
i

3D Points Recover From Stereo Video Sequences

 Based on

 OpenCV 2.1 Libraries

A Thesis Presented to the Faculty of Mechanical Engineering and Robotics

AGH University of Science and Technology of Krakow

In Partial Fulfillment of the Requirements of the Degree of

Master of Science

in

Mechanical Engineering

by

Rosério D. V. Valente

July 22, 2011

ii

3D Points Recover From Stereo Video Sequences

 Based on

OpenCV 2.1 Libraries

In Partial Fulfillment of the Requirements of the Degree of

Master of Science

in

Mechanical Engineering

by Rosério D. V. Valente
Faculty of Mechanical Engineering and Robotics

AGH University of Science and Technology of Krakow

July 22, 2011

Under the guidance and approval of the committee, and approved by all its members, this
thesis has been accepted in partial fulfillment of the requirements for the degree.

Approved:

Chairperson (Dr. Piotr Kohut) Date

Committee Member (Dr. Wojciech Lisowski) Date

iii

1 Acknowledgements

It is a pleasure to thank those who made this thesis possible, supporting it directly and indirectly.
First of all I would like to thank my supervisor, Dr. Piotr Kohut, for his guidance, advice and
specially for his time during the numerous meetings and laboratory experiments that enabled me to
achieve better results and a deeper understanding on the subject. Also, I would like to thank Dr.
Wojciech Lisowski to whom I owe my deepest gratitude for his support and assistance since the
start of my stage as erasmus student at AGH University and for his comprehension and kindness
during all the process. I would like to thank my mum Gabriela and my sisters Mary and Fernanda
for being always supportive even when I spend long time far from them. I would like to thank
Paula Olim for her friendship, kindness and encouragement and to make me believe that it is
always possible to go further. Also I would like to show my gratitude to Olinha for her support, joy
and company and to all my friends who have been helping and supporting me on my goals and
ambitions.

Lastly, but not the least, I would like to thank all the OpenCV community for providing a great
support to all of those interested in learning OpenCV. Finally I would like also to tank all the
authors who provided all the interesting research and literature on stereo vision.

iv

2 Abstract
The purpose of this study was to implement a program in C++ using OpenCV image processing

platform's algorithms and Microsoft Visual Studio 2008 development environment to perform
cameras calibration and calibration parameters optimization, stereo rectification, stereo
correspondence and recover sets of 3D points from a pair of synchronized video sequences obtained
from a stereo configuration. The study utilized two pretest laboratory sessions and one intervention
laboratory session. Measurements included setting different stereo configurations with two
Phantom v9.1 high-speed cameras to: capture video sequences of a MELFA RV-2AJ robot executing a
simple 3D path, and additionally capture video sequences of a planar calibration object, being
moved by a person, to calibrate each stereo configuration. Significant improvements were made
from pretest to intervention laboratory session on minimizing procedures errors and choosing the
best camera capture settings. Cameras intrinsic and extrinsic parameters, stereo relations, and
disparity-to-depth matrix were better estimated for the last measurements and the comparison
between the obtained sets of 3D points (3D path) with the robot's 3D path proved to be similar.

v

RECOVERING 3D POINTS FROM STEREO VIDEO SEQUENCES
BASED ON OPEN CV 2.1 LIBRARIES

1Acknowledgements..iii
2Abstract...iv
3Index of Tables..vii
4Illustration Index..viii
5Chapter One...1

5.1Introduction..1
5.1.1Statement of the Problem...2
5.1.2Background and Need..3
5.1.3Purpose of the Study..5
5.1.4Research Questions..6
5.1.5Significance of the field...6
5.1.6Definitions..7
5.1.7Limitations...9

6Chapter Two...10
6.1Review of the Literature..10

6.1.1Introduction..10
6.1.2Research Synthesis...10
6.1.3Summary..36

7Chapter Three..37
7.1Methods...37

7.1.1Introduction..37
7.1.2Settings...38
7.1.3Intervention and Instructional Materials..38
7.1.4Measurements Instruments...39
7.1.5Procedures..41

8Chapter Four ...63
8.1Results..63

8.1.1Introduction ...63
8.1.2Research Question Nº1 – Results...68
8.1.3Research Question Nº2 – Results...68
8.1.4Research Question Nº3 – Results...81
8.1.5Research Question Nº4 – Results...82
8.1.6Research Question Nº5 – Results...84

9Chapter Five..88
9.1Discussion ...88

9.1.1Introduction..88
9.1.2Discussion ...88
9.1.3Limitations...93
9.1.4Recommendations for Future Research ..94
9.1.5Conclusions..94

10References...96
11Appendix A: Stereo Imaging...99

11.1Stereo Imaging...100
11.1.1Introduction..100
11.1.2Working With a Single Camera..100
11.1.3Calibration ...103

vi

11.1.4Camera Calibration ...106
11.1.5Undistortion..108

11.2Working With Two Cameras ...111
11.2.1Stereo Imaging ...111
11.2.2 Stereo Calibration...114
11.2.3Stereo Rectification..115
11.2.4Stereo Correspondence...117

12Appendix B: MELFA Basic IV Presentation...120
13Appendix C: VideoStrobe & VideoFlood LEDs...141

13.1VideoStrob and VideoFlood LEDs..142
13.2LEDs Arrays Specifications ..143
13.3VideoFlood LED Light Comparison Table..144

14Appendix D: Phantom v. 9.1 Data Sheet...145
15Appendix E: MatLab M-Files Code..151

15.1File 1: getNodeData.m...152
15.2File 2: readDataFromXML.m..154
15.3File 3: plot3DPath.m..155
15.4File 4: readMelfaData.m..157
15.5File 5: transformReferential.m...158
15.6File 6: testTransformReferential.m..160

16Appendix F: Motion..161
16.1Motion ...162

16.1.1Introduction..162
16.1.2Corners Identification ..162
16.1.3Corners Sub-pixel Accuracy ...163

16.2Optical Flow..164
16.2.1Introduction..164
16.2.2Sparse Tracking Techniques ..165
16.2.3Dense Tracking Techniques...169

17Appendix G: Targets and MELFA Basic IV Program...171
18Appendix H: StereoVisionProg...176

18.1Introduction ...177
18.2Main menu's Option [0] – Compute Optical Flow..177
18.3Main menu's Option [1] – Single video operations...180
18.4Main menu's Option [2] – Stereo video operations...182
18.5Main menu's Option [3] – Stereo calibration...186
18.6Main menu's Option [4] – Compute 3D points..191
18.7Main menu's Option [5] – Rotation matrix parametrization..196
18.8Main menu's Option [6] – List current directory files ..196

vii

3 Index of Tables
Table 7.1: OpenCV Calibration Object's Characteristics ...44
Table 7.2: Laboratory 03 – Stereo Configuration's Variables and Video Files..................................45
Table 7.3: List of MatLab Implemented Functions...62
Table 8.1: Video Sequences Collected During Laboratories Experiments63
Table 8.2: Calibration Methods Study Process's Output Variables...64
Table 8.3: Stereo Calibration Process's Output Variables..65
Table 8.4: Rotation Parametrization Process's Output Variables...66
Table 8.5: Calibrated and Uncalibrated Rectification Process's Output Variables............................66
Table 8.6: Recovering 3D Points Process's Output Variables...67
Table 8.7: L01 Set S03 Calibration Methods Study Using fx and k2 Parameters.............................68
Table 8.8: L02 Set S03 Calibration Method's Study Using fx and k2 Parameters............................69
Table 8.9: L03 Set S04 Calibration Method's Study Using fx and k2 Parameters............................70
Table 8.10: Stereo Calibration Parameters Optimization Results (L01, L02, and L03)....................75
Table 8.11: Laboratory L01's Camera Calibration Parameters (Methods M1, M2, and M3)............78
Table 8.12: Laboratory L02's Camera Calibration Parameters (Methods M1, M2, and M3)...........79
Table 8.13: Laboratory L03's Camera Calibration Parameters (Methods M1, M2, and M3)...........80
Table 8.14: Laboratory Stereo Configuration's Measurements...83
Table 8.15: Stereo Configuration's Relations ...83
Table 9.1: Calibration Method's Study Summary..89
Table 13.1: Model 900405 3-by-4 Super Bright LEDs Array...144

viii

4 Illustration Index
Figure 6.1: Relative errors vs. noise level (α, β), Zhang (2000)..16
Figure 6.2: Absolute errors vs. noise level (u, v), Zhang (2000)...17
Figure 6.3: Relative error vs. number of planes (α, β), Zhang (2000)...17
Figure 6.4: Absolute error vs. number of planes (u0, v0), Zhang (2000)..17
Figure 6.5: Relative error vs. angle with image plane (α and β), Zhang (2000)...............................18
Figure 6.6: Absolute error vs. angle with image plane (u0, v0), Zhang (2000).18
Figure 6.7: Parameter result's variations with different sets of images, Zhang (2000).....................19
Figure 6.8: Calibration parameter's results with different image sets, Zhang (2000).19
Figure 6.9: Stereo matching process, Stefano et al. (2002)...29
Figure 6.10: Scores associated with point R(x, y), Stefano et al. (2002)..30
Figure 6.11: SAD matching window, Stefano et al. (2002)...31
Figure 6.12: Tsukuba image (left) and ground truth (right), Stefano et al. (2002)............................34
Figure 6.13: Disparity maps computed with the P.A (left) and with SVS 2.0 software (right),
Stefano et al. (2002)...35
Figure 6.14: Speed (fps) for P.A. and for the SVS 2.0 algorithm, Stefano et al. (2002)..................35
Figure 7.1: Phantom v.91 cameras arranged on a stereo configuration. ..42
Figure 7.2: PCC1.2 software - cine settings..42
Figure 7.3: Targets used for points tracking purposes...43
Figure 7.4: PCC Software - save cine settings..46
Figure 7.5: StereoVisionProg: Main menu 's Option [2]...46
Figure 7.6: StereoVisionProg: Main menu's Option[2] sub Option [3]...47
Figure 7.7: Sequence of BMP images for calibration...47
Figure 7.8: StereoVisionProg: Main menu's Option [3] sub Option [1]..47
Figure 7.9: StereoVisionProg: Main menu's Option[3] sub Option[2] ...48
Figure 7.10: Reprojected (a) and projected (b) image points..49
Figure 7.11: Calibration parameters optimization process..50
Figure 7.12: StereoVisionProg: Main menu's Option [3] sub Option [4]......................................50
Figure 7.13: StereoVisionProg: rectification method options. ..50
Figure 7.14: Right camera rotation using Euler angles...53
Figure 7.15: Pseudo-code to compute quaternion from R. ...54
Figure 7.16: StereoVisionProg: Main menu's Option [4] sub Option [2]......................................55
Figure 7.17: StereoVisionProg: Main menu's Option[4] sub Option[2] sub Option[2]..............55
Figure 7.18: Sparse stereo correspondence with Lucas-Kanade tracker. 56
Figure 7.19: Canonical stereo configuration (a), similarity of triangles(b).......................................57
Figure 7.20: Camera-to-MELFA robot referential transformation..60
Figure 7.21: Referential transformation using point-line-plane method. ...61
Figure 8.1: L01-S03Focal Length vs Nº of Calibration Views (M1 and M2)...................................71
Figure 8.2: L03-S04 Focal Length vs Nº of Calibration Views (M1 and M2)..................................72
Figure 8.3: Single calibration view from L02 set S03 (a) and L03 set S04 (b).................................72
Figure 8.4: L02-S03 Focal Length vs Nº of Calibration Views (M1 and M2)..................................73
Figure 8.5: L03-S03 Focal Length vs Nº of Calibration Views (M1 and M2)..................................73
Figure 8.6: Calibration parameters optimization (Method M3). ..74
Figure 8.7: Calibration view's reprojection/projected image points..76
Figure 8.8: Stereo video capture without rectification..81
Figure 8.9: Stereo video capture after calibrated stereo rectification..82
Figure 8.10: Stereo matching using Block-Matching algorithm...84
Figure 8.11: MELFA RV-2AJ 3D Path (sampling time: 50ms)...85

ix

Figure 8.12: Figure 8.8: MELFA RV-2AJ 3D Path (sampling time: 10ms)......................................85
Figure 8.13: MELFA robot's recovered 3D path(camera coordinates system)..................................86
Figure 8.14: MELFA robot's recovered 3D path (robot coordinate system).....................................86
Figure 8.15: MELFA robot's recovered 3D path (generic coordinate system)..................................87
Figure 11.1: Pinhole camera model...100
Figure 11.2: Simplified pinhole camera model...101
Figure 11.3: Example of a 5-by-3 chessboard corner's detection. ..103
Figure 11.4: Generic point defined on a planar calibration object. ..104
Figure 11.5: Relation between a point in the planar object and the imager plane...........................105
Figure 11.6: Calibration object - chessboard 5-by-3...107
Figure 11.7: Building object point's vector of vector of 3D points...108
Figure 11.8: Stereo configuration geometry ...111
Figure 11.9: Standard stereo configuration's epipolar geometry. ...112
Figure 11.10: Video sequences after stereo rectification...117
Figure 13.1: Video Strobe - Flood Controller and 3-by-4 LED Array used during laboratory
experiment 03. Adapted from VideoStrobe & VideoFlood LEDs by Visual Instrumentation
Corporation 2009, Adapted with permission...142
Figure 13.2: LED Array specifications. Two 3-by-4 LED Array Model 900405 were used during
laboratory experiment 03. Adapted from VideoStrobe & VideoFlood LEDs by Visual
Instrumentation Corporation 2009, Adapted with permission...143
Figure 14.1: Phantom v. 9.1 Data Sheet p1/3. Adapted from Phantom v9.1 by Vision Research Inc,
2007. Adapted with permission. ...146
Figure 14.2: Phantom v. 9.1 Data Sheet p2/3. Adapted from Phantom v9.1 by Vision Research Inc,
2007. Adapted with permission. ...147
Figure 14.3: Record speed vs. Image Resolution p3/3. Adapted from Phantom v9.1 by Vision
Research Inc, 2007. Adapted with permission. ..148
Figure 14.4: Mechanical shutter p1/2. Adapted from V-Series Lens Shutter by Vision Research Inc,
2010. Adapted with permission. ...149
Figure 14.5: Break-out-Box p2/2. Adapted from V-Series Lens Shutter by Vision Research Inc,
2010. Adapted with permission. ...150
Figure 16.1: Sequence of frames where the optical flow is to be computed...................................165
Figure 16.2: Normal flow. ..166
Figure 16.3: Aperture problem originated by a small aperture window..167
Figure 16.4: Result from applying the pyramid Lucas - Kanade technique....................................168
Figure 17.1: Dimensioning of the target1 and target 2...172
Figure 17.2: Dimensioning of the target 3. ...173
Figure 17.3: Targets 1, 2, and 3...174
Figure 17.4: MELFA Basic IV simple 3D path program implementation.175
Figure 18.1: StereoVisionProg: Main menu..177
Figure 18.2: Main menu's option 0 sub menu. ...178
Figure 18.3: Current directory's list of avi files...178
Figure 18.4: TRACKING SETTINGS window's trackbars..178
Figure 18.5: Sparse optical flow tracking example...179
Figure 18.6: Dense optical flow using Horn - Schunck method...179
Figure 18.7: Main menu's option 1 sub menu...180
Figure 18.8: Capture controls' window..180
Figure 18.9: OpenCV video compression selection..181
Figure 18.10: Main menu's option 2 sub menu...182
Figure 18.11: Capturing from two A4Tech Web Cams...182
Figure 18.12: List image's names into a text file...184

x

Figure 18.13: Real-time stereo calibration. ..185
Figure 18.14: Main menu's option 3 sub menu...186
Figure 18.15: Study optimal number of calibration views..187
Figure 18.16: Calibration process method M1 and M2...188
Figure 18.17: Calibration parameters optimization...189
Figure 18.18: Calibrated stereo rectification...190
Figure 18.19: Uncalibrated stereo rectification...190
Figure 18.20: Main menu's option 4 video input...191
Figure 18.21: Stereo matching modes...191
Figure 18.22: Dense stereo matching approach...192
Figure 18.23: Block – Matching control window..193
Figure 18.24: Image points tracking settings...194
Figure 18.25: Sparse stereo matching approach. ..195
Figure 18.26: Rotation matrix parametrization...196

 1

5 Chapter One
5.1 Introduction

The capability to perceive the three dimensional world where we live for us humans is a task
that since the beginning seems easy and granted. It may take only two years for a baby be capable
to experience the world through his senses such as looking, touching and even understanding that
an object exist even when is hidden from the field of view (FOV). In the up following years he
become capable to represent the three dimensional world with colours, objects, shapes and
symbols resulting from the four stages of cognitive development that we humans pass through
(http://alleydog.com/psychology-topics.php, Child Psychology, ¶ 4 , 5).

Because we humans are provided with such complex and efficient human visual system (HVS)
that does all the computations for us it may create a misleading impression that attempting to
effectively simulate and copy such functions is an easy task. For perceiving the information
gathered from HVS the brain uses three main principals: stereo vision, motion parallax and the prior
knowledge about the objects perspective appearance and their relation with the distance (May,
Pervoelz, & Surmann, 2007), however, in machine visual systems the information is received from
the sensing machine or a media storage and transformed into different layers of matrices numbers
and in most cases without any previous knowledge about the surrounding variables (weather ,
lightning, reflections, occlusions, movements) that change the way images are captured and this is
all the information available (Bradski, & Kaehler, 2008).

Computer Vision (CV) is the science challenged to study the transformation of that information
in form of images or sequences of images into information that allows to implement and deal
efficiently with all this three complex tasks for perceiving the 3D space by means of machine visual
sensing. This science has been widely progressing through the years since the time it started
capturing the interest of researchers to mimic the human intelligence and reproduce it into the
robots intelligence (Szeliski, 2010). However, it was manly in the recent decades that the interest
by the researchers and the high demands from the industry for new features affordable by computer
applications has notoriously increased.

Computer vision have been developing in parallel with common areas such as computer science,
optical systems and mathematical techniques that with time are becoming more and more able to
decode the inverse vision problem. Computer vision became a very vast field of studies but one
field in special has received major attention in particular – the capability of performing effective
automatic reconstruction and analysis of the surrounding 3D environment and objects recognition
in that space (Cyganek, & Siebert, 2009).

In addition to the fast development in computer vision, new ways of commercialization gives
origin to performance-optimized software that runs in different platforms and that are mostly open
source free for both academic and commercial use what makes easy to exchange experiences and
documentation widely among research groups and therefore providing a base for a faster
development. One example of this strategy is the case of Intel with the Open Source Computer
Vision (OpenCV) that provides computer vision applications to increase the need for faster
processors (Bradski et al. 2008).

OpenCV is a library of programming functions mainly directed for real time computer vision
such motion tracking, stereo and multi-camera calibration and depth computation
(http://opencv.willowgarage.com/wiki/FullOpenCVWiki, Introduction ¶ 1). This capabilities
offered by OpenCV combined with the object-oriented and generic programming techniques

 2
offered by C++ programming language is a suitable choice to implement large and reusable
projects (Papademetris, 2006).

To recover the information lost on the process of projecting 3D world space to the 2D image
space the implementation of a number of classes objects is an essential part for the recovering
process. This process requires the successful implementation of a program capable to calibrate two
cameras with equal properties, capture stereo-pair images of a scene and then compute the depth
information within those two images and reproject it to 3D space in real time, by means of using
OpenCV libraries and C++ object oriented programming (OOP) capabilities.

5.1.1 Statement of the Problem
The challenges present in recovering the 3D information from 2D images based on processing

stereo-pair images are related to three main areas: cameras calibration, images rectification,
disparity maps and its reprojection to 3D space. To achieve the so desirable information in three-
dimensional space from a sequence of stereo-pair images it is necessary to recall the basic
principles that are crucial to its correct implementation.

Firstly to determine the coordinate transformation between the camera reference system in
respect to an external coordinate system, it is necessary to know the variables that relates such
relation. The direct measurement of those variables is difficult or even impossible and therefore a
process of calibration is required to determine camera intrinsic and extrinsic parameters. The final
performance of the machine vision system strongly depends on the accuracy of camera calibration
(Niola, Rossi, Savino, & Strano, 2008). The information retained by the extrinsic parameters are
used to correct the distortion induced by the hardware, this process is called undistortion.

Ideally cameras' arrangement would be such that the resulting images are row aligned and each
point of one image will correspond to another point in the same row of a second image, however
such canonical stereoscopic system is not possible physically and the images need to be remapped,
this process is referred to as rectification.

The last challenge on the process of recovering the lost dimension requires the correspondence
process. Simply stated, correspondence refers to the matches between two images captured from
two different viewpoints looking at the same 3D world scene or object. It is one of the most active
topics in computer vision due its complexity and important role in 3D object recognition and
categorization, scene reconstruction and many other applications (Hsu, 2011).

5.1.1.1 Correspondence.
One of the major issues on estimating 3D structures based on stereo imagery is the

correspondence problem defined as the capability to locate a pair of image pixels from two
different images that represent the projection of the same point in 3D space. Given a point in one
image, its correspondent point must lie on an line (epipolar line) in the other image. This
constitutes a very important constraint called epipolar constraint: Each image point of a space point
lies in the image plane only on the corresponding epipolar line (Cyganek et al., 2009). This
constraint presents a second problem, in general cases the location of the epipolar lines are not
known.

5.1.1.2 Rectification.
As stated previously the positions of the epipolar lines are not known for a standard stereoscopic

camera configuration however for the canonical stereoscopic configuration those lines positions
can be know using epipolar geometry and thus this transformations between the generic
configuration to the desired canonical configuration constitutes the second problem of the research

 3
area. In order to perform successfully this operation between both configurations previous
knowledge is required to know how the cameras related the world coordinates with the image
coordinates when capturing the images or sequence of images. This process is referred to as
camera calibration (Shah, 1997).

5.1.1.3 Camera Calibration.
Camera calibration is the first problem to be solved and it plays an important role in the final

results on the research area. Camera calibration is the process to estimate a set of parameters that
describes the camera imaging process. Computing this set of parameters will allow to: link directly
a point in the 3D world reference frame to its corrected image through the perspective projection
matrix (Ma, Chen, & Moore, 2003) , map the camera coordinate system into the image coordinate
system, and compute geometrical distortions that are originated by the imperfections and
limitations of camera's physical parameters (Cyganek et al., 2009).

As noted, recovering the lost dimension to estimate 3D structures based on stereo images
requires that three steps need to be successfully implemented. Initially the camera model, the
distortions and perspective projection matrix are computed. This step is important once the
accuracy in which the de camera parameters were computed will play an important role in the final
depth results. In order to obtain two images with stereoscopic camera configuration and simplify
the mathematical relations a process of rectification is performed on both images so they become
as if the cameras where in the canonical configuration with the optical axis meeting at infinity.
Finally in order to compute the depth images using the both rectified images a correspondence
process is performed and the third dimension recovered from the image coordinates where was
possible to match both image pixels (Wu, & Chen, 2007).

5.1.2 Background and Need
The earliest techniques for reproducing 3D information using stereo matching approach started

in the area of cartography for automatic construction of topographic elevation maps from
overlapping aerial images. This initial progress in the aerial imagery area played an important role
in the progress and development of fully automated and efficient stereo matching algorithms in
depth recovering field (Szeliski, 2010). However, since computer vision started out in the early
1970s many attempts to recover the three-dimensional structures happened in parallel with a wide
area of studies as the case of stereo vision techniques and algorithms and cannot be seen as a
separate issue. Szeliski (2010) provides a good and detailed synopsis of the main developments in
computer vision over the last 30 years, as well a rich number of references used along the text for
the researcher that wishes to go deeper in any particular subject.

In the context of stereo vision and depth recovery, in many cases, the overall performance of
the machine vision system strongly depends on the accuracy of the camera calibration. Camera
calibration is the process of determining camera geometric and optical characteristics and the 3D
position and orientation of the camera frame relative to an external world frame (Heikkila et al.,
1997). The epipolar geometry is implicitly connected with the pose and calibration of the stereo
cameras, once this geometry is computed the epipolar line corresponding to a pixel in the left
image can be used to constrain the search for a corresponding pixel in the right image.

Stereo vision besides being studied for long time it is still considered a mature technology.
Recovering depth information requires great performance since pixel correspondence from left
image to the right image need to be found what can be challenging if the images are from very

 4
different viewpoints or contains noise, occlusions, homogeneous regions or unpredictable
environment light conditions that makes it difficult, moreover depth based applications such as
navigation for mobile robots requires high efficiency for a real-time response what makes it even
more challenging (May et al., 2007).

Research problem: Recover of the 3D information lost in the process of projecting a 3D scene
into an 2D image with OpenCV image processing platform.

5.1.2.1 Camera Calibration.

• Problem: Internal camera geometric and optical characteristics (intrinsic and extrinsic
parameters) as well as the 3D position and orientation of the cameras frame relative to an
external coordinate frame and relative to each other camera coordinates are unknown in a
standard stereoscopic configuration.

• Solution: Algorithm for calibrating a camera with possibly variable intrinsic parameters and
position, that copes with an arbitrary number of calibration planes and camera views.
Calibration is achieved by projecting the planar calibration object into 2D image, each
projection contributes with a system of homogeneous linear equations in the intrinsic
parameters which are easily computed by solving the linear equations (Sturm, & Maybank,
1999).

5.1.2.2 Rectification.

• Problem: Canonical stereoscopic configurations are rare with a real stereo system since the
two cameras almost never have coplanar and row-aligned imaging planes as desired for a
more reliable and computationally efficient stereo correspondence.

• Solution: Reproject the image planes of the two cameras so that the epipolar line with the
conjugate epipolar line become coincident with the horizontal scan-line reducing stereo
matching from a 2D to a 1D search (Bradski et al., 2008).

5.1.2.3 Correspondence.

• Problem: Stereo analysis is the process of retrieving the depth information based on the 3D
object/scene projection on two or more images. Finding corresponding pixels between both
images or sequence of images constitutes the stereo analysis fundamental problem.

• Solution: Use a fast and effective area-based stereo matching algorithm that compares each
small area with other area in a search window and then determines the extreme value of the
correlation at each pixel resulting in a value that holds the disparity value between the left
and right image patches at the best match that will result in a final disparity image
(Konolige, 1997, Bradski et al., 2008).

The literature solutions previously described are strictly connected with their implementation in
the OpenCV Image processing library what provides a better tool for a new researcher in this field.
However due the vast number of research areas in the computer vision field and it fast progress in
the last decades the need for standardization and definition of each individual research area within
this field is needed for a better overall understanding. For a new researcher in this field of studies
the literature still is one of the main obstacles for a fast learning curve. The link between the
scientific and statistical approaches (vision analysis and formulation) and the engineering approach
(algorithms implementation) constitutes the literature main gap (Szeliski, 2010). A better

 5
explanations about the image programming languages available, their advantages and
disadvantages as well as a methodology to analyse the efficiency and cost of the huge number of
existing algorithms are also needed in the current literature.

5.1.3 Purpose of the Study

5.1.3.1 Purpose Statement.
The purpose of this study was to utilize the OpenCV image processing platform together with

Microsoft Visual Studio 2008 software to implement a program for recovering 3D information from
video sequences captured with two Phantom v9.1 cameras arranged on a stereo configuration.

5.1.3.2 Need/Rationale for the Study.
In the recent decades the concept of Open Source has been increasing gradually captivating the

interest of professionals and young researchers in the different areas. OpenCV image processing
platform for computer vision is not exception and has been assisting to a great acceptance by the
researchers community. Due the numerous functionalities it provides and the good documentation
as well a vast community that can interact and provide fast answers, it was the image processing
platform chosen to conduct the study. Stereo Vision is the computer vision area that during the last
decades has gained special focus due its capacity to recover the depth information from two or
more images. It is widely used in different applications such as surveillance, agriculture, mobile
robotics, manufacturing and medical image analysis. This wide range of possible applications
allied with the constant progress in innovative algorithms and increasing demand on the 3D
computer graphics constitutes one of the main reasons to conduct the study using stereo vision
approach.

5.1.3.3 Description of the Study.
In order to recover the depth from stereo video sequences, the researcher made use of OpenCV

algorithms to implement a program with different stereo functionalities. This program studies the
optimal number of calibration views needed, computes camera calibration using two methods and
performs calibration optimization by excluding calibration views with higher error contributions.
Calibrated and uncalibrated rectification methods were implemented in order to obtain the
remapping maps and the disparity-to-depth matrix using different approaches. To recover the depth
from stereo video sequences two methods were implemented: the first method used the stereo
matching algorithms available from OpenCV libraries namely the Block Matching, Semi Global
Block Matching, and Graph Cut algorithm to compute disparity images and then reproject it to 3D
space, or the second method that made use of Lucas – Kanade Pyramid tracker code and mouse
click event to track a set of points of interest over a stereo video sequence, compute its disparity
and compute their corresponding 3D points related to the left or to the right camera coordinate
system. Stereo video sequences were captured using two Phantom v9.1 high-speed cameras
arranged on a standard stereo configuration. Different stereo configurations were used to record
video from a calibration pattern and later from a MELFA RV-2AJ robot's end-effector movement. All
the research output results were stored in xml file formats with proper nomenclature depending on
which stereo operation was performed.

5.1.3.4 Expected Outcomes.
The expected outcomes of this case study are to develop programming skills using a C++ object

oriented approach together with the newer and more efficient OpenCV C++ interface. By
implementing a main program to deal with 3D points recovering it is expected to obtain a number

 6
of ready-to-use classes capable to read a list of calibration views and AVI files, compute calibration
parameters and stereo relations and optimize those results, undistort and remap stereo video
captures from a standard stereo configuration and recover the depth of a captured scene (disparity
image) or sparse set of points from the available stereo video sequences. Another goal of the study
was to provide a more practical approach through laboratory experiments with two Phantom v9.1
cameras which it is expected to develop a better understanding how stereo configuration's settings,
capture settings and environment settings influences the outputs results obtained from the captured
video sequences for stereo calibration and 3D information recovering purposes.

5.1.4 Research Questions

1. Which are the OpenCV main functions involved in the process of: stereo camera
calibration, stereo image rectification, stereo matching and points reprojection into 3D
space, and Lucas – Kanade Pyramid optical flow method. What are the inputs and outputs
arguments of those functions.

2. How to compute camera calibration parameters using a planar calibration object known
as chessboard and how to relate two cameras in a stereo configuration. How many
calibration views are needed to perform the stereo calibration process and which
calibration method (with and without initial guess to compute stereo relations) gives better
results. How to optimize the stereo calibration process and improve the calibration
parameters results.

3. Which are the differences between using calibrated and uncalibrated rectification methods
and how to implement the image rectification process by means of using OpenCV functions.

4. How to parametrize the stereo relation's rotation matrix into Euler angles and quaternions
and how to perform the transformation between this two rotation representations.

5. How to compute the disparity image and disparity of a sparse set of points given two
rectified images captured from a stereo configuration previously calibrated. How to
reproject a sparse set of points to the 3D space.

5.1.5 Significance of the field

The contributions resulting from this study to the research literature were various. By using the
OpenCV libraries' algorithms this case study provides a number of functionalities to work with
video capture and video recording operation, capture and list stereo images for calibration purposes
or perform simple tasks such as images colour space transformation or frame saving operations
using different image formats. Related with the calibration process a number of functions were
implemented within a class to allow single or stereo cameras calibration process using a text file
with a list of calibration views to be loaded or alternatively it allows to perform the calibration
process directly from AVI video files or real time video capture. Additionally was implemented a
method that by excluding bad views used in the calibration process and recalling the calibration
process again it allows to optimize substantially the final calibration parameters and reduce the
reprojection errors. To perform the uncalibrated and calibrated stereo rectification after each stereo
calibration process was implemented another class that can be easily reused in the future research.
An additional class was built with functions that allows to capture video sequences from stereo

 7
cameras or stereo AVI files and remap the images to compute the dense disparity image or the
disparity for a sparse set of points and then proceed with the reprojection to 3D space. The case
study will also provide conclusions and knowledge achieved during the laboratories experiments,
as well the procedures' changes that allowed to improved substantially the calibration and 3D
recovering results.

5.1.6 Definitions

• fx , fy : Camera focal length in pixel units on XX and YY direction, respectively.

• R : Stereo relation 3-by-3 rotation matrix that brings (rotates) the right camera to the
left camera orientation.

• Q : Disparity-to-depth transformation matrix used to reproject 2D image points to 3D
world space.

• D1(D2) : Left (right) camera distortion coefficients vector D=[K1 K 2 p1 p2 K 3]
T

where K1, K 2 and K 3(only for wide−anglelenses) are the radial distortion coefficients
and (p1, p2) the tangential distortion coefficients.

• L01 , L02 , L03 and S01 , S02 , S03 , S04 : Nomenclature used to identify the different
stereo video sets (S01, S02, S03, and, S04) recorded during the three laboratory sessions
(L01, L02, and L03). If the nomenclature is used in the calibration context it refers to the
video sequences captured for calibration purposes otherwise it refers to the video
sequences captured for recovering 3D information purposes.

• cx , cy : Principal point coordinates in pixel units.

• map1 x ,map1 y(map2 x ,map2 y) : Remapping maps for the left (right) camera's video
capture that are used to perform the (undistortion+rectification) transformation.

• T : Stereo relation translation vector T=[T x T y T z]
T that brings (translates) the right

camera to the left camera position.

• Camera calibration: Process of finding the camera intrinsic and extrinsic parameters such
as focal length, principal point and lens distortion parameters.

• Camera Matrix: Projective transform matrix that relates the real world coordinates to the
points on the image plane.

• Canonical Stereo Configuration: Stereo configuration where the cameras' imager are
ideally coplanar and row aligned.

• CSR: Current Session Reference available from phantom camera control software.

• CV: Computer Vision.

• Disparity: The difference between two image points, representing the same 3D point in the
world scene, within two stereo images.

• E: Essential matrix: Contains information about the rotation and translations that relates
the two cameras on the stereo configuration.

• Epipolar geometry: The geometry relations between the 3D points and their projections
into the 2D image planes that form a number of constraints between two stereo images'
points.

 8

• Epipolar line: Is the line formed by the epipolar plane's intersection with the camera's
imager plane.

• Epipolar plane: Is the plane passing through an object point and the cameras' centres of
projection.

• Euler angles: describe the rotations that moves a rigid body from one referential to another
with different orientation by using only three parameters (yaw, pitch, roll).

• Extrinsic parameters: Are the parameters that define the camera's position and orientation
(three rotation (Φ ,Θ ,Ψ) and three translation (T x , T y ,T z) parameters) with
respect to a known 3D world reference frame.

• F: Fundamental matrix that relates the two cameras, on a stereo configuration, in pixels
coordinates.

• Focal Plane: The plane in a camera, or other optical instrument in which a real image is in
focus.

• HVS: Human Vision System.

• IDE: Integrated Development Environment.

• Intrinsics parameters: Are the parameters that define the camera's optical and geometric
characteristics such as the focal length, the principal point coordinates and the radial and
tangential lens distortions.

• Lens Distortion: Lens imperfections that introduces distortions on the image's pixel
locations.

• Occlusions: Regions that are originated by disparity discontinuities.

• OOP: Object Oriented Programming.

• OpenCV: Open Source Computer Vision Programming Library.

• Optical flow: Is the velocity field in the image plane resulting from the motion of the
objects being observed, the motion of the observer, or apparent motion which may be
caused by changes in the image intensity between frames.

• PCC: Phantom Camera Control software.

• Planar Calibration Object: Object used to capture images for camera calibration purposes
using OpenCV algorithms.

• Principal Axis: Line that passes through the lens curvature's center, also known as optical
axis.

• Principal Plane: Plane that is perpendicular to the lens optical axis.

• Principal Point: Point that results from the intersection of the image plan and the optical
axis.

• Quaternions: Mathematical notation for representing rotations and orientations of objects
or frames in 3D space.

• SDK: Software Development Kit.

• Standard Stereo Configuration: The real stereo configuration where the cameras' imager
are not ideally coplanar or row aligned as in the canonical configuration.

 9

• Stereo Correspondence: The process of matching image points from two different images,
captured from a stereo configuration, that represent the same object points on the 3D world
space.

• Stereo Rectification: Relates the two cameras in the space by means of rotations and
translations and the result are pair of images row-aligned and rectified.

• StereoVisionProg: Researcher-made program implemented to answer the proposed
research questions.

• STL: Standard Template Library.

• UML: Unified Modeling Language.

• Undistortion: Process of computing undistorted images (corrected images) by
mathematically removing radial and tangential distortions.

5.1.7 Limitations
The limitation of this research are mainly inherent to the data analysis and time limitations. The

time available to make this research was exceptionally short for a complete and solid review of the
extensive stereo imagery literature as well to learn the C++ programming language and to obtain a
complete familiarization with the OpenCV algorithms. Due the lack of time, the initial purpose for
implementing an interface able to interact with the Phantoms v9.1 cameras using the Phantom
SDK was not implemented which constitutes also a limitation in this study.

In what concerns to the dense stereo matching methods the research design adopted did not
included other stereo matching algorithms besides the ones available from OpenCV 2.1 libraries,
the study also did not included any comparison related with speed and computational cost between
those stereo matching algorithms, this limited the conclusions obtained from dense stereo matching
and the possibilities to obtain better disparity images.

 10

6 Chapter Two
6.1 Review of the Literature

6.1.1 Introduction
The world we humans daily perceive is the 3D world, but the images captured from it are 2D,

one dimension is lost in the capturing process. One important task in the Computer Vision field is
to recover back the third dimension (Shah, 1997). There are several methodologies to recover the
3D information from 2D images, one of them widely studied in computer vision is the stereo
imagery approach. In stereo imagery approach two images (left and right) are used to recover the
depth information. The depth recovery relies on three main areas: the first consists on capturing a
number of image pairs of a planar object that will be used to calibrate both cameras, this area is
termed as calibration. The second area consist on correcting and remapping each pixel on both
images in such a way that the images are suitable to apply matching algorithms, this area is termed
as rectification. Finally after applying the calibration and rectification processes, respectively, a
third step need to be performed to compare and compute the disparity maps, this area is termed as
correspondence.

The literature review will address three areas related to the depth recovery using stereo imagery.
The first section will address research related to the cameras calibration. The second section will
focus on research studies about the images rectification. Finally the third section will discuss
research related to stereo correspondence problem.

6.1.2 Research Synthesis

6.1.2.1 Camera calibration review.

• Introduction
One of the main goals of computer vision is to understand the visible world by inferring

3D properties from 2D images (Jiang, & Zhao, 2010). In the context of stereo imagery the
first step that need to be performed in the process of recovering 3D information from 2D
images is known by the term calibration. Camera calibration is the process of computing
the internal camera geometric and optical characteristics and modelling the relationship
between 2D images and 3D world.

A large number of calibration methods are presented in the literature. The literature
suggest that this methods can be characterized in three main categories: traditional methods,
self-calibration and the active-motion based methods. The former method, the one that will
be reviewed, is performed by observing a calibration object whose exact geometry in 3D
space is known with precision. This method provided by Zhang (2000) was particularly of
the research interest once it provides similar methodology to the one implemented by
OpenCV platform, as well a common ground for data comparison.

• Purpose
The purpose of the study is to provide an easy to use and flexible new technique to easily

 11
calibrate a camera by observing a planar pattern shown at at least two different orientations.
Either the camera or the planar pattern can be freely moved without the need to know the
motion (Zhang, 2000).

• Methods
The calibration is performed by observing a planar calibration object whose geometry is

known in 3D world with good precision. This methodology avoids the use of expensive
calibration apparatus such the ones based on three coplanar planes or diffractive optical
elements, instead it uses a pattern that can be easily printed on a laser printer and attached
to a planar surface. Either the camera or the calibration object can be moved by hand to
provide a rich set of pattern orientations.

Calibration Procedure. This section will provide the formulation to compute the camera
calibration parameters. Firstly it presents the notation and the planar homography, then the
analytical solution followed by a non linear optimization without and with lens distortion
effects and finally the procedure summary.

Notation
A 2D point is represented by m=[u , v]T and a 3D point is represented by

M=[X ,Y , Z]T , m̃ and M̃ denote the augmented vector by adding 1 resulting in:
m̃=[u , v ,1]T , M̃=[X ,Y , Z ,1]T respectively. The camera is modelled by the pinhole

model. The relation between the 3D point M and its image projection m is:

s m̃=A[R t] M̃ (6.1.1)

With A=[α c u0

0 β v0

0 0 1] .

The extrinsic parameters are the rotation and the translation (R ,t) that relates the world
coordinate system to the camera coordinate system. A Is the camera intrinsic matrix and
(u0 , v 0) are the coordinates of the principal point. The α ,β are the scale factors along
u , v image axis, and c the skewness of the two image axes.

Along the article A−T is used in place of (A−1)T ,or (AT)−1 .

Planar Homography
Without lose of generality, the model plane is assumed to be on Z=0 world coordinate
system. Denoting the ith column of the rotation matrix R by r i . From equation
(6.1.1), is possible to obtain the following relation:

s[uv1]=A [r 1 r 2 r3 t][XY01]=A [r1 r2 t][XY1]
Since Z=0 for all the planes, M was redefined to denote a point on the model plane

M=[X ,Y]T and consequently M̃=[X ,Y , 1] . A model point M and its image

 12
m is related by a homography H :

s m̃=H M̃ (6.1.2)

With H=A [r1 r 2 t] . The 3-by-3 matrix H is defined up to a scale factor.

Intrinsic Camera Parameters Constraints
Given an image of the model plane, the planar homography can be estimated. Denoting it
by H=[h1h2 h3] and by substitution in equation (6.1.2) the following relation was
obtained: [h1 h2h3]=λ A [r1 r 2t] , where λ=1/ s . Given an homography and using the
knowledge that r 1and r 2 are orthonormal vectors, two basic constraints on the intrinsic
parameters are obtained :

h1
T A−T A−1 h2=0 (6.1.3)

h1
T A−T A−1 h1=h2

T A−T A−1h2 (6.1.4)

Because a homography has 8 degrees of freedom and there are 6 extrinsic parameters (3 for
rotation and 3 for translation), only 2 constants can be obtained on the intrinsic parameters.

Solving Camera Calibration
Once presented the notation and planar homography, this section summarize the article
methodology to solve the camera calibration problem. Firstly was presented the analytical
solution followed by a non linear optimization technique and finally the consideration of
radial distortion in the calibration process.

Closed-form solution.
Let

B=AT A1≡[B11 B12 B13

B12 B22 B23

B13 B23 B33
] (6.1.5)

B=[
1
α2 − c

α2β

c v0−u0β

α2β

− c
α2β

c2

α2β2+
1
β2 −

c(cv0−u0β)

α2β2 −
v0

β2

c v0−u0β
α2β

−
c(c v0−u0β)

α2β2 −
v0

β2

(cv0−u0β)
2

α2β2 +
v0

2

β2+1]
B is a symmetric matrix defined by 6D vector

b=[B11 , B12 , B22 , B13 , B23 , B33]
T (6.1.6)

 13
Defining the ith column vector of H as h i=[hi1 hi2 hi3]

T then a new relation is
obtained:

h i
T B h j=vij

T b (6.1.7)

With v ij=[h i1 h j1 , hi1 h j2+hi2 h j1 , h i2h j2 , hi3 h j1+h i1h j3 , h i3h j2+hi2 h j3 , h i3 h j3]
T . Therefore

the two fundamental constraints (6.1.3) and (6.1.4), from a given homography, can be
rewritten as 2 homogeneous equations in b:

[v12
T

(v11−v 22)
T]b=0

(6.1.8)

If n images of the model plane are observed, by stacking n such equations as (6.1.8) a
new relation is obtained:

Vb=0 (6.1.9)

Where V is a 2n – by – 6 matrix. If n⩾3 a unique solution is obtained up to a scale
factor.
If n=2 , the skewness constraint can be imposed to be zero, c=0 , i.e. an additional
equation [0,1,0,0,0,0]b=0 is added to the equation(6.1.9).
The solution to equation (6.1.9) is known as the eigenvector of V T V associated with the
smallest eigenvalue. Once b is estimated, the camera intrinsic matrix A and the extrinsic
parameters can be computed. From equation (6.1.2) the rotations and translation can be
easily obtained:

r 1=λ A−1h1 , r2=λ A−1 h2, r3=r1×r 2 and t=λ A−1 h3 with λ=1/∥A−1 h1 or2∥ .
Additional computation needs to be performed in the returned matrix in order to solve the
best rotation matrix R, i.e. the one that satisfy a rotation matrix requirements.

Maximum likelihood estimation
Given n images of a model plane containing m points and assuming that the image
points are affected by independent and identically distributed noise the maximum likelihood
estimate can be obtained by minimizing an algebraic distance which is not physically
meaningful. This is done by minimizing the following equation:

∑
i=1

n

∑
j=1

m

∥mij−m̃(A , Ri , ti , M j)∥
2 (6.1.10)

Where m̃(A , Ri ,t i , M j) is the projection of point M j in image i , according to
equation (6.1.2). The rotation R is parametrized by a vector r of 3 parameters which
is parallel to the rotation axis and with magnitude equal to the rotation angle. R and r
Are related by the Rodrigues formula. The non linear minimization problem of equation
(6.1.10) is solved with Levenberg - Marquardt algorithm.

 14
Considering Radial Distortion
The previous steps of this article did not took in account the lens distortion. This section
will summarize the methodology used to estimate the camera intrinsic and extrinsic
parameters considering the first two terms of radial distortion.

Let (u , v) be the ideal or distortion-free pixel image coordinates and (ŭ , v̆) the
corresponding real observed image coordinates. Similarly the (x , y) and (x̆ , y̆) are the
ideal or distortion-free and real or distorted normalized image coordinates, thus the real
pixels are given by:

x̆=x+x [K 1(x
2+ y2)+K 2(x2+ y2)2]

y̆= y+ y [K 1(x
2+ y 2)+K 2(x2+ y2)2]

where K 1 and K2 are the coefficients of the radial distortion. The center of radial
distortion is the same as the point formed by the intersection of the principal ray with the
image plane (principal point) . Given the relation ŭ=u0+α x̆+c y̆ and v̆=v0+β y̆ , the
real image coordinates are given by the following equations:

ŭ=u+(u−u0)[K1(x
2+ y2)+K2(x2+ y2)2] (6.1.11)

v̆=v+(v−v0)[K 1(x
2+ y2)+K2(x2+ y2)2] (6.1.12)

The method to compute both distortion parameters assume that initially this parameters are
small and thus ignored to compute the five intrinsic parameters. Then the method estimates

K 1 and K2 based on those five parameters. From (6.1.11) and (6.1.12) each point in the
image is constrained by two equations:

[(u−u0)(x2+ y2) (u−u0)(x2+ y2)2

(v−v0)(x
2+ y2) (v−v0)(x

2+ y2)2][K 1

K 2]=[ŭ−u
v̆−v]

Given m points in n images, all the equations are joined to obtain a system of 2mn
total equations. This system of equations can be presented as

DK=d where K=[K 1, K 2]
T . The linear least-squares solution is obtained by:

K=(DT D)−1 DT d (6.1.13)

After solving the system of equations and obtained the values of K 1 and K2 the solution
for the previous five intrinsic parameters can be refined by solving equation (6.1.10) with
the two new distortion parameters taken in account. Similarly to equation (6.1.10) the new
set of parameters are estimated by minimizing the following functional:

∑
i=1

n

∑
j=1

m

∥mij−m̃(A , K 1, K 2, Ri , t i , M j)∥
2 (6.1.14)

Where m̃(A , K 1 , K2 , Ri , t i , M j) is the projection of point M j in the distorted image
i , according to equations (6.1.2) , (6.1.11) and (6.1.12). The non linear minimization is

solved in the same way as demonstrated previously for calibration neglecting lens
distortion. The literature suggest that a second approach can be done to initially estimate the

 15
K 1 and K2 values by simply setting them to zero.

Procedure Summary
The researcher of this article recommend the following procedure:

1. Print a pattern and attach it to a planar surface.
2. Take a set of images from different orientations by moving either the camera or the

model plane.
3. Identify the points of interest in the image.
4. Estimate the five intrinsic and extrinsic parameters neglecting radial distortions.
5. Estimate radial distortions coefficients by solving the linear least-squares equation

(6.1.13).
6. Recompute all parameters by minimizing equations (6.1.14).

• Variables and Data Analysis
This article presents two distinct analysis. In the first part the article presents the computer
simulated analysis for the algorithm performance with respect to the noise level, number of
planes and the orientation of the model plane while the second part uses real data to analyse
the influence of the number of planes in the intrinsic parameters and the influence of
including the distortion coefficients on the refinement of those parameters.

Simulated Data Analysis
The camera matrix used (notation of equation (6.1.1)) was:

A=[1250 1.09083 255
0 900 255
0 0 1] .

The pattern has a size of 18cm x 25cm containing 10 x 14 corners points with an image
resolution of 512 x 512.

Algorithm performance varying the noise level. Three planes are used with the following
orientations and positions, respectively:

r 1=[20º ,0,0]T , t1=[−9,−12.5,500]T

r2=[0,20 º , 0]T ,t 2=[−9,−12.5,510]T

r 3=
1
√5
[−30º ,−30º ,−15º]T ,t 3=[−10.5,−12.5,525]T

Gaussian noise with 0 mean and standard deviation is added to the projected image points.
An 100 independent trials is performed by varying the noise level from 0.1 to 1.5 pixels.
The relative error for α and β are measured as well the absolute error for u0 and v0 .

Algorithm performance varying the number of planes. This section investigates the
algorithm performance varying the number of images of the model plane. The number of
images vary from 2 to 16. For the first three images the orientation and position of the
model plane are the same as in the previous section and from the fourth image a rotation
angle of 30º is applied to an arbitrary rotation axis. For each number, 100 trials of
independent plane orientations and independent noise with mean 0 and standard deviation
0.5 pixels are conducted.

Algorithm performance varying the orientation of the model plane. This section study the
influence of the model plane orientation with respect to the image plane. The plane is
initially parallel to the image plane and a rotation axis is chosen arbitrarily and the plane is

 16
then rotated around that axis by an angle θ that varies from 5º to 75º. Gaussian noise
with mean 0 and standard deviation 0.5 pixels is added to the projected image points. The
process is repeated 100 times and the average error are computed.

Real Data Analysis
In the practical part of the study the images were captured with a PULNiX CCD camera 6

mm lens with 640x480 resolution. The model plane used a pattern of 8x8 squares with a a
size of 17 x 17 cm. Five images from different orientations were taken.

The algorithm was applied to sets of different number (2,3,4,5, respectively) of images
and the intrinsic camera parameters were measured first neglecting the lens distortion and
secondly by using the maximum likelihood estimation(MLE) after including the radial
distortion coefficients effects. The estimated standard deviation was computed for each
intrinsic parameter and distortion coefficients as well the root mean square (RMS) for each
set of images. A second approach was implemented in order to study the stability of the
proposed algorithm by applying the algorithm to all set of images combinations. The mean
and deviation were computed for each intrinsic parameter and distortion coefficients as well
the RMS for each combination.

• Results
The results returned by this study are summarized in two categories: The results concerning
to the simulated data and the results concerning to the real data.

The results obtained for the simulated data are firstly discussed and presented in the same
order. All the figures here included were adapted from this article.

From Figure 6.1 and 6.2 is possible to conclude that both errors increase linearly with
the noise level. Taking in account that in real cases the noise is normally lower than 0.5 (
σ⩽0.5) the errors for α and β for that level of noise are smaller than 0.3%. In the

case of u0 and v0 the errors are less than 1.5 pixels however v0 presents a lower error
that for the same noise value that is less than 1 pixel due the fact that the pattern has more
corners along v direction than in u direction. To have similar comparison a square pattern
should be used.

Figure 6.1: Relative errors vs. noise level (α, β), Zhang (2000).

 17

From Figure 6.3 and 6.4 the relative error of both scale factors (α and β) decrease
significantly as the number of planes increase and tends to stabilize for a relative error
around 0.25% for a number of images greater than 11.The principal point coordinates error
curves present the same tendency with a vertical displacement between them due difference
in the number of samples as already mentioned above in the noise results.

Figure 6.2: Absolute errors vs. noise level (u, v), Zhang (2000).

Figure 6.3: Relative error vs. number of planes (α, β), Zhang (2000).

Figure 6.4: Absolute error vs. number of planes (u0, v0), Zhang (2000).

 18
From Figure 6.5 and Figure 6.6 is possible to conclude that all parameters have

minimum errors for angles within an interval of [40º; 60º] . The higher errors occur for
small angles where the planes are almost parallel to each other and do not provide
additional constraints on the camera intrinsic parameters (degenerate configurations). This
occurrences, for some calibration algorithms, introduces numeric instability and can make
the solution diverge to wrong results.

• Real data results
The algorithm results using real data are showed in Figure 6.7 and 6.8. Figure 6.7 shows

the calibration parameters results using sets of 2, 3, 4 and 5 images. The “initial” column
are the values obtained for the case were radial distortion was neglected and the “final”
column are those parameters refined after estimate radial distortion coefficients

K 1 and K2 , the third column (σ) is the estimated standard deviation. From this third
column is possible to conclude that the parameter values do not present significant
differences in each set and the standard deviation converges rapidly by only increasing the
number of images from 2 to 5. Figure 6.8 shows the combinations of all sets of images. The
mean and sample deviation are showed in the last columns. The higher deviation occurs for
the scale factors (α and β) but still considerably small what shows that the algorithm
proposed is stable. The aspect ratio (α/β) was also computed for each combination and
its mean and sample deviation are 0.99995 and 0.00012, respectively. The value very close
to 1 shows that the camera CCD used was square, i.e. the sizes (sx and s y) of the
individual imager element are equal.

Figure 6.5: Relative error vs. angle with image plane (α and β),
Zhang (2000).

Figure 6.6: Absolute error vs. angle with image plane (u0, v0), Zhang (2000).

 19

Conclusions/Implications
The algorithm proposed in this article provides an easy and flexible method to calibrate a

camera by capturing images either moving the camera or the pattern plane. From the
simulated data few conclusions can be done: better results are obtained for a rich set of
images, i.e. with distinct orientations for angles within an interval of [40º; 60º] , images that
only differ in position (pure translation) do not contribute with any additional information,
and for a number of image planes greater than 11 the parameters errors are approximately
constant. The real data computation also allows to conclude that the algorithm do not
require a big number of images, the algorithm converges rapidly.

The proposed technique is flexibly, reliable and do not requires large number of images
neither very expensive or elaborated calibration objects making it easy to use. It present the
methodology also used by the OpenCV calibration functions used along this study.

Weakness/Limitations
This paper do not mentions explicitly any kind of limitations however some of its

assumptions constitutes few limitations. The method assumes that the radial distortion
function is mostly dominated by the first two terms however it is not partially true for wide
angle or fish-eye lens types where the third coefficient has significant weight. The method
did not establish an interval for the angle of rotation that gives the better results or studied
the influence of higher angles (closer to 90º) vs. corners detection precision. Another
limitation of this paper is due the fact it does not provide results with different patterns
varying the number of corners and their sizes and the influence that this changes may cause
in the calibration parameter results. Finally the fact of using rectangular patterns
(ncornersalong u≠ncorners along v) did not allowed to compare directly the principal point

coordinates for different noise levels (Figure 6.2).

Figure 6.7: Parameter result's variations with different sets of images, Zhang (2000).

Figure 6.8: Calibration parameter's results with different image sets, Zhang (2000).

 20
6.1.2.2 Stereo rectification review.

• Introduction

In stereo vision algorithms image rectification plays an important role. Assuming that a pair of
2D images captured from, two different viewpoints, from a scene in a 3D world and with their
epipolar geometry already computed. The two corresponding points between the pair of images
must satisfy the epipolar constraint. For a point in one image its corresponding point must lies
along an epipolar line in the second image. In standard stereo rigs, the epipolar lines are, in
general, not aligned or parallel with the coordinate axis what constitutes a major drawback to
compute dense and accurate correspondences. Stereo matching problem can be easily simplified if
epipolar lines are horizontally coincide, this is achieved by applying 2D projective transforms, or
homographies, to each image such that the search space is reduced to only one dimension . This
process is known as image rectification and is possible by using epipolar geometry.

There exist different approaches to rectify images. They can be classified mainly according the
type of geometric transformations used:

• Projective rectification. Is a linear transformation in the projective space and uses 2D plane
to plane homographies.

• Non-linear rectification. Uses general geometric transformation of images.

Further classification of image rectification approaches is based on the method used to
determine the free parameters left by the rectification conditions (Matousek, 2007).

A large number of rectification methods have been proposed, they initially were based mostly
on calibration parameters however due the requirements of most recent vision systems the late
research focused its attention on uncalibrated methods.

Traditional or calibration based rectification methods (Avache & Hansen, 1988), (Avache &
Lustman, 1991) and more recently (Fusiello, et al, 2000) and Bouguet algorithm that is a
simplification of the method first introduced by Tsai(1987) and Zhang (1999, 2000) all require the
knowledge of cameras parameters that, for some vision systems, constitutes one disadvantage.
Contrarily to the rectification based on traditional methods, several methods have been developed
to allow image rectification directly without the need of using camera parameters, however most
of this methods requires that the fundamental matrix needs to be first estimated. Papadimitriou and
Dennis (1996) proposed a method for partially aligned cameras. Robert et al(1997) developed a
method that attempt to find the transformation that better preserves orthogonality around image
centres. Loop and Zhang(1999) proposed decomposing each homography into a specialized
projective transform, a similarity transform, fallowed by a shearing transform considering carefully
the image distortion at each stage. Pollefeys et al. (1999) presented a simple algorithm for
rectification which can deal with all possible two views stereo image geometries. Hartley (1999)
proposed a method that computes the homographies making use of the differences minimization
between matching points in both images.

• Purpose
The purpose of the study is to provide a rationale for the calibrated/uncalibrated image

rectification methods, already implemented in OpenCV library, applied to this research. This
section is presented in two subsections that summarizes a methodology to compute the
homographies by using the minimization of the differences between matching points, Hartley
(1999), and the Bouguet calibrated stereo rectification methodology described by Bradski et al.
(2008).

 21
• Methods

Hartley's Uncalibrated Stereo Rectification

Notation

If A is a square matrix then its matrix of cofactors is denoted by A* and the following
identities A* A=AA*=det (A) I where I is the identity matrix. If A is an invertible matrix,
then A *≈(AT)−1 .

Given a vector t=(t x , t y , t z)
T the skew-symmetric matrix is as follows:

[t]x=(0 −t z t y

t z 0 −t x

−t y t x 0) (6.1.15)

For any non-zero vector t, matrix [t]x has rank 2. Furthermore, the null-space of [t]x is
generated by the vector t that means tT [t]x=[t]x t=0 and any other vector cancelled by [t]x is
a scalar multiple of t. For any vectors s and t the cross-product are

sT [t]x=s×t and [t]x s= t×s . Also for any 3-by-3 matrix M and vector t

M *[t]x=[Mt]x M (6.1.16)

Projective Geometry: Real projective n−space consists on the set of equivalent non-zero
vectors real (n+1) vectors, where two vectors are considered equivalent if they differ by a
constant factor. A vector representing a point in Pn is known as a homogeneous coordinate
representation of the point. Real projective n−space contains Euclidean n−space as the set
of all homogeneous vectors with coordinates different than zero, then a point in P2 is
represented by a vector u=(u , v , w)T , for w≠0 , this represents a point in R2 expressed in
Euclidean coordinates as (u /w , v /w)T .

Lines in P2 are also represented in homogeneous coordinates, the line λ with coordinates
(λ , u , v)T is the line consisting of points connected by the equation λ u+uv+vw=0 i.e. a

point u lies on a line λ if and only if λT u=0 . The line joining two points u1 and u2 is
given by the cross product u1×u2 .

The projective transformation from Pn to Pm is a map represented by a linear transformation
of homogeneous coordinates. Projective transformations can be represented by matrices of
dimensions (m+1)×(n+1) .

If a given 3-by-3 non-singular matrix (A) representing a projective transformation of P2

then A* is the corresponding line map. This can be better understood if for example:
u1 and u2 line on a line defined by λ then A u1 and A u2 line on the line A*λ , using

equation 6.1.16 this can be formulated as A*(u1×u2)=(A u1)×(A u2) .

Camera model notation. The camera is modelled by the pinhole model. In order to be coherent
with the notation used in this paper, the pinhole model will be redefined according this paper.
Appendices section provides a more detailed description of the pinhole model (see Appendix A:
Stereo Imaging). The pinhole models a region in R3 seen by the camera into the image plane

R2 . Points in world space are therefore denoted by homogeneous 4-elements vectors

 22
x=(x , y , z , t)T or more commonly as (x , y , z , 1)T while points in the image plane are

represented by 3-elements vectors u=(x ,v ,w)T . The projection from world to image space is a
projective transform represented by a 3-by-4 matrix P of rank 3, known as the camera matrix.
This matrix transforms points from 3D space to 2D space according to the equation u=Px . The
camera matrix P is defined up to an arbitrary scale factor and therefore has exactly 11
independent entries. Several important parameters are modelled: position and orientation of the
camera, the principal point and the scale factors in two orthogonal directions (not necessarily
parallel to the image plane axes) . Assuming that the camera centre is not at the infinity and with
Euclidean coordinates t 0 (t x ,t y , t z)

T . The camera mapping is undefined at t in that
P (t x ,t y ,t z , 1)T=0 , if P is written as P=(M∣v) then Mt+v=0 and v=−Mt . The

camera matrix can be written in the following form: P=(M∣−Mt) where t is the camera
centre and M is non-singular.

• Epipolar Geometry.

 Assuming that two images were taken from a common scene and u a point in the first image
(left image). The place of all points in P3 that map to u consists of a straight line passing
through the centre of the first image. This straight line seen from the second camera maps to a
straight line in the second image (right image) known as a epipolar line. Any point u ' in the
second image matching point u must lie on this epipolar line. All the epipolar lines in the second
image corresponding to points u in the first image meet in a point p ' called the epipole.

This epipole p ' is the point where the centre of projection of the first camera would be
visible in the second image, the epipole p is similarly defined for the first image. Therefore a
projective mapping exist such that points in the first image are mapped to epipolar lines in the
second image. This mapping process is achieved by a 3-by-3 matrix F called the fundamental
matrix according to u⇒ Fu . If u i⇔ui

' are a set of matching points, then the fact that u i
' lies

on the epipolar line Fui means that:

u i
' T Fui=0 (6.1.17)

Based on the equation 6.1.17 and a number of point matches, it is possible to determine the
matrix F by solving the resulting system of linear equations. The resulting fundamental matrix F
determines the epipoles in both images and provides the maps between points in one image and
epipolar lines in the other image, therefore it encodes the complete geometry and correspondence
of epipolar lines.

This fundamental matrix characteristics are summarized by the next proposition:

Proposition 1.0. Supposing that F is the fundamental matrix corresponding to an ordered pair of
images (J , J ') and p and p ' are the epipoles.

1. Matrix F T is the fundamental matrix corresponding to the ordered pair of images
(J , J ') .

2. F factors as a product F=[p ']x M=M *[p]x for some non-singular matrix M.

3. The epipole p is the unique point such that Fp=0 . Similarly, p ' is the
unique point such that p ' T F=0 .

A property of the fundamental matrix is its factorization into a product of non-singular and

 23
skew-symmetric matrices, however, this factorization is not unique.

The next step to be done consist on determining the projective transformation from image J
to image J ' that take epipolar lines to the corresponding epipolar lines. This transformation is
said to preserve epipolar lines and is summarized by the following proposition:

Proposition 1.1. Let F be a fundamental matrix and p and p ' the two epipoles. If F factors
as a product F=[p ']x M then:

1. Mp=p ' .

2. If u is a point in the first image, then Mu lies on the corresponding epipolar
line Fu in the second image.

3. If λ is a line in the first image, passing through the epipole p , then M∗λ is
the corresponding epipolar line in the other image.

Conversely, if M is any matrix satisfying condition 2, or 3, then F factors as a product
F=[p ']x M .

As mentioned previously, the projective transformation preserve the epipolar lines, this fact is
achieved by matrices M appearing in a factorization of F. Since the factorization of F is not
unique, there exist a 3-parameter family of such transformation. For more details on the
fundamental matrix Zhang(1996) provides a complete review of the techniques used for estimating
the fundamental matrix and it uncertainty. The method presented in this paper are the basis in
which OpenCV algorithms were implemented and therefore it provides a rationale for the research
study.

• Seek Homography H.
In this step, the paper provides the methodology to find a projective transformation H of an

image mapping an epipole to a point at infinity. If epipolar lines are to be transformed to lines
parallel with the x axis, then the epipole should be mapped to the 2D homogeneous point at infinity
(1,0,0)T . Homography has seven constraints, three are used to perform the mapping to infinity

and four degrees of freedom are left to choose H , if an inappropriate H is chosen it may
result in highly distorted images. To avoid this and obtain a final image close to the original image
some restrictions were imposed on the choice of H .

One condition that allows to find a good result is to insist that the transformation H should
act as a rigid transformation allowing only rigid rotation and translation in the neighbourhood of a
selected point u0 of the image. An appropriate choice for u0 may be the centre of the image.

Supposing that u0 is the origin and the epipole p=(f , 0,1) lies on the x axis.
Considering the following transformation:

G=(1 0 0
0 1 0

−1/ f 0 1) (6.1.18)

This transformation (6.1.18) takes the epipole (f ,0,1)T to the point at infinity (f ,0,0)T as
required. A point (u , v ,1)T is mapped by G to the point (ũ , ṽ , 1)T=(u , v ,1−u / f)T . If

 24
∣u / f ∣<1 then it can be write as follow: (ũ , ṽ ,1)T=(u , v ,1−u / f) and
(u ,v ,1−u / f)=(u (1+u / f +...) , v (1+u/ f+...) ,1)T .

The Jacobian is:

δ(ũ , ṽ)
δ(u , v)

=(1+2u / f 0
v / f 1+u / f)

Plus higher order therms. If u=v=0 , the previous expression is the identity matrix and G is
said to be approximated at the origin by the identity mapping. Thus for an arbitrarily placed point
of interest u0 and epipole p , the required mapping H , that performs the rigid
transformation in the vicinity of u0 , is a product denoted by the expression H=GRT . Where

T is the translation that takes the point u0 to the origin, R is a rotation about the origin
taking the epipole p ' to a point (f ,0,1)T on the x axis and G is the mapping just
considered taking (f ,0,1)T to infinity.

• Search Matching Homography.
Considering two images J and J ' , the next step is to resample these two images according

to transformations H to be applied to J and H ' to be applied to J ' in such a way that an
epipolar line in J is matched with its corresponding epipolar line in J ' . In other words, if
λ and λ ' are any pair of corresponding epipolar lines in the two images, then H *λ=H '*λ ' .
H * is the line map corresponding to the point map H . The pair of transformations that fulfil

this conditions are termed as matched pair of transformations.

To choose a matched pair of transformations H ' is firstly chosen and then seek a matching
transformation H chosen so as to minimize the sum-of-squares distance formulated in the
following equation:

∑
i

d (Hui ,H ' ui ')
2

 (6.1.19)

The next step to be performed is to find a transformation matching H ' . This is done based
on the following theorem:

Theorem 1.0. Let J and J ' be images with fundamental matrix F=[p ']x M , and let H '
be a projective transformation of J ' . A projective transformation H of J matches H ' if
and only if H is formulated, for some vector a , as follows:

H=(I+H ' p ' aT)H ' M (6.1.20)

The paper corroborates the theorem with the following demonstration:

If u is a point in J , then p×u is the epipolar line in the first image, and Fu is the
epipolar line in the second image. Transformations H and H ' are a matching pair if and only if

H *(p×u)=H ' * Fu . Once this relation must be verified for all u the equivalent can be
written as H *[p]x=H ' * F=H ' *[p ']x M or applying equation (6.1.16) the next relation is
obtained:

 25
[Hp]x H=[H ' p ']x H ' M (6.1.21)

Recalling that the fundamental matrix F factorizes into a product of non-singular and skew-
symmetric matrices and that this factorization is not unique a new proposition is given as follow:

Proposition 1.2. Let the 3-by-3 matrix F factor in two different ways as F=S1 M 1=S 2 M 2

where each S i is a non-zero skew-symmetric matrix and each M i is non-singular. Then
S2=S 1 . Furthermore, if S i=[p ']x then M 2=(I+p ' aT)M 1 for some vector a .

Contrarily, if M 2=(I+p ' aT)M 1 then [p ']x M 1=[p ']x M 2 .

Equation (6.1.21) is a necessary and sufficient condition for H and H ' to match. In view of
the above proposition, this implies equation (6.1.20) as required.

To prove the opposite, if equation(6.1.20) holds, then:

Hp=(I+H ' p ' aT)H ' Mp
 =(I+H ' p ' aT)H ' p '
 =(I+aT H ' p ')H ' p '
 ≃H ' p '

Equation (6.1.20) together with the proposition 1.2 are sufficient for equation (6.1.21) to hold,
and therefore H and H ' are matching transformations.

The transformation H ' , that takes the epipole p ' to a point at infinity (1,0,0)T , is the
one with particular interest. In this case, I+H ' p' aT=I+(1,0,0)T aT is of the form:

A=(a b c
0 1 0
0 0 1) (6.1.22)

Which represents an affine transformation. A special case of the theorem previously presented
states that:

A transform H of J matches H ' if and only if H is of the form H=AH ' M and A is
an affine transformation of the form (6.1.22).

Once H ' maps the epipole to infinity, this special case may be used to choose the best
matching transformation H to minimize the disparity. The minimizing problem (6.1.19) is to
find A of the form (6.1.22) such that

∑
i

d (A ũ i , ũ i ')
2

 (6.1.23)

Is minimized, where ũ i '=H ' u i ' and ũi=H ' Mui . Once the transformation H ' and
M are known, and assuming that ũ i and ũ i ' hold the vectors ũ i=(ũ i , ṽ i ,1) and

 26
ũ i '=(ũi ' , ṽi , 1) respectively , these vectors may be computed from the matched points
u i '⇔u i . Then the minimization problem of equation (6.1.23) is rewritten in the form:
∑

i
(a ũi+b ṽ i+c− ̃u i ')

2+(ṽi−ṽ i ')
2

, since (ṽ i− ̃v i ')
2 is constant, the minimization problem is

reduced to the form:

∑
i
(a ũi+b ṽ i+c− ̃u i ')

2
 (6.1.24)

Equation (6.1.24) is a linear least-squares parameter minimization problem solved using linear
techniques to find a ,b and c . Then A is computed by substitution of a ,b and c in 6.1.22
and H is obtained solving equation 6.1.20.

Summarizing, H ' is the transform that sends the epipole p ' to infinity and align the rows
of two images. To align the rows the method uses the fact that aligning the rows minimizes the
total distance between all matching points between the two images. Thus a good transformation

H ' minimizes the total disparity in u i '⇔u i matching points. The two transformations
H ' and H define the stereo rectification.

Bouguet’s Calibrated Stereo Rectification
Bouguet's image rectification method attempts to minimize the amount of change caused by

reprojection in each of the two images while maximizing the matching area. To accomplish this
goal and minimize the reprojection distortion, the given rotation matrix R , that rotates the right
camera's image plane into left camera's image plane so that both cameras become coplanar aligned,
is split in half between both cameras. The two resulting rotation matrices r 1 and r2 for the left
and right cameras, respectively, are then used to rotate each camera half a rotation so their principal
rays become parallel to a vector that would result from combining their original principal rays.

At this point the cameras are coplanar aligned but the epipolar lines are not aligned with any
image axis. To obtain images row aligned a new rotation matrix Rrect , that will take the left
epipole e1 to infinity and align the epipolar lines horizontally, need to be computed.

Assuming that the principal point (c x , c y) as the left image's origin the direction of e1 is
along the translation vector between the two cameras centres of projection:

e1=
T
∥T∥

The next vector e2 , that need to be orthogonal to vector e1 , is computed by choosing a
direction orthogonal to the principal ray. By using the cross product of e1 with the direction of
the principal ray followed by a normalization the vector as the form:

e2=
[−T y T x 0]T

√ t x
2+T y

2

Knowing that the third vector is orthogonal to e1 and e2 it is computed using the cross

 27
product: e3=e1×e2 the new rotation matrix Rrect that rotates the left camera about the centre
of projection so that the epipolar lines become horizontal and the epipoles at the infinity has the
form:

Rrect=[(e1)
T

(e2)
T

(e3)
T]

In order to transform both images to row aligned images the following transformations need to
be done:

Rl=R rect r l

Rr=R rect r r

The projection matrices take a 3D point in homogeneous coordinates to 2D point in
homogeneous coordinates with the following relationship P (X , Y ,Z , 1)T=(x , y ,w)T . Where

P is the projection matrix (P l or P r) that are obtained by the following relation:

Pl=M rect l
P l '

P r=M rect r
P r ' ,

Where M rect l
 and M rect r are the rectified left and right camera matrices. The projection

matrices (P l or P r) presented in the matrix form are:

P l=[f x l
α l cx l

0 f y l
c yl

0 0 1][1 0 0 0
0 1 0 0
0 0 1 0]

P r=[f x r
αr c x r

0 f y r
c y r

0 0 1][1 0 0 T x

0 1 0 0
0 0 1 0]

This image rectification method from Bouguet here summarized transforms a general stereo
configuration into the canonical stereo configuration. New image centres and bounds are then
chosen for the rotated and row aligned images so their matching area is maximized.

6.1.2.3 Stereo correspondence review.

• Introduction
The recover of the lost dimension or depth estimation is widely used in vision systems for 3D

object recognition and reconstruction, 3D remote applications and a large number of other
applications. Initially those applications were reduced to sparse stereo correspondence or feature-
based techniques due the computational resource limitations. The hardware available nowadays
allow to overcome this limitations and most of the stereo matching algorithms currently focus on
dense correspondence (Szeliski, 2010).

 28
Stereo Correspondence is related to the matches between two images perceived from different

viewpoint of an object in the 3D space. Depth information is obtained by triangulation of
corresponding image points subjected to epipolar geometry transformations and with known
stereoscopic camera parameters.

Stereo correspondence besides being one of the most active topics in computer vision it still
remains a big challenge. In this field a large number of algorithms have been proposed and new
ones are being introduced, however, the research in evaluating stereo matching methods has still its
limitations. An approach to better understand those methods was done by Szeliski and Zabih(1999)
were is presented an experimental comparison of several different stereo algorithms and their
performance with real data. Once stereo correspondence is one of the most active subjects in
computer vision and new matching techniques continue to be introduced a good way to follow the
most recent algorithms is to check the Middlebury evaluation site at
http://vision.middlebury.edu/stereo/eval/, as well a good number of references are provided at the
end of the same site.

While initially the stereo correspondence algorithms were commonly classified in sparse and
dense methods the late classification divide them in two groups: local methods and global methods.

• Global methods are used in the optimization process to determine disparity and occlusions.
They perform some optimization or iterations steps after computing the disparity maps,
many work on the basis of energy minimization with the objective to find a solution that
minimizes the global cost function. They currently produce the best stereo matching results
with accurate and dense disparity measurements, whoever, this is achieved with the main
drawback of high computational cost that makes them unsuited to real-time stereo
applications.

• Local methods compute the disparity maps based on local information of the neighbouring
pixels.

In the later case, and the one with particular interest for this research, the recent development
focused essentially on area-based matching algorithms that consist on measuring the correlation
between pixels in both images taking in account a number of pixels in their vicinity defined by a
fixed size window.

Due the diversity of research in this computer vision area only very general information was
provided in this section. A better understanding on stereo correspondence classification as well the
analyse of the most used and practical matching measures is provided by Cyganek and Siebert
(2009). Szeliski (2010) also provide a good survey about stereo correspondence, containing
references from the seminal to the earliest works on this area

In this section the researcher opted to review one of the stereo matching algorithms already
implemented in the OpenCV library more precisely the block matching stereo algorithm similar to
the one developed by Konolige(1997). Although the OpenCV algorithm implementation was based
on Konolige paper this review was based in a similar paper proposed by Stefano et al. (2002). This
later paper provides more recent and better approach as well a comparison with another existing
area-based stereo matching algorithm.

• Purpose

The purpose of the study was to present an area-based stereo algorithm suitable to real time
applications. The base of the algorithm relies on the uniqueness constraint and on a matching
process that allows the rejection of previous matches when more accurate ones are found. It

 29
provides experimental results obtained on stereo pairs as well a comparison with an already
implemented fast area-based algorithm Stefano et al. (2002).

• Methods
Matching Approach. Assuming a binocular stereo pair in the canonical form or already

subjected to rectification, as done in the previous section, with the epipolar lines lying on
corresponding image scanlines and assuming that the left image is the reference, that disparity, d
, belongs to the interval [0... d max] and that the left image is scanned from top to bottom and
from left to right during the matching process.

The algorithm, starting from one point of left image, L(x−d max , y) , searches for the best
match by evaluating the similarity function, ε (that represents the degree of similarity between
two small regions of the stereo pair), within the interval [R(x−d max , y) ... R(x , y)] . This
process is repeated for the successive points along the scanline L(x+i−d max , y) and repeating
the search for the best match within the interval [R(x+i−d max , y)... R(x+1, y)] , where i is
the iteration for the successive points along the scanline. Figure (6.9) shows each point on the left
scanline corresponding to intervals on the right image where are the potential matching points
within a certain disparity range.

Assuming now that the best match found L(x+β−d max , y) is R(x , y) with degree of
similarity ε(x+β−d max , x , y) the notation L(x+β−d max , y)→ R(x , y) is used to indicate
the match from left to right has been established.

Area-based algorithms use photometric properties as principal criteria to perform the matching
process, however, this criteria can be ambiguous due to different causes such as noise, lens
distortion and occlusions. Besides this ambiguity can lead to wrong matches and result in
inconsistencies within the matches already established that can be used to detect and discard them,
i.e. reject previous matches.

Assuming that another point in the left image, L(x+α−d max , y) with α≤β , has been
identified also as a possible good match for R(x , y) with error similarity ε(x+α−d max , x , y) ,
two matches for the same point are available violating the uniqueness constraint. This fact can be
conveniently used to detect wrong matches by assuming that at least one of the matches

L(x+β−d max , y)→ R(x , y) , L(x+α−d max , y)→ R(x , y) is wrong and can be discarded to
give place to match with better score. Therefore if a point being analysed, L(x+β−d max , y) ,
has better score than another already matched i.e. ε(x+β−d max , x , y)≤ε(x+α−d max , x , y) the
algorithm reject the previous match L(x+α−d max , y)→ R(x , y) and accept the new one

Figure 6.9: Stereo matching process, Stefano et al. (2002).

 30
L(x+β−d max , y)→ R(x , y) correcting this way ambiguous matching errors.

Figure 6.10 shows how the algorithm can correct from previous misleading matches when new
and better matches are found during the search. It presents the scores between the point R(x , y)
of the right image and the points in the left image [L(x−d max , y) ... L(x , y)] ,that are allowed to
establish correspondence with R(x , y) , as a function of the disparity d ∈ [0, d max] .

Recalling Figure 6.9 the arcs with smaller disparity values represent the similarity scores
computed recently while higher disparity values represent the ones firstly computed. According to
Figure 6.10 and assuming again two matches as follow:

match (1): L (x+α−d max , y)→ R(x , y)
match (2): L(x+β−d max , y)→R (x , y) ,

The algorithm will discard the old match (1) and take the new match (2) since it has a better
score. If another match ambiguity is found when analysing successive points in the left image

match (3) L(x+γ−d max , y)→R(x , y) . Since match (3) has a better score than match (2),
ε(x+γ−d max , x , y)≤ε(x+β−d max , x , y) , match (2) is discarded and match(3) is set to current

match.

Computational Optimization.

This subsection plays an important role in the whole algorithm once the computation of the sum
of absolute differences (SAD) scores is the most expensive task in the direct matching process. It
presents a summary of the optimization techniques to avoid redundant calculations and in order to
obtain faster speeds an additional level of incremental calculations is also proposed.

Assuming that SAD(x , y , d) is the SAD score between a window of size
(2n+1) .(2n+1) centred at coordinates (x , y) in the left image and corresponding window

centred at (x+d , y) in the right image:

SAD(x , y , d)= ∑
i , j=−n

n

∣L (x+ j , y+i)−R(x+d+ j , y+i)∣ (6.1.25)

Figure 6.10: Scores associated with point R(x, y), Stefano et al. (2002)

 31
Using equation (6.1.25) the SAD(x , y+1,d) score can be obtained, as follows:

SAD(x , y+1, d)=SAD(x , y , d)+U (x , y+1, d) (6.1.26)

Where U (x , y+1, d) is the difference between the SAD associated with the lowermost and
uppermost rows of the matching window as shown in light grey points of Figure 6.11.

The difference is formulated by the next equation:

U (x , y+1, d)=−∑
j=−n

n

∣L(x+ j , y−n)−R(x+d+ j , y−n)∣

 +∑
j=−n

n

∣L(x+ j , y+n+1)−R(x+d+ j , y+n+1)∣
 (6.1.27)

Moreover, to keep a low level of complexity and independent of the matching window size ,
U (x , y+1, d) can be computed from U (x−1, y+1,d) by only considering the attributes

associated with the four points shown in dark grey in Figure 6.11. Thus only four operations are
required to compute the SAD score at each new point. The contributions of those four points are
formulated by the following equation:

U (x , y+1,d)=U (x−1, y+1, d)
 +(∣L(x+n , y+n+1)−R(x+d+n , y+n+1)∣
 −∣L(x+n , y−n)−R(x+d+n , y−n)∣)
 −(∣L(x−n−1, y+n+1)−R(x+d−n−1, y+n+1)∣
 −∣L(x−n−1, y−n)−R(x+d−n−1, y−n)∣)

 (6.1.28)

Equations (6.1.26) and (6.1.28) use vertical recursion to obtain the SAD score and horizontal

recursion to obtain the updating therm, U and therefore it is necessary to store the SAD scores
associated with the previous row as well the difference values, U , associated with the previous
point.

An article of interest, concerning to the matching window size, is presented by Kanade &
Okutomi (1991) where is proposed a stereo matching algorithm that studies the selection of the
window size adaptively by evaluating the local variations of intensity and disparity and compute
both disparity estimate and the uncertainty of the estimate.

Figure 6.11: SAD matching window, Stefano et al. (2002)

 32
Pre-processing.

The pre-processing step requires the computation of the mean and variance of both images.
Choosing the left image to work with formulation and defining N 2=(2n+1) .(2n+1) the mean
and variance are formulated, respectively, has follows:

μ(x , y)= 1
N 2 ∑

i , j=−n

n

L(x+ j , y+i)= 1
N 2 S1(x , y) (6.1.29)

σ2(x , y)= 1
N 2 ∑

i , j=−n

n

L2(x+ j , y+i)−μ2(x , y)

 = 1
N 2 S 2(x , y)−μ2(x , y)

 (6.1.30)

Equations (6.1.29) and (6.1.30) are obtained by scanning the image and summing all intensities.
The paper presents the following set of equations to obtain this two values.

S1(x , y+1)=S 1(x , y)+U S 1
(x , y+1) (6.1.31)

U S 1
(x , y+1)=∑

j=−n

n

(L(x+ j , y+n+1)−L(x+ j , y−n)) (6.1.32)

U S 1
(x , y+1)=U S1

(x−1, y+1)
 +(L(x+n , y+n+1)−L(x+n , y−n))
 −(L(x−n−1, y+n+1)−L(x−n−1, y−n))

 (6.1.33)

S2(x , y+1)=S 2(x , y)+U S2
(x , y+1) (6.1.34)

U S 2
(x , y+1)=∑

j=−n

n

(L2(x+ j , y+n+1)−L2(x+ j , y−n)) (6.1.35)

U S 2
(x , y+1)=U S 2

(x−1, y+1)
 +(L2(x+n , y+n+1)−L2(x+n , y−n))
 −(L2(x−n−1, y+n+1)−L2(x−n−1, y−n))

 (6.1.36)

In order to achieve additional speed-up in both matching and pre-processing procedures a third
level of incremental computation is introduced. Before presenting the formulation some
observations need to be done.

As the matching step the pre-processing step make use of the four pixels at the corners of the
correlation window (see Figure 6.11), this pixels contributes with two terms denoted by A and

B , where A contains the two pixels on the left side and B the two pixels on the right side

 33
of the correlation window. Denoting the array of B terms by T , each element can be
referenced with the index x̃= x mod (2n+1) . All elements of T are visited for each time the
correlation window is shifted by 2n+1 units. When the window is shifted by one pixel a new

B is computed and A term is obtained from T ̃(x) . After A and B have been used
the array is updated with the newest B term.

In order to implement the third level of incremental computation the mean equation(6.1.32) and
variance equation(6.1.36) are respectively rewritten as follows:

U S 1
(x , y+1)=U S1

(x−1, y+1)
 +(L(x+n , y+n+1)−L(x+n , y−n))−T 1(x̃) (6.1.37)

U S 2
(x , y+1)=U S 2

(x−1, y+1)
 +(L2(x+n , y+n+1)−L2(x+n , y−n))−T 2(x̃)

 (6.1.38)

Where :

T 1(x̃)=L (x−n−1, y+n+1)−L (x−n−1, y−n) (6.1.39)

T 2(x̃)=L2(x−n−1, y+n+1)−L2(x−n−1, y−n) (6.1.40)

With x̃= x mod (2n+1) for both equations.

Recalling equation(6.1.28) for the matching step, the third level of incremental computation is
applied for each disparity d∈[0,d max] and T array grows by one dimension. Thus
equation(6.1.28) is rewritten as follows:

U (x , y+1,d)=U (x−1, y+1, d)
 +(∣L (x+n , y+n+1)−R(x+d+n , y+n+1)∣
 -∣L (x+n , y−n)−R(x+d+n , y−n)∣) −T (x̃ , d)

 (6.1.41)

T (x̃ , d)=∣L (x−n−1, y+n+1)−R(x+d−n−1, y+n+1)∣
 −∣L(x−n−1, y−n)−R(x+d−n−1, y−n)∣ (6.1.42)

With x̃= x mod (2n+1) , d∈[0, d max] .

Therefore the aim to achieve further speed-up in the matching and pre-processing step is
obtained by means of implementing this formulation.

• Variables and Data Analysis

The study presented in this paper was conducted using two algorithms, the proposed algorithm
(P.A.) and an existing bidirectional matching algorithm (SVS) proposed by Konolige(1997). There
were two independent variables, the image size and disparity range and one dependent variable that
measures the speed of each area-based stereo matching algorithm.

 34

To compare each algorithm a stereo-pair of images from University of Tsukuba (Figure 6.12)
were used. The measurements were obtained on an Intel Pentium III processor running at 800
MHz.

The analysis was performed by comparing the output of the proposed algorithm (PA) (see Figure
6.13) with the given ground truth image, additionally a table with measurements aimed at assessing
the speed of the two algorithms using different image sizes and disparity ranges were provided
(Figure 6.14).

• Results

The results returned from this study are mainly two: the disparity images computed from both
algorithms (see Figure 6.13) and a table (see Figure 6.13) that shows the behaviour, in terms of
speed, of both algorithms when varying the image size and disparity range.

Comparing the output returned by the PA with the Tsukuba ground truth image (Figure 6.12, left
and right) the overall 3D structure was recovered even for the regions closer to the stereo rig such
the lamp and the statue head and the algorithm was able to deal with the occlusions identified by
red points.

However, due the border-localisation problem, i.e. when the correlation window is within an
area with different depths, the matching process is affected by the uncertainty in the localization of
the borders and the algorithm fails to perfectly localize objects as the case of the supporting arm of
the lamp that disappeared. Moreover this problem prevents the algorithm from fitting the object's
silhouette accurately as can be stated by simply observing both outputs in Figure 6.13.

The results obtained by the SVS 2.0 software on Tsukuba image pair are almost similar to the PA.
The 3D structure was recovered correctly and the occlusions detected, however it presents a better
performance identifying the silhouettes and the occlusions on the objects further from the stereo
rig.

Figure 6.12: Tsukuba image (left) and ground truth (right), Stefano et al. (2002).

 35

Another important output from this study is the speed comparison between the stereo matching
algorithm proposed and the SVS 2.0 area-based algorithm. Figure 6.14 report the speed of both
algorithms. The SVS algorithms has a better performance for smaller images and smaller disparity
ranges however as the image size and disparity range increases the proposed algorithm is faster
than SVS algorithm.

• Conclusions/Implications

The proposed algorithm, which relies only on a left-to-right matching process, presents a
methodology to detect matching ambiguities via “colliding matches” i.e. matches that violate the
uniqueness constraint discarding the ones with smaller similarity.

It provides a comparison with the well-known area-based algorithm SVS 2.0 based on
bidirectional matching. In most cases the proposed algorithm obtain similar results to the ones
obtained by SVS 2.0 with the exception of the errors caused by the border-localisation problems that
are more evident in the PA.

The reported measurements (see Figure 6.14) shows that the proposed methodology, strongly
based on different levels of incremental calculations, results in a stereo matching algorithm
typically faster than SVS 2.0 for big images and large disparity ranges.

• Weakness/Limitations
There were several limitations and weakness in this study. Among the weakness was the fact the

paper did not study the influence of the correlation window size in the border-localisation problem
and its final result on improving or deteriorating the object silhouettes on the original image

Figure 6.13: Disparity maps computed with the P.A (left) and with SVS 2.0 software
(right), Stefano et al. (2002).

Figure 6.14: Speed (fps) for P.A. and for the SVS 2.0 algorithm, Stefano et al. (2002).

 36
reconstruction. Another important limitations in this study is related to the fact it does not provides
a direct comparison between the solely unidirectional algorithm and the bidirectional algorithm.
Would be interesting to know the behaviour of those algorithms in the same circumstances, i.e. the
comparison of the proposed algorithm without incremental computation schemes with the SVS 2.0
algorithm. The paper also did not provide measurements to justify the incremental computation
scheme, i.e. the stereo matching speed with and without incremental computation and in the later
case quantify its influence on the algorithm performance.

6.1.3 Summary
To ensure that good calibration results are obtained for stereo cameras and the stereo

configuration relations are correctly estimated it is necessary to have in consideration a group of
factors that are not directly related with the calibration process by itself. The literature review
related to camera calibration gives a flexible and reliable technique that do not requires very
expensive or elaborated calibration object for camera calibration, however, the article seems to
overlook the importance of other factors such as camera capture settings, lightning conditions,
focusing, it also do not provide a comparison between results obtained with good set of calibration
views and with sets in which the position and orientation variations are minimal (poor set of
calibration views). Also the research study reviewed did not studied the cases where the calibration
views were captured with lightning gradients or with the object being oriented close to
perpendicular with the camera's imager which introduces higher reprojection error. Providing a
method for excluding those calibration views can improve substantially the resulting calibration
parameters.

Another area that has been studied, related to stereo correspondence, shows that the proposed
area-based matching algorithms, which relies only on a left-to-right matching process, presents a
methodology to detect stereo matching ambiguities by identifying the matches that violate the
uniqueness constraint discarding the ones with smaller similarity. It also provided a speed
comparison with other area-based algorithm SVS 2.0. Although this study showed to recover 3D
structures efficiently with accurate image silhouettes, the study used a fixed window size and did
not study the influence of the external stereo configuration variables such as the angle of
convergence between cameras' optical axis, the distance between cameras, and the stereo cameras'
calibration influence on the final results. Moreover the study do not provide a method that allows
to work with single set of points instead of having to deal with all the image points.

More research with different camera recording settings and illumination conditions, different
stereo configurations by changing the cameras orientation or the distances between cameras are
needed to determine the best settings that outputs the best results. This current study will contribute
to the existing research literature by implementing two different calibration methods and providing
a approach to optimize the cameras' calibration parameters. Additionally it will study the influence
of the stereo configuration relations on the 2D to 3D reprojection results and provide a method to
perform the stereo correspondence only for a sparse set of 2D image points instead of working with
all the image points. Furthermore this study will make use of the OpenCV dense stereo matching
algorithms to implement an interface that allows to study the influence of different matching
settings such as the matching window size, minimum and maximum number of disparities, on the
final disparity image results. Additionally this study will contribute with a number of C++ classes
that together with OpenCV libraries can be easily used for video capturing and recording
operations, image space colour conversion, single and stereo cameras' calibration, uncalibrated and
calibrated stereo rectification, and the stereo matching processes.

 37

7 Chapter Three
7.1 Methods

7.1.1 Introduction
Since decades the researchers have been trying to mimic the human behaviour in robots. One of

the most, if not the most, difficult tasks in copying human capabilities is related to perceiving 3-D
information. Sensing 3D space can be done by different ways, however, the techniques that are
most common nowadays are based on CCD/CMOS cameras or laser-based scanners, the first case
gained more attention due its potential to deal with dynamic vision analysis. Stereo vision is
assisting to great research advances and presently is one of the most active fields in computer
vision area. Recovering the depth information through stereo vision requires, in general lines, three
main steps: camera calibration, image undistortion and rectification and stereo matching, this last
step presents the most challenging task in the 2D to 3D transformation process.

The stereo correspondence performance and accuracy determines how good and at which cost
the depth information is recovered from the correlation of both images.

The following research questions were addressed in this study:

1. Which are the OpenCV main functions involved in the process of: stereo camera
calibration, stereo image rectification, stereo matching and points reprojection into 3D
space, and Lucas – Kanade Pyramid optical flow method. What are the inputs and outputs
arguments of those functions.

2. How to compute camera calibration parameters using a planar calibration object known
as chessboard and how to relate two cameras in a stereo configuration. How many
calibration views are needed to perform the stereo calibration process and which
calibration method (with and without initial guess to compute stereo relations) gives better
results. How to optimize the stereo calibration process and improve the calibration
parameters results.

3. Which are the differences between using calibrated and uncalibrated rectification methods
and how to implement the image rectification process by means of using OpenCV functions.

4. How to parametrize the stereo relation's rotation matrix into Euler angles and quaternions
and how to perform the transformation between this two rotation representations.

5. How to compute the disparity image and disparity of a sparse set of points given two
rectified images captured from a stereo configuration previously calibrated. How to
reproject a sparse set of points to the 3D space.

This experimental case study used OpenCV v.2.1 image processing platform algorithms together
with an C++ OOP approach to implement a main program that provided a set of functionalities

 38
capable to deal with video capture and recording from a single or stereo camera's configuration,
stereo cameras calibration, stereo rectification and stereo correspondence and recover 3D
information from synchronized stereo video sequences.

A study of the OpenCV main functions related with Motion Analysis, Object tracking, Camera
Calibration and 3D Reconstruction was first conducted to provide the necessary knowledge and
background to use those functions in this case study main program implementation. Additionally in
parallel to this research were done two presentations: the first presentation addressed the next
topics: Camera Model, Projective Transform, Lens Distortions, Planar Homography, Camera
Calibration and Stereo Calibration. The second presentation, and broader one, addresses the
following topics: Calibration Parameters Optimization, Lukas-Kanade 2D Points
Correspondence, and Rotation Matrix Parametrization. Both presentation were included in the
DVD attached to this thesis.

The second part of this case study consisted on laboratory experiments divided in three sessions.
The first two sessions (pretest experiments) were used to get familiar with the Phantom v9.1
hardware, PCC software and collect sets of stereo video sequences for calibration purposes, with
different stereo configurations and video settings, with the primary goal of determining the best
video settings, illumination conditions and revealing experimental errors. The third session
(intervention experiment) was used to record stereo video sequences of a 3D path executed by
MELFA RV-2AJ robot with the main goal of providing a comparison method between the 3D
points obtained with the main program implementation and the 3D path given by MELFA RV-2AJ.

For all the three experiments the data obtained with Phantom v9.1 cameras were saved to an
external hard drive and processed with the main program functions accordingly the topics related
to the research questions.

7.1.2 Settings
This study took place in AGH University of Science and Technology of Krakow, WIMIR-

Faculty of Mechanical Engineering and Robotics, room 18. The resource laboratory is a classroom
laboratory containing namely the Mitsubishi MELFA RV-2AJ robot, a desktop computer with
MELFA programming language software installed and all the vision systems hardware used for this
case study.

7.1.3 Intervention and Instructional Materials
The independent variables measured by this study consisted of laboratory experiments where

two interventions were performed: (1) stereo video capture for calibration purposes and (2) stereo
video capture of a Mitsubishi MELFA RV-2AJ robot end-effector executing a simple 3D path for
3D information recovering purposes.

The stereo video capture for calibration was intended to provide a set of images of a calibration
object (independent variable) for camera calibration and stereo relations estimation. Stereo video
capture of a Mitsubishi MELFA RV-2AJ robot end-effector movement was intended to capture the
3D end-effector path (independent variable) and targets, with known geometries, arranged in
strategic places within the field of view (FOV) for later being used on the process of recovering 3D
object points from 2D image points tracked over those video sequences. This two interventions
were repeated one after another for each new stereo configurations.

The dependent variables measure by this study for the first type of intervention consisted of left
and right camera intrinsic and extrinsic parameters(camera matrix and distortion coefficients),
stereo relations(rotation, translation, essential, and fundamental matrices), reprojection error

 39
resulting from calibration process, the remapping maps(undistortion+rectification), and the
disparity-to-depth reprojection matrix resulting from rectification process. On the second type of
intervention the dependent, and main variable measured by this study, consisted on the sequence of
3D points (or 3D path) recovered from the stereo video sequence, as defined by the research
questions.

Two main types of instructional materials were used during the intervention to record stereo
video files for calibration and for the 3D information recovering purposes. Instructional materials to
program the Mitsubishi MELFA RV-2AJ robot controller using Melfa Basic IV robot programming
language was provided by the chairperson of this thesis (Kohut, 2011) (see Appendix B: MELFA
Basic IV Presentation). In addition was used the manual provided by Visual Instrumentation
Corporation (2011) to determine the right lightning and VideoStrobe – FloodController settings
(see Appendix C: VideoStrobe & VideoFlood LEDs).

7.1.4 Measurements Instruments
This study utilized different measurement instruments and tools that will be described by the

order in which the were applied to conduct the research. Two main measurement instrument were
used to collect data: The commercial software, and the research-made StereoVisionProg program.

7.1.4.1 Phantom stereo configuration hardware.
To collect video files during the intervention was used a stereo configuration composed by the

following list of material mostly from Vision Research Inc. (2011): Two Phantom v9.1 high speed
cameras that are able to provide 14-bit image depth and 1000 frames per second at full resolution
1632 x 1200 pixel with 6 GB of internal memory. Both cameras had installed the v-Series Lens
Shutter – used to automatically shade the sensor and calibrate the camera to a black reference
(CSR operation), and on each shutter was mounted the SIGMA 24-70, 1:2.8 EX DG lens.
Additionally were used two Break-out-Box that gave access to every available signal on the
camera capture cable like the Trigger, Strobe and frame synchronization signal F-Sync. It was
also used a Manfrotto 454 Sliding Plate with finger tip control mounted with the right camera that
allowed fine positioning adjustments when changing the horizontal distance between the two
cameras on the stereo configuration. Each camera was engaged to a Manfrotto 405 Geared Head
that allowed fine orientation adjustments for all three axis. To assemble the final stereo
configuration was used a 4 heads accessory arm Manfrotto 131DDB, and two Manfrotto
Variable Friction Arm to hold the LEDs arrays, mounted on a geared tripod Manfrotto 475B Pro
Geared to support both cameras and all the stereo configuration hardware. More detailed
information related to the cameras and some of its accessories is provided on the appendices
section (see Appendix D: Phantom v. 9.1 Data Sheet). All Manfrotto's brand material can be found
on the following Web site: http://www.manfrotto.com/category/0.

7.1.4.2 VideoFlood LED and videoStrobe – floodController.
To improve the lightning conditions during the experiment were used two LED arrays Model

900405 3-by-4 LED Array and one strobe controller Model 201090A Hi-g Controller that
allowed to select 7 different durations of 1 to 500 microseconds per flash or two continuous light
intensities of 50% and 100% used for a period not longer than 10 minutes. The lightning material
was provided by Visual Instrumentation Corporation (2011).

7.1.4.3 Phantom camera control v1.2 software (PCC).
PCC is a commercial software from Vision Research Inc. (2011) company. This software was

 40
used during the three interventions to control two Phantom v9.1 cameras using Ethernet
connections. The main image video sequences settings controlled with PCC were: Bit Depth,
Resolution, Sample Rate, Exposure Time, current session reference (CSR) to obtain more
precise compensation of the pixel errors for the current settings, and Post Trigger value. During
each intervention PCC software was also used to save the captured video files from the cameras
RAM to an external hard drive in their original file extension (cine format). PCC was also used
after the interventions to save cine files into sequences of BMP images and uncompressed AVI video
sequences.

7.1.4.4 Mitsubishi MELFA RV-2AJ .
The research used Mitsubishi MELFA RV-2AJ robot to implement and execute a 3D path that

was recorded using different stereo configurations. Using the MELFA Basic IV, the Mitsubishi
programming language for the robot controller, a simple closed path with three circular
interpolation movements was programmed. The resulting trajectory was executed using 10 and 50
millisecond sample time and the resulting file with the time, joints angles and end-effector position
and orientations was saved to an external hard drive. Mitsubishi Electric Industrial Robots are
manufactured at a factory certified for ISO14001 (standards for environmental management systems)
and ISO9001 (standards for quality assurance management systems).

7.1.4.5 StereoVisionProg program researcher-made instrument.
For this case study the researcher had implemented a main program named StereoVisionProg

that was used to read lists of images and video files obtained for calibration and depth recovering
proposes. StereoVisionProg was used to study the optimal number of calibration views, compute
the calibration parameter and stereo relations, compute the stereo rectification maps, compute
disparity image using all the left and right image points (dense matching) or a set of 2D left and
right image points (sparse matching), and then compute 3D points. The program contains all the
functionalities and measurement instruments used to answer the research question. All the output
results obtained were saved to XML files in the current directory from were the program was
executed.

 StereoVisionProg program consisted on the implementation of a number of classes that used
the optimized algorithms from OpenCV v. 2.1. Microsoft Visual Studio 2008 (C++ 9.0)
integrated development environment (IDE) was used to develop, debug, compile and link those
classes with the OpenCV v.2.1 libraries.

7.1.4.6 GML Camera Calibration Toolbox v. 0.4
The researcher utilized GML Camera Calibration Toolbox (Vezhnevets & Velizhev, 2005) to

compare the cameras intrinsic and extrinsic parameters results obtained individually for both left
and right cameras with the results obtained with the researcher-made StereoVisionProg program.
GML program was used to load a set of images for calibration, input the chessboard properties
(number of corners and square size) with Set Object Size and Set Square Size options, detect all
corners with Detection Method setted to Squares Method and then was used Native OpenCV on
the Calibration Type option to compute: Camera Matrix, Distortion Coefficients, and Pixel
Error. All the results were saved into files in XML format.

7.1.4.7 MATLAB v. 7.7.0.
This case study utilized MATLAB technical computing language software to treat the output

results obtained with StereoVisionProg program functionalities. The XML files generated by

 41
StereoVisionProg software with the output results were loaded into MATLAB workspace using a
number of researcher-made Function M-files used to read, treat and plot those results, namely:
results obtained for the optimal number of calibration views study and the results obtained for the
experimental 3D path. In addition one function was implemented to read and plot the real 3D path
given by MELFA Basic IV software, providing a method that allowed to compare the MELFA 3D path
with the path obtained using the research procedure. All the M-files programming code were
provided on the appendices section (see Appendix E: MatLab M-Files Code).

7.1.4.8 Other material.
To perform all the operation and answer the questions proposed by this study were used

initially two web cams A4Tech Evolution PK-710MJ series to test and debug StereoVisionProg
during its implementation. For all the input/output data computation was used a laptop ASUS
A3500E, Intel Pentium M processor 1.73 GHz, with 1.50 GB of RAM.

7.1.5 Procedures
The research study procedure used to conduct the study was divided in two phases: the first

phase consisted in presenting a detailed description of OpenCV v.2.1 main algorithms used in this
research, and two laboratory experiments used for qualitative analysis, the second phase consisted
on a third laboratory experiment session where data were collected for quantitative analysis.

7.1.5.1 Baseline
For the sake of organization and brevity of this chapter the explanation of the OpenCV v.2.1

main functions, and as well the theory under them, used on this research was presented in the
appendices (see Appendix A: Stereo Imaging and Appendix F: Motion). This two appendices were
to answer the first research question.

The data were collected through three laboratory experiments. The first and second experiments
were done with the main goal of providing the researcher with a self-familiarization with phantom
software and hardware involved on the experiment. The data collected with this two experiments
were reviewed with the chairperson that pointed experimental errors, changes and improvements to
take in account for the third laboratory. The procedures used to conduct the first two laboratories
were partially identical to the procedures used on the third laboratory described in next section.

7.1.5.2 Intervention
The intervention was done in different steps: Phantom Stereo Configuration Assembling, Camera

Settings Configuration with PCC Software and MELFA 3D Path Programming, and Data Collection.

1. Phantom Stereo Configuration Assembling
To assemble the stereo configuration was used a geared tripod with an arm mounted on its
top, before being attached other elements the tripod was levelled using the tripod's build-in
bubble level. A sliding plate was fastened to the base of one geared head and then attached
to the horizontal arm's right side, the second geared head was directly mounted to the
horizontal arm's left side (without sliding plate). Then to each Phantom v 9.1 camera was
added a SIGMA 24-70 mm lens and on their base was fastened a quick release plate that
allowed to fix them on the geared heads. To both cameras were then connected the Break-
out-Box and the Gigabit Ethernet cables, then the synchronization cable was connected to
both break-out-Box BNC connectors to allow frame synchronize between both cameras. A
cable was also connected to both trigger connectors to trigger the video recording on both

 42
cameras with an external hard trigger. To complete the stereo configuration both Gigabit
Ethernet cables were connected to a laptop using the Ethernet entrance and a Gigabit
PCMCIA network adapter. The next figure (see Figure 7.1) shows both Phantom v.91
cameras arranged on a stereo configuration.

2. Camera Settings Configuration with PCC Software and MELFA 3D Path Programming.
To establish the connection between the Phantom v 9.1 cameras and the PCC software the
Phantom control unit IP addresses were first defined by setting the to network connections
as follows: TCP/IP → Properties → and then the field Use the following IP address was
checked and the first camera's network IP address was set to 100.100.100.1, and the second
camera's network IP address to
100.100.100.2 , both networks Sub net
mask field were set to 255.255.0.0 and the
option Use the following DNS server
addresses was selected a left empty and
then pressed OK to conclude the
configuration.
After both cameras were successfully
connected the video capture settings were
defined. On the Camera Settings the image
Bit Depth was set two 8 bits and the
number of RAM partitions to 1. To capture
the robot executing a 3D path were used the
following settings: image Resolution 960 x
720 pixel, Sample Rate 700 pps and
Exposure Time 900 μs as shown in the
next Figure 7.2.

To obtain synchronized video sequences, i.e. capture exactly the same object scene at the
same time for the left and right camera, the right camera (ID: 9644) was defined as Internal
(master clock source for two serial connected Phantom cameras) and the left camera (ID

 Figure 7.2: PCC1.2 software - cine settings.

Figure 7.1: Phantom v.91 cameras arranged on a stereo configuration.

 43
9645) was defined as External. Few consideration were taken in account :

• Frame Delay (External) > Frame Delay (Internal) at least 1μs.
• Exposure Time (External) < = Exposure Time (Internal).
• Post Trigger Value (Internal) > Post Trigger Value (External) at least one frame.
• Use the external trigger (instead of the software-trigger) to guarantee that the

cameras remained synchronized.

To capture video sequences for stereo calibration the sample rate were changed to 90 fps.
This allowed to have more time to change the calibration object position and orientation
and obtain better calibration results.

After the Camera Settings, Cine Settings and Advanced Settings were configured a
simple closed 3D path was programmed with MELFA Basic IV software using circular
interpolation movements command. To the robot end-effector was attached a printed target
(Target 2, Figure 7.6) with known geometries to provide good features to track by the
StereoVisionProg functionalities, also close to the robot's workspace were added static
targets (Target 1, Target 3, and Target 4, Figure 7.6) to compare its geometries with the
results obtained. The robot movement was programmed in such a way that the end-effector
was kept visible for both cameras during all the robot's movement. MELFA robot's program
and the targets dimensioning here mentioned were added in the appendices section (see
Appendix G: Targets and MELFA Basic IV Program).

3. Data Collection
After concluding the procedures 1 and 2, two 3-by-4 LED Arrays, one attached to the stereo
configuration horizontal arm and other attached to an external tripod, were connected to the

Figure 7.3: Targets used for points tracking purposes.

 44
video strobe controller to provide good elimination conditions. The illumination formula
from Visual Instrumentation Corporation was later used to verify if the illumination
conditions were within the acceptable intervals (see Appendix C: VideoStrobe &
VideoFlood LEDs).

To capture video sequences for stereo calibration and 3D information recovering purposes
four different stereo configuration were used. The procedure followed was the same for all
the configurations, and is described as follows:

• Position the stereo configurations.
• Change horizontal distance between cameras.
• Change angles amplitude between both camera’s optical axis (convergence angles).
• Run MELFA program and ensure that all robot movement is within both camera's

FOV.
• Focus each camera lens assuming as focal-plane the initial end-effector position

such that the target attached to it appeared acceptability sharp.
• Block the lenses with glue-tape to avoid unintentional defocusing.
• Apply CSR option to calibrate the image for the current cine settings parameters

(process similar to black reference calibration adjustments).
• Record one video sequence with the robot executing a path previously programmed.
• Record one video sequence of one person moving a calibration object covering as

much as possible both camera's FOV.
• Save cine files to an external hard drive and perform the same procedure each time

the stereo configuration is changed.

Due the fact that for some stereo configuration was necessary to use smaller calibration
object to make easier the task of capturing the calibration object on both cameras' FOV at
the same time four different calibration object were used. The list of those patterns and their
properties can be seen on Table 7.1 as follows.

Table 7.1: OpenCV Calibration Object's Characteristics

OpenCV Calibration Object's Characteristics

Calibration Object

Calibration Pattern Square Size[mm]
Number of Corners

[nx x ny]

A 14 [11 x 13]

B 30 [09 x 09]

C 40 [08 x 09]

D 20 [08 x 09]

Note. Number of Corners is equal to the number of squares along XX
direction minus one (nx) – by - the number of corners along YY direction
minus one (ny).

 45
For each stereo configuration all the variables were noted and the cine files saved with

convenient names. Table 7.2 lists the cine files and measurements obtained for each
configuration during the third laboratory experiment.

Table 7.2: Laboratory 03 – Stereo Configuration's Variables and Video Files

Laboratory 03 – Stereo Configuration's Variables and Video Files

Video Files (.cine) Stereo Configuration Variables

With Robot
Movement

With Calibration
Object

Distance Between
Cameras ± 1 [mm]

Distance From
Target 1 ± 1 [mm]

Calibration
Object

StereoS01L
StereoS01R

StereoCalibS01L
StereoCalibS01R 390(*1) 1930 C, A (#1)

StereoS02L
StereoS02R

StereoCalibS02L
StereoCalibS02R 390 + 90(*1) 1930 B, C

StereoS03L
StereoS03R

StereoCalibS03L
StereoCalibS03R 390 + 90(*1) 1930 B

StereoS04L
StereoS04R

StereoCalibS04L
StereoCalibS04R 390 + 115(*1) 2080 C, A(#1)

Note. All pair of video sequences were saved using “S[xx]” that indicates the stereo configuration set, and
“L” and “R” suffix that indicates the video is related to the Left or to the Right stereo configuration's
camera.

 (*1) - The initial distance measured between cameras was obtained from the centre of each lens using a meter.
The following distances were added by using the fine positioning sliding plate.

 (#1) - Calibration object A is a special pattern used by Tema Camera Control Software. This pattern proved to
be inappropriate to use with StereoVisionProg implementation.

7.1.5.3 Posttest.
Each of the video files information collected during the intervention were then processed by the

researcher-made StereoVisionProg program. The post-interventions main procedures used to
conduct the research and answer the questions which this study proposed are described in this
subsection.

 To calibrate the cameras and compute the stereo relations for each stereo configuration to
obtain the end-effector 3D path executed with MELFA RV-2AJ the next procedure was followed:

1. Using PCC software each left and right calibration cine file (set S02, S03 and S04) were
saved into single image files using “Windows BMP 8 images” 1 format and cine range (0;

1 The “OS/2 BMP” image format available from PCC software drop down list is a format supported by IBM OS/2
operative system and uses the same file extension as “Windows BMP” image format. Reading an OS/2 BMP file as

 46
8130) as shown in Figure 7.4.

• Windows BMP 8 images format was used to preserve the same image quality and pixel
bit depth with which the cine files were recorded (Camera Settings->Bit Depth = 8).

• Each left and right calibration cine file was saved into single images by adding the
suffix “+4” to the file name prefix. For example, for the set S02 was done:
StereoCalibS02L +4 (StereoCalibS02L0001.bmp, StereoCalibS02L0001.bmp, …,
StereoCalibS02L8131.bmp).

2. To create a list of left and right calibration views was used StereoVisionProg program: Main
menu's Option [2] sub Option [3] as shown in Figure 7.5 and Figure 7.6. Two types of
calibration views lists were created, one was used to study the optimal number of
calibration views, and a second one was used to calibrate each stereo configuration. The list
were created with an image sample (increment between consecutive images) in such a way
that approximately only 150 (for the first case) and 100 (for the second case) images from
all cine range were used for calibration, avoiding similar calibration views that may cause
divergence on calibration parameters and stereo relations estimation.

if it was an Windows BMP file can produce unpredictable results therefore this format should not be used to save
the sequence of images for calibration.

Figure 7.4: PCC Software - save cine settings.

Figure 7.5: StereoVisionProg: Main menu 's Option [2].

 47

After navigating through the options, the program will ask the user to input the
calibration list arguments: 1-file name, 2-left image sequence prefix, 3-right image
sequence prefix, 4-starting sequence number, 5-ending sequence number, and 6-
increment. Following point 1 example such parameters were as follows:

1) Lab3CalibListS02 (arbitrary)
2) StereoCalibS02L
3) StereoCalibS02R
4) 1
5) 8131
6) 80

The output file is a text file Lab3CalibListS02.txt with a list of left and right image names
of synchronized calibration views as in Figure 7.7.

3. To study the optimal number of calibration views necessary to calibrate each stereo
configuration was used one of the StereoVisionProg functionalities as follows: Main menu's
Option [3] sub Option [1] as shown in Figure 7.8.

This functionality required the calibration to be first performed using the text file
containing a list of 150 left and right camera calibration views so the image points and
object points were then loaded from the calibration process output file.

Figure 7.6: StereoVisionProg: Main menu's Option[2] sub Option [3].

Figure 7.7: Sequence of BMP images for calibration.

Figure 7.8: StereoVisionProg: Main menu's Option [3] sub Option [1].

 48
To study how the calibration parameters evolved with the number of calibration views

17 sets of images points and object points 2 [N02 N05 N10 N20 N30 N40 N50 N60 N70 N80 N90
N100 N110 N120 N130 N140 N150] were used individually to perform the calibration.

 Two output files Lab3CalibListS02_StudyM1.xml and Lab3CalibListS02_StudyM2.xml were
obtained for calibration method M1 and method M2 respectively. In the output files were
stored the intrinsic and extrinsic parameters, stereo relations, and reprojection errors
that resulted from each calibration sets. The variables were then loaded into MatLab,
processed and presented graphically (see Appendix E: MatLab M-Files Code).

4. To compute calibration parameters and stereo relations was used StereoVisionProg : Main
menu's Option [3] sub Option [2] (or Option [3]) as shown by Figure 7.9. The program read
all the text (.txt) files in the current directory and list them, after choosing the right
calibration list (in this case Lab3CalibListS02.txt) the program loaded the calibration images,
computed the intrinsic calibration parameters (M1, M2, D1, D2) and the stereo relations (R, T,
E and F) using two methods: method one (M1) estimates the intrinsic parameters of each
camera individually with cv::calibrateCamera() and then uses this parameters as input for
cv::stereoCalibrate() to estimate the stereo relations (R, T, E, F), method two (M2), on its
turn, computes the intrinsic parameters and the stereo relations all at the same time, without
initial guess. Method M1 saves the results into an xml file named
Lab3CalibListS02_CalibrationM1.xml while on method M2 the results output file is named
Lab3CalibListS02_CalibrationM2.xml.

5. After computing the calibration parameters was performed the calibration parameters
optimization. Based on the mean Euclidean distance between the reprojected and projected
image points for each view it excludes the views with higher errors, i.e. higher mean
Euclidean distances. The implementation of this functionality was formulated as follows:

• First were computed the projected points for both cameras (Figure 7.19 (b)) using
OpenCV function cv::projectPoints(object points, camera parameters, projected points) .
This function uses the obtained camera intrinsic and extrinsic parameters, “as if”
they were estimated correctly, to project the object points into image points.

• Then the program computed the mean Euclidean distance between the reprojected
image points (collected from the calibration views) and projected image points for
each left and right calibration view as follows:

2 Image points and object points were obtained using the calibration views and thus in this case they represented
those sets of images.

Figure 7.9: StereoVisionProg: Main menu's Option[3] sub Option[2] .

 49

Ed i=√(xiR−xi P)
2+(yiR− yiP)

2 (7.1.1)

Where Ed i is the Euclidean distance between the reprojected (R) and the projected (P)
point i of a calibration view.

MEd=1
n ∑

i=1

n=nCorners

Ed i (7.1.2)

Where MEd is the mean Euclidean distance for each calibration view and
nCorners is the number of chessboard corners. The resulting mean Euclidean distance

for all the left and right calibration views (separately) is given by:

M=1
n ∑

j=1

n=nViews

MEd j (7.1.3)

Where nViews is the number of left and right calibration views. Thus the standard
deviation is given by the equation:

SD=√ 1
n ∑

i=1

n=nViews

(MEd i−M)2 (7.1.4)

An interval [0 ; M+SD] was
then used to filter the views with
higher errors, i.e. views which

MEd>M+SD were excluded 3.

After the views with higher errors
contributions being excluded the
new calibration parameters were
recomputed (using method M1 or M2
depending on which one was the last
being used 4) and stored into a new
xml output file named
Lab3CalibListS02_CalibrationM3.xml.
The next figure (Figure 7.10) shows
an example of image points
reprojection and projection.

3 Besides stereo calibration being performed individually for each camera, to estimate the stereo relations with
cv::stereoCalibrate() is necessary that both left and right image points correspond to exactly the same calibration
object captured at the same instant, i.e. synchronized captures, and thus if the left (right) view is excluded its right
(left) corresponding view is also excluded.

4 The most recent calibration operation (M1, M2 or M3) output file name is always overwrited into the node
<CalibrationParameters>...</CalibrationParameters> of the main file “StereoConfigurationOutput.xml”. All
subsequent operations (calibration study, calibration optimization, rectification, correspondence and rotation matrix
parametrization) uses only the stereo calibration parameters and relations stored inside this output file.

Figure 7.10: Reprojected (a) and projected (b) image points.

 50

Calibration optimization can be performed by choosing on StereoVisionProg: Main
menu's Option [3] sub Option [4] as shown in Figure 7.12 .

After calibration was performed (using M1, M2 or M3 methods) the rectification process
was called to compute undistortion+rectification maps and the disparity-to-depth matrix to
use later on the process of recovering the 3D points from 2D tracked image points. Two
rectification
methods were
implemented as
shown in Figure
7.13.On the first
method the
StereoVisionProg
functionality
starts by loading
the calibration
parameters, and
the stereo
relations (R, T) from the last calibration operation's output file, and performs the Bouguet's
calibrated stereo rectification directly.

Figure 7.12: StereoVisionProg: Main menu's Option [3] sub Option [4].

Figure 7.13: StereoVisionProg: rectification method options.

Figure 7.11: Calibration parameters optimization process.

 51

For the second approach was implemented the Hartley's uncalibrated stereo rectification,
if this option is selected the program loads the left and right image points (iPoints1 and
iPoints2) generated from the last calibration operation, and proceeds as summarized in the
next steps:

1. Compute fundamental matrix using left and right calibration view's image points.

F = cv::findFundamentalMatrix(iPoints1, iPoints2, ...);

2. Compute rectification homography matrices H1 and H2.
cv::stereoRectifyUncalibrated(iPoints1, iPoints2, F, imageSize, H1, H2, ...);

3. Pre-process homography matrices H1 and H2 to obtain the rectification
transformations matrices R1 and R2 in object space.

R1=M 1
−1×H 1×M 1 and R2=M 2

−1×H 2×M 2

4. Get the optimal new camera matrix to obtain the new principal point corrected.

nM1 = cv::getOptimalNewCameraMatrix(M1, D1, imageSize, 1, imageSize, 0);
 nM2 = cv::getOptimalNewCameraMatrix(M2, D2, imageSize, 1, imageSize, 0);

5. Compute (undistortion + rectification) maps for both left and right images.

cv::initUndistortRectifyMap(M1, D1, …, map1x, map1y);
cv::initUndistortRectifyMap(M1, D1, …, map2x, map2y);

6. Build the disparity-to-depth transformation matrix.

Q=[1 0 0 −cx
0 1 0 −cy
0 0 0 fx
0 0 −1/Tx 0]

 The output file that results from rectification contains the remapping maps (undistortion +
rectification) for both cameras (map1x, map1y, map2x, map2y) and the disparity-to-depth
matrix (Q). The output results from stereo rectification process are saved into an xml file
named Lab3CalibListS02_CalibRectification.xml for calibrated rectification or
Lab3CalibListS02_UncalibRectification.xml if uncalibrated rectification method was selected.

6. The parametrization of a 3D rotation matrix into Euler Angles and Quaternions is
frequently an indispensable operation in vision systems, computer graphics, robotics and
kinematics in order to perform certain operations faster and avoid to have to deal with the
rotation matrix. To perform the stereo relations rotation matrix (R) parametrization into
Euler angles and quaternions were implemented functions based on the Computing Euler
Angles From a Rotation Matrix (Slabaugh, year n.a.) online document.

The rotation matrix parametrization into Euler angles allows to describe the rotations
that moves a rigid body from one referential to other with different orientation by using
only three parameters – Euler angles: [φ θ ψ]. The approach formulation used to compute
the Euler angles from a rotation matrix is as follows:

 52
Define the 3-by-3 orthonormal rotation matrix to be parametrized as:

 R3D=[R11 R12 R13

R21 R22 R23

R31 R32 R33
] (7.1.5)

The rotation around XX axis - ψ(psi) is defined by:

R x (ψ)=[1 0 0
0 cos(ψ) −sin(ψ)
0 sin(ψ) cos (ψ)] (7.1.6)

Similarly, the rotation around YY axis - θ(theta) is defined by:

R y (θ)=[cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)] (7.1.7)

The third rotation around ZZ axis - ϕ(phi) is defined by:

R z(ϕ)=[cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1] (7.1.8)

 The Euler angles [φ θ ψ], that represents the rotation first around XX axis, then around YY
axis are later around ZZ axis, are presented in the reduced form by the next equation:

R=Rz (ϕ)R y (θ)Rx(ψ) (7.1.9)

The matrix product R from equation (7.1.9 is presented in the matrix form by:

R=[cos(θ)cos(ϕ) sin (ψ)sin (θ)cos(ϕ)−cos(ψ)sin (ϕ) cos(ψ)sin (θ)cos(ϕ)+sin (ψ)sin (ϕ)
cos(θ)sin (ϕ) sin (ψ)sin (θ)sin (ϕ)+cos(ψ)cos(ϕ) cos(ψ)sin (θ)sin (ϕ)−sin (ψ)cos(ϕ)
−sin (θ) sin (ψ)cos(θ) cos(ψ)cos(θ)] (7.1.10)

 By combining the both R3D and R matrices (eq. (7.1.5 and (7.1.10) is possible to
determine the Euler angles. Case cos (θ)≠0 the Euler angles has two valid solutions:
(ϕ1 ,θ1 ,ψ1) and (ϕ2 ,θ2 ,ψ2) . Case cos (θ)=0 the Euler angles have infinite number of

solutions, this case is known by Gimbal Lock Problem – loss of one degree of freedom in
the 3D space. In both cases the solutions are computed as follows:

Case(R31≠±1)⇒(cos(θ)≠0);Solutions [(ϕ1 ,θ1 ,ψ1) and (ϕ2 ,θ2 ,ψ2)]¿

 53

[
θ1=−asin(R31) θ2=π−θ1

ϕ1=atan2(R21

cos (θ1)
,
R11

cos (θ1)) ϕ2=atan2(R21

cos (θ2)
,
R11

cos(θ2))
ψ1=atan2(R32

cos(θ1)
,
R33

cos(θ1)) ψ2=atan2(R32

cos(θ2)
,
R33

cos (θ2))]
Case(R31=±1)⇒(θ=−π

2
∨θ=π

2
); Infinite number of solutions can be used to transform

a rigid body from its initial referential to a second referential with different orientation:
(ϕi=any value ,θi ,ψi)

ϕi=any value. Normally set to 0.
case(R31=−1)

 θi=
π
2

ψi=ϕi+atan2(R12, R13)
case(R31=+1)

θi=−

π
2

ψi=−ϕi+atan2(−R12,−R13)

Figure 7.14 shows the Euler angles application to transform the right camera imager
orientation into the left camera orientation. In OpenCV the rectification process is done by
dividing the rotation matrix in two rotations and both left and right referential are rotated to
a common plane.

Figure 7.14: Right camera rotation using Euler angles.

 54
• Quaternions are another form to represent a 3D rotation matrix. Quaternions represent

orientations and rotations of objects in 3D dimensions. Assuming that q is the quaternion
for the rotation that transforms a rigid body from one referential to a second referential with
different orientation, the rotation matrix R(q) , or similarly R3D as in eq. (7.1.5,
corresponding to q is as follows:

R(q)=[1−2q2
2−2q3

2 2q1 q2+2q4 q3 2 q1 q3−2q4 q2

2q1 q2−2q4 q3 1−q1
2−q3

2 2q2 q3+2q4 q1

2q1 q3+2q4 q2 2q2 q3−2q4 q1 1−2q1
2−q2

2] (7.1.11)

Where (q1, q2, q3, q4) are the four quaternion's components q=[q1 q2q3 q4]
T . In the next

figure (Figure 7.15) is presented the pseudo-code based on the work From Quaternion to
Matrix and Back (Waveren, 2005). The approach avoids numerical instability by selecting
the trace (sum of the diagonal elements) with higher values.

7. In order to obtain 2D image points with the StereoVisionProg options from the sets of cine
files with the robot movement video sequence (StereoS02L and StereoS02R, see Table 7.2),
the cine files were converted to AVI files (StereoS02L.avi and StereoS02R.avi) format
using PCC software with the next settings: Frame Rate (fps) = 25 and Video
Compressor: none to preserve the original bitmaps (or raster) images quality with which
the cine files were recorded.

8. To obtain the MELFA RV-2AJ end-effector's 3D path from StereoS02L.avi and StereoS02R.avi
files was proceeded as follows:

Using StereoVisionProg program was chosen: Main menu's Option [4] sub Option [2], as
shown in Figure 7.16, this option listed all AVI files inside the current directory from where
StereoVisionProg was executed, from this list were selected StereoS02L.avi and

Figure 7.15: Pseudo-code to compute quaternion from R.

 55
StereoS02R.avi while was ensured that the current stereo calibration parameters corresponded
to the same stereo configuration used to obtain those video sequences (see footnote 4).
After being selected the capture mode and the left and right video sequence input the
program loaded the remapping maps and the disparity-to-depth matrix.

A second sub menu was displayed to select the matching mode. For the stereo matching
process were implemented different stereo matching approaches as shown in Figure 7.17.
Option [1] - COMPUTE DENSE IMAGE OF 3D POINTS was implemented using the OpenCV
stereo correspondence functions. This functionality allows to select one of the following
algorithms: Block-Matching, Semi Global Block-Matching, and Graph-Cut algorithm, this last
method is a non real-time stereo correspondence algorithm and its use with video sequences
proved to be inefficient. For each method the program applied the remapping map to each
new left and right video frame capture, computed the disparity image, and then reprojected
it to 3D image space. The results obtained with this dense stereo correspondence algorithms
were unsatisfactory and a new approach was implemented. The full implementation
description of this option is described in more detail on the appendices section (see
Appendix H: StereoVisionProg).

A second option Option [2] - COMPUTE SPARSE SET OF 3D POINTS was implemented on
StereoVisionProg program. For this case study only a sparse set of points obtained from a
stereo video sequence were needed to recover the MELFA RV-2AJ robot's end-effector path
and then compare the results obtained with the robot's path.

Figure 7.16: StereoVisionProg: Main menu's Option [4] sub Option [2].

Figure 7.17: StereoVisionProg: Main menu's Option[4] sub Option[2] sub Option[2].

 56

By selecting StereoVisionProg: Main menu's Option [4] sub Option [2] sub Option [2] the
program uses the Lucas-Kanade Sparse Optical Flow (see Appendix F: Motion) method to
track points from the left to the right video capture, compute the disparities between left and
right tracked points and then project those points to 3D space. The implementation
methodology used by this approach is described as follows:

• The program captures the first left and right video frame from the video sequence
and waits until a predefined number of points is added, over the left capture, with
right mouse click event.

• Then the program starts capturing frames from both video sequences without
interruption and the initial image points are tracked from the previous-left to
current-left frame and then from the current-left to the current-right frame capture as
shown in Figure 7.18.

Points tracked successfully are saved and points that fail to be tracked at any instant are
removed. At the end of the video capture two vectors of vectors with each point positions
are available for the left and for the right image points. Using Figure 7.18 nomenclature, the
resulting vectors are as follows:

leftTrackedPoints=[vectPL1 vectPL2 ... vectPLm]
rightTrackedPoints=[vectPR1 vectPL2 ... vectPRm]

vectPLi=[PLi(t 0) PLi(t 0+Δ t) PLi (t 0+2Δ t) ... PLi(t 0+nΔ t)]
vectPRi=[PRi(t0) PRi(t0+Δ t) PRi(t0+2Δ t) ... PRi(t0+nΔ t)]

Where m is the number of points successfully tracked over n stereo video captures.

The first step to obtain 3D points from 2D image points is to compute horizontal disparity

Figure 7.18: Sparse stereo correspondence with Lucas-Kanade tracker.

 57
5 vector as follows:

dP i=[PRi(1). x−PLi(1) . x ,... , PRi(n) . x−PLi(n) . x]

The resulting 3D object points can be related to the left camera coordinate system or to
the right camera coordinate system. Each case is possible by using the left or right image
points coordinates, respectively, and the disparity vector to build a vector with
homogeneous coordinates:
HCoord P i(left)=[PLi(1) . x PLi(1). y dP i(n) 1,... , PLi(n) . x PLi(n) . y dP i(n) 1]

H Coord P i(right)=[PRi(1) . x PRi(1) . y dP i(n) 1, ... , PRi(n). x PRi(n) . y dPi(n) 1]

Having the homogeneous coordinates vector the program proceeds with the disparity to
depth transformation. Knowing that the disparity-to-depth matrix is composed by the
following parameters:

Q=[
1 0 0 −cxl

0 1 0 −c yl

0 0 0 f

0 0 1
T x

(c xl−c xr)
T x

]⇒Q=[Q 00 Q 01 Q02 Q 03

Q10 Q 11 Q12 Q 13

Q 20 Q 21 Q22 Q 23

Q30 Q 31 Q32 Q 33
]

The depth for a given point P (as in Figure 7.19) projected into a canonical stereo
configuration is obtained using the similarity of triangles as follows:

Z
T x
= Z− f

T x−d
⇒Z=

f×T x

d (7.1.12)

5 This step assumes that the stereo video captures are already undistorted and rectified such that the stereo
configuration is close to a canonical stereo configuration i.e. the image planes are coplanar and row aligned.

Figure 7.19: Canonical stereo configuration (a), similarity of
triangles(b).

 58

Then the vector of 3D points of each tracked point was obtained using the following
relation:

(Related to OL XY) [X Y Z W]T=Q [x l y l d 1]T (7.1.13)

(Related to OR XY) [X Y Z W]T=Q [xr yr d 1]T (7.1.14)

Generalizing equations (7.1.13 and (7.1.14 and recalling the disparity-to-depth matrix
the coordinates of a 3D point are formulated as follows:

[X
Y
Z
W]=Q[x

y
d
1]⇒[

X=x∗Q00+Q03 ⇒ X=x−cxl

Y= y∗Q11+Q 13 ⇒Y= y−c yl

Z=Q23 ⇒ Z= f

W=d∗Q32+Q33 ⇒W= d
T x

]
The Q33 disparity-to-depth matrix element is null, i.e. the principal rays of each

camera meet at infinity (c xl−cxr=0) and W depends only on the disparity and the
horizontal distance between cameras. The last step to obtain [X Y Z] points is done as
follows:

[X Y Z]T=[X /W Y /W Z /W]T (7.1.15)

 Or in the detailed form:

[XYZ]=[
(x−c xl)×T x

d
(y−c yl)×T x

d
f ×T x

d
]

The same result is obtained for the depth as in equation (7.1.12. This methodology was
the approach used to obtain the 3D path from the stereo video sequences. In practise, when
StereoVisionProg: Main menu's Option [4] sub Option [2] sub Option [2] was chosen three
windows were displayed: CAPTURING FROM AVI FILES, POINTS TRACKING CONTROLS
and LEFT IMAGE. Before proceeding the tracking parameters were adjusted using the
trackbars on POINTS TRACKING CONTROLS window.

• Trackbar NPts: sets the maximum number of image points to be tracked, the video
capture will be waiting until the user selects this number of points over the (LEFT
IMAGE window) left video frame capture.

 59
• Trackbars PyrLevel and WinSize: sets the Lucas – Kanade tracker pyramid level and

the search window size, this two values need to be adjusted on such a way that the
left and right tracked image points represent the same 3D object points on a scene.
As example, for the stereo set S02, values of PyrLevel = 7 and WinSize = 15 were
used during the tracking operation.

By using the LEFT IMAGE window with the (first) left video frame capture displayed
were added (using left mouse click event) the number of points setted by NPts trackbar. A
target (Target 2) with four points was attached to the robot's end-effector during the
experiment to provide good features to track and therefore NPts value was set to 4 and only
Target2's four corners were selected.

After selecting the image points to be tracked over the first video frame capture the
program starts by reading the video sequence and tracking the existing points. For each new
left and right image capture the program stores the the new position of each left and its
corresponding right image point. If the user clicks on the LEFT IMAGE window to make it
active and press “C” key the program computes the horizontal disparity between the left
and right image points positions, then it computes the 3D world coordinates, saves the 3D
points and the [x y disparity] points into an output xml file. The output file name ending
with “_3DPOINTSC1.xml” has the 3D points related to the left camera coordinate system
while the file name ending with “_3DPOINTSC2.xml” has the 3D points related to the right
camera coordinate system.

Considering that the list of calibration views used to calibrate the stereo configuration
was Lab3CalibListS02.txt the resulting output file is: Lab3CalibListS02_3DPOINTSC1.xml or
Lab3CalibListS02_3DPOINTSC2.xml depending on which camera was active 6. To define
which camera (coordinate system) is active the user should change the “CameraOn”
trackbar value to 1 (left camera) or 2 (right camera) in POINTS TRACKING CONTROLS
window.

To compare the obtained 3D set of points (3D path) with the real 3D path given by
MELFA Basic IV software was necessary to transform the resulting 3D points (related to
each camera coordinate system) to the robot referential as shown in the next figure (Figure
7.20).

6 All the results output files are named after the calibration list file name used to calibrate the current stereo
configuration, i.e. If Lab3CalibListS02.txt calibration list was used to calibrate the current stereo configuration,
all output files are named using “Lab3CalibListS02” as prefix, as in Lab3CalibListS02_CalibrationM1.xml;
Lab3CalibListS02_CalibrationM2.xml; Lab3CalibListS02_Rectification.xml;
Lab3CalibListS02_Angles.xml; Lab3CalibListS02_3DPOINTSC1.xml and
Lab3CalibListS02_3DPOINTSC2.xml.

 60

The coordinates system transformation was performed using the point-line-plane
approach. To accomplish this task a set of points were tracked over a target (Target1) that
was attached to the robot's base providing better features to track.

Using the program on the same way as it was used previously to track points, a set of
three points P0, P1 and Pyz as shown in Figure 7.21 were tracked and transformed to 3D
space. Using the resulting set of 3D points were then computed the the rotation R and
translation T that allows to transform the 3D path to MELFA robot's coordinate system.

The formulation to obtain R and T is described next:

Transform=R.T (7.1.16)

 Where [R]=[R11 R12 R13 0
R21 R22 R23 0
R31 R32 R33 0
0 0 0 1

] and T=[1 0 0 P0.x

0 1 0 P0.y

0 0 1 P0.z

0 0 0 1
]

Figure 7.20: Camera-to-MELFA robot referential transformation.

 61

 To build the rotation matrix the direction cosines for all three axes were obtained by the
as follows:

YY axis=(P1.x−P0.x ,P1.y−P0.y , P1.z−P0.z);
YZ=(P yz.x−P0.x , P yz.y−P0.y , P yz.z−P0.z);

The XX and ZZ axes are computed using the cross product as follows:
XX axis=YY axis⋅YZ axis

ZZaxis=XX axis⋅YY axis

To obtain the rotation matrix R all three vector were transformed to unit vectors:

XX axis=
XX
∣XX∣

 , YY axis=
YY
∣YY ∣

 , ZZ axis=
ZZ
∣ZZ∣

The final rotation and translation matrix are then build using the direction cosines and
the the origin point P0 as demonstrated next:

[R]=[XX x XX y XX z 0
YY x YY y YY z 0
ZZ x ZZ y ZZ z 0

0 0 0 1
] and [T]=[1 0 0 P0x

0 1 0 P0y

0 0 1 P0z

0 0 0 1
]

Figure 7.21: Referential transformation using point-line-plane method.

 62

Recalling equation (7.1.16 the final transformation is rewrite as follows:

[R]=[XX x XX y XX z XX x×P0x+XX y×P0y+XX z×P0z

YY x YY y YY z YY x×P0x+YY y×P0y+YY z×P0z

YY x YY y YY z YY x×P0x+YY y×P0y+YY z×P0z

0 0 0 1
]

To corroborate the 3D path obtained with the research methodology approach and
compare it with the 3D path given by MELFA Basic IV program a number of functions were
implemented using MatLab software, the description of this functions is presented in Table
7.3 as follows:

Table 7.3: List of MatLab Implemented Functions

List of MatLab Implemented Functions

MatLab M - Files

File Name File Description

getDataNode.m Loads a single variable's data from an OpenCV
generated xml file.

readDataFromXML.m Reads a group of variables' data from an OpenCV
generated xml file.

plot3DPath.m Plots the 3D path obtained with the StereoVisionProg
research-made program.

readMelfaData.m Loads and plots the robot's end-effector 3D path
given by MELFA BASIC IV software.

transformReferential.m
Transform the initial 3D points coordinate system
(camera's coordinate system) to robot's coordinate
system.

testTransformReferential.m Uses a generic 3D points to transform 3D points in
camera coordinates to a generic coordinate system.

Instructions.m Instructions to use each function and reproduce the
results presented in this case study.

 63

8 Chapter Four
8.1 Results

8.1.1 Introduction
Recovering the depth information through stereo vision requires, in general lines, three main

steps: camera calibration and stereo relations estimation, image undistortion and rectification, and
stereo correspondence. The last step presents the most challenging task on the 2D to 3D
transformation process. The stereo correspondence performance and accuracy determines how
good and at which cost the depth information is recovered from the correlation of both images,
however, the first process is also determinant to obtain good results once the parameter obtained
from it are directly involved on the 2D points reprojection to 3D space.

This section starts by presenting a summary (see Table 8.1) of the data collected during the three
laboratory experiments, the data collected from the first two experiments sessions were used to
take conclusions mainly connected with calibration purposes and optimize the following
experiment procedure. Data collected during the third laboratory sessions were used for calibration
and 3D points recovering purposes.

Table 8.1: Video Sequences Collected During Laboratories Experiments

Video Sequences Collected During Laboratories Experiments
Stereo Video Data Collected

For Stereo Cameras Calibration For Recovering 3D Information

L01 - S01 1600-1200 5000 - - -
L01 - S02 1152-1152 3000 - - -
L01 - S03 960-720 100 4500 - - -

672-480 1000 900 672-480 1000 900
672-480 1000 900 672-480 1000 900
672-480 1000 900 672-480 1000 900
672-512 1000 900 672-512 1000 900
960-720 900 960-720 700 900

L03 - S02 960-720 900 960-720 700 900
L03 - S03 960-720 900 960-720 700 900
L03 - S04 960-720 90 900 960-720 700 900

Lab – Stereo
 Configuration

Image
Size [pixel]

Sample
Rate [fps]

Exposure
 1X10-6[s]

Image
 Size [pixel]

Sample
Rate [fps]

Exposure
 1X10-6[s]

100/50(*1)

100/50(*1)

L02 – S01(*2)

L02 – S02(*2)

L02 – S03(*2)

L02 – S04(*2)

L03 – S01(*3) 200/700(*1)

700/90(*1)

700/90(*1)

Note.
 (*1) - The left/right camera sample rate (fps) used to capture video sequences for stereo calibration
 were different for each stereo configuration's Phantom v9.1 camera.
 (*2) - Video data obtained with second laboratory experiment (L02) were influenced by experimental
 errors and only video sequences for stereo calibration were used for stereo calibration purposes.
 (*3) -The first set of video sequences for calibration used a special pattern for calibration purposes
 with Tema Software, this set was not included for the research purposes.

 64
Next, are presented a list of the output files generated by StereoVisionProg researcher-made

program with all dependent variables.

All the result output files obtained with StereoVisionProg were named using [FileName1] and
[FileName2] as prefix. Both cases are explained on point 1 and 2 as follows:

1. [FileName1] is the name of the text file containing the list of 150 pairs of left/right
calibration views used to build calibration sets with different number of calibration views
(N02, N05, N10, N20, N30, N40, N50, N60, N70, N80, N90, N100, N110, N120, N130, N140, N150) and
study the difference between calibration methods and how calibration parameters evolve.

2. [FileName2] is the name of the text file containing a list of 100 pairs of left/right
calibration views used to perform stereo calibration.

For a better understanding how the results were obtained and stored by using StereoVisionProg
research-made program options and OpenCV XML FileStorage each output files obtained from the
research study and its list of variables are explained in more detail in the next pages.

• Files [FileName1]_StudyM1.xml and [FileName1]_StudyM2.xml were obtained from STUDY
OPTIMAL NUMBER OF CALIBRATION VIEWS process using different sets of images and
calibration method M1 and M2 respectively. The list of variables stored inside this two
resulting files are listed in Table 8.2 as follows:

Table 8.2: Calibration Methods Study Process's Output Variables

Calibration Methods Study Process's Output Variables

[FileName1]_StudyM1.xml and [FileName1]_StudyM2.xml

Variables Names Variables Description

fx1(fx2) Focal length along XX for the left(right)
camera in pixel units.

fy1(fy2) Focal length along YY for the left(right)
camera in pixel units.

(cx1(cx2), cy1(cy2)) Left (right) camera principal point
coordinates.

K11, k21, p11, p21, K31

(K12, k21, p12, p22, K33)
Left(right) camera distortion coefficients.

R, T, E, F Stereo configuration relations .

E1(E2)
Left(and right) camera reprojection errors.
This two parameters are only available for
[FileName1]_StudyM1.xml

E3 Stereo reprojection errors.

Note. Each variable represent a vector of 17 elements with the values of one parameter
(p) resulting from performing the calibration (using method M1 and M2, separately) for
each individual set of images as follows: pVect = [p(N02), p(N05), …, p(N150)].

 65
• File [FileName2]_CalibrationM1.xml and [FileName2]_CalibrationM2.xml were obtained from

STEREO CALIBRATION (USING INITIAL GUESS) and STEREO CALIBRATION (WITHOUT INITIAL
GUESS) processes, on both cases were used around (but not less than) 100 calibration views.
File [FileName2]_CalibrationM3.xml was obtained from STEREO CALIBRATION PARAMETERS
OPTIMIZATION operation, this process used exactly 100 calibration views. The list of
variables resulting from each process are the same and listed in the next table (see Table 8.3
).

Table 8.3: Stereo Calibration Process's Output Variables

Stereo Calibration Process's Output Variable

[FileName1]_CalibrationM1.xml, [FileName1]_CalibrationM2.xml, and
[FileName1]_CalibrationM3.xml

Variables Names Variables Description

calibrationListUsed Name of the text file used to read/input calibration
views.

squareSize Chessboard square size.

cornersAlongXX Number of chessboard corners along XX direction.

cornersAlongYY Number of chessboard corners along YY direction.

ImageHeight(Width) Calibration view image height(width).

numberOfViewsUsed Number of views used for the stereo calibration process.

M1(M2) Left(right) camera matrix.

D1(D2) Left(right) distortion coefficients vector.

R Rotation matrix to transform right camera to the left
camera orientation.

T Translation vector to transform right camera to the left
camera position.

E, F Essential and Fundamental matrices.

objPoints XML node containing sub-nodes with object points for
each view.

imgPoints1
XML node containing sub-nodes with chessboard corners
extracted from each left calibration view with sub-pixel
accuracy.

imgPoints2
XML Node containing sub-nodes with chessboard
corners extracted from each right calibration view with
sub-pixel accuracy.

 66
•File [FileName2]_Angles.xml was obtained from ROTATION MATRIX PARAMETRIZATION
using rotation matrix R obtained from stereo calibration. The output variables stored in this
file are listed in the next table (see Table 8.4).

Table 8.4: Rotation Parametrization Process's Output Variables

Rotation Parametrization Process's Output Variables

[FileName2]_Angles.xml

Variable Name Variable Description

EulerAngles Contains the Euler angles resulting from stereo
rotation matrix parametrization.

Quaternion
Contains the quaternions [x, y, z, w] components
resulting from stereo rotation matrix
parametrization.

NormQuaternion Contains the quaternions [x, y, z, w] components in
the normalized form.

• Files [FileName2]_CalibRectification.xml and [FileName2]_UncalibRectification.xml were obtained
from USE CALIBRATED RECTIFICATION and USE UNCALIBRATED RECTIFICATION process,
respectively. The rectification process is called each time a calibration operation is
performed. The list of variables is different for each case as described in the next table (see
Table 8.5).

Table 8.5: Calibrated and Uncalibrated Rectification Process's Output Variables

Calibrated and Uncalibrated Rectification Process's Output Variables

[FileName2]_CalibRectification.xml and [FileName2]_UncalibRectification.xml

Variable Name Variable Description

map1x, map1y Contains the remapping maps (undistortion + rectification)
for the left camera.

map2x, map2y Contains the remapping maps (undistortion + rectification)
for the right camera.

Q Contains the disparity-to-depth matrix used for recovering
the depth information.

R1(R2) Left(right) image rectification transformation (3-by-3
rotation matrices).

P1(P2) Left(right) image 3-by-4 projection matrix in the new
rectified coordinate system. (only for calibrated stereo

 67

rectification).

F Fundamental matrix (only for uncalibrated stereo
rectification).

H1(H2) Left(right) image rectification homography matrices (only
for uncalibrated stereo rectification).

nM1(nM2)
New left(right) camera matrix that can be used to define the
region of interest in the new corrected image (only for
uncalibrated stereo rectification).

• Files [FileName2]_3DPOINTSC1.xml and [FileName2]_3DPOINTSC2.xml are the research's most
significant and interesting output files. This two output files were obtained from COMPUTE
3D POINTS operation – the process of recovering 3D point’s sets (or 3D paths) using stereo
video sequences. The first file contains information related to the left camera while the
second file contains information related to the second camera. The list of variables saved
into this two files is described in the following table (see Table 8.6).

Table 8.6: Recovering 3D Points Process's Output Variables

Recovering 3D Points Process's Output Variables

[FileName2]_3DPOINTSC1.xml and [FileName2]_3DPOINTSC2.xml

Variables Names Variables Description

nTrackedPts
Contains the number of image points tracked
successfully over the left and right stereo video
captures.

POINT[i]
Contains the image point (i) positions transformed
to 3D points related to the left(right) camera
coordinate system.

xydPOINTS[i]

Contains sub-nodes with all tracked positions (j)
coordinates for each left(right) image point (i) and
its disparity, i.e. vector<vector<Point3f>> and
Point3f point(i,j)= (x,y,d).

The second section of this chapter presents the results that aim to answer the the research
questions proposed initially by this case study. This section first presents the results from the study
that allowed to determine the optimal number of calibration views and the calibration method to be
used with the recorded video sequences, followed by the results obtained with calibration process
for all three laboratories. Next are presented the results obtained from the stereo relation rotation
matrix parametrization into Euler angles and quaternions obtained from calibration optimization
process. In order to answer the fourth question the results from calibrated/uncalibrated stereo
rectification are then presented. The last subsection present the research's most important results
from stereo matching and 2D to 3D image points reprojection.

 68
8.1.2 Research Question Nº1 – Results

For the sake of brevity of this chapter the sections that answers to this research question were
included at the end of this thesis on Appendix A and Appendix F (see Appendix A: Stereo Imaging
and Appendix F: Motion for more details). The first appendix introduces the theory involved in the
stereo vision process and presents a short description of the main OpenCV function used along the
research for stereo cameras calibration, stereo rectification and stereo correspondence.

8.1.3 Research Question Nº2 – Results

8.1.3.1 Calibration Method.
To determine the better calibration method M1 (calibration parameters are first computed and

then used as initial guess for the stereo relations estimation) or M2 (calibration parameters and
stereo relations are estimated all at the same time) were performed the calibration process using 17
groups of calibration views with both methods.

The next tables (Table 8.7, Table 8.8, and Table 8.9) list the results obtained for fx and k2
parameters. This two parameters were chosen by the researcher because they are key parameters
for the image undistortion and the 2D to 3D points reprojection process.

To reduce the amount of data to be presented was selected only the most representative stereo
configuration set from each laboratory session. For the first laboratory (L01) was chosen the stereo
configuration set S03. The results obtained are the following ones:

Table 8.7: L01 Set S03 Calibration Methods Study Using fx and k2 Parameters

 69
For the second laboratory (L02) was chosen the stereo configuration set S03 results as follows:

Table 8.8: L02 Set S03 Calibration Method's Study Using fx and k2 Parameters

Comparing the mean (M) and standard deviation (STD) values in Table 8.7 and Table 8.8 was
possible to conclude:

1. Method M2 has slightly better results than method M1 for fx and k2 parameters on both
cameras.

2. The radial distortion coefficient k2 estimation has higher STD values than the focal length
estimation, also, for both tables k2 value presents higher STD values for the second camera
(CAM2) than the first camera(CAM1).

3. Comparing STD values from L01 and L02 is possible to observe that better results were
obtained for the second experiment. This difference between the L01 and L02 results were
due significant improvements on the second laboratory experiment's procedure.

The next table (see Table 8.9) presents the results obtained from the stereo video sequences for
calibration recorded during the third laboratory sessions (L03).

 70
For the third laboratory session (L03) was chosen the stereo configuration video sequence set S04

as follows:

Table 8.9: L03 Set S04 Calibration Method's Study Using fx and k2 Parameters

From L03 results (seeTable 8.9) is possible to conclude that fx and k2 STD's values improved
substantially, the following observation were taken:

1. The parameters obtained with calibration method M1 had smaller STD values than
calibration method M2.

2. Calibration parameters values computed for CAM2 have higher errors comparatively with
CAM1 as observed for L01 and L02 results. This error are more visible for the radial
distortion coefficient k2.

By comparing the results obtained with L01, L02, and L03 is possible to observe that the
calibration results obtained from the L03's video sequences had significantly improved. This
improvements were due few changes and considerations taken in account for L03 during the
process of recording video sequences for calibration, as listed below:

• Lightning conditions were improved by using proper LED's arrays for high-speed framing.

• Both Phantom v.91 camera's lenses were correctly focused on a focal-plane from where the
sequence of calibration views were captured.

• Contrary to L01 and L02, on L03 experiment was avoided the used of lens

 71
maximum/minimum focal length range where the distortions are more visible.

• While on L01 and L02 were used high frame rates (100 and 1000 respectively) for L03 was
used 90 fps to allow more recording time and capture calibration views with rich positions
and orientations, i.e. object calibration images which the position and orientation varies
considerably from frame capture to frame capture.

• Smaller image resolution (960x720) were used to capture video sequences with phantom v.
9.1 camera's and avoid the higher distortion that are more notable in the sensor corners.

• During L03 was used the CSR feature to compute the pixel offset for the current frame rate,
resolution and exposure settings, giving a more precise compensation of the pixel errors
and better calibration results.

Calibration methods M1 and M2 gave similar results, method M1 proved to give better results
with the data collected during the third laboratory where the procedure errors were minimized and
the video recording settings were properly chosen, also, taking in account computational costs,
method M1 is less demanding and less time consuming. and therefore M1 was the method used in
this case study to perform the stereo calibration process.

8.1.3.2 Optimal Number of Calibration Views.
The literature suggests that to perform camera calibration with OpenCV a number between 30

and 100 calibration views should be used, however this value depends highly on the calibration
views quality such as sharpness, luminosity, rich sets of positions and orientations, and the area
covered by the calibration object on the image.

After performing the calibration for the 17 different groups of calibration views was studied
how the camera's focal length evolve to determine the optimal number of calibration views. Figure
8.1 shows camera's focal length results obtained for L01 set S03 calibration views as follows:

Figure 8.1: L01-S03Focal Length vs Nº of Calibration Views (M1 and M2).

 72
Figure 8.2 shows camera's focal length results obtained for L03 set S04 calibration views as

follows:

Based on the L01 set S03 and L03 set S04's plots (Figure 8.1 and Figure 8.2) was possible to take
the following conclusions:

1. The focal length values were acceptably stable, i.e. with small variations for a number of
100 calibration views.

2. The focal length parameter estimation for the second camera (fx CAM2 and fy CAM2 plots)
had in general higher fluctuations than the first camera (fx CAM1 and fy CAM1 plots). This
difference between values are justified by the fact that after a thorough video analysis were
detected few small dark regions on the image caused by dust particles in one phantom v9.1
camera's sensor.

3. Calibration parameters converge faster for calibration views with higher quality, i.e. image
focus, illumination conditions and area percent occupied by the calibration object. Figure
8.3 shows two calibration views from L02 set S03 and L04 set S04 where the image quality
differences between both views are evident.

Figure 8.2: L03-S04 Focal Length vs Nº of Calibration Views (M1 and M2).

Figure 8.3: Single calibration view from L02 set S03 (a) and L03 set S04 (b).

 73

From Figure 8.3 is possible to observe that L02 set S03 view's focus and illumination used to
capture the video sequence set were poor, also, the view shows that the image area occupied by the
calibration object is small when compared with the area occupied by L03 set S04 view (Figure 8.3
(b)). This analyse is corroborated with the results shown in Figure 8.4 where the camera's focal
length values obtained for the same set (L02 set S03) do not converge for 100 views as in L01 set S03
and L03 set S04 cases, previously presented.

Additionally to prove the object calibration's position and orientation influence on the
calibration parameters estimation a list of calibration views from L03 set S04 video sequence was
built intentionally with 150 consecutive images and the calibration process performed. Figure 8.5
shows the camera's focal length results obtained with this list of calibration views.

Figure 8.4: L02-S03 Focal Length vs Nº of Calibration Views (M1 and M2).

Figure 8.5: L03-S03 Focal Length vs Nº of Calibration Views (M1 and M2).

 74

From Figure 8.5 is possible to observe that calibration views with poor POSE, i.e. views with
similar object's position and orientation, does not provide additional information to the equations
involved on the calibration parameters and stereo relation estimation process. Adding similar views
causes the algorithm to diverge from the solution, this is easily seen by comparing the plots in
Figure 8.5 and in Figure 8.2.

To avoid bad calibration results the researcher used about 100 views from all the video sequence
range, for example, the L03 set S04 stereo video sequences allowed to obtain 8131 calibration views
thus for each 81 images (8131/100) only 1 image was considered, or in other words, only images
multiple of 81 were considered for calibration purposes.

The number of calibration views necessary for the stereo calibration process is highly
influenced by the calibration views quality such as image sharpness, how good the images were
illuminated and the overall image area occupied by the calibration object. The variations of the
calibration object's position and orientation are also important to obtain good results.

 The optimal number of calibration views using stereo video sequences with satisfactory quality,
such as L03 sets in which the video capturing settings and experiment procedure revealed to be the
best from all three laboratories, was defined to 100 calibration views.

8.1.3.3 Calibration Parameters Optimization.
In order to improve the calibration parameters and stereo configuration relations a method was

implemented to exclude the views with higher errors contributions. Figure 8.6 shows the
implementation methodology using, without loss of generality, L03 set S04 calibration views as
example.

Figure 8.6: Calibration parameters optimization (Method M3).

 75
The plots illustrated in Figure 8.6 shows the mean Euclidean distance between projected (built

from calibration object points) and reprojected images points (retrieved from calibration views by
detecting the chessboard corners) for each left and right view. The upper horizontal lines defined
the acceptable interval [0; M+STD], i.e. the mean of means plus the standard deviation, in which the
calibration views were considered good for calibration purposes. Once the stereo configuration
relations estimation required that the left and right images to be synchronized the smaller [0; M +
STD] interval (in this case the right views interval) was used to filter both left and right calibration
views, i.e. if one left(right) calibration view was excluded its right(left) corresponding view was
also excluded to maintain the synchronization.

In the next table (Table 8.10) are presented the results obtained with calibration parameters
optimization method (M3). The main value used to evaluate the improvements was the reprojection
error (RE) given by OpenCV's calibration function (cv::calibrateCamera()) using the full set of
calibration views (Nº Views - Initial) and using the final number of views (views not excluded = Nº
Views (Final)) .

Table 8.10: Stereo Calibration Parameters Optimization Results (L01, L02, and L03)

The reprojection error returned by the OpenCV single camera calibration function is obtained
by computing the difference between the reprojected and project image points and then computes

Stereo Calibration Parameters Optimization Results (L01, L02, and L03)
Input/Output Calibration Parameters Optimization's Variables

Input Variables Output Variables

L01 -S01
Left 100 30 40 38.88 74 26.67
Right 100 30 40 37.63 74 25.30

L01 -S03
Left 100 40 56 2182.44 74 657.53
Right 100 40 56 2085.77 74 618.58

L02 -S01
Left 100 40 56 34.88 87 16.78
Right 100 40 56 44.99 87 20.71

L02 -S02
Left 100 40 56 197.59 91 128.83
Right 100 40 56 106.16 91 85.56

L02 -S03
Left 100 40 56 63.53 73 18.95
Right 100 40 56 78.49 73 25.87

L02 -S04
Left 100 10 64 185.28 81 89.29
Right 100 10 64 190.57 81 98.10

L03 -S02
Left 100 30 40 55.39 76 36.38
Right 100 30 40 54.27 76 35.50

L03 -S03
Left 100 30 40 55.15 86 38.73
Right 100 30 40 60.08 86 42.54

L03 -S04
Left 100 40 56 33.71 81 19.35
Right 100 40 56 1193.29 81 18.99

Lab–Stereo
Config. Set

Calibration
 Views

Nº Views
(Initial)

Obj. Square
Size [mm]

Corners
[nx x ny]

RE(Initial)
[pixel]

Nº Views
(Final)

RE (Final)
[pixel]

Note.
 - The number of calibration views used to perform stereo calibration parameters optimization was
 exactly 100 views for all the sets.
 - RE is the reprojection error (in pixel units) returned by OpenCV's single camera calibration function
(cv::calibrateCamera()) for each left and right camera.

 76
the absolute norm of the resulting difference as formulated in eq. (8.1.1 and eq. (8.1.2.

The different between the projected and reprojected is given by the next formula:

distance (I)=projectedPoint (I)−reprojectedPoint (I) (8.1.1)

And the final reprojection error is given by the absolute norm as follows:

reprojError=√∑I
distance (I)2 (8.1.2)

To better illustrate the reprojection errors a stereo configuration with two A4Tech cheap web
cams were used to perform the stereo calibration with a 12-by-9 calibration pattern. In (Figure 8.7)
the darker points(red) are the projected points and the brighter points (green) are the reprojected
points that ideally would overlap each other meaning that the reprojection error was null.

By comparing both reprojection errors RE(Initial) and RE(Final) listed in Table 8.10 is possible
to observe that the method implemented research improved significantly the calibration results, the
reprojection errors obtained with M3 method for all the cases were minimized what allows to
conclude that the calibration parameters were obtained with better precision. This approach allows
to minimize the errors introduced by excluding calibration views with higher error and reduce the

Figure 8.7: Calibration view's reprojection/projected image points.

 77
number of images saving computational costs. Thus to compute the calibration parameters and
stereo relations this case study used M1 together with M3 to ensure good results.

 The next three tables (Table 8.11, Table 8.12, and Table 8.13) present the calibration results
obtained using all the data recorded for stereo calibration purposes during the three laboratory
experiments. The calibration parameters were computed using all three calibration methods (M1,
M2, and M3) , although, as mentioned before only the parameters resulting from M3 were used for
the next stereo vision operations.

In general lines, the calibration method that allows to achieve better calibration results with less
computational efforts is the calibration method M1. A number of 100 calibration views was defined
as the optimal number of stereo views for calibration, however, was concluded that this number
highly depends on the camera capturing settings and how the images were captured.

Additionally the calibration parameters optimization approach proved to be efficient on
minimizing reprojection errors by excluding calibration views with higher errors contributions.

The next stereo vision operations used, as defined by the research findings, the output results
obtained from calibration process M1 followed by M3 with 100 calibration views.

78

Table 8.11: Laboratory L01's Camera Calibration Parameters (Methods M1, M2, and M3)

Laboratory L01's Camera Calibration Parameters (Methods M1, M2, and M3)
Camera Intrinsic Parameters Camera Extrinsic Parameters

Focal Length [mm] Principal Point Coord. [pixel] Radial Distortion Coeffs. Tangential Distortion Coeffs.

fx fy cx cy k1 k2 p1 p2

S01

M1 CAM1 59.68 59.83 808.8753 600.0410 -0.0118 3.6606 -0.0097 -0.0130
CAM2 60.38 60.55 788.6118 619.5446 -0.1979 7.4484 -0.0080 -0.0189

M2 CAM1 59.10 59.18 848.6056 541.3404 0.1963 0.7019 -0.0117 -0.0004
CAM2 59.86 59.69 996.1479 493.2986 0.2984 -0.1761 -0.0123 0.0226

M3 CAM1 59.84 59.99 809.2514 593.2351 0.0136 3.4153 -0.0100 -0.0119
CAM2 60.45 60.62 788.8335 615.2770 -0.1794 7.4277 -0.0078 -0.0181

S03

M1 CAM1 56.74 56.93 449.1972 479.7300 0.6711 -4.8720 0.0471 0.0020
CAM2 56.90 57.20 469.0646 474.4410 0.9010 -12.7002 0.0558 -0.0029

M2 CAM1 57.64 59.18 387.1714 780.6228 0.4407 4.4899 0.1034 -0.0105
CAM2 58.30 60.75 455.1416 891.9835 0.5813 2.3352 0.1347 -0.0064

M3 CAM1 55.85 56.24 430.1722 611.9272 0.5112 -3.2350 0.0507 -0.0035
CAM2 56.31 56.79 459.8256 584.9412 0.8848 -12.6529 0.0629 -0.0032

Stereo
 Configuration

Calibration
Method

Stereo
Camera

Note. -For each stereo configuration (S02, S03, and S04) was performed the calibration process using all three methods M1, M2, and M3.
 -The radial distortion parameter K3 is only used for wide-angle lenses, thus its value was set to zero for all the cases (k3 = 0) .
 -Focal length in [mm] units was obtained by multiplying focal length [pixel] by 0.0115 factor.

79

Table 8.12: Laboratory L02's Camera Calibration Parameters (Methods M1, M2, and M3)

Laboratory L02's Camera Calibration Parameters (Methods M1, M2, and M3).
Camera Intrinsic Parameters Camera Extrinsic Parameters

Focal Length [mm] Principal Point Coord. [pixel] Radial Distortion Coeffs. Tangential Distortion Coeffs.

fx fy cx cy k1 k2 p1 p2

S01

M1 CAM1 24.98 24.97 336.8382 261.2730 -0.0831 -1.7970 -0.0004 -0.0001
CAM2 24.68 24.66 322.5725 255.9965 -0.0847 -0.8093 0.0016 -0.0010

M2 CAM1 24.95 24.93 336.5431 260.2869 -0.0922 -1.0727 -0.0004 -0.0001
CAM2 24.69 24.68 323.1908 253.6667 -0.0927 -0.6585 0.0013 -0.0013

M3 CAM1 24.99 24.98 337.4393 268.4330 -0.1011 -0.9363 0.0007 0.0000
CAM2 24.66 24.66 321.7637 249.9241 -0.1322 0.3174 0.0009 -0.0024

S02

M1 CAM1 23.37 23.32 288.8707 296.9317 0.0222 -1.5383 0.0018 -0.0008
CAM2 24.32 24.35 318.2352 199.0930 -0.0455 -0.6280 -0.0093 -0.0008

M2 CAM1 24.12 24.06 298.2936 275.6501 0.0703 -2.1384 0.0010 -0.0066
CAM2 24.14 23.98 253.4934 213.6382 -0.0501 -1.4671 -0.0072 -0.0016

M3 CAM1 23.85 23.83 309.1700 294.9672 0.0045 -1.3286 0.0023 -0.0014
CAM2 24.28 24.32 316.8497 202.1186 -0.0423 -0.9497 -0.0087 -0.0010

S03

M1 CAM1 24.74 24.74 328.7818 246.9087 -0.0848 -0.3140 0.0010 0.0002
CAM2 24.97 24.96 338.6817 266.0031 -0.0979 0.2569 0.0008 0.0005

M2 CAM1 24.75 24.74 328.8060 247.2105 -0.0751 -0.4442 0.0013 0.0005
CAM2 24.91 24.91 338.5166 265.5181 -0.1011 0.3365 0.0006 0.0005

M3 CAM1 24.72 24.72 325.0836 249.0191 -0.0939 -0.1013 0.0011 -0.0004
CAM2 24.95 24.95 337.8664 267.1120 -0.1001 0.2064 0.0008 0.0004

S04

M1 CAM1 37.04 37.09 356.8004 276.5897 - - - -
CAM2 35.94 35.73 273.7458 316.6878 - - - -

M2 CAM1 31.97 24.40 310.3517 274.5467 - - - -
CAM2 10.65 7.33 717.8691 318.3000 - - - -

M3 CAM1 37.23 37.31 370.7265 286.5862 - - - -
CAM2 35.80 35.62 263.6681 359.1597 - - - -

Stereo
 Configuration

Calibration
Method

Stereo
Camera

Note. - For each stereo configuration (S02, S03, and S04) was performed the calibration process using all three methods M1, M2, and M3.
 - The radial distortion parameter K3 is only used for wide-angle lenses, thus its value was set to zero for all the cases (k3 = 0) .
 - Focal length in [mm] units was obtained by multiplying focal length [pixel] by 0.0115 factor.
 - A dash indicates that the solution for the extrinsic parameters did not converge and therefore were excluded from the table .

80

Table 8.13: Laboratory L03's Camera Calibration Parameters (Methods M1, M2, and M3)

Laboratory L03's Camera Calibration Parameters (Methods M1, M2, and M3).
Camera Intrinsic Parameters Camera Extrinsic Parameters

Focal Length [mm] Principal Point Coord. [pixel] Radial Distortion Coeffs. Tangential Distortion Coeffs.

fx fy cx cy k1 k2 p1 p2

S02

M1 CAM1 28.29 28.23 427.0194 407.6665 -0.0138 0.2953 0.0058 -0.0171
CAM2 28.88 28.88 361.7643 398.8051 0.0719 -2.1130 0.0084 -0.0164

M2 CAM1 28.22 28.17 433.5200 410.3129 0.0017 -0.0450 0.0060 -0.0157
CAM2 28.49 28.50 373.6059 414.3428 0.0154 -0.5966 0.0084 -0.0167

M3 CAM1 28.36 28.28 420.3281 401.6675 -0.0042 0.2235 0.0055 -0.0186
CAM2 28.89 28.89 368.2153 388.8090 0.0735 -2.1017 0.0074 -0.0150

S03

M1 CAM1 28.15 28.15 450.7431 422.3490 -0.0611 0.2979 0.0065 -0.0100
CAM2 28.49 28.48 435.1483 393.8991 -0.0654 0.5371 0.0059 -0.0108

M2 CAM1 28.08 28.08 449.4412 428.3461 -0.0662 0.2814 0.0066 -0.0097
CAM2 28.41 28.41 433.8292 406.7362 -0.0655 0.4295 0.0067 -0.0105

M3 CAM1 28.14 28.14 443.2408 424.7560 -0.0496 0.1740 0.0070 -0.0114
CAM2 28.50 28.48 418.5513 403.7597 -0.0524 0.3779 0.0071 -0.0134

S04

M1 CAM1 28.05 28.06 531.7591 377.4580 -0.0677 0.1012 0.0002 0.0004
CAM2 28.51 28.52 499.2459 353.3265 -0.1146 0.9398 -0.0007 -0.0002

M2 CAM1 28.08 28.08 532.1768 380.6691 -0.0679 0.0895 0.0007 0.0005
CAM2 28.42 28.42 504.0630 355.3895 -0.1153 1.0618 -0.0005 -0.0003

M3 CAM1 28.05 28.05 532.6571 378.2843 -0.0670 0.0783 0.0004 0.0005
CAM2 28.38 28.37 523.9434 361.1249 -0.0600 0.0276 0.0006 0.0004

Stereo
 Conf.

Calibration
Method

Stereo
Camera

Note. -For each stereo configuration (S02, S03, and S04) was performed the calibration process using all three methods M1, M2, and M3.
 -The radial distortion parameter K3 is only used for wide-angle lenses, thus its value was set to zero for all the cases (k3 = 0) .
 -Focal length in [mm] units was obtained by multiplying focal length [pixel] by 0.0115 factor.

 81

8.1.4 Research Question Nº3 – Results
The purpose of this research question was to compute the remapping maps and the disparity-to-

depth matrix using two approaches: the uncalibrated stereo rectification based on Hartley's
algorithm and the calibrated stereo rectification based on Bouguet's algorithm.

8.1.4.1 Uncalibrated stereo rectification.
The uncalibrated method implementation revealed to be inefficient, the stereo video captures

after being submitted to undistortion+remapping process, using the remapping maps obtained
during uncalibrated rectification, lost all the 2D information needed to recover 3D data.

The rectification transformation matrices (rotation matrices) R1 and R2 obtained from the
rectification homography matrices were the main error sources. To compute the fundamental
matrix was considered that camera's distortion were significantly small and therefore were used the
original image points without being submitted to undistortion, this may have introduced errors on
the fundamental matrix estimation that in its turn was used to obtain H1 and H2 . To track the error
source was verified the rotation matrices orthogonality for one case (L03 set S04), without loss of
generality. The orthogonality results are presented next:

I=R1∗R1
T⇒ I=1.0e-003[0.302934 0 0

0 0.418937 0
0 0 0.466325]

I=R2∗R2
T⇒ I=[1.109173 0 0

0 0.993053 0
0 0 0.897953]

From the indentity matrix (I) resulting from the orthogonality condition was possible to observe
that while the right rotation matrix (R2) had small errors (I's main diagonal values close to 1) the
left rotation matrix (R1) was not orthogonal as expected justifying the bad results obtained for the
uncalibrated process.

8.1.4.2 Calibrated stereo rectification.
The calibrated rectification method was the method that revealed to be very efficient, the next

figures (Figure 8.8 and Figure 8.9) shows the stereo video capture without rectification and with
stereo rectification, respectively.

Figure 8.8: Stereo video capture without rectification.

 82
The drawback of performing the rectification is mainly connected with the fact that some parts

of the image that may contain important information are transformed into outliers (grey area Figure
8.9) or are cropped as the images shifted towards each other.

From the next figure (Figure 8.9) was possible to observe that after both left and right stereo
video captures were submitted to undistortion+rectification they became row aligned as expected,
this allows also to conclude that the calibration/rectification maps were correctly estimated. To
provide a comparison with the uncalibrated method the rotation matrix orthogonality was verified
for R1 and R2 as follows:

I=R1∗R1
T⇒ I=[0.977732 −0.003397 −0.018870

−0.003397 0.996585 0.000016
−0.018870 0.000016 0.981113]

I=R2∗R2
T⇒ I=[0.935669 −0.002870 −0.061460

−0.002870 0.997084 0.000045
−0.061460 0.000045 0.938494]

From both I matrices was possible to conclude that, contrary to the uncalibrated methodology, R1
and R2 are orthogonal i.e. I matrices obtained were very close to identity matrices form as required
for any three-dimensional rotation matrix.

8.1.5 Research Question Nº4 – Results
In order to answer this research question were used the output results obtained after stereo

calibration parameters optimization (calibration method M3). The stereo configuration
measurements taken during the three laboratory sessions and the stereo configuration relations
obtained from calibration process, rotation matrix R that brings the right camera to the left camera's

Figure 8.9: Stereo video capture after calibrated stereo rectification.

 83
orientation and the translation vector T that brings the right camera to the left camera's position, are
summarized in the next tables (see Table 8.14 and Table 8.15).

Table 8.14: Laboratory Stereo Configuration's Measurements

Table 8.15: Stereo Configuration's Relations

From Table 8.14 and Table 8.15 was possible to make few observations.

• For some stereo configuration each left and right camera had different sample rate (fps) as
in the case of L01-S01 set. The stereo configuration relations estimation proved to give
different results when compared with the case where the cameras, using exactly the same
stereo configuration, were synchronized as in L01-S03 set (see Table 8.1 for video files
capture settings).

• From L02-S04 stereo video set is possible to observe that higher rotation angles between
cameras introduced higher errors on the translation vector estimation.

• In the case of the sets were the distances between cameras were kept unchanged, as the case
of L03-S02 and L03-S03 sets, was possible to observe that by only changing the cameras

Stereo Configuration's Relations
Euler Angles [degrees] Quaternion Components Translation [mm]
Φ Θ Ψ q1 q2 q3 q4 Ty

L01-S01 -0.78 -6.05 1.24 -0.0105 0.0528 0.0062 0.9985 379.18 3.91 135.82
L01-S03 -0.95 -6.33 -0.11 0.0014 0.0552 0.0083 0.9984 372.67 5.96 95.84
L02-S01 -0.94 -12.68 0.17 -0.0006 0.1105 0.0080 0.9938 409.05 8.64 46.69
L02-S02 -0.58 -13.26 -1.91 0.0172 0.1154 0.0069 0.9931 327.19 8.90 92.87
L02-S03 0.61 11.73 -0.40 0.0040 -0.1022 -0.0057 0.9947 -456.94 -12.42 4.15
L02-S04 -5.64 44.76 -7.62 0.0427 -0.3825 0.0201 0.9227 -1049.69 -119.91 337.96
L03-S02 0.61 12.61 0.68 -0.0053 -0.1099 -0.0046 0.9939 -463.06 22.86 26.20
L03-S03 0.80 18.44 0.65 -0.0045 -0.1602 -0.0059 0.9871 -438.73 23.31 32.67
L03-S04 0.38 22.25 0.71 -0.0054 -0.1929 -0.0021 0.9812 -433.08 23.99 110.99

Lab-Stereo
Configuration Tx Tz

Note. Euler angles and Quaternion components were obtained by parametrizing the stereo configuration rotation matrix. The Euler angles
represents the rotation matrix that brings the right camera to the left camera orientation. Translation represents the translation vector that bring
 the right camera to the left camera position.

Laboratory Stereo Configuration's Measurements

L01-S01 (410) 3080.00
L01-S03 (410) 3080.00
L02-S01 (445) 1850.00
L02-S02 (445) – 50 2230.00
L02-S03 (445) + 50 2230.00
L02-S04 (445) + 30 2230.00
L03-S02 (390) + 90 1930.00
L03-S03 (390) + 90 1930.00
L03-S04 (390) + 115 2080.00

Lab-Stereo
Configuration

Distance Between Stereo
Configuration's Cameras. [mm]

Distance Between Stereo
Config. and MELFA robot.[mm]

Note. The dimensions inside brackets were obtained by measuring the distance between
each camera's lens center, this measure only gives an approximation once the real distance
between camera sensors is not possible to obtain with direct measurements. The second
distances were set by using the Manfrotto sliding plate.

 84
orientations caused the translation variables (Tx, Ty, Tz) to change.

8.1.6 Research Question Nº5 – Results
In order to answer this research question two approaches were implemented. To compute the

dense disparity image from a (undistorted + rectified) pair of stereo video captures were used the
OpenCV stereo Block Matching, Semi Global Block Matching or the non real-time Graph-Cut
Matching algorithm. The dense disparity results obtained using dense stereo matching methods did
not provide good disparity results and the method proved to be unreliable, with the given stereo
video sequences, to obtain the depth for all the image points. In the next figure (see Figure 8.10) is
presented the disparity image obtained from stereo matching with L03-S02 stereo video capture.

As shown in Figure 8.10 the disparity image obtained by using the stereo Block Matching
algorithm with default settings available from OpenCV libraries results in a great number of
outliers i.e. pixel disparity values which are outside an interval defined by [min disparity; max
disparity].

Alternatively, using the sparse tracking techniques approach with pyramid Lucas-Kanade
tracker code sparse sets of 2D points were projected to 3D space and then compared with the MELFA
robot's 3D path.

Figure 8.10: Stereo matching using Block-Matching algorithm.

 85
The following figure (Figure 8.11) shows the 3D path programmed with MELFA RV-2AJ software

with a sampling time equal to 50 ms.

The next figure (Figure 8.12) contains the plot of the same 3D path obtained with a better
sampling time of 10 ms. This path was the path taken in consideration for further analysis.

The next figure (Figure 8.13) shows the 3D path recovered using the sparse matching method
implemented on this research. The two paths (green, red) are related to each camera coordinates
system, the green path is the 3D path seen by the stereo configuration's left camera and the red is
the 3D path related to the stereo configuration's right camera coordinate system.

Figure 8.11: MELFA RV-2AJ 3D Path (sampling time: 50ms).

Figure 8.12: Figure 8.8: MELFA RV-2AJ 3D Path (sampling time: 10ms).

 86

To obtain the same path as in the previous figure (Figure 8.13) on the MELFA robot's coordinate
system al the points were transformed using the point-line-plane approach as presented on the
methodology section.

The next figure (Figure 8.14) presents the resulting 3D path after being transformed with the
rotation and translation that bring the camera coordinate system to the MELFA robot system as
defined in the methods section (see Posttest. from Methods section for more details). Additionally,
using the MELFA RV-2AJ robot's external dimensions, was performed a pure translations to relate the
points into robot's coordinate system origin.

Figure 8.13: MELFA robot's recovered 3D path(camera coordinates system).

Figure 8.14: MELFA robot's recovered 3D path (robot coordinate system).

 87

To test the point-line-plane coordinate system transformation were used a generic set of points
defined in the 3D space (P0=[100 100 1000] , P1=[200 100 1000] ,

P yz=[100 300 1100]) to build the direction cosines matrix and translation vector. The next
figure (see Figure 8.15) is displayed the same 3D paths as in Figure 8.13 transformed into the
generic coordinate system.

From the results obtained was possible to make different observations. The final 3D path shape

obtained with the Lucas-Kanade sparse stereo matching approach presents similarities with the
path obtained from MELFA software. However, the 3D points recovering process has errors resulting
from the 2D to 3D reprojection process, the reprojection errors were amplified when the 3D points
were transformed from camera's coordinate system to robot coordinate system due the fact that the
computed 3D points were used in the point-line-plane implementation to obtain the transformation
matrix (rotation and translation). This observation was easily verified by projecting the 3D path in
camera's coordinates, Figure 8.13, to a generic coordinate system defined in the 3D space by three
arbitrary points, the transforming test is shown in Figure 8.15.

Figure 8.15: MELFA robot's recovered 3D path (generic coordinate system).

 88

9 Chapter Five
9.1 Discussion

9.1.1 Introduction
To recover 3D information from stereo video sequences three main processes are required. The

first and main process allows to compute the cameras calibration parameters and stereo
configuration relations estimation, the results obtained from this operation determined how precise
the following operation's results are obtained. The second process consists on implementing the
(uncalibrated/calibrated) stereo rectification process to produce the (undistortion+rectification)
maps necessary to correct image's radial and tangential distortion and transform the stereo captures
so they became row-aligned and coplanar as if they were captured from a canonical stereo
configuration. From rectification process is also obtained the disparity-to-depth transformation
matrix, this matrix is the most important element on the process of transforming 2D image points
to 3D space. To recover 3D information is necessary to perform the stereo matching operation to
match the left image points with the right image points in such a way that both image points
correspond to the same object's point in the scene.

This case study utilized the OpenCV image processing platform together with Microsoft Visual
Studio 2008 software to implement a program for recovering 3D points from video sequences
captured with two Phantom v9.1 high-speed cameras on a stereo configuration, it utilized two
pretest laboratory sessions and one intervention laboratory session. Measurements included
building different stereo configurations with two Phantom v9.1 high-speed cameras to capture
video sequences of a MELFA RV-2AJ robot executing a simple 3D path, and additionally capture
video sequences of a planar calibration object to calibrate each stereo configuration.

To perform the stereo cameras calibration and stereo relations estimation two methods were
implemented to determine which allowed to obtained better results, additionally, a third option
was implemented to optimize the calibration parameters results. To rectify the stereo video captures
the calibrated and uncalibrated rectification methods were implemented. For the last operation,
stereo matching process, were implemented two approaches, the first approach allows to compute
the dense disparity image using OpenCV stereo matching algorithms, and for the second approach
a sparse matching method was implemented. The sparse matching method made use of Lucas-
Kanade Pyramid optical flow method to match sparse set of points and reproject them to 3D space.

9.1.2 Discussion

9.1.2.1 Research question nr. 1 – discussion.
Research question: Which are the OpenCV main functions involved in the process of: stereo

camera calibration, stereo image rectification, stereo matching and points reprojection into 3D
space, and Lucas – Kanade Pyramid optical flow method. What are the inputs and outputs
arguments of those functions.

As mentioned in the previous chapters, the answer to this question constitutes by itself a review
of the theory under the OpenCV main algorithms used to implement the researcher-made program
implemented for this case study. The Appendices A and F presents the answer to this question(see
Appendix A: Stereo Imaging and Appendix F: Motion).

 89

The review was done based on the book from Bradski et al. (2008) to provide a better
understanding and broader knowledge of the functions available from OpenCV.

The researcher started by using the old C programming language platform to implement the
main program however after few programming attempts using the new OpenCV 2.1 C++ approach
it was evident that the new OpenCV C++ platform had better performance, less memory leakage,
specially when dealing with real-time video operations, and less programming once all the memory
deallocation were performed automatically, furthermore the C++ STL's containers and iterators
made easy to work with image and points storing operations allowing the researcher to focus more
his attention on other important issues during the research.

9.1.2.2 Research question nr. 2 – discussion.
Research question: How to compute camera calibration parameters using a planar calibration

object known as chessboard and how to relate two cameras in a stereo configuration. How many
calibration views are needed to perform the stereo calibration process and which calibration
method (with and without initial guess to compute stereo relations) gives better results. How to
optimize the stereo calibration process and improve the calibration parameters results.

To answer to the proposed research questions were implemented different functionalities that
allowed to perform the calibration process given different inputs: a text file with a list of
calibration views, stereo avi files for calibration purposes, or real time video capture. To compute
the calibration parameters were implemented two methods (M1 and M2) and additionally was
implemented a method to improve the calibration results.

Calibration method.

The calibration study based on two main calibration parameters f x and k 2 obtained by
performing the stereo calibration by using calibration methods M1 and M2 with 17 distinct groups
of calibration views was designed to determine which calibration method provided the best
approach to compute the calibration parameters and stereo configuration relations. In the next table
(see Table 9.1) is presented a summary of the standard deviation values obtained from calibration
method study.

Table 9.1: Calibration Method's Study Summary

Calibration Method's Study Summary
Calibration Method

M1 M2

CAM1 CAM2 CAM1 CAM2

L01-S03 4.75 11.13 4.16 10.12
STD(k2) 8.46 33.23 11.50 29.50

L02-S03 1.13 0.21 0.75 0.26
STD(k2) 2.23 8.02 1.93 7.89

L03-S04 0.27 0.68 0.32 0.40
STD(k2) 0.09 1.16 0.16 1.65

Lab – Stereo
Configuration

Comparison
 Values
STD(fx)

STD(fx)

STD(fx)

Note. STD is the standard deviation values for each fx, k2 parameter from Table 10.7, Table 10.8,
 and Table 10.9.

 90
The standard deviation results obtained with calibration method M2 revealed to be slightly

smaller comparatively with M1 for the first two calibration sets (L01-S03 and L02-S03). Better results
were obtained for both cameras (CAM1 and CAM2) using method M1 with the data from the third
laboratory (set L03-S04), this result may have been related to the fact that the data collected during
the third laboratory were better for calibration purposes. In addition, this conclusion was
consolidated with the literature that suggests method M1 is more robust than method M2, moreover
M1 revealed to be less computationally demanding and time consuming, being the method used for
the research. Also was possible to observe that parameters obtained from one of the cameras (CAM2
in general) had higher standard deviations than the other camera, this fact could have been a result
of dust detected in on of the camera's sensor after carefully re-analysing the video captures.

From Table 9.1 is possible to verify that the reduction of standard deviations values for both
calibration parameters were statistically significant from pretest (L01 and L02) to postest laboratory
sessions (L03), this significant gains could have been a result of different improvements done along
the three laboratory sessions and other considerations taken in account for the third laboratory:

• Lightning conditions were improved by using proper LED's arrays for high-speed framing.

• Both Phantom v.91 camera's lens was correctly focused on a focal-plane from where the
sequence of calibration views were captured.

• The lens's maximum and minimum focal length range, where the distortions are more
visible, were avoided from being used.

• Low frame rates values (90fps) instead of higher values were used to allow more recording
time and capture calibration views with rich positions and orientations, i.e. object
calibration images which the position and orientation varies considerably from frame
capture to frame capture.

• Smaller image resolution (960x720) were used to capture video sequences with Phantom v.
9.1 camera's avoiding the higher distortion that are more notable in the sensor corners
(higher image resolutions).

• CSR PCC's software feature was used to compute the pixel offset for the current frame rate,
resolution and exposure settings, giving a more precise compensation of the pixel errors
and better calibration results.

Optimal number of calibration views.
The literature suggests that a number of calibration views between 30 and 100 should be used to

calibrate a stereo configuration. To determine this value was performed the stereo camera
calibration using different number of calibration views (02 to 150) and studied how the focal length
parameter behaved. While for some stereo configurations the focal length values were acceptably
stable for a number of 100 calibration views (see Figure 8.1 and Figure 8.2) for others stereo
configurations (see Figure 8.4 and Figure 8.5) the same parameters did not converge this may have
been related to factors such as the following ones:

• Calibration parameters converge faster for calibration views with higher quality, i.e. image
focus, illumination conditions and area percent occupied by the calibration object in the
calibration view. Figure 8.3 shows two calibration views from L02-S03 and L04-S04 where
the image quality differences between both views are evident.

• Poor calibration information. i.e. calibration views with similar position and orientations do
not add any additional information but instead it may cause the algorithms to diverge from
the real solution as shown in Figure 8.5.

 91
• Focal length values computed with calibration method M1 converged faster with less

variations than the values obtained with calibration method M2.

The number of calibration views necessary for the stereo calibration process is highly
influenced by the calibration views quality such as image sharpness, and how good the images
were illuminated. The variations of the calibration object's position and orientation also are
important to obtain good results.

Factors such as the area occupied by the calibration object in the image were difficult to control
once the angle of convergence and the horizontal distance between the two stereo configuration's
cameras made difficult the task of covering all the image resolution with the calibration object on
both cameras at the same time to keep the synchronisation between cameras as required for the
stereo configuration relations estimation.

Calibration parameters optimization.
To improve the calibration parameters was implemented a method that based on the difference

between the reprojected and project calibration image points allowed to optimize the calibration
parameters results.

In Table 8.10 are presented the results obtained for the reprojection error (RE) before and after
calibration optimization process (calibration method M3) for almost all the sets were obtained
reprojection errors 30% smaller than initially verified, this improvements could have been a result
of the methodology implemented that allowed to eliminate the views with higher error
contributions and recompute the new parameters with only good calibration views.

Higher reprojection errors were verified for views in which the angle formed between the
camera imager plane and the the calibration object plane were relatively big, i.e. angles higher
than 60 degrees, however this value may only be used as a reference as this case study did not
studied the influence of calibration object's orientations on the calibration parameters results.

Was verified that for calibration views with high luminosity gradients or defocused images,
despite of the algorithms did not failed to find all the calibration object corners it failed to find the
proper corners identifying wrong points as being corners locations. To avoid this cases the detected
corners were drawn over the calibration views to help to visualize if the corners were correctly
detected.

9.1.2.3 Research question nr. 3 – discussion.
Research question: Which are the differences between using calibrated and uncalibrated

rectification methods and how to implement the image rectification process by means of using
OpenCV functions.

To answer this research question were implemented stereo rectification methods to compute the
remapping maps and the disparity-to-depth matrix using two approaches: the uncalibrated stereo
rectification - Hartley's method based on the procedure described by Bradski et al. (2008) and the
calibrated stereo rectification available from OpenCV algorithms based on Bouguet's algorithm.

While the results produced by the calibrated method (see Figure 8.9) were satisfactory the same
results were not verified for the uncalibrated stereo rectification. The resulting images obtained
after applying the remapping maps (undistortion+rectification) lost all its original information, this
wrong outputs could have been a result of systematic errors by using directly the detected image
points from calibration to compute the fundamental matrix used to obtain the rectification
transformation matrices (rotation matrices) R1 and R2. In addition, to corroborate the results, both

 92
rotations matrices were subjected to orthogonality test, from the indentity matrix resulting from the
orthogonality condition was possible to observe that while the indentity matrix (using R2) had its
diagonal values close to 1, the orthogonality condition was not verified for R1 matrix as expected
justifying the bad results obtained for the uncalibrated process.

9.1.2.4 Research question nr. 4 – discussion.
Research question: How to parametrize the stereo relation's rotation matrix into Euler angles

and quaternions and how to perform the transformation between this two rotation representations.

To answer this research question were implemented two algorithms that allowed to transform a
rotation matrix to Euler angles and quaternion. To study the rotation angles' influence on the right
camera position estimation the stereo configuration translation vector T estimations were also
included in the same table (see Table 8.15).

For some stereo configuration, as the case of L01-S01 and L01-S03 sets, that used exactly the
same stereo configuration (position and orientation), different results were obtained. The difference
between the stereo relations estimations may have been related to the fact that the video sequences
for calibration recorded with different sample rates (asynchronous cameras' capture) introduces
errors on the stereo relations estimation.

The stereo relation's rotation matrix parametrization into Euler angles helped to visualize which
angles had higher contributions for the rotation. Rotation angles around YY axis (on camera axis)
had higher values what could have been a result of setting the angles between cameras' optical axis
in such a way that the cameras' FOV area overlapped was maximized.

The stereo configuration's translation vector had better estimations when smaller angles between
cameras' optical axis were used to arrange the configuration, this could have been related to the
fact that OpenCV stereo calibration algorithm requires the configuration to be as close to a
canonical stereo configuration as possible.

In some cases were the distances between cameras were kept unchanged between new stereo
configurations, as the case of L03-S02 and L03-S03 sets, was observed that by only changing the
cameras' orientation caused the stereo configuration's translation variables (Tx, Ty, Tz) to change,
this may have been related to the fact that the cameras' rotation axis do not correspond to the same
cameras' center of projection (or camera's coordinate system origin).

9.1.2.5 Research question nr. 5 – discussion.
Research question: How to compute the disparity image and disparity of a sparse set of points

given two rectified images captured from a stereo configuration previously calibrated. How to
reproject a sparse set of points to the 3D space.

To answer this research question two approaches were initially implemented. By using the
calibration parameters and the rectification maps given by the previous research questions
implementations the video sequences were remapped and matched using the dense and sparse
stereo matching methods.

Although good results were obtained from the rectification process when remapping the left and
right video capture sequences the results obtained using one of the OpenCV stereo matching
algorithms (Block Matching, Semi Global Block Matching, or Horn-Schunck) did not provide
good disparity images, only some parts of the 3D scene were recovered and the stereo matching
algorithms failed to fit the object's silhouettes accurately. The disparity images inaccuracy may
have been related to the block matching settings used to perform the stereo-matching process and

 93
to the high convergence angles values used between the two cameras' optical axis in the stereo
configurations.

The sparse stereo matching approach using Lucas-Kanade Pyramid tracker to track sparse set of
points and perform the stereo matching approach allowed to recover 3D points without the need of
working with all image resolution. To corroborate the results were tracked points over an end-
effector of a robot executing a known 3D path, the 3D path obtained by the stereo vision approach
proved to be similar to the one executed by the end-effector, however, the direct comparison
between distances obtained with the computed 3D points and the real object's distances showed that
the 2D images points reprojection into 3D space had errors associated, this errors are minimal for
the standard stereo configurations that were arranged loser to a canonical stereo configuration and
increase for the stereo configurations with higher angles between cameras' optical axes. The
reprojection errors may have been related with the wrong stereo configuration relations estimations
namely the horizontal distance (Tx) used in the disparity-to-depth reprojection. Also due the fact
that the remapping process cropped parts of the image necessary to recover all 3D path the captures
were only subjected to undistortion and this procedure could have been the major source of errors
in the points disparity computation process.

The 3D points transformation from cameras' coordinates system into the MELFA robot's
coordinate system using the point-line-plane approach increased the 3D points error, this could
have been a result of using the computed 3D points, already affected with by reprojection errors, to
build the transformation's direction cosine matrix and translation vector, this was easily proved by
performing a transformation (rotation+translation) using three points selected arbitrarily in the 3D
space.

9.1.3 Limitations
Although the two pretest laboratory sessions helped to eliminate procedure errors and determine

better capturing settings and video recording conditions for camera calibration and 3D information
recovering processes there were several limitations to the study.

The first limitation was related with the great number of variables involved in the video
capturing process such as luminosity, camera capture settings, video synchronisation, stereo
cameras position and orientation, the distance between cameras and the distance between the stereo
configuration and the scene being recorded. Having such amount of variables made difficult to
determine the exact source of the stereo configuration relations estimation's errors and the
disparity-to-depth reprojection's errors, moreover it made difficult to establish a direct comparison
between different stereo video sequence sets either for calibration or for 3D points recovering
process. Therefore, this limitation makes the results difficult to generalize to others stereo video
sequences either for stereo calibration purposes or to depth recovering process.

Te second limitations is related with the dense stereo matching method, during the research
development the dense approach proved to be inefficient with the stereo video sequences recorded
during the laboratory sessions. Furthermore the dense stereo matching was not tested with stereo
video sequences from other sources to determine if the Block Matching (or Semi Global Block
Matching) settings were the optimal settings used or, in the other hand, if the research's stereo
video sequences were the main cause for the inaccurate results.

Other limitations were related with the intervention. Each laboratory session required a
minimum of six hours to set the stereo configuration and capture an average of four stereo video
sequences for stereo calibration and four video sequences for 3D information recovering purposes,
moreover, the laboratory schedule was very filled by classes what reduced the number of
laboratories that could have been used to improve the results obtained.

 94
9.1.4 Recommendations for Future Research

Based on the results of this case study, there are several recommendations for the future
research. In the future research the number of independent variables need to be reduced by firstly
determining the optimal illumination conditions and camera capturing settings such as focal plane,
frame rate, exposure time, and camera synchronization settings. Also a standard procedure need to
be well defined since the beginning to help to reproduce the same conditions between experiments,
this will reduce the differences between stereo configurations and make easier to generalize the
results obtained with different stereo configurations.

To test the stereo matching process with the obtained stereo video sequences others stereo
matching algorithms, such as the new matching techniques available from Middlebury evaluation
site at http://vision.middlebury.edu/stereo/eval/, should be included in the future implementations,
this could help to determine if the inaccurate disparity images obtained with OpenCV matching
algorithms were caused by selecting wrong matching settings or by the stereo video sequences
used, moreover, those algorithms represent the newest advances in stereo matching techniques and
could help to improve the speed and computational costs with real time operations. In what
concerns to the stereo configuration, during this research the cameras' orientation angles and the
distance between cameras were both simultaneously changed what made difficult to establish
which had higher impact on the stereo rectification process, also was found that by simply
changing the cameras rotations the distance between cameras' axis changed. Future research should
set the cameras' orientation to constant and only change the distance between cameras on the stereo
configuration, this will allow to take more general conclusions and determine more accurately
which configuration produces the best results.

9.1.5 Conclusions
Various conclusions can be made from this study. The first main conclusion is that calibration

process plays an important role in the process of recovering 3D information from stereo images and
it defines how good and how accurate the 3D information is obtained. The study showed that the
quality of the results obtained from calibration process depends highly on the capturing conditions
and video recording settings. Providing proper illumination for high-speed framing is crucial to
obtain good results, also the study showed that the calibration results improved substantial from the
first two laboratories to the third laboratory where the images were obtained with a better focusing
during the procedure. The study shows that better calibration results were obtained for the
calibration views where the calibration object covered almost all the image instead of a small area,
also the study shows that when a set of calibration views with similar position and orientation are
used the calibration algorithm diverge from the solution, better results were obtained for sets of
images with different positions and orientation. Still related to cameras calibration the study
determined that calibration method M1 provides a more efficient and robust method to calibrated
the cameras and estimate the stereo relations.

 The second conclusions is that by using the difference between the reprojected and projected
image points was possible to establish a method that allowed to exclude calibration views with
higher errors contributions and recompute the new calibration parameters reducing the reprojection
errors by 30% in almost all of the cases.

Related with the stereo rectification was concluded that the uncalibrated stereo rectification do
not provide good results and instead the calibrated stereo rectification method should always be
chosen to obtain the correct undistortion and rectification maps, and the disparity-to-depth
reprojection matrix as well.

The third main conclusions is related with the stereo matching process. The stereo matching
step revealed to be one of the stereo vision's most challenging tasks to implement. The dense stereo

 95
matching process using OpenCV matching algorithms did not provide accurate disparity images
and further research must be done. Alternatively was implemented a second approach using Lucas-
Kanade tracker that can efficiently match sparse set of points selected by the user between two
stereo captures. In general better results were obtained for the stereo configuration arranged closer
to a canonical stereo configuration, with smaller angles between stereo cameras' optical axis. It was
also concluded that the disparity-to-depth reprojection depends highly on the disparity values and
on the distance between cameras (Tx) estimated by the stereo calibration process. Besides the
calibration can be performed individually for each camera, to obtain correct stereo relations the
stereo configuration cameras' synchronization need to be ensured. The 3D path obtained with the
StereoVisionProg implementation proved to be similar to the real path given by MELFA robot's
software and the approach with Lucas-Kanade Pyramid tracker proved to be reliable and viable to
recover 3D information for a sparse set of points.

 96

10 References

Ayache, N. & Hansen, C. (1988). Rectification of images for binocular and trinocular
stereovision. Rapport de Recherche, Nº860, pp. 9-17.

Ayache, N. & Lustman, F. (1991). Trinocular stereo vision for robotics. IEEE Transactions on
PAMI, Volume 13, pp. 73-85.

Bradski G. R., Kaehler, A. (2008). Learning OpenCV: Computer Vision with the OpenCV Library,
1st ed. Sebastopol, CA: O'Reilly Media Inc.

Cyganek, B., & Siebert, J.P. (2009). An introduction to 3D computer vision techniques and
algorithms. West Sussex, PO19 8SQ, United Kingdom: John Wiley & Sons Ltd.

Fusiello, A., Trucco, E., & Verri, A. (2000). A compact algorithm for rectification of stereo pairs.
Machine Vision and Applications, Volume 12, pp. 16–22.

Hartley, R. I. (1999). Theory and practice of projective rectification. International Journal of
Computer Vision, Volume 35, pp. 115-127.

Heikkila, J., & Silven, O. (1997). A four-step camera calibration procedure with implicit image
correction. Proceedings of the 1997 Conference on Computer Vision and Pattern
Recognition, pp. 1106 – 1112.

Hsu, Gee-Sern J. (2011). In A. Bhatti (Ed.), Advances in theory and applications of stereo vision
(pp. 129-151). Rijeka, Croatia: InTech

Jain, R., & Kasturi, R., & Schunck, B. G. (1995). Machine Vision, New York, United States of
America, McGraw-Hill Inc.

Jiang, G., & Zhao, C. (2010). Camera calibration based on 2D-plane. Proceedings of the Third
International Symposium on Electronic Commerce and Security Workshops(ISECS ’10),
pp. 365-368.

Kanade, T., & Okutomi, M. (1991). A Stereo matching algorithm with an adaptive window:
theory and Experiment. Proceeding of the 1991 IEEE International Conference on
Robotics and Automation, pp. 1088 – 1095.

Kohut, P. (2011). MELFA Basic IV - Robot Programming Language. AGH University of science
and Technology of Krakow, Faculty of Mechanical Engineering and Robotics.

Konolige, K. (1997). Small vision system: Hardware and implementation. Proceedings
International Symposium on Robotics Research, pp 111-116.

Loop, C., & Zhang, Z. (1999). Computing rectifying homographies for stereo vision. Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, Volume 1, pp. 125–131.

Ma, L., Chen, Y., & Moore, K. L. (2003). A New Analytical Radial Distortion Model for Camera
Calibration. Retrieved February 28, 2011, from University of Trier Web site:

 97

http://www.informatik.uni-trier.de/~ley/db/journals/corr/corr0307.html#cs-CV-0307046

Matousek, M. (2007, February 28). [PDF] (PhD Thesis: Epipolar Rectification Minimising
Image Loss, Center for Machine Perception, Department of Cybernetics, Faculty of
Electrical Engineering, Czech Technical University). Retrieved from:
http://cmp.felk.cvut.cz/ftp/articles/matousek/Matousek-PhD-TR-2007-06.pdf

May, S., Pervoelz, K., & Surmann, H. (2007). In G. Obinata & A. Dutta (Eds.) Vision systems:
Applications (pp.181-203). Vienna, Austria: I-Tech Education and Publishing.

Niola, V., Rossi, C., Savino, S. & Strano, S.(2008). In C. Rossi (Ed.), Brain, Vision and AI (pp.
211-243). Vienna, Austria: In-Tech.

OpenCV. (2011, Jun). OpenCVWiki: Welcome. Web site consulted July 2, 2011:
http://opencv.willowgarage.com/wiki/Welcome.

Papademetris, X. (2006). An Introduction to Programming for Medical Image Analysis with the
Visualization Toolkit, from Yale University BioImage Suite Web site:
www.bioimagesuite.org

Papadimitriou, D. V., & Dennis, T. J. (1996). Epipolar line estimation and rectification for stereo
image pairs. IEEE Transactions on Image Processing, Volume 5(4), pp. 672-676.

Pollefeys, M., Kock, R., & Gool, L. V. (1999). A Simple and efficient rectification method for
general motion. Proceedings of the 7th IEEE International Conference on Computer Vision,
Volume 1, pp. 496-501.

Robert, L., Zeller, C., Faugeras, O., & Hébert, M. (1997). Applications of non-metric vision to
some visually-guided robotics tasks. Rapport de Recherche, No. 2584.

Shah, M. (1997). Fundamentals of computer vision. Retrieved January 25, 2011, from University
of Central Florida Computer Science Department Web site:
http://www.cs.ucf.edu/courses/cap6411/book.pdf

Slabaugh, G. G. Computing Euler angles from a rotation matrix. Retrieved May 17, 2011, from:
http://www.gregslabaugh.name/publications/euler.pdf

Stefano, L. Di., Marchionni, M., Mattocia, S., & Neri, G. (2002). A fast area-based stereo
matching algorithm. International Conference on Vision Interface, pp. 146-153.

Sturm, P. F., Maybank, S. J. (1999). On plane-based camera calibration: A general algorithm,
singularities, applications. 1999 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, Volume(1), pp.1432-1437.

Szeliski, R. (2010). Computer vision: Algorithms and applications. New York: Springer.

Szeliski, R., & Zabih, R. (1999). An experimental comparison of stereo algorithms. IEEE
Workshop on Vision Algorithms: Theory and Practice, pp. 1-19.

Tsai, R. Y. (1987). A Versatile camera calibration technique for high accuracy 3D machine vision
metrology using off -the-shelf TV cameras and lenses. IEEE Journal of Robotics and
Automation, Volume RA-3, pp. 323–344.

 98

Vezhnevets, V., & Velizhev, A. (2005). GML Camera Calibration Toolbox (Version 0.4)
[Software]. MSU Graphics and Media Lab, Computer Vision Group. Available from web
site: http://graphics.cs.msu.ru/en/science/research/calibration/cpp .

Vision Research Inc. (2011). Vision Research, Phantom. Web site consulted July 2. 2011 :
http://www.visionresearch.com/home/ .

Visual Instrumentation Corporation. (2011, Jan). Visual Instrumentation Corporation -
Specializing in Precision Accessory Products for High Speed Video Imaging Cameras and
Applications. Retrieved July 2, 2011, from: http://www.visinst.com/index.html#Products.

Waveren, J. P. V. (2005). From Quaternion to Matrix and Back. Id Software, Inc. Retrieved May
17, 2011, from:
http://www.fd.cvut.cz/personal/voracsar/GeometriePG/PGR020/matrix2quaternions.pdf

Wu, H. P., & Chen, C. (2007). In R. Stolkin (Ed.), Scene reconstruction, pose estimation and
tracking, (pp. 221-242). Vienna, Austria: I-Tech.

Zhang, Z. (1996). Determining the epipolar geometry and its uncertainty: A review, Rapport de
recherche, Nº 2927, 11-37.

Zhang, Z. (1999). Flexible camera calibration by viewing a plane from unknown orientations.
International Conference on Computer Vision, pp. 666–673.

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Volume 22(11), pp. 1330–1334.

 99

11 Appendix A: Stereo Imaging
• Stereo imaging.

• Working with two cameras.

 100

11.1Stereo Imaging

11.1.1 Introduction
Any point in the space can be related by three coordinates (X, Y, Z). An image is represented in

2-D plane thus only two coordinates (x, y) are required to represent a point in the image. One
dimension is lost in the projection process. One of the most important tasks of Computer Vision is
to recover this lost dimension.

A common method for recover a lost dimension (depth) from images is to acquire a pair of
images , at the same time, using two cameras displaced by a known distance from each other,
where each pixel is a function of the corresponding point in the scene.

 In this sections, in order to describe the stereo vision methodology used in OpenCV, the
researched started by presenting the camera model, the basis on which relies the geometry
projections of a particular scene through the lenses to the imager, followed by the calibration, the
methods and routines that allows us to retrieve the intrinsic and extrinsic parameters and then
discuss the undistortion that discuss how to use those parameters to correct the lenses distortions of
a single camera.

The second part of this section will present the necessary steps for stereo imaging -
undistortion, rectification and correspondence.

Undistortion has the task of computing undistorted images by mathematically removing radial
and tangential distortions. Rectification in its turn relates the two cameras in the space by means of
rotations and translations and the result are pair of images row-aligned and rectified. Finally the
correspondence finds the same features in the left and right camera views and outputs a disparity
map.

11.1.2 Working With a Single Camera

11.1.2.1 Camera model.
The camera model is the model that describes geometrically how the light, reflected from an

object, travels through the camera lens and then to the imager. One of the models used to present
the geometric aspects of vision is the pinhole camera model. A pinhole is an imaginary plan with a
very small hole in the centre that blocks all the rays except those passing through the tiny aperture
as showed in Figure 11.1.

In a real pinhole camera a point
taken from a scene is projected onto
an imaging surface (imager), as a
result the image on the image plane
(or the projective plane) is always in
focus and the resulting image size
relative to scene located at a distance

Z depends only on the focal
length f of the camera .

An object in the scene with the
Figure 11.1: Pinhole camera model.

 101
length Xi is then projected into the object's imaging plane with a xi length. From Figure 11.1 is
possible to determine the following relation:

− x
f
= X

Z
⇔−x= f X

Z (11.1.1)

In order to simplify the mathematical operations and make disappear the negative sign, the
image plane and the pinhole plane are swapped, as showed in Figure 11.2 , and the object's image
is now right-side up.

The pinhole point becomes the centre of projection and the point that results from the
intersection of the image plan and the optical axis is called principal point. In this rearrangement
the rays travel from a specific point in the object towards the centre of projection and a more
simplified relation is obtained :

x
f
= X

Z
⇔ x= f X

Z (11.1.2)

The previous equation (101) need to be reformulated to model possible displacements
(c x , c y) of the imager centre coordinates from the optical axis. Thus a point in a scene
Q(X ,Y , Z) is projected in the projection plane at a pixel location (x imager , yimager) given by

the new equations:

x imager= f x (
X
Z
)+c x , yimager= f y(

Y
Z
)+c y (11.1.3)

The need to use two different focal length is due the fact that the individual pixel in the imager
may be rectangular and not square as ideally expected. The new focal equations for the focal
length are as follows:

Figure 11.2: Simplified pinhole camera model.

 102

f x=F sx ,[pixels]=[mm] [pixel]
[mm] (11.1.4)

f y=F s y , [pixels]=[mm] [pixel]
[mm] (11.1.5)

The transform that relates the real world coordinates (X i , Y i , Z i) to the points in the
projection plane (x i , y i) is called a projective transform and is given by the following relation:

q i=MQi (11.1.6)

 Where M, in this particular case, is the camera matrix.

[x i

y i

w]=[
f x 0 cx

0 f y cy

0 0 1][X i

Y i

Z i
]

11.1.2.2 Lens distortion.
Another issue to be taken in account are the imperfections of the lenses that introduces

distortions in the location of the pixels in the imager, thus new formulation need to be added to
model to correct this distortions.

Two main distortions are present in the cameras: radial distortions, that results from the shape
of the lenses, and tangential distortions that results from the assembly process of the camera.

Radial distortions happens near the edges of the imager resulting in a commonly known
“barrel” or “fish-eye” effect. This distortion is zero at the centre of the imager and increases as the
distance increases from the centre. To characterize radial distortions three terms are needed

K 1, K2 and a third one K 3 for lenses with high distortions such as fish-eye lenses. The
relocation of a point in the imager will be computed according the equations as follows:

xcorrected= x imager(1+K 1r 2+K 2 r 4+K 3r 6) (11.1.7)

ycorrected= y imager (1+K1 r2+K2 r 4+K 3 r6) (11.1.8)

Tangential distortion is the distortions that happens due the imperfections resulting from the
manufacturing process that prevents the lenses and the imager plane from being perfectly parallel.
In order to correct such distortions two additional parameters are taken in account:

xcorrected= x imager+[2p1 y+ p2(r
2+2x2)] (11.1.9)

ycorrected= y imager+[p1(r
2+2y2)+2p2 x] (11.1.10)

 103
 Therefore five parameters are needed to model radial and tangential distortions. In OpenCV this
parameters are normally grouped in a vector 5-by-1 [K1 K 2, p1 p2 K 3]

T . The third radial
parameter K 3 was introduced later in OpenCV and thus it appears in the fifth element of the
distortion vector.

11.1.3 Calibration
The previous section introduced the camera model and how to determine mathematically the

intrinsic and distortion properties of the camera. This section focus on how to use OpenCV to
compute the intrinsic matrix and the distortion vector.

OpenCV provides helpful number of algorithms to compute the camera matrix and distortion
parameters. The calibration is done by the routine cv::calibrateCamera and three additional
routines: cv::findChessboardCorners, cv::cornerSubPix and cv::drawChessboardCorners .

 This method requires that multiple views of a planar object are obtained by rotating and
translating in different angles this same object. This object is a known structure with a predefined
number of individual points.

11.1.3.1 Find Chessboard Corners.
The calibration method uses a chessboard as a planar object, thus given an image of a

chessboard the routine cv::findChessboardCorners() is used to locate a predefined number of corners
of that chessboard as in Figure 11.3.

image – Is the input image that contains the corners to be found, it must be an 8-bit grayscale or
a color image.

patternSize – Indicates how many corners are in each row/column of the board – cv::Size(nx,
ny); This means that for example in a standard chessboard the correct patternSize values would be
cv::Size(7, 7).

corners – Is the output vector that will be used to store the corners locations. This vector must
be preallocated and must be large enough to store all the corners on the board (nx * ny). They are

bool cv::findChessboardCorners(const Mat& image, Size patternSize, vector<Point2f>&
corners, int flags = CV_CALIB_CB_ADAPTIVE_THRESH +
CV_CALIB_CB_NORMALIZE_IMAGE);

Figure 11.3: Example of a 5-by-3 chessboard corner's detection.

 104
the locations of the corners in pixel coordinates.

flags – This argument can be used to implement one or more additional filtration steps to help
find the corners on the chessboard. The filters can be combined using a boolean OR.

The available filter are:

• CV_CALIB_CB_ADAPTIVE_THRESH - cv::findChessboardCorners by default computes
threshold in the image based on average brightness, but if this flag is set then an adaptive
threshold will be used instead.

• CV_CALIB_CB_NORMALIZE_IMAGE – When set causes the image to be normalized via
cv::equalizeHist before the thresholding being applied.

• CV_CALIB_CB_FILTER_QUADS - Once the image is thresholded, the algorithm attempts to
locate the quadrangles and then a variety of additional constraints are applied to those
quadrangles in order to reject the wrong ones.

The function cv::findChessboardCorners returns true if the function succeed finding all the
corners ordered into rows and columns as expected, or false otherwise.

11.1.3.2 Find Corners Sub-pixel.
Once the routine to find the chessboard corners was applied to all images is necessary to

compute the exact location of the corners to sub-pixel accuracy. This is done by the routine
cv::cornerSubPix() described in Appendix F (see Appendix F for point sub pixel accuracy).

In the presented calibration method a planar object was used. Before proceeding to the camera
calibration first is showed what it is possible to do with a planar object by means of planar
homography – mapping of points on a two dimensional planar surface to the imager.

11.1.3.3 Planar Homography.
Using homogeneous coordinates allow us to express Q and q points in the imager to which Q is

mapped. The homography is expressed by the following relation:

q̃=sH Q̃ (11.1.11)

Where q̃ and Q̃ are defined as:
q̃=[x y 1]T and Q̃=[X Y Z 1]T

H represents two parts: the physical
transformation that locates the plane as we see and the
and the projection that introduces the camera intrinsic
matrix.

The parameter s is the scale value, i.e. the object
will look the same even at different distances from the
camera, thus the homography transform can only be be
defined up to an arbitrary scale value s that is that
normally is set to 1. Figure 11.4: Generic point defined on a planar

calibration object.

 105
The physical transformation results from the rotation and translation that relates the chessboard

to the image plane. The previous equation can be then rearranged into a new one:

q̃=sH Q̃→ q̃=sMW Q̃ (11.1.12)

Where W and M are :

W=[R t] and M =[f x 0 c x

0 f y c y

0 0 1] (11.1.13)

The aim is to get the Q̃ ' (Figure 11.4 and Figure 11.5) a point defined only in a planar
surface, the chessboard plane. Assuming that the object is defined in a plane so that Z = 0 and
decomposing the rotation matrix R in each rotation component R=[r1 r 2 r 3] the
homography matrix H that maps the chessboard points onto the imager is then described by the
relation:

q̃=sH Q̃ ' (11.1.14)

Eliminating the third rotation element, we obtain :

[xy1]=sM [r 1 r2 r 3 t][X
Y
0
1]= sM [r1 r2 t][XY1]

Figure 11.5: Relation between a point in the planar object and the imager plane.

 106
From the previous equation (11.1.14 is possible to conclude that for each planar object view

there are six unknowns (three angles for rotation and three offsets for translation) for eight given
equations that maps a square into a quadrilateral (four corners times two coordinates (x, y)). Thus
given enough images it is possible to compute any number of unknowns.

Finally it is possible to answer the question – how the homography matrix H relates the points
on a source object plane to the points on the imager plane?

The answer are the two next equations :

pimager=Hpobject plane (11.1.15)

pobject plane=H−1 pimager (11.1.16)

Where pimager and pobject plane are:

pimager=[ximager

y imager

1] and pobject plane=[xobject

yobject

1]
The function that implements the presented homography formulation in OpenCV is

cv::findHomography() which has the following parameters:

srcPoints and dstPoints – Are matrices of CV_32FC2 type or vectors containing Point2f elements
as in vector < Point2f > srcPts. The first vector contains the object points (X i , Y i , 0) and the
second the points in the target plane, that normally is the imager plane.

method – The method chosen to compute the homography matrix, it can be set to 0 to use all the
points, CV_RANSAC to used a more robust method or the Least-Median method by setting the
method to CV_LMEDS.

ransacReprojThreshold – Defines the threshold value used to accept or reject a maximum
allowed reprojection error for the RANSAC method.

Computing multiple homographies from multiple planar object views is the method OpenCV
obtains the intrinsic parameters.

11.1.4 Camera Calibration
This subsection introduces how to compute the camera matrix and distortion parameters for one

camera and how to use them to correct distortions in the raw image. Firstly is considered how
many unknowns are related to each image and how this unknowns define the minimum number of
images needed.

For each image there are four intrinsic parameters (f x , f y , c x , c y) and five distortion
parameters : three radial (K 1, K 2, K 3) and two tangential parameters (p1, p2) . Intrinsic
parameters are related to 3D space and distortion parameters to 2-D geometry, this two kinds of
parameters are treated separately.

Mat cv::findHomography(const Mat& srcPoints, const Mat& dstPoints, Mat& status, int
method=0, double ransacReprojThreshold=0);

 107
Six equations, from three corners points are enough to solve the five distortion parameters, thus

only one view of a chessboard would be enough but for robustness more than one should be used.
To compute the extrinsic parameters is necessary to know the three rotation parameters
(Ψ ,Φ ,Θ) and three translation parameters (T x , T y ,T z) totaling ten intrinsic/extrinsic

parameters that need to be solved for each view of the chessboard.

 If N is the number of corners and K the number of images of the chessboard in different
positions:

• K images provides 2NK constrains (NK constraints for each x, y coordinate).
• Ignoring the five distortion parameters, we have 4 intrinsic parameters that are the same for

all the images and 6K extrinsic parameters
• To solve the unknowns requires that 2NK⩾6K+4⇔K (N−3)⩾2 . Having in mind

that to compute the homography are needed at most four corners that result in eight
parameters from (x , y) pairs, only four corners are taken in account no matters how
many corners are in the chessboard. This implies that K⩾2 and N is at least 4 (3-by-3
chessboard) are the minimum requirements to solve the calibration problem.

• For more precise results is recommended to use bigger number of images and a larger
chessboard rotated at different angles in order to obtain a good set of views.

Each one of those parameters mentioned above, in the unknowns context, are used in different
tasks :

• camera intrinsic matrix – Transform from 3-D coordinates to the imager 2-D coordinate.
The inverse can be done but only to represent a line in 3-D space to which a 2-D imager
point must correspond.

• distortion coefficients - Are used to correct the radial and tangential distortion in the raw
image.

• rotation and translation vectors – Tells where the chessboards were found and their
orientations.

The routine that computes the camera intrinsics and distortion parameters in OpenCV is
cv::calibrateCamera() and it is used internally in stereo calibration.

objectPoints – The input vector of Point3f
containing n elements with the physical
coordinates of each N corners on each one of
the K chessboard images, n=N×K . The
way this points are defined are important once the
manner of describing points in the object will
define the physical units and the structure of the
coordinate system used. As showed in Figure 11.6,
if each square of a chessboard has 20mm size then
the camera and object coordinates are in mm/20.
In the simplest case each square as unit one and
the corners are represented by integers coordinates.
Choosing a column to be all zero value it defines
that the location of the planar object relative to the

double cv::calibrateCamera(const vector<vector<Point3f> >& objectPoints, const
vector<vector<Point2f> >& imagePoints, Size imageSize, Mat& cameraMatrix, Mat&
distCoeffs, vector<Mat>& rvecs, vector<Mat>& tvecs, int flags=0);

Figure 11.6: Calibration object - chessboard 5-by-3.

 108
camera will be along that direction i.e. 1st column – x direction, 2nd column – y direction and 3rd

column – z direction. The procedure of building the object points for each calibration view's
pattern (Figure 11.6) is showed in Figure 11.7.

imagePoints – The input vector containing a a group of K vectors of Point2f elements that are
no more than the group of N corners coordinates from each calibration view given by the
cv::findChessboardCorners function.

imageSize – Defines the image size of the chessboards images from where the corners were
extracted.

cameraMatrix and distCoeffs – Are the intrinsic camera parameters outputted by the routine, or
optionally used as input matrices if CV_CALIB_USE_INTRINSIC_GUESS flag is used, affecting the
computed results. The way these inputs are used depends on the flags parameter. The camera
matrix is always 3-by-3 and the distortion coefficients a 5-by-1 matrix with the parameters in the
next order: k 1, K 2, p1, p2, K 3 .

rvecs – Output vector of rotations matrices computed for each calibration pattern view. Each
matrix represents a group of 3 vectors axis in three-dimensional space on camera coordinate
system around which the chessboard was rotated. It is possible to convert this vectors into 3-by-3
rotation matrices using the cv::Rodrigues() routine.

tvects – Output vector of translations estimated for each calibration pattern view in the camera
coordinate system. As stated in the first argument, the units of the camera coordinate system are
exactly the same as the ones assumed for the chessboard, i.e. if the chessboard square size was
defined in meters the translation will be in meters, if it was defined in inches the translation units
will be in inches and so on.

flags – The last argument allows to control how the calibration will be performed. Different
flags can be combined together with OR operator in order.

Once known the intrinsic and extrinsic parameters the next step is to make use of this
parameters to correct the image distortions.

11.1.5 Undistortion
The routine that was previously discussed, cv::calibrateCamera, only provides a group of

valuable parameters that need to be used in further code implementation.

One of the tasks to be done with the calibration parameters is to correct the distortion effects.
OpenCV provides three main routines that allows to do exactly that: cv::undistort(),
cv::initUndistortRectifyMap() and cv::remap(). The first function transforms the image to compensate
radial and tangential lens distortion and it is a combination of the last two functions. This function

Figure 11.7: Building object point's vector of vector of 3D points.

 109
should be used only when the distortion parameters are changing however if the distortion maps
are not changing the use of this routine is inefficient and time consuming specially when dealing
with video sequences. The function has the following arguments:

src – The input distorted image to be corrected.

dst – The output corrected image with the same size and type as the input image.

cameraMatrix – The input camera matrix that should have different parameters between
different images remapping process.

distCoeaffs – The input 5-by-1 vector of distortion coefficients for each input image.

newCameraMatrix – The input new camera matrix that by default is the same as cameraMatrix
but it can be adapted to the new region of interest in the source image. This new camera matrix is
obtained with cv::getOptimalNewCameraMatrix() function.

To compute the undistortion and rectification maps cv::initUndistortRectifyMap() function is
used, it contains the following arguments:

cameraMatrix – The input camera matrix that is constant for a sequence of images.

distCoeffs – The input 5-by-1 distortion coefficients vector.

R – The 3-by-3 optional rectification transformation matrix obtained with cv::stereoRectify(), if
this matrix is empty the identity matrix is assumed i.e. no rotation will be assumed for any axis.

newCameraMatrix - The new camera matrix that for a single camera can be the same as the
cameraMatrix or obtained with cv::getOptimalNewCameraMatrix().

size – The size of the corrected image, it can be the same size as the original image or other if a
different subregion of the image is used.

m1Type – The type of the first output map that can be CV_32FC1 or CV_16SC2.

map1 and map2 – The first and second output maps to be used by cv::remap function.

To apply the remapping maps to an image or sequence of images for video capture the
cv::remap function need to be called. It has the following arguments:

src – The current image to be subjected to the geometrical transformations.

dst – The output image with same size of map1 and the same type of src image.

void cv::undistort(const Mat& src, Mat& dst, const Mat& cameraMatrix, const Mat&
distCoeffs, const Mat& newCameraMatrix=Mat());

void cv::initUndistortRectifyMap(const Mat& cameraMatrix, const Mat& distCoeffs, const
Mat& R, const Mat& newCameraMatrix, Size size, int m1type, Mat& map1, Mat&
map2);

void cv::remap(const Mat& src, Mat& dst, const Mat& map1, const Mat& map2, int
interpolation, int borderMode = BORDER_CONSTANT, const Scalar& borderValue =
Scalar());

 110
map1 and map2 – The first and second map of x and y coordinates, respectively. If the maps are

in the original floating-point format they can be converted to fixed-point representation for a faster
computation, the most used conversion is from (CV_32FC1, CV_32FC1) to (CV_16SC2, CV_16UC1) and
it can be done by using cv::convertMaps().

interpolation – The interpolation method used in the remapping process.

borderMode - The pixel extrapolation method, by default is set to constant
(BORDER_CONSTANT).

borderValue - The value used to represent the pixel outliers if the borderMode is set to constant.

 111

11.2Working With Two Cameras

11.2.1 Stereo Imaging
There are several ways to recover 3D information from 2D images and one of them humans use

frequently – the stereo imaging.

Previously was discussed in detail the camera model, how to model the lenses distortion and
how to retrieve the necessary parameters to calibrate one single camera and subsequently correct
the distorted images. The goal of this section is to construct 3D representations of the images,
captured from two cameras relatively at the same time, using the basis achieved in the previous
section to perform the stereo calibration, rectification and correspondence.

11.2.1.1 Stereo Geometry.
The geometry of a stereo imaging is shown in the next figure (see Figure 11.8). To simplify, the

model is composed by two identical cameras separated in the x direction from each other by a
distance b . The image planes are ideally coplanar, which in reality doesn't happen specially
when we want to have a bigger field of view. This topic will be discussed in more detail in
rectification.

An object in the scene is viewed by the two cameras at different positions in the image plane,
the displacement between this locations is called disparity. The plane passing through the object
point and the centres of projection is called epipolar plane and the intersection of this plane with
the imager plane defines the epipolar line. Also ideally, all the object points in one image will be in

Figure 11.8: Stereo configuration geometry .

 112
the same row in the second image. In real cases there are some disparity vertically or horizontally,
depending on the cameras arrangement, that need to be corrected.

Assuming that the origin of the coordinate system coincides with the left centre of projection,
defining the disparity d as follows:

d=x L− xR (11.2.1)

By similarity of the triangles is possible to obtain the following relationship:

T−(x L− xR)
Z− f

=T
Z
⇒Z= fT

xL− xR (11.2.2)

11.2.1.2 Epipolar Geometry.
The previous assumption that the images planes are coplanar does not happen in a real

situations. In some stereo configurations the cameras are oriented in such a way that their optical
axis meet at a point in space in order to increase the field of view, this physical configuration
showed in Figure 11.9 is known as standard stereo configuration.

In a standard stereo configuration the epipolar lines are no longer aligned with the image rows
and thus the alignment need to be computed mathematically to obtain a row-aligned pair of images.

To understand how the alignment is done mathematically the researcher starts by presenting the
new nomenclature. When a point on the object scene P is projected into the right and left
image plane, pR and pL respectively, that point can be anywhere along a single line formed
by the point that is the projection of point P and the centre of projection (OL and OR) on that
camera. In Figure 11.9 the two lines are defined by the two segments pR OR and pL OL .
The two segments correspond exactly to the epipolar lines when projected in the other imager
plane i.e. pR OR corresponds to pLeL and pL OL corresponds to pR eR . Thus

Figure 11.9: Standard stereo configuration's epipolar geometry.

 113
given a projection of point in one image plane, its matching view in another image plane must lie
along the corresponding epipolar line – this constraint is known as the epipolar constraint and it
reduces the matching from 2D search to 1D search along the epipolar lines across the two imagers
resulting in the rejection of bad points and less computational costs.

Additionally both cameras need to be related in physical space. The relation between the two
cameras is achieved by computing the essential matrix E and the fundamental matrix F. The matrix
E contains information about the rotation and translations that relates the two cameras and thus be
able to relate a point in one image to a line in the other.

F contains the same information as E and additionally the intrinsics parameters of both cameras.
Because F takes in account the intrinsics parameters it relates the two cameras in pixels
coordinates.

To obtain matrix F for a stereo configuration OpenCV provides the function
cv::findFundamentalMat() that takes the following arguments:

points1 and points2 – Are the n-by-2 or n-by-3 floating-point (single or double precision)
arrays containing the n=N×K 2-D points that where collected from the (left, right)
chessboard images.

method – This parameter defines the method to be used to compute the fundamental matrix. It
can be one of the four following values:

• CV_FM_7POINT, n = 7 – Uses only 7 points and impose that matrix F must be of rank 2 to
fully constraint the matrix. This constraint is not absolutely unique and the routine may
return three different matrices and, as mentioned, the fundamental matrix allocation need
to be done for a 9-by-3 array.

• CV_FM_8POINT, n ≥ 8 – This method solves F as a linear system of equations, if more than 8
points were supplied then a linear least-square error is minimized across all points.

• CV_FM_RANSAC, CV_FM_LMEDS, n ≥ 8 – The previous two methods are very sensitive to
outliers. This last two methods are more robust once they have the ability to recognize and
remove those outliers. For both methods it is required two have much more points than the
minimum.

param1 and param2 – This two parameters are related to the last methods RANSAC and LMedS.
The first parameter defines the minimum distance in pixels from a point to the epipolar line from
where a point is considered an outlier while the second parameter is the desired confidence that
implicitly tells the routine how many times to iterate.

The function returns the fundamental matrix using one of the four available methods.

11.2.1.3 Epipolar Lines.
Having the fundamental matrix is possible to compute the epipolar lines. The routine that does

this for us is cv::computeCorrespondEpilines(). Given a list of N points in one image it computes the
correspondent epipolar lines for each point in the other image. Each epipolar line is described by
three coefficients a, b and c that define a line equation. It has the following arguments:

Mat cv::findFundamentalMat(const Mat& points1, const Mat& points2, int method =
FM_RANSAC, double param1=3., double param2 = 0.99);

 114

points – The input vector of image points vector< Point2f > or optionally it can be an N-by-1 or
1-by-N matrix of CV_32FC2 type.

whichImage – This parameter is set to 1 or 2 to indicate which one of the images belongs the
points.

F – The fundamental matrix that relates the points in both images. It can be obtained by using
the function previously described cv::findFundamentalMat() or cv::stereoRectify(). Before using F
matrix is wise to verify if it is not empty.

lines – The output vector that contains the coefficients of the line equation corresponding to
each of the inputted image points.

11.2.2 Stereo Calibration
After introducing the stereo basis and methodology discussed up to this point this section will

cover stereo calibration, stereo rectification and stereo correspondence. Stereo calibration has the
task to compute the geometrical relationship between the two cameras in the space while stereo
rectification corrects the individual images so they appear to be taken from two cameras with row-
aligned coplanar image planes as ideally expected. Stereo correspondence is the last step to be
performed , it matches the image points from an object in 3D space seen by two different camera
over areas where the two camera views overlap.

11.2.2.1 Stereo Cameras Calibration.
Stereo calibration is the process of computing the geometrical relationship between the two

cameras in space. It depends on finding the single rotation matrix R and translation vector T , that
relates the right camera to the left camera , obtained by the function cv::stereoCalibrate(). This
function operates similarly to cv::calibrateCamera except now it deals with two cameras and it can
compute the camera matrices, distortion coefficients, essential matrix E and fundamental matrix F.
The function cv::stereoCalibrate() has the following parameters:

objectPoints – The vector of vectors containing the physical coordinates of each of the N points
on each of the K images of the 3D object such that n=N×K where N is the number of
points and K the number of images. When using chessboards as the 3D object the Z-coordinate
of the points on the chessboard plane is usually set to 0 but any known 3D points may be used.
This argument is crucial in the manner of describing the points on the object and to define the
physical units and the structure of the coordinate system to be used from this point.

imagePoints1 and imagePoints2 – The vector of vectors containing the left and right pixel

void cv::computeCorrespondEpilines(const Mat& points, int whichImage, const Mat& F,
vector<Vec3f>& lines);

double cv::stereoCalibrate(const vector<vector<Point3f> >& objectPoints, const
vector<vector<Point2f> >& imagePoints1, const vector<vector<Point2f> >&
imagePoints2, Mat& cameraMatrix1, Mat& distCoeffs1, Mat& cameraMatrix2, Mat&
distCoeffs2, Size imageSize, Mat& R, Mat& T, Mat& E, Mat& F, TermCriteria termCrit
= TermCriteria(TermCriteria::COUNT+ TermCriteria::EPS, 30, 1e-6), int flags =
CALIB_FIX_INTRINSIC);

 115
coordinates, respectively, of all of the object reference points supplied in objectPoints, i.e. they
contain the returned values for K calls to cv::findChessboardCorners for the left and right
camera views.

cameraMatrix1 and cameraMatrix2 – The input/output 3-by-3 camera matrices for cameras 1
and 2, respectively.

distCoeffs1 and distCoeffs2 – The input/output 5-by-1 distortion matrices for cameras 1 and 2,
respectively. These matrices are filled in such order that the two first parameters are the first two
radial parameters followed by the two tangential parameters and the third radial parameter.

imageSize – The image size that is used only to initialize the intrinsic camera matrix.

R and T – The rotation and translation matrices, relating the right camera to the left camera – the
routine main finality.

E and F – The output 3-by-3 essential and fundamental matrices.

termCrit – Sets the criteria to stop the internal optimization whether after a certain number of
iteration or when the computed parameters change by less than a specific value. A typical value is
cv::TermCriteria(CV_TERMCRIT_ITER && CV_TERMCRIT_EPS, 100, 1e-5).

flags – Define the way in which the intrinsic parameters are used. If set to
CV_CALIB_FIX_INTRINSIC, then these matrices are used as input and are obtained by using the
function cv::calibrateCamera. If flags is set to CV_CALIB_USE_ INTRINSIC_GUESS these matrices are
used as a starting point to optimize further the intrinsic and distortion parameters for each camera
and will be set to the refined values on return from cv::stereoCalibrate. The first case is preferred
once cv::calibrateCamera provides a more robust method to estimate the intrinsic and extrinsic
parameters individually for each camera.

11.2.3 Stereo Rectification
The aim of stereo rectification is to reproject the left and right image of the two cameras so that

they reside in the exact same plane, with image rows aligned into a frontal parallel configuration,
or image column aligned in the case of vertical configuration.

11.2.3.1 Uncalibrated stereo rectification - Hartley’s algorithm.
This algorithm has the advantage of performing online stereo calibration by observing points in

the scene however it does not have the notion of image scale - the feature points have the same 2D
coordinates even though the 3D object positions (not orientation) differ.

The function cv::stereoRectifyUncalibrated() compute the homographies used for rectification and
has the following parameters.

points1 and points2 – The function takes as input two 2-by-K matrices with the corresponding
points between the left and right images.

F - The fundamental matrix F obtained by using the cv::findFundamentalMatrix.

imageSize – Describes the width and height of the images that were used during calibration.

Hl and Hr – The output rectification homography matrices for the first and for the second

bool cv::stereoRectifyUncalibrated(const Mat& points1, const Mat& points2, const Mat& F,
Size imgSize, Mat& H1, Mat& H2, double threshold = 5);

 116
images respectively.

threshold – If the distance from points to their correspondence epilines exceeds the threshold
value, the corresponding point is considered outlier and eliminated.

After obtaining the homography matrices a last step need to be done to obtain the 3-by-3
rectification transformations R1 and R2 in object space. this is done by preprocessing the
homographies using the next relations:

R1=cameraMatrix1
−1×H 1×cameraMatrix1

R2=cameraMatrix2
−1×H 2×cameraMatrix2

 (11.2.3)

11.2.3.2 Calibrated stereo rectification: Bouguet's algorithm.
This method minimize the amount of change reprojection produces for each of the two images

while maximizing common viewing area. Applying the Bouguet's rectification method produces
the ideal stereo configuration with a perfectly undistorted and row-aligned stereo images. The
function that performs this task is cv::stereoRectify() and has the following arguments:

cameraMatrix1 and cameraMatrix2 – The input camera matrices of the left and right cameras
returned by cv::stereoCalibrate function.

distCoeffs1 and distCoeffs2 – The input distortion parameters matrices of the left and right
cameras returned by cv::stereoCalibrate algorithm.

 imageSize – Is the size of the chessboard images used to perform the calibration.

R and T – The input rotation and translation matrices returned by cv::stereoCalibrate function.

Rl and Rr – Are the returned 3-by-3 row-aligned rectification rotations for the left and right
image planes.

Pl and Pr – The output 3-by-4 left and right projection equations Pl and Pr.

Q – The optional 4-by-4 reprojection matrix. When given a two dimensional homogeneous
point and its associated disparity, to project the point into three dimensions.

Flags – The default value set the disparity at infinity (CV_CALIB_ZERO_DISPARITY) with the
principal point of each camera having the same pixel coordinates in the rectified image. Changing
the default value means that the cameras are verging toward each other.

11.2.3.3 Rectification Maps.
Once the rectification rotations and the projection equations were computed is possible to pre-

compute the left and right rectifications maps for the left and right camera views using two
separate calls to cv::initUndistortRectifyMap function. The resulting maps are used by cv::remap
function that is called once for each left and right camera's views. The arguments of this two

void cv::stereoRectify(const Mat& cameraMatrix1, const Mat& distCoeffs1, const Mat&
cameraMatrix2, const Mat& distCoeffs2, Size imageSize, const Mat& R, const Mat& T,
Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q, int flags=CALIB ZERO DISPARITY);

 117
functions are described in the subsection Working with a Single Camera.

 After computing the rectifications maps for the raw images cv::remap is used to take pixels
from one place in the image and map them to another place given by mapx and mapy. In this way
the feature points become horizontally aligned in the undistorted rectified images. In the next
figure (Figure 11.10) is displayed two video captures after subjected to the rectification
(undistortion+rectification) process, the horizontal lines were added to help to visualize the pixel
row alignment obtained between the left and right capture.

11.2.4 Stereo Correspondence
Matching a 3D point in the two different camera views can be computed only over visual areas

in which the views of the two cameras overlap. If rectification was done in both images the stereo-
matching process is the next step to be performed.

OpenCV has different approaches to compute the disparity between two images captured from
a stereo configuration. The block matching and semi-global block matching method are the ones
that present better results with less computational costs.

The Semi Global Block-Matching and Block-Matching parameters and the internal buffers are
kept in a data structure initialized by cv::StereoSGBM() (or similarly by cv::StereoBM()) as follows:

Figure 11.10: Video sequences after stereo rectification.

 118

presetFlag – This preset parameter can be set to any of the following values:

CV_STEREO_BM_BASIC (sets all parameters to their default values), CV_STEREO_BM_FISH_EYE
(sets parameters for wide-angle lenses), CV_STEREO_BM_NARROW (sets parameters for stereo
cameras with narrow field of view).

minDisparity – The minimum acceptable disparity to be considered correct. By default this
value is set to 0.

numberOfDisparities – The maximum disparity minus the minimum disparity. If set to non-zero
value it overrides the default pre set value. It must be a number multiple of 16.

SADWindowSize – Is the size of the averaging window used to match pixel blocks. The block-
matching window size must be equal or greater than 1 and odd number. If it is set to one, instead of
blocks, the function matches single pixel. Larger values gives better robustness to noise, but origins
blurry disparity maps. Values between 3 and 11 may give the better results.

preFilterCap – Is the value, ranging between 0 and 63, for the Tomasi cost function to limit the
values to [−preFilterCap ; preFilterCap] interval.

uniquenessRatio – Is the value that defines the percent by which the minimum cost function
value should be considered better than a second good match value. Values within the range 5-15
are recommended.

speckleWindowSize – The integer value that defines the threshold disparity regions to be
considered noise. To disable the speckle filter this value must be set to zero otherwise values within
the range 50-200 are advised.

speckleRange – The maximum disparity variation within each region. If speckleWindowSize is
a non-zero value this value must be positive and multiple of 16. Values of 16 and 32 are advised.

disp12MaxDiff – The maximum allowed difference between the first and second disparity
image validation. To disable the validation the value should be set to a negative value.

fullDP – By default the function only considers 5 directions for the matching, if this value is set
to true all the 8 directions are taken in account. Setting this value to true is not advisable for real
time video processing due to its high computational costs.

After having initialized the block-matching group of variables the disparity maps can be
computed using the operator cv::StereoSGBM::operator() (or similarly cv::StereoBM::operator()) as
follows:

left – The left camera's image 8-bit single channel or 3-channel image.

right – The right camera's image with the same size and same type as the left camera's image.

disp – The resulting single channel disparity image of 16-bit signed type with the same size as
the left and right camera's image. To convert it to floating-point type(or other type) each disparity

class cv::StereoSGBM{ …; int presetFlag; int minDisparity; int numberOfDisparities; int
SADWindowSize; int preFilterCap; int uniquenessRatio; int speckleWindowSize; int
speckleRange; int disp12MaxDiff; bool fullDP; … }

void cv::StereoSGBM::operator()(const Mat& left, const Mat& right, Mat& disp);

 119
value need to be divided by the number of disparities times 16 as follows:

disp.convertTo (disp8UType ,CV _ 8U ,256/ nOfDisparities) (11.2.4)

Both cv::StereoSGBM::operator() and cv::StereoBM::operator() functions operators takes undistorted
rectified stereo images pairs and outputs a disparity map given its state structure. The block-
Matching settings can be updated or readjusted by using trackbars values and imposing some
validation for the state variables that requires specific input values.

 120

12 Appendix B: MELFA Basic IV
Presentation

• Robot programming Language – MELFA.

 121

MELFA BASIC IV
Robot Programming Language -MELFA

Mitsubishi robots use their own programming
language for the robot controller, MELFA Basic IV.

The robot programming language MELFA BASIC IV
is powerful yet easy to learn, ensuring that users
can start producing their own powerful and efficient
robot programs in a very short time.

CosiRob is programming environment for all
Mitsubishi robots

Piotr Kohut, Ph.D

 122

Main Main characteristics of
characteristics of RV-2AJ

3

Manufacturer Mitsubishi-Electric

No DOF 5

Robot weight 17 [kg]

range 410 [mm]

Repeatability +/-0.02 [mm]

Max. load 2 [kg]

Max. speed 2100 [mm/s]

Max. No of Tasks 32

Max. No inputs / outputs 240 / 240

AC power 230 [V] / 50 [Hz]

It is ideal for the applications (testing,material handling,training...), it opens
up a completely new range of possibilities with a speed of up to2,100mm/s,
significantly improved repeatability of ±0.02mm and a handling pay load up to 2kg

θ1

θ2

θ3

θ4

θ5

Robot system components

Extension option cards:

 123

Multitasking function for parallel execution of multiple tasks. A 64-bit RISC processor with DSP
provides ample power for 3-D circular and linear interpolation, and for multitasking with up to
32 programs running in parallel.

Robot controller CR-1

7

The robot controller has a 64-bit RISC processor and can be programmed
quickly and easily in MELFA BASIC IV.

 124

Controller CR-1 – Teaching Pendant

8

Controller CR1
TeachBox

Robot

Robot controlling by means of
Teach Box

Frame Coordinate Systems
(Spaces in which the robot can be controlled)

 125

Joint space – JOINT jog

Adjusts the coordinates
of each axis
independently in angle
units

Cartesian space – XYZ jog

Adjusts the axis coordinates
along the direction of the
robot coordinate system.
The X, Y, and Z axis
coordinates are adjusted in
mm units.
The A, B, and C axis
coordinates are adjusted in
angle units.

 126

Three axes XYZ jog

Adjusts the X, Y, and Z axis
coordinates along the direction
of the robot coordinate system in
the same way as in XYZ jog
feed.

TheJ4, J5, And J6 axes are
adjusted independently in the
same way as in JOINT jog feed.

The X,Y, And Z axis coordinates
are adjusted in mm units.
The J4, J5, and J6 axis
coordinates are adjusted in
angle units.

TOOL jog

Adjusts the coordinates of each axes along the direction of the hand tip.
The X,Y, And Z axis coordinates are adjusted in mm units.
The A,B,and C axis coordinates are adjusted in angle units.

 127

CYLINDER jog

Adjusting the X-axis coordinate
moves the hand in the radial
direction away from the robot's
origin. Adjusting the Y-axis
coordinate rotates the arm
around the J1 axis. Adjusting the
Z-axis coordinate moves the
hand in the Z direction of the
robot coordinate system.

Adjusting coordinates of the A,
B,and C axes moves the hand in
the same way as in XYZ jog feed.

The X and Z axis coordinates are
adjusted in mm units.
The Y, A, B, and C axis
coordinates are adjusted in angle
units

Programming

• Programming by MELFA BASIC IV
using COSIROP/COSIMIR

15

 128

 129

Names for variables of the type position, joint, arithmetic, and character string begin
with a certain character.

The rule is:

P = Positional variable

J = Joint variable

M = Arithmetic variable

C = Character string

Declaration of variables

 130

Positions variables
Variables whose names begin with character P are considered position
variables. If it is defined by the DEFPOS instruction, it is possible to specify a
name beginning with a character other than P.

It is possible to reference individual coordinate data of position variables.
in this case, add "." and the name of a coordinate axis, e.g. "X," after the
variable name.

P1.X,P1.Y, P1.Z,P1.A,P1.BP1.C,P1.L1,P1.L2

The unit of the angular coordinate axes A, B, and C is radians, U set the DEG
function to convert it to degrees.

Example)
P1=(110,-227,-148,45,180,0,0)
M1=P1.X (Unit:mm)
M2=DEG(P1.A) (Unit:degree)
DEGPOSL10
MOVL10

Positional
The syntax for position constants is as shown below.

P1 = (300, 100, 400, 180, 0, 180, 0, 0) (7, 0)

 131

A character string variable should start with J. If it is defined by the DEFJNT
instruction,it is possible to specify a name beginning with a character other than J.
It is possible to reference individual coordinate data of joint variables.
In this case, add "." and the name of a coordinate axis, e.g. "J1," after the variable
name.
JDATA.J1, JDATA.J2, JDATA.J3, JDATA.J4, JDATA.J5, JDATA.J6, JDATA.J7,
JDATA.J8

The unit of the angular coordinate axes A, B, and C is radians. Use the DEG
Function to convert it to degrees.

Example)
JSTARAT=(10,30,90,0,90)
JDATA=JSTART
DIMJ3(10)
M1=J1.J1 (Unit:radian)
M2=DEG(J1.J2)
DEFJNTK10
MOVK10

Joints variables

Joint
The syntax for the joint is the following:

Example)
6axisrobot J1=(0,10,80,10,90,0)
6axis+Additional axis J1=(0,10,80,10,90,0,10,10)
5axisrobot J1=(0,10,80,0,90)
5axis+Additional axis J1=(0,10,80,0,90,0,10,10)

 132

24

Programming: MELFA BASIC IV

SYNTAX

10 MOVP1 WTHM_OUT(17)=1

1. 2. 4.3.

1. -Line Nos. can be any integer from 1 to 32767. One line can have up to 127 characters

2. -Command statement

3. -Command parameter

4. -Appended statement (MOV, MVS, MVR, MVR2, MVR3, MVC)

Motion Commands

 133

Joint interpolation movement(MOV)

Joint interpolation movement (MOV)

The robot moves with joint axis unit interpolation to the designated position. (The robot
interpolates with a joint axis unit, so the end path is irrelevant.)

MOV- The robot moves to the designated position with joint interpolation. An appended
statement WTH or WTHIF can be designated.

MOVP1 'Moves to P1.

MOVP1+P2 ' Moves to the position obtained by adding the P1 and P2 coordinate elements.

MOVP1,-50 ‘ Moves from P1 to a position retracted 50mm in the hand direction.

MOVP1 WTH M_OUT(17)=1.

' Starts movement toward P1, and simultaneously turns output signal bit 17 ON.

MOVP1 WTHIF M_IN(20)=1,SKIP

'If the input signal bit 20 turns ON during movement to P1, the movement to P1 is stopped,
‘and the program proceeds to the next stop.

Program Explanation

10 MOV P1 ‘ (1) Moves to P1 with joint interpolation.

20 MOV P2, -50 ' (2) Moves from P2 to a position retracted 50 mm in the hand
direction

30 MOV P2 ' (3) Moves to P2 with joint interpolation

40 MOV P3, -100 WTH M_OUT(17) = 1 ' (4) Starts movement form P3 to a position retracted 100 mm
in the hand direction and turns ON output signal bit (at
the same time) .

50 MOV P3 ' (5) Moves to P3

60 MOV P3 ,-100 ' (6) Returns from P3 to a position retracted 100mm in the
hand direction

70 END ‘ Ends the program

 134

Linear interpolation movement(MVS)

The end of the hand is moved with linear interpolation to the designated position.

MVS -The robot moves to the designated position with linear interpolation. An appended
statement WTH or WTHIF can be designated.

MVS - The robot moves to the designated position with linear interpolation. An appended
statement WTH or WTHIF can be designated.

Statement example

MVS P1. ' Moves to P1

MVSP1+P2 ' Moves to the position obtained by adding the P1 and P2 coordinate elements.

MVSP1,-50 ' Moves from P1 to a position retracted 50mm in the hand direction.

MVSP1 WTH M_OUT(17)=1

' Starts movement toward P1, and simultaneously turns output signal bit 17 ON.

MVSP1 WTHIF M_IN(20)=1,SKIP

' If the input signal bit 20 turns ON during movement to P1, the movement to P1 is stopped,
and ‘ the program proceeds to the next stop.

Program Explanation

10 MVS P1, -50 ‘ (1) Moves with linear interpolation from P1 to a position
retracted 50mm in the hand direct.

20 MVS P1 ' (2) Moves to P1 with linear interpolation

30 MVSP1,-50 ' (3). Moves with linear interpolation from the current position
(P1) to a position retracted 50 mm in the hand direction

40 MVS P2, -100 WTH M_OUT(17) = 1 ' (4) Output signal bit 17 is turned on at the same time as the
robot starts moving

50 MVS P2 ' (5) Moves to P2 with linear interpolation

60 MVSP2,-100 ' Moves with linear interpolation from the current position (P2)
to a position retracted 100 mm in the hand direction

70 END ‘ Ends the program

 135

Circular interpolation movement (MVR)

Circular interpolation movement

The robot moves along an arc designated with three points using 3D circular
interpolation. If The current position is separated from the start point when
starting circular movement, the robot will move to the start point with linear
operation and then begin circular interpolation.

Command Explanation

MVR Designates the start point, transit point and end point, and moves the robot with
circular interpolation in order of the start point→transit point → end point An
appended statement WTH or WTHIF can be designated

MVR P1,P2,P3

MVR2 Designates the start point, end point and reference point, and moves the robot with
circular interpolation from the start point → end point without passing through the
reference point. An appended statement WTH or WTHIF can be designated

MVR2 P1,P3,P2

P2 P3

P1

P3

P1 P2

 136

MVR3 Designates the start point, end point and center point, and moves the robot with
circular interpolation from the start point to the end point. The fan angle from the
start point to the end point is 0 deg. < fan angle < 180 deg. An appended statement
WTH or WTHIF can be designated

MVR3 P1, P3, P2

MVC Designates the start point (end point), transit point 1 and transit point 2, and moves
the robot with circular interpolation in order of the start point → transit point 1 →
transit point 2 → end point . An appended statement WTH or WTHIF can be
designated.

MVC P1,P2,P3

P3

P1 P2

P2

P3

P1

Program Explanation

10 MVR P1, P2, P3
WTH M_OUT(18) = 1

‘ (1) Moves between P1 . P2 . P3 as an arc. The robot current position before movement is
separated from the start point, so first the robot will move with linear operation to the start
point. (P1) output signal bit 18 turns ON simultaneously with the start of circular movement.

20 MVR P3,P4,P5 ' (2) Moves between P3 . P4 . P5 as an arc.

30 MVR2 P5,P7,P6 ' (3) Moves as an arc over the circumference on which the start point (P5), reference point
(P6) and end point (P7) in the direction that the reference point is not passed between the
start point and end point.

40 MVR3 P7,P9,P8 ' (4) Moves as an arc from the start point to the end point along the circumference on which
the center point (P8), start point (P7) and end point (P9) are designated.

50 MVC P9,P10,P11 ' (5) Moves between P9 . P10 . P11 . P9 as an arc. The robot current position before
movement is separated from the start point, so first the robot will move with linear operation
to the start point.(1 cycle operation)

60 END. ' Ends the program

 137

Motion types: Continuous movement (CNT)

Continuous movement (CNT)

The robot continuously moves to multiple movement positions without stopping at each
movement position. The start and end of the continuous movement are designated with the
command statement. The speed can be changed even during continuous movement.

CNT denotes the start and end of the continuous movement.

CNT1denotes the start and end of the continuous movement.

CNT 1, 200, 300-Designates the start of the continuous movement, and designates that the
start point neighbourhood distance is 200mm, and the end point neighbourhood
distance is 300mm

CNT0 denotes the end of the continuous movement.

10 CNT 0 ‘ invalidate continuous movement

20 MOV P1 ‘ axis interpolation to position 1

30 MOV P3 ‘ axis interpolation to position 3

40 CNT 1,200,300 ‘ validate continuous movement

50 MVS P5 ‘ linear interpolation to position 5

60 CNT 0 ‘ invalidate continuous movement

70 END ‘ program end

 138

The percentage of the acceleration/deceleration in respect to the maximum
acceleration/deceleration, and the movement speed can be designated.

Acceleration/deceleration time and speedcontrol

ACCEL Designates the acceleration during movement and the deceleration as a
percentage (%) in respect to the maximum acceleration/deceleration speed. or
disabled

.

OVRD Designates the movement speed applied on the entire program as a percentage
(%) in respect to the maximum speed

JOVRD Designates the joint interpolation speed as a percentage (%) in respect to the
maximum speed

SPD Designate the linear and circular interpolation speed with the hand end speed
(mm/s)

OADL This instruction specifies whether the optimum acceleration/deceleration function
should be enabled

ACCEL. Sets both the acceleration and deceleration to 100%.

ACCELL 60,80 Sets the acceleration to 60% and the deceleration to 80

OVRD 50 Sets the joint interpolation, linear interpolation and circular interpolation to
50% of the maximum speed.

JOVRD 70 Set the joint interpolation operation to 70% of the maximum speed.

SPD 30 Sets the linear interpolation and circular interpolation speed to 30mm/s.

OADL ON This instruction enables the optimum acceleration/deceleration function.

10 ACCEL 100,50 ‘ 100 means 100% = 0.2s acceleration;

‘ 50 means 200% = 0.4s deceleration

20 MOV P1 ‘ axis interpolation to position 1

30 MOV P2 ‘ axis interpolation to position 2

0,2s
[%]A

% 100
t ⋅=

Where A –ACCEL command’s parameter

 139

SPEED evaluation:

For joint interpolated movement

Movement speed during joint interpolation Controller (T/B) setting value×
OVRD command setting value × JOVRD command setting value.·

For linear interpolated movement

Movement speed during linear and circular interpolation Controller (T/B)
setting value ×OVRD command setting value× SPD command setting value.

Hand control

Command Explanation

HOPENx

HCLOSEx

DLY xxx

Opens the designated hand x

Close the designated hand x

Wait for the xxx seconds for the completion a previous task

Command Explanation

HOPEN 1
HOPEN 2
HCLOSE 1

Opens hand No1
Opens hand No1
Closes hand No1

 140

Timer (DLY)

The program can be delayed by the designated time, and the output
signal can be output with pulses at a designated time width

Syntax:
DLY value where value -time value (from 0.01s)

Ex
100 DLY 1 -’ Waits for only 1second

110 M_OUT(4)=1 DLY 0.5 –’Turns on output signal bit 10 for only
0.5 seconds.

120 HOPEN 1
130 DLY 0.5 - -’ Waits for only 0.5 seconds

Inputting and outputting external signals

Command Description

M_IN(xx) returns the value of the input signal

M_OUT(xx) writes or references external output signal

WAIT Waits for the input signal to reach the designated state

CLR Clears the general-purpose output signal according to the
output signal reset pattern in the parameter

This section explains the general methods for signal control when controlling the robot via
an external device (e.g., PLC)

Input signals

Signals can be retrieved from an external device, such as a programmable logic controller.
The input signal is confirmed with a robot status variable (M_IN(),

Output signals

Signals can be output to an external device, such as a programmable logic controller. The
signal is output with the robot status variable (M_OUT(), etc.)

 141

13 Appendix C: VideoStrobe & VideoFlood
LEDs

• VideoStrobe and VideoFlood LEDs.

• LEDs arrays specifications.

• VideoFlood LED light comparison table.

 142

13.1VideoStrob and VideoFlood LEDs

Figure 13.1: Video Strobe - Flood Controller and 3-by-4 LED Array used during laboratory experiment 03.
Adapted from VideoStrobe & VideoFlood LEDs by Visual Instrumentation Corporation 2009, Adapted with
permission.

 143

13.2LEDs Arrays Specifications

Figure 13.2: LED Array specifications. Two 3-by-4 LED Array Model 900405 were used during laboratory
experiment 03. Adapted from VideoStrobe & VideoFlood LEDs by Visual Instrumentation Corporation 2009,
Adapted with permission.

 144

13.3 VideoFlood LED Light Comparison Table

Table 13.1: Model 900405 3-by-4 Super Bright LEDs Array.

Model 900405 3-by-4 Super Bright LEDs Array
Distance to

Subject Beam Spread Illumination in Foot
Candles & LUX

Drive Current to
each LED

12 inches/30.50 cm 5.00” x 5.00” 2.70 cm 8000 – 86080 1.1 amp.

24 inches/60.96 cm 9.50” x 8.50” 24.13 cm 2255 – 27413 1.1 amp.

36 inches/91.44 cm 14.50” x 12.00” 35.56 cm 1150 – 12374 1.1 amp.

48 inches/121.90 cm 15.75” x 21.00” 3.54 cm 650 – 6995 1.1 amp.

Note. This table was adapted from VideoFlood LED Light Comparison Table by Visual
Instrumentation Corporation, May 2011. Adapted with permission.

Table 13.1 presents the values of the model 900405, 3 x 4 array of 3-watt Super Bright LEDs with 4
centre 29° lenses and 8 perimeter 21° lenses. This values are used for comparison with the values
obtained with the illumination equation.

The formula suggested by Visual Instrumentation Corporation to calculate lightning in
foot - candles for high – speed framing cameras is give by (13.3.1 as follows:

I= K×A2

ISO×ET
[foot candles] (13.3.1)

Where :

• I is the illumination in foot - candles.

• K is a constant with value 25.

• A is the area to be illuminated in square feet.

• ISO is the image sensor speed.

• ET is the exposure time in decimal seconds (1 decimal second = 0.864 seconds).

The formula to convert Foot-Candles (FC) to LUX is as follows:

Illumination(LUX units)=10.76×FC (13.3.2)

While the formula to convert candelas to lumens is given by:

Ilumination(Candela units)=4×Lumens (13.3.3)

 145

14 Appendix D: Phantom v. 9.1 Data Sheet
• Phantom v. 9.1 Data Sheet.

• Phantom v. 9.1 Maximum Recording Speed vs. Image Size.

• V-Series Lens Shutter Data Sheet – Mechanical Shutter.

• V-Series Lens Shutter Data Sheet – Break-out-Box.

 146

Figure 14.1: Phantom v. 9.1 Data Sheet p1/3. Adapted from Phantom v9.1 by Vision Research Inc, 2007. Adapted with
permission.

 147

Figure 14.2: Phantom v. 9.1 Data Sheet p2/3. Adapted from Phantom v9.1 by Vision Research Inc, 2007. Adapted with
permission.

 148

Figure 14.3: Record speed vs. Image Resolution p3/3. Adapted from Phantom v9.1 by Vision Research Inc, 2007.
Adapted with permission.

 149

Figure 14.4: Mechanical shutter p1/2. Adapted from V-Series Lens Shutter by Vision Research Inc, 2010. Adapted with
permission.

 150

Figure 14.5: Break-out-Box p2/2. Adapted from V-Series Lens Shutter by Vision Research Inc, 2010. Adapted with
permission.

 151

15 Appendix E: MatLab M-Files Code
• File 1: getNodeData.m.

• File 2: readDataFromXML.m.

• File 3: plot3DPath.m.

• File 4: readMelfaData.m.

• File 5: transformReferential.m.

• File 6: testTransformReferential.m

 152

15.1File 1: getNodeData.m
%% SEARCH FOR A VARIABLE AND READ ITS DATA FROM AN OPEN CV 2.1 XML FILE
% GIVEN AN XML FILE NAME GENERATED BY OPEN CV 2.1 FILE STORAGE AND THE
% NAME OF A VARIABLE TO BE FOUND (NODE NAME) PERFORM A SEARCH AND IF
% THE NODE EXIST RETRIEVE ALL THE DATA STORED IN ITS 'data' CHILD NODE.
%ARG 1: OPENCV GENERATED XML FILE NAME TO BE READ
%ARG 2: VARIABLE NAME TO BE LOADED

%USAGE EXAMPLE: READ CAMERA'S MATRIX FROM A CALIBRATION FILE
% calibParameters = readDataFromXML('CalibS04_CalibrationM1.xml', 'M1');
%%

function [numbOfSubTags, dataVector] = getNodeData(fileName, tagName)

 %GET DOCUMENT OBJECT MODAL (DOM) NODE

 docNode = xmlread(fileName);

 %GET OPEN CV XML FILE ROOT NODE "<opencv_storage>"
 openCVStorage = docNode.getDocumentElement;

 %GET ALL "<opencv_storage>" SUB NODES
 varNodes = openCVStorage.getChildNodes;

 %GET NUMBER OF SUB NODES

 n = varNodes.getLength -1;
 output = '';

 % SEARCH IF tagName NODE EXIST WITHIN ALL SUB NODES
 varFound = 0;
 fprintf(' SEARCHING FOR [%s] VAR \n', tagName);
 for i = 0 : n
 %GET EACH NODE ITEM
 varNodeI = varNodes.item(i);

 %IF NODE EXIST CHECK IF IT HAS A CHILD NODE "data"
 if (varNodeI.getNodeName == tagName)

 fprintf(' >>> VARIABLE [%s] FOUND.\n', tagName);
 varFound = 1;
 if (varNodeI.hasChildNodes)
 node = varNodeI.getFirstChild;
 nChild = 1;
 dataFound = 0;
 while ~isempty(node)

 %IF CHILD NODE == 'data' GET ITS CONTENT
 if strcmpi(node.getNodeName, 'data')
 output = string(node.getTextContent);
 fprintf(' >>> [%s] NODE CHILD[%i] HAS DATA.\n',...

 tagName, nChild);
 dataFound = 1;
 break;
 else
 fprintf(' >>> [%s] IS SINGLE VALUE NODE.\n', tagName);
 %output = string(node.getTextContent)
 node = node.getNextSibling;
 end
 nChild = nChild + 1;
 end
 if (dataFound == 0)

 153

 fprintf(' >>> [%s] HAS NO DATA.\n', tagName);
 end
 end
 end

 %SPLIT STRINGS AND CONVERT TO DOUBLE VALUES
 cellC1 = regexp(output, ' ', 'split');
 vec1 = str2double(cellC1);

 vec2 = [];
 n1 = 0;

 status = isnan(vec1);
 for i = 1 : size(status, 2)
 if (status(1,i) == 0)
 n1 = n1 + 1;
 vec2(n1) = vec1(1, i);

 end
 end

 end

 if(varFound == 0)
 fprintf(' VARIABLE [%s] NOT FOUND.\n', tagName);
 end

 numbOfSubTags = n + 1; %Number of variables listed in the XML file
 dataVector = vec2; %Data within the subnode child node <data>
end

 154

15.2File 2: readDataFromXML.m
%% READ VARIABLES FROM AN XML FILE GENERATED BY OPEN CV 2.1 FILE STORAGE
% GIVEN AN OPEN CV 2.1 GENERATED XML FILE NAME AND A VECTOR WITH THE
% VAR NAMES TO BE READ FROM THE FILE IT LOADS THE DATA OF EACH VARIABLE.
% ARG 1: OPENCV GENERATED XML FILE WITH DATA TO BE READ
% ARG 2: VECTOR WITH THE VAR NAMES TO BE LOADED TO MATLAB. ALL THE
% VARIABLES NAMES NEED TO HAVE THE SAME LENGHT (BY PADDING WITH SPACES)
% OTHERWISE THE FUNCTION WILL RETURN AN ERROR.

%USAGE EXAMPLE: READ CALIBRATION PARAMETERS FROM A CALIBRATION FILE
% varNames = ['M1';'D1';'M2';'D2';'R ';'T ';'E ';'F '];
% calibParameters=readDataFromXML('CalibS04_CalibrationM1.xml', varNames);
%%
function [varsDataOut] = readDataFromXML(xmlFileName, vecVarNames)

 %TRANSFORM VECTOR OF CHARS ARRAYS INTO STRING
 %ALL ELEMENTS NEED TO HAVE THE SAME LENGHT
 vars = cellstr(vecVarNames);

 %DEFINE CELL TO STORE EACH VAR NAME BY ROWS
 sz = size(vars, 1);
 dataIn = cell(sz, 1);
 for i = 1 : sz

 varToRead = vars{i,1};
 [nVars, dataOut] = getNodeData(xmlFileName, varToRead);
 dataIn{i,1} = dataOut;
 end

 %RETURN VAR DATA VECTORS OF VECTORS
 varsDataOut = dataIn;
end

 155

15.3File 3: plot3DPath.m

 156

 157

15.4File 4: readMelfaData.m
%% READ 3D PATH FROM MELFA BASIC IV OUTPUT FILE
%READ THE 3D PATH OUTPUT FILE GIVEN BY MELFA BASIC IV SOFTWARE.
%OBS: ALL THE COMAS NEED TO BE REPLACED BY A PERIOD AND THE VAR IN THE
%HEADER FILE SHOULD BE FORMATED AS IN THE NEXT LINE:
%Time | J1 | J2 | J3 | J4 | J5 | J6 | J7 | ... | A | B | C | L1 | L2
%ARG 1: MELFA BASIC OUTPUT FILE
%ARG 2: PLOT TITLE

%USAGE EXAMPLE:
%[varNames, varData]=readMelfaData('Lab3 Path11B 50ms.log','MELFA PATH');

%Time = varData{ 1, 1 }; %Get 'Time' column values
%J1 = varData{ 1, 2 }; %Get joint1 values
% ... = ...
%X = varData{ 1, 10 }; %Get end of arm X coordinates column
%Y = varData{ 1, 11 }; %Get end of arm Y coordinates column
%Z = varData{ 1, 12 }; %Get end of arm Z coordinates column
%%
function [melfaHeader, melfaData] = readMelfaData(melfaFileName, title1)

 %OPEN MELFA 3D PATH FILE
 melfaDoc = fopen(melfaFileName);

 %READ MELFA HEADER FILE (NAMES OF THE VARIABLES)
 %Time | J1 | J2 | J3 | J4 | J5 | J6 | J7 | ... | A | B | C | L1 | L2
 melfaHeader1 = textscan(melfaDoc, '%s', 17, 'delimiter', '|');

 %READ ALL DATA COLUMNS FROM MELFA OUTPUT FILE
 melfaData1 = textscan(melfaDoc, ...
 '%s %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f');

 %PLOT MELFA 3D PATH
 x = melfaData1{1,10};
 y = melfaData1{1,11};
 z = melfaData1{1,12};

 plot3(x,y,z, '-r')
 grid on
 title(title1);
 xlabel('X Coordinate [mm]');
 ylabel('Y Coordinate [mm]');
 zlabel('Z Coordinate [mm]');
 text(x(1),y(1),z(1), 'Point_1');

 %RETURN VAR NAMES AND THEIR DATA(COLUMNS)
 melfaHeader = melfaHeader1;
 melfaData = melfaData1;

 %CLOSE INPUT FILE
 fclose(melfaDoc);

end

 158

15.5File 5: transformReferential.m
%% TRANSFORM POINTS COORDINATE SYSTEM
%GIVEN A FILE CONTAINING THREE 3D POINTS COORDINATES THAT FORM THE NEW
%COORDINATE SYSTEM IT COMPUTES THE DIRECTION COSINE MATRIX AND TRANSFORMS
%THE 3D POINTS VECTORS [X Y Z] INTO THE NEW REFERENTIAL.
%ARG 1: XML FILE CONTAINING 3 3D POINTS TRACKED OVER TARGET1'S
%ARG 2: 3D POINTS' COORDINATES TO BE TRANSFORMED AND THEN RETURNED
%%
function [Xout, Yout, Zout] = transformReferential(xmlFileIn, X, Y, Z)

 %LOAD THREE 3D POINTS TO USE IN THE POINT-LINE-PLANE IMPLEMENTATION

 [n, Pt0] = getNodeData(xmlFileIn, 'POINT0');
 [n, Pt1] = getNodeData(xmlFileIn, 'POINT1');
 [n, Ptyz] = getNodeData(xmlFileIn, 'POINT2');
 points = [Pt0; Pt1;Ptyz];

 X1 = [];
 Y1 = [];
 Z1 = [];
 P0 = zeros(1,3);
 P1 = zeros(1,3);
 Pyz = zeros(1,3);

 %IN OPENCV THE 3D POINTS COORDINATES ARE SAVED SEQUENTIALLY i.e.
 %P0 = [x1 y1 z1 x2 y2 z2 ... xn yn zn] THUS FOR EACH POINT (i)THE
 %POINT'S COORDINATES NEED TO BE SEPARATED.
 cellSize = size(points, 1)
 for i = 1 : cellSize
 pointI3D = points(i,:);
 X1(i,:) = pointI3D(1:3:end);
 Y1(i,:) = pointI3D(2:3:end);
 Z1(i,:) = pointI3D(3:3:end);
 end

 %COMPUTE THE MEAN OF EACH POINT'S COORDINATE TO REDUCE THE ERRORS THAT
 %WOULD BE MORE NOTABLE IF ONLY ONE VALUE FOR EACH COORDINATE WAS USED.
 if (size(X1,2) > 1)
 mx = zeros(1,3);
 my = zeros(1,3);
 mz = zeros(1,3);
 for i = 1: size(X1,1)
 Xi = X1(i,:);
 Yi = Y1(i,:);
 Zi = Z1(i,:);
 mx(i)= mean(Xi);

 my(i)= mean(Yi);
 mz(i)= mean(Zi);
 end

 P0(1,:) = [mx(1,1) my(1,1) mz(1,1)];
 P1(1,:) = [mx(1,2) my(1,2) mz(1,2)];
 Pyz(1,:) = [mx(1,3) my(1,3) mz(1,3)];

 %BUILD DIRECTIONS COSINES USING POINT-LINE-PLANE
 YY = [P1(1,1)-P0(1,1) P1(1,2)-P0(1,2) P1(1,3)-P0(1,3)];
 YZ = [Pyz(1,1)-P0(1,1) Pyz(1,2)-P0(1,2) Pyz(1,3)-P0(1,3)];

 159
 XX = cross(YY,YZ);

 ZZ = cross(XX,YY);
 XX = XX/(sqrt(XX(1,1)^2+XX(1,2)^2+XX(1,3)^2));

 YY = YY/(sqrt(YY(1,1)^2+YY(1,2)^2+YY(1,3)^2));

 ZZ = ZZ/(sqrt(ZZ(1,1)^2+ZZ(1,2)^2+ZZ(1,3)^2));

 %BUILD DIRECTION COSINE MATRIX AND TRANSLATION VECTOR
 rot = eye(4);

 trans = eye(4);

 rot(1, 1:3) = XX;

 rot(2, 1:3) = YY;

 rot(3, 1:3) = ZZ;

 trans(1,4) = P0(1);
 trans(2,4) = P0(2);

 trans(3,4) = P0(3);

 %BUILD TRANSFORMATION MATRIX

 A = rot * trans;
 X0 = [];

 Y0 = [];

 Z0 = [];

 %TRANSFORM POINTS FROM CAMERA COORDINATES SYSTEM TO

 %THE COORDINATE SYSTEM DEFINED BY TRAGET 1'S POINTS
 for i1 = 1 : size(X,2)

 pt = A * [X(1,i1); Y(1,i1); Z(1,i1); 1];
 X0(i1) = pt(1,1);

 Y0(i1) = pt(2,1);
 Z0(i1) = pt(3,1);

 end

 %TRANSLATE THE COORDINATE SYSTEM ORIGIN TO MELFA'S COORDINATE SYSTEM

 %ORIGIN WITH PURE TRANSLATION(SEE MELFA RV 2AJ'S BASE DIMENSIONING).

 rot1 = eye(4);

 trans1 = eye(4);

 trans1(1,4) = -88;
 trans1(2,4) = -15;

 trans1(3,4) = -30;

 A1 = rot1 * trans1

 for i = 1 : size(X0,2)
 pt = A1 * [X0(1,i); Y0(1,i); Z0(1,i); 1];

 X0(i) = pt(1,1);
 Y0(i) = pt(2,1);

 Z0(i) = pt(3,1);
 end

 Xout = X0;

 Yout = Y0;
 Zout = Z0;

 else

 printf('NO POINTS TO COMPUTE (R,T) TRANSFORM ARE AVAILABLE')
 printf('PLEASE MAKE SURE %s IS NOT EMPTY', xmlFileIn);

 Xout = X;
 Yout = Y;

 Zout = Z;

 end
end

 160

15.6File 6: testTransformReferential.m
%% TRANSFORM 3D POINTS [X,Y,Z] TO A GENERIC REFERENTIAL

%READS THREE GENERIC 3D POINTS (P0,P1,Pyz) AND TRANSFORMS THE GIVEN 3D
%POINTS COORDINATES [X,Y,Z] INTO A NEW REFERENTIAL GIVEN BY (P0,P1,Pyz).
%%

function [Xout,Yout,Zout]=testTransformReferential(P0,P1,Pyz,X,Y,Z)

 %P0 = [x0 y0 z0];
 %P1 = [x1 y1 z1];
 %P2 = [x2 y2 z2];

 %BUILD DIRECTIONS COSINES VECTORS USING POINT-LINE-PLANE METHOD

 YY = [P1(1,1)-P0(1,1) P1(1,2)-P0(1,2) P1(1,3)-P0(1,3)];
 YZ = [Pyz(1,1)-P0(1,1) Pyz(1,2)-P0(1,2) Pyz(1,3)-P0(1,3)];
 XX = cross(YY,YZ);

 ZZ = cross(XX,YY);
 XX = XX/(sqrt(XX(1,1)^2+XX(1,2)^2+XX(1,3)^2));
 YY = YY/(sqrt(YY(1,1)^2+YY(1,2)^2+YY(1,3)^2));

 ZZ = ZZ/(sqrt(ZZ(1,1)^2+ZZ(1,2)^2+ZZ(1,3)^2));

 %BUILD DIRECTION COSINES MATRIX AND TRANSLATION VECTOR

 rot = eye(4);
 trans = eye(4);

 rot(1, 1:3) = XX;
 rot(2, 1:3) = YY;
 rot(3, 1:3) = ZZ;

 trans(1,4) = P0(1);
 trans(2,4) = P0(2);
 trans(3,4) = P0(3);

 %BUILD TRANSFORMATION MATRIX
 transf = rot * trans;

 X0 = [];
 Y0 = [];
 Z0 = [];

 %TRANSFORM POINTS FROM CAMERA COORDINATES SYSTEM TO
 %THE COORDINATE SYSTEM DEFINED BY GENERIC 3D POINTS.

 for i1 = 1 : size(X,2)
 pt = transf * [X(1,i1); Y(1,i1); Z(1,i1); 1];

 X0(i1) = pt(1,1);
 Y0(i1) = pt(2,1);
 Z0(i1) = pt(3,1);

 end

 Xout = X0;

 Yout = Y0;
 Zout = Z0;

end

 161

16 Appendix F: Motion
• Motion.

• Optical flow.

 162

16.1Motion

16.1.1 Introduction
For a computer vision system, the ability to deal with the moving and changing objects,

changing illumination conditions and changing viewpoints is essential to perform several tasks.
The input to a dynamic vision system analysis is a sequence of image frames taken in one of the
three situations: The camera is moving and the object is stopped, the object is moving and the
camera is stopped or both the camera and the objects are moving.

In a sequence of image frames each frame represents one different image of the scene at a
particular instant that permits to understand the motion of a particular object through two
processes: identification and modeling.

The dynamic vision systems main assumptions recalls that the changes in the scene are mainly
due the motion of the object and camera simplifying other factors, such as illumination variation ,
temporal persistence – small movements and spatial coherence, soon discussed in more detail .

Dynamic vision system must detect the objects of interest, detect changes, determine the motion
characteristics of the observer and the object, recover the structure of the object and later be able to
recognize object in motion.

In this section the researcher started by introducing the formulation that makes possible to
identify the unique points to track. This points need to be computed because some tracking
methods are feature based methods and thus dependent on that features that must be previously
computed.

The following part of this section focus in the two tracking techniques implemented in OpenCV
for tracking the unidentified objects, the dense tracking techniques and the sparse tracking
techniques. In the former case it includes the Horn-Schunck and the Block-Matching method
while in the last case is presented one of the most used and efficient tracking techniques, the
Lucas-Kanade pyramid method.

16.1.2 Corners Identification
The features to be identified in one frame should be unique and easily identified in the

subsequent frames. A point is more likely to be unique when strong derivatives exist in orthogonal
directions, this features are termed as corners. Besides edges presents strong derivatives the points
within the same edge are not unique and therefore corners are not edges.

 “Mathematically, the corner definition provided by Harris, relies on the matrix of second order
derivatives of the intensities that when applied to all points forms a new Hessian images”
(Bradski et. al. 2008, p. 317).

The Hessian matrix around a point is defined in two dimensions by:

H (p)=[∂
2 I
∂ x2

∂2 I
∂ x∂ y

∂2 I
∂ y ∂ x

∂2 I
∂ y2]; (16.1.1)

 163
For the Harris corner is taken in account a small region around each pixel that defines where

the autocorrelation matrix of the second derivative will operate. Such matrix is constructed as
follows:

M (x , y)=[∑
−k⩽ i , j⩽K

W i , j I x
2(x+i , y+ j) ∑

−k⩽i , j⩽K
W i , j I x(x+i , y+ j) I y (x+i , y+ j)

∑
−k⩽i , j⩽K

W i , j I x (x+i , y+ j) I y (x+i , y+ j) ∑
−k⩽i , j⩽K

W i , j I y
2 (x+i , y+ j)] (16

.1.2)

Where W i , j is the weighting term that can be uniform or used to create a Gaussian weighting.

Thus if this autocorrelation matrix find two large eigenvalues it means that this particular point
contain edges going in at least two different directions within the small region centred at that point.
Shi and Tomasi later proposed a more satisfactory algorithm by concluding that good corners result
as long as the smaller of the two eigenvalues are greater than a minimum threshold. This two
approaches were implemented by cv::goodFeaturesToTrack() function as follows:

image – The input image should be 8-bit or 32-bit single channel image.

corners – Output corners vector that will store the 32-bit 2-D points that were detected.

 maxCorners – Indicates the maximum number of corners to return.

 qualityLevel – Defines the coefficient that multiplied by the best corner quality measure defines
the threshold value used to reject the corners which quality measure is less than this value. The
values of this parameter should not exceed 1 (typical value are 0.10 or 0.01).

minDistance - Defines a minimum Euclidean distance between corners to avoids that two
returned points are within the indicated number of pixels.

mask - Is a Mat that defines a ROI where the corners are detected.

blockSize - As seen before the Harris's autocorrelation matrix of derivatives uses a small
region where to operate in order to achieve better results. This argument defines that region

useHarrisDetector – If true the Harris corners are used in place of Shi-Tomasi method.

K – If useHarrisDetector was set to true then K parameter defines the weighting coefficient used
in the autocorrelation matrix.

The final result of this routine is an array of pixel locations that are intended to be found in
another image.

16.1.3 Corners Sub-pixel Accuracy
When working with images for extracting geometric measurements becomes necessary to have

more resolution than the provided by cv::goodFeaturesToTrack() routine. Thus OpenCV provides an
additional routine to compute the exact location of the corners to sub-pixel accuracy, i.e. integer
pixel coordinates are computed to real-value coordinates. For example

p pixel (250, 12)→ p real value(250.59, 12.45) .

The routine that computes the real-value pixel coordinates from a given array of integer

void cv::goodFeaturesToTrack(const Mat& image, vector<Point2f>& corners,
 int maxCorners, double qualityLevel, double minDistance, const Mat& mask=Mat(), int

blockSize=3, bool useHarrisDetector=false, double k=0.04);

 164
coordinates in OpenCV is cv::cornerSubPix() and has the following structure:

 image – Is the input 8-bit single-channel image.

corners – Input vector that contains the corners locations in pixels obtained from the previous
routine cv::goodFeaturesToTrack. The refined pixel coordinates are to the same vector.

win - This argument specifies the size of window – cv::Size(width, height) from which sort of
equations will be generated. This window is centred in the original integer corner location and
extends outwards in each direction by the number of pixels specified in win.width and win.height
defining the area to be considered in the system to constraint each of those equations.

zeroZone – Analogously to win, this argument defines a inner window that will not be
considered to constrain the same equations. If no zero zone is desirable then this parameter should
be set to cv::Size(-1, -1).

criteria – This argument defines the termination criteria to be reached once the real-value
location is found. This criteria can be of type CV_TERMCRIT_ITER and of type CV_TERMCRIT_EPS
or both. The later case will indicate the accuracy required for the sub-pixel values.

16.2Optical Flow

16.2.1 Introduction
The motion of objects in 3-D space induces the 2-D motion in the image plan, this motion is

what forms the optical flow which carries valuable information for analysing dynamic scenes.
Optical flow or image flow is the distribution of velocity, relative to the observer, over the points of
an image.

Definition

 “Image flow is the velocity field in the image plane due to the motion of the observer, the
motion of objects in the scene, or apparent motion which is a change in the image intensity
between frames that mimics object or observer motion.” (Jain et. al., 1995, p428)

Assuming that image flow information is available there are several methods to deal with
dynamic-scene analysis without any prior knowledge about the content in the frames. In this
section the researcher had focused his work on the routines available in OpenCV libraries to
explain the sparse optical flow methodology and dense optical flow methodology.

Dense optical flow method such as Horn-Schunck method associate the velocity to each pixel in
the frame or in other methods the distance which the pixel has moved between the current and
previous frame. Another dense optical method, that match windows around each pixel from one
frame to the next frame, known as block matching is also implemented in OpenCV and soon will
be described in more detail.

Due the high computational costs of dense optical flow methods sparse methods are an
alternative however this methods are feature based methods that first selects some feature in the
frames and then matches this features and computes the disparities between subsequent frames.

Next is presented the most used sparse tracking technique Lucas-Kanade also implemented with
image pyramids for efficiently track fast motions. Finally are presented the Horn-Schunck and
block-matching dense methods. The next figure Figure 16.1 is used as a simple sequence of two

void cv::cornerSubPix(const Mat& image, vector<Point2f>& corners, Size winSize, Size
zeroZone, cv::TermCriteria criteria);

 165
frames where the main object moved slightly to the right.

16.2.2 Sparse Tracking Techniques

16.2.2.1 Lucas - Kanade (LK) Method – Sparse Optical Flow Method
LK method relies only on local information from small local windows surrounding each of the

points of interest. To avoid that large motions points from being hidden outside the local windows
and thus impossible to be tracked the LK method has a pyramidal implementation to allow large
motions to be included by local windows. Tracks starts at lower detail towards the finer detail.

16.2.2.2 Lucas - Kanade Assumptions
Lucas - Kanade algorithm relies in three assumptions:

1. Brightness constancy – The brightness of a pixel does not change as it is tracked from
frame to frame. Taking in account one dimension, the brightness consistency equation can
be express as follows:

f (x ,t)=I (x (t) , t)=I (x (t+dt) , t+dt) ; (16.2
.1)

 Resulting in zero derivative:
∂ f (x)
∂ t

=0,

2. Spatial Coherence – Neighbours points in the the image frame belongs to the same
surface , have similar motion and move for nearby points on the image plane of the next
frame.

3. Small movements – The motion of a surface patch changes slowly in time - the object or
the camera does not move substantially from frame to frame, This can be achieved with
very small time increments between frames.

To understand the implications of the last assumption is first considered a single dimension and
then generalize it for the two dimensions. Starting with brightness consistency equation (11.1.3)

Figure 16.1: Sequence of frames where the optical flow is to be computed.

 166
and performing the next substitution f (x ,t)→ I (x (t) , t) and then applying the rules for partial
differentiation, yields:

∂ I
∂ x t(∂ x

∂ t)+∂ I
∂ t x(t)

 (16.2.2)

The first term is the spacial derivative I x , the second term the velocity v and the last
member the derivative over time I t . Thus the optical flow velocity for one dimension is obtained
as follows:

v=
I t

I x
 (16.2.3)

Adapting the one-dimensional solution to two dimensions and changing the nomenclature the
velocity along xx axis is u and the velocity along y axis is v , then is possible to
obtain:

I x u+I y v+I t=0 (16.2.4)

This single equations has two unknowns for any given pixel making it impossible to obtain a
unique solution for the two-dimensional motion at that pixel. Only the perpendicular motion to the
line described by the flow equation – the normal flow, as shown in Figure 16.2, can be solved.

Normal optical flow results from the aperture problem Figure 16.3 originated when motion is
detected with small aperture or when there is only one edge instead of a corner. The edge alone is
insufficient to determine exactly how the entire object is moving.

Figure 16.2: Normal flow.

 167
The second assumption is needed in order to solve the unconstrained equation. Under the

assumption that pixels moves coherently the surrounding pixels can be used to build a system of
equations. For example if a 3-by-3 window of brightness values is used around the current pixel to
compute its motion is possible to obtain 9 equations in a single-channel image (or 27 equations in
a three channel image) as follows:

[I x (p1) I y(p1)
I x (p2) I y(p2)
⋮ ⋮

I x (p9) I y(p9)
][uv]=−[I t(p1)

I t(p2)
⋮

I t(p9)
]

The system of equations is now over constrained and can be solved. Using the least-squares
minimizations, the equation, min∥Ad−b∥2 is solved as follows:

(AT A)d=AT b . From this relation is obtained the u and v motion velocity components:

[uv]=(AT A)−1 AT b (16.2.5)

[uv]=−[∑ I x I x ∑ I x I y

∑ I x I y ∑ I y I y]
−1

[∑ I x I t

∑ I y I t]
The system can be solved when (AT A) is invertible and therefore when its rank is equal to 2,

which occurs when the the image regions contains edges running in at least two directions.
(AT A) has the best properties (larger eigenvalues) when the tracking window is centred over a

corner in the image, similarly to the previously mentioned Harris autocorrelation matrix.

The next figure Figure 16.4 shows the computed optical flow that occurs in the sequence of
images illustrated in Figure 16.1. The routine that allow to implement this tracking technique is
cv::calcOpticalFlowLK() routine.

Figure 16.3: Aperture problem originated by a small aperture window.

 168

 LK method requires large window to catch large motions, this requirement by itself may
violate the spatial coherence assumption. Thus to minimize the motion assumptions violations the
track happens first over large spatial scales using an image pyramid and then progress to the next
layer down using the resulting motion estimates. This more efficient method is know as pyramid
Lucas-Kanade method and has better performance than cv::calcOpticalFlowLK() function for most of
the cases. The function that implements this method is cv::calcOpticalFlowPyrLK() and has the
following parameters:

prevImg and nextImg – Are the initial and final images and both should be single-channel or 3-
channel 8-bit images.

prevPts and nextPts – prevPts is the input vector that contains the points for which the motions
is to be found , and nextPts is a similar vector into which the computed new locations of the points
of prevPts are to be placed.

status – Output vector that contains the status of each feature. Each element has value 1 if
prevPts element has been found or 0 otherwise.

err – Output vector that will contain the difference between patches around the prevPts and
nextPts.

winSize - Defines the size of the window for computing the local coherence motion.

maxLevel – Defines the number of pyramid levels, if it is set to zero, then the pyramids are not
used, if it set to 1 two levels are used, if set to 2, three levels are used and so on.

criteria – As seen before, it implements the termination criteria, it defines the number of
iterations or constraint the movement of the search window by less than a number defined by
cv::TermCriteria::EPS.

derivLambda – Defines the weight of image intensity and spatial derivatives used to estimate
the optical flow. If derivLambda = 0 only image intensity is taken in acount else if derivLambda =

void cv::calcOpticalFlowPyrLK(const Mat& prevImg, const Mat& nextImg, const
vector<Point2f>& prevPts, vector<Point2f>& nextPts, vector<uchar>& status,
vector<float>& err, Size winSize=Size(15,15), int maxLevel=3, TermCriteria criteria
= TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, 0.01), double
derivLambda = 0.5, int flags = 0);

Figure 16.4: Result from applying the pyramid Lucas - Kanade
technique.

 169
1 only spatial derivatives are used. For any value within [0; 1] interval the algorithm used both
approaches with the corresponding proportions.

flags – Allows to set whether the algorithm uses the prevPts as initial estimation, by setting the
flag to OPTFLOW_USE_INITIAL_FLOW, or if the flag is set to zero then initially prevPts is set to
nextPts.

16.2.3 Dense Tracking Techniques
The dense tracking techniques are less used due the high computational efforts they require and

the need for very fast and efficient routines by systems that employ optical flow routines.

OpenCV contains two routines to implement the dense tracking techniques: Horn-Schunck
method and Block-Matching method described next.

16.2.3.1 Horn-Schunck Method
This method was one of the firsts to make use of the brightness constancy and implement the

basic brightness constancy equations. The solution for those equations was a smoothness constraint
on the velocities v x and v y that were derived by minimizing the Laplacian of the optical flow
components as follows:

∂
∂ x

∂ v x

∂ x
− 1
α I x (I x v x+I y v y+ I t)=0 (16.2.6)

∂
∂ y

∂ v y

∂ y
− 1
α I y(I x vx+ I y v y+I t)=0 (16.2.7)

The coefficient α is the weighting coefficient known as regularization constant. Larger
values of α lead to smoother vectors of motion flow and penalize regions in which the flow is
changing in magnitude. The old C routine that implements this tracking method is
cvCalcOpticalFlowHS() and has the following parameters:

imgA and imgB – This first two parameters are pointer to the first and second images frames
from a sequence of images. They must be 8-bit, single-channel images.

usePrevious – This parameter tells the routine to use the arrays velx and vely velocities
computed from the previous frame as the initial starting point for the iterations process.

velx and vely – This parameters are pointers to 32-bit, floating-point, single-channel arrays that
will be used to store the x and y velocities results.

lambda – This parameter is not the regularization constant seen previously but it has some
relation. Lambda is the weight coefficient that arises when attempt to minimize both motion-
brightness equation and the smoothness equations, it represents the relative weight to the errors in
each equation as they are minimized.

criteria – Criteria to terminate the velocity calculations.

void cvCalcOpticalFlowHS(const CvArr *imgA, const CvArr *imgB, int usePrevious, CvArr
*velx, CvArr *vely, double lambda, CvTermCriteria criteria);

 170

16.2.3.2 Block Matching Method
This method divides the image into small regions called blocks that are typically squares with a

predefined size and are often overlapped in the image. The algorithm divide the previous and
current images in such blocks and then compute their motion, thus the returned velocity are
commonly of lower resolution than the input images due the fact the algorithm operates in the
blocks level and not at the single pixel level.

The size of the resulting images is given by the following formulas:

W result=[W prev−W block+W shiftsize

W shiftsize] floor
 (16.2.8)

H result=[H prev−H block+H shiftsize

H shiftsize] floor
 (16.2.9)

The algorithm perform a search that starts from the original block position located in the
previous frame and compares it with the new blocks for possible matches in the new frame. The
comparison is a sum of absolute differences of all pixels within the block, in case of a good match
the comparison for this block is stopped. This process is obtained with the old C routine
cvCalcOpticalFlowBM() that has the following parameters:

prev and curr – The first two parameters are pointers to the previous and current images that
must be 8-bit, single-channel images.

block_size – Defines the size of the block to be used.

shift_size – This parameter defines the step size between blocks whether the blocks overlap,
and if so, how much the block will overlap.

max_range – This parameter determines the size of the region around a given block where this
block will search for matches in the subsequent frame.

use_previous – If set, it indicates that the values stored in the arrays velx and vely should be
used as a starting points for the block searches.

velx and vely – Are pointers to arrays of 32-bit, single-channel images that will store the
computed motions for the individual blocks (not for individual pixels once motion is computed
block by block).

alFlowBM(const CvArr *prev, const CvArr *curr, CvSize block_size, CvSize shift_size,
CvSize max_range, int use_previous, CvArr *velx, CvArr *vely);

 171

17 Appendix G: Targets and MELFA Basic
IV Program

• Target 1, 2 and 3 dimensioning.

• Target 1,2 and 3 on real scale size.

• MELFA Basic IV 3D path program.

 172

Figure 17.1: Dimensioning of the target1 and target 2.

 173

Figure 17.2: Dimensioning of the target 3.

 174

Figure 17.3: Targets 1, 2, and 3.

 175

Figure 17.4: MELFA Basic IV simple 3D path program implementation.

 176

18 Appendix H: StereoVisionProg

• Main menu's Option [0] – Compute optical flow.

• Main menu's Option [1] – Single video operations.

• Main menu's Option [2] – Stereo video operations.

• Main menu's Option [3] – Stereo calibration.

• Main menu's Option [4] – Compute 3D points.

• Main menu's Option [5] – Rotation matrix parametrization.

• Main menu's Option [6] – List current directory files.

 177

18.1Introduction

StereoVisionProg program is the name of the researcher-made program implemented with
OpenCV v.2.1 libraries and Microsoft Visual Studio 2008 IDE software to provide the
functionalities and methods needed along this research.

Due the program extension this section was necessary to provide a better description of each
option and how to proceed in each case. It provides additional detail by using activity diagrams and
snapshots of each menu and sub-menu to describe how the code was implemented. This appendix
stands together with Methods chapter three (see Chapter Three). All the activity diagrams were
created using a free unified modeling language (UML) tool from Visual Paradigm for UML.

For a better understanding, flexibility and code reuse, the main program was implemented with
different classes. Each one of the classes has a main role in the process of loading images,
performing cameras calibration and calibration optimization, stereo relations estimation, stereo
rectification, and stereo correspondence. The main program was implemented to receive user
inputs from a command line, all the results obtained are saved into individual XML files with proper
nomenclature depending on which process was performed. The main program's menu is shown in
the next figure (see Figure 18.1).

18.2Main menu's Option [0] – Compute Optical Flow

The first option available from StereoVisionProg's main menu was implemented to provide
different functionalities for sparse and dense optical flow methods. By selecting this option a sub
menu is displayed as shown in the next figure (see Figure 18.2). This sub menu allows to select the
capture mode from camera or an AVI file.

Figure 18.1: StereoVisionProg: Main menu.

 178

Case option [1] is
selected the user is asked to
input the camera INDEX,
this index is the ID number
that identifies each cameras
connected to the computer.
On the other hand if option
[2] is selected the program
lists all AVI files in the
directory from where the
program was started and
asks the user to select one
option than corresponds to
one of the file listed, as shown in the next figure (Figure 18.3).

After having
selected the camera
index/video file the
program starts
capturing the video
sequences frames
and displaying them
in the CAMERA
CAPTURE window. A
second window
named TRACKING
SETTINGS is then
displayed for control
purposes as shown in
the next figure (see Figure 18.4). This widow was created to allow fine adjustments for each
parameter individually and also to allow the selection between sparse and dense optical flow
method.

Figure 18.2: Main menu's option 0 sub menu.

Figure 18.3: Current directory's list of avi files.

Figure 18.4: TRACKING SETTINGS window's trackbars.

 179
Each trackbar functionality is described next:

• InfoShow: Displays settings information (1) or when its value is set to (2) it displays the
information related with the sparse set of points currently being tracked with Lucas-Kanade
Pyramid tracker code.

• TrackMd: Sets the optical flow method. If value (1) is selected - uses sparse optical flow
method (Lucas - kanade Pyramid) to track set of points added by the user by left button mouse
clicking over the capture window; If value (2) is selected - uses dense optical flow method
to compute the velocity of each image's pixel, this approach used the Horn - Schunck
optical flow algorithm; If value (0) is selected – no optical flow method is performed over
the current video capture.

• NumbPts: Set the maximum number of points to be selected for sparse optical flow
purposes.

• MinDist: Set the minimum Euclidean distance allowed between points (points selected by
the user by left button mouse clicking event) in pixel units.

• PyrLevel: Sets the pyramid level to be used by Lucas-Kanade Pyramid tracker code.

• WinSize: Set the search window size to be used during the sparse optical flow tracking
process.

For both cases (sparse and dense optical flow)
was implemented a function that if the user
presses “S” key the list with the current tracked
points are saved into an XML file named
TrackedPoints.xml if TrackMd value (1) is set or it
saves the current dense image of pixel's velocities
to an DenseOFVelocity[xxx].bmp file if TrackMd
value is set to (2) (dense optical flow). Pressing
“Esc” key closes the video capture and do not
perform any saving operation. For TrackMd (1)
mode if the right mouse click event is detected all
current points being tracked are erased without the
need of restarting the video capture.

The right image (see Figure 18.5) shows an
example of 10 points being tracked using the sparse optical flow methodology.

In the left figure (see Figure 18.6) is shown the
velocities image from a moving hand obtained
using the dense Horn – Schunck optical flow
method. The velocity for each image pixel was
obtained by summing the vertical and horizontal
velocity component of the optical flow maps. All
the image pixel's velocity were normalize by the
maximum pixel's velocity value.

Figure 18.5: Sparse optical flow tracking example.

Figure 18.6: Dense optical flow using Horn - Schunck
method.

 180

18.3Main menu's Option [1] – Single video operations
The second StereoVisionProg's option implemented for this case study is related to single

camera operation such as read and write video sequences captured from a single camera connected
to the computer or from a single video file imputed in AVI format. It allows to perform different
operations and save the results into different files depending on the type of operation being
performed. The next figure (see Figure 18.7) presents all the option available after being selected
the main menu's option [1].

Option [1] and [2]
allows to capture video
sequences from a camera
connected to a computer or
from an AVI video file
inside the current directory
the input for both cases
were already described in
the previous section. After
choosing the video input
successfully a control
window named CAPTURE
CONTROLS shown in the
right figure (see Figure
18.8) is displayed. This
window has as main
purpose to provide controls
to change the image capture
resolution, colour space,
and image format to be
used if any saving
operation is called. The
description of each trackbar
is as follows:

• INFO: if its value
equals (0) do not display any kind of information; If value equals (1) – display operations
information as shown in Figure 18.8, and if value equals (2) – displays the current frame
capture information such as image resolution, image depth, number of channels, current
image format and colour space.

Figure 18.7: Main menu's option 1 sub menu.

Figure 18.8: Capture controls' window.

 181
• COLOR: This trackbar is used to set the colour space to which the current video capture is

being transformed. The values available are [(0), (1), (2), (3), (4), (5)] corresponding to the
next color space [RGB GRAY HSV HSL Lab Luv] respectively.

• FORMAT: This trackbar allows to set the image with which the current frame capture will
be saved if any saving operation is performed. The values available are: [(0), (1), (2), (3),
(4)] that correspond to [JPG JPEG BMP PNG TIFF] image formats, respectively.

• SIZE: This last trackbar allows to change the video capture image resolution if the video
capture is not from an AVI video file or no video recording operation is on going.

During the video capture is possible to record
video files. Pressing the “R” key will start or stop
the video recording process. In the case of being
the first video recording operation the program
asks to introduce the VIDEO NAME and then
prompts a window as shown in the the right figure
(see Figure 18.9) to select the video compression
type. To finish the video recording the user needs
to press the “R” key again. Case the video capture
closes unexpectedly before the user concluded the
recording process, the program finishes the video
writing process automatically.

To save the current frame capture the “S” key need to be pressed, the image will be saved using
the following default name Image[XXX].[format] where XXX is a sequence number 000-999 and
format is the current format defined by FORMAT trackbar value.

If “Esc” key is pressed the current video capture operation is closed and the sub menu is display
again. Selecting option (3) or (4) from the sub menu (already shown in Figure 18.7) it is possible to
perform single camera calibration from a real time video capture or from an AVI file containing
video sequences with a chessboard pattern being moved (to obtain rich sets of different chessboard
position and orientations). Independently of the input type (camera or AVI file) the program asks
the user to input the number of corners along XX direction (nx) and along YY direction (ny) and the
square size (squareSize) in user defined units7.

If all corners were found over the current frame capture and the user presses “S” key the current
chessboard corners coordinates are stored into a vector of 2D points, however its corresponding
frame is not saved. After the user have added the required number of views, by pressing “Esc” the
program will close the video capture and proceed with calibration procedure.

Having completed the calibration process all the resulting parameters are stored into an XML file
named SingleCameraCalibration.xml by default. The CALIBRATION INFORMATION window
displayed during the capture process contains information such as: all corners found (true/false),
number of views currently added, chessboard properties, and operation's information updated
during the video sequence capture process.

7 The units are defined by the user (m, dm, cm, mm, inches, etc), all the next operation's results depending on the
calibration parameters are computed using those units defined on the calibration process.

Figure 18.9: OpenCV video compression selection.

 182

18.4Main menu's Option [2] – Stereo video operations
This option allows to perform different operations using two video captures obtained from a

stereo configuration. The next figure (see Figure 18.10) shows the sub-menu presented after
selecting Main menu's Option [2].

Five options are available after selecting main menu's option 2. The first two options Option [1]
and Option [2] are related with video sequences capture from two cameras or AVI files. This two
options are similar to the video capture options presented in the previous section, the first requires
that two camera indexes or in the second case two AVI files to be introduced. After the program
starts capturing both video frames and displaying them in one single window (see Figure 18.1)
named CAPTURING FROM CAMERAS or CAPTURING FROM AVI FILES it presents a window
named CONTROLS WINDOW with exactly the same trackbars as the ones described in the previous
section (see Main menu's Option [1] – Single video operations).

• Pressing “S” key while capturing video the user is asked to introduce the text FILE NAME
where the list of left and right image's names are to be saved and then it asks to input the
image FILE NAME PREFIX to be used to create the sequential left and right image's names,
i.e. if the image prefix is [ImgTest] by pressing “S” key the program generates
ImgTestL[XXX].[format] and ImgTestR[XXX].[format] where XXX is a sequence number

Figure 18.10: Main menu's option 2 sub menu.

Figure 18.11: Capturing from two A4Tech Web Cams

 183
between 000-999. A second text file is created [FILE NAME]Sync.txt containing the time
elapsed between the left and right frame capture for each time “S” key is pressed, this time
values can be used to evaluate the synchronisation between cameras captures. Despite the
program stores the current images when “S” key is pressed it only save the images when
the video capture finishes or the user ends it. This way the program avoids delays on video
capture and extra processing to perform saving operations while capturing video frames.

• Pressing “Esc” key the program closes the current capture and, in case any pair of images
were stored (by pressing “S” key), it generates both text files and saves the set of images
stored in memory to the current directory.

• Pressing “R” key the program asks the user to input a video FILE NAME PREFIX to be used
to create both left and right video file name, for example if the file name prefix introduced
is VideoTest01 the resulting video output files will be: VideoTest02_CAM1N000.avi and
VideoTest02_CAM2N000.avi.

Option [3] was implemented to provide a functionality that allows to build a list of left and right
views for calibration purposes. This option is useful when the user wants to use always exactly the
same set of images for a number of operations such as stereo cameras calibration or retrieve a
specific number of images from a big group of images. After selecting this option the programs
asks the user to input the text FILE NAME where the image names are to be listed, IMAGE PREFIX for
the left and for right images, the starting and the ending image sequence NUMBER and the step to
be used to retrieved only few images within all range.

For example to create a list with a set of 100 left and right images from two sequences of
images containing 8000 images named StereoCalibS01L0000.bmp … StereoCalibS01L8000.bmp and
StereoCalibS01R0000.bmp … StereoCalibS01R8000.bmp the inputs would be as follows:

• Text file name: ListOfViews.txt (arbitrary name).

• Left image prefix: StereoCalibS01L.

• Right image prefix: StereoCalibS01R.

• Starting number: 0.

• Ending number: 8000.

• Step number: 80 (8000/100).

The next figure (see Figure 18.12) presents Option [3] activity diagram, this diagram is similar for
the process implemented under the first two options from this sub menu, the only difference resides
on the fact that when saving images with Option[1] and Option [2] the program stores the image's
names into vectors for each time “S” key is pressed and the listing process only occurs when the
video capture ends or the user ended the video capture voluntarily.

 184

Option [4] and Option [5] were implemented to allow stereo cameras calibration by using real-time
video capture or AVI files containing video for calibration purposes. By selecting one of this option
the program asks the user to input the number of corners along XX direction (nx) and along YY
direction (ny), and the square size (squareSize) in user defined units.

After starting capturing video from both inputs, the trackbars: INFO, COLOR, FORMAT, and
METHOD from CONTROLS WINDOW allows to change the video properties and the calibration
method in the last case. If trackbar METHOD's value equals (1) – the program performs stereo
calibration by first computing the intrinsic and extrinsic parameters and just then estimates the
stereo relations using those parameters, if METHOD's value equals (2) – the program performs
stereo calibration by computing the intrinsic and extrinsic camera parameters and the stereo
relations all at the same time. As normally, after completing the stereo calibration process, the
program proceeds with the stereo rectification process using the last computed stereo calibration
parameters. In the next figure (see Figure 18.13) is shown the activity diagram of the process
implemented for Option [4] and Option[5]. The stereo calibration is described in deep detail in the
next section (see section Main menu's Option [3] – Stereo calibration).

Figure 18.12: List image's names into a text file.

 185

Figure 18.13: Real-time stereo calibration.

 186

18.5Main menu's Option [3] – Stereo calibration
By selecting Main menu's Option [3] another sub menu with four options are presented. Option

[2] and Option[3] allow to perform stereo camera's calibration and stereo configuration's relations
estimation. Additionally two other important functionalities were implemented with Option [1] and
Option[4], in the first case it makes possible to study how the calibration parameters evolve and in
the second case it allows to optimize the stereo calibration parameters. The next figure (see Figure
18.14) shows the options available after selecting Main menu's Option[3].

Option[1] allows to study how calibration parameters evolve using sets with different number of
calibration views. This option was used to define the optimal number of calibration views used
during this research. The implementation uses the last calibration output file from where the image
points for calibration are retrieved to build calibration views sets with 02, 05, 10, 20, 30, … , 150
(or other range defined by the user) images. In the next figure (see Figure 18.15) is shown the
activity diagram that better describes Option[1] implementation.

Option[2] allows to compute the stereo cameras calibration and stereo relations using calibration
method M1. This method reads a text file with a list of calibration views and finds the chessboard
corners for each left and right view, after completing the scan in all views it computes the
calibration parameters for the left and right camera individually and just then it uses those obtained
parameters to estimate the stereo configuration relation R, T, E, F. This method is less time
consuming and less computationally demanding than the calibration method M2 implemented on
Option[3].

Option[3] allows to compute the stereo cameras calibration parameters and stereo configuration
relations using calibration method M2. Similarly to method M1, this method reads a list with left
and right calibration views and searches for the chessboard corners over each view. After building
the image and object points vectors it computes the calibration parameters for both cameras and the
stereo configuration relations all at the same time. This method revealed to be less robust and
computationally more demanding comparatively with method M1.

Figure 18.14: Main menu's option 3 sub menu.

 187

For the optimal number of calibration views study both calibration methods M1 and M2 were
used to allow to take conclusions about the robustness of each method and how the parameters
evolve on each case. The next figure (see Figure 18.16) shows the activity diagram that better
describes the two implemented calibration processes.

Figure 18.15: Study optimal number of calibration views.

 188

Figure 18.16: Calibration process method M1 and M2.

 189
Option[4] was the last functionality to be implemented in order to improve the output results

obtained from calibration process. This option allows to optimize the calibration parameters by
excluding the views with higher errors contributions, the program starts by reading the calibration
parameters and the object and image points resulting from the last calibration process, it asks the
user to input the number of views to be filtered, and then projects the object points and computes
the mean Euclidean distance between the reprojected and projected image points for each view
allowing to determine which views have higher errors (higher Euclidean distances). The activity
diagram that explain this procedure graphically is presented in the next figure (see Figure 18.17).

Figure 18.17: Calibration parameters optimization.

 190
After performing any of the

calibration processes available
from Option[2], Option[3], and
Option[4] the user is asked to select
one of the following stereo
rectification method: (1) Calibrated
Stereo Rectification and (2)
Uncalibrated Stereo Rectification. The
main goal of performing the
rectification is to compute the
(undistortion+rectification) maps
and the disparity-to-depth matrix.
The outputs resulting from the
former method are saved into an
output XML file named
[FileName1]_CalibRectification.xml
while the later method generates an
output XML file named
[FileName1]_UncalibRectification.xml.
In the next two figures (see Figure
18.18 and Figure 18.19) is shown
the activity diagrams that explains in more detail the implementation for both calibrated and
uncalibrated rectification processes.

Figure 18.18: Calibrated stereo rectification.

Figure 18.19: Uncalibrated stereo rectification.

 191

18.6Main menu's Option [4] – Compute 3D points
This Main menu option presents the last step needed to recover 3D information from stereo

video captures. Two approaches were implemented to deal with dense and sparse stereo matching,
the former computes the disparity map using all the left and right image while the second only
performs stereo matching for a sparse set of points.

By selecting Main menu's Option [4] the program prompts a sub menu (see Figure 18.20) to select
the input mode. In the case of option [1] is selected the user is asked to input left camera index and
right camera index to
capture from two specific
cameras connected to the
computer, however, instead
of option [1] option [2] was
selected the user is asked to
select the video AVI file
names.

On both cases the user
needs to make sure that the
stereo configuration used to
obtain the video captures is
the same as the one that
was lastly calibrated and rectified, in other words, the program always loads the remapping
parameters from the main xml output StereoConfigurationOutputs.xml file's node named
<RemappingMaps>.

After selecting the stereo video capture mode the program presents another sub menu with two
options, as shown in the next figure (see Figure 18.21).

Option [1] allows to compute dense disparity image by using the stereo matching algorithms
available from OpenCV libraries. Depending on the algorithm an additional control window named
MATCHING CONTROLS allows to change the block match state settings by using the trackbars on
this window. The next figure (see Figure 18.22) shows the activity diagram that better describes the
dense stereo matching approach implementation.

Figure 18.20: Main menu's option 4 video input.

Figure 18.21: Stereo matching modes.

 192

Figure 18.22: Dense stereo matching approach.

 193
With the MATCHING CONTROLS trackbars (see Figure 18.23) is possible to adjust the Block-

Matching state settings in real time and update the state settings for each new pair of video frames
captures. The matching method is selected over the window named CAPTURING FROM AVI FILES
or (CAPTURING FROM CAMERAS) were the left and right rectified capture are being displayed.

 The MATCHING trackbar values available are [0 1 2 3] corresponding to [Block-Matching,
Block-Matching (with user defined settings), Semi Global Block-Matching, and Graph-Cut]
methods, respectively. Some of the most important block matching settings are adjusted using the
trackbars, from MATCHING CONTROLS window, described next:

• SADWS: Sets the sum of absolute differences window size for block matching algorithm.

• PFC: Sets truncation value for the prefiltered image pixels.

• MD: Set the minimum number of disparities.

• NOD: Sets the maximum number of disparities minus the minimum number of disparities.

• UR: The margin in percent by which the best computed cost function value should overtake
the second best value to consider the pixel match correct.

• TS: Sets the texture threshold.

• PFS: Sets the truncation interval values for the prefiltered image pixels.

• SWS: Sets speckle window size.

• SR: Sets maximum disparity variation within each connected component.

Option [2] allows to perform the stereo matching process for a sparse set of points. This approach
makes use of the sparse Lucas-Kanade Pyramid optical flow method to track sparse set of points,
selected by the user, over the left image and then look for those points in the right image. By
selecting this option the program captures the first frame from each video sequence and waits for
the user to introduce a number of points by left mouse clicking over the left image window named
LEFT IMAGE. The optical flow settings are changed by using POINTS TRACKING CONTROLS
window's trackbars as displayed in the next figure (see Figure 18.24).

Figure 18.23: Block – Matching control window.

 194
When all points are introduced the program

starts by capturing the next video sequences
and the points tracking between left image
(previous capture) to the left image (current
capture) and then to the right image (current
capture) is done simultaneously. The points
that are tracked successfully are stored into
two vectors (left and right image points) and
the points that failed to be tracked correctly at
any time are excluded as well its previous
tracked positions.

Using the left and right image points
(matched points) the program then computes
the points disparities and, using the disparity-
to-depth matrix, it reprojects the 2D points to
3D world space.

The POINTS TRACKING CONTROLS window trackbars' description is given as follows:

• RectifyOn: If the value is set to 0 the tracking procedure only corrects the images distortions
(undistortion). In the case the value is set to 1 the tracking procedure remaps the image
(undistortion+rectification).

• NPts: Sets the maximum number of points to be tracked. After this number of points being
added no more points are allowed to be tracked. This setting is used to tell the program
until when it should wait in stand-by to allow the user to add points.

• PyrLevel: Defines the number of pyramid levels to be used by the Lukas – Kanade Pyramid
algorithm.

• WinSize: Defines the size of the search windows of each pyramid level.

• CameraOn: Defines which camera is active, this tells the program to which camera
referential the new 3D space points should be related. Value 1 defines the left camera
referential, and value 2 defines the right camera referential.

• TrackMode: If the trackbar value is 1 the program captures the first left and right video
frame and waits for the user to introduce the number of points defined by NPts. If the value
is set to 0 the program starts capturing and displaying the video sequences and at any time
the user is allowed to add points to be tracked.

The two operations that are available while capturing the video sequences are described next:

• “Esc” Key: By pressing “Esc” key the program finish the video capture and if any points was
tracked successfully until the present moment the program computes the image points
disparities and reproject the 2D points to 3D space, all the 3D points are related to both left
and right camera coordinate system. The resulting points [x, y, disparity] and [X, Y, Z]
vectors are then saved into two XML files named [FileName]_3DPOINTSC1.xml and
[FileName]_3DPOINTSC2.xml for the left and right camera respectively.

• “C” Key: By pressing “C” key while capturing video sequences, if any points is currently
being tracked, the program reproject the 2D image points to 3D space and saves the results
into one of the files (depending on which camera is active) as described in the previous
bullet.

Figure 18.24: Image points tracking settings.

 195
In the next figure (see Figure 18.25) is presented the activity diagram that better describes the

stereo matching approach by using Lucas-Kanade Pyramid tracker algorithm.

Figure 18.25: Sparse stereo matching approach.

 196

18.7Main menu's Option [5] – Rotation matrix parametrization
This Main menu option allows the stereo configuration rotation matrix parametrization into

Euler angles and quaternion. The program opens the calibration output file obtained from the last
calibration process listed inside the main XML output file - StereoConfigurationOutputs.xml (the file
name stored inside the <CalibrationParameters> tags).

By selecting Main menu's Option [5] the program loads the stereo configuration rotation matrix
and presents a sub menu as the one ilutrated in the next figure (see Figure 18.26).

Selecting Option [1] transforms the 3D orthonormal rotation matrix, that brings the right stereo
camera to the left camera's orientation, into Euler angles. Two solutions are computed if no Gimbal
Lock problem is found otherwise only one solution is computed.

Selecting Option [2] transforms the 3D orthonormal rotation matrix into quaternions and then all
the four quaternion components are normalized.

Selecting Option [3] exits the sub menu and if any transformation was perfomed it saves the
resulting parameters (Euler angles or quaternion, or both) into an XML output file named
[FileName]_Angles.xml. This functionalities were used during the research to study the axes rotation
angles and allow to take further conclusions for the final 3D points recovering results.

18.8Main menu's Option [6] – List current directory files
By selecting Main menu's Option [6] the program lists all the files in the current directory. This

class was implemented to allow certain type of files to be listed and presented for input porposes
such as the text files for calibration purposes and AVI video file inputs. It was also used to check if
certain files names already exist in the current directory and avoid to overwrite them when
performing images saving and video recording operations.

Figure 18.26: Rotation matrix parametrization.

	1 Acknowledgements
	2 Abstract
	3 Index of Tables
	4 Illustration Index
	5 Chapter One
	5.1 Introduction
	5.1.1 Statement of the Problem
	5.1.1.1 Correspondence.
	5.1.1.2 Rectification.
	5.1.1.3 Camera Calibration.

	5.1.2 Background and Need
	5.1.2.1 Camera Calibration.
	5.1.2.2 Rectification.
	5.1.2.3 Correspondence.

	5.1.3 Purpose of the Study
	5.1.3.1 Purpose Statement.
	5.1.3.2 Need/Rationale for the Study.
	5.1.3.3 Description of the Study.
	5.1.3.4 Expected Outcomes.

	5.1.4 Research Questions
	5.1.5 Significance of the field
	5.1.6 Definitions
	5.1.7 Limitations

	6 Chapter Two
	6.1 Review of the Literature
	6.1.1 Introduction
	6.1.2 Research Synthesis
	6.1.2.1 Camera calibration review.
	6.1.2.2 Stereo rectification review.
	6.1.2.3 Stereo correspondence review.

	6.1.3 Summary

	7 Chapter Three
	7.1 Methods
	7.1.1 Introduction
	7.1.2 Settings
	7.1.3 Intervention and Instructional Materials
	7.1.4 Measurements Instruments
	7.1.4.1 Phantom stereo configuration hardware.
	7.1.4.2 VideoFlood LED and videoStrobe – floodController.
	7.1.4.3 Phantom camera control v1.2 software (PCC).
	7.1.4.4 Mitsubishi MELFA RV-2AJ .
	7.1.4.5 StereoVisionProg program researcher-made instrument.
	7.1.4.6 GML Camera Calibration Toolbox v. 0.4
	7.1.4.7 MATLAB v. 7.7.0.
	7.1.4.8 Other material.

	7.1.5 Procedures
	7.1.5.1 Baseline
	7.1.5.2 Intervention
	7.1.5.3 Posttest.

	8 Chapter Four
	8.1 Results
	8.1.1 Introduction
	8.1.2 Research Question Nº1 – Results
	8.1.3 Research Question Nº2 – Results
	8.1.3.1 Calibration Method.
	8.1.3.2 Optimal Number of Calibration Views.
	8.1.3.3 Calibration Parameters Optimization.

	8.1.4 Research Question Nº3 – Results
	8.1.4.1 Uncalibrated stereo rectification.
	8.1.4.2 Calibrated stereo rectification.

	8.1.5 Research Question Nº4 – Results
	8.1.6 Research Question Nº5 – Results

	9 Chapter Five
	9.1 Discussion
	9.1.1 Introduction
	9.1.2 Discussion
	9.1.2.1 Research question nr. 1 – discussion.
	9.1.2.2 Research question nr. 2 – discussion.
	9.1.2.3 Research question nr. 3 – discussion.
	9.1.2.4 Research question nr. 4 – discussion.
	9.1.2.5 Research question nr. 5 – discussion.

	9.1.3 Limitations
	9.1.4 Recommendations for Future Research
	9.1.5 Conclusions

	10 References
	11 Appendix A: Stereo Imaging
	11.1 Stereo Imaging
	11.1.1 Introduction
	11.1.2 Working With a Single Camera
	11.1.2.1 Camera model.
	11.1.2.2 Lens distortion.

	11.1.3 Calibration
	11.1.3.1 Find Chessboard Corners.
	11.1.3.2 Find Corners Sub-pixel.
	11.1.3.3 Planar Homography.

	11.1.4 Camera Calibration
	11.1.5 Undistortion

	11.2 Working With Two Cameras
	11.2.1 Stereo Imaging
	11.2.1.1 Stereo Geometry.
	11.2.1.2 Epipolar Geometry.
	11.2.1.3 Epipolar Lines.

	11.2.2 Stereo Calibration
	11.2.2.1 Stereo Cameras Calibration.

	11.2.3 Stereo Rectification
	11.2.3.1 Uncalibrated stereo rectification - Hartley’s algorithm.
	11.2.3.2 Calibrated stereo rectification: Bouguet's algorithm.
	11.2.3.3 Rectification Maps.

	11.2.4 Stereo Correspondence

	12 Appendix B: MELFA Basic IV Presentation
	13 Appendix C: VideoStrobe & VideoFlood LEDs
	13.1 VideoStrob and VideoFlood LEDs
	13.2 LEDs Arrays Specifications
	13.3 VideoFlood LED Light Comparison Table

	14 Appendix D: Phantom v. 9.1 Data Sheet
	15 Appendix E: MatLab M-Files Code
	15.1 File 1: getNodeData.m
	15.2 File 2: readDataFromXML.m
	15.3 File 3: plot3DPath.m
	15.4 File 4: readMelfaData.m
	15.5 File 5: transformReferential.m
	15.6 File 6: testTransformReferential.m

	16 Appendix F: Motion
	16.1 Motion
	16.1.1 Introduction
	16.1.2 Corners Identification
	16.1.3 Corners Sub-pixel Accuracy

	16.2 Optical Flow
	16.2.1 Introduction
	16.2.2 Sparse Tracking Techniques
	16.2.2.1 Lucas - Kanade (LK) Method – Sparse Optical Flow Method
	16.2.2.2 Lucas - Kanade Assumptions

	16.2.3 Dense Tracking Techniques
	16.2.3.1 Horn-Schunck Method
	16.2.3.2 Block Matching Method

	17 Appendix G: Targets and MELFA Basic IV Program
	18 Appendix H: StereoVisionProg
	18.1 Introduction
	18.2 Main menu's Option [0] – Compute Optical Flow
	18.3 Main menu's Option [1] – Single video operations
	18.4 Main menu's Option [2] – Stereo video operations
	18.5 Main menu's Option [3] – Stereo calibration
	18.6 Main menu's Option [4] – Compute 3D points
	18.7 Main menu's Option [5] – Rotation matrix parametrization
	18.8 Main menu's Option [6] – List current directory files

