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Abstract

We consider convex Semi-Infinite Programming (SIP) problems with polyhedral index
sets. For these problems, we generalize the concepts of immobile indices and their immo-
bility orders (see [5]-[8]) that are objective and important characteristics of the feasible
sets permitting to formulate new efficient optimality conditions.

We describe and justify a finite constructive algorithm (DIIPS algorithm) that deter-
mines immobile indices and their immobility orders along the feasible directions. This
algorithm is based on a representation of the cones of feasible directions of polyhedral
index sets in the form of linear combinations of the extremal rays and on the approach
described in [5]- [8] for the cases of multidimensional immobile sets of more simple struc-
ture. A constructive procedure of determination of the extremal rays is described and an
example illustrating the application of the DIIPS algorithm is provided.

Key words. Semi-Infinite Programming (SIP), Convex Programming (CP), immobile index,
immobility order, cone of feasible directions, extremal ray.
AMS subject classification. 90C25, 90C30, 90C34

1 Introduction

Semi-Infinite Programming (SIP) deals with extremal problems that involve infinitely many
constraints in a finite dimensional space. Due to numerous theoretical and practical appli-
cations, today semi-infinite optimization is a topic of a special interest (see [3], [4], and the
references therein). The most efficient methods for solving optimization problems are usually
based on optimality conditions that permit not only to test the optimality of a given feasible
solution, but also to find the better direction to optimality. Usually the optimality conditions
are formulated for certain classes of optimization problems that permit to use more efficiently
specific structure of problems under consideration.
In the paper, we consider convex Semi-Infinite Programming (SIP) problems with polyhedral
index sets. For these problems, we generalize the concepts of immobile indices and their im-
mobility orders (see [5]-[8]) that are objective and important characteristics of the feasible sets
permitting to formulate new efficient optimality conditions.
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The main aim of the paper is to describe and justify a finite constructive algorithm (DIIPS
algorithm) that determines immobile indices and their immobility orders along the feasible
directions. This algorithm is based on representation of the cones of feasible directions of
polyhedral index sets in the form of linear combinations of the extremal rays and on the
approach described in [5]- [8] for the cases of multidimensional immobile sets of more simple
structure. A constructive procedure of determination of the extremal rays is described and an
example illustrating the application of the DIIPS algorithm is provided.

2 Immobile Indices and immobility orders in SIP prob-

lems with polyhedral index sets

Consider a convex Semi-Infinite Programming problem in the form

(P ) : min
x∈Rn

c(x) (1)

s.t. f(x, t) ≤ 0 ∀ t ∈ T = {t ∈ Rs : hT
k t ≤ ∆hk, k ∈ K}, (2)

where K is a finite index set, the constraint function f(x, t), t ∈ T, is linear w.r.t. x ∈ Rn;
vectors hk ∈ Rs and numbers ∆hk, k ∈ K are given. Notice that here the index set T is a
convex polyhedron.
Denote by X the feasible set of problem (P):

X = {x ∈ Rn : f(x, t) ≤ 0, ∀t ∈ T}. (3)

Given t ∈ T , denote by Ka(t) ⊂ K the set of active at t indices:

Ka(t) := {k ∈ K : hT
k t = ∆hk}, (4)

and by L(t) the set of feasible directions in the set T corresponding to t:

L(t) := {l ∈ Rs : hT
k l ≤ 0, k ∈ Ka(t)}. (5)

Given x ∈ X, let Ta(x) ⊂ T denote the set of active at x indices:

Ta(x) := {t ∈ T : f(x, t) = 0}. (6)

Definition 1 Let us say that an index t̄ ∈ T is immobile in problem (P) if

f(x, t̄) = 0 for all x ∈ X. (7)

Denote by T ∗ the set of all immobile indices in (P). It is evident that T ∗ ⊂ Ta(x) for all x ∈ X.

In the papers [5] and [8], the immobile indices were defined for the convex SIP problems with
box-constrained one- and multidimensional index sets respectively, being used later (see also
[6]) to obtain new efficient CQ-free optimality conditions. In what follows, we generalize this
approach to the more general case of convex SIP problems with polyhedral index sets.
We can characterize each immobile index with the help of a special quantitative characteristic
called order of immobility or immobility order. In the multidimensional case, the immobility
orders are defined w.r.t. feasible directions in T .
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Definition 2 Given an immobile index t̄ ∈ T ∗ and a nontrivial feasible direction l̄ ∈ L(t̄), let
us say that t̄ has the immobility order q(t̄, l̄) along l̄ if

1. dif(x,t̄+αl̄)
dαi

∣∣∣
α=+0

= 0, ∀x ∈ X, i = 0, 1, . . . ,mq(t̄, l̄),

2. there exists a feasible x̄ = x(t̄, l̄) ∈ X such that d(q(t̄,l̄)+1)f(x̄,t̄+αl̄)

dα(q(t̄,l̄)+1)

∣∣∣
α=+0

̸= 0.

Here and in what follows we consider the set {i = s, s + 1, ..., k} to be empty if k < s, and
d0f(x,t̄+αl̄)

dα0

∣∣∣
α=+0

= f(x, t̄).

3 Alternative representation of the sets of feasible direc-

tions in polyhedral index sets

Given the convex SIP problem (P), consider an index t̄ ∈ T. Here we will give another descrip-
tion of the set (5) of feasible directions in t̄.
Denote L̄ := L(t̄). Consider the set K̄ := K̄a(t̄) defined at (4). In this section, we will present
the set L̄ as a linear combination of some vector sets in Rs and show how these vector sets can
be obtained.

3.1 Properties of the set L̄.

It is easy to verify that L̄ is a cone in Rs.
Consider the set ∆L̄ ⊂ Rs defined as follows:

∆L̄ = {l ∈ Rs : hT
k l = 0, k ∈ K̄}. (8)

Evidently, ∆L̄ = {0} for m = s and ∆L̄ is a subspace of Rs for m < s where

m = rank(hk, k ∈ K̄). (9)

Set p = s−m and denote by

{bi, i = 1, . . . , p} (10)

a basis of ∆L̄. Consider the set ∆¯̄L = L̄
∩

∆L̄⊥, where ∆L̄⊥ is the orthogonal complement of
the subspace ∆L̄ in Rs.
One can easily check that the set ∆¯̄L is a pointed cone, i.e. it is the cone with the following
property:

for any l ̸= 0 : l ∈ ∆¯̄L ⇒ −l /∈ ∆¯̄L.

Then there exists a finite set of vectors

ai ∈ ∆¯̄L, i ∈ I, (11)

such that the cone L̄ can be represented in the form

L̄ = {l ∈ Rs : l =

p∑
i=1

βibi +
∑
i∈I

αiai, αi ≥ 0, i ∈ I}, (12)
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where vectors bi, i ∈ {1, . . . , p} are defined in (10) and αi ∈ R, i ∈ I, βi ∈ R, i ∈ {1, . . . , p}.
Therefore we have shown that for any t̄ ∈ T there exist (finite) sets of vectors (10) and (11)
such that the set of feasible directions in t̄ can be represented in the form (12).
Vectors (10), (11) are usually referred to as extremal rays, vectors (10) being bidirectional and
vectors (11) being unidirectional rays.

3.2 The rules for constructing the extremal rays

In the literature, different algorithms for presentation of polyhedral cones can be find (see for
example, [1] and [2]). Here we describe one more procedure that can be used to find the sets
of vectors (10) and (11) and therefore to describe explicitly the set L̄.
Given k ∈ K̄, denote by hki, i ∈ S := {1, 2, . . . , s} the components of the vector hk:

hT
k = (hki, i ∈ S)

and by H the |K̄| × |S|− matrix

H =

(
hki, i ∈ S

k ∈ K̄

)
.

Consider subsets S0 ⊂ S and N0 ⊂ K̄ such that |S0| = |N0| = m and the matrix

H0 = H(N0, S0) =

(
hki, i ∈ S0

k ∈ N0

)
(13)

is not singular: det(H0) ̸= 0. By construction, H0 is a square sub-matrix of the matrix H of
the same rank: rank H = rank H0 = m.
Construct vectors

b̄i = (b̄ij, j ∈ S), i ∈ S\S0, (14)

whose components are as follows:

b̄ij = 0, j ∈ S\(S0

∪
i), b̄ii = 1,

(b̄ij, j ∈ S0)
T = −H−1

0

(
hki

k ∈ N0

)
, i ∈ S\S0.

(15)

It is easy to verify that these vectors form a basis of the subspace KerH = ∆L̄. Therefore we
can set

{bi, i = 1, . . . , p} := {b̄i, i ∈ S\S0}. (16)

Let h0 =
∑
k∈K̄

hk. If h0 = 0 ∈ Rs, then the set of vectors (11) is empty.

Suppose that h0 ̸= 0. Denote by Ω the set of subsets N∗ ⊂ K̄ such that |N∗| = m − 1 and
det(D(N∗)) ̸= 0, where D(N∗) = (h0, hk, k ∈ N∗; bi, i = 1, . . . , p)T ∈ Rs×s.
Given N∗ ∈ Ω, let a(N∗) be the first column of the matrix −D−1(N∗), i.e. a(N∗) = −D−1(N∗)e1.
Set

Ω∗ := {N∗∈Ω : hT
k a(N∗) ≤ 0, k ∈ K̄\N∗}.

It can be easily verified that the set

{ai, i ∈ I} := {a(N∗), N∗∈Ω∗} (17)

is a set of vectors defined in (11), (12).
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Remark 1 From the constructions above it follows that in the case m = |S0| = |K̄|, we have
I = {1, . . . ,m}, and it is easy to construct vectors ai = (aij, j ∈ S), i ∈ I:

aij = 0, j ∈ S\S0; (aij, j ∈ S0)
T = −H−1

0 ei, i = 1, . . . ,m,

where ei ∈ Rm is the i-th vector of the canonic basis of Rm; and the matrix H0 is given in (13).

Remark 2 In the case m = |S| = s, the set of vectors bi, i = 1, . . . , p is empty since p = 0.

Remark 3 As noted above, the set of vectors ai, i ∈ I, is empty (I = ∅) when h0 = 0. Notice
here that h0 ̸= 0 when the interior of the polyhedral index set T is not empty, i.e. the constraints
defining T , satisfy the Slater condition: ∃t̃ ∈ T : hT

k t̃ < ∆hk, ∀k ∈ K.

4 Determination of immobile indices and their immobil-

ity orders

4.1 Assumptions and notations

Assumption 1 Suppose that X ̸= ∅, the set T is bounded and

q(t, l) ≤ 1, ∀t ∈ T ∗, ∀l ∈ L(t) \ {0}. (18)

We consider that conditions (18) are trivially fulfilled if T ∗ = ∅.
Proposition 1 Assumption 1 implies that the set of immobile indices T ∗ consists of a finite
number of elements:

T ∗ = {t∗j , j ∈ J∗} with some finite index set J∗

and there exists x̄ ∈ X such that |Ta(x̄)| < ∞.

Proof. The proof of the proposition is similar to proof of Lemma 2.1 from [7].

Remark 4 The condition of boundeness of the index set T was introduced into Assumption 1
with the only purpose to prove Proposition 1. Notice here that instead of this condition we can
suppose that the set T ∗ is finite and there exists x̄ ∈ X such that |Ta(x̄)| < ∞.

Here and in what follows, given t ∈ T , the set of feasible directions L(t) is defined as in (5).

Given vector x̄ ∈ X such that |Ta(x̄)| < ∞, the set of active at x̄ indices has the form

Ta(x̄) = {t̄j, j ∈ J̄} with |J̄ | < ∞. (19)

For any t̄j, j ∈ J̄ , let us find the corresponding extremal rays of the cone of feasible directions
defined in (10), (11),

bi(j), i = 1, . . . , pj; ai(j), i ∈ I(j), j ∈ J̄ , (20)

according to the rules described in the previous section.
Set

Ĩ(j) = {i ∈ I(j) :
∂Tf(x̄, t̄j)

∂t
ai(j) = 0}, j ∈ J̄ . (21)

Notice that T ∗ ⊂ Ta(x̄) = {t̄j, j ∈ J̄}.
Now we can describe the algorithm that, for problem (P), determines the set of immobile
indices and immobility orders along their extremal rays under the assumptions made in this
section. We call this algorithm DIIPS since it determines the set of immobile indices in (P)
with polyhedral index set.
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4.2 Algorithm DIIPS

Suppose that for a given feasible x̄ in problem (P), the corresponding index set {t̄j, j ∈ J̄}
(see (19)), vectors (20) and the index sets (21) are known.

Initializing. Set J
(0)
∗ := ∅, k = 0.

General iteration. We start the (k + 1)-th iteration of the algorithm (k ≥ 0) having the
following sets constructed on the previous iteration:

J (k)
∗ ⊂ J̄ , I

(k)
0 (j) ⊂ Ĩ(j), j ∈ J (k)

∗ .

Notice that at the first iteration (k = 0) we do not use the sets I
(k)
0 (j) ⊂ Ĩ(j), j ∈ J

(k)
∗ , since

the set J
(0)
∗ is empty.

Given j ∈ J
(k)
∗ , find

L
(k)
j := {l ∈ Rs : l = B(j)βj + A

(k)
0 (j)α

(k)
j , α

(k)
j ≥ 0, lT

∂2f(x̄, t̄j)

∂t2
l = 0, ||l|| = 1}, (22)

where

B(j) = (bi(j), i = 1, ..., pj), βj ∈ Rpj ; A
(k)
0 (j) = (ai(j), i ∈ I

(k)
0 (j)), α

(k)
j ∈ R|I(k)0 (j)|

+ , (23)

and construct the following set:

X(k+1) := {x ∈ Rn : f(x, t̄j) ≤ 0, j ∈ J̄ \ J (k)
∗ ; f(x, t̄j) = 0,

∂Tf(x, t̄j)

∂t
bi(j) = 0, i = 1, . . . , pj;

∂Tf(x, t̄j)

∂t
ai(j)

{
= 0, for i ∈ I

(k)
0 (j)

≤ 0, for i ∈ Ĩ(j)\I(k)0 (j)
, lT

∂2f(x, t̄j)

∂t2
l ≤ 0, ∀l ∈ L

(k)
j , j ∈ J (k)

∗ }.

It can be shown that x̄ ∈ X(k+1).

For all j ∈ J̄\J (k)
∗ , solve the auxiliary problem:

min f(x, t̄j), s.t. x ∈ X(k+1). (Aux1)

Set x(j) := x̄
if x̄ is optimal in this problem; otherwise let x(j) be any vector satisfying the following conditions:
x(j) ∈ X(k+1), f(x(j), t̄j) < 0.

Set ∆J
(k+1)
∗ := {j ∈ J̄\J (k)

∗ : f(x(j), t̄j) = 0}.

For all i ∈ Ĩ(j)\I(k)0 (j), j ∈ J
(k)
∗ , solve the following auxiliary problem:

min
∂fT (x, t̄j)

∂t
ai(j), s.t. x ∈ X(k+1). (Aux2)

Set x(ij) := x̄ if vector x̄ is optimal in problem (Aux2), otherwise choose any vector x(ij) ∈ X(k+1)

such that (
∂f(x(ij),t̄j)

∂t
)Tai(j) < 0.
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Set ∆I
(k+1)
0 (j) = {i ∈ Ĩ(j)\I(k)0 (j) :

∂fT (x(ij),t̄j)

∂t
ai(j) = 0}, j ∈ J

(k)
∗ .

If ∆J
(k+1)
∗ = ∅ and ∆I

(k+1)
0 (j) = ∅, ∀j ∈ J

(k)
∗ , then the algorithm stops with

T ∗ = {t∗j := t̄j, j ∈ J∗ := J (k)
∗ }, (24)

and

q(t∗j , ai(j)) = 1, j ∈ I0(j) := I
(k)
0 (j); q(t∗j , ai(j)) = 0, i ∈ I∗(j) = I(j) \ I(k)0 (j), j ∈ J∗. (25)

Otherwise (if at least one of the sets ∆J
(k+1)
∗ and ∆I

(k+1)
0 (j) is not empty), we set

J (k+1)
∗ := J (k)

∗

∪
∆J (k+1)

∗ ,

I
(k+1)
0 (j) := I

(k)
0 (j)

∪
∆I

(k+1)
0 (j) for j ∈ J (k)

∗ , and

I
(k+1)
0 (j) := ∅ for j ∈ ∆J (k+1)

∗ ,

and pass to the next iteration.

The algorithm is described.

4.3 Justification of the algorithm DIIPS

Suppose that we apply the algorithm DIIPS to the convex SIP problem (P ) that satisfies As-
sumption 1.

First of all, notice that it is evident that the algorithm should stop in a finite number of
iterations.
Suppose that the algorithm has stopped on the (k + 1)-th iteration. Then we have the sets

J
(k)
∗ ⊂ J̄ , I

(k)
0 (j) ⊂ Ĩ(j), j ∈ J

(k)
∗ , and vectors x(j) ∈ X(k+1), j ∈ J̄\J (k)

∗ , x(ij) ∈ X(k+1), i ∈
Ĩ(j)\I(k)0 (j), j ∈ J

(k)
∗ such that

f(x(j), t̄j) < 0, j ∈ J̄\J (k)
∗ ,

∂fT (x(ij), t̄j)

∂t
ai(j) < 0, i ∈ Ĩ(j)\I(k)0 (j), j ∈ J (k)

∗ .

Since the function f(x, t) is linear w.r.t. x and the set X(k+1) is convex, there exists x̂ ∈ X(k+1)

satisfying

f(x̂, t̄j) < 0, j ∈ J̄\J (k)
∗ ,

∂fT (x̂, t̄j)

∂t
ai(j) < 0, i ∈ Ĩ(j)\I(k)0 (j), j ∈ J (k)

∗ . (26)

It follows from the Algorithm that {t̄j, j ∈ J
(k)
∗ } ⊂ T ∗ and q(t̄j, l) > 0 for

l = B(j)βj + A
(k)
0 (j)α

(k)
0j = (B(j), A

(k)
0 (j))

(
βj

α
(k)
0j

)
̸= 0, α

(k)
0j ≥ 0, j ∈ J (k)

∗ ,

where A
(k)
0 (j), B(j), α

(k)
0j , βj are defined in (23).

Hence from Assumption 1, it follows

q(l, t̄j) = 1 for l = (B(j), A
(k)
0 (j))

(
βj

α
(k)
0j

)
̸= 0, α

(k)
0j ≥ 0, j ∈ J (k)

∗ . (27)
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Lemma 1 Let j ∈ J
(k)
∗ . Then there exists x∗j ∈ X such that

(Aβ̃)T
∂2f(x∗j, t̄j)

∂t2
Aβ̃ < 0 for all β̃ = β̃(j) = (βj, α

(k)
0j )

T , α
(k)
0j ≥ 0, ||β̃|| = 1.

where A = A(j) := (B(j), A
(k)
0 (j)).

Proof. Define the following function:

F (x, β̃) := (Aβ̃)T
∂2f(x, t̄j)

∂t2
Aβ̃ ≤ 0, β̃ ∈ B, x ∈ X, (28)

where B := {β̃ = (βj, α
(k)
0j )

T , α
(k)
0j ≥ 0, ||β̃|| = 1}.

By construction, X ⊂ Rn is a convex set, B is a compact, and the function F (x, β̃) is convex
w.r.t. x.
Consider any set of vectors

{β̃r : β̃r ∈ B, r = 1, . . . , n+ 1}. (29)

Remind that according to (27) we have q(t̄j, l) = 1, for all l = Aβ̃ ̸= 0, β̃ ∈ B. Then, by
Definition 2, for each w = 1, . . . , n+1, there exists x(w) ∈ X, satisfying inequality F (x(w), β̃w) <
0.
From the condition x(w) ∈ X, it follows that

F (x(w), β̃r) ≤ 0,∀r ̸= w, r = 1, . . . , n+ 1.

Set ¯̄x = 1
n+1

n+1∑
i=1

x(i). It is easy to check that

¯̄x ∈ X and F (¯̄x, β̃r) < 0, ∀r = 1, . . . , n+ 1. (30)

Therefore we have showed that for any set (29) there exists vector ¯̄x satisfying (30).

Hence, according to Proposition 3 from [5], for the given j ∈ J
(k)
∗ , there exists x∗j ∈ X such

that F (x∗j, β̃) < 0, ∀β̃ ∈ B, i.e.

∃x∗j ∈ X : β̃TAT ∂
2f(x∗j, t̄j)

∂t2
Aβ̃ < 0 for all β̃ = (βj, α

(k)
0j ) such that ||β̃|| = 1, α

(k)
0j ≥ 0.

�

Consider vector x̃∗ =
∑
j∈J(k)

∗

x∗j

|J (k)
∗ |

where x∗j ∈ X, j ∈ J
(k)
∗ , are the vectors considered in

Lemma 1. Then x̃∗ satisfies the following conditions:

x̃∗ ∈ X, lT
∂2f(x̃∗, t̄j)

∂t2
l < 0, ∀l = B(j)βj + A

(k)
0 (j)α

(k)
0j ̸= 0, α

(k)
0j ≥ 0, j ∈ J (k)

∗ .

Moreover, we know that given an immobile index t̄j, j ∈ J∗ = J
(k)
∗ , for any x ∈ X, it holds

f(x, t̄j) = 0,
∂f(x, t̄j)

∂t
bi(j) = 0, i = 1, . . . , pj;

∂f(x, t̄j)

∂t
ai(j) = 0, i ∈ I

(k)
0 (j), j ∈ J (k)

∗ .

8
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Then evidently, for the vector x̃∗ constructed above, the following relations take a place:

f(x̃∗, t̄j) = 0,
∂f(x̃∗, t̄j)

∂t
bi(j) = 0, i = 1, . . . , pj;

∂f(x̃∗, t̄j)

∂t
ai(j) = 0, i ∈ I

(k)
0 (j),

∂f(x̃∗, t̄j)

∂t
ai(j) ≤ 0, i ∈ I(j) \ I(k)0 (j), j ∈ J (k)

∗ .

Consider vector z = 1
2
(x̃∗ + x̄) ∈ X, where x̄ is the vector introduced in section 4.1. Then by

construction

f(z, t̄j) ≤ 0, j ∈ J̄ \ J (k)
∗ , f(z, t̄j) = 0, j ∈ J (k)

∗ ;

∂f(z, t̄j)

∂t
bi(j) = 0, i = 1, . . . , pj;

∂f(z, t̄j)

∂t
ai(j)

{
< 0, i ∈ I(j) \ Ĩ(j)
≤ 0, i ∈ Ĩ(j);

lT
∂2f(z, t̄j)

∂t
l < 0,∀l ∈ L0k(t̄j); lT

∂2f(z, t̄j)

∂t
l ≤ 0, ∀l ∈ L(z, t̄j), j ∈ J (k)

∗ ,

where

L0k(t̄j) := {l = B(j)βj + A
(k)
0 (j)α

(k)
0j , α

(k)
0j ≥ 0, (βj, α

(k)
0j ) ̸= 0};

L(z, t̄j) := {l = B(j)βj + A(j)αj, αj ≥ 0,
∂f(z, t̄j)

∂t
l = 0 }, j ∈ J (k)

∗ .

Given λ ∈ [0, 1], let us consider now vector x(λ) = (1 − λ)z + λx̂. Remind here that vector
x̂ ∈ X(k+1) satisfies (26).
Taking into account linearity of f(x, t) w.r.t. x, we have

f(x(λ), t̄j) = (1− λ)f(z, t̄j) + λf(x̂, t̄j).

Then we can conclude that for 0 < λ < 1, the following relations take place:

f(x(λ), t̄j) < 0 for j ∈ J̄ \ J (k)
∗ ; f(x(λ), t̄j) = 0 for j ∈ J (k)

∗ ;

∂fT (x(λ), t̄j)

∂t
bi(j) = 0, i = 1, . . . , pj;

∂fT (x(λ), t̄j)

∂t
ai(j) = 0, i ∈ I

(k)
0 (j),

∂fT (x(λ), t̄j)

∂t
ai(j) < 0, i ∈ I(j) \ I(k)0 (j);

lT
∂2f(x(λ), t̄j)

∂t2
l < 0, ∀l ∈ L0k(t̄j), j ∈ J (k)

∗ .

(31)

It is evident that for sufficiently small λ > 0 we can guarantee that there exists ε(λ) ≥ 0 such
that ε(λ) → 0 as λ → 0 and

f(x(λ), t) < 0, t ∈ T \
∪

j∈J(k)
∗

Tε(λ)(t̄j), (32)

where Tε(t) = {τ ∈ T : ||t− τ || ≤ ε}.

9
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Suppose that j ∈ J
(k)
∗ . Then any t ∈ Tε(λ)(t̄i) can be presented in the form t = t̄j +∆tj, ∆tj ∈

L(t̄j), ||∆tj|| ≤ ε(λ) and in its neighborhood the following asymptotic expansion holds:

f(x(λ), t) = f(x(λ), t̄j +∆tj)

= f(x(λ), t̄j) +
∂fT (x(λ), t̄j)

∂t
∆tj +

1

2
∆tTj

∂2f(x(λ), t̄j)

∂t2
∆tj + o(||∆tj||2)

=
∑

i∈I(j)\I(k)0 (j)

∂fT (x(λ), t̄j)

∂t
ai(j)αi(j) +

1

2
(βj, αj)

T (Bj, Aj)
T ∂

2f(x(λ), t̄j)

∂t2
(Bj, Aj)

(
βj

αj

)
+o(||(βj, αj)||2),

where αj = (αi(j), i ∈ I(j)) ≥ 0.

Notice here that if (αi(j), i ∈ I(j) \ I(k)0 (j)) ̸= 0, then the first-order term in this expansion is

negative. If (αi(j), i ∈ I(j) \ I(k)0 (j)) = 0, then the term mentioned above vanishes and we get

f(x(λ), t) = (βj, α
(k)
0j )

T (B(j), A
(k)
0 (j))T

∂2f(x(λ), t̄j)

∂t2
(B(j), A

(k)
0 (j))

(
βj

α
(k)
0j

)
+ o(||(βj, α

(k)
j )||2).

In this case, evidently, f(x(λ), t) < 0 when (βj, α
(k)
0j ) ̸= 0 (taking into account (31)); and

f(x(λ), t) = f(x(λ), t̄j) = 0 when (βj, α
(k)
0j ) = 0. Then for sufficiently small λ > 0 we have

f(x(λ), t) < 0, t ∈ Tε(λ)(t̄j) \ t̄j, j ∈ J (k)
∗ . (33)

Therefore we have proved that for sufficiently small λ > 0, vector x̃ = x(λ) has the following
properties:

P1. x̃ ∈ X, i.e. x̃ is a feasible solution of problem (P ) (it follows from (32), (33));

P2. the following relations are valid:

f(x̃, t̄j) = 0,
∂fT (x̃, t̄j)

∂t
bi(j) = 0, i = 1, . . . , pj;

∂fT (x̃, t̄j)

∂t
aj(j) = 0, i ∈ I

(k)
0 (j),

∂fT (x̃, t̄j)

∂t
ai(j) < 0, i ∈ I(j) \ I(k)0 (j);

lT
∂2f(x̃, t̄j)

∂t2
l < 0, ∀l ∈ L0k(t̄j), j ∈ J (k)

∗ ;

f(x̃, t̄j) < 0, t ∈ T \ {t̄j, j ∈ J (k)
∗ }.

Recall that by construction, {t̄j, j ∈ J
(k)
∗ } ⊂ T ∗, I

(k)
0 (j) ⊂ I(j), j ∈ J

(k)
∗ . Then, taking

into account Definition 2, we can conclude that relations (24) and(25) take place and thus the
algorithm DIIPS is justified.
Notice that from the considerations above it follows that

q(t̄j, l) = 1, l ∈ L0k(t̄j); q(t̄j, l) = 0, l ∈ L(t̄j) \ L0k(t̄j), j ∈ J (k)
∗ .
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Lemma 2 In Assumption 1, condition (18) is equivalent to the following statement: for any
immobile index t̄ ∈ T ∗, there exists x̄ = x̄(t̄) ∈ X such that vector t̄ satisfies the sufficient
conditions of strict local minimum in the problem

max f(x̄, t), s.t. t ∈ T, (34)

that have the form

∃yk ≥ 0, k ∈ K̄ = {k ∈ K : hT
k t̄ = ∆hk}such that

∂f(x̄, t̄)

∂t
=

∑
k∈K̄

hkyk,

lT
∂2f(x̄, t̄)

∂t2
l < 0, ∀l ∈ L(t̄, x̄) := {l ∈ Rs : l ̸= 0,

∂fT (x̄, t̄)

∂t
l = 0, hT

k l ≤ 0, k ∈ K̄}.

(35)

Proof.
⇒) Suppose that Assumption 1 is satisfied. It was proved above that there exists vector x̃ that
satisfies properties P1 and P2. Hence for any t̄ ∈ T ∗ we can choose vector x̄ = x̄(t̄) = x̃.

⇐) Now let us consider a situation when for some t̄ ∈ T ∗ there exists vector x̄ ∈ X satisfying
(35). If suppose that condition (18) is not satisfied for this index t̄, we get that there exists
l̄ ∈ L(t̄), l̄ ̸= 0 such that q(t̄, l̄) > 1. Then from the definition of the immobility order it follows
that

∂f(x, t̄)

∂t
l = 0, lT

∂2f(x, t̄)

∂t
l = 0, ∀x ∈ X. (36)

But equalities (36) with x = x̄ ∈ X contradict (35). The contradiction proves the lemma. �

5 Example

We consider here an example of a convex SIP problem with polyhedral index set in the form
(P ).
Let x = (x1, x2, x3, x4)

T ∈ R4, t = (t1, t2)
T ∈ R2, and

f1(x, t) = −t21x1 + t1t2x1 + t1x2 + (sin t1)x3 + t1x4 − t22,

f2(x, t) = t2x1 + (t2 + 1)2x2 + (1− t2)x3 + x4 − (t1 − 3)2 + (t1 − 3)t2;

T1 = {t ∈ R2 : −t1 + t2 ≤ 0, t1 ≤ 2, −1 ≤ t2},
T2 = {t ∈ R2 : t1 − t2 ≤ 3, 2 ≤ t1 ≤ 4, 0 ≤ t2 ≤ 2}.

Consider the following SIP problem:

min(−x2 + x3),

s.t. f1(x, t) ≤ 0, ∀t ∈ T1, f2(x, t) ≤ 0, ∀t ∈ T2.
(37)

The index set here has the form T = T1

∪
T2 where the sets T1 and T2 are polyhedrons defined

as follows:
T1 = {t ∈ R2 : hT

1 t ≤ 0, hT
2 t ≤ 2, hT

3 t ≤ 1},

T2 = {t ∈ R2 : gT1 t ≤ 3, gT2 t ≤ 4, gT3 t ≤ −2, gT4 t ≤ 2, gT5 t ≤ 0},
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if suppose that

hT
1 = (−1, 1), hT

2 = (1, 0), hT
3 = (0,−1),

gT1 = (1,−1), gT2 = (1, 0), gT3 = (−1, 0), gT4 = (0, 1), gT5 = (0,−1).

Problem (37) admits a feasible solution x0 = (x0
1, x

0
2, x

0
3, x

0
4)

T where

x0
1 =

sin2 + 2

2
≈ 1.455, x0

2 =
(x0

1)
2 + x0

1(sin2− 6)

−2(sin2− 2)
≈ −2.425, (38)

x0
3 = x0

1 + 2x0
2, x0

4 = −3x0
2 − x0

1.

It can be shown that the active index set at x0 has the form Ta(x
0) = {t(1), t(2), t(3)}, where

t(1) := (0, 0)T ∈ T1, t(2) := (3, 0)T ∈ T2, t(3) := (2, x0
1)

T ∈ T1, and

f1(x
0, t(1)) = f2(x

0, t(2)) = f1(x
0, t(3)) = 0.

Let us describe the cones of feasible directions L̄(t(i)), t(i) ∈ Ta(x
0), i = 1, 2, 3, defined in (5)

using the rules described in section 3.
Consider, first, the active index t(1) = (0, 0). Since Ka(t

(1)) = {1} and h1 = (−1, 1)T , we
conclude that L̄1 = L̄(t(1)) = {(l1, l2)T : −l1 + l2 ≤ 0}. Then

∆L̄1 = {(l1, l2)T : −l1 + l2 = 0} = {(l1, l2) : l1 = l2} = {(α, α), α ∈ R}.

Hence ∆L̄⊥
1 = {(l1, l2) : l1 + l2 = 0} and ¯̄L1 = L̄1

∩
∆L̄⊥

1 = {(l1, l2) : l1 = −l2, l2 ≤ 0} =
{(β,−β), β ≥ 0}.
In this example we have s = 2, therefore S = {1, 2}.

Since Ka(t
(1)) = {1}, the corresponding matrix H has the form H = [h11 = −1, h12 = 1].

Having supposed S0 = {1}, N0 = {1}, we get H0 = H(N0, S0) = [−1] and H−1
0 = [−1]. Taking

into account that S \ S0 = {2}, we can find the components b̄22 = 1 and b̄21 = −H−1
0 h12 = 1

of the bidirectional extremal ray b(1) corresponding to t(1) and then b(1) = (1, 1). Now, let us
find the unidirectional rays corresponding to t(1). Consider vector h0 = (−1, 1)T ̸= 0. Since
m = 1, we get that |N∗| = m − 1 = 0 and hence N∗ = ∅. Then the matrix D(N∗) has the

form D(N∗) =

(
−1 1
1 1

)
and D(N∗)

−1 =

(
−1

2
1
2

1
2

1
2

)
. Hence a(N∗) = −

(
−1

2
1
2

)
, hT

1 a(N∗) =

(−1, 1)

(
1
2

−1
2

)
= −1 ≤ 0, and vector (1

2
,−1

2
)T is a unidirectional ray of the set L̄1. It is evident

that vector a(1) := 2 · (1
2
,−1

2
)T = (1,−1)T is a unidimensional ray as well. Therefore we con-

clude that the set L̄1 has two extremal rays, b(1) = (1, 1)T and a(1) = (1,−1)T .

In analogous way, using the rules described in 3.2 we can find that the extremal rays of the set
L̄2 = L̄(t(2)) = {(l1, l2) : l1 ≤ l2, l2 ≥ 0}, have the form a1(2) = (1, 1)T , a2(2) = (−1, 0)T , and
the extremal rays of the set L̄3 = L̄(t(3)) = {(l1, l2) : l1 ≥ 0} have the form a(3) = (−1, 0)T and
b(3) = (0, 1)T .

It is evident that T ∗ ⊂ Ta(x
0) = {t(1), t(2), t(3)}.

Now let us apply the algorithm DIIPS and determine the immobile indices and their immobility
orders along the corresponding extremal rays.
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çã
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Notice that

∂Tf1(x
0, T (1))

∂t
a(1) = 0,

∂Tf2(x
0, t(2))

∂t
a1(2) = 0,

∂Tf2(x
0, t(2))

∂t
a2(2) = 0,

∂Tf1(x
0, t(3))

∂t
a(3) ̸= 0.

Using the same notations as in 4.2, we consider the following sets:

J̄ = {1, 2, 3}, Ĩ(1) = {1}, Ĩ(2) = {1, 2}, Ĩ(3) = ∅.

On the first iteration of the algorithm set k = 0, J
(0)
∗ = ∅, and construct the set

X(1) = {x ∈ Rn : f1(x, t
(1)) ≤ 0, f2(x, t

(2)) ≤ 0, f1(x, t
(3)) ≤ 0}

= {x ∈ R4 : x2 + x3 + x4 ≤ 0, −4x1 + 2x0
1x1 + 2x2 + sin 2 · x3 + 2x4 − (x0

1)
2 ≤ 0}.

Consider the auxiliary problem (Aux1) for each j ∈ J̄ = {1, 2, 3}.
When j = 1, this problem has the form

min
x∈X(1)

f1(x, t
(1)).

Since for each x ∈ X(1) it holds f1(x, t
(1)) = 0, we can set x(1) = x0.

Let j = 2. In that case problem (Aux1) takes the form

min
x∈X(1)

f2(x, t
(2)).

Since the objective function of this problem, f2(x, t
(2)) = x2 + x3 + x4, is unbounded from

below, then according to the algorithm we can choose the feasible x(2) = (0, 0, 0,−1) with
f 2(x

(2), t(2)) = −1 < 0.
The same situation occurs for j = 3: the objective function of the problem

min
x∈X(1)

f1(x, t
(3)),

is unbounded from below: f1(x, t
(3)) = (2x0

1 − 4)x2 + 2x2 + sin 2 · x3 + 2x4 − (x0
1)

2), and we can
set x(3) = (0, 0, 0, 0) since f1(x

(3), t(3)) = −(x0
1)

2 < 0.

Find the sets ∆J
(1)
∗ := {j ∈ J̄ : f(x(j), t(j)) = 0} = {1}, ∆I

(1)
0 (1) := ∅.

Since ∆J
(1)
∗ = {1} ≠ ∅, we pass to the next iteration with

J (1)
∗ = J (0)

∗

∪
∆J (1)

∗ = {1}, I
(1)
0 (1) = ∆I

(1)
0 (1) = ∅ and J̄\J (1)

∗ = {2, 3}.

On the next iteration (k = 1) we construct the set

X(2) = {x ∈ R4 : f2(x, t
(2)) ≤ 0, f1(x, t

(3)) ≤ 0, f1(x, t
(1)) = 0,

∂Tf1(x, t
(1))

∂t
b(1) = 0,

∂Tf1(x, t
(1))

∂t
a(1) ≤ 0, lT

∂2f1(x, t
(1))

∂t2
l ≤ 0, l ∈ L

(1)
1 },

where the set L
(1)
1 is defined by formula (22) for J

(1)
∗ = {1}, and it is empty: L

(1)
1 = ∅, as

∂2f1(x0,t(1))
∂t2

≺ 0.

13
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Then

X(2) = {x ∈ R4 : x2 + x3 + x4 = 0, −4x1 + 2x0
1x1 + 2x2 + sin 2 · x3 + 2x4 − (x0

1)
2 ≤ 0}.

For j = 2, the auxiliary problem (Aux1) has the form

min
x∈X(2)

f2(x, t
(2)).

Since f2(x, t
(2))= x2 + x3 + x4 = 0 ∀x ∈ X(2), we can set x(2) = x0.

For j = 3, problem (Aux1) takes the form

min
x∈X(2)

f1(x, t
(3)),

and it easy to conclude that the objective function of this problem, f1(x, t
(3)) = −4x1+2x0

1x2+
2x2 + sin 2 · x3 + 2x4 − (x0

1), is unbounded from below. Then we can choose x(3) = (0, 0, 0, 0),
as f1(x

(3), t(3)) = −(x0
1)

2 < 0.

Construct the set ∆J
(2)
∗ = {j ∈ {2, 3} : f(x(j), t(j)) = 0} = {2}. Since Ĩ(1)\I(1)0 (1) = {1},

we have to solve the auxiliary problem (Aux2)

min
x∈X(2)

∂Tf1(x, t
(1))

∂t
a(1).

Since ∂T f1(x,t(1))
∂t

a(1) = x2 + x3 + x4, the objective function of this problem is equal to zero for
all feasible solutions and therefore we can choose x(11) = x0.
According to the Algorithm,

∆I
(2)
0 (1) = {j ∈ {1} :

∂Tf1(x
(11), t(1))

∂t
a(1) = 0}.

Evidently, ∆I
(2)
0 (1) = {1} ̸= ∅.

Construct the sets

J (2)
∗ = J (1)

∗

∪
∆J (2)

∗ = {1, 2}, I
(2)
0 (1) = I

(1)
0 (1)

∪
∆I

(2)
0 (2) = {1}, I

(2)
0 (2) = ∅

and pass to the next iteration.
For k = 2, we construct the set

X(3) = {x ∈ R4 : f1(x, t
(3)) ≤ 0, f1(x, t

(1)) = 0, f2(x, t
(2)) = 0,

∂Tf1(x, t
(1))

∂t
b(1) = 0,

∂Tf1(x, t
(1))

∂t
a(1) = 0, lT

∂2f1(x, t
(1))

∂t2
l ≤ 0, l ∈ L

(2)
1 ,

∂Tf2(x, t
(2))

∂t
a1(2) ≤ 0,

∂Tf2(x, t
(2))

∂t
a2(2) ≤ 0, lT

∂2f2(x, t
(2))

∂t2
l ≤ 0, l ∈ L

(2)
2 }

where L
(2)
1 , L

(2)
2 are defined in (22). Since ∂2fi(x

0,t(i))
∂t2

≺ 0, i = 1, 2, we have L
(2)
1 = L

(2)
2 = ∅.

Having substituted the functions and simplifying the expression, we get

X(3) = {x ∈ R4 : −4x1 + 2x0
1x1 + 2x2 + sin 2 · x3 + 2x4 − (x0

1)
2 ≤ 0,

x2 + x3 + x4 = 0, x1 + 2x2 − x3 ≤ 0}.

14

http://ria.ua.pt
C

ad
er

n
os

d
e

M
at

em
át

ic
a,

U
n

iv
er

si
d

ad
e

d
e

A
ve

ir
o,

P
or

tu
ga

l
–

S
ér

ie
d

e
In

ve
st

ig
a
çã
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Then the problem (Aux1), takes the form

min
x∈X(3)

f1(x, t
(3)),

or explicitly

min −4x1 + 2x0
1x1 + 2x2 + sin 2 · x3 + 2x4 − (x0

1)
2

s.t. x2 + x3 + x4 = 0, x1 + 2x2 − x3 ≤ 0,

− 4x1 + 2x0
1x1 + 2x2 + sin 2 · x3 + 2x4 − (x0

1)
2 ≤ 0.

(39)

The objective function is unbounded from below. Choose x(3) = (0,−1, 0, 1) with

f1(x
(3), t(3)) = −(x0

1)
2 < 0 and construct ∆J

(3)
∗ = {j ∈ {3} : f1(x

(j)), t(j)) = 0} = ∅.
For j ∈ J

(2)
∗ = {1, 2}, consider the sets Ĩ(j) \ I(2)0 (j):

Ĩ(1) \ I(2)0 (1) = ∅, Ĩ(2) \ I(2)0 (2) = Ĩ(2) = {1, 2}.

For i ∈ Ĩ(2)\I(2)0 (2) = {1, 2}, the corresponding auxiliary problems (Aux2) take the forms

min
x∈X(3)

∂Tf2(x, t
(2))

∂t
a1(2),

and

min
x∈X(3)

∂Tf2(x, t
(2))

∂t
a2(2),

or equivalently,
min

x∈X(3)
(x1 + 2x2 − x3), (40)

min
x∈X(3)

0. (41)

The problem (40) can be rewritten in the form

min x1 + 2x2 − x3,

s.t. x2 + x3 + x4 = 0, x1 + 2x2 − x3 ≤ 0, (sin 2− 2)x3 − (x0
1)

2 ≤ 0.

Since the objective function of this problems is unbounded, we choose x(12) = (0, 0, 2,−2) such
that f2(x

(12), t(2)) = −2.
Now notice that in the auxiliary problem (41), the value of the objective function is constant
and equal to zero, therefore we can consider any feasible solution as an optimal and set, for
example, x(22) = (0, 0, 2,−2).

Then ∆I
(3)
0 (1) = ∅ and ∆I

(3)
0 (2) = {i ∈ {1, 2} : ∂T f2(x(i2),t(2))

∂t
ai(2) = 0} = {2}. Notice that we

have here ∆J
(3)
∗ = ∅,∆I

(3)
0 (1) = ∅, but ∆I

(3)
0 (2) ̸= ∅.

Therefore we pass to the next iteration, with k = 3, and the following sets:

J (3)
∗ = J (2)

∗

∪
∆J (3)

∗ = {1, 2}, I
(3)
0 (1) = I

(2)
0 (1)

∪
∆I

(3)
0 (1) = {1},

I
(3)
0 (2) = I

(2)
0 (2)

∪
∆I

(3)
0 (2) = {2},

and
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çã
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X(4) = {x ∈ R4 : f1(x, t
(3)) ≤ 0, f1(x, t

(1)) = 0, f2(x, t
(2)) = 0,

∂Tf1(x, t
(1))

∂t
b(1) = 0,

∂Tf1(x, t
(1))

∂t
a(1) = 0, lT

∂2f1(x, t
(1))

∂t2
l ≤ 0, l ∈ L

(3)
1 ,

∂Tf2(x, t
(2))

∂t
a1(2) ≤ 0,

∂Tf2(x, t
(2))

∂t
a2(2) = 0, lT

∂2f2(x, t
(2))

∂t2
l ≤ 0, l ∈ L

(3)
2 }.

(42)

Having substituted explicit presentations of the sets and functions involved in (42) and sim-
plifying the obtained expressions, we get

X(4) = {x ∈ R4 : −4x1 + 2x0
1x1 + 2x2 + sin 2·x3 + 2x4 − (x0

1)
2 ≤ 0,

x2 + x3 + x4 = 0, x1 + 2x2 − x3 ≤ 0},
and therefore for j = 3 the auxiliary problem (Aux1) takes the form

min −4x1 + 2x0
1x1 + 2x2 + sin 2 · x3 + 2x4 − (x0

1)
2,

s.t. x ∈ X(4),

and coincides with problem (39) from the previous iteration. As above, since the objective
function is unbounded from below, we can choose x(3) = (0,−1, 0, 1). Then f1(x

(3), t(3)) =

−(x0
1)

2 < 0, and ∆J
(4)
∗ = ∅.

For i ∈ Ĩ(2) \ I(3)0 (2) = {1}, the auxiliary problem (Aux2) has the form

min x1 + 2x2 − x3, s.t. x ∈ X(4).

The objective function of this problem is unbounded.
For x(12) = (0,−1, 0, 1) ∈ X(4) we have f2(x

(12), t(2)) = −2 < 0. Consequently we get ∆I
(4)
0 (2) =

∅.
Since ∆I

(4)
0 (2) = ∅, ∆J

(4)
∗ = ∅, the algorithm stops with T ∗ ={t(j), j ∈ J

(3)
∗ } = {t(1), t(2)}.

For the immobile indices found, the immobility orders along the extremal rays are as follows:

q(t(j), ai(j)) = 1, i ∈ I
(3)
0 (j); q(t(j), ai(j)) = 0, i ∈ Ĩ(i)\I(3)0 (j), j ∈ J (3)

∗ .

Hence we conclude that q(t(1), a(1)) = 1, q(t(1), b(1)) = 1, and q(t(2), a1(2)) = 0, q(t(2), a2(2)) =
1.
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