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1 Escola Superior de Tecnologia e Gestão de Águeda,
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Abstract

In this chapter it is presented a comparative study of some methods
to estimate radar rainfall in real time. Radar rainfall estimates have a
poor performance comparatively to rain gauge estimates, due to errors
of either meteorological or instrumental nature. Nevertheless, weather
radar presents several advantages over rain gauges, namely by providing
continuous measurements in real time, which it is not possible even in
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a dense telemetered rain gauge network, due to the large space-time
variability of precipitation. Given these advantages, several approaches
have been proposed to minimize radar errors. Namely, the combina-
tion of these two types of measurements via a state space representation
associated to the Kalman filter has been investigated in recent years.
However, recent literature presents different state space representations,
and therefore their results are not directly comparable. This work in-
tends to discuss and compare different state space formulations based
on a same data set; for instance, the comparison between the mode-
ling of the mean field radar rainfall logarithmic bias (Chumchean et al.,
2006), a linear radar-rain gauge calibration model (Alpuim & Barbosa,
1999; Costa & Alpuim, 2011) and a power law model (Brown et al.,
2001). This investigation takes into account some issues associated to
the state space approach: for instance, parameters estimation, the as-
sessment of the accuracy estimates obtained by each model. Another
question worth investigating is the impact of the number of rain gauges
used in the improvement of radar calibration estimates. It is useful to
analyze the behavior of different state space representations associated
to different rain gauge network densities. The data set consists of a set
of storms between September 1998 and November 2000 in an area lo-
cated around 40Km upnorth of the weather radar located in Cruz do
Leão, in the Lisbon region. This region has been used in several works
of the Portuguese Institute of Meteorology since this area presents the
highest rain gauge density under the radar umbrella.

Key Words: Kalman filter, state space model, rainfall estimates, weather
radar, calibration, nonparametric estimation.

AMS Subject Classification: 60G35, 62M10, 62M05.

1. Introduction

The weather radar allows the monitoring of the rainfall in area, thus con-
stituting one of its main advantages. However, precipitation radar estimates
contain errors associated with the reflectivity measurement errors or with the
reflectivity rainfall rate (Z-R) conversion errors (Jordan et al., 2000). Never-
theless, even if these two sources of error have been corrected based on an
understanding of the physical processes, there remain errors in the radar rain-
fall estimates when compared with rain gauge measurements (Chumchean et
al., 2006). A suitable mechanism to reduce errors is to combine both weather
radar and rain gauge network data. On the one hand, the weather radar pro-
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vides precipitation data in a large area, for instance in a 300Km radial distance
from the radar (Figure 1). On the other hand, a rain gauge network gives ac-
curate point measurements in its location. The differences between radar and
rain gauges are understandable because these are two different types of rainfall
measuring sensors.

There are several ways to tackle with radar estimates bias when compared
with accurate rain gauge estimates. Krajewski (1987) and Severino & Alpuim
(2005) apply an optimal interpolation method based on Kriging and CoKri-
ging. An alternative way to merge the radar and rain gauge measurements is to
relate the two types of measurements through a state space representation as-
sociated to the Kalman filter algorithm. In this chapter it is performed a discus-
sion of three models based on the Kalman filter framework. Chumchean et al.
(2006) formulated a model with the assumption-which was also considered in
Anagnostou et al. (1998) and Krajewski & Smith (2002)-that radar errors pro-
duce a uniform bias in radar rainfall estimation when compared to rain gauge
data. Brown et al. (2001) proposed a single-site modeling approach with a
power law model to describe the relationship between gauge and radar data,
which needs a linearization procedure with the logarithmic function. Alpuim
& Barbosa (1999) and Costa & Alpuim (2011) used a multiplicative calibra-
tion factor model. Whereas Alpuim & Barbosa (1999) compared the mean
area prediction in a univariate and multivariate point of view, Costa & Alpuim
(2010) evaluated the models performance when its parameters are estimated
by Gaussian likelihood and nonparametric estimators.

The comparison of the three models is achieved based on a single data set.
However, the data set is divided in two subsets: one for the parameters esti-
mation and the remaining data for the assessment procedure. The parameter
estimation is performed by using the nonparametric estimators suggested in
Costa & Alpuim (2010), which had achieved good results in the radar calibra-
tion (Costa & Alpuim, 2011).

2. Kalman Filtering Approach

The Kalman filtering approach has the main advantage of providing a real-
time scheme to calibrate radar rainfall estimates based on rain gauge measure-
ments. This algorithm is an iterative procedure to update unknown stochastic
variables predictions taking into account the observed variables at each time,
and provides an estimate of the error variance in the computed prediction. This
potential has encouraged the application of the Kalman filter techniques in the
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Figure 1. Radar umbrella of the weather radar located in Cruz do Leão,
Coruche, Portugal.

radar rainfall estimates calibration in several forms. For simplicity, in this
chapter the modeling procedure of the relation between rain gauge and radar
estimates of the precipitation is based on a single site modeling approach as-
sociated to interpolation methods, if needed.

2.1. State space models and the Kalman filter

The Kalman filter (Kalman, 1960) is applied to a class of models that admits
a state space representation. In this chapter, it will be considered, in general,
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the state space representation as follows

At = βtBt + et (1)

βt = µ+ φ(βt−1 − µ) + εt. (2)

Equation (1) is called the measurement equation and relates the observable
variable At with the unobservable variable βt, called the state. The coeffi-
cient Bt is known and et is a white noise, called the measurement error, with
variance σ2e . Furthermore, the state βt varies in time according to Eq. (2),
the transition or state equation, i.e., a stationary AR(1) process with mean µ.
Here, φ is an autoregressive coefficient, |φ| < 1, and εt is a white noise with
variance σ2ε . The disturbances et and εt are assumed to be uncorrelated, that
is, E(etεs) = 0, for all t and s. The model (1)-(2) can be seen as a dynamic
linear regression where the slope is an AR(1) process.

Notice also that no assumption is made about the errors distributions. In-
deed, it is usual to consider the model (1)-(2) as a standard linear Gaussian
state space time series model, that is, the errors et and εt follow Gaussians
distributions. However, in general precipitation data deviates from the normal
curve. Moreover, in Brown et al. (2001) it is indicated that the distribution
of residuals is somewhat longer tailed than the normal distribution, which re-
inforces that the assumption of the normality of the errors may not be a good
choice. Alternatively, in this chapter, are considered nonparametric estimators
for the parameters, following the work of Costa & Alpuim (2010).

Assuming that parameters of a state-space model are known, the Kalman
filter recursions give the best linear predictors to filter, forecast, and smoothing
the prediction of vector of states. Let β̂t|t−1 represent the predictor of βt based
on the information up to time t − 1 and let Pt|t−1 be its mean square error
(MSE). As the orthogonal projection is a linear estimator, the predictor for the
observable at time t, At, is given by

Ât|t−1 = Btβ̂t|t−1.

When, at time t, At is available, the prediction error or innovation, ηt =
At − Ât|t−1, is used to update the estimate of At, through the equation

β̂t|t = β̂t|t−1 +Ktηt

where Kt is called the Kalman gain matrix and is given by

Kt = Pt|t−1At
(
A2
tPt|t−1 + σ2e

)−1
.
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Furthermore, the MSE of the update predictor β̂t|t verifies the relationship

Pt|t = Pt|t−1 −KtAtPt|t−1.

In turn, at time t, the forecast for the state vector βt+1 is given by the
equation

β̂t+1|t = µ+ φ(β̂t|t − µ)

with MSE Pt+1|t = φ2Pt|t+σ
2
ε . The recursive process needs initial values for

the state β1|0 and for its variance P1|0, which in this case, as the state process
is assumed to be a stationary AR(1) process, it is given by

β̂1|0 = µ and P1|0 = σ2β =
σ2ε

1− φ2
.

2.2. Models

In this chapter are considered three models to perform the radar rainfall es-
timates calibration proposed in the Kalman filtering approach literature. Al-
though the three models are real-time procedures based on Kalman filter re-
cursions, different models are taken into consideration to relate rain gauges
and radar measurements. The next sections briefly present the models as well
as their assumptions.

2.2.1. Linear calibration (LC)

Alpuim & Barbosa (1999) and Costa & Alpuim (2010) proposed a state space
representation that relates rain gauges and radar measurements by a multi-
plicative factor of calibration between these two estimates, as follows

Gt = βtRt + et

βt = µ+ φ(βt−1 − µ) + εt

where Gt is the rain gauge observation in time t, Rt is the radar measurement
at the same time and location, and βt is the corresponding calibration factor for
each pair of values. The model has the assumptions of the general model (1)-
(2), with the necessary adaptations. This formulation assumes a local linear
relation between radar and rain gauge estimates since it is considered, for each
time, that rain gauge measurement is proportional to radar observation added
to an error.
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The linear calibration model has the advantage of not presenting restric-
tions to the radar and rain gauge measurements, that is, it can be formulated
even in the cases when radar or rain gauges present null estimates. As will be
seen later on, other models present this type of restriction.

As the modeling procedure is the single-site approach, it will be neces-
sary to interpolate the predicted calibration factors βt to other sites where it is
intended to correct radar measurements.

2.2.2. Mean field radar rainfall logarithmic bias modeling (FB)

The second model, designated by mean field radar rainfall logarithm bias, was
proposed in Chumchean et al. (2006) and is based on the assumption that there
is a consistent bias between radar and rain gauge measurements. This assump-
tion is supported by Austin (1987), who concludes that when the radar adjust-
ment schemes force agreement at a few gauges sites these are inappropriate
due to large random discrepancies between radar and gauge measurements as
a result of sampling errors. However, Costa & Alpuim (2010), in a compara-
tive analysis between one calibration factor and a single site approach, con-
cluded that the single site approach produces better results (minimum mean
square error).

Assuming that is reasonable to admit a single bias, Chumchean et al.
(2006) defined the mean field radar rainfall logarithmic bias at time t as

βt =
1

k

k∑
i=1

log10

(
Gi,t
Ri,t

)
(3)

where k is the number of radar-gauge pairs data available in time t, and Gi,t
and Ri,t are the rainfall and unfiltered radar rainfall at time t at location i. The
temporal evolution of the logarithmic mean field bias is modeled through the
state space model

Yt = βt + et (4)

βt = µ+ φ(βt−1 − µ) + εt. (5)

where Yt is the observed mean field logarithmic bias at time t and is computed
by Eq. (3). While in the original work of Chumchean et al. (2006) the state
βt is taken as a stationary AR(1) process with zero mean, in this chapter this
assumption is not considered, since it seems that there is no reason for impos-
ing a zero mean for the state process, therefore it is considered the mean µ.
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Indeed, if the state with zero mean is imposed, it would imply admitting that
the ratios G/R are, in average, equal to one, that is, G = R. However, as is
largely accepted, in general the weather radar underestimates precipitation in-
tensity. The model (4)-(5) assumes that both radar and gauges measurements
are nonzero due to the logarithmic function.

2.2.3. Power law modelling (PL)

Brown et al. (2001) make the assumption that the relationship between gauge
and radar reflectance measurements can be described by a power law, as pre-
viously mentioned in Collinge & Young (1993),

Gt = bRat (6)

In a first proposition, Brown et al. (2001) consider a linearization of Eq. (6)
where the parameters a and b are not necessarily fixed quantities but may vary
stochastically over time. That is,

Yt = αtUt + βt + et

αt = µα + φα(αt−1 − µα) + εα,t

βt = µβ + φβ(βt−1 − µβ) + εβ,t

where Yt = log10(Gt), Ut = log10(Rt) and et is a white noise error. However,
Brown et al. (2001) concluded that the prediction intervals on the parameter
α remain quite wide most of the time, suggesting that it is poorly identified;
therefore, they treated this parameter as if it is constant.

Thus, in this chapter will be taken the model

Yt = αUt + βt + et

βt = µ+ φ(βt−1 − µ) + εt

where α is previously estimated by the method of least squares as the slope of
the usual linear regression between Yt and Ut. As this approach is a single-
site modeling procedure, it also needs interpolation methods to calibrate radar
estimates in other sites.

2.3. Estimation of the parameters

As mentioned before, the estimation of the parameters is performed by non-
parametric estimators based on the method of moments, which does not as-
sume any distribution for the errors. Costa & Alpuim (2010) proposed con-
sistent estimators for the parameters of the model (1)-(2) whose performance
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was compared to the usual maximum likelihood estimators considering Gaus-
sian errors in a Monte Carlo study. The nonparametric estimators presented a
good performance even when errors were simulated with normal distribution.
It is possible to obtain the maximum likelihood estimates by maximizing the
log-likelihood function in order to estimate unknown parameters by using nu-
merical methods, namely the EM algorithm (Shumway & Stoffer, 1982), or
the Newton-Raphson algorithm (Harvey, 1996). However, the maximum like-
lihood method may not converge at all and produces estimates that fall outside
the parameters space more frequently than the non-parametric estimators, par-
ticularly for small values of the autoregressive coefficient (Costa & Alpuim,
2010).

The estimation of the mean µ of the state process {βt} is performed as the
average of the ratios At/Bt, that is

µ̂ =
1

n

n∑
t=1

At
Bt
.

The remaining parameters of the state process {βt} are estimated based
on the autocovariance structure of an AR(1) stationary process. Indeed, if
{βt} follows an AR(1) stationary process, it verifies the recursive equation
γk = φγk−1, for any k > 2, where γk is the autocovariance function, whose
empirical estimator is

γ̂k =
1

n

n−k∑
t=1

(
At+k
Bt+k

− µ̂
)(

At
Bt
− µ̂

)
.

The estimator for the autoregressive parameter φ is obtained by the least
square method taking into account the autocovariances γ̂k, with k = 1, ..., `,
that is, considering ` − 1 equations of the form γk = φγk−1, which produce
the estimator

φ̂ =
∑̀
k=2

γ̂kγ̂k−1

(∑̀
k=2

γ̂2k

)−1
.

The choice of ` depends on sample dimension, as proposed in Costa & Alpuim
(2010). Notice that {βt} is an AR(1) stationary process, so the noise variance
in the state equation σ2ε is estimated using the explicit formula

σ̂2ε =
1− φ̂2

φ̂
γ̂1.
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Figure 2. Location of the five rain gauges in the Portuguese system of coordi-
nates and in the grid of 35 cells used in this chapter.

The variance of the measurement equation is done by using the relationship
var(At/Bt) = σ2β +B−2t σ2e , where σ2β = σ2

ε
1−φ2 , that produces the estimator

σ̂2e =

[
n∑
t=1

(
At
Bt
− µ̂

)2

− nσ̂2β

](
n∑
t=1

B−2t

)−1
.

3. Comparative Study

The models have been proposed in the literature accompanied by case studies
to illustrate their benefits and advantages. However, as in each case is used
a different data set, it is not possible to compare their performances. In this
chapter it is performed a modeling work based on a data set of radar and gauge
estimates, where the three models above described are applied. This approach
allows to compare the performances of these models based on the same data
and with the same conditions, namely, the same density gauge/Km2.

3.1. Experiment description

The models comparison is done considering a data set of 17 stratiform storms
between September 1998 and November 2000 (in a total of 178 hourly pre-
cipitation estimates) in a 10× 14 Km2 area (Figure 2), including the Alenquer
River basin, located around 40 Km north of Lisbon and between 31 and 44 Km
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Table 1. Descriptive statistics of radar and rain gauges data in the five locations
descriptives Rain gauges Radar

Mr M O P A Mr M O P A
average 1.60 1.45 1.51 1.64 1.60 1.06 0.95 0.95 0.91 1.04
median 1.00 0.85 1.05 1.00 1.00 0.52 0.45 0.50 0.43 0.49
std. deviation 1.78 1.73 1.62 1.86 1.72 1.48 1.22 1.24 1.25 1.34
kurtosis 5.67 6.69 4.32 4.03 2.96 10.61 4.68 6.08 8.02 5.10
skewness 2.03 2.27 1.91 1.89 1.61 2.88 2.07 2.28 2.58 2.12

of distance from the weather radar in Cruz do Leão. This area has been studied
by meteorologists of the Institute of Meteorology of Portugal due to the fact
that there are five rain gauges located in this area: Merceana (Mr), Meca (M),
Olhalvo (O), Penedos (P) and Abrigada (A). These rain gauges correspond to
a reasonable high density (∼ 1 gauge/28Km2) and present the highest gauge
density under the radar umbrella. Furthermore, this area is associated to a very
low concentration time (about 3 h), which makes this region particularly prone
to flash floods, making it especially appropriated to study models. Since about
90% of the region is below 400 m, it might be considered homogeneous from
the point of view of the climatology of precipitation, and it was not deemed
necessary to explicitly correct the orography effect on the precipitation values
(Alpuim & Barbosa, 1999).

Previous works in this area have considered smaller or larger areas
(Alpuim & Barbosa, 1999; Severino & Alpuim, 2005; Costa & Alpuim, 2011)
but without significant differences in the area size. This small river basin,
prone to flash floods and intensively instrumented, was selected for studies of
precipitation measurement by radar, as well as for other hydrometeorological
and hydrological studies and for testing different hydrological models by u-
sing radar data (Rossa et al., 2005). Costa & Alpuim (2011) used this data
set in order to compare the impact between the nonparametric estimator and
the Gaussian maximum likelihood estimators in view of the area rainfall es-
timation. As usual in this type of studies, the radar resolution is 2 × 2 Km;
however, the nominal resolution of the radar is 1×1 Km that was transformed
in the resolution 2×2 Km. The radar and rain gauge estimates were converted
to hourly measurements, in this case to each cell of 2× 2 Km.

The available data from Cruz do Leão weather radar was collected in an
important period time testing since this radar was installed in 1995. Therefore,
it is expected to observe a significant variability in this initial period of the
radar’s work.
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Table 2. Combination of rain gauges considered for each number of rain
gauges taken in the calibration procedure

number of rain gauges
1 2 3 4

Mr MrM MP MrMO MrPA MOPA
M MrO MA MrMP MOP MrOPA
O MrP OP MrMA MOA MrMPA
P MrA OA MrOP MPA MrMOA
A MO PA MrOA OPA MrMOP

Table 1 shows the main descriptive statistics of radar and gauges measure-
ments. In a preliminary analysis, it is clear that radar measurements under-
estimate, since radar samples have lower averages than the respective gauge
averages. Another relevant conclusion from Table 1 is the confirmation that
the precipitation data is not Gaussian distributed. Indeed, the sample kurtosis
and skewness clearly deviated from the excepted Gaussian values for these
statistics. On the other hand, the same conclusion is achieved through the
analysis of the histograms, Q-Q plots and Kolmogorov-Smirnov test, which
are omitted for simplicity.

Additionally, Figure 3 shows the boxplots of gauge and radar measure-
ments, ratios Gt/Rt and log10(Gt/Rt). The transformation of ratios Gt/Rt
through the logarithmic function clearly normalized data; however, as it will
be mentioned later on, the model based on this procedure does not produce
the best results. As expected, the data set has several outliers, which is very
common in this type of data. Only the severe outliers were not considered in
the parameters estimation procedure because they may distort their estimates.
Nevertheless, the remaining outliers were kept because they are important,
mainly to estimate correctly the variances of the errors.

In order to ensure the independence between parameters estimation and
the calibration modeling, three storms occurred in January 13, April 28 and
October 19, 2000 (62 hours) are used to estimate the models parameters, while
the remaining storms are used in the assessment of calibration performance.
The calibration performances of the three models are compared in a set of
scenarios considering 1, 2, 3 or 4 rain gauges to calibrate the radar estimates in
the remaining gauges not used in the parameters estimation procedure. Table
2 shows all scenarios considered in the calibration procedure.
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Figure 3. (Top) Boxplots of radar (R) and gauges (G) measurements of the
precipitation in the five locations with rain gauges; (Center) Boxplots of linear
ratios (LRatios) Gt/Rt; (Bottom) Boxplots of the log10(Gt/Rt) values.
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3.2. Models specification

Before the prediction of the calibrated radar estimates, it is necessary to fit
each of the three models to the data relatively to the five locations where the
rain gauges are located. This adjustment is performed by using only the three
storms mentioned above in order to separate the parameters estimation from
the radar calibration procedure.

Notice that, as it was previously seen, precipitation data is usually not nor-
mally distributed. This puts the assumption of normality into question if it is
intended to obtain Gaussian maximum likelihood estimates. Furthermore, the
data set used in this chapter consists of a set of disjoint storms with a short
length in general. This data structure is not the most suitable structure to im-
plement numerical algorithms since, in practice, the log-likelihood is the sum
of log-likelihood of small samples, which may also contain missing values.
Thus, the selected nonparametric estimators seem to be adequate for this type
of data because they are less influenced by missing values or by non-sequential
data. Hence, the nonparametric estimators for the state equation’s parameters
are constructed on the lags of observations: for instance, the autocovariance
γk is computed based on the observed lags k, which may not present the same
number of observations than the other γs.

Table 3 presents the parameters estimates for the single site models of
each of the three models. Notice that it was followed the suggestion of Costa
& Alpuim (2010) to choose `, in this case ` = 15, since the storms are very
short. Both LC and FB models confirm that, in average, radar measurements
are lower than gauges estimates, but in a different magnitude. It is possible to
analyze and interpret the estimates of averages µ in models LC and FB. These
estimates can be compared approximately if the conversion of the estimate of
µ of the model FB is performed as 10µ. By performing this conversion, the
results are 1.406, 1.285, 1.211, 1.268 and 1.396, respectively, which represent
that model FB tends to produce lower calibration factors between Gt and Rt
than LC model, that is, the first model is more conservative.

The LC model presents an advantage in the interpretation of errors vari-
ance. Indeed, the variance σ2e can be interpreted as the variability associated
to the rain gauge, while the variance σ2ε can be interpreted as a component of
the variability associated to the radar. Considering this interpretation, the er-
rors variances estimates obtained in the LC model indicate that the rain gauges
located in Merceana (Mr) and Penedos (P) have the highest variability. This is
possibly due to the fact that these two rain gauges are of the bascule type, while
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Table 3. Parameters estimates for the single-site models for each of the three
models LC, FB and PL

model LC
gauge µ φ σ2ε σ2e

Mr 1.76 0.608 0.863 0.00372
M 1.43 0.691 0.229 0.00112
O 1.33 0.505 0.187 0.00112
P 1.63 0.657 0.650 0.01110
A 1.53 0.768 0.325 0.00126

model FB
gauge µ φ σ2ε σ2e

Mr 0.148 0.247 0.0640 0.0619
M 0.109 0.751 0.0098 0.0940
O 0.083 0.485 0.0078 0.0917
P 0.103 0.552 0.0335 0.1192
A 0.145 0.714 0.0093 0.0599

model PL
gauge α µ φ σ2ε σ2e

Mr 0.695 0.116 0.172 0.0418 0.0643
M 0.660 0.123 0.866 0.0129 0.0735
O 0.662 0.078 0.609 0.0066 0.0819
P 0.235 0.175 0.591 0.0561 0.0611
A 0.712 0.158 0.576 0.0239 0.0356

the remaining gauges are of the syphon type. The models residuals were ana-
lyzed in order to perform a diagnostic checking of the models adjustment. As
it is assumed that errors are a white noise process, both autocorrelations (ACF)
and partial autocorrelations (PACF) functions were drawn. For instance, Fi-
gure 4 shows samples ACF and PACF functions for the Abrigada rain gauge.
In general, samples ACF and PACF functions have the expected behaviour of
a white noise with no significant serial correlation, which validates this initial
assumption. On the other hand, this check supports that the nonparametric
estimators are proper to this type of data.
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Figure 4. Estimates of autocorrelation function (ACF) and partial autocorrela-
tion function for the rain gauge located in Abrigada.

3.3. Calibration procedure

The radar calibration procedure focus on the remaining fourteen storms not
used in the parameter estimation (116 hourly measurements). The calibration
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Figure 5. Calibration factors β̂t|t with the empirical pointwise intervals
±2
√
Pt|t relatively to the rain gauge located in Meca using the single-site

model LC.

procedure in the scenarios with more than one rain gauge requires the interpo-
lation of its calibration factors to other locations. The FB model does not need
interpolation procedures since it assumes a single mean field bias in the radar
umbrella.

The Kalman filter equations were implemented for each scenario of Table
2 in order to predict the state βt at each hour t. Since the aim is to consider a
real-time procedure, the needed prediction is the filtered prediction of βt, that
is, β̂t|t. Notice that in the beginning of each storm the Kalman filter algorithm
is initialized with the initial values β̂1|0 and P1|0. For instance, Figure 5 shows
the filtered calibration factors β̂t|t, with the empirical pointwise intervals with
semi-amplitude±2

√
Pt|t for the single-site model of Meca by using the model

LC for the fourteen storms. When the calibration procedure includes only a
single rain gauge, the process of extending the calibration to other location is
a straightforward procedure. This remains true even if the model applied is
the FB, since this model assumes a single mean field bias of calibration. In

this case, Chumchean et al. (2006) used the equation Bt = 10
β̂
(FB)
t|t +0.5Pt|t to

convert the predicted state β(FB)
t into Bt, which is the calibration factor used

for correcting the radar measurements in other locations, that is,

R̂
(FB)
t = Rt10

β̂
(FB)
t|t +0.5Pt|t .

In the case of model LC, the radar calibration is obtained by multiplying
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the radar estimate Rt by the filtered calibration factor β̂(LC)
t|t , that is,

R̂
(LC)
t = Rtβ̂

(LC)
t|t .

The prediction of the states of model PL, β(PL)t|t allows to obtain the radar
calibration by using the expression

R̂
(PL)
t = 10

β̂
(PL)
t|t Rα̂t .

Interpolation methods are needed when the correction of radar measure-
ments is based on more than one rain gauge and the modeling procedure as-
sumes one of the models LC or PL. When the set of rain gauges is sufficiently
representative to fit a model of spatial continuity into the spatial process of
calibration factors, it is suitable to use stochastic methods of interpolation in
space, as the Kriging method. However, the available data has few rain gauges
to allow the adjustment of spatial continuity models. In the literature there are
several alternative methods such as the Thiessen polygons, the multiquadratic
interpolation or the inverse square distance methods (for instance, Haberlandt,
2007; Babak & Deutsch, 2008). In this case it is considered the inverse square
distance method, which takes into consideration all available rain gauges to
calibrate radar estimates. In this method, the estimate of the surface function
f(·) in a point s0, knowing the function in the points si, with i =1, 2,. . . , k, is
the weighted average.

f̂(s0) =

k∑
i=1

d−2(s0, si)f(si)

k∑
i=1

d−2(s0, si)

where d(s0, si) is the Euclidian distance between the points s0 and si.

3.4. Models performance assessment

The models performance assessment is done according to the empirical square
root of the mean square error of point prediction by using the fourteen storms
data (116 hourly observations) kept for this purpose. That is, for each gauge
not used in the calibration procedure, it is compared the gauge rainfall esti-
mates Gt with the calibrated radar cell measurement R̂(m)

t , with m = LC, FB
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Figure 6. Validation rain gauge of Meca calibrated using Olhalvo and Abri-
gada gauges for the storm of November 2, 2000.

and PL, at the same location. As there are five rain gauges available in the area
under study, it is considered systems with 1, 2, 3 or 4 gauges for the calibration
process, and for each of these schemes is computed the empirical square root
of the mean square error for all combination of each number of gauges.

The empirical square root of the mean square error RMSE(m)
k for the

scheme modeled based on k rain gauges with the model m is computed by

RMSE(m)
k =

√√√√ 1

116(5− k)

5−k∑
i=1

116∑
t=1

(
Git − R̂

(m),i
t

)2
.

Table 4 compares the square roots of the empirical MSE between the three
models by considering different numbers of rain gauges in the calibration pro-
cess. The pre-calibration RMSE of the five rain gauges is taken as the refe-
rence value to analyze the impact of the calibration procedures. For the data
set under the calibration procedure (the fourteen events) this value is 1.43.
Thereby, it is possible to compare the models performance in view of the per-
centage of the reference value reduction (indicated in Table 4 in brackets).
These results have to be interpreted as a global measure of the models perfor-
mance since these values do not take into consideration the relative position
of both rain gauges of calibration and calibrated radar predictions.

It can be stated that the models lead to a significant reduction in the er-
ror of the radar estimates of precipitation. However, an interesting conclusion
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Table 4. Comparing square roots of the empirical mean square errors of the
three models. In brackets is indicated the % of RMSE reduction in comparison
to the reference value

number of Model
rain gauges LC FB PL

1 1.38 (-3%) 1.30 (-9%) 1.19 (-16%)
2 1.21 (-16%) 1.23 (-14%) 1.10 (-23%)
3 1.16 (-19%) 1.16 (-19%) 1.11 (-22%)
4 1.09 (-23%) 1.07 (-25%) 1.11 (-22%)

global 1.21 (-15%) 1.19 (-16%) 1.13 (-21%)

that may be drawn is that the model PL is less sensitive to the number of
rain gauges used in the calibration process. RMSE of both models LC and
FB decrease significantly when more gauges are added to the calibration pro-
cess. When the rain gauge density is the lowest (1 gauge per 140Km2) the PL
model performed the largest RMSE reduction with a strong difference to other
models. On the other hand, when the higher density (1 gauge per 35Km2) is
considered, the models present similar performances. Nevertheless, the FB
model produces the greatest RMSE reduction.

4. Conclusion

It can be stated that the Kalman filter approach with any of the three mod-
els leads to a significant reduction of point estimation of the precipitation.
The state space models employed in this approach, have shown to be a useful
tool in the improvement of radar data accuracy. The combination of the two
sensors (radar and rain gauges) allows conjugating the advantage of the area
estimation of the radar with the accuracy of the point prediction of the rain
gauges.

The primary objective in this chapter has been to provide a fair comparison
between three alternative models that have been applied in the calibration radar
estimates of precipitation by using the Kalman filter algorithm. Taking a single
data set in the modeling process for all models allows to assess the models
performances with equal conditions. Both the linear calibration model and
the mean field radar rainfall logarithmic bias model were more sensitive to
gauge density. These models performances have improved with the increase
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Figure 7. Accumulated precipitation isopleths, in mm, for the storm of
November 2, 2000 for the radar non calibrated estimates and for the calibrated
estimates considering the five rain gauges and the three models LC, FB and
PL.

in the number of gauges in the calibration procedure. On the other hand, the
performance of the power law model was smoother as the gauge density was
increased. Figure 7 illustrates the radar calibration based on the accumulated
precipitation of one storm by using all available rain gauges in the area.

In summary, the use of state space models associated to the Kalman filter
algorithm is an efficient approach to increase the accuracy of weather radar es-
timates. Moreover, this approach may be implemented in a real-time scheme
where models are established based on an independent data set of the calibra-
tion process, which continues to develop as new data is available.
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