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Abstract: This work presents a comparative study of some models to estimate
radar rainfall in real time using the Kalman filtering approach. This comparison
adresses the parameters estimation, the assessment of the accuracy estimates
obtained by each model and the impact of the number of rain gauges used in the
improvement of radar calibration estimates.
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1 Introduction

The weather radar provides precipitation data in a large area, for instance
in a radial distance from the radar of 300Km (Figure 1). One of the ad-
vantages of radar rainfall over rain gauges is the provision of continuous
measurements in real-time, which is unachievable even in a dense teleme-
tered rain gauges network, since there is a large space-time variability of
precipitation. However, their estimates have a poor performance, when
comparing with gauges estimates, due to errors of either meteorological
or instrumental nature which need to be reduced. Having this into ac-
count, in the recent years several approaches have been proposed to mini-
mize radar errors, among which is included the combination of radar and
gauges measurements, through a state space representation associated to
the Kalman filter. This paper aims to discuss and compare different state
space formulations through its application to the same data set. This com-
parison adresses the parameters estimation, the assessment of the accuracy
estimates obtained by each model and the impact of the number of rain
gauges used in the improvement of radar calibration estimates. It is also
important to analyse the behaviour of different state space representations
associated to different rain gauges network densities.
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FIGURE 1. Radar umbrella of the weather radar located in Cruz de Leão,
Coruche, Portugal

2 State space models and the Kalman filter

The Kalman filter approach provides a real-time scheme to calibrate radar
rainfall estimates based on the rain gauge measurements. It is applied to a
class of models that admits a state space representation of the form

At = βtBt + et (1)

βt = µ+ φ(βt−1 − µ) + εt. (2)

Equation (1) is the measurement equation and relates the observable vari-
able At with the unobservable variable βt, called the state, while Eq. (2)
is the transition or state equation. Bt is a known coefficient and et is the
measurement error which is a white noise, with variance σ2

e . The state βt
is a stationary AR(1) process with mean µ, |φ| < 1, where εt is a white
noise with variance σ2

ε . Furthermore no assumption is made about the dis-
tributions of the disturbances et and εt, only that they are uncorrelated.
Assuming that parameters of the state-space model are known, the Kalman
filter is an iterative algorithm that produces, at each time t, an estima-
tor of the state vector βt, which is the orthogonal projection of the state
vector onto the observed variables up to that time. Let β̂t|t−1 represent
the predictor of βt based on the information up to time t − 1 and let
Pt|t−1 be its mean square error (MSE). The recursive process needs initial
values for the state β1|0 and for its variance P1|0, which in this case, as
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the state process is assumed to be a stationary AR(1) process it is taken

β̂1|0 = µ and P1|0 = σ2
β =

σ2
ε

1−φ2 . When the parameters of the model are
unknown they have to be estimated and plugged in into the Kalman filter
recursive equations. Since precipitation data deviates, in general, from the
normal curve it will be considered non parametric methods to estimate
the parameters, namely the consistent parameters estimators proposed by
Costa and Alpuim (2010). The estimation for the mean of the state process
{βt}, µ, is the average of the ratios At/Bt and the remaining parameters of
the state process {βt} are estimated based on the autocovariance structure
of an AR(1) stationary process. The estimator of φ is obtained by least
square method taking the autocovariances γ̂k, with k = 1, ..., `, where `
is choose having into account the sample dimension. σ2

ε is estimated using

σ̂2
ε = 1−φ̂2

φ̂
γ̂1 and the variance of the measurement equation is done through

the relationship var(At

Bt
) = σ2

β +B−2t σ2
e .

3 Models

3.1 Linear calibration (LC)

The linear calibration model was proposed by Alpuim and Barbosa (1999)
and Costa and Alpuim (2010) and relates rain gauges and radar measure-
ments through a multiplicative factor of calibration, as follows

Gt = βtRt + et

βt = µ+ φ(βt−1 − µ) + εt.

Gt is the rain gauge observation in time t, Rt is the radar measurement
at the same time and location and βt is the respective calibration factor.
The LC model does not impose any restrictions to the radar or rain gauges
measurements unlike other that will be presented.

3.2 Mean field radar rainfall logarithmic bias modelling (FB)

The mean field radar rainfall logarithm bias model was proposed in Chum-
chean et al. (2006) and is based on the assumption that there are a consis-
tent bias between radar and rain gauges measurements, that is,

Yt =
1

k

k∑
i=1

log10

(
Gi,t
Ri,t

)
where k is the number of radar-gauge pairs data available in time t, and Gi,t
and Ri,t are the rainfall and unfiltered radar rainfall at time t at location i.
The temporal evolution of the mean field logarithm bias is modeled through
the state space model

Yt = βt + et

βt = µ+ φ(βt−1 − µ) + εt.
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3.3 Power law modelling (PL)

Brown et al. (2001) make the assumption that gauge and radar reflectance
measurements can be related through a power law, Gt = bRαt . The authors
consider a linearization of the power law where the parameters α and b
are not necessarily fixed quantities but may vary stochastically over time.
However they concluded that α could be treated as if it is constant, which
result in

Yt = αUt + βt + et

βt = µ+ φ(βt−1 − µ) + εt,

where Yt = log10(Gt), Ut = log10(Rt) and et is a white noise error. α is pre-
viously estimated by the method of least squares as the slope of the usual
linear regression between Yt and Ut. Note that PL and FB models assume
that both radar and gauges measurements are nonzero due to the logarith-
mic function. Another note to point out is that modelling procedure of LC
and PL models is based on single-site approach, and it will be necessary to
interpolate the predicted calibration factors βt to other locations where it
is intended to correct the radar measurements.

4 COMPARATIVE STUDY

It is used a data set of 17 stratiform storms between September of 1998 and
November of 2000 (in a total of 178 hourly precipitation estimates) in a
10×14 Km2 area, located around 40 Km north of Lisbon at a distance from
31 to 44 Km from the weather radar in Cruz do Leão. This area has five rain
gauges: Merceana (Mr), Meca (M), Olhalvo (O), Penedos (P) and Abrigada
(A) and it has the highest gauge density under the radar umbrella (∼ 1
gauge/28Km2). The performances of the calibration of the three models
are compared in a set of scenarios considering all the combinations using
1, 2, 3 or 4 rain gauges to calibrate the radar estimates in the remaining
gauges not used in the parameters estimation procedure in a total of 30
scenarios.

4.1 Models specification and calibration procedure

In order to ensure the independence between parameters estimation and
the calibration modelling, three storms occurred in 13 of January, 28 of
April and 19 of October of 2000 (62 hours) are used to estimate the models
parameters, while the remaining storms are used in the assessment of the
performance of the calibration. The radar calibration procedure focus on
the remaining fourteen storms not used in the parameter estimation (116
hourly measurements). The calibration procedure in the scenarios with
more than one rain gauges needs interpolating its calibration factors to
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TABLE 1. Square roots of the empirical mean square errors of the three models.
In brackets is the % of RMSE reduction comparing to the reference value.

number of Model
rain gauges LC FB PL

1 1.38 (-3%) 1.30 (-9%) 1.19 (-16%)
2 1.21 (-16%) 1.23 (-14%) 1.10 (-23%)
3 1.16 (-19%) 1.16 (-19%) 1.11 (-22%)
4 1.09 (-23%) 1.07 (-25%) 1.11 (-22%)

global 1.21 (-15%) 1.19 (-16%) 1.13 (-21%)

other locations for models LC and PL. In this case it is considered the
inverse square distance method which takes into consideration all available
rain gauges to calibrate the radar estimates. For each scenario it was imple-
mented the Kalman filter equations in order to predict the state βt at each
hour t. As it is considered a real-time procedure, the filtered prediction β̂t|t
is used to estimate βt.When the calibration procedure includes only a sin-
gle rain gauge, the process to extend the calibration to other location is a
straightforward procedure. This remains true even when the model applied
is the FB since this model assumes a single mean field bias of calibration.
Note that for LC model the radar calibration is obtained by multiplying

the radar estimate Rt by the filtered calibration factor β̂
(LC)
t|t , while in FB

and PL models it is necessary to convert the respective β̂t|t into Bt.

4.2 Performance assessment of models

The models performance assessment is done according to the empirical
square root of the mean square error of point prediction using the fourteen
storms (116 hourly observations) kept for this purpose. It is compared the
gauges rainfall estimates Gt with the calibrated radar cell measurement

R̂
(m)
t , with m = LC, FB and PL, at the same location. As it are available

five rain gauges in the area under study, it is considered systems with 1,
2, 3 or 4 gauges to the calibration process and for each of these schemes
are computed the empirical square root of the mean square error for all
combination with each number of gauges. The empirical square root of

the mean square error RMSE
(m)
k for the scheme modelled based on k rain

gauges with the model m is computed by

RMSE
(m)
k =

√√√√ 1

116(5− k)

5−k∑
i

116∑
t

(
Git − R̂

(m),i
t

)2
.

Table 1 presents the RMSE for the three models considering different num-
bers of rain gauges in the calibration process. The pre-calibration RMSE of
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the five rain gauges is taken as reference value to analyse the impact of the
calibration procedures. For data set under the calibration procedure (the
fourteen events) this value is 1.43. Thereby, it is possible to compare the
models performance in view of the percentage of the reference value reduc-
tion (indicated in Table 1 in brackets). It can be state that the models lead
to a reduction in the error of the radar rain estimates. Neveryteless, the
model PL is less sensitive to the number of rain gauges used in the calibra-
tion process. Both RMSE of models LC and FB decrease significantly when
it is added more gauges to the calibration process. When the rain gauges
density is the lowest (1 gauge per 140Km2) the PL model performed the
largest reduction of the RMSE with a strong difference to the other mod-
els. On the other hand, when it is considered the highest density (1 gauge
per 35Km2), models have similar performances, nevertheless the FB model
produces the greatest reduction of the RMSE.
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