
 Universidade de Aveiro
2011

Departamento de Electrónica, Telecomunicações e
Informática

José Daniel Costa
Varela

Sniffer Gigabit Ethernet em Hardware para sistemas
de Tempo-Real

Gigabit Ethernet Hardware Sniffer for Real-Time
Systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15568781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Universidade de Aveiro
2011

Departamento de Electrónica, Telecomunicações e
Informática

José Daniel Costa
Varela

Sniffer Gigabit Ethernet em Hardware para sistemas
de Tempo-Real

Gigabit Ethernet Hardware Sniffer for Real-Time
Systems

 dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia Eletrónica
e de Telecomunicações, realizada sob a orientação científica do Dr. Arnaldo
Silva Rodrigues de Oliveira, Professor Auxiliar do Departamento de Eletrónica,
Telecomunicações e Informática da Universidade de Aveiro e do Dr. Paulo
Bacelar Reis Pedreiras, Professor Auxiliar do Departamento de Eletrónica,
Telecomunicações e Informática da Universidade de Aveiro.

o júri

presidente Prof. Dr. João Nuno Pimentel da Silva Matos
Professor Associado, Departamento de Eletrónica, Telecomunicações

e Informática, UA

 Prof. Dr. Arnaldo Silva Rodrigues de Oliveira

Professor Auxiliar, Departamento de Eletrónica, Telecomunicações e
Informática, UA

 Prof. Dr. Paulo Bacelar Reis Pedreiras
Professor Auxiliar, Departamento de Eletrónica, Telecomunicações e

Informática, UA

 Prof. Dr. Luis Miguel Pinho de Almeida

Professor Associado, Departamento de Engenharia Eletrotécnica e de
Computadores, FEUP

agradecimentos

Agradeço aos meus orientadores pela colaboração e apoio incansável.
Agradeço aos meus amigos, principalmente aos membros da Erasmus Student
Network. Agradeço à minha namorada e à minha família, especialmente à
minha mãe, que sempre acredita em mim.

palavras-chave

Tempo-Real, Ethernet, FPGA

Resumo

As ferramentas habituais de análise do comportamento lógico e temporal de
uma rede de comunicações, conhecidas popularmente por Sniffers, são
satisfatórias para as redes de uso geral. No entanto, não correspondem aos
requisitos concretos de alguns protocolos de tempo-real, nomeadamente no
que concerne à resolução e precisão das medições dos instantes de
transmissão e recepção de mensagens. Esta incapacidade tem a sua origem
no facto de estas ferramentas serem aplicações em software, a correr em
computadores comuns. Nestes, as suas características multitarefa e o próprio
mecanismo de “time-stamping” das mensagens não são apropriados para
requisitos de tempo-real.

Como resposta a esta limitação, desenvolveu-se um Sniffer Ethernet em
Hardware, recorrendo-se a FPGAs e a núcleos sintetizáveis de propriedade
intelectual.

A ferramenta desenvolvida é capaz de capturar tráfego Gigabit num segmento
Ethernet realizando o time-stamping das mensagens em hardware. Os dados
são depois transferidos para um computador novamente pela via Ethernet.

Do lado do PC os dados são primeiro reconhecidos pelo popular software
analisador de dados, Wireshark. Seguidamente, com recurso a ferramentas de
software desenvolvidas, os dados são exportados e convertidos para um
formato mais conveniente para serem analisados em ferramentas de cálculo.

A ferramenta mostrou ser capaz de capturar todo o tráfego procedente de uma
porta Ethernet com uma precisão temporal de 8ns e um jitter de 16ns.

Keywords

Tempo-Real, Ethernet, FPGA

Abstract

The standard tools for analysis of the logical and temporal behavior of a
communication network, commonly known as Sniffers, are satisfactory for
general purpose networks. However, they are insufficient for the specific
requisites of some real-time protocols, namely in what concerns the resolution
and temporal precision associated with the time-stamping of the arriving
messages. This incapacity has its source in the fact that these tools are
software based, running in common computers. The way time-stamping ins
performed on these machines, as well as the multitask features associated with
them are not appropriate for the requisites of real-time systems.

As an answer to this limitation, a Gigabit Ethernet hardware based was
developed on an FPGA and making use of intellectual Property Cores.

The tool developed is capable if capturing Gigabit Ethernet traffic on an
Ethernet Link, measuring the time-stamping on hardware. The data is then
transferred again through an Ethernet Port.

On the PC side, all data is first captured by the popular software data analyzer,
Wireshark. Next, making use of software tools developed, the data is exported
to a convenient format, in order to be analyzed by math tools.

The tool proved to be capable of capturing all the traffic coming from an
Ethernet port with an 8ns resolution and 16ns jitter.

1

ÍNDICE

CHAPTER 1. INTRODUCTION ... 3

1.1. Framework .. 3

1.2. Motivation .. 3

1.3. Objective ... 4

1.4. Structure ... 4
CHAPTER 2. THEORETICAL BACKGROUND .. 5

2.1. Real-Time Systems .. 5

2.2. FPGA ... 8

2.3. Communication Technologies and the choice for Gigabit Ethernet for
Transmission 11

2.4. The Ethernet ... 12
CHAPTER 3. STATE OF THE ART ... 18

3.1. Introduction .. 18

3.2. Making Ethernet Real-Time .. 18

3.3. Network Analyzers .. 19
CHAPTER 4. TOOL DEVELOPMENT: CAPTURING, STORING AND PROCESSING DATA. INFORMATION

TRANSFERENCE TO THE PC. .. 22

4.1. Introduction .. 22

4.2. General Description .. 22

4.3. Medium Access Control at Reception .. 23

4.4. Time-Stamping .. 25

4.5. FIFOs ... 27

4.6. Writing to the FIFOs .. 28

4.7. FPGA to PC Information Transference .. 31
CHAPTER 5. SOFTWARE TOOLS FOR DATA ANALYSIS ... 36

5.1. Receiving Data on the PC side .. 36

5.2. Data Processing .. 37
CHAPTER 6. TESTS AND RESULTS ... 39

6.1. Introduction .. 39

6.2. Working Diagram .. 39
CHAPTER 7. CONCLUSIONS ... 42

7.1. Summary ... 42

7.2. Future Work .. 42

2

LISTA DE FIGURAS

Figure 2.1 - The different times in a real-time system (adapted from (Puga, 2008)) 5
Figure 2.2 - Distributed Architectures ... 7
Figure 2.3 – Internal Structure of a Virtex FPGA ... 9
Figure 2.4 – FPGA Xilinx Design Flow (taken from (Xilinx, 2011)) 10
Figure 2.5 – UTP Cable ... 13
Figure 2.6 –Ethernet Shared Medium ... 13
Figure 2.7 – CSMA/CD Dinner Table Analogy (taken from (Pidgeon, 2000)) 14
Figure2.8 – How an Ethernet Network looks nowadays ... 15
Figure 2.9 - The RGMII Interface: an interface between the PHY and the MAC 16
Figure 2.10- The Ethernet Frame... 16
Figure 3.1 - Fast Ethernet Sniffer Architecture .. 21
Figure 4.1 - Sniffer Architecture .. 22
Figure 4.2 - Sniffer Internal Structure .. 23
Figure 4.3 - RGMII Interface .. 24
Figure 4.4 - Client Interface ... 25
Figure 4.5 - Time-stamping Module .. 26
Figure 4.6 - Worst case scenario for time-stamping ... 26
Figure 4.7 - Block Diagram for the reception and storage of the messages 28
Figure 4.8 - Data Fifo Control Unit state chart diagram .. 29
Figure 4.9 – Control Fifo Write Unit State-Chart Diagram .. 31
Figure 4.10 - The Channel Multiplexer .. 32
Figure 4.11 - Information transference to the PC Block Diagram 33
Figure 4.12 - Transmission Unit Timing Diagram... 34
Figure 4.13 - Acknowledge Signal from the TEMAC .. 35
Figure 5.1 - Ethernet Frame received on the PC side .. 36
Figure 5.2 - Wireshark Capture.. 37
Figure 5.3 - Information exported from Wireshark to a plain text 38
Figure 5.4 - Data in CSV format ... 38
Figure 6.1 - Sniffer Testing Working Diagram.. 39

3

CHAPTER 1. INTRODUCTION

1.1. FRAMEWORK

The need for real-time communication protocols is everyday more visible. That comes

from the specific requirements of some communication networks, where is crucial to achieve not
only logical correction but also punctuality. Examples of such types of network are the air traffic
control systems or an online ticket selling service. In the first example, a time failure can have
disastrous consequences, sometimes even putting human lives in danger. On the second one,
failures may be acceptable, but they will always cause loss of quality. It is then vital to use real-
time protocols on these systems. The demand for higher bandwidth on these protocols has put
Ethernet on the spot, with several efforts made to make this networking technology real-time
oriented.

On the other hand, the development of more and more accurate protocols, demands also
the development of network analyzers capable of reaching the precision achieved by these
protocols. These network analyzers are commonly called Sniffers and their function is to evaluate
the network for proper operation, capturing the messages flowing on the transmission lines and
the time information associated with these messages. However, the majority of these tools are
software applications running over an operating system. These last ones, deal with: processor
assignment multiplexing, multiprogramming issues, interrupts, access denial to shared resources
or even direct memory accesses. All of these factors originate unacceptable time-stamping errors
and temporal uncertainty for real-time systems.

To overcome the shortcomings of the vulgar network analyzers, there has been a focus on
the development of network sniffers hardware based.This project presents a solution for a
network analyzer for real-time Ethernet networks operating at gigabit mode, aiming to be capable
of responding to the temporal precision and resolution demands of the real-time protocols. For
that to be achievable, all the reception, time-stamping and data process were made using
dedicated hardware, immune to the mentioned issues of the software applications. The hardware
was built on an FPGA (Field Programmable Gate Array), thus being possible to reprogram it. In
addition, synthesizable intellectual property cores were used to implement the Ethernet MAC
layer and to build the FIFOs, useful for temporary data storage of the captured messages. The
transmission of the data captured is performed also at the expense of the Ethernet technology,
making use of the various Ethernet PHYs available on the NetFPGA developing board (NetFPGA,
2011).

1.2. MOTIVATION

Previous approaches to the subject have revealed that hardware tools can achieve much

more satisfying results than similar software applications.
An example of such tools is a Fast Ethernet Hardware Sniffer developed at the University

of Aveiro entitled Sniffer para Redes Ethernet de Tempo-Real Baseado em FPGA(Puga, 2008). The
Sniffer was compared with a popular software application known as Wireshark (Wireshark
Developer's Guide, 2004-2010). From the comparison it could be concluded that the hardware
approach was far better than the software tool in every aspect. First, with a software application
there is always a risk for loss of packets and the user may not even be aware of their existence.
Contrary, on the hardware approach all packets flowing on the transmission line were captured.
The sniffer previously developed achieved a temporal resolution of 10 ns, and a maximum jitter of

daniel
The need for real-time protocols and the role of Ethernet.

daniel
The need for network analyzers able to operate on real-time systems and deficiency of software applications.

daniel
Sniffer Hardware design to overcome the limitations of conventional network analyzers.

4

100 ns, both values clearly smaller than the tens of µs of temporal resolution and a maximum
error of some milliseconds associated with the software tools.

This new work intends to be a solution for an analyzer for Gigabit Ethernet traffic, than
can be able to capture the Ethernet messages flowing on an Ethernet Segment at Gigabit rate and
register with high resolution and accuracy the time of their arrival.

1.3. OBJECTIVE

This new approach aims on building a tool capable of sniffing Gigabit Ethernet Data, and

transfer the information captured to a PC. The Sniffer must be able to capture the traffic on an
Ethernet segment, and collecting time-stamping information with the precision demanded by
Real-Time Systems. The data must then be analyzed on the PC, by means of data processing
applications, and give relevant measurements of the data captured such as jitter, instant of
arrival, packet size, number of messages exchanged and packet content.

1.4. STRUCTURE

Besides the introductory chapter, this document is structured in the following way:

Chapter 2 – Theoretical Background - This chapter provides relevant theoretical context

for this thesis, providing information on topics such as Real-Time Systems and FPGAs. It also
explores the different communication technologies considered for this work and the choice for
Gigabit Ethernet. Finally, there is an insight about Ethernet, the communication technology used
on the device designed.

Chapter 3 – State of the Art – Focuses on related work developed on the subject: existent

real-time Ethernet protocols developed and the networking analysing solutions available both in
software and hardware. It is given special attention to a Fast Ethernet Hardware Sniffer designed
at the University of Aveiro.

Chapter 4 – Tool Development: capturing, storing and processing data. Information
transference to the PC – It explains all hardware components developed: the physical interface
components, and the components responsible for sniffing the Ethernet packets and to store them
in IP Core FIFOs along with time-stamping and control information. It also explains the process of
sending out the information collected to a PC.

Chapter 5 – Software Tools for Data Analysis – It is presented the way data is received on

the PC side, the problems in reading data at a convenient format to be analyzed and the software
tools used or created to overcome them.

Chapter 6 – Tests and Results – All the tests performed on the Sniffer and its results.

Chapter 7– Conclusions – A summary on the work developed on the whole project, and

tips for future work.

daniel
Tool developed clearly superior to software applications.

Alexandre Vieira
The new tool

5

CHAPTER 2. THEORETICAL BACKGROUND

2.1. REAL-TIME SYSTEMS

A real-time system is a system that is dependent in relation to time, meaning that it must

obey to temporal constraints imposed by the surrounding environment. Failing to fulfil the time
requirements in such systems will result in consequences that can go from a simple loss of quality
in the system’s function to unacceptable disasters like big economic damages, or even the loss of
human lives. A DVD player is an example of a real-time system that, in case of delay in task
performing, will result in a loss of quality, which may irritate the user but will not cause any
harder consequences. However, if an air traffic control system task – another real-time system -
fails to meet its deadline, it can result in the loss of hundreds of human lives. Either way, in both
cases is evident that the surrounding environment of the system imposes temporal restrictions
according to its own dynamic. Thus, a real time-system has to guarantee not only logical
correction in its operation, but also temporal one. It must act on time!

2.1.1. ITS ABOUT PREDICTABILITY, NOT SPEED

When speaking of real-time systems, it is important to clearly distinguish among the

different times associated with the system. Time variations can come from delays in getting the
current state of the system, from delays on acting accordingly to the state or from variations in
both last delays, phenomenon known as jitter. Figure 2.1 depicts these differences.

Figure 2.1 - The different times in a real-time system (adapted from (Puga, 2008))

It is a popular misconception to think that the temporal constraints associated with real-

time systems are solved by increasing the speed of execution. The speed does increase the
performance of a system, minimizing the average response time of a set of tasks. But more
important than the average performance, in a real-time system, is the need to meet the time
constraints associated with each particular task. In real-time systems, the concept of predictability
is way more important than the speed of execution.

daniel
O que são?; Exemplos de sistemas de tempo-real.

daniel
Diferentestipos de atrasos. Jitter.

daniel
Previsibilidade versus Rapidez

6

A system is predictable if its evolution and behaviour can be foreseen and if it offers
guarantees – within limits of course – that it can fulfil its logical and temporal requirements. This
is not an easy task in a lot of systems. A variety of different factors can influence the behaviour of
a computational system during execution: the system load, hardware variations (i.e. clock
deviations), the structure of the programming code, DMA accesses and pipelining, interrupts,
multi-tasking, access to shared resources, etc. In a lot of systems a failure can origin catastrophic
consequences. In real-time systems is then important: to study very well the time of execution of
tasks as well as the worst case scenarios and possible failures; to have stable interfaces between
subsystems to avoid error propagation; and that these subsystems can be separate from each
other for independent verification purposes. The requisites towards assuring that a system is
reliable are often called dependability requisites.

2.1.2. REAL-TIME SYSTEMS CLASSIFICATION

Real-time systems can be categorized in respect to safety as: Soft Real-Time Systems, also

known as non-critical, when the consequences in case of failure are in the same level of the
benefits that the system offers. A DVD player system and the ATM Network system are examples
of non-critical systems because failures are acceptable, despite the possibility of loss of quality.
On the other side, systems are known as Hard Real-Time Systems, or critical systems, when the
consequences in case of failure largely exceed the benefits offered by the system. This would be
the case of an air traffic control system or of a traffic light system, as failures in such systems can
cause exceptionable disasters (Todt, 2011).

Additionally, real-time systems can be classified as Safe Systems or as Operational
Systems. A system is said to be safe when there is a variety of different alternative plans that
guarantee good safety in case of failure. On the other hand, a system is considered operational
when despite of losing performance in case of failure, is able to at least guarantee the functioning
of minimum services.

Real-Time systems can also be distinguished in respect to the kind of response they offer.
If there are enough resources to face even the worst case scenarios, the system is said to be a
Guaranteed Response System. Alternatively, the Best Effort strategy controls the rhythm of the
system, delaying responses in case of too many requests, and serving tasks or processes as it is
possible.

There is also a distinction to the way the real-time systems perform temporal control:
Time-Triggered, when the system action is done periodically and caused by a clock signal.
Alternatively, the action can be caused by an asynchronous signal due to a change in the system
(e.g. an external interrupt), in which case the system is said to be Event-Triggered (Buttazzo G. C.).

2.1.3. REAL-TIME IMAGE AND DATABASE

The control system of a real-time system has to permanently update the value of the

internal that represent the state of the system. The current value of these internal variables is
called the Image of the system. As the real-time systems are very often related to physical
processes, the value of the internal variables may change at any time, depending on the physical
process itself. So the image of the system is valid only for a limited period of time and new data
has to be acquired every time a variable changes. The set of successive images forms the Real-
time Database.

daniel
Factoresquedificultam a previsibilidadenumsistema, e comotornar um sistemaprevisível.

daniel
Classificaçãoquanto à criticalidade: HardvsSoft

daniel
Classificaçãoquanto à segurança: SafeVsOperational

daniel
Classificaçãoquantoaotipo de resposta do sistema: GuaranteedvsBest Effort

daniel
Classificaçãoquantoaotipo de control temporal: Time-Triggered vsEvent-Triggered

daniel
Database comoconjunto das imagens do sistema. Imagemcomoestado das variáveis.

2.1.4. DISTRIBUTED ARCHITECTURES

An architecture is said to be “distributed” when the system components are autonomous

and physically distributed over an area.
other through message passing, the architecture appears to the user as single coherent system.

Distributed Architectures

complexity demands a capacity for local and more independent processing, where each
component can take care of a specific task. The great
Systems is that hypothetical failures ten
difficult in such architectures

2.1.5. SCHEDULING

Scheduling is the sorting

temporal constraints existent
such us memory and the proces
transmission line itself. As there are different temporal requirements associated with the tasks
the messages in a system such as the period, the initial phase or the deadline, a need arises for
algorithms that can attribute the different resources
in order to satisfy the temporal requirements associated with them

There are two major types of scheduling:
On the Static Scheduling

before the execution of the system tasks. This type of scheduling assumes that
immutable and known beforehand. Thus, it is very rigid
mapping of the system tasks.

On the other hand, the
choosing the new task to be
already triggered and all the decisions are taken based on the pending requests. This type of
scheduling is less predictable than the static one
flexible and adapts easily to the occurrence of new tasks.

Some of the most popular scheduling algorithms are the algorithms with
such algorithms, the priority is a fixed parameter, and the tasks are ordered according to that
parameter. Examples of this ki

Figure 2.2 - Distributed Architectures

7

RCHITECTURES

An architecture is said to be “distributed” when the system components are autonomous
physically distributed over an area. However, as the components communicate with each

other through message passing, the architecture appears to the user as single coherent system.

Distributed Architectures are very popular in Real-time System
complexity demands a capacity for local and more independent processing, where each
component can take care of a specific task. The great advantage of this approach in Real

ystems is that hypothetical failures tend to be independent as well, so error propagation is more
 if adequate design methodologies are used.

sorting of the resources of the system towards the fulfilment of the
existent. Frequently on real-time systems, tasks have to

the processor and on communication lines the messages share
transmission line itself. As there are different temporal requirements associated with the tasks

such as the period, the initial phase or the deadline, a need arises for
algorithms that can attribute the different resources of the system to a specific task or message
in order to satisfy the temporal requirements associated with them.

two major types of scheduling: Static Scheduling and Dynamic S
Static Scheduling there is a complete planning sequence of all scheduling decisions

before the execution of the system tasks. This type of scheduling assumes that
immutable and known beforehand. Thus, it is very rigid! Any change will force a complete new

On the other hand, the Dynamic Scheduling is constantly executed

choosing the new task to be executed. The only information available is regarding the tasks
already triggered and all the decisions are taken based on the pending requests. This type of
scheduling is less predictable than the static one and generates more overhead
flexible and adapts easily to the occurrence of new tasks.

Some of the most popular scheduling algorithms are the algorithms with
such algorithms, the priority is a fixed parameter, and the tasks are ordered according to that

ter. Examples of this kind of algorithms are: the Rate Monotonic (Liu & Layland, 1973)

Distributed Architectures

An architecture is said to be “distributed” when the system components are autonomous
However, as the components communicate with each

other through message passing, the architecture appears to the user as single coherent system.

ystems. The increase of
complexity demands a capacity for local and more independent processing, where each

advantage of this approach in Real-Time
error propagation is more

of the resources of the system towards the fulfilment of the
time systems, tasks have to share resources

sor and on communication lines the messages share the
transmission line itself. As there are different temporal requirements associated with the tasks or

such as the period, the initial phase or the deadline, a need arises for
of the system to a specific task or message,

Dynamic Scheduling.
of all scheduling decisions

before the execution of the system tasks. This type of scheduling assumes that all parameters are
! Any change will force a complete new

executed and at any time
executed. The only information available is regarding the tasks

already triggered and all the decisions are taken based on the pending requests. This type of
and generates more overhead, but it is also more

Some of the most popular scheduling algorithms are the algorithms with fixed priority. In
such algorithms, the priority is a fixed parameter, and the tasks are ordered according to that

(Liu & Layland, 1973), in

daniel
O que são arquitecturas distribuídas?

Alexandre Vieira
What is scheduling?

Alexandre Vieira
Static Vs. Dynamic

8

which the assignment of priority is inversely proportional to the period of the tasks and the
Deadline Monotonic, with the attribution of priority being inversely proportional to the deadline
of the tasks. It is worth to remind that the algorithms just presented are a good solution when
dealing with tasks on real-time operating systems, due to the centralism that exists. But in
communication networks those algorithms do not present themselves necessarily as a suitable
solution, since they require complete information about the system state to schedule the
messages. Such level of information is not available and may imply a significant amount of
overhead to obtain. Some real-time ethernet protocols (e.g. FTT-SE and Ethernet Powerlink)
employ a centralized scheduling architecture that allows implementing this kind of scheduling.

2.2. FPGA

2.2.1. WHAT IS?

In a nutshell, an FPGA is a semiconductor device that can be programmed after

manufacturing. FPGAs can be programmed to perform any logic function desired, but differently
from ASICs (application-specific integrated circuits), FPGAs have the capability to replace that
same function for another one.

The acronym FPGA stands for Field Programmable Gate Array. Field programmable means

that it is the user’s responsibility, and not the manufacturer’s, to give a logic function to the FPGA.
The Gate Array refers to the way FPGAs are designed to be reprogrammable. An FPGA is
composed of thousands of identical logic cells. Those cells can be programmed independently
from each other and they perform simple standard logic functions. The cells can then be
interconnected through a matrix of wires and programmable switches. The FPGA’s function is
achieved by programming each logic cell with a simple function and then closing the appropriate
switches.

Figure 2.3 gives an insight of the internal structure of a Virtex FPGA. It can be seen that it

is composed of configurable logic blocks, surrounded by I/O blocks and interconnected by the
wires matrix. It is important to make a distinction between a configurable logic block and a logic
cell. Although the definition may vary accordingly to the FPGA, in the case of Virtex-II Pro (the one
used in this work) the logic hierarchy is as follows:

Logic cell – a 4-input lookup table, a flip flop, interconnection to other cells and arithmetic

logic to compute a 4-input expression;
Logic slice – 2 logic cells, although on Xilinx there are 2.25 logic cells per slice because

they can do more per configurable block (CLB) than other architectures;
Configurable logic block – consists of 4 slices.

daniel
Algoritmos de prioridadesfixas: Rate Monotonic e Deadline Mononic

daniel
Escalonamentopararedes de comunicação Ethernet

Alexandre Vieira
Em termos simples, o que é uma FPGA?

Alexandre Vieira
Explicação do nome e descrição do modo de funcionamento de uma FPGA.

9

Figure 2.3 – Internal Structure of a Virtex FPGA

2.2.2. FPGA DESIGN FLOW

In (Xilinx, 2011) there is a complete description of the design flow process and the Xilinx

tools helpful in every phase. The project flow starts with the Design Entry Phase. This phase
consists of building up the design, that is, the circuit to be implemented. Usually Hardware
Description Languages (HDLs) are used, but it is also possible to build the schematic of a circuit
through graphical tools. These last ones are more suitable for designers who want to deal more
with the hardware. But when the design is complex and the designer wants to think of the design
algorithmically then HDLs are preferable. The Xilinx Integrated Software Environment (ISE) was
the software tool used to support the Virtex-II in this work, and VHLD the hardware description
language used to build the design circuit. A set of pre-existing libraries with predefined basic
blocks is available to the programmer, avoiding each user to build the same standard blocks.
Additionally, software tools allow the generation of configurable components, as it is the case of
the CORE Generator from Xilinx, which was used to generate not only the Tri-Mode Ethernet
Media Access Controller (TEMAC) but also the FIFOs used in this work.

The second phase of the design flow is the Synthesis Phase. The synthesis consists of

translating the VHDL code into a circuit with logical elements (registers, AND-ports, etc.) by
stating what kind of elements exist in the design and what is connected to what. This is called a
netlist: a file that conveys information about connectivity and provides nothing more than
instances, nets and maybe some attributes. The Xilinx software used at this stage is the XST (Xilinx
Synthesis Technology) that also checks for any errors on the code syntax and analyses the
hierarchy of the design to make sure that the design is optimized for the chosen architecture. The
output is a .ngd (Native Generic Circuit) file.

The following phase is the Implementation Phase. This phase is constituted of three steps:

translate, map and route. The translate process collects the information on the netlist together
with the constraints saved on a .ucf (User Constraints File) and builds an NGD (Native Generic

Alexandre Vieira
Hierarchical logic; Internal architecture.

Alexandre Vieira
Design Entry: specification

daniel
Design Synthesis: netlist, code syntax checking. NGD File

10

Database) file. At this stage, ports are assigned to physical elements (ex. pins, switches, buttons,
etc.) of the intended device and time requirements of the design are specified. The mapping
process matches the logic defined in the NGD file with the FPGA components (such as CBLs, IOBs,
etc.), generating an NCD (Native Circuit Description) file. This file represents how the logic
elements of the design are distributed among the FPGA resources. Finally, the place and route
process physically places the logic into FPGA components according to the NCD file and makes the
necessary connections. It may also make judgments on the best physical assignments if there is a
constraints conflict, in order to get the best performance out of the design. The output file is a
completely routed NCD file.

The final phase is the Device Programming Phase. As the information needs to be

transmitted to the FPGA device in a format that the FPGA can read, the routed NCD file is
transformed into a bit stream to configure the FPGA device. The loading can be done through
iMPACT, a configuration tool that takes care of all process between bit stream generations to the
device download. This file contains the necessary information to configure the logic cells with the
intended logic function and to selectively close the switches of the interconnection matrix.

Additionally, it is possible to verify and debug the design to ensure logical correction

throughout the whole project flow.
Firstly, even before implementing the design, it is possible to simulate the behaviour of

the circuit using software design simulators, as it is the case of Xilinx ISE Simulator. The purpose is
to confirm that the design logic is functioning as intended. This is called Behaviour Simulation.

During Implementation Phase, Functional Simulation gives information about the logic
operation of the circuit. It is possible to verify the functionality of the design right after the
translate step, and in case the functionality is not the expected, to correct the code. After the
MAP and PAR steps, timing reports listing signal path delays allow for a Static Timing Analysis.

Finally, after the FPGA has been configured the verification is possible through the use of
software based logic analyzers that monitor the status of selected signals, making possible the
detection of errors. On this case, blocks of memory inside the FPGA are used to store the value of
the signals, which are later transferred to the PC through a JTAG interface. The Xilinx Chipscope
Pro is an example of such software. Alternatively, the physical signals can be routed to the FPGA
pins, and then verified with logical analyzers like an oscilloscope. All the phases are represented
on Figure 2.4.

Figure 2.4 – FPGA Xilinx Design Flow (taken from (Xilinx, 2011))

daniel
Implementation Phase: translate, map, and place and route. NCD file

daniel
Device Programming: bit stream generation. Loading. iMPACT.

daniel
Verification:

11

2.2.3. WHY ARE FPGAS NEEDED?

Nowadays, building hardware has become a choice between flexibility and speed. When

designing hardware based on flexibility, different applications may be executed. However, when
performance is the main aim, fewer operations will be available, but the ones available will be
faster.

It is possible to build general purpose chips, that is, chips able to execute a variety of
different functions. Application-specific devices, on the other hand, can execute only a small
limited number of instructions. However, for these same instructions, these devices are way
faster than general purpose ones.

Examples of general-purpose devices would be the microprocessors like INTEL, Pentium
or Motorola Power PC. All of these are commonly found on people’s computers, and they can
execute virtually any algorithm desired. On the opposite side, the dedicated-hardware circuits like
ASICs (Application Specific Integrated Circuits) can only perform the concrete functions for which
they have been designed, but are smaller, faster and consume less energy.

The real-time issues already explained on this thesis clearly indicate that there is a great
need of performance for the Sniffer, this way justifying the creation of specific hardware to better
accomplish the Sniffer’s tasks. What are then the advantages of using an FPGA over an ASIC? The
answer relies on the definitive characteristic of the ASIC hardware: a slight modification or the
inclusion of a new functionality requires the development of a new component. Differently, the
FPGA can be reconfigured at any time, allowing for constant hardware improvement, without the
need for extra manufacturing. The huge cost of ASICs is also something to bear in mind, since they
require mass production in order to be profitable.

In a way, it can be said that an FPGA gets the best out of both the general purpose and
the dedicated hardware systems. It can be considered general purpose in the sense that it can
become any desired circuit and thus is able to perform a variety of different functions, but as soon
as it becomes the new circuit, it operates towards the specific function intended for that same
circuit.

2.3. COMMUNICATION TECHNOLOGIES AND THE CHOICE FOR GIGABIT ETHERNET FOR

TRANSMISSION

One of the first technologies thought right away to be suitable for out flowing large

amounts of data per time unit was the Serial ATA (SerialATA Workgroup, 2003). The Serial ATA is a
technology for transferring data between a computer and large storage devices such as hard
disks. This technology succeeds the homologous technology known as Parallel ATA, but the serial
transference of data carried out by the Serial ATA results in the usage of much thinner cables. This
allows for operation at frequencies that were not possible to achieve in the previous technology,
permitting higher throughput.

By the time that this technology was a possibility for this project, there was an intellectual
property CORE that could make the FPGA to operate as a SATA device. This CORE supported the
3.0 SATA specification, thus theoretically allowing the communication to achieve speeds of 3.0
Gb/s. With this solution, some driver updates or changes could still need to be done on the host
side, as a lot of device drivers labeled as SATA are often running in “IDE emulation” mode.

daniel
Dilema no projecto de sistemas digitais: rapidez ou flexibilidade?

daniel
General Purpose Hardware: flexibilidade; Hardware dedicado: performance.

daniel
Exemplos de general-purpose hardware e de hardware specific devices.

daniel
FPGA como melhor alternative de hardware dedicado.

daniel
Context; objectives.

12

However, the choice for SATA technology seemed to be the one offering more guarantees in
terms of speed and implementation. Unfortunately, the IP CORE was only available at a high price,
so this option was unsuitable economically.

After dropping SATA, the Parallel ATA was taken into consideration. The 133 MB/s data

rate maximum transfer supported by this standard was not very exciting. However, the choice for
PATA would have the advantage of being compatible with SATA technology, and the sniffer could
be left working on PATA technology until SATA IP Cores would be available cheaply, or developed
by someone else on another project. Nevertheless, the only IP Cores found on Internet were
oriented so that the FPGA would behave as a SATA host device, meaning that the information
would have to be sent to a hard disk, and then switch plugs with the final host destination. On top
of all these, building a device on a technology that will be soon wiped out of existence was not
pleasant at all. All these disadvantages also took the Parallel ATA out of the way.

Other technologies, such as the USB 3.0 standard and FIREWIRE were also disregarded for

lack of ports in the boards. Additionally, in all cases the boards available with such ports had only
one Gigabit Ethernet PHY. There would still exist the need to build another Ethernet Gigabit PHY.

The obvious choice was then the Gigabit Ethernet technology. The data rate would be

enough for sniffing Fast Ethernet Networks and the NETFPGA (NetFPGA, 2011), used in this work,
was available and has sufficient Gigabit Ethernet ports for both sniffing and sending at the same
time. Besides, the IP Core necessary to make the FPGA communicate through this standard was
available from Xilinx as a .ngc (Native Generic Circuit) file. Of course one Gigabit Ethernet port
cannot leak data from two other Gigabit Ethernet ports if both channels transmit data at a high
rate, but the technology for sniffing Gigabit Ethernet networks could be built, and in the future
the transmission technology can be changed, even to 10 Gb technology if there are physical
resources to accomplish such a task.

2.4. THE ETHERNET

Ethernet is a network communication standard for data transmission among devices that

are relatively closed to each other, that is, for Local Area Networks (LANs). This almost-forty year’s
old technology has been standardized as IEEE 802.3, and works at both the Physical (defining
cabling and electrical signalling) and Data Link (packet frame format definition) Layers of the OSI
Model.

Initially oriented for networks in which all the devices would be connected to the same
transmission line, the growth of network dimensions has made the technology evolve to the
concept of Switched Ethernet, which allows network segmentation.

Over the years, Ethernet has become the most famous and used network technology in
the world.

2.4.1. ORIGIN AND EVOLUTION

The birth of the Ethernet goes back to the year of 1973, and has Robert Metcalfe, a Xerox

researcher, as the father. His mission was to connect hundreds of computers on the same building
among each other and to the first laser printer ever made. Working towards that aim, he
developed the physical requirements to interconnect devices in proximity within each other as

daniel
SATA: great speed, unsuitable economically.

daniel
PATA: old technology; not so fast. Could be replaced later by SATA. Unsuitable for resources lack.

daniel
USB 3.0 and FIREWIRE

daniel
Gigabit Ethernet Technology: NETFPGA; sniffing Gb data; suitable for FE; transmission technology to be replaced in the future.

Alexandre Vieira
Brief introduction to Ethernet and short summary of the subchapter.

13

well as the rules for their communication. That was the process of building the technology that is
still nowadays known as Ethernet.

The Ethernet physical layer has developed a lot throughout time, with data rates
constantly increasing.

The first version of Ethernet used the coaxial cable as the physical medium, operating at a
speed of 2.94Mbit/s. The following early implementations of Ethernet remained coaxial, reaching
speeds from 1Mbit/s to 10 Mbit/s.

The coaxial cable has been replaced by the UTP, Unshielded Twisted Pair, mainly for
economic reasons. The UTP is a cable consisting of 4 twisted pairs of wire (meaning 8 wires per
cable). The aim of twisting the wires is to eliminate electromagnetic interference. The cables then
connect to devices through RJ45 connector, like the one we see on Figure 2.5. The standards
designed for this cable allow speeds up to 100 Mbit/s, known as Fast Ethernet and 1000 Mbit/s,
known as Gigabit Ethernet. The UTP is the most popular Ethernet cabling and it was the one used
on this work.

Nowadays, the optical fiber is also becoming popular, because although they are more
expensive, they also offer better performance than coaxial cables or UTP cables.

Figure 2.5 – UTP Cable

Initially Ethernet was designed only for devices sharing the same medium. When such a

situation happens, all the devices in the network are connected to the same transmission line and
the rules for communication are very similar to the ones used by human beings at a dinner table,
as described in (Pidgeon, 2000). How?

Figure 2.6 –Ethernet Shared Medium

Well, the same way people sharing the same dinner table can listen to everything that is
being said there, so the devices using the same medium can hear all the messages in the
transmission line. This way, all devices in the network must have a unique physical address that
identifies them. This address can be used to convey a message to a specific device in a way similar
to the one human beings reach a specific person by means of this person’s name: “Peter, can you
pass me the salt, please?” On Ethernet networks this physical address is known as the MAC
(Medium Access Control) address.

14

Also, the rules of communication applied to human beings teach people to be polite and
to speak one at a time. Analogously, devices in the network can hear the current conversations,
and will only attempt to transmit a new message when there is silence at the transmission line.
What happens when two devices try to break the silence at the same time? In that case there is a
collision. If two people at a dinner table would attempt to speak approximately at the same time
after a moment of quietness, one of them could just start talking louder and louder till the other
one would shut up. However, if both are polite people, they would both shut up immediately. The
earlier one then attempting to restart talking would then be the one communicating. In the same
way, devices attempting to communicate at the same time stop their transmission, wait for a
random amount of time and finally attempt to transmit again if there is silence at the
transmission line.

Figure 2.7 – CSMA/CD Dinner Table Analogy (taken from (Pidgeon, 2000))

On this dinner table analogy, it was being assumed that only a few people were at the

dinner table. As the number of people eating at the same table would increase, restricting the
right to speak to only one person at a time would make a lot of people frustrated, because they
would have to wait a lot of time before being allowed to speak. Of course, at real life this analogy
is broken, because human beings are able to have multiple conversations going on at the same
table. The human ear is selective enough to pick the messages that a person is interested in, and
people engage in the topics that they feel addressed to automatically. Additionally, people
inherently choose other people in proximity to have a chat with because if a lot of people are
talking, odds are that only close voices can be heard, if not yelled. When dealing with electric
signals, all this natural portioning does not occur, because signals propagate very fast for long
distances, and having multiple devices connected to the same transmission line would end in a lot
of collisions, generating network congestion. The solution to this problem is to divide the single
segment into multiple segments. This way, collisions can occur only among devices connected to
the same segment, or in other words, the same collision domain.

The concept of segmentation has evolved in a way that on today’s Ethernet Networks,
each device has its own dedicated segment. They can communicate with other stations through
switches. A switch is a device that receives all packets from all segments connected to it, and then
forwards each Ethernet packet only to the intended station. This way, it is possible to have
multiple communications happening in parallel among the devices in the network. This concept is
known as Switched Ethernet.

15

Figure2.8 – How an Ethernet Network looks nowadays

2.4.2. REDUCED GIGABIT MEDIA INDEPENDENT INTERFACE

The Ethernet physical layer is responsible for connecting an Ethernet device to the

transmission medium. That is accomplished by means of a circuit commonly known as Ethernet
PHY. The PHY has the function of enabling analog access to the link, coding and decoding the data
sent over the twisted pair cables.

To the upper side of the communication chain, the PHY encounters the MAC (Medium
Access Control) device. In order to make possible the connection of different types of PHY devices
operating at gigabit speeds to different media (i.e. twisted pair, optic fiber, etc) without
redesigning or substituting the MAC hardware, an interface called Gigabit Medium Independent
Interface (GMII) was created. This interface makes the bridge between an Ethernet PHY and a
MAC device, and can operate on speeds up to 1000 Mb/s. However, as this interface was based
and it is compatible with the former Medium Independent Interface (MII), slower speeds like 10
or 100 Mb/s are also allowed. In order to achieve the maximum speed of 1000 Mb/s the GMII
Interface uses an eight bit data interface clocked at 125 MHz. However, the interface used in this
project was the Reduced Gigabit Medium Independent Interface (RGMII)(RMII Consortium, 1998),
which is able to achieve the same data rate with an only four-bit data bus from the PHY. This
reduction is achieved by clocking data on both the rising and falling edges of the clock and by
eliminating non-essential signals when operating at 1000 Mb/s.

16

Figure 2.9 - The RGMII Interface: an interface between the PHY and the MAC

2.4.3. THE ETHERNET FRAME

The Ethernet data is transmitted in frames, and the frames are composed of several

different fields. The fields of the Ethernet Frame (see Figure 2.10) are transmitted from left to
right, and the bits in the fields are transmitted from the most significant to the least significant. All
Ethernet devices follow the order and the size of the fields when transmitting, and expect
incoming frames to have such a pattern. This is of course what makes possible for the Ethernet
devices to understand each other, by means of “speaking” the same “language”.

Figure 2.10- The Ethernet Frame

The purpose of each field is as follows:

Preamble – it is a group consisting of a byte pattern that repeats itself 7 times. This field

started out being used for bit synchronization, although nowadays Ethernet MACs are able to
receive frames without this field.

SFD - SFD stands for Start of Frame Delimiter and it marks the beginning of the frame. It is

composed of only one and the same byte: 0xD5.

Destination Address– it is the MAC address of the intended recipient to where the frame

is going to be sent.

Source Address – it is the MAC address of the sender recipient.

Length/Type–this field can either be interpreted as length field, if the value of this field is

equal to or less than 0x05D5, or as a type field if above that number. If used as Length field it
indicates the number of bytes in the Data field(Novell, 2003).

Data – the data is inserted here and must be between 0 and 1500 bytes.

17

Pad – this field ensures that the minimum length of the Ethernet frame is 64 bytes, adding

zeros to the frame. This field can vary from 0 to 46 bytes depending on the length of the Data
field, as the remaining ones have always the same size.

FSC – it contains the Frame Check Sequence, which is calculated using Cyclic Redundancy

Check (CRC). This field is used for error detection and rejection of spoiled frames.

18

CHAPTER 3. STATE OF THE ART

3.1. INTRODUCTION

In this section it is provided a general context of the purpose of the project developed.

The chapter represents a brief description on the existent knowledge on the ways to
communicate on Real-Time Networks and the role of Ethernet as a suitable technology for those
systems. There is also an inspection on the different types of Network Analyzers and their
accuracy on timing measurements.

3.2. MAKING ETHERNET REAL-TIME

Real-Time electronic distributed systems were an important step in technological

evolution. In such systems, the communication between the different nodes obeys to specific
constraints in time. These real-time systems become more prevalent everyday with applications
that can go from simple multimedia tools to critical industrial control systems. Accompanying this
growth is the intent in building real-time protocols that can suit such specific-requisite systems
(Doyle, 2004).

On the last decades, special networks commonly known as Fieldbuses were developed,

aiming to suit the needs of the distributed control systems, such as handling a lot of small data
messages with strict time constraints or being able to order tasks based on priority. However, the
growth in application complexity and in the amount of data exchanged increased over time, and
eventually exceeded the capacity of traditional Fieldbuses. So attention drew to higher bandwidth
networks. Among those, despite its non-deterministic feature, Ethernet has been frequently seen
as a potential solution to these problems because of its:

§ Cost – it is produced at a large scale, making it cheap.
§ Bandwidth – data rate has been increasing repeatedly over time, and it is

expected to continue to grow.
§ Popularity – it is the most popular media in use, which means wide availability not

only of experts familiar with this protocol but also of test equipment.
§ Compatibility – it’s easy to integrate with higher layer protocols and with Internet,

allowing for remote control or monitoring. (P. Pedreiras, 2005)

However, the Ethernet as defined in the 802.3 is not real-time suited per se. The non-

deterministic bus access mechanism, CSMA/CD, allows unpredictable message loss and timing,
when dealing with collisions.

In(P. Pedreiras, 2005), in an effort to compile everything that has been tried on this

subject, several approaches on how to adapt Ethernet to Real-Time systems are presented. They
are categorized in the following groups:

§ CSMA/CD based protocols;
§ Modified CSMA protocols;
§ Token Passing;
§ Time-Division Multiple Access [TDMA];
§ master/slave techniques;

daniel
Real-time distributed systems develop and appearance of Real-time protocols.

daniel
Fieldbuses specificities and insuffieciency. Higher bandwithd protocols. Ethernet as a potential solution.

19

§ and Switched Ethernet.

Using small sized messages and keeping the bus utilization factor low, it is actually

possible to use Ethernet on Real-Time applications. The probability of collision is very low in such
conditions, offering a high level of certainty that messages will not be lost norwill they miss their
deadlines. The NDDS and ORTE are examples of such protocols that rely only on those factors and
that can work with the CSMA/CD on real-time applications, though because there is no absolute
guarantee of meeting the temporal constraints of the system, these protocols suit better Soft
Real-Time applications.
 As opposed to this last method, some protocols do change the properties in the regular
arbitration mechanism, either by delaying transmissions to reduce collisions or by controlling the
collisions when they occur. However, these algorithms have Internet integration and expansion
capability drawbacks, as new nodes would also need to be changed in a similar fashion.

A very simple approach to make Ethernet Real-Time oriented is by means of a token. On
this kind of approach, there is only one token for the entire network and so it can only be used by
one node at a time. The node that has the token is thus the only one that can transmit messages.
There are different ways to handle the token, though. For example, with RETHER protocol the
token rotates periodically, but with RT-EP protocol the token is first rotated through all the nodes
just to determine the one with higher priority, to which the token should be given back to.

The TMDA protocols consist in having an exclusive time window attributed to only a node
or a device, which completely removes the possibility of happening collisions. This way, these
protocols are ideal for systems in which safety is crucial.

The Master/Slave approach is a technique in which one of the nodes, the Master, controls
the remaining nodes, the slaves. These last ones can only access the medium with permission
from the Master. This will of course have the direct consequence of setting the medium free of
collisions, but will also increase the overhead: for each data message coming from a node, a
control message needs to be sent before to that same slave. An attempt to overcome this
problem is the FTT protocol, in which there is flexibility to the amount of control data sent over
time. This protocol divides time in cycles, each of them containing only a control message that
schedules all data messages over that period of time.

Switched Ethernet also provides a medium with no collisions and reduces the effect of the
non-deterministic feature of the original CSMA/CD arbitration mechanism, but it doesn’t
eliminate it completely. Buffers can still get full, if the rate at which messages arrive is higher than
the rate at which they departure. This could result in loss of messages or deadline missing. As a
way of overcoming these last problems, switches built with several queues of different priority
have been proposed.

3.3. NETWORK ANALYZERS

Network Analyzers are devices used to inspect the data flowing on communication

networks. Their two main goals are:

1. To capture the messages on the transmission line.
2. To register the arrival time of the messages captured.

This last action is commonly known as time-stamping. Roughly, there are two methods of

performing the time-stamping of the messages: Software Time-Stamping and Hardware Time-
Stamping. However, the accuracy of the measurements depends a lot on how and where in the

daniel
Summary of the approaches to turn Ethernet Real-Time

daniel
CSMA/CD protocols

daniel
Modified CSMA protocols

daniel
Token passing protocols

daniel
TMDA Protocols

daniel
Master Slave Protocols. FTT.

daniel

daniel
Network Analysers: description and main purposes.

20

communication chain they are taken, as it can be seen in (Weibel & Béchaz, 2004), an article
where a comparison between different types of measuring time-stamping took place.

At the Application Layer, for instance, time-stamping is not very precise. The reason for
this is associated with the multiprogramming characteristics of the general purpose operating
systems, in which the CPU is busy with a variety of different applications and thus is not checking
all the time the messages arriving. Furthermore, the PCI bus is used to establish the
communication between the CPU and not only the network interfaces, but other peripherals such
as USB adapters or video or sound cards. So the time that takes for the NIC to get access to the
PCI bus will introduce error at the time-stamping values and jitter (Puga, 2008). Last but not least,
the network card itself has the ability to store some and upload them to the main memory in a
single operation to save overhead. This has, however, the direct consequence that all messages in
the buffer will be time stamped with basically the same value.

Some examples of software application layer network analyzers are the recent Capsa
Network Analyzer (Colasoft, 2011), PRTG Network Monitor (Paessler) or the most popular
Software Network Analyzer, Wireshark (Wireshark Developer's Guide, 2004-2010).

There are a lot of ways to improve time-stamp accuracy. One of them is to remove the
time-stamping from the Application Layer to the NIC driver level, as proposed by Li Wenwei
(Zhou, Cong, Lu, Deng, & Li, 2010). Some network cards even have an onboard time-stamping
register to save the time of arrival of the messages, replacing the system clock timestamp.

Nevertheless, the conclusion of (Weibel & Béchaz, 2004) was assertive in respect to this

subject: hardware time-stamping is the only way to go for high accuracy. Measurements on
hardware can be done right after the MAC signalizes the arrival of a new message, or even
between the MAC and the PHY, at the MII bus.

There are several hardware solutions available on the market, but they have the
disadvantage of being very expensive. Several of these tools can be found in (Puga, 2008), a
dissertation at the University of Aveiro about a hardware tool designed to sniff Fast Ethernet Data
on a transmission line and that it was the starting point for the current subject developed on this
document.

3.3.1. FAST ETHERNET HARDWARE SNIFFER

In order to develop an answer to the specific demands of Real-Time Systems in

communication networks, it was developed at the University of Aveiro an Ethernet Network
Protocol Analyzer based on hardware. This tool was intended to analyze, in particular, the FTT-SE
(Marau, Almeida, & Pedreiras, 2006) protocol also developed at this university.

The device built was a Sniffer for Fast Ethernet traffic on a transmission line. The Sniffer
was able to capture data in full-duplex connections, absorbing frames in both directions of the
transmission flow.

The Fast Ethernet Sniffer was built on dedicated hardware, making it immune to the
multiprogramming characteristics of the operating systems, and so being better suited to precise
time-stamping measurements. This work was carried out on a development board containing an
FPGA programmed, which was programmed using VHDL language.

daniel
Time-Stamping: hardware and software.

daniel
Time-Stamping at the Application Layer.

daniel
Time Stamping at the NIC driver.

daniel
Hardware Time-Stamping.

21

Figure 3.1 - Fast Ethernet Sniffer Architecture

The device captures the Ethernet information and stores it on Intellectual Property FIFOs.

Two types of FIFOs are present on this tool: a FIFO to store the raw frames collected and another
one to save temporal information. After processing all data, this is sent to the PC for analysis.

The interfaces to this machine are two Ethernet PHYs from which the Sniffer receives
data, and a USB port, used to send the data to the PC side. For the reception of data on this side, a
software application was developed, which must be running before the Sniffer is initiated. It is
responsible for the reception of data coming from the USB port and transference to a binary file
compatible with Wireshark. With this last tool, data is filtered and ordered as designed, to finally
be analyzed on Octave, thanks to a script that collects the specific data desired to be analyzed.

The FEHS is a tool that allows measuring the time-stamp of messages with a 100 ns

precision and a 10 ns resolution. The results obtained with this tool are far better than the ones
obtained with software applications. The major shortcoming of this tool was the bandwidth: the
USB connection is insufficient to leak the data captured by both Ethernet PHYs when the
transmission line is heavily loaded(Puga, 2008).

22

CHAPTER 4. TOOL DEVELOPMENT: CAPTURING, STORING AND

PROCESSING DATA. INFORMATION TRANSFERENCE TO THE PC.

4.1. INTRODUCTION

This chapter describes all the hardware of the designed tool. The approach taken is based

on firstly describing the system in general and later detailing every module that composes the
Sniffer. The sequence of modules described follows the trajectory of an Ethernet Message, since
the reception, passing through its storage and until its transmission. The Sniffer is depicted
making use of block diagrams, to show the structure of the system, timing diagrams to describe
the system behavior through time, and state charts to interpret the logical behavior of the state-
machines used to build some of the blocks. In this chapter are also given details about the use of
the FPGA and its resources and how to properly design the hardware to comply with the FPGA
restrictions.

4.2. GENERAL DESCRIPTION

In Figure 4.1, the block diagram helps to depict how the Sniffer was built. The Sniffer

ultimate objective is to capture data on an Ethernet Segment at Gigabit operation on both
directions of the transmission line. However, to simplify the Sniffer, this was begun to be built
sniffing data only from one channel of the transmission line. Later the hardware can be
duplicated, so that the Sniffer can capture data from both directions. The data is captured from a
device sending out bytes from an Ethernet port and then stored and processed on a Virtex-II Pro
FPGA. The connection of the FPGA with the outside is done through two Ethernet PHYs, one for
the reception of data, and a second one to transfer the information from the FPGA to a PC to
collect the data. Here is where the data is later analysed.

In order to keep it simple, each Ethernet frame sent to the PC by the transmitter PHY

contains data from only an Ethernet frame captured. There is a unique correspondence between
an Ethernet frame sent and an Ethernet frame received.

The Ethernet PHYs connect a link layer device (TEMAC) to the physical medium. The MAC

Figure 4.1 - Sniffer Architecture

daniel
Capítulo descreve todo o hardware da ferramenta desenvolvida.Abordagem: após uma descrição geral de todo o sistema, é posteriormente detalhado cada módulo constituinte deste, seguindo

23

device is already incorporated inside the FPGA by means of an IP Core integrated with the
remaining logic. The MAC is programmed by a configuration module at the beginning to work
with specific properties, including speed of operation and activation/deactivation of

reception/transmission. Temporary storage is done at the expense of built-in IP Core Generated
FIFOs. Those are used not only to save data, but also to isolate the reception and the transmission
clock domains. Two FIFOs are used on this project: a Data FIFO and a Control FIFO. The Data FIFO
is responsible for saving the raw frame as captured from the transmission line, but there is also
the need for saving information regarding the time stamping and the size of the received
messages. That sort of information belongs to the Control FIFO. The storage process is controlled
by specific modules designed to write information on the FIFOs, as the data is available. The
different types of information are written in parallel to each FIFO. As soon as a message arrives it
starts to be saved on the Data FIFO, and on the Control FIFO is written the instant of time in which
the message arrived. The time-stamping information comes from a module designed specifically
for that task, acting as a clock for the system. The fact that all process and storage information
occurs at basically the same time, saves precious clock cycles that a machine relying so much on
speed could not afford to lose. The basic behaviour of the system is described on Figure 4.2.

4.3. MEDIUM ACCESS CONTROL AT RECEPTION

4.3.1. RGMII INTERFACE

The medium access is performed by implementing an RGMII Interface. Like mentioned in

section 2.4.2 this is a standard for communication between the Ethernet PHYs and the TEMAC
devices. In an Ethernet communication, the TEMAC is responsible for high level tasks such as
framing and error detection, while the PHY handles low level issues such as decoding of
information and deserialization. The RGMII is the interface between the two.

Clocking at reception is achieved by means of a Clock Generator Module (see Figure 4.3).
This component receives as inputs a global 125 MHz clock and signals indicating the speed at
which the MAC is configured to operate. The resulting output signal is a clock with the proper
frequency, which is then used on the RGMII Interface components as well as on the TEMAC.

The RGMII interface reduces the number of signals necessary to connect a PHY to a
TEMAC from 16 to between 6 and 10. The data bus is a 4-bit bus, but for Gigabit mode of

Figure 4.2 - Sniffer Internal Structure

24

operation it is capable of transmitting 1 byte every clock cycle, at the expense of using both the
rising and the falling edges of the clock. Before the information is sent to the FPGA, the signals are
registered in device IOBs. The complete list of signals used follows:

rgmii_rxd [3..0] – the receiver data bus.
rgmii_rx_ctl – control signal from the PHY that generates the error control signal

phyemacrxer and the data valid signal for the PHY, phyemacrxdv.
rgmii_rxc – clock from PHY.

Figure 4.3 - RGMII Interface

25

4.3.2. CLIENT INTERFACE

Before the TEMAC and the PHY start to work, they have to be configured. In respect to

the PHY, this was left with its standard configuration, as by default the PHY is already ready to
operate at 1 Gbps, as intended. As for the TEMAC, a module named Configuration Unit was built
with the purpose of configuring the TEMAC. This module is a state machine that operates on the
rising edge of the hostclk signal. Each clock cycle, the machine writes the value on the signal
hostwrdata into the register indicated by the address contained in the signal hostaddr. The write
operations on the registers had the following objectives: inhibit the transmission, activate the
reception and set the speed to 1 Gbps.

The signals made available by the TEMAC to the Client are the ones which allow the
treatment of data. The signal emacclientrxdvld indicates that a message is being received and the
corresponding data is available on an eight signal bus named emacclientrxd. The signal
emacclientrxstats is also a bus, but wider, and among other things, it contains the size of the
message received. The signal emacclientrxstatsvld is a control signal that indicates when the
information on the bus emacclientrxstats is valid. Finally the signals emacclientrxgoodframe and
emacclientrxbadframe indicate if the frame was received correctly or if the TEMAC should discard it.
However, as there is an interest in knowing all the traffic that flows on the Ethernet link, these
signals are never used and all data captured is processed. All signals described are synchronous
with the receiver clock from the PHY, rxgmiimiiclk that operates at 125 MHz. The signal
emacclientrxenable is used only when operating at lower speeds, and serves as clock enable for the
receiver clock.

Client

Configuration
Unit

TEMAC

emacclientrxd[7..0]

emacclientrxdvld

emacclientrxgoodframe
emacclientrxbadframe

emacclientrxstats[27..0]
emacclientrxstatsvld

emacclientrxenable

hostclk

hostwrdata [31..0]

hostaddr [9..0]

Figure 4.4 - Client Interface

4.4. TIME-STAMPING

This module was adapted from the time-stamping module designed in (Puga, 2008), with

small changes on it to operate at Gigabit mode.

26

Two tasks are assigned to this module:
1. To act as clock for the system, by means of an incremental counter.
2. To record the arrival time of the messages in seconds and in nanoseconds (time-

stamping).

Figure 4.5 - Time-stamping Module

Implementation

The clock for this module is a 125 MHz clock, which provides a resolution of 8ns. The

procedure is as follows:

§ On the rising edge: a counter is incremented. This counter is composed of two
bus signals: one to store the amount of nanoseconds and the other the amount of
seconds, both since the beginning of the capture. The time is registered if a new
message has been detected since the last rising edge.

§ On the falling edge: the module checks if a new message has arrived, by means of
detecting a transition from 0 to 1 in the signal emacclientrxdvld.

The worst case scenario is depicted in the Figure 4.6, and it happens when the signal
emacclientrxdvld indicates the beginning of a new message right after a falling edge of the clock (1).
In that case the signal is only detected by the module on the next falling edge (2) and the time
stamp is going to occur only on the subsequent rising edge of the clock (3), resulting in a
maximum error of 12 ns. On the other hand, though, if the message arrives right before the first
falling edge, then the error is of 4ns, being this the best case scenario. The jitter introduced solely
by this module is then 8ns.

Figure 4.6 - Worst case scenario for time-stamping

27

4.5. FIFOS

There are two different memories on the Sniffer.
The first kind of memory is the Data Memory, to which the complete Ethernet Frame

captured is sent. In the case of lack of space in the memory, the storage is interrupted, and the
data stored is a truncate version of the original frame. On the limit, if the memory is completely
full there is no data capture at all. However, there is always interest in capture some basic data
that can identify the message captured. So instead of capturing the entire frame for all the
arriving messages, the designer has the possibility to limit the capture to a specific number of
bytes, increasing the number of frames for which there is data stored. If problems of Data
memory space occur, the choice for the maximum amount of bytes will always be a trade of
between the amount of data stored per message, and the number of messages captured.

As for the Control Memory, it exists to save information details about the Ethernet Frame
captured, rather than the actual content of the frame. For each message captured, the Sniffer
saves always 12 bytes of information divided on the following fields:

§ Time stamping – the moment of arrival of the message, with 4 bytes to save the

number of seconds, plus 4 bytes to save the number of nanoseconds.

§ The total amount of bytes captured – 2 bytes to save the number of bytes
captured by the Sniffer;

§ The size of the message – 2 bytes to save the number of bytes of the original

frame received by the TEMAC. This value can be different from the one above in
case the Data memory has reached its limit or when the designer limits the
amount of bytes per message captured to a specific limit;

If the Control Memory gets full, the Sniffer ends the capture completely, even if there is
space available on the Data Memory. The reason for this is that the most important information
that a Sniffer can provide is the arrival of a message and the instant of time in which that
occurred. When the Sniffer can no longer register this kind of information, is pointless to store the
raw Ethernet frame, because there would be no way to interpret the data on the PC’s side. The
Control Memory could get full when the rate at which data is captured at the reception is higher
than the rate at which is drained to the PC. If the Control Memory becomes full, the capture is not
reinitiated, because the user would not have knowledge of lost frames.

Implementation

The memories chosen for this project were block RAM FIFOs (First-in-first-out) IP Cores

generated by Xilinx Core Generator (Xilinx, 2008). The FIFOs were generated with the option for
independent clock domains, so there are two clocks, the rd_clk and the wr_clk, each one to control
read and write actions to the FIFO. This eliminates any synchronization problem as the read and
write operations become completely independent from each other.

The FIFOs also allow having different sizes for the input and output data buses, which
comes in hand for the specific case of the Control FIFO, where the information that needs to be

28

sent there goes in words of 32-bits, but the TEMAC input data bus is an 8-bit bus. In the case of
the Data FIFO this does not occur, since the FIFO is in between two TEMACs, so both the input
and output buses have an 8-bit size. Both FIFOs have the capacity to store 16384 bytes of
information. This corresponds approximately to 256 messages of minimum size and to 10
messages of maximum size, on the Data FIFO. As for the Control FIFO, it allows writing
information regarding 1365 messages into the FIFO.

As it will later be described on this document, the transmission of a frame occurs only
when there is at least one complete Ethernet Frame captured stored on the Control FIFO. For this
reason, the EMPTY FLAG from the FIFO is not used when deciding on a read operation. Rather, it
was added a 14-bit bus called Read Data Count that indicates the number of bytes available on the
FIFO to be read at a given time. This allows checking if the number of bytes is enough or not to
include an entire Ethernet Frame.

Last but not least, the FIFOs were generated with the option First-Word-Fall-Through
(FWFT). This option makes the next word to be read from the FIFO to be already on the output
data bus, without issuing a read operation. As it will be seen later in this document, this
characteristic of the FIFOs will prove to be very important for the performance of the Sniffer. All
options taken when generating the FIFOs can be seen in Chapter 5 at the end of this document.

4.6. WRITING TO THE FIFOS

The figure below is a block diagram that shows how the Ethernet messages are stored. In

it, it can be seen: the Time-Stamping Unit signals and the FIFOs, a multiplexer that is controlling
which information is being written into the Control FIFO, and two blocks that correspond to state
machines which control the writings on the FIFOs:

Figure 4.7 - Block Diagram for the reception and storage of the messages

4.6.1. WRITING TO DATA FIFO

29

The Data Fifo Write Unit is the block responsible for placing the Ethernet frames received
from the TEMAC into the Data FIFO. The Sniffer was designed to operate at 1Gbps, but the state-
machines were conceived to handle all speeds, so that it can be easier to adapt the Sniffer for
whoever needs it to capture data at different rates. The TEMAC provides the data to the client in
groups of 8-bits, but if working at lower speeds than 1 Gbps, the TEMAC output data bus is
updated with valid data only every two clock cycles. As it is possible to limit the amount of
information captured by Ethernet Frame, this module is also responsible to count the number of
bytes captured, storing it on the signal n_bytes. This signal will then be forwarded to the Control
FIFO Write Unit, for control information storage.

Figure 4.8 - Data Fifo Control Unit state chart diagram

Implementation

The Unit is a Moore State Machine composed of 6 states: st_pre_initial, st0_stateInit,

st1_msgProcessing, st2_resting, st3_end_of_message and st4_end. State changes happen on the falling
edge of the signal rxgmiimiiclk and actual writings on the FIFO occur on the subsequent rising edge.

When the machine is at the initial state, st0_stateInit, the unit is waiting for a new message
to arrive, event that is triggered by the signal rx_data_valid (originally clientmacrxdvld from TEMAC).
When this occurs, the machine goes to the state st1_msgProcessing. Here, the data coming from
the TEMAC is copied to the output bus of the unit and writing on the Data FIFO is enabled. To
bear operations at slower speeds, the signal clntmacRxEn (same signal as emacclientrxen from
Section 4.3.2) serves as an enabling signal that must be checked before accepting the data on the
TEMAC client output data bus. In such cases, the machine can’t be permanently writing into the
Data FIFO, and will then alternate st1_msgProcessing with an idle state, st2_resting, depending on
the value of clntmacRxEn (data is updated when this signal is HIGH).Also, it is possible to store
incomplete messages into the Data FIFO, whether it’s because the FIFO is full (dtaFull = ‘1’), or it’s

30

the user’s wish to truncate the message to save space on the FIFO. In either case the state
machine will transit to the state st3_end_of_message, from which can only get out when the
TEMAC has stopped receiving data (that situation is certain when the signal rx_statistics_valid is set
to HIGH). In order for the client not to lose track of the amount of bytes captured, a signal is
incremented once for every byte written into the FIFO. Finally, if the capture is stopped, the
machine will go to an end state, st4_end, but a transition to this state is only possible from the
initial state, meaning that if the capture is at any time finished, the unit will still write the message
being currently received, until the TEMAC is no longer receiving data regarding that message.
Only a reset can make the machine to leave this state.

When there is a reset pulse, the FIFO generated by the Xilinx Core Generator enters its
own reset state from which can only leave after three clock cycles. During this time, the FIFO FULL
flag is asserted, to ensure no writing operations occur during the FIFO reset state. All states from
the Data Fifo Write Unit, including the state st0_stateInit, check if this flag is asserted, to end the
capture in case the FIFO is already full. This would result in the state-machine to always transition
to the st_end_of_message state upon a reset, failing to capture any data after the first reset.
Rather, an st_pre_initial_state was built to ensure that the transmission of a message after a reset is
done only when the FIFO is actually ready to receive bytes.

4.6.2. WRITING TO THE CONTROL FIFO

The Control FIFO Write Unit is the block responsible for writing information into the

Control FIFO. The objective of this block is to write the information concerning the time stamping
and size of the message received. This is accomplished controlling the three entries of the Control
Multiplexer: time in seconds, time in nanoseconds and a bus signal containing the real size of the
message (on the first 16 bits) and the number of bytes captured by the Sniffer (on the last 16
bits).

Implementation

The unit is built as a Moore State Machine composed of seven different states:
st_pre_initial,st_initial, st_time_seconds, st_time_nano_seconds, st_idle, st_size and st_end. State changes
happen on the falling edge of the rxgmiimiiclk and actual writings on the FIFO occur on the
subsequent rising edge.

The machine leaves the initial state, st_initial when the signal rx_data_valid (originally
emacclientrxdvld from TEMAC) triggers the beginning of the arrival of a new message and the
consequent writing of another control message in the Control FIFO, if capture hasn’t stopped yet,
that is, if global_enable = ‘1’ (control signal managed by the user), and if the FIFO is not full. On
states st_time_seconds and st_time_nano_seconds stamping information, in seconds and
nanoseconds respectively, is sent into the FIFO. On state st_size the information written concerns
the size of the message, information that is only available when the message has been fully
captured at the reception, event triggered by the signal rx_statistics_valid. While this does not
happen, the state machine remains on state st_idle, where writing into the FIFO is not enabled.
Overwriting in a full FIFO has to be avoided, so it is possible to jump to the st_end state from any
other state in case full FIFO condition is detected (full_from_fifo = ‘1’). When st_end is reached,
writing on the Control FIFO is no longer possible and the only way to leave that state is if the user
resets the Sniffer.

Similarly to what happened with the Data FIFO Write Unit, when there is a reset pulse, the
FIFO generated by the Xilinx Core Generator enters its own reset state from which can only leave
after three clock cycles. During this time, the FIFO FULL flag is asserted, to ensure no writing
operations occur during the FIFO reset state. As mentioned above, all states from the Control Fifo

31

Write Unit module check if this flag is asserted, to end the capture in case the FIFO is already full.
This would result in the state-machine to always transition to the st_end state upon a reset, failing

to capture any message after the first reset. Rather, an st_pre_initial_state was built to ensure that
the transmission of a message after a reset is done only when the FIFO is actually ready to receive
bytes.

4.7. FPGA TO PC INFORMATION TRANSFERENCE

After the information has been received, processed and stored at the FIFOs, it is then

necessary to transfer it to the PC, so that data can be analysed.
As mentioned before, the communication technology chosen for extracting the

information out of the FPGA was the Gigabit Ethernet. This means that it is the Tri-Mac Ethernet
MAC Core from Xilinx again the tool used to serve as the interface between the Sniffer logic and
the outside.

4.7.1. READING FROM THE FIFOS AND SENDING THE INFORMATION COLLECTED

st_time_sec

st_pre_initial

st_time_nano_seconds st_size

st_endst_end

rx_data_valid = ‘1’ &
full_from_fifo = ‘0’

 = ‘0’ & global_enable = ‘1’

full_from_fifo = ‘0’
ctrFull = ‘0’ &

rx_statistics_valid = ‘1’

full_from_fifo = ‘0’

full_from
_fifo = ‘1’

full_from
_fifo = ‘1’

full_from_fifo = ‘1’

st_initial

reset = ‘1’full_from_fifo = ‘0’

full_from_fifo = ‘1’

full_from_fifo = ‘1’ or
global_enable = ‘0’

full_from_fifo = ‘0’ &
global_enable = ‘1’ &

rx_data_valid = ‘0’

st_idle

ctrFull = ‘0’ &
rx_statistics_valid = ‘0’

ctrFull = ‘0’ &
rx_statistics_valid = ‘1’

Figure 4.9 – Control Fifo Write Unit State-Chart Diagram

32

The Channel Multiplexer and the Ethernet Frame Fields
As the entry names indicate, the first three entries of the Channel
Multiplexer are directly related with specific fields of the Ethernet frame.
Attached to each of these three entries is a specific 8-bit word, chosen by
the designer. The data on these Ethernet frame fields will then be a
repetition of the respective byte associated to each of the entries. Each of
the words is repeated for as many times necessary to fulfil each field size.
For instance, if on the Channel Multiplexer we would have the following
words at the mux inputs:

On the output, the first bytes of every frame sent would be:

0x 55 55 55 55 55 55 aaaaaaaaaaaa 33 33

The first six bytes would correspond to a six times (Destination Address
field has a size of six bytes) repetition of the Word 0x 55, the following six
bytes would correspond to a six times repetition of the word 0x aa
(Source Address field) and the remaining two bytes would correspond to a
repetition of two times of the word 0x 33 (Type/Length field has a size of
two bytes).
The reason why this scheme was chosen was because of simplicity. There
is no need for extra logic, nor extra processing, and because the FPGA PHY
is directly connected to the PC NIC, it doesn’t matter which DA or SA are
selected. The Ethernet Frame will always be detected on the computer’s
side.

The information transference from the FPGA to the PC consists in taking the data from
the Data and Control FIFOs, wrap it on an Ethernet Frame and send it to the PC via an Ethernet
cable.

There are many sources of data stored and only one way out (the TEMAC) so it is
necessary to select the proper source of data from which to take information at a given time to be
sent to the TEMAC transmitter. This is done by the Channel Multiplexer, a multiplexer containing
five entries from which it can be transferred data concerning, respectively, the Destination
Address[DA], the Source Address[SA], the Type/Length[T/L], data from Control Fifo, two bytes
containing zeros and data from Data Fifo (see Figure 4.10 for more details).

When transmitting frames, the TEMAC makes use of an enabling signal, tx_data_valid, to
delimit the window of time in which the TEMAC is transferring whatever information is present on
its data input bus to the outside. The beginning and ending of an Ethernet Frame is actually
denoted by the assertion or deassertion of this signal. That means that the signal tx_data_valid
must be hold high during the entire frame transmission and as a consequence every single frame
byte must be ready to be transferred continuously. This would suggest that the data multiplexing
should be done first to a third FIFO, existent only to get data in proper order and easier to
transfer. However, as speed is a key element of this project, this solution was skipped and the

Figure 4.10 - The Channel Multiplexer

33

transmission is achieved without an extra FIFO and relying on a state machine that performs all
transmission tasks without a middle step.

4.7.2. TRANSMISSION UNIT

The Transmission Unit is the module responsible for controlling all the transmission data

flow. It is a finite-state machine responsible for controlling the Channel Multiplexer Selector, and
for the control signals from both the FIFOs and the TEMAC.

As the Ethernet technology is being used on both the reception and the transmission,
what will be seen on the computer’s side is the ethernet frame captured at the reception
embedded in a bigger ethernet frame, along with time-stamping information (see Figure 5.1). To
avoid errors and because the ethernet packets transmitted need to be sent continuously, the
bigger ethernet frame will only be sent when the ethernet frame at the reception is fully
captured. This way, transmission will start only when there are 12 or more bytes at the Control
FIFO. Why? Because 12 bytes is the amount of bytes of control data stored for a complete
ethernet message, and the last information to be stored on a FIFO regarding a receiving frame is
the size of the frame, which is stored on the control FIFO. So when that FIFO has 12 bytes, it is
certain that there is a complete ethernet frame captured.

The message begins to be transmitted by assertion of the tx_data_valid signal, as
mentioned before, but the simple assertion of this signal does not mean that the TEMAC is ready
to accept data. Contrarily, the Transmission Unit has to wait for the handshaking signal from the
TEMAC, emacclienttxack before transmitting the next bytes. That signal indicates that the TEMAC
has received the first frame byte, and that is ready, on the immediate subsequent clock cycle, to
receive the very next byte of data.

After transmitting the field bytes correspondent to the Destination Address, Source
Address and Type/Length frame fields, the Transmission Unit then proceeds to transmit
information stored on the Control and Data FIFOs. From the control FIFO is read: the timing
information, that is, the time-stamping in seconds (4 bytes) and nanoseconds (4 bytes); the

Data Fifo
rd_en

rd_clk

dout [7..0]

Mu
x

Control Fifo
rd_en

rd_clk
dout [7..0]

rd_data_count [13..0]

SOURCE ADDRESS
DESTINATION ADDRESS

LENGTH/TYPE

tx_clk

data_from
_lo

cal_link_sel

d

reset

emacclienttxack

clientemactxd [7..0]

clientemactxdvld

txgmiimiiclk

TEMAC

s_reset

tx_clk

tx_clk

0x00

ctrCount [13..0]

dataIn [7..0]

tx_ack

control_fifo_rd_enable

datasel

data_from_local_link_sel

tx_data_valid

tx_data [7..0]

tx_clk

resets_reset

Transmission
Unit

clk

data_fifo_rd_enable

Figure 4.11 - Information transference to the PC Block Diagram

daniel
Controls what is sent to the outside.

daniel
Data is a small frame embedded in a bigger one. Transmission starts only after an entire frame has been received.

daniel
Beginning of transmission. Acknowledge from MAC.

34

number of bytes captured (2 bytes) and finally the size of the message (2 bytes). From the Data
FIFO are transferred all the bytes captured associated with that message. For that to be possible,
it is necessary to save the value of the number of bytes captured to a register, during the reading
of that field from the Control FIFO.

All data concerning the ethernet message captured is sent in the format in which it could
be saved in a wireshark file, because it may be useful to analyze the data on this network analyzer
and what is seen by Wireshark when data is captured is the bigger ethernet frame (see section
Error! Reference source not found. - Error! Reference source not found. of this document). The
only differences with respect to the original frame captured are the number of bytes captured and
the size of the message. For this reason, two bytes filled with zeros are sent just before each of
these fields. That is the reason for a 0x00 entry on the Channel FIFO Multiplexer.

The different tasks carried out by the Transmission Unit must occur in different instants

The different tasks carried out by the Transmission Unit must occur in different instants

on time, in order to ensure proper operation of the Sniffer. Two different key moments are
needed on transmission:

§ A moment to evaluate the current state of the system and to act on the MUX

selectors, the FIFO reading control signals, and the TEMAC transmitting control
signals;

§ A moment for the TEMAC to collect the data to transmit;

At first sight, the above could indicate the usage of different clocks or edges of the same
clock for the different logic, but in fact the same clock is used throughout all different
components used for transmission. So the FIFOs read clocks, the Transmission Unit clock and the
TEMAC transmission clock are all the same and they are synchronous with the rising edge of that
clock, tx_clk, coming from a Clock Generator Module. The reason for using the same clock and the
same clock edge for all components is that when using the fastest clock available on the FPGA
(125 MHz), half clock cycle is not enough to perform some of the tasks that the Transmission Unit
needs to carry out. In order for the logic to meet the timing constraints specified in the design, the

Figure 4.12 - Transmission Unit Timing Diagram

daniel
All data concerning the frame transmitted.

daniel

daniel
The two key moments of transmission.

35

changes in the control signals, as well as a reading operation on the FIFO must have at least an
entire clock cycle of margin to properly update the data buses.

In order for the system to work on the timing restrictions above mentioned, the FIFOs had
to be configured to operate in the First-Word-Fall-Through (FWFT) mode. This feature provides
the next word to be read from the FIFO to be already available on the output data bus, allowing
catching the word before issuing a read operation. Without this mode of operation, unnecessary
complexity would be required for the state-machine to work properly: the data would be valid
only one clock cycle later, but there is no way to pause the TEMAC while transmitting a frame.

The mode of operation is then described on the Figure 4.12. The figure represents the
moment in which the Moore State Machine transitions from the state st_type, a state in which the
bytes correspondent to the type/length are being transmitted, to the state st_time, when the
bytes concerning the time-stamping information are transferred. On the rising edge 1 the state
transition happens, and as the timing information is stored on the Control FIFO, a reading
operation has to occur. For that reason, the control signals from the multiplexers are changed
accordingly and the enable signal to read from the FIFO, control_fifo_rd_enable, is asserted. Also on
the rising edge 1, and because on that very moment the state is still st_type, none of the signals
changes have occurred yet, so the TEMAC (that is also synchronous with the tx_clk) reads the byte
on the input data bus correspondent to last state, st_type. On the next clock cycle, the byte
number 1 on the Control FIFO is already on the FIFO output data bus as the FIFO is configured on
the FWFT mode of operation. Because the Control FIFO is synchronous with the signal tx_clk too, it
will take time also to change the FIFO output data bus to the next byte, and so the data on rising
edge 2 will be correct. As it can be seen from the timing diagram, when the machine changes
state, the correspondent byte is only written on the next rising edge, just before the state
changes again. This phenomenon is drag from when the MAC sends the emacclienttxack (Figure
4.13.) This signal can only be seen by the Transmission Unit on the next rising edge. Then and
only then the Transmission Unit can perform the proper changes, but the TEMAC is already ready
to accept a new byte of data. This situation results in that the machine will have to stay in the
st_dest_address state on purpose one less time than common sense would point, originating that
the write operations subsequent to this state will always seem advanced in respect to the state.

Figure 4.13 - Acknowledge Signal from the TEMAC

daniel
Transmitter clock. Same clock used for all transmission components. Entire clock cycle needed.

daniel
FIFOs operating in FWFT mode to send the message continuously.

daniel
Transmission Units Timing Diagrams Description

36

CHAPTER 5. SOFTWARE TOOLS FOR DATA ANALYSIS

5.1. RECEIVING DATA ON THE PC SIDE

As the interface to the computer is also a PHY, data is sent also recurring to a TEMAC. As

seen in the previous chapter, this means that the expecting data on the PC side is also in the form
of Ethernet Frames. As mentioned in the Section Error! Reference source not found. of this
document, Wireshark is the most popular software available to analyze network traffic. Wireshark
possesses several features, from which are relevant to this project:

§ Being able to decode hundreds of protocols, including 802.3, grouping the data

received on recognizable fields according to this standard.

§ Capture is performed live, but it is possible to analyze data offline. All captures
made with Wireshark can be saved into a file for later analysis.

§ Capture in promiscuous mode is available, meaning that all data on the Ethernet
Link can be sniffed, not just traffic addressed to that interface.

§ It allows the application of filters, displaying or hiding messages according to a
variety of parameters such as protocol or Ethernet Source or Destination
Addresses. This comes in hand, as the Sniffer does not perform any filtering on
hardware level. It could be relevant to do so only in what bandwidth saving says
respect, but Wireshark is enough for showing only the data sent by the FPGA, and
hiding handshaking and protocol network messages.

§ It is possible to sort the messages according to the time-stamp.

§ It provides the user the ability of exporting the data to various formats, including
CSV format and plain text for analysis on math tools.

Figure 5.2 shows how a capture looks like in Wireshark with a filter set to sniff only the

messages with a Destination Address equal to the one the messages coming from the FPGA have.

Time (s) Time (ns) Original Size

Destination Address Source Address

Bytes Cap.

Length/
Type

Data

4 bytes 4 bytes 2 bytes 2 bytes

6 bytes 6 bytes 2 bytes 46-1500 Bytes

Ethernet Frame Captured by the Sniffer

Destination Address Source Address Type Ethernet Frame Captured

2 bytes

Data
46-1500 Bytes

6 bytes 6 bytes 46-1500 Bytes

Ethernet Frame Captured by the PC Ethernet Interface and displayed on Wireshark

Figure 5.1 - Ethernet Frame received on the PC side

daniel
Wireshark useful features.

37

However, recall from the previous Chapter that the data received on the PC side is an
Ethernet Frame encapsulated on a bigger Ethernet Frame (see Figure 5.1), and this last one is not
the one we wish to analyze. Figure 5.2 also shows the packet as received on the PC side.

It is of no interest, for instance, to know the software registered time-stamping of the
Ethernet Message sent by the transmitter TEMAC on the FPGA, but rather the smaller Ethernet
Frame that was captured and processed by the Sniffer. This creates a problem, since Wireshark
doesn’t recognize this format, and so it interprets the smaller Ethernet Frame as a single field: the
data field of the actual Ethernet received. To overcome this situation, two software applications
were developed to extract the relevant portions of the smaller ethernet frame captured.

5.2. DATA PROCESSING

Even if Wireshark was able to decode the Ethernet Frame special format in which the data

packets are received on the PC side, this tool would not be enough to perform the kind of analysis
that is intended for the Sniffer. Although Wireshark is a very useful tool for a general visualization
of what happens in the network, it does not have the features of a math application. It is of
interest to perform mathematical operations to the data and to analyze it graphically, making
space for probability and statistics, as well as worst case scenario analysis.

As mentioned before, Wireshark has the ability to export data to a variety of different file
formats, including CSV that can be read on mathematical tools. However, it is obvious that if
Wireshark interprets the entire encapsulated frame as a single field corresponding to the data
field of the actual Ethernet Frame received, when exporting to CSV file, the different fields of the
smaller frame are going to be concatenated on a single value. So to overcome this problem, the
data is first exported to a plain text file. Wireshark gives the possibility to export only the packet
content, without the packet summary or any details. This way, this is how the information
appears after being exported:

Figure 5.2 - Wireshark Capture

daniel
Ethernet Frame Format as received at the computer side.

daniel
Issues on the format received by the computer.

daniel
Wireshark is not suitable for math analysis.

daniel
Export format from Wireshark

38

Figure 5.3 - Information exported from Wireshark to a plain text

Then a C application called convert2csv.c was developed. This application has as input a
plain text file as the one from Figure 5.3 and takes the string that contains the byte with the time-
stamping information. The data read from the file are ASCII characters that represent 2
hexadecimal values, the instant of arrival of the message in seconds and nanoseconds,
respectively. So the program needs to then convert those values into integers. Finally the
application writes the timing values collected and writes them into an output file in the CSV
format, as it can be seen from Figure 5.4. In this format, data can be easily analyzed by math
tools like Microsoft Excel or Matlab.

Figure 5.4 - Data in CSV format

daniel
Software Application to export Data into CSV Files

39

CHAPTER 6. TESTS AND RESULTS

6.1. INTRODUCTION

In order to evaluate the performance of the Sniffer, the tool was put under specific tests.

These had the objective of verifying the Sniffer’s two desired abilities: to be able to capture the
Ethernet frames on the Ethernet link, and to register the time-stampings correctly and accurately.

6.2. WORKING DIAGRAM

In order to create the conditions to test the Sniffer, there was the need to have a device

inserting Ethernet traffic on an Ethernet link. As explained in section 3.3 if a general purpose
computer would be used as the source of such traffic, the multiprogramming and resource
sharing issues associated with these devices would insert errors and thus would irreversibly
corrupt the measurements taken. The accuracy of the results would be certainly low, but there
would be no way of knowing if the source of that would be the computer or both the computer
and the Sniffer. To overcome such problem, another tool was developed in VHDL language, to
serve as a packet generator. With this device, the user is able to set the size of the messages, as
well as the period. As this is another hardware dedicated tool, it is immune to the issues of the
general purpose computers just mentioned, and thus can be trusted as a reliable source of packet
generation without time deviations. To run this tool, another NetFPGA was used and connected
to the brother board were the Sniffer was running. Figure 6.1 depicts the situation just described.

Table 6.1 - Results

Period
(ns)

Size
(Bytes)

Maximum
(ns)

Minimum
(ns)

Mean
(ns)

Standard
Deviation

Jitter
(ns)

10000 60 10192 10176 10184 1.22 16
10000 100 10188 10072 10080 1.22 16
50000 60 50088 50072 50079 4.04 16
50000 100 50088 50072 50079 4.41 16

Figure 6.1 - Sniffer Testing Working Diagram

40

Several measurements were taken to evaluate the performance of the Sniffer.
Table 6.1 contains some of these measurements. Each row of the table represents the

results taken for 20000 packets from the packet generator, with two parameters varying: the
period and the size. For all measurements taken all the 20000 packets were successfully captured.
In what concerns the time-stamping, recall from section 4.4 that the Sniffer resolution is 8 ns.
However, the jitter measured was 16 ns, the double. This is due to the lack of synchronization of
the clocks used for reception and time-stamping that causes sometimes the time-stamping being
taken two clock cycles later. However, the Sniffer reveals great accuracy on the measurements, as
the mean value and the standard deviations indicate. The figures below are the graphic
representation of the value of the delay between messages for the different measurements. As it
can be seen the messages converge firmly to the period value, regardless of the measurement
variables.

Figure 6.1 - Results: Period = 10000; Size: 60 bytes

Figure 6.2 - Results: Period = 10000; Size: 100 bytes

41

Figure 6.3 - Results: Period = 50000; Size: 60 bytes

Figure 6.4 - Results: Period = 50000; Size: 60 bytes

42

CHAPTER 7. CONCLUSIONS

7.1. SUMMARY

In this work it was analysed the insufficiency of vulgar software network analyzers in the

face of strict temporal restrictions imposed by Real-Time systems on a distributed architecture.
Additionally, the need for higher bandwidth protocols on the industrial area and the consequent
attention to Ethernet as a suitable solution was also focused on this project. As an answer to
these issues, it was developed capable of sniffing Gigabit Ethernet traffic flowing in an Ethernet
Link. The device built is capable of capturing the Ethernet Messages flowing on the transmission
line with an 8ns resolution and a jitter of 16ns.

The Gigabit Ethernet Sniffer connects with the physical transmission line at the expense of
two Gigabit Ethernet PHYs. One of these PHYs captures the traffic flowing on the Ethernet Link
inspected, and the second one connects the device to a PC. The rest of the messages route
happens inside an FPGA that communicates with the Ethernet PHYs by means of a Xilinx
Intellectual Property Core MAC device, the TEMAC. Message contents and control information
data are then stored into FIFOs - IP Cores as well – thanks to finite state machines that perform
controlled writing operations on the FIFOs. Finally the Ethernet Message finds her way out of the
FPGA again through a TEMAC, being this process supervised by another state machine, which
performs reading operations on the FIFOs and multiplexes the information sent to the TEMAC
device.

As the Ethernet is the technology used both to receive and to transmit the information,
this last one arrives at the PC side on the form of small Ethernet frames embedded in bigger ones.
The popular network analyzer Wireshark is good to filter the relevant packets for analysis, but it
can’t decode the protocol used to send the information to the PC, neither can perform graphical
and mathematical analysis. So a software tool was designed to extract the relevant fields of
information coming on the Wireshark files and to put it on a CSV format. The information is then
treated by math tools which perform a complete analysis of the traffic flowing on the
transmission line.

7.2. FUTURE WORK

7.2.1. TWO CHANNELS

For the Sniffer to be complete, it must capture data on both sides of the communication

line. The intended operation for the Sniffer is to interface it with a transmission line through a
device named TAP, commonly known as a splitter. This way the Sniffer would be able to capture
all data on an Ethernet Segment without interfering with the normal flow of communication.
Right now it would be possible to duplicate the Sniffer and capture data on both directions, but
this would demand the use of two NetFPGAs and two computers to receive the data, or at least a
computer with two Ethernet Gigabit Ports. But even on that situation, the channels would not
have the same temporal basis, so it would not be possible to compare the timing information
collected.

Adapting the Sniffer for two channels is not complicated, as all there is to be done is to
duplicate the reception logic and then multiplex the information at the transmission side. This has
already started to be implemented on this work, but still without a working version.

43

When adapting the Sniffer to capture data on both directions, a bandwidth limitation will
certainly arrive, and so will the need to change the communication technology for transmission
into a higher bandwidth solution. The Sniffer would be capturing traffic from two Ethernet PHYs
but sending information only through one, meaning that the occupied bandwidth on reception
could be roughly twice as the one available for transmission, if the system was heavily loaded.
Correcting the problem by changing the technology for transmission would mean a new
inspection to the available free technologies compatible with the FPGA. The world of technology
is constantly evolving and IP Cores made very expensive in the past can now be available at
affordable prices. Recommended solutions would be SATA or 10 Gigabit Ethernet. Alternatively,
on a next project at the University of Aveiro, these protocols could be developed from scratch to
make an FPGA “talk” these communication technologies.

Another possibility and simpler one for a full duplex Sniffer could be to take out the
multiplexing and using the last Ethernet PHY of the NetFPGA developing board. This would erase
the need for a higher bandwidth technology, but would still demand the use of two computers or
a computer with two Ethernet Ports.

7.2.2. TEMPORAL PRECISION

The TEMAC has a variation on the latency that affects the temporal precision of the

Sniffer. A way to overcome this would be the construction of a path parallel in relation to the
TEMAC, to increase the precision of the time-stamping. However, to accomplishing this would
require an inspection to the signals coming from the RGMII bus, in order to detect when the
message actually arrives.

44

APPENDIX A) FIFOS INTELECTUAL PROPERTY CORE GENERATION

45

46

47

APPENDIX B) TRI MODE ETHERNET MEDIUM ACCESS CONTROLLER

INTELLECTUAL PROPERTY GENERATION

48

BIBLIOGRAPHY

Almeida, L., & Pedreiras, P. (2005). Acetatos Aulas Teóricas STR. Retrieved from STR - Sistemas de

Tempo-Real: http://sweet.ua.pt/~lda/str/str.htm

Buttazzo, G. C. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and

Applications.

Buttazzo, G. (2005). Rate Monotonic vs. EDF: Judgment Day.

Colasoft. (2011). Capsa Enterprise White Paper.

Doyle, P. (2004). Introduction to Real-Time Ethernet I. The Extension .

Liu, L. C., & Layland, W. J. (1973). Scheduling Algorithms for Multiprogramming in a Hard-Real-Time

Environment. Journal of the ACM .

Marau, R., Almeida, L., & Pedreiras, P. (2006). Enhancing RT Communication over cots Ethernet

Switches. 6th IEEE Workshop on Real-Time Networks. Dresden, Germany.

NetFPGA. (2011). NetFPGA. Retrieved November 2011, from About: www.netfpga.org

Novell. (2003). Ethernet Frame Types. Retrieved from Novell Frequently Asked Questions list.

P. Pedreiras, L. A. (2005). Approaches to enforce real-time behavior in Ethernet.

Paessler. (n.d.). Monitor Your Network with PRTG - It's So Easy! Retrieved September 2011, from

Paessler Webpage: http://www.paessler.com/prtg

Pedreiras, P., Gai, P., Almeida, L., & Buttazzo, G. (2005, August). FTT-Ethernet: a flexible real-time

communication protocol that supports dynamic QoS management on Ethernet-based systems. IEEE

TRANSACTIONS ON INDUSTRIAL INFORMATICS .

Pidgeon, N. (2000, April 01). How Ethernet Works. Retrieved September 2011, from How Stuff

Works: http://computer.howstuffworks.com/ethernet.htm

Puga, J. (2008). Sniffer para Redes Ethernet de Tempo-Real Baseado em FPGA. Aveiro: Universidade

de Aveiro.

RMII Consortium. (1998, March 20). RMII Specification.

SerialATA Workgroup. (2003). High Speed Serialized AT Attachment.

49

Todt, E. (2011). Introdução Sobre o Tempo-Real. Retrieved September 2011, from Departamento

de Informática da Universidade Federal do Paraná: http://www.inf.ufpr.br/todt

Weibel, H., & Béchaz, D. (2004). Implementation and Performance of Time Stamping Techniques.

IEEE .

Wireshark Developer's Guide. (2004-2010). Retrieved from http://www.wireshark.org.

Xilinx. (2008). LogiCORE™ IP FIFO Generator v4.4.

Xilinx. (2011). FPGA Design Flow Overview. Retrieved from Xilinx Website:

http://www.xilinx.com/itp/xilinx10/isehelp/ise_c_fpga_design_flow_overview.htm

Zhou, Z., Cong, L., Lu, G., Deng, B., & Li, X. (2010). High Accuracy Timestamping System Based on

NetFPGA. International Journal of Future Generation Communication and Networking .

	Chapter 1. introduction
	1.1. Framework
	1.2. Motivation
	1.3. Objective
	1.4. Structure

	Chapter 2. Theoretical background
	2.1. Real-Time Systems
	2.1.1. Its about predictability, not speed
	2.1.2. Real-time systems classification
	2.1.3. Real-time Image and Database
	2.1.4. Distributed Architectures
	2.1.5. Scheduling

	2.2. FPGA
	2.2.1. What is?
	2.2.2. FPGA Design Flow
	2.2.3. Why are FPGAs needed?

	2.3. Communication Technologies and the choice for Gigabit Ethernet for Transmission
	2.4. The Ethernet
	2.4.1. Origin and Evolution
	2.4.2. Reduced Gigabit Media Independent Interface
	2.4.3. The Ethernet Frame

	Chapter 3. STATE OF THE ART
	3.1. Introduction
	3.2. Making Ethernet Real-Time
	3.3. Network Analyzers
	3.3.1. Fast Ethernet Hardware Sniffer

	Chapter 4. TOOL DEVELOPMENT: capturing, storing and processing data. Information transference to the pc.
	4.1. Introduction
	4.2. General Description
	4.3. Medium Access Control at Reception
	4.3.1. RGMII Interface
	4.3.2. Client Interface

	4.4. Time-Stamping
	
	Implementation

	4.5. FIFOs
	
	Implementation

	4.6. Writing to the FIFOs
	4.6.1. Writing to Data FIFO
	Implementation

	4.6.2. Writing to the Control FIFO
	Implementation

	4.7. FPGA to PC Information Transference
	4.7.1. Reading from the FIFOs and sending the information collected
	4.7.2. Transmission Unit

	Chapter 5. Software Tools for Data Analysis
	5.1. Receiving Data on the PC side
	5.2. Data Processing

	Chapter 6. Tests and Results
	6.1. Introduction
	6.2. Working Diagram

	Chapter 7. Conclusions
	7.1. Summary
	7.2. Future Work
	7.2.1. Two Channels
	7.2.2. Temporal Precision

	Chapter 8.

