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2 Abstract
The purpose of this study was to implement a program in C++ using OpenCV image processing 

platform's  algorithms  and  Microsoft  Visual  Studio  2008  development  environment  to  perform 
cameras  calibration  and  calibration  parameters  optimization,  stereo  rectification,  stereo 
correspondence and recover sets of 3D points from a pair of synchronized video sequences obtained 
from a stereo configuration. The study utilized two pretest laboratory sessions and one intervention 
laboratory  session.  Measurements  included  setting  different  stereo  configurations  with  two 
Phantom v9.1 high-speed cameras to: capture video sequences of a MELFA RV-2AJ robot executing a 
simple  3D path,  and additionally capture video sequences  of  a  planar  calibration object,  being 
moved by a person, to calibrate each stereo configuration. Significant improvements were made 
from pretest to intervention laboratory session on minimizing procedures errors and  choosing the 
best  camera  capture  settings.  Cameras  intrinsic  and  extrinsic  parameters,  stereo  relations,  and 
disparity-to-depth  matrix  were  better  estimated  for  the  last  measurements  and  the  comparison 
between the obtained sets of 3D points (3D path) with the robot's 3D path proved to be similar. 



v 

RECOVERING 3D POINTS FROM STEREO VIDEO SEQUENCES 
BASED ON OPEN CV 2.1 LIBRARIES 

1Acknowledgements..........................................................................................................................iii
2Abstract.............................................................................................................................................iv
3Index of Tables................................................................................................................................vii
4Illustration Index............................................................................................................................viii
5Chapter One.......................................................................................................................................1

5.1Introduction................................................................................................................................1
5.1.1Statement of the Problem...................................................................................................2
5.1.2Background and Need........................................................................................................3
5.1.3Purpose of the Study..........................................................................................................5
5.1.4Research Questions............................................................................................................6
5.1.5Significance of the field.....................................................................................................6
5.1.6Definitions..........................................................................................................................7
5.1.7Limitations.........................................................................................................................9

6Chapter Two.....................................................................................................................................10
6.1Review of the Literature..........................................................................................................10

6.1.1Introduction......................................................................................................................10
6.1.2Research Synthesis...........................................................................................................10
6.1.3Summary..........................................................................................................................36

7Chapter Three..................................................................................................................................37
7.1Methods...................................................................................................................................37

7.1.1Introduction......................................................................................................................37
7.1.2Settings.............................................................................................................................38
7.1.3Intervention and Instructional Materials..........................................................................38
7.1.4Measurements Instruments...............................................................................................39
7.1.5Procedures........................................................................................................................41

8Chapter Four ...................................................................................................................................63
8.1Results......................................................................................................................................63

8.1.1Introduction .....................................................................................................................63
8.1.2Research Question Nº1 – Results.....................................................................................68
8.1.3Research Question Nº2 – Results.....................................................................................68
8.1.4Research Question Nº3 – Results.....................................................................................81
8.1.5Research Question Nº4 – Results.....................................................................................82
8.1.6Research Question Nº5 – Results.....................................................................................84

9Chapter Five....................................................................................................................................88
9.1Discussion ...............................................................................................................................88

9.1.1Introduction......................................................................................................................88
9.1.2Discussion .......................................................................................................................88
9.1.3Limitations.......................................................................................................................93
9.1.4Recommendations for Future Research ..........................................................................94
9.1.5Conclusions......................................................................................................................94

10References.....................................................................................................................................96
11Appendix A: Stereo Imaging.........................................................................................................99

11.1Stereo Imaging.....................................................................................................................100
11.1.1Introduction..................................................................................................................100
11.1.2Working With a Single Camera....................................................................................100
11.1.3Calibration ...................................................................................................................103



vi 

11.1.4Camera Calibration .....................................................................................................106
11.1.5Undistortion..................................................................................................................108

11.2Working With Two Cameras ...............................................................................................111
11.2.1Stereo Imaging .............................................................................................................111
11.2.2  Stereo Calibration.......................................................................................................114
11.2.3Stereo Rectification......................................................................................................115
11.2.4Stereo Correspondence.................................................................................................117

12Appendix B: MELFA Basic IV Presentation...............................................................................120
13Appendix C: VideoStrobe & VideoFlood LEDs.........................................................................141

13.1VideoStrob and VideoFlood LEDs......................................................................................142
13.2LEDs Arrays Specifications ................................................................................................143
13.3VideoFlood LED Light Comparison Table..........................................................................144

14Appendix D: Phantom v. 9.1 Data Sheet.....................................................................................145
15Appendix E: MatLab M-Files Code............................................................................................151

15.1File 1: getNodeData.m.........................................................................................................152
15.2File 2: readDataFromXML.m..............................................................................................154
15.3File 3: plot3DPath.m............................................................................................................155
15.4File 4: readMelfaData.m......................................................................................................157
15.5File 5: transformReferential.m.............................................................................................158
15.6File 6: testTransformReferential.m......................................................................................160

16Appendix F: Motion....................................................................................................................161
16.1Motion .................................................................................................................................162

16.1.1Introduction..................................................................................................................162
16.1.2Corners Identification ..................................................................................................162
16.1.3Corners Sub-pixel Accuracy .......................................................................................163

16.2Optical Flow........................................................................................................................164
16.2.1Introduction..................................................................................................................164
16.2.2Sparse Tracking Techniques ........................................................................................165
16.2.3Dense Tracking Techniques.........................................................................................169

17Appendix G: Targets and MELFA Basic IV Program.................................................................171
18Appendix H: StereoVisionProg...................................................................................................176

18.1Introduction .........................................................................................................................177
18.2Main menu's Option [0] – Compute Optical Flow..............................................................177
18.3Main menu's Option [1] – Single video operations.............................................................180
18.4Main menu's Option [2] – Stereo video operations.............................................................182
18.5Main menu's Option [3] – Stereo calibration.......................................................................186
18.6Main menu's Option [4] – Compute 3D points....................................................................191
18.7Main menu's Option [5] – Rotation matrix parametrization................................................196
18.8Main menu's Option [6] – List current directory files ........................................................196



vii 

3 Index of Tables
Table 7.1: OpenCV Calibration Object's Characteristics .................................................................44
Table 7.2: Laboratory 03 – Stereo Configuration's Variables and Video Files..................................45
Table 7.3: List of MatLab Implemented Functions...........................................................................62
Table 8.1: Video Sequences Collected During Laboratories Experiments .......................................63
Table 8.2: Calibration Methods Study Process's Output Variables...................................................64
Table 8.3: Stereo Calibration Process's Output Variables..................................................................65
Table 8.4: Rotation Parametrization Process's Output Variables.......................................................66
Table 8.5: Calibrated and Uncalibrated Rectification Process's Output Variables............................66
Table 8.6: Recovering 3D Points Process's Output Variables...........................................................67
Table 8.7: L01 Set S03 Calibration Methods Study Using fx and k2 Parameters.............................68
Table 8.8: L02 Set S03 Calibration Method's Study Using fx and k2 Parameters............................69
Table 8.9: L03 Set S04 Calibration Method's Study Using fx and k2 Parameters............................70
Table 8.10: Stereo Calibration Parameters Optimization Results (L01, L02, and L03)....................75
Table 8.11: Laboratory L01's Camera Calibration Parameters (Methods M1, M2, and M3)............78
Table 8.12: Laboratory L02's Camera Calibration Parameters (Methods M1, M2, and M3)...........79
Table 8.13: Laboratory L03's Camera Calibration Parameters (Methods M1, M2, and M3)...........80
Table 8.14: Laboratory Stereo Configuration's Measurements.........................................................83
Table 8.15: Stereo Configuration's Relations ...................................................................................83
Table 9.1: Calibration Method's Study Summary..............................................................................89
Table 13.1: Model 900405 3-by-4 Super Bright LEDs Array.........................................................144



viii 

4 Illustration Index
Figure 6.1: Relative errors vs. noise level (α, β), Zhang (2000)........................................................16
Figure 6.2: Absolute errors vs. noise level (u, v), Zhang (2000).......................................................17
Figure 6.3: Relative error vs. number of planes (α, β), Zhang (2000)...............................................17
Figure 6.4: Absolute error vs. number of planes (u0, v0), Zhang (2000)..........................................17
Figure 6.5: Relative error vs. angle with image plane (α and β), Zhang (2000)...............................18
Figure 6.6: Absolute error vs. angle with image plane (u0, v0), Zhang (2000). ..............................18
Figure 6.7: Parameter result's variations with different sets of images, Zhang (2000).....................19
Figure 6.8: Calibration parameter's results with different image sets, Zhang (2000). .....................19
Figure 6.9: Stereo matching process, Stefano et al. (2002)...............................................................29
Figure 6.10: Scores associated with point R(x, y), Stefano et al. (2002)..........................................30
Figure 6.11: SAD matching window, Stefano et al. (2002)...............................................................31
Figure 6.12: Tsukuba image (left) and ground truth (right), Stefano et al. (2002)............................34
Figure 6.13: Disparity maps computed with the P.A (left) and with SVS 2.0 software (right), 
Stefano et al. (2002)...........................................................................................................................35
Figure 6.14: Speed (fps) for P.A. and  for the SVS 2.0 algorithm, Stefano et al. (2002)..................35
Figure 7.1: Phantom v.91 cameras arranged on a stereo configuration.  ..........................................42
Figure 7.2: PCC1.2 software - cine settings......................................................................................42
Figure 7.3: Targets used for points tracking purposes.......................................................................43
Figure 7.4: PCC Software - save cine settings..................................................................................46
Figure 7.5: StereoVisionProg: Main menu 's Option [ 2 ].................................................................46
Figure 7.6: StereoVisionProg: Main menu's Option[ 2 ] sub Option [ 3 ].........................................47
Figure 7.7: Sequence of  BMP images for calibration.......................................................................47
Figure 7.8: StereoVisionProg: Main menu's Option [ 3 ] sub Option [ 1 ]........................................47
Figure 7.9: StereoVisionProg: Main menu's Option[ 3 ] sub Option[ 2 ] .........................................48
Figure 7.10: Reprojected (a) and projected (b) image points............................................................49
Figure 7.11: Calibration parameters optimization process................................................................50
Figure 7.12: StereoVisionProg: Main menu's Option [ 3 ] sub Option [ 4 ]......................................50
Figure 7.13: StereoVisionProg: rectification method options.  ........................................................50
Figure 7.14: Right camera rotation using Euler angles.....................................................................53
Figure 7.15: Pseudo-code to compute quaternion from R. ...............................................................54
Figure 7.16: StereoVisionProg: Main menu's Option [ 4 ] sub Option [ 2 ]......................................55
Figure 7.17: StereoVisionProg: Main menu's Option[ 4 ] sub Option[ 2 ] sub Option[ 2 ]..............55
Figure 7.18: Sparse stereo correspondence with Lucas-Kanade tracker.    ......................................56
Figure 7.19: Canonical stereo configuration (a), similarity of triangles(b).......................................57
Figure 7.20: Camera-to-MELFA robot referential transformation....................................................60
Figure 7.21: Referential transformation using point-line-plane method. .........................................61
Figure 8.1: L01-S03Focal Length vs Nº of Calibration Views (M1 and M2)...................................71
Figure 8.2: L03-S04 Focal Length vs Nº of Calibration Views (M1 and M2)..................................72
Figure 8.3: Single calibration view from L02 set S03 (a) and L03 set S04 (b).................................72
Figure 8.4: L02-S03 Focal Length vs Nº of Calibration Views (M1 and M2)..................................73
Figure 8.5: L03-S03 Focal Length vs Nº of Calibration Views (M1 and M2)..................................73
Figure 8.6: Calibration parameters optimization (Method M3). ......................................................74
Figure 8.7: Calibration view's reprojection/projected image points..................................................76
Figure 8.8: Stereo video capture without rectification......................................................................81
Figure 8.9: Stereo video capture after calibrated stereo rectification................................................82
Figure 8.10: Stereo matching using Block-Matching algorithm.......................................................84
Figure 8.11: MELFA RV-2AJ 3D Path (sampling time: 50ms).........................................................85



ix 

Figure 8.12: Figure 8.8: MELFA RV-2AJ 3D Path (sampling time: 10ms)......................................85
Figure 8.13: MELFA robot's recovered 3D path(camera coordinates system)..................................86
Figure 8.14: MELFA robot's recovered 3D path (robot coordinate system).....................................86
Figure 8.15: MELFA robot's recovered 3D path (generic coordinate system)..................................87
Figure 11.1: Pinhole camera model.................................................................................................100
Figure 11.2: Simplified pinhole camera model...............................................................................101
Figure 11.3: Example of a 5-by-3 chessboard corner's detection. ..................................................103
Figure 11.4: Generic point defined on a planar calibration object. ................................................104
Figure 11.5: Relation between a point in the planar object and the imager plane...........................105
Figure 11.6: Calibration object - chessboard 5-by-3.......................................................................107
Figure 11.7: Building object point's vector of vector of 3D points.................................................108
Figure 11.8: Stereo configuration geometry ...................................................................................111
Figure 11.9: Standard stereo configuration's epipolar geometry. ...................................................112
Figure 11.10: Video sequences after stereo rectification.................................................................117
Figure 13.1: Video Strobe - Flood Controller and 3-by-4 LED Array used  during laboratory 
experiment 03. Adapted from VideoStrobe & VideoFlood LEDs by Visual Instrumentation 
Corporation 2009, Adapted with permission...................................................................................142
Figure 13.2: LED Array specifications. Two 3-by-4 LED Array Model 900405 were used  during 
laboratory experiment 03. Adapted from VideoStrobe & VideoFlood LEDs by Visual 
Instrumentation Corporation 2009, Adapted with permission.........................................................143
Figure 14.1: Phantom v. 9.1 Data Sheet p1/3. Adapted from Phantom v9.1 by Vision Research Inc, 
2007. Adapted with permission. .....................................................................................................146
Figure 14.2: Phantom v. 9.1 Data Sheet p2/3. Adapted from Phantom v9.1 by Vision Research Inc, 
2007. Adapted with permission. .....................................................................................................147
Figure 14.3: Record speed vs. Image Resolution p3/3. Adapted from Phantom v9.1 by Vision 
Research Inc, 2007. Adapted with permission. ..............................................................................148
Figure 14.4: Mechanical shutter p1/2. Adapted from V-Series Lens Shutter by Vision Research Inc, 
2010. Adapted with permission. .....................................................................................................149
Figure 14.5: Break-out-Box p2/2. Adapted from V-Series Lens Shutter by Vision Research Inc, 
2010. Adapted with permission. .....................................................................................................150
Figure 16.1: Sequence of frames where the optical flow is to be computed...................................165
Figure 16.2: Normal flow. ..............................................................................................................166
Figure 16.3: Aperture problem originated by a small aperture window..........................................167
Figure 16.4: Result from applying the pyramid Lucas - Kanade technique....................................168
Figure 17.1: Dimensioning of the target1 and  target 2...................................................................172
Figure 17.2: Dimensioning of the target 3. .....................................................................................173
Figure 17.3: Targets 1, 2, and 3.......................................................................................................174
Figure 17.4: MELFA Basic IV simple 3D path program implementation. ....................................175
Figure 18.1: StereoVisionProg: Main menu....................................................................................177
Figure 18.2: Main menu's option 0 sub menu. ...............................................................................178
Figure 18.3: Current directory's list of avi files...............................................................................178
Figure 18.4: TRACKING SETTINGS window's trackbars............................................................178
Figure 18.5: Sparse optical flow tracking example.........................................................................179
Figure 18.6: Dense optical flow using Horn - Schunck method.....................................................179
Figure 18.7: Main menu's option 1 sub menu.................................................................................180
Figure 18.8: Capture controls' window............................................................................................180
Figure 18.9: OpenCV video compression selection........................................................................181
Figure 18.10: Main menu's option 2 sub menu...............................................................................182
Figure 18.11: Capturing from two A4Tech Web Cams...................................................................182
Figure 18.12: List image's names into a text file.............................................................................184



x 

Figure 18.13: Real-time stereo calibration. ....................................................................................185
Figure 18.14: Main menu's option 3 sub menu...............................................................................186
Figure 18.15: Study optimal number of calibration views..............................................................187
Figure 18.16: Calibration process method M1 and M2...................................................................188
Figure 18.17: Calibration parameters optimization.........................................................................189
Figure 18.18: Calibrated stereo rectification...................................................................................190
Figure 18.19: Uncalibrated stereo rectification...............................................................................190
Figure 18.20: Main menu's option 4 video input.............................................................................191
Figure 18.21: Stereo matching modes.............................................................................................191
Figure 18.22: Dense stereo matching approach...............................................................................192
Figure 18.23: Block – Matching control window............................................................................193
Figure 18.24: Image points tracking settings...................................................................................194
Figure 18.25: Sparse stereo matching approach. ............................................................................195
Figure 18.26: Rotation matrix parametrization...............................................................................196



 1

5 Chapter One
5.1 Introduction

The capability to perceive the three dimensional world where we live for us humans is a task 
that since the beginning seems easy and granted. It may take only two years for a baby be capable 
to experience the world through his senses such as looking, touching and even understanding that 
an object exist even when is hidden from the field of view (FOV). In the up following years he 
become capable  to  represent   the  three dimensional  world with colours,  objects,  shapes and 
symbols resulting  from  the four  stages of cognitive development that we humans pass through 
(http://alleydog.com/psychology-topics.php, Child Psychology,  ¶ 4 , 5). 

Because we humans are provided with such complex and  efficient human visual system (HVS) 
that does all  the computations for us it  may create a misleading impression that attempting to 
effectively  simulate  and  copy such  functions  is  an  easy  task.  For  perceiving  the  information 
gathered from HVS the brain uses three main principals: stereo vision, motion parallax and the prior 
knowledge about the objects  perspective appearance and their  relation with the distance (May, 
Pervoelz, & Surmann, 2007), however, in machine visual systems the information is received from 
the sensing machine or a media storage and transformed into different layers of matrices numbers 
and in most cases without any previous knowledge about the surrounding variables (weather , 
lightning, reflections, occlusions, movements) that change the way images are captured and this is 
all the information available (Bradski, & Kaehler, 2008).

Computer Vision (CV) is the science challenged to study the transformation of  that information 
in form of images or sequences of images into information that allows to implement and deal 
efficiently with all this three complex tasks for perceiving the 3D space by means of machine visual 
sensing.   This science has been widely progressing through the years since the time it  started 
capturing the interest of researchers to mimic the human intelligence and reproduce it into the 
robots intelligence (Szeliski, 2010). However, it was manly in the recent decades that the interest 
by the researchers and the high demands from the industry for new features affordable by computer 
applications has notoriously increased. 

Computer vision have been developing in parallel with common areas such as computer science, 
optical systems and mathematical techniques that with time are becoming more and more able to 
decode the inverse vision problem. Computer vision became a very vast field of studies but one 
field in special has received major attention in particular – the capability of performing effective 
automatic reconstruction and analysis of the surrounding 3D environment and objects recognition 
in that space (Cyganek, & Siebert, 2009).

In addition to the fast development in computer vision, new ways of commercialization gives 
origin to performance-optimized software that runs in different platforms and that are mostly open 
source free for both academic and commercial use what makes easy to exchange experiences and 
documentation  widely  among  research  groups  and  therefore  providing  a  base  for  a  faster 
development. One  example of this strategy is the case of Intel with the Open Source Computer 
Vision  (OpenCV)  that  provides  computer  vision  applications  to  increase  the  need  for  faster 
processors (Bradski et al. 2008).

OpenCV is a library of programming functions mainly directed  for  real time computer vision 
such  motion  tracking,  stereo   and  multi-camera  calibration  and  depth   computation 
(http://opencv.willowgarage.com/wiki/FullOpenCVWiki,  Introduction  ¶  1).  This  capabilities 
offered  by  OpenCV  combined  with  the  object-oriented  and  generic  programming  techniques 
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offered  by  C++ programming  language  is  a  suitable  choice  to   implement  large  and  reusable 
projects (Papademetris, 2006).

To recover the information lost on the process of  projecting  3D world space to the  2D image 
space the implementation of a number of classes objects is an essential part  for the recovering 
process. This process requires the successful implementation of a program capable to calibrate two 
cameras with equal properties, capture stereo-pair images of a scene and then compute the depth 
information within those two images  and reproject it to 3D space in real time, by means of using 
OpenCV libraries and C++ object oriented programming (OOP) capabilities.

5.1.1 Statement of the Problem
The challenges present in recovering the  3D information from 2D images based on processing 

stereo-pair  images  are  related  to  three  main  areas:  cameras  calibration,  images  rectification, 
disparity maps and its reprojection to 3D space. To achieve the so desirable information in three-
dimensional  space  from  a  sequence  of  stereo-pair  images  it  is  necessary  to  recall  the  basic 
principles that are crucial to its correct implementation.

Firstly  to  determine  the  coordinate  transformation  between  the  camera  reference  system in 
respect to an external coordinate system, it is necessary to know the variables that relates such 
relation. The direct measurement of those variables is difficult or even impossible and therefore a 
process of calibration is required to determine camera intrinsic and extrinsic parameters. The final 
performance of  the machine vision system strongly depends on the accuracy of camera calibration 
(Niola, Rossi, Savino, & Strano, 2008). The information retained by the extrinsic parameters are 
used to correct the distortion induced  by the hardware, this process is called undistortion. 

Ideally cameras' arrangement would be such that the resulting images are row aligned and each 
point of one image will correspond to another point in the same row of a second image, however  
such canonical stereoscopic system  is not possible physically and the images need to be remapped, 
this process is referred  to as rectification. 

The last challenge on the process of recovering the lost dimension requires the correspondence 
process. Simply stated, correspondence refers to the matches between two images captured from 
two different viewpoints looking at the same 3D world scene or object. It is one of the most active 
topics in computer vision due its complexity and important role in  3D  object recognition and 
categorization, scene reconstruction and many other applications (Hsu, 2011).

5.1.1.1 Correspondence.  
One  of  the  major  issues  on  estimating  3D structures  based  on  stereo  imagery  is  the 

correspondence  problem defined  as  the  capability  to  locate  a  pair  of  image  pixels  from two 
different images that represent the projection of the same point  in 3D space. Given a point  in one 
image,  its  correspondent  point  must  lie  on  an  line  (epipolar  line)  in  the  other  image.  This 
constitutes a very important constraint called epipolar constraint: Each image point of a space point 
lies  in  the  image  plane  only  on  the  corresponding  epipolar  line  (Cyganek  et  al.,  2009).  This 
constraint presents a second problem, in general cases the location of the epipolar lines are not 
known.

5.1.1.2 Rectification. 
As stated previously the positions of the epipolar lines are not known for a standard stereoscopic 

camera configuration however for the canonical stereoscopic configuration those lines positions 
can  be  know  using  epipolar  geometry  and  thus  this  transformations  between  the  generic 
configuration to the desired canonical configuration constitutes the second problem of the research 
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area.  In  order  to  perform  successfully  this  operation  between  both  configurations  previous 
knowledge is required to know how the cameras related the world coordinates with the image 
coordinates  when capturing  the  images  or  sequence  of  images.  This  process  is  referred  to  as 
camera calibration (Shah, 1997).

5.1.1.3 Camera Calibration. 
Camera calibration is the first problem to be solved and it plays an important role in the final 

results on the research area. Camera calibration is the process to estimate a set of parameters that  
describes the camera imaging process. Computing this set of parameters will allow to: link directly 
a point in the 3D world reference frame to its corrected image through the perspective projection 
matrix (Ma, Chen, & Moore, 2003) , map the camera coordinate system into the image coordinate 
system,  and  compute  geometrical  distortions  that  are  originated  by  the  imperfections  and 
limitations of camera's physical parameters (Cyganek et al., 2009).

As  noted,  recovering  the  lost  dimension  to  estimate  3D structures  based  on stereo  images 
requires  that  three  steps  need to  be  successfully implemented.  Initially the  camera  model,  the 
distortions  and  perspective  projection  matrix  are  computed.  This  step  is  important  once  the 
accuracy in which the de camera parameters were computed will play an important role in the final  
depth results. In order to obtain two images with stereoscopic camera configuration and simplify 
the mathematical relations a process of rectification is performed on both images so they become 
as if the cameras where in the canonical configuration with the optical axis meeting at infinity. 
Finally in order to compute the depth images using the both rectified images  a correspondence 
process is performed and the third dimension recovered from the image coordinates where was 
possible to match both image pixels (Wu, & Chen, 2007).

5.1.2 Background and Need
The earliest techniques for reproducing 3D information using stereo matching approach started 

in  the  area  of  cartography  for  automatic  construction  of  topographic  elevation  maps  from 
overlapping aerial images. This initial progress in the aerial imagery area played an important role 
in the progress and development of fully automated and efficient stereo matching algorithms in 
depth recovering field (Szeliski, 2010). However, since computer vision started out in the early 
1970s  many attempts to recover the three-dimensional structures  happened in parallel with a wide 
area of studies as the case of stereo vision techniques and algorithms and cannot be seen as a 
separate issue.  Szeliski (2010) provides a good and detailed synopsis of the main developments in 
computer vision over the last 30 years, as well a rich number of references used along the text for  
the researcher  that wishes to go deeper in any particular subject.

In the context of  stereo vision and depth recovery, in many cases, the overall performance of 
the machine vision system strongly depends on the accuracy of the camera calibration. Camera 
calibration is the process of determining camera geometric and optical characteristics and the 3D 
position and orientation of the camera frame relative to an external world frame (Heikkila et al., 
1997). The epipolar geometry is implicitly connected with the pose and calibration of the stereo 
cameras, once this geometry is computed the epipolar line corresponding to a pixel in the left 
image can be used to constrain the search for a corresponding pixel in the right image. 

Stereo vision besides being studied for long time it  is  still  considered a mature technology. 
Recovering depth information requires  great  performance since pixel  correspondence from left 
image to the right image need to be found what can be challenging  if  the images are from very 
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different  viewpoints  or  contains  noise,   occlusions,   homogeneous  regions  or  unpredictable 
environment light conditions that makes it difficult,  moreover depth based applications such as 
navigation for mobile robots requires high efficiency for a real-time response what makes it even 
more challenging (May et al., 2007). 

Research problem:  Recover of the 3D information lost in the process of projecting a  3D scene 
into an 2D image with OpenCV image processing platform.

5.1.2.1 Camera Calibration.

• Problem:  Internal  camera  geometric  and  optical  characteristics  (intrinsic  and  extrinsic 
parameters) as well as the 3D position and orientation of the cameras frame relative to an 
external coordinate frame and relative to each other camera coordinates are unknown in a 
standard stereoscopic configuration.

• Solution: Algorithm for calibrating a camera with possibly variable intrinsic parameters and 
position,  that  copes  with  an  arbitrary  number  of  calibration  planes  and  camera  views. 
Calibration  is  achieved by projecting  the  planar  calibration  object  into  2D image,  each 
projection  contributes  with  a  system  of  homogeneous  linear  equations  in  the  intrinsic 
parameters which are easily computed by solving the linear equations (Sturm, & Maybank, 
1999).

5.1.2.2 Rectification.

• Problem: Canonical stereoscopic configurations are rare with a real stereo system since the 
two cameras almost never have coplanar and row-aligned imaging planes as desired for a 
more reliable and computationally efficient stereo correspondence.

• Solution: Reproject the image planes of the two cameras so that the epipolar line with the 
conjugate epipolar  line become coincident with the horizontal  scan-line reducing stereo 
matching from a 2D to a 1D search (Bradski et al., 2008).

5.1.2.3 Correspondence.

• Problem: Stereo analysis is the process of retrieving the depth information based on the 3D 
object/scene projection on two or more images. Finding corresponding pixels between both 
images or sequence of images constitutes the stereo analysis fundamental problem. 

• Solution: Use a fast and effective area-based stereo matching algorithm that compares each 
small area with other area in a search window and then determines the extreme value  of the 
correlation at each pixel resulting in a value that holds the disparity value between the left  
and  right  image  patches  at  the  best  match  that  will  result  in  a  final  disparity  image 
(Konolige, 1997, Bradski et al., 2008).

The literature solutions previously described are strictly connected with  their implementation in 
the OpenCV Image processing library what provides a better tool for a new researcher in this field. 
However due the vast number of research areas in the computer vision field and it fast progress in 
the last decades the need for standardization and definition of each individual research area within 
this field is needed for a better overall understanding. For a new researcher in this field of studies 
the literature still  is one of the main obstacles for a fast learning curve.  The link between the 
scientific and statistical approaches (vision analysis and formulation) and the engineering approach 
(algorithms  implementation)  constitutes  the  literature  main  gap  (Szeliski,  2010).  A  better 
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explanations  about  the  image  programming  languages  available,  their  advantages  and 
disadvantages as well as a methodology to analyse the efficiency and cost of the huge number of 
existing algorithms are also needed in the current literature. 

5.1.3 Purpose of the Study

5.1.3.1 Purpose Statement.
The purpose of this study was to utilize the OpenCV image processing platform together with 

Microsoft Visual Studio 2008 software to implement a program for recovering 3D information from 
video sequences captured with two Phantom v9.1 cameras arranged on a stereo configuration.

5.1.3.2 Need/Rationale for the Study.
In the recent decades the concept of Open Source has been increasing gradually captivating the 

interest  of professionals and young researchers in the different areas. OpenCV image processing 
platform for computer vision is not exception and has been assisting to a great acceptance by the 
researchers community. Due the numerous functionalities it provides and the good documentation 
as well a vast community that can interact and provide fast answers, it was the image processing 
platform chosen to conduct the study. Stereo Vision is the computer vision area that during the last 
decades has gained special focus due its capacity to recover the depth information from two or 
more images. It is widely used in different applications such as surveillance, agriculture, mobile 
robotics,  manufacturing  and medical  image  analysis.  This  wide  range of  possible  applications 
allied  with  the  constant  progress  in  innovative  algorithms  and  increasing  demand  on  the  3D 
computer graphics constitutes one of the main reasons to conduct the study using stereo vision 
approach.

5.1.3.3 Description of the Study.
In order to recover the depth from stereo video sequences, the researcher made use of OpenCV 

algorithms to implement a program with different stereo functionalities. This program studies the 
optimal number of calibration views needed, computes camera calibration using two methods and 
performs calibration optimization by excluding calibration views with higher error contributions. 
Calibrated  and  uncalibrated  rectification  methods  were  implemented  in  order  to  obtain  the 
remapping maps and the disparity-to-depth matrix using different approaches. To recover the depth 
from stereo video sequences two methods were implemented:  the first  method used the stereo 
matching algorithms available from OpenCV libraries namely the Block Matching, Semi Global 
Block Matching, and Graph Cut algorithm to compute disparity images and then reproject it to 3D 
space, or  the  second method that made use of Lucas – Kanade Pyramid tracker code and mouse 
click event to track a set of points of interest over a stereo video sequence, compute its disparity 
and compute their corresponding  3D points related to the left or to the right camera coordinate 
system.  Stereo  video  sequences  were  captured  using  two  Phantom  v9.1  high-speed  cameras 
arranged on a standard stereo configuration. Different stereo configurations were used to record 
video from a calibration pattern and later from a MELFA RV-2AJ robot's end-effector movement. All 
the research output results were stored in xml file formats with proper nomenclature depending on 
which stereo operation was performed.

5.1.3.4 Expected Outcomes.
The expected outcomes of this case study are to develop programming skills using a C++ object  

oriented  approach  together  with  the  newer  and  more  efficient  OpenCV  C++  interface.  By 
implementing a main program to deal  with 3D points recovering it is expected to obtain a number 
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of ready-to-use classes capable to read a list of calibration views and AVI files, compute calibration 
parameters  and  stereo  relations  and  optimize  those  results,  undistort  and  remap  stereo  video 
captures from a standard stereo configuration and recover the depth of a captured scene (disparity 
image) or sparse set of points from the available stereo video sequences.  Another goal of the study 
was to provide a more practical approach through laboratory experiments with two Phantom v9.1 
cameras which it is expected to develop a better understanding how stereo configuration's settings, 
capture settings and environment settings influences the outputs results obtained from the captured 
video sequences for stereo calibration and 3D information recovering purposes.

5.1.4 Research Questions

1. Which  are  the  OpenCV  main  functions  involved  in  the  process  of:  stereo  camera  
calibration,  stereo image rectification,  stereo matching and points reprojection  into  3D 
space, and Lucas – Kanade Pyramid optical flow method. What are the inputs and outputs  
arguments of those functions.

2. How to compute camera calibration parameters using a planar calibration object known  
as  chessboard  and  how  to  relate  two  cameras  in  a  stereo  configuration.  How  many  
calibration  views  are  needed  to  perform  the  stereo  calibration  process  and  which  
calibration method (with and without initial guess to compute stereo relations) gives better  
results.  How  to  optimize  the  stereo  calibration  process  and  improve  the  calibration  
parameters results.

3. Which are the differences between using calibrated and uncalibrated rectification methods  
and how to implement the image rectification process by means of using OpenCV functions.  

4. How to parametrize the stereo relation's rotation matrix into Euler angles and quaternions  
and how to perform the transformation between this two rotation representations.

5. How to compute the disparity  image and disparity of  a sparse set  of  points given two  
rectified  images  captured  from  a  stereo  configuration  previously  calibrated.  How  to  
reproject a sparse set of points to the 3D space.

5.1.5 Significance of the field

The contributions resulting from this study to the research literature were various. By using the 
OpenCV libraries' algorithms this case study provides a number of functionalities to work with 
video capture and video recording operation, capture and list stereo images for calibration purposes 
or perform simple tasks such as images colour space transformation or frame saving operations 
using different image formats. Related with the calibration process a number of functions were 
implemented within a class to allow single or stereo cameras calibration process using a text file 
with a list of calibration views to be loaded or alternatively it allows to perform the calibration 
process directly from AVI video files or real time video capture. Additionally was implemented a 
method that by excluding bad views used in the calibration process and recalling the calibration 
process again it allows to optimize substantially the final calibration parameters and reduce the 
reprojection errors. To perform the uncalibrated and calibrated stereo rectification after each stereo 
calibration process was implemented another class  that can be easily reused in the future research.  
An additional class was built with functions that allows to capture video sequences from stereo 
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cameras or stereo  AVI files and remap the images to compute the dense disparity image or the 
disparity for a sparse set of points and then proceed with the reprojection to  3D space. The case 
study will also provide conclusions and knowledge achieved during the laboratories experiments, 
as  well  the  procedures'  changes  that  allowed to improved substantially  the  calibration  and  3D 
recovering results.

5.1.6 Definitions

• fx , fy  : Camera focal length in pixel units on XX and YY direction, respectively.  

• R  : Stereo relation 3-by-3 rotation matrix that brings (rotates) the right camera to the 
left camera orientation.  

• Q : Disparity-to-depth transformation matrix used to reproject  2D image points to  3D 
world space.

• D1(D2) :  Left  (right)  camera  distortion coefficients  vector  D=[K1 K 2 p1 p2 K 3]
T  

where K1, K 2  and K 3(only for wide−anglelenses) are the radial distortion coefficients 
and ( p1, p2) the tangential distortion coefficients.

• L01 , L02 , L03 and S01 , S02 , S03 , S04 :  Nomenclature  used  to  identify  the  different 
stereo video sets (S01,  S02,  S03, and,  S04) recorded during the three laboratory sessions 
(L01, L02, and L03). If the nomenclature is used in the calibration context it refers to the 
video  sequences  captured  for  calibration  purposes  otherwise  it  refers  to  the  video 
sequences captured for recovering 3D information purposes.

• cx , cy : Principal point coordinates in pixel units.

• map1 x ,map1 y(map2 x ,map2 y) :  Remapping maps  for  the  left  (right)  camera's  video 
capture that are used to perform the (undistortion+rectification) transformation.

• T : Stereo relation translation vector T=[T x T y T z]
T that brings (translates) the right 

camera to the left camera position.

• Camera calibration: Process of finding the camera intrinsic and extrinsic parameters such 
as focal length, principal point and lens distortion parameters.

• Camera Matrix: Projective transform matrix that relates the real world coordinates to the 
points on the image plane.

• Canonical  Stereo  Configuration:  Stereo  configuration  where  the  cameras'  imager  are 
ideally coplanar and row aligned.

• CSR: Current Session Reference available from phantom camera control software.  

• CV: Computer Vision.

• Disparity: The difference between two image points, representing the same 3D point in the 
world scene, within two stereo images.

• E: Essential matrix: Contains information about the rotation and translations that relates 
the two cameras on the stereo configuration.

• Epipolar geometry: The geometry relations between the  3D points and their projections 
into the  2D image planes that form a number of constraints between two stereo images' 
points.
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• Epipolar line: Is the line formed by the epipolar plane's intersection with the camera's 
imager plane. 

• Epipolar plane: Is the plane passing through an object point and the cameras' centres of 
projection.

• Euler angles: describe the rotations that moves a rigid body from one referential to another 
with different orientation by using only three parameters (yaw, pitch, roll).

• Extrinsic parameters: Are the parameters that define the camera's position and orientation 
(three  rotation (Φ ,Θ ,Ψ) and  three  translation  (T x , T y ,T z) parameters)  with 
respect to a known 3D world reference frame.

• F: Fundamental matrix that  relates the two cameras, on a stereo configuration, in pixels 
coordinates. 

• Focal Plane: The plane in a camera, or other optical instrument in which a real image is in 
focus.

• HVS: Human Vision System.

• IDE: Integrated Development Environment.

• Intrinsics parameters: Are the parameters that define the camera's optical and geometric 
characteristics such as the focal length, the principal point coordinates and the radial and 
tangential lens distortions. 

• Lens  Distortion:  Lens  imperfections  that  introduces  distortions  on  the  image's  pixel 
locations.  

• Occlusions: Regions that are originated by disparity discontinuities. 

• OOP: Object Oriented Programming. 

• OpenCV: Open Source Computer Vision Programming Library.

• Optical flow:  Is the velocity field in the image plane resulting from the motion of the 
objects  being observed, the motion of the observer,  or apparent motion which may be 
caused by changes in the image intensity between frames.

• PCC: Phantom Camera Control software.

• Planar Calibration Object: Object used to capture images for camera calibration purposes 
using OpenCV algorithms. 

• Principal Axis: Line that passes through the lens curvature's center, also known as optical 
axis.

• Principal Plane: Plane that is perpendicular to the lens optical axis.

• Principal Point:  Point that results from the intersection of the image plan and the optical 
axis.

• Quaternions: Mathematical notation for representing rotations and orientations of objects 
or frames in 3D space. 

• SDK: Software Development Kit.

• Standard Stereo Configuration: The real stereo configuration where the cameras' imager 
are not ideally coplanar or row aligned as in the canonical configuration.



 9

• Stereo Correspondence: The process of matching image points from two different images, 
captured from a stereo configuration, that represent the same object points on the 3D world 
space.

• Stereo Rectification:  Relates  the two cameras  in  the  space by means of  rotations  and 
translations and the result are pair of images row-aligned and rectified. 

• StereoVisionProg:  Researcher-made  program  implemented  to  answer  the  proposed 
research questions.

• STL: Standard Template Library. 

• UML: Unified Modeling Language.

• Undistortion:  Process  of  computing  undistorted  images  (corrected  images)  by 
mathematically removing radial and tangential distortions. 

5.1.7 Limitations
The limitation of this research are mainly inherent to the data analysis and time limitations. The 

time available to make this research was exceptionally short for a complete and solid review of the 
extensive stereo imagery literature as well to learn the C++ programming language and to obtain a 
complete familiarization with the OpenCV algorithms. Due the lack of time, the initial purpose for 
implementing an interface able to interact with the Phantoms v9.1 cameras using the Phantom 
SDK was not implemented which constitutes also a limitation in this study.

In what concerns to the dense stereo matching methods the research design adopted did not 
included other stereo matching algorithms besides the ones available from OpenCV 2.1 libraries, 
the study also did not included any comparison related with speed and computational cost between 
those stereo matching algorithms, this limited the conclusions obtained from dense stereo matching 
and the possibilities to obtain better disparity images. 
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6 Chapter Two
6.1 Review of the Literature

6.1.1 Introduction
The world we humans daily perceive is the 3D world, but the images captured from it are  2D, 

one dimension is lost in the capturing process.  One important task in the  Computer Vision field is 
to recover back the third dimension (Shah, 1997). There are several methodologies to recover the 
3D information  from  2D images,  one  of  them widely studied  in  computer  vision  is  the  stereo 
imagery approach. In stereo imagery approach two images ( left and right ) are used to recover the 
depth information. The depth recovery relies on three main areas: the first consists on capturing a 
number of image pairs of a planar object that will be used to calibrate both cameras, this area is  
termed as calibration. The second area consist on correcting and remapping each pixel on both 
images in such a way that the images are suitable to apply matching algorithms, this area is termed 
as rectification. Finally after applying the calibration and rectification processes, respectively, a 
third step need to be performed to compare and compute the disparity maps, this area is termed as 
correspondence.

The literature review will address three areas related to the depth recovery using stereo imagery.  
The first section will address research related to the cameras calibration. The second section will 
focus  on  research  studies  about  the  images  rectification.  Finally the  third  section  will  discuss 
research related to stereo correspondence problem. 

6.1.2 Research Synthesis

6.1.2.1 Camera calibration review.

• Introduction
One of the main goals of computer vision is to understand the visible world by inferring 

3D properties from 2D images (Jiang, & Zhao, 2010). In the context of stereo imagery the 
first step that need to be performed in the process of recovering  3D information from 2D 
images is known by the term calibration. Camera calibration is the process of computing 
the internal camera geometric and optical characteristics and modelling the relationship 
between 2D images and 3D world. 

A large  number  of  calibration  methods are  presented in  the  literature.  The literature 
suggest that this methods can be characterized in three main categories: traditional methods, 
self-calibration and the active-motion based methods. The former method, the one that will 
be reviewed, is performed by observing a calibration object whose exact geometry in  3D 
space is known with precision. This method provided by Zhang (2000) was particularly of 
the  research  interest  once  it  provides  similar  methodology to  the  one  implemented  by 
OpenCV platform, as well a common ground for data comparison.   

• Purpose
The purpose of the study is to provide an easy to use and flexible new technique to easily 
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calibrate a camera by observing a planar pattern shown at at least two different orientations. 
Either the camera or the planar pattern can be freely moved without the need to know the 
motion (Zhang, 2000).  

• Methods
The calibration is performed by observing a planar calibration object whose geometry is 

known in  3D world with good precision. This methodology avoids the use of expensive 
calibration apparatus such the ones based on three coplanar planes or diffractive optical 
elements, instead it uses a pattern that can be easily printed on a laser printer and attached 
to a planar surface. Either the camera or the calibration object can be moved by hand to 
provide a rich set of pattern orientations. 

Calibration Procedure. This section will provide the formulation to compute the camera 
calibration parameters. Firstly it presents the notation and the planar homography, then the 
analytical solution followed by a non linear optimization without and with lens distortion 
effects and finally the procedure summary.

Notation
A  2D point  is  represented  by  m=[u , v ]T and  a  3D point  is  represented  by 

M=[X ,Y , Z ]T , m̃ and  M̃ denote the augmented vector by adding 1 resulting in: 
m̃=[u , v ,1]T , M̃=[X ,Y , Z ,1]T respectively. The camera is modelled by the pinhole  

model. The relation between the 3D point M  and its image projection m  is:

s m̃=A[R t ] M̃  (6.1.1)

With A=[α c u0

0 β v0

0 0 1 ] .

The extrinsic parameters are the rotation and the translation (R ,t ) that relates the world 
coordinate system to the camera coordinate system. A Is the camera intrinsic matrix and 
(u0 , v 0) are the coordinates of the principal point. The α ,β are the scale factors along 
u , v image axis, and c the skewness of the two image axes. 

Along the article A−T is used in place of (A−1)T ,or (AT )−1 .

Planar Homography
Without lose of generality, the model plane is assumed to be on Z=0  world coordinate 
system. Denoting the  ith  column of the rotation matrix  R by  r i . From equation 
(6.1.1), is possible to obtain the following relation:

s[uv1]=A [r 1 r 2 r3 t ][XY01 ]=A [ r1 r2 t ][XY1 ]
Since Z=0 for all the planes, M was redefined to denote a point on the model plane 

M=[X ,Y ]T and  consequently  M̃=[X ,Y , 1 ] .  A model  point  M and  its  image 
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m is related by a homography H :

s m̃=H M̃  (6.1.2)

With H=A [r1 r 2 t ] . The 3-by-3 matrix H is defined up to a scale factor.

Intrinsic Camera Parameters Constraints 
Given an image of the model plane, the planar homography can be estimated. Denoting it 
by  H=[h1h2 h3 ] and  by  substitution  in  equation  (6.1.2) the  following  relation  was 
obtained: [h1 h2h3 ]=λ A [r1 r 2t ] , where  λ=1/ s . Given an homography and using the 
knowledge that  r 1and r 2 are orthonormal vectors, two basic constraints on the intrinsic 
parameters are obtained :

h1
T A−T A−1 h2=0  (6.1.3)

h1
T A−T A−1 h1=h2

T A−T A−1h2  (6.1.4)

Because a homography has 8 degrees of freedom and there are 6 extrinsic parameters (3 for 
rotation and 3 for translation), only 2 constants can be obtained on the intrinsic parameters.

Solving Camera Calibration
Once presented the notation and planar  homography,  this  section summarize the article 
methodology to solve the camera calibration problem. Firstly was presented the analytical 
solution followed by a non linear optimization technique and finally the consideration of 
radial distortion in the calibration process.  

Closed-form solution. 
Let 

B=AT A1≡[B11 B12 B13

B12 B22 B23

B13 B23 B33
]  (6.1.5)

B=[
1
α2 − c

α2β

c v0−u0β

α2β

− c
α2β

c2

α2β2+
1
β2 −

c(cv0−u0β)

α2β2 −
v0

β2

c v0−u0β
α2β

−
c(c v0−u0β)

α2β2 −
v0

β2

(cv0−u0β)
2

α2β2 +
v0

2

β2+1]
B is a symmetric matrix defined by 6D vector

b=[B11 , B12 , B22 , B13 , B23 , B33 ]
T  (6.1.6)
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Defining  the  ith column  vector  of  H as  h i=[hi1 hi2 hi3 ]

T then  a  new  relation  is 
obtained:

h i
T B h j=vij

T b  (6.1.7)

With  v ij=[h i1 h j1 , hi1 h j2+hi2 h j1 , h i2h j2 , hi3 h j1+h i1h j3 , h i3h j2+hi2 h j3 , h i3 h j3]
T .  Therefore 

the  two fundamental  constraints  (6.1.3) and  (6.1.4),  from a  given  homography,  can  be 
rewritten as 2 homogeneous equations in b:

[ v12
T

(v11−v 22)
T]b=0  

(6.1.8)

If n images of the model plane are observed, by stacking n such equations as (6.1.8) a 
new relation is obtained:

Vb=0  (6.1.9)

Where V is a 2n – by – 6 matrix. If  n⩾3 a unique solution is obtained up to a scale 
factor.
If n=2 , the skewness constraint  can be imposed to be zero, c=0  , i.e. an additional 
equation [0,1,0,0,0,0 ]b=0 is added to the equation(6.1.9).
The solution to equation (6.1.9) is known as the eigenvector of V T V  associated with the 
smallest eigenvalue. Once b is estimated, the camera intrinsic matrix A and the extrinsic 
parameters can be computed. From equation  (6.1.2) the rotations and translation can be 
easily obtained:
 

r 1=λ A−1h1 ,  r2=λ A−1 h2,  r3=r1×r 2  and t=λ A−1 h3 with  λ=1/∥A−1 h1 or2∥ .  
Additional computation needs to be performed in the returned matrix in order to solve the  
best rotation matrix R, i.e. the one that satisfy a rotation matrix requirements. 

Maximum likelihood estimation
Given n images of a model plane containing  m  points and assuming that the image 
points are affected by independent and identically distributed noise the maximum likelihood 
estimate  can  be  obtained  by minimizing  an  algebraic  distance  which  is  not  physically 
meaningful. This is done by minimizing the following equation:

∑
i=1

n

∑
j=1

m

∥mij−m̃(A , Ri , ti , M j)∥
2  (6.1.10)

Where  m̃(A , Ri ,t i , M j) is  the  projection  of  point  M j in  image  i ,  according to 
equation (6.1.2). The rotation R is parametrized by a vector r  of 3 parameters which 
is parallel to the rotation axis and with magnitude equal to the rotation angle. R  and r
Are related by the Rodrigues formula. The non linear minimization problem of equation 
(6.1.10) is solved with Levenberg - Marquardt algorithm. 
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Considering Radial Distortion 
The previous steps of this article did not took in account the lens distortion. This section 
will  summarize  the  methodology  used  to  estimate  the  camera  intrinsic  and  extrinsic 
parameters considering the first two terms of radial distortion. 
 
Let  (u , v ) be  the  ideal  or  distortion-free  pixel  image  coordinates  and  (ŭ , v̆ ) the 
corresponding real observed image coordinates. Similarly the  (x , y )  and ( x̆ , y̆) are the 
ideal or distortion-free and real or distorted normalized image coordinates, thus the real 
pixels are given by:

x̆=x+x [K 1(x
2+ y2)+K 2( x2+ y2)2]

y̆= y+ y [K 1(x
2+ y 2)+K 2( x2+ y2)2]

where  K 1  and K2 are  the  coefficients  of  the  radial  distortion.  The  center  of  radial 
distortion is the same as the point formed by the intersection of the principal ray with the 
image plane (principal point) . Given the relation  ŭ=u0+α x̆+c y̆  and v̆=v0+β y̆ , the 
real image coordinates are given by the following equations:

ŭ=u+(u−u0)[K1(x
2+ y2)+K2( x2+ y2)2]  (6.1.11)

v̆=v+(v−v0)[K 1(x
2+ y2)+K2( x2+ y2)2]  (6.1.12)

The method to compute both distortion parameters assume that initially this parameters are 
small and thus ignored to compute the five intrinsic parameters. Then the method estimates 

K 1  and K2   based on those five parameters. From (6.1.11) and (6.1.12) each point in the 
image is constrained by two equations:

[(u−u0)( x2+ y2) (u−u0)( x2+ y2)2

(v−v0)(x
2+ y2) (v−v0)(x

2+ y2)2][K 1

K 2]=[ŭ−u
v̆−v ]

Given m points in n images, all the equations are joined to obtain a system of 2mn
total  equations.  This  system  of  equations  can  be  presented  as 

DK=d  where K=[K 1, K 2]
T . The linear least-squares solution is obtained by:

K=(DT D)−1 DT d  (6.1.13)

After solving the system of equations and obtained the values of K 1  and K2 the solution 
for the previous five intrinsic parameters can be refined by solving  equation (6.1.10) with 
the two new distortion parameters taken in account. Similarly to equation (6.1.10) the new 
set of parameters are estimated by minimizing the following functional:  

∑
i=1

n

∑
j=1

m

∥mij−m̃(A , K 1, K 2, Ri , t i , M j)∥
2  (6.1.14)

Where  m̃(A , K 1 , K2 , Ri , t i , M j) is the projection of point  M j in the distorted image 
i , according to equations (6.1.2) , (6.1.11) and (6.1.12). The non linear minimization is 

solved  in  the  same  way  as  demonstrated  previously  for  calibration  neglecting  lens 
distortion. The literature suggest that a second approach can be done to initially estimate the 
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K 1  and K2 values by simply setting them to zero.

Procedure Summary
The researcher of this article recommend the following procedure:

1. Print a pattern and attach it to a planar surface.
2. Take a set of images from different orientations by moving either the camera or the 

model plane.
3. Identify the points of interest in the image. 
4. Estimate the five intrinsic and extrinsic parameters neglecting radial distortions.
5. Estimate radial distortions coefficients by solving the linear least-squares equation 

(6.1.13).
6. Recompute all parameters by minimizing equations (6.1.14).

• Variables and Data Analysis
This article presents two distinct analysis. In the first part the article presents the computer 
simulated analysis for the algorithm performance with respect to  the noise level, number of 
planes and the orientation of the model plane while the second part uses real data to analyse 
the  influence  of  the  number  of  planes  in  the  intrinsic  parameters  and the  influence  of 
including the distortion coefficients on the refinement of those parameters.

Simulated Data Analysis
The camera matrix used (notation of equation (6.1.1) ) was:

A=[1250 1.09083 255
0 900 255
0 0 1 ] . 

The pattern has a size of 18cm x 25cm containing 10 x 14 corners points with an image 
resolution of 512 x 512. 

Algorithm performance varying the noise level.  Three planes are used with the following 
orientations and positions, respectively:

 

r 1=[20º ,0,0 ]T , t1=[−9,−12.5,500]T

r2=[0,20 º , 0]T ,t 2=[−9,−12.5,510]T

r 3=
1
√5
[−30º ,−30º ,−15º]T ,t 3=[−10.5,−12.5,525]T

Gaussian noise with 0 mean and standard deviation is added to the projected image points. 
An 100 independent trials is performed by varying the noise level from 0.1 to 1.5 pixels. 
The relative error for α  and β  are measured as well the absolute error for u0  and v0 .

Algorithm  performance  varying  the  number  of  planes.  This  section  investigates  the 
algorithm performance varying the number of images of the model plane. The number of 
images vary from 2 to 16. For the first three images the orientation and position of the 
model plane are the same as in the previous section and from the fourth image a rotation 
angle  of  30º  is  applied  to  an  arbitrary  rotation  axis.  For  each  number,  100  trials  of 
independent plane orientations and independent noise with mean 0 and standard deviation 
0.5 pixels are conducted.

Algorithm performance varying the orientation of the model plane.  This section study the 
influence of the model  plane orientation with respect  to  the image plane.  The plane is 
initially parallel to the image plane and a rotation axis is chosen arbitrarily and the plane is 
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then rotated around that axis by an angle  θ  that varies from 5º to 75º. Gaussian noise 
with mean 0 and standard deviation 0.5 pixels is added to the projected image points. The 
process is repeated 100 times and the average error are computed. 

Real Data Analysis
In the practical part of the study the images were captured with a PULNiX CCD camera 6 

mm lens with 640x480 resolution. The model plane used a pattern of 8x8 squares with a a 
size of 17 x 17 cm. Five images from different orientations were taken.  

The algorithm was applied to sets of different number (2,3,4,5, respectively) of images 
and the intrinsic camera parameters were measured  first neglecting the lens distortion and 
secondly  by  using  the  maximum  likelihood  estimation(MLE)  after  including  the  radial 
distortion  coefficients  effects.  The estimated standard deviation was computed  for  each 
intrinsic parameter and distortion coefficients as well the root mean square (RMS) for each 
set of images. A second approach was implemented in order to study the stability of the 
proposed algorithm by applying the algorithm to all set of images combinations. The mean 
and deviation were computed for each intrinsic parameter and distortion coefficients as well 
the RMS for each combination. 

• Results
The results returned by this study are summarized in two categories: The results concerning 
to the simulated data and the results concerning to the real data. 

The results obtained for the simulated data are firstly discussed and presented in the same 
order. All the figures here included were adapted from this article. 

From Figure  6.1 and 6.2 is possible to conclude that both errors increase linearly with 
the noise level. Taking in account that in real cases the noise is normally lower than 0.5 (
σ⩽0.5 ) the errors for  α  and β for that level of noise are smaller than 0.3%. In the 

case of u0  and v0 the errors are less than 1.5 pixels however v0 presents a lower error 
that for the same noise value that is less than 1 pixel due the fact that the pattern has more 
corners along v direction than in u direction. To have similar comparison a square pattern 
should be used.

Figure 6.1: Relative errors vs. noise level (α, β), Zhang (2000).
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From Figure  6.3 and 6.4 the relative error of both scale factors ( α  and β ) decrease 
significantly as the number of planes increase and tends to stabilize for a relative error 
around 0.25% for a number of images greater than 11.The principal point coordinates error 
curves present the same tendency with a vertical displacement between them due difference 
in the number of samples as already mentioned above in the noise results. 

Figure 6.2: Absolute errors vs. noise level (u, v), Zhang (2000).

Figure 6.3: Relative error vs. number of planes (α, β), Zhang (2000).

Figure 6.4: Absolute error vs. number of planes (u0, v0), Zhang (2000).
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From  Figure  6.5 and  Figure  6.6 is  possible  to  conclude  that  all  parameters  have 

minimum errors for angles within an interval of [40º; 60º] . The higher errors occur for 
small  angles  where  the  planes  are  almost  parallel  to  each  other  and  do  not  provide 
additional constraints on the camera intrinsic parameters (degenerate configurations). This 
occurrences, for some calibration algorithms, introduces numeric instability and can make 
the solution diverge to wrong results.

• Real data results 
The algorithm results using real data are showed in Figure 6.7 and 6.8. Figure 6.7 shows 

the calibration parameters results using sets of 2, 3, 4 and 5 images. The “initial” column 
are the values obtained for the case were radial distortion was neglected and the “final” 
column  are  those  parameters  refined  after  estimate  radial  distortion  coefficients 

K 1  and K2 , the third column ( σ ) is the estimated standard deviation. From this third 
column  is  possible  to  conclude  that  the  parameter  values  do  not  present  significant 
differences in each set and the standard deviation converges rapidly by only increasing the 
number of images from 2 to 5. Figure 6.8 shows the combinations of all sets of images. The 
mean and sample deviation are showed in the last columns. The higher deviation occurs for 
the scale factors ( α  and β ) but still considerably small what shows that the algorithm 
proposed is stable. The aspect ratio ( α/β ) was also computed for each combination and 
its mean and sample deviation are 0.99995 and 0.00012, respectively. The value very close 
to  1  shows  that  the  camera  CCD used  was  square,  i.e.  the  sizes  ( sx  and s y )  of  the 
individual imager element are equal. 

Figure 6.5: Relative error vs. angle with image plane (α and β),  
Zhang (2000).

Figure 6.6: Absolute error vs. angle with image plane (u0, v0), Zhang (2000). 
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Conclusions/Implications
The algorithm proposed in this article provides an easy and flexible method to calibrate a 

camera  by capturing  images  either  moving  the  camera  or  the  pattern  plane.  From the 
simulated data few conclusions can be done: better results are obtained for a rich set of 
images, i.e. with distinct orientations for angles within an interval of [40º; 60º] , images that 
only differ in position (pure translation) do not contribute with any additional information, 
and for a number of image planes greater than 11 the parameters errors are approximately 
constant.  The real  data  computation  also  allows  to  conclude  that  the  algorithm do not 
require a big number of images, the algorithm converges rapidly.

The proposed technique is flexibly, reliable and do not requires large number of images 
neither very expensive or elaborated calibration objects making it easy to use. It present the 
methodology also used by the OpenCV calibration functions used along this study.

Weakness/Limitations
This  paper  do  not  mentions  explicitly  any kind  of  limitations  however  some  of  its 

assumptions  constitutes  few  limitations.  The  method  assumes  that  the  radial  distortion 
function is mostly dominated by the first two terms however it is not partially true for wide 
angle or fish-eye lens types where the third coefficient has significant weight. The method 
did not establish an interval for the angle of rotation that gives the better results or studied 
the  influence  of  higher  angles  (closer  to  90º)  vs.  corners  detection  precision.  Another 
limitation of this paper is due the fact it does not provide results with different patterns 
varying the number of corners and their sizes and the influence that this changes may cause 
in  the  calibration  parameter  results.  Finally  the  fact  of  using  rectangular  patterns 
(ncornersalong u≠ncorners along v)  did  not  allowed  to  compare  directly  the  principal  point 

coordinates for different noise levels (Figure 6.2). 

Figure 6.7: Parameter result's variations with different sets of images, Zhang (2000).

Figure 6.8: Calibration parameter's results with different image sets, Zhang (2000). 
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6.1.2.2 Stereo rectification review.

• Introduction

In stereo vision algorithms image rectification plays an important role. Assuming that a pair of 
2D images captured from, two different viewpoints, from a scene in a  3D world and with their 
epipolar geometry already computed. The two corresponding points between the pair of images 
must satisfy the epipolar constraint. For a point in one image its corresponding point must lies 
along an  epipolar  line  in  the  second image.  In  standard  stereo  rigs,  the  epipolar  lines  are,  in 
general,  not  aligned or parallel  with the coordinate  axis what constitutes  a major  drawback to 
compute dense and accurate correspondences. Stereo matching problem can be easily simplified if 
epipolar lines are horizontally coincide, this is achieved by applying 2D projective transforms, or 
homographies, to each image such that the search space is reduced to only one dimension . This 
process is known as image rectification and is possible by using epipolar geometry.  

There exist different approaches to rectify images. They can be classified mainly according the 
type of  geometric transformations used:

• Projective rectification. Is a linear transformation in the projective space and uses 2D plane 
to plane homographies. 

• Non-linear rectification.  Uses general geometric transformation of images. 

Further  classification  of  image  rectification  approaches  is  based  on  the  method  used  to 
determine the free parameters left by the rectification conditions (Matousek, 2007).

A large number of rectification methods have been proposed, they initially were based mostly 
on calibration parameters however due the requirements of most recent vision systems the late 
research focused its attention on uncalibrated methods. 

Traditional or calibration based rectification methods (Avache & Hansen, 1988), (Avache & 
Lustman,  1991)  and  more  recently  (Fusiello,  et  al,  2000)  and  Bouguet  algorithm  that  is  a 
simplification of the method first introduced by Tsai(1987) and Zhang (1999, 2000) all require the 
knowledge of cameras parameters  that,  for  some vision systems,  constitutes one disadvantage. 
Contrarily to the rectification based on traditional methods, several methods have been developed 
to allow image rectification directly without the need of  using camera parameters, however most 
of this methods requires that the fundamental matrix needs to be first estimated. Papadimitriou and 
Dennis (1996) proposed a method for partially aligned cameras. Robert et al(1997) developed a 
method that attempt to find the transformation that better preserves orthogonality around image 
centres.  Loop  and  Zhang(1999)  proposed  decomposing  each  homography  into  a  specialized 
projective transform, a similarity transform, fallowed by a shearing transform considering carefully 
the  image  distortion  at  each  stage.  Pollefeys  et  al.  (1999)  presented  a  simple  algorithm  for 
rectification which can deal with all possible two views stereo image geometries.  Hartley (1999) 
proposed a method that computes the homographies making use of the differences minimization 
between matching points in both images.  

• Purpose
The  purpose  of  the  study  is  to  provide  a  rationale  for  the  calibrated/uncalibrated  image 

rectification  methods,  already  implemented  in  OpenCV library,  applied  to  this  research.  This 
section  is  presented  in  two  subsections   that  summarizes  a  methodology  to  compute  the 
homographies  by using  the  minimization  of  the  differences  between  matching  points,  Hartley 
(1999), and the Bouguet calibrated stereo rectification methodology described by Bradski et al. 
(2008).
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• Methods

Hartley's Uncalibrated Stereo Rectification 

Notation

If A  is a square matrix then its matrix of cofactors is denoted by A*  and the following 
identities A* A=AA*=det (A) I  where I is the identity matrix. If  A  is an invertible matrix, 
then A *≈(AT )−1 .

Given a vector t=( t x , t y , t z)
T the skew-symmetric matrix is as follows:

[t ]x=( 0 −t z t y

t z 0 −t x

−t y t x 0 )  (6.1.15)

For any non-zero vector t, matrix  [t ]x has rank 2. Furthermore, the null-space of  [t ]x  is 
generated by the vector t that means tT [ t ]x=[ t ]x t=0 and any other vector cancelled by [t ]x  is 
a  scalar  multiple  of  t.  For  any  vectors  s  and t the  cross-product  are 

sT [ t ]x=s×t  and [ t ]x s= t×s . Also for any 3-by-3 matrix M and vector t 

M *[ t ]x=[Mt]x M  (6.1.16)

Projective Geometry: Real projective  n−space consists  on the set  of equivalent non-zero 
vectors real  (n+1)  vectors, where two vectors are considered equivalent if they differ by a 
constant  factor.  A vector  representing  a  point  in Pn is  known as  a  homogeneous  coordinate 
representation of the point. Real projective n−space contains Euclidean n−space as the set 
of  all  homogeneous  vectors  with  coordinates  different  than  zero,  then  a  point  in  P2  is 
represented by a vector u=(u , v , w)T , for w≠0 , this represents a point in R2 expressed in 
Euclidean coordinates as (u /w , v /w)T .

Lines in P2 are also represented in homogeneous coordinates, the line λ with coordinates 
(λ , u , v)T is the line consisting of points connected by the equation  λ u+uv+vw=0 i.e. a 

point u lies on a line λ if and only if λT u=0 . The line joining two points u1  and u2 is 
given by the cross product u1×u2 .

The projective transformation from Pn  to Pm is a map represented by a linear transformation 
of  homogeneous  coordinates.  Projective  transformations  can  be  represented  by  matrices  of 
dimensions (m+1)×(n+1) . 

If a given 3-by-3 non-singular matrix ( A ) representing a projective transformation of P2

then  A* is  the  corresponding  line  map.  This  can  be  better  understood  if  for  example: 
u1  and u2 line on a line defined by  λ then  A u1  and A u2 line on the line  A*λ , using 

equation 6.1.16 this can be formulated as A*(u1×u2)=(A u1)×(A u2) .

Camera model notation. The camera is modelled by the pinhole model. In order to be coherent 
with the notation used in this paper,  the pinhole model will  be redefined according this  paper. 
Appendices section provides a more detailed description of the pinhole model  (see  Appendix A:
Stereo Imaging). The pinhole models a region in  R3 seen by the camera into the image plane 

R2 .  Points  in  world  space  are  therefore  denoted  by  homogeneous  4-elements  vectors
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x=(x , y , z , t)T or  more  commonly  as  (x , y , z , 1)T while  points  in  the  image  plane  are 

represented by 3-elements vectors u=(x ,v ,w)T . The projection from world to image space is a 
projective transform represented by a 3-by-4 matrix P of rank 3, known as the camera matrix. 
This matrix transforms points from 3D space to 2D space according to the equation u=Px . The 
camera  matrix  P is  defined  up  to  an  arbitrary  scale  factor  and  therefore  has  exactly  11 
independent entries. Several important parameters are modelled: position and orientation of the 
camera,  the principal  point  and the scale  factors  in  two orthogonal  directions  (not  necessarily 
parallel to the image plane axes ) . Assuming that the camera centre is not at the infinity and with  
Euclidean  coordinates  t 0 (t x ,t y , t z)

T .  The  camera  mapping  is  undefined  at  t in  that 
P (t x ,t y ,t z , 1)T=0 ,  if  P is  written  as  P=(M∣v ) then  Mt+v=0  and v=−Mt .  The 

camera  matrix  can  be  written  in  the  following form: P=(M∣−Mt ) where  t is  the  camera 
centre and M is non-singular.

• Epipolar Geometry.

 Assuming that two images were taken from a common scene and u a point in the first image 
(left image). The place of all points in  P3 that map to  u consists of a  straight line passing 
through the centre of the first image. This straight line seen from the second camera maps to a 
straight line in the second image (right image) known as a epipolar line. Any point  u ' in the 
second image matching point u must lie on this epipolar line. All the epipolar lines in the second 
image corresponding to points u in the first image meet in a point p ' called the epipole. 

This epipole  p ' is  the point where the centre of projection of the first  camera would  be 
visible in the second image, the epipole p is similarly defined for the first image. Therefore a 
projective mapping exist such that points in the first image are  mapped to epipolar lines in the 
second image. This mapping process is  achieved by a 3-by-3 matrix F called the  fundamental 
matrix according to u⇒ Fu . If u i⇔ui

' are a set of matching points, then the fact that u i
' lies 

on the epipolar line Fui  means that:

u i
' T Fui=0  (6.1.17)

Based on the equation  6.1.17 and a number of point matches, it is possible to determine the 
matrix F by solving the resulting system of linear equations. The resulting fundamental matrix F 
determines the epipoles in both images and provides the maps between points in one image and 
epipolar lines in the other image, therefore it encodes the complete geometry and correspondence 
of epipolar lines.  

This fundamental matrix characteristics are summarized by the next proposition:

Proposition 1.0. Supposing  that F is the fundamental matrix corresponding to an ordered pair of 
images (J , J ' )  and p  and p ' are the epipoles.

1. Matrix F T is the fundamental matrix corresponding to the ordered pair of images 
(J , J ' ) .

2. F factors as a product F=[ p ' ]x M=M *[ p ]x for some non-singular matrix M.

3. The epipole  p is the unique point such that  Fp=0 .  Similarly,  p ' is the 
unique point such that p ' T F=0 .

A property of the fundamental matrix is its factorization into a product of non-singular and 
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skew-symmetric matrices, however, this factorization is not unique. 

The next step to be done consist on determining the projective transformation from image J
to image J ' that take epipolar lines to the corresponding epipolar lines. This transformation is 
said to preserve epipolar lines and is summarized by the following proposition:

Proposition 1.1. Let F be a fundamental matrix and p and p ' the two epipoles. If F factors 
as a product F=[ p ' ]x M  then:

1. Mp=p ' .

2. If u  is a point in the first image, then Mu lies on the corresponding epipolar 
line Fu in the second image.

3. If λ is a line in the first image, passing through the epipole p , then M∗λ is 
the corresponding epipolar line in the other image.

Conversely,  if  M is  any matrix  satisfying  condition  2,  or  3,  then  F factors  as  a  product 
F=[ p ' ]x M .

As mentioned previously, the projective transformation preserve the epipolar lines, this fact is 
achieved by matrices  M appearing in a factorization of F. Since the factorization of F is not 
unique,  there  exist  a  3-parameter  family  of  such  transformation.  For  more  details  on  the 
fundamental matrix Zhang(1996) provides a complete review of the techniques used for estimating 
the fundamental matrix and it  uncertainty.  The method presented in this paper are the basis in 
which OpenCV algorithms were implemented and therefore it provides a rationale for the research 
study.

• Seek Homography H.
In this step, the paper provides the methodology to find a projective transformation H of an 

image mapping an epipole to a point at infinity. If epipolar lines are to be transformed to lines 
parallel with the x axis, then the epipole should be mapped to the 2D homogeneous point at infinity 
(1,0,0)T . Homography has seven constraints, three are used to perform the mapping to infinity 

and four degrees of freedom are left to choose  H  , if an inappropriate H is chosen it may 
result in highly distorted images. To avoid this and obtain a final image close to the original image 
some restrictions were imposed on the choice of H .

One condition that allows to find a good result is to insist that the transformation H should 
act as a rigid transformation allowing only rigid rotation and translation in the neighbourhood of a 
selected point u0 of the image. An appropriate choice for u0 may be the centre of the image.

Supposing  that  u0 is  the  origin  and  the  epipole  p=( f , 0,1) lies  on  the  x axis. 
Considering the following transformation: 

G=( 1 0 0
0 1 0

−1/ f 0 1)  (6.1.18)

This transformation (6.1.18) takes the epipole ( f ,0,1)T to the point at infinity ( f ,0,0)T as 
required.  A point  (u , v ,1)T is  mapped by  G to the point  (ũ , ṽ , 1)T=(u , v ,1−u / f )T .  If 
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∣u / f ∣<1 then  it  can  be  write  as  follow: (ũ , ṽ ,1)T=(u , v ,1−u / f ) and 
(u ,v ,1−u / f )=(u (1+u / f +...) , v (1+u/ f+...) ,1)T .

The Jacobian is:

δ(ũ , ṽ)
δ(u , v)

=(1+2u / f 0
v / f 1+u / f )

Plus higher order therms. If u=v=0 , the previous expression is the identity matrix and G is 
said to be approximated at the origin by the identity mapping. Thus for an arbitrarily placed point 
of  interest  u0  and  epipole  p ,  the  required  mapping  H ,  that  performs  the  rigid 
transformation in the vicinity of u0 , is a product denoted by the expression H=GRT . Where 

T is the translation that takes the point  u0 to the origin,  R is a rotation about the origin 
taking  the  epipole  p ' to  a  point  ( f ,0,1)T on the  x axis  and  G is  the  mapping  just 
considered taking ( f ,0,1)T to infinity. 

• Search Matching Homography.
Considering two images J  and J ' , the next step is to resample these two images according 

to transformations H to be applied to J and H ' to be applied to J ' in such a way that an 
epipolar line in  J is matched with its corresponding epipolar line in  J ' . In other words, if 
λ  and λ ' are any pair of corresponding epipolar lines in the two images, then H *λ=H '*λ ' . 
H * is the line map corresponding to the point map H . The pair of transformations that fulfil 

this conditions are termed as matched pair of transformations. 

To choose a matched pair of transformations H '  is firstly chosen and then seek a matching 
transformation  H chosen  so  as  to  minimize  the  sum-of-squares  distance  formulated  in  the 
following equation:

∑
i

d (Hui ,H ' ui ' )
2

 (6.1.19)

The next step to be performed is to find a transformation matching H ' . This is done based 
on the following theorem:

Theorem 1.0. Let J  and J ' be images with fundamental matrix F=[ p ' ]x M , and let H '
be a projective transformation of J ' . A projective transformation H of J matches H ' if 
and only if H is formulated, for some vector a , as follows:

H=(I+H ' p ' aT)H ' M  (6.1.20)

The paper corroborates the theorem with the following demonstration:

If u is a point in J , then p×u is the epipolar line in the first image, and Fu is the 
epipolar line in the second image. Transformations H  and H ' are a matching pair if and only if 

H *( p×u )=H ' * Fu .  Once  this  relation  must  be verified  for  all  u the  equivalent  can  be 
written  as H *[ p]x=H ' * F=H ' *[ p ' ]x M or  applying  equation  (6.1.16)  the  next  relation  is 
obtained:
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[Hp]x H=[H ' p ' ]x H ' M  (6.1.21)

Recalling that the fundamental matrix F factorizes into a product of non-singular and skew-
symmetric matrices and that this factorization is not unique a new proposition is given as follow:

Proposition 1.2. Let the 3-by-3 matrix F factor in two different ways as F=S1 M 1=S 2 M 2

where  each  S i is  a  non-zero  skew-symmetric  matrix  and  each  M i is  non-singular.  Then 
S2=S 1 .  Furthermore,  if  S i=[ p ' ]x then  M 2=(I+p ' aT )M 1 for  some  vector  a . 

Contrarily, if M 2=(I+p ' aT)M 1 then  [ p ' ]x M 1=[ p ' ]x M 2 . 

Equation (6.1.21) is a necessary and sufficient condition for H  and H ' to match. In view of 
the above proposition, this implies equation (6.1.20) as required. 

To prove the opposite, if equation(6.1.20) holds, then:

Hp=( I+H ' p ' aT)H ' Mp
     =( I+H ' p ' aT)H ' p '
     =( I+aT H ' p ')H ' p '
     ≃H ' p '

Equation (6.1.20) together with the proposition 1.2 are sufficient for equation (6.1.21) to hold, 
and therefore H  and H ' are matching transformations. 

The transformation H ' , that takes the epipole p ' to a point at infinity (1,0,0)T , is the 
one with particular interest. In this case, I+H ' p' aT=I+(1,0,0)T aT  is of the form:

A=(a b c
0 1 0
0 0 1)  (6.1.22)

Which represents an affine transformation. A special case of the theorem previously presented 
states that:

A transform H of J matches H ' if and only if H is of the form H=AH ' M  and A is 
an affine transformation of the form (6.1.22).

Once  H ' maps  the  epipole  to  infinity,  this  special  case may be used  to  choose  the  best 
matching transformation  H  to minimize the disparity. The minimizing problem (6.1.19) is to 
find A of the form (6.1.22) such that 

∑
i

d (A ũ i , ũ i ' )
2

 (6.1.23)

Is  minimized,  where  ũ i '=H ' u i '   and  ũi=H ' Mui .  Once  the  transformation  H ' and 
M are  known,  and  assuming  that  ũ i  and ũ i ' hold  the  vectors  ũ i=(ũ i , ṽ i ,1)  and 
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ũ i '=( ũi ' , ṽi , 1) respectively  ,  these  vectors  may  be  computed  from  the  matched  points 
u i '⇔u i .  Then  the  minimization  problem  of  equation  (6.1.23)  is  rewritten  in  the  form: 
∑

i
(a ũi+b ṽ i+c− ̃u i ' )

2+( ṽi−ṽ i ')
2

, since (ṽ i− ̃v i ' )
2 is constant, the minimization problem is 

reduced to the form:

∑
i
(a ũi+b ṽ i+c− ̃u i ')

2
 (6.1.24)

Equation (6.1.24) is a linear least-squares parameter minimization problem solved using linear 
techniques to find a ,b  and c . Then A is computed by substitution of a ,b  and c in 6.1.22 
and H is obtained solving equation 6.1.20. 

Summarizing, H ' is the transform that sends the epipole p ' to infinity and align the rows 
of two images. To align the rows the method uses the fact that aligning the rows minimizes the 
total distance between all matching points between the two images. Thus a good transformation

H ' minimizes  the  total  disparity  in  u i '⇔u i matching  points.  The  two  transformations 
H '  and H define the stereo rectification. 

Bouguet’s Calibrated Stereo Rectification
Bouguet's image rectification method attempts to minimize the amount of change caused by 

reprojection in each of the two images while maximizing the matching area. To accomplish this 
goal and minimize the reprojection distortion, the given rotation matrix R , that rotates the right 
camera's image plane into left camera's image plane so that both cameras become coplanar aligned, 
is split in half between both cameras. The two resulting rotation matrices r 1  and r2  for the left 
and right cameras, respectively, are then used to rotate each camera half a rotation so their principal 
rays become parallel to a vector that would result from combining their original principal rays. 

At this point the cameras are coplanar aligned but the epipolar lines are not aligned with any 
image axis. To obtain images row aligned a new rotation matrix  Rrect , that will take the left 
epipole e1 to infinity and align the epipolar lines horizontally, need to be computed. 

Assuming that the principal point (c x , c y)  as the left image's origin the direction of e1 is 
along the translation vector between the two cameras centres of projection:

e1=
T
∥T∥

The next vector e2 , that need to be orthogonal to vector  e1 , is computed by choosing a 
direction orthogonal to the principal ray. By using the cross product of e1 with the direction of 
the principal ray followed by a normalization the vector as the form:

e2=
[−T y T x 0]T

√ t x
2+T y

2  

Knowing  that  the  third  vector  is  orthogonal  to  e1  and e2 it  is  computed  using  the  cross 
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product: e3=e1×e2 the new rotation matrix Rrect  that rotates the left camera about the centre 
of projection so that the epipolar lines become horizontal and the epipoles at the infinity has the 
form: 

Rrect=[(e1)
T

(e2)
T

(e3)
T]

In order to transform both images to row aligned images the following transformations need to 
be done:

 
Rl=R rect r l

Rr=R rect r r

The  projection  matrices  take  a  3D point  in  homogeneous  coordinates  to  2D point  in 
homogeneous coordinates with the following relationship P (X , Y ,Z , 1)T=(x , y ,w)T .  Where 

P is the projection matrix (P l  or P r)  that are obtained by the following relation:

Pl=M rect l
P l '

P r=M rect r
P r ' ,

Where  M rect l
 and M rect r are  the  rectified  left  and  right  camera  matrices.  The  projection 

matrices (P l  or P r) presented in the matrix form are:

P l=[ f x l
α l cx l

0 f y l
c yl

0 0 1 ][1 0 0 0
0 1 0 0
0 0 1 0 ]

P r=[ f x r
αr c x r

0 f y r
c y r

0 0 1 ][1 0 0 T x

0 1 0 0
0 0 1 0 ]

This image rectification method from Bouguet here summarized transforms a general stereo 
configuration into the canonical  stereo configuration.  New image centres  and bounds are then 
chosen for the rotated and row aligned images so their matching area is maximized.

6.1.2.3 Stereo correspondence review.

• Introduction
The recover of the lost dimension or depth estimation is widely used in vision systems for 3D 

object  recognition  and  reconstruction,  3D remote  applications  and  a  large  number  of  other 
applications. Initially those applications were reduced to sparse stereo correspondence or feature-
based techniques due the computational resource limitations. The hardware available nowadays 
allow to overcome this limitations and  most of the stereo matching algorithms currently focus on 
dense correspondence (Szeliski, 2010).



 28
Stereo Correspondence is related to the matches between two images perceived from different 

viewpoint  of  an  object  in  the  3D space.  Depth  information  is  obtained  by  triangulation  of 
corresponding  image  points  subjected  to  epipolar  geometry  transformations  and  with  known 
stereoscopic camera parameters. 

Stereo correspondence besides being one of the most active topics in computer vision it still 
remains a big challenge. In this field a large number of algorithms have been proposed and new 
ones are being introduced, however, the research in evaluating stereo matching methods has still its 
limitations. An approach to better understand those methods was done by Szeliski and Zabih(1999) 
were  is  presented  an  experimental  comparison of  several  different  stereo  algorithms and their 
performance with real  data.  Once stereo correspondence is  one of  the most  active  subjects  in 
computer vision and new matching techniques continue to be introduced a good way to follow the 
most  recent  algorithms  is  to  check  the  Middlebury  evaluation  site  at 
http://vision.middlebury.edu/stereo/eval/, as well a good number of references are provided at the 
end of the same site. 

While initially the stereo correspondence algorithms were commonly classified in sparse and 
dense methods the late classification divide them in two groups: local methods and global methods.

• Global methods are used in the optimization process to determine disparity and occlusions. 
They perform some optimization or iterations steps after computing the disparity maps, 
many work on the basis of energy minimization with the objective to find a solution that 
minimizes the global cost function. They currently produce the best stereo matching results 
with accurate and dense disparity measurements, whoever, this is achieved with the main 
drawback  of  high  computational  cost  that  makes  them  unsuited  to  real-time  stereo 
applications.

• Local methods compute the disparity maps based on local information of the neighbouring 
pixels. 

In the later case, and the one with particular interest for this research, the recent development 
focused essentially on area-based matching algorithms that consist on measuring the correlation 
between pixels in both images taking in account a number of pixels in their vicinity defined by a 
fixed size window. 

Due the diversity of research in this computer vision area only very general information was 
provided in this section. A better understanding on stereo correspondence classification as well the 
analyse of the most used and practical matching measures is provided by  Cyganek and Siebert 
(2009).  Szeliski  (2010) also   provide  a  good  survey about  stereo  correspondence,  containing 
references from the seminal to the earliest works on this area    

In this section the researcher opted to review one of the stereo matching algorithms already 
implemented in the OpenCV library more precisely the block matching stereo algorithm similar to 
the one developed by Konolige(1997). Although the OpenCV algorithm implementation was based 
on Konolige paper this review was based in a similar paper proposed by Stefano et al. (2002). This 
later paper provides more recent and better approach as well a comparison with another existing 
area-based stereo matching algorithm. 

• Purpose

The purpose of the study was to present an area-based stereo algorithm suitable to real time 
applications.  The base of the algorithm relies  on the uniqueness constraint  and on a  matching 
process  that  allows  the  rejection  of  previous  matches  when more  accurate  ones  are  found.  It 
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provides  experimental  results  obtained  on  stereo  pairs  as  well  a  comparison  with  an  already 
implemented fast area-based algorithm Stefano et al. (2002). 

• Methods
Matching  Approach.  Assuming  a  binocular  stereo  pair  in  the  canonical  form  or  already 

subjected  to  rectification,  as  done  in  the  previous  section,  with  the  epipolar  lines  lying  on 
corresponding image scanlines and assuming that the left image is the reference, that disparity, d
, belongs to the interval  [0... d max ] and that the left image is scanned from top to bottom and 
from left to right during the matching process. 

The algorithm, starting from one point of left image,  L( x−d max , y ) , searches for the best 
match by evaluating the similarity function, ε (that represents the degree of similarity between 
two  small  regions  of  the  stereo  pair),  within  the  interval  [R(x−d max , y) ... R( x , y)] .  This 
process is repeated for the successive points along the scanline L( x+i−d max , y) and repeating 
the search for the best match within the interval [R(x+i−d max , y )... R(x+1, y )] , where i is 
the iteration for the successive points along the scanline. Figure (6.9) shows each point on the left 
scanline corresponding to intervals on the right image where are the potential  matching points 
within a certain disparity range. 

Assuming now that  the  best  match  found  L( x+β−d max , y ) is  R( x , y) with  degree  of 
similarity  ε(x+β−d max , x , y)  the notation  L( x+β−d max , y )→ R(x , y ) is used to indicate 
the match from left to right has been established. 

Area-based algorithms use photometric properties as principal criteria to perform the matching 
process,  however,  this  criteria  can  be  ambiguous  due  to  different  causes  such  as  noise,  lens 
distortion  and  occlusions.  Besides  this  ambiguity  can  lead  to  wrong  matches  and  result  in 
inconsistencies within the matches already established that can be used to detect and discard them, 
i.e. reject previous matches. 

Assuming that another point in the left  image,  L( x+α−d max , y ) with  α≤β ,  has been 
identified also as a possible good match for R( x , y) with error similarity ε(x+α−d max , x , y ) , 
two matches for the same point are available violating the uniqueness constraint. This fact can be 
conveniently  used  to  detect  wrong  matches  by  assuming  that  at  least  one  of  the  matches

L( x+β−d max , y )→ R(x , y ) , L( x+α−d max , y )→ R(x , y) is wrong and can be discarded to 
give place to match with better score. Therefore if a point being analysed,  L( x+β−d max , y ) , 
has better score than another already matched i.e. ε(x+β−d max , x , y)≤ε(x+α−d max , x , y)  the 
algorithm  reject  the  previous  match  L( x+α−d max , y )→ R(x , y) and  accept  the  new  one 

Figure 6.9: Stereo matching process, Stefano et al. (2002).
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L( x+β−d max , y )→ R(x , y ) correcting this way ambiguous matching errors. 

Figure 6.10 shows how the algorithm can correct from previous misleading matches when new 
and better matches are found during the search. It presents the scores between the point R( x , y)
of the right image and the points in the left image [L(x−d max , y) ... L(x , y)] ,that are allowed to 
establish correspondence with R( x , y) , as a function of the disparity d  ∈ [0, d max ] .

Recalling  Figure  6.9 the  arcs  with  smaller  disparity  values  represent  the  similarity  scores 
computed recently while higher disparity values represent the ones firstly computed. According to 
Figure 6.10 and assuming again two matches as follow:

match (1): L (x+α−d max , y)→ R( x , y)
match (2): L(x+β−d max , y)→R (x , y) ,

The algorithm will discard the old match (1) and take the new match (2) since it has a better 
score. If another match ambiguity is found when analysing successive points in the left image

match (3)  L( x+γ−d max , y)→R( x , y) .  Since  match  (3)  has  a  better  score  than  match  (2),
ε(x+γ−d max , x , y)≤ε(x+β−d max , x , y) , match (2) is discarded and match(3) is set to current 

match. 

Computational Optimization.

This subsection plays an important role in the whole algorithm once the computation of the sum 
of absolute differences (SAD) scores is the most expensive task in the direct matching process. It 
presents a summary of  the optimization techniques to avoid redundant calculations and in order to 
obtain faster speeds an additional level of incremental calculations is also proposed.

Assuming  that  SAD( x , y , d )  is  the  SAD score  between  a  window  of  size 
(2n+1) .(2n+1) centred at coordinates  (x , y ) in the left image and corresponding window 

centred at (x+d , y ) in the right image:

SAD( x , y , d )= ∑
i , j=−n

n

∣L (x+ j , y+i)−R(x+d+ j , y+i)∣  (6.1.25)

Figure 6.10: Scores associated with point R(x, y), Stefano et al. (2002)
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Using equation (6.1.25) the SAD( x , y+1,d )  score can be obtained, as follows:

SAD( x , y+1, d )=SAD(x , y , d )+U ( x , y+1, d )  (6.1.26)

Where  U (x , y+1, d ) is the difference between the  SAD associated with the lowermost and 
uppermost rows of the matching window as shown in light grey points of Figure 6.11.

The difference is formulated by the next equation:

U ( x , y+1, d )=−∑
j=−n

n

∣L(x+ j , y−n)−R( x+d+ j , y−n)∣

                                     +∑
j=−n

n

∣L( x+ j , y+n+1)−R( x+d+ j , y+n+1)∣
 (6.1.27)

Moreover, to keep a low level of complexity and independent of the matching window size ,  
U (x , y+1, d ) can  be  computed  from  U (x−1, y+1,d ) by only considering  the  attributes 

associated with the four points shown in dark grey in Figure 6.11. Thus only four operations are 
required to compute the  SAD score at each new point. The contributions of those four points are 
formulated by the following equation:

U ( x , y+1,d )=U (x−1, y+1, d )
                                                     +( ∣L( x+n , y+n+1)−R( x+d+n , y+n+1)∣
                                                     −∣L(x+n , y−n)−R( x+d+n , y−n)∣ )
                                                     −( ∣L( x−n−1, y+n+1)−R(x+d−n−1, y+n+1)∣
                                                     −∣L(x−n−1, y−n)−R( x+d−n−1, y−n)∣ )

 (6.1.28)

 
Equations (6.1.26) and (6.1.28) use vertical recursion to obtain the  SAD score and horizontal 

recursion to obtain the updating therm, U  and therefore it is necessary to  store the SAD scores 
associated with the previous row as well the difference values, U , associated with the previous 
point.

An article  of  interest,  concerning to  the matching window size,  is  presented by Kanade & 
Okutomi  (1991) where is proposed a stereo matching algorithm that studies the selection of the 
window size adaptively by evaluating the local variations  of intensity and disparity and compute 
both disparity estimate and the uncertainty of the estimate. 

Figure 6.11: SAD matching window, Stefano et al. (2002)
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Pre-processing.

The pre-processing step requires the computation of the mean and variance of both images. 
Choosing the left image to work with formulation and defining N 2=(2n+1) .(2n+1)  the mean 
and variance are formulated, respectively, has follows:

μ(x , y)= 1
N 2 ∑

i , j=−n

n

L(x+ j , y+i)= 1
N 2 S1(x , y )  (6.1.29)

σ2(x , y )= 1
N 2 ∑

i , j=−n

n

L2( x+ j , y+i)−μ2( x , y)

              = 1
N 2 S 2( x , y)−μ2( x , y)

 (6.1.30)

Equations (6.1.29) and (6.1.30) are obtained by scanning the image and summing all intensities. 
The paper presents the following set of equations to obtain this two values. 

S1(x , y+1)=S 1( x , y)+U S 1
( x , y+1)  (6.1.31)

U S 1
(x , y+1)=∑

j=−n

n

(L(x+ j , y+n+1)−L( x+ j , y−n))  (6.1.32)

U S 1
(x , y+1)=U S1

( x−1, y+1)
                                                               +(L( x+n , y+n+1)−L( x+n , y−n))
                                                               −(L( x−n−1, y+n+1)−L( x−n−1, y−n))

 (6.1.33)

S2( x , y+1)=S 2( x , y)+U S2
( x , y+1)  (6.1.34)

U S 2
(x , y+1)=∑

j=−n

n

(L2( x+ j , y+n+1)−L2(x+ j , y−n))  (6.1.35)

U S 2
(x , y+1)=U S 2

(x−1, y+1)
                                                               +(L2( x+n , y+n+1)−L2(x+n , y−n))
                                                               −(L2( x−n−1, y+n+1)−L2( x−n−1, y−n))

 (6.1.36)

In order to achieve additional speed-up in both matching and pre-processing procedures a third 
level  of  incremental  computation  is  introduced.  Before  presenting  the  formulation  some 
observations need to be done. 

As the matching step the pre-processing step make use of the four pixels at the corners of the 
correlation window (see Figure 6.11), this pixels contributes with two terms denoted by A and 

B , where A contains the two pixels on the left side and B the two pixels on the right side 
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of  the  correlation  window.  Denoting  the  array  of  B terms  by  T ,  each  element  can  be 
referenced with the index x̃= x mod (2n+1) . All elements of T are visited for each time the 
correlation window is shifted by 2n+1 units. When the window is shifted by one pixel a new 

B  is computed and A term is obtained from T ̃( x) . After  A and B have been used 
the array is updated with the newest B term.

In order to implement the third level of  incremental computation the mean equation(6.1.32) and 
variance equation(6.1.36) are respectively rewritten as follows:  

U S 1
(x , y+1)=U S1

( x−1, y+1)
                                                             +(L( x+n , y+n+1)−L( x+n , y−n))−T 1( x̃)  (6.1.37)

U S 2
(x , y+1)=U S 2

(x−1, y+1)
                                                             +(L2( x+n , y+n+1)−L2(x+n , y−n))−T 2( x̃ )

 (6.1.38)

Where :

T 1( x̃ )=L (x−n−1, y+n+1)−L (x−n−1, y−n)  (6.1.39)

T 2( x̃)=L2(x−n−1, y+n+1)−L2( x−n−1, y−n)  (6.1.40)

With x̃= x mod (2n+1) for both equations.

Recalling equation(6.1.28) for the matching step, the third level of incremental computation is 
applied  for  each  disparity  d∈[0,d max] and  T array  grows  by  one  dimension.  Thus 
equation(6.1.28) is rewritten as follows:

U ( x , y+1,d )=U (x−1, y+1, d )
                                                      +(∣L (x+n , y+n+1)−R(x+d+n , y+n+1)∣
                                                       -∣L (x+n , y−n)−R( x+d+n , y−n)∣ ) −T ( x̃ , d )

 (6.1.41)

T ( x̃ , d )=∣L (x−n−1, y+n+1)−R( x+d−n−1, y+n+1)∣
             −∣L(x−n−1, y−n)−R( x+d−n−1, y−n)∣  (6.1.42)

With x̃= x mod (2n+1) , d∈[0, d max ] . 

Therefore  the  aim  to  achieve  further  speed-up  in  the  matching  and  pre-processing  step  is 
obtained by means of implementing this formulation.

• Variables and Data Analysis

The study presented in this paper was conducted using two algorithms, the proposed algorithm 
(P.A.) and an existing bidirectional matching algorithm (SVS) proposed by Konolige(1997). There 
were two independent variables, the image size and disparity range and one dependent variable that 
measures the speed of each area-based stereo matching algorithm.
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To compare each algorithm a stereo-pair of images from University of Tsukuba (Figure 6.12) 
were used. The measurements were obtained on an Intel  Pentium III  processor running at  800 
MHz. 

The analysis was performed by comparing the output of the proposed algorithm (PA) (see Figure
6.13) with the given ground truth image, additionally a table with measurements aimed at assessing 
the speed of the two algorithms using different image sizes and disparity ranges were provided 
(Figure 6.14).

• Results

The results returned from this study are mainly two: the disparity images computed from both 
algorithms (see  Figure 6.13) and a table (see  Figure 6.13) that shows the behaviour, in terms of 
speed, of both algorithms when varying the image size and disparity range.

Comparing the output returned by the PA with the Tsukuba ground truth image (Figure 6.12, left 
and right) the overall 3D structure was recovered even for the regions closer to the stereo rig such 
the lamp and the statue head and the algorithm was able to deal with the occlusions identified by 
red points.

However, due the  border-localisation problem, i.e. when the correlation window is within an 
area with different depths, the matching process is affected by the uncertainty in the localization of 
the borders and the algorithm fails to perfectly localize objects as the case of the supporting arm of 
the lamp that disappeared. Moreover this problem prevents the algorithm from fitting the object's 
silhouette accurately as can be stated by simply observing both outputs in Figure 6.13.

The results obtained by the SVS 2.0 software on Tsukuba image pair are almost similar to the PA. 
The 3D structure was recovered correctly and the occlusions detected, however it presents a better 
performance identifying the silhouettes and the occlusions on the objects further from the stereo 
rig.

Figure 6.12: Tsukuba image (left) and ground truth (right), Stefano et al. (2002).
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Another important output from this study is the speed comparison between the stereo matching 
algorithm proposed and the  SVS 2.0 area-based algorithm.  Figure 6.14 report the speed of both 
algorithms. The SVS algorithms has a better performance for smaller images and smaller disparity 
ranges however as the image size and disparity range increases the proposed algorithm is faster 
than SVS algorithm.

• Conclusions/Implications

The  proposed  algorithm,  which  relies  only  on  a  left-to-right  matching  process,  presents  a 
methodology to detect matching ambiguities via “colliding matches” i.e. matches that violate the 
uniqueness constraint discarding the ones with smaller similarity. 

It  provides  a  comparison  with  the  well-known  area-based  algorithm  SVS  2.0 based  on 
bidirectional matching. In most cases the proposed algorithm obtain similar results to the ones 
obtained by SVS 2.0 with the exception of the errors caused by the border-localisation problems that 
are more evident in the PA. 

The reported measurements (see  Figure 6.14) shows that the proposed methodology, strongly 
based  on  different  levels  of  incremental  calculations,  results  in  a  stereo  matching  algorithm 
typically faster than SVS 2.0 for big images and large disparity ranges.

• Weakness/Limitations
There were several limitations and weakness in this study. Among the weakness was the fact the 

paper did not study the influence of the correlation window size in the border-localisation problem 
and  its  final  result  on  improving or  deteriorating  the  object  silhouettes  on  the  original  image 

Figure 6.13: Disparity maps computed with the P.A (left) and with SVS 2.0 software  
(right), Stefano et al. (2002).

Figure 6.14: Speed (fps) for P.A. and  for the SVS 2.0 algorithm, Stefano et al. (2002).
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reconstruction. Another important limitations in this study is related to the fact it does not provides 
a direct comparison between the solely unidirectional algorithm and the bidirectional algorithm. 
Would be interesting to know the behaviour of those algorithms in the same circumstances, i.e. the 
comparison of the proposed algorithm without incremental computation schemes with the SVS 2.0 
algorithm. The paper also did not provide measurements to justify the incremental computation 
scheme, i.e. the stereo matching speed with and without incremental computation and in the later 
case quantify its influence on the algorithm performance.

6.1.3 Summary
To  ensure  that  good  calibration  results  are  obtained  for  stereo  cameras  and  the  stereo 

configuration  relations are correctly estimated it is necessary to have in consideration a group of 
factors that are not directly related with the calibration process by itself.  The literature review 
related  to  camera  calibration  gives  a  flexible  and reliable  technique  that  do  not  requires  very 
expensive or elaborated calibration object for camera calibration, however, the article seems to 
overlook the importance of other factors such as camera capture settings,  lightning conditions, 
focusing, it also do not provide a comparison between results obtained with good set of calibration 
views and with sets  in  which the position and orientation variations are  minimal  (poor set  of 
calibration views). Also the research study reviewed did not studied the cases where the calibration 
views  were  captured  with  lightning  gradients  or  with  the  object  being  oriented  close  to 
perpendicular with the camera's imager which introduces higher reprojection error.  Providing a 
method for excluding those calibration views can improve substantially the resulting calibration 
parameters.

Another area that has been studied, related to stereo correspondence, shows that the proposed 
area-based matching algorithms,  which relies only on a left-to-right matching process, presents a 
methodology to detect  stereo matching ambiguities  by identifying the matches  that  violate  the 
uniqueness  constraint  discarding  the  ones  with  smaller  similarity.  It  also  provided  a  speed 
comparison  with other area-based algorithm SVS 2.0. Although this study showed to recover  3D 
structures efficiently with accurate image silhouettes, the study used a fixed window size and did 
not  study  the  influence  of  the  external  stereo  configuration  variables  such  as  the  angle  of 
convergence between cameras' optical axis, the distance between cameras, and the stereo cameras' 
calibration influence on the final results. Moreover the study do not provide a method that allows 
to work with single set of points instead of having to deal with all the image points.

More research with different camera recording settings and illumination conditions, different 
stereo configurations by changing the cameras orientation or the distances between cameras are 
needed to determine the best settings that outputs the best results. This current study will contribute 
to the existing research literature by implementing two different calibration methods and providing 
a approach to optimize the cameras' calibration parameters.  Additionally it will study the influence 
of the stereo configuration relations on the 2D to 3D  reprojection results and provide a method to 
perform the stereo correspondence only for a sparse set of 2D image points instead of working with 
all the image points. Furthermore this study will make use of the OpenCV dense stereo matching 
algorithms  to  implement  an  interface  that  allows  to  study the  influence  of  different  matching 
settings such as the matching window size, minimum and maximum number of disparities, on the 
final disparity image results. Additionally this study will contribute with a number of C++ classes 
that  together  with  OpenCV  libraries  can  be  easily  used  for  video  capturing  and  recording 
operations, image space colour conversion, single and stereo cameras' calibration, uncalibrated and 
calibrated stereo rectification, and the stereo matching  processes. 
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7 Chapter Three
7.1 Methods

7.1.1 Introduction
Since decades the researchers have been trying to mimic the human behaviour in robots. One of 

the most, if not the most, difficult tasks in copying human capabilities is related to perceiving 3-D 
information. Sensing  3D space can be done by different ways, however, the techniques that are 
most common nowadays are based on  CCD/CMOS cameras or laser-based scanners, the first case 
gained more attention due its  potential  to deal with dynamic vision analysis.  Stereo vision  is 
assisting to great research advances and presently is one of the most active fields in computer 
vision area. Recovering the depth information through stereo vision requires, in general lines, three 
main steps: camera calibration, image undistortion and rectification and stereo matching, this last 
step presents the most challenging task in the 2D to 3D transformation process.

The stereo correspondence performance and accuracy  determines how good and at which cost 
the depth information is recovered from the correlation of both images.  

The following research questions were addressed in this study:

1. Which  are  the  OpenCV  main  functions  involved  in  the  process  of:  stereo  camera  
calibration,  stereo image rectification,  stereo matching and points reprojection  into  3D 
space, and Lucas – Kanade Pyramid optical flow method. What are the inputs and outputs  
arguments of those functions.

2. How to compute camera calibration parameters using a planar calibration object known  
as  chessboard  and  how  to  relate  two  cameras  in  a  stereo  configuration.  How  many  
calibration  views  are  needed  to  perform  the  stereo  calibration  process  and  which  
calibration method (with and without initial guess to compute stereo relations) gives better  
results.  How  to  optimize  the  stereo  calibration  process  and  improve  the  calibration  
parameters results.

3.  Which are the differences between using calibrated and uncalibrated rectification methods  
and how to implement the image rectification process by means of using OpenCV functions.  

4. How to parametrize the stereo relation's rotation matrix into Euler angles and quaternions  
and how to perform the transformation between this two rotation representations.

5. How to compute the disparity  image and disparity of  a sparse set  of  points given two  
rectified  images  captured  from  a  stereo  configuration  previously  calibrated.  How  to  
reproject a sparse set of points to the 3D space.

This experimental case study used OpenCV v.2.1 image processing platform algorithms together 
with an C++ OOP approach to implement a main program that provided  a set of functionalities 
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capable to deal with video capture and recording from a single or stereo camera's configuration, 
stereo  cameras  calibration,  stereo  rectification  and  stereo  correspondence  and  recover   3D 
information from synchronized stereo video sequences.

A study of the OpenCV main functions related with Motion Analysis, Object tracking, Camera 
Calibration and 3D Reconstruction was first conducted to provide the necessary knowledge and 
background to use those functions in this case study main program implementation. Additionally in 
parallel to this research were done two presentations: the first presentation  addressed the next 
topics: Camera Model, Projective Transform, Lens Distortions, Planar Homography, Camera 
Calibration and  Stereo Calibration.  The second presentation,  and broader  one,  addresses the 
following  topics:  Calibration  Parameters  Optimization,  Lukas-Kanade  2D  Points 
Correspondence, and Rotation Matrix Parametrization. Both presentation were included in the 
DVD attached to this thesis.

The second part of this case study consisted on laboratory experiments divided in three sessions. 
The first  two sessions  (pretest  experiments)  were used to  get  familiar  with the  Phantom v9.1 
hardware, PCC software and collect sets of stereo video sequences for calibration purposes, with 
different stereo configurations and video settings, with the primary goal of determining the best 
video  settings,  illumination  conditions  and  revealing  experimental  errors.  The  third  session 
(intervention experiment) was used to record stereo video sequences of a 3D path executed by 
MELFA RV-2AJ robot with the main goal of providing a comparison method between the 3D 
points obtained with the main program implementation and the 3D path given by MELFA  RV-2AJ.

For all the three experiments the data obtained with Phantom v9.1 cameras  were saved to an 
external hard drive and processed with the main program functions accordingly the topics related 
to the research questions.

7.1.2 Settings
This  study took place in  AGH University of  Science  and Technology of  Krakow,  WIMIR-

Faculty of Mechanical Engineering and Robotics, room 18. The resource laboratory is a classroom 
laboratory containing  namely the  Mitsubishi  MELFA RV-2AJ robot,  a  desktop computer  with 
MELFA programming language software installed and all the vision systems hardware used for this 
case study.

7.1.3 Intervention and Instructional Materials
The independent variables measured by this study consisted of laboratory experiments where 

two interventions were performed: (1) stereo video capture for calibration purposes and (2) stereo 
video  capture of a Mitsubishi MELFA RV-2AJ robot end-effector executing a simple 3D path for 
3D information recovering purposes.

The stereo video capture for calibration was intended to provide a set of images of a calibration 
object (independent variable) for camera calibration and stereo relations estimation. Stereo video 
capture of a Mitsubishi MELFA RV-2AJ robot end-effector movement was intended to capture the 
3D  end-effector  path  (independent  variable)  and  targets,  with  known  geometries,  arranged  in 
strategic places within the field of view (FOV) for later being used on the process of recovering 3D 
object points from 2D image points tracked over those video sequences. This two interventions 
were repeated one after another for each new stereo configurations. 

The dependent variables measure by this study for the first type of intervention consisted of left  
and right camera intrinsic and extrinsic parameters( camera matrix and distortion coefficients), 
stereo  relations(  rotation,  translation,  essential,  and  fundamental  matrices),  reprojection  error 
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resulting  from  calibration  process,  the  remapping  maps(undistortion+rectification),  and  the 
disparity-to-depth reprojection matrix resulting from rectification process. On the second type of 
intervention the dependent, and main variable measured by this study, consisted on the sequence of 
3D points (or  3D path)  recovered from the stereo video sequence,  as defined by the research 
questions.

Two main types of instructional materials were used during the intervention to record stereo 
video files for calibration and for the 3D information recovering purposes. Instructional materials to 
program the Mitsubishi  MELFA RV-2AJ robot  controller using Melfa Basic IV robot programming 
language was provided by the chairperson of this thesis (Kohut, 2011) (see Appendix B: MELFA
Basic  IV Presentation).  In  addition  was  used  the  manual  provided  by Visual  Instrumentation 
Corporation (2011) to determine the right lightning and VideoStrobe – FloodController settings 
(see Appendix C: VideoStrobe & VideoFlood LEDs). 

7.1.4 Measurements Instruments
This study utilized different measurement instruments and tools that will be described by the 

order in which the were applied to conduct the research. Two main measurement instrument were 
used to collect data: The commercial software, and the research-made StereoVisionProg program.

7.1.4.1 Phantom stereo configuration hardware.
To collect video files during the intervention was used a stereo configuration composed by the 

following list of material mostly from Vision Research Inc. (2011): Two Phantom v9.1 high speed 
cameras that are able to provide 14-bit image depth and 1000 frames per second at full resolution 
1632 x 1200 pixel with 6 GB of internal memory. Both cameras had installed the v-Series Lens 
Shutter – used to automatically shade the sensor and calibrate the camera to a black reference 
(CSR  operation),  and  on  each  shutter  was  mounted  the  SIGMA 24-70,  1:2.8  EX  DG  lens. 
Additionally were  used two  Break-out-Box that  gave  access  to  every available  signal  on the 
camera capture cable like the  Trigger,  Strobe  and frame synchronization signal  F-Sync. It was 
also used a Manfrotto 454 Sliding Plate with finger tip control mounted with the right camera that 
allowed  fine  positioning  adjustments  when  changing  the  horizontal  distance  between  the  two 
cameras on the stereo configuration. Each camera was engaged to a Manfrotto 405 Geared Head 
that  allowed  fine  orientation  adjustments  for  all  three  axis.  To  assemble  the  final  stereo 
configuration  was  used  a  4  heads  accessory  arm  Manfrotto  131DDB,  and  two  Manfrotto 
Variable Friction Arm to hold the LEDs arrays, mounted on a geared tripod Manfrotto 475B Pro 
Geared to  support  both  cameras  and  all  the  stereo  configuration  hardware.  More  detailed 
information  related  to  the  cameras  and some of  its  accessories  is  provided on the  appendices 
section (see Appendix D: Phantom v. 9.1 Data Sheet). All Manfrotto's brand material can be found 
on the following Web site: http://www.manfrotto.com/category/0. 

7.1.4.2 VideoFlood LED and videoStrobe – floodController.
To improve the lightning conditions during the experiment were used two LED arrays Model 

900405  3-by-4  LED  Array  and  one  strobe  controller Model  201090A Hi-g  Controller  that 
allowed to select 7 different durations of 1 to 500 microseconds per flash or two continuous light 
intensities of 50% and 100%  used for a period not longer than 10 minutes. The lightning material  
was provided by Visual Instrumentation Corporation (2011).

7.1.4.3 Phantom camera control v1.2 software (PCC).
PCC is a commercial software from Vision Research Inc. (2011) company. This software was 
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used  during  the  three  interventions  to  control  two  Phantom  v9.1  cameras  using  Ethernet 
connections.  The main  image video sequences  settings  controlled  with PCC were:  Bit  Depth, 
Resolution,  Sample  Rate,  Exposure  Time,  current  session  reference  (CSR) to  obtain  more 
precise compensation of the pixel errors for the current settings, and Post Trigger value. During 
each intervention PCC software was also used to save the captured video files from the cameras 
RAM to an external hard drive in their original file extension (cine format). PCC was also used 
after the interventions to save cine files into sequences of BMP images and uncompressed AVI video 
sequences.

7.1.4.4 Mitsubishi MELFA RV-2AJ .
The research used Mitsubishi MELFA RV-2AJ robot to implement and execute a 3D path that 

was recorded using different stereo configurations. Using the  MELFA Basic IV, the Mitsubishi 
programming  language  for  the  robot  controller,  a  simple  closed  path  with  three  circular 
interpolation movements was programmed.  The resulting trajectory was executed using 10 and 50 
millisecond sample time and the resulting file with the time, joints angles and end-effector position 
and orientations was saved to an external hard drive.  Mitsubishi Electric Industrial  Robots are 
manufactured at a factory certified for ISO14001 (standards for environmental management systems) 
and ISO9001 (standards for quality assurance management systems).

7.1.4.5 StereoVisionProg program researcher-made instrument.
For this case study the researcher had implemented a main program named StereoVisionProg 

that was used to read lists of images and video files obtained for calibration and depth recovering 
proposes. StereoVisionProg was used to study the optimal number of calibration views, compute 
the  calibration  parameter  and stereo  relations,  compute  the  stereo  rectification  maps,  compute 
disparity image using all the left and right image points (dense matching) or a set of 2D left and 
right image points (sparse matching), and then compute  3D points. The program contains all the 
functionalities and measurement instruments used to answer the research question. All the output 
results  obtained were saved to  XML files  in  the current  directory from were the program was 
executed.

  StereoVisionProg program consisted on the implementation of a number of classes that used 
the  optimized  algorithms  from  OpenCV  v.  2.1.  Microsoft  Visual  Studio  2008  (C++  9.0) 
integrated development environment (IDE) was used to develop, debug, compile and link those 
classes with the OpenCV v.2.1 libraries.

7.1.4.6 GML Camera Calibration Toolbox v. 0.4
The researcher  utilized  GML Camera Calibration Toolbox (Vezhnevets  & Velizhev,  2005) to 

compare the cameras intrinsic and extrinsic parameters results obtained individually for both left 
and right cameras with the results obtained with the researcher-made StereoVisionProg program. 
GML program was used to load a set of images for calibration, input the chessboard properties 
(number of corners and square size) with Set Object Size and Set Square Size options, detect all 
corners with Detection Method setted to Squares Method and then was used Native OpenCV on 
the  Calibration Type option to compute: Camera Matrix,  Distortion Coefficients,  and  Pixel 
Error. All the results were saved  into files in XML format.

7.1.4.7 MATLAB v. 7.7.0.
This  case study utilized  MATLAB technical  computing language software to  treat  the output 

results  obtained  with  StereoVisionProg  program  functionalities.  The  XML files  generated  by 
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StereoVisionProg software with the output results were loaded into  MATLAB workspace using a 
number of researcher-made Function M-files used to read, treat and plot those results, namely: 
results obtained for the optimal number of calibration views study and the results obtained for the 
experimental 3D path. In addition one function was implemented to read and plot the real 3D path 
given by MELFA Basic IV software, providing a method that allowed to compare the MELFA 3D path 
with  the  path  obtained using the  research  procedure.  All  the  M-files  programming code were 
provided on the appendices section (see Appendix E: MatLab M-Files Code).

7.1.4.8 Other material.
To  perform all  the  operation  and  answer  the  questions  proposed  by  this  study were  used 

initially  two web cams  A4Tech Evolution  PK-710MJ series to  test  and debug StereoVisionProg 
during  its  implementation.  For  all  the  input/output  data  computation  was  used  a  laptop  ASUS 
A3500E, Intel Pentium M processor 1.73 GHz, with 1.50 GB of RAM. 

7.1.5 Procedures
The research study procedure used to conduct the study was divided in two phases: the first 

phase consisted in presenting a detailed description of  OpenCV v.2.1 main algorithms used in this 
research, and two laboratory experiments used for qualitative analysis, the second phase consisted 
on a third laboratory experiment session where data were collected for quantitative analysis. 

7.1.5.1 Baseline
For the sake of organization and brevity of this chapter the  explanation of the OpenCV v.2.1 

main functions, and as well the theory under them, used  on this research was presented in the 
appendices (see Appendix A: Stereo Imaging and Appendix F: Motion). This two appendices were 
to answer the first research question.  

The data were collected through three laboratory experiments. The first and second experiments 
were done with the main goal of providing the researcher with a self-familiarization  with phantom 
software and hardware involved on the experiment. The data collected with this two experiments 
were reviewed with the chairperson that pointed experimental errors, changes and improvements to 
take in account for the third laboratory. The procedures used to conduct the first two laboratories 
were partially identical to the procedures used on the third laboratory described in next section.   

7.1.5.2 Intervention
The intervention was done in different steps:  Phantom Stereo  Configuration  Assembling,  Camera 

Settings Configuration with PCC Software and MELFA 3D Path Programming, and Data Collection.   

1. Phantom Stereo Configuration Assembling
To assemble the stereo configuration was used a geared tripod with an arm mounted on its 
top, before being attached other elements the tripod was levelled using the tripod's build-in 
bubble level. A sliding plate was fastened to the base of one geared head and then attached 
to  the horizontal  arm's  right  side,  the second geared head was directly mounted to  the 
horizontal arm's left side (without sliding plate). Then to each Phantom v 9.1 camera was 
added a  SIGMA 24-70 mm lens and on their base was fastened a quick release plate that 
allowed to fix them on the geared heads. To both cameras were then connected the Break-
out-Box and the Gigabit Ethernet cables, then the synchronization cable was connected to 
both break-out-Box BNC connectors to allow frame synchronize between both cameras. A 
cable was also connected to both trigger connectors to trigger the video recording on both 
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cameras with an external hard trigger. To complete the stereo configuration both Gigabit 
Ethernet  cables  were  connected  to  a  laptop  using  the  Ethernet  entrance  and  a  Gigabit 
PCMCIA network  adapter.  The  next  figure  (see  Figure  7.1)  shows  both  Phantom  v.91 
cameras arranged on a stereo configuration.

2. Camera Settings Configuration with PCC Software and MELFA 3D Path Programming. 
To establish the connection between the  Phantom v 9.1 cameras and the PCC software the 
Phantom control unit IP addresses were first defined by setting the to network connections 
as follows: TCP/IP → Properties → and then the field Use the following IP address was 
checked and the first camera's network IP address was set to 100.100.100.1, and the second 
camera's  network  IP address to 
100.100.100.2 ,  both  networks  Sub  net 
mask field were set to 255.255.0.0 and the 
option  Use  the  following  DNS server 
addresses  was  selected  a  left  empty  and 
then  pressed  OK to  conclude  the 
configuration. 
After  both  cameras  were  successfully 
connected  the  video capture  settings  were 
defined. On the Camera Settings the image 
Bit  Depth was  set  two  8  bits  and  the 
number of  RAM partitions to 1. To capture 
the robot executing a 3D path were used the 
following settings: image Resolution 960 x 
720  pixel,  Sample  Rate 700  pps  and 
Exposure Time 900  μs as  shown in   the 
next  Figure 7.2.

To obtain synchronized video sequences, i.e. capture exactly the same object scene at the 
same time for the left and right camera, the right camera (ID: 9644) was defined as Internal 
(master clock source for two serial connected Phantom cameras) and the left camera (ID 

 Figure 7.2: PCC1.2 software - cine settings.

Figure 7.1: Phantom v.91 cameras arranged on a stereo configuration.  
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9645) was defined as External. Few consideration were taken in account :

• Frame Delay (External) > Frame Delay (Internal) at least 1μs.
• Exposure Time (External) < = Exposure Time (Internal).
• Post Trigger Value (Internal) > Post Trigger Value (External) at least one frame.
• Use  the  external  trigger  (instead  of  the  software-trigger)  to  guarantee  that  the 

cameras remained synchronized.

To capture video sequences for stereo calibration the sample rate were changed to 90 fps. 
This allowed to have more time to change the calibration object position and orientation 
and obtain better calibration results.   

After  the  Camera  Settings,  Cine  Settings and  Advanced  Settings were  configured  a 
simple  closed  3D path  was  programmed  with  MELFA Basic  IV software  using  circular 
interpolation movements command. To the robot end-effector was attached a printed target 
(Target 2,  Figure 7.6) with known geometries to provide good features to track by the 
StereoVisionProg functionalities,  also  close  to  the  robot's  workspace  were  added  static 
targets (Target 1,  Target 3, and Target 4, Figure 7.6) to compare its geometries with the 
results obtained. The robot movement was programmed in such a way that the end-effector 
was kept visible for both cameras during all the robot's movement. MELFA robot's program 
and the targets dimensioning here mentioned were added in the appendices section (see 
Appendix G: Targets and MELFA Basic IV Program).

3. Data Collection
After concluding the procedures 1 and 2, two 3-by-4 LED Arrays, one attached to the stereo 
configuration horizontal arm and other attached to an external tripod, were connected to the 

Figure 7.3: Targets used for points tracking purposes.
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video strobe controller to provide good elimination conditions. The illumination formula 
from  Visual  Instrumentation  Corporation  was  later  used  to  verify  if  the  illumination 
conditions  were  within  the  acceptable  intervals  (  see  Appendix  C:  VideoStrobe  &
VideoFlood LEDs). 

To capture video sequences for stereo calibration and 3D information recovering purposes 
four different stereo configuration were used. The procedure followed was the same for all 
the configurations, and is described as follows:

• Position the stereo configurations.
• Change horizontal distance between cameras.
• Change angles amplitude between both camera’s optical axis (convergence angles).
• Run  MELFA program and ensure that all robot movement is within both camera's 

FOV.
• Focus each camera lens assuming as focal-plane the initial  end-effector  position 

such that the target attached to it appeared acceptability sharp. 
• Block the lenses with glue-tape to avoid unintentional defocusing.
• Apply  CSR option to calibrate the image for the current cine settings parameters 

(process similar to black reference calibration adjustments ).
• Record one video sequence with the robot executing a path previously programmed.
• Record one video sequence of one person moving a calibration object  covering as 

much as possible both camera's FOV. 
• Save cine files to an external hard drive and perform the same procedure each time 

the stereo configuration is changed.    
 
Due the fact that for some stereo configuration was necessary to use smaller calibration 
object to make easier the task of capturing the calibration object on both cameras'  FOV at 
the same time four different calibration object were used. The list of those patterns and their 
properties can be seen on  Table 7.1 as follows.

Table 7.1: OpenCV Calibration Object's Characteristics 

OpenCV Calibration Object's Characteristics 

Calibration Object

Calibration Pattern Square Size[mm]
Number of Corners 

[ nx x ny ]

A 14 [11 x 13]

B 30 [09 x  09]

C 40 [08 x 09]

D 20 [08 x 09]

Note.  Number  of  Corners  is  equal  to  the  number  of  squares  along XX 
direction minus one (nx) – by - the number of corners along YY direction 
minus one (ny).
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For each stereo configuration all the variables were noted and the cine files saved with 

convenient  names.  Table  7.2  lists  the  cine  files  and  measurements  obtained  for  each 
configuration during the third laboratory experiment.

Table 7.2: Laboratory 03 – Stereo Configuration's Variables and Video Files

Laboratory 03 – Stereo Configuration's Variables and Video Files

Video Files (.cine) Stereo Configuration Variables

With Robot 
Movement 

With Calibration 
Object

Distance Between 
Cameras  ± 1 [mm]

Distance From 
Target 1 ± 1 [mm]

Calibration 
Object

StereoS01L 
StereoS01R

StereoCalibS01L 
StereoCalibS01R 390(*1) 1930 C, A (#1)  

StereoS02L 
StereoS02R

StereoCalibS02L 
StereoCalibS02R 390 + 90(*1) 1930 B, C

StereoS03L 
StereoS03R

StereoCalibS03L 
StereoCalibS03R 390 + 90(*1) 1930 B

StereoS04L 
StereoS04R

StereoCalibS04L 
StereoCalibS04R 390 + 115(*1) 2080 C, A(#1)

Note. All pair of video sequences were saved using “S[xx]” that indicates the stereo configuration set, and  
“L” and “R” suffix  that  indicates the video is related to the  Left  or to the  Right  stereo configuration's 
camera.  

 (*1) - The initial distance measured between cameras was obtained from the centre of each lens using a meter. 
The following distances were added by using the fine positioning sliding plate.   

 (#1) - Calibration object A is a special pattern used by Tema Camera Control Software. This pattern proved to 
be inappropriate to use with StereoVisionProg implementation. 

7.1.5.3 Posttest.
Each of the video files information collected during the intervention were then processed by the 

researcher-made  StereoVisionProg  program.  The  post-interventions  main  procedures  used  to 
conduct the research and answer the questions which this study proposed are described in this 
subsection.

 To calibrate  the cameras  and compute the stereo relations  for  each stereo configuration to 
obtain the end-effector 3D path executed with MELFA RV-2AJ the next procedure was followed:

1. Using PCC software each left and right calibration cine file (set  S02,  S03 and  S04) were 
saved into single image files using “Windows BMP 8 images” 1 format and cine range ( 0; 

1 The “OS/2 BMP” image format available from PCC software drop down list is a format supported by IBM OS/2 
operative system and uses the same file extension as “Windows BMP” image format. Reading an OS/2 BMP file as 
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8130) as shown in Figure 7.4.

• Windows BMP 8 images format was used to preserve the same image quality and pixel 
bit depth with which the cine files were recorded (Camera Settings->Bit Depth = 8 ).

•  Each left and right calibration cine file was saved into single images by adding the 
suffix  “+4”  to  the  file  name  prefix.  For  example,  for  the  set  S02 was  done: 
StereoCalibS02L  +4   (StereoCalibS02L0001.bmp,  StereoCalibS02L0001.bmp,  …, 
StereoCalibS02L8131.bmp ).

2. To create a list of left and right calibration views was used StereoVisionProg program: Main 
menu's  Option  [2]  sub  Option  [3] as  shown in  Figure  7.5 and  Figure  7.6.  Two  types  of 
calibration  views  lists  were  created,  one  was  used  to  study  the  optimal  number  of 
calibration views, and a second one was used to calibrate each stereo configuration. The list 
were created with an image sample (increment between consecutive images) in such a way 
that approximately only 150 (for the first case) and 100 (for the second case) images from 
all cine range were used for calibration, avoiding similar calibration views that may cause 
divergence on calibration parameters and stereo relations estimation. 

if it was an Windows BMP file can produce unpredictable results therefore this format should not be used to save 
the sequence of images for calibration. 

Figure 7.4: PCC Software - save cine settings.

Figure 7.5: StereoVisionProg: Main menu 's Option [ 2 ].
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After  navigating  through  the  options,  the  program  will  ask  the  user  to  input  the 
calibration  list  arguments:  1-file  name,  2-left  image  sequence  prefix,  3-right  image 
sequence  prefix,  4-starting  sequence  number,  5-ending  sequence  number,  and 6-
increment. Following point 1 example such parameters were as follows:

1) Lab3CalibListS02 (arbitrary)
2) StereoCalibS02L   
3) StereoCalibS02R
4) 1
5) 8131
6) 80 

The output file is a text file Lab3CalibListS02.txt with a list of left and right image names 
of synchronized calibration views as in Figure 7.7. 

3. To  study  the  optimal  number  of  calibration  views  necessary  to  calibrate  each  stereo 
configuration was used one of the StereoVisionProg functionalities as follows: Main menu's 
Option [ 3 ] sub Option [ 1 ] as shown in Figure 7.8. 

This  functionality  required  the  calibration  to  be  first  performed  using  the  text  file 
containing a list of 150 left and right camera calibration views so the image points and 
object points were then loaded from the calibration process output file.

Figure 7.6: StereoVisionProg: Main menu's Option[ 2 ] sub Option [ 3 ].

Figure 7.7: Sequence of  BMP images for calibration.

Figure 7.8: StereoVisionProg: Main menu's Option [ 3 ] sub Option [ 1 ].



 48
To study how the calibration parameters evolved with the number of calibration views 

17 sets of images points and object points 2 [N02 N05 N10 N20 N30 N40 N50 N60 N70 N80 N90 
N100 N110 N120 N130 N140 N150] were used individually to perform the calibration.

 Two output files  Lab3CalibListS02_StudyM1.xml and Lab3CalibListS02_StudyM2.xml  were 
obtained for calibration method  M1 and method  M2 respectively. In the output files were 
stored the  intrinsic and  extrinsic parameters,  stereo relations, and  reprojection errors 
that  resulted  from each  calibration  sets.  The  variables  were  then  loaded  into  MatLab, 
processed and presented graphically (see Appendix E: MatLab M-Files Code).

4. To compute calibration parameters and stereo relations was used StereoVisionProg :  Main 
menu's Option [ 3 ] sub Option [ 2 ] (or Option [ 3 ] ) as shown by Figure 7.9. The program read 
all  the  text  (.txt)  files  in  the  current  directory  and  list  them,  after  choosing  the  right 
calibration list (in this case Lab3CalibListS02.txt ) the program loaded the calibration images, 
computed the intrinsic calibration parameters (M1, M2, D1, D2) and the stereo relations (R, T, 
E and  F) using two methods: method one (M1) estimates the intrinsic parameters of each 
camera individually with cv::calibrateCamera( ) and then uses this parameters as input for 
cv::stereoCalibrate( ) to estimate the stereo relations (R, T, E, F), method two (M2), on its 
turn, computes the intrinsic parameters and the stereo relations all at the same time, without 
initial  guess.  Method  M1  saves  the  results  into  an  xml  file  named 
Lab3CalibListS02_CalibrationM1.xml while  on method  M2 the  results  output  file  is  named 
Lab3CalibListS02_CalibrationM2.xml.

5. After computing the calibration parameters  was performed the  calibration parameters 
optimization. Based on the mean Euclidean distance between the reprojected and projected 
image points  for  each  view it  excludes  the  views  with  higher  errors,  i.e.  higher  mean 
Euclidean distances. The implementation of this functionality was formulated as follows:

• First were computed the projected points for both cameras (Figure 7.19 (b)) using 
OpenCV function cv::projectPoints( object points, camera parameters, projected points ) . 
This function uses the obtained camera intrinsic and extrinsic parameters, “as if” 
they were estimated correctly, to project the object points into image points.

• Then the program computed the mean Euclidean distance between the reprojected 
image points (collected from the calibration views) and projected image points for 
each left and right calibration view as follows:

2 Image points and object points were obtained using the calibration views and thus in this case they represented 
those sets of images.

Figure 7.9: StereoVisionProg: Main menu's Option[ 3 ] sub Option[ 2 ] .
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Ed i=√( xiR−xi P)
2+( yiR− yiP)

2  (7.1.1)

Where Ed i is the Euclidean distance between the reprojected (R) and the projected (P) 
point i of a calibration view.

MEd=1
n ∑

i=1

n=nCorners

Ed i  (7.1.2)

Where  MEd is  the  mean  Euclidean  distance  for  each  calibration  view  and 
nCorners is the number of chessboard corners. The resulting mean Euclidean distance 

for all the left and right calibration views (separately) is given by:

M=1
n ∑

j=1

n=nViews

MEd j  (7.1.3)

Where  nViews is the number of left and right calibration views. Thus the standard 
deviation  is given by the equation:

SD=√ 1
n ∑

i=1

n=nViews

(MEd i−M )2  (7.1.4)

An  interval  [0 ; M+SD ] was 
then  used  to  filter  the  views  with 
higher  errors,  i.e.  views  which 

MEd>M+SD were excluded 3.

After the views with higher errors 
contributions  being  excluded  the 
new  calibration  parameters  were 
recomputed (using method M1 or M2 
depending on which one was the last 
being used  4) and stored into a new 
xml  output  file  named 
Lab3CalibListS02_CalibrationM3.xml. 
The next figure (Figure 7.10) shows 
an  example  of  image  points 
reprojection and projection. 

3 Besides  stereo  calibration being performed individually for  each camera,  to  estimate  the stereo  relations with 
cv::stereoCalibrate() is necessary that both left and right image points correspond to exactly the same calibration 
object captured at the same instant, i.e. synchronized captures, and thus if the left (right) view is excluded its right  
(left) corresponding view is also excluded. 

4 The most  recent  calibration  operation  (M1,  M2 or  M3)  output  file  name is  always  overwrited  into  the  node 
<CalibrationParameters>...</CalibrationParameters> of the main file “StereoConfigurationOutput.xml”. All 
subsequent operations (calibration study, calibration optimization, rectification, correspondence and rotation matrix 
parametrization) uses only the stereo calibration parameters and relations stored inside this output file. 

Figure 7.10: Reprojected (a) and projected (b) image points.
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Calibration  optimization  can  be  performed  by  choosing  on  StereoVisionProg:  Main 
menu's Option [ 3 ] sub Option [ 4 ] as shown in Figure 7.12 . 

After calibration was performed (using M1, M2 or M3 methods) the rectification process 
was called to compute undistortion+rectification maps and the disparity-to-depth matrix to 
use later on the process of recovering the  3D points from 2D tracked image points.  Two 
rectification 
methods  were 
implemented  as 
shown  in  Figure
7.13.On  the  first 
method  the 
StereoVisionProg 
functionality 
starts  by  loading 
the  calibration 
parameters,  and 
the  stereo 
relations (R, T) from the last calibration operation's output file,  and performs the Bouguet's 
calibrated stereo rectification directly. 

Figure 7.12: StereoVisionProg: Main menu's Option [ 3 ] sub Option [ 4 ].

Figure 7.13: StereoVisionProg: rectification method options.  

Figure 7.11: Calibration parameters optimization process.
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For the second approach was implemented the Hartley's uncalibrated stereo rectification, 
if this option is selected the program loads the left and right image points  ( iPoints1  and 
iPoints2) generated from the last calibration operation, and proceeds as summarized in the 
next steps:

1. Compute fundamental matrix using left and right calibration view's image points.

F = cv::findFundamentalMatrix( iPoints1, iPoints2, ... );

2. Compute rectification homography matrices H1 and H2.
cv::stereoRectifyUncalibrated( iPoints1, iPoints2,  F, imageSize, H1, H2, ...);

3. Pre-process  homography  matrices  H1 and  H2 to  obtain  the  rectification 
transformations  matrices R1 and R2 in object space. 

R1=M 1
−1×H 1×M 1  and R2=M 2

−1×H 2×M 2

4. Get the optimal new camera matrix to obtain the new principal point corrected.

nM1 = cv::getOptimalNewCameraMatrix( M1, D1, imageSize, 1, imageSize, 0 );
              nM2 = cv::getOptimalNewCameraMatrix( M2, D2, imageSize, 1, imageSize, 0 );

5. Compute (undistortion + rectification) maps for both left and right images.

cv::initUndistortRectifyMap( M1, D1, …,  map1x, map1y );
cv::initUndistortRectifyMap( M1, D1, …, map2x, map2y );

6. Build the disparity-to-depth transformation matrix.

Q=[1 0 0 −cx
0 1 0 −cy
0 0 0 fx
0 0 −1/Tx 0 ]

   The output file that results from rectification contains the remapping maps (undistortion + 
rectification) for both cameras (map1x, map1y, map2x, map2y) and the disparity-to-depth 
matrix (Q). The output results from stereo rectification process are saved into an xml file 
named   Lab3CalibListS02_CalibRectification.xml  for  calibrated  rectification  or 
Lab3CalibListS02_UncalibRectification.xml if uncalibrated rectification method was selected.

6.  The  parametrization  of  a  3D rotation  matrix  into  Euler  Angles  and  Quaternions  is 
frequently an indispensable operation in vision systems, computer graphics, robotics and 
kinematics in order to perform certain operations faster and avoid to have to deal with the 
rotation matrix.  To perform the stereo relations rotation matrix (  R ) parametrization into 
Euler angles and quaternions were implemented functions based on the  Computing Euler  
Angles From a Rotation Matrix (Slabaugh, year n.a.) online document. 

The rotation matrix parametrization into Euler angles allows to describe the rotations 
that moves a rigid body from one referential to other with different orientation by using 
only three parameters – Euler angles: [ φ θ ψ ]. The approach formulation used to compute 
the Euler angles from a rotation matrix is as follows:
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Define the 3-by-3 orthonormal rotation matrix to be parametrized as:

     R3D=[R11 R12 R13

R21 R22 R23

R31 R32 R33
]  (7.1.5)

The rotation around XX axis - ψ( psi)  is defined by:

R x (ψ)=[1 0 0
0 cos(ψ) −sin(ψ)
0 sin(ψ) cos (ψ) ]  (7.1.6)

Similarly, the rotation around YY axis - θ( theta) is defined by:

R y (θ)=[ cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)]  (7.1.7)

The third rotation around ZZ axis - ϕ( phi)  is defined by:

R z(ϕ)=[cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1]  (7.1.8)

 The Euler angles [ φ θ ψ ], that represents the rotation first around XX axis, then around YY 
axis are later around ZZ axis, are presented in the reduced form by the next equation:

R=Rz (ϕ)R y (θ)Rx(ψ)  (7.1.9)

The matrix product R from equation (7.1.9 is presented in the matrix form by:

R=[cos(θ)cos(ϕ) sin (ψ)sin (θ)cos(ϕ)−cos(ψ)sin (ϕ) cos(ψ)sin (θ)cos(ϕ)+sin (ψ)sin (ϕ)
cos(θ)sin (ϕ) sin (ψ)sin (θ)sin (ϕ)+cos(ψ)cos(ϕ) cos(ψ)sin (θ)sin (ϕ)−sin (ψ)cos(ϕ)
−sin (θ) sin (ψ)cos(θ) cos(ψ)cos(θ) ]  (7.1.10)

 By combining the both R3D  and R matrices (eq. (7.1.5 and (7.1.10) is possible to 
determine the Euler angles. Case  cos (θ)≠0 the Euler angles has two valid solutions: 
(ϕ1 ,θ1 ,ψ1)  and (ϕ2 ,θ2 ,ψ2) . Case cos (θ)=0 the Euler angles have infinite number of 

solutions, this case is known by Gimbal Lock Problem – loss of one degree of freedom in 
the 3D space. In both cases the solutions are computed as follows:

 
Case(R31≠±1)⇒(cos(θ)≠0);Solutions [(ϕ1 ,θ1 ,ψ1)  and (ϕ2 ,θ2 ,ψ2)]¿
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[
θ1=−asin(R31) θ2=π−θ1

ϕ1=atan2(R21

cos (θ1)
,
R11

cos (θ1) ) ϕ2=atan2(R21

cos (θ2)
,
R11

cos(θ2) )
ψ1=atan2(R32

cos(θ1)
,
R33

cos(θ1) ) ψ2=atan2(R32

cos(θ2)
,
R33

cos (θ2) )]
Case(R31=±1)⇒(θ=−π

2
∨θ=π

2
); Infinite number of solutions can be used to transform 

a rigid body from its initial referential to a second referential with different orientation: 
(ϕi=any value ,θi ,ψi)

ϕi=any value. Normally set to 0.
case(R31=−1)

    θi=
π
2

ψi=ϕi+atan2(R12, R13)
case(R31=+1)

    
θi=−

π
2

ψi=−ϕi+atan2(−R12,−R13)

Figure 7.14 shows the Euler angles application to transform the right camera imager 
orientation into the left camera orientation. In OpenCV the rectification process is done by 
dividing the rotation matrix in two rotations and both left and right referential are rotated to 
a common plane. 

Figure 7.14: Right camera rotation using Euler angles.
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• Quaternions  are  another  form to  represent  a  3D rotation  matrix.  Quaternions  represent 

orientations and rotations of objects in 3D dimensions. Assuming that q is the quaternion 
for the rotation that transforms a rigid body from one referential to a second referential with 
different  orientation,  the  rotation  matrix  R(q) ,  or  similarly  R3D as  in  eq.  (7.1.5, 
corresponding to q is as follows: 

R(q)=[ 1−2q2
2−2q3

2 2q1 q2+2q4 q3 2 q1 q3−2q4 q2

2q1 q2−2q4 q3 1−q1
2−q3

2 2q2 q3+2q4 q1

2q1 q3+2q4 q2 2q2 q3−2q4 q1 1−2q1
2−q2

2 ]  (7.1.11)

Where (q1, q2, q3, q4) are the four quaternion's components q=[q1 q2q3 q4]
T . In the next 

figure (Figure 7.15) is presented the pseudo-code based on the work From Quaternion to  
Matrix and Back (Waveren, 2005). The approach avoids numerical instability by selecting 
the trace (sum of the diagonal elements) with higher values.

7. In order to obtain 2D image points with the StereoVisionProg options from the sets of cine 
files with the robot movement video sequence (StereoS02L and StereoS02R, see Table 7.2), 
the cine files were converted to  AVI files (StereoS02L.avi and  StereoS02R.avi)  format 
using  PCC  software  with  the  next  settings:  Frame  Rate  (fps)  =  25  and  Video 
Compressor: none to preserve the original bitmaps (or raster) images quality with which 
the cine files were recorded.

8. To obtain the MELFA RV-2AJ end-effector's 3D path from StereoS02L.avi and StereoS02R.avi 
files was proceeded as follows:

Using StereoVisionProg program was chosen: Main menu's Option [ 4 ] sub Option [ 2 ], as 
shown in Figure 7.16, this option listed all AVI files inside the current directory from where 
StereoVisionProg  was  executed,  from  this  list  were  selected  StereoS02L.avi and 

Figure 7.15: Pseudo-code to compute quaternion from R. 
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StereoS02R.avi while was ensured that the current stereo calibration parameters corresponded 
to the same stereo configuration used to obtain those video sequences (see footnote  4). 
After  being  selected  the  capture  mode and the  left  and right  video sequence  input  the 
program loaded the remapping maps and the disparity-to-depth matrix. 

A second sub menu was displayed to select the matching mode. For the stereo matching 
process were implemented different stereo matching approaches as shown in Figure 7.17. 
Option [ 1 ] - COMPUTE DENSE IMAGE OF 3D POINTS was implemented using the OpenCV 
stereo correspondence functions. This functionality allows to select one of the following 
algorithms:  Block-Matching,  Semi  Global  Block-Matching,  and  Graph-Cut  algorithm, this  last 
method is a non real-time stereo correspondence algorithm and its use with video sequences 
proved to be inefficient.  For each method the program applied the remapping map to each 
new left and right video frame capture, computed the disparity image, and then reprojected 
it to 3D image space. The results obtained with this dense stereo correspondence algorithms 
were  unsatisfactory  and  a  new  approach  was  implemented.  The  full  implementation 
description  of  this  option  is  described  in  more  detail  on  the  appendices  section  (see 
Appendix H: StereoVisionProg).

A second option Option [ 2 ] - COMPUTE SPARSE SET OF 3D POINTS was implemented on 
StereoVisionProg program. For this case study only a sparse set of points obtained from a 
stereo video sequence were needed to recover  the  MELFA RV-2AJ robot's end-effector path 
and then compare the results obtained with the robot's path.

Figure 7.16: StereoVisionProg: Main menu's Option [ 4 ] sub Option [ 2 ].

Figure 7.17: StereoVisionProg: Main menu's Option[ 4 ] sub Option[ 2 ] sub Option[ 2 ].
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By selecting StereoVisionProg: Main menu's Option [ 4 ] sub Option [ 2 ] sub Option [ 2 ] the 
program uses the  Lucas-Kanade  Sparse  Optical  Flow (see  Appendix F: Motion)  method to 
track points from the left to the right video capture, compute the disparities between left and 
right  tracked  points  and  then  project  those  points  to  3D  space.  The  implementation 
methodology used by this approach is described as follows:

• The program captures the first left and right video frame from the video sequence 
and waits until a predefined number of points is added, over the left capture, with 
right mouse click event.

• Then  the  program  starts  capturing  frames  from  both  video  sequences  without 
interruption  and  the  initial  image  points  are  tracked  from  the  previous-left  to 
current-left frame and then from the current-left to the current-right frame capture as 
shown in Figure 7.18.

Points tracked successfully are saved and points that fail to be tracked at any instant are 
removed. At the end of the video capture two vectors of vectors with each point positions 
are available for the left and for the right image points. Using Figure 7.18 nomenclature, the 
resulting vectors are as follows:

leftTrackedPoints=[ vectPL1 vectPL2 ... vectPLm]
rightTrackedPoints=[vectPR1 vectPL2 ... vectPRm]

vectPLi=[PLi(t 0) PLi(t 0+Δ t) PLi (t 0+2Δ t) ... PLi(t 0+nΔ t )]
vectPRi=[PRi( t0) PRi( t0+Δ t) PRi(t0+2Δ t) ... PRi( t0+nΔ t)]

Where m is the number of points successfully tracked over n stereo video captures.

The first step to obtain 3D points from 2D image points is to compute horizontal disparity 

Figure 7.18: Sparse stereo correspondence with Lucas-Kanade tracker.    
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5 vector as follows:

dP i=[PRi(1). x−PLi(1) . x ,... , PRi(n) . x−PLi(n) . x ]

The resulting 3D object points can be related to the left camera coordinate system or to 
the right camera coordinate system. Each case is possible by using the left or right image 
points  coordinates,  respectively,  and  the  disparity  vector  to  build  a  vector  with 
homogeneous coordinates:
HCoord P i(left)=[PLi(1) . x  PLi(1). y  dP i(n)  1,... , PLi(n) . x  PLi(n) . y  dP i(n)  1]

H Coord P i( right )=[PRi(1) . x  PRi(1) . y  dP i(n)  1, ... , PRi(n). x  PRi(n) . y  dPi(n)  1]

Having the homogeneous coordinates vector the program proceeds with the disparity to 
depth  transformation.  Knowing  that  the  disparity-to-depth  matrix  is  composed  by  the 
following parameters:

Q=[
1 0 0 −cxl

0 1 0 −c yl

0 0 0 f

0 0 1
T x

(c xl−c xr)
T x

]⇒Q=[Q 00 Q 01 Q02 Q 03

Q10 Q 11 Q12 Q 13

Q 20 Q 21 Q22 Q 23

Q30 Q 31 Q32 Q 33
]

The depth  for  a  given point  P (as  in  Figure  7.19)  projected  into  a  canonical  stereo 
configuration is obtained using the similarity of triangles as follows:

Z
T x
= Z− f

T x−d
⇒Z=

f×T x

d  (7.1.12)

5 This  step  assumes  that  the  stereo  video  captures  are  already  undistorted  and  rectified  such  that  the  stereo  
configuration is close to a canonical stereo configuration i.e. the image planes are coplanar and row aligned.

Figure 7.19: Canonical stereo configuration (a), similarity of  
triangles(b).
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Then the vector of  3D points of each tracked point was obtained using the following 
relation:

(Related to OL XY  ) [ X Y Z W ]T=Q [ x l y l d 1]T  (7.1.13)

(Related to OR XY  ) [X Y Z W ]T=Q [ xr yr d 1]T  (7.1.14)

Generalizing equations  (7.1.13 and  (7.1.14 and recalling the disparity-to-depth matrix 
the coordinates of a 3D point are formulated as follows:

[ X
Y
Z
W ]=Q[ x

y
d
1 ]⇒[

X=x∗Q00+Q03        ⇒ X=x−cxl

Y= y∗Q11+Q 13       ⇒Y= y−c yl

Z=Q23             ⇒ Z= f

W=d∗Q32+Q33 ⇒W= d
T x

]
The  Q33 disparity-to-depth  matrix  element  is  null,  i.e.  the  principal  rays  of  each 

camera meet at  infinity  (c xl−cxr=0) and  W depends only on the disparity and the 
horizontal distance between cameras. The last step to obtain [X Y Z ] points is done as 
follows:

[X Y Z ]T=[ X /W Y /W Z /W ]T  (7.1.15)

 Or in the detailed form:

[XYZ ]=[
( x−c xl)×T x

d
( y−c yl)×T x

d
f ×T x

d
]

The same result is obtained for the depth as in equation (7.1.12.  This methodology was 
the approach used to obtain the 3D path from the stereo video sequences. In practise, when 
StereoVisionProg: Main menu's Option [ 4 ] sub Option [ 2 ] sub Option [ 2 ]  was chosen three 
windows were displayed:  CAPTURING FROM AVI FILES, POINTS TRACKING CONTROLS 
and LEFT  IMAGE.  Before  proceeding  the  tracking  parameters  were  adjusted  using  the 
trackbars on POINTS TRACKING CONTROLS window.

• Trackbar NPts: sets the maximum number of image points to be tracked, the video 
capture will be waiting until the user selects this number of points over the (LEFT 
IMAGE window) left video frame capture. 
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• Trackbars PyrLevel and WinSize: sets the Lucas – Kanade tracker pyramid level and 

the search window size, this two values need to be adjusted on such a way that the 
left and right tracked image points represent the same 3D object points on a scene. 
As example, for the stereo set S02, values of PyrLevel = 7 and WinSize = 15 were 
used during the tracking operation.

By using the  LEFT IMAGE window with the (first) left video frame capture displayed 
were added (using left mouse click event) the number of points setted by NPts trackbar. A 
target  (Target  2)  with  four  points  was  attached  to  the  robot's  end-effector  during  the 
experiment to provide good features to track and therefore NPts value was set to 4 and only 
Target2's four corners were selected.

After selecting the image points to be tracked over the first video frame capture the 
program starts by reading the video sequence and tracking the existing points. For each new 
left and right image capture the program stores the the new position of each left and its 
corresponding right image point. If the user clicks on the LEFT IMAGE window to make it 
active and press “C” key the program computes the horizontal disparity between the left 
and right image points positions, then it computes the 3D world coordinates, saves the 3D 
points and the [x y disparity] points into an output xml file. The output file name ending 
with “_3DPOINTSC1.xml” has the  3D points related to the left  camera coordinate system 
while the file name ending with “_3DPOINTSC2.xml” has the 3D points related to the right 
camera coordinate system.

Considering that the list of calibration views used to calibrate the stereo configuration 
was Lab3CalibListS02.txt the resulting output file  is: Lab3CalibListS02_3DPOINTSC1.xml or 
Lab3CalibListS02_3DPOINTSC2.xml  depending  on  which  camera  was  active  6. To  define 
which  camera  (coordinate  system)  is  active  the  user  should  change  the  “CameraOn” 
trackbar  value  to  1  (left  camera)  or  2  (right  camera)  in  POINTS  TRACKING  CONTROLS 
window.

To compare  the  obtained  3D set  of  points  (3D path)  with  the  real  3D path  given by 
MELFA Basic IV software was necessary to transform the resulting  3D points (related to 
each camera coordinate system) to the robot referential as shown in the next figure (Figure
7.20).

6 All the results output files are named after the calibration list file name used to calibrate the current stereo 
configuration, i.e. If Lab3CalibListS02.txt calibration list was used to calibrate the current stereo configuration, 
all output files are named using “Lab3CalibListS02”  as prefix, as in  Lab3CalibListS02_CalibrationM1.xml; 
Lab3CalibListS02_CalibrationM2.xml; Lab3CalibListS02_Rectification.xml; 
Lab3CalibListS02_Angles.xml; Lab3CalibListS02_3DPOINTSC1.xml and 
Lab3CalibListS02_3DPOINTSC2.xml.
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The  coordinates  system  transformation  was  performed  using  the  point-line-plane 
approach. To accomplish this task a set of points were tracked over a target (Target1) that 
was attached to the robot's base providing better features to track. 

Using the program on the same way as it was used previously to track points, a set of 
three points P0, P1 and Pyz as shown in  Figure 7.21 were tracked and transformed to  3D 
space.  Using the resulting set  of  3D points  were then computed the the rotation R and 
translation T that allows to transform the 3D path to MELFA robot's coordinate system. 

The formulation to obtain R and T is described next: 

Transform=R.T  (7.1.16)

  Where [R]=[R11 R12 R13 0
R21 R22 R23 0
R31 R32 R33 0
0 0 0 1

] and T=[1 0 0 P0.x

0 1 0 P0.y

0 0 1 P0.z

0 0 0 1
]

 

Figure 7.20: Camera-to-MELFA robot referential transformation.
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 To build the rotation matrix the direction cosines for all three axes were obtained by the 
as follows:

YY axis=(P1.x−P0.x ,P1.y−P0.y , P1.z−P0.z);
YZ=(P yz.x−P0.x , P yz.y−P0.y , P yz.z−P0.z);

The XX and ZZ axes are computed using the cross product as follows:
XX axis=YY axis⋅YZ axis

ZZaxis=XX axis⋅YY axis

To obtain the rotation matrix R all three vector were transformed to unit vectors:

XX axis=
XX
∣XX∣

 , YY axis=
YY
∣YY ∣

 , ZZ axis=
ZZ
∣ZZ∣

The final rotation and translation matrix are then build using the direction cosines and 
the the origin point P0 as demonstrated next:

[R]=[XX x XX y XX z 0
YY x YY y YY z 0
ZZ x ZZ y ZZ z 0

0 0 0 1
]  and [T ]=[1 0 0 P0x

0 1 0 P0y

0 0 1 P0z

0 0 0 1
]

Figure 7.21: Referential transformation using point-line-plane method. 
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Recalling equation (7.1.16 the final transformation is rewrite as follows:

[R]=[XX x XX y XX z XX x×P0x+XX y×P0y+XX z×P0z

YY x YY y YY z YY x×P0x+YY y×P0y+YY z×P0z

YY x YY y YY z YY x×P0x+YY y×P0y+YY z×P0z

0 0 0 1
]

To  corroborate  the  3D path  obtained  with  the  research  methodology  approach  and 
compare it with the 3D path given by MELFA Basic IV program a number of functions were 
implemented using MatLab software, the description of this functions is presented in Table
7.3 as follows: 

Table 7.3: List of MatLab Implemented Functions

List of MatLab Implemented Functions

MatLab M - Files

File Name File Description

getDataNode.m Loads  a  single  variable's  data  from  an  OpenCV 
generated xml file.

readDataFromXML.m Reads  a  group of  variables'  data  from an OpenCV 
generated xml file.

plot3DPath.m Plots the 3D path obtained with the StereoVisionProg 
research-made program.

readMelfaData.m Loads  and  plots  the  robot's  end-effector  3D  path 
given by MELFA BASIC IV software.

transformReferential.m
Transform  the  initial  3D  points  coordinate  system 
(camera's  coordinate  system)  to  robot's  coordinate 
system.

testTransformReferential.m Uses a generic 3D points to transform 3D points in 
camera coordinates to a generic coordinate system.

Instructions.m Instructions to  use each function and reproduce the 
results presented in this case study. 
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8 Chapter Four 
8.1 Results

8.1.1 Introduction 
Recovering the depth information through stereo vision requires, in general lines, three main 

steps: camera calibration and stereo relations estimation, image undistortion and rectification, and 
stereo  correspondence.  The  last  step  presents  the  most  challenging  task  on  the  2D  to  3D 
transformation process.  The stereo correspondence performance and accuracy  determines how 
good and at which cost the depth information is recovered from the correlation of both images, 
however, the first process is also determinant to obtain good results once the parameter obtained 
from it are directly involved on the 2D points reprojection to 3D space. 

This section starts by presenting a summary (see Table 8.1) of the data collected during the three 
laboratory experiments, the data collected from the first two experiments sessions were used to 
take  conclusions  mainly  connected  with  calibration  purposes  and  optimize  the  following 
experiment procedure. Data collected during the third laboratory sessions were used for calibration 
and 3D points recovering purposes. 

Table 8.1: Video Sequences Collected During Laboratories Experiments 

Video Sequences Collected During Laboratories Experiments
Stereo Video Data Collected

For Stereo Cameras Calibration For Recovering 3D Information

L01 - S01 1600-1200 5000 - - -
L01 - S02 1152-1152 3000 - - -
L01 - S03 960-720 100 4500 - - -

672-480 1000 900 672-480 1000 900
672-480 1000 900 672-480 1000 900
672-480 1000 900 672-480 1000 900
672-512 1000 900 672-512 1000 900
960-720 900 960-720 700 900

L03 - S02 960-720 900 960-720 700 900
L03 - S03 960-720 900 960-720 700 900
L03 - S04 960-720 90 900 960-720 700 900

Lab – Stereo
 Configuration

Image
Size [pixel]

Sample
Rate [fps]

Exposure
 1X10-6[s]

Image
 Size [pixel]

Sample
Rate [fps]

Exposure
 1X10-6[s]

100/50(*1)

100/50(*1)

L02 – S01(*2)

L02 – S02(*2)

L02 – S03(*2)

L02 – S04(*2)

L03 – S01(*3) 200/700(*1)

700/90(*1)

700/90(*1)

Note.
 (*1) - The left/right camera sample rate (fps) used to capture video sequences for stereo calibration
 were different for each stereo configuration's Phantom v9.1 camera.
 (*2) - Video data obtained with second laboratory experiment (L02) were influenced by experimental
 errors and only video sequences for stereo calibration were used for stereo calibration purposes.  
 (*3) -The first set of video sequences for calibration used a special pattern for calibration purposes
 with Tema Software, this set was not included for the research purposes.    
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Next, are presented a list of the output files generated by StereoVisionProg researcher-made 

program with all dependent variables. 

All the result output files obtained with StereoVisionProg were named using  [FileName1] and 
[FileName2] as prefix. Both cases are explained on point 1 and 2 as follows:

1. [FileName1]  is  the  name  of  the  text  file  containing  the  list  of  150  pairs  of  left/right 
calibration views used to build calibration sets with different number of calibration views 
(N02, N05, N10, N20, N30, N40, N50, N60, N70, N80, N90, N100, N110, N120, N130, N140, N150) and 
study the difference between calibration methods and how calibration parameters evolve. 

2. [FileName2]  is  the  name  of  the  text  file  containing  a  list  of  100  pairs  of  left/right  
calibration views used to perform stereo calibration.  

For a better understanding how the results were obtained and stored by using  StereoVisionProg 
research-made program options and OpenCV XML FileStorage each output files obtained from the 
research study and its list of variables are explained in more detail in the next pages.

• Files  [FileName1]_StudyM1.xml and  [FileName1]_StudyM2.xml were  obtained  from  STUDY 
OPTIMAL NUMBER  OF  CALIBRATION  VIEWS process  using  different  sets  of  images  and 
calibration method  M1 and  M2 respectively.  The list  of variables  stored inside this  two 
resulting files are listed in Table 8.2 as follows:

Table 8.2: Calibration Methods Study Process's Output Variables

Calibration Methods Study Process's Output Variables

[FileName1]_StudyM1.xml and [FileName1]_StudyM2.xml

Variables Names Variables Description

fx1(fx2) Focal  length  along  XX for  the  left(right) 
camera in pixel units.

fy1(fy2) Focal  length  along  YY for  the  left(right) 
camera in pixel units.

(cx1(cx2), cy1(cy2)) Left  (right)  camera  principal  point 
coordinates. 

K11, k21, p11, p21, K31

(K12, k21, p12, p22, K33)
Left(right) camera distortion coefficients.

R, T, E, F Stereo configuration relations .

E1(E2) 
Left(and  right)  camera  reprojection  errors. 
This  two  parameters  are  only  available  for 
[FileName1]_StudyM1.xml

E3 Stereo reprojection errors.

Note. Each variable represent a vector of 17 elements with the values of one parameter 
(p) resulting from performing the calibration (using method M1 and M2, separately) for 
each individual set of images as follows:  pVect = [ p(N02), p(N05), …, p(N150)].
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• File  [FileName2]_CalibrationM1.xml  and [FileName2]_CalibrationM2.xml  were  obtained  from 

STEREO CALIBRATION (USING INITIAL GUESS) and STEREO CALIBRATION (WITHOUT INITIAL 
GUESS) processes, on both cases were used around (but not less than) 100 calibration views. 
File [FileName2]_CalibrationM3.xml  was obtained from STEREO CALIBRATION PARAMETERS 
OPTIMIZATION  operation,  this  process  used  exactly  100  calibration  views.  The  list  of 
variables resulting from each process are the same and listed in the next table (see Table 8.3 
). 

Table 8.3: Stereo Calibration Process's Output Variables

Stereo Calibration Process's Output Variable

[FileName1]_CalibrationM1.xml, [FileName1]_CalibrationM2.xml, and 
[FileName1]_CalibrationM3.xml

Variables Names Variables Description

calibrationListUsed Name  of  the  text  file  used  to  read/input  calibration 
views.

squareSize Chessboard square size.

cornersAlongXX Number of chessboard corners along XX direction.

cornersAlongYY Number of chessboard corners along YY direction.

ImageHeight(Width) Calibration view image height(width).

numberOfViewsUsed Number of views used for the stereo calibration process.

M1(M2) Left(right) camera matrix.

D1(D2) Left(right) distortion coefficients vector.

R Rotation  matrix  to  transform right  camera  to  the  left 
camera orientation. 

T Translation vector to transform right camera to the left 
camera position.

E, F Essential and Fundamental matrices.

objPoints XML node containing sub-nodes with object  points for 
each view.

imgPoints1
XML node containing sub-nodes with chessboard corners 
extracted from each left calibration view with sub-pixel 
accuracy.

imgPoints2
XML Node  containing  sub-nodes  with  chessboard 
corners extracted from each right calibration view with 
sub-pixel accuracy.
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•File [FileName2]_Angles.xml was obtained from  ROTATION MATRIX PARAMETRIZATION 
using rotation matrix R obtained from stereo calibration. The output variables stored in this 
file are listed in the next table (see Table 8.4).

Table 8.4: Rotation Parametrization Process's Output Variables

Rotation Parametrization Process's Output Variables

[FileName2]_Angles.xml

Variable Name Variable Description

EulerAngles Contains  the  Euler  angles  resulting  from  stereo 
rotation matrix parametrization.

Quaternion
Contains the quaternions [x,  y,  z,  w] components 
resulting  from  stereo  rotation  matrix 
parametrization.

NormQuaternion Contains the quaternions [x, y, z, w] components in 
the normalized form.

• Files [FileName2]_CalibRectification.xml and [FileName2]_UncalibRectification.xml were obtained 
from  USE CALIBRATED RECTIFICATION and  USE UNCALIBRATED RECTIFICATION process, 
respectively.  The  rectification  process  is  called  each  time  a  calibration  operation  is 
performed. The list of variables is different for each case as described in the next table (see 
Table 8.5).  

Table 8.5: Calibrated and Uncalibrated Rectification Process's Output Variables

Calibrated and Uncalibrated Rectification Process's Output Variables

[FileName2]_CalibRectification.xml and [FileName2]_UncalibRectification.xml 

Variable Name Variable Description

map1x, map1y Contains the remapping maps (undistortion + rectification) 
for the left camera.

map2x, map2y Contains the remapping maps (undistortion + rectification) 
for the right camera.

Q Contains the disparity-to-depth matrix used for recovering 
the depth information.

R1(R2) Left(right)  image  rectification  transformation  (3-by-3 
rotation matrices). 

P1(P2) Left(right)  image  3-by-4  projection  matrix  in  the  new 
rectified  coordinate  system.  (only  for  calibrated  stereo 
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rectification).

F Fundamental  matrix  (only  for  uncalibrated  stereo 
rectification).

H1(H2) Left(right)  image rectification homography matrices (only 
for uncalibrated stereo rectification).

nM1(nM2)
New left(right) camera matrix that can be used to define the 
region  of  interest  in  the  new  corrected  image  (only  for 
uncalibrated stereo rectification).

• Files  [FileName2]_3DPOINTSC1.xml and  [FileName2]_3DPOINTSC2.xml are the research's most 
significant and interesting output files. This two output files were obtained from COMPUTE 
3D POINTS operation – the process of recovering 3D point’s sets (or 3D paths) using stereo 
video sequences. The first file contains information related to the left camera while the 
second file contains information related to the second camera. The list of variables saved 
into this two files is described in the following table (see Table 8.6).

Table 8.6: Recovering 3D Points Process's Output Variables

Recovering 3D Points Process's Output Variables

[FileName2]_3DPOINTSC1.xml and [FileName2]_3DPOINTSC2.xml 

Variables Names Variables Description

nTrackedPts
Contains  the  number  of  image  points  tracked 
successfully  over  the  left  and  right  stereo  video 
captures.

POINT[i]
Contains the image point (i)  positions transformed 
to  3D  points  related  to  the  left(right)  camera 
coordinate system.

xydPOINTS[i]

Contains  sub-nodes  with  all  tracked  positions  (j) 
coordinates for each left(right) image point (i) and 
its  disparity,  i.e.  vector<vector<Point3f>>  and 
Point3f  point(i,j)= (x,y,d).

The second section of  this  chapter  presents  the  results  that  aim to answer the the  research 
questions proposed initially by this case study. This section first presents the results from the study 
that allowed to determine the optimal number of calibration views and the calibration method to be 
used with the recorded video sequences, followed by the results obtained with calibration process 
for all three laboratories. Next are presented the results obtained from the stereo relation rotation 
matrix parametrization into Euler angles and quaternions obtained from calibration optimization 
process.  In  order  to  answer  the  fourth  question  the  results  from calibrated/uncalibrated  stereo 
rectification are then presented. The last subsection present the research's most important results 
from stereo matching and 2D to 3D image points reprojection.
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8.1.2 Research Question Nº1 – Results

For the sake of brevity of this chapter the sections that answers to this research question were 
included at the end of this thesis on Appendix A and Appendix F (see Appendix A: Stereo Imaging 
and Appendix F: Motion for more details). The first appendix introduces the theory involved in the 
stereo vision process and presents a short description of the main OpenCV function used along the 
research for stereo cameras calibration, stereo rectification and stereo correspondence.  

8.1.3 Research Question Nº2 – Results

8.1.3.1 Calibration Method.
To determine the better calibration method  M1 (calibration parameters are first computed and 

then used as initial guess for the stereo relations estimation) or  M2 ( calibration parameters and 
stereo relations are estimated all at the same time) were performed the calibration process using 17 
groups of calibration views with both methods.

The next tables (Table 8.7,  Table 8.8, and  Table 8.9) list  the results obtained for fx and k2 
parameters. This two  parameters were chosen by the researcher because they are key parameters 
for the image undistortion and the 2D to 3D points reprojection process.

To reduce the amount of data to be presented was selected only the most representative stereo 
configuration set from each laboratory session. For the first laboratory (L01) was chosen the stereo 
configuration set S03. The results obtained are the following ones:

Table 8.7: L01 Set S03 Calibration Methods Study Using fx and k2 Parameters
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For the second laboratory (L02) was chosen the stereo configuration set S03 results as follows:

Table 8.8: L02 Set S03 Calibration Method's Study Using fx and k2 Parameters

Comparing the mean (M) and standard deviation (STD) values in  Table 8.7 and Table 8.8 was 
possible to conclude:

1. Method  M2 has slightly better results than method  M1 for fx and k2 parameters on both 
cameras.

2. The radial distortion coefficient k2 estimation has higher STD values than the focal length 
estimation, also, for both tables k2 value presents higher STD values for the second camera 
(CAM2)  than the first camera(CAM1). 

3. Comparing  STD values from  L01 and  L02 is possible to observe that better  results were 
obtained for the second experiment. This difference between the L01 and L02 results were 
due significant improvements on the second laboratory experiment's procedure.

The next table (see Table 8.9) presents the results obtained from the stereo video sequences  for 
calibration recorded during the third laboratory sessions (L03). 

 



 70
For the third laboratory session (L03) was chosen the stereo configuration video sequence set S04 

as follows:

 

Table 8.9: L03 Set S04 Calibration Method's Study Using fx and k2 Parameters

From L03 results (seeTable 8.9) is possible to conclude that fx and k2  STD's values improved 
substantially, the following observation were taken:

1. The  parameters  obtained  with  calibration  method  M1 had  smaller  STD values  than 
calibration method M2. 

2. Calibration parameters values computed for  CAM2 have higher errors comparatively with 
CAM1 as  observed  for  L01 and  L02 results.  This  error  are  more  visible  for  the  radial 
distortion coefficient k2.   

By  comparing  the  results  obtained  with  L01,  L02,  and  L03 is  possible  to  observe  that  the 
calibration  results  obtained  from  the  L03's video  sequences  had  significantly  improved.  This 
improvements  were  due  few  changes  and  considerations  taken  in  account  for  L03 during  the 
process of recording video sequences for calibration, as listed below:

• Lightning conditions were improved by using proper LED's arrays for high-speed framing.

• Both Phantom v.91 camera's lenses were correctly focused on a focal-plane from where the 
sequence of calibration views were captured.

• Contrary  to  L01 and  L02,  on  L03 experiment  was  avoided  the  used  of  lens 
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maximum/minimum focal length range where the distortions are more visible. 

• While on L01 and L02 were used high frame rates (100 and 1000 respectively) for L03 was 
used 90 fps to allow more recording time and capture calibration views with rich positions 
and orientations, i.e.  object calibration images which the position and orientation varies 
considerably from frame capture to frame capture.   

• Smaller image resolution (960x720) were used to capture video sequences with phantom v. 
9.1 camera's and avoid the higher distortion that are more notable in the sensor corners. 

• During L03 was used the CSR feature to compute the pixel offset for the current frame rate, 
resolution and exposure settings, giving a more precise compensation of the pixel errors 
and better calibration results.

Calibration methods  M1 and  M2 gave similar results, method  M1 proved to give better results 
with the data collected during the third laboratory where the procedure errors were minimized and 
the video recording settings were properly chosen, also, taking in account computational costs, 
method M1  is less demanding and less time consuming. and therefore M1 was the method used  in 
this case study to perform the stereo calibration process.

8.1.3.2 Optimal Number of Calibration Views.
The literature suggests that to perform camera calibration with OpenCV a number between 30 

and 100 calibration views should be used, however this value depends highly on the calibration 
views quality such as sharpness, luminosity, rich sets of positions and orientations, and the area 
covered by the calibration object on the image. 

After performing the calibration for the 17 different groups of calibration views was studied 
how the camera's focal length evolve to determine the optimal number of calibration views. Figure
8.1 shows camera's focal length results obtained for L01 set S03 calibration views as follows:

 

Figure 8.1: L01-S03Focal Length vs Nº of Calibration Views (M1 and M2).
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Figure 8.2 shows camera's focal length results obtained for  L03 set  S04 calibration views as 

follows:

Based on the L01 set S03 and L03 set S04's plots ( Figure 8.1 and Figure 8.2 ) was possible to take 
the following conclusions:

1. The focal length values were acceptably stable, i.e. with small variations for a number of 
100 calibration views.

2. The focal length parameter estimation for the second camera (fx CAM2 and fy CAM2 plots) 
had in general higher fluctuations than the first camera (fx CAM1 and fy CAM1 plots). This 
difference between values are justified by the fact that after a thorough video analysis were 
detected few small dark regions on the image caused by dust particles in one phantom v9.1 
camera's sensor. 
 

3. Calibration parameters converge faster for calibration views with higher quality, i.e. image 
focus, illumination conditions and area percent occupied by the calibration object.  Figure
8.3 shows two calibration views from L02 set S03 and L04 set S04 where the image quality 
differences between both views are evident.

Figure 8.2: L03-S04 Focal Length vs Nº of Calibration Views (M1 and M2).

Figure 8.3: Single calibration view from L02 set S03 (a) and L03 set S04 (b).
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From Figure 8.3 is possible to observe that  L02 set  S03 view's focus and illumination used to 
capture the video sequence set were poor, also, the view shows that the image area occupied by the 
calibration object is small when compared with the area occupied by L03 set S04 view (Figure 8.3 
(b)). This analyse is corroborated with the results shown in  Figure 8.4 where the camera's focal 
length values obtained for the same set (L02 set S03) do not converge for 100 views as in L01 set S03 
and L03 set S04 cases, previously presented. 

Additionally  to  prove  the  object  calibration's  position  and  orientation  influence  on  the 
calibration parameters estimation a list of calibration views from L03 set  S04 video sequence was 
built intentionally with 150 consecutive images and the calibration process performed. Figure 8.5 
shows the camera's focal length results obtained with this list of calibration views.

Figure 8.4: L02-S03 Focal Length vs Nº of Calibration Views (M1 and M2).

Figure 8.5: L03-S03 Focal Length vs Nº of Calibration Views (M1 and M2).
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From  Figure 8.5 is  possible  to  observe that  calibration views with poor  POSE,  i.e.  views with 
similar object's position and orientation, does not provide additional information to the equations 
involved on the calibration parameters and stereo relation estimation process. Adding similar views 
causes the algorithm to diverge from the solution, this is easily seen by comparing the plots in 
Figure 8.5 and in Figure 8.2. 

To avoid bad calibration results the researcher used about 100 views from all the video sequence 
range, for example, the L03 set S04 stereo video sequences allowed to obtain 8131 calibration views 
thus for each 81 images (8131/100) only 1 image was considered, or in other words, only images 
multiple of 81 were considered for calibration purposes.

The  number  of  calibration  views  necessary  for  the  stereo  calibration  process  is  highly 
influenced by the calibration views quality such as image sharpness, how good the images were 
illuminated and the overall image area occupied by the calibration object. The variations of the 
calibration object's position and orientation are also important to obtain good results.

 The optimal number of calibration views using stereo video sequences with satisfactory quality, 
such as L03 sets in which the video capturing settings and experiment procedure revealed to be the 
best from all three laboratories, was defined to 100 calibration views.      

8.1.3.3 Calibration Parameters Optimization.
In order to improve the calibration parameters and stereo configuration relations a method was 

implemented  to  exclude  the  views  with  higher  errors  contributions.  Figure  8.6 shows  the 
implementation methodology using,  without loss of generality,  L03 set  S04 calibration views as 
example. 

Figure 8.6: Calibration parameters optimization (Method M3). 
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The plots illustrated in Figure 8.6 shows the mean Euclidean distance between projected (built 

from calibration object points) and reprojected images points (retrieved from calibration views by 
detecting the chessboard corners) for each left and right view. The upper horizontal lines defined 
the acceptable interval [0; M+STD], i.e. the mean of means plus the standard deviation, in which the 
calibration views were considered good for calibration purposes. Once the stereo configuration 
relations estimation required that the left and right images to be synchronized the smaller [0; M + 
STD] interval (in this case the right views interval) was used to filter both left and right calibration 
views, i.e. if one left(right) calibration view was excluded its right(left) corresponding view was 
also excluded to maintain the synchronization. 

In the next table (Table 8.10) are presented the results  obtained with calibration parameters 
optimization method (M3). The main value used to evaluate the improvements was the reprojection 
error (RE) given by OpenCV's calibration function ( cv::calibrateCamera( ) ) using the full set of 
calibration views (Nº Views - Initial) and using the final number of views (views not excluded = Nº 
Views (Final) ) .

Table 8.10: Stereo Calibration Parameters Optimization Results (L01, L02, and L03)

The reprojection error returned by the OpenCV single camera calibration function is obtained 
by computing the difference between the reprojected and project image points and then computes 

Stereo Calibration Parameters Optimization Results (L01, L02, and L03) 
Input/Output Calibration Parameters Optimization's Variables

Input Variables Output Variables

L01 -S01
Left 100  30  40 38.88  74 26.67
Right 100  30  40 37.63  74 25.30

L01 -S03
Left 100  40  56 2182.44  74 657.53
Right 100  40  56 2085.77  74 618.58

L02 -S01
Left 100  40  56 34.88  87 16.78
Right 100  40  56 44.99  87 20.71

L02 -S02
Left 100  40  56 197.59  91 128.83
Right 100  40  56 106.16  91 85.56

L02 -S03
Left 100  40  56 63.53  73 18.95
Right 100  40  56 78.49  73 25.87

L02 -S04
Left 100  10  64 185.28  81 89.29
Right 100  10  64 190.57  81 98.10

L03 -S02
Left 100  30  40 55.39  76 36.38
Right 100  30  40 54.27  76 35.50

L03 -S03
Left 100  30  40 55.15  86 38.73
Right 100  30  40 60.08  86 42.54

L03 -S04
Left 100  40  56 33.71  81 19.35
Right 100  40  56 1193.29  81 18.99

Lab–Stereo
Config. Set

Calibration
 Views

Nº Views
(Initial)

Obj. Square
Size [mm]

Corners
[nx x ny]

RE(Initial)
[pixel]

Nº Views
(Final)

RE (Final)
[pixel]

Note.
         - The number of calibration views used to perform stereo calibration parameters optimization was 
 exactly 100 views for all the sets.
        - RE is the reprojection error (in pixel units) returned by OpenCV's single camera calibration function 
( cv::calibrateCamera( ) ) for each left and right camera.



 76
the absolute norm of the resulting difference as formulated in eq. (8.1.1 and eq. (8.1.2.

The different between the projected and reprojected is given by the next formula:

distance ( I)=projectedPoint ( I)−reprojectedPoint ( I )  (8.1.1)

And the final reprojection error is given by the absolute norm as follows:

reprojError=√∑I
distance (I )2  (8.1.2)

To better illustrate the reprojection errors a stereo configuration with two A4Tech cheap web 
cams were used to perform the stereo calibration with a 12-by-9 calibration pattern. In (Figure 8.7) 
the darker points(red) are the projected points and the brighter points (green) are the reprojected 
points  that ideally would overlap each other meaning that the reprojection error was null. 

By comparing both reprojection errors RE(Initial) and RE(Final) listed in Table 8.10  is possible 
to observe that the method implemented research improved significantly the calibration results, the 
reprojection errors  obtained with  M3 method for all  the cases were minimized what  allows to 
conclude that the calibration parameters were obtained with better precision.  This approach allows 
to minimize the errors introduced by excluding calibration views with higher error and reduce the 

Figure 8.7: Calibration view's reprojection/projected image points.
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number of images saving computational costs. Thus to compute the calibration parameters and 
stereo relations this case study used M1 together with M3 to ensure good results.  

 The next three tables (  Table 8.11,  Table 8.12, and Table 8.13) present the calibration results 
obtained using all  the data recorded for stereo calibration purposes during the three laboratory 
experiments. The calibration parameters were computed using all three calibration methods (M1, 
M2, and M3) , although, as mentioned before only the parameters resulting from M3 were used for 
the next stereo vision operations.  

In general lines, the calibration method that allows to achieve better calibration results with less 
computational efforts is the calibration method M1. A number of 100 calibration views was defined 
as the optimal number of stereo views for calibration, however, was concluded that this number 
highly depends on the camera capturing settings and how the images were captured. 

Additionally  the  calibration  parameters  optimization  approach  proved  to  be  efficient  on 
minimizing reprojection errors by excluding calibration views with higher errors contributions. 

The next stereo vision operations used, as defined by the research findings, the output results 
obtained from calibration process M1 followed by M3 with 100 calibration views.
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Table 8.11: Laboratory L01's Camera Calibration Parameters (Methods M1, M2, and M3)

Laboratory L01's Camera Calibration Parameters (Methods M1, M2, and M3)
Camera Intrinsic Parameters Camera Extrinsic Parameters

Focal Length [mm] Principal Point Coord. [pixel] Radial Distortion Coeffs. Tangential Distortion Coeffs.

fx fy cx cy k1 k2 p1 p2

S01

M1 CAM1 59.68 59.83 808.8753 600.0410 -0.0118 3.6606 -0.0097 -0.0130
CAM2 60.38 60.55 788.6118 619.5446 -0.1979 7.4484 -0.0080 -0.0189

M2 CAM1 59.10 59.18 848.6056 541.3404 0.1963 0.7019 -0.0117 -0.0004
CAM2 59.86 59.69 996.1479 493.2986 0.2984 -0.1761 -0.0123 0.0226

M3 CAM1 59.84 59.99 809.2514 593.2351 0.0136 3.4153 -0.0100 -0.0119
CAM2 60.45 60.62 788.8335 615.2770 -0.1794 7.4277 -0.0078 -0.0181

S03

M1 CAM1 56.74 56.93 449.1972 479.7300 0.6711 -4.8720 0.0471 0.0020
CAM2 56.90 57.20 469.0646 474.4410 0.9010 -12.7002 0.0558 -0.0029

M2 CAM1 57.64 59.18 387.1714 780.6228 0.4407 4.4899 0.1034 -0.0105
CAM2 58.30 60.75 455.1416 891.9835 0.5813 2.3352 0.1347 -0.0064

M3 CAM1 55.85 56.24 430.1722 611.9272 0.5112 -3.2350 0.0507 -0.0035
CAM2 56.31 56.79 459.8256 584.9412 0.8848 -12.6529 0.0629 -0.0032

Stereo
 Configuration

Calibration 
Method

Stereo
Camera

Note. -For each stereo configuration (S02, S03, and S04) was performed the calibration process using all three methods M1, M2, and M3.   
          -The radial distortion parameter K3 is only used for wide-angle lenses, thus its value was set to zero for all the cases (k3 = 0) .
          -Focal length in [mm] units was obtained by multiplying focal length [pixel] by 0.0115 factor.
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Table 8.12: Laboratory L02's Camera Calibration Parameters (Methods M1, M2, and M3)

Laboratory L02's Camera Calibration Parameters (Methods M1, M2, and M3).
Camera Intrinsic Parameters Camera Extrinsic Parameters

Focal Length [mm] Principal Point Coord. [pixel] Radial Distortion Coeffs. Tangential Distortion Coeffs.

fx fy cx cy k1 k2 p1 p2

S01

M1 CAM1 24.98 24.97 336.8382 261.2730 -0.0831 -1.7970 -0.0004 -0.0001
CAM2 24.68 24.66 322.5725 255.9965 -0.0847 -0.8093 0.0016 -0.0010

M2 CAM1 24.95 24.93 336.5431 260.2869 -0.0922 -1.0727 -0.0004 -0.0001
CAM2 24.69 24.68 323.1908 253.6667 -0.0927 -0.6585 0.0013 -0.0013

M3 CAM1 24.99 24.98 337.4393 268.4330 -0.1011 -0.9363 0.0007 0.0000
CAM2 24.66 24.66 321.7637 249.9241 -0.1322 0.3174 0.0009 -0.0024

S02

M1 CAM1 23.37 23.32 288.8707 296.9317 0.0222 -1.5383 0.0018 -0.0008
CAM2 24.32 24.35 318.2352 199.0930 -0.0455 -0.6280 -0.0093 -0.0008

M2 CAM1 24.12 24.06 298.2936 275.6501 0.0703 -2.1384 0.0010 -0.0066
CAM2 24.14 23.98 253.4934 213.6382 -0.0501 -1.4671 -0.0072 -0.0016

M3 CAM1 23.85 23.83 309.1700 294.9672 0.0045 -1.3286 0.0023 -0.0014
CAM2 24.28 24.32 316.8497 202.1186 -0.0423 -0.9497 -0.0087 -0.0010

S03

M1 CAM1 24.74 24.74 328.7818 246.9087 -0.0848 -0.3140 0.0010 0.0002
CAM2 24.97 24.96 338.6817 266.0031 -0.0979 0.2569 0.0008 0.0005

M2 CAM1 24.75 24.74 328.8060 247.2105 -0.0751 -0.4442 0.0013 0.0005
CAM2 24.91 24.91 338.5166 265.5181 -0.1011 0.3365 0.0006 0.0005

M3 CAM1 24.72 24.72 325.0836 249.0191 -0.0939 -0.1013 0.0011 -0.0004
CAM2 24.95 24.95 337.8664 267.1120 -0.1001 0.2064 0.0008 0.0004

S04

M1 CAM1 37.04 37.09 356.8004 276.5897 - - - -
CAM2 35.94 35.73 273.7458 316.6878 - - - -

M2 CAM1 31.97 24.40 310.3517 274.5467 - - - -
CAM2 10.65 7.33 717.8691 318.3000 - - - -

M3 CAM1 37.23 37.31 370.7265 286.5862 - - - -
CAM2 35.80 35.62 263.6681 359.1597 - - - -

Stereo
 Configuration

Calibration 
Method

Stereo
Camera

Note. - For each stereo configuration (S02, S03, and S04) was performed the calibration process using all three methods M1, M2, and M3.   
          - The radial distortion parameter K3 is only used for wide-angle lenses, thus its value was set to zero for all the cases (k3 = 0) .
          - Focal length in [mm] units was obtained by multiplying focal length [pixel] by 0.0115 factor.
          - A dash indicates that the solution for the extrinsic parameters did not converge and therefore were excluded from the table .  
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Table 8.13: Laboratory L03's Camera Calibration Parameters (Methods M1, M2, and M3)

Laboratory L03's Camera Calibration Parameters (Methods M1, M2, and M3).
Camera Intrinsic Parameters Camera Extrinsic Parameters

Focal Length [mm] Principal Point Coord. [pixel] Radial Distortion Coeffs. Tangential Distortion Coeffs.

fx fy cx cy k1 k2 p1 p2

S02

M1 CAM1 28.29 28.23 427.0194 407.6665 -0.0138 0.2953 0.0058 -0.0171  
CAM2 28.88 28.88 361.7643 398.8051 0.0719 -2.1130 0.0084 -0.0164  

M2 CAM1 28.22 28.17 433.5200 410.3129 0.0017 -0.0450 0.0060 -0.0157  
CAM2 28.49 28.50 373.6059 414.3428 0.0154 -0.5966 0.0084 -0.0167  

M3 CAM1 28.36 28.28 420.3281 401.6675 -0.0042 0.2235 0.0055 -0.0186  
CAM2 28.89 28.89 368.2153 388.8090 0.0735 -2.1017 0.0074 -0.0150  

S03

M1 CAM1 28.15 28.15 450.7431 422.3490 -0.0611 0.2979 0.0065 -0.0100  
CAM2 28.49 28.48 435.1483 393.8991 -0.0654 0.5371 0.0059 -0.0108  

M2 CAM1 28.08 28.08 449.4412 428.3461 -0.0662 0.2814 0.0066 -0.0097  
CAM2 28.41 28.41 433.8292 406.7362 -0.0655 0.4295 0.0067 -0.0105  

M3 CAM1 28.14 28.14 443.2408 424.7560 -0.0496 0.1740 0.0070 -0.0114  
CAM2 28.50 28.48 418.5513 403.7597 -0.0524 0.3779 0.0071 -0.0134  

S04

M1 CAM1 28.05 28.06 531.7591 377.4580 -0.0677 0.1012 0.0002 0.0004  
CAM2 28.51 28.52 499.2459 353.3265 -0.1146 0.9398 -0.0007 -0.0002  

M2 CAM1 28.08 28.08 532.1768 380.6691 -0.0679 0.0895 0.0007 0.0005  
CAM2 28.42 28.42 504.0630 355.3895 -0.1153 1.0618 -0.0005 -0.0003  

M3 CAM1 28.05 28.05 532.6571 378.2843 -0.0670 0.0783 0.0004 0.0005  
CAM2 28.38 28.37 523.9434 361.1249 -0.0600 0.0276 0.0006 0.0004  

Stereo
 Conf.

Calibration 
Method

Stereo
Camera

Note. -For each stereo configuration (S02, S03, and S04) was performed the calibration process using all three methods M1, M2, and M3.   
          -The radial distortion parameter K3 is only used for wide-angle lenses, thus its value was set to zero for all the cases (k3 = 0) .
          -Focal length in [mm] units was obtained by multiplying focal length [pixel] by 0.0115 factor.



 81

8.1.4 Research Question Nº3 – Results
The purpose of this research question was to compute the remapping maps and the disparity-to-

depth  matrix  using  two  approaches:  the  uncalibrated  stereo  rectification  based  on  Hartley's 
algorithm and the calibrated stereo rectification based on Bouguet's algorithm. 

8.1.4.1 Uncalibrated stereo rectification.
The uncalibrated method implementation revealed to be inefficient, the stereo video captures 

after  being  submitted  to  undistortion+remapping  process,  using  the  remapping  maps  obtained 
during uncalibrated rectification, lost all the 2D information needed to recover 3D data.

The  rectification  transformation  matrices  (rotation  matrices)  R1 and  R2 obtained   from the 
rectification  homography  matrices  were  the main  error  sources.  To  compute  the  fundamental 
matrix was considered that camera's distortion were significantly small and therefore were used the 
original image points without being submitted to undistortion, this may have introduced errors on 
the fundamental matrix estimation that in its turn was used to obtain H1 and H2 . To track the error 
source was verified the rotation matrices orthogonality for one case (L03 set  S04), without loss of 
generality. The orthogonality results are presented next:

I=R1∗R1
T⇒ I=1.0e-003[0.302934 0 0

0 0.418937 0
0 0 0.466325]

I=R2∗R2
T⇒ I=[1.109173 0 0

0 0.993053 0
0 0 0.897953]

From the indentity matrix (I) resulting from the orthogonality condition was possible to observe 
that while the right rotation matrix (R2) had small errors (I's main diagonal values close to 1) the 
left rotation matrix (R1) was not orthogonal as expected justifying the bad results obtained for the 
uncalibrated process. 

8.1.4.2 Calibrated stereo rectification.
The calibrated rectification method was the method that revealed to be very efficient, the next 

figures (Figure 8.8 and Figure 8.9) shows the stereo video capture without rectification and with 
stereo rectification, respectively. 

Figure 8.8: Stereo video capture without rectification.
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The drawback of performing the rectification is mainly connected with the fact that some parts 

of the image that may contain important information are transformed into outliers (grey area Figure
8.9) or are cropped as the images shifted towards each other. 

From the next figure (Figure 8.9) was possible to observe that after both left and right stereo 
video captures were submitted to undistortion+rectification they became row aligned as expected, 
this allows also to conclude that the calibration/rectification maps were correctly estimated. To 
provide a comparison with the uncalibrated method the rotation matrix orthogonality was verified 
for R1 and R2 as follows:

I=R1∗R1
T⇒ I=[ 0.977732 −0.003397 −0.018870

−0.003397 0.996585 0.000016
−0.018870 0.000016 0.981113 ]

I=R2∗R2
T⇒ I=[ 0.935669 −0.002870 −0.061460

−0.002870 0.997084 0.000045
−0.061460 0.000045 0.938494 ]

From both I matrices was possible to conclude that, contrary to the uncalibrated methodology, R1 
and R2 are orthogonal i.e. I matrices obtained were very close to identity matrices form as required 
for any three-dimensional rotation matrix.

  

8.1.5 Research Question Nº4 – Results
In order  to answer this  research question were used the output results  obtained after  stereo 

calibration  parameters  optimization  (calibration  method  M3).  The  stereo  configuration 
measurements  taken during the three laboratory sessions and the stereo configuration relations 
obtained from calibration process, rotation matrix R that brings the right camera to the left camera's 

Figure 8.9: Stereo video capture after calibrated stereo rectification.
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orientation and the translation vector T that brings the right camera to the left camera's position, are 
summarized in the next tables (see Table 8.14 and Table 8.15).

Table 8.14: Laboratory Stereo Configuration's Measurements

Table 8.15: Stereo Configuration's Relations 

From Table 8.14 and Table 8.15 was possible to make few observations. 

• For some stereo configuration each left and right camera had different sample rate (fps) as 
in  the case of  L01-S01 set.  The stereo configuration relations  estimation proved to give 
different results when compared with the case where the cameras, using exactly the same 
stereo configuration,  were synchronized as  in  L01-S03  set  (see  Table 8.1 for video files 
capture settings). 

• From  L02-S04 stereo video set is possible to observe that higher rotation angles between 
cameras introduced higher errors on the translation vector estimation. 

• In the case of the sets were the distances between cameras were kept unchanged, as the case 
of  L03-S02 and  L03-S03 sets, was possible to observe that by only changing the cameras 

Stereo Configuration's Relations
Euler Angles [degrees] Quaternion Components Translation [mm]
Φ Θ Ψ q1 q2 q3 q4 Ty

L01-S01 -0.78 -6.05 1.24 -0.0105 0.0528 0.0062 0.9985 379.18 3.91 135.82
L01-S03 -0.95 -6.33 -0.11 0.0014 0.0552 0.0083 0.9984 372.67 5.96 95.84
L02-S01 -0.94 -12.68 0.17 -0.0006 0.1105 0.0080 0.9938 409.05 8.64 46.69
L02-S02 -0.58 -13.26 -1.91 0.0172 0.1154 0.0069 0.9931 327.19 8.90 92.87
L02-S03 0.61 11.73 -0.40 0.0040 -0.1022 -0.0057 0.9947 -456.94 -12.42 4.15
L02-S04 -5.64 44.76 -7.62 0.0427 -0.3825 0.0201 0.9227 -1049.69 -119.91 337.96
L03-S02 0.61 12.61 0.68 -0.0053 -0.1099 -0.0046 0.9939 -463.06 22.86 26.20
L03-S03 0.80 18.44 0.65 -0.0045 -0.1602 -0.0059 0.9871 -438.73 23.31 32.67
L03-S04 0.38 22.25 0.71 -0.0054 -0.1929 -0.0021 0.9812 -433.08 23.99 110.99

Lab-Stereo
Configuration Tx Tz

Note. Euler angles and Quaternion components were obtained by parametrizing the stereo configuration rotation matrix. The Euler angles 
represents the rotation matrix that brings the right camera to the left camera orientation. Translation represents the translation vector that bring
 the right camera to the left camera position.       

Laboratory Stereo Configuration's Measurements

L01-S01 (410) 3080.00
L01-S03 (410) 3080.00
L02-S01 (445) 1850.00
L02-S02 (445) – 50 2230.00
L02-S03 (445) + 50 2230.00
L02-S04 (445) + 30 2230.00
L03-S02 (390) + 90 1930.00
L03-S03 (390) + 90 1930.00
L03-S04 (390) + 115 2080.00

Lab-Stereo
Configuration

Distance Between Stereo 
Configuration's Cameras. [mm]

Distance Between Stereo 
Config. and MELFA robot.[mm]

Note. The dimensions inside brackets were obtained by measuring the distance between
each camera's lens center, this measure only gives an approximation once the real distance
between camera sensors is not possible to obtain with direct measurements. The second
distances were set by using the Manfrotto sliding plate.   



 84
orientations caused the translation variables (Tx, Ty, Tz) to change. 

8.1.6 Research Question Nº5 – Results
In order to answer this research question two approaches were implemented.  To compute the 

dense disparity image from a (undistorted + rectified) pair of stereo video captures were used the 
OpenCV stereo Block Matching, Semi Global Block Matching or the non real-time Graph-Cut 
Matching algorithm. The dense disparity results obtained using dense stereo matching methods did 
not provide good disparity results and the method proved to be unreliable, with the given stereo 
video sequences, to obtain the depth for all the image points. In the next figure (see Figure 8.10) is 
presented the disparity image obtained from stereo matching with L03-S02 stereo video capture.

As shown in  Figure 8.10 the disparity image obtained by using the stereo Block Matching 
algorithm with  default  settings  available  from OpenCV libraries  results  in  a  great  number  of 
outliers i.e. pixel disparity values which are outside an interval defined by [min disparity; max 
disparity].

Alternatively,  using  the  sparse  tracking  techniques  approach  with  pyramid  Lucas-Kanade 
tracker code sparse sets of 2D points were projected to 3D space and then compared with the MELFA 
robot's 3D path. 

Figure 8.10: Stereo matching using Block-Matching algorithm.
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The following figure (Figure 8.11) shows the 3D path programmed with MELFA RV-2AJ software 

with a sampling time equal to 50 ms.

The next  figure (Figure 8.12)  contains  the plot  of  the same  3D path obtained with a  better 
sampling time of 10 ms. This path was the path taken in consideration for further analysis. 

The next figure (Figure 8.13) shows the 3D path recovered using the sparse matching  method 
implemented on this research. The two paths (green, red) are related to each camera coordinates 
system, the green path is the 3D path seen by the stereo configuration's left camera and the red is 
the 3D path related to the stereo configuration's right camera coordinate system.  

Figure 8.11: MELFA RV-2AJ 3D Path (sampling time: 50ms).

Figure 8.12: Figure 8.8: MELFA RV-2AJ 3D Path (sampling time: 10ms).
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To obtain the same path as in the previous figure (Figure 8.13) on the MELFA robot's coordinate 
system al the points were transformed using the point-line-plane approach as presented on the 
methodology section. 

The next figure (Figure 8.14) presents the resulting  3D path after being transformed with the 
rotation and translation that bring the camera coordinate system to the  MELFA robot system as 
defined in the methods section (see Posttest. from Methods section for more details). Additionally, 
using the MELFA RV-2AJ robot's external dimensions, was performed a pure translations to relate the 
points into robot's coordinate system origin. 

Figure 8.13: MELFA robot's recovered 3D path(camera coordinates system).

Figure 8.14: MELFA robot's recovered 3D path (robot coordinate system).
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To test the point-line-plane coordinate system transformation were used a generic set of points 
defined  in  the  3D space  (  P0=[100  100  1000] ,  P1=[200  100  1000] , 

P yz=[100  300  1100 ] ) to build the direction cosines matrix and translation vector. The next 
figure ( see  Figure 8.15) is displayed the same  3D paths as in  Figure 8.13 transformed into the 
generic coordinate system.

 
From the results obtained was possible to make different observations. The final 3D path shape 

obtained with the Lucas-Kanade sparse stereo matching approach presents similarities with the 
path obtained from MELFA software. However, the 3D points recovering process has errors resulting 
from the 2D to 3D reprojection process, the reprojection errors were amplified when the 3D points 
were transformed from camera's coordinate system to robot coordinate system due the fact that the 
computed 3D points were used in the point-line-plane implementation to obtain the transformation 
matrix (rotation and translation). This observation was easily verified by projecting the 3D path in 
camera's coordinates, Figure 8.13, to a generic coordinate system defined in the 3D space by three 
arbitrary points, the transforming test is shown in Figure 8.15. 

Figure 8.15: MELFA robot's recovered 3D path (generic coordinate system).
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9 Chapter Five
9.1 Discussion 

9.1.1 Introduction
To recover 3D information from stereo video sequences three main processes are required. The 

first  and  main  process  allows  to  compute  the  cameras  calibration  parameters  and  stereo 
configuration relations estimation, the results obtained from this operation determined how precise 
the following operation's results are obtained. The second process consists on implementing the 
(uncalibrated/calibrated)  stereo  rectification  process  to  produce  the  (undistortion+rectification) 
maps necessary to correct image's radial and tangential distortion and transform the stereo captures 
so  they  became  row-aligned  and  coplanar  as  if  they  were  captured  from  a  canonical  stereo 
configuration.  From rectification  process  is  also  obtained  the  disparity-to-depth  transformation 
matrix, this matrix  is the most important element on the process of transforming 2D image points 
to  3D space. To recover  3D information is necessary to perform the stereo matching operation to 
match the left  image points with the right image points in such a way that both image points 
correspond to the same object's point in the scene. 

This case study utilized the OpenCV image processing platform together with Microsoft Visual 
Studio 2008 software to  implement  a  program for  recovering  3D points  from video sequences 
captured with two Phantom v9.1 high-speed cameras on a stereo configuration,  it  utilized two 
pretest  laboratory  sessions  and  one  intervention  laboratory  session.  Measurements  included 
building different  stereo  configurations  with two Phantom v9.1 high-speed cameras  to  capture 
video sequences of a  MELFA RV-2AJ robot executing a simple  3D path, and additionally capture 
video sequences of a planar calibration object to calibrate each stereo configuration. 

To perform the stereo cameras calibration and stereo relations estimation two methods were 
implemented to determine which allowed to obtained better results, additionally, a  third option 
was implemented to optimize the calibration parameters results. To rectify the stereo video captures 
the calibrated and uncalibrated rectification methods were implemented. For the last  operation, 
stereo matching process, were implemented two approaches, the first approach allows to compute 
the dense disparity image using OpenCV stereo matching algorithms, and for the second approach 
a sparse matching method was implemented. The sparse matching method made use of Lucas- 
Kanade Pyramid optical flow method to match sparse set of points and reproject them to 3D space. 

9.1.2 Discussion 

9.1.2.1 Research question nr. 1 – discussion.
Research question:  Which are the OpenCV main functions involved in the process of: stereo  

camera calibration, stereo image rectification, stereo matching and points reprojection  into  3D 
space,  and  Lucas  –  Kanade  Pyramid  optical  flow  method.  What  are  the  inputs  and  outputs  
arguments of those functions.

As mentioned in the previous chapters, the answer to this question constitutes by itself a review 
of the theory under the OpenCV main algorithms used to implement the researcher-made program 
implemented for this case study. The Appendices A and F presents the answer to this question( see 
Appendix A: Stereo Imaging and Appendix F: Motion). 
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The  review  was  done  based  on  the  book  from  Bradski  et  al.  (2008)  to  provide  a  better 
understanding and broader knowledge of the functions available from OpenCV.

The researcher started by using the old C programming language platform to implement the 
main program however after few programming attempts using the new OpenCV 2.1 C++ approach 
it was evident  that the new OpenCV C++ platform had better performance, less memory leakage, 
specially when dealing with real-time video operations, and less programming once all the memory 
deallocation  were  performed  automatically,  furthermore  the  C++  STL's  containers  and  iterators 
made easy to work with image and points storing operations allowing the researcher to focus more 
his attention on other important issues during the research. 

9.1.2.2 Research question nr. 2 – discussion.
Research question: How to compute camera calibration parameters using a planar calibration  

object known as chessboard and how to relate two cameras in a stereo configuration. How many  
calibration  views  are needed to  perform the  stereo  calibration  process  and which  calibration  
method (with and without initial guess to compute stereo relations) gives better results. How to  
optimize the stereo calibration process and improve the calibration parameters results.

To answer to the proposed research questions were implemented different functionalities that 
allowed  to  perform  the  calibration  process  given  different  inputs:  a  text  file  with  a  list  of 
calibration views, stereo avi files for calibration purposes, or real time video capture. To compute 
the  calibration  parameters  were  implemented  two methods  (M1 and  M2)  and  additionally  was 
implemented a method to improve the calibration results. 

Calibration method. 

The calibration study based on two main calibration parameters  f x  and  k 2 obtained by 
performing the stereo calibration by using calibration methods M1 and M2 with 17 distinct groups 
of  calibration  views  was  designed  to  determine  which  calibration  method  provided  the  best 
approach to compute the calibration parameters and stereo configuration relations. In the next table 
(see Table 9.1) is presented a summary of the standard deviation values obtained from calibration 
method study.

Table 9.1: Calibration Method's Study Summary

Calibration Method's Study Summary
Calibration Method

M1 M2

CAM1 CAM2 CAM1 CAM2

L01-S03 4.75 11.13 4.16 10.12
STD(k2) 8.46 33.23 11.50 29.50

L02-S03 1.13 0.21 0.75 0.26
STD(k2) 2.23 8.02 1.93 7.89

L03-S04 0.27 0.68 0.32 0.40
STD(k2) 0.09 1.16 0.16 1.65

Lab – Stereo
Configuration

Comparison
 Values
STD(fx)

STD(fx)

STD(fx)

Note. STD is the standard deviation values for each fx, k2 parameter from Table 10.7, Table 10.8,
 and Table 10.9.
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The standard  deviation  results  obtained  with  calibration  method  M2 revealed  to  be  slightly 

smaller comparatively with M1 for the first two calibration sets (L01-S03 and L02-S03). Better results 
were obtained for both cameras (CAM1 and CAM2) using method  M1 with the data from the third 
laboratory (set L03-S04), this result may have been related to the fact that the data collected during 
the  third  laboratory  were  better  for  calibration  purposes.  In  addition,  this  conclusion  was 
consolidated with the literature that suggests method M1 is more robust than method M2, moreover 
M1 revealed to be less computationally demanding and time consuming, being the method used for 
the research. Also was possible to observe that parameters obtained from one of the cameras (CAM2 
in general) had higher standard deviations than the other camera, this fact could have been a result 
of dust detected in on of the camera's sensor after carefully re-analysing the video captures. 

From Table 9.1 is possible to verify that the reduction of standard deviations values for both 
calibration parameters were statistically significant from pretest (L01 and L02) to postest laboratory 
sessions (L03), this significant gains could have been a result of different improvements done along 
the three laboratory sessions and other considerations taken in account for the third laboratory:

• Lightning conditions were improved by using proper LED's arrays for high-speed framing.

• Both Phantom v.91 camera's lens was correctly focused on a focal-plane from where the 
sequence of calibration views were captured.

• The lens's  maximum and minimum focal  length  range,  where  the  distortions  are  more 
visible, were avoided from being used. 

• Low frame rates values (90fps) instead of higher values were used to allow more recording 
time  and  capture  calibration  views  with  rich  positions  and  orientations,  i.e.  object 
calibration  images  which  the  position  and  orientation  varies  considerably  from  frame 
capture to frame capture.   

• Smaller image resolution (960x720) were used to capture video sequences with Phantom v. 
9.1 camera's  avoiding the higher  distortion that  are  more notable in  the sensor corners 
(higher image resolutions). 

• CSR PCC's software feature was used to compute the pixel offset for the current frame rate, 
resolution and exposure settings, giving a more precise compensation of the pixel errors 
and better calibration results.

Optimal number of calibration views.
The literature suggests that a number of calibration views between 30 and 100 should be used to 

calibrate  a  stereo  configuration.  To  determine  this  value  was  performed  the  stereo  camera 
calibration using different number of calibration views (02 to 150) and studied how the focal length 
parameter behaved. While for some stereo configurations the focal length values were acceptably 
stable for a number of 100 calibration views (see  Figure 8.1 and  Figure 8.2) for others stereo 
configurations (see Figure 8.4 and Figure 8.5) the same parameters did not converge this may have 
been related to factors such as the following ones:

• Calibration parameters converge faster for calibration views with higher quality, i.e. image 
focus, illumination conditions and area percent occupied by the calibration object in the 
calibration view.  Figure 8.3 shows two calibration views from L02-S03 and  L04-S04 where 
the image quality differences between both views are evident.

• Poor calibration information. i.e. calibration views with similar position and orientations do 
not add any additional information but instead it may cause the algorithms to diverge from 
the real solution as shown in Figure 8.5.
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• Focal  length  values  computed  with  calibration  method  M1 converged  faster  with  less 

variations than the values obtained with calibration method M2. 

The  number  of  calibration  views  necessary  for  the  stereo  calibration  process  is  highly 
influenced by the calibration views quality such as image sharpness, and how good the images 
were  illuminated.  The  variations  of  the  calibration  object's  position  and  orientation  also  are 
important to obtain good results. 

Factors such as the area occupied by the calibration object in the image were difficult to control 
once the angle of convergence and the horizontal distance between the two stereo configuration's 
cameras made difficult the task of covering all the image resolution with the calibration object on 
both cameras at the same time to keep the synchronisation between cameras as required for the 
stereo configuration relations estimation.

Calibration parameters optimization.
To improve the calibration parameters was implemented a method that based on the difference 

between the reprojected and project calibration image points allowed to optimize the calibration 
parameters results. 

In Table 8.10 are presented the results obtained for the reprojection error (RE) before and after 
calibration optimization process  (calibration method  M3)  for  almost  all  the  sets  were obtained 
reprojection errors 30% smaller than initially verified, this improvements could have been a result 
of  the  methodology  implemented  that  allowed  to  eliminate  the  views  with  higher  error 
contributions and recompute the new parameters with only good calibration views.

Higher  reprojection  errors  were  verified  for  views  in  which  the  angle  formed between the 
camera imager plane and the the calibration object plane were  relatively big, i.e. angles higher 
than 60 degrees, however this value may only be used as a reference as this case study did not 
studied the influence of calibration object's orientations on the calibration parameters results. 

Was verified that for calibration views with high luminosity gradients or defocused images, 
despite of the algorithms did not failed to find all the calibration object corners it failed to find the 
proper corners identifying wrong points as being corners locations. To avoid this cases the detected 
corners were drawn over the calibration views to help to visualize if the corners were correctly 
detected.  

9.1.2.3 Research question nr. 3 – discussion.
Research  question:  Which  are  the  differences  between  using  calibrated  and  uncalibrated  

rectification methods and how to implement the image rectification process by means of using  
OpenCV functions. 

To answer this research question were implemented stereo rectification methods to compute the 
remapping maps and the disparity-to-depth matrix using two approaches: the uncalibrated stereo 
rectification - Hartley's method based on the procedure described by Bradski et al. (2008) and the 
calibrated stereo rectification available from OpenCV algorithms based on Bouguet's algorithm.

While the results produced by the calibrated method (see Figure 8.9) were satisfactory the same 
results were not verified for the uncalibrated stereo rectification. The resulting images obtained 
after applying the remapping  maps (undistortion+rectification) lost all its original information, this 
wrong outputs could have been  a result of systematic errors by using directly the detected image 
points  from  calibration  to  compute  the  fundamental  matrix  used  to  obtain  the  rectification 
transformation matrices (rotation matrices) R1 and R2. In addition, to corroborate the results, both 
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rotations matrices were subjected to orthogonality test, from the indentity matrix resulting from the 
orthogonality condition was possible to observe that while the indentity matrix (using R2) had its 
diagonal values close to 1, the orthogonality condition was not verified for R1 matrix as expected 
justifying the bad results obtained for the uncalibrated process.

9.1.2.4 Research question nr. 4 – discussion.
Research question:  How to parametrize the stereo relation's rotation matrix into Euler angles  

and quaternions and how to perform the transformation between this two rotation representations.

To answer this research question were implemented two algorithms that allowed to transform a 
rotation matrix to Euler angles and quaternion. To study the rotation angles' influence on the  right 
camera  position  estimation  the  stereo  configuration  translation  vector  T estimations  were  also 
included  in the same table (see Table 8.15).

For some stereo configuration, as the case of  L01-S01 and  L01-S03 sets, that used exactly the 
same stereo configuration (position and orientation), different results were obtained. The difference 
between the stereo relations estimations may have been related to the fact that the video sequences 
for calibration recorded  with different sample rates (asynchronous cameras'  capture) introduces 
errors on the stereo relations estimation.

The stereo relation's rotation matrix parametrization into Euler angles helped to visualize which 
angles had higher contributions for the rotation. Rotation angles around YY axis (on camera axis) 
had higher values what could have been a result of setting the angles between cameras' optical axis 
in such a way that the cameras' FOV area overlapped was maximized. 

The stereo configuration's translation vector had better estimations when smaller angles between 
cameras' optical axis were used to arrange the configuration, this could have been related to the 
fact  that  OpenCV stereo  calibration  algorithm requires  the  configuration  to  be  as  close  to  a 
canonical stereo configuration as possible.   

In some cases were the distances between cameras were kept unchanged between new stereo 
configurations, as the case of  L03-S02 and  L03-S03 sets, was observed that by only changing the 
cameras' orientation caused the stereo configuration's translation variables (Tx, Ty, Tz) to change, 
this may have been related to the fact that the cameras' rotation axis do not correspond to the same 
cameras' center of projection (or camera's coordinate system origin). 

9.1.2.5 Research question nr. 5 – discussion.
Research question: How to compute the disparity image and disparity of a sparse set of points  

given two rectified images captured from a stereo configuration previously calibrated.  How to  
reproject a sparse set of points to the 3D space.

To answer  this  research  question  two approaches  were  initially  implemented.  By using  the 
calibration  parameters  and  the  rectification  maps  given  by  the  previous  research  questions 
implementations  the video sequences  were remapped and matched using the dense and sparse 
stereo matching methods. 

Although good results were obtained from the rectification process when remapping the left and 
right  video capture  sequences  the  results  obtained  using  one  of  the  OpenCV stereo  matching 
algorithms (Block Matching,  Semi  Global  Block Matching,  or  Horn-Schunck)  did not  provide 
good disparity images, only some parts of the  3D scene were recovered and the stereo matching 
algorithms failed to fit the object's silhouettes accurately. The disparity images inaccuracy may 
have been related to the block matching settings used to perform the stereo-matching process and 
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to the high convergence angles values used between the two cameras' optical axis in the stereo 
configurations. 

The sparse stereo matching approach using Lucas-Kanade Pyramid tracker to track sparse set of 
points and perform the stereo matching approach allowed to recover 3D points without the need of 
working with all image resolution. To corroborate the results were tracked points over an end-
effector of a robot executing a known 3D path, the 3D path obtained by the stereo vision approach 
proved to be  similar  to  the  one  executed  by the  end-effector,  however,  the  direct  comparison 
between distances obtained with the computed 3D points and the real object's distances showed that 
the 2D images points reprojection into 3D space had errors associated, this errors are minimal for 
the standard stereo configurations that were arranged loser to a canonical stereo configuration and 
increase  for  the  stereo  configurations  with  higher  angles  between  cameras'  optical  axes.  The 
reprojection errors may have been related with the wrong stereo configuration relations estimations 
namely the horizontal distance (Tx) used in the disparity-to-depth reprojection. Also due the fact 
that the remapping process cropped parts of the image necessary to recover all 3D path the captures 
were only subjected to undistortion and this procedure could have been the major source of errors 
in the points disparity computation process.

The  3D points  transformation  from  cameras'  coordinates  system  into  the  MELFA  robot's 
coordinate system using the point-line-plane approach increased the  3D points error,  this could 
have been a result of using the computed 3D points, already affected with by reprojection errors, to 
build the transformation's direction cosine matrix and translation vector, this was easily proved by 
performing a transformation (rotation+translation) using three points selected arbitrarily in the 3D 
space.

9.1.3 Limitations
Although the two pretest laboratory sessions helped to eliminate procedure errors and determine 

better capturing settings and video recording conditions for camera calibration and 3D information 
recovering processes there were several limitations to the study.

The  first  limitation  was  related  with  the  great  number  of  variables  involved  in  the  video 
capturing  process  such  as  luminosity,  camera  capture  settings,  video  synchronisation,  stereo 
cameras position and orientation, the distance between cameras and the distance between the stereo 
configuration and the scene being recorded. Having such amount of variables made difficult to 
determine  the  exact  source  of  the  stereo  configuration  relations  estimation's  errors  and  the 
disparity-to-depth reprojection's errors, moreover it made difficult to establish a direct comparison 
between different  stereo  video sequence  sets  either  for  calibration  or  for  3D points  recovering 
process. Therefore,  this limitation makes the results difficult to generalize to others stereo video 
sequences either for stereo calibration purposes or to depth recovering process.

Te second limitations is related with the dense stereo matching method, during the research 
development the dense approach proved to be inefficient with the stereo video sequences recorded 
during the laboratory sessions.  Furthermore the dense stereo matching was not tested with stereo 
video sequences from other sources to determine if the Block Matching (or Semi Global Block 
Matching) settings were the optimal settings used or, in the other hand, if the research's stereo 
video sequences were the main cause for the inaccurate results.

Other  limitations  were  related  with  the  intervention.  Each  laboratory  session  required  a 
minimum of  six hours to set the stereo configuration and capture an average of four stereo video 
sequences for stereo calibration and four video sequences for 3D information recovering purposes, 
moreover,  the  laboratory  schedule  was  very  filled  by  classes  what  reduced  the  number  of 
laboratories that could have been used to improve the results obtained.  
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9.1.4 Recommendations for Future Research 

Based  on  the  results  of  this  case  study,  there  are  several  recommendations  for  the  future 
research. In the future research the number of independent variables need to be reduced by  firstly 
determining the optimal illumination conditions and camera capturing settings such as focal plane, 
frame rate, exposure time, and camera synchronization settings. Also a standard procedure need to 
be well defined since the beginning to help to reproduce the same conditions between experiments, 
this will reduce the differences between stereo configurations and make easier to generalize the 
results obtained with different stereo configurations. 

To test  the  stereo  matching process  with  the  obtained stereo  video sequences  others  stereo 
matching algorithms, such as the new matching techniques available from Middlebury evaluation 
site at http://vision.middlebury.edu/stereo/eval/, should be included in the future implementations, 
this could help to determine if the inaccurate disparity images obtained with OpenCV matching 
algorithms were caused by selecting wrong matching settings or by the stereo video sequences 
used, moreover, those algorithms represent the newest advances in stereo matching techniques and 
could  help  to  improve  the  speed  and  computational  costs  with  real  time  operations.  In  what 
concerns to the stereo configuration, during this research the cameras' orientation angles and the 
distance  between  cameras  were  both  simultaneously  changed  what  made  difficult  to  establish 
which  had  higher  impact  on  the  stereo  rectification  process,  also  was  found  that  by  simply 
changing the cameras rotations the distance between cameras' axis changed. Future research should 
set the cameras' orientation to constant and only change the distance between cameras on the stereo 
configuration,  this  will  allow to take more general conclusions and determine more accurately 
which configuration produces the best results.

9.1.5 Conclusions
Various conclusions can be made from this study. The first main conclusion is that calibration 

process plays an important role in the process of recovering 3D information from stereo images and 
it defines how good and how accurate the 3D information is obtained. The study showed that the 
quality of the results obtained from calibration process depends highly on the capturing conditions 
and video recording settings. Providing proper illumination for high-speed framing is crucial to 
obtain good results, also the study showed that the calibration results improved substantial from the 
first two laboratories to the third laboratory where the images were obtained with a better focusing 
during  the  procedure.  The  study  shows  that  better  calibration  results  were  obtained  for  the 
calibration views where the calibration object covered almost all the image instead of a small area, 
also the study shows that when a set of calibration views with similar position and orientation are 
used the calibration algorithm diverge from the solution, better results were obtained for sets of 
images  with  different  positions  and  orientation.  Still  related  to  cameras  calibration  the  study 
determined that calibration method M1 provides a more efficient and  robust method to calibrated 
the cameras and estimate the stereo relations.

 The second conclusions is that by using the difference between the reprojected and projected 
image points was possible to establish a method that allowed to exclude calibration views with 
higher errors contributions and recompute the new calibration parameters reducing the reprojection 
errors by 30% in almost all of the cases. 

Related with the stereo rectification was concluded that the uncalibrated stereo rectification do 
not provide good results and instead the calibrated stereo rectification method should always be 
chosen  to  obtain  the  correct  undistortion  and  rectification  maps,  and  the  disparity-to-depth 
reprojection matrix as well. 

The third main conclusions is related with the stereo matching process. The stereo matching 
step revealed to be one of the stereo vision's most challenging tasks to implement. The dense stereo 
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matching process using OpenCV matching algorithms did not provide accurate disparity images 
and further research must be done. Alternatively was implemented a second approach using Lucas-
Kanade tracker that can efficiently match sparse set of points selected by the user between two 
stereo captures. In general better results were obtained for the stereo configuration arranged closer 
to a canonical stereo configuration, with smaller angles between stereo cameras' optical axis. It was 
also concluded that the disparity-to-depth reprojection depends highly on the disparity values and 
on the distance between cameras (Tx) estimated by the stereo calibration process.  Besides the 
calibration can be performed individually for each camera, to obtain correct stereo relations the 
stereo configuration cameras' synchronization need to be ensured. The 3D path obtained with the 
StereoVisionProg implementation proved to be similar to the real path given by  MELFA robot's 
software and the approach with Lucas-Kanade Pyramid tracker proved to be reliable and viable to 
recover 3D information for a sparse set of points. 
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11 Appendix A: Stereo Imaging
• Stereo imaging.

• Working with two cameras.
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11.1Stereo Imaging

11.1.1 Introduction
Any point in the space can be related by three coordinates (X, Y, Z). An image is represented in 

2-D plane thus only two coordinates (x, y) are required to represent a point in the image. One 
dimension is lost in the projection process. One of the most important tasks of Computer Vision is 
to recover this lost dimension.

A common method  for recover a lost dimension (depth) from images is to acquire a pair of 
images ,  at the same time, using two cameras displaced by a known distance from each other, 
where each pixel is a function of the corresponding point in the scene.

 In this  sections, in  order  to  describe the stereo vision methodology used in   OpenCV, the 
researched  started  by  presenting  the  camera  model,  the  basis  on  which  relies  the  geometry 
projections of a particular scene through the lenses to the imager, followed by the   calibration, the 
methods and routines that allows us to retrieve the intrinsic and extrinsic parameters and then 
discuss the undistortion that discuss how to use those parameters to correct the lenses distortions of 
a single camera.

The  second  part  of  this  section  will  present  the  necessary  steps  for  stereo  imaging  - 
undistortion, rectification and correspondence.  

Undistortion has the task of computing undistorted images by mathematically removing radial 
and tangential distortions. Rectification in its turn relates the two cameras in the space by means of 
rotations and translations and the result are pair of images row-aligned and rectified. Finally the 
correspondence finds the same features in the left and right camera views and outputs a disparity 
map. 

11.1.2 Working With a Single Camera

11.1.2.1  Camera model.
The camera model is the model that describes geometrically how the light, reflected from an 

object, travels through the camera lens and then to the imager.  One of  the models used to present 
the geometric aspects of vision is the pinhole camera model. A pinhole is an imaginary plan with a 
very small hole in the centre that blocks all the rays except those passing through the tiny aperture 
as showed in Figure 11.1.

In a  real  pinhole  camera a  point 
taken from a scene is projected onto 
an imaging surface (  imager ), as a 
result the image on the image plane 
(or the projective plane)  is always in 
focus  and  the  resulting  image  size 
relative to scene located at a distance

Z  depends  only  on  the  focal 
length f of the camera .

An  object  in  the  scene  with  the 
Figure 11.1: Pinhole camera model.
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length Xi is then projected into the object's imaging plane with a xi length. From Figure 11.1 is 
possible to determine the following relation:

− x
f
= X

Z
⇔−x= f X

Z  (11.1.1)

In order to simplify the mathematical operations and make disappear  the negative sign,  the 
image plane and the pinhole plane are swapped, as showed in Figure 11.2 , and the object's image 
is now right-side up. 

The  pinhole  point  becomes  the  centre  of  projection and  the  point  that  results  from  the 
intersection of the image plan and the optical axis is called principal point. In this rearrangement 
the rays travel from a specific point in the object towards the centre of projection and a more 
simplified relation is obtained :

x
f
= X

Z
⇔ x= f X

Z  (11.1.2)

The  previous  equation  (101)  need  to  be  reformulated  to  model  possible  displacements
(c x , c y)  of  the  imager  centre  coordinates  from  the  optical  axis.  Thus  a  point  in  a  scene 
Q(X ,Y , Z ) is projected in the projection plane at a pixel location (x imager , yimager)  given by 

the new equations:

x imager= f x (
X
Z
)+c x ,   yimager= f y(

Y
Z
)+c y  (11.1.3)

The need to use two different focal length is due the fact that the individual pixel in the imager 
may be  rectangular and not square as ideally expected.  The new focal equations for the focal 
length are as follows:

Figure 11.2: Simplified pinhole camera model.
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f x=F sx ,[ pixels ]=[mm] [ pixel ]
[mm]  (11.1.4)

f y=F s y , [ pixels]=[mm] [ pixel ]
[mm ]  (11.1.5)

The  transform  that  relates  the  real  world  coordinates  (X i , Y i , Z i) to  the  points  in  the 
projection plane (x i , y i)  is called a projective transform and is given by the following relation:

q i=MQi  (11.1.6)

 Where M, in this particular case, is the camera matrix.

[ x i

y i

w ]=[
f x 0 cx

0 f y cy

0 0 1 ][X i

Y i

Z i
]

11.1.2.2 Lens distortion.
Another  issue  to  be  taken  in  account  are  the  imperfections  of  the  lenses  that  introduces 

distortions in the location of the pixels in the imager, thus new formulation need to be added to 
model to correct this distortions.

Two main distortions are present in the cameras: radial distortions, that results from the shape 
of the lenses, and tangential distortions that results from the assembly process of the camera. 

Radial  distortions  happens  near  the  edges  of  the  imager  resulting  in  a  commonly  known 
“barrel” or “fish-eye” effect. This distortion is zero at the centre of the imager and increases as the 
distance  increases  from  the  centre.  To  characterize  radial  distortions  three  terms  are  needed 

K 1, K2   and a third one  K 3 for lenses with high distortions such as fish-eye lenses.  The 
relocation of a point in the imager will be computed according the equations as follows:

xcorrected= x imager(1+K 1r 2+K 2 r 4+K 3r 6)  (11.1.7)

ycorrected= y imager (1+K1 r2+K2 r 4+K 3 r6)  (11.1.8)

Tangential distortion is the distortions that happens due the imperfections resulting from the 
manufacturing process that prevents the lenses and the imager plane from being perfectly parallel. 
In order to correct such distortions two additional parameters are taken in account:

xcorrected= x imager+[2p1 y+ p2(r
2+2x2)]  (11.1.9)

ycorrected= y imager+[ p1(r
2+2y2)+2p2 x ]  (11.1.10)
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   Therefore five parameters are needed to model radial and tangential distortions. In OpenCV this 
parameters are normally grouped in a vector 5-by-1 [K1 K 2, p1 p2 K 3]

T . The third radial 
parameter K 3 was introduced later in OpenCV and thus it appears in the fifth element of the 
distortion vector.

11.1.3 Calibration 
The previous section introduced the camera model and how to determine mathematically  the 

intrinsic and distortion properties of the camera. This section focus on how to use OpenCV to 
compute the intrinsic matrix and the distortion vector. 

OpenCV provides helpful number of algorithms to compute the camera matrix and distortion 
parameters.  The  calibration  is  done  by  the  routine  cv::calibrateCamera and  three  additional 
routines: cv::findChessboardCorners, cv::cornerSubPix and cv::drawChessboardCorners .

   This  method  requires  that  multiple  views  of  a  planar  object  are  obtained  by rotating  and 
translating in different angles this same object. This object is a known structure with a predefined 
number of  individual points. 

11.1.3.1 Find Chessboard Corners.
The  calibration  method  uses  a  chessboard  as  a  planar  object,  thus  given  an  image  of  a 

chessboard  the routine cv::findChessboardCorners( ) is used to locate a predefined number of corners 
of that chessboard as in Figure 11.3.

image – Is the input image that contains the corners to be found, it must be an 8-bit grayscale or 
a color image.

patternSize – Indicates how many corners are in each row/column of the board – cv::Size( nx, 
ny ); This means that for example in a standard chessboard  the correct patternSize values would be 
cv::Size( 7, 7 ).

corners – Is the output vector that will be used to store the corners locations. This vector must  
be preallocated and must be large enough to store all the corners on the board ( nx * ny ). They are 

bool cv::findChessboardCorners( const Mat& image, Size patternSize, vector<Point2f>& 
corners, int flags = CV_CALIB_CB_ADAPTIVE_THRESH + 
CV_CALIB_CB_NORMALIZE_IMAGE );

Figure 11.3: Example of a 5-by-3 chessboard corner's detection. 
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the locations of the corners in pixel coordinates.

flags – This argument can be used to implement one or more additional filtration steps to help 
find the corners on the chessboard. The filters can be combined using a boolean OR. 

The available filter are:

•  CV_CALIB_CB_ADAPTIVE_THRESH -   cv::findChessboardCorners  by  default  computes 
threshold in the image based on average brightness, but if this flag is set then an adaptive 
threshold will be used instead. 

•  CV_CALIB_CB_NORMALIZE_IMAGE – When set causes the image to be normalized via 
cv::equalizeHist before the thresholding being applied.

• CV_CALIB_CB_FILTER_QUADS - Once the image is thresholded, the algorithm attempts to 
locate the quadrangles and then a variety of additional constraints are applied to those 
quadrangles in order to reject the wrong ones.

The function  cv::findChessboardCorners  returns  true  if  the  function  succeed finding all  the 
corners ordered into rows and columns as expected, or false otherwise.

11.1.3.2 Find Corners Sub-pixel.
Once the  routine  to  find  the  chessboard  corners  was  applied  to  all  images  is  necessary  to 

compute  the  exact  location  of  the  corners  to  sub-pixel  accuracy.  This  is  done  by the  routine 
cv::cornerSubPix( ) described in Appendix F (see Appendix F for point sub pixel accuracy ).

In the presented calibration method a planar object was used. Before proceeding to the camera 
calibration first  is  showed what  it  is  possible  to  do with a  planar  object  by means of  planar 
homography – mapping of points on a two dimensional planar surface to the imager. 

11.1.3.3 Planar Homography.
Using homogeneous coordinates allow us to express Q and q points in the imager to which Q is 

mapped. The homography is expressed by the following relation:

q̃=sH Q̃  (11.1.11)

Where  q̃   and  Q̃ are  defined  as:
q̃=[ x y 1]T   and  Q̃=[X Y Z 1]T

H  represents  two  parts:  the  physical 
transformation that locates the plane as we see and the 
and the projection that introduces the camera intrinsic 
matrix. 

The parameter  s  is  the scale  value,  i.e.  the object 
will look the same even at different distances from the 
camera, thus the homography transform can only be  be 
defined up to an arbitrary scale value s that is  that 
normally is set to 1. Figure 11.4: Generic point defined on a planar 

calibration object. 
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The physical transformation results from the rotation and translation that relates the chessboard 

to the image plane. The previous equation can be then rearranged into a new one:

q̃=sH Q̃→ q̃=sMW Q̃  (11.1.12)

Where W and M are :

W=[R t ]   and  M =[ f x 0 c x

0 f y c y

0 0 1 ]  (11.1.13)

The aim is  to  get  the Q̃ ' (Figure 11.4 and  Figure 11.5)  a  point  defined only in  a  planar 
surface, the chessboard plane. Assuming that the object is defined in a plane so that Z = 0 and 
decomposing  the  rotation  matrix  R  in  each  rotation  component  R=[ r1 r 2 r 3]  the 
homography matrix H that maps the chessboard points onto the imager is then described by the 
relation:

q̃=sH Q̃ '  (11.1.14)

Eliminating the third rotation element, we obtain :

[ xy1 ]=sM [r 1 r2 r 3 t ][ X
Y
0
1 ]= sM [r1 r2 t ][XY1 ]

Figure 11.5: Relation between a point in the planar object and the imager plane.
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From the previous equation  (11.1.14 is possible to conclude that for each planar object view 

there are six unknowns ( three angles for rotation and three offsets for translation ) for eight given 
equations that maps a square into a quadrilateral ( four corners times two coordinates (x, y) ). Thus  
given enough images it is possible to compute any number of unknowns.

Finally it is possible to answer the question – how the homography matrix H relates the points 
on a source object plane to the points on the imager plane?

The answer are the two next equations :

pimager=Hpobject plane  (11.1.15)

pobject plane=H−1 pimager  (11.1.16)

Where pimager   and  pobject plane  are:

pimager=[ ximager

y imager

1 ]   and  pobject plane=[ xobject

yobject

1 ]
The  function  that  implements  the  presented  homography  formulation  in  OpenCV  is 

cv::findHomography( ) which has the following parameters:

srcPoints and dstPoints – Are matrices of CV_32FC2 type or vectors containing Point2f elements 
as in vector < Point2f > srcPts. The first vector contains the object points (X i , Y i , 0)  and the 
second the points in the target plane, that normally is the imager plane. 

method – The method chosen to compute the homography matrix, it can be set to 0 to use all the 
points,  CV_RANSAC to  used a more robust method or the Least-Median method by setting the 
method to CV_LMEDS. 

ransacReprojThreshold  –  Defines  the  threshold  value  used  to  accept  or  reject  a  maximum 
allowed reprojection error for the RANSAC method.

Computing multiple homographies from multiple planar object views is the method OpenCV 
obtains the intrinsic parameters.

11.1.4 Camera Calibration 
This subsection introduces how to compute the camera matrix and distortion parameters for one 

camera and how to use them to correct distortions in the raw image. Firstly is considered how 
many unknowns are related to each image and how this unknowns define the minimum number of 
images needed. 

For  each  image  there  are  four intrinsic  parameters  ( f x , f y , c x , c y) and  five  distortion 
parameters :  three  radial  (K 1, K 2, K 3) and two tangential  parameters  ( p1, p2) .  Intrinsic 
parameters are related to  3D space and distortion parameters to 2-D geometry, this two kinds of 
parameters are treated separately. 

Mat cv::findHomography( const Mat& srcPoints, const Mat& dstPoints, Mat& status, int 
method=0, double ransacReprojThreshold=0 );
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Six equations, from three corners points are enough to solve the five distortion parameters, thus 

only one view of a chessboard would be enough but for robustness more than one should be used. 
To  compute  the  extrinsic  parameters is  necessary  to  know  the  three  rotation  parameters   
(Ψ ,Φ ,Θ) and  three  translation  parameters  (T x , T y ,T z) totaling  ten  intrinsic/extrinsic 

parameters that need to be solved for each view of the chessboard.

   If  N is  the number of  corners and K the number of  images of  the chessboard in  different 
positions:

• K images provides 2NK constrains ( NK constraints for each x, y coordinate ).
• Ignoring the five distortion parameters, we have 4 intrinsic parameters that are the same for 

all the images and 6K extrinsic parameters
• To solve the unknowns requires that 2NK⩾6K+4⇔K (N−3)⩾2 . Having in mind 

that  to  compute  the  homography  are  needed  at  most  four  corners  that  result  in  eight 
parameters from  (x , y ) pairs,  only four corners are taken in account no matters how 
many corners are in the chessboard. This implies that K⩾2  and N is at least 4 ( 3-by-3 
chessboard ) are the minimum requirements to solve the calibration problem.

•  For more precise results is recommended to use bigger number of images and a  larger 
chessboard rotated at different angles in order to obtain a good set of views.

Each one of those parameters mentioned above, in the unknowns context, are used in  different 
tasks :  

• camera intrinsic matrix – Transform from 3-D coordinates to the imager 2-D coordinate. 
The inverse can be done but only to represent a line in 3-D space to which a 2-D imager 
point must correspond.

• distortion coefficients -  Are used to correct the radial and tangential distortion in the raw 
image.

• rotation  and  translation  vectors –  Tells  where  the  chessboards  were  found  and   their 
orientations. 

The  routine  that  computes  the  camera  intrinsics  and  distortion  parameters  in  OpenCV  is 
cv::calibrateCamera( ) and it is used internally in stereo calibration.

objectPoints  –  The  input  vector  of  Point3f 
containing  n  elements  with  the  physical 
coordinates of each  N  corners on each one of 
the  K  chessboard  images,  n=N×K .  The 
way this points are defined are important once the 
manner  of  describing  points  in  the  object  will 
define the physical units  and the structure of the 
coordinate system used. As showed in Figure 11.6, 
if each square of a chessboard has 20mm size then 
the  camera  and object coordinates are in mm/20. 
In the simplest case each square as unit one  and 
the corners are represented by integers coordinates. 
Choosing a column to be all zero value it defines 
that the location of the planar object relative to the 

double cv::calibrateCamera( const vector<vector<Point3f> >& objectPoints, const 
vector<vector<Point2f> >& imagePoints, Size imageSize, Mat& cameraMatrix, Mat& 
distCoeffs, vector<Mat>& rvecs, vector<Mat>& tvecs, int flags=0 );

Figure 11.6: Calibration object - chessboard 5-by-3.
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camera will be along that direction i.e. 1st column – x direction, 2nd column – y direction and 3rd 

column – z  direction.  The procedure  of  building  the  object  points  for  each  calibration  view's 
pattern (Figure 11.6) is showed in Figure 11.7.

imagePoints – The input vector containing   a a group of K vectors of Point2f elements that are 
no  more  than  the  group  of  N  corners  coordinates  from  each  calibration  view  given  by  the 
cv::findChessboardCorners function.

imageSize – Defines the image size of the chessboards images from where the corners were 
extracted.

cameraMatrix and distCoeffs – Are the intrinsic camera parameters outputted by the routine, or 
optionally used as input matrices if  CV_CALIB_USE_INTRINSIC_GUESS flag is used,  affecting the 
computed results.  The way these inputs are  used depends on the flags  parameter.  The camera 
matrix is always 3-by-3 and the distortion coefficients a 5-by-1 matrix with the parameters in the 
next order: k 1, K 2, p1, p2, K 3 .

rvecs – Output vector of rotations matrices computed for each calibration pattern view. Each 
matrix  represents  a  group of  3 vectors axis  in  three-dimensional  space  on camera coordinate 
system around which the chessboard was rotated. It is possible to convert this vectors into 3-by-3 
rotation matrices using the cv::Rodrigues( ) routine. 

tvects – Output vector of translations estimated for each calibration pattern view in the camera 
coordinate system. As stated in the first argument, the units of the camera coordinate system are 
exactly the same as the ones assumed for the chessboard, i.e. if the chessboard square size was 
defined in meters the translation will be in meters, if it was defined in inches the translation units 
will be in inches and so on. 

flags – The last argument allows to control how the calibration will be performed. Different 
flags can be combined together with OR operator in order. 

Once  known  the  intrinsic  and  extrinsic  parameters  the  next  step  is  to  make  use  of  this 
parameters to correct the image distortions.

11.1.5 Undistortion
The  routine  that  was  previously  discussed,  cv::calibrateCamera,  only  provides  a  group  of 

valuable parameters that need to be used in further code implementation. 

One of the tasks to be done with the calibration parameters is to correct the distortion effects.  
OpenCV  provides  three  main  routines  that  allows  to  do  exactly  that:  cv::undistort(  ), 
cv::initUndistortRectifyMap( ) and cv::remap( ). The first function transforms the image to compensate 
radial and tangential lens distortion and it is a combination of the last two functions. This function 

Figure 11.7: Building object point's vector of vector of 3D points.
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should be used only when the distortion parameters are changing however if the distortion maps 
are not changing the use of this routine is inefficient and time consuming specially when dealing 
with video sequences. The function has the following arguments:

src – The input distorted image to be corrected.

dst – The output corrected image with the same size and type as the input image.

cameraMatrix  –  The  input  camera  matrix  that  should  have  different  parameters  between 
different images remapping process. 

distCoeaffs – The input 5-by-1 vector of distortion coefficients for each input image.

newCameraMatrix – The input new camera matrix that by default is the same as  cameraMatrix 
but it can be adapted to the new region of interest in the source image. This new camera matrix is  
obtained with  cv::getOptimalNewCameraMatrix( ) function.

To compute  the  undistortion  and rectification  maps   cv::initUndistortRectifyMap(  ) function  is 
used, it contains the following arguments:

cameraMatrix – The input camera matrix that is constant for a sequence of images.

distCoeffs – The input 5-by-1 distortion coefficients vector.

R – The 3-by-3 optional rectification transformation matrix obtained with cv::stereoRectify( ), if 
this matrix is empty the identity matrix is assumed i.e. no rotation will be assumed for any axis. 

newCameraMatrix - The new camera matrix that for a single camera can be the same as the 
cameraMatrix or obtained with cv::getOptimalNewCameraMatrix( ).

size – The size of the corrected image, it can be the same size as the original image or other if a 
different subregion of the image is used. 

m1Type – The type of the first output map that can be CV_32FC1 or CV_16SC2.

map1 and map2 – The first and second output maps to be used by cv::remap function.

To  apply  the  remapping  maps  to  an  image  or  sequence  of  images  for  video  capture  the 
cv::remap function need to be called. It has the following arguments:

src – The current image to be subjected to the geometrical transformations.

dst – The output image with same size of map1 and the same type of src image.

void cv::undistort( const Mat& src, Mat& dst, const Mat& cameraMatrix, const Mat& 
distCoeffs, const Mat& newCameraMatrix=Mat() );

void cv::initUndistortRectifyMap( const Mat& cameraMatrix, const Mat& distCoeffs, const 
Mat& R, const Mat& newCameraMatrix, Size size, int m1type, Mat& map1, Mat& 
map2 );

void cv::remap( const Mat& src, Mat& dst, const Mat& map1, const Mat& map2, int 
interpolation, int borderMode = BORDER_CONSTANT, const Scalar& borderValue = 
Scalar() );
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map1 and map2 – The first and second map of  x and y coordinates, respectively. If the maps are 

in the original floating-point format they can be converted to fixed-point representation for a faster 
computation, the most used conversion is from (CV_32FC1, CV_32FC1) to (CV_16SC2, CV_16UC1) and 
it can be done by using cv::convertMaps( ).

interpolation – The interpolation method used in the remapping process.

borderMode  -  The  pixel  extrapolation  method,  by  default  is  set  to  constant 
(BORDER_CONSTANT).

borderValue - The value used to represent the pixel outliers if the borderMode is set to constant.
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11.2Working With Two Cameras 

11.2.1 Stereo Imaging 
There are several ways to recover 3D information from 2D images and  one of them humans use 

frequently – the stereo imaging. 

Previously was discussed in detail the camera model,  how to model the lenses distortion and 
how to retrieve the necessary parameters to calibrate one single camera and subsequently correct 
the distorted images.  The goal of this section is to construct  3D representations of the images, 
captured from two cameras relatively  at the same time, using the basis achieved in the previous 
section to perform the stereo calibration, rectification and correspondence. 

11.2.1.1 Stereo Geometry.
The geometry of a stereo imaging is shown in the next figure (see Figure 11.8). To simplify, the 

model is composed by two identical cameras separated in the x direction from each other by a 
distance  b . The image planes are ideally coplanar, which in reality doesn't happen specially 
when we want  to  have a  bigger  field of  view.  This  topic  will  be discussed in  more detail  in 
rectification. 

An object in the scene is viewed by the two cameras at different positions in the image plane, 
the displacement between this locations is called  disparity.  The plane passing through the object 
point and the centres of  projection is called epipolar plane and the intersection of  this plane with 
the imager plane defines the epipolar line. Also ideally, all the object points in one image will be in 

Figure 11.8: Stereo configuration geometry .
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the same row in the second image. In real cases there are some disparity vertically or horizontally,  
depending on the cameras arrangement, that need to be corrected.

Assuming that the origin of the coordinate system coincides with the left centre of projection, 
defining the disparity d as follows:

d=x L− xR  (11.2.1)

By similarity of  the triangles is possible to obtain the following relationship:

T−( x L− xR)
Z− f

=T
Z
⇒Z= fT

xL− xR  (11.2.2)

11.2.1.2 Epipolar Geometry.
The  previous  assumption  that  the  images  planes  are  coplanar  does  not  happen  in  a  real 

situations.  In some stereo configurations the cameras are oriented in such a way that their optical 
axis meet at a point in space in order to increase the field of view, this physical configuration 
showed in Figure 11.9 is known as standard stereo configuration. 

In a standard stereo configuration the epipolar lines are no longer aligned with the image rows 
and thus the alignment need to be computed mathematically to obtain a row-aligned pair of images.

To understand how the alignment is done mathematically the researcher starts by presenting the 
new nomenclature. When a point on the object scene  P  is projected into the right and left 
image plane,  pR  and pL respectively, that point can be anywhere along a single line formed 
by the point  that  is the projection of point P and the centre of projection (OL  and OR) on that 
camera.  In Figure 11.9 the two lines are defined by the two segments  pR OR   and  pL OL . 
The two segments correspond exactly to the epipolar lines when projected in the other imager 
plane  i.e.  pR OR   corresponds to  pLeL   and  pL OL   corresponds to  pR eR .  Thus 

Figure 11.9: Standard stereo configuration's epipolar geometry. 
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given a projection  of point in one image plane, its matching view in another image plane must lie 
along the corresponding epipolar line – this constraint is known as the epipolar constraint and it 
reduces the matching from 2D search to 1D search along the epipolar lines across the two imagers 
resulting in the rejection of bad points and less computational costs.

Additionally both cameras need to be related in physical space. The relation between the two 
cameras is achieved by computing the essential matrix E and the fundamental matrix F. The matrix 
E contains information about the rotation and translations that relates the two cameras and thus be 
able to relate a point in one image to a line in the other.

F contains the same information as E and additionally the intrinsics parameters of both cameras. 
Because  F takes  in  account  the  intrinsics  parameters  it  relates  the  two  cameras  in  pixels 
coordinates. 

To  obtain  matrix  F for  a  stereo  configuration  OpenCV  provides  the  function 
cv::findFundamentalMat( ) that takes the following arguments:

points1 and points2 – Are the n-by-2 or n-by-3 floating-point ( single or double precision )  
arrays  containing  the  n=N×K 2-D  points  that  where  collected  from  the  (  left,  right  ) 
chessboard images. 

method – This parameter defines the method to be used to compute the fundamental matrix. It 
can be one of the four following values:

• CV_FM_7POINT, n = 7 – Uses only 7 points and impose that matrix F must be of rank 2 to  
fully constraint the matrix. This constraint is not absolutely unique and the routine may 
return three different matrices and, as mentioned, the fundamental matrix allocation  need 
to be done for a 9-by-3 array.

• CV_FM_8POINT, n ≥ 8 – This method solves F as a linear system of equations, if more than 8 
points were supplied then a linear least-square error is minimized across all points.

• CV_FM_RANSAC, CV_FM_LMEDS, n  ≥ 8 – The previous two methods are very sensitive to 
outliers. This last two methods  are more robust once they have the ability to recognize and 
remove those outliers. For both methods it is required two have much more points than the 
minimum. 

param1 and param2 – This two parameters are related to the last methods RANSAC and LMedS. 
The first parameter defines the minimum distance in pixels from a point to the epipolar line from 
where a point is considered an outlier while the second parameter is the desired confidence that 
implicitly tells the routine how many times to iterate.

The function returns the fundamental matrix using one of the four available methods. 

11.2.1.3 Epipolar Lines.
Having the fundamental matrix is possible to compute the epipolar lines. The routine that does 

this for us is cv::computeCorrespondEpilines( ). Given a list of N points in one image it computes the 
correspondent epipolar lines for each point in the other image. Each epipolar line is described by 
three coefficients a, b and c that define a line equation. It has the following arguments:

Mat cv::findFundamentalMat( const Mat& points1, const Mat& points2, int method = 
FM_RANSAC, double param1=3., double param2 = 0.99 );
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points – The input vector of image points vector< Point2f > or optionally it can be an N-by-1 or 
1-by-N matrix of CV_32FC2 type.

whichImage – This parameter is set to 1 or 2 to indicate which one of the images belongs the 
points.

F – The fundamental matrix that relates the points in both images. It can be obtained by using 
the function previously described  cv::findFundamentalMat( ) or  cv::stereoRectify(  ).  Before using F 
matrix is wise to verify if it is not empty. 

lines – The output vector that contains the coefficients of the line equation corresponding to 
each of the inputted image points.

11.2.2   Stereo Calibration
After introducing the stereo basis and methodology discussed up to this point this section will 

cover stereo calibration, stereo rectification and stereo correspondence. Stereo calibration has the 
task to compute the geometrical relationship between the two cameras in the space while stereo 
rectification corrects the individual images so they appear to be taken from two cameras with row-
aligned coplanar image planes as ideally expected. Stereo correspondence is the last step to be 
performed , it matches the image points from an object in 3D space seen by two different camera 
over areas where the two camera views overlap.  

11.2.2.1 Stereo Cameras Calibration.
Stereo calibration is  the process of computing the geometrical relationship between the two 

cameras in space. It depends on finding the single rotation matrix R and translation vector T , that 
relates the right camera to the left  camera ,  obtained by the function  cv::stereoCalibrate(  ).  This 
function operates similarly to cv::calibrateCamera except now it deals with two cameras and it can 
compute the camera matrices, distortion coefficients, essential matrix E and fundamental matrix F. 
The function cv::stereoCalibrate( ) has the following parameters:

objectPoints – The vector of vectors containing the physical coordinates of each of the N points 
on each of the  K images of the  3D object such that  n=N×K  where  N  is the number of 
points and K  the number of images. When using chessboards as the 3D object the Z-coordinate 
of the points on the chessboard plane is usually set to  0 but any known 3D points may be used. 
This argument is crucial in the manner of describing the points on the object and  to define the 
physical units and the structure of the coordinate system to be used from this point.  

imagePoints1  and imagePoints2  – The vector  of  vectors  containing  the  left  and right  pixel 

void cv::computeCorrespondEpilines( const Mat& points, int whichImage, const Mat& F, 
vector<Vec3f>& lines );

double cv::stereoCalibrate( const vector<vector<Point3f> >& objectPoints, const 
vector<vector<Point2f> >& imagePoints1, const vector<vector<Point2f> >& 
imagePoints2, Mat& cameraMatrix1, Mat& distCoeffs1, Mat& cameraMatrix2, Mat& 
distCoeffs2, Size imageSize, Mat& R, Mat& T, Mat& E, Mat& F, TermCriteria termCrit 
= TermCriteria(TermCriteria::COUNT+ TermCriteria::EPS, 30, 1e-6), int flags = 
CALIB_FIX_INTRINSIC );
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coordinates, respectively, of all of the object reference points supplied in objectPoints, i.e. they 
contain the returned values  for  K  calls  to  cv::findChessboardCorners  for  the  left  and right 
camera views.

cameraMatrix1 and cameraMatrix2 – The input/output 3-by-3 camera matrices  for cameras 1 
and 2, respectively.

distCoeffs1 and distCoeffs2 – The input/output 5-by-1 distortion matrices for cameras 1 and 2, 
respectively. These matrices are filled in such order that the two first parameters are the first two 
radial parameters followed  by the two tangential parameters and the third radial parameter.

imageSize – The image size that is used only to initialize the intrinsic camera matrix.

R and T – The rotation and translation matrices, relating the right camera to the left camera – the 
routine main finality. 

E and F – The output 3-by-3 essential and fundamental matrices.

termCrit – Sets the criteria to stop the internal optimization whether after a certain number of 
iteration or when the computed parameters change by less than a specific value. A typical value is 
cv::TermCriteria( CV_TERMCRIT_ITER && CV_TERMCRIT_EPS, 100, 1e-5 ). 

flags  –  Define  the  way  in  which  the  intrinsic  parameters  are  used.  If  set  to 
CV_CALIB_FIX_INTRINSIC, then these matrices are used as input and are obtained by using the 
function cv::calibrateCamera. If flags is set to CV_CALIB_USE_ INTRINSIC_GUESS these matrices are 
used as a starting point to optimize further the intrinsic and distortion parameters for each camera 
and will be set to the refined values on return from cv::stereoCalibrate. The first case is preferred 
once cv::calibrateCamera provides a more robust method to estimate the intrinsic and extrinsic 
parameters individually for each camera.

11.2.3 Stereo Rectification
The aim of stereo rectification is to reproject the left and right image of the two cameras so that  

they reside in the exact same plane, with image rows aligned into a frontal parallel configuration, 
or image column aligned in the case of vertical configuration.

11.2.3.1 Uncalibrated stereo rectification - Hartley’s algorithm. 
This algorithm has the advantage of performing online stereo calibration by observing points in 

the scene however it does not have the notion of image scale - the feature points have the same 2D 
coordinates even though the 3D object positions (not orientation) differ.

The function cv::stereoRectifyUncalibrated( ) compute the homographies used for rectification and 
has the following parameters. 

points1 and points2 – The function takes as input two 2-by-K matrices with the corresponding 
points between the left and right images.

F - The fundamental matrix F obtained by using the cv::findFundamentalMatrix.

imageSize – Describes the width and height of the images that were used during calibration.

Hl and Hr – The output  rectification homography matrices  for the first  and for  the second 

bool cv::stereoRectifyUncalibrated( const Mat& points1, const Mat& points2, const Mat& F, 
Size imgSize, Mat& H1, Mat& H2, double threshold = 5 );
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images respectively.

threshold – If the distance from points to their correspondence epilines exceeds  the threshold 
value, the corresponding point is considered outlier and eliminated.

After  obtaining  the  homography matrices  a  last  step  need to  be  done to  obtain  the  3-by-3 
rectification  transformations  R1  and R2 in  object  space.  this  is  done  by  preprocessing  the 
homographies using the next relations:

R1=cameraMatrix1
−1×H 1×cameraMatrix1

R2=cameraMatrix2
−1×H 2×cameraMatrix2

 (11.2.3)

11.2.3.2 Calibrated stereo rectification: Bouguet's algorithm.
This method minimize the amount of change reprojection produces for each of the two images 

while maximizing common viewing area. Applying the Bouguet's rectification method produces 
the ideal  stereo configuration with a  perfectly undistorted and row-aligned stereo images.  The 
function that performs this task is cv::stereoRectify( ) and has the following arguments:

cameraMatrix1 and cameraMatrix2 –  The input camera matrices of the left and right cameras 
returned by cv::stereoCalibrate function.

distCoeffs1 and distCoeffs2 – The input distortion parameters matrices of the left  and right 
cameras returned by cv::stereoCalibrate algorithm.

 imageSize – Is the size of the chessboard images used to perform the calibration.

R and T – The input rotation and translation matrices returned by cv::stereoCalibrate function.

Rl and Rr – Are the returned 3-by-3 row-aligned rectification rotations for the left and right 
image planes.

Pl and Pr – The output 3-by-4 left and right projection equations Pl and Pr.

Q – The optional  4-by-4 reprojection matrix.  When given a two dimensional homogeneous 
point and its associated disparity, to project the point into three dimensions.

Flags – The default value set the disparity at  infinity (CV_CALIB_ZERO_DISPARITY) with the 
principal point of each camera having the same pixel coordinates in the rectified image. Changing 
the default value means that the cameras are verging toward each other.

11.2.3.3 Rectification Maps.
Once the rectification rotations and the projection equations were computed is possible to pre-

compute  the  left  and  right  rectifications  maps  for  the  left  and  right  camera  views  using  two 
separate calls to cv::initUndistortRectifyMap function. The resulting maps are used by cv::remap 
function that is  called once for each left  and right camera's  views. The arguments of this  two 

void cv::stereoRectify( const Mat& cameraMatrix1, const Mat& distCoeffs1, const Mat& 
cameraMatrix2, const Mat& distCoeffs2, Size imageSize, const Mat& R, const Mat& T, 
Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q, int flags=CALIB ZERO DISPARITY );
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functions are described in the subsection Working with a Single Camera.

 After computing the rectifications maps for the raw images cv::remap is used to take pixels 
from one place in the image and map them to another place given by mapx and mapy. In this way 
the feature points  become horizontally aligned in  the undistorted rectified images.  In the next 
figure  (Figure  11.10) is  displayed  two  video  captures  after  subjected  to  the  rectification 
(undistortion+rectification) process, the horizontal lines were added to help to visualize the pixel 
row alignment obtained between the left and right capture. 

11.2.4 Stereo Correspondence
Matching a 3D point in the two different camera views can be computed only over visual areas 

in which the views of the two cameras overlap. If rectification was done in both images the stereo-
matching process is the next step to be performed.

OpenCV has different approaches to compute the disparity between two images  captured from 
a stereo configuration. The block matching and semi-global block matching method are the ones 
that present better results with less computational costs. 

The Semi Global Block-Matching and Block-Matching parameters and the internal buffers are 
kept in a data structure initialized by cv::StereoSGBM( ) (or similarly by cv::StereoBM( )) as follows:

Figure 11.10: Video sequences after stereo rectification.
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presetFlag – This preset parameter can be set to any of the following values:

CV_STEREO_BM_BASIC (sets all parameters to their default values),  CV_STEREO_BM_FISH_EYE 
(sets  parameters  for  wide-angle  lenses),  CV_STEREO_BM_NARROW  (sets  parameters  for  stereo 
cameras with narrow field of view).

minDisparity – The minimum acceptable disparity to  be considered correct.  By default  this 
value is set to 0. 

numberOfDisparities – The maximum disparity minus the minimum disparity. If set to non-zero 
value it overrides the default pre set value. It must be a number multiple of 16.

SADWindowSize – Is the size of the averaging window used to match pixel blocks. The block-
matching window size must be equal or greater than 1 and odd number. If it is set to one, instead of 
blocks, the function matches single pixel. Larger values gives better robustness to noise, but origins 
blurry disparity maps. Values between 3 and 11 may give the better results. 

preFilterCap – Is the value, ranging between 0 and 63, for the Tomasi cost function to limit the 
values to [−preFilterCap ; preFilterCap] interval. 

uniquenessRatio – Is the value that defines the percent by which the minimum cost function 
value should be considered better than a second good match value.  Values within the range 5-15 
are recommended. 

speckleWindowSize  –  The  integer  value  that  defines  the  threshold  disparity  regions  to  be 
considered noise. To disable the speckle filter this value must be set to zero otherwise values within 
the range 50-200 are advised.

speckleRange – The maximum disparity variation within each region. If speckleWindowSize is 
a non-zero value this value must be positive and multiple of 16. Values of 16 and 32 are advised.

disp12MaxDiff  –  The  maximum allowed  difference  between  the  first  and  second  disparity 
image validation. To disable the validation the value should be set to a negative value.

fullDP – By default the function only considers 5 directions for the matching, if this value is set 
to true all the 8 directions are taken in account. Setting this value to true is not advisable for real  
time video processing due to its high computational costs.

After  having  initialized  the  block-matching  group  of  variables  the  disparity  maps  can  be 
computed using the operator  cv::StereoSGBM::operator( ) (or similarly  cv::StereoBM::operator( )) as 
follows:

left – The left camera's image 8-bit single channel or 3-channel image. 

right – The right camera's image with the same size and same type as the left camera's image.

disp – The resulting single channel disparity image of 16-bit signed type with the same size as 
the left and right camera's image. To convert it to floating-point type(or other type) each disparity 

class cv::StereoSGBM{ …; int presetFlag; int minDisparity; int numberOfDisparities; int 
SADWindowSize; int preFilterCap; int uniquenessRatio; int speckleWindowSize; int 
speckleRange; int disp12MaxDiff; bool fullDP; … }

void cv::StereoSGBM::operator( )(const Mat& left, const Mat& right, Mat& disp);
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value need to be divided by the number of disparities times 16 as follows:

disp.convertTo (disp8UType ,CV _ 8U ,256/ nOfDisparities)  (11.2.4)

Both  cv::StereoSGBM::operator() and  cv::StereoBM::operator() functions  operators  takes  undistorted 
rectified  stereo  images  pairs  and outputs  a  disparity  map given its  state  structure.  The block-
Matching settings  can be updated or  readjusted by using trackbars  values  and imposing some 
validation for the state variables that requires specific input values.
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12 Appendix B: MELFA Basic IV 
Presentation

• Robot programming Language – MELFA.
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MELFA BASIC IV
Robot Programming Language -MELFA

Mitsubishi robots use their own programming
language for the robot controller, MELFA Basic IV.

The robot programming language MELFA BASIC IV
is powerful yet easy to learn, ensuring that users
can start producing their own powerful and efficient
robot programs in a very short time.

CosiRob is programming environment for all
Mitsubishi robots

Piotr Kohut, Ph.D
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Main Main characteristics of 
characteristics of RV-2AJ

3

Manufacturer Mitsubishi-Electric

No DOF 5

Robot weight 17 [kg]

range 410 [mm]

Repeatability +/-0.02 [mm]

Max. load 2 [kg]

Max. speed 2100 [mm/s]

Max. No of Tasks 32

Max. No inputs / outputs 240 / 240

AC power 230 [V] / 50 [Hz]

It is ideal for the applications (testing,material handling,training...), it opens
up a completely new range of possibilities with a speed of up to2,100mm/s,
significantly improved repeatability of ±0.02mm and a handling pay load up to 2kg

θ1

θ2

θ3

θ4

θ5

Robot system components

Extension option cards:
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Multitasking function for parallel execution of multiple tasks. A 64-bit RISC processor with DSP 
provides ample power for 3-D circular and linear interpolation, and for multitasking with up to 
32 programs running in parallel.

Robot controller CR-1

7

The robot controller has a 64-bit RISC processor and can be programmed
quickly and easily in MELFA BASIC IV.



 124

Controller CR-1 – Teaching Pendant

8

Controller CR1
TeachBox

Robot

Robot controlling by means of 
Teach Box

Frame Coordinate Systems
(Spaces in which the robot can be controlled )
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Joint space – JOINT jog

Adjusts the coordinates
of each axis
independently in angle
units

Cartesian space – XYZ jog

Adjusts the axis coordinates
along the direction of the
robot coordinate system.
The X, Y, and Z axis
coordinates are adjusted in
mm units.
The A, B, and C axis
coordinates are adjusted in
angle units.
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Three axes XYZ jog

Adjusts the X, Y, and Z axis
coordinates along the direction
of the robot coordinate system in
the same way as in XYZ jog
feed.

TheJ4, J5, And J6 axes are
adjusted independently in the
same way as in JOINT jog feed.

The X,Y, And Z axis coordinates
are adjusted in mm units.
The J4, J5, and J6 axis
coordinates are adjusted in
angle units.

TOOL jog

Adjusts the coordinates of each axes along the direction of the hand tip.
The X,Y, And Z axis coordinates are adjusted in mm units.
The A,B,and C axis coordinates are adjusted in angle units.
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CYLINDER jog

Adjusting the X-axis coordinate
moves the hand in the radial
direction away from the robot's
origin. Adjusting the Y-axis
coordinate rotates the arm
around the J1 axis. Adjusting the
Z-axis coordinate moves the
hand in the Z direction of the
robot coordinate system.

Adjusting coordinates of the A,
B,and C axes moves the hand in
the same way as in XYZ jog feed.

The X and Z axis coordinates are
adjusted in mm units.
The Y, A, B, and C axis
coordinates are adjusted in angle
units

Programming

• Programming by  MELFA BASIC IV
using COSIROP/COSIMIR

15
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Names for variables of the type position, joint, arithmetic, and character string begin 
with a certain character.

The rule is:

P = Positional variable

J = Joint variable

M = Arithmetic variable

C = Character string

Declaration of variables
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Positions variables
Variables whose names begin with character P are considered position
variables. If it is defined by the DEFPOS instruction, it is possible to specify a
name beginning with a character other than P.

It is possible to reference individual coordinate data of position variables.
in this case, add "." and the name of a coordinate axis, e.g. "X," after the
variable name.

P1.X,P1.Y, P1.Z,P1.A,P1.BP1.C,P1.L1,P1.L2

The unit of the angular coordinate axes A, B, and C is radians, U set the DEG
function to convert it to degrees.

Example)
P1=(110,-227,-148,45,180,0,0)
M1=P1.X (Unit:mm)
M2=DEG(P1.A) (Unit:degree)
DEGPOSL10
MOVL10

Positional
The syntax for position constants is as shown below.

P1 = ( 300, 100, 400, 180, 0, 180, 0, 0 ) ( 7, 0 ) 
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A character string variable should start with J. If it is defined by the DEFJNT
instruction,it is possible to specify a name beginning with a character other than J.
It is possible to reference individual coordinate data of joint variables.
In this case, add "." and the name of a coordinate axis, e.g. "J1," after the variable
name.
JDATA.J1, JDATA.J2, JDATA.J3, JDATA.J4, JDATA.J5, JDATA.J6, JDATA.J7,
JDATA.J8

The unit of the angular coordinate axes A, B, and C is radians. Use the DEG
Function to convert it to degrees.

Example)
JSTARAT=(10,30,90,0,90)
JDATA=JSTART
DIMJ3(10)
M1=J1.J1 (Unit:radian)
M2=DEG(J1.J2)
DEFJNTK10
MOVK10

Joints variables

Joint
The syntax for the joint is the following:

Example)
6axisrobot J1=(0,10,80,10,90,0)
6axis+Additional axis J1=(0,10,80,10,90,0,10,10)
5axisrobot J1=(0,10,80,0,90)
5axis+Additional axis J1=(0,10,80,0,90,0,10,10)
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24

Programming: MELFA BASIC IV

SYNTAX

10 MOVP1 WTHM_OUT(17)=1

1. 2. 4.3.

1. -Line Nos. can be any integer from 1 to 32767. One line can have up to 127 characters

2. -Command statement

3. -Command parameter

4. -Appended statement  (MOV, MVS, MVR, MVR2, MVR3, MVC)

Motion Commands
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Joint interpolation movement(MOV)

Joint interpolation movement (MOV)

The robot moves with joint axis unit interpolation to the designated position. (The robot 
interpolates with a joint axis unit, so the end path is irrelevant.)

MOV- The robot moves to the designated position with joint interpolation. An appended 
statement WTH or WTHIF can be designated.

MOVP1 'Moves to P1.

MOVP1+P2 ' Moves to the position obtained by adding the P1 and P2 coordinate elements. 

MOVP1,-50   ‘ Moves from P1 to a position retracted 50mm in the hand direction.

MOVP1 WTH  M_OUT(17)=1.

' Starts movement toward P1, and simultaneously turns output signal bit 17 ON.

MOVP1 WTHIF  M_IN(20)=1,SKIP

'If the input signal bit 20 turns ON during movement to P1, the movement to P1 is stopped, 
‘and the program proceeds to the next stop.

Program Explanation

10 MOV P1 ‘ (1) Moves to P1 with joint interpolation.

20 MOV P2, -50 ' (2) Moves from P2 to a position retracted 50 mm in the hand 
direction

30 MOV P2 ' (3) Moves to P2 with joint interpolation

40 MOV P3, -100 WTH M_OUT(17) = 1 ' (4) Starts movement form P3 to a position retracted 100 mm  
in the hand direction and turns ON output signal bit (at 
the same time) .

50 MOV P3 ' (5) Moves to P3 

60 MOV P3 ,-100 ' (6) Returns from P3 to a position retracted 100mm in the 
hand direction

70 END ‘ Ends the program
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Linear interpolation movement(MVS)

The end of the hand is moved with linear interpolation to the designated position.

MVS -The robot moves to the designated position with linear interpolation. An appended 
statement WTH or WTHIF can be designated.

MVS - The robot moves to the designated position with linear interpolation. An appended 
statement WTH or WTHIF can be designated.

Statement example

MVS P1. ' Moves to P1

MVSP1+P2 ' Moves to the position obtained by adding the P1 and P2 coordinate elements. 

MVSP1,-50 ' Moves from P1 to a position retracted 50mm in the hand direction.

MVSP1 WTH M_OUT(17)=1

' Starts movement toward P1, and simultaneously turns output signal bit 17 ON.

MVSP1 WTHIF M_IN(20)=1,SKIP

' If the input signal bit 20 turns ON during movement to P1, the movement to P1 is stopped, 
and ‘ the program proceeds to the next stop.

Program Explanation

10 MVS P1, -50 ‘ (1) Moves with linear interpolation from P1 to a position 
retracted 50mm in the hand direct.

20 MVS P1 ' (2) Moves to P1 with linear interpolation

30 MVSP1,-50 ' (3). Moves with linear interpolation from the current position 
(P1) to a position retracted 50 mm in the hand direction

40 MVS P2, -100 WTH M_OUT(17) = 1 ' (4) Output signal bit 17 is turned on at the same time as the 
robot starts moving

50 MVS P2 ' (5) Moves to P2 with linear interpolation

60 MVSP2,-100 ' Moves with linear interpolation from the current position (P2) 
to a position retracted 100 mm in the hand direction

70 END ‘ Ends the program
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Circular interpolation movement (MVR)

Circular interpolation movement

The robot moves along an arc designated with three points using 3D circular
interpolation. If The current position is separated from the start point when
starting circular movement, the robot will move to the start point with linear
operation and then begin circular interpolation.

Command Explanation

MVR Designates the start point, transit point and end point, and moves the robot with 
circular interpolation in order of the start point→transit point → end point An 
appended statement WTH or WTHIF can be designated

MVR P1,P2,P3

MVR2 Designates the start point, end point and reference point, and moves the robot with 
circular interpolation from the start point → end point without passing through the 
reference point. An appended statement WTH or WTHIF can be designated

MVR2 P1,P3,P2 

P2 P3

P1

P3

P1 P2
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MVR3 Designates the start point, end point and center point, and moves the robot with 
circular interpolation from the start point to the end point. The fan angle from the 
start point to the end point is 0 deg. < fan angle < 180 deg. An appended statement 
WTH or WTHIF can be designated

MVR3 P1, P3, P2

MVC Designates the start point (end point), transit point 1 and transit point 2, and moves 
the robot with circular interpolation in order of the start point → transit point 1 → 
transit point 2 → end point . An appended statement WTH or WTHIF can be 
designated.

MVC P1,P2,P3

P3

P1 P2

P2

P3

P1

Program Explanation

10 MVR P1, P2, P3 
WTH M_OUT(18) = 1

‘ (1) Moves between P1 . P2 . P3 as an arc. The robot current position before movement is 
separated from the start point, so first the robot will move with linear operation to the start 
point. (P1) output signal bit 18 turns ON simultaneously with the start of circular movement.

20 MVR P3,P4,P5 ' (2) Moves between P3 . P4 . P5 as an arc.

30 MVR2 P5,P7,P6 ' (3) Moves as an arc over the circumference on which the start point (P5), reference point 
(P6) and end point (P7) in the direction that the reference point is not passed between the 
start point and end point.

40 MVR3 P7,P9,P8 ' (4) Moves as an arc from the start point to the end point along the circumference on which 
the center point (P8), start point (P7) and end point (P9) are designated.

50 MVC P9,P10,P11 ' (5) Moves between P9 . P10 . P11 . P9 as an arc. The robot current position before 
movement is separated from the start point, so first the robot will move with linear operation 
to the start point.(1 cycle operation)

60 END. ' Ends the program
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Motion types: Continuous movement (CNT)

Continuous movement (CNT)

The robot continuously moves to multiple movement positions without stopping at each 
movement position.  The start and end of the continuous movement are designated with the 
command statement. The speed can be changed even during continuous movement.

CNT denotes the start and end of the continuous movement.

CNT1denotes the start and end of the continuous movement.

CNT 1, 200, 300-Designates the start of the continuous movement, and designates that the 
start point neighbourhood distance is 200mm, and the end point neighbourhood 
distance is 300mm

CNT0 denotes the end of the continuous movement.

10 CNT 0 ‘ invalidate continuous movement

20 MOV P1 ‘ axis interpolation to position 1

30 MOV P3 ‘ axis interpolation to position 3

40 CNT 1,200,300 ‘ validate continuous movement

50 MVS P5 ‘ linear interpolation to position 5

60 CNT 0 ‘ invalidate continuous movement

70 END ‘ program end



 138

The percentage of the acceleration/deceleration in respect to the maximum 
acceleration/deceleration, and the movement speed can be designated.

Acceleration/deceleration time and speedcontrol

ACCEL Designates the acceleration during movement and the deceleration as a 
percentage (%) in respect to the maximum acceleration/deceleration speed. or 
disabled

.

OVRD Designates the movement speed applied on the entire program as a percentage 
(%) in respect to the maximum speed

JOVRD Designates the joint interpolation speed as a percentage (%) in respect to the 
maximum speed

SPD Designate the linear and circular interpolation speed with the hand end speed 
(mm/s)

OADL This instruction specifies whether the optimum acceleration/deceleration function 
should be enabled

ACCEL. Sets both the acceleration and deceleration to 100%.

ACCELL 60,80 Sets the acceleration to 60% and the deceleration to 80

OVRD 50 Sets the joint interpolation, linear interpolation and circular interpolation to 
50% of the maximum speed.

JOVRD 70 Set the joint interpolation operation to 70% of the maximum speed.

SPD 30 Sets the linear interpolation and circular interpolation speed to 30mm/s.

OADL ON This instruction enables the optimum acceleration/deceleration function.

10 ACCEL 100,50 ‘ 100 means 100% = 0.2s acceleration;

‘ 50 means 200% = 0.4s deceleration

20 MOV P1 ‘ axis interpolation to position 1

30 MOV P2 ‘ axis interpolation to position 2

0,2s
[%]A 

% 100
t ⋅=

Where  A –ACCEL command’s parameter
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SPEED evaluation:

For joint interpolated movement

Movement speed during joint interpolation Controller (T/B) setting value×
OVRD command setting value × JOVRD command setting value.·

For linear interpolated movement

Movement speed during linear and circular interpolation Controller (T/B) 
setting value ×OVRD command setting value× SPD command setting value.

Hand control

Command Explanation

HOPENx

HCLOSEx

DLY xxx

Opens the designated hand x

Close the designated hand x

Wait for the xxx seconds for the completion a previous task

Command Explanation

HOPEN 1
HOPEN 2
HCLOSE 1

Opens hand No1
Opens hand No1
Closes hand No1
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Timer (DLY)

The program can be delayed by the designated time, and the output 
signal can be output with pulses at a designated time width

Syntax:
DLY value where value  -time value (from 0.01s)

Ex
100 DLY 1 -’ Waits for only 1second

110 M_OUT(4)=1 DLY 0.5 –’Turns on output signal bit 10 for only 
0.5 seconds.

120 HOPEN 1
130 DLY 0.5 - -’ Waits for only 0.5 seconds

Inputting and outputting external signals

Command Description

M_IN(xx) returns the value of the input signal

M_OUT(xx) writes or references external output signal

WAIT Waits for the input signal to reach the designated state

CLR Clears the general-purpose output signal according to the 
output signal reset pattern in the parameter

This section explains the general methods for signal control when controlling the robot via 
an external device (e.g., PLC)

Input signals

Signals can be retrieved from an external device, such as a programmable logic controller. 
The input signal is confirmed with a robot status variable (M_IN(), 

Output signals

Signals can be output to an external device, such as a programmable logic controller. The 
signal is output with the robot status variable (M_OUT(), etc.)
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13 Appendix C: VideoStrobe & VideoFlood 
LEDs

• VideoStrobe and VideoFlood LEDs.

• LEDs arrays specifications.

• VideoFlood LED light comparison table.
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13.1VideoStrob and VideoFlood LEDs

Figure 13.1: Video Strobe - Flood Controller and 3-by-4 LED Array used  during laboratory experiment 03.  
Adapted from VideoStrobe & VideoFlood LEDs by Visual Instrumentation Corporation 2009, Adapted with  
permission.
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13.2LEDs Arrays Specifications 

Figure 13.2: LED Array specifications. Two 3-by-4 LED Array Model 900405 were used  during laboratory  
experiment 03. Adapted from VideoStrobe & VideoFlood LEDs by Visual Instrumentation Corporation 2009,  
Adapted with permission.
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13.3 VideoFlood LED Light Comparison Table

Table 13.1: Model 900405 3-by-4 Super Bright LEDs Array.

Model 900405 3-by-4 Super Bright LEDs Array
Distance to 

Subject Beam Spread  Illumination in Foot 
Candles & LUX

Drive Current to 
each LED 

12 inches/30.50 cm 5.00” x 5.00”       2.70 cm 8000 – 86080 1.1 amp.

24 inches/60.96 cm 9.50” x 8.50”     24.13 cm 2255 – 27413 1.1 amp.

36 inches/91.44 cm 14.50” x 12.00” 35.56 cm 1150 – 12374 1.1 amp.

48 inches/121.90 cm 15.75” x 21.00”   3.54 cm 650 – 6995 1.1 amp.

Note. This table was adapted from VideoFlood LED Light Comparison Table by Visual 
Instrumentation Corporation, May 2011. Adapted with permission.  

Table 13.1 presents the values of the model 900405, 3 x 4 array of 3-watt Super Bright LEDs with 4 
centre 29° lenses and 8 perimeter 21° lenses. This values are used for comparison with the values 
obtained with the illumination equation.

The  formula  suggested  by  Visual  Instrumentation  Corporation  to  calculate  lightning  in 
foot - candles for high – speed framing cameras is give by (13.3.1 as follows:

I= K×A2

ISO×ET
[foot candles]  (13.3.1)

Where :

• I is the illumination in foot - candles.

• K is a constant with value 25.

• A is the area to be illuminated in square feet.

• ISO is the image sensor speed.

• ET is the exposure time in decimal seconds (1 decimal second = 0.864 seconds ).

The formula to convert Foot-Candles (FC) to LUX is as follows:

Illumination(LUX units)=10.76×FC  (13.3.2)

While the formula to convert candelas to lumens is given by:

Ilumination(Candela units )=4×Lumens  (13.3.3)
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14 Appendix D: Phantom v. 9.1 Data Sheet
• Phantom v. 9.1 Data Sheet.

• Phantom v. 9.1 Maximum Recording Speed vs. Image Size.

• V-Series Lens Shutter Data Sheet – Mechanical Shutter.

• V-Series Lens Shutter Data Sheet – Break-out-Box.
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Figure 14.1: Phantom v. 9.1 Data Sheet p1/3. Adapted from Phantom v9.1 by Vision Research Inc, 2007. Adapted with  
permission. 
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Figure 14.2: Phantom v. 9.1 Data Sheet p2/3. Adapted from Phantom v9.1 by Vision Research Inc, 2007. Adapted with  
permission. 
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Figure 14.3: Record speed vs. Image Resolution p3/3. Adapted from Phantom v9.1 by Vision Research Inc, 2007.  
Adapted with permission. 
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Figure 14.4: Mechanical shutter p1/2. Adapted from V-Series Lens Shutter by Vision Research Inc, 2010. Adapted with 
permission. 
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Figure 14.5: Break-out-Box p2/2. Adapted from V-Series Lens Shutter by Vision Research Inc, 2010. Adapted with  
permission. 
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15 Appendix E: MatLab M-Files Code
• File 1: getNodeData.m.

• File 2: readDataFromXML.m.

• File 3: plot3DPath.m.

• File 4: readMelfaData.m.

• File 5: transformReferential.m.

• File 6: testTransformReferential.m
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15.1File 1: getNodeData.m
%% SEARCH FOR A VARIABLE AND READ ITS DATA FROM AN OPEN CV 2.1 XML FILE 
% GIVEN AN XML FILE NAME GENERATED BY OPEN CV 2.1 FILE STORAGE AND THE
% NAME OF A VARIABLE TO BE FOUND (NODE NAME) PERFORM A SEARCH AND IF
% THE NODE EXIST RETRIEVE ALL THE DATA STORED IN ITS 'data' CHILD NODE.
%ARG 1: OPENCV GENERATED XML FILE NAME TO BE READ
%ARG 2: VARIABLE NAME TO BE LOADED
 
%USAGE EXAMPLE: READ CAMERA'S MATRIX FROM A CALIBRATION FILE
% calibParameters = readDataFromXML( 'CalibS04_CalibrationM1.xml', 'M1' );
%%

function [numbOfSubTags, dataVector] = getNodeData( fileName, tagName )
 
   %GET DOCUMENT OBJECT MODAL (DOM) NODE

   docNode = xmlread( fileName );
   
   %GET OPEN CV XML FILE ROOT NODE "<opencv_storage>"
   openCVStorage = docNode.getDocumentElement;
   
   %GET ALL "<opencv_storage>" SUB NODES
   varNodes = openCVStorage.getChildNodes;
   
   %GET NUMBER OF SUB NODES

   n = varNodes.getLength -1;
   output = '';
   
   % SEARCH IF tagName NODE EXIST WITHIN ALL SUB NODES
   varFound = 0;
   fprintf( '   SEARCHING FOR [%s] VAR \n', tagName );
   for i = 0 : n
      %GET EACH NODE ITEM 
      varNodeI = varNodes.item(i);
 
      %IF NODE EXIST CHECK IF IT HAS A CHILD NODE "data"
      if ( varNodeI.getNodeName == tagName )

         fprintf( '   >>> VARIABLE [ %s ] FOUND.\n', tagName );
         varFound = 1;
         if ( varNodeI.hasChildNodes )
            node = varNodeI.getFirstChild;
            nChild = 1;
            dataFound = 0;
            while ~isempty(node)

               %IF CHILD NODE == 'data' GET ITS CONTENT
               if strcmpi(node.getNodeName, 'data' )
                  output = string(node.getTextContent);
                  fprintf( '   >>> [ %s ] NODE CHILD[ %i ] HAS DATA.\n',...

                      tagName, nChild );
                  dataFound = 1;
                  break;
               else
                  fprintf( '   >>> [ %s ] IS SINGLE VALUE NODE.\n', tagName );
                  %output = string(node.getTextContent)
                  node = node.getNextSibling;
               end
               nChild = nChild + 1;
            end
            if ( dataFound == 0 )
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               fprintf( '   >>> [ %s ] HAS NO DATA.\n', tagName );
            end
         end
      end
         
      %SPLIT STRINGS AND CONVERT TO DOUBLE VALUES 
      cellC1 = regexp(output, ' ', 'split');
      vec1 = str2double( cellC1 );

      vec2 = [];
      n1 = 0;

      status = isnan( vec1 );
      for i = 1 : size( status, 2 )
         if ( status(1,i) == 0 )
            n1 = n1 + 1;
            vec2(n1) = vec1( 1, i );

         end
      end        

   end
   
   if( varFound == 0 )
      fprintf( '    VARIABLE [ %s ] NOT FOUND.\n', tagName );
   end

   
   numbOfSubTags = n + 1;   %Number of variables listed in the XML file
   dataVector    = vec2;    %Data within the subnode child node <data> 
end
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15.2File 2: readDataFromXML.m
%% READ VARIABLES FROM AN XML FILE GENERATED BY OPEN CV 2.1 FILE STORAGE
% GIVEN AN OPEN CV 2.1 GENERATED XML FILE NAME AND A VECTOR WITH THE
% VAR NAMES TO BE READ FROM THE FILE IT LOADS THE DATA OF EACH VARIABLE.
% ARG 1: OPENCV GENERATED XML FILE WITH DATA TO BE READ
% ARG 2: VECTOR WITH THE VAR NAMES TO BE LOADED TO MATLAB. ALL THE
% VARIABLES NAMES NEED TO HAVE THE SAME LENGHT (BY PADDING WITH SPACES)
% OTHERWISE THE FUNCTION WILL RETURN AN ERROR.
   
%USAGE EXAMPLE: READ CALIBRATION PARAMETERS FROM A CALIBRATION FILE
% varNames = [ 'M1';'D1';'M2';'D2';'R ';'T ';'E ';'F '];
% calibParameters=readDataFromXML('CalibS04_CalibrationM1.xml', varNames );
%%
function [ varsDataOut ] = readDataFromXML( xmlFileName, vecVarNames )
   
   %TRANSFORM VECTOR OF CHARS ARRAYS INTO STRING
   %ALL ELEMENTS NEED TO HAVE THE SAME LENGHT
   vars = cellstr( vecVarNames );
  
   %DEFINE CELL TO STORE EACH VAR NAME BY ROWS
   sz = size( vars, 1 );
   dataIn = cell( sz, 1 );
   for i = 1 : sz 

      varToRead = vars{i,1};
      [ nVars, dataOut ] = getNodeData( xmlFileName, varToRead );
      dataIn{i,1} = dataOut;
   end
     
   %RETURN VAR DATA VECTORS OF VECTORS
   varsDataOut = dataIn;
end
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15.3File 3: plot3DPath.m
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15.4File 4: readMelfaData.m
%% READ 3D PATH FROM MELFA BASIC IV OUTPUT FILE
%READ THE 3D PATH OUTPUT FILE GIVEN BY MELFA BASIC IV SOFTWARE.
%OBS: ALL THE COMAS NEED TO BE REPLACED BY A PERIOD AND THE VAR IN THE
%HEADER FILE SHOULD BE FORMATED AS IN THE NEXT LINE:
%Time | J1 | J2 | J3 | J4 | J5 | J6 | J7 | ... | A | B | C | L1 | L2
%ARG 1: MELFA BASIC OUTPUT FILE
%ARG 2: PLOT TITLE
   
%USAGE EXAMPLE:
%[varNames, varData]=readMelfaData('Lab3 Path11B 50ms.log','MELFA PATH');

%Time = varData{ 1, 1  };   %Get 'Time' column values
%J1   = varData{ 1, 2  };   %Get joint1 values
% ... = ...
%X    = varData{ 1, 10 };   %Get end of arm X coordinates column
%Y    = varData{ 1, 11 };   %Get end of arm Y coordinates column   
%Z    = varData{ 1, 12 };   %Get end of arm Z coordinates column
%%
function [ melfaHeader, melfaData ] = readMelfaData( melfaFileName, title1 )
 
   %OPEN MELFA 3D PATH FILE
   melfaDoc = fopen( melfaFileName );
   

   %READ MELFA HEADER FILE (NAMES OF THE VARIABLES)
   %Time |  J1 | J2 | J3 | J4 | J5 | J6 | J7 | ... | A | B | C | L1 | L2
   melfaHeader1 = textscan( melfaDoc, '%s', 17, 'delimiter', '|');
  
   %READ ALL DATA COLUMNS FROM MELFA OUTPUT FILE 
   melfaData1 = textscan( melfaDoc, ...
       '%s %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f' );
   
   %PLOT MELFA 3D PATH
   x = melfaData1{1,10};
   y = melfaData1{1,11};
   z = melfaData1{1,12};

   plot3(x,y,z, '-r')
   grid on
   title( title1 );
   xlabel('X Coordinate [mm]');
   ylabel('Y Coordinate [mm]');
   zlabel('Z Coordinate [mm]');
   text( x(1),y(1),z(1), 'Point_1');
   
   %RETURN VAR NAMES AND THEIR DATA(COLUMNS)
   melfaHeader = melfaHeader1;
   melfaData = melfaData1;

   
   %CLOSE INPUT FILE
   fclose( melfaDoc );
   
end
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15.5File 5: transformReferential.m
%% TRANSFORM POINTS COORDINATE SYSTEM
%GIVEN A FILE CONTAINING THREE 3D POINTS COORDINATES THAT FORM THE NEW
%COORDINATE SYSTEM IT COMPUTES THE DIRECTION COSINE MATRIX AND TRANSFORMS
%THE 3D POINTS VECTORS [X Y Z] INTO THE NEW REFERENTIAL.
%ARG 1: XML FILE CONTAINING 3 3D POINTS TRACKED OVER TARGET1'S
%ARG 2: 3D POINTS' COORDINATES TO BE TRANSFORMED AND THEN RETURNED 
%%
function [ Xout, Yout, Zout ] = transformReferential( xmlFileIn, X, Y, Z )
 
   %LOAD THREE 3D POINTS TO USE IN THE POINT-LINE-PLANE IMPLEMENTATION

   [ n, Pt0 ] = getNodeData( xmlFileIn, 'POINT0');
   [ n, Pt1 ] = getNodeData( xmlFileIn, 'POINT1');
   [ n, Ptyz] = getNodeData( xmlFileIn, 'POINT2');
   points = [ Pt0; Pt1;Ptyz ];
 
 
   X1 = [];
   Y1 = [];
   Z1 = [ ];
   P0  = zeros(1,3);
   P1  = zeros(1,3);
   Pyz = zeros(1,3);

  
   %IN OPENCV THE 3D POINTS COORDINATES ARE SAVED SEQUENTIALLY i.e. 
   %P0 = [ x1 y1 z1 x2 y2 z2 ... xn yn zn] THUS FOR EACH POINT (i)THE
   %POINT'S COORDINATES NEED TO BE SEPARATED.
   cellSize = size( points, 1 )
   for i = 1 : cellSize
      pointI3D = points(i,:);
      X1(i,:) = pointI3D(1:3:end);
      Y1(i,:) = pointI3D(2:3:end);
      Z1(i,:) = pointI3D(3:3:end);
   end
   

   %COMPUTE THE MEAN OF EACH POINT'S COORDINATE TO REDUCE THE ERRORS THAT
   %WOULD BE MORE NOTABLE IF ONLY ONE VALUE FOR EACH COORDINATE WAS USED.
   if ( size(X1,2) > 1 )
       mx = zeros(1,3);
       my = zeros(1,3);
       mz = zeros(1,3);
       for i = 1: size(X1,1)
          Xi = X1(i,:);
          Yi = Y1(i,:);
          Zi = Z1(i,:);
          mx(i)= mean(Xi);

          my(i)= mean(Yi);
          mz(i)= mean(Zi);
       end
 
       P0(1,:)  = [ mx(1,1) my(1,1) mz(1,1) ];
       P1(1,:)  = [ mx(1,2) my(1,2) mz(1,2) ];
       Pyz(1,:) = [ mx(1,3) my(1,3) mz(1,3) ];
 
       %BUILD DIRECTIONS COSINES USING POINT-LINE-PLANE 
       YY = [ P1(1,1)-P0(1,1) P1(1,2)-P0(1,2) P1(1,3)-P0(1,3)];
       YZ = [ Pyz(1,1)-P0(1,1) Pyz(1,2)-P0(1,2) Pyz(1,3)-P0(1,3)];
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       XX = cross(YY,YZ);

       ZZ = cross(XX,YY);
       XX = XX/(sqrt(XX(1,1)^2+XX(1,2)^2+XX(1,3)^2));

       YY = YY/(sqrt(YY(1,1)^2+YY(1,2)^2+YY(1,3)^2));

       ZZ = ZZ/(sqrt(ZZ(1,1)^2+ZZ(1,2)^2+ZZ(1,3)^2));
 

       %BUILD DIRECTION COSINE MATRIX AND TRANSLATION VECTOR
       rot = eye(4);

       trans = eye(4);

       rot(1, 1:3) = XX;

       rot(2, 1:3) = YY;

       rot(3, 1:3) = ZZ;

       trans(1,4) = P0(1);
       trans(2,4) = P0(2);

       trans(3,4) = P0(3);

       
       %BUILD TRANSFORMATION MATRIX

       A = rot * trans;  
       X0 = [];

       Y0 = [];

       Z0 = [];
 

       %TRANSFORM POINTS FROM CAMERA COORDINATES SYSTEM TO 

       %THE COORDINATE SYSTEM DEFINED BY TRAGET 1'S POINTS
       for i1 = 1 : size(X,2)

          pt = A * [ X(1,i1); Y(1,i1); Z(1,i1); 1 ];
          X0(i1) = pt(1,1);

          Y0(i1) = pt(2,1);
          Z0(i1) = pt(3,1);

       end

 
       %TRANSLATE THE COORDINATE SYSTEM ORIGIN TO MELFA'S COORDINATE SYSTEM 

       %ORIGIN WITH PURE TRANSLATION(SEE MELFA RV 2AJ'S BASE DIMENSIONING).

       rot1 = eye(4);

       trans1 = eye(4);

       trans1(1,4) = -88;
       trans1(2,4) = -15;

       trans1(3,4) = -30;

       A1 = rot1 * trans1

       for i = 1 : size(X0,2)
          pt = A1 * [ X0(1,i); Y0(1,i); Z0(1,i); 1 ];

          X0(i) = pt(1,1);
          Y0(i) = pt(2,1);

          Z0(i) = pt(3,1);
       end

       Xout = X0;

       Yout = Y0;
       Zout = Z0;

   else

      printf('NO POINTS TO COMPUTE (R,T) TRANSFORM ARE AVAILABLE')
      printf('PLEASE MAKE SURE %s IS NOT EMPTY', xmlFileIn );

      Xout = X;
      Yout = Y;

      Zout = Z;

   end    
end



 160

15.6File 6: testTransformReferential.m
%% TRANSFORM 3D POINTS [X,Y,Z] TO A GENERIC REFERENTIAL 

%READS THREE GENERIC 3D POINTS (P0,P1,Pyz) AND TRANSFORMS THE GIVEN 3D
%POINTS COORDINATES [X,Y,Z] INTO A NEW REFERENTIAL GIVEN BY (P0,P1,Pyz).
%%

function [Xout,Yout,Zout]=testTransformReferential(P0,P1,Pyz,X,Y,Z)
 

   %P0 = [ x0 y0 z0 ];
   %P1 = [ x1 y1 z1 ];
   %P2 = [ x2 y2 z2 ];

     

   %BUILD DIRECTIONS COSINES VECTORS USING POINT-LINE-PLANE METHOD 

   YY = [ P1(1,1)-P0(1,1) P1(1,2)-P0(1,2) P1(1,3)-P0(1,3)];
   YZ = [ Pyz(1,1)-P0(1,1) Pyz(1,2)-P0(1,2) Pyz(1,3)-P0(1,3)];
   XX = cross(YY,YZ);

   ZZ = cross(XX,YY);
   XX = XX/(sqrt(XX(1,1)^2+XX(1,2)^2+XX(1,3)^2));
   YY = YY/(sqrt(YY(1,1)^2+YY(1,2)^2+YY(1,3)^2));

   ZZ = ZZ/(sqrt(ZZ(1,1)^2+ZZ(1,2)^2+ZZ(1,3)^2));
 
   %BUILD DIRECTION COSINES MATRIX AND TRANSLATION VECTOR

   rot = eye(4);
   trans = eye(4);

   rot(1, 1:3) = XX;
   rot(2, 1:3) = YY;
   rot(3, 1:3) = ZZ;

   trans(1,4) = P0(1);
   trans(2,4) = P0(2);
   trans(3,4) = P0(3);

 
   %BUILD TRANSFORMATION MATRIX
   transf = rot * trans;  

   X0 = [];
   Y0 = [];
   Z0 = [];

 
   %TRANSFORM POINTS FROM CAMERA COORDINATES SYSTEM TO 
   %THE COORDINATE SYSTEM DEFINED BY GENERIC 3D POINTS.

   for i1 = 1 : size(X,2)
      pt = transf * [ X(1,i1); Y(1,i1); Z(1,i1); 1 ];

      X0(i1) = pt(1,1);
      Y0(i1) = pt(2,1);
      Z0(i1) = pt(3,1);

   end
   
   Xout = X0;

   Yout = Y0;
   Zout = Z0; 

end
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16 Appendix F: Motion
• Motion.

• Optical flow.
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16.1Motion 

16.1.1 Introduction
For  a  computer  vision  system,  the  ability  to  deal  with  the  moving  and  changing  objects, 

changing illumination conditions and changing viewpoints is essential to perform several tasks. 
The input to a dynamic vision system analysis is a sequence of image frames taken in one of the  
three situations: The camera is moving and the object is stopped, the object is moving and the 
camera is stopped or both the camera and the objects are moving. 

In a sequence of image frames each frame  represents one different image of the scene at a 
particular  instant  that  permits  to  understand  the  motion  of  a  particular  object  through  two 
processes: identification and modeling. 

The dynamic vision systems main assumptions recalls that the changes in the scene are mainly 
due the motion of the object and camera  simplifying other factors, such as  illumination variation ,  
temporal persistence – small movements and spatial coherence, soon discussed in more detail .

Dynamic vision system must detect the objects of interest, detect changes, determine the motion 
characteristics of the observer and the object, recover the structure of the object and later be able to 
recognize object in motion.

In this  section  the  researcher  started by introducing the formulation  that  makes  possible  to 
identify  the  unique  points  to  track.  This  points  need  to  be  computed  because  some  tracking 
methods are  feature based methods and thus dependent on that features that must be previously 
computed. 

The following part of this section focus in the two tracking techniques implemented in OpenCV 
for  tracking  the  unidentified  objects,  the  dense  tracking  techniques  and  the  sparse  tracking 
techniques.  In the former case it  includes the Horn-Schunck and the Block-Matching  method 
while  in the last  case is  presented one of the most  used and efficient tracking techniques,  the 
Lucas-Kanade pyramid method. 

16.1.2 Corners Identification 
The  features  to  be  identified  in  one  frame  should  be  unique  and  easily  identified  in  the 

subsequent frames. A point is more likely to be unique when strong derivatives exist in orthogonal 
directions, this features are termed as corners. Besides edges presents strong derivatives the points 
within the same edge are not unique and therefore corners are not edges.

   “Mathematically, the corner definition provided by Harris, relies on the matrix of second order  
derivatives  of  the  intensities  that  when  applied  to  all  points  forms  a  new  Hessian  images”  
(Bradski et. al. 2008,  p. 317).

The Hessian matrix around a point is defined in two dimensions by: 

H ( p)=[ ∂
2 I
∂ x2

∂2 I
∂ x∂ y

∂2 I
∂ y ∂ x

∂2 I
∂ y2 ];  (16.1.1)
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For the Harris corner is taken in account a  small region around each pixel that defines where 

the autocorrelation matrix of the second derivative will  operate.  Such matrix  is  constructed as 
follows:

M (x , y)=[ ∑
−k⩽ i , j⩽K

W i , j I x
2(x+i , y+ j ) ∑

−k⩽i , j⩽K
W i , j I x( x+i , y+ j) I y (x+i , y+ j )

∑
−k⩽i , j⩽K

W i , j I x (x+i , y+ j) I y (x+i , y+ j) ∑
−k⩽i , j⩽K

W i , j I y
2 (x+i , y+ j) ]            (16

.1.2)

Where W i , j is the weighting term that can be uniform or used to create a Gaussian weighting.

Thus if this autocorrelation matrix find two large eigenvalues it means that this particular point 
contain edges going in at least two different directions within the small region centred at that point.  
Shi and Tomasi later proposed a more satisfactory algorithm by concluding that good corners result 
as long as the smaller of the two eigenvalues are greater than a minimum threshold.  This two 
approaches were implemented by cv::goodFeaturesToTrack( ) function as follows: 

image – The input image should be 8-bit or 32-bit single channel image.

corners – Output corners vector that will store the 32-bit 2-D points that were detected.

 maxCorners – Indicates the maximum number of corners to return.

 qualityLevel – Defines the coefficient that multiplied by the best corner quality measure defines 
the threshold value used to reject the corners which quality measure is less than this value. The 
values of this parameter should not exceed 1 ( typical value are 0.10 or 0.01 ).

minDistance  -  Defines  a  minimum Euclidean distance between corners  to  avoids  that  two 
returned points are within the indicated number of pixels.

mask -  Is a Mat that defines a ROI where the corners are detected. 

blockSize -  As seen before  the Harris's autocorrelation matrix of derivatives  uses a small 
region  where to operate in order to achieve better results. This argument defines that region

useHarrisDetector – If true the Harris corners are used in place of Shi-Tomasi method.

K – If useHarrisDetector was set to true then K parameter defines the weighting coefficient used 
in the autocorrelation matrix.  

The final result of this routine is an array of pixel locations that are intended to be found in 
another image.

16.1.3 Corners Sub-pixel Accuracy 
When working with images for extracting geometric measurements becomes necessary to have 

more resolution than the provided by cv::goodFeaturesToTrack( )  routine. Thus OpenCV  provides an 
additional routine to compute the exact location of the corners to sub-pixel accuracy, i.e. integer 
pixel  coordinates  are  computed  to  real-value  coordinates.  For  example

p pixel (250, 12)→ p real value(250.59, 12.45)  .

The  routine  that  computes  the  real-value  pixel  coordinates  from  a  given  array  of  integer 

void cv::goodFeaturesToTrack( const Mat& image, vector<Point2f>& corners,
       int maxCorners, double qualityLevel, double minDistance, const Mat& mask=Mat(), int 

blockSize=3, bool useHarrisDetector=false, double k=0.04 );
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coordinates in OpenCV is cv::cornerSubPix( ) and has the following structure:

    image – Is the input 8-bit single-channel image.

corners – Input vector that contains the corners locations in pixels obtained from the  previous 
routine cv::goodFeaturesToTrack. The refined pixel coordinates are to the same vector. 

win -  This argument specifies the size of window – cv::Size( width, height) from which sort of 
equations will be generated. This window is centred in the original integer corner location and 
extends outwards in each direction by the number of pixels specified in win.width and win.height 
defining the area to be considered in the system to constraint each of those equations.

zeroZone  –  Analogously  to  win,  this  argument  defines  a  inner  window  that  will  not  be 
considered to constrain the same equations. If no zero zone is desirable then this parameter should 
be set to cv::Size( -1, -1 ).

criteria  –  This  argument  defines  the  termination  criteria  to  be  reached  once  the  real-value 
location is found. This criteria can be of type CV_TERMCRIT_ITER and of type CV_TERMCRIT_EPS 
or both. The later case will indicate the accuracy required for the sub-pixel values.

16.2Optical Flow

16.2.1 Introduction
The motion of objects in  3-D space induces the 2-D motion in the image plan, this motion is 

what  forms the optical flow which carries  valuable information for analysing dynamic scenes. 
Optical flow or image flow is the distribution of velocity, relative to the observer, over the points of 
an image.  

Definition 

 “Image flow is the velocity field in the image plane due to the motion of the observer, the  
motion  of  objects  in  the  scene,  or  apparent  motion  which  is  a  change in  the  image intensity  
between frames that mimics object or observer motion.” (Jain et. al., 1995, p428)

Assuming  that  image  flow information  is  available  there  are  several  methods  to  deal  with 
dynamic-scene  analysis  without  any prior  knowledge  about  the  content  in  the  frames.  In  this 
section  the  researcher  had focused his  work on the  routines  available  in  OpenCV libraries  to 
explain the sparse  optical flow methodology and dense optical flow methodology.   

Dense optical flow method such as Horn-Schunck method associate the velocity to each pixel in 
the frame or in other methods the distance which the pixel has moved between the current and 
previous frame. Another dense optical method, that match windows around each pixel from one 
frame to the next frame, known as block matching is also implemented in OpenCV and soon will 
be described in more detail.

Due  the  high  computational  costs  of  dense  optical  flow  methods  sparse  methods  are  an 
alternative however this methods are feature based methods that first selects some feature in the 
frames and then matches this features and computes the disparities between subsequent frames. 

Next is presented the most used sparse tracking technique Lucas-Kanade also implemented with 
image pyramids  for efficiently track fast motions. Finally are presented the Horn-Schunck and 
block-matching dense methods. The next figure Figure 16.1 is used as a simple sequence of two 

void cv::cornerSubPix( const Mat& image, vector<Point2f>& corners, Size winSize, Size 
zeroZone, cv::TermCriteria criteria );
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frames where the main object moved slightly to the right.

16.2.2 Sparse Tracking Techniques 

16.2.2.1 Lucas - Kanade (LK) Method – Sparse Optical Flow Method 
LK method relies only on local information from small local windows surrounding each of the 

points of interest. To avoid that large motions points from being hidden outside the local windows 
and thus impossible to be tracked the LK method has a pyramidal implementation to allow large 
motions to be included by local windows. Tracks starts at lower detail towards the finer detail. 

16.2.2.2 Lucas - Kanade Assumptions
Lucas - Kanade algorithm relies in three assumptions:

1. Brightness constancy – The brightness of a pixel does not change as it  is tracked from 
frame to frame. Taking in account one dimension, the brightness consistency equation can 
be express as follows:

f (x ,t )=I (x (t) , t)=I (x (t+dt) , t+dt) ;  (16.2
.1)

 Resulting in zero derivative: 
∂ f (x )
∂ t

=0,

2. Spatial  Coherence  –  Neighbours  points  in  the   the  image  frame  belongs  to  the  same 
surface , have similar motion and move for nearby points on the image plane of the next 
frame.
 

3. Small movements – The motion of a surface patch changes slowly in time - the object or 
the camera does not move substantially from frame to frame, This can be achieved with 
very small time increments between frames.  

To understand the implications of the last assumption is first considered a single dimension and 
then generalize it for the  two dimensions. Starting with brightness consistency equation  (11.1.3) 

Figure 16.1: Sequence of frames where the optical flow is to be computed.
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and performing the next substitution f (x ,t )→ I (x (t) , t) and then applying the rules for partial 
differentiation, yields: 

∂ I
∂ x t(∂ x

∂ t )+∂ I
∂ t x(t )

 (16.2.2)

The first  term is  the spacial  derivative I x ,  the second term the velocity  v and the last 
member the derivative over time I t . Thus the optical flow velocity for one dimension is obtained 
as follows: 

v=
I t

I x
 (16.2.3)

Adapting the one-dimensional solution to two dimensions and changing the nomenclature the 
velocity along  xx  axis is  u   and the velocity along  y axis is  v , then is possible to 
obtain: 

I x u+I y v+I t=0  (16.2.4)

This single equations has two unknowns for any given pixel making it impossible to obtain a 
unique solution for the two-dimensional motion at that pixel.  Only the perpendicular motion to the 
line described by the flow equation – the normal flow, as shown in Figure 16.2, can be solved. 

Normal optical flow results from the aperture problem Figure 16.3 originated when motion is 
detected with small aperture or when there is only one edge instead of a corner. The edge alone is 
insufficient to determine exactly how the entire object is moving. 

Figure 16.2: Normal flow. 
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The  second  assumption  is  needed  in  order  to  solve  the  unconstrained  equation.  Under  the 

assumption that pixels moves coherently the surrounding pixels can be used to build a system of 
equations.  For example if a 3-by-3 window of brightness values is used around the current pixel to 
compute its motion is possible to obtain 9 equations in a single-channel image ( or 27 equations in 
a three channel image)  as follows: 

[ I x ( p1) I y( p1)
I x ( p2) I y( p2)
⋮ ⋮

I x ( p9) I y( p9)
][uv ]=−[ I t( p1)

I t( p2)
⋮

I t( p9)
]

The system of equations is now over constrained and can be solved. Using the least-squares 
minimizations, the equation, min∥Ad−b∥2  is solved as follows:

(AT A)d=AT b . From this relation is obtained the u and v motion velocity components:

[uv]=(AT A)−1 AT b  (16.2.5)

 

[uv]=−[∑ I x I x ∑ I x I y

∑ I x I y ∑ I y I y]
−1

[∑ I x I t

∑ I y I t]
The system can be solved when (AT A) is invertible and therefore when its rank is equal to 2, 

which  occurs  when  the  the  image  regions  contains  edges  running  in  at  least  two  directions.
(AT A) has the best properties (larger eigenvalues) when the tracking window is centred over a 

corner in the image, similarly to the previously mentioned  Harris autocorrelation matrix.

The next figure  Figure 16.4 shows the computed optical flow that occurs in the sequence of 
images illustrated in  Figure 16.1. The routine that allow to implement this tracking technique is 
cv::calcOpticalFlowLK( ) routine.

Figure 16.3: Aperture problem originated by a small aperture window.
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 LK method requires large window to catch large motions,  this  requirement  by itself   may 
violate the spatial coherence assumption. Thus to minimize the motion assumptions violations the 
track happens first over large spatial scales using an image pyramid and then progress to the next 
layer down using the resulting motion estimates. This more efficient method is know as pyramid 
Lucas-Kanade method and has better performance than cv::calcOpticalFlowLK( ) function for most of 
the  cases.  The function  that  implements  this  method is cv::calcOpticalFlowPyrLK(  ) and  has  the 
following parameters:

prevImg and nextImg – Are the initial and final images and both should be single-channel or 3-
channel 8-bit images.

prevPts and nextPts – prevPts is the input vector that contains the points for which the motions 
is to be found , and nextPts is a similar vector into which the computed new locations of the points 
of prevPts are to be placed.

status – Output vector that contains the status of each feature.  Each element has value 1 if 
prevPts element has been found or 0 otherwise.

err – Output vector that will contain the difference between patches around the prevPts and 
nextPts. 

winSize -  Defines the size of the window for computing the local coherence motion.

maxLevel – Defines the number of pyramid levels, if it is set to zero, then the pyramids are not 
used, if it set to 1 two levels are used, if set to 2, three levels are used and so on.  

criteria  –  As  seen  before,  it  implements  the  termination  criteria,  it  defines  the  number  of 
iterations or constraint the movement of the search window by less than a number defined by 
cv::TermCriteria::EPS.

derivLambda – Defines the weight of image intensity and spatial derivatives used to estimate 
the optical flow. If derivLambda = 0 only image intensity is taken in acount else if derivLambda = 

void cv::calcOpticalFlowPyrLK( const Mat& prevImg, const Mat& nextImg, const 
vector<Point2f>& prevPts, vector<Point2f>& nextPts, vector<uchar>& status, 
vector<float>& err, Size winSize=Size(15,15), int maxLevel=3, TermCriteria criteria 
= TermCriteria( TermCriteria::COUNT + TermCriteria::EPS, 30, 0.01 ), double 
derivLambda = 0.5, int flags = 0);

Figure 16.4: Result from applying the pyramid Lucas - Kanade  
technique.
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1 only spatial derivatives are used. For any value within [0; 1] interval  the algorithm used both 
approaches with the corresponding proportions.

flags – Allows to set whether the algorithm uses the prevPts as initial estimation, by setting the 
flag to  OPTFLOW_USE_INITIAL_FLOW, or if the flag is set to zero  then initially prevPts is set to 
nextPts. 

16.2.3 Dense Tracking Techniques
The dense tracking techniques are less used due the high computational efforts they require and 

the need for very fast and efficient routines by systems that employ optical flow routines. 

OpenCV contains  two routines  to implement  the  dense tracking techniques:  Horn-Schunck 
method and Block-Matching method described next.

16.2.3.1 Horn-Schunck Method
This method was one of the firsts to make use of the brightness constancy  and implement the 

basic brightness constancy equations. The solution for those equations was a smoothness constraint 
on the velocities v x   and  v y  that were derived by minimizing the Laplacian of the optical flow 
components as follows:

∂
∂ x

∂ v x

∂ x
− 1
α I x (I x v x+I y v y+ I t)=0  (16.2.6)

∂
∂ y

∂ v y

∂ y
− 1
α I y( I x vx+ I y v y+I t)=0  (16.2.7)

The  coefficient  α is  the  weighting  coefficient  known  as  regularization  constant.  Larger 
values of α lead to smoother vectors of motion flow and penalize regions in which the flow is 
changing  in  magnitude.  The  old  C  routine  that  implements  this  tracking  method  is 
cvCalcOpticalFlowHS( ) and has the following parameters: 

imgA and imgB – This first two parameters are pointer to the first and second images frames 
from a sequence of images. They must be 8-bit, single-channel images.

usePrevious  –  This  parameter  tells  the  routine  to  use  the  arrays  velx  and  vely  velocities 
computed from the previous frame as the initial starting point for the iterations process.

velx and vely – This parameters are pointers to 32-bit, floating-point, single-channel arrays that 
will be used to store the x and y velocities results.

lambda – This parameter is  not  the regularization constant  seen previously but it  has some 
relation.  Lambda is  the  weight  coefficient  that  arises  when attempt  to  minimize  both  motion-
brightness equation  and the smoothness equations, it represents the relative weight to the errors in 
each equation as they are minimized. 

criteria – Criteria to terminate the velocity calculations.

void  cvCalcOpticalFlowHS( const CvArr *imgA, const CvArr *imgB, int usePrevious, CvArr 
*velx, CvArr *vely, double lambda, CvTermCriteria criteria );
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16.2.3.2 Block Matching Method
This method divides the image into small regions called blocks that are typically squares with a 

predefined size and are often overlapped in the image.  The algorithm divide the previous and 
current  images  in  such  blocks  and  then  compute  their  motion,  thus  the  returned  velocity  are 
commonly of lower resolution  than the input images due the fact the algorithm operates in the 
blocks level and not at the single pixel level.

The size of the resulting images is given by the following formulas:

   

W result=[W prev−W block+W shiftsize

W shiftsize ] floor
 (16.2.8)

H result=[ H prev−H block+H shiftsize

H shiftsize ] floor
 (16.2.9)

The  algorithm perform a  search  that  starts  from the  original  block  position  located  in  the 
previous frame and compares it with the new blocks for possible matches in the new frame. The 
comparison is a  sum of  absolute differences of all pixels within the block, in case of a good match 
the  comparison  for  this  block  is  stopped.  This  process  is  obtained  with  the  old  C  routine 
cvCalcOpticalFlowBM( ) that has the following parameters:

prev and curr – The first two parameters are pointers to the previous and current images that 
must be 8-bit, single-channel images.

block_size – Defines the size of the block to be used.

shift_size – This parameter defines the step  size between blocks whether the blocks overlap, 
and if so,  how much the block will overlap.

max_range – This parameter determines the size of the region around a given block where this 
block will search for matches in the subsequent frame.

use_previous – If set, it indicates that the values stored in the arrays velx and vely should be 
used as a starting points for the block searches. 

velx  and  vely –  Are  pointers  to  arrays  of  32-bit,  single-channel  images  that  will  store  the 
computed motions for the individual blocks ( not for individual pixels once motion is computed 
block by block ).

alFlowBM( const  CvArr  *prev,  const  CvArr  *curr,  CvSize  block_size,  CvSize  shift_size, 
CvSize max_range, int use_previous, CvArr *velx, CvArr *vely );
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17 Appendix G: Targets and MELFA Basic 
IV Program

• Target 1, 2 and 3 dimensioning.

• Target 1,2 and 3 on real scale size.

• MELFA Basic IV 3D path program.
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Figure 17.1: Dimensioning of the target1 and  target 2.
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Figure 17.2: Dimensioning of the target 3. 
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Figure 17.3: Targets 1, 2, and 3.
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Figure 17.4: MELFA Basic IV simple 3D path program implementation. 
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18 Appendix H: StereoVisionProg

• Main menu's Option [0] – Compute optical flow.

• Main menu's Option [1] – Single video operations.

• Main menu's Option [2] – Stereo video operations.

• Main menu's Option [3] – Stereo calibration.

• Main menu's Option [4] – Compute 3D points.

• Main menu's Option [5] – Rotation matrix parametrization.

• Main menu's Option [6] – List current directory files.
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18.1Introduction 

StereoVisionProg  program  is  the  name  of  the  researcher-made  program  implemented  with 
OpenCV  v.2.1  libraries  and  Microsoft  Visual  Studio  2008  IDE software  to  provide  the 
functionalities and methods needed along this research. 

Due the program extension this section was necessary to provide a better description of each 
option and how to proceed in each case. It provides additional detail by using activity diagrams and 
snapshots of each menu and sub-menu to describe how the code was implemented. This appendix 
stands together with Methods chapter three (see  Chapter Three). All the activity diagrams were 
created using a free unified modeling language (UML) tool from Visual Paradigm for UML.

For a better understanding, flexibility and code reuse, the main program was implemented with 
different  classes.  Each  one  of  the  classes  has  a  main  role  in  the  process  of  loading  images, 
performing cameras  calibration  and calibration  optimization,  stereo  relations  estimation,  stereo 
rectification,  and  stereo  correspondence.  The  main  program was  implemented  to  receive  user 
inputs from a command line, all the results obtained are saved into individual XML files with proper 
nomenclature depending on which process was performed. The main program's menu is shown in 
the next figure (see Figure 18.1).

18.2Main menu's Option [0] – Compute Optical Flow

The first  option available  from StereoVisionProg's  main menu was implemented to provide 
different functionalities for sparse and dense optical flow methods. By selecting this option a sub 
menu is displayed as shown in the next figure (see Figure 18.2). This sub menu allows to select the 
capture mode from camera or an AVI file.

Figure 18.1: StereoVisionProg: Main menu.
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Case  option  [1] is 
selected the user is asked to 
input  the  camera  INDEX, 
this index is the ID number 
that identifies each cameras 
connected to the computer. 
On the other hand if  option 
[2]  is selected the program 
lists  all  AVI files  in  the 
directory  from  where  the 
program  was  started  and 
asks the user to select one 
option than corresponds to 
one of the file listed, as shown in the next figure ( Figure 18.3).

After  having 
selected  the  camera 
index/video  file  the 
program  starts 
capturing  the  video 
sequences  frames 
and  displaying  them 
in  the  CAMERA 
CAPTURE window. A 
second  window 
named  TRACKING 
SETTINGS is  then 
displayed for control 
purposes as shown in 
the next  figure (see  Figure 18.4).  This widow was created to allow fine adjustments for  each 
parameter  individually and also  to  allow the  selection  between sparse  and dense  optical  flow 
method. 

Figure 18.2: Main menu's option 0 sub menu. 

Figure 18.3: Current directory's list of avi files.

Figure 18.4: TRACKING SETTINGS window's trackbars.
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Each trackbar functionality is described next:

• InfoShow: Displays settings information (1) or when its value is set to (2) it displays the 
information related with the sparse set of points currently being tracked with Lucas-Kanade 
Pyramid tracker code. 

• TrackMd: Sets the optical flow method. If value (1) is selected - uses sparse optical flow 
method (Lucas - kanade Pyramid) to track set of points added by the user by left button mouse 
clicking over the capture window; If value (2) is selected - uses dense optical flow method 
to compute the velocity of each image's  pixel,  this  approach used the Horn -  Schunck 
optical flow algorithm; If value (0) is selected – no optical flow method is performed over 
the current video capture.

• NumbPts:  Set  the  maximum  number  of  points  to  be  selected  for  sparse  optical  flow 
purposes.

• MinDist: Set the minimum Euclidean distance allowed between points (points selected by 
the user by left button mouse clicking event) in pixel units.

• PyrLevel: Sets  the pyramid level to be used by Lucas-Kanade Pyramid tracker code.

• WinSize:  Set the search window size to be used during the sparse optical flow tracking 
process.

For both cases (sparse and dense optical flow) 
was  implemented  a  function  that  if  the  user 
presses “S” key the list  with the current tracked 
points  are  saved  into  an  XML file  named 
TrackedPoints.xml  if TrackMd  value (1) is set or it 
saves the current dense image of pixel's velocities 
to  an  DenseOFVelocity[xxx].bmp  file if  TrackMd 
value is  set  to (2) (dense optical flow).  Pressing 
“Esc”  key  closes  the  video  capture  and  do  not 
perform  any  saving  operation.  For  TrackMd  (1) 
mode if the right mouse click event is detected all 
current points being tracked are erased without the 
need of restarting the video capture.

The  right  image  (see  Figure  18.5)  shows  an 
example of 10 points being tracked using the sparse optical flow methodology.

In the left figure (see  Figure 18.6) is shown the 
velocities  image  from a  moving  hand  obtained 
using  the  dense  Horn  –  Schunck  optical  flow 
method.  The velocity for each image pixel was 
obtained by summing the vertical and horizontal 
velocity component of the optical flow maps. All 
the image pixel's velocity were normalize by the 
maximum pixel's velocity value.

Figure 18.5: Sparse optical flow tracking example.

Figure 18.6: Dense optical flow using Horn - Schunck  
method.
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18.3Main menu's Option [1] – Single video operations
The  second  StereoVisionProg's  option  implemented  for  this  case  study is  related  to  single 

camera operation such as read and write video sequences captured from a single camera connected 
to the computer or from a single video file imputed in  AVI format. It allows to perform different 
operations  and  save  the  results  into  different  files  depending  on  the  type  of  operation  being 
performed. The next figure (see Figure 18.7) presents all the option available after being selected 
the main menu's option [1].

Option  [1]  and  [2] 
allows  to  capture  video 
sequences  from  a  camera 
connected to a computer or 
from  an  AVI video  file 
inside the current directory 
the  input  for  both  cases 
were  already  described  in 
the  previous  section.  After 
choosing  the  video  input 
successfully  a  control 
window  named  CAPTURE 
CONTROLS shown  in  the 
right  figure  (see  Figure
18.8)  is  displayed.  This 
window  has  as  main 
purpose to provide controls 
to change the image capture 
resolution,  colour  space, 
and  image  format  to  be 
used  if  any  saving 
operation  is  called.  The 
description of each trackbar 
is as follows:

• INFO:  if  its  value 
equals (0) do not display any kind of information; If value equals (1) – display operations 
information as shown in Figure 18.8, and if value equals (2) – displays the current frame 
capture information such as image resolution, image depth, number of channels, current 
image format and colour space. 

Figure 18.7: Main menu's option 1 sub menu.

Figure 18.8: Capture controls' window.
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• COLOR: This trackbar is used to set the colour space to which the current video capture is  

being transformed. The values available are [(0), (1), (2), (3), (4), (5)] corresponding to the 
next color space [ RGB GRAY HSV HSL Lab Luv] respectively. 

• FORMAT: This trackbar allows to set the image with which the current frame capture will 
be saved if any saving operation is performed. The values available are: [(0), (1), (2), (3), 
(4)] that correspond to [JPG JPEG BMP PNG TIFF] image formats, respectively.

• SIZE: This last trackbar allows to change the video capture image resolution if the video 
capture is not from an AVI video file or no video recording operation is on going. 

During the video capture is possible to record 
video files. Pressing the “R” key will start or stop 
the video recording process. In the case of being 
the  first  video  recording  operation  the  program 
asks  to  introduce  the  VIDEO  NAME and  then 
prompts a window as shown in the the right figure 
(see Figure 18.9) to select the video compression 
type. To finish the video recording the user needs 
to press the “R” key again. Case the video capture 
closes unexpectedly before the user concluded the 
recording process, the program finishes the video 
writing process automatically.

To save the current frame capture the “S” key need to be pressed, the image will be saved using 
the following default  name  Image[XXX].[format] where  XXX is  a sequence number 000-999 and 
format is the current format defined by FORMAT trackbar value.

If “Esc” key is pressed the current video capture operation is closed and the sub menu is display 
again. Selecting option (3) or (4) from the sub menu (already shown in Figure 18.7) it is possible to 
perform single camera calibration from a real time video capture or from an  AVI file containing 
video sequences with a chessboard pattern being moved (to obtain rich sets of different chessboard 
position and orientations). Independently of the input type (camera or  AVI file) the program asks 
the user to input the number of corners along XX direction (nx) and along YY direction (ny) and the 
square size (squareSize) in user defined units7. 

If all corners were found over the current frame capture and the user presses “S” key the current 
chessboard corners coordinates are stored into a vector of 2D points, however its corresponding 
frame is not saved. After the user have added the required number of views, by pressing “Esc” the 
program will close the video capture and proceed with calibration procedure.   

Having completed the calibration process all the resulting parameters are stored into an XML file 
named  SingleCameraCalibration.xml by  default.  The  CALIBRATION  INFORMATION window 
displayed during the capture process contains information such as: all corners found (true/false), 
number  of  views  currently  added,  chessboard  properties,  and  operation's  information  updated 
during the video sequence capture process.

7 The units are defined by the user (m, dm, cm, mm, inches, etc), all the next operation's results depending on the  
calibration parameters are computed using those units defined on the calibration process.  

Figure 18.9: OpenCV video compression selection.
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18.4Main menu's Option [2] – Stereo video operations
This option allows to perform different operations using two video captures obtained from a 

stereo  configuration.  The  next  figure  (see  Figure  18.10)  shows  the  sub-menu  presented  after 
selecting Main menu's Option [2].

Five options are available after selecting main menu's option 2. The first two options Option [1] 
and  Option [2] are related with video sequences capture from two cameras or  AVI files. This two 
options are similar to the video capture options presented in the previous section, the first requires 
that two camera indexes or in the second case two AVI files to be introduced. After the program 
starts capturing both video frames and displaying them in one single window (see  Figure 18.1) 
named  CAPTURING  FROM  CAMERAS or  CAPTURING  FROM  AVI  FILES it  presents  a  window 
named CONTROLS WINDOW with exactly the same trackbars as the ones described in the previous 
section (see Main menu's Option [1] – Single video operations). 

• Pressing “S” key while capturing video the user is asked to introduce the text FILE NAME 
where the list of left and right image's names are to be saved and then it asks to input the 
image FILE NAME PREFIX to be used to create the sequential left and right image's names, 
i.e.  if  the  image  prefix  is  [ImgTest]  by  pressing  “S”  key  the  program  generates 
ImgTestL[XXX].[format] and  ImgTestR[XXX].[format]  where XXX  is  a  sequence  number 

Figure 18.10: Main menu's option 2 sub menu.

Figure 18.11: Capturing from two A4Tech Web Cams



 183
between 000-999.  A second text file is created [FILE NAME]Sync.txt  containing the time 
elapsed between the left and right frame capture for each time “S” key is pressed, this time 
values can be used to evaluate the synchronisation between cameras captures. Despite the 
program stores the current images when “S” key is pressed it only save the images when 
the video capture finishes or the user ends it. This way the program avoids delays on video 
capture and extra processing to perform saving operations while capturing video frames. 

• Pressing “Esc” key the program closes the current capture and, in case any pair of images 
were stored (by pressing “S” key), it generates both text files and saves the set of images 
stored in memory to the current directory.

• Pressing “R” key the program asks the user to input a video FILE NAME PREFIX to be used 
to create both left and right video file name, for example if the file name prefix introduced 
is  VideoTest01 the  resulting  video  output  files  will  be:  VideoTest02_CAM1N000.avi and 
VideoTest02_CAM2N000.avi.

Option [3] was implemented to provide a functionality that allows to build a list of left and right 
views for calibration purposes. This option is useful when the user wants to use always exactly the 
same set of images for a number of operations such as stereo cameras calibration or retrieve a 
specific number of images from a big group of images. After selecting this option the programs 
asks the user to input the text FILE NAME where the image names are to be listed, IMAGE PREFIX for 
the left and for right images, the starting and the ending image sequence NUMBER and the step to 
be used to retrieved only few images within all range. 

For example to create a list  with a set of 100 left and right images from two sequences of  
images  containing  8000 images  named  StereoCalibS01L0000.bmp …  StereoCalibS01L8000.bmp and 
StereoCalibS01R0000.bmp … StereoCalibS01R8000.bmp the inputs would be as follows:

• Text file name:  ListOfViews.txt (arbitrary name).

• Left image prefix: StereoCalibS01L.

• Right image prefix: StereoCalibS01R.

• Starting number: 0.

• Ending number: 8000.

• Step number: 80 (8000/100).

The next figure (see Figure 18.12) presents Option [3] activity diagram, this diagram is similar for 
the process implemented under the first two options from this sub menu, the only difference resides 
on the fact that when saving images with  Option[1] and  Option [2]  the program stores the image's 
names into vectors for each time “S” key is pressed and the listing process only occurs when the 
video capture ends or the user  ended the video capture voluntarily. 
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Option [4] and Option [5] were implemented to allow stereo cameras calibration by using real-time 
video capture or AVI files containing video for calibration purposes. By selecting one of this option 
the program asks the user to input the number of corners along  XX direction (nx) and along  YY 
direction (ny), and the square size (squareSize) in user defined units.

After starting capturing video from both inputs, the trackbars:  INFO,  COLOR,  FORMAT,  and 
METHOD from  CONTROLS WINDOW allows to change the video properties and the calibration 
method in the last  case.  If  trackbar  METHOD's value equals  (1) – the program performs stereo 
calibration by first computing the intrinsic and extrinsic parameters and just then estimates the 
stereo relations  using those parameters,  if  METHOD's value equals  (2)  – the program performs 
stereo  calibration  by  computing  the  intrinsic  and  extrinsic  camera  parameters  and  the  stereo 
relations all at  the same time. As normally,  after completing the stereo calibration process, the 
program proceeds with the stereo rectification process using the last computed stereo calibration 
parameters.  In the next figure (see  Figure 18.13) is shown the activity diagram of the process 
implemented for  Option [4] and  Option[5]. The stereo calibration is described in deep detail in the 
next section ( see section Main menu's Option [3] – Stereo calibration).

Figure 18.12: List image's names into a text file.
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Figure 18.13: Real-time stereo calibration. 
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18.5Main menu's Option [3] – Stereo calibration
By selecting Main menu's Option [3] another sub menu with four options are presented. Option 

[2] and  Option[3] allow to perform stereo camera's calibration and stereo configuration's relations 
estimation. Additionally two other important functionalities were implemented with Option [1] and 
Option[4], in the first case it makes possible to study how the calibration parameters evolve and in 
the second case it allows to optimize the stereo calibration parameters. The next figure (see Figure
18.14) shows the options available after selecting Main menu's Option[3].

Option[1] allows to study how calibration parameters evolve using sets with different number of 
calibration views. This option was used to define the optimal number of calibration views used 
during this research. The implementation uses the last calibration output file from where the image 
points for calibration are retrieved to build calibration views sets with 02, 05, 10, 20, 30, … , 150 
(or other range defined by the user) images. In the next figure (see  Figure 18.15) is shown the 
activity diagram that better describes Option[1] implementation. 

Option[2] allows to compute the stereo cameras calibration and stereo relations using calibration 
method M1. This method reads a text file with a list of calibration views and finds the chessboard 
corners  for  each  left  and  right  view,  after  completing  the  scan  in  all  views  it  computes  the 
calibration parameters for the left and right camera individually and just then it uses those obtained 
parameters  to  estimate  the  stereo  configuration  relation  R,  T,  E,  F.  This  method  is  less  time 
consuming and less computationally demanding than the calibration method M2 implemented on 
Option[3]. 

Option[3] allows to compute the stereo cameras calibration parameters and stereo configuration 
relations using calibration method M2. Similarly to method M1, this method reads a list with left 
and right calibration views and searches for the chessboard corners over each view. After building 
the image and object points vectors it computes the calibration parameters for both cameras and the 
stereo configuration relations all  at  the same time. This method revealed to be less robust and 
computationally more demanding comparatively with method M1. 

 

Figure 18.14: Main menu's option 3 sub menu.
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For the optimal number of calibration views study both calibration methods  M1 and  M2 were 
used to allow to take conclusions about the robustness of each method and how the parameters 
evolve on each case. The next figure (see  Figure 18.16) shows the activity diagram that better 
describes the two implemented calibration processes.

Figure 18.15: Study optimal number of calibration views.
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Figure 18.16: Calibration process method M1 and M2.
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Option[4] was the last functionality to be implemented in order to improve the output results 

obtained from calibration process. This option allows to optimize the calibration parameters by 
excluding the views with higher errors contributions, the program starts by reading the calibration 
parameters and the object and image points resulting from the last calibration process, it asks the 
user to input the number of views to be filtered, and then projects the object points and computes 
the mean Euclidean distance between the reprojected and projected image points for each view 
allowing to determine which views have higher errors (higher Euclidean distances). The activity 
diagram that explain this procedure graphically is presented in the next figure (see Figure 18.17).

Figure 18.17: Calibration parameters optimization.
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After  performing  any  of  the 

calibration  processes  available 
from  Option[2],  Option[3],  and 
Option[4] the user is asked to select 
one  of  the  following  stereo 
rectification method: (1)  Calibrated 
Stereo  Rectification and  (2) 
Uncalibrated Stereo Rectification. The 
main  goal  of  performing  the 
rectification  is  to  compute  the 
(undistortion+rectification)  maps 
and  the  disparity-to-depth  matrix. 
The  outputs  resulting  from  the 
former  method  are  saved  into  an 
output  XML file  named 
[FileName1]_CalibRectification.xml 
while the later method generates an 
output  XML file  named 
[FileName1]_UncalibRectification.xml. 
In the next two figures (see Figure
18.18 and  Figure 18.19) is shown 
the  activity  diagrams  that  explains  in  more  detail  the  implementation  for  both  calibrated  and 
uncalibrated rectification processes.

Figure 18.18: Calibrated stereo rectification.

Figure 18.19: Uncalibrated stereo rectification.
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18.6Main menu's Option [4] – Compute 3D points
This Main menu option presents the last step needed to recover  3D information from stereo 

video captures. Two approaches were implemented to deal with dense and sparse stereo matching, 
the former computes the disparity map using all the left and right image while the second only 
performs stereo matching for a sparse set of points. 

By selecting Main menu's Option [4] the program prompts a sub menu (see Figure 18.20) to select 
the input mode. In the case of option [1] is selected the user is asked to input left camera index and 
right  camera  index  to 
capture  from  two  specific 
cameras  connected  to  the 
computer, however, instead 
of option [1] option [2] was 
selected the user is asked to 
select  the  video  AVI file 
names.

On  both  cases  the  user 
needs to make sure that the 
stereo configuration used to 
obtain the video captures is 
the  same  as  the  one  that 
was  lastly  calibrated  and  rectified,  in  other  words,  the  program  always  loads  the  remapping 
parameters  from  the  main  xml  output  StereoConfigurationOutputs.xml  file's node  named 
<RemappingMaps>.

After selecting the stereo video capture mode the program presents another sub menu with two 
options, as shown in the next figure (see  Figure 18.21).

Option [1] allows to compute dense disparity image by using the stereo matching algorithms 
available from OpenCV libraries. Depending on the algorithm an additional control window named 
MATCHING CONTROLS allows to change the block match state settings by using the trackbars on 
this window. The next figure (see Figure 18.22) shows the activity diagram that better describes the 
dense stereo matching approach implementation.

Figure 18.20: Main menu's option 4 video input.

Figure 18.21: Stereo matching modes.
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Figure 18.22: Dense stereo matching approach.



 193
With the  MATCHING CONTROLS trackbars (see  Figure 18.23) is possible to adjust the Block-

Matching state settings in real time and update the state settings for each new pair of video frames 
captures. The matching method is selected over the window named CAPTURING FROM AVI FILES 
or (CAPTURING FROM CAMERAS) were the left and right rectified capture are being displayed.

 The  MATCHING trackbar values available are [0 1 2 3] corresponding to [Block-Matching, 
Block-Matching  (with  user  defined  settings),  Semi  Global  Block-Matching,  and  Graph-Cut] 
methods, respectively. Some of the most important block matching settings are adjusted using the 
trackbars, from MATCHING CONTROLS window, described next: 

• SADWS: Sets the sum of absolute differences window size for block matching algorithm. 

• PFC: Sets truncation value for the prefiltered image pixels. 

• MD: Set the minimum number of disparities.

• NOD: Sets the maximum number of disparities minus the minimum number of disparities. 

• UR: The margin in percent by which the best computed cost function value should overtake 
the second best value to consider the pixel match correct. 

• TS: Sets the texture threshold. 

• PFS: Sets the truncation interval values for the prefiltered image pixels. 

• SWS: Sets speckle window size.

• SR: Sets maximum disparity variation within each connected component.

Option [2] allows to perform the stereo matching process for a sparse set of points. This approach 
makes use of the sparse Lucas-Kanade Pyramid optical flow method to track sparse set of points, 
selected by the user, over the left image and then look for those points in the right image. By 
selecting this option the program captures the first frame from each video sequence and waits for 
the user to introduce a number of points by left mouse clicking over the left image window named 
LEFT IMAGE.  The optical  flow settings  are  changed by using  POINTS TRACKING CONTROLS 
window's trackbars as displayed in the next figure (see Figure 18.24).

Figure 18.23: Block – Matching control window.
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When all points are introduced the program 

starts  by capturing  the  next  video  sequences 
and  the  points  tracking  between  left  image 
(previous  capture)  to  the  left  image  (current 
capture) and then to  the right  image (current 
capture)  is  done  simultaneously.  The  points 
that  are  tracked  successfully  are  stored  into 
two vectors (left  and right image points) and 
the points that failed to be tracked correctly at 
any  time  are  excluded  as  well  its  previous 
tracked positions. 

Using  the  left  and  right  image  points 
(matched points)  the  program then computes 
the points disparities and, using the disparity-
to-depth matrix, it reprojects the  2D points to 
3D world space.

The POINTS TRACKING CONTROLS window trackbars' description is given as follows:

• RectifyOn: If the value is set to 0 the tracking procedure only corrects the images distortions 
(undistortion). In the case the value is set to 1 the tracking procedure remaps the image 
(undistortion+rectification).

• NPts: Sets the maximum number of points to be tracked. After this number of points being 
added no more points are allowed to be tracked. This setting is used to tell the program 
until when it should wait in stand-by to allow the user to add points.

• PyrLevel: Defines the number of pyramid levels to be used by the Lukas – Kanade Pyramid 
algorithm. 

• WinSize: Defines the size of the search windows of each pyramid level.

• CameraOn: Defines  which  camera  is  active,  this  tells  the  program  to  which  camera 
referential  the  new  3D space  points  should  be  related.  Value  1  defines  the  left  camera 
referential, and value 2 defines the right camera referential. 

• TrackMode: If the trackbar value is 1 the program captures the first left and right video 
frame and waits for the user to introduce the number of points defined by NPts. If the value 
is set to 0 the program starts capturing and displaying the video sequences and at any time 
the user is allowed to add points to be tracked.

The two operations that are available while capturing the video sequences are described next:

• “Esc” Key: By pressing “Esc” key the program finish the video capture and if any points was 
tracked  successfully  until  the  present  moment  the  program computes  the  image  points 
disparities and reproject the 2D points to 3D space, all the 3D points are related to both left 
and right  camera coordinate system. The resulting points [x,  y,  disparity]  and [X,  Y, Z] 
vectors  are  then  saved  into  two  XML files  named  [FileName]_3DPOINTSC1.xml and 
[FileName]_3DPOINTSC2.xml for the left and right camera respectively.

• “C” Key: By pressing “C” key while capturing video sequences, if any points is currently 
being tracked, the program reproject the 2D image points to 3D space and saves the results 
into one of the files (depending on which camera is active) as described in the previous 
bullet.

Figure 18.24: Image points tracking settings.



 195
In the next figure (see Figure 18.25) is presented the activity diagram that better describes the 

stereo matching approach by using Lucas-Kanade Pyramid tracker algorithm.

Figure 18.25: Sparse stereo matching approach. 
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18.7Main menu's Option [5] – Rotation matrix parametrization
This Main menu option allows the stereo configuration rotation matrix parametrization into 

Euler angles and quaternion. The program opens the calibration output file obtained from the last 
calibration process listed inside the main XML output file -  StereoConfigurationOutputs.xml (the file 
name stored inside the <CalibrationParameters> tags).

By selecting Main menu's Option [5] the program loads the stereo configuration rotation matrix 
and presents a sub menu as the one ilutrated in the next figure (see Figure 18.26).

Selecting Option [1] transforms the  3D orthonormal rotation matrix, that brings the right stereo 
camera to the left camera's orientation, into Euler angles. Two solutions are computed if no Gimbal 
Lock problem is found otherwise only one solution is computed.

Selecting Option [2] transforms the 3D orthonormal rotation matrix into quaternions and then all 
the four quaternion components are normalized.

Selecting  Option [3] exits the sub menu and if any transformation was perfomed it saves the 
resulting  parameters  (Euler  angles  or  quaternion,  or  both)  into  an  XML output  file  named 
[FileName]_Angles.xml. This functionalities were used during the research to study the axes rotation 
angles and allow to take further conclusions for the final 3D points recovering results. 

18.8Main menu's Option [6] – List current directory files 
By selecting Main menu's Option [6] the program lists all the files in the current directory. This 

class was implemented to allow certain type of files to be listed and presented for input porposes 
such as the text files for calibration purposes and AVI video file inputs. It was also used to check if 
certain  files  names  already  exist  in  the  current  directory  and  avoid  to  overwrite  them  when 
performing images saving and video recording operations.

Figure 18.26: Rotation matrix parametrization.
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