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palavras-chave 
 

Balanceamento de linhas de montagem, optimização combinatória,  
meta-heurísticas. 
 

resumo 
 
 

No presente trabalho é apresentado um conjunto de procedimentos para o 
balanceamento de linhas de montagem de modelo-misto. Linhas de 
modelo-misto eficientes representam um factor chave de competitividade no 
actual ambiente de mercado, em que a crescente procura de produtos 
personalizados requer uma resposta flexível dos sistemas de produção.  
Os procedimentos propostos, baseados nas meta-heurísticas ‘simulated 
annealing’, ‘algoritmos genéticos’ e ‘optimização por colónias de formigas’, são 
capazes de abordar algumas características do processo de montagem 
presentes nas linhas reais (e.g., utilização de postos paralelos, restrições de 
zona, linhas de dois lados, linhas em forma de U) que a maioria das técnicas 
existentes na literatura não considera. Isto constitui uma contribuição relevante 
quer para o conhecimento científico quer para o conhecimento industrial na 
área do balanceamento de linhas de montagem. 
Alguns dos procedimentos foram utilizados no balanceamento de linhas de 
montagem reais com o objectivo de testar a sua flexibilidade de adaptação às 
condições de operação em ambientes industriais. 
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abstract 
 

In this work a set of procedures to efficiently balance mixed-model assembly 
lines is proposed. Efficient mixed-model lines represent a key factor of 
competitiveness in the actual market environment, in which the growing 
demand for customised products increases the pressure for manufacturing 
flexibility. 
The proposed procedures, based on the meta heuristics ‘simulated annealing’, 
‘genetic algorithms’ and ‘ant colony optimisation’, are able to address some 
particular features of the assembly process very common in real mixed model 
assembly lines (e.g., use of parallel workstations, zoning constraints, task side 
constraints, U-shaped layouts) that most of the techniques existing in the 
literature do not consider. This is a major contribution to the scientific and 
industrial knowledge on the line balancing subject. 
Some of the procedures were applied to real assembly lines in order to test 
their flexibility to cope with real industrial settings, as they may differ 
significantly from theoretical problems.  
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1.1 Relevance of the problem 

The dynamics and intense competition in the current global marketplace together with 

the increased pace of technological change has led to shortening product life cycles and to 

a proliferation of product variety. Companies must be able to provide a higher degree of 

product customisation to fulfil the needs of the increasingly sophisticated customer 

demand (Su et al, 2005). Moreover, responsiveness in terms of short and reliable delivery 

lead times is demanded by a market where time is seen as a key driver. Mass customisation 

is a response to this phenomenon. It refers to the design, production, marketing and 

delivery of customised products on a mass basis. This means that customers can select, 

order and receive especially configured products, often selecting from a variety of product 

options, to meet their individual needs. On the other hand, customers are not willing to pay 

high premiums for these customised products compared to competing standard products in 

the market. They want both flexibility and productivity from their suppliers (Rudberg and 

Wikner, 2004). 

As forecasting and planning become very complex, producing and storing all types of 

finished goods based on forecasts will lead to a high risk of stock out and obsolescence, 

while lead time often makes build-to-order impossible (Yang and Burns, 2003). 

Postponement arises as a strategy to contribute to the achievement of mass customisation. 

The concept of postponement is about delaying activities in the supply chain until real 

information about the market is available. The underlying logic is that the delay leads to 

the availability of more information and thus the risk and uncertainty of those activities can 

be reduced or even eliminated. In a postponement strategy uncertainty is seen as an 

opportunity instead of a problem (Yang et al, 2004, 2005). 

Manufacturing postponement or delayed product differentiation is a type of 

postponement that seeks to delay the final formulation of a product until customer orders 

are received (Skipworth and Harrison, 2004). For example, in the automotive industry 

(high-volume vehicles), customers are allowed to choose their vehicle from a wide set of 

options. Customer involvement takes place only in the final assembly stage (Coronado et 

al, 2004).  
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Delayed product differentiation involves shipping the products in a semi-finished state 

from the manufacturing facility to a downstream facility where final customisation occurs, 

normally as an assembly process. This strategy allows companies to standardise 

components and create a variety of products. Here, modularity plays an important role for a 

good performance of the system. It is an approach for efficiently organise complex 

products and processes by decomposing complex tasks into simpler portions so that they 

can be managed independently and yet operate together as a whole (Mikkola and 

Skjott-Larsen, 2004). Modularity consists in the breakdown of a complex part into simple 

and functionally independent components which are assembled to make customised parts. 

Although the number of parts in the modular design is larger than in the integral design, 

the total time of machining operations and manufacturing costs are more likely to decrease 

in the modular design. Nevertheless, modular designs increase the number of assembly 

operations and the assembly time and, hence, may require additional assembly stations in 

the system (He and Babayan, 2002). 

Delayed product differentiation benefits the manufacturing process in two ways: it 

increases flexibility by enabling to commit the work-in-process to a particular end-product 

at a later time, and it decreases costs of complexity by reducing the variety of components 

and processes within the system (Nair, 2005).  

The role of assembly lines has been changing through time. Assembly lines were firstly 

created to produce a low variety of products in high volumes. They allow low production 

costs, reduced cycle times and accurate quality levels. These are important advantages 

from which companies can benefit if they want to remain competitive. However, 

single-model assembly lines, designed to carry out a single homogenous product, are the 

least suited production system for high variety demand scenarios. As manufacturing is 

shifting from high-volume/low-mix production to high-mix/low-volume production, 

mixed-model assembly lines, in which a set of similar models of a product can be 

assembled simultaneously, are better suited to respond to the new market demands.  

Instead of an inflexible production system, like they have been before, assembly lines 

are now an important piece of the supply chain, essential to support manufacturing 

postponement strategies. On one hand, assembly lines have the ideal structure to perform 

final product customisation tasks under a mass customisation concept. On the other hand, 
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as they are labour intensive, assembly lines can be easily located geographically closer to 

the final customer marketplace.  

The efficient design and operation of mixed-model assembly lines is, therefore, a 

crucial factor for the success of the supply chain in delivering customised products at low 

costs. 

1.2 Objective of the thesis 

The main objective of this thesis is to present a set of procedures to efficiently tackle 

different types of mixed-model assembly line balancing problems. 

The proposed procedures based on the meta-heuristics, such as simulated annealing, 

genetic algorithms and ant colony optimisation algorithms, are able to address some 

particular features of the assembly process very common in real mixed-model assembly 

lines (e.g., use of parallel workstations, zoning constraints, task side constraints, U-shaped 

layouts) that most of the techniques covered in the current literature do not consider. This 

is a major contribution to scientific and industrial knowledge on the assembly line 

balancing subject. 

Some of the procedures were applied to real assembly lines in order to test their 

efficiency to cope with real industrial settings, as they may differ significantly from 

theoretical problems. So, another goal of this thesis is to share the experience (successful 

applications and difficulties) of dealing with the conditions of real production systems. 

1.3 Structure of the thesis 

This thesis is divided in eight chapters. The present chapter briefly introduces the theme 

of the study, points out the relevance of the problem and presents the main objectives of 

the work. 

The second chapter gives an overview of the assembly line balancing problem. It 

presents the main characteristics of assembly line systems and defines the assembly line 

balancing problem, emphasising the mixed-model perspective. Different types of assembly 

line configurations and particular features of the assembly process that may restrict the 

configuration of the lines are also presented.  
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The third chapter is dedicated to review the available literature reporting meta-heuristic 

based approaches to tackle the assembly line balancing problem. It firstly describes the 

main characteristics of the selected meta-heuristics (simulated annealing, genetic 

algorithms and ant colony optimisation) and then presents a literature review of their 

applications to line balancing problems. 

The fourth chapter presents the models and algorithms developed in this work for 

balancing mixed-model assembly lines with a linear configuration. A mathematical 

programming model was built to formally describe the problem and three heuristic 

procedures were developed to solve the problems. The procedures are based on 

well-known meta-heuristics, such as simulated annealing, genetic algorithms and ant 

colony optimization. A comparison between the performances of the three procedures, 

based on a set of computational experiments, is also provided. 

In the fifth and sixth chapters mathematical programming models and heuristic 

procedures for balancing U-shaped assembly lines and 2-sided assembly lines, 

respectively, are presented. Conclusions about the heuristics’ performance are withdrawn, 

based on a set of computational experiments. 

In the seventh chapter four industrial case studies are presented. They resulted from the 

analysis of real assembly lines and consequent application of the proposed heuristic 

procedures to improve the lines’ efficiency.  

Finally, conclusions and directions for future research are pointed out in the eighth 

chapter. 
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2.1 Chapter introduction 

This chapter aims to provide an overview of the main features of production systems 

organised as assembly lines and to introduce the main concepts required to understand the 

mixed-model assembly line balancing problem – the object of the research presented in 

this work. 

The chapter begins by introducing the main characteristics of assembly line systems, in 

order to point out the importance of mixed-model production, and the general 

mixed-model assembly line balancing problem is briefly described. Then, some particular 

features of the assembly line process that may be present in real assembly lines are 

described and the most common line performance measures are presented. 

2.2 Main characteristics of assembly line systems 

An assembly line is a set of sequential workstations connected by a material handling 

system, usually a conveyor belt. Manufacturing a product in an assembly line requires 

partitioning the total amount of work into a set of elementary operations called tasks. In 

each workstation a set of tasks is performed using a predefined assembly process, in which 

the following issues are defined: 

 the task processing time: the time required to perform each task; 

 a set of precedence constraints that, due to technological or organisational 

conditions, determine the sequence in which the tasks can be performed. 

Figure 2.1 shows an example of a precedence diagram, in which the nodes represent 

tasks and the arcs express the precedence relationships between the tasks. For example, 

task 12 can only be performed after tasks 8 and 9 are completed (tasks 8 and 9 are direct 

predecessors of task 12). 

In a typical workstation the work is performed manually by human operators using 

simple tools or by semi-automated machines controlled by those operators. The time 

required to perform all tasks assigned to a workstation is termed workload. 
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Figure 2.1 – Example of a precedence diagram 

 

In a paced assembly line each workstation has a predefined amount of time to complete 

all the tasks assigned to it: the cycle time. When this time is elapsed the sub-assembly 

must be moved to the next workstation and the workstation receives a new sub-assembly 

from the previous workstation. Thus, the cycle time determines the production rate of the 

assembly line. Since tasks are indivisible work elements, the cycle time cannot be less than 

the maximum task processing time (for assembly lines with no parallel workstations, as it 

will be explained in section 2.4.4). The difference between the cycle time and the workload 

is called workstation idle time. The sum of the idle times of all the workstations in the 

assembly line is the line idle time or total idle time. 

In unpaced assembly lines there is no fixed time for a workstation to complete its tasks. 

All workstations operate at an individual speed so that sub-assemblies may have to wait 

before they can enter the next workstation and/or workstations may get idle waiting to 

receive a sub-assembly from the previous workstation. To avoid these difficulties, buffers 

between workstations are normally introduced in order to keep in-process inventories. The 

work developed in the present study only addresses paced assembly lines. 

Considering the number of products to be assembled and the way they are processed, 

there are, basically, three types of assembly lines: 

 single-model assembly lines, in which a single homogenous product is 

continuously assembled in large quantities; 

 mixed-model assembly lines, in which a set of similar models of a product can be 

assembled simultaneously, in an arbitrarily intermixed sequence; 

 multi-model assembly lines, in which batches of similar models are assembled 

with intermediate setup operations. 
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Figure 2.2 illustrates the different line types, where geometrical shapes symbolize the 

different models assembled on the line.  

 

 
Figure 2.2 – Types of assembly lines  

 

Single-model assembly lines are suitable for large-scale production, since they ensure 

very low production costs. High productivity is achieved by manufacturing a single 

product in very large quantities, using the principles of specialisation and division of work 

among operators. But long gone are the days when everyone could purchase a low priced 

car of ‘any colour as long as it was a black Model T Ford’.  

The recent market trends show that there is a growing market demand for customised 

products, increasing the pressure for industries to diversify their production mix with more 

models and optional features being offered. Here it is evident the need for flexible systems, 

able to produce different versions of the same product without, however, increasing the 

costs excessively. This is the reason for companies to implement assembly line 

configurations, with specific measures being taken to make the system suitable for the 

production of different models. Assembly systems must still achieve high productivity, 

uniform quality and low assembly costs. Flexibility is also essential to cope with shorter 

product life cycles, low production volumes, changing demand patterns and a higher 

variety of product models and options. 

In some cases multi-model lines are used: they can produce batches of different models 

with relatively low setup times. The line configuration is unique for each model so that 

tasks must be reassigned whenever the production changes from one model to another. 

When more flexibility is required the most suitable system is a mixed-model assembly line, 

in which setup is almost non-existent, allowing for the production of very small batches 

(even one-unit batches) in any sequence.  
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According to Zhao et al (2004), there are two basic issues to address in mixed-model 

assembly lines: (i) at the ‘design’ level, the assignment of tasks to workstations in order to 

optimise a given ‘design measure’ and (ii) at the ‘operational’ level, the determination of 

the sequence in which the difference models are launched into the line, in order to optimise 

a given ‘operational performance measure’. The first is the balancing problem that must 

be addressed before building the line and the second is the sequencing problem that must 

be addressed everyday when implementing a production plan. 

The present work addresses the balancing problem, which is defined in the following 

section. 

2.3 The mixed-model assembly line balancing problem 

The simple assembly line balancing problem (SALBP) was first mathematically 

formulated by Salveson (1955) and it consists in assigning a set of tasks, required to 

assemble a single homogenous product, to a set of workstations in order to minimise the 

number of workstations in the line or minimising the cycle time of the line (both these 

objectives are equivalent to minimise the idle time of the line). The assignment of tasks to 

workstations must ensure that the product demand is met and verify the following set of 

conditions (Shtub and Dar-El, 1990): 

 a task is indivisible and therefore must be totally performed in a single workstation; 

 the sequence of the assigned tasks must respect the technological precedence 

constraints; 

 all workstations have conditions to perform any task; 

 the task processing times are known and are independent of the workstation to 

which they are assigned; 

 the sum of the processing times of the tasks assigned to each workstation cannot 

exceed the cycle time, determined by the product’s demand. 

The following characteristics are specific for the mixed-model assembly line balancing 

problem (MALBP): 

 a set of similar models is simultaneously assembled on the line; 

 each model has a predefined demand over a planning horizon; 
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 the cycle time of the line is given by the ratio between the planning horizon and the 

total demand of the different models; 

 each model has its own set of precedence relationships, but it is possible to 

combine all the relationships into only one precedence diagram – the combined 

precedence diagram, as exemplified in Figure 2.3; 

 the time required to perform a task may vary between the models; 

 workstations are flexible enough to perform their tasks on the different models. 

 

 

Figure 2.3 – An example of a combined precedence diagram 

 

According to the pursued goal, the MALBP can be classified into two different types, 

which are referred as dual problems (Scholl, 1999): 

 MALBP-I: minimises the number of workstations, for a given cycle time; 

 MALBP-II: minimises the cycle time, for a given number of workstations. 

In type I problems, the cycle time, and, consequently the production rate, has to be 

pre-specified, so it is more frequently used in the design of a new assembly line for which 

the demand can be easily forecasted. Type II problems deal with the maximisation of the 

production rate of an existing assembly line and are applied when, for example, changes in 

the assembly process or in the product range require the line to be redesigned. Both types 

of problems have the same mathematical formulation. The only difference is in what is 

given as input and what is the decision variable. While for type I the cycle time is given 
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and the number of workstations is to be determined, for type II the opposite occurs, i.e., the 

number of workstations is given and the cycle time is to be determined. 

The MALBP can be formulated as a binary integer programming model, as presented in 

Figure 2.4, in which: 

 N is the number of tasks of the combined precedence diagram; 

 M is the number of models assembled on the line; 

 Dm is the demand of model m over the planning horizon, P; 

 qm is the overall proportion of the number of units of model m being assembled, 

given by ∑
=

M

p
pm DD
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/ ; 

 S is the number of workstations; 

 C is the line cycle time computed by ∑
=

M

m
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/  ; 

 tim is the processing time of task i for model m; 

 Suci is the set of tasks that cannot be performed before task i is completed 

(successors of task i), derived from the combined precedence diagram; 
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Figure 2.4 – Binary integer programming model for the MALBP 
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The objective function (1) minimises the weighted idle time of the assembly line, 

considering each model’s production share. This goal is equivalent to minimise the number 

of workstations for a given cycle time in MALBP-I and to minimise the cycle time for a 

given number of workstations in MALBP-II. The set of constraints (2) ensures that each 

task is assigned to only one workstation of the station interval and consequently tasks that 

are common to several models are performed on the same workstation. The precedence 

constraints are handled by the set of constraints (3) which guarantees that no successor of a 

task is assigned to an earlier station than that task. Constraints (4) are called capacity 

constraints and ensure that the workload of a workstation does not exceed the cycle time, 

regardless of the model being assembled. Finally the set of constraints (5) defines the 

domain of the decision variables. 

The binary integer programming model becomes very complex even for small size 

problems, which makes it impossible to be solved to optimality in acceptable time. The 

problem is NP-hard (Scholl, 1999), which explains the interest of researchers in the 

development of heuristic procedures to address the problem. 

Although the minimisation of the idle time is the main goal of the MALBP, additional 

goals, like the workload balance between and within workstations, are also important to 

obtain good balancing solutions. Later in this work these goals will be described in detail 

and included in the proposed approaches. 

2.4 Particular features of the assembly process 

In order to better reflect the operating conditions of real assembly lines, some relevant 

issues of the assembly process need to be included when addressing an assembly line 

balancing problem. Scholl (1999) and Becker and Scholl (2006) present a comprehensive 

explanation on some particular features of the assembly process. Here, only a briefly 

description of these aspects is provided.  

2.4.1 Variability of task processing times 

The variability of task processing times depends on the nature of the tasks and 

operators. While for simple tasks the expected variance is very small, the processing time 
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of complex and failure sensitive tasks may have significant variability, especially if 

performed by human operators, influenced by physical, psychological and social factors.  

The use of deterministic values for the task processing times is justified when the 

expected variance is low. In most assembly lines using human workforce the number of 

tasks assigned to each operator is small and each task is usually very simple. Also, 

operators are especially trained to perform efficiently that small set of tasks. This way, the 

variability inherent to the human nature of the work is reduced by the simplicity of tasks 

and qualification of operators. The increased automation is also able to reduce the 

variability of task processing times, by using computer-controlled machines and robots 

able to work at constant speed. 

If the tasks performed by human operators are long or complex, the variability of the 

task processing times should be considered when modelling the problem because the 

variance may significantly affect the system’s performance. In the case of automated lines, 

in which processing times are almost constant, there is a need to deal with the occurrence 

of machine breakdowns, by incorporating in the model a stochastic component of the task 

times reflecting the probability of machine breakdowns and the duration of repair 

processes.  

When installing a new assembly line or introducing a new product in the line, the 

operators may have an adjustment period in which they take longer time to perform the 

tasks than after they are fully adapted. Dynamic task processing times may be used when 

learning effects allow systematic reductions or successive improvements of the production 

process.  

2.4.2 Assignment constraints 

Assignment constraints reduce the set of workstations to which tasks can be assigned. 

Several types of assignment constraints can be included in an assembly line balancing 

problem. 

Zoning constraints force or forbid the assignment of different tasks to the same 

workstation, being called positive or negative zoning constraints, respectively. Positive 

zoning constraints are normally related with the use of common equipment or tooling. For 

example, if two tasks need the same equipment or have similar processing conditions 
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(temperature, pressure, operator qualification level, etc.) it is desirable that they are 

assigned to the same workstation. Negative zoning constraints are usually imposed by 

technological issues like, for example, when it is necessary to have a minimum time 

between the execution of the tasks or when it is not possible to perform them in the same 

workstation, for safety reasons.  

Workstation related constraints are needed if special equipment is only available at a 

determined workstation. Then the tasks that need that equipment must be assigned to that 

workstation. 

In the case of large and heavy products (like cars, washing machines, etc.) the 

workpieces have a fixed position and cannot be turned. So, it may be necessary to perform 

tasks, for example, at both sides of the line. In this case a 2-sided line is used. It is, 

therefore, convenient to include position related constraints that group tasks according to 

the position in which they are performed. 

When tasks require different levels of skills, depending on their complexity, operator 

related constraints are needed to ensure that a sufficiently qualified operator is assigned 

to a determined task. The qualification of an operator is determined by the most complex 

task assigned to its workstation. For ergonomic reasons, more monotonous tasks and more 

variable tasks should be combined in the same workstation in order to induce higher levels 

of job satisfaction and motivation. 

2.4.3 Layout  

In traditional or straight assembly lines, workstations are physically arranged along a 

linear conveyor belt and operators perform tasks on a continuous portion of the line. The 

implementation of just-in-time principles in industrial facilities made companies to switch 

from straight to U-shaped assembly lines. In a U-shaped line both ends of the line are 

closely together forming a ‘U’ and operators can move between the two legs of the line to 

perform combinations of tasks that would not be allowed in a straight line. It is an 

attractive alternative for assembly systems since operators become multi-skilled by 

executing tasks located at different parts of the assembly line. It improves visibility and 

communication between operators, which may facilitate problem solving. Also, a 

U-shaped line configuration allows for more possibilities on the assignment of tasks to 
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workstations, so the number of workstations may be reduced, when compared with the 

number of workstations needed for a straight line. Figure 2.5 illustrates the differences 

between the assignment of tasks in straight and U-shaped assembly lines. A more detailed 

description of U-shaped assembly lines is provided in chapter 5. 

 

 

Figure 2.5 – Assignment of tasks in straight and U-shaped assembly lines 

 

Other assembly line layouts may be found in industrial facilities, like the C-shaped 

layout, illustrated in Figure 2.6 (Aase et al, 2004). 

 

 

Figure 2.6 – Configuration of a C-shaped assembly line 
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2.4.4 Parallelism  

The implementation of parallel lines to assemble one or several products allows 

increasing flexibility and decreasing failure sensitivity of the production system. Parallel 

lines facilitate quick responses to product demand variations as the number of working 

lines can be easily changed. Also, the risk of production stoppage due to machine 

breakdowns is significantly reduced. Moreover, the cycle time can be increased, which 

brings additional advantages such as (i) better line balances, due to the higher number of 

possible task combinations and (ii) job enrichment, as the operators perform a larger 

number of different tasks.  

The strategic problem of determining the optimal number of parallel line is of major 

importance as the duplication of lines involves increasing capital investment. However, 

when parallel lines are introduced, the number of tasks performed by each worker 

increases, the limit being one worker at each line performing all the tasks of the assembly 

process. This contradicts one of the main advantages of using assembly lines: the use of 

low skilled labour that can be easily trained (due to the strict division of labour). So, this 

aspect must be considered when installing parallel lines.  

Even in single lines, parallelism can be implemented. When the production rate required 

to meet the demand is so high that the processing times of some of the tasks exceed cycle 

time, the implementation of parallel workstations is necessary to achieve the desired 

production rate. In parallel workstations, different workpieces are distributed among 

several operators who perform the same tasks. The local cycle time in these workstations is 

a multiple of the global cycle time, depending on the number of replicas installed. An 

example of the use of parallel workstations is shown in Figure 2.7. The longest task 

processing time of this example is 45, which limits the cycle time in the first configuration 

where no parallel workstations are used. With the use of parallel workstations it is possible 

to decrease the cycle time, for the same number of operators (seven), as it is shown in the 

second line configuration. 

The use of parallel workstations is a common practice that allows a more flexible 

assignment of tasks and a reduction of the line cycle time. However, as for parallel lines, if 

the replication of workstations is not controlled, the advantage of the strict division of 

labour inherent to assembly lines can be lost. 
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Figure 2.7 – Illustration of the use of parallel workstations 

 

2.5 Assembly line performance measures 

The implementation of an assembly line requires high capital investments, so it is very 

important that the line is designed and balanced to work as efficiently as possible. Also, 

re-balancing an existing assembly line is necessary when changes in the production process 

or demand structure occur. To assess the performance of the line, several criteria of 

technical and economical nature can be included in assembly line balancing problems.  

According to Gosh and Gagnon (1989) the most widely used criteria of technical nature 

are related with the maximisation of the capacity utilisation which is measured by the line 

efficiency (the percentage of productive time in the line). Among them are (i) the 

minimisation of the number of workstations, for a given cycle time, (ii) the minimisation of 

cycle time, for a given number of workstations and (iii) the minimisation of the idle time of 

the line. Other capacity related criterion is the smoothing of workloads between the 

workstations, important to ensure similar workloads for all operators (see, for example, 

Merengo et al, 1999, Matanachai and Yano, 2001, Vilarinho and Simaria, 2002).  

The economical nature criteria seek to minimise the total costs of the line, including 

long-term investment costs and short-term operating costs. Both installation and operation 
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costs depend mainly on the cycle time and the number of workstations. As stated by Scholl 

(1999), the most important cost categories are (i) costs of machinery and tools, (ii) labour 

costs, (iii) materials costs, (iv) idle time costs, (v) penalties for not meeting the demand, 

(vi) incompletion costs, (vii) setup costs and (viii) inventory costs. 

Several authors present multi-objective approaches. Shtub and Dar-El (1990) consider 

simultaneously (i) the minimisation of the line idle time and (ii) the minimisation of the 

number of parts at each workstation.  

Malakooti (1991) includes (i) the number of workstations, (ii) the cycle time and (iii) 

the line operation costs, in his multi-criteria approach. In Malakooti (1994) the previous 

work is extended to include the size of buffers in the assembly line as another goal.  

McMullen and Frazier (1998) use multi-objective criteria that comprise (i) the cost of 

labour and equipment, (ii) the workload balance between workstations and (iii) the 

probability of lateness.  

Ponnambalam et al (2000) consider (i) the number of workstations, (ii) the workload 

balance between workstations and (iii) the assembly line efficiency as criteria to evaluate 

line balancing solutions. 

Zhao et al (2004) aim to minimise the operational performance measure ‘total overload 

time’, i.e., the amount of time that exceeds the cycle time of the line, when considering 

mixed-model production. These authors state that the total overload appropriately reflects 

the relevant additional operating cost of the line, as when overload occurs the unfinished 

work has to be completed offline or the conveyor must be temporarily stopped to finish the 

tasks. 

Besides capacity and cost related objectives, social goals may be important to fulfil, 

such as (i) job enrichment, avoiding the assignment of many monotonous tasks to an 

operator and (ii) job enlargement, increasing the number of tasks performed by an 

operator. 

Although a wide variety of objectives may be included in line balancing approaches, the 

fact is that most of the objectives described in this section are basically influenced by the 

number of workstations and the cycle time of the line. Thus, this two goals can be 

considered the most important when balancing an assembly line. 
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3.1 Chapter introduction 

The assembly line balancing problem was firstly formulated by Salveson (1955) and, 

since then, numerous procedures have been developed to solve the problem. The literature 

on the subject is extensive and it focuses mainly on the simple version of the assembly line 

balancing problem. Comprehensive literature reviews on both exact and heuristic solution 

techniques for the different types of assembly line balancing problems are presented by 

Gosh and Gagnon (1989), Erel and Sarin (1998), Scholl (1999) and more recently by 

Becker and Scholl (2006) and Scholl and Becker (2006). 

Although many optimising methods have been proposed, mainly branch-and-bound and 

dynamic programming procedures, their application is only possible for very restricted 

versions of the assembly line balancing problem, as the problem is NP-hard. To better 

reflect the characteristics of real world assembly lines, additional constraints must be 

included when solving the problem and this only increases its complexity. So, instead of 

exact procedures that find optimal solutions for simplified problems, heuristic procedures 

are used to find good solutions for much more complex problems. A large variety of 

heuristic approaches have been proposed in the literature. According to Scholl and Becker 

(2006), the development of constructive procedures, based on priority rules, to build one or 

more feasible solutions was presented in the literature until the mid nineties. In the last 

decade, the focus of researchers has been on improvement procedures using 

meta-heuristics like simulated annealing (Kirkpatrick et al, 1983), genetic algorithms 

(Holland, 1975, Goldberg, 1989), taboo search (Glover, 1989, 1990), and more recently, 

ant colony optimisation algorithms (Dorigo et al, 1996). 

Meta-heuristics are general search principles organised in a general search strategy used 

to solve combinatorial optimisation problems (Pirlot, 1996). They are able to search large 

regions of the solution’s space without being trapped in local optima, a major disadvantage 

of pure local search algorithms. As the research carried out for this work involves the 

application of meta-heuristics to mixed-model assembly line balancing problems, this 

chapter will focus on (i) the description of the main characteristics of the selected 

meta-heuristics (simulated annealing, genetic algorithms and ant colony optimisation 
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algorithms) and on (ii) the literature review of their application to assembly line balancing 

problems. 

3.2 Simulated annealing algorithms 

3.2.1 Overview  

Simulated annealing (SA) is a randomised search technique that draws its inspiration 

from the physical annealing of solids. In this process, a solid is brought to its lowest energy 

state by first heating it to a very high temperature (usually the melting point temperature) 

and then cooling it at a very slow rate, to a very low temperature. When this heating and 

subsequent slow cooling occur, the particles within the solid rearrange themselves in such 

a way that the solid acquires some desired attribute, such as high strength or surface 

hardness. 

The SA algorithm was introduced by Kirkpatrick et al (1983) to solve NP-hard 

combinatorial optimisation problems, by using the analogy with the simulation of the 

physical annealing of solids, in order to optimise the value of an objective function. Figure 

3.1 presents the structure of a general SA algorithm. 

 

 

Figure 3.1 – Structure of a simulated annealing algorithm 
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It starts from an initial solution to the problem, S0 and a control parameter, T, which is 

set to an initial temperature value, T0. During the algorithm, the value of T is systematically 

decreased according to an annealing schedule as shown in Figure 3.2. In this schedule the 

following issues are defined: (i) a temperature reduction function and (ii) the length of each 

temperature level, L, that determines the number of solutions generated at a certain 

temperature.  

 

 

Figure 3.2 – Annealing schedule 

 

At each temperature level, and as the temperature decreases, neighbouring solutions of 

the current solution are generated. A neighbouring solution, SV, is accepted, i.e., replaces 

the current solution, if it is not worse than the current solution, S, (F(SV) ≤ F(S), where F is 

the general objective function to minimise). If the neighbouring solution is worse than the 

current solution (F(SV) > F(S)), it still may be accepted with a certain probability, p=e-∆/T 

where 
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This probability of accepting inferior solutions allows the simulated annealing 

algorithm to escape from local minima. 

S* is the best solution found by the algorithm. 

The performance of the algorithm depends on the definition of the following annealing 

schedule parameters: 

(i) The initial temperature, T0, should be high enough so that in the first iteration of 

the algorithm the probability of accepting worst solutions is, at least, 80% 

(Kirkpatrick et al, 1983).  
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(ii) The most commonly used temperature reduction function is geometric: Ti=aiTi-1 

(ai<1 and constant). Typically, 0.8≤  ai  ≤ 0.99 (Eglese, 1990). 

(iii) The length of each temperature level, L, determines the number of solutions 

generated at each temperature, T, and its value usually depends of the dimension 

of the problem. 

(iv) The stopping criterion defines when the system has attained a desired energy 

level. Some of the most common stopping criteria are based on: 

 the total number of solutions generated; 

 the temperature at which the desired energy level is attained (freezing 

temperature); 

 the acceptance ratio (the ratio between the number of solutions accepted and 

the number of solutions generated). 

Naturally, each of these control parameters must be refined according to the specific 

problem on hand. Two other important issues that need to be defined when adapting this 

general algorithm to a specific problem are the procedures to generate both the initial 

solution and the neighbouring solutions. These aspects will be addressed in the following 

section, in which a review of the application of SA procedures to the assembly line 

balancing problem is provided. 

3.2.2 SA approaches for assembly line balancing  

Heinrici (1994) proposes a SA procedure to solve the single-model assembly line 

balancing problem of type II, in which the objective is to minimise the cycle time for a 

given number of workstations. Suresh and Sahu (1994) solve the problem of type I and 

address variability by using stochastic task processing times. The SA approach presented 

by Erel et al (2001) aims at balancing U-shaped assembly lines. McMullen and Frazier 

(1998) present a multi-objective procedure to balance mixed-model assembly lines with 

stochastic task processing times and parallel workstations.  

In the following sections a brief description of the application of simulated annealing to 

the assembly line balancing problem is provided, namely (i) the way the initial solution is 

obtained, (ii) the procedures to generate neighbouring solutions and (iii) the objective 

function used to evaluate the solutions and guide the search.  
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3.2.2.1 Initial solution 

The precedence constraints of an assembly process determine the set of tasks available 

for assignment at a particular moment. The initial solution of a SA based procedure is 

typically obtained by a constructive heuristic, in which, from the set of available tasks, one 

task is selected according to a certain rule and assigned to the current workstation, as long 

as it does not exceed the workstation’s capacity. In the approach of Suresh and Sahu 

(1994) tasks are assigned according to their numerical order to build an initial feasible 

solution. The Ranked Positional Weight technique, originally developed by Helgeson and 

Birnie (1961), is the basis of the assignment of tasks to workstations in the initial solution 

of the procedure of Heinrici (1994). The assignment of tasks to workstations in the initial 

solution is done arbitrarily in the approach presented by McMullen and Frazier (1998). 

Erel et al (2001) propose a different way of building the initial solution. First, each task 

is assigned to a different workstation and then the number of workstations is reduced by 

combining two adjacent workstations. When the workload of the combined workstation 

exceeds cycle time (leading to unfeasibility), the initial solution is complete and the 

subsequent steps of the SA procedure are initialised. 

3.2.2.2 Neighbouring solutions 

All the SA procedures mentioned in the previous section generate neighbouring 

solutions using two different movements: 

(i) swapping two tasks in different workstations; 

(ii) transferring a task to another workstation. 

The tasks and workstations are usually randomly selected and the resulting balancing 

solution must be feasible, regarding precedence and cycle time constraints. 

3.2.2.3 Objective function 

In the problem of type I the goal is to minimise the number of workstations for a given 

cycle time. But an objective function which only considers the number of workstations 

may not be effective, as there may exist several different balancing solutions with the same 

number of workstations. So, an important challenge is to determine an appropriate 

objective function that can efficiently guide the search through the solution space. 
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Depending on the nature of the problem or study, different objective functions are 

proposed to evaluate the balancing solutions and guide the SA procedure.  

Dealing with stochastic task processing times, Suresh and Sahu (1994) use the 

probability of a workstation exceeding the cycle time and the balance of workloads 

between workstations (smoothness index) to compare their procedure with others available 

in the literature. 

McMullen and Frazier (1998) in their multi-objective approach use the line design cost, 

the smoothness index and the probability of lateness to evaluate the solutions. They also 

build composite functions with combinations of these three objectives. 

The SA procedure of Erel et al (2001) aims at achieving feasibility regarding cycle time 

constraints. The objective function used is the minimisation of the maximum station time, 

thus eliminating the unfeasibility caused by the workstation exceeding the cycle time. 

Heinrici (1994) uses the minimisation of cycle time, as the addressed problem is of type 

II. 

3.3 Genetic algorithms 

3.3.1 Overview  

Genetic algorithms (GA) are iterative search procedures, based on the biological 

process of natural selection and genetic inheritance, which maintain a population of a 

number of candidate members over many simulated generations. Hopefully the good 

characteristics of the members will be retained over the generations, maximising a 

determined fitness function.  

GA do not operate directly on the solution space: solutions are coded in strings, over a 

finite alphabet, called chromosomes. An encoding is selected in a way that each solution in 

the search space is represented by one chromosome. Each chromosome is then decoded 

according to a user defined mapping function, enabling the computation of the 

corresponding fitness value, which reflects the quality of the solution represented by the 

chromosome. Figure 3.3 shows an example of representing a solution of the well known 

knapsack problem as a chromosome with binary codification. Each position in the 
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chromosome corresponds to an item, which takes the value 1 if it is selected and zero, 

otherwise. 

 

001101 001101

 

Figure 3.3 – Codification of a solution of a binary knapsack problem  

 

The most fit individuals (chromosomes) are selected to form a basis for subsequent 

generations, i.e., for reproduction. However, the selection is not deterministic. Each 

individual has a probability of being selected for reproduction that increases with its 

fitness. The selection scheme should provide a balance between population diversity and 

selective pressure in order to avoid premature convergence, allowing for an effective 

search. A very popular selection technique is called tournament and it aims to imitate 

mutual competition of individuals during casual meetings. It works the following way: two 

individuals are randomly selected from the population and the worst one is placed at the 

top of an empty list. The best individual returns to the population and the process is 

repeated until all individuals have been placed on the list. Then, starting from the top of the 

list, chromosomes are selected to undergo genetic operators. Figure 3.4 illustrates the 

tournament selection strategy (adapted from Falkenauer, 1998). 

 

(i) select and evaluate the 
two individuals

list

(ii) put loser in list and winner 
back in the population

list

(iii) use the resulting order for 
crossover

list
best

worst

 

Figure 3.4 – Tournament selection 
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The main genetic operator is the crossover, which has the role of combining pieces of 

information from different individuals in the population. The selected individuals (parents) 

are joined in pairs and combine their genetic material to produce two new individuals 

(offspring) as it is shown in Figure 3.5. The main objective of crossover is to transmit good 

characteristics from parents to offspring. 

 

001101 001101

010110 010110

000101 000101

011110 011110

 

Figure 3.5 – A crossover example 

 

Some individuals from the offspring population are randomly selected to undergo 

mutation, i.e., small random changes are made in their genetic information. For example, 

the mutation in a binary string is performed by changing the value of a randomly selected 

gene from 0 to 1 (or from 1 to 0). The use of mutation aims to ensure diversity among 

individuals, preventing premature convergence.  

A replacement strategy is necessary to determine which individuals stay in the 

population and which are replaced by offspring. The members of the new generation can 

be (i) individuals from the current generation, (ii) offspring product of crossover or (iii) 

individuals who underwent mutation. The most common replacement approach is elitism, 

which allows the best chromosome in each generation to survive in the next generation, 

thus guaranteeing that the final population contains the best solution ever found. There are 

several approaches for the way the offspring replace their parents. Some favour the 

maintenance of the parents in the population while others always replace the parents by the 

offspring, even if they are worse than the parents. In either case, a random component is 

always present to avoid premature convergence to local optima. 

In general, the main steps of a GA procedure are: 

1. Generation of a random initial population of solutions in the form of chromosomes. 

2. Evaluation of each individual in the population according to a pre-defined fitness 

function. 
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3. Selection of a set of individuals to undergo genetic operators. 

4. Evaluation of the individuals created by the genetic operators. 

5. Application of a replacement strategy to form the new generation. 

6. If a satisfactory solution is achieved (or the stopping criteria are met, usually, a 

pre-defined number of generations), stop, otherwise go to step 3. 

Several studies point out the effectiveness of GA in solving combinatorial optimisation 

problems, since they work with sets of solutions instead of only one solution at the time. 

Also they are flexible enough to include problem specific characteristics in the encoding 

scheme. The following section provides details of the application of GA to assembly line 

balancing problems and gives a review of the more relevant published approaches.  

3.3.2 GA approaches for assembly line balancing 

Evolutionary approaches have been widely applied to solve problems related with the 

design and organisation of manufacturing systems. In this section, solely the application of 

GA to the assembly line balancing problem (ALBP) is described. For other manufacturing 

problems the interested reader is referred to the reviews provided by Dimopoulos and 

Zalzala (2000) and Pierreval et al (2003).  

The main challenge of the application of GA to the assembly line balancing problem is 

the development of good encoding schemes and genetic operators in order to attain feasible 

solutions. In the first part of this section, a review of the existing codification procedures 

and genetic operators is provided. A difficulty found in the application of GA to the 

assembly line balancing problem is related with the fitness function (Scholl and Becker, 

2006). When addressing the assembly line balancing problem of type I, the objective 

function to minimise is the number of workstations. However, in a population, there might 

be several different solutions with the same number of workstations, so, the sole use of this 

performance measure as the fitness function may not be effective to guide the search. A 

review of the fitness functions proposed in the literature for the ALBP is presented, in the 

second part of this section. Finally, a glance of other features of the application of GA to 

ALBP is given in the last part of the section.  
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3.3.2.1 Codification and genetic operators 

The standard encoding scheme assigns directly the tasks to the workstations in a 

balancing solution. Each chromosome is a string of length N (number of tasks) where each 

element represents a task and the value of each element represents the workstation to 

which the corresponding task is assigned. Figure 3.6 presents an example of this standard 

encoding and the corresponding balancing solution. 

 

 

Figure 3.6 – Standard encoding and the corresponding balancing solution 

 

Applying standard genetic operators, like crossover and mutation as described in the 

previous section, may lead to highly unfeasible solutions due to the precedence constraints 

of the tasks involved. To tackle this problem, Anderson and Ferris (1994) included in the 

objective function a penalty cost related with the number of precedence violations of each 

particular solution.  

Another way to address this issue is to force feasibility by using specific genetic 

operators and applying adaptation procedures to properly build the solutions. The 

crossover operator proposed by Kim et al (1998, 2000) starts by selecting a crossover point 

p, which corresponds to a workstation. Then, the genes representing workstations 1 to p, in 

the first parent, are copied to the same position in the first offspring. The remaining 

positions are copied from those of p+1 to the last workstation in the second parent. 

Usually, in the resulting offspring there are tasks with no workstation assigned, as it is 

shown in Figure 3.7, hence, a reassignment procedure is performed in order to ensure 

feasibility. The reassignment procedure aims to reassign the remaining tasks to 

workstations with available capacity, in such a way that the feasibility of the resulting 

solution is ensured. 



Chapter 3: Meta-heuristics for ALB: characterisation and review of existing procedures 35 

Assembly line balancing – new perspectives and procedures  Ana Sofia Simaria 
 

 

Figure 3.7 – Example of crossover specific for standard encoding 

 

The mutation operator proposed by the same authors consists in selecting at random a 

number of genes and applying the reassignment procedure. Anderson and Ferris (1994) 

implement mutation by changing a task’s workstation (with a small probability) to either 

the workstation immediately before or immediately after, even so incurring the risk of 

unfeasibility. 

A frequently used codification scheme is the order encoding where the chromosome is a 

sequence of tasks which verifies the precedence constraints. In order to obtain a balancing 

solution it is necessary to apply a construction procedure: the tasks are assigned to 

workstations in the sequence dictated by the chromosome. However, different 

chromosomes may lead to the same balancing solution, as the sequence of tasks within the 

workstations is not relevant for most balancing problems.  

The two-point order crossover is typically used for the recombination of chromosomes 

with order encoding (Leu et al, 1994, Sabuoncuoglu et al, 2000, Khoo and Alisantoso, 

2003). Two crossover points are randomly selected, dividing the chromosomes in three 

parts. The first offspring is a direct copy of the first and last parts of the first parent. The 

middle part is obtained by rearranging the missing tasks in the order by which they appear 

in the second parent. This ensures the feasibility of the resulting task sequence. An 

illustration of this encoding is shown in Figure 3.8. 

Rubinovitz and Levitin (1995) present a crossover operator called fragment reordering 

crossover, later used by Levitin et al (2006), which works as follows: first, all elements of 

the first parent are copied to the same positions of the offspring, then, the elements of a 

random fragment of the offspring are rearranged according to their order in the second 

parent. This operator seems equivalent to the two-point order crossover. 
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1 3 4 5 8 9 6 11 2 7 10 13 12 14 15 16 18 19 17 20 2123 22 24 25

2 1 3 7 6 10 4 5 11 9 8 14 12 13 15 16 17 21 18 19 20 22 23 24 25

1 3 4 5 8 9 6 2 7 10 11 14 12 13 15 16 18 19 17 20 2123 22 24 25

parent 1

parent 2

offspring 1

 

Figure 3.8 – Two-point order crossover 

 

The use of the partially mapped crossover (Goldberg, 1989) is also reported in the 

applications of GA to ALB (Rubinovitz and Levitin, 1995 and Tsujimura et al, 1995) but 

the resulting task sequences are often unfeasible. This operator compares the two parents 

and performs task position exchanges such that each offspring is partially determined by 

each of its parents. Figure 3.9 gives an example of this operator. 

 

 

Figure 3.9 – Partially mapped crossover 

 

Mutation operators perform mainly by (i) changing the position of two tasks in the 

chromosome (Rubinovitz and Levitin, 1995, Tsujimura et al, 1995 and Levitin et al, 2006) 

or (ii) scrambling the genes of the chromosome after a randomly selected point (Leu et al, 

1994 and Sabuncuoglu et al, 2000). 

Falkenauer (1998) presents a grouping genetic algorithm, especially suited for grouping 

problems, with a codification scheme called group encoding. In its application to ALBP, 

the groups are the workstations and the elements belonging to the groups are the tasks. The 

chromosome has two parts. The first part shows the assignment of tasks to workstations 

and it is similar to the standard encoding scheme. The second contains the groups, i.e., one 

gene for each workstation. Figure 3.10 shows an example of group encoding. 
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Figure 3.10 – Group encoding  

 

The genetic operators are only applied to the group part of the chromosome. Rekiek et 

al (2000, 2001) use a crossover operator that performs in the following way: (i) selection of 

two crossover points, (ii) injection of the contents of the crossing section of the first parent 

at the first crossover point of the second parent, (iii) elimination of groups from the second 

parent containing duplicated elements and (iv) reinsertion of missing elements using 

problem specific heuristic rules. Figure 3.11 shows an illustration of this operator. For ease 

of demonstration, workstations are represented together with their tasks. 

 

 

Figure 3.11 – Crossover in grouping genetic algorithms 

 

Scholl and Becker (2006) use the term indirect encoding to designate other ways of 

encoding found in the ALBP literature. Gonçalves and Almeida (2002) and Ponnambalam 
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et al (2000) use chromosomes to represent a priority rule for each task. Each chromosome 

generates a balancing solution by applying a constructive priority-based heuristic. The first 

authors also apply a local search procedure in order to improve the solution and use a 

crossover operator called uniform crossover in which, gene by gene, there is a random 

selection of which of the two parents will provide the information. 

The codification of solutions proposed by Zhao and de Souza (2000), for balancing an 

automated production line, is a matrix with the values of several adjustable variables of the 

problem (machine settings, facilities downtime, manpower assignment, batch size, etc.). 

For balancing a printed circuit board assembly line, Ji et al (2001) also use a matrix format 

chromosome in which each element xij represents the number of components of type j to be 

assembled on machine i. Lee et al (2000) use genetic algorithms as an input for a 

simulation model to balance a semi-automated assembly line. The chromosomes represent 

the processing times of the different workstations of the line. 

3.3.2.2 Fitness function 

Several fitness functions have been proposed in the literature for the ALBP. For 

problems of type I, as it was mentioned before, there often exist a large number of 

alternative feasible solutions with the same number of workstations, so it is necessary to 

use objective functions beyond the minimisation of the number of workstations, for a better 

guidance of the search process. 

Kim et al (2000) use the minimisation of the adjusted number of workstations, which 

favours solutions that can, more likely, be improved. This function is computed by adding 

to the number of workstations (S) the ratio between the workload of the last workstation 

(WS) and the cycle time (C), as shown in the following expression: 

C
W

SFitness S+=  (3.2) 

Falkenauer (1998) evaluates the squared average deviation from a full station load. The 

fitness function, to maximise, favours solutions with some well-filled and some nearly 

empty workstations as opposed to solutions where all workstations have similar workload. 

The reasoning is that in extremely unbalanced solutions is easier to eliminate workstations. 

The function is computed as follows: 
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where Wk is the workload of workstation k. 

The workload balance is a common goal that ensures equity in the distribution of work 

among operators. Several expressions to compute workload balance are found in the 

literature. Leu et al (1994) minimise the sum of mean squared workstation idle times given 

by  
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Sabuncuoglu et al (2000) use a fitness function with two terms. The first term aims to 

balance the workloads between workstations while the second minimises the number of 

workstations. This function is computed as follows: 
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where Wmax is the maximum workload. The authors give the first term a higher importance 

and multiply it by two. 

The problems of type II have as goal the minimisation of cycle time for a given number 

of workstations. Anderson and Ferris (1994) consider as fitness function the minimisation 

of the maximum workload added by a penalty for unfeasible solutions. Kim et al (1998) 

propose a fitness function that distributes the workload as equal as possible between the 

workstations and favours solutions with workstations with workloads close to the average 

workload (W ). It is given by: 

∑
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Multi-criteria approaches are proposed by Kim et al (1996) and Ponnambalam et al 

(2000) addressing several objectives like minimising the number of workstations, 

minimising the cycle time, balancing workloads and maximising line efficiency. The first 

authors introduce a performance measure, called index of work relatedness, which aims to 
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assign related tasks to the same workstation. This objective is considered together with the 

other goals when assessing the quality of a balancing solution. 

3.3.2.3 Other features 

Most of the GA applications to ALBP use standard approaches, as the ones described in 

section 3.3.1, when generating the initial population, defining selection and replacement 

strategies, setting crossover and mutation probabilities and stopping criteria.  

An original variation, called Adam-Eve GA, is presented by Feyzbakhsh and Matsui 

(1999). The initial population has only two individuals, however, the population size 

increases during its evolution, as offspring are inserted as new individuals in the population 

instead of replacing the parents. Due to a new operator, each individual faces death after a 

few generations. Levitin et al (2006) introduce a phenomenon called cataclysm which 

consists in, at the end of each iteration, create a whole new population preserving only the 

best individual from the previous generation. This aims to avoid premature convergence. 

3.4 Ant colony optimisation algorithms 

3.4.1 Overview  

Ant colony optimisation algorithms are population-based procedures inspired on the 

behaviour of real ant colonies. Ants are known for being able to find the shortest path 

between their nest and a food source, without making use of visual cues; only by following 

pheromone trails released by other ants. The more intense is the trail, the higher the 

probability of an ant to follow it and thus reinforce the trail with its own pheromone. So, it 

is the colony as a whole that coordinates the activities without a direct communication 

between individual ants, as an isolated ant basically moves at random.  

Figure 3.12 presents an illustration of a typical result of the so-called double bridge 

experiment, adapted from Bonabeau et al (1999). In this experiment, a food source is 

separated from the nest by a double bridge with two branches of different lengths. Initially 

there is no pheromone in the branches, having all, therefore, the same probability of being 

selected by the ants. The first ants returning to the nest are those who selected the shortest 
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path twice (to go from the nest to the food source and to return to the nest), so that, 

immediately after these ants have returned, more pheromone is present in the short 

branches than in the long branches, stimulating other ants to select the short branches. 

Sooner the colony converges to the shortest path. The collective behaviour that emerges is 

a form of autocatalytic behaviour, i.e., positive feedback, where the more ants are 

following the trail, the more attractive that trail becomes for being followed. 

 

 

Figure 3.12 – The double bridge experiment 

 

Ant algorithms were firstly presented by Dorigo et al (1991, 1996) as an approach to 

solve NP-hard combinatorial optimisation problems. Although they have been originally 

applied to the travelling salesman problem (Dorigo and Gambardella, 1996, 1997), rapidly 

the scientific community showed a high curiosity and interest for this kind of approach, 

providing applications to other types of problem.  

The Ant Colony Optimisation (ACO) meta-heuristic presented by Dorigo et al (1999) 

provides a unifying framework for most applications of ant algorithms to combinatorial 

optimisation problems. According to Stültze and Dorigo (1999), all ant algorithms 

previously developed fit into the ACO meta-heuristic, so they all can be called ACO 

algorithms. 

The basic idea underlying ACO algorithms is to use a positive feedback mechanism, 

based on an analogy with the pheromone-laying pheromone-following behaviour of ants, to 
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reinforce good solutions of combinatorial optimisation problems. Each ant builds, 

step-by-step, a single solution. During this procedure the ant takes into account the 

information left by other ants (pheromone trails) and, eventually, other available 

information about the problem (heuristic information). By the end, good solutions emerge 

resulting from the indirect communication between the ants. 

Artificial ants are different from real ants in the following aspects:  

(i) they do not move continuously (the time is assumed to be discrete); 

(ii) they have memory to store their past actions;  

(iii) they are not completely blind as they possess some information about the 

problem to solve; 

(iv) the amount of pheromone released by the ants is a function of the quality of the 

solution;  

(v) the timing in pheromone laying is problem dependent and often it is very 

different from what happens with real ants (for example, when the pheromone is 

released only after the solution is completed).  

These extra capabilities of the artificial ants increase their efficiency and effectiveness.  

In order to illustrate how ACO algorithms work, its application to the travelling 

salesman problem (TSP) will now be described. The TSP is a path optimisation problem, 

so the ant colony metaphor is easily adapted. The goal is to find a closed tour of minimal 

length connecting n nodes where each node must be visited once. Each ant builds a 

solution to the TSP by moving on the problem graph from one node to another until it 

completes a tour. During an iteration of the algorithm, m ants build a tour executing n 

steps. At each step, an ant is in node i and it applies a probabilistic decision (state 

transition) rule to select the next node j to be visited. The edge (i,j) is then added to the tour 

under construction. For each ant, the transition from node i to node j depends on two 

factors: 

• Visibility (ηij) – Artificial ants are provided with some local information about the 

problem. In the TSP, visibility (or heuristic information) is related to the distance 

between two nodes, usually the inverse of the distance (ηij=1/dij), which means that the 

lower the distance between nodes i and j, the higher the probability of going from i to j. 
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Visibility helps directing the search, although a constructive method based exclusively 

on heuristic information would produce low quality solutions.   

• Pheromone trail (τij) – The amount of virtual pheromone trail on edge (i,j) represents 

the learned desirability of selecting node j when in node i. The more ants have chosen 

edge (i,j) in previous iterations, the more intense will be the trail. The pheromone trail 

information is changed after each algorithm’s iteration to reflect the experience 

acquired by the ants. 

The state transition rule, i.e., the probability of ant k to go from node i to node j in the tth 

iteration of the algorithm is called random proportional transition rule (Dorigo et al, 1991, 

1996) and it is given by: 
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where k
iA is the set of available nodes of ant k when in node i, and α and β are two 

adjustable parameters that determine the relative importance of pheromone intensity versus 

visibility. If α=0, the closest nodes are more likely to be selected, corresponding to a 

classic stochastic greedy heuristic with multiple starting points (since ants are initially 

distributed on the nodes at random). If β=0, only pheromone information is guiding the 

search, but this situation may lead to premature convergence of the algorithm. Therefore, it 

is necessary to establish a trade-off between both types of information. 

Dorigo and Gambardella (1997) developed an enhanced version of the transition rule, 

called pseudo-random proportional rule, which allows a balance between the exploration 

of new edges and the exploitation of the currently best known edges. By applying this rule, 

an ant k in node i will select node j, in the tth iteration, according to:  
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where r is a random number uniformly distributed in the interval [0,1] and r0 is a 

pre-defined parameter, which determines the relative importance of exploitation versus 
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exploration. Whenever an ant in node i has to select a node j, it samples a random number 

(0≤ r ≤1). If r ≤ r0 then the best node (J1) is selected, otherwise a node (J2) is selected 

according to its probability ( )(
2

tpk
iJ ). 

After completing a tour, each ant k deposits an amount of pheromone )(tk
ijτ∆ on each 

visited edge (i,j) that depends on the quality of the solution (distance of the tour) and it is 

given by: 
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where Tk(t) is the tour built by ant k at iteration t, Lk(t) is its length and Q is a pre-defined 

parameter. To be noticed that an iteration t of the algorithm is completed when all ants 

have done a tour, so that the pheromone released by ants in one iteration does not influence 

the decision of the other ants in the same iteration. For ease of implementation, all ants will 

release their pheromone simultaneously at the end of each iteration.  

An important issue is pheromone evaporation. In order to ensure efficient solution 

space exploration and avoid stagnation, it is necessary to allow the decay of the trail 

intensity. This is implemented by the introduction of an evaporation coefficient ρ (0≤ ρ 

<1) which decreases the trail intensity of each edge. At the beginning of the algorithm, an 

initial amount of pheromone τ0 is present on all edges. 

The global pheromone update effect of all ants on each edge (i,j) in the tth iteration is 

given by : 
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Other pheromone update strategies are possible, like the use of elitist ants. An elitist ant 

is an ant which, in every iteration, reinforces the edges of the best tour found so far by the 

algorithm. The idea is that this reinforcement will direct the search of the other ants (in 

probability) towards a solution containing some edges of the best tour.  

The Ant Colony System of Dorigo and Gambardella (1997) performs two types of 

pheromone update strategies: global and local. The global update is done, at the end of an 

iteration, solely by the ant that generated the best tour since the beginning of the algorithm. 
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Local updates are performed by the other ants while building the tours and not at the end of 

the iteration. When ant k, while building a tour, is in node i and selects node j, the 

pheromone intensity of edge (i,j) is updated as follows:  

0)1( ρττρτ +−← ijij  (3.11)

The local update rule avoids the selection of a very good edge by all ants, as every time 

an edge is selected its pheromone level diminishes. This will favour exploration of not yet 

visited edges, preventing premature convergence of the algorithm. 

3.4.2 ACO approaches for assembly line balancing 

The use of ACO algorithms to solve the assembly line balancing problem follows the 

recent developments in combinatorial problem solving, that is influenced by techniques 

based on the behaviour of insect societies. An overview of the application of concepts 

inspired in colonies of social insects (ants and wasps) to solve manufacturing problems is 

presented in Cicirello and Smith (2001). A literature review of the application of ACO 

algorithms to several hard problems, like quadratic assignment, sequential ordering, 

job-shop scheduling, graph colouring, vehicle routing, generalized assignment, shortest 

common super sequence and network routing is provided by Dorigo et al (1999). 

The literature reporting the use of ACO algorithms to solve assembly line balancing 

problems is scarce. Only two publications were found: (i) the conference paper of Bautista 

and Pereira (2002), who apply an ACO algorithm to solve the simple assembly line 

balancing problem and (ii) the paper of McMullen and Tarasewich (2003), reporting the 

use of ant techniques to address assembly line balancing problems with focus on the 

stochastic nature of task processing times. The main features of both works will be now 

briefly described. 

The way artificial ants build an assembly line balancing solution in the approach 

proposed by Bautista and Pereira (2002) is straightforward: each ant iteratively selects a 

task for assignment using a constructive procedure. The probability of selecting a task j 

depends on the heuristic information about the task (ηj), in the form of a priority rule, and 

the pheromone trail intensity. The authors use thirteen priority rules available in the 

literature for the assembly line balancing problem (e.g., maximum processing time, 
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maximum number of immediate successors, maximum number of successors, etc.) and 

assign one priority rule to each ant.  

Three pheromone release strategies are used:  

(i) trail between consecutive assigned tasks – τij is the trail intensity between tasks i 

and j; 

(ii) trail between the task and the iteration in which it was assigned – τij is the trail 

intensity between task j and its position i in the sequence of assigned tasks; 

(iii) trail between the task and the workstation to which it was assigned – τij is the trail 

intensity between workstation i and task j.  

The probability of ant k to select task j is given by:  

[ ] [ ]
[ ] [ ]∑
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 (3.12)

where k
iA is the set of available tasks (i.e., tasks that meet precedence and capacity 

constraints). τij will depend on the pheromone release strategy and ηj will depend on the 

priority of each task for a given rule. The values of the different priority rules are linearly 

normalised between 1 and the number of available tasks, in order to eliminate the 

dissimilarity between the ranges of values of the different rules. 

After all ants of an iteration of the algorithm have generated a balancing solution, a 

local search procedure is applied to the best solutions obtained. The search is guided by an 

objective function that minimises the idle time in the first workstations and maximises idle 

time in the last workstations, aiming to decrease the number of workstations of the 

solution. The neighbourhood is defined by (i) exchanging the workstation of two tasks or 

(ii) transferring a task to the previous workstation. Both of the movements are forced to 

build feasible solutions. 

The updating of pheromone trails is performed exclusively by the best ants in each 

iteration and it takes into account the number of workstations of their solution (BestSol) 

and the number of workstations of the best solution found so far by the algorithm 

(BestSolSoFar). It is given by: 
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BestSol
arBestSolSoF

ijij ρτρτ +−← )1(  (3.13)

In the procedures proposed by McMullen and Tarasewich (2003, 2006), the pheromone 

level associated with the assignment of a task j to the current workstation i is also the 

probability of task j being selected and it is given by: 
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Depending on the strategic approaches selected by management, four different metrics 

are used to determine the overall attractiveness of task j to be assigned to the current 

workstation: (i) uj, (ii) pj, (iii) uj × pj and (iv) uj × (1-pj), where uj is the utilisation of the 

current workstation after the assignment of task j and pj is the probability of all tasks being 

completed on time if task j is assigned to the current workstation. The first term of 

expression (3.14) gives the relative desirability of task j (for a given metric) compared with 

the other available tasks. The second term is related with the traditional pheromone 

concept and it is explained as follows. M is a matrix that keeps the number of times that 

task j has been assigned to a workstation after a certain immediate predecessor Ij, since the 

beginning of the algorithm. If Ij is a frequent predecessor of task j in previous balancing 

solutions, then M(j,Ij) will have a high value, incorporating, therefore, historical 

information in the task selection process. 

After the assignment of all tasks, four solution quality measures are computed: (i) 

utilisation of assembly line layout, (ii) probability of all workstations to complete their 

tasks on-time (as task processing times are considered stochastic), (iii) composite measure 

of utilisation and on-time completion probability and (iv) design cost associated with the 

line layout. These objective functions will be used according to the strategic approach 

selected by the decision-maker. 
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3.5 Taboo search algorithms 

3.5.1 Overview 

Another popular meta-heuristic approach used to address the assembly line balancing 

problem is taboo search, introduced by Glover (1989, 1990). In this section only a glance 

at this search procedure will be given as well as brief references to literature publications 

on the subject. 

Taboo search is a generalised local search procedure, for solving combinatorial 

optimisation problems, that uses information on the history of the search to overcome local 

optimality. It starts from an initial solution and iteratively moves to a neighbour solution 

which may or not lead to improvement. The decision of which neighbour solution should 

be visited is based on the examination of the whole neighbourhood or a subset of the 

neighbourhood of a solution. The best neighbour is selected, even if it is worse than the 

current solution. A neighbour solution is usually obtained by transferring tasks to different 

workstations or by swapping tasks from different workstations, similarly to the neighbour 

generation procedure of most simulated annealing approaches. 

The underlying idea is to forbid some search directions at a determined iteration, in 

order to avoid cycling, by keeping some attributes of the last visited solutions in a structure 

called taboo list with a limited size. The use of ‘short-term memory’ avoids the procedure 

to be trapped at local optima while the use of ‘long-term memory’ allows the use of 

intensification and diversification strategies to refine the search process. Intensification 

aims at concentrating the search to a specific region of the solution space whereas 

diversification tries to lead the search direction into unvisited regions of the solution space. 

3.5.2 Taboo search approaches for assembly line balancing 

In the literature, there are several applications of taboo search to the assembly line 

balancing problem. Heinrici (1994) presents a comparison of simulated annealing and 

taboo search to solve the SALBP of type II. The initial solution is produced using a 

modified version of the ranked positional weight technique. The set of neighbour solutions 

is obtained by shifting tasks out of the workstation with the highest workload. If this does 
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not generate any feasible solution, then all possible transfers and swaps are performed. The 

reported computational tests showed that the taboo search performed equal or better than 

simulated annealing, for most of the tested problems. 

Scholl and Voβ (1996) present taboo search algorithms for both type I and type II 

problems. These authors initially present a procedure to tackle the SALBP-II and then it is 

applied within a framework of a lower bound method to solve the SALBP-I. Initial 

solutions are obtained using heuristics based on priority rules and transitions to neighbour 

solutions are performed through transfer and swap moves. Good results of the 

computational experiments are reported. 

Chiang (1998) presents four different versions of a taboo search procedure to address 

the SALBP-I. The initial solution is obtained via a constructive heuristic based on several 

priority rules. The transition to neighbour solutions is performed by λ-exchange moves, in 

which no more than λ tasks are exchanged for any two workstations. The performance is 

tested with set of test problems and the reported results are very good: except for a few 

cases, the procedure always finds the optimal solutions.  

The only application of taboo search to assembly line balancing problems which reflects 

some operating conditions of real assembly lines is presented by Lapierre et al (2006). The 

developed algorithm allowed the exploration of unfeasible solutions, through cycle time 

violation, and uses two different neighbourhood structures: one focuses on reducing or 

increasing the ‘half-empty’ workstations and the other attempts to completely empty 

‘near-empty’ workstations. The proposed taboo search procedure is applied to a real line 

with workstations located on both sides of the conveyor, with two possible conveyor 

heights. 

3.6 Chapter conclusions  

There is a growing interest in the use of meta-heuristics to solve combinatorial 

optimisation problems due to their capability to handle a wide range of problems with a 

relatively low algorithm complexity and to the good performance achieved in most cases. 

The analogy and inspiration from natural systems is also an extra aspect that motivates 
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researchers. Besides these characteristics, the motivation for using meta-heuristics in this 

particular work was their flexibility to incorporate complex characteristics of the problems. 

The review of the application of these techniques to the assembly line balancing 

problem showed that the emphasis of the researchers is still on the definition of the 

technique’s parameters instead of solving more complex problems. The simple assembly 

line balancing problem remains the most researched problem, mainly because it is a 

benchmark problem with a large number of data sets with known optimal solutions. This 

makes it easier to evaluate the performance of the developed procedures, as solutions can 

be compared with the optimal values.  

The characteristics of real world assembly lines are much more complex than the ones 

addressed by most of the techniques reported in the literature. This represents a gap 

between research directions and industrial needs. 

The present study is driven by the need to model the assembly line balancing problem in 

a way that reflects the operating conditions of real world assembly lines. Complex features 

of the problem like mixed-model production, use of parallel workstations, zoning 

constraints are included in the definition of the problem and meta-heuristic based 

procedures are developed to solve it. Also, some real assembly lines are studied in order to 

validate the assumptions of the proposed procedures and to better understand the real 

industrial problems. 

The following chapters present the definition of the addressed problems – balancing 

mixed-model (i) straight lines, (ii) U-shaped lines and (iii) 2-sided lines – and describe the 

meta-heuristic based procedures developed to tackle them. 

 



4 
4. Balancing straight assembly lines 
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4.1 Chapter introduction 

In this chapter, the addressed problem – the mixed-model straight assembly line 

balancing problem (MALBP) – is formally described using a mathematical programming 

model and the procedures developed to tackle it are presented. Three procedures based on 

meta-heuristics (simulated annealing, genetic algorithms and ant colony optimisation) were 

developed to address both type I and type II problems and their performance is compared 

through a set of computational experiments. 

Although some of what is described in this chapter refers to previous developed work, 

namely, the mathematical programming model and the simulated annealing procedure for 

type I (Simaria, 2001), it was decided to include it in this document, with the purpose of 

better describing the whole research.* 

4.2 Definition of the mixed-model ALBP with parallel 

workstations  

4.2.1 Problem assumptions and constraints 

As it was referred earlier, the recent market trends show that there is a growing demand 

for customised products, increasing the pressure for manufacturing flexibility. 

Mixed-model assembly lines are an adequate production system for companies to 

implement manufacturing postponement strategies, being an important piece of the supply 

chain.  

In the addressed problem, the assembly line is configured to produce a set of similar 

models of a product (m=1,…,M), in any order or mix, over a pre-specified planning 

horizon, P. The forecasted demand, over the planning horizon, for model m is Dm, 

requiring the line to be operated with a cycle time given by: 

∑
=

=
M

m
mDP/C

1

 (4.1) 

                                                 
* Parts of the work presented in this chapter are published in Simaria & Vilarinho (2001, 2004) and Vilarinho & Simaria (2002, 2006).  
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The overall proportion of the number of units of model m being assembled, i.e., the 

production share of each model, is computed by: 

∑
=

=
M

p
pmm DDq

1

/  (4.2) 

Each model has its own set of precedence relationships, but there is a subset of tasks 

common to all models. Hence, the precedence diagrams for all the models can be 

combined and the resulting one has N tasks (i=1,…,N are the task numbers of the tasks in 

the combined precedence diagram). The time required to perform task i on model m, tim, 

may vary among models (tim=0 means that model m does not require task i). 

The work of Bukchin et al (2002) and Bukchin and Rabinowitch (2005) states that in 

modern assembly lines workers are expected to be more versatile and one can assume that 

each worker is able to perform any task on the line. Following this assumption, they allow 

the assignment of the same task to different workstations when performed in different 

models. Although this idea seems adequate for the actual industry environment, there is no 

evidence of a successful implementation in real world assembly lines. So, in this model the 

traditional assumption of the use of specialised operators, trained to perform a small set of 

tasks, is maintained. This way, a task that is common to several models must be assigned 

to the same workstation, for the different models. The first set of decision variables is 

defined as:  
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where LL is the line length, i.e., the number of workstations in the assembly line. The 

assignment of a task to only one workstation, regardless of the model being assembled, is 

guaranteed by the following set of constraints: 
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 (4.4) 

To ensure that the precedence constraints of the assembly process are not violated, the 

set of constraints (4.5) is included in the model, taking into account, for each task i, the set 

successors of task i (Suci), i.e., the set of tasks that cannot be performed before task i is 

completed, which is derived from the combined precedence diagram. No successor of task 
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i will, then, be assigned to an earlier workstation than the workstation to which task i is 

assigned. 
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The workload corresponding to the set of tasks assigned to a workstation cannot exceed 

the workstation’s capacity, a crucial factor for the line production rate. Most of the 

techniques used to solve the ALBP require the assignment of each task to a single 

workstation and, consequently, the production rate is limited by the longest task time. This 

assumption can be relaxed by using parallel workstations in such a way that two or more 

replicas of a workstation can perform the same set of tasks on different assemblies. The 

introduction of parallel workstations not only allows for cycle times shorter than the 

longest task time, allowing an increase in the production rate, but also provides greater 

flexibility in designing the assembly line (Buxey, 1974). However, as the number of 

parallel workstations increases, so does the number of different tasks performed by each 

operator. If the replication of workstations is not controlled, one can lose one of the main 

advantages of using assembly lines: the use of low skilled labour that can easily be trained 

to perform a small number of tasks.  

Most of the models for the ALBP with parallel workstations proposed in the literature 

base the decision to create parallel workstations in a trade-off between the incremental 

tooling/equipment cost of the duplicated workstation and the cost of hiring operators for 

the original line in order to satisfy the demand (e.g., Johnson, 1983, Pinto et al, 1975, 1981, 

Bard, 1989, Daganzo and Blumenfeld, 1994, Askin and Zhou, 1997). McMullen and 

Frazier (1997, 1998) allow the replication of a workstation as long as its utilisation 

increases. Schofield (1979) and Sarker and Shantikumar (1983) define a limit on the 

number of parallel workstations to control the replication process, while Buxey (1974) 

includes a limit on the number of tasks per workstation. In all these approaches, tasks with 

processing times much shorter than the cycle time can trigger the replication of 

workstations, which can lead to an excessive number of parallel workstations. 

To address this issue, the proposed approach uses a mechanism to control the 

replication of workstations, based on the approach originally developed for the 

single-model assembly line balancing problem (Simaria and Vilarinho, 2001). The model 
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allows the decision-maker to establish the conditions under which a workstation can be 

replicated by defining a minimum processing time that triggers the replication process 

(MRT – minimum replication time). This means that only workstations that perform tasks 

with processing time higher than MRT for, at least, one of the models, are allowed to be 

replicated, that is, are allowed to have two or more operators working in parallel (in 

replicas of the workstation). The number of replicas of a workstation k, Rk, is determined 

by its longest task processing time (for all models) and it is given by:  
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By using parallel workstations, it is necessary to distinguish between the total number 

of operators working on the line and the number of different workstations in the line (LL). 

This way, if some operators carry out the same set of tasks in parallel workstations, there 

will be more operators than different workstations. The total number of operators working 

on the assembly line (S) is computed by the sum of the number of replicas of all 

workstations, as follows: 
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The capacity of a workstation depends on the tasks assigned to it. Let task h be a 

candidate for assignment to workstation k. Wkm is the workload of workstation k for model 

m, after the assignment of task h, defined as the sum of the task processing times for each 

model assigned to workstation k plus the processing time of task h, and given by: 
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The capacity constraints are defined as follows: if workstation k performs a task with a 

processing time higher than MRT, for at least one of the models, or if task h has a 

processing time higher than MRT, for at least one of the models, then constraint (4.9) 

holds. In this case, the capacity of the workstation is the required to perform the task with 

processing time higher than MRT. 

)1;1(      ,...,Mm,...,LLkCRW kkm ==⋅≤  (4.9) 
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If all tasks in workstation k and task h have processing times not higher than MRT, 

constraint (4.10) must hold, i.e, the capacity of the workstation is equal to the cycle time. 

)1;1(      ,...,Mm,...,LLkCWkm ==≤  (4.10) 

The idle time of a workstation is the difference between the capacity of the workstation 

and its workload. skm is idle time of workstation k due to model m and it is computed by the 

following set of equations: 
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Zoning constraints may also be included in the problem. Positive zoning constraints 

force pairs of tasks to be assigned to the same workstation and are defined by the set of 

constraints (4.12), where ZP represents the set of pairs of tasks that must be assigned to the 

same workstation. 
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The set of constraints (4.13) defines the negative zoning constraints, which forbid the 

assignment of pairs of tasks to the same workstation. ZN is the set of pairs of incompatible 

tasks. 
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4.2.2 Objective function 

The main goal of ALBP of type I is to minimise the number of workstations for a given 

cycle time. So, the first approach to address this goal was the use of an objective function 

that minimised the number of the workstation to which the last task of the precedence 

diagram was assigned. This function was given by: 

∑
=

K

1k
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where K is an upper bound of the number of workstations, as when formulating the 

problem one does not know how many workstations will have the line (K ≥ LL). However, 
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this function is only adequate when the precedence diagram converges to one final task 

(the Nth task), which is not the case, for many diagrams. 

Another way to address this goal is through the minimisation of the idle time of the line, 

because a line with a lower number of workstations will necessarily have a lower idle time. 

To cope with the mixed-model nature of the problem, an objective function called 

weighted idle time (WIT) was developed. It minimises the weighted sum (considering each 

model production share, qm) of the idle time of the workstations in the line and it is given 

by: 
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The values of WIT are different from problem to problem, as they vary according to the 

cycle time and task processing times of the problem instance. An alternative measure, 

which is always within a fixed range of values, is the weighted line efficiency (WE). It 

varies between 0 and 1 and it gives a direct idea of the efficiency of the assembly line, 

regardless of the data of the problem instance: the more close to 1 (or 100%) the less idle 

time has the line. WE is an objective function to maximise and it is computed as follows: 
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where S is the total number of operators of the line. This objective function is adequate for 

problems of type I and of type II. The only difference is in what is given as input and what 

is incognita. While for type I C is given and S is unknown, for type II the opposite occurs, 

i.e., S is given and C is unknown. 

Besides the minimisation of the number of workstations (or the minimisation of cycle 

time, for problems of type II), additional goals, concerning workload smoothing, are also 

envisaged. The objective function Bb aims to balance the workload between workstations, 

i.e., for each model the idle time is distributed across workstations as equally as possible, 

and it is given by: 
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The value of function Bb varies between a maximum of 1, when the weighted idle time 

of the line is equal to the idle time of one of the workstations, and a minimum of 0, when 

WIT is equally distributed by all workstations in the line. A demonstration of these values 

is presented in Appendix 1. 

Due to the mixed-model nature of the problem, each task processing time may vary 

among the different models and, so, the workload assigned to a workstation may also vary. 

In order to ensure that each operator performs approximately the same amount of work for 

each model being assembled, it is desirable to balance the workload within each 

workstation. To achieve this goal the objective function Bw was developed, which aims at 

smoothing the workload balance within each workstation and it is computed as follows: 

∑∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

LL

k

M

m k

kmm
w MS

sq
MLL
MBMinimise

1 1

2
1

)1(
  (4.18) 

where Sk is the weighted idle time of workstation k, given by: 
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The value of function Bw varies between a maximum of 1, when the idle time of each 

workstation is only accountable to one model, and a minimum of 0, when it is equally 

distributed by all models in every workstation. (A demonstration of these values is 

presented in Appendix 1.) An important note is that workstations with no idle time for any 

model (i.e., with Sk=0) are not considered in the computation of Bw. 

Figure 4.1 shows the distribution of the overall idle time of an assembly line in five 

different balancing scenarios, all with 4 models and 4 workstations. In this figure each 

matrix cell represents the idle time of workstation k due to model m (skm) The model 

production shares are q1=0.2, q2=0.2, q3=0.4 and q4=0.2.  

Scenario 1 represents the perfect balancing solution, with both functions Bb and Bw 

reaching their minimum values. The idle time of the line is equally distributed between all 
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workstations and proportionally split by all models at each workstation. In scenario 2 the 

balance between workstations is perfect, but the balance within workstations is at its 

worse, with a single model causing the whole idle time. 

The increase of functions Bb and Bw depends on the degree of balance between and 

within workstations, respectively. For instance, in scenario 3 half of the workstations have 

their idle time completely unbalanced, so Bw is around 0.5 (it is not exactly 0.5 because in 

workstation 4 the idle times are not perfectly balanced). A similar reasoning is applied to 

scenario 4, where 75% of the workstations are completely unbalanced leading to a value of 

Bw around 0.75. 

Finally, scenario 5 shows a line perfectly balanced within workstations, but in which 

there is only one workstation with idle time. Although this is a situation for Bb=1 and, thus, 

a worst case situation, in practice, it can be seen as an opportunity to decrease the number 

of workstations of the line. In fact, by slightly increasing the cycle time of the line it could 

be possible to reassign the tasks of the last workstation to other workstations, eliminating, 

this way, workstation 4.  

k sk1 sk2 sk3 sk4 k sk1 sk2 sk3 sk4 k sk1 sk2 sk3 sk4 k sk1 sk2 sk3 sk4 k sk1 sk2 sk3 sk4
1 6 6 3 6 1 24 0 0 0 1 12 0 0 0 1 12 0 0 0 1 0 0 0 0
2 6 6 3 6 2 0 24 0 0 2 0 12 0 0 2 0 12 0 0 2 0 0 0 0
3 6 6 3 6 3 0 0 12 0 3 6 6 3 6 3 0 0 0 12 3 0 0 0 0
4 6 6 3 6 4 0 0 0 24 4 6 6 9 18 4 12 12 12 12 4 24 24 12 24

Scenario 5

Bb=1  Bw=0

Scenario 3

Bb=0.13  Bw=0.52

Scenario 4

Bb=0.25  Bw=0.76Bb=0  Bw=0

Scenario 1 Scenario 2

Bb=0  Bw=1  

Figure 4.1 – Example of the variation of functions Bb and Bw for different scenarios 

4.2.3 Complete mathematical programming model 

The functions and constraints described in the previous sections are part of a 

mathematical programming model developed to formally describe the mixed-model 

assembly line balancing problem, presented globally in Figure 4.2. The objective function 

takes into account the values of WE, Bb and Bw, however it is obvious that WE is the most 

important goal because it directly addresses either the minimisation of the number of 

workstations or the minimisation of the cycle time. For this reason, it is multiplied by a 

user defined parameter (λ) that should be set λ>1. As the criterion of the global objective 
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function is maximisation, the symmetric values of functions Bb and Bw (defined by 

equations (4.17) and (4.18), respectively) had to be considered. 

The model constraints are interpreted as follows: 

(i) constraints ensuring that each task is assigned to only one workstation of the 

station interval (assignment constraints); 

(ii) constraints ensuring that no successor of a task is assigned to an earlier station 

than the workstation to which is assigned that task (precedence constraints); 

(iii) constraints ensuring that each workstation capacity is not exceeded, where the 

capacity of a workstation depends on whether or not it performs tasks with 

processing times for, at least, one model, higher than the minimum replication 

time, MRT (capacity constraints); 

(iv) positive zoning constraints; 

(v) negative zoning constraints, 

(vi) set of constraints computing the line length (LL) in which the auxiliary binary 

variable yk equals one, if the kth workstation is used for assembly and zero, 

otherwise (in this set of constraints, M is a very large positive integer);  

(vii) set of constraints defining the decision variables domain. 

The large number of constraints and binary variables makes the proposed model highly 

complex, preventing it from being solved to optimality, at least for real world problems. It 

is, however, a very useful tool to formally describe the problem. 

The use of a mathematical programming model to optimally solve a mixed-model 

assembly line balancing problem, with no parallel workstations or zoning constraints, was 

proposed by Göcken and Erel (1997, 1998). The computational experiments conducted by 

these authors revealed that the model was capable of solving problems with up to 40 tasks 

in the combined precedence diagram. For larger sized problems, it would be too large to 

obtain optimal solutions. It is clear that the model proposed in this section is more complex 

than the one proposed by these authors, because the addressed problem has additional 

characteristics that better reflect the operating conditions of real assembly lines (e.g., 

parallel workstations and zoning constraints). This way, the approach to solve the problem 

was based on the development of heuristic procedures that are able to efficiently search the 

solution space, providing good solutions in reasonable computation times. 
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Three meta-heuristic based procedures (simulated annealing, genetic algorithms and ant 

colony optimisation) were developed to tackle the MALBP described in this section and 

will be presented in the following sections. 
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Figure 4.2 – Mathematical programming model for the mixed-model ALBP with parallel workstations 

4.3 Simulated annealing based approach 

A two-stage procedure that uses the simulated annealing technique (described in section 

3.2) was developed to tackle the MALBP of type I. In the first stage the procedure looks 

for a sub-optimal solution for the problem’s main goal – the minimisation of the number of 

workstations. In the second stage, the additional goals of workload balancing are 

envisaged. In both stages a simulated annealing approach is used. The framework of this 

procedure is presented in Figure 4.3. 
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Figure 4.3 – The two-stage simulated annealing based procedure 

 

4.3.1 The first stage 

4.3.1.1 Initial solution 

The initial solution is obtained using a version of the Ranked Positional Weight (RPW) 

heuristic proposed by Helgeson and Birnie (1961). The original RPW version only 

addresses the simple assembly line balancing problem, where one single model is 

assembled and no parallel workstations are allowed. The positional weight of a task in a 

mixed-model assembly line is the cumulative weighted average task time associated with 

itself and its successors. The weighted average task time of task i is the sum of the 

processing times of that task for each model weighted by the respective production share. 

The weighted average time of task i is then given by: 

∑
=

==
M

m
immi Nitqt

1
 ),...,1(  (4.20) 

Tasks are assigned to the lowest numbered feasible workstation by decreasing order of 

their positional weight and considering the individual task processing times for each 

model. In the original version of the RPW heuristic the cumulative duration of the tasks in 

a workstation cannot exceed the cycle time (hence the concept of feasible workstation) and 
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thus does not account for parallel workstations. The version of the RPW heuristic used to 

obtain the initial solution in the first stage of the proposed procedure redefines the concept 

of feasible workstation: if a workstation performs a task i with processing time larger than 

MRT, for, at least, one model, its time capacity is 
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⋅

MRT

t
C

imm
}{max

, otherwise is C.  

The implemented version of the RPW heuristic also checks if the task to be assigned is 

not incompatible with any of the tasks already allocated to the workstation and merges 

tasks with positive zoning constraints, i.e., that need to be processed in the same 

workstation, previously, so that they are treated as only one task.  

4.3.1.2 Solution evaluation criterion 

In the first stage the procedure looks for the solution that minimises the number of 

workstations in the assembly line, so the weighted line efficiency, as defined in equation 

(4.16), is used as objective function. 

4.3.1.3 Neighbouring solutions 

A neighbouring solution can be generated by one of the following actions: (i) swapping 

two tasks in different workstations or (ii) transferring a task to another workstation. The 

tasks to be swapped, as well as the task and the workstation for the transfer, are randomly 

chosen. For any of these actions to result in a new neighbouring solution, the precedence, 

zoning and capacity constraints must be fulfilled. When this is not the case, a new swap or 

transfer must be attempted. 

Only transfer movements may contribute to reduce the number of workstations, thus 

maximising line efficiency. Nevertheless, swap procedures are also required to ease the 

generation of successful transfer movements. So, the probability of performing a transfer 

procedure must be higher than for the swap procedure and, by default, probabilities of 75% 

and 25% were respectively set, although the user can set different values. 

In both stages of the proposed procedure a taboo list is used to maintain information 

about the most recently generated neighbouring solutions, in order to avoid cycling. 
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4.3.2 The second stage 

The goal of the second stage is to balance simultaneously the workloads between and 

within workstations, for the number of workstations obtained in the first stage. The initial 

solution of the second stage is the final solution found in the first stage. The criterion used 

to evaluate the neighbouring solutions generated in this second stage derives directly from 

the objective functions Bb and Bw computed by equations (4.17) and (4.18), respectively. 

4.3.2.1 Neighbouring solutions 

The generation of neighbouring solutions in the second stage also employs swap and 

transfer movements, but the tasks and workstations involved in these movements are 

selected to foster improving solutions, i.e., to improve workload smoothing. The steps of 

the swap and transfer movements are described as follows:  

(i) Swap movement 

STEP 1. Let Z be a randomly selected workstation and X the model whose idle time for 

that workstation has the highest deviation from the workstation average idle 

time ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−⋅=∆
M
S

qssX Z
mZmmZX max: . 

STEP 2. If 
M
S

s Z
ZX >  , then go to STEP 3, else, go to STEP 5. 

STEP 3. Select the task assigned to workstation Z with the lowest processing time for 

model X { } ⎟
⎠
⎞

⎜
⎝
⎛ ∈∧= ZiXiXT OittT min:

11 , where Oz is the set of tasks assigned to 

workstation Z. 

STEP 4. From the set of tasks performed on model X that are not assigned to workstation 

Z and whose task time is higher than the task time of T1, randomly select one 

( )ZXTXT OTttT ∉∧> 22 12
: . Go to STEP 7. 

STEP 5. Select the task assigned to workstation Z with the highest processing time for 

model X { } ⎟
⎠
⎞

⎜
⎝
⎛ ∈∧= ZiXiXT OittT max:

11 . 
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STEP 6. From the set of tasks performed on model X that are not assigned to workstation 

Z and whose task time is smaller than the task time of T1, randomly select one 

( )ZXTXT OTttT ∉∧< 22 12
: . 

STEP 7. If precedence, zoning, capacity and number of workstations constraints are met, 

swap tasks T1 and T2, else, go to STEP 1. 

(ii) Transfer movement 

STEP 1. Let Z be a randomly selected workstation and X the model whose idle time for 

that station has the highest deviation from the workstation average idle time 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−⋅=∆
M
S

qssX Z
mZmmZX max: . 

STEP 2. If 
M
S

s Z
ZX > , then go to STEP 3, else, go to STEP 5. 

STEP 3. Select a task not assigned to workstation Z with processing time for model X 

higher than for the other models { } ⎟
⎠
⎞

⎜
⎝
⎛ ∉∧= ZmTmXT OTttT 11 11

max: . 

STEP 4. If precedence, zoning, capacity and number of workstations constraints are met, 

transfer task T1 to workstation Z, else go to STEP 1.  

STEP 5. Select the task assigned to workstation Z with the highest processing time for 

model X { } ⎟
⎠
⎞

⎜
⎝
⎛ ∈∧= ZiXiXT OittT max:

11 . 

STEP 6. Randomly select a workstation (W) where the workload for model X is lower 

than the workstation average idle time ⎟
⎠

⎞
⎜
⎝

⎛
<

M
S

sW W
WX: . 

STEP 7. If precedence, zoning, capacity and number of workstations constraints are met, 

transfer task T1 to workstation W, else, go to STEP 1.  

As the goal in this second stage is to balance the workloads, swap movements are more 

likely to contribute towards this end (probabilities of 75% for swap and 25% for transfer 

moves are set as the default). If after a predefined number of attempts neither swap nor 

transfer movements lead to a neighbouring solution, tasks or workstations involved in 

these movements will be randomly selected to force a new neighbouring solution. 



Chapter 4: Balancing straight assembly lines  67 

Assembly line balancing – new perspectives and procedures  Ana Sofia Simaria 

4.3.3 Parameter settings 

A common annealing schedule was used for both stages of the procedure, in which the 

following control parameters were defined: 

(i) Initial temperature (T0): Computational experience showed that the values of the 

objective functions never changed by more than 10% between two neighbouring 

solutions. So, for an initial temperature of 50 it is guaranteed that at least 80% of 

the inferior solutions are accepted (for T=50, 82.050
10

==
−

ep ).  

(ii) Temperature reduction function: The geometric function with a temperature 

reduction factor of 0.9 (Ti=0.9Ti-1) was used at each stage. 

(iii) Length of each temperature level (L): A dominant factor on the computational 

effort associated with the solution of the problem is the number of tasks (N). So, in 

order to restrict the computational effort to the first order of the dominant factor, 

the number of solutions searched at each temperature level was set to ϕN, where ϕ 

is a user defined constant (ϕ=1 is the value suggested by default). 

(iv) Stopping criteria: Two alternative criteria were set. In the first one, a freezing 

temperature of 10 is set, which means that 16 temperature levels are used 

(T0ai
15=50(0.915)=10.29). In the second one, it is admitted that, if in five 

consecutive temperature levels 85% of the generated solutions are rejected, then the 

probability of replacing the best solution found is very small and the procedure is 

then terminated. 

4.3.4 Numerical illustration 

A numerical example, with the following characteristics, is used to illustrate the 

proposed procedure. 

 Two models, A and B, are simultaneously assembled on a line over a planning 

horizon of 480 t.u. (time units). The demand for each model is, respectively, 20 and 

28 units (then, the cycle time is C=10, qA=42% and qB=58%). 

 The combined precedence diagram, with 25 tasks, is depicted in Figure 4.4, where 

each node represents a task and each arc represents a precedence relation between a 

pair of tasks. 
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 The task processing times for the two models (tA and tB) are shown in Table 4.1. 

 Tasks 9 and 10 cannot be executed on the same workstation (negative zoning 

constraints). 

 Only workstations performing tasks with a processing time greater than the line 

cycle time can be replicated (MRT=C). 

 

  

Figure 4.4 – Combined precedence diagram of the numerical example 

 

The initial solution is determined by the modified version of the RPW heuristic 

described in section 4.3.1.1. The weighted average processing times )(t  and average 

positional weights (PW) of each task are also shown in Table 4.1. 

Table 4.1 – Processing times and average positional weights for the numerical example 

Task tA tB )t(  PW  Task tA tB )t(  PW 

1 0 2.0 1.2 115.4  14 1.3 0 0.5 19.7 
2 7.7 7.7 7.7 54.4  15 5.5 5.5 5.5 23.4 
3 7.3 7.3 7.3 114.2  16 1.9 2.0 2.0 44.2 
4 15.0 15.0 15.0 46.6  17 3.7 0 1.6 26.3 
5 8.8 8.8 8.8 85.3  18 9.4 9.4 9.4 33.8 
6 6.2 0 2.6 66.2  19 1.3 1.3 1.3 19.2 
7 3.6 0 1.5 15.8  20 0 9.0 5.2 14.3 
8 0 2.0 1.2 31.6  21 2.0 2.0 2.0 24.8 
9 6.6 6.6 6.6 38.9  22 4.7 4.7 4.7 13.8 

10 2.5 2.5 2.5 46.7  23 9.6 8.2 8.8 17.9 
11 5.5 5.5 5.5 61.1  24 4.1 3.7 3.9 9.1 
12 7.1 7.1 7.1 30.5  25 12.5 0 5.3 5.2 
13 5.9 5.9 5.9 55.6       
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Figure 4.5 illustrates some steps of the procedure applied to the numerical example. In 

each of the tables shown in the figure a line balancing solution is shown. To simplify the 

schema, only the workstations where changes occurred are represented in the neighbouring 

solutions. The content of each column in these tables is the following: (K) workstation 

index, (Tasks) set of tasks assigned to the workstation and (R) number of replicas of the 

workstation. The last line of each table shows the total number of operators required by the 

solution, S, and the between (Bb) and within (Bw) workstation workload balancing values. 

The initial solution requires a total of 18 operators (including operators working in 

parallel workstations). After a number of swap and transfer movements, starting from the 

initial solution, an intermediate solution is obtained. From this solution, the heuristic is 

able to reduce the number of workstations, performing the transfer procedures shown in the 

figure. The best solution found for the first stage of the heuristic indicates that 16 

workstations, including replicas, are required (for this solution Bb=0.05 and Bw=0.22). The 

best solution found in the first stage of the procedure is used as the initial solution for the 

second stage. In this stage, the number of workstations remains constant, while the 

workload balancing value (Bb+Bw) is reduced. The final solution shows an improvement of 

about 30%. 

K Tasks R S Tasks R
1 1,3 1 9 18 1
2 5 1 10 12,19 1
3 6,7 1 11 17,21 1
4 11 1 12 15 1
5 13 1 13 23 1
6 2 1 14 20 1
7 4,10,16 2 15 22,24 1
8 8,9,14 1 16 25 2

S=18; Bb=0.08; Bw =0.17

K Tasks R S Tasks R
1 1,2 1 9 8,12 1
2 3 1 10 18 1
3 4 2 11 15 1
4 5 1 12 17 1
5 6,7 1 13 14,19,21 1
6 10,11 1 14 22 1
7 13 1 15 23 1
8 9,16 1 16 20,24,25 2

S=18; Bb=0.04; Bw =0.15

K Tasks R S Tasks R
11 - 0 12 15,17 1

S=17; Bb=0.04; Bw =0.19

K Tasks R S Tasks R

13 14,19,   
21,22

1 14 - 0

S=16; Bb=0.05; Bw =0.22

K Tasks R S Tasks R
8 8,9 1 9 12,16 1

S=16; Bb=0.05; Bw =0.21

K Tasks R S Tasks R
3 6 1 5 4,7 2

S=16; Bb=0.05; Bw =0.20

K Tasks R S Tasks R
1 1,3 1 8 4,8,7 2
2 6 1 9 18 1
3 5 1 10 12,21 1
4 9 1 11 7,15 1
5 2 1 12 14,19,22 1
6 10,11 1 13 23 1
7 13,16 1 14 20,24,25 2

S=16; Bb=0.04; Bw =0.15

Initial solution Intermediate solution
Transfer

task 15 to station 12

Transfer
task 22 to station 13

1st STAGE
 BEST SOLUTION

Swap
tasks  8 and 16

Swap
tasks  4 and 6

 FINAL BEST SOLUTION

...

...

 

Figure 4.5 – Application of the SA based procedure to the numerical example 
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4.4 Genetic algorithm based approach 

Genetic algorithms and its main concepts have been previously characterised in chapter 

3. The structure of the proposed genetic algorithm based procedure to tackle the 

mixed-model assembly line balancing problem of type I is a standard one, with its main 

steps presented in Figure 4.6. The detailed application to the addressed problem is 

described in the following sections.  

4.4.1 Representation of solutions 

The encoding of solutions in the proposed procedure is of type ‘one-to-one’ 

(Falkenauer, 1998), which means that each solution is represented exactly by one 

chromosome and the decoding of each chromosome results in exactly one solution for the 

problem. A standard encoding scheme is used in which the chromosome is a string of 

length N. Each element of the chromosome represents a task and the value of each element 

represents the workstation to which the corresponding task is assigned. An example of this 

type of encoding scheme was already presented in Figure 3.6 of chapter 3. 

 

Create initial population

stop?

STOP

YES

NO

START

Create new individuals 
(crossover + mutation)

selection strategy

Form new population

replacement strategy

 

Figure 4.6 – Global structure of the genetic algorithm based approach 
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4.4.2 Initial population and fitness 

The initial population is composed by a set of individuals (or chromosomes), each of 

them representing a solution for the MALBP of type I, described in section 4.2. The 

individuals of the initial population are generated via a simple constructive heuristic, which 

uses some common priority rules in assembly line balancing problems, namely: 

 maximum processing time for all models ( { }imm
tmax ); 

 maximum average processing time – the average processing time of a task is the sum 

of the processing times of that task for each model weighted by the respective 

production share ( ∑=
m

immi tqt ); 

 maximum ranked positional weight – in a mixed-model assembly line, the positional 

weight of a task is the cumulative average task processing time associated with itself 

and its successors;  

 maximum number of direct successors – the number of direct successors of each task 

i is the number of tasks in set Suci, as defined in section 4.2; 

 maximum total number successors of the combined precedence diagram. 

Each time a task must be selected for assignment, from the set of available tasks, the 

heuristic randomly selects the priority rule to be used. As stated in the problem definition, 

a workstation capacity depends on the type of tasks that it performs. If it performs a task 

with a processing time for a model tim higher than MRT, then its capacity is
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⋅

MRT

t
C

imm
}{max

, 

otherwise is C. The heuristic also checks for positive and negative zoning constraints. 

Since the procedure chooses randomly the priority rules to be used for assigning tasks to 

workstations, it ensures that different individuals will be created. The size of the 

population is fixed during all generations and was set to 50, a typical figure used by many 

researchers (Falkenauer, 1998). 

The goal of genetic algorithms is to find the most fit individual over a set of 

generations. The fitness function is then, typically, a maximisation function. In this 

procedure, the fitness function is a combination of the objectives to achieve for the 

MALBP-I, namely, the maximisation of the weighted line efficiency (WE) and the 
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smoothing of workloads between (Bb) and within (Bw) workstations. The fitness function is 

thus computed as follows: 

wb BBWEFMaximise −−= λ  (4.21) 

The lower the number of operators and the values of functions Bb and Bw (given by 

equations (4.17) and (4.18), respectively) the higher the value of F. As WE, Bb and Bw are 

within the value range [0,1], the term λWE is dominant for λ>1, so, the procedure 

minimises the number of workstations before the secondary goals become active. 

4.4.3 Selection and genetic operators 

The selection of the individuals for mating is done using tournament, a very popular 

strategy that aims to imitate mutual competition of individuals during casual meetings, 

already described in section 3.3, with the typical value of 2 for the tournament size.  

The main genetic operator is the crossover, which has the role to combine pieces of 

information from different individuals in the population. Two parents (P1 and P2) are 

selected from the tournament list and a crossover point (cp), an integer randomly generated 

from [1, LL], is selected. The combination of P1 and P2 will produce two offspring (O1 and 

O2). To generate offspring O1 (O2), the assignment of workstations 1 to cp is copied from 

P1 (P2) and the remaining positions are copied from the assignment of workstations cp+1 

to LL from P2 (P1). Figure 4.7 illustrates a crossover, for the numerical example presented 

in section 4.3.3.  

1 1 2 7 3 4 6 9 9 4 5 10 6 9 12 6 11 8 9 14 1112 13 15 15

1 1 2 4 3 7 7 5 5 8 8 6 9 5 11 9 11 10 13 12 1313 14 15 15

P1

O1 1 1 2 7 3 4 6 4 5 6 11 6 11 10 13 12 1313 14 15 15

crossover point cp=7 

1 1 2 7 3 4 6 9 9 4 5 10 6 9 12 6 11 8 9 14 1112 13 15 15

1 1 2 4 3 7 7 5 5 8 8 6 9 5 11 9 11 10 13 12 1313 14 15 15

1 1 2 4 3 7 7 6 12 11 8 9 14 1112 13 15 15

P1

O2

P2

P2

5 5 5

 

Figure 4.7 – Generation of two offspring through crossover  
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As it is shown in Figure 4.7, although precedence constraints are verified, the crossover 

produces some tasks without any workstation associated (tasks 8, 9, 12 and 14 for O1 and 

tasks 10, 11, 13 and 16 for O2). These tasks must, therefore, be reassigned in order to 

achieve feasible individuals. Other two types of tasks must also be reassigned: (i) tasks that 

violate zoning constraints and (ii) tasks assigned to workstations with low workload (Kim 

et al, 2000). If it is possible a reassignment of these last tasks to other workstations, then 

the workstation to which they were previously assigned will disappear, reducing the total 

number of workstations. Thus, if a workstation has an average workload, given by equation 

(4.22), inferior to a minimum workload (set to C/2, by default), all of its tasks must be 

reassigned.  
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The reassignment procedure aims to allocate the tasks to workstations in such a way 

that precedence and zoning constraints are satisfied and, if possible, the number of 

workstations is reduced. For each task i to be reassigned (starting with the tasks which 

have no precedent tasks to be reassigned), the procedure computes the earliest (Ei) and the 

latest (Li) workstations to which task i can be assigned (Scholl 1999), according to the 

precedence relationships between tasks. From the range of workstations [Ei, Li] task i is 

assigned to the first one that meets the capacity and zoning constraints. When it is not 

possible to find a feasible workstation within [Ei, Li], a new workstation is opened to 

perform the task. Figure 4.8 shows an example of the reassignment procedure for the 

balancing solution corresponding to offspring O1 of Figure 4.7.  

K Tasks R WA WB
1 1,2 1 7.7 7.7
2 3 1 7.3 7.3
3 5 1 8.8 8.8
4 6,10 1 8.7 2.5
5 7,11 1 9.1 5.5
6 13 1 5.9 5.9
7 4 2 15.0 15.0
8
9
10 18 1 9.4 9.4
11 15,17 1 9.2 5.5
12 20 1 0.0 9.0
13 19,21,22 1 8.0 8.0
14 23 1 9.6 8.2
15 24,25 2 16.6 3.7

K Tasks R WA WB
1 1,2 1 7.7 7.7
2 3 1 7.3 7.3
3 5 1 8.8 8.8
4 6,10 1 8.7 2.5
5 7,11 1 9.1 5.5
6 13 1 5.9 5.9
7 4,8 2 15.0 17.0
8
9
10 18 1 9.4 9.4
11 15,17 1 9.2 5.5
12 20 1 0.0 9.0
13 19,21,22 1 8.0 8.0
14 23 1 9.6 8.2
15 24,25 2 16.6 3.7

K Tasks R WA WB
1 1,2 1 7.7 7.7
2 3 1 7.3 7.3
3 5 1 8.8 8.8
4 6,10 1 8.7 2.5
5 7,11 1 9.1 5.5
6 13 1 5.9 5.9
7 4,8 2 15.0 17.0
8 9 1 6.6 6.6
9
10 18 1 9.4 9.4
11 15,17 1 9.2 5.5
12 20 1 0.0 9.0
13 19,21,22 1 8.0 8.0
14 23 1 9.6 8.2
15 24,25 2 16.6 3.7

K Tasks R WA WB
1 1,2 1 7.7 7.7
2 3 1 7.3 7.3
3 5 1 8.8 8.8
4 6,10 1 8.7 2.5
5 7,11 1 9.1 5.5
6 13 1 5.9 5.9
7 4,8 2 15.0 17.0
8 9 1 6.6 6.6
9 12 1 7.1 7.1
10 18 1 9.4 9.4
11 15,17 1 9.2 5.5
12 20 1 0.0 9.0
13 19,21,22 1 8.0 8.0
14 23 1 9.6 8.2
15 24,25 2 16.6 3.7

K Tasks R WA WB
1 1,2 1 7.7 7.7
2 3 1 7.3 7.3
3 5 1 8.8 8.8
4 6,10 1 8.7 2.5
5 7,11 1 9.1 5.5
6 13 1 5.9 5.9
7 4,8 2 15.0 17.0
8 9,14 1 7.9 6.6
9 12 1 7.1 7.1
10 18 1 9.4 9.4
11 15,17 1 9.2 5.5
12 20 1 0.0 9.0
13 19,21,22 1 8.0 8.0
14 23 1 9.6 8.2
15 24,25 2 16.6 3.7

task 8: E8=7; L8=11
assigned to station 7

task 9: E9=3; L9=11
assigned to station 8

task 12: E12=8; L12=11
assigned to station 9

task 14: E14=8; L14=13
assigned to station 8

Tasks to reassign:
8, 9, 12, 14

 

Figure 4.8 – An application of the reassignment procedure 
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A mutation operator, which randomly disturbs genetic information, performing small 

changes in a single parent in order to produce a new offspring, is also included. 

Considering the structure of the problem and the encoding of solutions, the most adequate 

mutation operator is the one used by Kim et al (1996, 2000). This operator was adapted to 

the characteristics of the addressed problem and it works as follows. A parent is selected to 

undergo mutation, according to a mutation probability, and a small set of tasks is randomly 

selected. These tasks will be reassigned applying the reassignment procedure earlier 

described and a new offspring is created. The mutation probability is set by default to 0.02, 

a typical value used in this technique (Leu et al, 1994, Sabuncuoglu et al, 2000) and the 

number of tasks involved in mutation is, at maximum, 10% of the total number of tasks in 

the combined precedence diagram. 

The replacement strategy determines which individuals stay in the population and which 

are replaced and it takes into account the fitness value of the individuals. Comparing each 

offspring with one of its parents, the offspring always replace the parent except when the 

fitness value of the offspring is lower than the worst fitness value of the individuals in the 

previous generations – in this case, the probability of the parent to continue in the 

population is set to a high value (0.8 by default). In order to always keep the best 

individual found so far, the individual in the new population with the lowest fitness is 

replaced by the individual from the previous generation with the highest fitness. 

4.4.4 Stopping criteria 

To determine the stopping criteria of the procedure, a simple convergence study was 

performed for each of the tested problems. Figure 4.9 shows the variation of the fitness 

function (setting λ=10) in five runs of two test problems, one with 25 tasks and two models 

and another with 70 tasks and three models. The leap from the lower level to the upper 

level is due to the reduction of the number of operators in the best balancing solution. 

Further increases are due to the improvement in the workload balance. The value of the 

fitness function remained unchanged after the 20th and 90th iterations (populations of 

individuals) for the first and second problems, respectively. Before this scenario the 

decision was to select over-engineered parameters, meaning that a greater amount of time 
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will be spent running the procedure ensuring that a good solution is found, instead of 

spending a smaller amount of time at a cost of the solution quality. 

A trade-off between convergence and execution time is defined as the stopping 

criterion. This is a popular criterion used in GA based approaches (Leu et al, 1994). The 

procedure will stop when one of the following conditions is achieved: 

(i) the fitness function of the best solution does not improve more than 1% after a 

pre-determined number of consecutive iterations (this value is set to 50 by default); 

(ii) the total number of iterations exceeds a maximum number (200 is the value set by 

default). 
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Figure 4.9 – Variation of the fitness function in GA for two test problems 
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4.5 Ant colony optimisation based approach 

The ant colony optimisation (ACO) based approach developed to address the MALBP-I 

was named ANTBAL. The initial version of ANTBAL showed a bad performance, so a 

modification was implemented in order to correct the observed problems. In the next 

section the initial version of ANTBAL will be described and in section 4.5.2 the 

modifications made to improve it will be reported. 

4.5.1 Initial version of ANTBAL 

The outline of the initial version of ANTBAL is shown in Figure 4.10. 

Create new sub-colony

Release new ant

Ant builds 
sequence of tasks

Obtain balancing solution

Update best solution

Deposit pheromone

Have all ants built
 a sequence?

Have all sub-
colonies been 

created?

START

STOP
YES

NO YES

NO

Compute solution 
quality measures

 

Figure 4.10 – Outline of the first version of ANTBAL 

In ANTBAL, the mission of an ant is to analyse the precedence diagram of the tasks 

required to assemble a given product and build a sequence according to which the tasks 

will be performed. After the sequence of tasks is completed, a procedure is applied in order 

to turn the sequence into a feasible balancing solution, taking into account the problem’s 
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capacity and zoning constraints. For each solution obtained, quality measures are 

computed, according to the defined goals. 

In each sub-colony there are NA ants. After all ants of a sub-colony have generated a 

solution, they release an amount of pheromone according to its solution quality. 

Pheromone trails are kept in a matrix task×task. If task j is selected to join the sequence 

immediately after task i, then an amount of pheromone is released between task i and task 

j. This way, pheromone trails exist in the paths that ants used to build the whole sequence.  

The procedure is repeated for every sub-colony within the ant colony. The best solution 

found by the procedure is updated after each sub-colony iteration. In the following sections 

the main features of ANTBAL will be described in more detail. 

4.5.1.1 How does an ant build a sequence of tasks? 

The sequence of tasks must be feasible in terms of the precedence constraints, so it is 

built according to the combined precedence diagram. Each ant has access to a list of 

available tasks that it can choose from to include in the sequence. A task is considered 

available if it has no predecessors or if all its predecessors are already in the task sequence. 

The probability of selecting a task, from the list of available tasks, is a function of the 

pheromone trail intensity between the previously selected task and each available task and 

each available task’s heuristic information.  

ACO algorithms are based on the behaviour of real ants but they also provide artificial 

ants with additional skills that make them more effective. For example, to address the 

travelling salesman problem, the selection of the cities of the tour uses both pheromone 

trails and the known distance between the cities, additional information that a real ant 

would not own. In assembly line balancing problems the additional information about the 

problem, called heuristic information, is usually given by priority rules. 

When the ants of a sub-colony are generated, different priority rules are assigned to 

them. This way, while an ant is building its sequence, the heuristic information of a task is 

simply the priority rule value known by the ant. The procedure uses the priority rules also 

used in the genetic algorithms based procedure, namely: (i) maximum processing time for 

all models, (ii) maximum average processing time, (iii) maximum ranked positional 
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weight, (iv) maximum number of direct successors and (v) maximum total number of 

successors. 

The probability with which an ant n selects task j after it had selected task i is given by: 
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where ),( jiτ is the pheromone trail intensity in the path ‘selecting task j after selecting task 

i’, jη  is the heuristic information of task j (i.e., the priority rule value for task j), 
n

iA is the 

set of available tasks for ant n after the selection of task i and α and β are parameters that 

determine the relative importance of pheromone intensity versus heuristic information. At 

each iteration, a random number is generated and a task is selected according to its 

probability. 

4.5.1.2 Procedure to obtain a balancing solution 

When a sequence of tasks is completed, it is necessary to convert it into a feasible 

balancing solution. Tasks are assigned to workstations exactly by their order in the 

sequence. The proposed procedure, whose structure is shown in Figure 4.11, allows the 

generation of solutions to the MALBP-I with the characteristics described in section 4.2. 

A task is assigned to a workstation if and only if the resulting assignment verifies both 

zoning and capacity constraints, as the precedence constraints are guaranteed by the 

sequence already built by the ant. If a problem has positive zoning constraints the tasks that 

need to be allocated to the same workstation are merged previously and treated as only one 

task. This is done in the precedence diagram, prior to the start of ANTBAL. Negative 

zoning constraints are handled while building the balancing solution, as we can see in 

Figure 4.11. If a task is to be assigned in a workstation where there is already a task with 

which it is incompatible, then, the current workstation is closed and the task is assigned to 

a new workstation.  

When assigning a task from the sequence built by the ant, capacity constraints, as 

described in by equations (4.8), (4.9) and (4.10)  are taken into account. If the assignment 

of the task violates capacity constraints, then, the task is not assigned to the current 



Chapter 4: Balancing straight assembly lines  79 

Assembly line balancing – new perspectives and procedures  Ana Sofia Simaria 

workstation and a new one is opened. When all tasks in the sequence have been assigned to 

workstations, the balancing solution is completed and solution quality measures are 

computed, as described in the following section. 

 

First task
in sequence

Open workstation

Assign task 
to current workstation

Have all tasks 
been assigned?

START

STOP

YES

NO YES

NOVerify capacity 
constraints?

Verify zoning 
constraints?

YES

NO
Next task

in sequence

 

Figure 4.11 – Procedure to convert a sequence of tasks into a balancing solution 

4.5.1.3 Solution quality  

The objective function used in ANTBAL is the one of the mathematical programming 

model presented in Figure 4.2, i.e., the maximisation of Z=λWE-Bb-Bw. The selection of 

this particular expression was due to the fact that, typically, in ACO approaches, the 

amount of pheromone released by the ants depends on the quality of the corresponding 

solution. In order to ease the pheromone amount calculation process, it was decided to use 

exactly the same value of the objective function. This way, the criterion had to be 

maximisation, because, the better the solution, the higher the pheromone trail. Also, the 

range of values of Z would not depend on the problem instance. 
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4.5.1.4 Pheromone release strategy 

The pheromone release strategy is based on the one used by Dorigo et al (1996). At the 

beginning of the procedure, an initial amount of pheromone (τ0) is released in every path, 

i.e., between every pair of tasks. At the end of each sub-colony iteration, all balancing 

solutions provided by the ants have their objective function values computed. It is at this 

point that the pheromone trail intensity is updated. First, a portion of the existing 

pheromone value is evaporated in all paths, according to: 

),(),( )1( jiji τρτ ⋅−←  (4.24) 

where ρ is the evaporation coefficient (0 ≤ ρ ≤ 1). Then, each ant n releases an amount of 

pheromone in the paths used to build the task sequence, according to the corresponding 

balancing solution quality. This amount of pheromone is given by: 
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The overall pheromone update effect of all ants in each path (i,j) is then: 

∑
=

∆+←
AN

n
ji

n
jiji

1
),(),(),( τττ  (4.26) 

 

4.5.2 Modifications of ANTBAL 

4.5.2.1 Problems with the initial version of ANTBAL 

To test the performance of ANTBAL, a set of instances of MALBP-I was solved and 

the results were compared with the results already obtained using the simulated annealing 

procedure, described in section 4.3. The results showed that the number of operators of the 

solutions obtained with ANTBAL was, for almost every instance, higher that the ones 

obtained using the simulated annealing procedure, which indicated a very bad performance 

of ANTBAL. In order to understand the causes of this performance, an analysis to the 

algorithm was made and, rapidly, the reasons were found. 
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The problem with ANTBAL was the fact that many workstations would have 

unnecessary idle time, in order to preserve, in the balancing solution, the sequence built by 

the ants. If a task did not fit the current workstation, the procedure would close the current 

workstation and open a new one to assign that task. The procedure did not allow other 

tasks, forward in the sequence, to be assigned to the current workstation, even if they 

would verify the capacity constraints. An illustration of such a situation is presented in 

Figure 4.12. 

 

 

Figure 4.12 – Problems with the initial version of ANTBAL 

 

The existence of a rigid task sequence to keep was providing very bad balancing 

solutions, so, to tackle this problem, the role of the ants was modified, as it is explained in 

the following section.  

4.5.2.2 New role of the ants 

Instead of just making a sequence of tasks, the new role of the ants is to build a 

complete balancing solution. The structure of modified version of ANTBAL is presented 

in Figure 4.13. 

Each ant in the sub-colony builds a feasible balancing solution, i.e., an assignment of 

tasks to workstations that satisfies precedence, zoning and capacity constraints. For each 

feasible solution obtained, a measure of its quality is computed, according to the problem’s 

objective function.  
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Figure 4.13 – Outline of the modified version of ANTBAL 

 

4.5.2.3 New pheromone release strategy 

After all ants of a sub-colony have generated a solution, they release a certain amount of 

pheromone according to the quality of the solution. The characteristic of a balancing 

solution that make it better or worse than another is the assignment of tasks to 

workstations. In straight assembly lines, the sequence in which tasks are performed within 

a workstation is not relevant, as long as it meets precedence constraints. So, for this 

particular problem, it was considered more adequate to keep pheromone trails in the 

assignment of tasks to workstations than between consecutive tasks.  

In the new version of ANTBAL pheromone trails are kept in a matrix workstation×task: 

if task j is assigned to workstation i, then a certain amount of pheromone is released 

between workstation i and task j. An initial amount of pheromone (τ0) is released in every 

path, i.e., between every pair workstation-task. At the end of each sub-colony iteration, the 

pheromone trail intensity is updated. First, a portion of the existing pheromone value is 

evaporated in all paths, according to: 
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),(),( )1( jiji τρτ ⋅−←  (4.27) 

where ρ is the evaporation coefficient (0 ≤ ρ ≤ 1). Then, each ant n releases an amount of 

pheromone in the assignments of tasks to workstation that it has made, according to the 

corresponding balancing solution quality. This amount of pheromone is given by: 
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The total pheromone level in the assignment of task j to workstation i (τij)  is then:  
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4.5.2.4 Building a balancing solution 

The procedure carried out by each ant to build a feasible balancing solution is depicted 

in Figure 4.14. An ant begins by determining the available tasks for assignment to the 

current workstation, taking into account the problems constraints (precedence, zoning and 

capacity). Then, from the set of available tasks, selects one of these tasks. When there are 

no available tasks to assign to the current workstation, a new workstation is opened. This 

procedure is repeated until all the tasks have been assigned. 

The procedure for selecting a task for assignment was also modified, in order to better 

guide the search of the solution space. The probability of a task being selected, from the set 

of available tasks, is a function of (i) the pheromone trail intensity between the current 

workstation and each available task and (ii) the information provided by the heuristic for 

each available task. This information is a priority rule that is randomly assigned to each ant 

when the respective sub-colony is generated. The procedure uses the same static priority 

rules of the initial version and a new dynamic called ‘last task becoming available’, 

especially developed for this algorithm and which deals with the work relatedness issue. 

Related tasks are directly connected in the precedence diagram and a common procedure 

used by assembly line managers is to assign them to the same workstations, in order to 

improve work efficiency. Therefore, this rule aims to favour the assignment of the direct 



Chapter 4: Balancing straight assembly lines  84 

Assembly line balancing – new perspectives and procedures  Ana Sofia Simaria 

successors of a task immediately after that task has been assigned, by attributing them the 

highest priority value in the subsequent assignment iteration.  

Open workstation

Select task for 
assignment

Have all tasks 
been assigned?

START

STOP
NO YES

Are there available 
tasks?

YES

NO

Determine 
available tasks

 

Figure 4.14 – Procedure carried out by an ant to build a feasible solution 

 

The values of the priority rules will vary between 1 for the task with lowest priority and 

N (number of tasks) for the task with highest priority, and will be the heuristic information 

used by the ants to select the tasks.  

Let r be a random number between 0 and 1 and r1, r2 and r3 three user-defined 

parameters such that 1,,0 321 ≤≤ rrr  and 1321 =++ rrr . An ant n will select task j to be 

assigned to the current workstation i by applying the following rule: 
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where ),( jiτ is the pheromone trail intensity in the path ‘assigning task j to workstation i’, 

jη  is the heuristic information of task j (i.e., the priority rule value for task j), n
iA is the set 

of available tasks for ant n in workstation i and α and β are parameters that determine the 

relative importance of pheromone intensity versus heuristic information.  

The selection of a task from the set of available tasks is performed by one of three 

strategies:  

 Exploitation: it determines the selection of the best task according to the values of 
β

j
α

(i,j) ητ ][][ . 

 Biased exploration:  a task is selected with a probability of p(i,j) as given by J2 in 

equation  (4.30). 

 Random selection: from the set of available tasks, the ant selects one at random. 

The first two strategies are based on the Ant Colony System state transition rule 

proposed by Dorigo and Gambardella (1997). After the task is selected, the ant assigns it to 

the current workstation. When all tasks have been assigned to workstations, the balancing 

solution is completed and solution quality measures are computed, as described in the 

initial version. 

4.5.2.5 Parameter settings 

The following values of the numeric parameters used in ANTBAL were obtained by a 

set of experimental tests: 

 Initial pheromone level: According to Dorigo and Gambardella (1997) a rough 

approximation of the optimal value of the objective function is a reasonable value for 

τ0. A perfectly balanced line would have an efficiency of 100% (setting λ=10, 

λWE=10) and equally distributed workloads (Bb=0 and Bw=0). Considering that such 

a situation would hardly occur in a real-world assembly line, the value of τ0 is set, by 

default, to 9.0. 

 Pheromone evaporation coefficient: ρ = 0.2. 

  Relative importance of pheromone intensity versus heuristic information: α=0.2, 

β=1.0 (it was observed that higher values of α lead to premature convergence of the 

algorithm). 
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 Task selection strategy: r1=0.6, r2=0.3, r3=0.1. 

To determine the total number of iterations of the algorithm, a simple convergence 

study was carried out for each of the tested problems. Figure 4.15 shows the variation of 

the objective function value of the best solution in five runs of two test problems. The 

value of the objective function did not improve after the 150th and 120th sub-colonies for 

the first and second problems, respectively. Before this scenario, and to ensure a good 

solution is found, ANTBAL will have 200 sub-colonies with 50 ants each. 
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Figure 4.15 – Variation of the objective function in ANTBAL for two test problems 
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4.6 Addressing the problem of type II  

Assembly line balancing problems of type II deal with the maximisation of the 

production rate of an existing assembly line, i.e., the goal is to minimise the cycle time of 

the line for a given number of operators. While type I problems are more frequently used 

in the design of a new assembly line for which the demand can be easily forecasted and 

consequently, the production rate, has to be pre-specified, problems of type II are applied 

when, for example, changes in the assembly process or in the product range require the line 

to be redesigned.  

The research work on the assembly line balancing problem of type II has been devoted, 

almost exclusively, to single-model lines. 

Some of the methods proposed to solve the single-model version of the assembly line 

balancing problem of type II (SALBP-II) explore the duality relationship between type I 

and type II problems, and a solution for the SALBP-II is found by iteratively solving type I 

problems for several trial cycle times, in order to check if a feasible assignment of a 

pre-determined number of workstations exists. Heuristic procedures that use this strategy 

are proposed by, for example, Hackman et al (1989), Rachamadugu and Talbot (1991) and 

Scholl and Voβ (1996). 

Meta-heuristics have also been proposed to solve the SALBP-II. Genetic algorithms are 

used by Anderson and Ferris (1994) and Kim et al (1998), both aiming to smooth the 

workload between the specified number of workstations and hence minimise the cycle 

time. Scholl and Voβ (1996) developed a taboo search procedure with the goal of 

improving an initial feasible solution through shift and swap movements.  

Klein and Scholl (1996) propose SALOME-2, an optimising approach based on the 

branch-and-bound method, which directly solves the SALBP-II. 

Liu et al (2003) propose two bi-directional heuristic procedures to minimise both cycle 

time and the mean absolute deviation of workloads, but only for single-model assembly 

lines. 
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4.6.1 First approach 

The first approach developed to address the mixed-model assembly line balancing 

problem of type II (MALBP-II) is outlined in Figure 4.16. It iteratively solves problems of 

type I for different cycle times. It starts by computing a lower bound for the value of the 

cycle time and then it uses this value to solve a problem of type I, using an appropriate 

procedure, as the ones described in sections 4.3, 4.4 and 4.5.  

 

feasible 
solution?

STOP

YES

NO

START
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Figure 4.16 – First approach to address MALBP-II 

 

A straightforward lower bound for the cycle time in a MALBP-II can be computed from 

the ratio between the sum of the task processing times and the pre-defined number of 

operators. But, for the problem described in section 4.2, this lower bound can be fine-tuned 

taking into account the value of MRT. As no task with a processing time higher than MRT 

can be processed in a non-replicated workstation, MRT can improve the lower bound for 

the cycle time defined above. So the lower bound for the cycle time is given by: 
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 (4.31) 

If the total number of operators derived from solving the MALBP-I is greater than the 

preset number of operators for the original MALBP-II problem (i.e., if it is a non-feasible 

solution), the cycle time is increased by a problem specific increasing unit and another 

MALBP-I is solved. This procedure continues until a solution with the preset number of 
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operators, S, is found. An application of the genetic algorithm based procedure to solve the 

MALBP-II was presented in Simaria and Vilarinho (2004).  

4.6.2 Second approach 

Although the computational experiments to test the performance of this approach 

provided good results, it was observed that, in some cases, the value of the cycle time 

could still be improved. As the approach would stop when the pre-specified number of 

operators was reach it did not attempt to improve solutions with the same number of 

operators. This way, a second approach to address the MALBP-II was developed. It adds 

to the first approach a simulated annealing (SA) smoothing procedure that aims to perform 

swapping and transferring of tasks between workstations, in order to try to decrease the 

cycle time of the line configuration. The outline of this procedure is presented in Figure 

4.17. 
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Figure 4.17 – SA smoothing procedure for the MALBP-II 

 

The initial solution of the SA procedure is the best solution obtained by the first 

approach, which iteratively solves problems of type I until a solution with the required 

number of operators is obtained. The objective function to minimise is the real cycle time 

of the line, i.e., the maximum workload observed among the workstations, given by:   
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where Wkm is the workload of workstation k due to model m and Rk is the number of 

replicas of workstation k. 

A neighbouring solution can be obtained by one of the following actions: 

 Random swap: two tasks are randomly selected and their positions are swapped. 

 Random transfer: one task is randomly selected and transferred to a randomly 

selected workstation. 

 ‘Intelligent’ swap: selects one task from the workstation with maximum workload 

and swaps it with another task with inferior processing time. 

 ‘Intelligent’ transfer: selects one task from the workstation with maximum workload 

and transfers it to another workstation. 

‘Intelligent’ movements are more likely to contribute to the goal of the procedure, so, 

higher probabilities should be set to this type of actions. However, if after a predefined 

number of attempts neither ‘intelligent’ swap or transfer movements lead to a neighbouring 

solution, due to the constraints of the problem, random movements will be performed. 

The annealing schedule defined for this procedure is similar to the one described in 

section 4.3, as the characteristics of the addressed problems are similar. 

4.7 Computational experience 

4.7.1 Type I 

The procedures described in this chapter were coded in C and run on a 2.8 GHz Pentium 

4 computer. The performance of the three meta-heuristic approaches was compared using a 

set of 20 mixed-model assembly line balancing problems with parallel workstations and 

zoning constraints, whose main characteristics are presented in Table 4.2, namely, the 

number of tasks of the combined precedence (N), the number of models (M), the sum of 

task times (in time units, t.u.) for each model (Sum ti) and the production share of each 

model (qm).  
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Table 4.2 – Main characteristics of the MALBP data set with typical task times 

   1st model 2nd model 3rd model 
Problem N M Sum ti qm Sum ti qm Sum ti qm 

1 8 2 35.8 0.42 33.1 0.58 - - 
2 8 3 34.5 0.33 47.0 0.50 53.1 0.17 
3 11 2 60.3 0.42 42.0 0.58 - - 
4 11 3 46.0 0.33 57.3 0.50 57.3 0.17 
5 21 2 130.1 0.42 106.0 0.58 - - 
6 21 3 116.2 0.33 119.6 0.50 124.8 0.17 
7 25 2 132.2 0.42 116.2 0.58 - - 
8 25 3 114.8 0.33 126.8 0.50 127.4 0.17 
9 28 2 176.9 0.42 185.0 0.58 - - 

10 28 3 162.5 0.33 166.6 0.50 173.4 0.17 
11 30 2 140.9 0.42 139.9 0.58 - - 
12 30 3 164.8 0.33 157.2 0.50 169.0 0.17 
13 32 2 135.5 0.42 155.0 0.58 - - 
14 32 3 160.9 0.33 147.0 0.50 161.0 0.17 
15 35 2 193.6 0.42 190.8 0.58 - - 
16 35 3 200.0 0.33 206.2 0.50 208.6 0.17 
17 45 2 221.8 0.42 210.4 0.58 - - 
18 45 3 230.0 0.33 235.3 0.50 212.0 0.17 
19 70 2 372.8 0.42 389.8 0.58 - - 
20 70 3 375.8 0.33 384.3 0.50 376.6 0.17 

 

The precedence diagrams used for the test problems were taken from Scholl (1993), 

except for problems 7 and 8, where the one shown in Figure 4.4 was used. The task 

processing times for each problem were randomly generated taking into account the 

different task types that might be present in a real world mixed-model assembly process, in 

which the processing time of a task may vary from model to model but within certain 

limits. They will be called ‘typical’ task times. Considering tim the processing time of task i 

for model m and C the cycle time of the line, the generation of the task processing times 

uses the following rules: 

(i) Task i is 

− performed in the first model (m=1) with ti1>0, which can be higher, equal or lower 

than C or 

− not performed for the first model (ti1=0). 

(ii) The processing time of task i for the other models is 
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− equal to ti1, 

− higher or lower than ti1 within pre-specified limits ((1-δ)ti1≤tim≤(1+δ) ti1, 0≤δ≤1) or 

− null. 

For every problem of type I, a cycle time of 10 t.u. was considered. The full details of 

the test problems are provided in Appendix 2.  

The test problems were solved using the three proposed procedures: simulated 

annealing (SA), genetic algorithms (GA) and the ant colony optimisation algorithm 

(ANTBAL). For this set of problems the number of operators (S) of the solutions provided 

by each procedure was compared with the lower bound of the total number of operators 

(LBpmix), especially developed for this type of problems and whose details are presented in 

Appendix 3. The values shown in Table 4.3 are the best of ten runs, however the observed 

variance of the results was nearly null.  

Table 4.3 – Computational results for the MALBP-I data set 

   SA GA ANTBAL Best 
Problem Opt LBpmix S D(%) S D(%) S D(%) WE (%) 

1 4 4 4 0 4 0 4 0 85.6 

2 8 6 8 0 8 0 8 0 54.9 

3 7 7 7 0 7 0 7 0 71.0 

4 7 6 7 0 7 0 7 0 76.5 

5 - 14 16 14.3 16 14.3 16 14.3 72.6 

6 - 13 15 15.4 15 15.4 15 15.4 79.6 

7 - 14 16 14.3 16 14.3 16 14.3 76.8 

8 - 14 15 7.1 14 0 14 0 87.9 

9 - 19 21 10.5 20 5.3 20 5.3 90.8 

10 - 18 20 11.1 20 11.1 20 11.1 83.2 

11 - 15 16 6.7 16 6.7 16 6.7 86.6 

12 - 17 19 11.8 19 11.8 19 11.8 83.4 

13 - 16 19 18.8 19 18.8 19 18.8 77.3 

14 - 17 19 11.8 19 11.8 19 11.8 81.0 

15 - 20 24 20.0 23 15.0 23 15.0 83.5 

16 - 21 24 14.3 24 14.3 24 14.3 85.2 

17 - 23 25 8.7 24 4.3 24 8.7 85.4 

18 - 24 28 16.7 27 12.5 26 8.3 84.4 

19 - 41 44 7.3 43 4.9 43 4.9 87.0 

20 - 39 44 12.8 44 12.8 44 12.8 86.0 
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For problems 1 to 4 the optimal solution is known – it was obtained by solving the 

mathematical programming model using the CPLEX (1999) optimiser. The difference 

between the solutions obtained by each procedure and the lower bound (or the optimal 

solution) is depicted in the correspondent column D(%) and it is computed as follows: 

100(%) ×
−

=
pmix

pmix

LB
LBS

D  (4.33) 

Some conclusions can be drawn from the results of this experience. Considering the 

number of total operators, GA and ANTBAL outperformed the SA procedure. They 

improved the solution in five problem instances (problems 8, 15, 17, 18 and 19), reaching 

the lower bound in problem 8, thus guaranteeing the optimum. ANTBAL improved the 

solution provided by GA in problem 18. While the GA procedure found a minimum of 27 

operators, ANTBAL was able to find a line configuration with 26 operators. So, ANTBAL 

was the best procedure for this computational experience. The worst performance of this 

heuristic was for problem 13, where the difference between the best solution obtained and 

the lower bound is 18.8%. However, as the calculation of the lower bound does not take 

into account the precedence and zoning constraints, one is lead to consider that the results 

are fairly good. This conclusion is reinforced by the values for the line efficiency shown in 

column WE(%), where a high line usage rate can be perceived, particularly for the largest 

sized problems.  

Considering the average computational time, all procedures are similar for small and 

medium sized problems. For large sized problems GA and ANTBAL are slower than SA. 

This is explained by the fact that the number of solutions generated by these in each 

iteration is much higher that in the SA procedure. However, the maximum computational 

time was around 2 minutes, a perfectly acceptable value, considering the strategic nature of 

the problem under analysis. 

Another set of computational experiments was conducted using the MALBP data set but 

with different task processing times. The task times used for this experience were 

randomly generated. In order to allow the creation of parallel workstations with a 

minimum replication time of MRT=C, each task processing time was randomly generated 

between the limits [0,2C], where C is 10 t.u.. Table 4.4 presents the values of the sum of 



Chapter 4: Balancing straight assembly lines  94 

Assembly line balancing – new perspectives and procedures  Ana Sofia Simaria 

task times and production share per model for each problem instance. The full details are 

provided in Appendix 2. 

Table 4.4 – MALBP data set with random processing times 

   1st model 2nd model 3rd model 
Problem N M Sum ti qm Sum ti qm Sum ti qm 

1 8 2 66.9 0.42 96.5 0.58 - - 
2 8 3 69.0 0.33 58.8 0.50 56.1 0.17 
3 11 2 59.0 0.42 85.9 0.58 - - 
4 11 3 83.3 0.33 85.9 0.50 120.4 0.17 
5 21 2 220.7 0.42 167.6 0.58 - - 
6 21 3 250.4 0.33 176.4 0.50 147.0 0.17 
7 25 2 296.1 0.42 257.0 0.58 - - 
8 25 3 283.9 0.33 277.9 0.50 192.3 0.17 
9 28 2 284.5 0.42 267.0 0.58 - - 

10 28 3 248.1 0.33 262.9 0.50 257.6 0.17 
11 30 2 303.2 0.42 269.9 0.58 - - 
12 30 3 302.0 0.33 312.3 0.50 342.3 0.17 
13 32 2 299.7 0.42 341.1 0.58 - - 
14 32 3 296.3 0.33 342.2 0.50 343.6 0.17 
15 35 2 343.9 0.42 358.7 0.58 - - 
16 35 3 291.8 0.33 350.9 0.50 395.4 0.17 
17 45 2 423.8 0.42 485.7 0.58 - - 
18 45 3 489.8 0.33 508.3 0.50 470.8 0.17 
19 70 2 683.3 0.42 643.3 0.58 - - 
20 70 3 705.0 0.33 638.2 0.50 750.1 0.17 

Once again the test problems were solved using the three meta-heuristic based 

procedures and the best results of ten runs, for each procedure and problem instance, are 

presented in Table 4.5. The outcome of this experiment confirmed the conclusions of the 

previous one. For five problems both GA and ANTBAL improved the SA solutions in one 

or more operators (for problem 20 the improvement was of six operators). Comparing GA 

with ANTBAL, the following comments can be made: 

(i) For one instance (problem 4) GA equalised the solution of SA while ANTBAL was 

able to improve it. 

(ii) For one instance (problem 19) ANTBAL equalised the solution of SA while GA was 

able to improve it. 
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(iii) For one instance (problem 16) GA improved the solution of SA and ANTBAL 

improved the solution of GA. 

Table 4.5 – Computational results for the MALBP-I data set with random times 

   SA GA ANTBAL Best 
Problem LBpmix  S D(%) S D(%) S D(%) WE (%) 

1 11  11 0.0 11 0.0 11 0.0 76.4 

2 7  11 57.1 11 57.1 11 57.1 56.1 

3 9  11 22.2 11 22.2 11 22.2 67.8 

4 14  17 21.4 17 21.4 16 14.3 56.8 

5 26  29 11.5 29 11.5 29 11.5 65.5 

6 28  35 25.0 35 25.0 35 25.0 55.9 

7 34  40 17.6 40 17.6 40 17.6 68.4 

8 36  40 11.1 40 11.1 40 11.1 66.3 

9 30  37 23.3 35 16.7 35 16.7 78.4 

10 28  34 21.4 34 21.4 34 21.4 75.6 

11 36  39 8.3 38 5.6 38 5.6 74.7 

12 40  50 25.0 50 25.0 50 25.0 62.8 

13 35  50 42.9 50 42.9 50 42.9 64.7 

14 36  54 50.0 54 50.0 54 50.0 60.6 

15 38  47 23.7 47 23.7 47 23.7 75.0 

16 41  54 31.7 53 29.3 52 26.8 65.2 

17 50  60 20.0 59 18.0 59 18.0 77.9 

18 56  78 39.3 78 39.3 78 39.3 63.6 

19 69  89 29.0 88 27.5 89 29.0 75.0 

20 80  110 37.5 104 30.0 104 30.0 65.3 

 

The best efficiency values (WE) were considerably lower than the one obtained in the 

first computational experiment. This is explained by the nature of the task processing times 

of the problem instances. While in the first data set there was a high number of short tasks 

(when compared with the value of the cycle time), which allowed a better combination of 

tasks within the workstations, in the second data set the generation of task times was 

completely random, making it high the number of long tasks. When building a balancing 

solution, the procedures create the workstations with high idle times, as it is more difficult 

to combine tasks. Idle times cause low efficiency of the assembly line. 

To extend the computational experience, a series of comparative tests were carried out 

by adapting the three procedures to the conditions under which the benchmark problems 
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proposed by Scholl (1993) were originally set. The number of tasks of the problems from 

this data set ranges from 25 to 297. Scholl’s test problems are for single-model balancing 

problems without parallel workstations, so the heuristics were run setting MRT to a value 

higher than the longest task processing time, in order to prevent from the creation of 

parallel workstations. For the 168 instances analysed the optimal solution is known for 

166. Table 4.6 summarises the number of optimal solutions obtained by each procedure 

and the maximum deviation from the optimal solution. 

Table 4.6 – Number of optimal solutions and maximum deviation obtained for Scholl’s data set 

 SA GA ANTBAL 
Number of optimal solutions 73 97 97 

Maximum deviation from optimal 14% 14% 14% 
 

ANTBAL and GA clearly outperformed the SA procedure, considering the number of 

optimal solutions found for this data set. However, for all the procedures the maximum 

deviation from the optimal solutions was only 14% and it occurred in the same problem 

instance: the optimal solution had 7 operators and the best solution obtained by the three 

procedures had 8 operators. The performance of ANTBAL and GA was similar as both 

procedures provided solutions with the same number of operators for every problem 

instance. 

This set of computational experiments showed that the overall performance of 

ANTBAL and GA is superior to the SA heuristic. The results of ANTBAL were slightly 

better than GA’s results for the two MALBP-I data sets. 

4.7.2 Type II 

The set of computational experiments to address the balancing problem of type II, in 

which the goal is to minimise the cycle time of the assembly line for a given number of 

operators, consisted in using the GA and ANTBAL procedures (the best procedures to 

address type I, according to the results of the computational experience of the previous 

section) within the framework proposed in Figure 4.16. With this method, the problem of 

type I is iteratively solved for different values of the cycle time. Starting with a lower 
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bound for the cycle time, its value is successively increased until a feasible solution is 

achieved, i.e., a solution with the pre-specified number of operators. Then the SA 

smoothing procedure was applied in order to try to improve the cycle time values of the 

balancing solutions. 

Problems 7, 8, 9, 10, 11, 17, 18 and 19 of the set of the problems with the characteristics 

described in Table 4.2 were used in this computational experience. For each of them, 

different values of the minimum replication time (MRT) and the total number of operators 

(S) were given as input. Table 4.7 presents the results of this experience, for each problem 

instance, in which the values of the cycle time are the best of ten runs. Columns ‘SA 

imp(%)’ show the average improvement of the SA smoothing procedure and the best 

values of the cycle time are compared with the lower bound, computed by equation (4.31). 

The deviation from the lower bound (LB) is shown in column ‘D(%)’ and the weighted 

efficiency of the best solution for each problem instance is given in the last column. 

According to the results of the computational experience one can state that the 

performance of both GA and ANTBAL procedures was similar, when addressing this set 

of MALBP-II problem instances, being GA slightly superior to ANTBAL considering the 

minimisation of the cycle time. 

The values of the average improvement of the cycle time after running the SA 

smoothing procedure were very low, which means that the iterative approach itself is a 

good way to tackle type II problems. Nevertheless, it may be useful to perform small 

changes in the resulting solutions, through swap or transfer movements, in order to better 

level the workloads among workstations. 
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Table 4.7 – Computational results for the MALBP-II data set 

       GA ANTBAL  

Problem N M S MRT LB  C SA 
imp(%) D(%) C SA 

imp(%) D(%) Best 
WE (%)

A 25 2 16 5.9 8.3  8.3 0.0 0.0 8.4 0.0 1.2 92.6 
    6.6 8.3  8.7 0.1 4.8 8.4 0.0 1.2 91.5 
    8.8 8.8  9.3 0.3 5.7 9.6 0.1 9.1 82.6 
    9.0 9.0  9.3 0.1 3.3 9.8 0.0 8.9 82.6 
    9.4 9.4  9.4 0.9 0.0 9.8 0.0 4.3 81.7 

B 28 2 21 4.2 8.9  9.1 0.0 2.2 9.1 0.0 2.2 95.0 
    6.6 8.9  9.5 0.0 6.7 9.6 0.1 7.9 91.0 
    7.7 8.9  9.4 0.0 5.6 9.6 0.3 7.9 92.0 
    9.2 9.2  9.4 0.1 2.2 9.6 0.1 4.3 92.0 
    9.8 9.8  9.8 0.0 0.0 9.8 0.0 0.0 88.2 

C 30 2 16 4.8 8.9  9.1 0.0 2.2 9.1 0.0 2.2 96.4 
    6.5 8.9  9.1 0.1 2.2 9.2 0.1 3.4 96.4 
    7.8 8.9  9.3 0.1 4.5 9.2 0.1 3.4 95.3 
    8.7 8.9  9.5 0.0 6.7 9.2 1.1 3.4 95.3 
    9.9 9.9  9.9 0.0 0.0 9.9 0.0 0.0 88.6 

D 45 2 25 4.8 8.9  9.0 0.2 1.1 9.2 0.1 3.4 95.6 
    5.7 8.9  9.1 0.0 2.2 9.2 0.3 3.4 94.6 
    7.3 8.9  9.4 0.1 5.6 9.3 0.3 4.5 92.6 
    9.6 9.6  9.6 0.3 0.0 9.6 0.2 0.0 89.7 

E 70 2 44 5.3 8.9  9.1 0.3 2.2 9.1 0.6 2.2 95.6 
    7.4 8.9  9.5 0.2 6.7 9.5 0.2 6.7 91.5 
    9.9 9.9  9.9 0.0 0.0 10.2 0.1 3.0 87.8 

F 25 3 15 4.1 8.5  8.7 0.2 2.4 8.7 0.0 2.4 94.2 
    6.8 8.5  8.6 0.0 1.2 8.7 0.0 2.4 95.3 
    7.8 8.5  8.8 0.1 3.5 9.0 0.1 5.9 93.1 
    8.5 8.5  8.7 0.0 2.4 9.0 0.0 5.9 94.2 

G 28 3 20 4.7 8.7  9.0 0.4 3.4 8.9 0.2 2.3 93.5 
    8.6 8.7  9.1 0.3 4.6 9.1 0.1 4.6 91.4 
    9.3 9.3  9.3 0.0 0.0 9.3 0.0 0.0 89.5 

H 45 3 28 5.6 8.5  8.8 0.2 3.5 8.9 0.4 4.7 93.2 
    6.6 8.5  9.0 0.1 5.9 9.0 0.3 5.9 91.1 
    7.5 8.5  9.0 0.0 5.9 9.1 0.2 7.1 91.1 

 

4.7.3 Additional goals 

The additional goals of balancing the workloads between and within workstations 

(functions Bb and Bw, respectively) are only envisaged after the maximisation of the 

weighted line efficiency (WE), in all of the three proposed meta-heuristic based 

procedures. As the objective function gives a higher importance to WE, the secondary 

goals Bb and Bw only become active when WE is maximum. Figure 4.18 presents the 
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variation of these different goals during the run of one of the procedures for a test problem. 

Computational experiments showed that this represents a typical variation of the workload 

balance values among the tested problems and that the performance of the three 

procedures, concerning the additional goals, was very similar. 
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Figure 4.18 – An example of the variation of the workload balance functions  

 

4.8 Chapter conclusions 

In this chapter, a mixed-model assembly line balancing problem with special 

characteristics that reflect the operating conditions of real assembly lines was defined. The 

mathematical programming model was only used as a formal description of the problem, as 

it helps to describe the underlying principles of the proposed procedures. Due to its 

extreme complexity, its resolution was only possible for very small problems. To address 

larger sized problems three procedures based on the meta-heuristics simulated annealing 

(SA), genetic algorithms (GA) and ant colony optimisation (ANTBAL) were developed. 

Computational results for type I problems showed that GA and ANTBAL clearly 

outperform SA while ANTBAL is slightly superior to GA. Considering type II problems, 

the approach of solving iteratively problems of type I for different values of the cycle time, 

until a solution with the pre-defined number of operators is found, showed a good 

performance.  
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The next step of the study was to address other assembly line balancing problems, 

namely balancing U-shaped and 2-sided lines. As it was said before, the approach is to 

solve complex problems and not to refine the techniques. So, to continue the study, only 

one meta-heuristic based procedure was selected to be adequately modified in order to 

solve these other balancing problems. 

A conclusion from the results of the computational experiments presented in this 

chapter is that GA and ANTBAL have similar performances. So, the selection of only one 

of them to carry on the study was based on additional reasons. The development of ant 

colony optimisation algorithms is very recent and most of the researchers working on this 

area are still addressing traditional problems, like the travelling salesman problem, with 

which the analogy of the paths followed by the ants is much stronger. 

On the opposite, genetic algorithms, and other similar evolutionary computational 

approaches, have been more widely applied. Particularly, the assembly line balancing 

problem, although in its most simple version, has been a frequent object of study from 

researchers on this area. 

The contribution to the scientific knowledge would be more meaningful if the ACO 

algorithms were applied to more complex problems. So, ANTBAL was selected to 

continue the study.  
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5.1 Chapter introduction 

In this chapter, the mixed-model U-shaped assembly line balancing problem 

(U-MALBP) is addressed. First, the main characteristics of U-shaped assembly lines are 

described and a brief review of existing techniques to tackle the single-model version of 

the line balancing problem for this type of assembly lines is provided. Then, the impact of 

mixed-model production on this type of lines is focused and a formal description of the 

addressed problem (U-MALBP) is presented, using a mathematical programming model. 

The ant colony optimisation algorithm developed to solve balancing problems in straight 

assembly lines, described in the previous chapter, was adapted in order to balance 

U-shaped assembly lines. This new procedure is presented and illustrated with a numerical 

example and its performance is tested through a set of computational experiments. 

5.2 Characteristics of U-shaped assembly lines 

The implementation of business philosophies such as just-in-time (JIT) is a way that 

companies have to cope with the constant changes in the external competitive 

environment. JIT suggests the use of multi-skilled workers and efficient facility layouts, so 

many companies are rearranging their traditional straight assembly lines into a U-shaped 

layout (Monden, 1993, Scholl and Klein, 1999, Aase et al, 2004). In a U-line, workers can 

move between the two legs of the ‘U’ to perform combinations of tasks that would not be 

allowed in a straight line. The space at the centre of the ‘U’ is a shared area where 

operators can communicate, help each other and learn one another’s skills. (A graphical 

depiction of a U-shaped line was previously shown in Figure 2.5.)  

Cheng et al (2000) and Miltenburg and Wijngaard (1994) summarise the main benefits 

and factors that favour the use of U-shaped assembly lines and explain its popularity 

among JIT practitioners. The main advantages of U-lines are the following: 

(i) Operator flexibility and job enrichment: Operators are involved in different parts 

of the assembly process enlarging their skills. As they understand the 

relationships between tasks, they are better suited to make improvements in the 
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assembly process. The acquisition of multiple skills leads to higher motivation, 

improved product quality and increased flexibility. 

(ii) Visibility and teamwork: The compact size and configuration of a U-line makes 

operators work closer to each other, improving visibility and communication 

between them. Quality problems can be more quickly detected and solved. Also it 

enhances teamwork making it easier for operators to help each other in cases of 

congestion. 

(iii) Volume flexibility: The output of a U-shaped assembly line may need to be 

adjusted as a consequence of JIT principles, in which the production rate changes 

frequently. To achieve the desired production rate, the number of operators 

working on the line must be increased or decreased and a rapid reassignment of 

tasks among operators must be made. This level of flexibility is more difficult to 

attain in straight assembly lines due to its narrowly trained operators. 

(iv) Number of workstations: The number of workstations required on a U-shaped 

line is never superior to that required on a straight line, because there are more 

possibilities of grouping tasks into workstations on a U-line. (The same 

workstation can perform tasks from the beginning and from the end of the 

precedence diagram, while in straight lines this is not possible.) This flexibility 

enables JIT companies to potentially reduce the total number of workers in their 

facility, creating a more efficient facility layout. 

(v) Material handling: Usually, sub-assemblies are moved between workstations by 

the assembly line operators instead of using material handling equipment (such as 

conveyors or special material handling operators). 

Miltenburg (2001) provides a review of the theory and practice on U-shaped production 

lines. In his study, a set of US and Japanese companies which changed their straight lines 

to U-lines is examined. The results show impressive benefits of the adoption of U-shaped 

configurations: productivity improvement of 76%, reduction of work-in-process inventory 

of 86%, decrease of lead time of 75% and defective rates reduction of 83%, on average. 

However, the U-shaped production lines of Miltenburg’s study are mainly composed by 

machines operated by a small set of operators, making them different from the concept of 

assembly lines, whose work is essentially manual. 
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5.2.1 Literature review of approaches to solve the U-ALBP 

The main focus of the research on U-lines has been on the development of techniques to 

solve the single-model U-shaped assembly line balancing problem (U-ALBP). Miltenburg 

and Wijngaard (1994), the first authors to study this problem, developed a dynamic 

programming exact procedure able to solve instances with up to 11 tasks. To address larger 

problems they proposed a set of single-pass heuristic procedures, able to solve instances 

with up to 111 tasks. 

The integer programming formulation proposed by Urban (1998) managed to solve to 

optimality problems with up to 45 tasks. Scholl and Klein (1999) developed a 

branch-and-bound based heuristic called ULINO, which was adapted from a previous 

algorithm they had developed for balancing straight lines. The computational experience 

involved a large set of problems with up to 297 tasks and proved a good performance of 

the procedure, especially for the objective of minimising the number of workstations. 

The problem of balancing a U-line facility with several U-lines connected by multi-line 

workstations was addressed by Miltenburg (1998) through the development of a dynamic 

programming formulation. The formulation was able to optimally solve problems with any 

number of U-lines as long as precedence diagrams for individual U-lines did not have more 

than 22 tasks. 

Aase et al (2003) proposed a set of branch-and-bound procedures with different design 

elements (branching strategies, fathoming criteria, etc.) to solve the U-ALBP. These 

procedures are experimentally compared with other algorithms available in the literature. 

Significant improvements over the existing methods are reported by the authors when 

solving problem instances of reasonable application size for U-shaped layouts (problems 

with up to 50 tasks).  

A goal programming approach to simultaneously consider several conflicting objectives 

was presented by Gökçen and Agpak (2006). The authors use a pre-emptive approach in 

which different goals, like number of workstations, cycle time and number of tasks per 

workstation, are ranked by some priority order. No comparison with other algorithms is 

provided, as the computational experience was only dedicated to the study of the 

multi-criteria version of the problem.  
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Guerriero and Miltenburg (2003) developed a mathematical model and recursive 

algorithms to solve the U-ALBP with stochastic task processing times. Computational 

experiments showed that the algorithms are able to solve problems of practical size.  

Erel et al (2001) developed a simulated annealing based procedure to address the 

U-ALBP. A description of the most important features of this procedure was already 

provided on section 3.2.2 of this document. Computational experience yielded very good 

results for the set of tested problem instances. 

Other studies on U-shaped lines have focused on the optimal worker allocation problem 

(Nakade and Ohno, 1999), product quality (Cheng et al, 2000), the effect of breakdowns 

(Miltenburg, 2000) and the impact on labour productivity (Aase et al, 2004). 

All these studies have confirmed that the U-ALBP is a very significant problem for 

modern assembly systems. However they only deal with single-model assembly lines. The 

mixed-model U-shaped assembly line balancing problem is a more complicated problem to 

solve, but much more relevant within a context of increasing pressure for manufacturing 

flexibility and growing demand for customised products.  

5.3 Definition of the mixed-model U-ALBP 

The key difference between the straight assembly line balancing problem and the 

U-shaped assembly line balancing problem (U-ALBP) is related with the set of assignable 

tasks. In straight assembly lines, the set of assignable tasks at each moment is the set of 

tasks whose predecessors have already been assigned, in order to meet precedence 

constraints. In a U-shaped assembly line, the set of assignable tasks is the union of the set 

of tasks whose predecessors have already been assigned and the set of tasks whose 

successors have already been assigned. 

The problem of balancing a U-shaped assembly line to produce a set of models of a 

product is the mixed-model U-ALBP (U-MALBP) and it was first described by Sparling 

and Miltenburg (1998). An additional and very important issue of mixed-model U-lines, 

when compared with single-model ones, is the fact that in the same cycle a workstation 

may perform its tasks in two different models, one at each leg of the line. This situation is 

illustrated in Figure 5.1. The line produces three models in the sequence ABC. In a 
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determined cycle, the operator of workstation 2 performs task 2 on model C at the front of 

the line and then crosses to the back to complete task 8 on model B. 

 

 

Figure 5.1 – Mixed-model production on a U-shaped assembly line 

 

A very common practice when dealing with the mixed-model nature of the assembly 

process is to use average task processing times to assign tasks to workstations. A task is 

assigned to a workstation as long as the sum of its weighted average processing time with 

the current workstation workload does not exceed the cycle time. Then, finding the right 

model sequence (the sequence in which the models are launched to the line) is highly 

important, in order to allow a good workload balance within the workstations. In the 

U-MALBP this issue becomes even more important, not only because the models may be 

different from cycle to cycle, but because they also may be different within the same cycle. 

All the existing approaches to the U-MALBP find an initial assignment of tasks based 

on their weighted average processing time and use some kind of procedure to reduce the 

unbalance of the initial balancing solution, using the task processing times for each model. 

Sparling and Miltenburg (1998) use the combined precedence diagram and the weighted 

average task processing times to create a single-model balancing problem and, using a 

branch-and-bound algorithm, an optimal solution for this problem is obtained, called initial 

balance. Several unbalance measures, regarding the mixed-model nature of the original 

problem, are defined and computed for the initial balance. Then, a smoothing algorithm is 

applied in order to reduce the unbalance. This algorithm exchanges tasks between 
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workstations so that the value of the selected unbalance measure decreases. The unbalance 

measures used by these authors are (i) binary variables indicating whether the total time in 

a workstation exceeds the cycle time, (ii) amount of the total time, if any, that exceeds the 

cycle time in a workstation and (iii) absolute deviation of total time from a determined goal 

in a workstation. An important aspect of this approach is that the sequence in which the 

models are launched in the U-shaped line must be known, as it directly influences the 

values of the unbalance measures. 

Kim et al (2000) address simultaneously the problems of balancing and sequencing 

mixed-model U-lines, as both the line balance and the model sequence influence the 

performance measure used by the authors: the absolute deviation of workloads. These 

authors propose a cooperative co-evolutionary algorithm which maintains two sets of 

populations, one to represent solutions of the line balancing problem and the other to 

represent solutions of the model sequencing problem. Each individual in a population has a 

matching pair in the other population and fitness (based on the absolute deviation of 

workloads) is computed for the pair of individuals. To generate new individuals, different 

genetic operators are defined for the each of the populations. Computational experiments 

proved a good performance of the procedure when compared with that of the hierarchical 

approach and of two other co-evolutionary algorithms for the same set of test problems.  

Miltenburg (2002) also considers the problems of balancing the line and sequencing the 

models simultaneously, however the goal to achieve is the generation of level production 

schedules for other production facilities operating in JIT environment. It takes into account 

the number of parts, from each of the different production facilities, which each model 

requires to be assembled. A genetic algorithm approach was used to address the problem.  

The following section describes the characteristics of the addressed U-MALBP. 

5.3.1 Problem assumptions and constraints 

The existing procedures to solve the U-MALBP have demonstrated a great influence of 

the model sequence in the line balances obtained. However, like for the straight MALBP 

(described in chapter 4), the goal of this work was to study only the balancing problem, so 

the approach was to try to find good line balances able to cope with any model sequence. 

In the particular case of U-shaped assembly lines, the model sequence interferes with the 
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mix of models within each workstation in the same cycle. To address this issue, the 

assignment of tasks to workstations is performed using each possible model combination 

for each cycle in a workstation. This way, regardless of the model sequence, the workload 

of each workstation never exceeds the required cycle time.  

In the proposed approach, a set the of similar models of a product (m=1,…,M ) are 

produced in a U-shaped assembly line, in any order or mix, over a pre-specified planning 

horizon, P. The forecasted demand, over the planning horizon, for model m is Dm, 

requiring the line to be operated with a cycle time given by 

∑
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The combined precedence diagram for all models has N tasks (numbered i=1,…,N) and 

tim is the time required to perform task i on model m. 

As it was referred earlier, an operator in a U-line may perform tasks at both legs of the 

line, so it is necessary to identify which tasks are performed at the front and which tasks 

are perform at the back of the line. Therefore, the following decision variables of the 

mathematical programming model are defined:  
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where S is the number of workstations (operators) of the assembly line. The assignment of 

a task to only one workstation, regardless of the model being assembled, is guaranteed by 

the following set of constraints: 
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To verify the precedence constraints of the assembly process, it is necessary to 

guarantee that a task can only be assigned to a workstation if either all its predecessors or 

all its successors have been already assigned. If all the predecessors of a task i have been 

previously assigned to workstations at the front of the U-line, then task i can be assigned at 

the front of the line. This case is ensured by the set of constraints (5.6), in which Predi is 

the set of predecessors of task i. The index of the workstation (k) to which task i is to 

assigned cannot be inferior to the index of the workstations to which its predecessors are 

assigned.  
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If all the successors of a task i have been previously assigned to workstations at the 

back of the U-line, then task i can be assigned at the back of the line. This case is ensured 

by the set of constraints (5.7), in which Suci is the set of successors of task i. The index of 

the workstation (k) to which task i is to be assigned cannot be inferior to the index of the 

workstations to which its successors are assigned, considering that they are assigned at the 

back of the line. 

);1(0 i

S

1k

B
jk

S

1k

B
ik ucSj,...,Nikxkx ∈=≤−∑∑

==

 
(5.7) 

When included in the mathematical programming model these will be sets of 

disjunctive constraints, as only one is verified at a time.  

The workload of a workstation will depend on the models that it performs at the front 

and at the back of the line in each cycle. Let m and n be two of the models to be assembled 

on the U-line. The workload of workstation k when model m is produced at the front and 

model n is produced at the back of the line is computed by: 
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In order to ensure that the cycle time is never exceeded, regardless of the pairs of 

models produced at the front and back of the line by each workstation on each cycle, the 

following set of constraints must hold for every workstation: 



Chapter 5: Balancing U-shaped assembly lines  111 

Assembly line balancing – new perspectives and procedures  Ana Sofia Simaria 
 

)11(      ,...,Mn,...,S; m,kCWkmn ==≤  (5.9) 

The idle time of a workstation is the difference between the capacity of the workstation 

and its workload. skmn is idle time of workstation k when it performs its tasks on model m at 

the front and on model n at the back of the line and is computed by the set of equations 

(5.10).  
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Zoning constraints may also be included in the problem. Positive zoning constraints 

force pairs of tasks to be assigned to the same workstation and are defined by: 
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where ZP is the set of pairs of tasks that must be assigned to the same workstation. 

Negative zoning constraints are defined by:  
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where ZN is the set of pairs of incompatible tasks. 

5.3.2 Objective function 

Similarly to the MALBP (defined in section 4.2), the goals of the U-MALBP are the 

following:  

(i) minimisation of the number of workstations, for a given cycle time (for type I 

problems) or minimisation of the cycle time for a given number of workstations 

(for type II problems), both equivalent to the minimisation of the idle time of the 

line; 

(ii) smoothing workloads between workstations; 

(iii) smoothing workloads within workstations. 

Given the particular characteristics of the U-MALBP, the expressions used to address 

these goals are different from the ones used for the straight MALBP.  
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To cope with the U-line mixed-model production, an objective function, called U-line 

idle time (WITU), was developed. It minimises the sum of the weighted idle times of each 

workstation, considering the probability of occurrence of each pair of models on the front 

and back of the line, qmn, and it is given by: 
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As the sequence in which the models are launched into the line is not known, it is not 

possible to precisely determine the value of qmn. To assemble M models in a U-line there 

are M2 possible combinations of models in a workstation working on both legs of the line. 

An example with three models is shown in Figure 5.2. As the line balance must be feasible 

for all the possible sequence of models, including random sequences, it is reasonable to set 

equal probabilities of occurrence of each pair of models (model m at the front and model n 

at the back of the line). So, qmn is set to 1/M2 for every pair (m,n). 

 

 

Figure 5.2 – Possible combinations of models in a workstation in the same cycle 

 

In order to have a measure independent from the data of each problem instance, an 

alternative objective function called weighted U-line efficiency (WEU) was defined. WEU 

varies between 0 and 1. The more close to 1 (or 100%) the less idle time has the line. WEU 

is an objective function to maximise and it is computed as follows: 
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Besides the minimisation of the number of workstations (or the minimisation of cycle 

time, for problems of type II), additional goals, concerning workload smoothing, are also 

envisaged. The objective function U
bB  aims to balance the workload between workstations, 

i.e., for each model the idle time is distributed across workstations as equally as possible, 

and it is given by: 
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where, Sk is the average idle time of workstation k computed by: 
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The value of function U
bB  varies between a maximum of 1, when the average idle time 

of the line is equal to the idle time of one of the workstations, and a minimum of 0, when 

WITU is equally distributed by all workstations in the line. A demonstration of these values 

is presented in Appendix 4. 

Due to the mixed-model nature of the problem and also the U-shaped configuration, 

each task processing time may vary among the different models and within each cycle a 

workstation may have to work on two models (one at the front and another at the back of 

the line). In order to ensure that each operator performs approximately the same amount of 

work regardless of the models being assembled, it is desirable to balance the workload 

within each workstation. To achieve this goal the objective function U
wB  was developed, 

which aims at smoothing the workload balance within each workstation and it is computed 

as follows: 
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The value of function U
wB  varies between a maximum of 1, when the idle time of each 

workstation is only accountable to one combination of models (m,n), and a minimum of 0, 

when it is equally distributed by all combinations of models in every workstation. (A 

demonstration of these values is presented in Appendix 4.)  

5.3.3 Complete mathematical programming model 

The global objective function is then composed by three terms, each of which 

addressing one of the goals stated in the previous section. The complete mathematical 

programming model for the U-shaped mixed-model assembly line balancing problem is 

presented in Figure 5.3. The model constraints are interpreted as follows: 

(i) constraints ensuring that each task is assigned to only one workstation of the 

station interval (assignment constraints); 

(ii) disjunctive constraints ensuring that a task can be assigned to a workstation if 

either all its predecessors (ii a) or all its successors (ii b) have been assigned to 

the same or to an earlier workstation (in this set of constraints, ui is an auxiliary 

binary variable and M is a very large positive integer); 

(iii) constraints ensuring that each workstation capacity is not exceeded, as the use of 

parallel workstations was not accounted for in this model, the capacity of a 

workstation is the cycle time; 

(iv) positive zoning constraints; 

(v) negative zoning constraints, 

(vi) set of constraints computing the number of operators required by the line (S) in 

which the auxiliary binary variable yk equals one, if the kth workstation is used for 

assembly and zero, otherwise (in this set of constraints, K is an upper bound for 

the number of workstations and M is a very large positive integer);  

(vii) set of constraints defining the decision variables domains. 

The proposed mathematical programming is only used as a means to formally describe 

the problem, as its high complexity makes it impossible to be solved to optimality. The 

following section describes U-ANTBAL, an ant colony optimisation based approach 

developed to find solutions for the U-MALBP. 
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Figure 5.3 – Mathematical programming model for the U-MALBP 

 

5.4 U-ANTBAL: an ant colony optimisation based approach 

The ant colony optimisation based approach developed to tackle the straight 

mixed-model assembly line balancing problem, described in section 4.5 was modified in 

order to address the U-shaped problem. This new procedure is called U-ANTBAL and its 

main steps are presented in Figure 5.4. 
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Figure 5.4 – Outline of U-ANTBAL 

 

The features and parameters of U-ANTBAL are similar to the ones of ANTBAL, except 

the following: 

(i) When building a balancing solution, an ant must determine the set of available 

tasks, i.e., the set of tasks that can be assigned to the current workstation. A task 

is available if it verifies (i) capacity constraints, defined by equations (5.10), (ii) 

zoning constraints, defined by equations (5.11) and (5.12) and (iii) precedence 

constraints, defined by equations (5.6) or (5.7) determining which tasks are 

assignable to the front and which tasks are assignable to the back of the line, 

respectively. The way an ant builds a balancing solution of a U-MALBP is 

depicted in Figure 5.5.  

(ii) The objective function used to guide the search in U-ANTBAL is the one of the 

mathematical programming model of the previous section: 
U
w

U
b

U BBWEZ −−= λ . This quality measure is also used as the amount of 

pheromone released by the ants, as it was described in section 4.5.1.4. 
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Figure 5.5 – Building a balancing solution in U-ANTBAL 

 

5.4.1 Use of parallel workstations 

Although in the definition of the U-MALBP the capacity of each workstation was the 

cycle time, the implemented ANTBAL algorithm allows the creation of parallel 

workstations in a similar way as it was described for straight assembly lines (in section 

4.2). This was due to the need of using the same data set of mixed-model assembly line 

balancing problems that was used in the computational experiments for straight assembly 

lines.  

This way, U-ANTBAL allows the replication of workstations that perform tasks with 

processing time higher than MRT (minimum replication time) for, at least, one of the 

models. These workstations will have two or more operators working in parallel (in 

replicas of the workstation). The number of replicas of a workstation k, Rk, is determined 

by its longest task processing time (for all models) and it is given by:  
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where LL will be the line length, i.e., the number of different workstations. The capacity of 

a workstation k will then depend on the tasks it performs: if all its tasks are not greater than 

MRT, then its workload must not exceed cycle time and the set of constraints defined in 

(5.9) must be verified. Otherwise, the capacity constraints are given by: 

)1, ;1(      ,...,Mnm,...,LLkCRW kkmn ==⋅≤  (5.19) 

where Wkm is the workload of workstation k when it works on model m at the front and on 

model n at the back of the line, already defined by expression (5.8). 

The physical implementation of parallel workstations in U-shaped assembly lines may 

be possible with an adequate material handling system and/or an agile operator’s 

positioning along the line. 

5.4.2 Numerical illustration 

The goal of this section is to show the differences in the balancing solutions obtained 

for straight line configurations and U-shaped configurations, for the numerical example of 

section 4.3.3. The best solution for a straight configuration has 16 operators working on 14 

different workstations (two workstations are replicated) and it is presented in the upper 

side of Figure 5.6. Using U-ANTBAL, the same problem was solved and U-shaped 

balancing solutions with 15 operators (13 different workstations) were obtained. Two of 

these solutions are depicted in the lower part of Figure 5.6. The reduction of one 

workstation was due to the more flexible nature of the precedence constraints in U-lines, as 

tasks from different parts of the assembly process can be performed by the same operator 

at the front and at the back of the line. 

The two U-line configurations are solutions obtained when running U-ANTBAL. 

Solution 1 is an intermediate solution while solution 2 is the best solution provided by the 

algorithm. Both have 15 operators, but have different assignments of tasks to workstations, 

leading to different values of the workload balance functions U
bB and U

wB .  
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Figure 5.6 – Straight and U-shaped line configurations for the numerical example 

 

Table 5.1 presents, for each solution, the set of tasks assigned to the front and to the 

back of each workstation and the workloads for every model combination (AB is the 

workload of a workstation when it works on model A at the front and on model B at the 

back of the line). It also presents the values of Sk, i.e., the workstation’s average idle time, 

computed by expression (5.16). For workstations with two replicas (workstations 3 and 6 

of solution 1 and workstations 1 and 6 of solution 2) the idle time is computed by the 

difference between twice the cycle time and the workload.  

For solution 1, the balance between workstations has a value of U
bB =0.06 and the 

balance within workstations has a value of U
wB =0.07. For the same number of operators, 

U-ANTBAL tries to improve the global workload balance ( U
bB + U

wB ). This way, solution 

2, the best solution obtained for this problem, presents better workload balance values: 
U
bB =0.03 and U

wB =0.04, which shows a considerable improvement the global balance. 
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Table 5.1 – Task assignments and workload values for the two U-line solutions 

SOLUTION 1      
 Tasks Workload  
k Front Back AA AB BA BB Sk 
1 1,3  7.3 7.3 9.3 9.3 1.7 

2 6,7  9.9 9.9 0 0 5.1 

3  20,24,25 16.6 12.7 16.6 12.7 5.4 

4  23 9.6 8.2 9.6 8.2 1.1 

5 5  8.8 8.8 8.8 8.8 1.2 

6 4 22 19.7 19.7 19.7 19.7 0.3 

7 8,11 21 7.5 7.5 9.5 9.5 1.5 

8 13 14,19 8.5 7.2 8.5 7.2 2.2 

9  15,17 9.2 5.5 9.2 5.5 2.7 

10  18 9.4 9.4 9.4 9.4 0.6 

11 2 16 9.6 9.7 9.6 9.7 0.4 

12 10 12 9.6 9.6 9.6 9.6 0.4 

13 9  6.6 6.6 6.6 6.6 3.4 

SOLUTION 2 
     

 Tasks Workload  
k Front Back AA AB BA BB Sk 
1 1 20,24,25 16.6 12.7 18.6 14.7 4.4 

2 3  7.3 7.3 7.3 7.3 2.7 

3  23 9.6 8.2 9.6 8.2 1.1 

4 7 15 9.1 9.1 5.5 5.5 2.7 

5 5  8.8 8.8 8.8 8.8 1.2 

6 4 22 19.7 19.7 19.7 19.7 0.3 

7  12,21 9.1 9.1 9.1 9.1 0.9 

8 6,8 17 9.9 6.2 5.7 2.0 4.1 

9 11 14,19 8.1 6.8 8.1 6.8 2.6 

10  18 9.4 9.4 9.4 9.4 0.6 

11 2  7.7 7.7 7.7 7.7 2.3 

12 10,13  8.4 8.4 8.4 8.4 1.6 

13 9,16  8.5 8.6 8.5 8.6 1.5 
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5.5 Computational experience 

U-ANTBAL was coded in C and run on a 2.8 GHz Pentium 4 computer. To test its 

performance the two sets of mixed-model assembly line balancing problems used in the 

computational experiments of section 4.7.1 were solved and the number of operators of the 

solutions obtained by U-ANTBAL was compared with the best ones obtained for straight 

lines. The results, presented in Table 5.2, show that for some problem instances it is 

possible to reduce the number of operators of the line just by changing its configuration 

from straight to U-shaped. For the first data set, U-ANTBAL improved the solution of nine 

of the 20 instances while for the second it was only able to improve the solution of two 

problem instances. This performance was somehow predictable, due to the random nature 

of the task times of the second data set. There is a high number of large tasks that cannot 

be combined in the same workstation, so the advantage of using a U-shaped configuration 

is not so high as it is for problems with tasks with typical times, as in the first data set.  

Table 5.2 – Computational results (number of operators) of U-ANTBAL for the two MALBP data sets 

 MALBP data set with typical times  MALBP data set with random times 
Problem straight U-shaped  straight U-shaped 

1 4 4  11 11 

2 8 8  11 11 

3 7 7  11 10 

4 7 6  16 16 

5 16 14  29 29 

6 15 13  35 35 

7 16 15  40 40 

8 14 14  40 40 

9 20 20  35 35 

10 20 19  34 34 

11 16 16  38 38 

12 19 19  50 50 

13 19 17  50 49 

14 19 18  54 54 

15 23 23  47 47 

16 24 23  52 52 

17 24 24  59 59 

18 26 26  78 78 

19 43 43  88 88 

20 44 43  104 104 



Chapter 5: Balancing U-shaped assembly lines  122 

Assembly line balancing – new perspectives and procedures  Ana Sofia Simaria 
 

5.6 Chapter conclusions 

In this chapter, the mixed-model U-shaped assembly line balancing problem was 

address. A mathematical programming model was used to formally describe the problem 

and an ant colony optimisation algorithm was developed to solve it. A distinctive feature of 

this approach from existing ones is the fact that it does not depend on the sequence in 

which the models are launched into the line. The line configurations provided by the 

proposed procedure are adequate for every sequence of models that might occur. This 

flexibility is very important for companies operating under lean production philosophies 

such as JIT.  

The results of the computational experiments carried out in this study showed that the 

proposed procedure is able to decrease the number of operators of an assembly line by 

using a U-shaped configuration rather than a straight line configuration. Also, the 

possibility of having replicated workstations allows the line to increase its production rate, 

when the required cycle time is lower than some of the task processing times. 
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6.1 Chapter introduction 

In this chapter, the 2-sided mixed-model assembly line balancing problem (2-MALBP) 

is addressed. First, the main characteristics of 2-sided assembly lines are described and a 

brief review of existing techniques to tackle the single-model version of the line balancing 

problem for this type of lines is provided. Then, a formal description of the addressed 

problem (2-MALBP) is presented, using a mathematical programming model and the ant 

colony optimisation algorithm developed to solve it is presented. The procedure is 

illustrated with a numerical example and its performance is tested through a set of 

computational experiments. 

6.2 Characteristics of 2-sided assembly lines 

Typically, 2-sided assembly lines are used in the production of large-sized products, 

such as trucks and buses (Kim et al, 2000). The assembly process of this type of products 

may be different from the assembly of small products, as some assembly tasks are required 

to be performed on a specific side of the product or at both sides of the product 

simultaneously (by different operators).  

The structure of a 2-sided assembly line is depicted in Figure 6.1. The line has two 

sides, left and right, and, in most cases, at each position there is a pair of workstations 

directly facing each other. The two opposite operators perform, in parallel, different tasks 

but on the same individual item. This is different from the concept of parallel workstations, 

where different operators perform the same tasks but on different items. 

 

 

Figure 6.1 – Configuration of a 2-sided assembly line 
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According to Bartholdi (1993), in practice a 2-sided line can provide several advantages 

over a one-sided line, like the reduction of (i) the number of operators, (ii) the throughput 

time, (iii) the cost of tools and fixtures, as they can be shared by the operators of both sides 

and (iv) material handling costs.  

The main difference between the assignment of tasks in one-sided lines and in 2-sided 

lines is in the relevance of the sequence in which the tasks are performed. In one-sided 

lines the sequence of the tasks within a workstation is not important as long as it verifies 

precedence constraints. However, in 2-sided assembly lines, this is a crucial factor for an 

efficient assignment of tasks. Tasks at opposite sides of the line can interfere with each 

other through precedence constraints which might cause idle time if a workstation needs to 

wait for a predecessor task to be completed at the opposite side of the line. This 

phenomenon is called interference and it is illustrated in Figure 6.2. 

The precedence diagram of the tasks required to assemble a product is shown in the 

right side of Figure 6.2. Some tasks have to be performed on a specific side of the line 

(L-left side, R-right side) while others may be processed on either side (E). Let task 1, with 

processing time of 2 time units (t.u.), be assigned to the left side and task 2, with 

processing time of 8 time units, be assigned to the right side of the line. Task 3 can be 

assigned to workstation 1 right after task 1, as its unique predecessor is task 1. Task 2 is 

completed, in workstation 2, after 8 t.u., however, it is necessary to wait for the completion 

of task 3 before any other task becomes available. Workstation 2 is obliged to remain idle 

for 1 t.u., so task 3 interferes with the next task to be assigned. 

 

 

Figure 6.2 – Interference in 2-sided assembly lines 
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6.2.1 Literature review of approaches to solve the 2-ALBP 

The literature on the 2-sided assembly line balancing problem (2-ALBP) is scarce. 

Bartholdi (1993) was the first author to address the 2-ALBP. His work comprehends an 

interactive computer program embodied with a balancing algorithm, based on the ‘first fit’ 

heuristic, that enables line managers to rapidly refine the solutions provided by the 

algorithm. Kim et al (2000) present a genetic algorithm approach for 2-ALBP, while Lee et 

al (2001) propose a group assignment procedure focusing on the maximisation of work 

relatedness and work slackness. An industrial case study is presented by Lapierre and Ruiz 

(2004), in which an enhanced priority-based heuristic is applied to balance a 2-sided 

assembly line. This study was extended to the application of a taboo search procedure in 

Lapierre et al (2006). 

All these studies report on the 2-ALBP for single-model assembly lines, but this type of 

line is not suited for high levels of product customisation, a crucial factor for companies to 

be competitive under current market trends and essential to address in the final stage 

assembly lines of the automotive industry. The present work addresses the problem of 

balancing mixed-model 2-sided assembly lines. A definition of this problem is presented in 

the following section. 

6.3 Definition of the mixed-model 2-ALBP 

In a mixed-model 2-sided assembly line, a set of similar models of a product is 

assembled, in any order and mix, by workers that perform assembly tasks on a set of 

assembly stations, each of which has a pair of workstations directly opposite each other 

(left and right side workstations). In each cycle, the two operators working at the different 

sides of the line, at each position, perform their tasks in the same individual item, thus in 

the same model. So, the approach to address the mixed-model nature of the problem is 

similar to the one of the straight mixed-model assembly line. 

The particularity of 2-sided lines is concerned with sequencing the tasks within each 

workstation, at both sides of the line, in a way that minimises the compulsory idle time due 

to the phenomenon of interference. 
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6.3.1 Problem assumptions and constraints 

In the proposed approach, the assembly line has two sides, left and right, with a set of 

workstations positioned at each side of the line. A set of similar models of a product 

(numbered m=1,…,M) is produced in the 2-sided assembly line, in any order or mix, over a 

pre-specified planning horizon, P. The forecasted demand, over the planning horizon, for 

model m is Dm, requiring the line to be operated with a cycle time given by 

∑
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m
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 (6.1) 

The overall proportion of the number of units of model m being assembled is computed 

by 
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The combined precedence diagram for all models has N tasks (numbered i=1,…,N) and 

tim is the time required to perform task i on model m. Also, the side of the line in which a 

task is performed is defined in the assembly process. Tasks can be:  

(i) performed on either side of the line: SE is the set of tasks that can be performed 

on either side of the line;  

(ii) required to be performed on a specific side of the line: SL (SR) is the set of tasks 

that must be performed on the left (right) side of the line; 

(iii) required to be performed simultaneously on both sides of the line, so that a pair of 

operators can collaborate: these tasks are called synchronous tasks and each one 

calls the other mated-task. SC is the set of pairs of synchronous tasks. 

In 2-sided lines there are workstations at both sides of the line, so it is necessary to 

identify the workstation and side at which tasks are performed. Therefore, the following 

decision variables are defined:  
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In this case, LL will be the length of the 2-sided line, considering that at each position k 

there will be two operators working, one at each side of the line.  
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The assignment of a task to only one workstation, regardless of the model being 

assembled, is guaranteed by the following set of constraints: 
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 (6.4) 

The assignment of tasks to a specific side of the line, as required by the assembly 

process, must also be assured. The set of constraints (6.5) assigns left-side tasks to the left 

side of the line while the set of constraints (6.6) forces the assignment of right-side tasks to 

the right side of the line. 
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To deal with the interference issue it is necessary to establish the sequence, within a 

workstation, in which the tasks are going to be performed. Ti, the starting time of task i, 

will be a decision variable of the model. Ti represents the time instant at which a 

workstation begins to process task i and its value is within the range 0≤Ti<C.  

The assignment of tasks to workstations at both sides of the line must take into account 

the precedence constraints of the problem. A task can only be processed when all its 

predecessors are completed. Let task i be a predecessor of task j. In order to verify 

precedence constraints, the starting time of task j must never be earlier that the starting 

time of task i added by the processing time of task i, as defined by the set of constraints 

(6.7), where }{max imm
t  is the maximum processing time of task i, considering all models. 
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Synchronous tasks must be performed simultaneously, one at each side of the line. The 

set of constraints (6.8) ensures that these pairs of tasks are assigned to workstations 

directly facing each other (with the same index but one at each side) and will have the 

same starting time. 
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When there are no precedence relationships or synchronism constraints between tasks it 

is still necessary to determine the scheduling of tasks within workstations, preventing 

overlapping of tasks. Considering tasks i and j one of two situations can occur: either (i) 

task i is assigned before task j or (ii) task i is assigned after task j. The first situation is 

modelled by the set of constraints (6.9) while the second is modelled by the set (6.10).  
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When included in the mathematical programming model these will be sets of 

disjunctive constraints, as only one is verified at a time. 

The idle time of a workstation is computed by the difference between its capacity (the 

cycle time) and the sum of the processing times of the tasks that it performs. skbm is the idle 

time of workstation k of side b when it works on model m, and it is given by: 

),...,1;,;,...,1( 
1

MmRLbLLktxCs
N

i
imikbkbm ===−= ∑

=

 (6.11) 

However these set of constraints are not enough to ensure that the capacity of a 

workstation is not exceeded, because there may exist idle time between two consecutive 

tasks within a workstation (due to interference). Therefore the set of constraints (6.12) 

must also be included in the mathematical model in order to guarantee that the completion 

time instant of a task is never higher than the cycle time. 

{ }( ) ),;,...,1;,...,1(max RLbLLkNiCtTx immiikb ===≤+  (6.12) 

Positive and negative zoning constraints may also be included in the problem. The first 

are verified by the set of constraints (6.13) while the second are guaranteed by the set 

(6.14). 
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6.3.2 Objective function 

Similarly to the MALBP and the U-MALBP the goals of the 2-MALBP are: (i) 

minimisation of the idle time of the line, (ii) smoothing workloads between workstations 

and (iii) smoothing workloads within workstations. 

The weighted idle time of a 2-sided assembly line is given by: 
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The weighted line efficiency allows a measure of the line efficiency always within the 

value range [0,1]. The goal is to maximise this function, which is computed as follows. 
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where S is the total number of workstations, i.e., the sum of operators working in the 

different sides of the line. 

The objective function s
bB 2  aims to balance the workload between workstations, i.e., for 

each model the idle time is distributed across workstations as equally as possible, and it is 

given by: 
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where, Skb is the average idle time of workstation k on side b computed by: 
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The value of function s
bB 2  varies between a maximum of 1, when the average idle time 

of the line is equal to the idle time of one of the workstations, and a minimum of 0, when 
sWIT 2  is equally distributed by all workstations in the line. 

In order to ensure that each operator performs approximately the same amount of work 

regardless of the models being assembled, the objective function s
wB 2  is used, aiming to 

smooth the workload balance within each workstation. It is computed as follows: 
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The value of s
wB 2  varies between a maximum of 1, when the idle time of each 

workstation is only due to one model and a minimum of 0, when it is equally distributed by 

all models in every workstation. 

6.3.3 Complete mathematical programming model 

The global objective function is composed by three terms, each of which addressing one 

of the goals stated in the previous section. The complete mathematical programming model 

for the 2-sided mixed-model assembly line balancing problem is presented in Figure 6.3. 

The model constraints are interpreted as follows: 

(i) constraints ensuring that each task is assigned to only one workstation of the 

station interval (assignment constraints); 

(ii) constraints ensuring that tasks required to be performed at a specific side of the 

line are assigned to the correct side (task side constraints); 

(iii) constraints ensuring that no task is assigned before all its predecessors are 

completed (precedence constraints); 

(iv) constraints ensuring that synchronous tasks are performed simultaneously by two 

operators, one at each side of the line; 

(v) disjunctive constraints ensuring that a correct sequencing of tasks is made, i.e., a 

task i can be assigned either before task j (ii a) or after task j (ii b) as long as 

tasks i and j do not have any precedence relation (in this set of constraints, ui is an 

auxiliary binary variable whose value determines which situation will occur and 

M is a very large positive integer); 
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(vi) constraints ensuring that each workstation capacity is not exceeded (capacity 

constraints); 

(vii) positive zoning constraints; 

(viii) negative zoning constraints, 

(ix) set of constraints computing the total number of operators of the line (S) in which 

the auxiliary binary variable ykb equals one, if the kth workstation of side b of the 

line is used for assembly and zero, otherwise (in this set of constraints, K is an 

upper bound for the number of workstations on each side and M is a very large 

positive integer);  

(x) set of constraints defining the decision variables domains. 

The proposed mathematical programming is only used as a means to formally describe 

the problem, as its high complexity makes it impossible to be solved to optimality. The 

following section describes 2-ANTBAL, an ant colony optimisation based approach 

developed to find solutions for the 2-MALBP. 

6.4 2-ANTBAL: an ant colony optimisation based approach 

In the proposed ACO algorithm for the 2-sided mixed model assembly line balancing 

problem, 2-ANTBAL, two ants ‘work’ simultaneously, one at each side of the line. They 

will be called left-ant and right-ant if they work on the left or right side of the line, 

respectively, and side-ant more generally. Figure 6.4 presents an outline of 2-ANTBAL.  

The procedure starts by creating a sub-colony with a pre-determined number of pairs of 

ants (to work on each side of the line). Each pair of ants collaborate in order to build a 

feasible balancing solution, i.e., an assignment of tasks to workstations on both sides of the 

line, in such a way that all constraints of the problem are verified (precedence, zoning, 

capacity, and synchronism). For each feasible solution obtained a measure of its quality is 

computed, according to the problem’s objective function. 
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Figure 6.3– Mathematical programming model for the 2-MALBP 
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After all pairs of ants of the sub-colony have generated a solution, they release a certain 

amount of pheromone according to the quality of the solution. The sequence in which the 

tasks are performed at both sides of the line will determine the pheromone trails. If task j is 

performed immediately after task i, then a certain amount of pheromone is released 

between task i and j. Hence, pheromone trails are built in the paths used by the ants to 

build the balancing solution.  

The procedure is repeated for every sub-colony within the ant colony. The best solution 

found by the procedure is updated after each sub-colony’s iteration. 

 

Figure 6.4 – Outline of 2-ANTBAL 

6.4.1 Building a balancing solution 

An outline of the way the two ants build a balancing solution is presented in Figure 6.5. 

The procedure starts by initialising the current time of both side-ants (ct(aS) is the current 

time of one side-ant and ct(aS) is the current time of the opposite side-ant) and it randomly 

selects one of the sides of the line to begin the assignment. Then, the corresponding 

side-ant opens a workstation and determines the set of available tasks, according to the 

conditions described in the following section. 
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Figure 6.5 – Building a balancing solution for the 2-MALBP 

6.4.1.1 Available tasks 

The available tasks are the set of tasks that can be assigned to a particular workstation 

starting at the current time. A task is available if it verifies all the following conditions: 

(i) the task side is the same as the current side or the task can be performed on either 

side; 

(ii) the task predecessors are assigned to an earlier time (if a predecessor is assigned 

to the opposite side it must be completed before the current time);  

(iii) assigning the task to the current workstation does not violate the capacity (i.e., 

cycle time) constraints; 

(iv) assigning the task to the current workstation does not violate zoning constraints; 

(v) if the task has synchronism constraints, it is possible to assign its mated-task to 

the opposite side of the line, starting at the same time. 
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If the side-ant does not find any available tasks, it must detect the causes and proceed 

accordingly, namely: 

 Capacity constraints violation occurs when no available task fit the current 

workstation. In this case the side-ant opens a new workstation. 

 Interference problems occur when there are tasks whose predecessors have been 

assigned to the opposite side but will be finished in a forward time. To deal with the 

interference issue, side-ants use a timeline when building the balancing solution in 

order to coordinate the task assignment. When interference occurs, the side-ant must 

move its current time forward, to the opposite side-ant current time. Then, the 

procedure randomly selects which side-ant will continue the assignment and 

therefore determine again the set of available tasks. 

 Task side incompatibility occurs when there are no tasks that can be assigned to the 

current side. This results from one of the following reasons: 

− the current time of the side-ant is inferior to the current time of the opposite 

side-ant (ct(aS)<ct(aS)). In this case the side-ant must move its current time 

forward, to the opposite side-ant current time, and then a side is selected 

randomly to continue; 

− the current time of the side-ant is equal or greater than the current time of the 

opposite side-ant (ct(aS)≥ct(aS)). In this case the opposite side-ant takes control 

of the assignment procedure. 

From the set of available tasks, a side-ant must select one to be assigned to the current 

workstation, starting at the current time. The selection of tasks for assignment is described 

in the following section. 

6.4.1.2 Selecting a task for assignment 

Similarly to ANTBAL, two types of rules are used in the proposed procedure: static and 

dynamic. At the beginning of the procedure, a static priority rule is randomly assigned to 

each pair of ants. The static priority rules used in the proposed procedure are (i) maximum 

processing time (for all models), (ii) maximum average processing time, (iii) maximum 

ranked positional weight, (iv) maximum number of direct successors and (v) maximum 

total number of successors.  
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The dynamic priority rules are introduced in the task selection process, while the 

side-ants are building the solution. The dynamic rules recalculate the parameters after each 

task is assigned to a workstation, allowing an adaptation of the procedure to the 

characteristics of the already built part of the balancing solution. 

The first dynamic rule is called ‘last task becoming available’ and it was previously 

developed for the MALBP. It deals with the work relatedness issue, favouring the 

assignment of the direct successors of a task immediately after that task has been assigned, 

by attributing them the highest priority value in the subsequent assignment iteration.  

The second dynamic rule was especially developed for the 2-MALBP and it seeks to 

facilitate the assignment of tasks that must be performed simultaneously at both sides of 

the line. This rule is called ‘predecessor of mated-task’. When a task with synchronism 

constraints becomes available for assignment at one side of the line, this rule is activated 

and the predecessors of the mated-task become high priority tasks, being preferably 

assigned. This allows the assignment of the synchronous tasks as earlier as possible.  

The values of the priority rules will vary between 1 for the task with lowest priority and 

N (number of tasks) for the task with highest priority, and will be the heuristic information 

used by the ants to select the tasks. From the set of available tasks, the side-ant selects one 

task for assignment to the current workstation, according to a selection rule that takes into 

account (i) the pheromone trail intensity between the previously selected task and each 

available task, and (ii) the heuristic information about each available task. A side-ant s 

which has selected task i in the previous iteration will select task j by applying the 

following rule: 
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where  

 r is a random number between 0 and 1 and r1, r2 and r3 three user-defined parameters 

such that 1,,0 321 ≤≤ rrr  and 1321 =++ rrr  (by default r1=0.6, r2=0.3, r3=0.1); 
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 ),( jiτ is the pheromone trail intensity in the path ‘selecting task j after selecting task i’; 

 jη  is the heuristic information of task j (i.e., the priority rule value for task j); 

 
s
iA is the set of available tasks for side-ant s after the selection of task i; 

 α and β are parameters that determine the relative importance of pheromone intensity 

versus heuristic information. 

Similarly to the procedure developed for one-sided assembly lines, the selection of a 

task from the set of available tasks is performed by one of three strategies:  

 Exploitation: it determines the selection of the best task according to the values of 
β

j
α

(i,j) ητ ][][ . 

 Biased exploration: a task is selected with a probability of p(i,j) as given by J2 in 

equation (6.20). 

 Random selection: from the set of available tasks, the side-ant selects one at random. 

6.4.1.3 Assigning tasks to workstations 

In the proposed procedure, side-ants use a timeline to build the balancing solution. 

Every time a side-ant assigns a task to a workstation, its current-time is increased an 

amount corresponding to the task processing time. Considering the mixed-model nature of 

the problem, this time will be the maximum processing time of that task for all models, in 

order to ensure that the cycle time is always met, regardless of the model being assembled. 

Then the current times of both side-ants are compared, resulting in the following courses of 

action: 

(i) if the current time of the side-ant is inferior to the current time of the opposite 

side-ant (ct(aS)<ct(aS)), the assignment continues on the same side. 

(ii) if the current time of the side-ant is superior to the current time of the opposite 

side-ant (ct(aS)>ct(aS)), the side is changed. 

(iii) if the current time of the side-ant is equal to the current time of the opposite 

side-ant (ct(aS)=ct(aS)), a side is randomly selected to continue the assignment. 
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When all tasks have been assigned to workstations, the balancing solution is completed 

and solution quality is evaluated using the objective function of the mathematical 

programming model for the 2-MALBP: s
w

s
b

s BBWEZ 222 −−= λ .  

6.4.2 Pheromone release strategy 

The updating of the pheromone trails between tasks is performed at the end of each 

sub-colony iteration. First, a portion of the existing pheromone value is evaporated in all 

paths. Then, each side-ant s of the n pairs of side-ants that constitute the sub-colony 

releases an amount of pheromone in the paths used to build its task sequence, according to 

the corresponding balancing solution quality. This amount of pheromone is given by:   

⎪⎩

⎪
⎨
⎧

=∆
otherwise0

 pair  of ant -sideby built solution  in the
,  after task immediatly performed is task if

 ,

 ,

),( ns
ijZ

ji
nsτ  (6.21) 

The overall pheromone update effect of the n pairs of side-ants in each path (i,j) is then: 
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6.4.3 Numerical example 

In this section, a numerical example, with the following characteristics, is used to 

illustrate some features of 2-ANTBAL. 

 Two models, A and B, are simultaneously assembled in a line over a planning 

horizon of 480 t.u. (time units). The demand for each model is, respectively 10 and 

14 units (the cycle time is then C=20, qA=42% and qB=58%). 

 The combined precedence diagram is the one depicted in Figure 6.2. Table 6.1 

shows the task processing times for the two models. 

 Tasks 9 and 10 are synchronous tasks – they must be performed simultaneously at 

both sides of the line. 
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Table 6.1 – Task processing times of models A and B 

Task tA tB 
1 0 2 
2 8 8 
3 7 7 
4 7 5 
5 2 2 
6 6 0 
7 4 0 
8 0 2 
9 3 2 

10 3 2 
11 6 6 
12 3 3 
13 5 5 
14 4 6 

Figure 6.6 represents a balancing solution, for the numerical example, built by a pair of 

side ants. It represents the sequence of tasks performed at the workstations of each side of 

the line (R-right side, L-left side). Inside the rectangles are the task numbers and shaded 

areas correspond to idle time.  

R

L

0 2 8 9 15 16 18 19 20 23 26 29 34 40 time

11 10 131 3 6 7

workstation 1 workstation 2

12 9 142 4 5 8

 

Figure 6.6 – Representation of a balancing solution for the 2-sided line 

 

The actions performed by the pair of side-ants at each moment while building the 

balancing solution are described in Table 6.2. Both ants work simultaneously, but when 

they need to perform actions at the same instant, the procedure randomly selects one of 

them to do it in the first place, because the decisions of one side-ant will have 

consequences on the decisions of the other.  
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Table 6.2 – Actions of the side-ants to build a balancing solution 

 current
time Left-ant Right-ant 

0 ► selects task 1  ► selects task 2 
2 ► selects task 3  
8  ► no available tasks due to 

interference 
9 ► selects task 6 ► selects task 4 

15 ► selects task 7  
16  ► selects task 5 
18  ► selects task 8 W

or
ks

ta
tio

n 
1 

19 ► no available tasks due to 
capacity constraints  

 

20 ► selects task 11 ► selects task 12 
23  ► no available tasks due to 

synchronism constraints 
26 ► selects task 10 ► selects task 9 
29 ► selects task 13 ► no available tasks due to 

interference 
34 ► no available tasks due to 

task side  
► selects task 14 W

or
ks

ta
tio

n 
2 

40 Complete solution 

6.5 Computational experience 

The heuristic was coded in C and run on a 2.8 GHz Pentium 4 computer. To test its 

performance, a series of comparative tests were carried out by applying the heuristic to the 

benchmark problems A65, B148 and A205, proposed by Lee et al (2001), with 65, 148 and 

205 tasks, respectively. For each of the test problems different values of the cycle time 

were used in order to provide a higher number of problem instances, a total of 22. These 

consider only the single-model 2-sided assembly line balancing problem of type I with no 

synchronism or zoning constraints. Table 6.3 shows the computational results. For each 

problem it presents the given cycle time (C) and the number of workstations obtained by 

the different tested procedures. Column LB presents the lower bound on the number of 

workstations for each of the test problems, given by: 

eitherrightleft LBLBLBLB ++=  (6.23) 

LBleft and LBright are the theoretical minimum number of the left and right side 

workstations, computed as follows: 

{ }
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The term LBeither adds up the number of workstations needed to process tasks of either 

side. Because these tasks can be included in workstations that perform left or right side 

tasks, it is necessary to verify if, after filling up these workstations, there are still either 

side tasks to create new workstations. The minimum number of workstations (LBeither) 

required to perform either side tasks, after filling up the remaining capacity of workstations 

assigned to left and right side tasks, is given by: 
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Columns H and G present the results reported by Lee et al (2001) concerning heuristic 

rules and group assignment, respectively. Columns Mean, Min and Max present the 

average, minimum and maximum values of the number of workstation of the best solution 

found by 2-ANTBAL computed from 10 runs of each instance of the problem. Finally, the 

last two columns present a comparison of the performance of 2-ANTBAL with (i) 

procedure G (as it is better than procedure H): ImpG(%) is the average improvement of 2-

ANTBAL compared with G and (ii) the lower bound: DevLB(%) is the difference between 

the minimum value obtained by 2-ANTBAL and LB. 

The computational results show that the proposed procedure 2-ANTBAL clearly 

outperforms both of the procedures presented by Lee et al (2001) considering the number 

of workstations of the 2-sided assembly line. This fact is particularly evident in problem 

A205 where the improvement values of 2-ANTBAL reach 16.7%. Negative improvement 

values are explained by the fact that the mean value of the number of workstations 

obtained by 2-ANTBAL was slightly superior to the mean value of procedure G. However, 

in both cases the minimum value of 2-ANTBAL was either equal or inferior to the mean 

value of G. 

The values in bold are equal to the lower bound of the problem instance. This means 

that guaranteed optimal solution was reached for 10 instances. Also, the maximum 

difference between the best solutions obtained by 2-ANTBAL and the lower bound was 

only 11.1%, which supports the good performance of the proposed procedure.  



Chapter 6: Balancing 2-sided assembly lines  144 

Assembly line balancing – new perspectives and procedures  Ana Sofia Simaria 
 

Table 6.3 – Results of the computational experience for 2-ANTBAL 

    Lee et al (2001)  2-ANTBAL ImpG DevLB 
Problem C LB  H G  Mean Min Max  (%)  (%) 

A65 326 16  17.7 17.4  17.0 17 17 2.3 6.3 
 381 14  15.7 15.0  14.8 14 15 1.3 0 
 435 12  14.0 13.4  13.0 13 13 3.0 8.3 
 490 11  12.1 12.0  12.0 12 12 0.0 9.1 
 544 10  11.5 10.6  10.8 10 11 -1.9 0 

B148 204 26  27.8 27.0  26.0 26 26 3.7 0 
 255 21  22.0 21.0  21.0 21 21 0.0 0 
 306 17  19.3 18.0  18.0 18 18 0.0 5.9 
 357 15  16.0 15.0  15.4 15 16 -2.7 0 
 408 13  14.0 14.0  14.0 14 14 0.0 7.7 
 459 12  12.1 13.0  12.0 12 12 7.7 0 
 510 11  12.0 11.0  11.0 11 11 0.0 0 

A205 1133 21  24.0 23.0  22.4 22 23 2.6 4.8 
 1322 18  21.9 20.7  20.0 20 20 3.4 11.1 
 1510 16  18.7 20.0  17.2 17 18 14.0 6.3 
 1699 14  16.7 16.0  15.8 15 16 1.3 7.1 
 1888 13  15.4 16.0  13.8 13 14 13.8 0 
 2077 12  14.0 14.0  12.0 12 12 14.3 0 
 2266 11  12.5 13.0  12.0 12 12 7.7 9.1 
 2454 10  12.0 12.0  10.0 10 10 16.7 0 
 2643 9  11.2 12.0  10.0 10 10 16.7 11.1 
 2832 9  10.0 10.0  10.0 10 10 0.0 11.1 

 

6.6 Chapter conclusions 

In this chapter, the mixed-model 2-sided assembly line balancing problem was 

addressed. A mathematical programming model was used to formally describe the problem 

and an ant colony optimisation algorithm was developed to solve it. In the proposed 

procedure, two ants work simultaneously one at each side of the line aiming to efficiently 

coordinate the assignment of tasks to both of the sides of the line.  

The procedure uses a non-delay rule for ants while available tasks exist, however this 

may discard optimal solutions since it may be best to wait a brief time for the opposite ant 

and then perform a mated-task. Future improvements of the algorithm should only enforce 

the non-delay rule with some degree of probability at each stage. 



Chapter 6: Balancing 2-sided assembly lines  145 

Assembly line balancing – new perspectives and procedures  Ana Sofia Simaria 
 

The good performance of the algorithm was proved by computational experiments with 

a set of benchmark problems from the literature. These problems were for single-model 

assembly lines, so additional computational tests should be made using mixed-model 

instances in order to evaluate the features of the procedure specifically developed to 

address 2-sided mixed-model assembly line balancing problems. 
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7.1 Chapter introduction 

This set of short case studies is the outcome of a business internship program sponsored 

by the University of Aveiro for the students in the last year of the Industrial Management 

and Engineering program. Four students working as trainees in four companies had to 

analyse the operation of assembly lines and propose changes in order to improve the line’s 

performance. 

With the information gathered by the trainees, some of the developed procedures were 

adapted and applied to the real assembly lines, aiming to improve the existing assignment 

of tasks to workstations. The success of these applications depended on the level of 

interaction with the trainee, as a deep knowledge of the assembly process is required to 

adapt the algorithms to the real conditions of the assembly line. 

7.2 Case 1 – Combining heuristic procedures and simulation 

models for balancing a PC camera assembly line* 

The company in which the study took place is a major manufacturer of consumer 

electronic goods and goal of the project was to analyse and improve the performance of a 

PC camera assembly line. 

The assembly line under analysis is used to assemble three different versions of a PC 

camera with some dissimilar technical specifications, thus, a mixed-model assembly line. 

Most of the tasks required to complete the assembly of the models are manual and only the 

final tasks (testing operations) are performed automatically by a computer. The line 

employs low skilled labour which is cross-trained to perform all the operations and, as a 

result, it is relatively easy to rebalance the line and change its configuration. However, 

there is a high level of absenteeism among the workforce and consequently the line 

managers’ need to rebalance the line on a daily basis. 

On the other hand, the great variability and uncertainty associated with the product 

demand levels is a major problem that the company has to deal with, requiring frequent 

                                                 
* The work presented in this section is published in Mendes et al (2005) 
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changes in the line configuration. The ability to quickly manage the assembly line to 

compensate for changes in both the labour workforce and market demand is becoming an 

important competitive factor. Consequently, the company must be agile to implement 

changes in a quick and effective way. 

To support the operational decisions of the line managers, in light of the issues stated 

above, a combination of analytical and simulation models was developed in this project. 

The main goal of the study was to produce a set of assembly line configurations for 

different levels of demand, making it easier to rebalance the line according to the 

circumstances of a specific planning horizon.  

In the first phase of the study, a heuristic procedure was used to solve the mixed-model 

assembly line balancing problem and derive line configurations, with a minimum number 

of workstations and a smooth workload balance between and within the workstations, for 

the relevant levels of demand. The heuristic procedure was the simulated annealing based 

approach described in section 4.3. In the second phase, the solutions provided by the 

heuristic procedure were used as an input to discrete event simulation models in order to 

test the robustness of these solutions when variability was introduced in some of the design 

parameters (e.g., stochastic task times). Different performance measures, like flow times 

and resources utilisation, were derived from the simulation models helping the decision 

maker to fine-tune the suggested line configurations.  

The following sections describe the characteristics of the assembly line under analysis 

and the procedures developed to achieve the goals of the study. The preliminary results of 

this study were presented in an international conference (Ramos et al, 2001) and the final 

results enabled the publication of a paper in a scientific journal (Mendes et al, 2005). 

7.2.1 The PC camera assembly line 

The assembly line under analysis is used to assemble three different versions of a PC 

camera (model A, model B and model C), with some dissimilar technical specifications. 

Figure 7.1 shows an exploded view of the PC camera. The PCB (printed circuit board) is 

the only camera part that is manufactured in the facility, while all the other components are 

outsourced. 
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Legend
1 - Lens ring
2 - Light guide
3 - Front cover part
4 - Back cover part
5 - Closing part
6 - Screw
7 - Cable
8 - Cable sticker
9 - Microphone felt
10 - Lens
11 - Foot
13 - Foam
1001 - PCB
1215 - Microphone

 

 

Figure 7.1 – Exploded view of the PC camera 

 

The assembly line is composed by a sequence of workstations performing manual 

operations and an automated conveyor that transports the sub-assemblies along the process. 

The assembly of a PC camera requires the following steps: 

(i) cutting of collective PCBs; 

(ii) soldering of microphone pins; 

(iii) cleaning, inspecting and soldering of electronic components; 

(iv) functional testing; 

(v) soldering of cable connector; 

(vi) attaching lens into front cover part; 

(vii) placing and screwing individual PCB at front cover; 

(viii) attaching back cover part and screwing closing part; 

(ix) final testing; 

(x) encasing lens ring, putting foot into camera and placing sticker on the cable. 

When a camera is complete it proceeds to the packaging table where some other tasks 

are performed, namely, cleaning and packaging the camera into its individual box with 

software and documentation, placing the closing sticker and the bar code and packing 

several individual boxes into a collective one. These collective boxes are then grouped in 

pallets and transported to the finished products warehouse. 

The assembly process for each model defines: (i) the task processing times and (ii) a set 

of precedence relationships, which determine the sequence in which the tasks can be 
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performed. As a large subset of tasks is common to all models, the precedence diagrams of 

the three models were combined and the resulting one accounts for all the tasks required to 

assemble all the models. The combined precedence diagram for the three PC camera 

versions is depicted in Figure 7.2 and the standard task processing times for each model in 

time units (t.u.) are shown in Table 7.1. 

 

 

Figure 7.2 – Combined precedence diagram for the three PC camera models 

 

Table 7.1 – Task processing times  

Task tA tB tC Task tA tB tC Task tA tB tC 
1 2 2 2 14 0 4 4 27 5 5 5 
2 2 2 2 15 9 9 0 28 0 0 2 
3 2 2 2 16 13 13 12 29 1 1 1 
4 2 2 2 17 6 6 6 30 3 3 3 
5 2 2 2 18 7 7 7 31 3 3 3 
6 0 11 11 19 3 3 3 32 0 0 3 
7 0 0 16 20 28 37 33 33 4 4 4 
8 21 39 37 21 3 3 3 34 2 2 2 
9 2 2 2 22 8 8 8 35 2 2 2 

10 10 10 10 23 5 5 5 36 1 1 1 
11 3 0 0 24 7 7 9 37 1 1 1 
12 11 11 11 25 4 4 4 38 1 1 1 
13 4 4 4 26 6 6 6 39 1 1 1 

Tasks 8 and 20 are inspection operations performed automatically (i.e., without the 

operator intervention) after being set-up by the operator. The set-up time for these 

operations is 5 t.u.. So, if these operations are carried out simultaneously with other tasks 
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in the same workstation, only the set-up time needs to be accounted for, as the operator 

will be available to perform those tasks. 

Some tasks cannot be performed in the same workstation (incompatible tasks) due to 

physical or process related constraints. For example, soldering and packaging tasks are 

incompatible due to ergonomic issues: soldering requires the operator to be seated, while 

packaging requires the operator to be standing. The set of pairs of incompatible tasks is 

presented in Table 7.2. 

Table 7.2 – Set of pairs of incompatible tasks 

Pair 1 2 3 4 5 6 7 8 9 10 
Task 1 6 7 7 8 8 10 18 19 20 20 
Task 2 8 8 20 12 20 20 20 20 24 34 

 

7.2.2 Balancing the mixed-model assembly line 

The simulated annealing procedure developed to solve the mixed-model assembly line 

balancing problem, described in section 4.3, was adapted to address the PC camera 

mixed-model assembly line. The goal of this stage of the study was to derive line 

configurations (i.e., balancing solutions), for the relevant levels of demand, with a 

minimum number of operators and a smooth balance of workloads between and within 

workstations.  

The typical lot sizes of each model for different demand levels (low, medium and high) 

are presented in Table 7.3. For each model, it presents the number of units to be produced 

according to the demand level, over a planning horizon of P=132 900 t.u..  

Table 7.3 – Number of units to be produced for each demand level 

 Product demand 
Demand level DA DB DC 

Low (L) 1610 390 1670 
Medium (M) 3150 1330 3130 

High (H) 5230 2720 6580 
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In order to derive line configurations able to cope with the most frequent demand 

situations, five different demand scenarios were provided by the line manager and were 

used as input for the heuristic procedure. Table 7.4 shows the five scenarios and the value 

of the cycle time for each of them, computed by ⎟⎟
⎠

⎞
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Table 7.4 – Demand values and cycle times for the different production scenarios 

 Product demand  
Scenario DA DB DC C 
1 (LLL) 1610 390 1670 36.2 
2 (MMM) 3150 1330 3130 17.5 
3 (HHH) 5230 2720 6580 9.1 
4 (MLM) 3150 390 3130 19.9 
5 (MMH) 3150 1330 6580 12.0 

 

As the processing time of some tasks is higher than the required cycle time, it is 

necessary to allow the use of parallel workstations. The minimum replication time (MRT), 

i.e., the processing time that triggers the replication process, was set to MRT=C. This 

means that only workstations performing tasks with processing time higher than the cycle 

time for, at least, one of the models, are allowed to work in parallel.  

After setting all the data, the simulated annealing based heuristic was then used to 

provide balancing solutions for the different demand scenarios. For scenario 1, the initial 

solution, built by the modified ranked positional weight technique, is depicted in Table 7.5, 

where the first column represents the workstation index, the second column shows the set 

of tasks assigned to each workstation and the third column shows the number of replicas of 

each workstation (parallel workstations have more than one replica of the workstation).  

In this case study, there were special task related conditions that had to be taken into 

account when applying the heuristic: tasks 8 and 20 are related to testing operations and 

while the test program is running the assigned operator can execute other tasks 

simultaneously. The heuristic was therefore modified to in order to reproduce, as closely as 

possible, this issue. 
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After the initial solution is obtained, the procedure tries to improve its number of 

workstations through a simulated annealing approach, in which the neighbouring solutions 

are generated by (i) swapping two tasks in different workstations or (ii) transferring a task 

to another workstation. At the end of this stage, the best solution has the lowest number of 

workstations. For the demand scenario 1 the heuristic could not improve the number of 

workstations of the initial solution.  

Table 7.5 – Initial solution for scenario 1 

Workstation Tasks Replicas 
1 1,2,3,4,6,7,11,15 1 
2 5,8,9,10,13,14,19,23 2 
3 12,16,17 1 
4 18,21 1 
5 20,22 2 
6 24,25,26,27,28,29,30,31,34,37 1 
7 32,33,35,36,38,39 1 

 

The second stage of the simulated annealing based procedure aims to balance the 

workloads between and within the workstations and it starts with the best solution found at 

the end of the first stage. For demand scenario 1 this solution has 9 workstations (including 

parallel workstations), a workload balance between workstations of Bb=0.15 and a 

workload balance within workstations of Bw=0.38. At the second stage the initial number 

of workstations cannot be exceeded and, if possible, may be improved. Swap and transfer 

movements are also performed, but the tasks and workstations involved in these 

movements are selected to foster improving solutions considering workload smoothing 

(see section 4.3.2.1). At the end of this stage, the best solution has the minimum number of 

workstations and the best workload balance between and within workstations. At each 

iteration, the procedure verifies precedence, incompatibility and capacity constraints, in 

order to always generate feasible solutions. The best solution found for the demand 

scenario 1 has workload balances of Bb=0.06 and Bw=0.13, which shows an improvement 

of 50% in the objective function Bb+Bw. 

The heuristic was used to derive line configurations for the five demand scenarios and 

the final balancing solutions are depicted in Table 7.6.  
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Table 7.6 – Final line configurations for the different demand scenarios 

 Scenario 1 - LLL    Scenario 2 - MMM   Scenario 5 - MMH  
W Tasks R  W Tasks R W Tasks R 
1 1,2,6,7 1  1 1,2,6 1 1 1,2,7 2 

2 3,4,8,9,10,14,15,19 2  2 7,15 1 2 6 1 

3 12,13 1  3 3,4,8,9,10,11,13,14,19,23 3 3 3,8,9,10,13,14,15,19,23 4 

4 11,16,17,18 1  4 12 1 4 12 1 

5 5,20,21,22,23 2  5 5,16 1 5 11,16 2 

6 24,25,33 1  6 17,18 1 6 4,17 1 

7 26,27,28,29,30,31,32,34, 
35,36,37,38,39 

1  7 20,21,22 3 7 18 1 

    8 24,25,34,37 1 8 5,20,21,22 4 

 Scenario 3 - HHH   9 26,27,28,29,30 1 9 24,34,37 1 

W Tasks R  10 31,32,33,35,36,38,39 1 10 25,26,28 1 

1 1,2,6 2     11 27,29,30,31 1 

2 7,15 2   Scenario 4 - MLM  12 32,33,35,36,38,39 1 

3 3,4,8,9,10,13,14,19,23 5  W Tasks R    

4 12 2  1 1,2,6 1    

5 11,16 2  2 7,15 1    
6 17 1  3 3,8,9,10,13,14,19 2    
7 5,18 1  4 11,12 1    

8 20,22 5  5 4,16 1    

9 24 1  6 17,18 1    

10 25,28,34 1  7 5,20,22,23 2    

11 21,26 1  8 21,24,25,28 1    

12 27,29,30 1  9 26,27,29,33,34 1    

13 31,33 1  10 30,31,32,35,36,37,38,39 1    

14 32,35,36,37,38,39 1        

 

The cycle times for each demand scenario were recomputed taking into account the task 

assignments provided by the heuristic. The effective cycle time of a balancing solution is 

the sum of the processing times of the workstation with the maximum workload. Table 7.7 

presents the theoretical and the real values of the cycle time for each scenario. The 

reduction of the value of the cycle time means an increase of the production rate, i.e., with 

the same assembly system it is possible to produce more than the number of units defined 

by the demand level. 
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Table 7.7 – Comparison of theoretical and real cycle times 

 Cycle time (t.u.) 
Scenario Theoretical Real 

1 36.2 31.0 
2 17.5 17.0 
3 9.1 9.0 
4 19.9 18.0 
5 12.0 12.0 

 

In order to evaluate the balancing solutions considering the number of operators, the 

lower bound for the mixed-model assembly line balancing problem with parallel 

workstations (LBpmix), proposed by Vilarinho and Simaria (2002) and presented in 

Appendix 3, was adapted to take into account a maximum of five replicas of one 

workstation, as the original version of the LBpmix considered a maximum of only two 

replicas. The details of the computation of this lower bound are given in Appendix 5. As 

one can observe from Table 7.8, the solutions obtained by the heuristic are optimal for four 

of the scenarios. 

Table 7.8 – Comparison of solutions with the lower bounds (LBpmix) 

 Number of operators 
Scenario Solution LBpmix 

1 9 8 
2 14 14 
3 26 26 
4 12 12 
5 20 20 

The line configurations provided by heuristic for the different demand scenarios were 

used as an input for simulation models, which are able to include randomness and 

uncertainty in the analysis of the PC camera mixed-model assembly line. As the 

development of these models is not within the scope of this dissertation (as it was 

developed by another person), only a very brief description of the work is presented in the 

following sections. A more detailed explanation is provided in the paper of Mendes et al 

(2005). 
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7.2.3 Development of the simulation models 

The set of line configurations produced by the heuristic procedure was based on several 

operational parameters that do not mimic exactly the real system, mainly because the 

solutions obtained do not reflect the operational variability and randomness induced to the 

system by the manual operations and by other factors, like rework, which affect the regular 

system operation. 

So, simulation models for the different line configurations were developed, in order to 

check their dynamic behaviour in the presence of modelling parameters that better describe 

the system dynamics. The complete assembly system was modelled: the assembly line, the 

packaging table and the material handling equipments and the following measures were 

used to evaluate the performance of the different simulation models: 

(i) throughput (number of cameras assembled in the planning horizon); 

(ii) flow time (for each product); 

(iii) utilisation of resources (labour). 

Previously to the development of the simulation models for the line configurations 

suggested by the heuristic, a simulation model of the actual assembly system was built. 

This model allowed (i) the better understanding of the actual assembly system operation, 

(ii) the validation of the assumptions used to build it and later included in the different 

models and (iii) the gaining of confidence of the decision makers regarding the used 

methodology. 

In this particular case study, one of the members involved in the project worked fulltime 

on the facility, thus the process of input data collection and analysis was easily 

accomplished. Her presence on site was also crucial to obtain a clear definition of control 

and decision rules used in the daily operation of the assembly line. In addition, there were 

large amounts of historical data related to processing times of all the assembly and 

packaging tasks for each version of the product, enabling the fit of proper distributions to 

this data.  

Some important data of the assembly process, which were not addressed by the 

heuristic, were included in the simulation models. Conveyor details (e.g., length, speed) 

were set as specified in technical documentation and accordingly to the cycle time. The 

number of units rejected at the inspecting and testing operations was modelled as a 
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percentage of the cameras processed. There was also a wide availability of historical data 

to determine the reject rates related to those operations. It was assumed that some of the 

rejected products could be repaired, re-entering the assembly process at fixed points. 

The workforce consists of one shift working 8.5 hours a day, five days a week. The shift 

has fixed daily breaks for meals and work meetings. The production scheduling is made on 

a weekly basis and it is conveyed to the assembly line supervisor. The printed circuit 

boards are manufactured on the facility and, usually, they are ready to enter the assembly 

line when required. The outsourced materials are located near the corresponding 

assembly/packaging station and can be picked from stock when needed. 

The simulation models were implemented using the Arena® simulation software. This 

software has a high capability to model manufacturing systems and embeds key technology 

for desktop application integration, enabling the use of existing enterprise models. It also 

includes tools to analyse input and output data. 

Verification and validation are two important phases of the development of simulation 

models. Model verification deals with building the model right and ensures that the 

computer program of the computerised model and its implementation are correct. Model 

validation deals with building the right model and confirms that the simulation model 

behaves with satisfactory accuracy, i.e., it is consistent with the modelling objectives. 

Different techniques were used to verify and validate the models as described in 

Mendes et al (2005). One of these was animation, which played an important role on the 

results presentation phase. With this technique, the operational behaviour of the assembly 

line is displayed graphically as the model evolves through time. Figure 7.3 shows two snap 

shots (assembly line and packaging table) of the three-dimensional animation model 

developed for the actual assembly line. 
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assembly line

packaging table

 

Figure 7.3 – Animation of the actual PC camera assembly system 

 

Once again, the team member who took part in the project on site was crucial on the 

verification and validation process, as she combined the knowledge of using the simulation 

tool with the perception of the assembly process details. 

7.2.4 Simulation experiment and results 

The outcome of the simulation of the actual assembly line study showed that the 

estimates obtained for the selected performance measures were very similar to the real 

system measures and no major deviances between the simulation results and reality were 

found. The results also emphasised that the actual line was clearly unbalanced. Given these 

results, it was decided to go on to the second phase of the study, which aimed to build 

simulation models for the set of configurations, for the different levels of demand, 

generated by the heuristic procedure. 

Regarding the throughput performance measures, the simulation results for these 

models showed that: 

(i) the demand levels of scenarios 1 and 5 could be easily satisfied with the line 

configurations proposed by the heuristic procedure; 

(ii) the forecasted demand for scenarios 2, 3 and 4 was not satisfied with the 

configurations proposed by the heuristic procedure. 
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The line bottlenecks were identified as being workstation 8 for scenario 2 and 

workstation 7 for scenarios 3 and 4. Several experimental tests were carried out in order to 

eliminate the bottlenecks. These tests included adjustments of the demand levels for the 

different models and parallelisation of the bottleneck workstations. The demand levels for 

the different scenarios were provided by the line manager as a guideline for typical 

production runs. Small adjustment (up to 5%) to these demand levels are allowed when 

leading to a reduction in the number of workers in the line. The demand levels were then 

adjusted in order to determine the number units of each model that could be produced with 

the configuration suggested by the heuristic procedure. As a significant reduction in the 

number of units to be assembled, for some of the models, was required, this course of 

action was abandoned. 

On the other hand, the parallelisation of the bottleneck stations led to the desired 

production levels and, in some of the scenarios, some slack capacity was left available in 

the workstation for an eventual increase in the production rate. The values of the 

performance measures for the actual assembly system and for the line configurations for 

each scenario (with replicated bottleneck workstations in scenarios 2, 3 and 4) are shown 

in Table 7.9 (average flow time) and Figure 7.4 (average usage rate).  

Table 7.9 – Simulation results for the average flow time 

 Average flow time (t.u.) 
 Model A Model B Model C 
Actual system 352.4 453.2 416.4 
Scenario 1 207.6 437.4 401.3 
Scenario 2 237.5 456.3 418.9 
Scenario 3 227.9 483.9 407.6 
Scenario 4 217.6 442.6 422.9 
Scenario 5 220.3 487.9 438.9 
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Figure 7.4 – Simulation results for the average usage rate 

 

When the average flow time (i.e., the average time required to completely assemble one 

unit) of the actual system is compared to the different scenarios, one can notice that for 

model A the average flow time is reduced by 30% to 40%. As can be observed in Figure 



Chapter 7: Real world applications  163 

Assembly line balancing – new perspectives and procedures  Ana Sofia Simaria 
 

7.4 for scenario 1, for example, when the demand is met there is still a slack capacity of 

around 20% in the most loaded workstation (workstation 4), so it is possible to increase 

production if required. 

Table 7.10 shows the average usage rate and the correspondent standard deviation of the 

workstations for the actual system and for each of the scenarios. The average usage rate 

shows a reduction in the overall idle time for all of the scenarios, except scenario 1, in 

comparison with the actual system performance. The poorer performance of scenario 1 is 

justified by the fact that the line was simulated to produce 3.670 cameras (theoretical cycle 

time of C=36.2 t.u.) when the configuration provided by the heuristic could increase the 

output to 4.287 cameras (real cycle time of C=31 t.u.). The standard deviation explains 

how evenly split the workload is distributed across the workstations and all of the scenarios 

show an improvement over the actual system. 

Table 7.10 – Average usage rate and standard deviation 

 Usage rate 
 Average Std. Deviation 

Actual system 67% 0.19 
Scenario 1 57% 0.12 
Scenario 2 76% 0.08 
Scenario 3 73% 0.13 
Scenario 4 70% 0.11 
Scenario 5 75% 0.15 

 

These results showed that the configurations proposed by the heuristic procedure were 

suitable when the stochastic behaviour of the assembly system was addressed in the 

simulation models. In fact, with some adjustments to the solutions obtained for scenarios 2, 

3 and 4: 

(i) the desired levels of demand were satisfied; 

(ii) the flow times for the three PC camera models and for the different scenarios were 

at acceptable levels and, for a particular case (Model A) were significantly reduced 

when compared to the actual system; 

(iii) the workload of the proposed configurations is more evenly distributed. 

It can be stated that the heuristic procedure provided good results that were easily fine-

tuned using simulation. On the other hand, simulation allowed to gain the confidence of the 
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decision makers and to test different options to fine-tune the line configurations suggested 

by the heuristic, when more realistic parameters and operational details were introduced. 

7.2.5 Conclusions 

The results of this study were very useful for the line manager to define the line 

configurations for different demand scenarios by providing production run figures that 

maximise the use of the assembly line for these different scenarios. It can also be stated 

that the integrated approach used to design and analyse assembly line configurations is 

promising for this type of line.  

From an academic perspective, this methodology makes a contribution to the literature 

because (i) it focuses attention on the joint use of analytical and simulation models to 

provide operational decision support for assembly line balancing and (ii) it demonstrates 

that when dealing with real-world problems, effective communication channels and 

company involvement are critical factors on the attainment of meaningful and in-depth 

results. In fact the team member who worked fulltime within the company throughout the 

duration of the project has established privileged communication channels between the 

university and the company and has directed management and staff attention to the project. 

7.3 Case 2 – Improving the performance of an assembly line 

by sequentially solving type I and type II problems* 

The goal of this study was to analyse and improve the assembly line’s performance of 

an industrial manufacturer of plastic parts for household goods. Prior to this study, a 

simulation of the actual assembly line was conducted and the results showed a high 

unbalance of workloads between workstations. Some workstations had usage rates of 

100%, which was causing long queues of sub-assemblies, while others had high values of 

idle time. It was clear that the assembly line needed to be re-balanced and, at this point, it 

was decided to try to apply some of the developed heuristics to this particular line. The 

main details of the project are described in the following sections.  

                                                 
* Part of the work of this section was presented in Simaria and Vilarinho (2003) 
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7.3.1 Characteristics of the assembly line 

The assembly line produces five models (M1, M2, M3, M4 and M5) with some 

technical similarities. The first step of the study was to build the precedence diagrams for 

each model giving to common tasks the same identification, as shown in Figure 7.5. 

 

Figure 7.5 – Precedence diagrams of the five models 

 

The actual line assembles the models in batches, so, in order to test the feasibility of 

having a mixed-model assembly line, able to produce the models in any intermixed 

sequence, the precedence diagrams of the models were combined into one diagram. The 

combined precedence diagram is depicted in Figure 7.6 and the task processing times, in 

time units, for each model are presented in Table 7.11. 
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Figure 7.6 – Combined precedence diagram for the five models 

Table 7.11 – Task processing times for the five models (t.u.) 

 Model 
Task M1 M2 M3 M4 M5 

A 8.95 8.95 8.95 8.95 - 
B 10.73 10.73 10.73 10.73 10.73 
C 2.56 2.56 2.56 - - 
D 5.59 5.59 5.59 - - 
E 9.63 9.63 9.63 - - 
F 6.85 6.85 - 7.44 7.55 
G 17.64 12.56 12.56 - - 
H - - 11.77 - - 
I 8.16 - - - - 
J 2.5 - - - - 
K - - - 6.23 - 
L - - - 5.45 - 
M - - - 15.14 - 
N 5.83 - - 12.55 5.83 
O 4.95 - - - - 
P 8.9 - - 9.03 8.9 
Q - - - 12.17 11.58 
R - - - 5.68 5.68 
S 25.74 - - 12.77 12.77 
T 17.1 17.1 17.1 17.1 17.1 
U 5.02 5.02 5.02 5.02 5.02 
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From this set of tasks, task E and task G have negative zoning constraints, i.e., they 

cannot be performed in the same workstation. From an ergonomic point of view, it is not 

desirable that these two tasks are performed by the same operator, because each of them 

demands a substantial physical effort, so it would be too demanding for one person having 

to perform two hard tasks. 

7.3.2 Two-step procedure for balancing the assembly line 

Usually, when designing a new assembly line, companies do not know exactly how 

many product units the line should assemble in a given planning period. There is a demand 

forecast (more or less accurate) and a required cycle time (planning period/number of 

units) is estimated in order to balance the line. So, a line balance can be obtained using a 

technique to solve the assembly line balancing problem of type I (ALBP-I), in which the 

goal is to find a task assignment that minimises the number of operators for a given cycle 

time. However, this procedure does not guarantee a maximum production rate of the line. 

If a task reassignment is made, it might be possible to decrease the cycle time (thus 

increasing the production rate), for the same number of operators. This can be achieved by 

using a technique to solve the ALBP-II, in which the goal is to find a task assignment that 

minimises the cycle time for a given number of operators. 

To improve the performance of the assembly line under study, a two-step procedure was 

developed. It sequentially solves ALBP-I and ALBP-II in order to (i) find a task 

assignment that minimises the number of operators for a given cycle time and (ii) 

maximises the production rate for that number of operators. In the first step, the cycle time 

of the actual assembly line is used as input to solve a balancing problem of type I. In the 

second step, the number of operators provided by the first step is used as input to solve a 

balancing problem of type II. In this particular study, simulated annealing and genetic 

algorithms were used in the first and second steps, respectively. The two steps are called 

the balancing step and the fine-tuning step, as shown in Figure 7.7. 



Chapter 7: Real world applications  168 

Assembly line balancing – new perspectives and procedures  Ana Sofia Simaria 
 

Simulated 
Annealing

based heuristic

line configuration 
with minimum 

NUMBER OF OPERATORS

- task processing times
- required CYCLE TIME
- precedence constraints
- zoning constraints

- task processing times
- required NUMBER OF OPERATORS
- precedence constraints
- zoning constraints

Genetic 
Algorithm

based heuristic

INPUT

OUTPUT

solving ALBP-I

solving ALBP-II

OUTPUT

INPUT

line configuration 
with minimum 
CYCLE TIME

Balancing step

Fine-tuning step

 

Figure 7.7 – Two-step procedure for balancing the assembly line 

The combined precedence diagram was used to find a mixed-model line configuration, 

however the resulting solution was not attractive in terms of practical implementation. 

When processing some models, there were workstations with no assigned tasks. This is due 

to the fact that the similarities between the models are not very strong (e.g., the combined 

diagram has 21 tasks, while model C only requires 9 tasks). Therefore, it was decided to 

abandon the mixed-model idea and to move on to balance five single-model assembly 

lines, as this is also the way in which the actual line works. 

The two-step procedure was applied to each of the models, and the results are presented 

in Table 7.12, which shows the number of operators and the cycle time of the actual 

assembly line and the results after each of the step of the procedure. After the balancing 

step, a reduction of one to three operators was verified and after the fine-tuning step cycle 

time was improved up to 19% (for model B). 

Table 7.12 . Results of the two-step procedure 

 Actual assembly line Balancing step Fine-tuning step 
Model Operators Cycle time (t.u.) Operators Cycle time (t.u.) 

M1 13 9.4 11 8.4 
M2 13 9.8 11 7.9 
M3 10 7.0 8 6.6 
M4 10 7.3 9 7.1 
M5 12 7.6 9 6.6 
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7.3.3 Implementation of the proposed solutions 

The line configurations proposed by the two-step procedure were analysed by the line 

manager and a few task reassignments were made in order to allow a better flow of 

materials along the line. The new balancing solutions were then tested in the assembly line 

and the following aspects were observed: 

 The number of units produced daily slightly increased in the first day and in the 

following days it increased significantly. This was due to the learning effect, as the 

operators needed time to adapt themselves to the new tasks and work flow.   

 The distribution of workload between operators was much more levelled than what it 

used to be, leading to a more continuous flow of sub-assemblies and a reduction of the 

length of queues. 

 The operators’ motivation increased due to the smoother workload balance and to the 

awareness of the better performance of the line, for which they had a major 

responsibility.    

7.3.4 Conclusions 

The results of this project showed that, without any capital investment in more 

automatic equipment, it is possible to improve the performance of an assembly line only by 

studying the assignment of tasks to workstations. 

On one hand, the simulation tool (not described in this document) was useful to detect 

the main problems of the line, namely, the unbalance of workloads among operators and 

the large number of sub-assemblies in queues. On the other hand, the two-step heuristic 

procedure was essential to re-balance the assembly line, optimising the utilisation of the 

company’s resources.  

The implementation of the proposed solutions showed a great improvement in the 

assembly line’s performance, making the company able to cope with the increase of the 

products’ demand. 
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7.4 Case 3 – Increasing flexibility by turning a straight line 

into a U-shaped line 

The recent acquisition of the company in which the study took place by a large group 

led to the implementation of the group’s business philosophy concerning management and 

production issues. One of these issues is the flexibility of production systems to cope with 

the uncertainty and variability of demand in the current market environment. Trying to 

achieve this flexibility, the philosophy supports the use of U-shaped assembly lines. Within 

this scope, the goal of this study was to analyse the performance of one of the assembly 

lines of the company (a major manufacturer of electronic security systems) and propose 

changes in its configuration in order to improve its flexibility. 

7.4.1 Problems with the actual assembly line 

The assembly line produces three models of a product in a straight line configuration. 

When the production volume is low, the assignment of operators to workstations (with 

specific equipment required to perform the tasks) increases the distances between 

workstations which harms the flow of the line. Also, it is difficult to have multi-skilled 

workers, able to perform tasks in several workstations when these are physically distant 

from each other. Another problem with the actual assembly line is the unbalance of 

workloads between workstations. While some operators have high workloads others have 

long idle times and because workstations are distant, they cannot help each other and 

smooth the workload. The original line was designed to assemble a different product that 

no longer exists, so the facilities were adapted in order to assemble other types of products. 

This somehow explains the poor performance of the line. 

The demand of the product, and consequently the production volume of the line, is 

highly variable which forces the line to be frequently re-balanced. Whenever the line is 

re-balanced, the workstations have to be modified, as the equipment for the new tasks has 

to be installed, and operators have to be trained to perform the new set of tasks. This 

represents increased costs for the company that could be avoided if the line was easily 

adaptable to changes in production volumes. 
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7.4.2 Using U-ANTBAL to build a U-shaped layout 

The approach to change the line configuration was to move to a U-shape, not only 

because it was a common practice among the other companies of the group but also 

because of its advantages, when compared with straight lines, considering the flexibility of 

re-balancing the line when production volume changes (see section 5.2).  

The idea of applying the algorithm U-ANTBAL to this assembly line was challenging, 

as it was an opportunity to validate its assumptions and, at the same time, an opportunity to 

learn more about real industrial problems. The first step was to collect data about task 

processing times and to build the precedence diagrams of the models. Figure 7.8 shows the 

precedence diagram of one of the models. Then, the algorithm was run for three different 

production volume scenarios and U-line balancing solutions were obtained. An immediate 

conclusion of the analysis of these solutions was that they could not be the final U-line 

configurations. This was due to the following: 

(i) Some workstations had to handle a high number of parts of the product – a difficult 

aspect to be implemented in the real line.  

(ii) Some workstations required too many different pieces of equipment to perform its 

tasks.   

(iii) The assignment of tasks to workstations for the different production volume 

scenarios was completely different, meaning that a radical change in the line 

(considering the equipment required for each workstation) had to be performed 

every time the production volume would change.  

The first problem could be easily solved by adding negative zoning constraints in 

U-ANTBAL, forbidding the assignment of determined tasks to the same workstation. 

However the other two points are not included in the assumptions of the procedure. They 

are related with the physical equipment required in a workstation to perform its tasks. This 

could be implemented by assigning each task to a type of equipment and changing the 

algorithm accordingly. It would require a deep interaction with the trainee but 

unfortunately it was not possible.   

Nevertheless, the balancing solutions provided by U-ANTBAL were a useful tool to 

understand the potential and limitations of a U-shaped line configuration. 
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Figure 7.8 – Precedence diagram of one of the models 

 

7.4.3 Adding flexibility to the line 

The line had to be flexible enough so that whenever the production volume changed, the 

only change in the line would have to be the number of operators working on it – the 

physical workstations (and the correspondent equipment) had to remain the same. As it 

was not possible to improve U-ANTBAL to deal with this new set of constraints, the 

trainee did an empirical study and, by trial and error, was able to achieve line 

configurations with the desired flexibility. Figure 7.9 shows the assignments of operators 

to workstations in the U-shaped assembly line for three different production volumes. The 

workstations remain unchanged (concerning tools and equipment) and the number of 

operators, and the tasks they perform, vary for each scenario. This way, the required 

flexibility was attained.  
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Figure 7.9 – Assignment of operators to workstations for different production volumes 

 

Besides the flexibility to cope with the demand’s variability, the U-shaped configuration 

allows an improvement of the performance of the assembly line. Table 7.13 provides a 

comparison between the number of operators and the percentage of idle time of the straight 

and U-shaped configurations for the three scenarios. These results prove that re-designing 

this particular assembly line will bring considerable gains to the company. 
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Table 7.13 – Comparison of performance measures between straight and U-shaped configurations 

Scenario Straight line U-shaped line 
120 units/day   

Number of operators 6 5 
% idle time 15.8 8.0 

90 units/day   
Number of operators 5 4 
% idle time 24.2 14.0 

60 units/day   
Number of operators 4 3 
% idle time 36.8 13.0 

 

7.4.4 Conclusions 

This project showed that the use of U-lines is a common practice in large industrial 

groups, whose business philosophies are based in just-in-time principles, and that it is an 

effective way to address the uncertainty of demand volumes. 

The results of the application of the algorithm U-ANTBAL provided more insight into 

the assembly process’s characteristics and constraints. However, further developments of 

the procedure would be necessary in order to directly solve the problem on hand.  

7.5 Case 4 – Balancing a ‘n-sided’ assembly line 

The goal of this study was to analyse and improve the assembly line’s performance of 

an industrial manufacturer of vehicle electrical wiring systems. The assembly process of 

this type of product has particular characteristics that make it very different from the 

assembly process in traditional assembly lines. However, with adequate modifications, it is 

possible to use algorithms for assembly line balancing to address this problem. 

7.5.1 Characteristics of the assembly process 

Electrical distribution systems are networks of wiring and associated control devices 

that route electrical power and signals throughout the vehicle. Wire harness assemblies 

consist of raw, coiled wire, which is automatically cut to length and terminated. Individual 
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circuits are assembled together on a jig or table, inserted into connectors and wrapped or 

taped to form wire harness assemblies, as shown in Figure 7.10.  

 

 

Figure 7.10 – A wire harness assembly jig 

The jigs are linked together and move like a ‘carrousel’ along the workstations. Each 

operator in a workstation performs a set of tasks, either material preparation tasks or 

assembly tasks directly on the jig. Figure 7.11 illustrates such an assembly system. Several 

problems were identified when analysing the performance of the assembly line, and most 

of them were due to a misadjusted assignment of tasks to operators. In fact, it was often 

observed too many operators working simultaneously on the same jig (causing movement 

interferences among them) and some operators with too long idle times performing tasks 

that were not assigned to them in order to help more busy colleagues. It was clear the need 

of a deep study of the assembly line balancing. 

 

 

Figure 7.11 – Illustration of the wire harness assembly line 
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7.5.2 Adaptation of 2-ANTBAL to balance the assembly line 

To balance the wire harness line it is necessary to define the set of tasks that each 

operator will perform in the assembly jig. The jigs are large enough to have more than one 

operator (three at maximum), however, in order to minimise the interference between them 

it is desirable that each operator work only in one area of the jig (left, right or centre). 

Tasks performed by each operator on the same jig can have precedence relationships, so, 

the sequence in which operators perform tasks must take them into account. Given these 

conditions, it was decided to adapt the algorithm 2-ANTBAL, especially developed for 

2-sided assembly lines, to balance the wire harness assembly line. Instead of balancing a 

2-sided line, the algorithm will have to balance the tasks of a ‘n-sided’ assembly process, 

meaning that different areas of the jig can be defined, according to the tasks involved in the 

assembly of a specific product. 

The number of ants that simultaneously build the solution will depend on the number of 

sides defined for the problem: two if only the left and right sides of the jig are considered 

or three for left, right and centre. Obviously this can be generalised to any number of sides, 

according to the problem’s characteristics. 

The first step to use the balancing procedure was to build the precedence diagrams for 

the models being assembled and to specify task processing times, task sides and other 

assignment constraints. Figure 7.12 shows the precedence diagram of one of the models. 

Then, the algorithm was run and the resulting balancing solutions were analysed by the 

trainee. Like in the study presented in the previous section, the solutions provided by the 

algorithm were not adequate to be implemented in the line, due to the following: 

(i)  A large number of operators had to perform tasks on different branches of the wire 

– although it does not violate the assembly process constraints it makes the 

sequence of tasks more complicated to perform by the operators than if they only 

had to work on one branch.   

(ii) The types of movement that the operators have to make to perform both their 

preparation of material and assembly tasks (from the jig to the preparation shelves 

and backwards) is not taken into account by the algorithm, which makes the 

assignment of some tasks to the same operator very difficult to implement. 
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The first problem can be solved by creating groups of tasks that are preferably, but not 

compulsory, performed by the same operator. This issue is addressed in the following 

section. The second problem could be addressed by adding to the algorithm more 

information and constraints about the movements involved in the performance of tasks and 

different levels of feasibility for the combination of movements. However, this would 

require a deep interaction with the element working in the company and, similarly to what 

happened in the previous study, this further interaction was not possible.   

7.5.3 Addressing the assembly line planner’s preferences 

To address the assembly line planner’s preferences for grouping tasks in the same 

workstation, although it is not compulsory according to the assembly process, like it was 

verified in the particular assembly line, the algorithm was modified to solve the problem. It 

was included the possibility of defining groups of tasks that will be preferably, but not 

compulsory, grouped in the same workstation. Rg is the set of pairs of tasks that the 

assembly planner prefers to group in the same workstation and #Rg is the number of pairs 

of tasks belonging to Rg. To address this issue, a new term of the objective function, used 

to guide the search of 2-ANTBAL, is included. It computes the distance (measured in 

number of workstations) between the tasks in the assembly planner preferences groups, as 

follows: 
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where yij equals 1 if task i is assigned to the same workstation of task j and zero otherwise. 

When all the tasks belonging to the same group, g, are assigned to the same workstation 

(most favourable case), function D takes the value of zero. If none of the related tasks is 

assigned to the same workstation D takes the value of 1. The new objective function of 

2-ANTBAL is then: 
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The lack of deeper interaction with the element in the company (to accurately define the 

groups of tasks) made it impossible to implement this new approach in the wire harness 
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assembly line. However, it seems a promising way to tackle this issue of relevant practical 

importance. 

 

Figure 7.12 – Precedence diagram for one model 

7.5.4 Conclusions  

The study of line’s supply and operator’s movement features to improve the assignment 

of tasks to operators in the ‘carrousel’ was done empirically by the trainee, as there was no 

opportunity to include these aspects on the algorithm. Still, some balancing ideas were 

taken from the solutions previously provided by 2-ANTBAL. Significant improvements of 

the line’s performance were achieved, namely, the increase of production volume, the 

smoothing of workloads between operators and the improvement of the operators’ working 

conditions.  
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7.6 Chapter conclusions 

The results of these four projects showed that the developed procedures for balancing 

assembly lines, described throughout this document, are suitable to address real world 

industrial problems. However, a very strong exchange of information is needed between 

researchers and practitioners in order to adequately adapt the algorithms. 

The most surprising aspect of these experiences was related with the precedence 

diagrams. For a researcher the precedence diagrams are just input data as it is the cycle 

time or the task processing times. However, it was verified in all the four cases that 

companies do not have precedence diagrams of their assembly processes. In fact 

companies do not know this tool at all. What they have is an idea of the sequence in which 

the tasks are performed in the assembly line and they are reluctant about changing this 

sequence. 

So, the biggest challenge was to help the trainees in building the precedence diagrams. 

It was a team work exercise because, on one hand, it required accurate information about 

technological constraints and, on the other hand, it required a constant questioning of the 

actual task sequence, which could only be made by someone who did not know the 

process. The resulting precedence diagrams were the most useful tool provided to the 

company, as they presented a wide range of alternatives of assembling the products. Just 

because of this, it was worthwhile to carry out these projects. 

The outcomes of these studies prove that a more deep interaction between the scientific 

and industrial community is needed in order to improve the quality of both research work 

and production systems’ performance. 
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8.1 Final remarks 

Recent market trends show that there is a growing demand for customised products, 

increasing the pressure for manufacturing flexibility. Mixed-model assembly lines, in 

which a set of similar models of a product can be assembled simultaneously, are an 

adequate production system to respond to the shifting of manufacturing assembly 

operations from high-volume/low-mix to high-mix/low-volume production systems. 

Assembly lines have the ideal structure to perform final product customisation tasks under 

a mass customisation concept. Also, as they are labour intensive, assembly lines can be 

easily located geographically closer to the final customer marketplace. The efficient design 

and operation of mixed-model assembly lines is, therefore, a crucial factor for the success 

of the implementation of the new manufacturing paradigms, namely postponement 

strategies.  

The aim of this thesis was to address the mixed-model assembly line balancing problem 

by providing a set of procedures to efficiently tackle it for different types of assembly 

lines, thus contributing to the research in a field that involves a key factor of 

competitiveness in the actual market environment: assembly operations. 

For balancing mixed-model assembly lines with a straight line configuration, three 

procedures, based on the meta-heuristics simulated annealing, genetic algorithms and ant 

colony optimisation (ACO) were developed and their performance was compared through 

a set of computational experiments. The major contribution of this approach was to address 

problems with characteristics that reflect some operating conditions of real world assembly 

lines (e.g., use of parallel workstations, zoning constraints). Also, the proposed approach is 

different from the ones reported in the literature taking into account the fact that it provides 

good balancing solutions regardless of the sequence in which the models are launched into 

the line, making the mixed-model assembly line sequencing problem irrelevant. 

The ACO based approach, called ANTBAL, was selected to be applied to other 

assembly line types, due to the results of the computational experience carried out in the 

straight line scenario, as well as to enlarge the range of ACO applications. This way, the 

mixed-model U-shaped and the mixed-model 2-sided line balancing problems were 
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addressed using adaptations of the original version of ANTBAL. Computational 

experiments proved a good performance of these procedures. 

For all of the addressed problems, mathematical programming models were built in 

order to formally describe the problems as well as to help the description of the underlying 

principles of the proposed approaches. The goal was not to solve the models, as its high 

complexity made its resolution impossible, even for medium sized problems.  

Some of the procedures were applied to real assembly lines in order to test their 

flexibility to cope with real industrial settings, as they may differ significantly from 

theoretical problems. The results showed that the developed procedures are suitable to 

address real world industrial problems. However, a very strong exchange of information is 

needed between researchers and practitioners in order to adequately adapt the algorithms. 

The major of contribution of the work presented in this thesis derives from the 

following: 

(i) The proposed procedures are able to address some particular features of the 

assembly process very common in real world assembly lines that most of the 

techniques existing in the literature do not consider. The aim was to obtain good 

solutions for complex problems instead of trying to find optimal solutions for 

simpler versions of the problem, the most frequent approach found in the 

literature. 

(ii) The proposed models include novel criteria to access the quality of the solutions 

generated, namely workload smoothing within and among workstations.  

(iii) The approach developed to handle the mixed-model nature of the problem is 

unique. All existing approaches use the average task processing times and solve 

the mixed-model problem like a single-model one. The proposed method uses the 

particular task times for each model and the balancing solution is built ensuring 

that the capacity constraints are verified for every model being assembled. This 

way, the feasibility and efficiency of the line configuration is valid for every 

model sequence. 

(iv) The use of meta-heuristics follows the recent developments in combinatorial 

optimisation problem solving of using procedures inspired by nature to address 

complex problems. More particularly, the application of ACO algorithms to 
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production problems is still a research area with a lot to explore and the results of 

this study confirm its potential.  

(v) The projects developed in industrial companies showed that the proposed 

procedures can be adequately adapted to deal with the conditions of real 

production systems. 

8.2 Future developments 

The developed algorithms will be included in a module of a decision support system 

(DSS) to design manufacturing systems geared to the make-to-order production stage, 

essential to implement postponement strategies. The research project in which the DSS 

will be developed has already started and it will last three years. 

The development of new procedures to address different types of problems is also 

within the future research perspectives. Among these problems are: 

(i) Designing flexible line configurations to efficiently handle uncertainty in product 

demand (similarly to what was verified in the project ‘Case 3’). 

(ii) Balancing hybrid lines, i.e., lines in which some tasks are performed by manual 

operators and other tasks are automatically performed by machines. 

(iii) Balancing multiple assembly line facilities, i.e., facilities that have more than one 

line in which sub-assemblies are manufactured that feed into a central line where 

the final product his assembled. 

(iv) Providing support to the design of supply chains that operate under a 

postponement strategy, namely by developing models to define the customer 

order decoupling point for the relevant product range.  

Also, further developments should be made in matching theoretical procedures and 

practical applications, shortening the gap between scientific research and industrial needs. 
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Demonstration of the maximum and minimum 
values of functions Bb and Bw 
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A1.1 Function Bb (balance between workstations) 
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• Minimum value – Bb reaches the minimum value of zero when WIT is evenly 

distributed between workstations (best case). 
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• Maximum value – Bb reaches the maximum value of 1 when WIT is only accountable 

to one workstation (worst case). 

- for one workstation: WITsq
M

m
kmm =∑

=1
 

- for LL-1 workstations: 0
1

=∑
=

M

m
kmm sq  

( )( ) 1111
1

1)1(11
1

10)1(1
1

 

2

22

22

=+−⋅
−

⋅
−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛ −

−
=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−+⎟

⎠
⎞

⎜
⎝
⎛ −

−
=

LL
LL

LL
LL

LL
LL

LL
LLLL

LL

LLWIT
LL

LLWIT
WIT

LL
LLBb

 

 

A1.2 Function Bw (balance within workstations) 
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• Minimum value – Bw reaches the minimum value of zero when, for all workstations, 

Sk is evenly distributed among the models (best case). 
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- for all (LL) workstations and all (M) models: 
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• Maximum value – Bw reaches the maximum value of 1 when, for all workstations, Sk 

is only accountable to one model (worst case). 

- for one model: kkmm Ssq =  

- for M-1 models: 0=kmm sq  

( )( ) 1111
)1(

1)1(11
)1(

10)1(1
)1(

 

2

22

22

=+−⋅
−

⋅
−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛ −

−
=

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=

M
M

MLL
MLL
M

M
M

M
LL

MLL
M

MS
M

MS
S

LL
MLL
MB

kk

k
w

 

 



Appendix 2 
 

Characteristics of the MALBP data sets 
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A2.1 Precedence diagrams of the problems of the MALBP data sets 

Problem Number 
of tasks Reference of the precedence diagram 

1, 2 8 Bowman in Scholl (1993) 
3, 4 11 Gokçen and Erel (1998) 
5, 6  21 Mitchell in Scholl (1993) 
7, 8 25 Numerical example of Figure XX 
9, 10 28 Heskiaoff in Scholl (1993) 

11, 12 30 Sawyer in Scholl (1993) 
13, 14 32 Lutz1 in Scholl (1993) 
15, 16 35 Gunther in Scholl (1993) 
17, 18 45 Kilbridge in Scholl (1993) 
19, 20 70 Tonge in Scholl (1993) 

A2.2 Task processing times (in time units) 

A2.2.1 MALBP data set with typical task times 

 Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Problem 7 

task tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC tA tB 
1 3.8 3.8 4.4 4.4 0 3.0 0 8.3 8.6 8.3 12.8 12.8 11.8 11.8 11.8 0 2 
2 1.9 1.9 0 6.0 0 3.1 3.1 0 2.0 2.0 7.4 8.5 12.1 12.1 12.1 7.7 7.7 
3 1.8 1.8 0 7.0 7.0 1.9 1.9 9.6 9.6 9.6 11.7 11.7 14.0 14.0 14.0 7.3 7.3 
4 2.1 2.1 10 11.3 10 8.4 8.4 1.8 1.8 1.8 3.8 3.8 5.4 5.0 5.5 15 15 
5 7.8 7.9 0 6.0 6.0 3.1 3.1 2.4 2.4 2.5 4.8 4.8 6.5 7.2 6.5 8.8 8.8 
6 4.5 4.5 12.3 12.3 12.3 11.2 9.9 2.3 2.3 2.3 5.8 5.8 3.2 0 3.2 6.2 0 
7 12.0 9.1 7.8 0 7.8 8.8 0 2.3 2.3 2.5 4.9 4.9 5.0 5.8 5.2 3.6 0 
8 1.9 2.0 0 0 10 8.7 8.7 4.7 4.7 4.7 4.7 0 6.3 6.7 7.2 0 2.0 
9      2.5 2.5 0 9.0 9.0 4.5 4.5 5.0 5.0 5.0 6.6 6.6 
10      5.2 0 13.6 13.6 13.6 9.4 8.6 0 0 10 2.5 2.5 
11      4.4 4.4 1.0 1.0 1.0 3.5 3.5 9.0 10.3 0 5.5 5.5 
12           4.2 4.2 0 1.0 1.0 7.1 7.1 
13           9.6 9.6 0 5.0 5.0 5.9 5.9 
14           2.1 0 2.7 2.7 2.4 1.3 0 
15           0 0 15.0 15.0 15.0 5.5 5.5 
16           13.7 0 2.4 0 2.4 1.9 2.0 
17           8.5 8.5 2.1 2.1 1.8 3.7 0 
18           6.6 6.6 2.8 2.8 2.8 9.4 9.4 
19           2.1 2.1 7.3 7.3 7.3 1.3 1.3 
20           6.1 6.1 5.6 4.8 5.6 0 9.0 
21           3.9 0 0 1.0 1.0 2.0 2.0 
22                4.7 4.7 
23                9.6 8.2 
24                4.1 3.7 
25                12.5 0 
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 Problem 8 Problem 9 Problem 10 Problem 11 Problem 12 Problem 13 Problem 14 
task tA tB tC tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC 

1 4.1 4.1 4.1 1.0 1.0 3.4 3.4 0 9.5 9.5 2.1 2.1 2.1 2.4 2.4 0 4.0 0 
2 2.7 2.7 2.7 3.7 3.7 10.0 10.0 10.0 1.3 1.3 3.2 3.2 3.6 5.3 5.3 6.6 5.7 6.6 
3 4.6 4.6 4.6 7.2 7.2 8.0 8.0 8.0 4.8 4.8 4.3 0 4.3 2.0 2.0 2.0 2.0 2.0 
4 4.1 4.1 4.1 12.6 12.6 12.7 11.8 12.7 3.3 3.3 0 5.0 5.0 4.0 4.3 4.3 4.0 4.3 
5 2.0 2.0 2.0 4.2 4.2 9.3 9.3 9.3 1.5 1.7 3.7 3.7 3.7 4.0 4.0 4.0 4.0 4.0 
6 0 2.0 2.0 3.4 3.4 3.3 3.3 3.3 4.5 4.1 13.4 13.4 13.4 4.4 4.4 4.4 4.4 4.4 
7 11.3 11.3 11.3 3.4 3.4 4.7 4.7 4.7 3.6 3.6 2.1 0 2.1 1.3 1.5 1.3 1.3 1.5 
8 7.8 7.8 7.8 10.7 10.7 8.6 8.6 8.6 0 2.0 7.8 0 7.8 1.4 1.4 1.4 1.4 1.4 
9 0 10.0 10.0 9.9 0 8.2 0 8.2 12.3 12.3 4.2 4.2 4.2 4.9 4.5 4.9 4.9 4.5 
10 3.5 3.5 3.3 7.6 7.6 8.4 8.4 8.4 0 8.0 9.9 9.9 9.9 6.6 6.6 4.5 4.4 4.5 
11 3.9 4.2 3.9 9.8 9.8 0 0 9.0 2.5 2.5 5.8 5.8 6.0 6.9 0 3.8 3.8 3.8 
12 1.0 1.0 1.0 2.4 2.4 8.9 8.3 8.9 4.3 4.3 3.0 2.9 3.0 2.4 2.4 2.4 2.4 2.4 
13 2.5 2.3 2.5 9.8 8.7 4.6 4.6 0 6.5 0 0 2.0 2.0 5.3 5.3 5.3 5.3 5.3 
14 5.1 5.1 5.1 10 10 0 0 5.0 1.7 1.7 2.4 2.4 2.4 12.2 12.2 12.2 12.2 12.2
15 3.5 3.5 3.5 0 9.0 9.2 9.3 9.2 7.0 7.0 7.0 6.5 7.0 2.7 2.7 2.7 2.7 2.7 
16 3.5 3.5 3.4 0 9.0 1.9 2.1 2.0 1.4 1.4 3.8 0 3.8 5.5 5.5 5.5 5.5 5.5 
17 6.8 6.8 6.8 2.7 2.7 4.8 4.8 4.8 7.8 7.8 0 2.0 2.0 6.6 6.6 6.6 6.6 6.6 
18 8.5 8.5 9.6 3.6 3.7 10.2 11.5 10.2 2.9 2.9 5.7 5.7 5.7 6.8 6.5 6.8 6.8 6.5 
19 9.9 9.9 9.9 7.7 7.7 4.4 4.6 4.4 1.6 1.6 1.4 1.4 1.4 9.5 9.5 9.5 9.5 9.5 
20 7.2 7.2 7.2 12.4 12.4 0 3.0 0 7.0 7.0 13.7 13.7 13.7 0 14.9 14.9 0 14.9
21 4.8 4.8 4.8 6.2 6.2 1.4 1.4 1.4 8.7 8.7 6.4 6.4 6.9 2.2 2.2 2.8 2.8 2.8 
22 3.8 3.8 3.9 6.0 6.6 4.1 4.1 0 3.9 4.1 5.0 5.0 5.3 4.8 4.8 6.4 6.4 6.4 
23 2.9 2.8 2.6 5.5 5.5 4.1 4.1 4.1 6.4 6.4 12.8 12.8 12.8 5.1 5.8 8.6 8.6 8.6 
24 3.5 3.5 3.5 1.9 1.9 0 9.0 9.0 2.8 2.7 0 2.0 2.0 0 10 9.7 8.2 9.7 
25 7.8 7.8 7.8 4.4 4.4 9.5 9.5 10 8.5 8.5 8.2 8.2 0 1.1 1.0 5.8 5.5 5.8 
26    12.1 12.1 9.2 9.2 9.2 6.7 6.7 9.1 9.1 9.1 2.4 2.4 2.4 2.4 2.4 
27    9.2 9.2 9.9 9.9 9.9 1.9 1.9 9.7 9.7 9.7 1.7 1.7 0 2.0 2.0 
28    9.5 9.9 3.7 3.7 3.1 9.9 9.9 7.2 7.2 7.2 12.3 13.5 3.9 3.9 4.5 
29         4.6 0 10.5 10.5 10.5 2.5 2.5 7.1 7.1 7.1 
30         4.0 4.2 2.4 2.4 2.4 0 0 2.0 0 0 
31              5.1 5.1 5.1 5.1 5.1 
32              4.1 4.0 4.0 4.1 4.0 
 
 

 Problem 15 Problem 16 Problem 17 Problem 18 Problem 19 Problem 20 

task tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC 
1 4.9 4.9 7.1 7.1 7.1 1.0 1.0 7.5 8.0 7.5 5.8 5.8 3.2 3.5 3.2 
2 7.2 7.2 3.2 3.2 3.2 4.4 5.1 6.0 0 6.0 5.7 5.7 11.7 11.7 11.7 
3 3.3 3.3 4.1 0 4.1 14.3 0 5.6 5.6 5.6 0 10 6.0 5.6 6.0 
4 13.6 13.6 8.0 8.0 8.0 2.2 2.2 3.8 0 3.8 5.0 5.1 1.9 0 1.9 
5 4.4 4.4 5.3 5.3 6.0 4.8 4.8 3.1 2.9 3.1 5.1 5.1 0 15.0 0 
6 6.5 6.5 11.8 11.8 11.9 5.1 5.8 4.2 4.2 4.2 0 8.0 7.4 7.4 7.4 
7 4.1 4.1 11.7 11.7 11.7 0 10.0 10.6 10.6 10.6 6.8 6.8 7.9 8.4 7.9 
8 4.2 4.2 3.4 3.4 3.4 5.1 5.1 0 8.0 8.0 4.5 4.5 5.2 5.4 5.2 
9 4.1 4.1 8.7 8.7 8.7 9.4 9.4 3.6 3.6 3.6 5.1 5.1 2.3 2.3 2.3 
10 11.7 12.2 2.9 3.0 2.9 5.0 5.0 2.4 2.4 2.4 9.6 9.6 5.8 4.9 5.8 
11 2.2 2.2 4.4 4.4 0 3.5 3.5 9.3 9.3 0 1.5 1.5 2.6 2.6 0 
12 0 3.0 5.6 5.6 5.6 0 4.0 1.1 1.2 1.1 3.9 3.9 4.3 4.6 4.3 
13 0 1.0 4.2 4.3 4.2 7.0 0 2.7 0 0 9.6 9.6 2.2 2.2 2.2 
14 8.0 6.9 13.8 13.8 13.8 2.7 0 5.6 5.6 5.0 2.7 2.7 3.5 3.5 3.7 
15 6.6 7.4 2.5 2.5 2.5 5.3 5.3 9.3 9.3 9.3 1.5 1.5 8.7 0 8.7 
16 4.2 4.2 5.9 6.1 5.9 0 3.0 0 8.0 7.2 4.2 0 8.4 8.4 8.4 
17 7.6 7.6 7.7 7.7 7.7 2.2 2.2 10.4 10.4 10.4 5.3 5.3 2.1 2.1 2.1 
18 6.5 6.5 0 4.0 4.0 0 3.0 9.0 9.0 9.0 3.7 3.7 8.4 8.4 8.4 
19 5.3 5.3 1.0 1.0 1.0 8.3 8.3 12.0 12.0 12.1 8.1 8.1 8.1 8.1 8.1 
20 7.4 7.4 7.4 7.4 7.4 2.6 2.6 6.6 6.6 0 13.4 13.4 5.8 5.8 5.8 
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               (cont.)
task tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC 
21 4.6 4.6 5.9 5.9 5.9 2.5 2.5 8.7 0 8.7 13.4 13.4 0 6.0 6.0 
22 6.9 6.9 4.0 4.0 4.0 5.7 5.7 2.9 2.9 2.8 1.1 0 6.6 7.3 5.7 
23 5.6 0 12.4 12.4 12.4 9.7 8.8 3.3 0 3.3 1.3 1.3 5.8 5.8 5.8 
24 2.8 2.8 2.4 2.4 2.0 3.7 3.7 4.0 4.0 4.0 9.3 9.3 9.2 9.2 9.2 
25 0 9.0 8.3 8.3 8.8 9.6 9.6 1.2 1.2 1.2 6.7 6.4 3.1 3.1 3.1 
26 8.2 8.2 8.2 8.2 8.2 8.8 8.8 9.0 9.0 0 5.3 0 4.7 4.7 4.7 
27 3.2 0 2.9 2.9 3.2 4.8 4.8 5.6 5.6 5.6 9.9 9.9 9.7 9.7 0 
28 3.4 3.4 2.1 0 1.9 8.0 0 2.0 2.0 2.0 0 3.0 6.7 6.7 6.7 
29 2.9 2.6 2.3 2.3 2.3 5.6 5.6 7.5 7.5 7.5 3.7 3.7 1.8 1.8 1.8 
30 13.9 13.9 12.6 12.6 12.6 4.0 4.0 2.5 2.5 2.5 3.2 3.2 4.3 4.3 4.3 
31 6.2 6.2 0 8.0 8.0 4.8 4.4 8.8 8.8 8.8 1.1 1.1 8.4 8.4 8.3 
32 6.6 6.6 11.6 11.6 11.6 8.6 8.6 9.7 10.1 9.7 8.8 8.8 3.1 3.1 3.1 
33 6.9 0 1.5 1.5 1.5 10 8.9 3.6 3.6 3.6 6.4 6.4 8.0 8.0 8.0 
34 2.4 2.4 1.1 1.1 1.1 5.4 5.4 6.3 5.9 6.3 7.4 7.4 3.4 3.4 3.4 
35 8.2 8.2 6.0 6.0 6.0 4.7 5.4 0 13.0 0 7.1 7.0 3.9 3.7 3.9 
36      9.4 9.4 4.7 4.7 4.7 6.2 6.9 9.7 0 0 
37      1.0 1.0 7.9 7.9 7.9 0 14.0 4.9 4.9 4.9 
38      7.3 6.9 5.6 6.1 5.6 6.5 6.5 4.4 4.4 4.4 
39      4.1 4.1 2.2 2.2 0 9.2 8.4 2.1 2.1 2.1 
40      1.2 1.4 8.7 8.7 8.7 4.3 4.3 14.0 14.6 14.0 
41      1.1 1.0 3.6 3.6 3.6 0 6.0 9.4 0 9.4 
42      2.4 2.4 1.6 1.5 0 6.4 6.4 5.0 5.0 5.0 
43      1.7 1.7 1.2 1.2 0 7.9 7.9 5.2 5.2 5.2 
44      12.3 13.5 1.7 1.7 1.7 3.8 4.0 0 9.0 9.0 
45      2.5 2.5 4.9 4.9 4.9 4.8 0 9.6 9.6 9.6 
46           2.3 0 1.3 1.3 1.3 
47           8.5 8.5 3.0 3.0 3.0 
48           4.6 4.8 7.6 7.6 7.6 
49           13.6 13.6 0 2.0 2.0 
50           3.6 3.6 8.4 8.4 8.4 
51           9.2 9.2 3.8 3.8 3.8 
52           1.5 1.5 3.3 3.3 3.3 
53           5.1 0 7.9 7.9 7.9 
54           4.4 4.4 4.6 4.2 5.1 
55           3.8 3.8 13.6 13.6 13.6 
56           6.7 6.7 5.9 5.9 6.0 
57           11.3 11.3 9.5 9.5 9.5 
58           7.0 0 7.7 0 7.7 
59           2.2 2.2 4.4 4.4 4.7 
60           15.0 15.0 3.9 3.9 3.9 
61           8.4 8.4 10.0 11.2 10.0 
62           1.3 1.3 8.8 8.8 8.8 
63           1.7 1.7 0 6.0 6.0 
64           7.5 7.5 0 7.0 0 
65           5.1 5.1 4.5 4.5 4.5 
66           0 5.0 3.7 3.7 3.7 
67           1.4 1.6 1.1 0 1.0 
68           6.5 7.1 2.9 2.9 2.9 
69           3.9 3.9 8.7 8.4 8.5 
70           2.9 2.9 2.7 3.1 2.7 
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A2.2.2 MALBP data set with random task times (in time units) 

 Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Problem 7 

task tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC tA tB 
1 4.1 6.4 13.9 10.4 0 3.6 2.7 1.2 9.7 13.7 0.6 6.5 3.0 16.1 1.8 18.5 1.7 
2 4.9 12.6 2.5 12.5 13.8 9.9 7.9 13.8 1.2 14.8 13.4 5.4 15.7 0.6 4.1 16.7 9.9 
3 15.1 13.3 6.7 4.6 2.4 1.3 9.0 9.3 14.2 14.5 9.2 14.2 13.9 1.5 5.4 14.8 10.0 
4 8.5 6.4 10.8 1.5 5.3 2.9 7.5 7.2 11.6 14.9 12.3 12.1 15.9 6.0 2.0 11.9 14.8 
5 7.0 8.1 7.8 3.1 17.9 2.1 2.5 10.1 0.5 1.4 7.2 3.1 11.0 5.3 2.3 15.0 7.4 
6 1.8 19.4 19.9 7.1 4.5 0.5 18.5 3.6 15.2 12.8 1.4 10.0 19.1 19.0 12.4 6.2 13.1 
7 8.2 13.5 5.7 12.7 3.6 1.2 3.1 1.2 12.6 19.3 3.8 1.3 17.0 1.4 12.8 9.9 6.3 
8 17.3 16.8 1.6 6.9 8.5 6.0 19.9 13.8 6.3 7.5 9.2 9.3 9.6 7.2 3.6 2.4 5.4 
9      10.9 6.9 9.7 5.9 2.4 11.9 8.0 7.9 7.9 8.3 11.1 1.6 
10      16.5 7.5 6.0 8.3 10.7 8.1 11.8 5.6 3.5 15.6 6.8 13.7 
11      4.0 0.4 7.4 0.3 8.4 11.8 1.8 10.8 7.6 9.1 15.8 11.5 
12           13.7 20.0 13.3 5.3 17.3 14.7 10.6 
13           17.1 4.0 12.7 14.4 4.9 11.0 7.8 
14           12.4 0.9 9.7 2.5 0.4 7.7 18.0 
15           11.1 12.2 16.8 12.8 15.6 10.2 18.9 
16           12.0 3.0 6.9 12.9 0 14.5 6.8 
17           14.0 10.9 12.9 14.3 2.1 17.5 19.9 
18           14.2 6.4 7.2 15.0 4.1 16.2 2.7 
19           3.8 7.2 14.6 2.2 4.3 9.0 17.5 
20           15.6 10.9 11.9 10.3 18.2 11.5 10.4 
21           17.8 8.9 14.9 10.6 2.8 15.9 16.8 
22                18.1 4.8 
23                1.8 13.3 
24                14.1 3.7 
25                4.7 10.3 

 

 Problem 8 Problem 9 Problem 10 Problem 11 Problem 12 Problem 13 Problem 14 

task tA tB tC tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC 
1 10.8 17.9 6.5 9.7 1.6 11.8 3.0 0.5 1.3 4.5 10.5 19.3 1.5 8.2 14.7 13.2 18.5 12.0 
2 15.6 8.5 0.0 4.0 0.8 8.6 3.1 7.7 10.0 10.2 5.6 3.0 8.3 11.0 19.8 1.6 15.6 15.7 
3 2.1 4.9 18.2 6.4 11.7 16.6 13.2 15.9 8.8 8.2 18.4 12.7 13.1 0.2 18.2 8.4 5.6 19.1 
4 10.0 16.9 8.3 10.7 8.8 6.2 14.9 2.2 10.0 6.5 5.5 1.4 19.1 13.5 8.2 11.8 12.6 8.7 
5 13.8 16.6 4.9 3.2 6.3 3.7 0.1 14.6 10.9 15.0 16.9 7.3 12.8 1.5 19.6 16.1 8.5 3.7 
6 11.7 16.3 5.9 16.8 12.1 13.4 7.7 4.1 13.9 2.7 3.7 15.7 18.1 9.6 4.9 11.4 3.1 9.8 
7 0.2 4.3 11.7 5.6 7.7 4.7 5.8 14.6 12.2 4.7 1.5 3.7 12.5 18.7 5.7 5.8 13.4 3.8 
8 16.3 14.4 11.9 12.1 9.8 18.1 17.8 4.8 2.2 4.0 19.3 9.7 6.9 0.8 18.5 1.8 8.2 10.5 
9 16.1 17.9 4.5 0.1 3.4 0.2 9.1 10.4 13.8 17.9 10.7 10.5 15.2 19.7 8.0 10.9 11.6 14.0 
10 19.9 2.8 2.6 8.1 17.6 4.1 10.1 10.9 6.2 7.8 11.1 19.9 19.0 2.1 3.7 16.7 6.3 12.1 
11 10.5 11.1 9.8 12.1 19.8 11.9 19.3 8.7 0.8 3.2 6.6 9.3 1.6 15.9 18.2 13.3 14.6 14.9 
12 7.6 15.9 10.9 19.5 0.6 11.2 0.5 7.9 8.3 13.2 15.7 19.3 18.1 1.7 12.3 3.2 7.3 15.5 
13 18.3 6.9 13.5 15.0 15.6 3.5 19.4 17.7 5.6 4.8 3.9 12.3 11.6 7.8 3.2 4.3 15.5 19.0 
14 3.9 8.3 18.8 11.7 0.9 16.6 6.4 14.6 0.2 10.2 12.6 10.0 2.6 5.3 9.8 3.6 4.7 19.7 
15 11.8 17.2 4.4 2.2 7.4 16.0 15.4 8.3 12.1 13.5 17.9 8.8 3.2 17.6 6.3 1.0 8.2 9.8 
16 15.3 2.7 14.7 2.5 15.7 6.1 3.7 5.4 15.5 4.4 12.7 13.8 11.5 16.9 2.7 0.4 12.9 5.5 
17 19.2 2.0 0.1 15.0 16.2 0.5 1.2 10.3 7.6 0.4 15.6 6.3 10.2 18.5 8.0 9.5 16.9 3.4 
18 3.9 14.1 1.3 16.0 4.7 7.8 11.4 0.6 15.3 2.9 13.0 1.2 15.7 4.8 1.7 3.3 5.7 5.2 
19 11.5 3.9 5.0 0.5 16.0 10.0 16.4 9.4 16.0 11.7 18.4 11.8 19.1 10.8 14.0 18.3 9.3 11.6 
20 10.8 14.0 0.4 11.6 0.4 7.8 5.7 5.6 16.7 19.3 1.8 18.7 12.8 3.9 5.1 19.1 7.2 16.4 
21 12.8 15.1 5.6 9.3 10.2 4.7 10.3 14.0 15.0 11.4 17.0 15.8 14.4 1.7 19.2 8.1 14.3 13.0 
22 19.5 15.9 4.4 8.0 11.0 1.2 16.9 2.6 14.6 14.4 1.9 15.5 14.4 16.9 14.6 2.8 2.2 18.8 
23 3.6 13.6 0.5 17.8 13.4 18.4 7.8 15.0 16.6 2.8 15.1 4.1 10.2 12.4 13.0 11.1 2.4 3.7 
24 1.7 4.4 19.1 17.8 15.1 1.6 9.0 2.5 1.4 8.0 0.4 6.0 8.1 4.1 3.5 16.9 1.3 3.9 
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                  (cont.)

task tA tB tC tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC 

25 17.2 12.5 9.0 0.2 2.8 14.2 17.7 14.6 12.8 4.8 4.5 13.8 11.0 15.4 16.0 12.1 18.3 3.3 
26    19.4 12.2 13.5 3.7 13.3 7.1 15.2 3.2 8.3 5.4 3.9 12.7 16.6 13.9 2.8 
27    12.4 16.5 13.8 11.5 7.5 10.9 9.8 9.5 14.3 17.5 19.2 5.9 8.1 9.6 7.1 
28    16.7 8.7 2.1 1.6 13.7 14.3 18.2 4.3 0.9 17.7 19.4 3.9 17.3 15.9 15.7 
29         6.5 16.8 10.7 14.7 2.6 8.7 18.1 9.5 16.8 8.9 
30         16.5 3.4 14.0 4.3 8.1 0.5 15.4 12.3 18.0 17.8 
31              6.7 2.8 4.4 12.2 5.8 
32              2.6 13.2 3.6 11.8 12.5 

 

 Problem 15 Problem 16 Problem 17 Problem 18 Problem 19 Problem 20 
task tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC 

1 5.2 16.8 9.3 9.3 16.6 17.8 2.7 1.7 12.3 8.8 3.9 17.8 17.9 18.7 10.6 
2 9.7 6.9 9.9 12.7 4.7 19.3 18.0 2.3 16.2 17.7 14.8 12.0 17.6 4.4 13.9 
3 6.1 6.0 2.7 5.1 17.8 17.3 7.2 3.1 19.3 8.7 11.4 5.9 1.5 5.3 16.5 
4 9.2 7.7 6.6 12.6 6.3 16.4 7.4 16.4 19.6 10.3 4.7 10.0 15.8 4.2 16.1 
5 7.6 3.2 13.7 8.3 15.0 0.4 18.5 16.0 12.0 2.9 2.5 2.4 9.4 10.8 13.7 
6 2.5 9.0 13.2 16.6 19.3 12.0 14.1 9.0 18.7 1.4 13.3 1.1 5.7 10.4 18.4 
7 18.9 17.7 14.8 19.9 10.6 0.1 8.6 5.7 3.0 10.3 8.1 17.9 12.7 16.1 14.8 
8 3.8 15.7 2.7 5.5 7.7 14.4 5.9 1.0 14.6 9.6 15.5 19.5 16.0 13.5 15.5 
9 4.0 13.8 4.8 2.1 7.0 8.3 16.1 10.0 9.9 12.4 7.7 5.6 19.9 8.1 2.0 
10 4.1 1.0 9.7 12.5 17.4 10.0 0.1 14.7 4.6 13.9 3.5 9.0 2.6 2.9 11.9 
11 17.4 5.4 0.0 3.5 6.6 4.0 17.3 5.1 5.7 17.1 18.6 1.7 12.3 19.6 18.2 
12 14.6 10.0 2.6 19.5 13.8 15.7 4.0 17.0 18.6 19.2 10.1 6.9 4.2 2.5 11.0 
13 9.6 16.4 18.3 14.4 9.9 18.5 16.8 18.2 13.6 9.4 14.1 9.7 13.2 17.4 13.5 
14 11.8 10.6 19.1 4.5 18.7 19.1 18.9 17.7 16.3 14.2 16.3 13.2 4.3 19.4 16.1 
15 10.5 14.4 14.4 9.4 19.1 8.7 7.4 5.9 11.6 15.6 5.2 19.5 11.8 1.8 5.0 
16 2.9 2.5 5.0 17.1 3.3 18.7 5.1 13.1 14.3 10.4 8.0 6.5 9.9 13.8 0.5 
17 4.0 17.4 1.1 13.0 14.7 7.4 13.3 19.4 17.5 15.1 13.9 16.2 4.5 19.5 3.6 
18 12.2 11.3 3.9 12.4 7.2 17.0 15.9 12.4 4.4 3.7 5.5 10.4 9.0 13.2 19.5 
19 2.3 14.6 19.4 5.4 12.1 18.7 19.8 11.5 10.7 15.1 16.1 9.8 17.1 7.7 10.5 
20 12.3 3.5 7.5 8.6 15.2 10.2 2.2 0.4 2.9 14.8 0.5 19.9 13.5 3.1 16.3 
21 9.1 9.5 0.6 11.5 1.5 0.9 0.4 14.8 3.5 15.3 6.6 0.5 15.5 8.1 4.9 
22 3.1 0.3 15.5 3.7 10.3 13.8 1.1 15.5 19.9 17.2 14.5 4.2 18.0 0.1 5.3 
23 1.1 15.9 1.4 4.0 6.4 4.3 9.1 6.7 3.7 18.8 1.3 6.8 3.1 7.1 14.4 
24 13.0 12.2 10.7 16.1 15.8 4.7 13.6 1.6 5.7 14.0 18.5 7.9 6.2 7.4 11.3 
25 4.7 4.5 4.9 13.7 2.5 13.6 12.3 19.9 16.8 13.3 6.3 8.1 14.2 19.9 15.7 
26 0.8 19.3 9.9 10.2 10.5 13.9 1.8 19.0 16.7 2.0 19.9 12.8 8.7 13.7 12.2 
27 17.4 9.8 0.8 18.3 5.6 10.8 11.3 10.6 9.3 10.8 3.1 8.7 16.9 7.1 2.6 
28 17.8 13.2 14.9 17.3 16.5 4.8 15.5 7.1 8.7 19.5 4.0 2.4 15.8 5.9 3.5 
29 13.0 17.6 9.3 3.3 15.9 2.6 7.7 12.6 19.2 16.6 3.9 18.2 17.9 10.5 5.4 
30 19.7 6.2 0.2 5.9 6.0 7.3 8.5 11.6 11.8 8.4 17.4 11.8 9.3 13.7 1.1 
31 19.2 14.0 3.5 5.7 7.4 6.0 15.3 9.6 11.0 2.8 1.1 4.3 7.2 3.1 6.5 
32 17.5 14.1 14.9 4.1 16.1 5.0 19.9 12.4 19.4 8.7 9.1 3.3 10.0 3.5 19.1 
33 19.8 5.4 8.3 0.3 13.3 4.1 17.1 1.6 2.0 10.9 4.0 0.0 7.5 12.3 2.4 
34 18.9 1.9 9.0 7.8 14.6 11.6 15.1 10.8 13.6 8.0 15.5 14.4 7.2 16.2 7.7 
35 0.3 11.0 9.2 16.7 9.9 1.1 19.9 8.8 13.1 8.4 10.7 16.8 13.4 11.9 18.0 
36      12.1 11.3 11.1 10.7 4.3 9.8 4.8 2.3 4.0 14.0 
37      2.5 11.6 5.3 7.6 14.2 0.6 12.9 11.6 2.2 1.7 
38      2.7 8.3 5.3 19.2 4.7 2.8 2.1 0.1 2.3 18.0 
39      0.3 12.2 10.7 6.4 15.5 6.9 17.2 19.2 2.7 8.0 
40      4.2 12.1 19.5 7.7 3.7 9.2 0.7 17.9 4.1 18.5 
41      8.5 3.0 17.2 9.8 6.3 12.9 5.2 15.0 11.5 9.5 
42      5.7 6.2 15.4 2.9 0.8 8.9 0.4 5.6 5.2 16.0 
43      16.1 17.0 12.9 6.4 8.1 18.1 12.5 17.4 9.0 9.9 
44      3.0 6.1 18.7 12.4 7.2 12.0 0.7 13.2 17.7 1.7 
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               (cont.) 

task tA tB tA tB tC tA tB tA tB tC tA tB tA tB tC 
45      10.1 10.4 10.5 4.7 0.9 18.1 4.9 5.1 0.8 18.8 
46           6.0 14.3 9.9 11.9 15.0 
47           1.3 16.3 17.8 4.6 14.5 
48           8.6 1.7 3.4 2.9 4.7 
49           18.5 11.6 1.2 5.2 13.1 
50           2.9 18.4 11.6 15.0 6.5 
51           8.6 2.9 3.3 7.8 4.6 
52           6.6 6.7 19.6 15.8 12.1 
53           0 17.6 0.0 3.9 2.3 
54           10.5 3.6 6.6 12.5 6.1 
55           16.9 17.0 2.6 11.5 19.4 
56           17.7 3.9 14.2 2.5 2.0 
57           15.5 8.0 3.0 6.8 18.8 
58           12.1 19.4 1.5 17.4 6.9 
59           18.6 0.8 6.9 1.2 14.5 
60           0.9 8.9 3.1 7.9 7.9 
61           9.3 6.6 14.6 3.0 15.4 
62           18.0 12.1 13.8 11.9 12.1 
63           19.8 1.8 1.2 9.4 15.9 
64           13.0 13.7 11.4 1.0 3.9 
65           3.5 15.5 15.6 9.6 15.0 
66           5.5 14.5 5.2 8.9 3.9 
67           17.1 9.0 12.6 10.6 12.3 
68           6.7 19.9 10.5 12.0 15.3 
69           4.7 0.8 8.2 15.0 5.9 
70           12.4 1.9 9.9 17.6 8.5 
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Computation of LBpmix for problems with 
maximum task processing time less or equal to 

2C 
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A lower bound for the mixed-model assembly line balancing problem with parallel 

workstations, LBpmix, was derived using the following set of assumptions: 

(i) the maximum number of replicas per workstation is given by MAXTk= ⎡ ⎤C/t max , where 

tmax is the processing time of the longest task assigned to workstation k,  

(ii) a workstation can be duplicated only if the task time of one of the tasks assigned to it 

exceeds the cycle time (MRT=C), and  

(iii) the task time of the longest task does not exceed twice the cycle time (tmax≤2C). 

The steps required to compute LBpmix are described as follows and illustrated for the 

numerical example introduced in section 4.3.3: 

Step 1: For each model, classify the tasks according to the corresponding task time, as 

shown in Table A3.1. 

Table A3.1 – Classification of tasks to compute LBpmix 

  Tasks 
Task type Task time  Model A Model B 

A 
3
5 C < tA ≤ 2C - - 

B 
3
4 C < tB ≤ 

3
5 C 4 4 

C C < tC ≤ 
3
4 C 25 - 

D 
3
2 C < tD ≤ C 2,3,5,12,18,23 2,3,5,12,18,20,23 

E 
3
1 C < tE ≤ 

3
2 C 6,7,9,11,13,15,17,22,24 9,11,13,15,22,24 

F tF = 
3
5 C - - 

G tG = 
3
4 C - - 

H tH = 
3
2 C - - 

I tI = 
3
1 C - - 

J tJ < 
3
1 C 1,8,10,14,16,19,20,21 1,6,7,8,10,14,16,17,19,21,25 

 
Step 2: For each model, compute LB’(m). 

⎥⎥
⎤

⎢⎢
⎡ ++++−+−+++= IHGFBECDCBA nnnnnnwnnynnnmLB

3
1

3
2

3
4

3
5)(

2
1)()(2)('  (A3.1) 
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LB'(m) is the main term of LBpmix(m). It is derived from one of the lower bounds, LB3, 

defined by Scholl (1999) for the SALPB and adapted to the parallel workstations problem. 

LB'(m) is given by expression A3.1, where nX is the number of tasks of type X (X=A,…,J), 

y equals 1 if nD-nC>0 or zero otherwise and w equals 1 if nE-nB>0 or zero otherwise. The 

reasoning for this computation is as follows. 

The workstations performing tasks of types A, B or C (whose task time is longer than 

the cycle time) need to be duplicated. As two tasks of any of these types cannot share the 

same workstation, because the maximum number of replicas allowed would be exceeded, a 

lower bound for the overall number of workstations (including replicas) is twice the 

number of tasks of types A, B and C. Each task of type D can be combined with a task of 

type C in a duplicated workstation, however if there are not enough duplicated 

workstations of type C to accommodate the tasks of type D, each of these remaining tasks 

will require a workstation. The same reasoning applies to tasks of type E, that is, two tasks 

of type E require a single workstation, but can also be combined with a duplicated 

workstation performing tasks of type B. Finally, the tasks of types F, G, H and I have a 

fixed task time and so they occupy a fraction of a workstation corresponding to the ratio 

between their task time and the cycle time. 

For the numerical example, the values of LB'(A) and LB'(B) are computed as follows: 

131)-(9 
2
1+ 1)-(6 + 1) + 1 + 2(0)( =⎥

⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛=′ ABL  

121)-(6 
2
1+ 0)-(7 + 0) + 1 + 2(0 )( =⎥

⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛=′ BBL  

Step 3: For each model, compute Z(m). 
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⎥
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A second term is added to LB'(m) to compute the value of LBpmix. This term adds up the 

number of workstations needed to process tasks of type J, which in most real world 

problems account for a large proportion of the workstations. Because these tasks can easily 

be included in workstations that perform tasks of the other types, it is necessary to verify if, 

after filling up these workstations, there are tasks of type J remaining to create new 
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workstations. The minimum number of workstations (Z(m)) required to perform tasks of 

type J, after filling up the remaining capacity of the workstation assigned to other task 

types is then given by expression A3.2. 

For the numerical example, the values of Z(A) and Z(B) are computed as follows: 

⎡ ⎤ 1 123.2)]/10-10(13-[9)( =×=AZ  

⎡ ⎤ 0104.4)]/10-10(12-[11.8 )( =×=BZ  

Step 4: For each model, compute LBpmix(m) = LB' + Z(m). For the numerical example, 

LBpmix(A) = 14 and LBpmix(B) = 12. 

Step 5: Select LBpmix for the problem. LBpmix = maxm[LBpmix(m)]. For the numerical 

example, LBpmix = LBpmix(A) = 14. 
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Demonstration of the maximum and minimum 
values of functions U
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A4.1 Function U
bB  (balance between workstations of a U-line) 
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• Minimum value – U
bB  reaches the minimum value of zero when WITU is evenly 

distributed between workstations (best case). 

- for all (S) workstations: 
S
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• Maximum value – U
bB  reaches the maximum value of 1 when WITU is only 

accountable to one workstation (worst case). 

- for one workstation: U
k WITS =  

- for S-1 workstations: 0=kS  
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A4.2 Function U
wB  (balance within workstations of a U-line) 
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• Minimum value – U
wB  reaches the minimum value of zero when, for all workstations, 

Sk is evenly distributed among all model combinations (best case). 

- for all (S) workstations and all (M2) model combinations: 2M
S

sq k
kmnmn =  
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• Maximum value – U
wB  reaches the maximum value of 1 when, for all workstations, Sk 

is only accountable to one model combination (worst case). 

- for one model combination: kkmnmn Ssq =  

- for M2-1 models: 0=kmnmn sq  
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Computation of LBpmix for problems with 
maximum task processing time less or equal to 

5C  
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The lower bound for the mixed-model assembly line balancing problem with parallel 

workstations, LBpmix, proposed described in Appendix 3 was adapted to take into account 

the following set of assumptions: 

(i) the maximum number of replicas of each workstation is given by MAXPk= ⎡ ⎤C/t max , 

where tmax is the processing time of the longest task assigned to workstation k, 

(ii) a workstation can be replicated only if the task time of one of the tasks assigned to it 

exceeds the cycle time (MRT=C), and  

(iii) the task time of the longest task does not exceed five times the cycle time (tmax≤5C). 

The steps required to compute LBpmix are the following: 

Step 1: For each model, classify tasks according to the corresponding task time, as shown 

in table A5.1. 

Table A.1 – Classification of tasks to compute LBpmix 

Task 
type Task time  Task 

type Task time  Task 
type Task time  

A 
3

14 C < tA ≤ 5C I 2C < tI ≤ 
3
7 C R tR = 

3
10 C 

B 
3

13 C < tB ≤ 
3

14 C J 3
5 C < tJ ≤ 2C S tS=

3
8 C 

C 4C < tC≤ 
3

13 C K 3
4 C < tK ≤ 

3
5 C T tT = 

3
7 C 

D 
3

11 C < tD ≤ 4C L C < tL ≤ 
3
4 C U tU = 

3
5 C 

E 
3

10 C < tE ≤ 
3

11 C M 3
2 C < tM ≤ C V tV = 

3
4 C 

F 3C < tF ≤ 
3

10 C N 3
1 C < tN≤ 

3
2 C W tW = 

3
2 C 

G 
3
8 C < tG ≤ 3C O tO= 

3
14 C X tX = 

3
1 C 

H 
3
7 C < tH ≤ 

3
8 C P tP < 

3
13 C Y tY < 

3
1 C 

I 2C < tI ≤ 
3
7 C Q tQ = 

3
11 C  

 

 

Step 2: For each model, compute ⎡ ⎤)('')(' mLBmLB = , where 

LB’’(m)=5(nA+nB+nC)+4(nD+nE+nF)+3(nG+nH+nI)+2(nJ+nK+nL)+y(nM-nC-nF-nI-nL) 

+(1/2)w(nN-nB-nE-nH-nK)+(14/3)nO+(13/3)nP+(11/3)nQ+(10/3)nR+(8/3)nS 

 +(7/3)nT+(5/3)nU+(4/3)nV+(2/3)nW+(1/3)nX             (A5.1) 
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where nX is the number of tasks of type i (i=A,…,X), y equals 1 if nM-nC-nF-nI-nL >0 or 

zero otherwise and w equals 1 if nN-nB-nE-nH-nK >0 or zero otherwise. The reasoning for 

this computation is as follows. 

The workstations performing tasks whose processing time is longer than the cycle time 

(tasks of types A to L) need to be replicated. As two tasks of any of these types cannot 

share the same workstation, because the value of MAXPk would be exceeded, a lower 

bound for the overall number of workstations (including replicas) is the number of tasks of 

each type multiplied by the number of replicas created in a workstation by the assignment 

of each task (for instance, each task of type A, B, and C will create a workstation with 5 

replicas, because they have processing times between 4C and 5C). Each task of type M can 

be combined with a task of type C, F, J or L in a replicated workstation, however if there 

are not enough replicated workstations to accommodate the tasks of type M, each of these 

remaining tasks will require a workstation. The same reasoning applies to tasks of type N, 

that is, two tasks of type N require a single workstation, but they can also be combined 

with a replicated workstation performing tasks of type B, E, H or K. Finally, the tasks of 

types O to X have a fixed task time and so they occupy a fraction of a workstation 

corresponding to the ratio between their task time and the cycle time. 

Step 3: For each model, compute Z(m). 

Z(m) adds up the number of workstations needed to process tasks of type Y. Because 

these tasks can easily be included in workstations that perform tasks of the other types, it is 

necessary to verify if, after filling up these workstations, there are tasks of type Y 

remaining to create new workstations. The minimum number of workstations required to 

perform tasks of type Y, after filling up the remaining capacity of the workstation assigned 

to other task types is then given by: 
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Step 4: For each model, compute LBpmix(m) = LB’(m) + Z(m). 

Step 5: Select LBpmix for the problem: LBpmix = maxm[LBpmix(m)]. 
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