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A ignorância gera confiança com mais frequência do que o conhecimento: são 
aqueles que sabem pouco, e não aqueles que sabem muito, que tão 
positivamente afirmam que esse ou aquele problema jamais será resolvido 
pela ciência.    
 
Charles Darwin (1809-1882) 
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resumo 
 

 

Os antibióticos têm sido detectados em amostras de água naturais, no 
entanto, os seus efeitos ecotoxicológicos em espécies aquáticas não-alvo
ainda não foram estudados de forma extensiva. A sua actividade biológica 
pode constituir um perigo ambiental, quer pela actuação directa nos 
organismos que possuam receptores e vias metabólicas que possam ser 
alteradas pelo antibiótico, quer pelo desenvolvimento de resistência 
bacteriana. Este estudo avaliou os efeitos de ciprofloxacina na 
bioluminescência de Vibrio fischeri, no crescimento de Pseudokirchneriella 
subcapitata e Lemna minor, na sobrevivência e ciclo de vida de Daphnia 
magna e na sobrevivência de Gambusia holbrooki. Pretendeu-se assim 
avaliar efeitos a diferentes níveis tróficos, recorrendo também ao cálculo dos 
riscos associados à exposição a ciprofloxacina através da determinação de 
quocientes PEC/PNEC (PEC – concentração ambiental prevista; PNEC –
concentração para a qual não se prevê a ocorrência de um efeito). Registou-
se inibição da bioluminescência de V. fischeri ao fim de 30 minutos de 
exposição. O crescimento das espécies produtoras P. subcapitata e L. minor
foi também significativamente inibido. A toxicidade aguda de ciprofloxacina em 
D. magna foi moderada, no entanto, verificou-se que exposições a longo 
prazo a concentrações mais baixas do antibiótico conseguem produzir 
alterações nos parâmetros de história de vida da espécie, principalmente no 
tamanho de neonatos da primeira ninhada e nas taxas de fecundidade. Por 
outro lado, a ciprofloxacina não apresentou toxicidade aguda para G. 
holbrooki.  
De um modo geral, os valores de toxicidade obtidos (mg L

-1
) foram superiores 

às concentrações ambientais apresentadas em estudos prévios. No entanto, a 
exposição a longo prazo a concentrações reduzidas de antibiótico podem 
representar um perigo directo para os organismos não alvo, afectando vias 
metabólicas a um nível de organização biológica inferior. Por outro lado, os 
efeitos assim produzidos podem indirectamente afectar o equilíbrio na cadeia 
trófica de ecossistemas dulçaquícolas, principalmente quando os danos 
recaem sobre a base da cadeia trófica (produtores e consumidores primários).
Efectivamente a integração de dados de avaliação da exposição e de efeitos 
da ciprofloxacina através do cálculo de quocientes PEC/PNEC indicou que 
esta fluorquinolona representa um risco para espécies aquáticas sensíveis. 
Este resultado reforça a necessidade de refinar a avaliação de risco deste 
fármaco recorrendo a ferramentas e espécies sensíveis que permitiram uma 
caracterização de risco mais protectora do equilíbrio dos ecossistemas 
aquáticos. 
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abstract 

 
Antibiotics have been detected in natural samples, but their ecotoxicological 
effects in aquatic wildlife have not been extensively studied yet. Their biological 
activity may pose an environmental threat, either due to their direct action on 
similar receptors and metabolic pathways present in non-target organisms or 
due to development of bacterial resistance. This study evaluated the effects of 
ciprofloxacin on the bioluminescence of Vibrio fischeri, the growth of 
Pseudokircheneriella subcapitata and Lemna minor, on the survival and life-
cycle of Daphnia magna and on the survival of Gambusia holbrooki. This way, 
it was evaluated the effects of ciprofloxacin on different trophic levels, while 
determining its risks associated with environmental exposure of non-target 
organisms, through the derivation of PEC/PNEC ratios (PEC – predicted-
environmental-concentration, PNEC – predicted-no-effect-concentration). The 
bioluminescence of V. fischeri was inhibited after 30 minutes of exposure. The 
growth of the producers’ species P. subcapitata and L. minor was also 
significantly inhibited. The acute toxicity of ciprofloxacin to D. magna was 
moderate, however, long-term exposures to lower concentrations of the 
antibiotic led to negative changes on life-history endpoints of  D. magna, 
especially regarding the size of neonates from the first brood and the fecundity 
rates. On the other hand, ciprofloxacin was not acutely toxic for G. holbrooki.  
In general, the toxicity values obtained (mg L

-1
) were higher than the 

environmental concentrations presented in previous studies. Nevertheless, 
long-term exposures to low concentrations of the antibiotic may be a direct 
hazard to non-target organisms, while affecting metabolic pathways at a lower 
biological level of organization. Besides, the effects produced can also 
indirectly affect the balance of trophic chains in freshwater ecosystems, 
especially when the impairments fall over basis of the trophic chains (i.e., 
producers and primary consumers). 
Actually, the integration of exposure and effect data of ciprofloxacin in the 
PEC/PNEC ratios indicated that this fluoroquinolone represents a risk for the 
most sensitive aquatic species. This outcome reinforces the need of performing 
a more refined risk assessment, using more sensitive ecotoxicological tools 
and species that allow a protective risk characterization hence promoting the 
integrity of aquatic ecosystems.  
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General Introduction  

1. Pharmaceutical drugs 

The pharmaceutical industry is a growing market, showing an increase in the production of 

new pharmaceutical drugs each year to face health problems namely related with the 

enhancement of human life span, though they have been also increasingly used for 

veterinary medicine (Glassmeyer et al., 2009; Naddeo et al., 2009).  A study from the 

National Authority for Medicines and Health Products IP (Infarmed) reported on 

Medicines’ Statistics from 2008 (Infarmed, 2008) pointed out for an increase on 

pharmaceutical sales during the last 5 years (Figure 1).  

 

Figure 1. Annual per capita consumption of medicines in Portugal between 2004 and 2008 (Infarmed, 

2008). 

 

Pharmaceutical drugs are biologically active chemicals that are usually designed to 

act through a specific mode of action towards a certain target system. For this reason they 

may also interact with other biological systems, having similar metabolic pathways, 

receptors or biomolecules, promoting unwanted side effects. As such, when 

pharmaceutical residues (parental compound and its metabolites) are released to the 

environment, they can become a potential hazard for non-target flora and fauna species 

(Fent et al., 2006; Santos et al., 2010). In some cases, pharmaceuticals have showed to 

persist and bioaccumulate (Santos et al., 2010) and in other situations, though they may not 
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persist for long periods, they are continuously entering into the ecosystems, increasing the 

possibility of inducing chronic effects on exposed non-target individuals.   
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a. Sources and environmental pathways of pharmaceutical residues 

Wastewater and effluents from sewage treatment plants (STPs) are the main point sources 

of pharmaceuticals in the aquatic environment, hence representing specific concerns 

regarding their quality (Fent et al., 2006). The wastewaters acting as sources of 

pharmaceuticals can have three main origins: (i) urban/domestic wastewaters and hospital 

and health centre effluents which receive pharmaceutical residues applied on human 

medicine; (ii) wastewaters from intensive livestock carrying medicines from veterinary use 

and, (iii) wastewaters from industrial production (Figure 2).  

 

  

Figure 2. Sources and distribution of pharmaceutical drugs in the environment (based on Santos, 2010). STP 

stands for Sewage Treatment Plant. 

 

Human pharmaceuticals (i) may enter the aquatic systems upon direct disposal of 

unwanted medicines or via excretion of the parent compound into urban sewage (3).  



 

Page 14 of 52 

Furthermore, once ingested or administered   the parent compound may follow different 

metabolic pathways, that may result in its absorption, bioaccumulation and/or 

biotransformation into more easily excreted polar metabolites which may also be 

transported into the aquatic systems through STPs (4) (Wagner, 1993; Heberer et al., 2002; 

Fent et al., 2006; Santos et al., 2010).  

 The veterinary pharmaceuticals (iii) administered and excreted by animals may also 

affect aquatic systems due to the application of contaminated manure on agricultural fields 

and subsequent percolation through soil (9) and/or run-off. The direct application of 

veterinary medicines on aquacultures is also an important and direct via of surface waters’ 

contamination (5) (Fent et al., 2006; Li et al., 2009). 

Production wastes, from the pharmaceutical industry, are discharged in sanitary 

landfills (8) or disposed on municipal STPs attaining, as well, superficial and groundwater 

resources (6, 7). In summary and independently of the origin, most pharmaceuticals reach 

STPs (4), where they may eventually not be properly degraded or removed thereby leading 

to the contamination of surface waters (e.g., rivers, lakes, estuaries) (5) and groundwater 

(6), hence constraining the quality of drinking water (7).  
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b. Environmental Hazard: levels and possible impact 

Fent et al. (2006) compiled information on environmental concentrations for different 

pharmaceuticals, and found values at the ng L
-1

 and µg L
-1 

level, in influent and effluents, 

as well as in freshwater systems. Minh et al. (2009) confirmed that there is a significant 

input of antibiotics (ng L
-1

 to µg L
-1

) in receiving waters from the discharging of effluents 

without proper chemical/biological treatment. Although these low concentrations of 

pharmaceutical residues, found in several studies, may not be directly harmful for humans, 

they may affect the sustainability of the aquatic environment (Golet et al., 2002; Fent et al., 

2006). Indeed, the environmental persistence and critical biological activity of 

pharmaceuticals raise concerns about their potential toxicological effects on on-target 

organisms (Grung et al., 2008; Minh et al., 2009). In particular, sub-lethal concentrations 

of antibiotics, have been reported to impact the cell function (e.g., cellular growth and 

multiplication) (Santos et al., 2010) and to promote the resistance of bacteria to antibiotics. 

(Kümmer, 2009; Santos et al., 2010). In this context, this poses different kinds of 

perturbations on the environment besides antibiotic resistance, hence affecting various 

levels of the trophic chain. 
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c. Legislation of pharmaceutical drugs 

Due to the increased environmental awareness related with the presence of 

pharmaceuticals and their residues in the aquatic systems, the European Community has 

published different directives to prevent, monitor and assess the hazard effects of these 

contaminants. The issue of environmental safety of medical products was first introduced 

by European legislation with the directives 93/39/EC and 93/40/EC (CEEC, 1993). Later, 

in 2001, the directives 2001/82/EC and 2001/83/EC stated the need of an environmental 

impact assessment, and established legislation regarding the rules for marketing 

authorization of pharmaceuticals. In the same year the application of Environmental Risk 

Assessment (ERA) schemes for human pharmaceutical products was discussed (CHMP, 

2006). In 2004, the directives 2004/27/EC (amending directive 2001/83/EC) and 

2004/28/EC (amending directive 2001/82/EC) established the requirement of an ERA 

process for the registration of new pharmaceuticals. In 2003 and 2005 were released the 

first and second guideline drafts for conducting an ERA (CHMP, 2006).  The ERA of 

veterinary medicinal products was described in guidance documents produced by the 

European Medicines Agency (EMEA, 1998; EMEA, 2005).  In 2008, it was released a 

Revised Guideline on Environmental Impact Assessment for Veterinary Medicinal 

Products, a new Guideline on Safety and Efficacy Follow-up-Risk Management of 

Advanced Therapy Medical Products and other regulatory guidelines (EMEA, 2008) to 

fulfill and update the legislation on pharmaceutical environmental risk assessment. In the 

national context the available legislation on pharmaceuticals includes regulations for the 

marketing authorization of new medicinal drugs that also establishes the need for 

describing potential hazards for the environment caused by their consumption or disposal. 

Recently, the REACH regulation (Registration, Evaluation, Authorization and Restriction 

of Chemical Substances) (EC, 2006) within the European Union, proposes a similar 

strategy for pesticides, biocides and pharmaceuticals, and demands information about: i) 

the physical and chemical properties of the substance; ii) the abiotic and biotic 

degradation; iii) the metabolism within biota; iv) the potential for bioaccumulation and 

persistence in the environment and v) the fate and mobility within the different 

environmental compartments. 
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2. The antibiotic ciprofloxacin 

 

Ciprofloxacin [1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperaziny)-3-quinoline 

carboxylic acid] (Figure 3) is an antibiotic used for the treatment of bacterial infections, 

that presents a broad antibacterial spectrum and belongs to the chemical class of 

fluoroquinolones (Chin et al., 1984; Zeiler et al., 1984; Zeiler, 1985). It differs from the 

rest of quinolones derivates by having a cyclopropyl residue in position 1 of the molecule 

replacing the ethyl group (Zeiler et al., 1984) (Figure 3). Its action stops bacterial 

multiplication, by disrupting the DNA replication and repairing processes. Ciprofloxacin 

was approved in October 1987, by the FDA (Food and Drugs Administration), and it can 

be found in different forms (tablets, microcapsules and injection concentrate) (Streuff et 

al., 1987).  

 

Figure 3. Chemical structure of ciprofloxacin (Golet et al., 2008). 

 

Infarmed (2008) evidenced that ciprofloxacin is the 43
rd

 pharmaceutical with more 

packages sold by the SNS (National Health System) and the 3
rd

 most sold generic 

antibiotic in Portugal (552,988 packages). A total of 655,694 different packages contain 

this active substance. Ciprofloxacin is usually prescribed to treat skin, lungs, airways, 

bones, and joints’ infections caused by susceptible bacteria, urinary infections caused by 

some bacteria like Escherichia coli, and infectious diarrhoeas caused by E. coli, 

Campylobacter jejuni and Shigella sp. (Eliopoulos et al., 1984). The treatment may last 

from 7 to 21 days, but can be prolonged in severe cases (Krcmery et al., 1999).  

 Its pharmacokinetic properties have been extensively studied, and two main modes 

of administration were suggested: oral and intravenous, not showing significant differences 
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in resulting serum concentrations between both. Absorption occurs in the gastrointestinal 

track and there is a proportional increase of the peak concentration in serum with an 

increase of dosage on both administration pathways (Bergan et al., 1988). Ciprofloxacin 

half-life, after a single administration, ranges from 3 to 5h; nevertheless multiple dose 

administration has not resulted in a statistically relevant increase of concentration in serum 

and tissues (Bergan et al., 1988). Relatively to drug distribution, ciprofloxacin shows a 

high capacity of penetration in tissues, reaching high distribution levels in the body 

regardless the administration route (Bergan et al., 1988). Ciprofloxacin is mainly excreted 

in its unchanged form by renal and extra-renal routes (transintestinal and biliary excretion), 

with only slight doses of metabolites being excreted by urine and faeces. Elimination is 

processed by three routes: renal excretion, transintestinal secretion and metabolism 

(Bergan et al., 1988; Sörgel et al. 1991). Renal clearance is mostly completed after 24h of 

administration, but some levels of the drug and its metabolites are still eliminated until 

approximately 72h (Bergan et al., 1988). Excretion through bile contributes to only 1% of 

total excretion and transintestinal elimination for 15% of total clearance. These alternative 

excretion pathways can compensate, in case of reduced renal function, where most of the 

clearance from renal function is replaced by transintestinal elimination through faeces 

(Bergan et al., 1988). All this pharmacokinetic characteristics have made ciprofloxacin a 

clinically attractive drug. 

Hence, following excretion, ciprofloxacin may enter the aquatic environment 

through STP effluents. Indeed, Golet et al. (2008) found environmental concentrations in 

river waters from northern Switzerland around 15 ng L
-1

.  In Portugal (Coimbra) 

concentrations of ciprofloxacin ranged between 127 and 10962.5 ng L
-1

 in wastewaters 

from four different hospitals, reaching wastewater treatment plants at concentrations of  

667.1 ng L
-1

 (influent) and leaving it at 309.2 ng L
-1

 (effluent) (Seifrtová et al., 2008). This 

data indicate that it would be important to improve the assessment of ciprofloxacin effects 

on non-target wildlife.  
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3. Battery of test species for ecotoxicological evaluations  

 

For the hazard assessment of chemicals in the environment, one of the tools usually used 

involves acute and chronic ecotoxicological tests, which can be performed with species 

from different trophic levels, following standard protocols available. It is important to 

choose species that are sensitive to the effects of the toxic substances, while they also have 

a representative role in the ecosystem.  

Vibrio fischeri is a marine bioluminescent bacteria used to assess either the toxicity 

of solutions of pure chemical substances, or contaminated water or soil samples, in a 

screening step of ecotoxicological evaluations, in alternative to more elaborated and time 

consuming aquatic species tests (Parvez et al., 2006).  The V. fischeri Microtox® test has 

been used as a standard test in ecotoxicology (Kaiser, 1998; Qureshi et al., 1998). It does 

not require the rearing of organisms; instead, lyophilized bacteria are used, after activation 

in a saline water suspension. The reduction of the luminescence emitted by the bacteria, 

after the exposure to toxicants/toxic matrices, reflects their toxicity. Although the 

sensitivity of the test has been discussed (Qureshi et al., 1998), its effectiveness was 

proved for testing the acute toxicity of several chemicals (Van der Grinten et al., 2010).  

Pseudokirchneriella subcapitata has been recommended as a standard species for 

the testing of chemicals, as it is an important species belonging to the autotrophic level of 

the aquatic environment (Labra et al., 2007). They are very sensitive to different 

chemicals, easy and cheap to rear under laboratorial conditions, and have a short life cycle; 

such features make algal toxicity tests a good ecotoxicological tool for the risk assessment 

of chemicals (Mayer et al., 1997).  

Lemna minor (duckweed) belongs to a group of ubiquitous floating freshwater 

monocotyledons and it is one of the world’s smallest flowering plants (Landolt, 1986). The 

duckweed has diverse genetic populations, a fast reproductive cycle and is easy to maintain 

under laboratorial conditions, making it a relevant and important model for 

ecotoxicological tests (Kanoun-Boulé et al., 2009). The role of this species as refuge, 

habitat and food for a variety of herbivorous species also justifies their importance for the 

sustainability of freshwater food chains (Lewis et al., 1995).  

Daphnia magna is a crustacean, belonging to the order Cladocera. They are also a 

key-group helping on the sustaining of freshwater trophic chains, either by controlling 
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algae blooms or by being a food supply for fish (Alonso, 1996). D. magna can be found in 

freshwaters or low salinity waters (Alonso, 1996). This cladoceran has a short life cycle, 

high fecundity rates, and low genetic variability (Terra et al., 2003). This low variability is 

related to its asexual reproduction (parthenogenesis) that is more common during its life 

cycle than the sexual one (Alonso, 1996).  As a test subject, the asexual reproduction of D. 

magna helps to eliminate the effect of genetic variability in the response to toxic 

substances, and this may guarantee the reproducibility and comparability of test results 

among laboratories, further its short life cycle allows quick evaluation of chronic 

responses. D. magna is also easy to rear in laboratory with low costs and low equipment 

and material requirements (Terra et al., 2003).  

Gambusia holbrooki (mosquitofish) is a small and aggressive fish species, 

originated from southern United States and Mexico (Garcia-Berthou et al., 2005). 

Nowadays it has a worldwide distribution, since it was introduced in different systems 

under temperate climate for mosquitoes’ controlling (Nunes et al., 2005; Pyke, 2005). G. 

holbrooki is now reported to be the most widely distributed freshwater fish (Pyke, 2005), 

establishing them as an important representative of secondary consumers (Alcaraz and 

Garcia-Berthou et al., 2007). This, together with their easy capture, natural abundance and 

stability in laboratory conditions, makes this specie appropriate for ecotoxicological tests 

(Nunes et al., 2005).  
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4. Objectives and structure of the thesis: 

The main objective of this thesis was to contribute with sound scientific ecotoxicological 

data for ciprofloxacin, in order to provide information to be used in future derivation of a 

protection value for the aquatic compartment. This protection values will be useful to 

regulate emissions of this compound to the environment as well as for risk assessment of 

effluents/wastewaters. To attain this general aim, more specific objectives were defined:  

• to perform a general evaluation of the ecotoxicity of the antibiotic ciprofloxacin, 

carrying out a series of acute and chronic ecotoxicological tests, with a battery of 

freshwater species, always following standard protocols;  

• to analyse these  effects in different trophic levels, comparing  their  sensitivity; 

• to fill the gap of information for sub-lethal effects caused by ciprofloxacin; 

This dissertation is divided in three chapters.  

Chapter I – General Introduction.  

Chapter II – Ecotoxicological effects of ciprofloxacin on non-target freshwater 

species. 

Chapter III – Concluding Remarks 

In chapter 1 background information about the following aspects was presented: i) 

concerns related with the release of pharmaceutical substances on aquatic environments. 

the usage, sources, environmental fate of pharmaceutical products; iii) European legislation 

regulating the release of pharmaceutical substances into the environment and current 

frameworks for their risk assessment; iv) the chemical characterization and 

pharmacokinetics of ciprofloxacin in particular (the object of study in this thesis. Chapter 

II - describes the lethal and sub-lethal evaluation of the ecotoxicity of ciprofloxacin, with 

species from different throphic levels (Vibrio fischeri, Pseudokirchneriella subcapitata, 

Lemna minor, Daphnia magna and Gambusia holbrooki). The ecotoxicological data 

obtained is presented and discussed, in terms of species sensitivity, and a first attempt was 

made to derive a PNEC values (predicted-no-effect-concentration) with all the data 

available, following European Guidelines. In Chapter III, after a final and integrative 

conclusion, future perspectives were presented. 



 

 

 

 



 

 

 

Chapter II 

Ecotoxicological effects of ciprofloxacin on non-target freshwater species: data 

integration and derivation of toxicity thresholds for risk assessment 
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Ecotoxicological effects of ciprofloxacin on non-target freshwater species: 

data integration and derivation of toxicity thresholds for risk assessment 

 

Martins N., Pereira R., Abrantes N., Pereira J., Gonçalves F., Marques C.R. 

CESAM & Department of Biology, University of Aveiro, Campus Universitário de 

Santiago, 3810-056 Aveiro, Portugal 

 

Abstract Although antibiotics have been increasingly used and detected in natural 

samples, their ecotoxicological effects on aquatic wildlife are not yet extensively studied. 

Considering the environmental threat posed by the biological activity of antibiotics it is 

quite relevant to assess the resulting impact, especially on sub-lethal endpoints. As such, 

this study has evaluated the effects of ciprofloxacin on Vibrio fischeri luminescence, 

Pseudokirchneriella subcapitata and Lemna minor growth, on the survival and 

reproduction of Daphnia magna and on Gambusia holbrooki survival. The risks associated 

with ciprofloxacin effects on non-target organisms were quantified through the calculation 

of the PEC/PNEC ratio. Overall, the toxicity values obtained (at the mg L
-1

 level) were 

higher than the environmental concentrations. P. subcapitata and L. minor were more 

sensitive under short-term exposures than V. fischeri, D. magna and G. holbrooki. No acute 

toxicity was observed for fish. The chronic assay with D. magna evidenced that long-term 

exposure to lower concentrations of this antibiotic induced impairment on its life history 

parameters. Such outcome may pre-empt potential damages on the long-term maintenance 

of natural populations continuously exposed to the input of antibiotics. Indeed, the 

PEC/PNEC ratios showed that ciprofloxacin represents a risk for the most sensitive aquatic 

organisms, since the defined threshold of an acceptable risk was considerably surpassed.  

 

Key words: pharmaceuticals, Vibrio fischeri, Pseudokirchneriella subcapitata, Lemna 

minor, Daphnia magna, Gambusia holbrooki, acute and chronic effects, risk quotients. 

 



 

Page 26 of 52 

 

Introduction 

The high production and ubiquitous presence of pharmaceutical residues in different 

aquatic environments together with their biologically active nature had recently raised an 

environmental concern about the impacts of these micropollutants on non-target wildlife 

(Ferrari et al. 2004; Fent et al., 2006; Santos et al., 2010). Usually they enter the aquatic 

systems through wastewater and sewage treatment plants (STP’s) that receive human 

disposal medicines often not effectively removed or biodegraded (Daughton and Ternes, 

1999). Additionally, pharmaceutical residues may also derive from veterinary use (namely 

on aquacultures), industrial production wastes and from run-off and leaching processes of 

arable fields receiving contaminated manure or sludge (Halling-Sørensen et al., 2000; 

Santos et al., 2010). 

In particular, antibiotics represent a special threat for environmental health due to 

the potential development of antibacterial resistance (Kümmerer, 2003). Antibiotics were 

the second most detected class (15%) of pharmaceutical residues in the environment 

between 1997 and 2009 (Santos et al., 2010). They have been quantified in hospital and 

STPs effluents (e.g., Seifrtová et al., 2008; Santos et al., 2009), surface (Pena et al. 2007) 

and groundwaters (Kümmerer, 2003) from the ng L
-1

 to the µg L
-1

 level, what indicates 

that they are not easily degraded and tend to persist. Nevertheless, their ecotoxicological 

effects on non-target organisms have not been largely investigated (Santos et al., 2010).  

Ciprofloxacin is a broad spectrum antibiotic used in human and veterinary medicine 

that belongs to the chemical class of fluoroquinolones (Chin et al., 1984; Zeiler et al., 

1984; Zeiler, 1985). The National Authority for Medicines and Health Products (Infarmed) 

placed it as the 43
rd

 pharmaceutical with more packages sold by the SNS (National Health 

System), with 655,694 different packages containing this active substance (Infarmed, 

2008). In the European context, this is the most prescribed fluoriquinolone (Ferech et al., 

2006).  

The mode of action of ciprofloxacin relies on the inhibition of bacterial 

multiplication by disrupting DNA replication and repairing processes (Streuff et al., 1987). 

The absorption of the compound is generally rapid (Turnidge, 1999), being its half-life 

between 3 to 5 hours (Bergan el., 1988) and it is eliminated mainly through renal excretion 

(Bergan et al., 1988; Sörgel et al. 1991), hence entering the aquatic systems through STP 

effluents. Actually, it was reported that fluoriquinolones usually persist in the aquatic 



 

Page 27 of 52 

 

compartment (Huang et al., 2001). Studies worldwide have found concentrations of 

ciprofloxacin of 0 – 10,962.5 ng L
-1

 in hospital effluents (e.g., Brown et al., 2006; 

Seifrtová et al., 2008); 7 – 309.2 ng L
-1

 in wastewater treatment plant effluents (e.g., 

Lindberg et al., 2005; Seifrtová et al., 2008); and 79.6 – 119.2 ng L
-1

 in river water (e.g., 

Pena et al., 2007).  Previous works have already demonstrated that ciprofloxacin is 

extremely genotoxic (Hartmann et al., 1998) and acutely toxic for P. subcapitata (Grung et 

al., 2008), nevertheless it is needed to fulfill the gap of ecotoxicological information about 

this antibiotic. Since the environmental concentrations found are quite low, the 

ecotoxicological analysis should include not only acute data, but also the assessment of 

sub-lethal effects on non-target organisms.  

Thereby, this paper seeks to provide a general evaluation of the toxicity of 

ciprofloxacin, acquiring new values and diminishing the gap of information for sub-lethal 

effects. According to European legislation and guidance (CHMP, 2006; EC, 2006) the 

environmental risk assessment of pharmaceuticals is compulsory for their marketing 

authorization. However, as far as authors are aware, the assessment of effects of 

ciprofloxacin is not very extensive yet. As such, a battery of acute and sub-lethal 

ecotoxicological tests was performed in this work, using individuals of different aquatic 

trophic levels (bacteria - Vibrio fischeri -, microalgae - Pseudokirchneriella subcapitata -, 

macrophytes - Lemna minor -, crustaceans - Daphnia magna -, and fish - Gambusia 

holbrooki). At the end, differences of sensitivity between trophic levels were compared, 

and the PEC/PNEC ratio (i.e., predicted-environmental-concentration and predicted-no-

effect-concentration ratio) will be evaluated to ascertain potential environmental risks of 

ciprofloxacin to the aquatic environment (CHMP, 2006). The PNEC value was estimated 

based on the ecotoxicological data generated in this study and on the data available on 

literature, following the Technical Guidance Document on Risk Assessment (EC, 2003). 

 
 
 
 
Material and Methods 

1. Test species and culturing conditions 

V. fischeri was used as freeze-dried reagent after being reconstituted according to the 

methods established on the Microtox® protocols supplied by Microbics Inc. Protocols. 



 

Page 28 of 52 

 

P. subcapitata was kept in unialgal cultures in 250 ml erlenmeyer with Woods Hole 

MBL medium (Stein, 1973) in an orbital shaker (100 rpm). Every week the cultures were 

renewed.  

The macrophyte L. minor was maintained in glass vessels of 150 mL with 

STEINBERG medium (OECD, 2006). The cultures were renewed weekly.  

New born females of D. magna were maintained in 800 mL glass recipients with 

ASTM hard water (ASTM, 1980) and a seaweed extract (organic additive made of 

Ascophylum nodosum; Baird et al., 1989), being fed with the microalgae P. subcapitata 

(3.0 x 10
5
 cell/mL/Daphnia).  The cultures were changed every two days.  

G. holbrooki was collected in the field and acclimated under laboratorial conditions 

for 2 weeks before test beginning. They were kept in tanks with continuous oxygenation 

and were fed with commercially available fish food (Aquapex® pond flakes) at least three 

times per week. Water was renewed every 2-3 weeks. The cultures were daily monitored 

for dead and/or sick animals.  

All cultures of algae, macrophytes, daphnids and fish were kept under 20ºC±1°C and a 

photoperiod of 16h
L
: 8h

D
. 

 

2. Ciprofloxacin and stock solutions 

Ciprofloxacin was obtained from Fluka Analytical at 98% [1-cyclopropyl-6-fluoro-1,4-

dihydro-4-oxo-7-piperazin-1-ylquinoline-3-carboxylic acid hidrochloride; CAS 85721-33-

1]. The solubility of ciprofloxacin is > 2 g L
-1

 (Halling-Sørensen et al., 2000), although it 

varies with the pH value of the solution medium (Yu et al., 1994). Its partitioning 

coefficient octanol-water (Log Kow) is 1.24±0.86 (Halling-Sørensen et al., 2000) and 

presents a half-life of about 1.5 h in water due to photodegradation (Cardoza et al., 2005) 

(Table 1). 

The stock solutions of ciprofloxacin were prepared in the respective culture media 

of each organism (i.e., MBL for P. subcapitata, STEINBERG for L. minor, ASTM for D. 

magna, and dechlorinated tap water for G. holbrooki). All solutions were thoroughly 

mixed and sonicated until total solubility of the compound. 
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Table 1. Physical, chemical and environmental occurrence data available for ciprofloxacin. In bold are 

signed out the values used for the derivation of PEC values (Table 4).  

Parameter   Data   Reference 

CAS #         85721-33-1   - 

Therapeutic class       
Fluoroquinolone 

antibiotic 
  - 

Molecular weight (g mol
-1

)     331.34   - 

Solubility (g L
-1

)       >2   Halling-Sørensen et al., 2000 

Log Kow         1.24 ± 0.86   Halling-Sørensen et al., 2000 

Koc (soil)         61000   Tolls, 2001 

Biodegradability (half-life)           

   activated sludge (days)     1.6 - 2.5   Halling-Sørensen et al., 2000 

   photodegradation in water (h)     1.5   Cardoza et al., 2005 

Occurrence in aquatic environment (ng L
-1

)         

    hospital effluents        0 – 10,962.5    Brown et al., 2006; Seifrtová et al., 2008 

    STP effluents       7 – 309.2    
Lindberg et al., 2005; Seifrtová et al., 

2008 

    river water       79.6 – 119.2    Pena et al., 2007 

 

 

3. Ecotoxicological assays 

3.1. Microtox® test 

Microtox® test (Microbics Corporation Inc. Protocols, 1988) uses the bioluminescent 

properties of the bacteria V. fischeri to assess the toxicity of xenobiotics (Kaiser, 1998). 

The principle of the assay is based on the chemical reaction in which the enzyme luciferase 

oxidise long chain aldheyde and reduces flavin in the presence of oxygen, thereby 

releasing chemical energy into blue-green light (Hernando et al., 2007). For this, a Basic 

Test Protocol was applied, exposing V. fischeri to several dilutions of a ciprofloxacin stock 

solution (made with distilled water) of 60 mg L
-1

, being the readings of bioluminescence 

made 5, 15 and 30 minutes after exposure. 

3.2. Microalgae growth inhibition  

The experimental design was based on the OECD guideline (2006). Algae were exposed in 

100 mL erlenmeyers to three replicates of each test concentration (final range: 0.273, 

0.547, 1.09, 2.19, 4.38, 8.75, 17.5, and 35.0 mg L
-1

) and then maintained for 96h at a 

16
L
:8

D
 h photoperiod, 20±1ºC and 100 rpm in an orbital shaker. At the end, the algae 

growth rate was determined based on the cell density parameter by microscopic (Olympus 

CKX41) counting of algae cells in a Neubauer chamber. 
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3.3. Macrophyte growth inhibition  

The test followed the OECD guidelines for Lemna sp. growth inhibition (OECD, 2006).  

Three replicates per test concentration (final range: 0.050, 0.137, 0.412, 1.24, 3.70, 11.1, 

33.3 and 100 mg L
-1

) were prepared in 100 mL flasks and three plants with three fronds 

were placed in each one. The test was run at a 16
L
:8

D
 h photoperiod and 20±1°C during 

seven days. The medium was renewed every three days. The effects of ciprofloxacin on L. 

minor growth rate were determined based on the frond number (OECD, 2006).  

 

3.4. Daphnia sp. assays 

All experiments were performed with <24h neonates from the third to the fifth offspring, in 

order to avoid maternal influence (Barata and Baird, 1998). The exposures were carried out 

under a 16
L
: 8

D 
h photoperiod and 20±1°C. 

3.4.1. Daphnia sp. acute immobilization test 

The neonates were exposed to a range of six concentrations (final range: 6.25, 12.5, 25.0, 

50.0 and 100 mg L
-1

) for 48 hours (OECD, 2004). Five animals were placed randomly in 

each 180 mL glass flasks with 50 mL of the respective test solution up to four replicates. 

The animals were not fed during the test. pH (pH 330 WTW) and oxygen (Oxi 330 WTW) 

levels were measured in the beginning and at the end of the assay. At the end of the 

exposure the number of immobilized organisms was recorded. 

 

3.4.2. D. magna reproduction test 

The test was performed for six concentrations (final range: 1.79, 3.05, 5.19, 8.82, 15.0 and 

25.5 mg L
-1

) in an individual ten replicate design, during 21 days (OECD, 1998). The 

medium was renewed every two days. The exposure conditions and feeding (at least five 

times a week) of animals were carried out according to what was done during their culture. 

The endpoints analyzed along the test were the fecundity of females, the age at first 

reproduction, number of broods per female, the size of neonates from the first brood, the 

somatic growth rate and the rate of population increase. Parent animals’ mortality was 

recorded daily. The somatic growth rate of females was assessed by measuring the length 

(Olympus SZX9 Stereo Microscope) of the first exopodite of the second antennae in the 

beginning and in the end of the test. Body length was measured through a formula that 
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establishes allometric relations between D. magna body length (BL) and exopodite length 

(EL) (Pereira et al., 2004): 

BL = 10.499 x EL - 0.329 (mm). 

Somatic growth rate was then determined by: 

SGR = [ln(BLf) - ln(BLi)] / ∆t (days
-1

), 

where, BLf is the final body length, BLi is the initial body length and ∆t is the exposure 

time (21 days) (Sobral, 1997; Burns, 2000). 

Intrinsic rate of population increase (r) integrates parameters at the individual level (e.g., 

survival, fecundity, age at the first brood). The calculation involves various iterations to 

determine the r value for the Euler-Lotka equation (Meyer et al., 1986; McCallum, 2000):  

1 = Σ (e-
rx

. lx . mx)  

where x is the age class (days), lx is the probability of survival at age x and mx is the 

fecundity at age x. The standard deviation was determined according to jackknife 

technique (Meyer et al., 1986). 

3.5. Fish acute test 

The test was performed according to the OECD guideline for fish acute test (1992). Male 

and non-pregnant female of G. holbrooki were placed in 750 mL plastic containers 

containing 500 mL of the test solution. Before beginning the test the solubility of 

ciprofloxacin was tested for 60, 70, 80 and 100 mg L
-1

. The compound was totally 

dissolved only at 60 mg L
-1

, thereby, this was the maximum concentration tested.
 
The test 

was run with ten individual replicates during 96 h without aeration, no feeding, with a 

16
L
:8

D
 h photoperiod and a temperature of 20±1°C. The test solution was replaced each 24 

h. Dead organisms, pH and oxygen values were verified at the 24, 48, 72 and 96 h. 

 

4. Statistical analysis 

The EC50 (concentration inducing 50% effect) point estimates and respective 95% 

confidence limits were calculated for the growth of microalgae and macrophyte, the 

immobilization and fecundity of D. magna  and the survival of G. holbrooki through the 

Probit regression analysis (Finney, 1971). For V. fischeri the EC50 was retrieved by the software.  

The determination of NOEC (no-observed-effect-concentration) and LOEC (low-

observed-effect-concentration) point estimates for microalgae and macrophyte growth 

rates, and for life-history parameters of D. magna was made by a one-way ANOVA test 
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followed by the Dunnett’s multiple comparison test, which allowed to find out significant 

differences between the control and the concentrations tested (p < 0.05). 

 

5. PEC/PNEC ratio 

This ratio represents a preliminary approach for the risk analysis of ciprofloxacin to the 

aquatic wildlife. The PEC used corresponds to the highest environmental concentration of 

ciprofloxacin available in literature. The PEC was measured for different aquatic matrices, 

from hospital effluents to river waters, in order to account for worst-case situations in 

which the effluents could be directly disposed on surface waters. The PNEC value was 

calculated based on the lowest NOEC and EC50 obtained for algae, macrophyte, crustacean 

and fish exposed to ciprofloxacin according to standard procedures. The point estimates 

used were retrieved from this study and/or from other published studies (cf., Table 2). Both 

point estimates were calculated because the NOEC value is dependent on the concentration 

range tested, while the EC50 is derived from a regression analysis of the data, thereby 

providing a more accurate estimation (Isidori et al., 2005). The NOEC and EC50 values 

were divided by an assessment factor of 50 and 1000, respectively, to obtain the PNEC 

value (EC, 2003). The Technical Guidance Document recommends the application of 

assessment factors, in detriment to probabilistic methods, to derive the PNEC when less 

than 10 NOEC/EC50 values are available for less than 8 different taxonomic groups (EC, 

2003). If values >1 are obtained for the PEC/PNEC ratio, then there is a risk for the aquatic 

environment and further testing will be needed. 

 

 

Results 

All pH and oxygen values were maintained under the recommended range by the 

guidelines that were followed to perform the assays.  

Table 2 summarizes the point estimates for each endpoint and species exposed to 

ciprofloxacin, while table 3 presents the summary of the one-way ANOVA test. The 

antibiotic was acutely toxic for V. fischeri (EC50 = 11.5 mg L
-1

)
 
and D. magna (EC50 = 65.3 

mg L
-1

), and not toxic for G. holbrooki. For P. subcapitata was determined an EC50 of 4.83 

mg L
-1

, being the LOEC of 2.19 mg L
-1

 (Figure 4, Tables 2 and 3). The growth rate of L. 

minor was significantly depleted at a LOEC of ≤0.050 mg L
-1

 (Figure 5, Tables 2 and 3).  
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Test Organism Parameters EC50 NOEC LOEC

V. fischeri Luminescence inhibition - at 30 min 11.5 ND ND

P. subcapitata Growth inhibition (cell density) - 96 h 4.83 (3.44 -7.32) 1.09 2.19

L. minor Growth inhibition (no. of fronds) - 7 d 3.75 <0.050 ≤0.050

D. magna Immobilisation - 48 h 65.3 (54.9-79.1) ND ND

Fecundity 12.8 (10.8-15.3) 5.19 8.82

Age at first reproduction ND 15 25.5

Number of broods per  female ND 8.82 15

Size of neonates from the first brood ND 1.8 3.05

Somatic growth rate ND 8.82 15

Intrinsic rate of population increase ND 8.82 15

G. holbrooki Mortality - 96 h >60 ND ND

Test Organism Parameters EC50 Reference

V. fischeri Luminescence inhibition - at 30 min >5.9 Hernando et al., 2007

2.97 (2.41-3.66) Halling-Sørensen et al., 2000

18.7 (16.2-21.2) Robinson et al., 2005

Chlorella vulgaris Growth inhibition (cell density) - 96 h 20.6 Nie et al., 2008

Growth inhibition (cell density) - 120 h 0.017 (0.014-0.020) Robinson et al., 2005

Growth inhibition (cell density) 0.005 (0.004-0.006) Halling-Sørensen et al., 2000

L. gibba Growth inhibition (no. of fronds) - 7 d 0.697 (0.554-0.861) Brian et al., 2004

L. minor ( 1) Growth inhibition (no. of fronds) - 7 d 0.203 (0.041-0.364) Robinson et al., 2005

Immobilisation - 48 h > 60 Halling-Sørensen et al., 2000

Immobilisation - 48 h >10 Robinson et al., 2005

Brachydanio rerio Mortality - 72 h >100 Halling-Sørensen et al., 2000

ND - not determined.

(1) Assays not performed according to standard guidelines.

Growth inhibition (cell density) -72 hP. subcapitata
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Figure 4. Growth rate (GR) of P. subcapitata exposed to increasing concentrations of ciprofloxacin. 

Standard error is indicated above each bar. * refers to a significant difference from the control (p < 0.05). 

 

 

 

Table 2. Resume of point estimates [(NOEC - no-observed effect concentration -, LOEC – low observed 

effect concentration -, and EC50 – effect concentration at a 50% level (mg L
-1

)] determined for all the tests 

and species used in this study. The available ecotoxicological information on literature for ciprofloxacin is 

also presented (EC50; mg L
-1

). In brackets are presented the 95% confidence limits of EC50 values, whenever 

available. The values in bold were used to estimate PNECs (cf., Table 4). 
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Table 3. One-way ANOVA outcome summary for the growth of microalgae and macrophyte, and for the 

chronic endpoints of daphnids. 

Species Endpoints F d.f. P 
P. subcapitata Growth rate (cell density) 103.009 5 <0.001 

L. minor Growth rate (no. of fronds) 58.269 8 <0.001 

D. magna 

Fecundity of females 37.172 6 <0.001 

Age at first reproduction 16.347 6 <0.001 

Number of broods per female 32.467 6 <0.001 

Size of neonates from the first 

brood  
11.511 6 <0.001 

Somatic growth rate 6.141 6 <0.001 

Rate of population increase 32.888 6 <0.001 

 

 

 

 

 

 

 

 

 

Figure 5. Growth rate (GR) L. minor exposed to increasing concentrations of ciprofloxacin. Standard error is 

indicated above each bar. * refers to a significant difference from the control (p < 0.05). 

 

 

Ciprofloxacin induced chronic effects on D. magna life-history parameters (Figure 

6, Tables 2 and 3). The most affected parameter was the size of neonates from the first 

brood as it retrieved the lowest LOEC value (3.05 mg L
-1

; Table 2). Nevertheless, the 

fecundity of females was also inhibited though to a higher LOEC (8.82 mg L
-1

), while the 

EC50 was of 12.8 mg L
-1

. The somatic growth rate, the number of broods produced per 

female and the intrinsic rate of population increase were depleted at a 15.0 mg L
-1

 LOEC. 

A significant delay in the age at first reproduction was noticed at the highest concentration 

of ciprofloxacin (25.5 mg L
-1

). 
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Figure 6. Daphnia magna reproduction test results of exposure to increasing concentrations of ciprofloxacin. 

a) fecundity; b) age at first reproduction; c) number of broods per female; d) size of neonates from the first 

brood (N1); e) somatic growth rate (SGR); f) intrinsic rate of population increase (r). Standard error is 

indicated above each bar. * refers to a significant difference from the control (p < 0.05). 

 

 

The quotient risks determined for different aquatic samples and using two toxicity 

point estimates are presented on table 4. The ciprofloxacin PEC/PNEC1 ratios based on the 

NOEC value obtained in this study for P. subcapitata were below 1. However, the 

PEC/PNEC2 estimated with the lowest EC50 obtained for M. aeruginosa by Halling-

Sørensen et al. (2000) (Table 2) assumed values much higher than 1 (Table 4).  

 

 

Table 4. Risk quotients (PEC/PNEC) based on the PEC estimated for different aquatic matrices and PNEC 

estimated for NOEC (i.e., PNEC1) and EC50 (i.e., PNEC2) values (cf., Table 2). The quotients indicating a 

risk are in bold. NOEC – no-observed-effect-concentration; EC50 – concentration inducing 50% of effect; 

PEC – predicted-environmental-concentration; PNEC – predicted-no-effect-concentration. 
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Discussion 

 

The outcome of this study evidenced that ciprofloxacin caused lethal and/or sub-lethal 

effects in most of the tested species. Notwithstanding, the effect concentrations determined 

are generally above the levels detected in different aquatic matrices (cf., Pena et al., 2007; 

Seifrtová et al., 2008).  

Among the short-term tests performed, the bioluminescence inhibition of V. fischeri 

was the most sensitive parameter to ciprofloxacin (EC50 = 11.5 mg L
-1

) (Table 2). 

Hernando et al. (2007) could not determine a toxicity value (EC50 > 5.9 mg L
-1

) but 

attained 28% effect of ciprofloxacin on V. fischeri bioluminescence after 30 min of 

exposure. Previous studies with other antibiotics have shown that Microtox® test has low 

sensitivity to these pharmaceutical drugs (e.g., Ferrari et al., 2004; Isidori et al., 2005; 

Christense et al., 2006; Van der Grinten et al., 2010), what was linked to the short exposure 

time hence preventing a noticeable damage on biosynthetic pathways (Backhaus and 

Grimme, 1999; Froehner et al., 2000; Isidori et al., 2005; Van der Grinten et al., 2010). On 

the other hand, ciprofloxacin was moderately to non-toxic for D. magna and G. holbrooki, 

respectively. Halling-Sørensen et al. (2000) found that this antibiotic was not toxic for D. 

magna (NOEC-48h = 60 mg L
-1

) and Brachydanio rerio (NOEC-72h = 100 mg L
-1

) (Table 

2). 

In the literature is often referred the need for generating protective and 

precautionary ecotoxicological data for integrating the risk assessment of pharmaceuticals 

(e.g. Grung et al., 2008; Santos et al., 2010). This way, the present study also aimed to 

identify sub-lethal effects at low ciprofloxacin concentrations. 

The chronic toxicity of ciprofloxacin on P. subcapitata growth was similar to the 

one obtained by Halling-Sørensen et al. (2000) (EC50 = 2.97 mg L
-1

). Notwithstanding, the 

toxicity value obtained by Robinson et al. (2005) for this species was almost one order of 

magnitude higher (EC50 = 18.7 mg L
-1

), similarly to the one determined for Chlorella 

vulgaris (EC50-96h = 20.6 mg L
-1

) by Nie et al. (2008) (Table 2).  

L. minor was the most sensitive organism to ciprofloxacin phytotoxicity, presenting 

the lowest EC50 and LOEC values comparatively to algae and daphnids under sub-chronic 

exposures (Table 2). Robinson et al. (2005) found a similar trend in which L. minor growth 

was more affected (EC50 of 0.203 mg L
-1

) by ciprofloxacin than that of microalgae P. 
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subcapitata. Even though, the toxicity value they determined was about one order of 

magnitude lower than the one calculated in the current study (3.75 mg L
-1

), similarly to 

what was published by Brain et al. (2004) for L. gibba (EC50 = 0.653 mg L
-1

) (Table 2). 

Consistently with these two latter studies, it was observed the occurrence of chlorosis in 

new fronds of Lemna exposed to higher concentrations of ciprofloxacin. Brain et al. (2004) 

explained that the mode of action of ciprofloxacin inhibits the chloroplastic activities of 

Lemna cells.  

Although D. magna life-history traits were not as sensitive as was the growth of the 

macrophyte L. minor, they were significantly impaired under increasing concentrations of 

ciprofloxacin (Figure 6, Tables 2 and 3). Among the endpoints tested, the size of neonates 

from the first brood was impaired at lower concentrations of ciprofloxacin. The first brood 

of daphnid females actually represents an important role in terms of the maintenance of a 

population under unstable conditions (Stibor and Lampert, 1993). Hence, the reduced size 

of neonates may constrain the fitness of newborn organisms to withstand deleterious 

conditions and to guarantee the balance of population dynamics. Fecundity was the second 

most affected parameter, followed by the number of broods per female, the somatic growth 

rate, the intrinsic population increase and the age at first reproduction (Figure 6, Tables 2 

and 3). This latter parameter (r) integrates individual-level traits - survival, reproductive 

output, and period between successive reproduction, namely the age at first reproduction - 

to provide an overview of toxicant effects at the population level, hence making it an 

improved ecotoxicological endpoint that gives a more ecologically-sound assessment of 

the toxicant impact (Forbes and Calow, 1999). Notwithstanding, in the present study, this 

endpoint did not provide the most conservative information about ciprofloxacin effects. 

Ferrari et al. (2004) retrieved a NOEC value for the fluoroquinolone ofloxacin of 10 mg L
-1

 

for the 7-day reproduction test with Ceriodaphnia dubia. For the same species and 

antibiotic, Isidori et al. (2005) determined a chronic EC50 of 3.13 mg L
-1

 (Table 2). 

Thereby, fluoriquinolones do affect the reproduction of cladocerans, although chronic data 

is not available for ciprofloxacin. 

Comparing the responses of the different trophic levels to ciprofloxacin it was clear 

that the producers were the most sensitive trophic level while consumers were more 

tolerant, being the overall decreasing order of sensitivity L. minor > P. subcapitata > V. 

fischeri > D. magna > G. holbrooki. Under the ecosystem level, however, bottom-up and 
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top-down effects may occur whenever the maintenance of natural populations from lower 

trophic levels is constrained (Relyea and Hoverman, 2006). Although the effect 

concentrations herein obtained are far above the levels of ciprofloxacin quantified in the 

aquatic systems, its ability to persist adsorbed onto particulate matter (cf., Koc value in 

Table 1), jointly with the continual input to the environment (Robinson et al, 2005) may 

pose a risk to aquatic wildlife.  

In fact, from the integration of exposure (PEC) and effect (PNEC) assessment data 

it was verified that ciprofloxacin may become a risk to the aquatic environment (Table 4), 

depending on the point estimates used for the calculation of PNEC. Usually the calculation 

of a PNEC based on long-term NOECs reduces the uncertainty of extrapolations from 

laboratory to field effects, comparatively to the PNECs estimated through EC50 values (EC, 

2003; Isidori et al., 2005). Notwithstanding, the latter point estimate provides a more 

accurate outcome since it is generated from a regression analysis applied to the dataset, 

whilst the NOEC values are constrained by the concentration range tested. For these 

reasons, both toxicity values were used for the derivation of PNECs to ciprofloxacin.  

The PNEC1 calculated with the lowest NOEC obtained for the most sensitive 

species in the current study – P. subcapitata – resulted in an acceptable risk of 

ciprofloxacin to aquatic species. On the other hand, the ratios estimated from the PNEC2 

based on the lowest EC50 available, had exceeded the threshold outlined for an acceptable 

risk, especially for a worst-case PEC scenario related with the discharge of a hospital 

effluent in surface waters (Tables 1 and 2). This risk characterization was actually in 

agreement with the outcome observed by Halling-Sørensen et al. (2000), Robinson et al. 

(2005) and Grung et al. (2008) that attained PEC/PNEC ratio values between 5.88 and 

1401. It should be noticed that in these latter studies, the PEC values were based on the 

consumption of pharmaceuticals per inhabitant (Grung et al., 2008) or per year (Halling-

Sørensen et al., 2000), or based on hypothetic protective concentration scenarios (Robinson 

et al., 2005). Similar approaches are recommended for the predictive risk assessment of 

human and veterinary medicals (CHMP, 2006; EMEA, 2008). However, whenever 

effective environmental concentrations of pharmaceutical residues are available, they 

should be preferably used for the derivation of PEC/PNEC ratios, as it was done in this 

study, since they already integrate the role of biotic and abiotic factors in the fate of these 
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chemicals in the environment, thereby improving the ecological relevance of risk 

characterization. 

 

 

Conclusion 
 

The fluoroquinolone ciprofloxacin induced acute and sub-lethal effects on most species of 

producers and consumers. The lower trophic level comprising bacteria, microalgae and a 

macrophyte was more sensitive to this antibiotic, especially L. minor, what strengthens the 

phytotoxic effect of ciprofloxacin mentioned by different authors. On the other hand, it 

was moderately toxic to acute exposures of D. magna and non-toxic for G. holbrooki 

survival. This study presents the first data related with ciprofloxacin chronic effects on D. 

magna reproduction. It was particularly observed a significant impact on the size of 

neonates from the first brood and on the fecundity rates. Overall, the obtained effect 

concentrations were generally above the levels detected in the aquatic systems. However, 

the integration of exposure and effect data in the PEC/PNEC ratios, showed that 

ciprofloxacin may pose a risk for the most sensitive aquatic species, particularly when 

aquatic samples with higher loads of this antibiotic are considered, e.g., in hospital 

effluents. Such worst-case situation pre-empts a potential threat for ecosystem integrity and 

functioning. The risk characterization herein performed thus indicated that the risk 

assessment of ciprofloxacin should proceed to a more refined assessment tier. One strategy 

will be to increase the baseline dataset available for ciprofloxacin and its metabolites, what 

may include the testing of different species, the assessment of other sensitive sub-lethal 

endpoints at different biological levels of organization. 
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Concluding remarks 
 
This study used a battery of ecotoxicological tests with different trophic levels in order to 

assess the potential risk of ciprofloxacin to the aquatic ecosystem, and discern which 

trophic levels are most affect by it. This was done while having in mind that antibiotics are 

chemical pollutants that raise many questions on their persistence and their action on non-

target organisms. The results had shown that ciprofloxacin may represent a potential 

hazard for algae and aquatic plants’ populations, endangering the stability of the food chain 

at the first trophic level, the producers. This poses a risk that must not be ignored, has it 

may affect populations of the next trophic levels, not only by diminishing their food 

supply, but also through the consumption of contaminated food, increasing their exposure 

to the chemical. Sub-lethal effects obtained for D. magna also demonstrated that 

populations may suffer from long-term exposure that can lead to the disruption of 

populations’ viability and stability, proving that it is important to assess sub-lethal effects, 

as acute data may not represent an ecological relevant prediction of the potential risk for 

non-target organisms.  

Overall, the obtained effect concentrations were generally above the levels detected 

in the aquatic systems. However, the integration of exposure and effect data in the 

PEC/PNEC ratios, it was observed that ciprofloxacin may pose a risk for the most sensitive 

aquatic species. Future research on the evaluation of the impacts this antibiotic may induce 

on the aquatic environment may need the application of more fine-assessment 

methodologies, as some standard tests proved to be ineffective to assess their 

contamination. Namely the use of biomarkers can help to determine early-warning signals 

that might facilitate the detection of ciprofloxacin contamination. Investigation on 

oxidative stress and anti-oxidative enzymes could be a good approach to fully understand 

the extension of the effects of ciprofloxacin in individual species at lower biological levels 

of organization. Furthermore, the investigation on methods for the removal of 

fluoroquinolones in sewage treatment plants might be an important step to mitigate the 

risks posed by antibiotic contamination on natural ecosystems.  
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