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1 Introduction

Controller Area Network (CAN) is a popular and very well-known bus system, both in academia and in
industry. CAN protocol was introduced in the mid eighties by Robert Bosch GmbH [7] and it was interna-
tionally standardized in 1993 as ISO 11898-1 [27]. It was initially designed to distributed automotive control
systems, as a single digital bus to replace traditional point-to-point cables that were growing in complex-
ity, weight and cost with the introduction of new electrical and electronic systems. Nowadays CAN is still
used extensively in automotive applications, with an excess of 400 million CAN enabled microcontrollers
manufactured each year [14].

The widespread and successful use of CAN in the automotive industry, the low cost associated with high
volume production of controllers and CAN's inherent technical merit, have driven to CAN adoption in other
application domains such as: industrial communications, medical equipment, machine tool, robotics and in
distributed embedded systems in general.

CAN provides two layers of the stack of the Open Systems Interconnection (OSI) reference model: the
physical layer the data link layer and optionally an additional application layer (not standardized). Notice
that CAN physical layer was not de�ned in Bosch original speci�cation, only the data link layer was de�ned.
However, the CAN ISO speci�cation �lled this gap and the physical layer was then fully speci�ed. CAN
is a message-oriented transmission protocol, i.e., it de�nes message contents rather than nodes and node
addresses. Every message has an associated message identi�er, which is unique within the whole network,
de�ning both the content and the priority of the message. Transmission rates are de�ned up to 1 Mbps.

The large installed base of CAN nodes with low failure rates over almost two decades, led to the use
of CAN in some critical applications such as Anti-locking Brake Systems (ABS) and Electronic Stability
Program (ESP) in cars. In parallel with the wide dissemination of CAN in industry, the academia also
devoted a large e�ort to CAN analysis and research, making CAN one of the must studied �eldbuses.
That is why a large number of books or book chapters describing CAN were published. The �rst CAN book,
written in French by D. Paret, was published in 1997 and presents the CAN basics [36]. More implementation
oriented approaches, including CAN node implementation and application examples, can be found in Lorenz
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[32] and in Etschberger [16], while more compact descriptions of CAN can be found in [11] and in some
chapters of [35].

Despite its success story, CAN application designers would be happier if CAN could be made faster, cover
longer distances, be more deterministic and more dependable [41][39]. Over the years, several protocols based
in CAN were presented, taking advantage of some CAN properties and trying to improve some known CAN
drawbacks. This chapter, besides presenting an overview of CAN, describes also some other relevant higher
level protocols based on CAN, such as CANOpen [13], DeviceNet [6], FTT-CAN [1] and TTCAN [28].

2 CAN Technology Basics

The original speci�cation [7] contains few more than a MAC protocol based on decentralized medium random
access (CSMA type) that uses a particular physical characteristic of the medium to support a non-destructive
bit-wise arbitration. The communication is message-oriented since each message receives an identi�er which
must be unique in the system and which establishes the message priority for the arbitration process. Any
transmitted CAN message is broadcast to every node in the network.

Whenever two or more nodes start transmitting at the same time, only the one transmitting the message
with the highest priority will proceed with the transmission. All others quit and try again after the current
transmission ceases. This deterministic mechanism allows to compute the worst-case response time of all
CAN messages [50][14]. So, from the real-time point of view, CAN is a serial data bus that supports priority
based message arbitration and non-preemptive message transmission. In 1994 Tindell and Burns [50] and
Tindell et al. [51] adapted previous research on �xed priority preemptive scheduling for single processor
systems to the scheduling of messages on CAN, providing a method of calculating the worst-case response
times of all CAN messages. Prior to Tindel's results, the bus utilization in automotive applications was
typically around 30 or 40%, but still requiring extensive testing to obtain con�dence that CAN messages
would meet their deadlines [14], since then there were no analysis tools that could guarantee real-time
behavior. With the advent of new design techniques, based on schedulability analysis, CAN bus utilization
could be increased to around 80% [15]. Tindel's results were transferred to industry in the form of commercial
CAN schedulability analysis tools, e.g., Volcano Network Architect, that have been used by a large number
of major automotive manufacturers. Unfortunately, the initial CAN schedulability analysis [50] [51] was
�awed [14]. It may provide guarantees for messages that, in the worst-case scenario, will in fact miss their
deadlines. Davis et al [14] correct previous �awed analysis and discuss the impact on commercial CAN
systems designed and developed using �awed schedulability analysis, while making recommendations for the
revision of CAN schedulability analysis tools.
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2.1 Physical Layer

The CAN ISO standard incorporates the original Bosch speci�cations [7] as well as part of the physical layer,
the physical signaling, the bit timing and synchronization. There are a small number of other CAN physical
layer speci�cations including:

• ISO 11898-2 High Speed � ISO 11898-2 is the most used physical layer standard for CAN networks.
In this standard the data rate is de�ned up to 1 Mbit/s with a theoretically possible bus length of 40
m at 1 Mbit/s.

• ISO 11898-3 Fault-Tolerant � This standard de�nes data rates up to 125 kbit/s with the maximum
bus length depending on the data rate used and the bus load. Up to 32 nodes per network are speci�ed.
The fault-tolerant transceivers support the complete error management including the detection of bus
errors and automatic switching to asymmetrical signal transmission.

• SAE J2411 Single Wire � An unshielded single wire is de�ned as the bus medium and the commu-
nication takes place with a nominal data rate of 33,3 kbit/s The standard de�nes up to 32 nodes per
network. The main application area of this standard is in comfort electronics networks in vehicles.

• ISO 11992 Point-to-Point �This standard de�nes a point-to-point connection for use mainly in
vehicles with trailers. The nominal data rate is 125 kbit/s with a maximum bus line length of 40 m.

The most popular CAN physical layer protocol, available in most of the CAN transceivers, is the one
de�ned in the ISO 11898-2 standard [27]. The maximum achievable bus line length in a CAN network,
represented in Table 1, depends on:

• The loop delays of the connected bus nodes and the delay of the bus lines.

• The di�erences of the relative oscillator tolerance between nodes.

• The signal amplitude drop due to the series resistance of the bus cable and the input resistance of bus
nodes.

Notice, however that it is allowed to use bridge-devices or repeaters to increase the maximum bus line
length (not considered in Table 1).

The CAN physical layer provides a 2-state medium: the dominant and the recessive. Whenever two
nodes simultaneously transmit bits of opposite value, then all nodes should read dominant. Usually the
dominant state is associated with the binary value 0 and recessive with the binary value 1.

The physical layer has a number of built-in fault-tolerant features. CAN provides resilience against a
variety of physical faults such as one open wire, the short-circuit of the two signal wires, or even one of the
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Bit Rate Bus Length

1 Mbit/s 30 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

62,5 kbit/s 1000 m

20 kbit/s 2500 m

10 kbit/s 5000 m

Table 1: Practical CAN bus length for ISO 11898 compliant transceivers and standard bus line cables
(adapted from [12]).

signal wires shorted to ground or power. Notice that not all CAN controllers are able to implement these
features, by switching from di�erential signaling to single line signalling, at higher bus speeds. The CAN
di�erential electrical signaling mode is very resistant to electromagnetic interference (EMI) since interference
will tend to a�ect each side of a di�erential signal almost equally. However, the di�erential electrical signalling
does not fully prevent electromagnetic interference to a�ect the signal on the bus in such a way that one
or more nodes on the bus will simultaneously read a di�erent bit value from that which was transmitted.
A node detecting the error (possibly the transmitter) will invalidate the message by transmitting an error
frame. The number and the nature of EMI induced transmission faults and the ability of the physical layer to
prevent them depends on several factors as the cables type and length, the number of nodes, the transceiver
type, the EMI shielding, etc.

2.2 Data Link Layer

The data link layer of CAN includes the services and protocols required to assure a correct transfer of
information from one node to another.

There are four types of message on CAN: data frames, error frames, remote transmission request frames
and overload frames. The latter two types of messages are rarely used in real application and, thus, will not
be described further.

The CAN protocol supports two message frame formats, the only essential di�erence being in the length
of the identi�er. The CAN base frame format supports a length of 11 bits for the identi�er (formerly known
as CAN 2.0 A), and the CAN extended frame format supports a length of 29 bits for the identi�er (formerly
known as CAN 2.0 B).

Data on the bus is sent in data frames which consist of up to 8 bytes of data plus a header and a footer.
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The frame is structured as a number of �elds, as depicted in Figure 1.

Start

1 bit


Identifier

 11 bits


RTR

1 bit


IDE

1 bit


r0

1 bit


DLC

4 bits


Data

0..8 bytes


CRC

15 bits


ACK

2 bits


EOF+IFS

10 bits


...


...


Figure 1: CAN base frame format.

A CAN base frame message begins with the start bit called Start Of Frame (SOF). This bit is followed
by the arbitration �eld which consist of the identi�er and the Remote Transmission Request (RTR) bit used
to distinguish between the data frame and the data request frame called remote frame. The following control
�eld contains the IDenti�er Extension (IDE) bit to distinguish between the CAN base frame and the CAN
extended frame, as well as the Data Length Code (DLC) used to indicate the number of following data bytes
in the data �eld. If the message is used as a remote frame, the DLC contains the number of requested data
bytes. The data �eld that follows is able to hold up to 8 bytes. The integrity of the frame is guaranteed by
the following Cyclic Redundant Check (CRC) sum. The ACKnowledge (ACK) �eld comprises the ACK slot
and the ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is overwritten as a dominant
bit by those receivers which have at this time received the data correctly. Correct messages are acknowledged
by the receivers regardless of the result of the acceptance test. The end of the message is indicated by End
Of Frame (EOF). The Intermission Frame Space (IFS) is the minimum time in equivalent number of bits
separating consecutive messages. Unless another station starts transmitting, the bus remains idle after this.

Associated with every CAN message there is a unique message identi�er that de�nes its content and also
the priority of the message. Bus access con�icts are resolved by a non-destructive bitwise arbitration scheme
where the identi�ers of the involved messages are observed bit-by-bit by all nodes, in accordance with the
wired-AND mechanism, by which the dominant state overwrites the recessive state. All those nodes with
recessive transmission and dominant observation lose the competition for bus access. The nodes that lost the
arbitration automatically become receivers of the message with the highest priority and do not re-attempt
transmission until the bus is available again. In this way, transmission requests are handled in order of their
importance for the system as a whole.

2.3 Detecting and signaling errors

A CAN node does not acknowledge message reception, instead it signals errors immediately as they occur.
For error detection the CAN protocol implements three mechanisms at the message level:

• Cyclic Redundancy Check � This mechanism accounts for message corruption. The transmitter
node computes the CRC and transmits it within the message. The receiver decodes the message and
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recomputes the CRC and if they do not match, there has been a CRC error.

• Frame check � This mechanism detects message format violations, i.e., it checks each �eld against
the �xed format and the frame size.

• Acknowledge errors � Since the receivers of a message must issue an acknowledgement bit in the
ACK �eld, if the transmitter does not receive an acknowledgement an ACK error is indicated, thus
allowing a node to detect isolation from the network.

Besides error detection at the message level, the CAN protocol also implements mechanisms for error
detection at the bit level:

• Transmission monitoring � Each node transmitting a message also monitors the bus level to be able
to detect di�erences between the bit sent and the bit received. This mechanism allows distinguishing
global errors from errors local to the transmitter only.

• Bit stu�ng � CAN uses a non return to zero codi�cation to prevent nodes from loosing synchronization
by receiving long sequences of recessive or dominant bits. A supplementary bit is inserted by the
transmitter into the bitstream after �ve consecutive equal bits. The stu� bits are removed by the
receivers that also detect violations of the bit stu�ng rule.

If at least one station detects any error, it will start transmitting an error frame in the next bit aborting
the current message transmission. This prevents other stations from accepting the message and thus ensures
the consistency of data throughout the network. After transmission of an erroneous message that has been
aborted, the sender automatically re-attempts transmission (automatic retransmission). During the new
arbitration process all nodes compete for bus access and the one with the higher priority message will win
arbitration. Thus the message a�ected by the error could be delayed. There is, however, a special case where
consistency throughout the network is compromised, as it will be discussed later.

To prevent a faulty CAN controller to abort all transmissions, including the correct ones, the CAN
protocol provides a mechanism to distinguish sporadic errors from permanent errors and local failures at
the station. This is done by statistical assessment of station error situations with the aim of recognizing a
station's own defects and possibly entering an operation mode in which the rest of the CAN network is not
negatively a�ected. This may go as far as the station switching itself o� (bus-o� state).

In CAN each node that detects an error sends an error �ag composed of six consecutive dominant bits,
i.e., a violation of the bit stu�ng rule, enabling all nodes on the bus to be aware of a transmission error.
The frame a�ected by the error automatically re-enters into the next arbitration phase. The error recovery
time (the time from detecting an error until the possible start of a new frame) varies from 17 to 31 bit times
[34].
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To prevent an erroneous node from disrupting the functioning of the whole system, e.g. by repetitively
sending error frames, the CAN protocol includes fault con�nement mechanisms that are able to detect
permanent hardware malfunctioning and to remove defective nodes from the network. To do this a CAN
controller has two error counters; the transmit error (TEC) and the receive error (REC) counters which
are incremented/decremented according to a set of rules [7][27]. Each time a frame is correctly received
or transmitted by a node, the value of the corresponding counter is decreased. Conversely each time a
transmission error is detected the value of the corresponding counter is increased.

Depending on the value of both counters, the station will be in one of the three states de�ned by the
protocol: error active, error passive and bus-o�. In the error active state (REC<128 and TEC<128) the
node can send and receive frames without restrictions. In the error passive state ((REC>127 or TEC>127)
and TEC<=255) the node can transmit but it must wait 8 supplementary bits after the end of the last
transmitted frame and it is not allowed to send active error frames upon the detection of a transmission
error, it will send passive error frames instead. Furthermore, an error-passive node can only signal errors
while transmitting.

After behaving well again for a certain time, a node is allowed to re-assume the error-active status. When
the TEC is greater than 255 the node CAN controller goes to the bus-o� state. In this state, the node can
neither send nor receive frames and can only leave this state after a hardware or software reset and after
having successfully monitored 128 occurrences of 11 consecutive recessive bits (a sequence of 11 consecutive
recessive bits corresponding to the ACK, EOF and the intermission �eld of a correct data frame).

When in the error passive state, the node signals the errors in a way that cannot force the transmitter to
retransmit the incorrectly received frame. This behavior is a possible source of inconsistency that must be
controlled. As an example of the consequences this can have, consider the case of an error-passive node being
the only one to detect an error in a received frame. The transmitter will not be forced to retransmit and
the error-passive node will be the only one not to receive the message. Several authors proposed avoiding
the error passive [47][26][23] state to eliminate this problem. This is easily achieved [47][41] using a signal
available in most CAN circuits, the error warning noti�cation signal. This signal is generated when any error
counter reaches the value 96. This is a good point to switch o� the node before it goes into the error-passive
state, assuring that every node is either helping to achieve data consistency or disconnected.

2.4 Network topology

CAN network topology is bus based. Replicated busses are not referred in CAN standard, however it is
possible to implement them [45] [48].

Over the years, some star topologies for CAN have been proposed [44][29][4]. The solution presented in
[29], is based in a passive star network topology and relies on the use of a central element, the star coupler,
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to concentrate all the incoming signals. The result of this coupling is then broadcast to the nodes. The
solution presented by Rucks [44] is based on an active star coupler capable of receiving the incoming signals
from the nodes bit by bit, implementing a logical AND, and retransmitting the result to all nodes. None of
these solutions is capable of disconnecting a defecting branch and so, from the dependability point of view
they only tolerate spatial proximity faults.

Barranco et al. [4] proposed a promising solution based in an active hub that is able to isolate defective
nodes from the network. This active star is compliant with CAN standard and allows detecting a variety
of faults (stuck-at node fault, shorted medium fault, medium partition fault and bit-�ipping fault) that
will cause the faulty node to be isolated. The replication of the active star has also been considered [5].
Recently, Valter et al. [48] proposed a set of components, an architecture and protocols to enable the dynamic
management of the topology of CAN networks made of several replicated buses, both to increase the total
bandwidth and to recon�gure the network upon bus permanent error. In many operational scenarios, the
proposed solution could be plugged into existing systems to improve its resilience to bus permanent error,
without changing the code running in the nodes. In [49] these proposals were adapted to FTT-CAN with
multiple masters and multiple buses.

3 CAN Based Upper Layer Protocols

Several CAN based higher layer protocols have emerged over the years. Some of them are widely used in
industry, e.g., CANopen[13] and DeviceNet[3], while others such as TCAN[8], FlexCAN[40] and FTT-CAN[2]
have emerged in academia to overcome some well known CAN limitations namely large and variable jitter,
lack of clock synchronization, limited speed-distance product, �exibility limitations, data consistency issues,
limited error containment and limited support for fault tolerance [39]. In 2001 an extension of CAN, the
Time-Triggered CAN (TTCAN) [28] was presented to support explicit time-triggered operation on top of
CAN. Although TTCAN is not strictly an upper layer protocol based on CAN, it is considered in this section
since it o�ers some services that can be found in some CAN based upper layer protocols.

Due to space limitations, this section presents only an overview of a subset of these CAN based protocols,
namely: CANOpen, DeviceNet, FTT-CAN and TTCAN.

3.1 CANOpen

CANopen, internationally standardized as CENLEC EN 50325-4, is a CAN-based higher-layer protocol and
its speci�cations covers application layer and communication pro�le, a framework for programmable devices,
recommendations for cables and connectors and SI units and pre�x representations. In terms of con�guration
capabilities, CANopen is quite �exible and CANopen networks are used in a very broad range of application
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�elds such as machine control, building automation, medical devices, maritime electronics, etc [13]. CANopen
was initially proposed in an EU-Esprit research project and, in 1995, its speci�cation was handed over to
the CAN in Automation (CiA) an international group of users and manufacturers.

As depicted in Figure 2, the CANopen device model can be divided into three parts: the communication
interface and protocol software, the object dictionary and the process interface and application program. The
communication interface and protocol software provide services to transmit and to receive communication
objects over the CAN bus. The object dictionary describes all data types, communication objects and
application objects used in the device, acting as the interface to the application software. The application
program provides the internal control functionality as well as the interface to the process hardware interfaces.

Application
App. Program, Device 
Profile Implementation

Object-Dictionary
Data Types, communication 
and Application Objects

Communication
PDOs, SDOs

I/O

CAN BUS

Figure 2: CANopen device model.

A device pro�le is the complete description of the device application with respect to the data items in
the object dictionary. The object directory is the central element of every CANopen device describing the
device's functionality. The object directory contains all the parameters of a device that can be accessed
via the network, for example, device identi�ers, manufacturer name, communications parameters and device
monitoring. The device-speci�c area contains the connection to the process, i.e., the I/O functionality and
drivers' parameters. The behavior in the event of an error can also be con�gured in the object directory.
Accordingly, the behavior of a device can be adapted to the respective utilization requirements using the
object directory [13].

CANopen uses standardized pro�les and o�-the-shelf devices, tools, and protocol stacks are commercially
available. In an e�ort to promote reuse of application software and to potentiate communication compati-
bility, interoperability and interchangeability of devices, CANopen provides pre-de�ned application objects.
Also, manufacturer-speci�c functionality in devices, can be added to the generic functionality described in
the pro�les. CANopen provides standardized communication objects for real-time data (Process Data Ob-
jects, PDO), con�guration data (Service Data Objects, SDO), and special functions (Time Stamp, Sync
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message, and Emergency message) as well as network management data (Boot-up message, NMT message,
and Error Control).

CANopen di�erentiates between two data transfer mechanisms: fast exchange of short process data, using
process data objects (PDOs) and access to the entries of the object directory, that is done via SDO (Service
Data Object). PDOs can be asynchronous, synchronous or on-demand and the transfer is done without
protocol overhead. The synchronous transmission of messages is supported by pre-de�ned communication
objects (Sync message and time stamp message). Synchronous messages are transmitted with respect to a
pre-de�ned synchronization message, asynchronous message may be transmitted at any time. Synchronous
transmission of a PDO message means that the time elapsed form the transmission of the Sync message to
the transmission of the PDO message is constant, i.e., the synchronous message is transmitted within a �xed
time window with respect to the Sync transmission, and at most once for every period of the Sync. SDOs
are con�rmed data transfers that establish point-to-point communication between two devices, implementing
services of handshaking, fragmentation and reassembly. SDOs are used for parameter passing, con�guration,
etc.

CANopen supports three types of communication models: master/slave, client/cerver and producer/consumer.
CANopen networks also provide redundant transfer of safety-oriented information in de�ned time windows.

3.2 DeviceNet

DeviceNet, international standard IEC 62026-3, is other CAN-based higher layer protocol, initially proposed
by Allen-Bradley (now owned by Rockwell Automation), and is mostly dedicated to industrial automation.
DeviceNet speci�cations include the application layer and device pro�les. The management of the DeviceNet
speci�cation was transferred to the Open DeviceNet Vendor Association (ODVA), a non-pro�t organization
that develops and markets DeviceNet [3].

The DeviceNet physical layer speci�es a terminated trunk and drop line con�guration. Communication
and power are provided in the trunk and drop cables, enabling devices to be directly powered from the bus.

Up to 64 logical nodes can be connected to a single DeviceNet network, using both sealed and open-style
connections. There is support for strobed, polled, cyclic, change-of-state, and application-triggered data
transfer. The user can choose master/slave, multi-master and peer-to-peer or a combination con�guration,
depending on device capability and the application requirements. DeviceNet is based on the Part A of the
CAN standard, therefore it uses the eleven bit identi�er. DeviceNet uses abstract object models to describe
communication services, data and behavior. A DeviceNet node is built from a collection of objects describing
the system behavior and grouping data using virtual objects, as any object oriented programming language
would [6].

DeviceNet communication model de�nes an addressing scheme that provides access to objects within a
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device. The object model addressing information includes:

• Device Address � Referred to as the Media Access Control Identi�er (MAC ID), is an integer iden-
ti�cation value assigned to each node on the network. A test, executed at power-up, guarantees the
uniqueness of the value on the network.

• Class Identi�er � Refers to a set of objects that represent the same type of system component. The
class identi�er is an integer identi�cation value assigned to each object accessible from the network.

• Instance Identi�er � Refers to the actual representation of an object of a class. The instance identi�er
is an integer identi�cation assigned to an object instance that identi�es it among all instances of the
same class within a particular device, with an unique identi�er value.

• Attribute Identi�er � Attributes are parameters associated with an object. Attributes typically
provide some type of status information, represent a characteristic with a con�gurable value, or control
the behavior of an object. The attribute identi�er is an integer identi�cation value assigned to an object
attribute.

The DeviceNet application layer speci�es how CAN identi�ers are assigned and how the data �eld is used
to specify services, move data, and determine its meaning. DeviceNet adopts the producer-consumer model,
so the source device broadcast the data to the network with the proper identi�er. All devices who need data
listen for messages and when devices recognize the appropriate identi�er, they consume the data.

There are two types of messages usually required by most automation devices: I/0 messages and explicit
messages. I/O messages are for time critical control-oriented data and provide dedicated communication
paths between a producing application and one or more consuming applications and typically use the higher
priority identi�ers [6]. Explicit messages, on the other hand, provide multi-purpose point-to-point com-
munication paths between two devices. They provide the typical request/response-oriented network com-
munications used to perform node con�guration and diagnosis and typically use lower priority identi�ers.
Fragmentation services are also provided for messages that are longer than eight bytes.

3.3 TTCAN

Time-Triggered Communication on CAN (TTCAN) is an extension of CAN, introducing time-triggered
operation based on a high precision network-wide time base. There are two possible levels in TTCAN,
level-1 and level-2. Level-1 only provides time triggered operation using local time (Cycle_Time). Level-2
requires a hardware implementation and provides increased synchronization quality, global time and external
clock synchronization. As native CAN, TTCAN is limited to a maximum data rate of 1 Mbit/s, with typical
data e�ciency below 50%. TTCAN network topology is bus based. Replicated busses are not referred in
TTCAN standard, however it is possible to implement them [33].
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TTCAN adopts a Time-division Multiple Access (TDMA) bus access scheme. The TDMA bandwidth
allocation scheme divides the timeline into time slots, or time windows. Network nodes are assigned di�erent
slots to access the bus. The sequence of time slots allocated to nodes repeats according to a basic cycle.
Several basic cycles are grouped together in a matrix cycle. All basic cycles have the same length, but can
di�er in their structure. When a matrix cycle �nishes the transmission scheme starts over by repeating the
matrix cycle (Figure 3). The matrix cycle de�nes a message transmission schedule. However, a TTCAN
node does not need to know the whole system matrix, it only needs information of the messages it will send
and receive.

Since TTCAN is built on top of native CAN, some time windows may be reserved for several event
messages. In such windows, it is possible that more than one transmitter may compete for the bus access
right. During these slots the arbitration mechanism of the CAN protocol is used to prioritize the competing
messages and to grant access to the higher priority one. In this sense, the medium access mechanism in
TTCAN can be described as TDMA with Carrier Sense Multiple Access with Bitwise Arbitration (CSMA-
BA) in some pre-de�ned time slots. This feature makes the TTCAN protocol as �exile as CAN during the
arbitration windows, without compromising the overall system timeliness, i.e. the event-triggered messages
do not interfere with the time-triggered ones.

The TDMA cycle starts with the transmission of a reference message from a time master. The reference
messages are regular CAN messages with a special and known a priori identi�er and are used to synchronize
and calibrate the time bases of all nodes according to the time master's time base, providing a global time
for the network.

TTCAN level-1 guarantees the time-triggered operation of CAN based on the reference message of a time
master. Fault-tolerance of that functionality is established by redundant time masters, the so called potential
time masters. Level-2 establishes a globally synchronized time base and a continuous drift correction among
the CAN controllers.

There are three types of time windows (Figure 3):

• Exclusive time windows � for periodic messages that are transmitted without competition for the
CAN bus. No other message can be scheduled in the same window. The automatic retransmission,
upon error, is not allowed.

• Arbitrating time windows � for event triggered messages, where several event-triggered messages
may share the same time window and bus con�icts are resolved by the native CAN arbitration. Two or
more consecutive arbitrating time windows can be merged. Message transmission can only be started if
there is su�cient time remaining for the message to �t in. Automatic retransmission of CAN messages
is disabled (except for merged arbitrating windows).
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• Free time windows � reserved for future extensions of the network. A transmission schedule could
reserve time windows for future use, either for new nodes or to assign existing nodes more bandwidth.
Notice that a free time window can not be assigned to a message unless it is previously converted to
either an exclusive or an arbitrating time window.ReferenceMessageReferenceMessageReferenceMessageReferenceMessage

MessageAMessageAMessageAMessageA
MessageCMessageRArbitrationWindowMessageU

ArbitrationWindowMessageMArbitrationWindowMessageM
FreeWindowMessageRMessageTFreeWindow MessageMMessageMMessageDMessageD MessageCMessageCMessageC

TransmissionColumnsBasicCycle 0BasicCycle 1BasicCycle 2BasicCycle 3 MessageC
Figure 3: TTCAN system matrix, where several basic cycles build the matrix cycle (adapted from [24]).

Clock synchronization in a TTCAN network is provided by a time master. The time master establishes
its own local time as global time by transmitting the reference message. To compensate for slightly di�erent
clock drifts in the TTCAN nodes and, to provide a consistent view of the global time, the nodes perform
a drift compensation operation. A unique time master would be a single point of failure, thus TTCAN
provides a mechanism for time masters redundancy and replacement whenever the current time master fails
to send a reference message. In this case, the CAN bus remains idle and any of the potential time masters
will try to transmit a reference message after a certain amount of time. In case two potential time masters
try to send a reference message at the same time, the native CAN bit arbitration mechanism ensures that
only the one with the highest priority wins. When a failed time master reconnects to the system with active
time triggered communication, it waits until it is synchronized to the network before it may try to become
time master again.

The strategy adopted, concerning fault con�nement, is very similar to the one followed by native CAN,
i.e., error passive and bus-o�. Since CAN failures are already considered in ISO 11898-1 standard (data link
layer), TTCAN considers mainly scheduling errors (e.g. absence of a message) and each TTCAN controller
only provides error detection. Active fault con�nement is left to a higher layer or to the application.

TTCAN may work under several operational modes: con�guration mode, CAN communication, time-
triggered communication or event synchronized time-triggered communication. However, operating modes
may only change via con�guration mode. The system matrix con�guration may be read and written by the
application during initialization, but it is locked during time-triggered communication, i.e., scheduling tables
are locally implemented in every node and must be con�gured before system start-up.
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3.4 FTT-CAN

The basis for the FTT-CAN protocol (Flexible Time-Triggered communication on CAN) has been �rst
presented in [1]. Basically, the protocol makes use of the dual-phase elementary cycle concept in order
to combine time and event-triggered communication with temporal isolation. Moreover, the time-triggered
tra�c is scheduled on-line and centrally in a particular node called master. This feature facilitates the on-line
admission control of dynamic requests for periodic communication because the respective requirements are
held centrally in just one local database. With on-line admission control, the protocol supports the time-
triggered tra�c in a �exible way, under guaranteed timeliness. Furthermore, there is yet another feature that
clearly distinguishes this protocol from other proposals concerning time-triggered communication on CAN
[38][28] that is the exploitation of its native distributed arbitration mechanism. In fact, the protocol relies
on a relaxed master-slave medium access control in which the same master message triggers the transmission
of messages in several slaves simultaneously (master/multi-slave). The eventual collisions between slave's
messages are handled by the native distributed arbitration of CAN.

The protocol also takes advantage of the native arbitration to handle event-triggered tra�c in the same
way as the original CAN protocol does. Particularly, there is no need for the master to poll the slaves
for pending event-triggered requests. Slaves with pending requests may try to transmit immediately, as
in normal CAN, but just within the respective phase of each elementary cycle. This scheme, similar to
the arbitration windows in TTCAN, allows a very e�cient combination of time and event-triggered tra�c,
particularly resulting in low communication overhead and shorter response times.

In FTT-CAN the bus time is slotted in consecutive Elementary Cycles (ECs) with �xed duration. All
nodes are synchronized at the start of each EC by the reception of a particular message known as EC trigger
message, which is sent by the master node.

Within each EC the protocol de�nes two consecutive windows, asynchronous and synchronous, that
correspond to two separate phases (see �gure 4). The former one is used to convey event-triggered tra�c,
herein called asynchronous because the respective transmission requests can be issued at any instant. The
latter one is used to convey time-triggered tra�c, herein called synchronous because its transmission occurs
synchronously with the ECs. The synchronous window of the nth EC has a duration that is set according
to the tra�c that is scheduled for it. The schedule for each EC is conveyed by the respective EC trigger
message (see �gure 5). Since this window is placed at the end of the EC, its starting instant is variable
and it is also encoded in the respective EC trigger message. The protocol allows establishing a maximum
duration for the synchronous windows and correspondingly a maximum bandwidth for that type of tra�c.
Consequently, a minimum bandwidth can be guaranteed for the asynchronous tra�c.

In order to maintain the temporal properties of the synchronous tra�c, such as composability with
respect to the temporal behavior, it must be protected from the potential interference of asynchronous
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Figure 5: Master/multislave access control. Slaves produce synchronous messages according to an
elementary-cycle schedule conveyed by the trigger message. If the x data bit is 1, then message x is produced
in this EC; if it is 0, then message x is not produced.

requests. Thus, a strict temporal isolation between both phases is enforced by preventing the start of
transmissions that could not complete within the respective window. This is achieved by removing from the
network controller transmission bu�er any pending request that cannot be served up to completion within
that interval, keeping it in the transmission queue.

The communication requirements are held in a database located in the master node [37], the System
Requirements Database (SRDB). The SRDB holds the properties of each of the message streams to be
conveyed by the system, both real-time and non-real-time, as well as a set of operational parameters related
to system con�guration and status. This information is stored in a set of three tables: the Synchronous
Requirements Table (SRT), the Asynchronous Requirements Table (ART) and the Con�guration and Status
Record (SCSR)

Based on the SRT, an on-line scheduler builds the synchronous schedules for each EC. These schedules
are then inserted in the data area of the respective EC trigger message (see �gure 5) and broadcast with
it. Due to the on-line nature of the scheduling function, changes performed in the SRT at run-time will be
re�ected in the bus tra�c within a bounded delay, resulting in a �exible behavior.
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4 CAN Limitations

Judging by the large installed base of CAN controllers in signi�cative application domains, system designers
are content with CAN features, however they would be much happier if CAN could be made faster, cover
longer distances, be more deterministic and more dependable [41][39]. In fact, because of its limited depend-
ability features, there is an ongoing debate on whether the CAN protocol, with proper enhancements, can
support safety-critical applications [21][31]. CAN limitations and recent development and research carried
out to overcome them are discussed in detail in [39]. These include large and variable jitter, lack of clock
synchronization, limited speed-distance product, �exibility limitations, data consistency issues, limited er-
ror containment, and limited support for fault tolerance. Over the years, several proposals contributed to
overcome some of CAN limitations [5][47][22][18][8][43].

A specially important limitation is related with inconsistent communication scenarios [42][47], that is
one of the strongest impairments to achieve high dependability over CAN. These scenarios are due to the
protocol speci�cation and may reveal themselves both as inconsistent message omissions, i.e., some nodes
receive a given message while others do not, and as inconsistent message duplicates, i.e., some nodes receive
the same message several times while others receive only once. Inconsistent communication scenarios make
distributed consensus in its di�erent forms, e.g., membership, clock synchronization, consistent commitment
of con�guration changes, or simply the consistent perception of asynchronous events, more di�cult to attain.

In principle, and according to the error detection and signaling capabilities of CAN, any frame which
su�ers an error would be consistently rejected by all the nodes of the network. However, some failure scenarios
have been identi�ed [47][41] that can lead to undesirable symptoms such as inconsistent omission failures
and duplicate message reception. The probability of those error scenarios depends on an important factor,
the CAN bit error rate. Ru�no, et al., presented [47] an analysis based on the assumption that the bit error
rate varies from 10−4, in case of an aggressive environment, to 10−6 in the case of a benign environment.
The results obtained, based in these assumptions, for IMO/h and IMD/h are rather high and would became
a serious impairment for using CAN (or CAN based protocols) in safety-critical applications.

Over the years several studies have been conducted [34][25][10] to assess the worst case response time
of CAN messages under channel errors. These studies used generic error models, that take into account
the nature of the errors, either single bit errors or burst of errors, and their minimum inter-arrival time.
However, no error statistics were provided to support the error models.

In CAN, as well as in CANopen and DeviceNet, the automatic message retransmission, upon transmission
error is not disabled. Conversely, in TTCAN the automatic message retransmission of CAN is disabled, while
in FTT-CAN [2] it is restricted. In TTCAN and FTT-CAN, an error in a given message does not a�ect the
response time of others, and the error detection and signalling of CAN would normally ensure that the error
would be consistently detected by all network nodes except in the cases where inconsistent message delivery
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CAN TTCAN FTT-CAN
bit error ∆t = 5ms ρ = 0.5

rate IMD/h IMO/h IMO/h IMD/h IMO/h

2.6× 10−7 7.59 1.05× 10−9 7.59 3.79 3.79

3.1× 10−9 8.93× 10−2 1.24× 10−11 8.93× 10−2 4.46× 10−2 4.46× 10−2

3.0× 10−11 8.75× 10−4 1.22× 10−13 8.75× 10−4 4.37× 10−4 4.37× 10−4

Table 2: Estimated rates of IMO per hour in CAN, TTCAN and FTT-CAN.

may occur.
Inconsistent message reception scenarios are much more frequent in the case of TTCAN [42] than in

native CAN and their frequency depends on the bit error rate (BER) of the CAN bus. The assumptions
concerning the BER made by Ru�no et al., although realistic in other networks, seemed somewhat pessimistic
considering the speci�c case of CAN and specially the characteristics of the CAN physical layer. This
lead to the design of an experimental setup to measure real values of CAN bit error rate in aggressive
(BER = 2.6 × 10−7), industrial (BER = 3.1 × 10−9) and benign (BER = 3.0 × 10−11) environments [20].
Experimental results from a set of experiments showed that BER was 2.6×10−7 in an aggressive environment
(CAN network placed near a high-frequency arc-welding machine) , 3.1×10−9 in a normal environment (CAN
network at an industrial production line) and 3.0 × 10−11 at a benign environment (CAN network at the
university laboratory).

Based on these results one can compute the probability of inconsistency scenarios in CAN networks. In
[47], the probability of inconsistency scenarios in CAN is calculated as a function of the channel bit error
rate (B). In [42] the analysis is adapted to include the cases with no retransmissions upon error (TTCAN).
Please refer to [22] for a detailed analysis and discussion of these issues.

Table 2 presents the probability of inconsistencies both for CAN (including CANopen and DeviceNet),
TTCAN and FTT-CAN. Results from Table 2 are based in the same assumptions of Ru�no's work considering
a node failure rate λ = 10−4 failures per hour.

Observing Table 2, it seems that in native CAN the occurrence of inconsistent message omissions has
a lower probability than previously assumed. At least in the environments considered in the experiments.
In fact it is below the 10−9 threshold usually accepted for safety-critical applications [30]. However, the
probability of inconsistent message duplicates (messages are eventually delivered but they could be out of
order) is still high enough to be taken into account.

Concerning both TTCAN and FTT-CAN, one cannot neglect inconsistent message omissions because
they are rather frequent. However, it should be stressed that this not means that native CAN is more
dependable than TTCAN or FTT-CAN, since native CAN does not bound automatic retransmissions that
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may origin deadline losses. That is, the probability of inconsistent message omissions is lower in native CAN,
but the probability of a message miss its deadline is higher.

4.1 Consequences of physical faults of the nodes

CAN protocol does not restrict the failure semantics of the nodes, so that they may fail in arbitrary ways.
Some of these failures are automatically handled by CAN's native implementation of error detection capa-
bilities and automatic fail-silence enforcement, described previously, leading the erroneous node to a state,
the bus-o� state, where it is unable to interfere with other nodes. However, in some speci�c situations, these
mechanisms do not fully contain the errors within the nodes. Speci�cally, a CAN node only reaches the
bus-o� state (fail silence) after a relatively long period of time (when the TEC reaches 255). For example,
in the case of an erratic transmitter in a 32 node CAN network at 1 Mbps, the worst-case time to bus o�
is 2.48 ms [46]. Moreover, a CAN node running an erroneous application can also compromise most of the
legitimate tra�c scheduled according to a higher layer protocol implemented in software in a standard CAN
controller, simply by accessing the network at arbitrary points in time (babbling idiot failure mode). Notice
that a faulty application running in a node with a CAN controller may transmit high priority messages at
any time without causing any network errors, and consequently the CAN controller will never reach the
bus-o� state. An uncontrolled application transmitting at arbitrary points in time via a non-faulty CAN
controller is a much severe situation than a faulty CAN controller also transmitting at arbitrary points in
time because, in the �rst case, a non faulty CAN controller has no means to detect an erroneous application
transmitting legitimate tra�c. In the second case the CAN controller would enter bus-o� state after a while
and the error would be eventually con�ned. To overcome the babbling idiot failure mode special components
located between the node and the bus, the bus guardians, have been proposed for CAN [52][9][19][17]. Bus
guardians are usually adopted to enforce fail silence behavior in nodes of a distributed system because they
are simpler than using node replication and some sort of voting mechanism. Apart from the cost issue,
simplicity is also important because a simpler component is often more dependable than a complex one.
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