these control parameters must be refined according to the specific

problem on hand. Two other important issues that need to be defined when adapting this

general algorithm to a specific problem are the procedures to generate both the initial

solution and the neighbouring solutions. These aspects will be addressed in the following

section, in which a review of the application of SA procedures to the assembly line

balancing problem is provided.

3.2.2 SA approaches for assembly line balancing

Heinrici (1994) proposes a SA procedure to solve the single-model assembly line

balancing problem of type II, in which the objective is to minimise the cycle time for a

given number of workstations. Suresh and Sahu (1994) solve the problem of type I and

address variability by using stochastic task processing times. The SA approach presented

by Erel et al (2001) aims at balancing U-shaped assembly lines. McMullen and Frazier

(1998) present a multi-objective procedure to balance mixed-model assembly lines with

stochastic task processing times and parallel workstations.

In the following sections a brief description of the application of simulated annealing to

the assembly line balancing problem is provided, namely (i) the way the initial solution is

obtained, (ii) the procedures to generate neighbouring solutions and (iii) the objective

function used to evaluate the solutions and guide the search.

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 29

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

3.2.2.1 Initial solution

The precedence constraints of an assembly process determine the set of tasks available

for assignment at a particular moment. The initial solution of a SA based procedure is

typically obtained by a constructive heuristic, in which, from the set of available tasks, one

task is selected according to a certain rule and assigned to the current workstation, as long

as it does not exceed the workstation’s capacity. In the approach of Suresh and Sahu

(1994) tasks are assigned according to their numerical order to build an initial feasible

solution. The Ranked Positional Weight technique, originally developed by Helgeson and

Birnie (1961), is the basis of the assignment of tasks to workstations in the initial solution

of the procedure of Heinrici (1994). The assignment of tasks to workstations in the initial

solution is done arbitrarily in the approach presented by McMullen and Frazier (1998).

Erel et al (2001) propose a different way of building the initial solution. First, each task

is assigned to a different workstation and then the number of workstations is reduced by

combining two adjacent workstations. When the workload of the combined workstation

exceeds cycle time (leading to unfeasibility), the initial solution is complete and the

subsequent steps of the SA procedure are initialised.

3.2.2.2 Neighbouring solutions

All the SA procedures mentioned in the previous section generate neighbouring

solutions using two different movements:

(i) swapping two tasks in different workstations;

(ii) transferring a task to another workstation.

The tasks and workstations are usually randomly selected and the resulting balancing

solution must be feasible, regarding precedence and cycle time constraints.

3.2.2.3 Objective function

In the problem of type I the goal is to minimise the number of workstations for a given

cycle time. But an objective function which only considers the number of workstations

may not be effective, as there may exist several different balancing solutions with the same

number of workstations. So, an important challenge is to determine an appropriate

objective function that can efficiently guide the search through the solution space.

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 30

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Depending on the nature of the problem or study, different objective functions are

proposed to evaluate the balancing solutions and guide the SA procedure.

Dealing with stochastic task processing times, Suresh and Sahu (1994) use the

probability of a workstation exceeding the cycle time and the balance of workloads

between workstations (smoothness index) to compare their procedure with others available

in the literature.

McMullen and Frazier (1998) in their multi-objective approach use the line design cost,

the smoothness index and the probability of lateness to evaluate the solutions. They also

build composite functions with combinations of these three objectives.

The SA procedure of Erel et al (2001) aims at achieving feasibility regarding cycle time

constraints. The objective function used is the minimisation of the maximum station time,

thus eliminating the unfeasibility caused by the workstation exceeding the cycle time.

Heinrici (1994) uses the minimisation of cycle time, as the addressed problem is of type

II.

3.3 Genetic algorithms

3.3.1 Overview

Genetic algorithms (GA) are iterative search procedures, based on the biological

process of natural selection and genetic inheritance, which maintain a population of a

number of candidate members over many simulated generations. Hopefully the good

characteristics of the members will be retained over the generations, maximising a

determined fitness function.

GA do not operate directly on the solution space: solutions are coded in strings, over a

finite alphabet, called chromosomes. An encoding is selected in a way that each solution in

the search space is represented by one chromosome. Each chromosome is then decoded

according to a user defined mapping function, enabling the computation of the

corresponding fitness value, which reflects the quality of the solution represented by the

chromosome. Figure 3.3 shows an example of representing a solution of the well known

knapsack problem as a chromosome with binary codification. Each position in the

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 31

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

chromosome corresponds to an item, which takes the value 1 if it is selected and zero,

otherwise.

001101 001101

Figure 3.3 – Codification of a solution of a binary knapsack problem

The most fit individuals (chromosomes) are selected to form a basis for subsequent

generations, i.e., for reproduction. However, the selection is not deterministic. Each

individual has a probability of being selected for reproduction that increases with its

fitness. The selection scheme should provide a balance between population diversity and

selective pressure in order to avoid premature convergence, allowing for an effective

search. A very popular selection technique is called tournament and it aims to imitate

mutual competition of individuals during casual meetings. It works the following way: two

individuals are randomly selected from the population and the worst one is placed at the

top of an empty list. The best individual returns to the population and the process is

repeated until all individuals have been placed on the list. Then, starting from the top of the

list, chromosomes are selected to undergo genetic operators. Figure 3.4 illustrates the

tournament selection strategy (adapted from Falkenauer, 1998).

(i) select and evaluate the
two individuals

list

(ii) put loser in list and winner
back in the population

list

(iii) use the resulting order for
crossover

list
best

worst

Figure 3.4 – Tournament selection

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 32

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

The main genetic operator is the crossover, which has the role of combining pieces of

information from different individuals in the population. The selected individuals (parents)

are joined in pairs and combine their genetic material to produce two new individuals

(offspring) as it is shown in Figure 3.5. The main objective of crossover is to transmit good

characteristics from parents to offspring.

001101 001101

010110 010110

000101 000101

011110 011110

Figure 3.5 – A crossover example

Some individuals from the offspring population are randomly selected to undergo

mutation, i.e., small random changes are made in their genetic information. For example,

the mutation in a binary string is performed by changing the value of a randomly selected

gene from 0 to 1 (or from 1 to 0). The use of mutation aims to ensure diversity among

individuals, preventing premature convergence.

A replacement strategy is necessary to determine which individuals stay in the

population and which are replaced by offspring. The members of the new generation can

be (i) individuals from the current generation, (ii) offspring product of crossover or (iii)

individuals who underwent mutation. The most common replacement approach is elitism,

which allows the best chromosome in each generation to survive in the next generation,

thus guaranteeing that the final population contains the best solution ever found. There are

several approaches for the way the offspring replace their parents. Some favour the

maintenance of the parents in the population while others always replace the parents by the

offspring, even if they are worse than the parents. In either case, a random component is

always present to avoid premature convergence to local optima.

In general, the main steps of a GA procedure are:

1. Generation of a random initial population of solutions in the form of chromosomes.

2. Evaluation of each individual in the population according to a pre-defined fitness

function.

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 33

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

3. Selection of a set of individuals to undergo genetic operators.

4. Evaluation of the individuals created by the genetic operators.

5. Application of a replacement strategy to form the new generation.

6. If a satisfactory solution is achieved (or the stopping criteria are met, usually, a

pre-defined number of generations), stop, otherwise go to step 3.

Several studies point out the effectiveness of GA in solving combinatorial optimisation

problems, since they work with sets of solutions instead of only one solution at the time.

Also they are flexible enough to include problem specific characteristics in the encoding

scheme. The following section provides details of the application of GA to assembly line

balancing problems and gives a review of the more relevant published approaches.

3.3.2 GA approaches for assembly line balancing

Evolutionary approaches have been widely applied to solve problems related with the

design and organisation of manufacturing systems. In this section, solely the application of

GA to the assembly line balancing problem (ALBP) is described. For other manufacturing

problems the interested reader is referred to the reviews provided by Dimopoulos and

Zalzala (2000) and Pierreval et al (2003).

The main challenge of the application of GA to the assembly line balancing problem is

the development of good encoding schemes and genetic operators in order to attain feasible

solutions. In the first part of this section, a review of the existing codification procedures

and genetic operators is provided. A difficulty found in the application of GA to the

assembly line balancing problem is related with the fitness function (Scholl and Becker,

2006). When addressing the assembly line balancing problem of type I, the objective

function to minimise is the number of workstations. However, in a population, there might

be several different solutions with the same number of workstations, so, the sole use of this

performance measure as the fitness function may not be effective to guide the search. A

review of the fitness functions proposed in the literature for the ALBP is presented, in the

second part of this section. Finally, a glance of other features of the application of GA to

ALBP is given in the last part of the section.

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 34

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

3.3.2.1 Codification and genetic operators

The standard encoding scheme assigns directly the tasks to the workstations in a

balancing solution. Each chromosome is a string of length N (number of tasks) where each

element represents a task and the value of each element represents the workstation to

which the corresponding task is assigned. Figure 3.6 presents an example of this standard

encoding and the corresponding balancing solution.

Figure 3.6 – Standard encoding and the corresponding balancing solution

Applying standard genetic operators, like crossover and mutation as described in the

previous section, may lead to highly unfeasible solutions due to the precedence constraints

of the tasks involved. To tackle this problem, Anderson and Ferris (1994) included in the

objective function a penalty cost related with the number of precedence violations of each

particular solution.

Another way to address this issue is to force feasibility by using specific genetic

operators and applying adaptation procedures to properly build the solutions. The

crossover operator proposed by Kim et al (1998, 2000) starts by selecting a crossover point

p, which corresponds to a workstation. Then, the genes representing workstations 1 to p, in

the first parent, are copied to the same position in the first offspring. The remaining

positions are copied from those of p+1 to the last workstation in the second parent.

Usually, in the resulting offspring there are tasks with no workstation assigned, as it is

shown in Figure 3.7, hence, a reassignment procedure is performed in order to ensure

feasibility. The reassignment procedure aims to reassign the remaining tasks to

workstations with available capacity, in such a way that the feasibility of the resulting

solution is ensured.

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 35

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Figure 3.7 – Example of crossover specific for standard encoding

The mutation operator proposed by the same authors consists in selecting at random a

number of genes and applying the reassignment procedure. Anderson and Ferris (1994)

implement mutation by changing a task’s workstation (with a small probability) to either

the workstation immediately before or immediately after, even so incurring the risk of

unfeasibility.

A frequently used codification scheme is the order encoding where the chromosome is a

sequence of tasks which verifies the precedence constraints. In order to obtain a balancing

solution it is necessary to apply a construction procedure: the tasks are assigned to

workstations in the sequence dictated by the chromosome. However, different

chromosomes may lead to the same balancing solution, as the sequence of tasks within the

workstations is not relevant for most balancing problems.

The two-point order crossover is typically used for the recombination of chromosomes

with order encoding (Leu et al, 1994, Sabuoncuoglu et al, 2000, Khoo and Alisantoso,

2003). Two crossover points are randomly selected, dividing the chromosomes in three

parts. The first offspring is a direct copy of the first and last parts of the first parent. The

middle part is obtained by rearranging the missing tasks in the order by which they appear

in the second parent. This ensures the feasibility of the resulting task sequence. An

illustration of this encoding is shown in Figure 3.8.

Rubinovitz and Levitin (1995) present a crossover operator called fragment reordering

crossover, later used by Levitin et al (2006), which works as follows: first, all elements of

the first parent are copied to the same positions of the offspring, then, the elements of a

random fragment of the offspring are rearranged according to their order in the second

parent. This operator seems equivalent to the two-point order crossover.

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 36

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

1 3 4 5 8 9 6 11 2 7 10 13 12 14 15 16 18 19 17 20 2123 22 24 25

2 1 3 7 6 10 4 5 11 9 8 14 12 13 15 16 17 21 18 19 20 22 23 24 25

1 3 4 5 8 9 6 2 7 10 11 14 12 13 15 16 18 19 17 20 2123 22 24 25

parent 1

parent 2

offspring 1

Figure 3.8 – Two-point order crossover

The use of the partially mapped crossover (Goldberg, 1989) is also reported in the

applications of GA to ALB (Rubinovitz and Levitin, 1995 and Tsujimura et al, 1995) but

the resulting task sequences are often unfeasible. This operator compares the two parents

and performs task position exchanges such that each offspring is partially determined by

each of its parents. Figure 3.9 gives an example of this operator.

Figure 3.9 – Partially mapped crossover

Mutation operators perform mainly by (i) changing the position of two tasks in the

chromosome (Rubinovitz and Levitin, 1995, Tsujimura et al, 1995 and Levitin et al, 2006)

or (ii) scrambling the genes of the chromosome after a randomly selected point (Leu et al,

1994 and Sabuncuoglu et al, 2000).

Falkenauer (1998) presents a grouping genetic algorithm, especially suited for grouping

problems, with a codification scheme called group encoding. In its application to ALBP,

the groups are the workstations and the elements belonging to the groups are the tasks. The

chromosome has two parts. The first part shows the assignment of tasks to workstations

and it is similar to the standard encoding scheme. The second contains the groups, i.e., one

gene for each workstation. Figure 3.10 shows an example of group encoding.

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 37

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Figure 3.10 – Group encoding

The genetic operators are only applied to the group part of the chromosome. Rekiek et

al (2000, 2001) use a crossover operator that performs in the following way: (i) selection of

two crossover points, (ii) injection of the contents of the crossing section of the first parent

at the first crossover point of the second parent, (iii) elimination of groups from the second

parent containing duplicated elements and (iv) reinsertion of missing elements using

problem specific heuristic rules. Figure 3.11 shows an illustration of this operator. For ease

of demonstration, workstations are represented together with their tasks.

Figure 3.11 – Crossover in grouping genetic algorithms

Scholl and Becker (2006) use the term indirect encoding to designate other ways of

encoding found in the ALBP literature. Gonçalves and Almeida (2002) and Ponnambalam

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 38

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

et al (2000) use chromosomes to represent a priority rule for each task. Each chromosome

generates a balancing solution by applying a constructive priority-based heuristic. The first

authors also apply a local search procedure in order to improve the solution and use a

crossover operator called uniform crossover in which, gene by gene, there is a random

selection of which of the two parents will provide the information.

The codification of solutions proposed by Zhao and de Souza (2000), for balancing an

automated production line, is a matrix with the values of several adjustable variables of the

problem (machine settings, facilities downtime, manpower assignment, batch size, etc.).

For balancing a printed circuit board assembly line, Ji et al (2001) also use a matrix format

chromosome in which each element xij represents the number of components of type j to be

assembled on machine i. Lee et al (2000) use genetic algorithms as an input for a

simulation model to balance a semi-automated assembly line. The chromosomes represent

the processing times of the different workstations of the line.

3.3.2.2 Fitness function

Several fitness functions have been proposed in the literature for the ALBP. For

problems of type I, as it was mentioned before, there often exist a large number of

alternative feasible solutions with the same number of workstations, so it is necessary to

use objective functions beyond the minimisation of the number of workstations, for a better

guidance of the search process.

Kim et al (2000) use the minimisation of the adjusted number of workstations, which

favours solutions that can, more likely, be improved. This function is computed by adding

to the number of workstations (S) the ratio between the workload of the last workstation

(WS) and the cycle time (C), as shown in the following expression:

C
W

SFitness S+= (3.2)

Falkenauer (1998) evaluates the squared average deviation from a full station load. The

fitness function, to maximise, favours solutions with some well-filled and some nearly

empty workstations as opposed to solutions where all workstations have similar workload.

The reasoning is that in extremely unbalanced solutions is easier to eliminate workstations.

The function is computed as follows:

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 39

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

()

S

CW
Fitness

S

k
k∑

== 1

2

(3.3)

where Wk is the workload of workstation k.

The workload balance is a common goal that ensures equity in the distribution of work

among operators. Several expressions to compute workload balance are found in the

literature. Leu et al (1994) minimise the sum of mean squared workstation idle times given

by

()∑
=

−
=

S

k

k

S
WC

Fitness
1

2

 (3.4)

Sabuncuoglu et al (2000) use a fitness function with two terms. The first term aims to

balance the workloads between workstations while the second minimises the number of

workstations. This function is computed as follows:

() ()

S

WW

S

WW
Fitness

S

k
k

S

k
k ∑∑

==

−
+

−
= 1

max
1

2
max

2
(3.5)

where Wmax is the maximum workload. The authors give the first term a higher importance

and multiply it by two.

The problems of type II have as goal the minimisation of cycle time for a given number

of workstations. Anderson and Ferris (1994) consider as fitness function the minimisation

of the maximum workload added by a penalty for unfeasible solutions. Kim et al (1998)

propose a fitness function that distributes the workload as equal as possible between the

workstations and favours solutions with workstations with workloads close to the average

workload (W). It is given by:

∑
=

−=
S

k
k WW

S
Fitness

1

1 (3.6)

Multi-criteria approaches are proposed by Kim et al (1996) and Ponnambalam et al

(2000) addressing several objectives like minimising the number of workstations,

minimising the cycle time, balancing workloads and maximising line efficiency. The first

authors introduce a performance measure, called index of work relatedness, which aims to

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 40

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

assign related tasks to the same workstation. This objective is considered together with the

other goals when assessing the quality of a balancing solution.

3.3.2.3 Other features

Most of the GA applications to ALBP use standard approaches, as the ones described in

section 3.3.1, when generating the initial population, defining selection and replacement

strategies, setting crossover and mutation probabilities and stopping criteria.

An original variation, called Adam-Eve GA, is presented by Feyzbakhsh and Matsui

(1999). The initial population has only two individuals, however, the population size

increases during its evolution, as offspring are inserted as new individuals in the population

instead of replacing the parents. Due to a new operator, each individual faces death after a

few generations. Levitin et al (2006) introduce a phenomenon called cataclysm which

consists in, at the end of each iteration, create a whole new population preserving only the

best individual from the previous generation. This aims to avoid premature convergence.

3.4 Ant colony optimisation algorithms

3.4.1 Overview

Ant colony optimisation algorithms are population-based procedures inspired on the

behaviour of real ant colonies. Ants are known for being able to find the shortest path

between their nest and a food source, without making use of visual cues; only by following

pheromone trails released by other ants. The more intense is the trail, the higher the

probability of an ant to follow it and thus reinforce the trail with its own pheromone. So, it

is the colony as a whole that coordinates the activities without a direct communication

between individual ants, as an isolated ant basically moves at random.

Figure 3.12 presents an illustration of a typical result of the so-called double bridge

experiment, adapted from Bonabeau et al (1999). In this experiment, a food source is

separated from the nest by a double bridge with two branches of different lengths. Initially

there is no pheromone in the branches, having all, therefore, the same probability of being

selected by the ants. The first ants returning to the nest are those who selected the shortest

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 41

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

path twice (to go from the nest to the food source and to return to the nest), so that,

immediately after these ants have returned, more pheromone is present in the short

branches than in the long branches, stimulating other ants to select the short branches.

Sooner the colony converges to the shortest path. The collective behaviour that emerges is

a form of autocatalytic behaviour, i.e., positive feedback, where the more ants are

following the trail, the more attractive that trail becomes for being followed.

Figure 3.12 – The double bridge experiment

Ant algorithms were firstly presented by Dorigo et al (1991, 1996) as an approach to

solve NP-hard combinatorial optimisation problems. Although they have been originally

applied to the travelling salesman problem (Dorigo and Gambardella, 1996, 1997), rapidly

the scientific community showed a high curiosity and interest for this kind of approach,

providing applications to other types of problem.

The Ant Colony Optimisation (ACO) meta-heuristic presented by Dorigo et al (1999)

provides a unifying framework for most applications of ant algorithms to combinatorial

optimisation problems. According to Stültze and Dorigo (1999), all ant algorithms

previously developed fit into the ACO meta-heuristic, so they all can be called ACO

algorithms.

The basic idea underlying ACO algorithms is to use a positive feedback mechanism,

based on an analogy with the pheromone-laying pheromone-following behaviour of ants, to

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 42

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

reinforce good solutions of combinatorial optimisation problems. Each ant builds,

step-by-step, a single solution. During this procedure the ant takes into account the

information left by other ants (pheromone trails) and, eventually, other available

information about the problem (heuristic information). By the end, good solutions emerge

resulting from the indirect communication between the ants.

Artificial ants are different from real ants in the following aspects:

(i) they do not move continuously (the time is assumed to be discrete);

(ii) they have memory to store their past actions;

(iii) they are not completely blind as they possess some information about the

problem to solve;

(iv) the amount of pheromone released by the ants is a function of the quality of the

solution;

(v) the timing in pheromone laying is problem dependent and often it is very

different from what happens with real ants (for example, when the pheromone is

released only after the solution is completed).

These extra capabilities of the artificial ants increase their efficiency and effectiveness.

In order to illustrate how ACO algorithms work, its application to the travelling

salesman problem (TSP) will now be described. The TSP is a path optimisation problem,

so the ant colony metaphor is easily adapted. The goal is to find a closed tour of minimal

length connecting n nodes where each node must be visited once. Each ant builds a

solution to the TSP by moving on the problem graph from one node to another until it

completes a tour. During an iteration of the algorithm, m ants build a tour executing n

steps. At each step, an ant is in node i and it applies a probabilistic decision (state

transition) rule to select the next node j to be visited. The edge (i,j) is then added to the tour

under construction. For each ant, the transition from node i to node j depends on two

factors:

• Visibility (ηij) – Artificial ants are provided with some local information about the

problem. In the TSP, visibility (or heuristic information) is related to the distance

between two nodes, usually the inverse of the distance (ηij=1/dij), which means that the

lower the distance between nodes i and j, the higher the probability of going from i to j.

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 43

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Visibility helps directing the search, although a constructive method based exclusively

on heuristic information would produce low quality solutions.

• Pheromone trail (τij) – The amount of virtual pheromone trail on edge (i,j) represents

the learned desirability of selecting node j when in node i. The more ants have chosen

edge (i,j) in previous iterations, the more intense will be the trail. The pheromone trail

information is changed after each algorithm’s iteration to reflect the experience

acquired by the ants.

The state transition rule, i.e., the probability of ant k to go from node i to node j in the tth

iteration of the algorithm is called random proportional transition rule (Dorigo et al, 1991,

1996) and it is given by:

[] []
[] []∑

∈

=

k
iAl

ilil

ijijk
ij t

t
tp βα

βα

ητ

ητ

)(

)(
)((3.7)

where k
iA is the set of available nodes of ant k when in node i, and α and β are two

adjustable parameters that determine the relative importance of pheromone intensity versus

visibility. If α=0, the closest nodes are more likely to be selected, corresponding to a

classic stochastic greedy heuristic with multiple starting points (since ants are initially

distributed on the nodes at random). If β=0, only pheromone information is guiding the

search, but this situation may lead to premature convergence of the algorithm. Therefore, it

is necessary to establish a trade-off between both types of information.

Dorigo and Gambardella (1997) developed an enhanced version of the transition rule,

called pseudo-random proportional rule, which allows a balance between the exploration

of new edges and the exploitation of the currently best known edges. By applying this rule,

an ant k in node i will select node j, in the tth iteration, according to:

[] []{ }
[] []
[] []⎪

⎪

⎩

⎪
⎪

⎨

⎧

=

≤=

=

∑
∈

∈

n)exploratio (biasedotherwise
)(

)(
)(:

)onexploitati(if)(maxarg

22

22

01

k
i

k
i

Al
ilil

iJiJk
iJ

ijij
Aj

t

t
tpJ

rrtJ

j
βα

βα

βα

ητ

ητ

ητ

 (3.8)

where r is a random number uniformly distributed in the interval [0,1] and r0 is a

pre-defined parameter, which determines the relative importance of exploitation versus

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 44

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

exploration. Whenever an ant in node i has to select a node j, it samples a random number

(0≤ r ≤1). If r ≤ r0 then the best node (J1) is selected, otherwise a node (J2) is selected

according to its probability ()(
2

tpk
iJ).

After completing a tour, each ant k deposits an amount of pheromone)(tk
ijτ∆ on each

visited edge (i,j) that depends on the quality of the solution (distance of the tour) and it is

given by:

⎩
⎨
⎧ ∈

=∆
otherwise0

)(if)(/)(tT(i,j)tLQt
kk

k
ijτ (3.9)

where Tk(t) is the tour built by ant k at iteration t, Lk(t) is its length and Q is a pre-defined

parameter. To be noticed that an iteration t of the algorithm is completed when all ants

have done a tour, so that the pheromone released by ants in one iteration does not influence

the decision of the other ants in the same iteration. For ease of implementation, all ants will

release their pheromone simultaneously at the end of each iteration.

An important issue is pheromone evaporation. In order to ensure efficient solution

space exploration and avoid stagnation, it is necessary to allow the decay of the trail

intensity. This is implemented by the introduction of an evaporation coefficient ρ (0≤ ρ

<1) which decreases the trail intensity of each edge. At the beginning of the algorithm, an

initial amount of pheromone τ0 is present on all edges.

The global pheromone update effect of all ants on each edge (i,j) in the tth iteration is

given by :

∑
=

∆+−←
m

k

k
ijijij ttt

1

)()()1()(ττρτ (3.10)

Other pheromone update strategies are possible, like the use of elitist ants. An elitist ant

is an ant which, in every iteration, reinforces the edges of the best tour found so far by the

algorithm. The idea is that this reinforcement will direct the search of the other ants (in

probability) towards a solution containing some edges of the best tour.

The Ant Colony System of Dorigo and Gambardella (1997) performs two types of

pheromone update strategies: global and local. The global update is done, at the end of an

iteration, solely by the ant that generated the best tour since the beginning of the algorithm.

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 45

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Local updates are performed by the other ants while building the tours and not at the end of

the iteration. When ant k, while building a tour, is in node i and selects node j, the

pheromone intensity of edge (i,j) is updated as follows:

0)1(ρττρτ +−← ijij (3.11)

The local update rule avoids the selection of a very good edge by all ants, as every time

an edge is selected its pheromone level diminishes. This will favour exploration of not yet

visited edges, preventing premature convergence of the algorithm.

3.4.2 ACO approaches for assembly line balancing

The use of ACO algorithms to solve the assembly line balancing problem follows the

recent developments in combinatorial problem solving, that is influenced by techniques

based on the behaviour of insect societies. An overview of the application of concepts

inspired in colonies of social insects (ants and wasps) to solve manufacturing problems is

presented in Cicirello and Smith (2001). A literature review of the application of ACO

algorithms to several hard problems, like quadratic assignment, sequential ordering,

job-shop scheduling, graph colouring, vehicle routing, generalized assignment, shortest

common super sequence and network routing is provided by Dorigo et al (1999).

The literature reporting the use of ACO algorithms to solve assembly line balancing

problems is scarce. Only two publications were found: (i) the conference paper of Bautista

and Pereira (2002), who apply an ACO algorithm to solve the simple assembly line

balancing problem and (ii) the paper of McMullen and Tarasewich (2003), reporting the

use of ant techniques to address assembly line balancing problems with focus on the

stochastic nature of task processing times. The main features of both works will be now

briefly described.

The way artificial ants build an assembly line balancing solution in the approach

proposed by Bautista and Pereira (2002) is straightforward: each ant iteratively selects a

task for assignment using a constructive procedure. The probability of selecting a task j

depends on the heuristic information about the task (ηj), in the form of a priority rule, and

the pheromone trail intensity. The authors use thirteen priority rules available in the

literature for the assembly line balancing problem (e.g., maximum processing time,

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 46

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

maximum number of immediate successors, maximum number of successors, etc.) and

assign one priority rule to each ant.

Three pheromone release strategies are used:

(i) trail between consecutive assigned tasks – τij is the trail intensity between tasks i

and j;

(ii) trail between the task and the iteration in which it was assigned – τij is the trail

intensity between task j and its position i in the sequence of assigned tasks;

(iii) trail between the task and the workstation to which it was assigned – τij is the trail

intensity between workstation i and task j.

The probability of ant k to select task j is given by:

[] []
[] []∑

∈

=

k
iAl

lil

jijk
ijp βα

βα

ητ

ητ
 (3.12)

where k
iA is the set of available tasks (i.e., tasks that meet precedence and capacity

constraints). τij will depend on the pheromone release strategy and ηj will depend on the

priority of each task for a given rule. The values of the different priority rules are linearly

normalised between 1 and the number of available tasks, in order to eliminate the

dissimilarity between the ranges of values of the different rules.

After all ants of an iteration of the algorithm have generated a balancing solution, a

local search procedure is applied to the best solutions obtained. The search is guided by an

objective function that minimises the idle time in the first workstations and maximises idle

time in the last workstations, aiming to decrease the number of workstations of the

solution. The neighbourhood is defined by (i) exchanging the workstation of two tasks or

(ii) transferring a task to the previous workstation. Both of the movements are forced to

build feasible solutions.

The updating of pheromone trails is performed exclusively by the best ants in each

iteration and it takes into account the number of workstations of their solution (BestSol)

and the number of workstations of the best solution found so far by the algorithm

(BestSolSoFar). It is given by:

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 47

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

BestSol
arBestSolSoF

ijij ρτρτ +−←)1((3.13)

In the procedures proposed by McMullen and Tarasewich (2003, 2006), the pheromone

level associated with the assignment of a task j to the current workstation i is also the

probability of task j being selected and it is given by:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑∑

∈∈ jj Al
lj

Al
ljj IlMIjMmetricmetricph),(),((3.14)

Depending on the strategic approaches selected by management, four different metrics

are used to determine the overall attractiveness of task j to be assigned to the current

workstation: (i) uj, (ii) pj, (iii) uj × pj and (iv) uj × (1-pj), where uj is the utilisation of the

current workstation after the assignment of task j and pj is the probability of all tasks being

completed on time if task j is assigned to the current workstation. The first term of

expression (3.14) gives the relative desirability of task j (for a given metric) compared with

the other available tasks. The second term is related with the traditional pheromone

concept and it is explained as follows. M is a matrix that keeps the number of times that

task j has been assigned to a workstation after a certain immediate predecessor Ij, since the

beginning of the algorithm. If Ij is a frequent predecessor of task j in previous balancing

solutions, then M(j,Ij) will have a high value, incorporating, therefore, historical

information in the task selection process.

After the assignment of all tasks, four solution quality measures are computed: (i)

utilisation of assembly line layout, (ii) probability of all workstations to complete their

tasks on-time (as task processing times are considered stochastic), (iii) composite measure

of utilisation and on-time completion probability and (iv) design cost associated with the

line layout. These objective functions will be used according to the strategic approach

selected by the decision-maker.

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 48

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

3.5 Taboo search algorithms

3.5.1 Overview

Another popular meta-heuristic approach used to address the assembly line balancing

problem is taboo search, introduced by Glover (1989, 1990). In this section only a glance

at this search procedure will be given as well as brief references to literature publications

on the subject.

Taboo search is a generalised local search procedure, for solving combinatorial

optimisation problems, that uses information on the history of the search to overcome local

optimality. It starts from an initial solution and iteratively moves to a neighbour solution

which may or not lead to improvement. The decision of which neighbour solution should

be visited is based on the examination of the whole neighbourhood or a subset of the

neighbourhood of a solution. The best neighbour is selected, even if it is worse than the

current solution. A neighbour solution is usually obtained by transferring tasks to different

workstations or by swapping tasks from different workstations, similarly to the neighbour

generation procedure of most simulated annealing approaches.

The underlying idea is to forbid some search directions at a determined iteration, in

order to avoid cycling, by keeping some attributes of the last visited solutions in a structure

called taboo list with a limited size. The use of ‘short-term memory’ avoids the procedure

to be trapped at local optima while the use of ‘long-term memory’ allows the use of

intensification and diversification strategies to refine the search process. Intensification

aims at concentrating the search to a specific region of the solution space whereas

diversification tries to lead the search direction into unvisited regions of the solution space.

3.5.2 Taboo search approaches for assembly line balancing

In the literature, there are several applications of taboo search to the assembly line

balancing problem. Heinrici (1994) presents a comparison of simulated annealing and

taboo search to solve the SALBP of type II. The initial solution is produced using a

modified version of the ranked positional weight technique. The set of neighbour solutions

is obtained by shifting tasks out of the workstation with the highest workload. If this does

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 49

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

not generate any feasible solution, then all possible transfers and swaps are performed. The

reported computational tests showed that the taboo search performed equal or better than

simulated annealing, for most of the tested problems.

Scholl and Voβ (1996) present taboo search algorithms for both type I and type II

problems. These authors initially present a procedure to tackle the SALBP-II and then it is

applied within a framework of a lower bound method to solve the SALBP-I. Initial

solutions are obtained using heuristics based on priority rules and transitions to neighbour

solutions are performed through transfer and swap moves. Good results of the

computational experiments are reported.

Chiang (1998) presents four different versions of a taboo search procedure to address

the SALBP-I. The initial solution is obtained via a constructive heuristic based on several

priority rules. The transition to neighbour solutions is performed by λ-exchange moves, in

which no more than λ tasks are exchanged for any two workstations. The performance is

tested with set of test problems and the reported results are very good: except for a few

cases, the procedure always finds the optimal solutions.

The only application of taboo search to assembly line balancing problems which reflects

some operating conditions of real assembly lines is presented by Lapierre et al (2006). The

developed algorithm allowed the exploration of unfeasible solutions, through cycle time

violation, and uses two different neighbourhood structures: one focuses on reducing or

increasing the ‘half-empty’ workstations and the other attempts to completely empty

‘near-empty’ workstations. The proposed taboo search procedure is applied to a real line

with workstations located on both sides of the conveyor, with two possible conveyor

heights.

3.6 Chapter conclusions

There is a growing interest in the use of meta-heuristics to solve combinatorial

optimisation problems due to their capability to handle a wide range of problems with a

relatively low algorithm complexity and to the good performance achieved in most cases.

The analogy and inspiration from natural systems is also an extra aspect that motivates

Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 50

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

researchers. Besides these characteristics, the motivation for using meta-heuristics in this

particular work was their flexibility to incorporate complex characteristics of the problems.

The review of the application of these techniques to the assembly line balancing

problem showed that the emphasis of the researchers is still on the definition of the

technique’s parameters instead of solving more complex problems. The simple assembly

line balancing problem remains the most researched problem, mainly because it is a

benchmark problem with a large number of data sets with known optimal solutions. This

makes it easier to evaluate the performance of the developed procedures, as solutions can

be compared with the optimal values.

The characteristics of real world assembly lines are much more complex than the ones

addressed by most of the techniques reported in the literature. This represents a gap

between research directions and industrial needs.

The present study is driven by the need to model the assembly line balancing problem in

a way that reflects the operating conditions of real world assembly lines. Complex features

of the problem like mixed-model production, use of parallel workstations, zoning

constraints are included in the definition of the problem and meta-heuristic based

procedures are developed to solve it. Also, some real assembly lines are studied in order to

validate the assumptions of the proposed procedures and to better understand the real

industrial problems.

The following chapters present the definition of the addressed problems – balancing

mixed-model (i) straight lines, (ii) U-shaped lines and (iii) 2-sided lines – and describe the

meta-heuristic based procedures developed to tackle them.

4
4. Balancing straight assembly lines

Contents
• Chapter introduction

• Definition of the mixed-model ALBP with parallel workstations

• Simulated annealing based approach

• Genetic algorithm based approach

• Ant colony optimisation based approach

• Addressing the problem of type II

• Computational experience

• Chapter conclusions

Chapter 4: Balancing straight assembly lines 53

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

4.1 Chapter introduction

In this chapter, the addressed problem – the mixed-model straight assembly line

balancing problem (MALBP) – is formally described using a mathematical programming

model and the procedures developed to tackle it are presented. Three procedures based on

meta-heuristics (simulated annealing, genetic algorithms and ant colony optimisation) were

developed to address both type I and type II problems and their performance is compared

through a set of computational experiments.

Although some of what is described in this chapter refers to previous developed work,

namely, the mathematical programming model and the simulated annealing procedure for

type I (Simaria, 2001), it was decided to include it in this document, with the purpose of

better describing the whole research.*

4.2 Definition of the mixed-model ALBP with parallel

workstations

4.2.1 Problem assumptions and constraints

As it was referred earlier, the recent market trends show that there is a growing demand

for customised products, increasing the pressure for manufacturing flexibility.

Mixed-model assembly lines are an adequate production system for companies to

implement manufacturing postponement strategies, being an important piece of the supply

chain.

In the addressed problem, the assembly line is configured to produce a set of similar

models of a product (m=1,…,M), in any order or mix, over a pre-specified planning

horizon, P. The forecasted demand, over the planning horizon, for model m is Dm,

requiring the line to be operated with a cycle time given by:

∑
=

=
M

m
mDP/C

1

 (4.1)

* Parts of the work presented in this chapter are published in Simaria & Vilarinho (2001, 2004) and Vilarinho & Simaria (2002, 2006).

Chapter 4: Balancing straight assembly lines 54

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

The overall proportion of the number of units of model m being assembled, i.e., the

production share of each model, is computed by:

∑
=

=
M

p
pmm DDq

1

/ (4.2)

Each model has its own set of precedence relationships, but there is a subset of tasks

common to all models. Hence, the precedence diagrams for all the models can be

combined and the resulting one has N tasks (i=1,…,N are the task numbers of the tasks in

the combined precedence diagram). The time required to perform task i on model m, tim,

may vary among models (tim=0 means that model m does not require task i).

The work of Bukchin et al (2002) and Bukchin and Rabinowitch (2005) states that in

modern assembly lines workers are expected to be more versatile and one can assume that

each worker is able to perform any task on the line. Following this assumption, they allow

the assignment of the same task to different workstations when performed in different

models. Although this idea seems adequate for the actual industry environment, there is no

evidence of a successful implementation in real world assembly lines. So, in this model the

traditional assumption of the use of specialised operators, trained to perform a small set of

tasks, is maintained. This way, a task that is common to several models must be assigned

to the same workstation, for the different models. The first set of decision variables is

defined as:

),...,1;,...,1(
otherwise 0,

on workstati toassigned is task if 1,
 LLkNi

ki
xik ==

⎩
⎨
⎧

= (4.3)

where LL is the line length, i.e., the number of workstations in the assembly line. The

assignment of a task to only one workstation, regardless of the model being assembled, is

guaranteed by the following set of constraints:

)1(1 ,...,Nix
LL

1k
ik ==∑

=

 (4.4)

To ensure that the precedence constraints of the assembly process are not violated, the

set of constraints (4.5) is included in the model, taking into account, for each task i, the set

successors of task i (Suci), i.e., the set of tasks that cannot be performed before task i is

completed, which is derived from the combined precedence diagram. No successor of task

Chapter 4: Balancing straight assembly lines 55

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

i will, then, be assigned to an earlier workstation than the workstation to which task i is

assigned.

);1(0 i

LL

1k
jk

LL

1k
ik Sucj,...,Nikxkx ∈=≤−∑∑

==

 (4.5)

The workload corresponding to the set of tasks assigned to a workstation cannot exceed

the workstation’s capacity, a crucial factor for the line production rate. Most of the

techniques used to solve the ALBP require the assignment of each task to a single

workstation and, consequently, the production rate is limited by the longest task time. This

assumption can be relaxed by using parallel workstations in such a way that two or more

replicas of a workstation can perform the same set of tasks on different assemblies. The

introduction of parallel workstations not only allows for cycle times shorter than the

longest task time, allowing an increase in the production rate, but also provides greater

flexibility in designing the assembly line (Buxey, 1974). However, as the number of

parallel workstations increases, so does the number of different tasks performed by each

operator. If the replication of workstations is not controlled, one can lose one of the main

advantages of using assembly lines: the use of low skilled labour that can easily be trained

to perform a small number of tasks.

Most of the models for the ALBP with parallel workstations proposed in the literature

base the decision to create parallel workstations in a trade-off between the incremental

tooling/equipment cost of the duplicated workstation and the cost of hiring operators for

the original line in order to satisfy the demand (e.g., Johnson, 1983, Pinto et al, 1975, 1981,

Bard, 1989, Daganzo and Blumenfeld, 1994, Askin and Zhou, 1997). McMullen and

Frazier (1997, 1998) allow the replication of a workstation as long as its utilisation

increases. Schofield (1979) and Sarker and Shantikumar (1983) define a limit on the

number of parallel workstations to control the replication process, while Buxey (1974)

includes a limit on the number of tasks per workstation. In all these approaches, tasks with

processing times much shorter than the cycle time can trigger the replication of

workstations, which can lead to an excessive number of parallel workstations.

To address this issue, the proposed approach uses a mechanism to control the

replication of workstations, based on the approach originally developed for the

single-model assembly line balancing problem (Simaria and Vilarinho, 2001). The model

Chapter 4: Balancing straight assembly lines 56

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

allows the decision-maker to establish the conditions under which a workstation can be

replicated by defining a minimum processing time that triggers the replication process

(MRT – minimum replication time). This means that only workstations that perform tasks

with processing time higher than MRT for, at least, one of the models, are allowed to be

replicated, that is, are allowed to have two or more operators working in parallel (in

replicas of the workstation). The number of replicas of a workstation k, Rk, is determined

by its longest task processing time (for all models) and it is given by:

{ }
),...1(

max
,...,1;,...,1 LLk

MRT

xt
R

ikimNiMm
k =

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
= == (4.6)

By using parallel workstations, it is necessary to distinguish between the total number

of operators working on the line and the number of different workstations in the line (LL).

This way, if some operators carry out the same set of tasks in parallel workstations, there

will be more operators than different workstations. The total number of operators working

on the assembly line (S) is computed by the sum of the number of replicas of all

workstations, as follows:

∑
=

=
LL

k
kRS

1

 (4.7)

The capacity of a workstation depends on the tasks assigned to it. Let task h be a

candidate for assignment to workstation k. Wkm is the workload of workstation k for model

m, after the assignment of task h, defined as the sum of the task processing times for each

model assigned to workstation k plus the processing time of task h, and given by:

),...,1;,...1(
1

MmLLktxtW hm

N

i
ikimkm ==+= ∑

=

 (4.8)

The capacity constraints are defined as follows: if workstation k performs a task with a

processing time higher than MRT, for at least one of the models, or if task h has a

processing time higher than MRT, for at least one of the models, then constraint (4.9)

holds. In this case, the capacity of the workstation is the required to perform the task with

processing time higher than MRT.

)1;1(,...,Mm,...,LLkCRW kkm ==⋅≤ (4.9)

Chapter 4: Balancing straight assembly lines 57

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

If all tasks in workstation k and task h have processing times not higher than MRT,

constraint (4.10) must hold, i.e, the capacity of the workstation is equal to the cycle time.

)1;1(,...,Mm,...,LLkCWkm ==≤ (4.10)

The idle time of a workstation is the difference between the capacity of the workstation

and its workload. skm is idle time of workstation k due to model m and it is computed by the

following set of equations:

),...,1;,...1(
1

MmLLkCRsxt
N

i
kkmikim ==⋅=+∑

=

 (4.11)

Zoning constraints may also be included in the problem. Positive zoning constraints

force pairs of tasks to be assigned to the same workstation and are defined by the set of

constraints (4.12), where ZP represents the set of pairs of tasks that must be assigned to the

same workstation.

)),((0 ZPjikxkx
LL

1k
jk

LL

1k
ik ∈=−∑∑

==

 (4.12)

The set of constraints (4.13) defines the negative zoning constraints, which forbid the

assignment of pairs of tasks to the same workstation. ZN is the set of pairs of incompatible

tasks.

)),((0 ZNjikxkx
LL

1k
jk

LL

1k
ik ∈≠−∑∑

==

 (4.13)

4.2.2 Objective function

The main goal of ALBP of type I is to minimise the number of workstations for a given

cycle time. So, the first approach to address this goal was the use of an objective function

that minimised the number of the workstation to which the last task of the precedence

diagram was assigned. This function was given by:

∑
=

K

1k
NkkxMinimise (4.14)

where K is an upper bound of the number of workstations, as when formulating the

problem one does not know how many workstations will have the line (K ≥ LL). However,

Chapter 4: Balancing straight assembly lines 58

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

this function is only adequate when the precedence diagram converges to one final task

(the Nth task), which is not the case, for many diagrams.

Another way to address this goal is through the minimisation of the idle time of the line,

because a line with a lower number of workstations will necessarily have a lower idle time.

To cope with the mixed-model nature of the problem, an objective function called

weighted idle time (WIT) was developed. It minimises the weighted sum (considering each

model production share, qm) of the idle time of the workstations in the line and it is given

by:

∑∑ ∑
= = =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

LL

k

M

1m

N

i
ikimkm xtCRqWITMinimise

1 1

 (4.15)

The values of WIT are different from problem to problem, as they vary according to the

cycle time and task processing times of the problem instance. An alternative measure,

which is always within a fixed range of values, is the weighted line efficiency (WE). It

varies between 0 and 1 and it gives a direct idea of the efficiency of the assembly line,

regardless of the data of the problem instance: the more close to 1 (or 100%) the less idle

time has the line. WE is an objective function to maximise and it is computed as follows:

∑
∑

=

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅
=

M

1m

N

i
im

m CS

t
qWEMaximise 1 (4.16)

where S is the total number of operators of the line. This objective function is adequate for

problems of type I and of type II. The only difference is in what is given as input and what

is incognita. While for type I C is given and S is unknown, for type II the opposite occurs,

i.e., S is given and C is unknown.

Besides the minimisation of the number of workstations (or the minimisation of cycle

time, for problems of type II), additional goals, concerning workload smoothing, are also

envisaged. The objective function Bb aims to balance the workload between workstations,

i.e., for each model the idle time is distributed across workstations as equally as possible,

and it is given by:

Chapter 4: Balancing straight assembly lines 59

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

∑
∑

=

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

=
LL

k

M

m
kmm

b LLWIT

sq

LL
LLBMinimise

1

2

1 1
1

 (4.17)

The value of function Bb varies between a maximum of 1, when the weighted idle time

of the line is equal to the idle time of one of the workstations, and a minimum of 0, when

WIT is equally distributed by all workstations in the line. A demonstration of these values

is presented in Appendix 1.

Due to the mixed-model nature of the problem, each task processing time may vary

among the different models and, so, the workload assigned to a workstation may also vary.

In order to ensure that each operator performs approximately the same amount of work for

each model being assembled, it is desirable to balance the workload within each

workstation. To achieve this goal the objective function Bw was developed, which aims at

smoothing the workload balance within each workstation and it is computed as follows:

∑∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

LL

k

M

m k

kmm
w MS

sq
MLL
MBMinimise

1 1

2
1

)1(
 (4.18)

where Sk is the weighted idle time of workstation k, given by:

∑
=

=
M

m
kmmk sqS

1

 (4.19)

The value of function Bw varies between a maximum of 1, when the idle time of each

workstation is only accountable to one model, and a minimum of 0, when it is equally

distributed by all models in every workstation. (A demonstration of these values is

presented in Appendix 1.) An important note is that workstations with no idle time for any

model (i.e., with Sk=0) are not considered in the computation of Bw.

Figure 4.1 shows the distribution of the overall idle time of an assembly line in five

different balancing scenarios, all with 4 models and 4 workstations. In this figure each

matrix cell represents the idle time of workstation k due to model m (skm) The model

production shares are q1=0.2, q2=0.2, q3=0.4 and q4=0.2.

Scenario 1 represents the perfect balancing solution, with both functions Bb and Bw

reaching their minimum values. The idle time of the line is equally distributed between all

Chapter 4: Balancing straight assembly lines 60

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

workstations and proportionally split by all models at each workstation. In scenario 2 the

balance between workstations is perfect, but the balance within workstations is at its

worse, with a single model causing the whole idle time.

The increase of functions Bb and Bw depends on the degree of balance between and

within workstations, respectively. For instance, in scenario 3 half of the workstations have

their idle time completely unbalanced, so Bw is around 0.5 (it is not exactly 0.5 because in

workstation 4 the idle times are not perfectly balanced). A similar reasoning is applied to

scenario 4, where 75% of the workstations are completely unbalanced leading to a value of

Bw around 0.75.

Finally, scenario 5 shows a line perfectly balanced within workstations, but in which

there is only one workstation with idle time. Although this is a situation for Bb=1 and, thus,

a worst case situation, in practice, it can be seen as an opportunity to decrease the number

of workstations of the line. In fact, by slightly increasing the cycle time of the line it could

be possible to reassign the tasks of the last workstation to other workstations, eliminating,

this way, workstation 4.

k sk1 sk2 sk3 sk4 k sk1 sk2 sk3 sk4 k sk1 sk2 sk3 sk4 k sk1 sk2 sk3 sk4 k sk1 sk2 sk3 sk4
1 6 6 3 6 1 24 0 0 0 1 12 0 0 0 1 12 0 0 0 1 0 0 0 0
2 6 6 3 6 2 0 24 0 0 2 0 12 0 0 2 0 12 0 0 2 0 0 0 0
3 6 6 3 6 3 0 0 12 0 3 6 6 3 6 3 0 0 0 12 3 0 0 0 0
4 6 6 3 6 4 0 0 0 24 4 6 6 9 18 4 12 12 12 12 4 24 24 12 24

Scenario 5

Bb=1 Bw=0

Scenario 3

Bb=0.13 Bw=0.52

Scenario 4

Bb=0.25 Bw=0.76Bb=0 Bw=0

Scenario 1 Scenario 2

Bb=0 Bw=1

Figure 4.1 – Example of the variation of functions Bb and Bw for different scenarios

4.2.3 Complete mathematical programming model

The functions and constraints described in the previous sections are part of a

mathematical programming model developed to formally describe the mixed-model

assembly line balancing problem, presented globally in Figure 4.2. The objective function

takes into account the values of WE, Bb and Bw, however it is obvious that WE is the most

important goal because it directly addresses either the minimisation of the number of

workstations or the minimisation of the cycle time. For this reason, it is multiplied by a

user defined parameter (λ) that should be set λ>1. As the criterion of the global objective

Chapter 4: Balancing straight assembly lines 61

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

function is maximisation, the symmetric values of functions Bb and Bw (defined by

equations (4.17) and (4.18), respectively) had to be considered.

The model constraints are interpreted as follows:

(i) constraints ensuring that each task is assigned to only one workstation of the

station interval (assignment constraints);

(ii) constraints ensuring that no successor of a task is assigned to an earlier station

than the workstation to which is assigned that task (precedence constraints);

(iii) constraints ensuring that each workstation capacity is not exceeded, where the

capacity of a workstation depends on whether or not it performs tasks with

processing times for, at least, one model, higher than the minimum replication

time, MRT (capacity constraints);

(iv) positive zoning constraints;

(v) negative zoning constraints,

(vi) set of constraints computing the line length (LL) in which the auxiliary binary

variable yk equals one, if the kth workstation is used for assembly and zero,

otherwise (in this set of constraints, M is a very large positive integer);

(vii) set of constraints defining the decision variables domain.

The large number of constraints and binary variables makes the proposed model highly

complex, preventing it from being solved to optimality, at least for real world problems. It

is, however, a very useful tool to formally describe the problem.

The use of a mathematical programming model to optimally solve a mixed-model

assembly line balancing problem, with no parallel workstations or zoning constraints, was

proposed by Göcken and Erel (1997, 1998). The computational experiments conducted by

these authors revealed that the model was capable of solving problems with up to 40 tasks

in the combined precedence diagram. For larger sized problems, it would be too large to

obtain optimal solutions. It is clear that the model proposed in this section is more complex

than the one proposed by these authors, because the addressed problem has additional

characteristics that better reflect the operating conditions of real assembly lines (e.g.,

parallel workstations and zoning constraints). This way, the approach to solve the problem

was based on the development of heuristic procedures that are able to efficiently search the

solution space, providing good solutions in reasonable computation times.

Chapter 4: Balancing straight assembly lines 62

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Three meta-heuristic based procedures (simulated annealing, genetic algorithms and ant

colony optimisation) were developed to tackle the MALBP described in this section and

will be presented in the following sections.

{ }

d) (integer is 0
c) (),...1(}1,0{
b) (),...1;,...,1(}1,0{
a) (),...,1;,...1(0

c) (

b) (),...1(

a) (),...1(

)()),((0

)()),((0

)(),...,1;,...1(
max

)();1(0

)()1(1

:subject to

1

1

,...,1;,...,1

viiLLLL
viiKky
viiKkNix
viiMmKks

viyLL

viKkyx

viKkyx

vZNjikxkx

ivZPjikxkx

iiiMmKkC
MRT

xt
sxt

iiSucj,...,Nikxkx

i,...,Nix

BBWEMaximise

k

ik

km

K

k
k

N

1i
kik

N

1i
kik

K

1k
jk

K

1k
ik

K

1k
jk

K

1k
ik

N

i

ikimNiMm
kmikim

i

K

1k
jk

K

1k
ik

K

1k
ik

wb

>
=∈

==∈
==≥

=

=≥

=≤

∈≠−

∈=−

==⋅
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
=+

∈=≤−

==

−−

∑

∑

∑

∑∑

∑∑

∑

∑∑

∑

=

=

=

==

==

=

==

==

=

M

λ

Figure 4.2 – Mathematical programming model for the mixed-model ALBP with parallel workstations

4.3 Simulated annealing based approach

A two-stage procedure that uses the simulated annealing technique (described in section

3.2) was developed to tackle the MALBP of type I. In the first stage the procedure looks

for a sub-optimal solution for the problem’s main goal – the minimisation of the number of

workstations. In the second stage, the additional goals of workload balancing are

envisaged. In both stages a simulated annealing approach is used. The framework of this

procedure is presented in Figure 4.3.

Chapter 4: Balancing straight assembly lines 63

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

1st stage
Best solution

2nd stage
 Initial solution

Balance workloads
between and

within stations
STOP?

2nd stage
Best solution

Heuristic
Best solution

Initial
solution
Modified

RPW heuristic

Miminise
number of
operators

STOP?

Neighbouring
solution

Current
 solution

Swap or
Transfer

Solution in
taboo list?

Verify
constraints?
(precedence,

zoning,
capacity)

Y

NO

NO

YES

Neighbouring
solution

Current
 solution

Swap or
Transfer

Solution in
taboo list?

Verify
constraints?
(precedence,

zoning,
capacity, first

stage)

Y

NO

FIRST STAGE SECOND STAGE

YESYES

YES

NO

NO

NO

Figure 4.3 – The two-stage simulated annealing based procedure

4.3.1 The first stage

4.3.1.1 Initial solution

The initial solution is obtained using a version of the Ranked Positional Weight (RPW)

heuristic proposed by Helgeson and Birnie (1961). The original RPW version only

addresses the simple assembly line balancing problem, where one single model is

assembled and no parallel workstations are allowed. The positional weight of a task in a

mixed-model assembly line is the cumulative weighted average task time associated with

itself and its successors. The weighted average task time of task i is the sum of the

processing times of that task for each model weighted by the respective production share.

The weighted average time of task i is then given by:

∑
=

==
M

m
immi Nitqt

1
),...,1((4.20)

Tasks are assigned to the lowest numbered feasible workstation by decreasing order of

their positional weight and considering the individual task processing times for each

model. In the original version of the RPW heuristic the cumulative duration of the tasks in

a workstation cannot exceed the cycle time (hence the concept of feasible workstation) and

Chapter 4: Balancing straight assembly lines 64

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

thus does not account for parallel workstations. The version of the RPW heuristic used to

obtain the initial solution in the first stage of the proposed procedure redefines the concept

of feasible workstation: if a workstation performs a task i with processing time larger than

MRT, for, at least, one model, its time capacity is
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⋅

MRT

t
C

imm
}{max

, otherwise is C.

The implemented version of the RPW heuristic also checks if the task to be assigned is

not incompatible with any of the tasks already allocated to the workstation and merges

tasks with positive zoning constraints, i.e., that need to be processed in the same

workstation, previously, so that they are treated as only one task.

4.3.1.2 Solution evaluation criterion

In the first stage the procedure looks for the solution that minimises the number of

workstations in the assembly line, so the weighted line efficiency, as defined in equation

(4.16), is used as objective function.

4.3.1.3 Neighbouring solutions

A neighbouring solution can be generated by one of the following actions: (i) swapping

two tasks in different workstations or (ii) transferring a task to another workstation. The

tasks to be swapped, as well as the task and the workstation for the transfer, are randomly

chosen. For any of these actions to result in a new neighbouring solution, the precedence,

zoning and capacity constraints must be fulfilled. When this is not the case, a new swap or

transfer must be attempted.

Only transfer movements may contribute to reduce the number of workstations, thus

maximising line efficiency. Nevertheless, swap procedures are also required to ease the

generation of successful transfer movements. So, the probability of performing a transfer

procedure must be higher than for the swap procedure and, by default, probabilities of 75%

and 25% were respectively set, although the user can set different values.

In both stages of the proposed procedure a taboo list is used to maintain information

about the most recently generated neighbouring solutions, in order to avoid cycling.

Chapter 4: Balancing straight assembly lines 65

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

4.3.2 The second stage

The goal of the second stage is to balance simultaneously the workloads between and

within workstations, for the number of workstations obtained in the first stage. The initial

solution of the second stage is the final solution found in the first stage. The criterion used

to evaluate the neighbouring solutions generated in this second stage derives directly from

the objective functions Bb and Bw computed by equations (4.17) and (4.18), respectively.

4.3.2.1 Neighbouring solutions

The generation of neighbouring solutions in the second stage also employs swap and

transfer movements, but the tasks and workstations involved in these movements are

selected to foster improving solutions, i.e., to improve workload smoothing. The steps of

the swap and transfer movements are described as follows:

(i) Swap movement

STEP 1. Let Z be a randomly selected workstation and X the model whose idle time for

that workstation has the highest deviation from the workstation average idle

time ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−⋅=∆
M
S

qssX Z
mZmmZX max: .

STEP 2. If
M
S

s Z
ZX > , then go to STEP 3, else, go to STEP 5.

STEP 3. Select the task assigned to workstation Z with the lowest processing time for

model X { } ⎟
⎠
⎞

⎜
⎝
⎛ ∈∧= ZiXiXT OittT min:

11 , where Oz is the set of tasks assigned to

workstation Z.

STEP 4. From the set of tasks performed on model X that are not assigned to workstation

Z and whose task time is higher than the task time of T1, randomly select one

()ZXTXT OTttT ∉∧> 22 12
: . Go to STEP 7.

STEP 5. Select the task assigned to workstation Z with the highest processing time for

model X { } ⎟
⎠
⎞

⎜
⎝
⎛ ∈∧= ZiXiXT OittT max:

11 .

Chapter 4: Balancing straight assembly lines 66

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

STEP 6. From the set of tasks performed on model X that are not assigned to workstation

Z and whose task time is smaller than the task time of T1, randomly select one

()ZXTXT OTttT ∉∧< 22 12
: .

STEP 7. If precedence, zoning, capacity and number of workstations constraints are met,

swap tasks T1 and T2, else, go to STEP 1.

(ii) Transfer movement

STEP 1. Let Z be a randomly selected workstation and X the model whose idle time for

that station has the highest deviation from the workstation average idle time

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−⋅=∆
M
S

qssX Z
mZmmZX max: .

STEP 2. If
M
S

s Z
ZX > , then go to STEP 3, else, go to STEP 5.

STEP 3. Select a task not assigned to workstation Z with processing time for model X

higher than for the other models { } ⎟
⎠
⎞

⎜
⎝
⎛ ∉∧= ZmTmXT OTttT 11 11

max: .

STEP 4. If precedence, zoning, capacity and number of workstations constraints are met,

transfer task T1 to workstation Z, else go to STEP 1.

STEP 5. Select the task assigned to workstation Z with the highest processing time for

model X { } ⎟
⎠
⎞

⎜
⎝
⎛ ∈∧= ZiXiXT OittT max:

11 .

STEP 6. Randomly select a workstation (W) where the workload for model X is lower

than the workstation average idle time ⎟
⎠

⎞
⎜
⎝

⎛
<

M
S

sW W
WX: .

STEP 7. If precedence, zoning, capacity and number of workstations constraints are met,

transfer task T1 to workstation W, else, go to STEP 1.

As the goal in this second stage is to balance the workloads, swap movements are more

likely to contribute towards this end (probabilities of 75% for swap and 25% for transfer

moves are set as the default). If after a predefined number of attempts neither swap nor

transfer movements lead to a neighbouring solution, tasks or workstations involved in

these movements will be randomly selected to force a new neighbouring solution.

Chapter 4: Balancing straight assembly lines 67

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

4.3.3 Parameter settings

A common annealing schedule was used for both stages of the procedure, in which the

following control parameters were defined:

(i) Initial temperature (T0): Computational experience showed that the values of the

objective functions never changed by more than 10% between two neighbouring

solutions. So, for an initial temperature of 50 it is guaranteed that at least 80% of

the inferior solutions are accepted (for T=50, 82.050
10

==
−

ep).

(ii) Temperature reduction function: The geometric function with a temperature

reduction factor of 0.9 (Ti=0.9Ti-1) was used at each stage.

(iii) Length of each temperature level (L): A dominant factor on the computational

effort associated with the solution of the problem is the number of tasks (N). So, in

order to restrict the computational effort to the first order of the dominant factor,

the number of solutions searched at each temperature level was set to ϕN, where ϕ

is a user defined constant (ϕ=1 is the value suggested by default).

(iv) Stopping criteria: Two alternative criteria were set. In the first one, a freezing

temperature of 10 is set, which means that 16 temperature levels are used

(T0ai
15=50(0.915)=10.29). In the second one, it is admitted that, if in five

consecutive temperature levels 85% of the generated solutions are rejected, then the

probability of replacing the best solution found is very small and the procedure is

then terminated.

4.3.4 Numerical illustration

A numerical example, with the following characteristics, is used to illustrate the

proposed procedure.

 Two models, A and B, are simultaneously assembled on a line over a planning

horizon of 480 t.u. (time units). The demand for each model is, respectively, 20 and

28 units (then, the cycle time is C=10, qA=42% and qB=58%).

 The combined precedence diagram, with 25 tasks, is depicted in Figure 4.4, where

each node represents a task and each arc represents a precedence relation between a

pair of tasks.

Chapter 4: Balancing straight assembly lines 68

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

 The task processing times for the two models (tA and tB) are shown in Table 4.1.

 Tasks 9 and 10 cannot be executed on the same workstation (negative zoning

constraints).

 Only workstations performing tasks with a processing time greater than the line

cycle time can be replicated (MRT=C).

Figure 4.4 – Combined precedence diagram of the numerical example

The initial solution is determined by the modified version of the RPW heuristic

described in section 4.3.1.1. The weighted average processing times)(t and average

positional weights (PW) of each task are also shown in Table 4.1.

Table 4.1 – Processing times and average positional weights for the numerical example

Task tA tB)t(PW Task tA tB)t(PW

1 0 2.0 1.2 115.4 14 1.3 0 0.5 19.7
2 7.7 7.7 7.7 54.4 15 5.5 5.5 5.5 23.4
3 7.3 7.3 7.3 114.2 16 1.9 2.0 2.0 44.2
4 15.0 15.0 15.0 46.6 17 3.7 0 1.6 26.3
5 8.8 8.8 8.8 85.3 18 9.4 9.4 9.4 33.8
6 6.2 0 2.6 66.2 19 1.3 1.3 1.3 19.2
7 3.6 0 1.5 15.8 20 0 9.0 5.2 14.3
8 0 2.0 1.2 31.6 21 2.0 2.0 2.0 24.8
9 6.6 6.6 6.6 38.9 22 4.7 4.7 4.7 13.8

10 2.5 2.5 2.5 46.7 23 9.6 8.2 8.8 17.9
11 5.5 5.5 5.5 61.1 24 4.1 3.7 3.9 9.1
12 7.1 7.1 7.1 30.5 25 12.5 0 5.3 5.2
13 5.9 5.9 5.9 55.6

Chapter 4: Balancing straight assembly lines 69

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Figure 4.5 illustrates some steps of the procedure applied to the numerical example. In

each of the tables shown in the figure a line balancing solution is shown. To simplify the

schema, only the workstations where changes occurred are represented in the neighbouring

solutions. The content of each column in these tables is the following: (K) workstation

index, (Tasks) set of tasks assigned to the workstation and (R) number of replicas of the

workstation. The last line of each table shows the total number of operators required by the

solution, S, and the between (Bb) and within (Bw) workstation workload balancing values.

The initial solution requires a total of 18 operators (including operators working in

parallel workstations). After a number of swap and transfer movements, starting from the

initial solution, an intermediate solution is obtained. From this solution, the heuristic is

able to reduce the number of workstations, performing the transfer procedures shown in the

figure. The best solution found for the first stage of the heuristic indicates that 16

workstations, including replicas, are required (for this solution Bb=0.05 and Bw=0.22). The

best solution found in the first stage of the procedure is used as the initial solution for the

second stage. In this stage, the number of workstations remains constant, while the

workload balancing value (Bb+Bw) is reduced. The final solution shows an improvement of

about 30%.

K Tasks R S Tasks R
1 1,3 1 9 18 1
2 5 1 10 12,19 1
3 6,7 1 11 17,21 1
4 11 1 12 15 1
5 13 1 13 23 1
6 2 1 14 20 1
7 4,10,16 2 15 22,24 1
8 8,9,14 1 16 25 2

S=18; Bb=0.08; Bw =0.17

K Tasks R S Tasks R
1 1,2 1 9 8,12 1
2 3 1 10 18 1
3 4 2 11 15 1
4 5 1 12 17 1
5 6,7 1 13 14,19,21 1
6 10,11 1 14 22 1
7 13 1 15 23 1
8 9,16 1 16 20,24,25 2

S=18; Bb=0.04; Bw =0.15

K Tasks R S Tasks R
11 - 0 12 15,17 1

S=17; Bb=0.04; Bw =0.19

K Tasks R S Tasks R

13 14,19,
21,22

1 14 - 0

S=16; Bb=0.05; Bw =0.22

K Tasks R S Tasks R
8 8,9 1 9 12,16 1

S=16; Bb=0.05; Bw =0.21

K Tasks R S Tasks R
3 6 1 5 4,7 2

S=16; Bb=0.05; Bw =0.20

K Tasks R S Tasks R
1 1,3 1 8 4,8,7 2
2 6 1 9 18 1
3 5 1 10 12,21 1
4 9 1 11 7,15 1
5 2 1 12 14,19,22 1
6 10,11 1 13 23 1
7 13,16 1 14 20,24,25 2

S=16; Bb=0.04; Bw =0.15

Initial solution Intermediate solution
Transfer

task 15 to station 12

Transfer
task 22 to station 13

1st STAGE
 BEST SOLUTION

Swap
tasks 8 and 16

Swap
tasks 4 and 6

 FINAL BEST SOLUTION

...

...

Figure 4.5 – Application of the SA based procedure to the numerical example

Chapter 4: Balancing straight assembly lines 70

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

4.4 Genetic algorithm based approach

Genetic algorithms and its main concepts have been previously characterised in chapter

3. The structure of the proposed genetic algorithm based procedure to tackle the

mixed-model assembly line balancing problem of type I is a standard one, with its main

steps presented in Figure 4.6. The detailed application to the addressed problem is

described in the following sections.

4.4.1 Representation of solutions

The encoding of solutions in the proposed procedure is of type ‘one-to-one’

(Falkenauer, 1998), which means that each solution is represented exactly by one

chromosome and the decoding of each chromosome results in exactly one solution for the

problem. A standard encoding scheme is used in which the chromosome is a string of

length N. Each element of the chromosome represents a task and the value of each element

represents the workstation to which the corresponding task is assigned. An example of this

type of encoding scheme was already presented in Figure 3.6 of chapter 3.

Create initial population

stop?

STOP

YES

NO

START

Create new individuals
(crossover + mutation)

selection strategy

Form new population

replacement strategy

Figure 4.6 – Global structure of the genetic algorithm based approach

Chapter 4: Balancing straight assembly lines 71

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

4.4.2 Initial population and fitness

The initial population is composed by a set of individuals (or chromosomes), each of

them representing a solution for the MALBP of type I, described in section 4.2. The

individuals of the initial population are generated via a simple constructive heuristic, which

uses some common priority rules in assembly line balancing problems, namely:

 maximum processing time for all models ({ }imm
tmax);

 maximum average processing time – the average processing time of a task is the sum

of the processing times of that task for each model weighted by the respective

production share (∑=
m

immi tqt);

 maximum ranked positional weight – in a mixed-model assembly line, the positional

weight of a task is the cumulative average task processing time associated with itself

and its successors;

 maximum number of direct successors – the number of direct successors of each task

i is the number of tasks in set Suci, as defined in section 4.2;

 maximum total number successors of the combined precedence diagram.

Each time a task must be selected for assignment, from the set of available tasks, the

heuristic randomly selects the priority rule to be used. As stated in the problem definition,

a workstation capacity depends on the type of tasks that it performs. If it performs a task

with a processing time for a model tim higher than MRT, then its capacity is
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⋅

MRT

t
C

imm
}{max

,

otherwise is C. The heuristic also checks for positive and negative zoning constraints.

Since the procedure chooses randomly the priority rules to be used for assigning tasks to

workstations, it ensures that different individuals will be created. The size of the

population is fixed during all generations and was set to 50, a typical figure used by many

researchers (Falkenauer, 1998).

The goal of genetic algorithms is to find the most fit individual over a set of

generations. The fitness function is then, typically, a maximisation function. In this

procedure, the fitness function is a combination of the objectives to achieve for the

MALBP-I, namely, the maximisation of the weighted line efficiency (WE) and the

Chapter 4: Balancing straight assembly lines 72

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

smoothing of workloads between (Bb) and within (Bw) workstations. The fitness function is

thus computed as follows:

wb BBWEFMaximise −−= λ (4.21)

The lower the number of operators and the values of functions Bb and Bw (given by

equations (4.17) and (4.18), respectively) the higher the value of F. As WE, Bb and Bw are

within the value range [0,1], the term λWE is dominant for λ>1, so, the procedure

minimises the number of workstations before the secondary goals become active.

4.4.3 Selection and genetic operators

The selection of the individuals for mating is done using tournament, a very popular

strategy that aims to imitate mutual competition of individuals during casual meetings,

already described in section 3.3, with the typical value of 2 for the tournament size.

The main genetic operator is the crossover, which has the role to combine pieces of

information from different individuals in the population. Two parents (P1 and P2) are

selected from the tournament list and a crossover point (cp), an integer randomly generated

from [1, LL], is selected. The combination of P1 and P2 will produce two offspring (O1 and

O2). To generate offspring O1 (O2), the assignment of workstations 1 to cp is copied from

P1 (P2) and the remaining positions are copied from the assignment of workstations cp+1

to LL from P2 (P1). Figure 4.7 illustrates a crossover, for the numerical example presented

in section 4.3.3.

1 1 2 7 3 4 6 9 9 4 5 10 6 9 12 6 11 8 9 14 1112 13 15 15

1 1 2 4 3 7 7 5 5 8 8 6 9 5 11 9 11 10 13 12 1313 14 15 15

P1

O1 1 1 2 7 3 4 6 4 5 6 11 6 11 10 13 12 1313 14 15 15

crossover point cp=7

1 1 2 7 3 4 6 9 9 4 5 10 6 9 12 6 11 8 9 14 1112 13 15 15

1 1 2 4 3 7 7 5 5 8 8 6 9 5 11 9 11 10 13 12 1313 14 15 15

1 1 2 4 3 7 7 6 12 11 8 9 14 1112 13 15 15

P1

O2

P2

P2

5 5 5

Figure 4.7 – Generation of two offspring through crossover

Chapter 4: Balancing straight assembly lines 73

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

As it is shown in Figure 4.7, although precedence constraints are verified, the crossover

produces some tasks without any workstation associated (tasks 8, 9, 12 and 14 for O1 and

tasks 10, 11, 13 and 16 for O2). These tasks must, therefore, be reassigned in order to

achieve feasible individuals. Other two types of tasks must also be reassigned: (i) tasks that

violate zoning constraints and (ii) tasks assigned to workstations with low workload (Kim

et al, 2000). If it is possible a reassignment of these last tasks to other workstations, then

the workstation to which they were previously assigned will disappear, reducing the total

number of workstations. Thus, if a workstation has an average workload, given by equation

(4.22), inferior to a minimum workload (set to C/2, by default), all of its tasks must be

reassigned.

∑
=

==
N

i
iikk ,...,LLktxW

1

)1((4.22)

The reassignment procedure aims to allocate the tasks to workstations in such a way

that precedence and zoning constraints are satisfied and, if possible, the number of

workstations is reduced. For each task i to be reassigned (starting with the tasks which

have no precedent tasks to be reassigned), the procedure computes the earliest (Ei) and the

latest (Li) workstations to which task i can be assigned (Scholl 1999), according to the

precedence relationships between tasks. From the range of workstations [Ei, Li] task i is

assigned to the first one that meets the capacity and zoning constraints. When it is not

possible to find a feasible workstation within [Ei, Li], a new workstation is opened to

perform the task. Figure 4.8 shows an example of the reassignment procedure for the

balancing solution corresponding to offspring O1 of Figure 4.7.

K Tasks R WA WB
1 1,2 1 7.7 7.7
2 3 1 7.3 7.3
3 5 1 8.8 8.8
4 6,10 1 8.7 2.5
5 7,11 1 9.1 5.5
6 13 1 5.9 5.9
7 4 2 15.0 15.0
8
9
10 18 1 9.4 9.4
11 15,17 1 9.2 5.5
12 20 1 0.0 9.0
13 19,21,22 1 8.0 8.0
14 23 1 9.6 8.2
15 24,25 2 16.6 3.7

K Tasks R WA WB
1 1,2 1 7.7 7.7
2 3 1 7.3 7.3
3 5 1 8.8 8.8
4 6,10 1 8.7 2.5
5 7,11 1 9.1 5.5
6 13 1 5.9 5.9
7 4,8 2 15.0 17.0
8
9
10 18 1 9.4 9.4
11 15,17 1 9.2 5.5
12 20 1 0.0 9.0
13 19,21,22 1 8.0 8.0
14 23 1 9.6 8.2
15 24,25 2 16.6 3.7

K Tasks R WA WB
1 1,2 1 7.7 7.7
2 3 1 7.3 7.3
3 5 1 8.8 8.8
4 6,10 1 8.7 2.5
5 7,11 1 9.1 5.5
6 13 1 5.9 5.9
7 4,8 2 15.0 17.0
8 9 1 6.6 6.6
9
10 18 1 9.4 9.4
11 15,17 1 9.2 5.5
12 20 1 0.0 9.0
13 19,21,22 1 8.0 8.0
14 23 1 9.6 8.2
15 24,25 2 16.6 3.7

K Tasks R WA WB
1 1,2 1 7.7 7.7
2 3 1 7.3 7.3
3 5 1 8.8 8.8
4 6,10 1 8.7 2.5
5 7,11 1 9.1 5.5
6 13 1 5.9 5.9
7 4,8 2 15.0 17.0
8 9 1 6.6 6.6
9 12 1 7.1 7.1
10 18 1 9.4 9.4
11 15,17 1 9.2 5.5
12 20 1 0.0 9.0
13 19,21,22 1 8.0 8.0
14 23 1 9.6 8.2
15 24,25 2 16.6 3.7

K Tasks R WA WB
1 1,2 1 7.7 7.7
2 3 1 7.3 7.3
3 5 1 8.8 8.8
4 6,10 1 8.7 2.5
5 7,11 1 9.1 5.5
6 13 1 5.9 5.9
7 4,8 2 15.0 17.0
8 9,14 1 7.9 6.6
9 12 1 7.1 7.1
10 18 1 9.4 9.4
11 15,17 1 9.2 5.5
12 20 1 0.0 9.0
13 19,21,22 1 8.0 8.0
14 23 1 9.6 8.2
15 24,25 2 16.6 3.7

task 8: E8=7; L8=11
assigned to station 7

task 9: E9=3; L9=11
assigned to station 8

task 12: E12=8; L12=11
assigned to station 9

task 14: E14=8; L14=13
assigned to station 8

Tasks to reassign:
8, 9, 12, 14

Figure 4.8 – An application of the reassignment procedure

Chapter 4: Balancing straight assembly lines 74

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

A mutation operator, which randomly disturbs genetic information, performing small

changes in a single parent in order to produce a new offspring, is also included.

Considering the structure of the problem and the encoding of solutions, the most adequate

mutation operator is the one used by Kim et al (1996, 2000). This operator was adapted to

the characteristics of the addressed problem and it works as follows. A parent is selected to

undergo mutation, according to a mutation probability, and a small set of tasks is randomly

selected. These tasks will be reassigned applying the reassignment procedure earlier

described and a new offspring is created. The mutation probability is set by default to 0.02,

a typical value used in this technique (Leu et al, 1994, Sabuncuoglu et al, 2000) and the

number of tasks involved in mutation is, at maximum, 10% of the total number of tasks in

the combined precedence diagram.

The replacement strategy determines which individuals stay in the population and which

are replaced and it takes into account the fitness value of the individuals. Comparing each

offspring with one of its parents, the offspring always replace the parent except when the

fitness value of the offspring is lower than the worst fitness value of the individuals in the

previous generations – in this case, the probability of the parent to continue in the

population is set to a high value (0.8 by default). In order to always keep the best

individual found so far, the individual in the new population with the lowest fitness is

replaced by the individual from the previous generation with the highest fitness.

4.4.4 Stopping criteria

To determine the stopping criteria of the procedure, a simple convergence study was

performed for each of the tested problems. Figure 4.9 shows the variation of the fitness

function (setting λ=10) in five runs of two test problems, one with 25 tasks and two models

and another with 70 tasks and three models. The leap from the lower level to the upper

level is due to the reduction of the number of operators in the best balancing solution.

Further increases are due to the improvement in the workload balance. The value of the

fitness function remained unchanged after the 20th and 90th iterations (populations of

individuals) for the first and second problems, respectively. Before this scenario the

decision was to select over-engineered parameters, meaning that a greater amount of time

Chapter 4: Balancing straight assembly lines 75

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

will be spent running the procedure ensuring that a good solution is found, instead of

spending a smaller amount of time at a cost of the solution quality.

A trade-off between convergence and execution time is defined as the stopping

criterion. This is a popular criterion used in GA based approaches (Leu et al, 1994). The

procedure will stop when one of the following conditions is achieved:

(i) the fitness function of the best solution does not improve more than 1% after a

pre-determined number of consecutive iterations (this value is set to 50 by default);

(ii) the total number of iterations exceeds a maximum number (200 is the value set by

default).

Test problem w ith 25 tasks and 2 models

6,8

7,0

7,2

7,4

7,6

1 50 100 150 200

populations

fit
ne

ss
 fu

nc
tio

n

Test problem w ith 70 tasks and 3 models

8,0

8,2

8,4

8,6

1 50 100 150 200

populations

fit
ne

ss
 fu

nc
tio

n

Figure 4.9 – Variation of the fitness function in GA for two test problems

Chapter 4: Balancing straight assembly lines 76

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

4.5 Ant colony optimisation based approach

The ant colony optimisation (ACO) based approach developed to address the MALBP-I

was named ANTBAL. The initial version of ANTBAL showed a bad performance, so a

modification was implemented in order to correct the observed problems. In the next

section the initial version of ANTBAL will be described and in section 4.5.2 the

modifications made to improve it will be reported.

4.5.1 Initial version of ANTBAL

The outline of the initial version of ANTBAL is shown in Figure 4.10.

Create new sub-colony

Release new ant

Ant builds
sequence of tasks

Obtain balancing solution

Update best solution

Deposit pheromone

Have all ants built
 a sequence?

Have all sub-
colonies been

created?

START

STOP
YES

NO YES

NO

Compute solution
quality measures

Figure 4.10 – Outline of the first version of ANTBAL

In ANTBAL, the mission of an ant is to analyse the precedence diagram of the tasks

required to assemble a given product and build a sequence according to which the tasks

will be performed. After the sequence of tasks is completed, a procedure is applied in order

to turn the sequence into a feasible balancing solution, taking into account the problem’s

Chapter 4: Balancing straight assembly lines 77

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

capacity and zoning constraints. For each solution obtained, quality measures are

computed, according to the defined goals.

In each sub-colony there are NA ants. After all ants of a sub-colony have generated a

solution, they release an amount of pheromone according to its solution quality.

Pheromone trails are kept in a matrix task×task. If task j is selected to join the sequence

immediately after task i, then an amount of pheromone is released between task i and task

j. This way, pheromone trails exist in the paths that ants used to build the whole sequence.

The procedure is repeated for every sub-colony within the ant colony. The best solution

found by the procedure is updated after each sub-colony iteration. In the following sections

the main features of ANTBAL will be described in more detail.

4.5.1.1 How does an ant build a sequence of tasks?

The sequence of tasks must be feasible in terms of the precedence constraints, so it is

built according to the combined precedence diagram. Each ant has access to a list of

available tasks that it can choose from to include in the sequence. A task is considered

available if it has no predecessors or if all its predecessors are already in the task sequence.

The probability of selecting a task, from the list of available tasks, is a function of the

pheromone trail intensity between the previously selected task and each available task and

each available task’s heuristic information.

ACO algorithms are based on the behaviour of real ants but they also provide artificial

ants with additional skills that make them more effective. For example, to address the

travelling salesman problem, the selection of the cities of the tour uses both pheromone

trails and the known distance between the cities, additional information that a real ant

would not own. In assembly line balancing problems the additional information about the

problem, called heuristic information, is usually given by priority rules.

When the ants of a sub-colony are generated, different priority rules are assigned to

them. This way, while an ant is building its sequence, the heuristic information of a task is

simply the priority rule value known by the ant. The procedure uses the priority rules also

used in the genetic algorithms based procedure, namely: (i) maximum processing time for

all models, (ii) maximum average processing time, (iii) maximum ranked positional

Chapter 4: Balancing straight assembly lines 78

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

weight, (iv) maximum number of direct successors and (v) maximum total number of

successors.

The probability with which an ant n selects task j after it had selected task i is given by:

[] []
[] []∑

∈

⋅

⋅
=

n
iAu

uui

jji
ji

np βα

βα

ητ

ητ

),(

),(
),((4.23)

where),(jiτ is the pheromone trail intensity in the path ‘selecting task j after selecting task

i’, jη is the heuristic information of task j (i.e., the priority rule value for task j),
n

iA is the

set of available tasks for ant n after the selection of task i and α and β are parameters that

determine the relative importance of pheromone intensity versus heuristic information. At

each iteration, a random number is generated and a task is selected according to its

probability.

4.5.1.2 Procedure to obtain a balancing solution

When a sequence of tasks is completed, it is necessary to convert it into a feasible

balancing solution. Tasks are assigned to workstations exactly by their order in the

sequence. The proposed procedure, whose structure is shown in Figure 4.11, allows the

generation of solutions to the MALBP-I with the characteristics described in section 4.2.

A task is assigned to a workstation if and only if the resulting assignment verifies both

zoning and capacity constraints, as the precedence constraints are guaranteed by the

sequence already built by the ant. If a problem has positive zoning constraints the tasks that

need to be allocated to the same workstation are merged previously and treated as only one

task. This is done in the precedence diagram, prior to the start of ANTBAL. Negative

zoning constraints are handled while building the balancing solution, as we can see in

Figure 4.11. If a task is to be assigned in a workstation where there is already a task with

which it is incompatible, then, the current workstation is closed and the task is assigned to

a new workstation.

When assigning a task from the sequence built by the ant, capacity constraints, as

described in by equations (4.8), (4.9) and (4.10) are taken into account. If the assignment

of the task violates capacity constraints, then, the task is not assigned to the current

Chapter 4: Balancing straight assembly lines 79

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

workstation and a new one is opened. When all tasks in the sequence have been assigned to

workstations, the balancing solution is completed and solution quality measures are

computed, as described in the following section.

First task
in sequence

Open workstation

Assign task
to current workstation

Have all tasks
been assigned?

START

STOP

YES

NO YES

NOVerify capacity
constraints?

Verify zoning
constraints?

YES

NO
Next task

in sequence

Figure 4.11 – Procedure to convert a sequence of tasks into a balancing solution

4.5.1.3 Solution quality

The objective function used in ANTBAL is the one of the mathematical programming

model presented in Figure 4.2, i.e., the maximisation of Z=λWE-Bb-Bw. The selection of

this particular expression was due to the fact that, typically, in ACO approaches, the

amount of pheromone released by the ants depends on the quality of the corresponding

solution. In order to ease the pheromone amount calculation process, it was decided to use

exactly the same value of the objective function. This way, the criterion had to be

maximisation, because, the better the solution, the higher the pheromone trail. Also, the

range of values of Z would not depend on the problem instance.

Chapter 4: Balancing straight assembly lines 80

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

4.5.1.4 Pheromone release strategy

The pheromone release strategy is based on the one used by Dorigo et al (1996). At the

beginning of the procedure, an initial amount of pheromone (τ0) is released in every path,

i.e., between every pair of tasks. At the end of each sub-colony iteration, all balancing

solutions provided by the ants have their objective function values computed. It is at this

point that the pheromone trail intensity is updated. First, a portion of the existing

pheromone value is evaporated in all paths, according to:

),(),()1(jiji τρτ ⋅−← (4.24)

where ρ is the evaporation coefficient (0 ≤ ρ ≤ 1). Then, each ant n releases an amount of

pheromone in the paths used to build the task sequence, according to the corresponding

balancing solution quality. This amount of pheromone is given by:

⎪⎩

⎪
⎨
⎧

=∆
otherwise0

 after task immediatly performed is task ant by built solution in the if

 ,

 ,

),(

ijnZ
ji

nτ (4.25)

The overall pheromone update effect of all ants in each path (i,j) is then:

∑
=

∆+←
AN

n
ji

n
jiji

1
),(),(),(τττ (4.26)

4.5.2 Modifications of ANTBAL

4.5.2.1 Problems with the initial version of ANTBAL

To test the performance of ANTBAL, a set of instances of MALBP-I was solved and

the results were compared with the results already obtained using the simulated annealing

procedure, described in section 4.3. The results showed that the number of operators of the

solutions obtained with ANTBAL was, for almost every instance, higher that the ones

obtained using the simulated annealing procedure, which indicated a very bad performance

of ANTBAL. In order to understand the causes of this performance, an analysis to the

algorithm was made and, rapidly, the reasons were found.

Chapter 4: Balancing straight assembly lines 81

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

The problem with ANTBAL was the fact that many workstations would have

unnecessary idle time, in order to preserve, in the balancing solution, the sequence built by

the ants. If a task did not fit the current workstation, the procedure would close the current

workstation and open a new one to assign that task. The procedure did not allow other

tasks, forward in the sequence, to be assigned to the current workstation, even if they

would verify the capacity constraints. An illustration of such a situation is presented in

Figure 4.12.

Figure 4.12 – Problems with the initial version of ANTBAL

The existence of a rigid task sequence to keep was providing very bad balancing

solutions, so, to tackle this problem, the role of the ants was modified, as it is explained in

the following section.

4.5.2.2 New role of the ants

Instead of just making a sequence of tasks, the new role of the ants is to build a

complete balancing solution. The structure of modified version of ANTBAL is presented

in Figure 4.13.

Each ant in the sub-colony builds a feasible balancing solution, i.e., an assignment of

tasks to workstations that satisfies precedence, zoning and capacity constraints. For each

feasible solution obtained, a measure of its quality is computed, according to the problem’s

objective function.

Chapter 4: Balancing straight assembly lines 82

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Figure 4.13 – Outline of the modified version of ANTBAL

4.5.2.3 New pheromone release strategy

After all ants of a sub-colony have generated a solution, they release a certain amount of

pheromone according to the quality of the solution. The characteristic of a balancing

solution that make it better or worse than another is the assignment of tasks to

workstations. In straight assembly lines, the sequence in which tasks are performed within

a workstation is not relevant, as long as it meets precedence constraints. So, for this

particular problem, it was considered more adequate to keep pheromone trails in the

assignment of tasks to workstations than between consecutive tasks.

In the new version of ANTBAL pheromone trails are kept in a matrix workstation×task:

if task j is assigned to workstation i, then a certain amount of pheromone is released

between workstation i and task j. An initial amount of pheromone (τ0) is released in every

path, i.e., between every pair workstation-task. At the end of each sub-colony iteration, the

pheromone trail intensity is updated. First, a portion of the existing pheromone value is

evaporated in all paths, according to:

Chapter 4: Balancing straight assembly lines 83

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

),(),()1(jiji τρτ ⋅−← (4.27)

where ρ is the evaporation coefficient (0 ≤ ρ ≤ 1). Then, each ant n releases an amount of

pheromone in the assignments of tasks to workstation that it has made, according to the

corresponding balancing solution quality. This amount of pheromone is given by:

⎪⎩

⎪
⎨
⎧

=∆
otherwise0

on workstati toassigned is task ant by built solution in the if

 ,

 ,

),(

ijnZ
ji

nτ (4.28)

The total pheromone level in the assignment of task j to workstation i (τij) is then:

∑
=

∆+←
AN

n
ji

n
jiji

1
),(),(),(τττ (4.29)

4.5.2.4 Building a balancing solution

The procedure carried out by each ant to build a feasible balancing solution is depicted

in Figure 4.14. An ant begins by determining the available tasks for assignment to the

current workstation, taking into account the problems constraints (precedence, zoning and

capacity). Then, from the set of available tasks, selects one of these tasks. When there are

no available tasks to assign to the current workstation, a new workstation is opened. This

procedure is repeated until all the tasks have been assigned.

The procedure for selecting a task for assignment was also modified, in order to better

guide the search of the solution space. The probability of a task being selected, from the set

of available tasks, is a function of (i) the pheromone trail intensity between the current

workstation and each available task and (ii) the information provided by the heuristic for

each available task. This information is a priority rule that is randomly assigned to each ant

when the respective sub-colony is generated. The procedure uses the same static priority

rules of the initial version and a new dynamic called ‘last task becoming available’,

especially developed for this algorithm and which deals with the work relatedness issue.

Related tasks are directly connected in the precedence diagram and a common procedure

used by assembly line managers is to assign them to the same workstations, in order to

improve work efficiency. Therefore, this rule aims to favour the assignment of the direct

Chapter 4: Balancing straight assembly lines 84

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

successors of a task immediately after that task has been assigned, by attributing them the

highest priority value in the subsequent assignment iteration.

Open workstation

Select task for
assignment

Have all tasks
been assigned?

START

STOP
NO YES

Are there available
tasks?

YES

NO

Determine
available tasks

Figure 4.14 – Procedure carried out by an ant to build a feasible solution

The values of the priority rules will vary between 1 for the task with lowest priority and

N (number of tasks) for the task with highest priority, and will be the heuristic information

used by the ants to select the tasks.

Let r be a random number between 0 and 1 and r1, r2 and r3 three user-defined

parameters such that 1,,0 321 ≤≤ rrr and 1321 =++ rrr . An ant n will select task j to be

assigned to the current workstation i by applying the following rule:

{ }

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≤≤

≤≤=

≤=

=

∈

∑
∈

∈

)(selection random:

)(
][][

][][

)(][][

323

212

11

 of

maxarg

22

2

selectionrandomrrrifJ

nexploratiobiasedrrrif
ητ

ητ
:pJ

onexploitatirrifητJ

j

n
iAj

n
i

n
i

Aj

β
j

α
(i,j)

β
J

α
)(i,J

)(i,J

β
j

α
(i,j)

Aj

 (4.30)

Chapter 4: Balancing straight assembly lines 85

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

where),(jiτ is the pheromone trail intensity in the path ‘assigning task j to workstation i’,

jη is the heuristic information of task j (i.e., the priority rule value for task j), n
iA is the set

of available tasks for ant n in workstation i and α and β are parameters that determine the

relative importance of pheromone intensity versus heuristic information.

The selection of a task from the set of available tasks is performed by one of three

strategies:

 Exploitation: it determines the selection of the best task according to the values of
β

j
α

(i,j) ητ][][.

 Biased exploration: a task is selected with a probability of p(i,j) as given by J2 in

equation (4.30).

 Random selection: from the set of available tasks, the ant selects one at random.

The first two strategies are based on the Ant Colony System state transition rule

proposed by Dorigo and Gambardella (1997). After the task is selected, the ant assigns it to

the current workstation. When all tasks have been assigned to workstations, the balancing

solution is completed and solution quality measures are computed, as described in the

initial version.

4.5.2.5 Parameter settings

The following values of the numeric parameters used in ANTBAL were obtained by a

set of experimental tests:

 Initial pheromone level: According to Dorigo and Gambardella (1997) a rough

approximation of the optimal value of the objective function is a reasonable value for

τ0. A perfectly balanced line would have an efficiency of 100% (setting λ=10,

λWE=10) and equally distributed workloads (Bb=0 and Bw=0). Considering that such

a situation would hardly occur in a real-world assembly line, the value of τ0 is set, by

default, to 9.0.

 Pheromone evaporation coefficient: ρ = 0.2.

 Relative importance of pheromone intensity versus heuristic information: α=0.2,

β=1.0 (it was observed that higher values of α lead to premature convergence of the

algorithm).

Chapter 4: Balancing straight assembly lines 86

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

 Task selection strategy: r1=0.6, r2=0.3, r3=0.1.

To determine the total number of iterations of the algorithm, a simple convergence

study was carried out for each of the tested problems. Figure 4.15 shows the variation of

the objective function value of the best solution in five runs of two test problems. The

value of the objective function did not improve after the 150th and 120th sub-colonies for

the first and second problems, respectively. Before this scenario, and to ensure a good

solution is found, ANTBAL will have 200 sub-colonies with 50 ants each.

Test problem with 25 tasks and 2 models

6,8

7,0

7,2

7,4

7,6

1 50 100 150 200

sub-colonies

ob
je

ct
iv

e
fu

nc
tio

n

Test problem with 70 tasks and 3 models

7,6

7,8

8,0

8,2

8,4

8,6

8,8

9,0

1 50 100 150 200

sub-colonies

ob
je

ct
iv

e
fu

nc
tio

n

Figure 4.15 – Variation of the objective function in ANTBAL for two test problems

Chapter 4: Balancing straight assembly lines 87

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

4.6 Addressing the problem of type II

Assembly line balancing problems of type II deal with the maximisation of the

production rate of an existing assembly line, i.e., the goal is to minimise the cycle time of

the line for a given number of operators. While type I problems are more frequently used

in the design of a new assembly line for which the demand can be easily forecasted and

consequently, the production rate, has to be pre-specified, problems of type II are applied

when, for example, changes in the assembly process or in the product range require the line

to be redesigned.

The research work on the assembly line balancing problem of type II has been devoted,

almost exclusively, to single-model lines.

Some of the methods proposed to solve the single-model version of the assembly line

balancing problem of type II (SALBP-II) explore the duality relationship between type I

and type II problems, and a solution for the SALBP-II is found by iteratively solving type I

problems for several trial cycle times, in order to check if a feasible assignment of a

pre-determined number of workstations exists. Heuristic procedures that use this strategy

are proposed by, for example, Hackman et al (1989), Rachamadugu and Talbot (1991) and

Scholl and Voβ (1996).

Meta-heuristics have also been proposed to solve the SALBP-II. Genetic algorithms are

used by Anderson and Ferris (1994) and Kim et al (1998), both aiming to smooth the

workload between the specified number of workstations and hence minimise the cycle

time. Scholl and Voβ (1996) developed a taboo search procedure with the goal of

improving an initial feasible solution through shift and swap movements.

Klein and Scholl (1996) propose SALOME-2, an optimising approach based on the

branch-and-bound method, which directly solves the SALBP-II.

Liu et al (2003) propose two bi-directional heuristic procedures to minimise both cycle

time and the mean absolute deviation of workloads, but only for single-model assembly

lines.

Chapter 4: Balancing straight assembly lines 88

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

4.6.1 First approach

The first approach developed to address the mixed-model assembly line balancing

problem of type II (MALBP-II) is outlined in Figure 4.16. It iteratively solves problems of

type I for different cycle times. It starts by computing a lower bound for the value of the

cycle time and then it uses this value to solve a problem of type I, using an appropriate

procedure, as the ones described in sections 4.3, 4.4 and 4.5.

feasible
solution?

STOP

YES

NO

START

Procedure to
solve MALBP-I

increase C

C=Lower Bound

Figure 4.16 – First approach to address MALBP-II

A straightforward lower bound for the cycle time in a MALBP-II can be computed from

the ratio between the sum of the task processing times and the pre-defined number of

operators. But, for the problem described in section 4.2, this lower bound can be fine-tuned

taking into account the value of MRT. As no task with a processing time higher than MRT

can be processed in a non-replicated workstation, MRT can improve the lower bound for

the cycle time defined above. So the lower bound for the cycle time is given by:

⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=

=
MRTStLB

N

i
imMm

,max
1,...,1

 (4.31)

If the total number of operators derived from solving the MALBP-I is greater than the

preset number of operators for the original MALBP-II problem (i.e., if it is a non-feasible

solution), the cycle time is increased by a problem specific increasing unit and another

MALBP-I is solved. This procedure continues until a solution with the preset number of

Chapter 4: Balancing straight assembly lines 89

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

operators, S, is found. An application of the genetic algorithm based procedure to solve the

MALBP-II was presented in Simaria and Vilarinho (2004).

4.6.2 Second approach

Although the computational experiments to test the performance of this approach

provided good results, it was observed that, in some cases, the value of the cycle time

could still be improved. As the approach would stop when the pre-specified number of

operators was reach it did not attempt to improve solutions with the same number of

operators. This way, a second approach to address the MALBP-II was developed. It adds

to the first approach a simulated annealing (SA) smoothing procedure that aims to perform

swapping and transferring of tasks between workstations, in order to try to decrease the

cycle time of the line configuration. The outline of this procedure is presented in Figure

4.17.

Best solution
for MALBP-II

Initial
solution

Best solution of
First Approach

Miminise
cycle time

STOP?

Neighbouring
solution

Current
 solution

Swap or
Transfer

Solution in
taboo list?

Verify
constraints?
(precedence,

zoning,
capacity)

Y

NO

NO

YES

NO

YES

Figure 4.17 – SA smoothing procedure for the MALBP-II

The initial solution of the SA procedure is the best solution obtained by the first

approach, which iteratively solves problems of type I until a solution with the required

number of operators is obtained. The objective function to minimise is the real cycle time

of the line, i.e., the maximum workload observed among the workstations, given by:

Chapter 4: Balancing straight assembly lines 90

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

{ }⎥⎦
⎤

⎢⎣
⎡=

== kkmMmKk
RWC

,...,1,...,1
maxmax (4.32)

where Wkm is the workload of workstation k due to model m and Rk is the number of

replicas of workstation k.

A neighbouring solution can be obtained by one of the following actions:

 Random swap: two tasks are randomly selected and their positions are swapped.

 Random transfer: one task is randomly selected and transferred to a randomly

selected workstation.

 ‘Intelligent’ swap: selects one task from the workstation with maximum workload

and swaps it with another task with inferior processing time.

 ‘Intelligent’ transfer: selects one task from the workstation with maximum workload

and transfers it to another workstation.

‘Intelligent’ movements are more likely to contribute to the goal of the procedure, so,

higher probabilities should be set to this type of actions. However, if after a predefined

number of attempts neither ‘intelligent’ swap or transfer movements lead to a neighbouring

solution, due to the constraints of the problem, random movements will be performed.

The annealing schedule defined for this procedure is similar to the one described in

section 4.3, as the characteristics of the addressed problems are similar.

4.7 Computational experience

4.7.1 Type I

The procedures described in this chapter were coded in C and run on a 2.8 GHz Pentium

4 computer. The performance of the three meta-heuristic approaches was compared using a

set of 20 mixed-model assembly line balancing problems with parallel workstations and

zoning constraints, whose main characteristics are presented in Table 4.2, namely, the

number of tasks of the combined precedence (N), the number of models (M), the sum of

task times (in time units, t.u.) for each model (Sum ti) and the production share of each

model (qm).

Chapter 4: Balancing straight assembly lines 91

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Table 4.2 – Main characteristics of the MALBP data set with typical task times

 1st model 2nd model 3rd model
Problem N M Sum ti qm Sum ti qm Sum ti qm

1 8 2 35.8 0.42 33.1 0.58 - -
2 8 3 34.5 0.33 47.0 0.50 53.1 0.17
3 11 2 60.3 0.42 42.0 0.58 - -
4 11 3 46.0 0.33 57.3 0.50 57.3 0.17
5 21 2 130.1 0.42 106.0 0.58 - -
6 21 3 116.2 0.33 119.6 0.50 124.8 0.17
7 25 2 132.2 0.42 116.2 0.58 - -
8 25 3 114.8 0.33 126.8 0.50 127.4 0.17
9 28 2 176.9 0.42 185.0 0.58 - -

10 28 3 162.5 0.33 166.6 0.50 173.4 0.17
11 30 2 140.9 0.42 139.9 0.58 - -
12 30 3 164.8 0.33 157.2 0.50 169.0 0.17
13 32 2 135.5 0.42 155.0 0.58 - -
14 32 3 160.9 0.33 147.0 0.50 161.0 0.17
15 35 2 193.6 0.42 190.8 0.58 - -
16 35 3 200.0 0.33 206.2 0.50 208.6 0.17
17 45 2 221.8 0.42 210.4 0.58 - -
18 45 3 230.0 0.33 235.3 0.50 212.0 0.17
19 70 2 372.8 0.42 389.8 0.58 - -
20 70 3 375.8 0.33 384.3 0.50 376.6 0.17

The precedence diagrams used for the test problems were taken from Scholl (1993),

except for problems 7 and 8, where the one shown in Figure 4.4 was used. The task

processing times for each problem were randomly generated taking into account the

different task types that might be present in a real world mixed-model assembly process, in

which the processing time of a task may vary from model to model but within certain

limits. They will be called ‘typical’ task times. Considering tim the processing time of task i

for model m and C the cycle time of the line, the generation of the task processing times

uses the following rules:

(i) Task i is

− performed in the first model (m=1) with ti1>0, which can be higher, equal or lower

than C or

− not performed for the first model (ti1=0).

(ii) The processing time of task i for the other models is

Chapter 4: Balancing straight assembly lines 92

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

− equal to ti1,

− higher or lower than ti1 within pre-specified limits ((1-δ)ti1≤tim≤(1+δ) ti1, 0≤δ≤1) or

− null.

For every problem of type I, a cycle time of 10 t.u. was considered. The full details of

the test problems are provided in Appendix 2.

The test problems were solved using the three proposed procedures: simulated

annealing (SA), genetic algorithms (GA) and the ant colony optimisation algorithm

(ANTBAL). For this set of problems the number of operators (S) of the solutions provided

by each procedure was compared with the lower bound of the total number of operators

(LBpmix), especially developed for this type of problems and whose details are presented in

Appendix 3. The values shown in Table 4.3 are the best of ten runs, however the observed

variance of the results was nearly null.

Table 4.3 – Computational results for the MALBP-I data set

 SA GA ANTBAL Best
Problem Opt LBpmix S D(%) S D(%) S D(%) WE (%)

1 4 4 4 0 4 0 4 0 85.6

2 8 6 8 0 8 0 8 0 54.9

3 7 7 7 0 7 0 7 0 71.0

4 7 6 7 0 7 0 7 0 76.5

5 - 14 16 14.3 16 14.3 16 14.3 72.6

6 - 13 15 15.4 15 15.4 15 15.4 79.6

7 - 14 16 14.3 16 14.3 16 14.3 76.8

8 - 14 15 7.1 14 0 14 0 87.9

9 - 19 21 10.5 20 5.3 20 5.3 90.8

10 - 18 20 11.1 20 11.1 20 11.1 83.2

11 - 15 16 6.7 16 6.7 16 6.7 86.6

12 - 17 19 11.8 19 11.8 19 11.8 83.4

13 - 16 19 18.8 19 18.8 19 18.8 77.3

14 - 17 19 11.8 19 11.8 19 11.8 81.0

15 - 20 24 20.0 23 15.0 23 15.0 83.5

16 - 21 24 14.3 24 14.3 24 14.3 85.2

17 - 23 25 8.7 24 4.3 24 8.7 85.4

18 - 24 28 16.7 27 12.5 26 8.3 84.4

19 - 41 44 7.3 43 4.9 43 4.9 87.0

20 - 39 44 12.8 44 12.8 44 12.8 86.0

Chapter 4: Balancing straight assembly lines 93

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

For problems 1 to 4 the optimal solution is known – it was obtained by solving the

mathematical programming model using the CPLEX (1999) optimiser. The difference

between the solutions obtained by each procedure and the lower bound (or the optimal

solution) is depicted in the correspondent column D(%) and it is computed as follows:

100(%) ×
−

=
pmix

pmix

LB
LBS

D (4.33)

Some conclusions can be drawn from the results of this experience. Considering the

number of total operators, GA and ANTBAL outperformed the SA procedure. They

improved the solution in five problem instances (problems 8, 15, 17, 18 and 19), reaching

the lower bound in problem 8, thus guaranteeing the optimum. ANTBAL improved the

solution provided by GA in problem 18. While the GA procedure found a minimum of 27

operators, ANTBAL was able to find a line configuration with 26 operators. So, ANTBAL

was the best procedure for this computational experience. The worst performance of this

heuristic was for problem 13, where the difference between the best solution obtained and

the lower bound is 18.8%. However, as the calculation of the lower bound does not take

into account the precedence and zoning constraints, one is lead to consider that the results

are fairly good. This conclusion is reinforced by the values for the line efficiency shown in

column WE(%), where a high line usage rate can be perceived, particularly for the largest

sized problems.

Considering the average computational time, all procedures are similar for small and

medium sized problems. For large sized problems GA and ANTBAL are slower than SA.

This is explained by the fact that the number of solutions generated by these in each

iteration is much higher that in the SA procedure. However, the maximum computational

time was around 2 minutes, a perfectly acceptable value, considering the strategic nature of

the problem under analysis.

Another set of computational experiments was conducted using the MALBP data set but

with different task processing times. The task times used for this experience were

randomly generated. In order to allow the creation of parallel workstations with a

minimum replication time of MRT=C, each task processing time was randomly generated

between the limits [0,2C], where C is 10 t.u.. Table 4.4 presents the values of the sum of

Chapter 4: Balancing straight assembly lines 94

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

task times and production share per model for each problem instance. The full details are

provided in Appendix 2.

Table 4.4 – MALBP data set with random processing times

 1st model 2nd model 3rd model
Problem N M Sum ti qm Sum ti qm Sum ti qm

1 8 2 66.9 0.42 96.5 0.58 - -
2 8 3 69.0 0.33 58.8 0.50 56.1 0.17
3 11 2 59.0 0.42 85.9 0.58 - -
4 11 3 83.3 0.33 85.9 0.50 120.4 0.17
5 21 2 220.7 0.42 167.6 0.58 - -
6 21 3 250.4 0.33 176.4 0.50 147.0 0.17
7 25 2 296.1 0.42 257.0 0.58 - -
8 25 3 283.9 0.33 277.9 0.50 192.3 0.17
9 28 2 284.5 0.42 267.0 0.58 - -

10 28 3 248.1 0.33 262.9 0.50 257.6 0.17
11 30 2 303.2 0.42 269.9 0.58 - -
12 30 3 302.0 0.33 312.3 0.50 342.3 0.17
13 32 2 299.7 0.42 341.1 0.58 - -
14 32 3 296.3 0.33 342.2 0.50 343.6 0.17
15 35 2 343.9 0.42 358.7 0.58 - -
16 35 3 291.8 0.33 350.9 0.50 395.4 0.17
17 45 2 423.8 0.42 485.7 0.58 - -
18 45 3 489.8 0.33 508.3 0.50 470.8 0.17
19 70 2 683.3 0.42 643.3 0.58 - -
20 70 3 705.0 0.33 638.2 0.50 750.1 0.17

Once again the test problems were solved using the three meta-heuristic based

procedures and the best results of ten runs, for each procedure and problem instance, are

presented in Table 4.5. The outcome of this experiment confirmed the conclusions of the

previous one. For five problems both GA and ANTBAL improved the SA solutions in one

or more operators (for problem 20 the improvement was of six operators). Comparing GA

with ANTBAL, the following comments can be made:

(i) For one instance (problem 4) GA equalised the solution of SA while ANTBAL was

able to improve it.

(ii) For one instance (problem 19) ANTBAL equalised the solution of SA while GA was

able to improve it.

Chapter 4: Balancing straight assembly lines 95

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

(iii) For one instance (problem 16) GA improved the solution of SA and ANTBAL

improved the solution of GA.

Table 4.5 – Computational results for the MALBP-I data set with random times

 SA GA ANTBAL Best
Problem LBpmix S D(%) S D(%) S D(%) WE (%)

1 11 11 0.0 11 0.0 11 0.0 76.4

2 7 11 57.1 11 57.1 11 57.1 56.1

3 9 11 22.2 11 22.2 11 22.2 67.8

4 14 17 21.4 17 21.4 16 14.3 56.8

5 26 29 11.5 29 11.5 29 11.5 65.5

6 28 35 25.0 35 25.0 35 25.0 55.9

7 34 40 17.6 40 17.6 40 17.6 68.4

8 36 40 11.1 40 11.1 40 11.1 66.3

9 30 37 23.3 35 16.7 35 16.7 78.4

10 28 34 21.4 34 21.4 34 21.4 75.6

11 36 39 8.3 38 5.6 38 5.6 74.7

12 40 50 25.0 50 25.0 50 25.0 62.8

13 35 50 42.9 50 42.9 50 42.9 64.7

14 36 54 50.0 54 50.0 54 50.0 60.6

15 38 47 23.7 47 23.7 47 23.7 75.0

16 41 54 31.7 53 29.3 52 26.8 65.2

17 50 60 20.0 59 18.0 59 18.0 77.9

18 56 78 39.3 78 39.3 78 39.3 63.6

19 69 89 29.0 88 27.5 89 29.0 75.0

20 80 110 37.5 104 30.0 104 30.0 65.3

The best efficiency values (WE) were considerably lower than the one obtained in the

first computational experiment. This is explained by the nature of the task processing times

of the problem instances. While in the first data set there was a high number of short tasks

(when compared with the value of the cycle time), which allowed a better combination of

tasks within the workstations, in the second data set the generation of task times was

completely random, making it high the number of long tasks. When building a balancing

solution, the procedures create the workstations with high idle times, as it is more difficult

to combine tasks. Idle times cause low efficiency of the assembly line.

To extend the computational experience, a series of comparative tests were carried out

by adapting the three procedures to the conditions under which the benchmark problems

Chapter 4: Balancing straight assembly lines 96

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

proposed by Scholl (1993) were originally set. The number of tasks of the problems from

this data set ranges from 25 to 297. Scholl’s test problems are for single-model balancing

problems without parallel workstations, so the heuristics were run setting MRT to a value

higher than the longest task processing time, in order to prevent from the creation of

parallel workstations. For the 168 instances analysed the optimal solution is known for

166. Table 4.6 summarises the number of optimal solutions obtained by each procedure

and the maximum deviation from the optimal solution.

Table 4.6 – Number of optimal solutions and maximum deviation obtained for Scholl’s data set

 SA GA ANTBAL
Number of optimal solutions 73 97 97

Maximum deviation from optimal 14% 14% 14%

ANTBAL and GA clearly outperformed the SA procedure, considering the number of

optimal solutions found for this data set. However, for all the procedures the maximum

deviation from the optimal solutions was only 14% and it occurred in the same problem

instance: the optimal solution had 7 operators and the best solution obtained by the three

procedures had 8 operators. The performance of ANTBAL and GA was similar as both

procedures provided solutions with the same number of operators for every problem

instance.

This set of computational experiments showed that the overall performance of

ANTBAL and GA is superior to the SA heuristic. The results of ANTBAL were slightly

better than GA’s results for the two MALBP-I data sets.

4.7.2 Type II

The set of computational experiments to address the balancing problem of type II, in

which the goal is to minimise the cycle time of the assembly line for a given number of

operators, consisted in using the GA and ANTBAL procedures (the best procedures to

address type I, according to the results of the computational experience of the previous

section) within the framework proposed in Figure 4.16. With this method, the problem of

type I is iteratively solved for different values of the cycle time. Starting with a lower

Chapter 4: Balancing straight assembly lines 97

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

bound for the cycle time, its value is successively increased until a feasible solution is

achieved, i.e., a solution with the pre-specified number of operators. Then the SA

smoothing procedure was applied in order to try to improve the cycle time values of the

balancing solutions.

Problems 7, 8, 9, 10, 11, 17, 18 and 19 of the set of the problems with the characteristics

described in Table 4.2 were used in this computational experience. For each of them,

different values of the minimum replication time (MRT) and the total number of operators

(S) were given as input. Table 4.7 presents the results of this experience, for each problem

instance, in which the values of the cycle time are the best of ten runs. Columns ‘SA

imp(%)’ show the average improvement of the SA smoothing procedure and the best

values of the cycle time are compared with the lower bound, computed by equation (4.31).

The deviation from the lower bound (LB) is shown in column ‘D(%)’ and the weighted

efficiency of the best solution for each problem instance is given in the last column.

According to the results of the computational experience one can state that the

performance of both GA and ANTBAL procedures was similar, when addressing this set

of MALBP-II problem instances, being GA slightly superior to ANTBAL considering the

minimisation of the cycle time.

The values of the average improvement of the cycle time after running the SA

smoothing procedure were very low, which means that the iterative approach itself is a

good way to tackle type II problems. Nevertheless, it may be useful to perform small

changes in the resulting solutions, through swap or transfer movements, in order to better

level the workloads among workstations.

Chapter 4: Balancing straight assembly lines 98

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Table 4.7 – Computational results for the MALBP-II data set

 GA ANTBAL

Problem N M S MRT LB C SA
imp(%) D(%) C SA

imp(%) D(%) Best
WE (%)

A 25 2 16 5.9 8.3 8.3 0.0 0.0 8.4 0.0 1.2 92.6
 6.6 8.3 8.7 0.1 4.8 8.4 0.0 1.2 91.5
 8.8 8.8 9.3 0.3 5.7 9.6 0.1 9.1 82.6
 9.0 9.0 9.3 0.1 3.3 9.8 0.0 8.9 82.6
 9.4 9.4 9.4 0.9 0.0 9.8 0.0 4.3 81.7

B 28 2 21 4.2 8.9 9.1 0.0 2.2 9.1 0.0 2.2 95.0
 6.6 8.9 9.5 0.0 6.7 9.6 0.1 7.9 91.0
 7.7 8.9 9.4 0.0 5.6 9.6 0.3 7.9 92.0
 9.2 9.2 9.4 0.1 2.2 9.6 0.1 4.3 92.0
 9.8 9.8 9.8 0.0 0.0 9.8 0.0 0.0 88.2

C 30 2 16 4.8 8.9 9.1 0.0 2.2 9.1 0.0 2.2 96.4
 6.5 8.9 9.1 0.1 2.2 9.2 0.1 3.4 96.4
 7.8 8.9 9.3 0.1 4.5 9.2 0.1 3.4 95.3
 8.7 8.9 9.5 0.0 6.7 9.2 1.1 3.4 95.3
 9.9 9.9 9.9 0.0 0.0 9.9 0.0 0.0 88.6

D 45 2 25 4.8 8.9 9.0 0.2 1.1 9.2 0.1 3.4 95.6
 5.7 8.9 9.1 0.0 2.2 9.2 0.3 3.4 94.6
 7.3 8.9 9.4 0.1 5.6 9.3 0.3 4.5 92.6
 9.6 9.6 9.6 0.3 0.0 9.6 0.2 0.0 89.7

E 70 2 44 5.3 8.9 9.1 0.3 2.2 9.1 0.6 2.2 95.6
 7.4 8.9 9.5 0.2 6.7 9.5 0.2 6.7 91.5
 9.9 9.9 9.9 0.0 0.0 10.2 0.1 3.0 87.8

F 25 3 15 4.1 8.5 8.7 0.2 2.4 8.7 0.0 2.4 94.2
 6.8 8.5 8.6 0.0 1.2 8.7 0.0 2.4 95.3
 7.8 8.5 8.8 0.1 3.5 9.0 0.1 5.9 93.1
 8.5 8.5 8.7 0.0 2.4 9.0 0.0 5.9 94.2

G 28 3 20 4.7 8.7 9.0 0.4 3.4 8.9 0.2 2.3 93.5
 8.6 8.7 9.1 0.3 4.6 9.1 0.1 4.6 91.4
 9.3 9.3 9.3 0.0 0.0 9.3 0.0 0.0 89.5

H 45 3 28 5.6 8.5 8.8 0.2 3.5 8.9 0.4 4.7 93.2
 6.6 8.5 9.0 0.1 5.9 9.0 0.3 5.9 91.1
 7.5 8.5 9.0 0.0 5.9 9.1 0.2 7.1 91.1

4.7.3 Additional goals

The additional goals of balancing the workloads between and within workstations

(functions Bb and Bw, respectively) are only envisaged after the maximisation of the

weighted line efficiency (WE), in all of the three proposed meta-heuristic based

procedures. As the objective function gives a higher importance to WE, the secondary

goals Bb and Bw only become active when WE is maximum. Figure 4.18 presents the

Chapter 4: Balancing straight assembly lines 99

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

variation of these different goals during the run of one of the procedures for a test problem.

Computational experiments showed that this represents a typical variation of the workload

balance values among the tested problems and that the performance of the three

procedures, concerning the additional goals, was very similar.

0,70

0,80

0,90

1 50 100 150 200

iterations

0,00

0,05

0,10

0,15

0,20

0,25

0,30
Weighted line
efficiency (WE)

Balance between
workstations (Bb)

Balance within
workstations (Bw)

Global balance
(Bb+Bw)

Figure 4.18 – An example of the variation of the workload balance functions

4.8 Chapter conclusions

In this chapter, a mixed-model assembly line balancing problem with special

characteristics that reflect the operating conditions of real assembly lines was defined. The

mathematical programming model was only used as a formal description of the problem, as

it helps to describe the underlying principles of the proposed procedures. Due to its

extreme complexity, its resolution was only possible for very small problems. To address

larger sized problems three procedures based on the meta-heuristics simulated annealing

(SA), genetic algorithms (GA) and ant colony optimisation (ANTBAL) were developed.

Computational results for type I problems showed that GA and ANTBAL clearly

outperform SA while ANTBAL is slightly superior to GA. Considering type II problems,

the approach of solving iteratively problems of type I for different values of the cycle time,

until a solution with the pre-defined number of operators is found, showed a good

performance.

Chapter 4: Balancing straight assembly lines 100

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

The next step of the study was to address other assembly line balancing problems,

namely balancing U-shaped and 2-sided lines. As it was said before, the approach is to

solve complex problems and not to refine the techniques. So, to continue the study, only

one meta-heuristic based procedure was selected to be adequately modified in order to

solve these other balancing problems.

A conclusion from the results of the computational experiments presented in this

chapter is that GA and ANTBAL have similar performances. So, the selection of only one

of them to carry on the study was based on additional reasons. The development of ant

colony optimisation algorithms is very recent and most of the researchers working on this

area are still addressing traditional problems, like the travelling salesman problem, with

which the analogy of the paths followed by the ants is much stronger.

On the opposite, genetic algorithms, and other similar evolutionary computational

approaches, have been more widely applied. Particularly, the assembly line balancing

problem, although in its most simple version, has been a frequent object of study from

researchers on this area.

The contribution to the scientific knowledge would be more meaningful if the ACO

algorithms were applied to more complex problems. So, ANTBAL was selected to

continue the study.

5
5. Balancing U-shaped assembly lines

Contents
• Chapter introduction

• Characteristics of U-shaped assembly lines

• Definition of the mixed-model U-ALBP

• U-ANTBAL: an ant colony optimisation based approach

• Computational experience

• Chapter conclusions

Chapter 5: Balancing U-shaped assembly lines 103

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

5.1 Chapter introduction

In this chapter, the mixed-model U-shaped assembly line balancing problem

(U-MALBP) is addressed. First, the main characteristics of U-shaped assembly lines are

described and a brief review of existing techniques to tackle the single-model version of

the line balancing problem for this type of assembly lines is provided. Then, the impact of

mixed-model production on this type of lines is focused and a formal description of the

addressed problem (U-MALBP) is presented, using a mathematical programming model.

The ant colony optimisation algorithm developed to solve balancing problems in straight

assembly lines, described in the previous chapter, was adapted in order to balance

U-shaped assembly lines. This new procedure is presented and illustrated with a numerical

example and its performance is tested through a set of computational experiments.

5.2 Characteristics of U-shaped assembly lines

The implementation of business philosophies such as just-in-time (JIT) is a way that

companies have to cope with the constant changes in the external competitive

environment. JIT suggests the use of multi-skilled workers and efficient facility layouts, so

many companies are rearranging their traditional straight assembly lines into a U-shaped

layout (Monden, 1993, Scholl and Klein, 1999, Aase et al, 2004). In a U-line, workers can

move between the two legs of the ‘U’ to perform combinations of tasks that would not be

allowed in a straight line. The space at the centre of the ‘U’ is a shared area where

operators can communicate, help each other and learn one another’s skills. (A graphical

depiction of a U-shaped line was previously shown in Figure 2.5.)

Cheng et al (2000) and Miltenburg and Wijngaard (1994) summarise the main benefits

and factors that favour the use of U-shaped assembly lines and explain its popularity

among JIT practitioners. The main advantages of U-lines are the following:

(i) Operator flexibility and job enrichment: Operators are involved in different parts

of the assembly process enlarging their skills. As they understand the

relationships between tasks, they are better suited to make improvements in the

Chapter 5: Balancing U-shaped assembly lines 104

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

assembly process. The acquisition of multiple skills leads to higher motivation,

improved product quality and increased flexibility.

(ii) Visibility and teamwork: The compact size and configuration of a U-line makes

operators work closer to each other, improving visibility and communication

between them. Quality problems can be more quickly detected and solved. Also it

enhances teamwork making it easier for operators to help each other in cases of

congestion.

(iii) Volume flexibility: The output of a U-shaped assembly line may need to be

adjusted as a consequence of JIT principles, in which the production rate changes

frequently. To achieve the desired production rate, the number of operators

working on the line must be increased or decreased and a rapid reassignment of

tasks among operators must be made. This level of flexibility is more difficult to

attain in straight assembly lines due to its narrowly trained operators.

(iv) Number of workstations: The number of workstations required on a U-shaped

line is never superior to that required on a straight line, because there are more

possibilities of grouping tasks into workstations on a U-line. (The same

workstation can perform tasks from the beginning and from the end of the

precedence diagram, while in straight lines this is not possible.) This flexibility

enables JIT companies to potentially reduce the total number of workers in their

facility, creating a more efficient facility layout.

(v) Material handling: Usually, sub-assemblies are moved between workstations by

the assembly line operators instead of using material handling equipment (such as

conveyors or special material handling operators).

Miltenburg (2001) provides a review of the theory and practice on U-shaped production

lines. In his study, a set of US and Japanese companies which changed their straight lines

to U-lines is examined. The results show impressive benefits of the adoption of U-shaped

configurations: productivity improvement of 76%, reduction of work-in-process inventory

of 86%, decrease of lead time of 75% and defective rates reduction of 83%, on average.

However, the U-shaped production lines of Miltenburg’s study are mainly composed by

machines operated by a small set of operators, making them different from the concept of

assembly lines, whose work is essentially manual.

Chapter 5: Balancing U-shaped assembly lines 105

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

5.2.1 Literature review of approaches to solve the U-ALBP

The main focus of the research on U-lines has been on the development of techniques to

solve the single-model U-shaped assembly line balancing problem (U-ALBP). Miltenburg

and Wijngaard (1994), the first authors to study this problem, developed a dynamic

programming exact procedure able to solve instances with up to 11 tasks. To address larger

problems they proposed a set of single-pass heuristic procedures, able to solve instances

with up to 111 tasks.

The integer programming formulation proposed by Urban (1998) managed to solve to

optimality problems with up to 45 tasks. Scholl and Klein (1999) developed a

branch-and-bound based heuristic called ULINO, which was adapted from a previous

algorithm they had developed for balancing straight lines. The computational experience

involved a large set of problems with up to 297 tasks and proved a good performance of

the procedure, especially for the objective of minimising the number of workstations.

The problem of balancing a U-line facility with several U-lines connected by multi-line

workstations was addressed by Miltenburg (1998) through the development of a dynamic

programming formulation. The formulation was able to optimally solve problems with any

number of U-lines as long as precedence diagrams for individual U-lines did not have more

than 22 tasks.

Aase et al (2003) proposed a set of branch-and-bound procedures with different design

elements (branching strategies, fathoming criteria, etc.) to solve the U-ALBP. These

procedures are experimentally compared with other algorithms available in the literature.

Significant improvements over the existing methods are reported by the authors when

solving problem instances of reasonable application size for U-shaped layouts (problems

with up to 50 tasks).

A goal programming approach to simultaneously consider several conflicting objectives

was presented by Gökçen and Agpak (2006). The authors use a pre-emptive approach in

which different goals, like number of workstations, cycle time and number of tasks per

workstation, are ranked by some priority order. No comparison with other algorithms is

provided, as the computational experience was only dedicated to the study of the

multi-criteria version of the problem.

Chapter 5: Balancing U-shaped assembly lines 106

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Guerriero and Miltenburg (2003) developed a mathematical model and recursive

algorithms to solve the U-ALBP with stochastic task processing times. Computational

experiments showed that the algorithms are able to solve problems of practical size.

Erel et al (2001) developed a simulated annealing based procedure to address the

U-ALBP. A description of the most important features of this procedure was already

provided on section 3.2.2 of this document. Computational experience yielded very good

results for the set of tested problem instances.

Other studies on U-shaped lines have focused on the optimal worker allocation problem

(Nakade and Ohno, 1999), product quality (Cheng et al, 2000), the effect of breakdowns

(Miltenburg, 2000) and the impact on labour productivity (Aase et al, 2004).

All these studies have confirmed that the U-ALBP is a very significant problem for

modern assembly systems. However they only deal with single-model assembly lines. The

mixed-model U-shaped assembly line balancing problem is a more complicated problem to

solve, but much more relevant within a context of increasing pressure for manufacturing

flexibility and growing demand for customised products.

5.3 Definition of the mixed-model U-ALBP

The key difference between the straight assembly line balancing problem and the

U-shaped assembly line balancing problem (U-ALBP) is related with the set of assignable

tasks. In straight assembly lines, the set of assignable tasks at each moment is the set of

tasks whose predecessors have already been assigned, in order to meet precedence

constraints. In a U-shaped assembly line, the set of assignable tasks is the union of the set

of tasks whose predecessors have already been assigned and the set of tasks whose

successors have already been assigned.

The problem of balancing a U-shaped assembly line to produce a set of models of a

product is the mixed-model U-ALBP (U-MALBP) and it was first described by Sparling

and Miltenburg (1998). An additional and very important issue of mixed-model U-lines,

when compared with single-model ones, is the fact that in the same cycle a workstation

may perform its tasks in two different models, one at each leg of the line. This situation is

illustrated in Figure 5.1. The line produces three models in the sequence ABC. In a

Chapter 5: Balancing U-shaped assembly lines 107

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

determined cycle, the operator of workstation 2 performs task 2 on model C at the front of

the line and then crosses to the back to complete task 8 on model B.

Figure 5.1 – Mixed-model production on a U-shaped assembly line

A very common practice when dealing with the mixed-model nature of the assembly

process is to use average task processing times to assign tasks to workstations. A task is

assigned to a workstation as long as the sum of its weighted average processing time with

the current workstation workload does not exceed the cycle time. Then, finding the right

model sequence (the sequence in which the models are launched to the line) is highly

important, in order to allow a good workload balance within the workstations. In the

U-MALBP this issue becomes even more important, not only because the models may be

different from cycle to cycle, but because they also may be different within the same cycle.

All the existing approaches to the U-MALBP find an initial assignment of tasks based

on their weighted average processing time and use some kind of procedure to reduce the

unbalance of the initial balancing solution, using the task processing times for each model.

Sparling and Miltenburg (1998) use the combined precedence diagram and the weighted

average task processing times to create a single-model balancing problem and, using a

branch-and-bound algorithm, an optimal solution for this problem is obtained, called initial

balance. Several unbalance measures, regarding the mixed-model nature of the original

problem, are defined and computed for the initial balance. Then, a smoothing algorithm is

applied in order to reduce the unbalance. This algorithm exchanges tasks between

Chapter 5: Balancing U-shaped assembly lines 108

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

workstations so that the value of the selected unbalance measure decreases. The unbalance

measures used by these authors are (i) binary variables indicating whether the total time in

a workstation exceeds the cycle time, (ii) amount of the total time, if any, that exceeds the

cycle time in a workstation and (iii) absolute deviation of total time from a determined goal

in a workstation. An important aspect of this approach is that the sequence in which the

models are launched in the U-shaped line must be known, as it directly influences the

values of the unbalance measures.

Kim et al (2000) address simultaneously the problems of balancing and sequencing

mixed-model U-lines, as both the line balance and the model sequence influence the

performance measure used by the authors: the absolute deviation of workloads. These

authors propose a cooperative co-evolutionary algorithm which maintains two sets of

populations, one to represent solutions of the line balancing problem and the other to

represent solutions of the model sequencing problem. Each individual in a population has a

matching pair in the other population and fitness (based on the absolute deviation of

workloads) is computed for the pair of individuals. To generate new individuals, different

genetic operators are defined for the each of the populations. Computational experiments

proved a good performance of the procedure when compared with that of the hierarchical

approach and of two other co-evolutionary algorithms for the same set of test problems.

Miltenburg (2002) also considers the problems of balancing the line and sequencing the

models simultaneously, however the goal to achieve is the generation of level production

schedules for other production facilities operating in JIT environment. It takes into account

the number of parts, from each of the different production facilities, which each model

requires to be assembled. A genetic algorithm approach was used to address the problem.

The following section describes the characteristics of the addressed U-MALBP.

5.3.1 Problem assumptions and constraints

The existing procedures to solve the U-MALBP have demonstrated a great influence of

the model sequence in the line balances obtained. However, like for the straight MALBP

(described in chapter 4), the goal of this work was to study only the balancing problem, so

the approach was to try to find good line balances able to cope with any model sequence.

In the particular case of U-shaped assembly lines, the model sequence interferes with the

Chapter 5: Balancing U-shaped assembly lines 109

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

mix of models within each workstation in the same cycle. To address this issue, the

assignment of tasks to workstations is performed using each possible model combination

for each cycle in a workstation. This way, regardless of the model sequence, the workload

of each workstation never exceeds the required cycle time.

In the proposed approach, a set the of similar models of a product (m=1,…,M) are

produced in a U-shaped assembly line, in any order or mix, over a pre-specified planning

horizon, P. The forecasted demand, over the planning horizon, for model m is Dm,

requiring the line to be operated with a cycle time given by

∑
=

=
M

m
mDP/C

1

 (5.1)

The production share of each model m is computed by

∑
=

==
M

p
pmm MmDDq

1
),...,1(/ (5.2)

The combined precedence diagram for all models has N tasks (numbered i=1,…,N) and

tim is the time required to perform task i on model m.

As it was referred earlier, an operator in a U-line may perform tasks at both legs of the

line, so it is necessary to identify which tasks are performed at the front and which tasks

are perform at the back of the line. Therefore, the following decision variables of the

mathematical programming model are defined:

⎩
⎨
⎧

==
=

),...,1;,...,1(otherwise 0,
line- U theoffront at the on workstati toassigned is task if 1,

SkNi

ki
x F

ik (5.3)

⎩
⎨
⎧

==
=

),...,1;,...,1(otherwise 0,
line- U theofback at the on workstati toassigned is task if 1,

SkNi

ki
x B

ik (5.4)

where S is the number of workstations (operators) of the assembly line. The assignment of

a task to only one workstation, regardless of the model being assembled, is guaranteed by

the following set of constraints:

())1(1 ,...,Nixx
S

1k

B
ik

F
ik ==+∑

=

 (5.5)

Chapter 5: Balancing U-shaped assembly lines 110

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

To verify the precedence constraints of the assembly process, it is necessary to

guarantee that a task can only be assigned to a workstation if either all its predecessors or

all its successors have been already assigned. If all the predecessors of a task i have been

previously assigned to workstations at the front of the U-line, then task i can be assigned at

the front of the line. This case is ensured by the set of constraints (5.6), in which Predi is

the set of predecessors of task i. The index of the workstation (k) to which task i is to

assigned cannot be inferior to the index of the workstations to which its predecessors are

assigned.

);1(0 i

S

1k

F
ik

S

1k

F
hk Predh,...,Nikxkx ∈=≤−∑∑

==

 (5.6)

If all the successors of a task i have been previously assigned to workstations at the

back of the U-line, then task i can be assigned at the back of the line. This case is ensured

by the set of constraints (5.7), in which Suci is the set of successors of task i. The index of

the workstation (k) to which task i is to be assigned cannot be inferior to the index of the

workstations to which its successors are assigned, considering that they are assigned at the

back of the line.

);1(0 i

S

1k

B
jk

S

1k

B
ik ucSj,...,Nikxkx ∈=≤−∑∑

==

(5.7)

When included in the mathematical programming model these will be sets of

disjunctive constraints, as only one is verified at a time.

The workload of a workstation will depend on the models that it performs at the front

and at the back of the line in each cycle. Let m and n be two of the models to be assembled

on the U-line. The workload of workstation k when model m is produced at the front and

model n is produced at the back of the line is computed by:

()∑
=

==+=
N

i

B
ikin

F
ikimkmn ,...,Mn,...,S; m,kxtxtW

1
)11((5.8)

In order to ensure that the cycle time is never exceeded, regardless of the pairs of

models produced at the front and back of the line by each workstation on each cycle, the

following set of constraints must hold for every workstation:

Chapter 5: Balancing U-shaped assembly lines 111

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

)11(,...,Mn,...,S; m,kCWkmn ==≤ (5.9)

The idle time of a workstation is the difference between the capacity of the workstation

and its workload. skmn is idle time of workstation k when it performs its tasks on model m at

the front and on model n at the back of the line and is computed by the set of equations

(5.10).

()),...,1,;,...1(
1

MnmSkCsxtxt kmn

N

i

B
ikin

F
ikim ===++∑

=

 (5.10)

Zoning constraints may also be included in the problem. Positive zoning constraints

force pairs of tasks to be assigned to the same workstation and are defined by:

())),((0) ZPjixxkxk(x
S

1k

B
jk

F
jk

S

1k

B
ik

F
ik ∈=+−+ ∑∑

==

 (5.11)

where ZP is the set of pairs of tasks that must be assigned to the same workstation.

Negative zoning constraints are defined by:

)),((0)) ZNjixk(xxk(x
S

1k

B
jk

F
jk

S

1k

B
ik

F
ik ∈≠+−+ ∑∑

==

 (5.12)

where ZN is the set of pairs of incompatible tasks.

5.3.2 Objective function

Similarly to the MALBP (defined in section 4.2), the goals of the U-MALBP are the

following:

(i) minimisation of the number of workstations, for a given cycle time (for type I

problems) or minimisation of the cycle time for a given number of workstations

(for type II problems), both equivalent to the minimisation of the idle time of the

line;

(ii) smoothing workloads between workstations;

(iii) smoothing workloads within workstations.

Given the particular characteristics of the U-MALBP, the expressions used to address

these goals are different from the ones used for the straight MALBP.

Chapter 5: Balancing U-shaped assembly lines 112

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

To cope with the U-line mixed-model production, an objective function, called U-line

idle time (WITU), was developed. It minimises the sum of the weighted idle times of each

workstation, considering the probability of occurrence of each pair of models on the front

and back of the line, qmn, and it is given by:

()∑∑∑ ∑
= = = =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

S

k

M

1m

M

n

N

i

B
ikin

F
ikimmn

U xtxtCqWITMinimise
1 1 1

 (5.13)

As the sequence in which the models are launched into the line is not known, it is not

possible to precisely determine the value of qmn. To assemble M models in a U-line there

are M2 possible combinations of models in a workstation working on both legs of the line.

An example with three models is shown in Figure 5.2. As the line balance must be feasible

for all the possible sequence of models, including random sequences, it is reasonable to set

equal probabilities of occurrence of each pair of models (model m at the front and model n

at the back of the line). So, qmn is set to 1/M2 for every pair (m,n).

Figure 5.2 – Possible combinations of models in a workstation in the same cycle

In order to have a measure independent from the data of each problem instance, an

alternative objective function called weighted U-line efficiency (WEU) was defined. WEU

varies between 0 and 1. The more close to 1 (or 100%) the less idle time has the line. WEU

is an objective function to maximise and it is computed as follows:

Chapter 5: Balancing U-shaped assembly lines 113

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

()
∑∑

∑∑
= =

= =

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅

+

=
M

m

M

1n

S

k

N

i

B
ikin

F
ikim

2
U

CS

xtxt

M
1WEMaximise

1

1 1 (5.14)

Besides the minimisation of the number of workstations (or the minimisation of cycle

time, for problems of type II), additional goals, concerning workload smoothing, are also

envisaged. The objective function U
bB aims to balance the workload between workstations,

i.e., for each model the idle time is distributed across workstations as equally as possible,

and it is given by:

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

S

k
U

kU
b SWIT

S
S

SBMinimise
1

21
1

 (5.15)

where, Sk is the average idle time of workstation k computed by:

∑∑
= =

=
M

m

M

n
kmnk s

M
S

1 1
2

1 (5.16)

The value of function U
bB varies between a maximum of 1, when the average idle time

of the line is equal to the idle time of one of the workstations, and a minimum of 0, when

WITU is equally distributed by all workstations in the line. A demonstration of these values

is presented in Appendix 4.

Due to the mixed-model nature of the problem and also the U-shaped configuration,

each task processing time may vary among the different models and within each cycle a

workstation may have to work on two models (one at the front and another at the back of

the line). In order to ensure that each operator performs approximately the same amount of

work regardless of the models being assembled, it is desirable to balance the workload

within each workstation. To achieve this goal the objective function U
wB was developed,

which aims at smoothing the workload balance within each workstation and it is computed

as follows:

∑∑∑
= = =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

S

k

M

m

M

n k

kmnmnU
w

MS
sq

MS
MBMinimise

1 1 1

2

22

2 1
)1(

 (5.17)

Chapter 5: Balancing U-shaped assembly lines 114

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

The value of function U
wB varies between a maximum of 1, when the idle time of each

workstation is only accountable to one combination of models (m,n), and a minimum of 0,

when it is equally distributed by all combinations of models in every workstation. (A

demonstration of these values is presented in Appendix 4.)

5.3.3 Complete mathematical programming model

The global objective function is then composed by three terms, each of which

addressing one of the goals stated in the previous section. The complete mathematical

programming model for the U-shaped mixed-model assembly line balancing problem is

presented in Figure 5.3. The model constraints are interpreted as follows:

(i) constraints ensuring that each task is assigned to only one workstation of the

station interval (assignment constraints);

(ii) disjunctive constraints ensuring that a task can be assigned to a workstation if

either all its predecessors (ii a) or all its successors (ii b) have been assigned to

the same or to an earlier workstation (in this set of constraints, ui is an auxiliary

binary variable and M is a very large positive integer);

(iii) constraints ensuring that each workstation capacity is not exceeded, as the use of

parallel workstations was not accounted for in this model, the capacity of a

workstation is the cycle time;

(iv) positive zoning constraints;

(v) negative zoning constraints,

(vi) set of constraints computing the number of operators required by the line (S) in

which the auxiliary binary variable yk equals one, if the kth workstation is used for

assembly and zero, otherwise (in this set of constraints, K is an upper bound for

the number of workstations and M is a very large positive integer);

(vii) set of constraints defining the decision variables domains.

The proposed mathematical programming is only used as a means to formally describe

the problem, as its high complexity makes it impossible to be solved to optimality. The

following section describes U-ANTBAL, an ant colony optimisation based approach

developed to find solutions for the U-MALBP.

Chapter 5: Balancing U-shaped assembly lines 115

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

()

()

()

()

()

e) (integer is 0
d) (),...1(}1,0{
c) (),...,1(}1,0{
b) (),...1;,...,1(}1,0{,
a) (),...,1,;,...1(0

c) (

b) (),...1(

a) (),...1(

)()),((0))

)()),((0)

)(),...,1,;,...1(

)b ();1()

a)();1(

)()1(1

:subject to

1

1

viiSS
viiKky
viiNiu
viiKkNixx
viiMnmKks

viyS

viKkyxx

viKkyxx

vZNjixk(xxk(x

ivZPjixxkxk(x

iiiMnmKkCsxtxt

iiSucj,...,Niukxkx

iiPredh,...,Niukxkx

i,...,Nixx

BBWEMaximise

k

i

B
ik

F
ik

kmn

K

k
k

N

1i
k

B
ik

F
ik

N

1i
k

B
ik

F
ik

K

1k

B
jk

F
jk

K

1k

B
ik

F
ik

K

1k

B
jk

F
jk

K

1k

B
ik

F
ik

kmn

N

i

B
ikin

F
ikim

ii

K

1k

B
jk

K

1k

B
ik

ii

K

1k

F
ik

K

1k

F
hk

K

1k

B
ik

F
ik

U
w

U
b

U

>
=∈
=∈

==∈
==≥

=

=≥+

=≤+

∈≠+−+

∈=+−+

===++

∈=≤−

∈=≤−

==+

−−

∑

∑

∑

∑∑

∑∑

∑

∑∑

∑∑

∑

=

=

=

==

==

=

==

==

=

M

-M(1

M

λ

Figure 5.3 – Mathematical programming model for the U-MALBP

5.4 U-ANTBAL: an ant colony optimisation based approach

The ant colony optimisation based approach developed to tackle the straight

mixed-model assembly line balancing problem, described in section 4.5 was modified in

order to address the U-shaped problem. This new procedure is called U-ANTBAL and its

main steps are presented in Figure 5.4.

Chapter 5: Balancing U-shaped assembly lines 116

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Create new sub-colony

Release new ant

Ant builds a solution
 for the U-MALBP

Compute solution quality

Update best solution

Deposit pheromone

Have all ants built
 a sequence?

Have all sub-
colonies been

created?

START

STOP
YES

NO YES

NO

Figure 5.4 – Outline of U-ANTBAL

The features and parameters of U-ANTBAL are similar to the ones of ANTBAL, except

the following:

(i) When building a balancing solution, an ant must determine the set of available

tasks, i.e., the set of tasks that can be assigned to the current workstation. A task

is available if it verifies (i) capacity constraints, defined by equations (5.10), (ii)

zoning constraints, defined by equations (5.11) and (5.12) and (iii) precedence

constraints, defined by equations (5.6) or (5.7) determining which tasks are

assignable to the front and which tasks are assignable to the back of the line,

respectively. The way an ant builds a balancing solution of a U-MALBP is

depicted in Figure 5.5.

(ii) The objective function used to guide the search in U-ANTBAL is the one of the

mathematical programming model of the previous section:
U
w

U
b

U BBWEZ −−= λ . This quality measure is also used as the amount of

pheromone released by the ants, as it was described in section 4.5.1.4.

Chapter 5: Balancing U-shaped assembly lines 117

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Open workstation

Select task for
assignment

Have all tasks
been assigned?

START

STOP
NOYES

Are there available
tasks?

YES NO

Determine
available tasks

Task assignable to
the front of the line?

Assign task to the
front of the U-line

Assign task to the
back of the U-line

YESNO

Figure 5.5 – Building a balancing solution in U-ANTBAL

5.4.1 Use of parallel workstations

Although in the definition of the U-MALBP the capacity of each workstation was the

cycle time, the implemented ANTBAL algorithm allows the creation of parallel

workstations in a similar way as it was described for straight assembly lines (in section

4.2). This was due to the need of using the same data set of mixed-model assembly line

balancing problems that was used in the computational experiments for straight assembly

lines.

This way, U-ANTBAL allows the replication of workstations that perform tasks with

processing time higher than MRT (minimum replication time) for, at least, one of the

models. These workstations will have two or more operators working in parallel (in

replicas of the workstation). The number of replicas of a workstation k, Rk, is determined

by its longest task processing time (for all models) and it is given by:

Chapter 5: Balancing U-shaped assembly lines 118

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

{ }
),...1(

(max
,...,1;,...,1 LLk

MRT

xxt
R

B
ik

F
ikimNiMm

k =
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡ +
= == (5.18)

where LL will be the line length, i.e., the number of different workstations. The capacity of

a workstation k will then depend on the tasks it performs: if all its tasks are not greater than

MRT, then its workload must not exceed cycle time and the set of constraints defined in

(5.9) must be verified. Otherwise, the capacity constraints are given by:

)1, ;1(,...,Mnm,...,LLkCRW kkmn ==⋅≤ (5.19)

where Wkm is the workload of workstation k when it works on model m at the front and on

model n at the back of the line, already defined by expression (5.8).

The physical implementation of parallel workstations in U-shaped assembly lines may

be possible with an adequate material handling system and/or an agile operator’s

positioning along the line.

5.4.2 Numerical illustration

The goal of this section is to show the differences in the balancing solutions obtained

for straight line configurations and U-shaped configurations, for the numerical example of

section 4.3.3. The best solution for a straight configuration has 16 operators working on 14

different workstations (two workstations are replicated) and it is presented in the upper

side of Figure 5.6. Using U-ANTBAL, the same problem was solved and U-shaped

balancing solutions with 15 operators (13 different workstations) were obtained. Two of

these solutions are depicted in the lower part of Figure 5.6. The reduction of one

workstation was due to the more flexible nature of the precedence constraints in U-lines, as

tasks from different parts of the assembly process can be performed by the same operator

at the front and at the back of the line.

The two U-line configurations are solutions obtained when running U-ANTBAL.

Solution 1 is an intermediate solution while solution 2 is the best solution provided by the

algorithm. Both have 15 operators, but have different assignments of tasks to workstations,

leading to different values of the workload balance functions U
bB and U

wB .

Chapter 5: Balancing U-shaped assembly lines 119

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

start end

1 1572163 7 121816 8410 13115 29 25242019 232214

784 252420

w-2 w-3 w-4 w-5 w-6 w-7 w-8 w-9 w-11 w-14w-1

w-14

w-10 w-12

w-8

w-13

1

15 1221

63 11

18

13

16

84 105

17

7 2

9

1923 22 14
w-1

start

end 252420

w-3 w-4

w-2 w-5 w-6 w-7 w-8

w-9 w-10

w-11 w-12

w-13
x 2

front of the line

back of the line

straight line

U-shaped line
(solution 1)

1

15 12 21

63 11

18

13

16

84 105

17

7 2
9

1923 22 14

w-3

start

end 252420
w-4w-2 w-5 w-6

w-7

w-8 w-9

w-10

w-11 w-12

w-13

front of the line

back of the line

w-1

U-shaped line
(solution 2)

 workstation with 2 replicas

x 2

x 2

x 2x 2

Figure 5.6 – Straight and U-shaped line configurations for the numerical example

Table 5.1 presents, for each solution, the set of tasks assigned to the front and to the

back of each workstation and the workloads for every model combination (AB is the

workload of a workstation when it works on model A at the front and on model B at the

back of the line). It also presents the values of Sk, i.e., the workstation’s average idle time,

computed by expression (5.16). For workstations with two replicas (workstations 3 and 6

of solution 1 and workstations 1 and 6 of solution 2) the idle time is computed by the

difference between twice the cycle time and the workload.

For solution 1, the balance between workstations has a value of U
bB =0.06 and the

balance within workstations has a value of U
wB =0.07. For the same number of operators,

U-ANTBAL tries to improve the global workload balance (U
bB + U

wB). This way, solution

2, the best solution obtained for this problem, presents better workload balance values:
U
bB =0.03 and U

wB =0.04, which shows a considerable improvement the global balance.

Chapter 5: Balancing U-shaped assembly lines 120

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Table 5.1 – Task assignments and workload values for the two U-line solutions

SOLUTION 1
 Tasks Workload
k Front Back AA AB BA BB Sk
1 1,3 7.3 7.3 9.3 9.3 1.7

2 6,7 9.9 9.9 0 0 5.1

3 20,24,25 16.6 12.7 16.6 12.7 5.4

4 23 9.6 8.2 9.6 8.2 1.1

5 5 8.8 8.8 8.8 8.8 1.2

6 4 22 19.7 19.7 19.7 19.7 0.3

7 8,11 21 7.5 7.5 9.5 9.5 1.5

8 13 14,19 8.5 7.2 8.5 7.2 2.2

9 15,17 9.2 5.5 9.2 5.5 2.7

10 18 9.4 9.4 9.4 9.4 0.6

11 2 16 9.6 9.7 9.6 9.7 0.4

12 10 12 9.6 9.6 9.6 9.6 0.4

13 9 6.6 6.6 6.6 6.6 3.4

SOLUTION 2

 Tasks Workload
k Front Back AA AB BA BB Sk
1 1 20,24,25 16.6 12.7 18.6 14.7 4.4

2 3 7.3 7.3 7.3 7.3 2.7

3 23 9.6 8.2 9.6 8.2 1.1

4 7 15 9.1 9.1 5.5 5.5 2.7

5 5 8.8 8.8 8.8 8.8 1.2

6 4 22 19.7 19.7 19.7 19.7 0.3

7 12,21 9.1 9.1 9.1 9.1 0.9

8 6,8 17 9.9 6.2 5.7 2.0 4.1

9 11 14,19 8.1 6.8 8.1 6.8 2.6

10 18 9.4 9.4 9.4 9.4 0.6

11 2 7.7 7.7 7.7 7.7 2.3

12 10,13 8.4 8.4 8.4 8.4 1.6

13 9,16 8.5 8.6 8.5 8.6 1.5

Chapter 5: Balancing U-shaped assembly lines 121

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

5.5 Computational experience

U-ANTBAL was coded in C and run on a 2.8 GHz Pentium 4 computer. To test its

performance the two sets of mixed-model assembly line balancing problems used in the

computational experiments of section 4.7.1 were solved and the number of operators of the

solutions obtained by U-ANTBAL was compared with the best ones obtained for straight

lines. The results, presented in Table 5.2, show that for some problem instances it is

possible to reduce the number of operators of the line just by changing its configuration

from straight to U-shaped. For the first data set, U-ANTBAL improved the solution of nine

of the 20 instances while for the second it was only able to improve the solution of two

problem instances. This performance was somehow predictable, due to the random nature

of the task times of the second data set. There is a high number of large tasks that cannot

be combined in the same workstation, so the advantage of using a U-shaped configuration

is not so high as it is for problems with tasks with typical times, as in the first data set.

Table 5.2 – Computational results (number of operators) of U-ANTBAL for the two MALBP data sets

 MALBP data set with typical times MALBP data set with random times
Problem straight U-shaped straight U-shaped

1 4 4 11 11

2 8 8 11 11

3 7 7 11 10

4 7 6 16 16

5 16 14 29 29

6 15 13 35 35

7 16 15 40 40

8 14 14 40 40

9 20 20 35 35

10 20 19 34 34

11 16 16 38 38

12 19 19 50 50

13 19 17 50 49

14 19 18 54 54

15 23 23 47 47

16 24 23 52 52

17 24 24 59 59

18 26 26 78 78

19 43 43 88 88

20 44 43 104 104

Chapter 5: Balancing U-shaped assembly lines 122

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

5.6 Chapter conclusions

In this chapter, the mixed-model U-shaped assembly line balancing problem was

address. A mathematical programming model was used to formally describe the problem

and an ant colony optimisation algorithm was developed to solve it. A distinctive feature of

this approach from existing ones is the fact that it does not depend on the sequence in

which the models are launched into the line. The line configurations provided by the

proposed procedure are adequate for every sequence of models that might occur. This

flexibility is very important for companies operating under lean production philosophies

such as JIT.

The results of the computational experiments carried out in this study showed that the

proposed procedure is able to decrease the number of operators of an assembly line by

using a U-shaped configuration rather than a straight line configuration. Also, the

possibility of having replicated workstations allows the line to increase its production rate,

when the required cycle time is lower than some of the task processing times.

6
6. Balancing 2-sided assembly lines

Contents
• Chapter introduction

• Characteristics of 2-sided assembly lines

• Definition of the mixed-model 2-ALBP

• 2-ANTBAL: an ant colony optimisation based approach

• Computational experience

• Chapter conclusions

Chapter 6: Balancing 2-sided assembly lines 125

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

6.1 Chapter introduction

In this chapter, the 2-sided mixed-model assembly line balancing problem (2-MALBP)

is addressed. First, the main characteristics of 2-sided assembly lines are described and a

brief review of existing techniques to tackle the single-model version of the line balancing

problem for this type of lines is provided. Then, a formal description of the addressed

problem (2-MALBP) is presented, using a mathematical programming model and the ant

colony optimisation algorithm developed to solve it is presented. The procedure is

illustrated with a numerical example and its performance is tested through a set of

computational experiments.

6.2 Characteristics of 2-sided assembly lines

Typically, 2-sided assembly lines are used in the production of large-sized products,

such as trucks and buses (Kim et al, 2000). The assembly process of this type of products

may be different from the assembly of small products, as some assembly tasks are required

to be performed on a specific side of the product or at both sides of the product

simultaneously (by different operators).

The structure of a 2-sided assembly line is depicted in Figure 6.1. The line has two

sides, left and right, and, in most cases, at each position there is a pair of workstations

directly facing each other. The two opposite operators perform, in parallel, different tasks

but on the same individual item. This is different from the concept of parallel workstations,

where different operators perform the same tasks but on different items.

Figure 6.1 – Configuration of a 2-sided assembly line

Chapter 6: Balancing 2-sided assembly lines 126

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

According to Bartholdi (1993), in practice a 2-sided line can provide several advantages

over a one-sided line, like the reduction of (i) the number of operators, (ii) the throughput

time, (iii) the cost of tools and fixtures, as they can be shared by the operators of both sides

and (iv) material handling costs.

The main difference between the assignment of tasks in one-sided lines and in 2-sided

lines is in the relevance of the sequence in which the tasks are performed. In one-sided

lines the sequence of the tasks within a workstation is not important as long as it verifies

precedence constraints. However, in 2-sided assembly lines, this is a crucial factor for an

efficient assignment of tasks. Tasks at opposite sides of the line can interfere with each

other through precedence constraints which might cause idle time if a workstation needs to

wait for a predecessor task to be completed at the opposite side of the line. This

phenomenon is called interference and it is illustrated in Figure 6.2.

The precedence diagram of the tasks required to assemble a product is shown in the

right side of Figure 6.2. Some tasks have to be performed on a specific side of the line

(L-left side, R-right side) while others may be processed on either side (E). Let task 1, with

processing time of 2 time units (t.u.), be assigned to the left side and task 2, with

processing time of 8 time units, be assigned to the right side of the line. Task 3 can be

assigned to workstation 1 right after task 1, as its unique predecessor is task 1. Task 2 is

completed, in workstation 2, after 8 t.u., however, it is necessary to wait for the completion

of task 3 before any other task becomes available. Workstation 2 is obliged to remain idle

for 1 t.u., so task 3 interferes with the next task to be assigned.

Figure 6.2 – Interference in 2-sided assembly lines

Chapter 6: Balancing 2-sided assembly lines 127

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

6.2.1 Literature review of approaches to solve the 2-ALBP

The literature on the 2-sided assembly line balancing problem (2-ALBP) is scarce.

Bartholdi (1993) was the first author to address the 2-ALBP. His work comprehends an

interactive computer program embodied with a balancing algorithm, based on the ‘first fit’

heuristic, that enables line managers to rapidly refine the solutions provided by the

algorithm. Kim et al (2000) present a genetic algorithm approach for 2-ALBP, while Lee et

al (2001) propose a group assignment procedure focusing on the maximisation of work

relatedness and work slackness. An industrial case study is presented by Lapierre and Ruiz

(2004), in which an enhanced priority-based heuristic is applied to balance a 2-sided

assembly line. This study was extended to the application of a taboo search procedure in

Lapierre et al (2006).

All these studies report on the 2-ALBP for single-model assembly lines, but this type of

line is not suited for high levels of product customisation, a crucial factor for companies to

be competitive under current market trends and essential to address in the final stage

assembly lines of the automotive industry. The present work addresses the problem of

balancing mixed-model 2-sided assembly lines. A definition of this problem is presented in

the following section.

6.3 Definition of the mixed-model 2-ALBP

In a mixed-model 2-sided assembly line, a set of similar models of a product is

assembled, in any order and mix, by workers that perform assembly tasks on a set of

assembly stations, each of which has a pair of workstations directly opposite each other

(left and right side workstations). In each cycle, the two operators working at the different

sides of the line, at each position, perform their tasks in the same individual item, thus in

the same model. So, the approach to address the mixed-model nature of the problem is

similar to the one of the straight mixed-model assembly line.

The particularity of 2-sided lines is concerned with sequencing the tasks within each

workstation, at both sides of the line, in a way that minimises the compulsory idle time due

to the phenomenon of interference.

Chapter 6: Balancing 2-sided assembly lines 128

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

6.3.1 Problem assumptions and constraints

In the proposed approach, the assembly line has two sides, left and right, with a set of

workstations positioned at each side of the line. A set of similar models of a product

(numbered m=1,…,M) is produced in the 2-sided assembly line, in any order or mix, over a

pre-specified planning horizon, P. The forecasted demand, over the planning horizon, for

model m is Dm, requiring the line to be operated with a cycle time given by

∑
=

=
M

m
mDP/C

1

 (6.1)

The overall proportion of the number of units of model m being assembled is computed

by

∑
=

==
M

p
pmm ,...,MmDDq

1
)1(/ (6.2)

The combined precedence diagram for all models has N tasks (numbered i=1,…,N) and

tim is the time required to perform task i on model m. Also, the side of the line in which a

task is performed is defined in the assembly process. Tasks can be:

(i) performed on either side of the line: SE is the set of tasks that can be performed

on either side of the line;

(ii) required to be performed on a specific side of the line: SL (SR) is the set of tasks

that must be performed on the left (right) side of the line;

(iii) required to be performed simultaneously on both sides of the line, so that a pair of

operators can collaborate: these tasks are called synchronous tasks and each one

calls the other mated-task. SC is the set of pairs of synchronous tasks.

In 2-sided lines there are workstations at both sides of the line, so it is necessary to

identify the workstation and side at which tasks are performed. Therefore, the following

decision variables are defined:

[] []

⎪⎩

⎪
⎨
⎧

==

=
=

),...,1;,...,1(otherwise 0,

)right R ,left L(b b sideat on workstati toassigned is task if 1,

LLkNi

ki
xikb (6.3)

In this case, LL will be the length of the 2-sided line, considering that at each position k

there will be two operators working, one at each side of the line.

Chapter 6: Balancing 2-sided assembly lines 129

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

The assignment of a task to only one workstation, regardless of the model being

assembled, is guaranteed by the following set of constraints:

)1(1
1

,...,Nix
R

Lb

LL

k
ikb ==∑∑

= =

 (6.4)

The assignment of tasks to a specific side of the line, as required by the assembly

process, must also be assured. The set of constraints (6.5) assigns left-side tasks to the left

side of the line while the set of constraints (6.6) forces the assignment of right-side tasks to

the right side of the line.

)(1
1

L

LL

k
ikL Six ∈=∑

=

 (6.5)

)(1
1

R

LL

k
ikR Six ∈=∑

=

 (6.6)

To deal with the interference issue it is necessary to establish the sequence, within a

workstation, in which the tasks are going to be performed. Ti, the starting time of task i,

will be a decision variable of the model. Ti represents the time instant at which a

workstation begins to process task i and its value is within the range 0≤Ti<C.

The assignment of tasks to workstations at both sides of the line must take into account

the precedence constraints of the problem. A task can only be processed when all its

predecessors are completed. Let task i be a predecessor of task j. In order to verify

precedence constraints, the starting time of task j must never be earlier that the starting

time of task i added by the processing time of task i, as defined by the set of constraints

(6.7), where }{max imm
t is the maximum processing time of task i, considering all models.

{ });,...,1(0max
11

i

R

Lb

LL

k
jjkbimm

R

Lb

LL

k
iikb SucjNiTkxtTkx ∈=≤−+ ∑∑∑∑

= == =

 (6.7)

Synchronous tasks must be performed simultaneously, one at each side of the line. The

set of constraints (6.8) ensures that these pairs of tasks are assigned to workstations

directly facing each other (with the same index but one at each side) and will have the

same starting time.

Chapter 6: Balancing 2-sided assembly lines 130

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

)),((0
11

C

LL

k
jjkR

LL

k
iikL SjiTkxTkx ∈=−∑∑

==

 (6.8)

When there are no precedence relationships or synchronism constraints between tasks it

is still necessary to determine the scheduling of tasks within workstations, preventing

overlapping of tasks. Considering tasks i and j one of two situations can occur: either (i)

task i is assigned before task j or (ii) task i is assigned after task j. The first situation is

modelled by the set of constraints (6.9) while the second is modelled by the set (6.10).

{ });,...,1(0max
11

i

R

Lb

LL

k
jjkbimm

R

Lb

LL

k
iikb SucjNiTkxtTkx ∉=≤−+ ∑∑∑∑

= == =

 (6.9)

{ });,...,1(0max
11

i

R

Lb

LL

k
iikbjmm

R

Lb

LL

k
jjkb SucjNiTkxtTkx ∉=≤−+ ∑∑∑∑

= == =

 (6.10)

When included in the mathematical programming model these will be sets of

disjunctive constraints, as only one is verified at a time.

The idle time of a workstation is computed by the difference between its capacity (the

cycle time) and the sum of the processing times of the tasks that it performs. skbm is the idle

time of workstation k of side b when it works on model m, and it is given by:

),...,1;,;,...,1(
1

MmRLbLLktxCs
N

i
imikbkbm ===−= ∑

=

 (6.11)

However these set of constraints are not enough to ensure that the capacity of a

workstation is not exceeded, because there may exist idle time between two consecutive

tasks within a workstation (due to interference). Therefore the set of constraints (6.12)

must also be included in the mathematical model in order to guarantee that the completion

time instant of a task is never higher than the cycle time.

{ }()),;,...,1;,...,1(max RLbLLkNiCtTx immiikb ===≤+ (6.12)

Positive and negative zoning constraints may also be included in the problem. The first

are verified by the set of constraints (6.13) while the second are guaranteed by the set

(6.14).

Chapter 6: Balancing 2-sided assembly lines 131

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

),;),((0 RLbZPjikxkx
LL

1k
jkb

LL

1k
ikb =∈=−∑∑

==

 (6.13)

),;),((0 RLbZNjikxkx
LL

1k
jkb

LL

1k
ikb =∈≠−∑∑

==

 (6.14)

6.3.2 Objective function

Similarly to the MALBP and the U-MALBP the goals of the 2-MALBP are: (i)

minimisation of the idle time of the line, (ii) smoothing workloads between workstations

and (iii) smoothing workloads within workstations.

The weighted idle time of a 2-sided assembly line is given by:

∑ ∑∑ ∑
= = = =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

M

1m

LL

k

R

Lb

N

i
ikbimm

s xtCqWITMinimise
1 1

2 (6.15)

The weighted line efficiency allows a measure of the line efficiency always within the

value range [0,1]. The goal is to maximise this function, which is computed as follows.

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅
=

∑
∑ =

= CS

t

qWEMaximise

N

i
imM

m
m

s 1

1

2 (6.16)

where S is the total number of workstations, i.e., the sum of operators working in the

different sides of the line.

The objective function s
bB 2 aims to balance the workload between workstations, i.e., for

each model the idle time is distributed across workstations as equally as possible, and it is

given by:

∑∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

LL

k

R

Lb
s

kbs
b SWIT

S
S

SBMinimise
1

2

2
2 1

1
 (6.17)

where, Skb is the average idle time of workstation k on side b computed by:

∑
=

=
M

m
kbmmkb sqS

1

 (6.18)

Chapter 6: Balancing 2-sided assembly lines 132

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

The value of function s
bB 2 varies between a maximum of 1, when the average idle time

of the line is equal to the idle time of one of the workstations, and a minimum of 0, when
sWIT 2 is equally distributed by all workstations in the line.

In order to ensure that each operator performs approximately the same amount of work

regardless of the models being assembled, the objective function s
wB 2 is used, aiming to

smooth the workload balance within each workstation. It is computed as follows:

∑∑∑
= = =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

LL

k

R

Lb

M

m kb

kbmms
w

MS
sq

MS
MBMinimise

1 1

2

22

2
2 1

)1(
 (6.19)

The value of s
wB 2 varies between a maximum of 1, when the idle time of each

workstation is only due to one model and a minimum of 0, when it is equally distributed by

all models in every workstation.

6.3.3 Complete mathematical programming model

The global objective function is composed by three terms, each of which addressing one

of the goals stated in the previous section. The complete mathematical programming model

for the 2-sided mixed-model assembly line balancing problem is presented in Figure 6.3.

The model constraints are interpreted as follows:

(i) constraints ensuring that each task is assigned to only one workstation of the

station interval (assignment constraints);

(ii) constraints ensuring that tasks required to be performed at a specific side of the

line are assigned to the correct side (task side constraints);

(iii) constraints ensuring that no task is assigned before all its predecessors are

completed (precedence constraints);

(iv) constraints ensuring that synchronous tasks are performed simultaneously by two

operators, one at each side of the line;

(v) disjunctive constraints ensuring that a correct sequencing of tasks is made, i.e., a

task i can be assigned either before task j (ii a) or after task j (ii b) as long as

tasks i and j do not have any precedence relation (in this set of constraints, ui is an

auxiliary binary variable whose value determines which situation will occur and

M is a very large positive integer);

Chapter 6: Balancing 2-sided assembly lines 133

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

(vi) constraints ensuring that each workstation capacity is not exceeded (capacity

constraints);

(vii) positive zoning constraints;

(viii) negative zoning constraints,

(ix) set of constraints computing the total number of operators of the line (S) in which

the auxiliary binary variable ykb equals one, if the kth workstation of side b of the

line is used for assembly and zero, otherwise (in this set of constraints, K is an

upper bound for the number of workstations on each side and M is a very large

positive integer);

(x) set of constraints defining the decision variables domains.

The proposed mathematical programming is only used as a means to formally describe

the problem, as its high complexity makes it impossible to be solved to optimality. The

following section describes 2-ANTBAL, an ant colony optimisation based approach

developed to find solutions for the 2-MALBP.

6.4 2-ANTBAL: an ant colony optimisation based approach

In the proposed ACO algorithm for the 2-sided mixed model assembly line balancing

problem, 2-ANTBAL, two ants ‘work’ simultaneously, one at each side of the line. They

will be called left-ant and right-ant if they work on the left or right side of the line,

respectively, and side-ant more generally. Figure 6.4 presents an outline of 2-ANTBAL.

The procedure starts by creating a sub-colony with a pre-determined number of pairs of

ants (to work on each side of the line). Each pair of ants collaborate in order to build a

feasible balancing solution, i.e., an assignment of tasks to workstations on both sides of the

line, in such a way that all constraints of the problem are verified (precedence, zoning,

capacity, and synchronism). For each feasible solution obtained a measure of its quality is

computed, according to the problem’s objective function.

Chapter 6: Balancing 2-sided assembly lines 134

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

{ }

{ }()

e) (integer is 0
d) (),;,...1(}1,0{
c) (),...,1(}1,0{
b) (),;,...1;,...,1(}1,0{
a) (),...,1;,;,...1(0

c) (

b) (),;,...1(

a) (),;,...1(

)(),;),((0

)(),;),((0

b) (),;,...,1;,...,1(max

a) (),...,1;,;,...1(

b) ();1(1

)a ();1(

)()),((0

)();,...,1(0max

)b ()(1

a)()(1

)()1(1

:subject to

1

1

11

1

1

1

222

xSS
xRLbKky
xNiu
xRLbKkNix
xMmRLbKks

ixyS

ixRLbKkyx

ixRLbKkyx

viiiRLbZNjixkxk

viiRLbZPjixkxk

viRLbKkNiCtTx

viMmRLbKkCsxt

vSucj,...,Ni)-u(TkxTkx

vSucj,...,NiuTkxTkx

ivSjiTkxTkx

iiiSucjNiTkxtTkx

iiSix

iiSix

i,...,Nix

BBWEMaximise

kb

i

ikb

kbm

K

k

R

Lb
kb

N

1i
kbikb

N

1i
kbikb

K

1k
ikb

K

1k
ikb

K

1k
ikb

K

1k
ikb

immiikb

kbm

N

i
ikbim

ii

R

Lb

K

1k
iikb

R

Lb

K

1k
jjkb

ii

R

Lb

K

1k
jjkb

R

Lb

K

1k
iikb

C

K

k
jjkR

K

k
iikL

i

R

Lb

K

1k
jjkbimm

R

Lb

K

1k
iikb

R

K

k
ikR

L

K

k
ikL

R

Lb

K

k
ikb

s
w

s
b

s

>
==∈

=∈
===∈
===≥

=

==≥

==≤

=∈≠−

=∈=−

===≤+

====+

∉=≤−

∉=≤−

∈=−

∈=≤−+

∈=

∈=

==

−−

∑∑

∑

∑

∑∑

∑∑

∑

∑∑∑∑

∑∑∑∑

∑∑

∑∑∑∑

∑

∑

∑∑

= =

=

=

==

==

=

= == =

= == =

==

= == =

=

=

= =

M

M

M

λ

Figure 6.3– Mathematical programming model for the 2-MALBP

Chapter 6: Balancing 2-sided assembly lines 135

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

After all pairs of ants of the sub-colony have generated a solution, they release a certain

amount of pheromone according to the quality of the solution. The sequence in which the

tasks are performed at both sides of the line will determine the pheromone trails. If task j is

performed immediately after task i, then a certain amount of pheromone is released

between task i and j. Hence, pheromone trails are built in the paths used by the ants to

build the balancing solution.

The procedure is repeated for every sub-colony within the ant colony. The best solution

found by the procedure is updated after each sub-colony’s iteration.

Figure 6.4 – Outline of 2-ANTBAL

6.4.1 Building a balancing solution

An outline of the way the two ants build a balancing solution is presented in Figure 6.5.

The procedure starts by initialising the current time of both side-ants (ct(aS) is the current

time of one side-ant and ct(aS) is the current time of the opposite side-ant) and it randomly

selects one of the sides of the line to begin the assignment. Then, the corresponding

side-ant opens a workstation and determines the set of available tasks, according to the

conditions described in the following section.

Chapter 6: Balancing 2-sided assembly lines 136

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

START
ct(aS)<-0
ct(aS)<-0

determine
available tasks

open
workstation

are there
available
tasks?

select task i for
assignment

 task is
synchronous?

increase time
ct(aS)<-ct(aS)

change side

NO

YES

NO

synchronize
with aS

synchronize
with aS

YES

YES

STOP

NO

randomly
select side

due to task side incompatibility

due to capacity constraints

due to interference randomly
select side

ct(aS)>=ct(aS)

ct(aS)<ct(aS)

assign task i
ct(aS)<-ct(aS)+maxm{tim}

all tasks
assigned? ct(aS)<ct(aS)

ct(aS)>ct(aS)

ct(aS)=ct(aS)

see section 6.4.1.1

see section 6.4.1.2 see section 6.4.1.3

Figure 6.5 – Building a balancing solution for the 2-MALBP

6.4.1.1 Available tasks

The available tasks are the set of tasks that can be assigned to a particular workstation

starting at the current time. A task is available if it verifies all the following conditions:

(i) the task side is the same as the current side or the task can be performed on either

side;

(ii) the task predecessors are assigned to an earlier time (if a predecessor is assigned

to the opposite side it must be completed before the current time);

(iii) assigning the task to the current workstation does not violate the capacity (i.e.,

cycle time) constraints;

(iv) assigning the task to the current workstation does not violate zoning constraints;

(v) if the task has synchronism constraints, it is possible to assign its mated-task to

the opposite side of the line, starting at the same time.

Chapter 6: Balancing 2-sided assembly lines 137

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

If the side-ant does not find any available tasks, it must detect the causes and proceed

accordingly, namely:

 Capacity constraints violation occurs when no available task fit the current

workstation. In this case the side-ant opens a new workstation.

 Interference problems occur when there are tasks whose predecessors have been

assigned to the opposite side but will be finished in a forward time. To deal with the

interference issue, side-ants use a timeline when building the balancing solution in

order to coordinate the task assignment. When interference occurs, the side-ant must

move its current time forward, to the opposite side-ant current time. Then, the

procedure randomly selects which side-ant will continue the assignment and

therefore determine again the set of available tasks.

 Task side incompatibility occurs when there are no tasks that can be assigned to the

current side. This results from one of the following reasons:

− the current time of the side-ant is inferior to the current time of the opposite

side-ant (ct(aS)<ct(aS)). In this case the side-ant must move its current time

forward, to the opposite side-ant current time, and then a side is selected

randomly to continue;

− the current time of the side-ant is equal or greater than the current time of the

opposite side-ant (ct(aS)≥ct(aS)). In this case the opposite side-ant takes control

of the assignment procedure.

From the set of available tasks, a side-ant must select one to be assigned to the current

workstation, starting at the current time. The selection of tasks for assignment is described

in the following section.

6.4.1.2 Selecting a task for assignment

Similarly to ANTBAL, two types of rules are used in the proposed procedure: static and

dynamic. At the beginning of the procedure, a static priority rule is randomly assigned to

each pair of ants. The static priority rules used in the proposed procedure are (i) maximum

processing time (for all models), (ii) maximum average processing time, (iii) maximum

ranked positional weight, (iv) maximum number of direct successors and (v) maximum

total number of successors.

Chapter 6: Balancing 2-sided assembly lines 138

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

The dynamic priority rules are introduced in the task selection process, while the

side-ants are building the solution. The dynamic rules recalculate the parameters after each

task is assigned to a workstation, allowing an adaptation of the procedure to the

characteristics of the already built part of the balancing solution.

The first dynamic rule is called ‘last task becoming available’ and it was previously

developed for the MALBP. It deals with the work relatedness issue, favouring the

assignment of the direct successors of a task immediately after that task has been assigned,

by attributing them the highest priority value in the subsequent assignment iteration.

The second dynamic rule was especially developed for the 2-MALBP and it seeks to

facilitate the assignment of tasks that must be performed simultaneously at both sides of

the line. This rule is called ‘predecessor of mated-task’. When a task with synchronism

constraints becomes available for assignment at one side of the line, this rule is activated

and the predecessors of the mated-task become high priority tasks, being preferably

assigned. This allows the assignment of the synchronous tasks as earlier as possible.

The values of the priority rules will vary between 1 for the task with lowest priority and

N (number of tasks) for the task with highest priority, and will be the heuristic information

used by the ants to select the tasks. From the set of available tasks, the side-ant selects one

task for assignment to the current workstation, according to a selection rule that takes into

account (i) the pheromone trail intensity between the previously selected task and each

available task, and (ii) the heuristic information about each available task. A side-ant s

which has selected task i in the previous iteration will select task j by applying the

following rule:

{ }

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤

≤≤=

≤=

=

∈

∑
∈

∈

)(selection random:

)(
][][

][][

)(][][

323

212

11

 of

maxarg

22

2

selectionrandomrrrifJ

nexploratiobiasedrrrif
ητ
ητ

:pJ

onexploitatirrifητJ

j

s
i

Aj

s
i

s
i

Aj

β
j

α
(i,j)

β
J

α
)(i,J

)(i,J

β
j

α
(i,j)

Aj

 (6.20)

where

 r is a random number between 0 and 1 and r1, r2 and r3 three user-defined parameters

such that 1,,0 321 ≤≤ rrr and 1321 =++ rrr (by default r1=0.6, r2=0.3, r3=0.1);

Chapter 6: Balancing 2-sided assembly lines 139

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

),(jiτ is the pheromone trail intensity in the path ‘selecting task j after selecting task i’;

 jη is the heuristic information of task j (i.e., the priority rule value for task j);

s
iA is the set of available tasks for side-ant s after the selection of task i;

 α and β are parameters that determine the relative importance of pheromone intensity

versus heuristic information.

Similarly to the procedure developed for one-sided assembly lines, the selection of a

task from the set of available tasks is performed by one of three strategies:

 Exploitation: it determines the selection of the best task according to the values of
β

j
α

(i,j) ητ][][.

 Biased exploration: a task is selected with a probability of p(i,j) as given by J2 in

equation (6.20).

 Random selection: from the set of available tasks, the side-ant selects one at random.

6.4.1.3 Assigning tasks to workstations

In the proposed procedure, side-ants use a timeline to build the balancing solution.

Every time a side-ant assigns a task to a workstation, its current-time is increased an

amount corresponding to the task processing time. Considering the mixed-model nature of

the problem, this time will be the maximum processing time of that task for all models, in

order to ensure that the cycle time is always met, regardless of the model being assembled.

Then the current times of both side-ants are compared, resulting in the following courses of

action:

(i) if the current time of the side-ant is inferior to the current time of the opposite

side-ant (ct(aS)<ct(aS)), the assignment continues on the same side.

(ii) if the current time of the side-ant is superior to the current time of the opposite

side-ant (ct(aS)>ct(aS)), the side is changed.

(iii) if the current time of the side-ant is equal to the current time of the opposite

side-ant (ct(aS)=ct(aS)), a side is randomly selected to continue the assignment.

Chapter 6: Balancing 2-sided assembly lines 140

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

When all tasks have been assigned to workstations, the balancing solution is completed

and solution quality is evaluated using the objective function of the mathematical

programming model for the 2-MALBP: s
w

s
b

s BBWEZ 222 −−= λ .

6.4.2 Pheromone release strategy

The updating of the pheromone trails between tasks is performed at the end of each

sub-colony iteration. First, a portion of the existing pheromone value is evaporated in all

paths. Then, each side-ant s of the n pairs of side-ants that constitute the sub-colony

releases an amount of pheromone in the paths used to build its task sequence, according to

the corresponding balancing solution quality. This amount of pheromone is given by:

⎪⎩

⎪
⎨
⎧

=∆
otherwise0

 pair of ant -sideby built solution in the
, after task immediatly performed is task if

 ,

 ,

),(ns
ijZ

ji
nsτ (6.21)

The overall pheromone update effect of the n pairs of side-ants in each path (i,j) is then:

∑∑
= =

∆+←
N

n

R

Ls
ji

ns
jiji

1
),(),(),(τττ (6.22)

6.4.3 Numerical example

In this section, a numerical example, with the following characteristics, is used to

illustrate some features of 2-ANTBAL.

 Two models, A and B, are simultaneously assembled in a line over a planning

horizon of 480 t.u. (time units). The demand for each model is, respectively 10 and

14 units (the cycle time is then C=20, qA=42% and qB=58%).

 The combined precedence diagram is the one depicted in Figure 6.2. Table 6.1

shows the task processing times for the two models.

 Tasks 9 and 10 are synchronous tasks – they must be performed simultaneously at

both sides of the line.

Chapter 6: Balancing 2-sided assembly lines 141

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Table 6.1 – Task processing times of models A and B

Task tA tB
1 0 2
2 8 8
3 7 7
4 7 5
5 2 2
6 6 0
7 4 0
8 0 2
9 3 2

10 3 2
11 6 6
12 3 3
13 5 5
14 4 6

Figure 6.6 represents a balancing solution, for the numerical example, built by a pair of

side ants. It represents the sequence of tasks performed at the workstations of each side of

the line (R-right side, L-left side). Inside the rectangles are the task numbers and shaded

areas correspond to idle time.

R

L

0 2 8 9 15 16 18 19 20 23 26 29 34 40 time

11 10 131 3 6 7

workstation 1 workstation 2

12 9 142 4 5 8

Figure 6.6 – Representation of a balancing solution for the 2-sided line

The actions performed by the pair of side-ants at each moment while building the

balancing solution are described in Table 6.2. Both ants work simultaneously, but when

they need to perform actions at the same instant, the procedure randomly selects one of

them to do it in the first place, because the decisions of one side-ant will have

consequences on the decisions of the other.

Chapter 6: Balancing 2-sided assembly lines 142

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Table 6.2 – Actions of the side-ants to build a balancing solution

 current
time Left-ant Right-ant

0 ► selects task 1 ► selects task 2
2 ► selects task 3
8 ► no available tasks due to

interference
9 ► selects task 6 ► selects task 4

15 ► selects task 7
16 ► selects task 5
18 ► selects task 8 W

or
ks

ta
tio

n
1

19 ► no available tasks due to
capacity constraints

20 ► selects task 11 ► selects task 12
23 ► no available tasks due to

synchronism constraints
26 ► selects task 10 ► selects task 9
29 ► selects task 13 ► no available tasks due to

interference
34 ► no available tasks due to

task side
► selects task 14 W

or
ks

ta
tio

n
2

40 Complete solution

6.5 Computational experience

The heuristic was coded in C and run on a 2.8 GHz Pentium 4 computer. To test its

performance, a series of comparative tests were carried out by applying the heuristic to the

benchmark problems A65, B148 and A205, proposed by Lee et al (2001), with 65, 148 and

205 tasks, respectively. For each of the test problems different values of the cycle time

were used in order to provide a higher number of problem instances, a total of 22. These

consider only the single-model 2-sided assembly line balancing problem of type I with no

synchronism or zoning constraints. Table 6.3 shows the computational results. For each

problem it presents the given cycle time (C) and the number of workstations obtained by

the different tested procedures. Column LB presents the lower bound on the number of

workstations for each of the test problems, given by:

eitherrightleft LBLBLBLB ++= (6.23)

LBleft and LBright are the theoretical minimum number of the left and right side

workstations, computed as follows:

{ }
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
= ∑

∈

CtLB
LSi

im
m

left max (6.24)

Chapter 6: Balancing 2-sided assembly lines 143

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

{ }
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
= ∑

∈

CtLB
RSi

im
m

right max (6.25)

The term LBeither adds up the number of workstations needed to process tasks of either

side. Because these tasks can be included in workstations that perform left or right side

tasks, it is necessary to verify if, after filling up these workstations, there are still either

side tasks to create new workstations. The minimum number of workstations (LBeither)

required to perform either side tasks, after filling up the remaining capacity of workstations

assigned to left and right side tasks, is given by:

{ } () { }
⎥
⎥

⎥

⎤

⎢
⎢

⎢

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅+−= ∑ ∑

∈ ∉

CtCLBLBtLB
E ESi

im
Si mrightleftimmeither maxmax (6.26)

Columns H and G present the results reported by Lee et al (2001) concerning heuristic

rules and group assignment, respectively. Columns Mean, Min and Max present the

average, minimum and maximum values of the number of workstation of the best solution

found by 2-ANTBAL computed from 10 runs of each instance of the problem. Finally, the

last two columns present a comparison of the performance of 2-ANTBAL with (i)

procedure G (as it is better than procedure H): ImpG(%) is the average improvement of 2-

ANTBAL compared with G and (ii) the lower bound: DevLB(%) is the difference between

the minimum value obtained by 2-ANTBAL and LB.

The computational results show that the proposed procedure 2-ANTBAL clearly

outperforms both of the procedures presented by Lee et al (2001) considering the number

of workstations of the 2-sided assembly line. This fact is particularly evident in problem

A205 where the improvement values of 2-ANTBAL reach 16.7%. Negative improvement

values are explained by the fact that the mean value of the number of workstations

obtained by 2-ANTBAL was slightly superior to the mean value of procedure G. However,

in both cases the minimum value of 2-ANTBAL was either equal or inferior to the mean

value of G.

The values in bold are equal to the lower bound of the problem instance. This means

that guaranteed optimal solution was reached for 10 instances. Also, the maximum

difference between the best solutions obtained by 2-ANTBAL and the lower bound was

only 11.1%, which supports the good performance of the proposed procedure.

Chapter 6: Balancing 2-sided assembly lines 144

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Table 6.3 – Results of the computational experience for 2-ANTBAL

 Lee et al (2001) 2-ANTBAL ImpG DevLB
Problem C LB H G Mean Min Max (%) (%)

A65 326 16 17.7 17.4 17.0 17 17 2.3 6.3
 381 14 15.7 15.0 14.8 14 15 1.3 0
 435 12 14.0 13.4 13.0 13 13 3.0 8.3
 490 11 12.1 12.0 12.0 12 12 0.0 9.1
 544 10 11.5 10.6 10.8 10 11 -1.9 0

B148 204 26 27.8 27.0 26.0 26 26 3.7 0
 255 21 22.0 21.0 21.0 21 21 0.0 0
 306 17 19.3 18.0 18.0 18 18 0.0 5.9
 357 15 16.0 15.0 15.4 15 16 -2.7 0
 408 13 14.0 14.0 14.0 14 14 0.0 7.7
 459 12 12.1 13.0 12.0 12 12 7.7 0
 510 11 12.0 11.0 11.0 11 11 0.0 0

A205 1133 21 24.0 23.0 22.4 22 23 2.6 4.8
 1322 18 21.9 20.7 20.0 20 20 3.4 11.1
 1510 16 18.7 20.0 17.2 17 18 14.0 6.3
 1699 14 16.7 16.0 15.8 15 16 1.3 7.1
 1888 13 15.4 16.0 13.8 13 14 13.8 0
 2077 12 14.0 14.0 12.0 12 12 14.3 0
 2266 11 12.5 13.0 12.0 12 12 7.7 9.1
 2454 10 12.0 12.0 10.0 10 10 16.7 0
 2643 9 11.2 12.0 10.0 10 10 16.7 11.1
 2832 9 10.0 10.0 10.0 10 10 0.0 11.1

6.6 Chapter conclusions

In this chapter, the mixed-model 2-sided assembly line balancing problem was

addressed. A mathematical programming model was used to formally describe the problem

and an ant colony optimisation algorithm was developed to solve it. In the proposed

procedure, two ants work simultaneously one at each side of the line aiming to efficiently

coordinate the assignment of tasks to both of the sides of the line.

The procedure uses a non-delay rule for ants while available tasks exist, however this

may discard optimal solutions since it may be best to wait a brief time for the opposite ant

and then perform a mated-task. Future improvements of the algorithm should only enforce

the non-delay rule with some degree of probability at each stage.

Chapter 6: Balancing 2-sided assembly lines 145

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

The good performance of the algorithm was proved by computational experiments with

a set of benchmark problems from the literature. These problems were for single-model

assembly lines, so additional computational tests should be made using mixed-model

instances in order to evaluate the features of the procedure specifically developed to

address 2-sided mixed-model assembly line balancing problems.

7
7. Real world applications

Contents
• Chapter introduction

• Case 1 – Combining heuristic procedures and simulation models for balancing a

PC camera assembly line

• Case 2 – Improving the performance of an assembly line by sequentially solving

type I and type II problems

• Case 3 – Increasing flexibility by turning a straight line into a U-shaped line

• Case 4 – Balancing a ‘n-sided’ assembly line

• Chapter conclusions

Chapter 7: Real world applications 149

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

7.1 Chapter introduction

This set of short case studies is the outcome of a business internship program sponsored

by the University of Aveiro for the students in the last year of the Industrial Management

and Engineering program. Four students working as trainees in four companies had to

analyse the operation of assembly lines and propose changes in order to improve the line’s

performance.

With the information gathered by the trainees, some of the developed procedures were

adapted and applied to the real assembly lines, aiming to improve the existing assignment

of tasks to workstations. The success of these applications depended on the level of

interaction with the trainee, as a deep knowledge of the assembly process is required to

adapt the algorithms to the real conditions of the assembly line.

7.2 Case 1 – Combining heuristic procedures and simulation

models for balancing a PC camera assembly line*

The company in which the study took place is a major manufacturer of consumer

electronic goods and goal of the project was to analyse and improve the performance of a

PC camera assembly line.

The assembly line under analysis is used to assemble three different versions of a PC

camera with some dissimilar technical specifications, thus, a mixed-model assembly line.

Most of the tasks required to complete the assembly of the models are manual and only the

final tasks (testing operations) are performed automatically by a computer. The line

employs low skilled labour which is cross-trained to perform all the operations and, as a

result, it is relatively easy to rebalance the line and change its configuration. However,

there is a high level of absenteeism among the workforce and consequently the line

managers’ need to rebalance the line on a daily basis.

On the other hand, the great variability and uncertainty associated with the product

demand levels is a major problem that the company has to deal with, requiring frequent

* The work presented in this section is published in Mendes et al (2005)

Chapter 7: Real world applications 150

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

changes in the line configuration. The ability to quickly manage the assembly line to

compensate for changes in both the labour workforce and market demand is becoming an

important competitive factor. Consequently, the company must be agile to implement

changes in a quick and effective way.

To support the operational decisions of the line managers, in light of the issues stated

above, a combination of analytical and simulation models was developed in this project.

The main goal of the study was to produce a set of assembly line configurations for

different levels of demand, making it easier to rebalance the line according to the

circumstances of a specific planning horizon.

In the first phase of the study, a heuristic procedure was used to solve the mixed-model

assembly line balancing problem and derive line configurations, with a minimum number

of workstations and a smooth workload balance between and within the workstations, for

the relevant levels of demand. The heuristic procedure was the simulated annealing based

approach described in section 4.3. In the second phase, the solutions provided by the

heuristic procedure were used as an input to discrete event simulation models in order to

test the robustness of these solutions when variability was introduced in some of the design

parameters (e.g., stochastic task times). Different performance measures, like flow times

and resources utilisation, were derived from the simulation models helping the decision

maker to fine-tune the suggested line configurations.

The following sections describe the characteristics of the assembly line under analysis

and the procedures developed to achieve the goals of the study. The preliminary results of

this study were presented in an international conference (Ramos et al, 2001) and the final

results enabled the publication of a paper in a scientific journal (Mendes et al, 2005).

7.2.1 The PC camera assembly line

The assembly line under analysis is used to assemble three different versions of a PC

camera (model A, model B and model C), with some dissimilar technical specifications.

Figure 7.1 shows an exploded view of the PC camera. The PCB (printed circuit board) is

the only camera part that is manufactured in the facility, while all the other components are

outsourced.

Chapter 7: Real world applications 151

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Legend
1 - Lens ring
2 - Light guide
3 - Front cover part
4 - Back cover part
5 - Closing part
6 - Screw
7 - Cable
8 - Cable sticker
9 - Microphone felt
10 - Lens
11 - Foot
13 - Foam
1001 - PCB
1215 - Microphone

Figure 7.1 – Exploded view of the PC camera

The assembly line is composed by a sequence of workstations performing manual

operations and an automated conveyor that transports the sub-assemblies along the process.

The assembly of a PC camera requires the following steps:

(i) cutting of collective PCBs;

(ii) soldering of microphone pins;

(iii) cleaning, inspecting and soldering of electronic components;

(iv) functional testing;

(v) soldering of cable connector;

(vi) attaching lens into front cover part;

(vii) placing and screwing individual PCB at front cover;

(viii) attaching back cover part and screwing closing part;

(ix) final testing;

(x) encasing lens ring, putting foot into camera and placing sticker on the cable.

When a camera is complete it proceeds to the packaging table where some other tasks

are performed, namely, cleaning and packaging the camera into its individual box with

software and documentation, placing the closing sticker and the bar code and packing

several individual boxes into a collective one. These collective boxes are then grouped in

pallets and transported to the finished products warehouse.

The assembly process for each model defines: (i) the task processing times and (ii) a set

of precedence relationships, which determine the sequence in which the tasks can be

Chapter 7: Real world applications 152

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

performed. As a large subset of tasks is common to all models, the precedence diagrams of

the three models were combined and the resulting one accounts for all the tasks required to

assemble all the models. The combined precedence diagram for the three PC camera

versions is depicted in Figure 7.2 and the standard task processing times for each model in

time units (t.u.) are shown in Table 7.1.

Figure 7.2 – Combined precedence diagram for the three PC camera models

Table 7.1 – Task processing times

Task tA tB tC Task tA tB tC Task tA tB tC
1 2 2 2 14 0 4 4 27 5 5 5
2 2 2 2 15 9 9 0 28 0 0 2
3 2 2 2 16 13 13 12 29 1 1 1
4 2 2 2 17 6 6 6 30 3 3 3
5 2 2 2 18 7 7 7 31 3 3 3
6 0 11 11 19 3 3 3 32 0 0 3
7 0 0 16 20 28 37 33 33 4 4 4
8 21 39 37 21 3 3 3 34 2 2 2
9 2 2 2 22 8 8 8 35 2 2 2

10 10 10 10 23 5 5 5 36 1 1 1
11 3 0 0 24 7 7 9 37 1 1 1
12 11 11 11 25 4 4 4 38 1 1 1
13 4 4 4 26 6 6 6 39 1 1 1

Tasks 8 and 20 are inspection operations performed automatically (i.e., without the

operator intervention) after being set-up by the operator. The set-up time for these

operations is 5 t.u.. So, if these operations are carried out simultaneously with other tasks

Chapter 7: Real world applications 153

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

in the same workstation, only the set-up time needs to be accounted for, as the operator

will be available to perform those tasks.

Some tasks cannot be performed in the same workstation (incompatible tasks) due to

physical or process related constraints. For example, soldering and packaging tasks are

incompatible due to ergonomic issues: soldering requires the operator to be seated, while

packaging requires the operator to be standing. The set of pairs of incompatible tasks is

presented in Table 7.2.

Table 7.2 – Set of pairs of incompatible tasks

Pair 1 2 3 4 5 6 7 8 9 10
Task 1 6 7 7 8 8 10 18 19 20 20
Task 2 8 8 20 12 20 20 20 20 24 34

7.2.2 Balancing the mixed-model assembly line

The simulated annealing procedure developed to solve the mixed-model assembly line

balancing problem, described in section 4.3, was adapted to address the PC camera

mixed-model assembly line. The goal of this stage of the study was to derive line

configurations (i.e., balancing solutions), for the relevant levels of demand, with a

minimum number of operators and a smooth balance of workloads between and within

workstations.

The typical lot sizes of each model for different demand levels (low, medium and high)

are presented in Table 7.3. For each model, it presents the number of units to be produced

according to the demand level, over a planning horizon of P=132 900 t.u..

Table 7.3 – Number of units to be produced for each demand level

 Product demand
Demand level DA DB DC

Low (L) 1610 390 1670
Medium (M) 3150 1330 3130

High (H) 5230 2720 6580

Chapter 7: Real world applications 154

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

In order to derive line configurations able to cope with the most frequent demand

situations, five different demand scenarios were provided by the line manager and were

used as input for the heuristic procedure. Table 7.4 shows the five scenarios and the value

of the cycle time for each of them, computed by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

M

m
mDPC

1

/ .

Table 7.4 – Demand values and cycle times for the different production scenarios

 Product demand
Scenario DA DB DC C
1 (LLL) 1610 390 1670 36.2
2 (MMM) 3150 1330 3130 17.5
3 (HHH) 5230 2720 6580 9.1
4 (MLM) 3150 390 3130 19.9
5 (MMH) 3150 1330 6580 12.0

As the processing time of some tasks is higher than the required cycle time, it is

necessary to allow the use of parallel workstations. The minimum replication time (MRT),

i.e., the processing time that triggers the replication process, was set to MRT=C. This

means that only workstations performing tasks with processing time higher than the cycle

time for, at least, one of the models, are allowed to work in parallel.

After setting all the data, the simulated annealing based heuristic was then used to

provide balancing solutions for the different demand scenarios. For scenario 1, the initial

solution, built by the modified ranked positional weight technique, is depicted in Table 7.5,

where the first column represents the workstation index, the second column shows the set

of tasks assigned to each workstation and the third column shows the number of replicas of

each workstation (parallel workstations have more than one replica of the workstation).

In this case study, there were special task related conditions that had to be taken into

account when applying the heuristic: tasks 8 and 20 are related to testing operations and

while the test program is running the assigned operator can execute other tasks

simultaneously. The heuristic was therefore modified to in order to reproduce, as closely as

possible, this issue.

Chapter 7: Real world applications 155

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

After the initial solution is obtained, the procedure tries to improve its number of

workstations through a simulated annealing approach, in which the neighbouring solutions

are generated by (i) swapping two tasks in different workstations or (ii) transferring a task

to another workstation. At the end of this stage, the best solution has the lowest number of

workstations. For the demand scenario 1 the heuristic could not improve the number of

workstations of the initial solution.

Table 7.5 – Initial solution for scenario 1

Workstation Tasks Replicas
1 1,2,3,4,6,7,11,15 1
2 5,8,9,10,13,14,19,23 2
3 12,16,17 1
4 18,21 1
5 20,22 2
6 24,25,26,27,28,29,30,31,34,37 1
7 32,33,35,36,38,39 1

The second stage of the simulated annealing based procedure aims to balance the

workloads between and within the workstations and it starts with the best solution found at

the end of the first stage. For demand scenario 1 this solution has 9 workstations (including

parallel workstations), a workload balance between workstations of Bb=0.15 and a

workload balance within workstations of Bw=0.38. At the second stage the initial number

of workstations cannot be exceeded and, if possible, may be improved. Swap and transfer

movements are also performed, but the tasks and workstations involved in these

movements are selected to foster improving solutions considering workload smoothing

(see section 4.3.2.1). At the end of this stage, the best solution has the minimum number of

workstations and the best workload balance between and within workstations. At each

iteration, the procedure verifies precedence, incompatibility and capacity constraints, in

order to always generate feasible solutions. The best solution found for the demand

scenario 1 has workload balances of Bb=0.06 and Bw=0.13, which shows an improvement

of 50% in the objective function Bb+Bw.

The heuristic was used to derive line configurations for the five demand scenarios and

the final balancing solutions are depicted in Table 7.6.

Chapter 7: Real world applications 156

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Table 7.6 – Final line configurations for the different demand scenarios

 Scenario 1 - LLL Scenario 2 - MMM Scenario 5 - MMH
W Tasks R W Tasks R W Tasks R
1 1,2,6,7 1 1 1,2,6 1 1 1,2,7 2

2 3,4,8,9,10,14,15,19 2 2 7,15 1 2 6 1

3 12,13 1 3 3,4,8,9,10,11,13,14,19,23 3 3 3,8,9,10,13,14,15,19,23 4

4 11,16,17,18 1 4 12 1 4 12 1

5 5,20,21,22,23 2 5 5,16 1 5 11,16 2

6 24,25,33 1 6 17,18 1 6 4,17 1

7 26,27,28,29,30,31,32,34,
35,36,37,38,39

1 7 20,21,22 3 7 18 1

 8 24,25,34,37 1 8 5,20,21,22 4

 Scenario 3 - HHH 9 26,27,28,29,30 1 9 24,34,37 1

W Tasks R 10 31,32,33,35,36,38,39 1 10 25,26,28 1

1 1,2,6 2 11 27,29,30,31 1

2 7,15 2 Scenario 4 - MLM 12 32,33,35,36,38,39 1

3 3,4,8,9,10,13,14,19,23 5 W Tasks R

4 12 2 1 1,2,6 1

5 11,16 2 2 7,15 1
6 17 1 3 3,8,9,10,13,14,19 2
7 5,18 1 4 11,12 1

8 20,22 5 5 4,16 1

9 24 1 6 17,18 1

10 25,28,34 1 7 5,20,22,23 2

11 21,26 1 8 21,24,25,28 1

12 27,29,30 1 9 26,27,29,33,34 1

13 31,33 1 10 30,31,32,35,36,37,38,39 1

14 32,35,36,37,38,39 1

The cycle times for each demand scenario were recomputed taking into account the task

assignments provided by the heuristic. The effective cycle time of a balancing solution is

the sum of the processing times of the workstation with the maximum workload. Table 7.7

presents the theoretical and the real values of the cycle time for each scenario. The

reduction of the value of the cycle time means an increase of the production rate, i.e., with

the same assembly system it is possible to produce more than the number of units defined

by the demand level.

Chapter 7: Real world applications 157

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Table 7.7 – Comparison of theoretical and real cycle times

 Cycle time (t.u.)
Scenario Theoretical Real

1 36.2 31.0
2 17.5 17.0
3 9.1 9.0
4 19.9 18.0
5 12.0 12.0

In order to evaluate the balancing solutions considering the number of operators, the

lower bound for the mixed-model assembly line balancing problem with parallel

workstations (LBpmix), proposed by Vilarinho and Simaria (2002) and presented in

Appendix 3, was adapted to take into account a maximum of five replicas of one

workstation, as the original version of the LBpmix considered a maximum of only two

replicas. The details of the computation of this lower bound are given in Appendix 5. As

one can observe from Table 7.8, the solutions obtained by the heuristic are optimal for four

of the scenarios.

Table 7.8 – Comparison of solutions with the lower bounds (LBpmix)

 Number of operators
Scenario Solution LBpmix

1 9 8
2 14 14
3 26 26
4 12 12
5 20 20

The line configurations provided by heuristic for the different demand scenarios were

used as an input for simulation models, which are able to include randomness and

uncertainty in the analysis of the PC camera mixed-model assembly line. As the

development of these models is not within the scope of this dissertation (as it was

developed by another person), only a very brief description of the work is presented in the

following sections. A more detailed explanation is provided in the paper of Mendes et al

(2005).

Chapter 7: Real world applications 158

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

7.2.3 Development of the simulation models

The set of line configurations produced by the heuristic procedure was based on several

operational parameters that do not mimic exactly the real system, mainly because the

solutions obtained do not reflect the operational variability and randomness induced to the

system by the manual operations and by other factors, like rework, which affect the regular

system operation.

So, simulation models for the different line configurations were developed, in order to

check their dynamic behaviour in the presence of modelling parameters that better describe

the system dynamics. The complete assembly system was modelled: the assembly line, the

packaging table and the material handling equipments and the following measures were

used to evaluate the performance of the different simulation models:

(i) throughput (number of cameras assembled in the planning horizon);

(ii) flow time (for each product);

(iii) utilisation of resources (labour).

Previously to the development of the simulation models for the line configurations

suggested by the heuristic, a simulation model of the actual assembly system was built.

This model allowed (i) the better understanding of the actual assembly system operation,

(ii) the validation of the assumptions used to build it and later included in the different

models and (iii) the gaining of confidence of the decision makers regarding the used

methodology.

In this particular case study, one of the members involved in the project worked fulltime

on the facility, thus the process of input data collection and analysis was easily

accomplished. Her presence on site was also crucial to obtain a clear definition of control

and decision rules used in the daily operation of the assembly line. In addition, there were

large amounts of historical data related to processing times of all the assembly and

packaging tasks for each version of the product, enabling the fit of proper distributions to

this data.

Some important data of the assembly process, which were not addressed by the

heuristic, were included in the simulation models. Conveyor details (e.g., length, speed)

were set as specified in technical documentation and accordingly to the cycle time. The

number of units rejected at the inspecting and testing operations was modelled as a

Chapter 7: Real world applications 159

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

percentage of the cameras processed. There was also a wide availability of historical data

to determine the reject rates related to those operations. It was assumed that some of the

rejected products could be repaired, re-entering the assembly process at fixed points.

The workforce consists of one shift working 8.5 hours a day, five days a week. The shift

has fixed daily breaks for meals and work meetings. The production scheduling is made on

a weekly basis and it is conveyed to the assembly line supervisor. The printed circuit

boards are manufactured on the facility and, usually, they are ready to enter the assembly

line when required. The outsourced materials are located near the corresponding

assembly/packaging station and can be picked from stock when needed.

The simulation models were implemented using the Arena® simulation software. This

software has a high capability to model manufacturing systems and embeds key technology

for desktop application integration, enabling the use of existing enterprise models. It also

includes tools to analyse input and output data.

Verification and validation are two important phases of the development of simulation

models. Model verification deals with building the model right and ensures that the

computer program of the computerised model and its implementation are correct. Model

validation deals with building the right model and confirms that the simulation model

behaves with satisfactory accuracy, i.e., it is consistent with the modelling objectives.

Different techniques were used to verify and validate the models as described in

Mendes et al (2005). One of these was animation, which played an important role on the

results presentation phase. With this technique, the operational behaviour of the assembly

line is displayed graphically as the model evolves through time. Figure 7.3 shows two snap

shots (assembly line and packaging table) of the three-dimensional animation model

developed for the actual assembly line.

Chapter 7: Real world applications 160

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

assembly line

packaging table

Figure 7.3 – Animation of the actual PC camera assembly system

Once again, the team member who took part in the project on site was crucial on the

verification and validation process, as she combined the knowledge of using the simulation

tool with the perception of the assembly process details.

7.2.4 Simulation experiment and results

The outcome of the simulation of the actual assembly line study showed that the

estimates obtained for the selected performance measures were very similar to the real

system measures and no major deviances between the simulation results and reality were

found. The results also emphasised that the actual line was clearly unbalanced. Given these

results, it was decided to go on to the second phase of the study, which aimed to build

simulation models for the set of configurations, for the different levels of demand,

generated by the heuristic procedure.

Regarding the throughput performance measures, the simulation results for these

models showed that:

(i) the demand levels of scenarios 1 and 5 could be easily satisfied with the line

configurations proposed by the heuristic procedure;

(ii) the forecasted demand for scenarios 2, 3 and 4 was not satisfied with the

configurations proposed by the heuristic procedure.

Chapter 7: Real world applications 161

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

The line bottlenecks were identified as being workstation 8 for scenario 2 and

workstation 7 for scenarios 3 and 4. Several experimental tests were carried out in order to

eliminate the bottlenecks. These tests included adjustments of the demand levels for the

different models and parallelisation of the bottleneck workstations. The demand levels for

the different scenarios were provided by the line manager as a guideline for typical

production runs. Small adjustment (up to 5%) to these demand levels are allowed when

leading to a reduction in the number of workers in the line. The demand levels were then

adjusted in order to determine the number units of each model that could be produced with

the configuration suggested by the heuristic procedure. As a significant reduction in the

number of units to be assembled, for some of the models, was required, this course of

action was abandoned.

On the other hand, the parallelisation of the bottleneck stations led to the desired

production levels and, in some of the scenarios, some slack capacity was left available in

the workstation for an eventual increase in the production rate. The values of the

performance measures for the actual assembly system and for the line configurations for

each scenario (with replicated bottleneck workstations in scenarios 2, 3 and 4) are shown

in Table 7.9 (average flow time) and Figure 7.4 (average usage rate).

Table 7.9 – Simulation results for the average flow time

 Average flow time (t.u.)
 Model A Model B Model C
Actual system 352.4 453.2 416.4
Scenario 1 207.6 437.4 401.3
Scenario 2 237.5 456.3 418.9
Scenario 3 227.9 483.9 407.6
Scenario 4 217.6 442.6 422.9
Scenario 5 220.3 487.9 438.9

Chapter 7: Real world applications 162

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

0%

10%
20%

30%
40%

50%

60%

70%
80%

90%
100%

1 2 3 4 5.1 5.2 5.3 6.1 6.2 7.1 7.2 8.1 8.2 9.1 9.2 9.3 9.4 10 11 12 13 14 15 16 17

workstation

av
er

ag
e

us
ag

e
ra

te

Actual system

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2.1 2.2 3 4 5.1 5.2 6 7

w orkstation

av
er

ag
e

us
ag

e
ra

te

Scenario 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3.1 3.2 3.3 4 5 6 7.1 7.2 7.3 8.1 8.2 9 10

w orkstation

av
er

ag
e

us
ag

e
ra

te

Scenario 2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 3.5 4.1 4.2 5.1 5.2 6 7.1 7.2 8.1 8.2 8.3 8.4 8.5 9 10 11 12 13 14

workstation

av
er

ag
e

us
ag

e
ra

te

Scenario 3

0%

10%

20%
30%

40%

50%
60%

70%

80%

90%

100%

1 2 3.1 3.2 4 5 6 7.1 7.2 7.3 8 9 10

w orkstation

av
er

ag
e

us
ag

e
ra

te

Scenario 4

0%

10%

20%

30%
40%

50%

60%

70%

80%

90%

100%

1.1 1.2 2 3.1 3.2 3.3 3.4 4 5.1 5.2 6 7 8.1 8.2 8.3 8.4 9 10 11 12

workstation

av
er

ag
e

us
ag

e
ra

te

Scenario 5

Figure 7.4 – Simulation results for the average usage rate

When the average flow time (i.e., the average time required to completely assemble one

unit) of the actual system is compared to the different scenarios, one can notice that for

model A the average flow time is reduced by 30% to 40%. As can be observed in Figure

Chapter 7: Real world applications 163

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

7.4 for scenario 1, for example, when the demand is met there is still a slack capacity of

around 20% in the most loaded workstation (workstation 4), so it is possible to increase

production if required.

Table 7.10 shows the average usage rate and the correspondent standard deviation of the

workstations for the actual system and for each of the scenarios. The average usage rate

shows a reduction in the overall idle time for all of the scenarios, except scenario 1, in

comparison with the actual system performance. The poorer performance of scenario 1 is

justified by the fact that the line was simulated to produce 3.670 cameras (theoretical cycle

time of C=36.2 t.u.) when the configuration provided by the heuristic could increase the

output to 4.287 cameras (real cycle time of C=31 t.u.). The standard deviation explains

how evenly split the workload is distributed across the workstations and all of the scenarios

show an improvement over the actual system.

Table 7.10 – Average usage rate and standard deviation

 Usage rate
 Average Std. Deviation

Actual system 67% 0.19
Scenario 1 57% 0.12
Scenario 2 76% 0.08
Scenario 3 73% 0.13
Scenario 4 70% 0.11
Scenario 5 75% 0.15

These results showed that the configurations proposed by the heuristic procedure were

suitable when the stochastic behaviour of the assembly system was addressed in the

simulation models. In fact, with some adjustments to the solutions obtained for scenarios 2,

3 and 4:

(i) the desired levels of demand were satisfied;

(ii) the flow times for the three PC camera models and for the different scenarios were

at acceptable levels and, for a particular case (Model A) were significantly reduced

when compared to the actual system;

(iii) the workload of the proposed configurations is more evenly distributed.

It can be stated that the heuristic procedure provided good results that were easily fine-

tuned using simulation. On the other hand, simulation allowed to gain the confidence of the

Chapter 7: Real world applications 164

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

decision makers and to test different options to fine-tune the line configurations suggested

by the heuristic, when more realistic parameters and operational details were introduced.

7.2.5 Conclusions

The results of this study were very useful for the line manager to define the line

configurations for different demand scenarios by providing production run figures that

maximise the use of the assembly line for these different scenarios. It can also be stated

that the integrated approach used to design and analyse assembly line configurations is

promising for this type of line.

From an academic perspective, this methodology makes a contribution to the literature

because (i) it focuses attention on the joint use of analytical and simulation models to

provide operational decision support for assembly line balancing and (ii) it demonstrates

that when dealing with real-world problems, effective communication channels and

company involvement are critical factors on the attainment of meaningful and in-depth

results. In fact the team member who worked fulltime within the company throughout the

duration of the project has established privileged communication channels between the

university and the company and has directed management and staff attention to the project.

7.3 Case 2 – Improving the performance of an assembly line

by sequentially solving type I and type II problems*

The goal of this study was to analyse and improve the assembly line’s performance of

an industrial manufacturer of plastic parts for household goods. Prior to this study, a

simulation of the actual assembly line was conducted and the results showed a high

unbalance of workloads between workstations. Some workstations had usage rates of

100%, which was causing long queues of sub-assemblies, while others had high values of

idle time. It was clear that the assembly line needed to be re-balanced and, at this point, it

was decided to try to apply some of the developed heuristics to this particular line. The

main details of the project are described in the following sections.

* Part of the work of this section was presented in Simaria and Vilarinho (2003)

Chapter 7: Real world applications 165

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

7.3.1 Characteristics of the assembly line

The assembly line produces five models (M1, M2, M3, M4 and M5) with some

technical similarities. The first step of the study was to build the precedence diagrams for

each model giving to common tasks the same identification, as shown in Figure 7.5.

Figure 7.5 – Precedence diagrams of the five models

The actual line assembles the models in batches, so, in order to test the feasibility of

having a mixed-model assembly line, able to produce the models in any intermixed

sequence, the precedence diagrams of the models were combined into one diagram. The

combined precedence diagram is depicted in Figure 7.6 and the task processing times, in

time units, for each model are presented in Table 7.11.

Chapter 7: Real world applications 166

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Figure 7.6 – Combined precedence diagram for the five models

Table 7.11 – Task processing times for the five models (t.u.)

 Model
Task M1 M2 M3 M4 M5

A 8.95 8.95 8.95 8.95 -
B 10.73 10.73 10.73 10.73 10.73
C 2.56 2.56 2.56 - -
D 5.59 5.59 5.59 - -
E 9.63 9.63 9.63 - -
F 6.85 6.85 - 7.44 7.55
G 17.64 12.56 12.56 - -
H - - 11.77 - -
I 8.16 - - - -
J 2.5 - - - -
K - - - 6.23 -
L - - - 5.45 -
M - - - 15.14 -
N 5.83 - - 12.55 5.83
O 4.95 - - - -
P 8.9 - - 9.03 8.9
Q - - - 12.17 11.58
R - - - 5.68 5.68
S 25.74 - - 12.77 12.77
T 17.1 17.1 17.1 17.1 17.1
U 5.02 5.02 5.02 5.02 5.02

Chapter 7: Real world applications 167

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

From this set of tasks, task E and task G have negative zoning constraints, i.e., they

cannot be performed in the same workstation. From an ergonomic point of view, it is not

desirable that these two tasks are performed by the same operator, because each of them

demands a substantial physical effort, so it would be too demanding for one person having

to perform two hard tasks.

7.3.2 Two-step procedure for balancing the assembly line

Usually, when designing a new assembly line, companies do not know exactly how

many product units the line should assemble in a given planning period. There is a demand

forecast (more or less accurate) and a required cycle time (planning period/number of

units) is estimated in order to balance the line. So, a line balance can be obtained using a

technique to solve the assembly line balancing problem of type I (ALBP-I), in which the

goal is to find a task assignment that minimises the number of operators for a given cycle

time. However, this procedure does not guarantee a maximum production rate of the line.

If a task reassignment is made, it might be possible to decrease the cycle time (thus

increasing the production rate), for the same number of operators. This can be achieved by

using a technique to solve the ALBP-II, in which the goal is to find a task assignment that

minimises the cycle time for a given number of operators.

To improve the performance of the assembly line under study, a two-step procedure was

developed. It sequentially solves ALBP-I and ALBP-II in order to (i) find a task

assignment that minimises the number of operators for a given cycle time and (ii)

maximises the production rate for that number of operators. In the first step, the cycle time

of the actual assembly line is used as input to solve a balancing problem of type I. In the

second step, the number of operators provided by the first step is used as input to solve a

balancing problem of type II. In this particular study, simulated annealing and genetic

algorithms were used in the first and second steps, respectively. The two steps are called

the balancing step and the fine-tuning step, as shown in Figure 7.7.

Chapter 7: Real world applications 168

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Simulated
Annealing

based heuristic

line configuration
with minimum

NUMBER OF OPERATORS

- task processing times
- required CYCLE TIME
- precedence constraints
- zoning constraints

- task processing times
- required NUMBER OF OPERATORS
- precedence constraints
- zoning constraints

Genetic
Algorithm

based heuristic

INPUT

OUTPUT

solving ALBP-I

solving ALBP-II

OUTPUT

INPUT

line configuration
with minimum
CYCLE TIME

Balancing step

Fine-tuning step

Figure 7.7 – Two-step procedure for balancing the assembly line

The combined precedence diagram was used to find a mixed-model line configuration,

however the resulting solution was not attractive in terms of practical implementation.

When processing some models, there were workstations with no assigned tasks. This is due

to the fact that the similarities between the models are not very strong (e.g., the combined

diagram has 21 tasks, while model C only requires 9 tasks). Therefore, it was decided to

abandon the mixed-model idea and to move on to balance five single-model assembly

lines, as this is also the way in which the actual line works.

The two-step procedure was applied to each of the models, and the results are presented

in Table 7.12, which shows the number of operators and the cycle time of the actual

assembly line and the results after each of the step of the procedure. After the balancing

step, a reduction of one to three operators was verified and after the fine-tuning step cycle

time was improved up to 19% (for model B).

Table 7.12 . Results of the two-step procedure

 Actual assembly line Balancing step Fine-tuning step
Model Operators Cycle time (t.u.) Operators Cycle time (t.u.)

M1 13 9.4 11 8.4
M2 13 9.8 11 7.9
M3 10 7.0 8 6.6
M4 10 7.3 9 7.1
M5 12 7.6 9 6.6

Chapter 7: Real world applications 169

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

7.3.3 Implementation of the proposed solutions

The line configurations proposed by the two-step procedure were analysed by the line

manager and a few task reassignments were made in order to allow a better flow of

materials along the line. The new balancing solutions were then tested in the assembly line

and the following aspects were observed:

 The number of units produced daily slightly increased in the first day and in the

following days it increased significantly. This was due to the learning effect, as the

operators needed time to adapt themselves to the new tasks and work flow.

 The distribution of workload between operators was much more levelled than what it

used to be, leading to a more continuous flow of sub-assemblies and a reduction of the

length of queues.

 The operators’ motivation increased due to the smoother workload balance and to the

awareness of the better performance of the line, for which they had a major

responsibility.

7.3.4 Conclusions

The results of this project showed that, without any capital investment in more

automatic equipment, it is possible to improve the performance of an assembly line only by

studying the assignment of tasks to workstations.

On one hand, the simulation tool (not described in this document) was useful to detect

the main problems of the line, namely, the unbalance of workloads among operators and

the large number of sub-assemblies in queues. On the other hand, the two-step heuristic

procedure was essential to re-balance the assembly line, optimising the utilisation of the

company’s resources.

The implementation of the proposed solutions showed a great improvement in the

assembly line’s performance, making the company able to cope with the increase of the

products’ demand.

Chapter 7: Real world applications 170

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

7.4 Case 3 – Increasing flexibility by turning a straight line

into a U-shaped line

The recent acquisition of the company in which the study took place by a large group

led to the implementation of the group’s business philosophy concerning management and

production issues. One of these issues is the flexibility of production systems to cope with

the uncertainty and variability of demand in the current market environment. Trying to

achieve this flexibility, the philosophy supports the use of U-shaped assembly lines. Within

this scope, the goal of this study was to analyse the performance of one of the assembly

lines of the company (a major manufacturer of electronic security systems) and propose

changes in its configuration in order to improve its flexibility.

7.4.1 Problems with the actual assembly line

The assembly line produces three models of a product in a straight line configuration.

When the production volume is low, the assignment of operators to workstations (with

specific equipment required to perform the tasks) increases the distances between

workstations which harms the flow of the line. Also, it is difficult to have multi-skilled

workers, able to perform tasks in several workstations when these are physically distant

from each other. Another problem with the actual assembly line is the unbalance of

workloads between workstations. While some operators have high workloads others have

long idle times and because workstations are distant, they cannot help each other and

smooth the workload. The original line was designed to assemble a different product that

no longer exists, so the facilities were adapted in order to assemble other types of products.

This somehow explains the poor performance of the line.

The demand of the product, and consequently the production volume of the line, is

highly variable which forces the line to be frequently re-balanced. Whenever the line is

re-balanced, the workstations have to be modified, as the equipment for the new tasks has

to be installed, and operators have to be trained to perform the new set of tasks. This

represents increased costs for the company that could be avoided if the line was easily

adaptable to changes in production volumes.

Chapter 7: Real world applications 171

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

7.4.2 Using U-ANTBAL to build a U-shaped layout

The approach to change the line configuration was to move to a U-shape, not only

because it was a common practice among the other companies of the group but also

because of its advantages, when compared with straight lines, considering the flexibility of

re-balancing the line when production volume changes (see section 5.2).

The idea of applying the algorithm U-ANTBAL to this assembly line was challenging,

as it was an opportunity to validate its assumptions and, at the same time, an opportunity to

learn more about real industrial problems. The first step was to collect data about task

processing times and to build the precedence diagrams of the models. Figure 7.8 shows the

precedence diagram of one of the models. Then, the algorithm was run for three different

production volume scenarios and U-line balancing solutions were obtained. An immediate

conclusion of the analysis of these solutions was that they could not be the final U-line

configurations. This was due to the following:

(i) Some workstations had to handle a high number of parts of the product – a difficult

aspect to be implemented in the real line.

(ii) Some workstations required too many different pieces of equipment to perform its

tasks.

(iii) The assignment of tasks to workstations for the different production volume

scenarios was completely different, meaning that a radical change in the line

(considering the equipment required for each workstation) had to be performed

every time the production volume would change.

The first problem could be easily solved by adding negative zoning constraints in

U-ANTBAL, forbidding the assignment of determined tasks to the same workstation.

However the other two points are not included in the assumptions of the procedure. They

are related with the physical equipment required in a workstation to perform its tasks. This

could be implemented by assigning each task to a type of equipment and changing the

algorithm accordingly. It would require a deep interaction with the trainee but

unfortunately it was not possible.

Nevertheless, the balancing solutions provided by U-ANTBAL were a useful tool to

understand the potential and limitations of a U-shaped line configuration.

Chapter 7: Real world applications 172

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Figure 7.8 – Precedence diagram of one of the models

7.4.3 Adding flexibility to the line

The line had to be flexible enough so that whenever the production volume changed, the

only change in the line would have to be the number of operators working on it – the

physical workstations (and the correspondent equipment) had to remain the same. As it

was not possible to improve U-ANTBAL to deal with this new set of constraints, the

trainee did an empirical study and, by trial and error, was able to achieve line

configurations with the desired flexibility. Figure 7.9 shows the assignments of operators

to workstations in the U-shaped assembly line for three different production volumes. The

workstations remain unchanged (concerning tools and equipment) and the number of

operators, and the tasks they perform, vary for each scenario. This way, the required

flexibility was attained.

Chapter 7: Real world applications 173

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

w-1

w-2

w-3

w-6 w-5 w-4

w-9

w-8

w-7

5 operators (120 units/day)

2x

Figure 7.9 – Assignment of operators to workstations for different production volumes

Besides the flexibility to cope with the demand’s variability, the U-shaped configuration

allows an improvement of the performance of the assembly line. Table 7.13 provides a

comparison between the number of operators and the percentage of idle time of the straight

and U-shaped configurations for the three scenarios. These results prove that re-designing

this particular assembly line will bring considerable gains to the company.

Chapter 7: Real world applications 174

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Table 7.13 – Comparison of performance measures between straight and U-shaped configurations

Scenario Straight line U-shaped line
120 units/day

Number of operators 6 5
% idle time 15.8 8.0

90 units/day
Number of operators 5 4
% idle time 24.2 14.0

60 units/day
Number of operators 4 3
% idle time 36.8 13.0

7.4.4 Conclusions

This project showed that the use of U-lines is a common practice in large industrial

groups, whose business philosophies are based in just-in-time principles, and that it is an

effective way to address the uncertainty of demand volumes.

The results of the application of the algorithm U-ANTBAL provided more insight into

the assembly process’s characteristics and constraints. However, further developments of

the procedure would be necessary in order to directly solve the problem on hand.

7.5 Case 4 – Balancing a ‘n-sided’ assembly line

The goal of this study was to analyse and improve the assembly line’s performance of

an industrial manufacturer of vehicle electrical wiring systems. The assembly process of

this type of product has particular characteristics that make it very different from the

assembly process in traditional assembly lines. However, with adequate modifications, it is

possible to use algorithms for assembly line balancing to address this problem.

7.5.1 Characteristics of the assembly process

Electrical distribution systems are networks of wiring and associated control devices

that route electrical power and signals throughout the vehicle. Wire harness assemblies

consist of raw, coiled wire, which is automatically cut to length and terminated. Individual

Chapter 7: Real world applications 175

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

circuits are assembled together on a jig or table, inserted into connectors and wrapped or

taped to form wire harness assemblies, as shown in Figure 7.10.

Figure 7.10 – A wire harness assembly jig

The jigs are linked together and move like a ‘carrousel’ along the workstations. Each

operator in a workstation performs a set of tasks, either material preparation tasks or

assembly tasks directly on the jig. Figure 7.11 illustrates such an assembly system. Several

problems were identified when analysing the performance of the assembly line, and most

of them were due to a misadjusted assignment of tasks to operators. In fact, it was often

observed too many operators working simultaneously on the same jig (causing movement

interferences among them) and some operators with too long idle times performing tasks

that were not assigned to them in order to help more busy colleagues. It was clear the need

of a deep study of the assembly line balancing.

Figure 7.11 – Illustration of the wire harness assembly line

Chapter 7: Real world applications 176

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

7.5.2 Adaptation of 2-ANTBAL to balance the assembly line

To balance the wire harness line it is necessary to define the set of tasks that each

operator will perform in the assembly jig. The jigs are large enough to have more than one

operator (three at maximum), however, in order to minimise the interference between them

it is desirable that each operator work only in one area of the jig (left, right or centre).

Tasks performed by each operator on the same jig can have precedence relationships, so,

the sequence in which operators perform tasks must take them into account. Given these

conditions, it was decided to adapt the algorithm 2-ANTBAL, especially developed for

2-sided assembly lines, to balance the wire harness assembly line. Instead of balancing a

2-sided line, the algorithm will have to balance the tasks of a ‘n-sided’ assembly process,

meaning that different areas of the jig can be defined, according to the tasks involved in the

assembly of a specific product.

The number of ants that simultaneously build the solution will depend on the number of

sides defined for the problem: two if only the left and right sides of the jig are considered

or three for left, right and centre. Obviously this can be generalised to any number of sides,

according to the problem’s characteristics.

The first step to use the balancing procedure was to build the precedence diagrams for

the models being assembled and to specify task processing times, task sides and other

assignment constraints. Figure 7.12 shows the precedence diagram of one of the models.

Then, the algorithm was run and the resulting balancing solutions were analysed by the

trainee. Like in the study presented in the previous section, the solutions provided by the

algorithm were not adequate to be implemented in the line, due to the following:

(i) A large number of operators had to perform tasks on different branches of the wire

– although it does not violate the assembly process constraints it makes the

sequence of tasks more complicated to perform by the operators than if they only

had to work on one branch.

(ii) The types of movement that the operators have to make to perform both their

preparation of material and assembly tasks (from the jig to the preparation shelves

and backwards) is not taken into account by the algorithm, which makes the

assignment of some tasks to the same operator very difficult to implement.

Chapter 7: Real world applications 177

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

The first problem can be solved by creating groups of tasks that are preferably, but not

compulsory, performed by the same operator. This issue is addressed in the following

section. The second problem could be addressed by adding to the algorithm more

information and constraints about the movements involved in the performance of tasks and

different levels of feasibility for the combination of movements. However, this would

require a deep interaction with the element working in the company and, similarly to what

happened in the previous study, this further interaction was not possible.

7.5.3 Addressing the assembly line planner’s preferences

To address the assembly line planner’s preferences for grouping tasks in the same

workstation, although it is not compulsory according to the assembly process, like it was

verified in the particular assembly line, the algorithm was modified to solve the problem. It

was included the possibility of defining groups of tasks that will be preferably, but not

compulsory, grouped in the same workstation. Rg is the set of pairs of tasks that the

assembly planner prefers to group in the same workstation and #Rg is the number of pairs

of tasks belonging to Rg. To address this issue, a new term of the objective function, used

to guide the search of 2-ANTBAL, is included. It computes the distance (measured in

number of workstations) between the tasks in the assembly planner preferences groups, as

follows:

∑

∑ ∑
∈

−=

g
g

g Rji
ij

R

y

D g

#
1

),((7.1)

where yij equals 1 if task i is assigned to the same workstation of task j and zero otherwise.

When all the tasks belonging to the same group, g, are assigned to the same workstation

(most favourable case), function D takes the value of zero. If none of the related tasks is

assigned to the same workstation D takes the value of 1. The new objective function of

2-ANTBAL is then:

DBBWE s
w

s
b

s −−− 222λ (7.2)

The lack of deeper interaction with the element in the company (to accurately define the

groups of tasks) made it impossible to implement this new approach in the wire harness

Chapter 7: Real world applications 178

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

assembly line. However, it seems a promising way to tackle this issue of relevant practical

importance.

Figure 7.12 – Precedence diagram for one model

7.5.4 Conclusions

The study of line’s supply and operator’s movement features to improve the assignment

of tasks to operators in the ‘carrousel’ was done empirically by the trainee, as there was no

opportunity to include these aspects on the algorithm. Still, some balancing ideas were

taken from the solutions previously provided by 2-ANTBAL. Significant improvements of

the line’s performance were achieved, namely, the increase of production volume, the

smoothing of workloads between operators and the improvement of the operators’ working

conditions.

Chapter 7: Real world applications 179

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

7.6 Chapter conclusions

The results of these four projects showed that the developed procedures for balancing

assembly lines, described throughout this document, are suitable to address real world

industrial problems. However, a very strong exchange of information is needed between

researchers and practitioners in order to adequately adapt the algorithms.

The most surprising aspect of these experiences was related with the precedence

diagrams. For a researcher the precedence diagrams are just input data as it is the cycle

time or the task processing times. However, it was verified in all the four cases that

companies do not have precedence diagrams of their assembly processes. In fact

companies do not know this tool at all. What they have is an idea of the sequence in which

the tasks are performed in the assembly line and they are reluctant about changing this

sequence.

So, the biggest challenge was to help the trainees in building the precedence diagrams.

It was a team work exercise because, on one hand, it required accurate information about

technological constraints and, on the other hand, it required a constant questioning of the

actual task sequence, which could only be made by someone who did not know the

process. The resulting precedence diagrams were the most useful tool provided to the

company, as they presented a wide range of alternatives of assembling the products. Just

because of this, it was worthwhile to carry out these projects.

The outcomes of these studies prove that a more deep interaction between the scientific

and industrial community is needed in order to improve the quality of both research work

and production systems’ performance.

8
8. Conclusion

Contents
• Final remarks

• Future developments

Chapter 8: Conclusion 183

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

8.1 Final remarks

Recent market trends show that there is a growing demand for customised products,

increasing the pressure for manufacturing flexibility. Mixed-model assembly lines, in

which a set of similar models of a product can be assembled simultaneously, are an

adequate production system to respond to the shifting of manufacturing assembly

operations from high-volume/low-mix to high-mix/low-volume production systems.

Assembly lines have the ideal structure to perform final product customisation tasks under

a mass customisation concept. Also, as they are labour intensive, assembly lines can be

easily located geographically closer to the final customer marketplace. The efficient design

and operation of mixed-model assembly lines is, therefore, a crucial factor for the success

of the implementation of the new manufacturing paradigms, namely postponement

strategies.

The aim of this thesis was to address the mixed-model assembly line balancing problem

by providing a set of procedures to efficiently tackle it for different types of assembly

lines, thus contributing to the research in a field that involves a key factor of

competitiveness in the actual market environment: assembly operations.

For balancing mixed-model assembly lines with a straight line configuration, three

procedures, based on the meta-heuristics simulated annealing, genetic algorithms and ant

colony optimisation (ACO) were developed and their performance was compared through

a set of computational experiments. The major contribution of this approach was to address

problems with characteristics that reflect some operating conditions of real world assembly

lines (e.g., use of parallel workstations, zoning constraints). Also, the proposed approach is

different from the ones reported in the literature taking into account the fact that it provides

good balancing solutions regardless of the sequence in which the models are launched into

the line, making the mixed-model assembly line sequencing problem irrelevant.

The ACO based approach, called ANTBAL, was selected to be applied to other

assembly line types, due to the results of the computational experience carried out in the

straight line scenario, as well as to enlarge the range of ACO applications. This way, the

mixed-model U-shaped and the mixed-model 2-sided line balancing problems were

Chapter 8: Conclusion 184

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

addressed using adaptations of the original version of ANTBAL. Computational

experiments proved a good performance of these procedures.

For all of the addressed problems, mathematical programming models were built in

order to formally describe the problems as well as to help the description of the underlying

principles of the proposed approaches. The goal was not to solve the models, as its high

complexity made its resolution impossible, even for medium sized problems.

Some of the procedures were applied to real assembly lines in order to test their

flexibility to cope with real industrial settings, as they may differ significantly from

theoretical problems. The results showed that the developed procedures are suitable to

address real world industrial problems. However, a very strong exchange of information is

needed between researchers and practitioners in order to adequately adapt the algorithms.

The major of contribution of the work presented in this thesis derives from the

following:

(i) The proposed procedures are able to address some particular features of the

assembly process very common in real world assembly lines that most of the

techniques existing in the literature do not consider. The aim was to obtain good

solutions for complex problems instead of trying to find optimal solutions for

simpler versions of the problem, the most frequent approach found in the

literature.

(ii) The proposed models include novel criteria to access the quality of the solutions

generated, namely workload smoothing within and among workstations.

(iii) The approach developed to handle the mixed-model nature of the problem is

unique. All existing approaches use the average task processing times and solve

the mixed-model problem like a single-model one. The proposed method uses the

particular task times for each model and the balancing solution is built ensuring

that the capacity constraints are verified for every model being assembled. This

way, the feasibility and efficiency of the line configuration is valid for every

model sequence.

(iv) The use of meta-heuristics follows the recent developments in combinatorial

optimisation problem solving of using procedures inspired by nature to address

complex problems. More particularly, the application of ACO algorithms to

Chapter 8: Conclusion 185

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

production problems is still a research area with a lot to explore and the results of

this study confirm its potential.

(v) The projects developed in industrial companies showed that the proposed

procedures can be adequately adapted to deal with the conditions of real

production systems.

8.2 Future developments

The developed algorithms will be included in a module of a decision support system

(DSS) to design manufacturing systems geared to the make-to-order production stage,

essential to implement postponement strategies. The research project in which the DSS

will be developed has already started and it will last three years.

The development of new procedures to address different types of problems is also

within the future research perspectives. Among these problems are:

(i) Designing flexible line configurations to efficiently handle uncertainty in product

demand (similarly to what was verified in the project ‘Case 3’).

(ii) Balancing hybrid lines, i.e., lines in which some tasks are performed by manual

operators and other tasks are automatically performed by machines.

(iii) Balancing multiple assembly line facilities, i.e., facilities that have more than one

line in which sub-assemblies are manufactured that feed into a central line where

the final product his assembled.

(iv) Providing support to the design of supply chains that operate under a

postponement strategy, namely by developing models to define the customer

order decoupling point for the relevant product range.

Also, further developments should be made in matching theoretical procedures and

practical applications, shortening the gap between scientific research and industrial needs.

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

References

Aase, G.R., Schniederjans, M.J and Olson, J.R. (2003) U-OPT: an analysis of exact

U-shaped line balancing procedures. International Journal of Production Research,

41, 4185-4210.

Aase, G.R., Olson, J.R. and Schniederjans, M.J. (2004) U-shaped assembly line layouts

and their impact on labour productivity: an experimental study. European Journal of

Operational Research, 156, 698-711.

Ajenblit, D.A. and Wainwright, R.L. (1998) Applying genetic algorithms to the U-shaped

assembly line balancing problem. Proceedings of the 1998 IEEE International

Conference on Evolutionary Computation.

Anderson, E.J. and Ferris, M.C. (1994) Genetic algorithms for combinatorial optimization:

the assembly line balancing problem. ORSA Journal on Computing, 6, 161-173.

Askin, R.G. and Zhou, M. (1997) A parallel station heuristic for the mixed-model

production line balancing problem. International Journal of Production Research,

35, 3095-3106.

Bard, J.F. (1989) Assembly line balancing with parallel workstations and dead time.

International Journal of Production Research, 27, 1005-1018.

Bartholdi, J.J. (1993) Balancing two-sided assembly lines: a case study. International

Journal of Production Research, 31, 2447-2461.

Bautista, J. and Pereira, J. (2002) Ant algorithms for assembly line balancing. Proceedings

of the Third International Workshop, ANTS 2002, Brussels, Belgium, 65-76.

Becker, C. and Scholl, A. (2006) A survey on problems and methods in generalized

assembly line balancing. European Journal of Operational Research, 168, 694-715.

Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999) Swarm Intelligence: From Natural to

Artificial Systems. New York: Oxford University Press.

Bukchin, J., Dar-El, E.M. and Rubinovitz, J. (2002) Mixed model assembly line design in a

make-to-order environment. Computers and Industrial Engineering, 41, 405-421.

References 188

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Bukchin, Y. and Rabinowitch, I. (2005) A branch-and-bound based solution approach for

the mixed-model assembly line balancing problem for minimizing stations and task

duplication costs. European Journal of Operational Research, in press.

Buxey, G.M. (1974) Assembly line balancing with multiple stations. Management Science,

20, 1010-1021.

Cheng, C.H., Miltenburg, J., Motwani, J. (2000) The effect of straight- and u-shaped lines

on quality. IEEE Transactions on Engineering Management, 47, 321-334.

Chiang, W.-C. (1998) The application of a tabu search metaheuristic to the assembly line

balancing problem. Annals of Operations Research, 77, 209-227.

Cicirello, V.A. and Smith, S.F. (2001) Insect Societies and Manufacturing. IJCAI-01

Workshop on Artificial Intelligence and Manufacturing, Working Notes, 33-38.

Coronado, A.E., Lyons, A.C., Kehoe, D.F. and Coleman, J. (2004) Enabling mass

customization: extending build-to-order concepts to supply chains. Production

Planning and Control, 15, 398-411.

CPLEX Optimization, Inc (1999). MPL Modelling System.

Daganzo, C.F. and D.E.Blumenfeld (1994) Assembly system design principles and

tradeoffs. International Journal of Production Research, 32, 669-681.

Dimopoulos, C. and Zalzala, A.M.S. (2000) Recent developments in evolutionary

computation for manufacturing optimization: problems, solutions and comparisons.

IEEE Transactions on Evolutionary Computation, 4, 93-113.

Dorigo, M. and Gambardella, L. (1996) Ant colonies for the traveling salesman problem.

TR/IRIDIA/1996-3 Université Libre de Bruxelles, Belgium.

Dorigo, M. and Gambardella, L. (1997) Ant colony system: a cooperative learning

approach to the traveling salesman problem. TR/IRIDIA/1996-5 Université Libre de

Bruxelles, Belgium.

Dorigo, M., Maniezzo, V. and Colorni,A. (1991) Positive feedback as a search strategy.

Technical Report Nº 91-016, Politecnico di Milano, Italy.

References 189

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Dorigo, M., Maniezzo, V. and Colorni, A. (1996) The ant system: optimization by a colony

of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B,

26, 1-13.

Dorigo, M., Di Caro, G. and Gambardella, L.M. (1999) Ant algorithms for discrete

optimization. Artificial Life, 5, 137-172.

Eglese, R.W. (1990) Simulated annealing: a tool for operational research. European

Journal of Operational Research, 46, 271-281.

Erel, E. and Sarin, S.C. (1998) A survey of the assembly line balancing procedures.

Production Planning and Control, 9, 414-434.

Erel, E., Sabuncuoglu, I. and Aksu, A. (2001) Balancing of U-type assembly systems using

simulated annealing. International Journal of Production Research, 39, 3003-3015.

Falkenauer, E. (1998) Genetic Algorithms and Grouping Problems. Chichester: John

Wiley & Sons.

Feyzbakhsh, S.A. and Matsui, M. (1999) Adam-Eve genetic algorithm: a methodology for

optimal design of a simple flexible assembly system. Computers and Industrial

Engineering, 36, 233-258.

Ghosh, S. and Gagnon, R.J. (1989) A comprehensive literature review and analysis of the

design, balancing and scheduling of assembly systems. International Journal of

Production Research, 27, 637-670.

Glover, F. (1989) Tabu search – part I. ORSA Journal on Computing, 1, 190-206.

Glover, F. (1990) Tabu search – part II, ORSA Journal on Computing, 2, 4-32.

Gökçen, H. and Erel, E. (1998) Binary integer formulation for mixed-model assembly line

balancing problem. Computers and Industrial Engineering, 23, 451-461.

Gökçen, H. and Agpak, K. (2006) A goal programming approach to simple U-line

balancing problem. European Journal of Operational Research, 171, 577-585.

Gökçen, H. and Erel, E. (1997) A goal programming approach to mixed-model assembly

line balancing problem. International Journal of Production Economics, 48, 177-185.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization & Machine Learning.

Reading: Addison-Wesley.

References 190

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Gonçalves, J.F. and Almeida, J.R. (2002) A hybrid genetic algorithm for assembly line

balancing. Journal of Heuristics, 8, 629-642.

Guerriero, F. and Miltenburg, J. (2003) The stochastic U-line balancing problem. Naval

Research Logistics, 50, 31-57.

Hackman, S.T., Magazine, M.J. and Wee, T. S. (1989) Fast, effective algorithms for simple

assembly line balancing problems. Operations Research, 37, 916-924.

He, D. and Babayan, A. (2002) Scheduling manufacturing systems for delayed product

differentiation in agile manufacturing. International Journal of Production Research,

40, 2461-2481.

Heinrici, A. (1994) A comparison between simulated annealing and tabu Search with an

example from the production planning In: Dyckoff, H, U. Denigs, M. Salomon, H.C.

Tijns(eds): Operations Research Proceedings (pp 498-503). Berlin: Springer.

Helgeson, W.B. and Birnie, D.D. (1961) Assembly line balancing using the ranked

positional weight technique. Journal of Industrial Engineering, 12, 394-398.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor: The

University of Michigan Press.

Ji, P. Sze, M.T. and Lee, W.B. (2001) A genetic algorithm of determining cycle time for

printed circuit board assembly lines. European Journal of Operational Research,

128, 175-184.

Johnson, R. V. (1983) A branch and bound algorithm for assembly line balancing problems

with formulation irregularities. Management Science, 29, 1309-1324.

Khoo, L.P. and Alisantoso, D. (2003) Line balancing of PCB assembly line using immune

algorithms. Engineering with Computers, 19, 92-100.

Kim, Yeo Keun, Kim, Yong Ju and Kim, Yeongho (1996) Genetic algorithms for assembly

line balancing with various objectives. Computers and Industrial Engineering, 30,

397-409.

Kim, Yong Ju, Kim, Yeo Keun and Cho, Yongkyun (1998) A heuristic-based genetic

algorithm for workload smoothing in assembly lines. Computers and Operations

Research, 25, 99-111.

References 191

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Kim, Yeo Keun, Kim, Yeongho and Kim, Yong Ju (2000a) Two-sided assembly line

balancing: a genetic algorithm approach. Production Planning and Control, 11, 44-

53.

Kim, Yeo Keun, Kim, Sun Jin, Kim, JaeYun (2000b) Balancing and sequencing mixed-

model U-lines with a co-evolutionary algorithm. Production Planning and Control,

11, 754-764.

Kirkpatrick, S., Gelatt Jr, C.D. and Vecchi, M.P. (1983) Optimization by Simulated

Annealing. Science, 220, 671-680.

Klein, R. and Scholl, A. (1996) Maximizing the production rate in simple assembly line

balancing - a branch and bound procedure. European Journal of Operational

Research, 91, 367-385.

Lapierre, S.D., Ruiz, A. and Soriano, P. (2006) Balancing assembly lines with tabu search.

European Journal of Operational Research, 168, 826-837.

Lapierre, S.D. and Ruiz, A.B. (2004) Balancing assembly lines: an industrial case study.

Journal of the Operational Research Society, 55, 589-597.

Lee, S.G., Khoo, L.P. and Yin, X.F. (2000) Optimising an assembly line through

simulation augmented by genetic algorithms. International Journal of Advanced

Manufacturing Technology, 16, 220-228.

Lee, T.O., Kim, Y. and Kim, Y.K. (2001) Two-sided assembly line balancing to maximize

work relatedness and slackness. Computers and Industrial Engineering, 40, 273-292.

Leu, Y., Matheson, L.A. and Rees, L.P. (1994) Assembly line balancing using genetic

algorithms with heuristic-generated initial populations and multiple evaluation

criteria. Decision Sciences, 25, 581-606.

Levitin, G., Rubinovitz, J. and Shnits, B. (2006) A genetic algorithm for robotic assembly

line balancing. European Journal of Operational Research, 168, 811-825

Liu, S.B., Ong, H.L. and Huang, H.C. (2003) Two bi-directional heuristics for the

assembly line type II problem. International Journal of Advanced Manufacturing

Technology, 22, 656-661.

References 192

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Malakooti, B. (1991) A multiple criteria decision making approach for the assembly line

balancing problem. International Journal of Production Research, 29, 1979-2001.

Malakooti, B. (1994) Assembly line balancing with buffers by multiple criteria

optimization. International Journal of Production Research, 32, 2159-2178.

Matanachai, S. and Yano, C.A. (2001) Balancing mixed-model assembly lines to reduce

work overload. IIE Transactions, 33, 29-42.

McMullen, P.R. and Frazier, G.V. (1997) A heuristic for solving mixed-model line

balancing problems with stochastic task durations and parallel stations. International

Journal of Production Economics, 51, 177-190.

McMullen, P.R. and Frazier, G.V. (1998) Using simulated annealing to solve a

multiobjective assembly line balancing problem with parallel workstations.

Computers and Industrial Engineering, 36, 2717-2741.

McMullen, P. and Tarasewich, P. (2003) Using ant techniques to solve the assembly line

balancing problem. IIE Transactions, 35, 605-617.

McMullen, P. and Tarasewich, P. (2006) Multi-objective assembly line balancing via a

modified ant colony optimization technique. International Journal of Production

Research, 44, 27-42.

Mendes, A.R., Ramos, A.L., Simaria, A.S. and Vilarinho, P.M. (2005) Combining

heuristic procedures and simulation models for balancing a PC camera assembly line.

Computers and Industrial Engineering, 49, 413-431.

Merengo, C., Nava, F. and Pozzetti, A. (1999) Balancing and sequencing manual mixed-

model assembly lines. International Journal of Production Research, 37, 2835-2860.

Mikkola, J.H. and Skjott-Larsen, T. (2004) Supply-chain integration: implications for mass

customization, modularization and postponement strategies. Production Planning

and Control, 15, 352-361.

Miltenburg, J. (1998) Balancing U-lines in a multiple U-line facility. European Journal of

Operational Research, 109, 1-23.

Miltenburg, J. (2000) The effect of breakdowns on U-shaped production lines.

International Journal of Production Research, 38, 353-364.

References 193

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Miltenburg, J. (2001) U-shaped production lines: a review of theory and practice.

International Journal of Production Economics, 70, 201-214.

Miltenburg, J. (2002) Balancing and scheduling mixed-model U-shaped production lines.

The International Journal of Flexible Manufacturing Systems, 14, 119-151.

Miltenburg, J. and Wijngaard, J. (1994) The U-line line balancing problem. Management

Science, 40, 1378-1388.

Monden, Y. (1993) Toyota Production System. Norcross: Institute of Industrial Engineers.

Nair, A. (2005) Linking manufacturing postponement, centralized distribution and value

chain flexibility with performance. International Journal of Production Research, 43,

447-463.

Nakade, K. and Ohno, K. (1999) An optimal worker allocation problem for a U-shaped

production line. International Journal of Production Economics, 60, 353-358.

Pierreval, H., Caux, C., Paris, J.L. and Viguier, F. (2003) Evolutionary approaches to the

design and organization of manufacturing systems. Computers and Industrial

Engineering, 44, 339-364.

Pinto, P., Dannenbring, D.G. and Khumawala, B.M. (1975) A branch and bound algorithm

for assembly line balancing with paralleling. International Journal of Production

Research, 13, 183-196.

Pinto, P.A., Dannenbring, D.G. and Khumawala, B.M (1981) Branch-and-bound and

heuristic procedures for assembly line balancing with paralleling of stations.

International Journal of Production Research, 19, 565-576.

Pirlot, M. (1996) General local search methods. European Journal of Operational Researh,

92, 493-511.

Ponnambalam, S.G., Aravindan, P. and Naidu, G.M. (2000) A multiobjective genetic

algorithm for solving assembly line balancing problem. International Journal of

Advanced Manufacturing Technology, 16, 341-352.

Rachamadugu, R. and Talbot, B. (1991) Improving the equality of workload assignments

in assembly lines. International Journal of Production Research, 29, 619-633.

References 194

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Ramos, A.L., Mendes, A.R., Simaria, A.S. and Vilarinho, P.M. (2001) Using simulation

models for balancing a PC camera assembly line. Proceedings of the 6th Annual

International Conference on Industrial Engineering – Theory, Applications and

Practice, San Francisco, CA, U.S.A, November 2001.

Rekiek, B., De Lit, P. and Delchambre, A (2000) Designing mixed-product assembly lines.

IEEE Transactions on Robotics and Automation, 16, 268-280.

Rekiek, B., De Lit, P., Pellichero, F., l'Eglise, T., Fouda, P., Falkenauer, E. and

Delchambre, A. (2001) A multiple objective grouping genetic algorithm for assembly

line design. International Journal of Intelligent Manufacturing, 12, 467-485.

Rubinovitz, J. and Levitin, G. (1995) Genetic algorithm for assembly line balancing.

International Journal of Production Economics, 41, 343-354.

Rudberg, M. and Wikner, J. (2004) Mass customization in terms of the customer order

decoupling point. Production Planning and Control, 15, 445-458.

Sabuncuoglu, I., Erel, E. and Tanyer, M. (2000) Assembly line balancing using genetic

algorithms. Journal of Intelligent Manufacturing, 11, 295-310.

Salveson, M.E. (1955) The assembly line balancing problem. Journal of Industrial

Engineering, 6, 18-25.

Sarker, B.R. and Shanthikumar, J.G. (1983) A generalized approach for serial or parallel

line balancing. International Journal of Production Research, 21, 109-133.

Schofield, N.A. (1979) Assembly line balancing and the application of computer

techniques. Computers and Industrial Engineering, 3, 53-69.

Scholl, A. (1993) Data of assembly line balancing problems. <http://www.wiwi.uni-

jena.de/Entscheidung/>

Scholl, A. (1999) Balancing and Sequencing of Assembly Lines. Heidelberg:

Physica-Verlag.

Scholl, A. and Klein, R. (1999) ULINO: Optimally balancing U-shaped JIT assembly

lines. International Journal of Production Research, 37, 721-736.

References 195

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Scholl, A. and Becker, C. (2006) State-of-the-art exact and heuristic solution procedures

for simple assembly line balancing. European Journal of Operational Research, 168,

666-693.

Scholl, A. and Voβ, S. (1996) Simple assembly line balancing - heuristic approaches.

Journal of Heuristics, 2, 217-244.

Shtub, A. and Dar-El, E.M. (1990) An assembly chart oriented assembly line balancing

approach. International Journal of Production Research, 28, 1137-1151.

Simaria, A.S. (2001) Uma Metodologia para o Balanceamento de Linhas de Montagem.

Dissertação de Mestrado. Escola de Gestão do Porto, Universidade do Porto.

Simaria, A.S. and Vilarinho, P.M. (2001) The simple assembly line balancing problem

with parallel workstations – a simulated annealing approach. Journal of Industrial

Engineering, 8, 230-240.

Simaria, A.S. and Vilarinho, P.M. (2003) Fine-tuning assembly line balancing – a decision

support framework. Proceedings of the 8th Annual International Conference on

Industrial Engineering – Theory, Applications and Practice, Las Vegas, Nevada,

U.S.A, November 2003.

Simaria, A.S. and Vilarinho, P.M. (2004) A genetic algorithm based approach to the mixed

model assembly line balancing problem of type II. Computers and Industrial

Engineering, 47, 391-407.

Skipworth, H. and Harrison, A. (2004) Implications of form postponement to

manufacturing: a case study. International Journal of Production Research, 42,

2063-2081.

Sparling, D. and Miltenburg, J. (1998) The mixed-model U-line balancing problem.

International Journal of Production Research, 36, 485-501.

Stützle, T. and Dorigo, M. (1999) ACO algorithms for the traveling salesman problem.

Tech.Rep. IRIDIA/99-3 Université Libre de Bruxelles, Belgium.

Su, J.C.P., Chang, Y.-L. and Ferguson, M. (2005) Evaluation of postponement structures to

accommodate mass customization. Journal of Operations Management, 23, 305-318.

References 196

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

Suresh, G. and Sahu, S. (1994) Stochastic assembly line balancing using simulated

annealing. International Journal of Production Research, 32, 1801-1810.

Tsujimura, Y, Gen, M. and Kubota, E. (1995) Solving fuzzy assembly-line balancing

problem with genetic algorithms. Computers and Industrial Engineering, 29,

543-547.

Urban, T.L. (1998) Note. Optimal balancing of U-shaped assembly lines. Management

Science, 44, 738-741.

Vilarinho, P.M. and Simaria, A.S. (2002) A two-stage heuristic method for balancing

mixed-model assembly lines with parallel workstations. International Journal of

Production Research, 40, 1405-1420.

Vilarinho, P.M. and Simaria, A.S. (2006) ANTBAL: an ant colony optimization approach

for balancing mixed model assembly lines with parallel workstations. International

Journal of Production Research, 44, 291-303.

Yang, B. and Burns, N. (2003) Implications of postponement for the supply chain.

International Journal of Production Research, 41, 2075-2090.

Yang, B., Burns, N.D. and Backhouse, C.J. (2004) Management of uncertainty through

postponement. International Journal of Production Research, 42, 1049-1064.

Yang, B., Burns, N.D. and Backhouse, C.J. (2005) An empirical investigation into barriers

to postponement. International Journal of Production Research, 43, 991-1005.

Zhao, X., Ohno, K. and Lau, H.-S. (2004) A balancing problem for mixed-model assembly

lines with a paced moving conveyor. Naval Research Logistics, 51, 446-464.

Zhao, Z.Y. and de Souza, R. (2000) Genetic production line-balancing for the hard disk

drive industry. The International Journal of Advanced Manufacturing Technology,

16, 297-302.

Appendix 1

Demonstration of the maximum and minimum
values of functions Bb and Bw

Appendix 1 199

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

A1.1 Function Bb (balance between workstations)

∑
∑

=

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

=
LL

k

M

m
kmm

b LLWIT

sq

LL
LLBMinimise

1

2

1 1
1

• Minimum value – Bb reaches the minimum value of zero when WIT is evenly

distributed between workstations (best case).

- for all (LL) workstations:
LL

WITsq
M

m
kmm =∑

=1

011
1

1
1

2

2

=⎟
⎠
⎞

⎜
⎝
⎛ −

−
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

=
LLLL

LL
LL

LL
LLWIT

LL
WIT

LL
LL

LLBb

• Maximum value – Bb reaches the maximum value of 1 when WIT is only accountable

to one workstation (worst case).

- for one workstation: WITsq
M

m
kmm =∑

=1

- for LL-1 workstations: 0
1

=∑
=

M

m
kmm sq

()() 1111
1

1)1(11
1

10)1(1
1

2

22

22

=+−⋅
−

⋅
−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛ −

−
=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−+⎟

⎠
⎞

⎜
⎝
⎛ −

−
=

LL
LL

LL
LL

LL
LL

LL
LLLL

LL

LLWIT
LL

LLWIT
WIT

LL
LLBb

A1.2 Function Bw (balance within workstations)

∑∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

LL

k

M

m k

kmm
w MS

sq
MLL
MBMinimise

1 1

2
1

)1(

• Minimum value – Bw reaches the minimum value of zero when, for all workstations,

Sk is evenly distributed among the models (best case).

Appendix 1 200

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

- for all (LL) workstations and all (M) models:
M
S

sq k
kmm =

011
)1(

1
)1(

2

2

=⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅

−
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−⋅⋅
−

=
MM

MLL
MLL
M

MS
M
S

MLL
MLL
MB

k

k

w

• Maximum value – Bw reaches the maximum value of 1 when, for all workstations, Sk

is only accountable to one model (worst case).

- for one model: kkmm Ssq =

- for M-1 models: 0=kmm sq

()() 1111
)1(

1)1(11
)1(

10)1(1
)1(

2

22

22

=+−⋅
−

⋅
−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛ −

−
=

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=

M
M

MLL
MLL
M

M
M

M
LL

MLL
M

MS
M

MS
S

LL
MLL
MB

kk

k
w

Appendix 2

Characteristics of the MALBP data sets

Appendix 2 203

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

A2.1 Precedence diagrams of the problems of the MALBP data sets

Problem Number
of tasks Reference of the precedence diagram

1, 2 8 Bowman in Scholl (1993)
3, 4 11 Gokçen and Erel (1998)
5, 6 21 Mitchell in Scholl (1993)
7, 8 25 Numerical example of Figure XX
9, 10 28 Heskiaoff in Scholl (1993)

11, 12 30 Sawyer in Scholl (1993)
13, 14 32 Lutz1 in Scholl (1993)
15, 16 35 Gunther in Scholl (1993)
17, 18 45 Kilbridge in Scholl (1993)
19, 20 70 Tonge in Scholl (1993)

A2.2 Task processing times (in time units)

A2.2.1 MALBP data set with typical task times

 Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Problem 7

task tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC tA tB
1 3.8 3.8 4.4 4.4 0 3.0 0 8.3 8.6 8.3 12.8 12.8 11.8 11.8 11.8 0 2
2 1.9 1.9 0 6.0 0 3.1 3.1 0 2.0 2.0 7.4 8.5 12.1 12.1 12.1 7.7 7.7
3 1.8 1.8 0 7.0 7.0 1.9 1.9 9.6 9.6 9.6 11.7 11.7 14.0 14.0 14.0 7.3 7.3
4 2.1 2.1 10 11.3 10 8.4 8.4 1.8 1.8 1.8 3.8 3.8 5.4 5.0 5.5 15 15
5 7.8 7.9 0 6.0 6.0 3.1 3.1 2.4 2.4 2.5 4.8 4.8 6.5 7.2 6.5 8.8 8.8
6 4.5 4.5 12.3 12.3 12.3 11.2 9.9 2.3 2.3 2.3 5.8 5.8 3.2 0 3.2 6.2 0
7 12.0 9.1 7.8 0 7.8 8.8 0 2.3 2.3 2.5 4.9 4.9 5.0 5.8 5.2 3.6 0
8 1.9 2.0 0 0 10 8.7 8.7 4.7 4.7 4.7 4.7 0 6.3 6.7 7.2 0 2.0
9 2.5 2.5 0 9.0 9.0 4.5 4.5 5.0 5.0 5.0 6.6 6.6
10 5.2 0 13.6 13.6 13.6 9.4 8.6 0 0 10 2.5 2.5
11 4.4 4.4 1.0 1.0 1.0 3.5 3.5 9.0 10.3 0 5.5 5.5
12 4.2 4.2 0 1.0 1.0 7.1 7.1
13 9.6 9.6 0 5.0 5.0 5.9 5.9
14 2.1 0 2.7 2.7 2.4 1.3 0
15 0 0 15.0 15.0 15.0 5.5 5.5
16 13.7 0 2.4 0 2.4 1.9 2.0
17 8.5 8.5 2.1 2.1 1.8 3.7 0
18 6.6 6.6 2.8 2.8 2.8 9.4 9.4
19 2.1 2.1 7.3 7.3 7.3 1.3 1.3
20 6.1 6.1 5.6 4.8 5.6 0 9.0
21 3.9 0 0 1.0 1.0 2.0 2.0
22 4.7 4.7
23 9.6 8.2
24 4.1 3.7
25 12.5 0

Appendix 2 204

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

 Problem 8 Problem 9 Problem 10 Problem 11 Problem 12 Problem 13 Problem 14
task tA tB tC tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC

1 4.1 4.1 4.1 1.0 1.0 3.4 3.4 0 9.5 9.5 2.1 2.1 2.1 2.4 2.4 0 4.0 0
2 2.7 2.7 2.7 3.7 3.7 10.0 10.0 10.0 1.3 1.3 3.2 3.2 3.6 5.3 5.3 6.6 5.7 6.6
3 4.6 4.6 4.6 7.2 7.2 8.0 8.0 8.0 4.8 4.8 4.3 0 4.3 2.0 2.0 2.0 2.0 2.0
4 4.1 4.1 4.1 12.6 12.6 12.7 11.8 12.7 3.3 3.3 0 5.0 5.0 4.0 4.3 4.3 4.0 4.3
5 2.0 2.0 2.0 4.2 4.2 9.3 9.3 9.3 1.5 1.7 3.7 3.7 3.7 4.0 4.0 4.0 4.0 4.0
6 0 2.0 2.0 3.4 3.4 3.3 3.3 3.3 4.5 4.1 13.4 13.4 13.4 4.4 4.4 4.4 4.4 4.4
7 11.3 11.3 11.3 3.4 3.4 4.7 4.7 4.7 3.6 3.6 2.1 0 2.1 1.3 1.5 1.3 1.3 1.5
8 7.8 7.8 7.8 10.7 10.7 8.6 8.6 8.6 0 2.0 7.8 0 7.8 1.4 1.4 1.4 1.4 1.4
9 0 10.0 10.0 9.9 0 8.2 0 8.2 12.3 12.3 4.2 4.2 4.2 4.9 4.5 4.9 4.9 4.5
10 3.5 3.5 3.3 7.6 7.6 8.4 8.4 8.4 0 8.0 9.9 9.9 9.9 6.6 6.6 4.5 4.4 4.5
11 3.9 4.2 3.9 9.8 9.8 0 0 9.0 2.5 2.5 5.8 5.8 6.0 6.9 0 3.8 3.8 3.8
12 1.0 1.0 1.0 2.4 2.4 8.9 8.3 8.9 4.3 4.3 3.0 2.9 3.0 2.4 2.4 2.4 2.4 2.4
13 2.5 2.3 2.5 9.8 8.7 4.6 4.6 0 6.5 0 0 2.0 2.0 5.3 5.3 5.3 5.3 5.3
14 5.1 5.1 5.1 10 10 0 0 5.0 1.7 1.7 2.4 2.4 2.4 12.2 12.2 12.2 12.2 12.2
15 3.5 3.5 3.5 0 9.0 9.2 9.3 9.2 7.0 7.0 7.0 6.5 7.0 2.7 2.7 2.7 2.7 2.7
16 3.5 3.5 3.4 0 9.0 1.9 2.1 2.0 1.4 1.4 3.8 0 3.8 5.5 5.5 5.5 5.5 5.5
17 6.8 6.8 6.8 2.7 2.7 4.8 4.8 4.8 7.8 7.8 0 2.0 2.0 6.6 6.6 6.6 6.6 6.6
18 8.5 8.5 9.6 3.6 3.7 10.2 11.5 10.2 2.9 2.9 5.7 5.7 5.7 6.8 6.5 6.8 6.8 6.5
19 9.9 9.9 9.9 7.7 7.7 4.4 4.6 4.4 1.6 1.6 1.4 1.4 1.4 9.5 9.5 9.5 9.5 9.5
20 7.2 7.2 7.2 12.4 12.4 0 3.0 0 7.0 7.0 13.7 13.7 13.7 0 14.9 14.9 0 14.9
21 4.8 4.8 4.8 6.2 6.2 1.4 1.4 1.4 8.7 8.7 6.4 6.4 6.9 2.2 2.2 2.8 2.8 2.8
22 3.8 3.8 3.9 6.0 6.6 4.1 4.1 0 3.9 4.1 5.0 5.0 5.3 4.8 4.8 6.4 6.4 6.4
23 2.9 2.8 2.6 5.5 5.5 4.1 4.1 4.1 6.4 6.4 12.8 12.8 12.8 5.1 5.8 8.6 8.6 8.6
24 3.5 3.5 3.5 1.9 1.9 0 9.0 9.0 2.8 2.7 0 2.0 2.0 0 10 9.7 8.2 9.7
25 7.8 7.8 7.8 4.4 4.4 9.5 9.5 10 8.5 8.5 8.2 8.2 0 1.1 1.0 5.8 5.5 5.8
26 12.1 12.1 9.2 9.2 9.2 6.7 6.7 9.1 9.1 9.1 2.4 2.4 2.4 2.4 2.4
27 9.2 9.2 9.9 9.9 9.9 1.9 1.9 9.7 9.7 9.7 1.7 1.7 0 2.0 2.0
28 9.5 9.9 3.7 3.7 3.1 9.9 9.9 7.2 7.2 7.2 12.3 13.5 3.9 3.9 4.5
29 4.6 0 10.5 10.5 10.5 2.5 2.5 7.1 7.1 7.1
30 4.0 4.2 2.4 2.4 2.4 0 0 2.0 0 0
31 5.1 5.1 5.1 5.1 5.1
32 4.1 4.0 4.0 4.1 4.0

 Problem 15 Problem 16 Problem 17 Problem 18 Problem 19 Problem 20

task tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC
1 4.9 4.9 7.1 7.1 7.1 1.0 1.0 7.5 8.0 7.5 5.8 5.8 3.2 3.5 3.2
2 7.2 7.2 3.2 3.2 3.2 4.4 5.1 6.0 0 6.0 5.7 5.7 11.7 11.7 11.7
3 3.3 3.3 4.1 0 4.1 14.3 0 5.6 5.6 5.6 0 10 6.0 5.6 6.0
4 13.6 13.6 8.0 8.0 8.0 2.2 2.2 3.8 0 3.8 5.0 5.1 1.9 0 1.9
5 4.4 4.4 5.3 5.3 6.0 4.8 4.8 3.1 2.9 3.1 5.1 5.1 0 15.0 0
6 6.5 6.5 11.8 11.8 11.9 5.1 5.8 4.2 4.2 4.2 0 8.0 7.4 7.4 7.4
7 4.1 4.1 11.7 11.7 11.7 0 10.0 10.6 10.6 10.6 6.8 6.8 7.9 8.4 7.9
8 4.2 4.2 3.4 3.4 3.4 5.1 5.1 0 8.0 8.0 4.5 4.5 5.2 5.4 5.2
9 4.1 4.1 8.7 8.7 8.7 9.4 9.4 3.6 3.6 3.6 5.1 5.1 2.3 2.3 2.3
10 11.7 12.2 2.9 3.0 2.9 5.0 5.0 2.4 2.4 2.4 9.6 9.6 5.8 4.9 5.8
11 2.2 2.2 4.4 4.4 0 3.5 3.5 9.3 9.3 0 1.5 1.5 2.6 2.6 0
12 0 3.0 5.6 5.6 5.6 0 4.0 1.1 1.2 1.1 3.9 3.9 4.3 4.6 4.3
13 0 1.0 4.2 4.3 4.2 7.0 0 2.7 0 0 9.6 9.6 2.2 2.2 2.2
14 8.0 6.9 13.8 13.8 13.8 2.7 0 5.6 5.6 5.0 2.7 2.7 3.5 3.5 3.7
15 6.6 7.4 2.5 2.5 2.5 5.3 5.3 9.3 9.3 9.3 1.5 1.5 8.7 0 8.7
16 4.2 4.2 5.9 6.1 5.9 0 3.0 0 8.0 7.2 4.2 0 8.4 8.4 8.4
17 7.6 7.6 7.7 7.7 7.7 2.2 2.2 10.4 10.4 10.4 5.3 5.3 2.1 2.1 2.1
18 6.5 6.5 0 4.0 4.0 0 3.0 9.0 9.0 9.0 3.7 3.7 8.4 8.4 8.4
19 5.3 5.3 1.0 1.0 1.0 8.3 8.3 12.0 12.0 12.1 8.1 8.1 8.1 8.1 8.1
20 7.4 7.4 7.4 7.4 7.4 2.6 2.6 6.6 6.6 0 13.4 13.4 5.8 5.8 5.8

Appendix 2 205

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

 (cont.)
task tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC
21 4.6 4.6 5.9 5.9 5.9 2.5 2.5 8.7 0 8.7 13.4 13.4 0 6.0 6.0
22 6.9 6.9 4.0 4.0 4.0 5.7 5.7 2.9 2.9 2.8 1.1 0 6.6 7.3 5.7
23 5.6 0 12.4 12.4 12.4 9.7 8.8 3.3 0 3.3 1.3 1.3 5.8 5.8 5.8
24 2.8 2.8 2.4 2.4 2.0 3.7 3.7 4.0 4.0 4.0 9.3 9.3 9.2 9.2 9.2
25 0 9.0 8.3 8.3 8.8 9.6 9.6 1.2 1.2 1.2 6.7 6.4 3.1 3.1 3.1
26 8.2 8.2 8.2 8.2 8.2 8.8 8.8 9.0 9.0 0 5.3 0 4.7 4.7 4.7
27 3.2 0 2.9 2.9 3.2 4.8 4.8 5.6 5.6 5.6 9.9 9.9 9.7 9.7 0
28 3.4 3.4 2.1 0 1.9 8.0 0 2.0 2.0 2.0 0 3.0 6.7 6.7 6.7
29 2.9 2.6 2.3 2.3 2.3 5.6 5.6 7.5 7.5 7.5 3.7 3.7 1.8 1.8 1.8
30 13.9 13.9 12.6 12.6 12.6 4.0 4.0 2.5 2.5 2.5 3.2 3.2 4.3 4.3 4.3
31 6.2 6.2 0 8.0 8.0 4.8 4.4 8.8 8.8 8.8 1.1 1.1 8.4 8.4 8.3
32 6.6 6.6 11.6 11.6 11.6 8.6 8.6 9.7 10.1 9.7 8.8 8.8 3.1 3.1 3.1
33 6.9 0 1.5 1.5 1.5 10 8.9 3.6 3.6 3.6 6.4 6.4 8.0 8.0 8.0
34 2.4 2.4 1.1 1.1 1.1 5.4 5.4 6.3 5.9 6.3 7.4 7.4 3.4 3.4 3.4
35 8.2 8.2 6.0 6.0 6.0 4.7 5.4 0 13.0 0 7.1 7.0 3.9 3.7 3.9
36 9.4 9.4 4.7 4.7 4.7 6.2 6.9 9.7 0 0
37 1.0 1.0 7.9 7.9 7.9 0 14.0 4.9 4.9 4.9
38 7.3 6.9 5.6 6.1 5.6 6.5 6.5 4.4 4.4 4.4
39 4.1 4.1 2.2 2.2 0 9.2 8.4 2.1 2.1 2.1
40 1.2 1.4 8.7 8.7 8.7 4.3 4.3 14.0 14.6 14.0
41 1.1 1.0 3.6 3.6 3.6 0 6.0 9.4 0 9.4
42 2.4 2.4 1.6 1.5 0 6.4 6.4 5.0 5.0 5.0
43 1.7 1.7 1.2 1.2 0 7.9 7.9 5.2 5.2 5.2
44 12.3 13.5 1.7 1.7 1.7 3.8 4.0 0 9.0 9.0
45 2.5 2.5 4.9 4.9 4.9 4.8 0 9.6 9.6 9.6
46 2.3 0 1.3 1.3 1.3
47 8.5 8.5 3.0 3.0 3.0
48 4.6 4.8 7.6 7.6 7.6
49 13.6 13.6 0 2.0 2.0
50 3.6 3.6 8.4 8.4 8.4
51 9.2 9.2 3.8 3.8 3.8
52 1.5 1.5 3.3 3.3 3.3
53 5.1 0 7.9 7.9 7.9
54 4.4 4.4 4.6 4.2 5.1
55 3.8 3.8 13.6 13.6 13.6
56 6.7 6.7 5.9 5.9 6.0
57 11.3 11.3 9.5 9.5 9.5
58 7.0 0 7.7 0 7.7
59 2.2 2.2 4.4 4.4 4.7
60 15.0 15.0 3.9 3.9 3.9
61 8.4 8.4 10.0 11.2 10.0
62 1.3 1.3 8.8 8.8 8.8
63 1.7 1.7 0 6.0 6.0
64 7.5 7.5 0 7.0 0
65 5.1 5.1 4.5 4.5 4.5
66 0 5.0 3.7 3.7 3.7
67 1.4 1.6 1.1 0 1.0
68 6.5 7.1 2.9 2.9 2.9
69 3.9 3.9 8.7 8.4 8.5
70 2.9 2.9 2.7 3.1 2.7

Appendix 2 206

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

A2.2.2 MALBP data set with random task times (in time units)

 Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Problem 7

task tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC tA tB
1 4.1 6.4 13.9 10.4 0 3.6 2.7 1.2 9.7 13.7 0.6 6.5 3.0 16.1 1.8 18.5 1.7
2 4.9 12.6 2.5 12.5 13.8 9.9 7.9 13.8 1.2 14.8 13.4 5.4 15.7 0.6 4.1 16.7 9.9
3 15.1 13.3 6.7 4.6 2.4 1.3 9.0 9.3 14.2 14.5 9.2 14.2 13.9 1.5 5.4 14.8 10.0
4 8.5 6.4 10.8 1.5 5.3 2.9 7.5 7.2 11.6 14.9 12.3 12.1 15.9 6.0 2.0 11.9 14.8
5 7.0 8.1 7.8 3.1 17.9 2.1 2.5 10.1 0.5 1.4 7.2 3.1 11.0 5.3 2.3 15.0 7.4
6 1.8 19.4 19.9 7.1 4.5 0.5 18.5 3.6 15.2 12.8 1.4 10.0 19.1 19.0 12.4 6.2 13.1
7 8.2 13.5 5.7 12.7 3.6 1.2 3.1 1.2 12.6 19.3 3.8 1.3 17.0 1.4 12.8 9.9 6.3
8 17.3 16.8 1.6 6.9 8.5 6.0 19.9 13.8 6.3 7.5 9.2 9.3 9.6 7.2 3.6 2.4 5.4
9 10.9 6.9 9.7 5.9 2.4 11.9 8.0 7.9 7.9 8.3 11.1 1.6
10 16.5 7.5 6.0 8.3 10.7 8.1 11.8 5.6 3.5 15.6 6.8 13.7
11 4.0 0.4 7.4 0.3 8.4 11.8 1.8 10.8 7.6 9.1 15.8 11.5
12 13.7 20.0 13.3 5.3 17.3 14.7 10.6
13 17.1 4.0 12.7 14.4 4.9 11.0 7.8
14 12.4 0.9 9.7 2.5 0.4 7.7 18.0
15 11.1 12.2 16.8 12.8 15.6 10.2 18.9
16 12.0 3.0 6.9 12.9 0 14.5 6.8
17 14.0 10.9 12.9 14.3 2.1 17.5 19.9
18 14.2 6.4 7.2 15.0 4.1 16.2 2.7
19 3.8 7.2 14.6 2.2 4.3 9.0 17.5
20 15.6 10.9 11.9 10.3 18.2 11.5 10.4
21 17.8 8.9 14.9 10.6 2.8 15.9 16.8
22 18.1 4.8
23 1.8 13.3
24 14.1 3.7
25 4.7 10.3

 Problem 8 Problem 9 Problem 10 Problem 11 Problem 12 Problem 13 Problem 14

task tA tB tC tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC
1 10.8 17.9 6.5 9.7 1.6 11.8 3.0 0.5 1.3 4.5 10.5 19.3 1.5 8.2 14.7 13.2 18.5 12.0
2 15.6 8.5 0.0 4.0 0.8 8.6 3.1 7.7 10.0 10.2 5.6 3.0 8.3 11.0 19.8 1.6 15.6 15.7
3 2.1 4.9 18.2 6.4 11.7 16.6 13.2 15.9 8.8 8.2 18.4 12.7 13.1 0.2 18.2 8.4 5.6 19.1
4 10.0 16.9 8.3 10.7 8.8 6.2 14.9 2.2 10.0 6.5 5.5 1.4 19.1 13.5 8.2 11.8 12.6 8.7
5 13.8 16.6 4.9 3.2 6.3 3.7 0.1 14.6 10.9 15.0 16.9 7.3 12.8 1.5 19.6 16.1 8.5 3.7
6 11.7 16.3 5.9 16.8 12.1 13.4 7.7 4.1 13.9 2.7 3.7 15.7 18.1 9.6 4.9 11.4 3.1 9.8
7 0.2 4.3 11.7 5.6 7.7 4.7 5.8 14.6 12.2 4.7 1.5 3.7 12.5 18.7 5.7 5.8 13.4 3.8
8 16.3 14.4 11.9 12.1 9.8 18.1 17.8 4.8 2.2 4.0 19.3 9.7 6.9 0.8 18.5 1.8 8.2 10.5
9 16.1 17.9 4.5 0.1 3.4 0.2 9.1 10.4 13.8 17.9 10.7 10.5 15.2 19.7 8.0 10.9 11.6 14.0
10 19.9 2.8 2.6 8.1 17.6 4.1 10.1 10.9 6.2 7.8 11.1 19.9 19.0 2.1 3.7 16.7 6.3 12.1
11 10.5 11.1 9.8 12.1 19.8 11.9 19.3 8.7 0.8 3.2 6.6 9.3 1.6 15.9 18.2 13.3 14.6 14.9
12 7.6 15.9 10.9 19.5 0.6 11.2 0.5 7.9 8.3 13.2 15.7 19.3 18.1 1.7 12.3 3.2 7.3 15.5
13 18.3 6.9 13.5 15.0 15.6 3.5 19.4 17.7 5.6 4.8 3.9 12.3 11.6 7.8 3.2 4.3 15.5 19.0
14 3.9 8.3 18.8 11.7 0.9 16.6 6.4 14.6 0.2 10.2 12.6 10.0 2.6 5.3 9.8 3.6 4.7 19.7
15 11.8 17.2 4.4 2.2 7.4 16.0 15.4 8.3 12.1 13.5 17.9 8.8 3.2 17.6 6.3 1.0 8.2 9.8
16 15.3 2.7 14.7 2.5 15.7 6.1 3.7 5.4 15.5 4.4 12.7 13.8 11.5 16.9 2.7 0.4 12.9 5.5
17 19.2 2.0 0.1 15.0 16.2 0.5 1.2 10.3 7.6 0.4 15.6 6.3 10.2 18.5 8.0 9.5 16.9 3.4
18 3.9 14.1 1.3 16.0 4.7 7.8 11.4 0.6 15.3 2.9 13.0 1.2 15.7 4.8 1.7 3.3 5.7 5.2
19 11.5 3.9 5.0 0.5 16.0 10.0 16.4 9.4 16.0 11.7 18.4 11.8 19.1 10.8 14.0 18.3 9.3 11.6
20 10.8 14.0 0.4 11.6 0.4 7.8 5.7 5.6 16.7 19.3 1.8 18.7 12.8 3.9 5.1 19.1 7.2 16.4
21 12.8 15.1 5.6 9.3 10.2 4.7 10.3 14.0 15.0 11.4 17.0 15.8 14.4 1.7 19.2 8.1 14.3 13.0
22 19.5 15.9 4.4 8.0 11.0 1.2 16.9 2.6 14.6 14.4 1.9 15.5 14.4 16.9 14.6 2.8 2.2 18.8
23 3.6 13.6 0.5 17.8 13.4 18.4 7.8 15.0 16.6 2.8 15.1 4.1 10.2 12.4 13.0 11.1 2.4 3.7
24 1.7 4.4 19.1 17.8 15.1 1.6 9.0 2.5 1.4 8.0 0.4 6.0 8.1 4.1 3.5 16.9 1.3 3.9

Appendix 2 207

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

 (cont.)

task tA tB tC tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC

25 17.2 12.5 9.0 0.2 2.8 14.2 17.7 14.6 12.8 4.8 4.5 13.8 11.0 15.4 16.0 12.1 18.3 3.3
26 19.4 12.2 13.5 3.7 13.3 7.1 15.2 3.2 8.3 5.4 3.9 12.7 16.6 13.9 2.8
27 12.4 16.5 13.8 11.5 7.5 10.9 9.8 9.5 14.3 17.5 19.2 5.9 8.1 9.6 7.1
28 16.7 8.7 2.1 1.6 13.7 14.3 18.2 4.3 0.9 17.7 19.4 3.9 17.3 15.9 15.7
29 6.5 16.8 10.7 14.7 2.6 8.7 18.1 9.5 16.8 8.9
30 16.5 3.4 14.0 4.3 8.1 0.5 15.4 12.3 18.0 17.8
31 6.7 2.8 4.4 12.2 5.8
32 2.6 13.2 3.6 11.8 12.5

 Problem 15 Problem 16 Problem 17 Problem 18 Problem 19 Problem 20
task tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC

1 5.2 16.8 9.3 9.3 16.6 17.8 2.7 1.7 12.3 8.8 3.9 17.8 17.9 18.7 10.6
2 9.7 6.9 9.9 12.7 4.7 19.3 18.0 2.3 16.2 17.7 14.8 12.0 17.6 4.4 13.9
3 6.1 6.0 2.7 5.1 17.8 17.3 7.2 3.1 19.3 8.7 11.4 5.9 1.5 5.3 16.5
4 9.2 7.7 6.6 12.6 6.3 16.4 7.4 16.4 19.6 10.3 4.7 10.0 15.8 4.2 16.1
5 7.6 3.2 13.7 8.3 15.0 0.4 18.5 16.0 12.0 2.9 2.5 2.4 9.4 10.8 13.7
6 2.5 9.0 13.2 16.6 19.3 12.0 14.1 9.0 18.7 1.4 13.3 1.1 5.7 10.4 18.4
7 18.9 17.7 14.8 19.9 10.6 0.1 8.6 5.7 3.0 10.3 8.1 17.9 12.7 16.1 14.8
8 3.8 15.7 2.7 5.5 7.7 14.4 5.9 1.0 14.6 9.6 15.5 19.5 16.0 13.5 15.5
9 4.0 13.8 4.8 2.1 7.0 8.3 16.1 10.0 9.9 12.4 7.7 5.6 19.9 8.1 2.0
10 4.1 1.0 9.7 12.5 17.4 10.0 0.1 14.7 4.6 13.9 3.5 9.0 2.6 2.9 11.9
11 17.4 5.4 0.0 3.5 6.6 4.0 17.3 5.1 5.7 17.1 18.6 1.7 12.3 19.6 18.2
12 14.6 10.0 2.6 19.5 13.8 15.7 4.0 17.0 18.6 19.2 10.1 6.9 4.2 2.5 11.0
13 9.6 16.4 18.3 14.4 9.9 18.5 16.8 18.2 13.6 9.4 14.1 9.7 13.2 17.4 13.5
14 11.8 10.6 19.1 4.5 18.7 19.1 18.9 17.7 16.3 14.2 16.3 13.2 4.3 19.4 16.1
15 10.5 14.4 14.4 9.4 19.1 8.7 7.4 5.9 11.6 15.6 5.2 19.5 11.8 1.8 5.0
16 2.9 2.5 5.0 17.1 3.3 18.7 5.1 13.1 14.3 10.4 8.0 6.5 9.9 13.8 0.5
17 4.0 17.4 1.1 13.0 14.7 7.4 13.3 19.4 17.5 15.1 13.9 16.2 4.5 19.5 3.6
18 12.2 11.3 3.9 12.4 7.2 17.0 15.9 12.4 4.4 3.7 5.5 10.4 9.0 13.2 19.5
19 2.3 14.6 19.4 5.4 12.1 18.7 19.8 11.5 10.7 15.1 16.1 9.8 17.1 7.7 10.5
20 12.3 3.5 7.5 8.6 15.2 10.2 2.2 0.4 2.9 14.8 0.5 19.9 13.5 3.1 16.3
21 9.1 9.5 0.6 11.5 1.5 0.9 0.4 14.8 3.5 15.3 6.6 0.5 15.5 8.1 4.9
22 3.1 0.3 15.5 3.7 10.3 13.8 1.1 15.5 19.9 17.2 14.5 4.2 18.0 0.1 5.3
23 1.1 15.9 1.4 4.0 6.4 4.3 9.1 6.7 3.7 18.8 1.3 6.8 3.1 7.1 14.4
24 13.0 12.2 10.7 16.1 15.8 4.7 13.6 1.6 5.7 14.0 18.5 7.9 6.2 7.4 11.3
25 4.7 4.5 4.9 13.7 2.5 13.6 12.3 19.9 16.8 13.3 6.3 8.1 14.2 19.9 15.7
26 0.8 19.3 9.9 10.2 10.5 13.9 1.8 19.0 16.7 2.0 19.9 12.8 8.7 13.7 12.2
27 17.4 9.8 0.8 18.3 5.6 10.8 11.3 10.6 9.3 10.8 3.1 8.7 16.9 7.1 2.6
28 17.8 13.2 14.9 17.3 16.5 4.8 15.5 7.1 8.7 19.5 4.0 2.4 15.8 5.9 3.5
29 13.0 17.6 9.3 3.3 15.9 2.6 7.7 12.6 19.2 16.6 3.9 18.2 17.9 10.5 5.4
30 19.7 6.2 0.2 5.9 6.0 7.3 8.5 11.6 11.8 8.4 17.4 11.8 9.3 13.7 1.1
31 19.2 14.0 3.5 5.7 7.4 6.0 15.3 9.6 11.0 2.8 1.1 4.3 7.2 3.1 6.5
32 17.5 14.1 14.9 4.1 16.1 5.0 19.9 12.4 19.4 8.7 9.1 3.3 10.0 3.5 19.1
33 19.8 5.4 8.3 0.3 13.3 4.1 17.1 1.6 2.0 10.9 4.0 0.0 7.5 12.3 2.4
34 18.9 1.9 9.0 7.8 14.6 11.6 15.1 10.8 13.6 8.0 15.5 14.4 7.2 16.2 7.7
35 0.3 11.0 9.2 16.7 9.9 1.1 19.9 8.8 13.1 8.4 10.7 16.8 13.4 11.9 18.0
36 12.1 11.3 11.1 10.7 4.3 9.8 4.8 2.3 4.0 14.0
37 2.5 11.6 5.3 7.6 14.2 0.6 12.9 11.6 2.2 1.7
38 2.7 8.3 5.3 19.2 4.7 2.8 2.1 0.1 2.3 18.0
39 0.3 12.2 10.7 6.4 15.5 6.9 17.2 19.2 2.7 8.0
40 4.2 12.1 19.5 7.7 3.7 9.2 0.7 17.9 4.1 18.5
41 8.5 3.0 17.2 9.8 6.3 12.9 5.2 15.0 11.5 9.5
42 5.7 6.2 15.4 2.9 0.8 8.9 0.4 5.6 5.2 16.0
43 16.1 17.0 12.9 6.4 8.1 18.1 12.5 17.4 9.0 9.9
44 3.0 6.1 18.7 12.4 7.2 12.0 0.7 13.2 17.7 1.7

Appendix 2 208

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

 (cont.)

task tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC
45 10.1 10.4 10.5 4.7 0.9 18.1 4.9 5.1 0.8 18.8
46 6.0 14.3 9.9 11.9 15.0
47 1.3 16.3 17.8 4.6 14.5
48 8.6 1.7 3.4 2.9 4.7
49 18.5 11.6 1.2 5.2 13.1
50 2.9 18.4 11.6 15.0 6.5
51 8.6 2.9 3.3 7.8 4.6
52 6.6 6.7 19.6 15.8 12.1
53 0 17.6 0.0 3.9 2.3
54 10.5 3.6 6.6 12.5 6.1
55 16.9 17.0 2.6 11.5 19.4
56 17.7 3.9 14.2 2.5 2.0
57 15.5 8.0 3.0 6.8 18.8
58 12.1 19.4 1.5 17.4 6.9
59 18.6 0.8 6.9 1.2 14.5
60 0.9 8.9 3.1 7.9 7.9
61 9.3 6.6 14.6 3.0 15.4
62 18.0 12.1 13.8 11.9 12.1
63 19.8 1.8 1.2 9.4 15.9
64 13.0 13.7 11.4 1.0 3.9
65 3.5 15.5 15.6 9.6 15.0
66 5.5 14.5 5.2 8.9 3.9
67 17.1 9.0 12.6 10.6 12.3
68 6.7 19.9 10.5 12.0 15.3
69 4.7 0.8 8.2 15.0 5.9
70 12.4 1.9 9.9 17.6 8.5

A3. Appendix 3

Computation of LBpmix for problems with
maximum task processing time less or equal to

2C

Appendix 3 211

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

A lower bound for the mixed-model assembly line balancing problem with parallel

workstations, LBpmix, was derived using the following set of assumptions:

(i) the maximum number of replicas per workstation is given by MAXTk= ⎡ ⎤C/t max , where

tmax is the processing time of the longest task assigned to workstation k,

(ii) a workstation can be duplicated only if the task time of one of the tasks assigned to it

exceeds the cycle time (MRT=C), and

(iii) the task time of the longest task does not exceed twice the cycle time (tmax≤2C).

The steps required to compute LBpmix are described as follows and illustrated for the

numerical example introduced in section 4.3.3:

Step 1: For each model, classify the tasks according to the corresponding task time, as

shown in Table A3.1.

Table A3.1 – Classification of tasks to compute LBpmix

 Tasks
Task type Task time Model A Model B

A
3
5 C < tA ≤ 2C - -

B
3
4 C < tB ≤

3
5 C 4 4

C C < tC ≤
3
4 C 25 -

D
3
2 C < tD ≤ C 2,3,5,12,18,23 2,3,5,12,18,20,23

E
3
1 C < tE ≤

3
2 C 6,7,9,11,13,15,17,22,24 9,11,13,15,22,24

F tF =
3
5 C - -

G tG =
3
4 C - -

H tH =
3
2 C - -

I tI =
3
1 C - -

J tJ <
3
1 C 1,8,10,14,16,19,20,21 1,6,7,8,10,14,16,17,19,21,25

Step 2: For each model, compute LB’(m).

⎥⎥
⎤

⎢⎢
⎡ ++++−+−+++= IHGFBECDCBA nnnnnnwnnynnnmLB

3
1

3
2

3
4

3
5)(

2
1)()(2)(' (A3.1)

Appendix 3 212

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

LB'(m) is the main term of LBpmix(m). It is derived from one of the lower bounds, LB3,

defined by Scholl (1999) for the SALPB and adapted to the parallel workstations problem.

LB'(m) is given by expression A3.1, where nX is the number of tasks of type X (X=A,…,J),

y equals 1 if nD-nC>0 or zero otherwise and w equals 1 if nE-nB>0 or zero otherwise. The

reasoning for this computation is as follows.

The workstations performing tasks of types A, B or C (whose task time is longer than

the cycle time) need to be duplicated. As two tasks of any of these types cannot share the

same workstation, because the maximum number of replicas allowed would be exceeded, a

lower bound for the overall number of workstations (including replicas) is twice the

number of tasks of types A, B and C. Each task of type D can be combined with a task of

type C in a duplicated workstation, however if there are not enough duplicated

workstations of type C to accommodate the tasks of type D, each of these remaining tasks

will require a workstation. The same reasoning applies to tasks of type E, that is, two tasks

of type E require a single workstation, but can also be combined with a duplicated

workstation performing tasks of type B. Finally, the tasks of types F, G, H and I have a

fixed task time and so they occupy a fraction of a workstation corresponding to the ratio

between their task time and the cycle time.

For the numerical example, the values of LB'(A) and LB'(B) are computed as follows:

131)-(9
2
1+ 1)-(6 + 1) + 1 + 2(0)(=⎥

⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛=′ ABL

121)-(6
2
1+ 0)-(7 + 0) + 1 + 2(0)(=⎥

⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛=′ BBL

Step 3: For each model, compute Z(m).

⎥
⎥

⎥

⎤

⎢
⎢

⎢

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅−= ∑ ∑

= ≠

CtCLBtmZ
Ji Ji

imim ')((A3.2)

A second term is added to LB'(m) to compute the value of LBpmix. This term adds up the

number of workstations needed to process tasks of type J, which in most real world

problems account for a large proportion of the workstations. Because these tasks can easily

be included in workstations that perform tasks of the other types, it is necessary to verify if,

after filling up these workstations, there are tasks of type J remaining to create new

Appendix 3 213

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

workstations. The minimum number of workstations (Z(m)) required to perform tasks of

type J, after filling up the remaining capacity of the workstation assigned to other task

types is then given by expression A3.2.

For the numerical example, the values of Z(A) and Z(B) are computed as follows:

⎡ ⎤ 1 123.2)]/10-10(13-[9)(=×=AZ

⎡ ⎤ 0104.4)]/10-10(12-[11.8)(=×=BZ

Step 4: For each model, compute LBpmix(m) = LB' + Z(m). For the numerical example,

LBpmix(A) = 14 and LBpmix(B) = 12.

Step 5: Select LBpmix for the problem. LBpmix = maxm[LBpmix(m)]. For the numerical

example, LBpmix = LBpmix(A) = 14.

Appendix 4

Demonstration of the maximum and minimum
values of functions U

bB and U
wB

Appendix 4 217

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

A4.1 Function U
bB (balance between workstations of a U-line)

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

S

k
U

kU
b SWIT

S
S

SBMinimise
1

21
1

• Minimum value – U
bB reaches the minimum value of zero when WITU is evenly

distributed between workstations (best case).

- for all (S) workstations:
S

WITS
U

k =

011
1

1
1

2

2

=⎟
⎠
⎞

⎜
⎝
⎛ −

−
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

=
SS

S
S

S
SWIT

S
WIT

S
S

SB

U

U
b

• Maximum value – U
bB reaches the maximum value of 1 when WITU is only

accountable to one workstation (worst case).

- for one workstation: U
k WITS =

- for S-1 workstations: 0=kS

()() 1111
1

1)1(11
1

10)1(1
1

2

22

22

=+−⋅
−

⋅
−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛ −

−
=

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=

S
S

S
S

S
S

S
SS

S

SWIT
S

SWIT
WIT

S
SB UU

U
U
b

A4.2 Function U
wB (balance within workstations of a U-line)

∑∑∑
= = =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

S

k

M

m

M

n k

kmnmnU
w

MS
sq

MS
MBMinimise

1 1 1

2

22

2 1
)1(

• Minimum value – U
wB reaches the minimum value of zero when, for all workstations,

Sk is evenly distributed among all model combinations (best case).

- for all (S) workstations and all (M2) model combinations: 2M
S

sq k
kmnmn =

Appendix 4 218

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

011
)1(

1
)1(

2

22
2

2

2

2

2

2
2

2

2

=⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅

−
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−⋅⋅
−

=
MM

MS
MS
M

MS
M
S

MS
MS
MB

k

k

U
w

• Maximum value – U
wB reaches the maximum value of 1 when, for all workstations, Sk

is only accountable to one model combination (worst case).

- for one model combination: kkmnmn Ssq =

- for M2-1 models: 0=kmnmn sq

()() 1111
)1(

1)1(11
)1(

10)1(1
)1(

2

2

2

2

22

2
2

2

22

2

2

2
2

2

22

2

=+−⋅
−

⋅
−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛ −

−
=

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=

M
M

MS
MS
M

M
M

M
S

MS
M

MS
M

MS
S

S
MS
MB

kk

kU
w

A5. Appendix 5

Computation of LBpmix for problems with
maximum task processing time less or equal to

5C

Appendix 5 221

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

The lower bound for the mixed-model assembly line balancing problem with parallel

workstations, LBpmix, proposed described in Appendix 3 was adapted to take into account

the following set of assumptions:

(i) the maximum number of replicas of each workstation is given by MAXPk= ⎡ ⎤C/t max ,

where tmax is the processing time of the longest task assigned to workstation k,

(ii) a workstation can be replicated only if the task time of one of the tasks assigned to it

exceeds the cycle time (MRT=C), and

(iii) the task time of the longest task does not exceed five times the cycle time (tmax≤5C).

The steps required to compute LBpmix are the following:

Step 1: For each model, classify tasks according to the corresponding task time, as shown

in table A5.1.

Table A.1 – Classification of tasks to compute LBpmix

Task
type Task time Task

type Task time Task
type Task time

A
3

14 C < tA ≤ 5C I 2C < tI ≤
3
7 C R tR =

3
10 C

B
3

13 C < tB ≤
3

14 C J 3
5 C < tJ ≤ 2C S tS=

3
8 C

C 4C < tC≤
3

13 C K 3
4 C < tK ≤

3
5 C T tT =

3
7 C

D
3

11 C < tD ≤ 4C L C < tL ≤
3
4 C U tU =

3
5 C

E
3

10 C < tE ≤
3

11 C M 3
2 C < tM ≤ C V tV =

3
4 C

F 3C < tF ≤
3

10 C N 3
1 C < tN≤

3
2 C W tW =

3
2 C

G
3
8 C < tG ≤ 3C O tO=

3
14 C X tX =

3
1 C

H
3
7 C < tH ≤

3
8 C P tP <

3
13 C Y tY <

3
1 C

I 2C < tI ≤
3
7 C Q tQ =

3
11 C

Step 2: For each model, compute ⎡ ⎤)('')(' mLBmLB = , where

LB’’(m)=5(nA+nB+nC)+4(nD+nE+nF)+3(nG+nH+nI)+2(nJ+nK+nL)+y(nM-nC-nF-nI-nL)

+(1/2)w(nN-nB-nE-nH-nK)+(14/3)nO+(13/3)nP+(11/3)nQ+(10/3)nR+(8/3)nS

 +(7/3)nT+(5/3)nU+(4/3)nV+(2/3)nW+(1/3)nX (A5.1)

Appendix 5 222

Assembly line balancing – new perspectives and procedures Ana Sofia Simaria

where nX is the number of tasks of type i (i=A,…,X), y equals 1 if nM-nC-nF-nI-nL >0 or

zero otherwise and w equals 1 if nN-nB-nE-nH-nK >0 or zero otherwise. The reasoning for

this computation is as follows.

The workstations performing tasks whose processing time is longer than the cycle time

(tasks of types A to L) need to be replicated. As two tasks of any of these types cannot

share the same workstation, because the value of MAXPk would be exceeded, a lower

bound for the overall number of workstations (including replicas) is the number of tasks of

each type multiplied by the number of replicas created in a workstation by the assignment

of each task (for instance, each task of type A, B, and C will create a workstation with 5

replicas, because they have processing times between 4C and 5C). Each task of type M can

be combined with a task of type C, F, J or L in a replicated workstation, however if there

are not enough replicated workstations to accommodate the tasks of type M, each of these

remaining tasks will require a workstation. The same reasoning applies to tasks of type N,

that is, two tasks of type N require a single workstation, but they can also be combined

with a replicated workstation performing tasks of type B, E, H or K. Finally, the tasks of

types O to X have a fixed task time and so they occupy a fraction of a workstation

corresponding to the ratio between their task time and the cycle time.

Step 3: For each model, compute Z(m).

Z(m) adds up the number of workstations needed to process tasks of type Y. Because

these tasks can easily be included in workstations that perform tasks of the other types, it is

necessary to verify if, after filling up these workstations, there are tasks of type Y

remaining to create new workstations. The minimum number of workstations required to

perform tasks of type Y, after filling up the remaining capacity of the workstation assigned

to other task types is then given by:

⎥
⎥

⎥

⎤

⎢
⎢

⎢

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅−= ∑ ∑

= ≠

CtCmLBtmZ
Yi Yi

imim)(')((A5.2)

Step 4: For each model, compute LBpmix(m) = LB’(m) + Z(m).

Step 5: Select LBpmix for the problem: LBpmix = maxm[LBpmix(m)].

	CorpoTese.pdf
	Anexos.pdf

