
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2011

Ricardo Jorge
de Sousa Rodrigues

Controlo distribúıdo de um braço robótico

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15568778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2011

Ricardo Jorge
de Sousa Rodrigues

Controlo distribúıdo de um braço robótico

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Electrónica e Telecomunicações, realizada sob a orientação cient́ıfica de
Prof. Paulo Bacelar Reis Pedreiras e Prof. Filipe Miguel Teixeira Pereira
da Silva, Professores do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro

Este trabalho é financiado por Fundos FEDER através do Programa Ope-
racional Factores de Competitividade – COMPETE e por Fundos Nacio-
nais através da FCT – Fundação para a Ciência e a Tecnologia no âmbito
do projecto ”HaRTES: Hard Real-Time Ethernet Switching”(PTDC/EEA-
ACR/73307/2006);

o júri / the jury

presidente / president Professor Doutor José Alberto Gouveia Fonseca
Professor Associado da Universidade de Aveiro

vogais / examiners committee Professora Doutora Ana Luisa Lopes Antunes
Professora Adjunta do Departamento de Engenharia Eletrotécnica da Escola Supe-

rior de Tecnologia de Setúbal do Instituto Politécnico de Setúba (arguente principal)

Professor Doutor Paulo Bacelar Reis Pedreiras
Professor Auxiliar da Universidade de Aveiro (orientador)

Professor Doutor Filipe Miguel Teixeira Pereira da Silva
Professor Auxiliar da Universidade de Aveiro (coorientador)

agradecimentos /
acknowledgements

Em primeiro lugar tenho que agradecer aos meus pais e ao meu irmão pelo
apoio incondicional e por acreditarem sempre em mim. Eles são os princi-
pais responsáveis por eu ter chegado onde cheguei.
Agradeço aos meus orientadores, Paulo Pedreiras e Filipe Silva, que me aju-
daram imenso durante esta dissertação e se mostraram sempre dispońıveis
para tal.
Agradeço ao pessoal da ESN, principalmente ao Vilaça e ao Chaves, que
me deram ânimo para acabar esta dissertação.
Agradeço aos meus treinadores de ciclismo (faḿılia Carvalho) e aos meus
colegas de equipa com quem aprendi imenso.
Agradeço ainda aos meus amigos de Erasmus, tanto aos da Polónia como
aos de Aveiro, que me fizeram crescer a ńıvel social.
A todas estas pessoas, o meu muito obrigado.

Palavras-Chave FTT-SE, Cinemática, Controlo, RTOS, Braço Robótico, RTLinux

Resumo Muitos dos sistemas electrónicos de hoje em dia necessitam de executar
tarefas com determinados requisitos de pontualidade, previsibilidade ou
relações de precedência. O cumprimento destes leva muitas vezes à
necessidade de utilização de sistemas operativos de tempo-real (RTOS),
devidamente complementados por redes de tempo-real, no caso de sistemas
distribúıdos.
No âmbito desta dissertação desenvolveram-se estruturas básicas para um
demonstrador do protocolo FTT-SE, que oferece comunicação tempo-real
sobre Ethernet. Este demonstrador é baseado num braço robótico com
cinco graus de liberdade, o que corresponde a cinco juntas ou eixos,
estando cada uma destas ligada a um computador que a controla.
Foram desenvolvidos device drivers para o RTOS RTLinux para efectuar a
comunicação com o hardware desenvolvido que permite obter informação
sobre a posição da junta do braço robótico bem como controlar o movi-
mento do motor. Foram desenvolvidos também algoritmos de controlo e
cinemática com o objectivo de controlar o movimento de cada junta do
braço de forma a que esta siga uma trajectória previamente definida.

Keywords FTT-SE, Kinematics, Control, RTOS, Robotic Arm, RTLinux

Abstract Many of the electronic systems of today need to perform tasks with cer-
tain requirements of timeliness, predictability or precedence relations. The
fulfilment of this requirements often leads to the need to use real-time op-
erating systems (RTOS), fully complemented by real-time networks, in case
of distributed systems.
In this dissertation it was developed basic structures for a FTT-SE proto-
col demonstrator, which provides real-time communication over Ethernet.
This demonstrator is based on a robotic arm with five degrees of freedom,
corresponding to five joints or axes, with each one of these connected to a
computer that controls it.
We developed device drivers for the RTOS RTLinux to allow the communi-
cation with the hardware developed that provides the joint position of the
robotic arm and control the movement of its engine. In addition, kinematics
and control algorithms were developed in order to control the movement of
each joint of the arm so that it follows a predefined trajectory.

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Document Structure . 3

2 Fundamental concepts 5

2.1 Real-time systems . 5

2.1.1 Types of real-time tasks concerning time constraints 5

2.1.2 Types of real-time tasks concerning its periodicity 6

2.1.3 Basic concepts . 6

2.1.4 Scheduling algorithms . 7

2.1.5 RTLinux . 8

2.2 Kinematics . 9

2.2.1 Forward kinematics . 10

2.2.2 Inverse kinematics . 11

2.3 Trajectory planning . 12

2.3.1 Polynomial trajectory . 13

2.3.2 Point-to-point motion . 13

2.3.3 Continuous motion . 13

3 System architecture 15

3.1 Hardware . 15

3.2 Software . 16

3.2.1 Device Drivers . 17

3.2.2 Filters . 19

3.2.3 Internal scheduler . 19
3.2.4 Trajectory planning . 20

3.2.5 Control systems . 20

3.3 Experimental assessment . 21

3.3.1 Time measurements . 21

3.3.2 Filters . 27

i

3.3.3 Internal Scheduler . 28

4 Control System 31
4.1 Proportional controller . 32
4.2 Proportional-Integral Controller . 36
4.3 PID Controller . 37
4.4 Cascade controller . 39
4.5 Motor Linearity . 41

5 Network sniffer 43
5.1 Configuration . 43
5.2 Implementation . 44
5.3 Test . 45

6 Conclusions and Future Work 47

Bibliography 48

Appendix A 50
6.3 Circuit . 50

Apendix B 51
6.5 Acronyms . 51

ii

List of Figures

1.1 System architecture diagram . 2

2.1 Utility of the results produce by a firm real-time task 6
2.2 Utility of the results produce by a soft real-time task 6

2.3 Priority assignment to tasks in RM . 8

2.4 RTLinux structure . 9
2.5 RTLinux task structure . 9

2.6 Schematic of the robotic arm . 10

2.7 Point-to-point motion . 13

2.8 Simple continuous motion solution . 14

3.1 Blocks diagram of the hardware architecture 15

3.2 Shared Memory Diagram . 16

3.3 Device driver flow charts . 18
3.4 Internal scheduler . 19

3.5 Internal scheduler Flow chart . 20

3.6 Control systems task . 21
3.7 Time needed to read the position, not optimized 22

3.8 ADC reading process, Optimized . 23

3.9 Time needed to read the position, optimized 24
3.10 Time needed to read the current . 25

3.11 Time needed to update the PWM . 26

3.12 signal from the position, without filter and engine stopped 27
3.13 signal from the position, with filter and engine stopped 28

3.14 Internal scheduler . 29

4.1 General controller model . 31
4.2 PID Contoller . 33

4.3 Proportional Control response, Position x PWM 33

4.4 Proportional Control response, Real Position x Reference 34
4.5 Proportional Control response, with offset, Position x PWM 35

4.6 Proportional Control response, with offset, Real Position x Reference 35

4.7 PI Controller response, Position x PWM . 36
4.8 PI Controller response, Real Position x Reference 37

4.9 PID Controller response, Position x PWM . 38

4.10 PID Controller response, Real Position x Reference 39
4.11 P plus PI in cascade controller . 39

iii

4.12 Cascade Controller response, Position x PWM 40
4.13 Cascade Controller response, Real Position x Reference 41
4.14 Non-linearity of the engine, against the gravity 42
4.15 Non-linearity of the engine, in favour of the gravity 42

5.1 Configuration window . 43
5.2 Application flowcharts . 44
5.3 Screen capture of the network sniffer working 45
5.4 Screen capture of the configuration for the test 46
5.5 Screen capture of the first test . 46
5.6 Screen capture of the second test . 46

iv

List of Tables

2.1 Kinematics parameters table . 10

3.1 Shared memory . 17
3.2 Table of the time needed to read the position, not optimized 22
3.3 Table of the time needed to read the position, optimized 23
3.4 Table of the time needed to read the current 24
3.5 Table of the time needed to update PWM . 25
3.6 Worst case scenario for each task . 26
3.7 Table with statistic values from the signal from the position, without filter . . 27
3.8 Table with statistic values from the signal from the position, with filter noise 28
3.9 Statistic values from position signal, with and without internal scheduler . . . 29

4.1 Table with statistic analyse from the proportional control 32
4.2 Table with statistic analyse from the proportional control, with offset 34
4.3 Table with statistic analyse from the proportional-Integral control, with offset 36
4.4 Effect cause by each parameter of the PID . 38
4.5 Table with statistic analyse from the PID controller 38
4.6 Table with statistic analyse from the cascade controller 40

v

vi

Chapter 1

Introduction

This dissertation is integrated on the FCT funded project named HaRTES [6] that was
already in development. In the scope of this project, the hardware interface between the
computer and the robotic arm was already developed. Also a preliminary implementation
of the device-drivers was made available. The project is built upon recent work on the
FTT (Flexible Time-Triggered) [5] communication paradigm to develop Ethernet switches
with enhanced transmission control, traffic scheduling, service differentiation, transparent
integration of non-real-time nodes and improved error confinement mechanisms, particularly
with respect to temporal misbehaviours.

1.1 Motivation

Although there is a great diversity of network protocols, most of them fail in flexibility and
don’t provide admission control mechanisms and management of quality of service (QoS) that
would allow to dynamically change the operation of the system. Currently these features are
being seen as essential in some electronic systems that require an adaptive behaviour changing
the mode of operation during run time.

The FTT-SE protocol was created to answer this need and therefore it was developed a
switch based on it to test its effectiveness. This switch is capable of produce enough flexibility
and management of the resources efficiently without compromise the timeliness required by
real-time applications. To test the capabilities of the switch, it was developed a challenging
demonstrator, which is a robotic arm, for which some modules have been developed in the
scope of this dissertation.

In this dissertation we had to build basic structures for a demonstrator based on a robotic
arm that would be used to test the FTT-SE protocol, so we developed a system that would
control a joint of the robotic arm. This system, as shown in figure 1.1, is composed by different
blocks connected to each other:

• Computer runs the software (device drivers and control systems) and physically uses
a parallel port to allow the communications with other blocks.

– Control Systems is responsible for the movement control of the arm joint, which
means that giving a previous trajectory for the joint, the control systems would
ensure the realisation of the trajectory. The control systems use the device drivers
to communicate with the HW interface board (Hardware interface board) in order

1

to read the actual position and the H-bridge to control the power given to the
electrical motor.

– Device driver makes possible the communication between the control systems
and the rest of the system. It is composed by low level tasks that read the position
and current and generates the PWM signal fed to the H-bridge.

• HW interface Board (hardware interface board) is a board designed to read data
from the position sensor and the current consumed by the electrical motor. The current
is measured from the H-bridge using a sensing resistor.

• H-Bridge is a board that allows the system to change the direction of the movement of
the arm joint and also has a sensor that is used by the HW interface board to measure
the current.

• In the Arm Joint, there is a position sensor and a electrical motor that provides the
movement to it.

– The Sensor is a simple potentiometer in which the voltage measured on it repre-
sents the position of the joint.

– The electrical motor is controlled by the control systems using a PWM signal
that represents the power given to it.

The work done in this dissertation will be used to make a distributed control of the robotic
manipulator which has strict timing requirements in order to work properly. Therefore it
provides a good visual way to observe the effectiveness of the switch. This dissertation
required a wide knowledge, not only of electronics, control systems but also real-time systems
and kinematics.

Figure 1.1: System architecture diagram

1.2 Objectives

As said before, the work done in this dissertation envisions the implementation of a system
which would make possible to test a switch created on the scope of the project HaRTES. To
achieve the main goal, we would have to pass on some steps:

2

• Become familiar with concepts of real-time (industrial communications, operating sys-
tems real-time)

• Complete the electronic interface of control of the robotic arm

• Develop the ”device-drivers”

• Develop of control and motion planning software

• Develop of demo applications

• Evaluate the impact of the communications on the performance of the robotic arm

From all of these objectives the only one that was not achieved was the evaluation of the
impact of the communication on the performance of the robotic arm. This would need to
have the distributed control implemented which didn’t happen.

1.3 Document Structure

This thesis is divided in five main chapters:

• Fundamental concepts - Here it is explained some basic concepts and terminology
that are necessary to understand the work done

• System architecture - It has an introduction to the system developed (hardware and
software) where it is explained how the system works. Some tests are presented, more
precisely, time tests and filter results.

• Control System - This is where it is described the methods used to control the joint
of the robotic arm. There is a statistic interpretation of the response of the joint to
each controller used.

• Network sniffer - Here it is introduced a software that we developed in the beginning
of this dissertation, which can be used to observe a set of streams in a network and
graphically showing its transmission rate during a window of time.

• Conclusions - The last chapter summarizes the main results achieved during the dis-
sertation. There is an evaluation of work done and also some remarks concerning the
future work that can be done.

3

4

Chapter 2

Fundamental concepts

2.1 Real-time systems

”Real-time systems are computing systems that must react within precise time constraints
to events in the environment” [17]. These temporal requirements usually arise from the dy-
namics of the process under control. These conditions have to be always fulfilled, even in the
worst case.

It is typical to use real time systems in critical applications in terms of economic or secu-
rity (e.g. nuclear power plants, rail traffic control and aviation, etc.).

It is normal to consider safety and reliability to be independent issues, nevertheless, in
real-time systems, safety and reliability are coupled together. When there is failure in the
system and there is no damages resulting, we can say that it has a fail-safe state. But if
the system failure cause severe damages we say that we are facing a safety-critical system.
To achieve high reliability the software development should have in attention fault tolerance,
error avoidance, error detection and removal, built in self test (BIST) and redundancy.

2.1.1 Types of real-time tasks concerning time constraints

Real-time tasks have some kind of time constraints, and concerning this characteristic they
can be classified into either hard, soft or firm real-time tasks depending on the consequences
of a task missing its deadline.

A Hard real-time task is a task in which missing a deadline may cause serious problems
in the system. When any of its hard real-time tasks doesn’t successfully complete its required
results within the time bound, the system is considered to have failed.

Firm real-time tasks are tasks in which its failure affects the system but not in a catas-
trophic way. In case the firm real-time task does not complete within its deadline, the system
does not fail, it just discards the late results. An example of a firm real-time task is a video
conference.

Soft real-time tasks, unlike the previous ones, don’t cause immediate problems to the
system, but after a while it can cause system failure. The control of the temperature in a
room can be an example.

5

Figure 2.1: Utility of the results produce by a firm real-time task

Figure 2.2: Utility of the results produce by a soft real-time task

2.1.2 Types of real-time tasks concerning its periodicity

A real-time tasks can be classify into three main categories in terms of its periodicity:
periodic, sporadic and aperiodic.

A periodic task is one that recur with a fixed time interval, being the precise time in-
stants at which it repeats usually demarcated by clock interrupts. Due to that, periodic tasks
may be referred to as clock-driven tasks. The fixed time interval is called the period of the task.

A sporadic task is one that repeats at random instants. A sporadic task Ti can be
mathematically represented by:

Ti = (ei, gi, di)

where ei is the worst case execution time of an instance of the task, gi denotes the minimum
separation between two consecutive instances of the task, di is the relative deadline. We can
say that once an instance of a sporadic task occurs, the next instance cannot occur before gi
time units have elapsed. That means, gi restricts the rate at which the sporadic tasks can arise.

An aperiodic task can also occur at random instants. However, in this case, the mini-
mum separation gi between two consecutive instances can be 0. That means that two or more
instance of an aperiodic task might happen at the same time.

2.1.3 Basic concepts

These are some basic concepts that will be used later:
Preemtive Scheduler is a scheduler in which when a higher priority arrives, suspends

6

any lower priority task currently being executed and the higher priority task takes up for
execution. The lower priority task can only resume when there are no higher priority tasks
ready.

Utilization of a task is the average time for which it executes per unit time interval. For

a periodic task Ti its utilization is ui =
ei
pi
, where ei is the execution time and pi is the period

of Ti. For a set of n periodic tasks {Ti}, the utilization due to all tasks is given by U =

n
∑

i=1

ei
pi
.

2.1.4 Scheduling algorithms

In real-time systems the tasks are performed in a particular order. The instances, ready to
run, wait in a queue sorted according to certain scheduling criteria. The scheduler (function
that will sort the queue of ready tasks) should use a deterministic criterion in order to allow
calculating the maximum delay (worst case) that a task can suffer in the queue.
Each scheduler is characterized by its algorithm. There is a large number of scheduling al-
gorithms for real-time systems so far, some of them are: Fixed priority pre-emptive schedul-
ing [4], Fixed-Priority Scheduling with Deferred Preemption, Fixed-Priority Non-preemptive
Scheduling, Round-robin scheduling [12], Critical section preemptive scheduling, Static time
scheduling, Earliest Deadline First (EDF) [3], Rate Monotonic (RM) [11] and advanced
scheduling using the stochastic and MTG.Due to its relevance, EDF and RM are now pre-
sented with some detail.

Earliest Deadline First

In Earliest Deadline First (EDF) scheduling, the order is based on the task deadline.
In this algorithm the task having the shortest deadline is taken up for scheduling. The task
set is schedulable, if and only if it satisfies the necessary condition that the total processor
utilization caused by the task set is less then 1. This condition [19] can be expressed as:

n
∑

i=1

ei
pi

=
n
∑

i=1

ui 6 1 (2.1)

where ui is the average utilization due to the task ti and n is the total number of tasks in the
task set.

Rate Monotonic

In the Rate Monotonic (RM) scheduling algorithm the priority assigned to a task is based
their request rates. It means that tasks with higher request rates will have higher priorities.
Since periods are constant, in RM the priorities are fixed. A priority Pi is assigned to the
task before its execution and does not change over the time. We can even say that RM is
intrinsically preemptive: the currently executing task is preempted by a newly arrived task
with shorter period.

The priority of a task Ti is directly proportional to its rate (or inversely proportional to its

period) and can be represented as: Priority =
k

pi
, where pi is the period of the task Ti and

7

k is a constant. Using this expression we can plot the priority of tasks for different periods
as shown in the figure 2.3(a) and 2.3(b).

A set of periodic real-time tasks are not guaranteed to be schedulable in RM unless they
satisfy the sufficient condition [19] represented in the equation 2.2, where ui is the average
utilization due to the task ti and n is the total number of tasks in the task set.

n
∑

i=1

ei
pi

=

n
∑

i=1

ui < n(21/n − 1) (2.2)

Figure 2.3: Priority assignment to tasks in RM

2.1.5 RTLinux

Schedulers are part of the operating system kernel. Some of these kernels are: ReT-
MiK [10], OReK, RTKPIC18 [14], SHaRK [16], RTAI [13] and RTLinux [15].

Real-Time Linux (RTLinux) is a version of Linux that provides hard real time capability.
RTLinux provides the capability of running special realtime tasks and interrupt handlers on
the same machine as standard Linux. These tasks and handlers execute when they need to
execute no matter what Linux is doing. The operating system, as shown in the figure 2.4,
can be divided in two parts: Kernel space and User space. Kernel space has the core of the
system, here you have the low level tasks, such as device-drivers, operating system modules,
etc. User space is where we have all the high level programs running. The user space can’t
communicate directly with the hardware: it must be done through the kernel space. These
two spaces need a special API to be able to communicate with each other. In the RTLinux
this API can be a FIFO or shared memory.

In RTLinux the tasks have a specific structure as shown in the figure 2.5. There is an
initial configuration in the beginning of the Thread (programming wise, not during the run
time) with parameters related to itself (priority, etc.) and in the end we have to include a
sleep function that represents the period of the task. In RTLinux if we want periodic tasks
we need to calculate the time to sleep in each tick, taking into account the execution time.

8

Figure 2.4: RTLinux structure

void *taskName(void *t) {

// task configuration

// variable initialization

// resource allocation

while(1){

//task body

rtl_clock_nanosleep(RTL_CLOCK_REALTIME, RTL_TIMER_ABSTIME, &time, NULL);

//RTL_CLOCK_REALTIME and RTL_TIMER_ABSTIME are constants defined by the RTLinux

//time is the time interval that the task will sleep

}

}

Figure 2.5: RTLinux task structure

2.2 Kinematics

Kinematics is the science of geometry in motion [18]. It describes the motion as a function
of the position, orientation, and time derivatives. It has an important role in this thesis since
it describes the motion of the system and the relation between the various axis. In Kinematics
there are two important equations: Forward kinematics and Inverse kinematics.

Forward kinematics is a computation of the position and orientation of robot’s end
effector (or end frame) as a function of its joint angles. It means that we can obtain the
Cartesian coordinates through the joint angles. The reverse process, obtain the joint angles
through the Cartesian coordinates, is called inverse kinematics.

9

Figure 2.6: Schematic of the robotic arm

2.2.1 Forward kinematics

To find these equations we had to use the Denavit-Hartenberg (DH) convention. Firstly
we defined the references for each joint, in our case we used the ones represented in figure 2.6.
In the DH convention the Z-axis is in the direction of the joint axis, the X-axis is parallel to
the common normal [2] and the Y-axis is the one left using the right-handed coordinate sys-
tem. Then, based on these references, we can obtain the kinematics parameters represented
in table 2.1, where θi is the joint angle, li is the link length, di is the link offset (axis 1 case)
and αi is the link twist.
In the DH convention, each one of the joints can be represented as an homogeneous trans-

i θi li di αi

1 θ1 0 d1 90o

2 θ2 + 90o l2 0 0

3 θ3 l3 0 0

4 θ4 l4 0 0

Table 2.1: Kinematics parameters table

10

formation (Ai) and it is defined as the equation 2.3 where R is the 3×3 submatrix describing
rotation and T is the 3× 1 submatrix describing translation. In that equation ”c” is a short
for cosine (cos) and ”s” is the short for sine (sin) trigonometric function.

Ai =

cθi −sθicαi sθisαi licθi
sθi cθicαi −cθisαi lisθi
0 sαi cαi di
0 0 0 1

=

R T

0 0 0 1

(2.3)

If we replace the parameter in this equation (2.3) by the ones in the kinematics parameters
table (2.1) we obtain the homogeneous transformation matrix for each joint, as shown in
matrices 2.4.

A1 =

c1 0 s1 0
s1 0 −c1 0
0 1 0 d1
0 0 0 1

A2 =

−s2 −c2 0 −l2 ∗ s2
c2 −s2 0 l2 ∗ c2
0 0 1 0
0 0 0 1

A3 =

c3 −s3 0 l3 ∗ c3
s3 c3 0 l3 ∗ s3
0 0 1 0
0 0 0 1

A4 =

c4 −s4 0 l4 ∗ c4
s4 c4 0 l4 ∗ s4
0 0 1 0
0 0 0 1

(2.4)

These matrices give us the transformation in each joint, if we want the transformation
matrices from the base to a specific joint we need to multiply every transformation matrices
between them. For instance the transformation matrix from the base to the end frame M04

(that will be used to obtain the forward kinematic equations) we have to multiply the matrices
A1 A2 A3 and A4, as it is represented in the equation 2.5, where c234 is the short for
cos(θ2 + θ3 + θ4) and the same for s234 that is the short for sin(θ2 + θ3 + θ4).

M04 = A1×A2×A3×A4 =

−s234 ∗ c1 −c234 ∗ c1 s1 −c1 ∗ (l3 ∗ s23 + l2 ∗ s2 + l4 ∗ s234)
−s234 ∗ s1 −c234 ∗ s1 −c1 −s1 ∗ (l3 ∗ s23 + l2 ∗ s2 + l4 ∗ s234)

c234 −s234 0 d1 + l3 ∗ c23 + l2 ∗ c2 + l4 ∗ c234
0 0 0 1

(2.5)
Finally, what we’ll need from here is the Translation matrix T04 that will gives the equa-

tions that we need to calculate the Cartesian coordinates (xe,ye,ze) through the joint angles
and represented in the equation 2.6.

xe
ye
ze

 = T04 =

−c1 ∗ (l3 ∗ s23 + l2 ∗ s2 + l4 ∗ s234)
−s1 ∗ (l3 ∗ s23 + l2 ∗ s2 + l4 ∗ s234)
d1 + l3 ∗ c23 + l2 ∗ c2 + l4 ∗ c234

 (2.6)

2.2.2 Inverse kinematics

After having found the forward kinematics equations it is easy to find the inverse kine-
matics ones. For that we need to mathematically solve a linear system with the three forward
kinematics equations in function of the joint angles. However, as you probably realised, there

11

are four variables and only three equations, so we have to replace one of the variables for
something else and leaving it to be calculated separately. In our case we replaced the θ4 by
the equation 2.7, where β is the angle between the horizontal and the end frame.

θ4 = β − 90o − θ2 − θ3 (2.7)

After solving the linear system 2.8 and replacing θ4in it by the equation 2.7, we can obtain
the inverse kinematics equations 2.9, 2.10, 2.11 and 2.12.

xe = −c1 ∗ (l3 ∗ s23 + l2 ∗ s2 + l4 ∗ s234)

ye = −s1 ∗ (l3 ∗ s23 + l2 ∗ s2 + l4 ∗ s234)

ze = d1 + l3 ∗ c23 + l2 ∗ c2 + l4 ∗ c234

(2.8)

Θ1 = tg−1

(

ye
xe

)

(2.9)

Θ3 = ±tg−1

(
√

k2
2 − k3

2

k3

)

k2 = 2 ∗ l2 ∗ l3

k3 =
(xe
c1

− l4 ∗ cα
)2

+ (ze − d1− l4 ∗ sα)2 − l32 − l22

(2.10)

Θ2 +Θ3 = tg−1

(

k1
k2

)

± tg−1

(

√

k21 + k22 − k23
k3

)

k1 = −2 ∗ l3 ∗
(xe
c1

− l4 ∗ cα
)

k2 = 2 ∗ l3 ∗ (ze − d1− la ∗ sα)

k3 =
(xe
c1

− l4 ∗ cα
)2

+ (ze − d1− la ∗ sα)2 + l32 − l22

(2.11)

Θ4 = β − 90o −Θ2 −Θ3 (2.12)

2.3 Trajectory planning

Trajectory planning is a part of control, in which we plan a trajectory to be followed by
the manipulator in a planned time profile. The trajectory can be planned in joint or Cartesian
space. Joint trajectory planning directly specifies the time evolution of the joint variables.
Cartesian trajectory specifies the position and orientation of the end frame during a period
of time. It may include avoiding obstacles.

12

2.3.1 Polynomial trajectory

To obtain smooth paths, the trajectory planner must be a continuous function, with a
continuous first derivative and hopefully also a continuous second derivative. There are several
ways to calculate the path, one of them and probably the simplest is the polynomial path. In
our case we will use the fifth degree polynomial, also known as Quintic path, that specifies the
position, velocity and acceleration. The Quintic path is defined in equations 2.13 and 2.14,
the first one giving the position and the last one the velocity.

a3 =
−10 ∗ (θ0 − θf)

t3f
, a4 =

15 ∗ (θ0 − θf)

t4f
, a5 =

−6 ∗ (θ0 − θf)

t5f

p(t) = a5t
5 + a4t

4 + a3t
3 + θ0 (2.13)

ṗ(t) = 5a5t
4 + 4a4t

3 + 3a3t
2 (2.14)

2.3.2 Point-to-point motion

There are a few ways to describe the motion of the path. The most important ones are
the Point-to-point motion and the Continuous motion. The first one is the simplest and it
plans to move the end frame from a point to another within a specific given time, without
any concern about the intermediate points. An implementation of this is represented in figure
2.7, where rf is the final destination in Cartesian coordinates, the qf is the final destination
in joint angles and q(t), q̇(t) and q̈(t) are the position, velocity and acceleration for each
moment of the movement. This technique uses the inverse kinematics to convert from final
destination in Cartesian coordinates (that we Humans are more used to work with) to joint
angles, then knowing the actual position in joint angles, the final destination and the time in
which we want to the movement be complete, the path planing can plan the whole movement
giving the position, velocity and acceleration for each moment (in our case we used the quintic
path). This operation can be computed offline, which means that can be computed before
the movement starts. Finally with the result from the path planing, the operation rests in
the control systems that will take care of the obedience to that planning.

Inverse
Kinematics

Trajectory
Planning

Control
Systems

rf qf q(t), q̇(t), q̈(t)

Figure 2.7: Point-to-point motion

2.3.3 Continuous motion

In the continuous motion, the end frame is moved through a geometric specified path
within a predefined space of time. This one is really useful when the movement made by the
manipulator cares about the way to go from a point to another and enables more complex
tasks e.g. car painting, to make a geometric movement (line, curve, etc.).

There are several ways to implement this type of motion. One of them is illustrated in
figure 2.8, where rf means the final position in Cartesian coordinates, r(t) is the position

13

along the time and q(t) is the position in joint angles along the time. In this case the path
planing is done on the Cartesian space and then for each moment the position is converted
to joint angles using the inverse kinematics. This two operations can be done separately and
offline. Finally as in the point-to-point case, the control systems takes care of the rest.

Trajectory
Planning

Inverse
Kinematics

Control
Systems

rf r(t) q(t)

Figure 2.8: Simple continuous motion solution

14

Chapter 3

System architecture

This project has been worked on before I started, therefore it was partially defined, mainly
the hardware part. The aim was to find a simple and reliable solution, so basically it is
composed by a manipulator, a power supply, a H-bridge and a circuit board that takes care of
the data acquisition, which we called HW interface board. In the computer there is a software
running as a real-time task in a real-time operative system (RTLinux). The whole system is
explained in detail in the following sections.

3.1 Hardware

The demonstrator design has been initiated before we started this dissertation, so we just
did some minor changes and developed the printed circuit board (PCB) version. As said be-
fore, in this system we have a manipulator with five joints. However we just use four of them,
since the end frame joint only allow us to rotate itself which is not useful for the purpose of
this demonstrator. In each joint there is a set of modules integrated, as depicted in figure 3.1.
The DAQ is used to read digital signals into the computer, allowing it to physically commu-

Figure 3.1: Blocks diagram of the hardware architecture

nicate with the rest of the modules.
In the HW interface board, as you can see in section 6.3 of the appendix, we have an ADC

(max186), one voltage regulator of 5V (7805) to power the ADC and some connectors. The
ADC reads the joint position in Volts through a sensor that exists on it and also reads the

15

instantaneous current consumed by the motor using a sensing resistor placed in the H-Bridge.
The current is measured for security matters allowing to avoid damage caused by blockage on
the movement. The ADC uses the SPI standard to communicate with the DAQ and therefore
with the computer, so there are four logic signals that are usually used in this cases: Serial
Clock (SCLK), Master Output Slave Input (MOSI), Master Input Slave Output (MISO) and
slave select (SS). In our case, the ADC equivalent signal would be (respectively): SCLK,
Din, Dout, CS [1]. There is also a strobe signal (SSTRB) that is used to verify the state of
the ADC.

The H-bridge is an element used to control the direction of the joint movement and the
power given to its motor. One input is fed with a PWM signal to control the power delivered
to the motor. There are two more inputs aiming to select the direction of the movement.

3.2 Software

The software is divided in two major parts: device drivers and the control systems and
kinematics. These two parts were placed in two different spaces of the operative system:
Kernel space and User space. Kernel space is where the core of the system is, in our case the
device drivers. User space is where all the high level application components are and in our
case we’ll have the control systems and kinematics. These two spaces need to communicate
with each other. RTLinux supports FIFO queue and shared memory as a way of commu-
nication. We decide to use shared memory, as shown in figure 3.2, because the variables
needed to be shared between various modules which would make the FIFO inefficient since
multiple FIFOs would be needed. in addition, the variables were considered state variables,
it represents a state instead of an event trigger, which make them valid at every instants.
We reserved two addresses in the shred memory: rAddr and wAddr. The rAddr is reserved
for communication from the kernel into the user space and the wAddr the opposite. They
were configured as described in the table 3.1, where pos[] is the actual position divided in two
bytes, vel[] is the velocity, Error is a error byte identifying what error happened, dir is the
direction select variable, stop/move is a byte that orders the movement to be stop or to start
and NU is not used.

Shared
Memory

Device
Drivers

Control
Systems

Kinematics

Figure 3.2: Shared Memory Diagram

16

Byte number 0 1 2 3 4

rAddr pos[0] pos[1] vel[0] vel[1] Error

wAddr PWM dir Stop/move NU NU

Table 3.1: Shared memory

3.2.1 Device Drivers

The first step taken in the software side was the development of the device drivers, that
would have the capacity to read the joint position, the instant current consumed by the en-
gine of the same joint and to apply a PWM signal in the H-Bridge allowing the software to
change the power given to the electrical motor and therefore the joint velocity. The code
was running in kernel space using real-time services and divided in tasks, one for each of the
following cases. As explained further on, this software organization was changed during the
course of the work due to signal acquisition constraints.

Some of the tasks in the device drivers will use the ADC to read values. To read a value
from the ADC we need to follow the sequence represented in figure 3.3(a). It initiates by
putting the CS at 0, then we have to write a control word which selects, among others pa-
rameters, the channel that the ADC will use to convert. In the position case we use the
channel 1 (sel = 100) [1] and in the current case we use the channel 0 (sel = 000). Then
the CS is set back to 1 and sleeps for 6µs [1] that is the average time taken by the ADC
to convert. Afterwords, the ADC’s strobe signal is checked to see if the conversion is really
finished and if so the CS is set 0 and the value is read by the computer. Finally, the CS is
set back to 1, signalling the end of use of the ADC.

Since the ADC will be a resource shared by more than one tasks we had to implement
something to avoid the access to it when some task is already using it. The first solution we
found was to use semaphores that can lock the access to a resource. This solution does its
job, however, as it will be mentioned further away, there is a overhead that comes with it and
then we will try a new solution. Figure 3.3(b) presents a flowchart illustrating the steps
necessary to read the joint position. It starts by signalling the ADC to start reading the
position and waits checking one of the ADC outputs if the operation is complete. When this
happens the value is read and the routine sleeps, waiting for the next iteration.

In the reading of the current (see figure 3.3(b)), the routine is a little bit more complex.
The beginning is similar to the position, it signals the ADC to start reading the current,
waits for it to finish and reads the current. Then it calculates the mean current that is used
along with the instantaneous current to prevent overload. If it is above the limits allowed the
movement stops. If not it just sleeps and waits for the next iteration.

To change the PWM, represented by the flowchart in figure 3.3(b), the routine have to
check if there is any indication to stop due to overcurrent or simple stop order. If there is no
indication it changes the PWM otherwise it stops the movement and sleeps, waiting for the
next iteration.

Having these tasks working properly it is possible to measure the time needed to read the
position, current and to change the PWM and then define some important parameters such
as the frequency of reading the position and the current.

17

Begin

CS = 0

write control word

CS = 1

sleeps for 6µs

check strobe

Ready?

CS = 0

Read Result

CS = 1

End

Yes

No

(a) ADC reading process

(b) Flowchart of the basic tasks

Figure 3.3: Device driver flow charts

18

3.2.2 Filters

One of the first observations that we made during the experiments was the high interfer-
ence present in the position signal read by the ADC, so we had to implement a filter system
to try to eliminate that interference. The filter used was a low-pass finite impulse response
(FIR) filter. The output of the FIR filter is a weighted sum of the current and a finite number
of previous values of the input. These weights were calculated using functions implemented
on Matlab. Further, it will be explained the usage of this filter in more detail and presented
some test results using it.

3.2.3 Internal scheduler

One of the problems we encountered was an interference between the rising edge of the
PWM signal and the reading of the position. When the PWM was turned on the abrupt
current position caused a strong interference on the position sensor signal. This interference
was spotted using a oscilloscope where some peaks could be seen whenever the PWM was on
the rising edge.

The obvious solution was to try to read the position in a different time of the PWM
changes, so an internal scheduler seemed to be a perfect solution, synchronizing and scheduling
the three tasks previously mentioned (read position, read current and change the PWM). This
way we could define when each of those tasks would be active. We defined a schedule for
those tasks which in practice is a junction of those three tasks in only one, as shown in figure
3.4 and 3.5, where RCur is the reading of the current, RPos is the reading of the position
and cnt is a counter that is compared with the kRCur and kRPos indicating when is the next
iteration of those tasks. With the scheduler, the current reading and the position reading
would happen when the PWM is stable for some time. In addition, the current would be read
in first place leaving the position to be read on the furthest place from the rising edge of the
PWM signal. The execution rate of the RCur and RPos tasks is controlled by the internal
scheduler, being selected according the time taken by those tasks to be complete and also
on the CPU utilization that we want. To this subject will be analysed further after we have
introduced the time tests.

Figure 3.4: Internal scheduler

19

Begin

PWM ON

cnt++

cnt%kRCur == 0 RCur

cnt%kRPos == 0 RPos

sleep

PWM OFF

sleep

Yes

No

Yes

No

Figure 3.5: Internal scheduler Flow chart

3.2.4 Trajectory planning

The trajectory planning is pretty simple at this point. This process is done before the
movement starts and consists in computing an array of position values along the movement
that will be used as reference for the control systems. This array will have the solution
of the equation 2.13 with a given destination coordinates and the time of execution of the
movement. This equation has time as variable which can not exist programming wise, so we
had to convert it into a discrete equation.

3.2.5 Control systems

In the control systems we have the highest level task on this project so far. Here we will
use all the resources granted by the device drivers to get data and actuate on the robotic
arm. With the help of figure 3.6 we see that the task starts by calling the function that would
compute the path planning. This operation is just done once on the task. Afterwords and
entering in the task cycle, we check if the joint is still within its position limits, and stops
everything with an error message in the negative case. Then we calculate the error and the
new PWM. The error is the difference between the actual position and reference, the PWM
is calculated according to the control systems technique in use. This is presented in detail in
the control systems chapter. Finally, the end of the trajectory array and the stop signal are
checked. The end of that array tell us that we reached the end of the movement according to
the reference. In case there is no problem the task sleeps until the next iteration of the cycle,
otherwise the task ends.

20

Begin

calculate trajectory

outside limits?

calculate error

calculate new PWM

end of array

stop? sleep

End

No

No

Yes

No

Yes

Yes

Figure 3.6: Control systems task

3.3 Experimental assessment

This was the first step of the work and one of the most important ones since the quality
of the data read would influence the rest of the project, mainly the control part. Here we had
some problems regarding the noise present in the signal and some improvements had to be
done in order to have a better reading.

3.3.1 Time measurements

One of the first tests I made was the execution time test because firstly I would need
to define the frequencies of execution of the tasks previously mentioned (read position, read
current and change PWM) taking into account the CPU utilization. The tests made were:

• Time needed to read the position;

• Time needed to read the current;

• Time needed to update PWM

Time needed to read the position

In order to measure the time needed to read the position, it was recorded, by software,
the time in ns on the beginning and end of the reading process and then subtracted. The
result obtained was the following:

21

Average Time (ns) Max Time (ns) Min Time (ns) std (ns)

64716 67012 62774 689.38

Table 3.2: Table of the time needed to read the position, not optimized

Figure 3.7 illustrates the execution time of consecutive instances of the reading position
task.

0 100 200 300 400 500 600 700 800 900
1000

2000

3000

−
 −

 P
os

iti
on

 (
m

V
)

0 100 200 300 400 500 600 700 800 900
6

6.5

7
x 10

4

−
 T

im
e

(n
s)

Samples

Time needed to read Position

Figure 3.7: Time needed to read the position, not optimized

The worst case was 67012 ns, which is relatively high. Most part of the time is spent
on the ADC conversion, as expected, however there was some overhead caused by the sleeps
waiting for the ADC to finish its conversion and semaphores that prevent simultaneous access
to the ADC, so we made the following optimizations:

• remove the semaphores;

• replace the ADC conversion waiting time by a pooling cycle checking the ADC strobe
status.

In order to remove the semaphores, the threads had to be defined with the same priorities
and I had to use a FIFO scheduler. This way the threads cannot be interrupted by others
with the same or less priority. This was actually very important, because the access to the
ADC must not be interrupted or have any interference with the risk of read a wrong value
from it. Also it would allow me to make an internal scheduler as you will see further on.
The sleep on the ADC process was replaced by a while cycle checking its strobe status as it is
shown in figure 3.8. This was just done because the waiting time was short, around 6µs [1].

22

Begin

CS = 0

write control word

CS = 1

check strobe

Ready?

CS = 0

Read Result

CS = 1

End

Yes

No

Figure 3.8: ADC reading process, Optimized

Average Time (ns) Max Time (ns) Min Time (ns) std

61641 64060 59444 748.16

Table 3.3: Table of the time needed to read the position, optimized

The results obtained after the optimization was the one presented in table 3.3
The worst case was 64060 ns which is around minus 3µs than the previous. So we have

an reduction on the time of execution of almost 5% . See also figure 3.9.

23

0 100 200 300 400 500 600 700 800 900
1000

1500

2000

2500

3000

−
 −

 P
os

iti
on

 (
m

V
)

0 100 200 300 400 500 600 700 800 900
5.8

6

6.2

6.4

6.6
x 10

4

−
 T

im
e

(n
s)

Samples

Time needed to read Position, optimized

Figure 3.9: Time needed to read the position, optimized

Time needed to read the current

The process to measure the time needed to read the current was similar to the position
case. It was measured already using the same optimizations made on the position and the
result obtained was the following:

Average Time (ns) Max Time (ns) Min Time (ns) std (ns)

60020 62476 58786 559.96

Table 3.4: Table of the time needed to read the current

The worst case of 62476 ns, which is similar to the position case. See figure 3.10 for a
graphical approach.

24

0 100 200 300 400 500 600 700 800 900 1000
1200

1400

1600

1800

2000

2200

2400

2600

2800

−
 −

 P
os

iti
on

 (
m

V
)

0 100 200 300 400 500 600 700 800 900 1000
5.85

5.9

5.95

6

6.05

6.1

6.15

6.2

6.25
x 10

4

−
 T

im
e

(n
s)

Samples

Time needed to read the Current

Figure 3.10: Time needed to read the current

Time needed to update the PWM

The process was, once again, similar to the previous ones. The result was the following
one:

Mean Time (ns) Max Time (ns) Min Time (ns) std

885 1018 824 22.76

Table 3.5: Table of the time needed to update PWM

The worst case 1018 ns, which is really low, as expected, since it only involves toggling a
digital pin. See also the figure 3.11.

25

0 100 200 300 400 500 600 700 800 900
1000

2000

3000

−
 −

 P
os

iti
on

 (
m

V
)

0 100 200 300 400 500 600 700 800 900
800

1000

1200

−
 T

im
e

(n
s)

Samples

Time needed to update PWM

Figure 3.11: Time needed to update the PWM

Time tests conclusions

To summarize, the worst case scenario for each task was the one present in the table 3.6.

Read Position (ns) Read Current (ns) Change PWM (ns)

64060 62476 1018

Table 3.6: Worst case scenario for each task

With these values I could calculate the maximum frequency allowed to each task. If we
consider to allocate a maximum of 50% of the utilization to these task we can conclude the
following:

Totaltime = 64060 + 62476 + 1018 = 127554ns
MaxUtilization = 50% ⇒ Tmin = 127554 + 127554 = 255108ns

fmax =
1

Tmin
= 3.92kHz (3.1)

The frequency of PWM commonly used in this situations is about a few kHz, so we decided
to use a frequency 2kHz which is lower than the fmax. The frequency for the reading of the
position and current was also chosen as 2kHz, which is close to the values commonly used in
cases like this.

26

3.3.2 Filters

The signal initially obtained from the position sensor was severely corrupted by interfer-
ence, as can be seen in figures 3.12 and table 3.7. So it came necessary to implement a filter.

Mean (mV) Max(mV) Min (mV) ∆V (mV) std (mv)

1486.1 1533 1435 98 18.26

Table 3.7: Table with statistic values from the signal from the position, without filter

0 100 200 300 400 500 600 700 800 900 1000
1420

1440

1460

1480

1500

1520

1540
Position without filter

−
 P

os
iti

on
 (

m
V

)

Samples

Figure 3.12: signal from the position, without filter and engine stopped

We tried two different filters implemented by software: a median filter and a low-pass
FIR. The filters were implemented on the position reading task, right after the position has
been read. The median filter worked very well when the engine was stopped but with the
engine running had a bad behaviour so this one was not adequate to this project. The FIR
filter had a better response depending on its order. The choice of the order was made testing
the various possibilities using already a controller because the filter order would influence the
control once the FIR order changes the delay on the samples causing the system to try to
control using a signal delayed and therefore a delay on its own compensations. After some
tests, the order that fitted better was 10 and the result is shown in table 3.8 and figure 3.13.
The filter had a good response, improving a signal with a 18.26mV of STD and 98mV of ∆V
to a signal with a 0.49mV and 1mV respectively.

27

Mean (mV) Max(mV) Min (mV) ∆V (mV) std (mV)

2138.4 2139 2138 1 0.49

Table 3.8: Table with statistic values from the signal from the position, with filter noise

0 100 200 300 400 500 600 700 800 900
2080

2100

2120

2140

2160

2180

Position with filter

−
 P

os
iti

on
 (

m
V

)

Samples

Figure 3.13: signal from the position, with filter and engine stopped

3.3.3 Internal Scheduler

After testing the internal Scheduler we noticed that for a low value of PWM there was still
a slight interference because the time between the changing of the PWM to on and the read-
ing of the position was still short, so we had to add a waiting time, named named stab time
(stabilization time) as shown in figure 3.14, where we have one tick of the internal scheduler
when every tasks are executed. The time needed to be waited before we read the position
was measured on the oscilloscope with the value of 10µs.

At this point, you might think that it would still not work properly because this forced
waiting time between the changes of PWM to on and to off (between the rising edge and
falling edge) would limit the minimum PWM. That is true, this way the minimum PWM
would be 13.7% (see equation 3.2). However, when the PWM is at 13.7% or lower the engine
doesn’t have enough power to work, or in other words, it is in a dead band so there is no
harm in using this.

MinPWMtimeOn = ForcedT ime = stab+ timereadPosition + timereadCurrent = 137µs

TPWM = 1ms ⇒ PWMmin =
PWMon

TPWM
∗ 100 =

137

1000
∗ 100 = 13.7(3.2)

28

Figure 3.14: Internal scheduler

As said before, the frequencies of the tasks involved in this scheduler were all the same
and with the value of 2kHz. Having all these tasks the same frequency, we didn’t need to
do the scheduling, so only the synchronization was done. However, this internal scheduler is
prepared to do the schedule in case the frequencies are different.

To test this internal scheduler improvement, the joint had to be moving because only this
way we would see the interference of the PWM rising edge. So we measured the noise in
two similar situations with and without the internal scheduler. The results are showed in
the table 3.9. There was a visible improvement in the performance of the system, which was
reflected on the MSE that decreased from 1.33(mV) to 1.15(mV).

Situation maxError (mV) MSE (mV) Error std (mV)

Without
internal scheduler

3.08 1.33 1.09

With
internal scheduler

2.61 1.15 1.05

Improvement (%) 15.26 13.53 3.67

Table 3.9: Statistic values from position signal, with and without internal scheduler

29

30

Chapter 4

Control System

In the last decades, robot manipulators received much attention with particular emphasis
on the control system. Point-to-point control enables simple tasks such as materials transfer
and spot welding, while continuous-path tracking enables more complex tasks such as arc
welding and spray painting. Although a multi-link manipulator is a highly non-linear and
coupled system, the presence of reduction gears of high ratios tends to linearise the system
dynamics and thus to decouple the joints. Therefore, a common approach to robot control
that is used in many industrial robots is single-axis PID control with each joint controlled
independently as a single-input/single-output (SISO) linear system. Coupling effects among
joints due to varying configurations during motion are treated as disturbance inputs. Typ-
ically, the control design is based on the knowledge of the physical system, its dynamical
model and the control specifications defined, for example, in terms of stability and trajectory
tracking. In line with this, the joint-space control problem is articulated in two sub-problems.
First, the manipulator inverse kinematics is solved to transform motion requirements from
the operational space into the joint space. Then a joint space control scheme is designed that
allows tracking of the reference inputs.

This chapter discusses the implementation of a computer controller servo loop for a single
axis of the robotic manipulator. As said before, the manipulator used on this project has five
rotational axes (four plus the claw rotation), but only the axis 4 (see figure 2.6) was used
in the analysis that will appear along the chapter. The lack of an accurate model of the
system under control was determinant to pursue an empirical approach aimed at studying
simple controllers and to evaluate their performance characteristics. The digital servo loop
contains the motor, its load, the power amplifier and the electronics and software necessary
to implement some type of closed-loop control. The block diagram of a single-axis servo loop
is shown in Figure 4.1.

Trajectory
Planning

Controller
Power

Amplifier
Motor

and Load
reference
signal

feedback signal

Figure 4.1: General controller model

The profile generator computes discrete position versus time set points over some interval

31

and sends them to the digital servo loop. This discrete data signal also carries implicit
information about the desired velocity and acceleration states of the motor’s shaft. The goal
of the digital controller is assure the position of the robot axis, driven by the motor’s shaft,
follows the prescribed function of time (trajectory used as reference).

Several experiments were carried out using different reference profiles and execution times.
However, in order to provide a fair comparison among them, it is assumed hereinafter that
the execution time is 6 seconds, the initial joint angle is -48o and the desired final joint angle
is -3o. After some initial tests, the sampling frequency of the controller was adjusted to 100
Hz and the PWM signal frequency to 2 kHz. The joint position is measured from a rotary
potentiometer which produces a voltage that is proportional to the shaft angle. Whenever
velocity feedback is needed, the velocity information is obtained by software by taking the
current position and subtracting it from the one obtained at the previous time (the time
between samples is fixed).

As stated before (Chapter 2), the reference used as input for the controller is obtained
by the position trajectory planning based on a 5th order polynomial function (see equations
2.13 and 2.14).

The experiments started with the simplest control model - with proportional control only
– followed by the effect of adding the integral term, resulting in a PI controller. Finally,
two different controller models referred in the literature [20] as the most used in robotic
mechanisms are described. The use of a linear fixed-gain PID (three-term controller) is
justified, primarily, by their simplicity and performance characteristics, where the “I” term
ensures robust steady-state tracking of step commands, while the “P” and “D” terms provide
stability and desirable transient behaviour. The cascaded P-PI controller uses an inner PI
loop that controls velocity and there is an additional outer loop consisting of the position
error multiplied by a gain (P term). Here, the tuning of the parameters of the PID controller
was made by trial-and-error to obtain a desired performance response. More specifically, the
performance evaluation is based on measures of the difference between the reference trajectory
and the actual angular positions available from the potentiometer, namely the final error, the
maximum error (maxError), root-mean-square deviation (RMSD) and the standard deviation
of error (STD error).

4.1 Proportional controller

Although this controller is the simplest one and rarely used it could be a good point to
start understanding the behaviour of the manipulator and also it is an initiation to the PID
controller that is going to be used after. The model used was the one in figure 4.2 but just
with proportional term in the controller. As you would expect, the proportional controller
doesn’t solve the control problem. After tuning the controller (pretty easy since you only
have on parameter) the result was bad as expected and shown in table 4.1 and in figure 4.3
and 4.4. The value of the proportional term obtained on the tuning was kp = 0.24.

Final error (DEG) maxError (DEG) RMSD (DEG) Error std (DEG)

5.03 15.65 7.00 3.76

Table 4.1: Table with statistic analyse from the proportional control

32

Path
Planning

PID
Joint
Motor

−

+qref

q

Figure 4.2: PID Contoller

You might have noticed in figure 4.4 that there is a huge delay to the controller to take
effect on the initial movement. This is due to the non-linear behaviour of the engine or more
precisely its deadzone. The size of this zone depends on the type of engine, actual position
and the direction of the movement, this effect is demonstrated in the section 4.5. In the case
shown in figure 4.4 you can see that the joint only starts to move when the PWM hits the
50%, in this case we were facing one of the worst situations, where the joint had to move
against the gravity and starting on a horizontal position. Facing this deadzone problem, we
tried one simple solution that consisted in giving an offset to the PWM, obliging it to react
sooner. The results in presented in table 4.2 and in figure 4.5 and 4.6. The proportional term
in this case was kp = 0.44. This simple solution decreased the RMSD to almost half of it,
improving in general the whole movement, and yet, slightly reduced the final error. The only
problem resulting from this offset is an increase of minimum PWM since the PWM lower
than the offset is not reachable any longer for the whole movement.

0 1 2 3 4 5 6
−100

0

−
 P

os
iti

on
 (

D
E

G
)

0 1 2 3 4 5 6
0

50

−
. P

W
M

 (
%

)

Time (s)

Proportional controller

Figure 4.3: Proportional Control response, Position x PWM

33

0 1 2 3 4 5 6
−70

−60

−50

−40

−30

−20

−10

0

Time (s)

P
os

iti
on

 (
D

E
G

)

Proportional controller

Real

Reference

Figure 4.4: Proportional Control response, Real Position x Reference

Final error (DEG) maxError (DEG) RMSD (DEG) Error std (DEG)

4.35 7.78 3.63 1.55

Table 4.2: Table with statistic analyse from the proportional control, with offset

34

0 1 2 3 4 5 6
−100

−50

0

−
 P

os
iti

on
 (

D
E

G
)

0 1 2 3 4 5 6
20

40

60

−
. P

W
M

 (
%

)

Time (s)

Proportional controller

Figure 4.5: Proportional Control response, with offset, Position x PWM

0 1 2 3 4 5 6
−70

−60

−50

−40

−30

−20

−10

0

Time (s)

P
os

iti
on

 (
D

E
G

)

Proportional controller

Real

Reference

Figure 4.6: Proportional Control response, with offset, Real Position x Reference

35

4.2 Proportional-Integral Controller

The PI controller, unlike the proportional one, can make a good work by itself, it’s not
the best controller ever developed but in case we can’t use derivative term it is a good choice
and in this work it is showed. The result signal of the controller, the PWM, was calculated as
in the equation 4.1, where kp = 0.44, ki = 1.5×10−3, the error is the result of the subtraction
between real position and its reference, and errorSum is the summation of all the error until
the moment. In this controller is also used and offset to deal with the engine deadzone,
however in this case the offset was added as an initial value of the errorSum, thus it wouldn’t
affect the whole movement.

PWM = kp × error + ki × errorSum (4.1)

According to table 4.3 and figures 4.7 and 4.8 the final error is pretty low (0.23o). However
there are some oscillations mainly at the beginning and the end of the movement, also the error
throughout the whole movement could be better even though there was a huge improvement
when compared to the proportional controller.

Final error (DEG) maxError (DEG) RMSD (DEG) Error std (DEG)

0.23 2.52 0.75 0.54

Table 4.3: Table with statistic analyse from the proportional-Integral control, with offset

0 1 2 3 4 5 6
−50

0

−
 P

os
iti

on
 (

D
E

G
)

0 1 2 3 4 5 6
0

50

−
. P

W
M

 (
%

)

Time (s)

PI controller

Figure 4.7: PI Controller response, Position x PWM

36

0 1 2 3 4 5 6
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Time (s)

P
os

iti
on

 (
D

E
G

)

PI controller

Real

Reference

Figure 4.8: PI Controller response, Real Position x Reference

4.3 PID Controller

The PID controller is the natural evolution of the previous ones, where we have a propor-
tional, an integral and a derivative component. Each one of these components have a different
effect on the system as it is represented in table 4.4. The tuning of the parameters was based
on the PI controller and followed the classic rules of how to tune the PID:

• Use KP to reduce the rise time.

• Use KI to eliminate the error.

• Use KD to reduce the overshoot and settling time.

The expression o the controller response was the one in the equation 4.2, where kp = 0.44,
ki = 4.5×10−3, kd = 1.2, error is the result of the subtraction between real position and its
reference, errorSum is the summation of all the error until the moment and lastError is the
error in the last iteration of the control task.

PWM = kp × error + ki × errorSum+ kd × (error − lastError) (4.2)

It was expected to have a good response with this controller, however the improvements
in comparison with the PI controller were behind our expectations as you can see in table 4.5
and figures 4.9 and 4.10. Overal, the RMSD decreased as expected but there was still some
oscillations, specially in the beginning of the movement ([0 2.5](s)) that we thought would be
cancelled. These oscillations may have some connection with the high non-linearity. In the
middle of the movement ([2.5 4.5](s)) we have a perfect response with a RMSD of 0.16. In

37

the end of the movement there is some oscillation but not that serious, with a RMSD equal
to 0.47. To have a better response than the PID controller one, we would need to use an
other control method, maybe an adaptive control.

Response Rise Time Overshoot Settling Time SS Error

KP Decrease Increase Not affected Decrease

KI Decrease Increase Increase Eliminate

KD Not affected Decrease Decrease Not affected

Table 4.4: Effect cause by each parameter of the PID

Time Final error (DEG) maxError (DEG) RMSD (DEG) Error std (DEG)

[0 6](s) 0.23 2.37 0.59 0.55

[0 2.5](s) - 2.37 0.83 0.73

[2.5 4.5](s) - 0.38 0.16 0.10

[4.5 6](s) 0.23 1.37 0.47 0.23

Table 4.5: Table with statistic analyse from the PID controller

0 1 2 3 4 5 6
−50

0

−
 P

os
iti

on
 (

D
E

G
)

0 1 2 3 4 5 6
0

50

−
. P

W
M

 (
%

)

Time (s)

PID controller

Figure 4.9: PID Controller response, Position x PWM

38

0 1 2 3 4 5 6
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Time (s)

P
os

iti
on

 (
D

E
G

)

PID controller

Real

Reference

Figure 4.10: PID Controller response, Real Position x Reference

4.4 Cascade controller

This controller is slightly more complex than the previous ones, it controls not only the
position but also the velocity (see figure 4.11). There is a proportional controller that controls
the position. The output of this proportional controller is used as an input for a second
controller that controls the velocity and generates the PWM signal.

The expression of the controller response was the one in the equation 4.3, where k1p = 0.5,
k2p = 3.5, k2i = 4.5×10−3, the error is the result of the subtraction between the real position
and its reference, error2Sum is the summation of all the error2 until the moment and error2 is
the error based on the velocity reference, output from the first controller and the real velocity
of the joint.

PWM = k2p × error2 + k2i × error2Sum, erro2 = q̇ref + k1p × error − q̇ (4.3)

Path
Planning

P1 PI2
Joint
Motor

−

+
+

−

+qref q̇
q̇ref

q̇q

Figure 4.11: P plus PI in cascade controller

The result of this controller was worse than we expected in terms of error elimination but
it had a good response in the beginning which tell us that has a better behaviour with the
non-linearity than the PID controller. As presented in table 4.6 and figures 4.12 and 4.13, the
error is bigger than in the PID however the big oscillations present on the the last one don’t

39

appear in this case. The reason why the error is that hight may be related to the interference
existent in the velocity, since it is calculated from the position instead of being measured.

After comparing this controller to the PID, we decided to use the PID because the error
is lower than here, being the error one of the most important parameters for this work.
Nevertheless, we think that with a better velocity signal or some changes in the controller
model this controller can be better than the PID.

Time Final error (DEG) maxError (DEG) RMSD (DEG) Error std (DEG)

[0 6](s) 1.15 1.98 1.15 0.39

[0 2.5](s) - 1.98 1.17 0.56

[2.5 4.5](s) - 1.53 1.19 0.59

[4.5 6](s) 1.15 1.53 1.05 0.46

Table 4.6: Table with statistic analyse from the cascade controller

0 1 2 3 4 5 6
−60

−40

−20

0

−
 P

os
iti

on
 (

D
E

G
)

0 1 2 3 4 5 6
0

20

40

60

−
. P

W
M

 (
%

)

Time (s)

Cascade controller

Figure 4.12: Cascade Controller response, Position x PWM

40

0 1 2 3 4 5 6
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Time (s)

P
os

iti
on

 (
D

E
G

)

Cascade controller

Real

Reference

Figure 4.13: Cascade Controller response, Real Position x Reference

4.5 Motor Linearity

After noticing the deadzone and the dependence on the position and direction of the joint
we tried to ”measure” the non-linearity of the engine hopping that it could be used improve
the control. To obtain the values of the figures 4.14 and 4.15 it was calculated the velocity,
always on the same position, for different values of PWM. The movement was initiated with
50% of PWM, just to to have a stable initiation of the movement, and then changed to the
respective PWM. Then, with this values, we made an interpolation in matlab to retrieve an
approximation for the remaining values of PWM.

In figure 4.14, representing the movement against the gravity or climbing, we can see that,
apart from the deadzone, there is not much non-linearity. In the opposite direction, in favour
of the gravity we can see that it has a hight non-linearity especially for low values of PWM.
Most important than that, comparing the two figures we can see that there is a big difference
between the two movement directions and therefore the influence of the weigh of the arm on
this motor.

After analysing this results we conclude that in order to have a better performance by the
control we should use a different technique, probably adaptive control.

41

0 10 20 30 40 50 60
0

2

4

6

8

10

12
Against the gravity

V
el

oc
ity

PWM (%)

Figure 4.14: Non-linearity of the engine, against the gravity

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12
In favour of the gravity

V
el

oc
ity

PWM (%)

Figure 4.15: Non-linearity of the engine, in favour of the gravity

42

Chapter 5

Network sniffer

In the beginning of this dissertation we developed an application that would be helpful
not only in this dissertation but also in related projects. This application’s objective was to
capture specific packets in the network, belonging to a specific stream, and show a chart, in
real-time, of the bandwidth used by that stream of packets. For instance, this would allow
us to see the transmission rate of a video streaming and its variations, in real-time. The
sniffer needed to filter the packets according to its protocol. The protocols in which we were
interested were: TCP, UDP and FTT (FTT-SE). This application should be able to show
multiple streams on the chart, corresponding each of those to a specific filter applied. This
software was developed in java and used the library libpcap [8] that was responsible for the
capturing of all the packets reaching the network interface.

5.1 Configuration

This application initiates with a configuration window that allow us to configure the filters
that we pretend as well as the view preferences, as shown in figure 5.1.

Figure 5.1: Configuration window

There we can enter the IP address of the source in the ipAddress field. In the port

field we should write the destination port of the packet. In the protocol select box we can
choose which protocol we want to capture, having the possibility to choose between the TCP,

43

UDP and FTT. If we have selected the FTT protocol, we should enter different parameters
corresponding to its protocol (messageID in the ipAddress field and select or not the sync
check box). In the bottom of the window we have some parameters related to the chart
visualization. This parameters were not implemented yet. The intTime is the time between
between the calculations of the transmission rate of the stream, and is used by default as one
second. updateTime is the interval time between the chart update, and is also being used as
one second. The MaxGraphValue is the maximum value that the chart should show.
All of the configuration done here is automatically saved to a file and restored in the next
session.

5.2 Implementation

As said before, this application was developed in java and used the library libpcap through
a java wrapper named jnetpcap. To draw the chart we used the java library jchart2d [7]. The
implementation of this software can be divided in two parts: the capturing and the visualiza-
tion. The capturing of the packets (figure 5.2(a)) is initiated by the arrival of a new packet.
An event is launched by the library upon the arrival of a new packet, and a handler in the
software takes care of the rest. After the arrival, the packet is compared with the stream
information that we gave on the initial configuration. If there is a match, the packet size is
added to the counter of the respective stream.

New Packet arrived

compare protocol
and addresses

has a match
count[index]
+=packetSize

end

Yes

No

(a)

begin

read counters
and reset them

calculate
transfer rate

insert
in the list

update chart

sleep

(b)

Figure 5.2: Application flowcharts

While the packets are being captured, there is a chart showing the transmission rate
for each stream in real-time. As shown in figure 5.2(b) the cycle is initiated by reading
the counters of the capture and reseting them right away. Then, with those values, it is
calculated the transmission rate of each stream and all the data is inserted in a circular
linked list. Finally we update the chart and sleep until the next iteration. The chart always

44

shows the lasts values for each stream within a window of time, as shown in figure 5.3, where
we can see screen capture of the application while capturing packets. Each of the streams are
represented by a chart line which describes its transmission rate at each instant of time. In
that figure each unity of the time axis represents one second, which is the default value for it.

Figure 5.3: Screen capture of the network sniffer working

5.3 Test

To confirm the effectiveness of this application, we made a simple test with three streams
which were being transmitted from one computer using the program packETH [9]. The three
streams used the three different protocols (TCP, UDP, FTT). The stream with the UDP
protocol was configured with a packet size of 512kB and with a delay between packets of
2.5ms, which results in a transmission rate of 204.8kB/s or 1638.4kb/s. In the TCP the
packet size was 1024kB and the delay 6ms, which makes a transmission rate of 170.67kB/s
or 1365.33kb/s. Finally, the FTT had a packet size of 1024kB and a delay of 4.5ms resulting
in a rate of 227.56kB/s or 1820.44kb/s. The configuration on the network sniffer was the one
shown in figure 5.4, where the UDP protocol is on the stream one, the TCP on the stream
two and the FTT on the stream four. Having the configuration done, we made two tests. The
first one, represented in figure 5.5, was done with the streams being transmitted in different
periods of time. The second one, as shown in figure 5.6, had periods in which the streams
were being transmitted at the same time. With this test we can see that the software is
working properly, showing the correct values.

Although there are a lot of improvements to be done, this program can already perform its
main objective without any problems. For the moment, the program only supports the three
protocols previously mentioned and only four streams can be displayed. However, thanks
to the extensibility concern in which the software was developed, it can be easily improved
allowing it to display a variable number of streams and filter more protocols.

45

Figure 5.4: Screen capture of the configuration for the test

Figure 5.5: Screen capture of the first test

Figure 5.6: Screen capture of the second test

46

Chapter 6

Conclusions and Future Work

This dissertation can be divided in two main parts: Signal acquisition and control. In the
signal acquisition we had some problems related to the interference present on the signal. To
face this problem we implemented filters and an internal scheduler aiming to synchronize the
device drivers tasks in order to remove some interference in the signal caused by the PWM
change to on. The filters had a good response, decreasing the std and the noise amplitude
from 18.26(mV) and 109(mV) to 0.49(mV) and 1(mV) respectively. In the control we found
two different solutions, the PID and the cascade controller, with two different behaviours.
The PID controller presented a low final error of 0.23oDeg and a low error in the middle of
the movement ([2.5 4.5](s)), having a RMSD of 0.16oDeg. However the beginning ([0 2.5](s))
of the movement was a little problematic, presenting some oscillations and having a RMSD
of 0.83oDeg. The cascade controller presented a good answer facing the non-linearity of the
motor and didn’t show any big oscillations in the beginning of the movement but the error in
general was worse than in the PID having a RMSD equal to 1.15oDeg.

The main objective was to develop basic structures that would allow us to test the FTT-
SE protocol and it was achieved. This structures are ready to implement the distributed
control, nevertheless the control can be improved. The distributed control and therefore the
test of the protocol was not possible to be done due to time issues. There are some changes
and improvements that can be done:

• Finish the remaining objectives of this dissertation (distributed control and test of the
FTT-SE protocol).

• Test different control techniques, such as, an adaptive control.

• Evaluate different filters to improve the quality of the position measurements.

• Investigate a new approach to measure/calculate the velocity in case it will be needed
for the control.

47

Bibliography

[1] Max186 datasheet.

[2] Common normal. http://en.wikipedia.org/wiki/Common_normal_(robotics),
2011.

[3] Edf scheduling. http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling,
2011.

[4] Fixed priority pre-emptive scheduling. http://en.wikipedia.org/wiki/Fixed_priority_pre-emptive_
2011.

[5] Ftt protocol. http://paginas.fe.up.pt/~ftt/index.html, 2011.

[6] Harts project. http://www.ieeta.pt/lse/hartes, 2011.

[7] jchart2d. http://jchart2d.sourceforge.net, 2011.

[8] libpcap. http://www.tcpdump.org/, 2011.

[9] packeth. http://packeth.sourceforge.net, 2011.

[10] Retmik. http://sweet.ua.pt/~lda/retmik/retmik.html, 2011.

[11] Rm scheduling. http://en.wikipedia.org/wiki/Rate-monotonic_scheduling, 2011.

[12] Round-robin scheduling. http://en.wikipedia.org/wiki/Round-robin_scheduling,
2011.

[13] Rtai. http://en.wikipedia.org/wiki/RTAI, 2011.

[14] Rtkpic18. http://sweet.ua.pt/~lda/str/revdet42-rtk.pdf, 2011.

[15] Rtlinux. http://en.wikipedia.org/wiki/RTLinux, 2011.

[16] Shark. http://shark.sssup.it/kernel.shtml, 2011.

[17] Giorgio C. Buttazzo. Hard RealTime Computing Systems: Predictable Scheduling Algo-

rithms and Applications, third edition. 2011.

[18] Reza N. Jazar. Theory of Applied Robotics. 2010.

[19] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 1973.

48

http://en.wikipedia.org/wiki/Common_normal_(robotics)
http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling
http://en.wikipedia.org/wiki/Fixed_priority_pre-emptive_scheduling
http://paginas.fe.up.pt/~ftt/index.html
http://www.ieeta.pt/lse/hartes
http://jchart2d.sourceforge.net
http://www.tcpdump.org/
http://packeth.sourceforge.net
http://sweet.ua.pt/~lda/retmik/retmik.html
http://en.wikipedia.org/wiki/Rate-monotonic_scheduling
http://en.wikipedia.org/wiki/Round-robin_scheduling
http://en.wikipedia.org/wiki/RTAI
http://sweet.ua.pt/~lda/str/revdet42-rtk.pdf
http://en.wikipedia.org/wiki/RTLinux
http://shark.sssup.it/kernel.shtml

[20] V. Santibáñez R. Kelly and A. Loŕıa. Control of Robot Manipulators in Joint Space.
2005.

49

Appendix A

6.3 Circuit

50

Apendix B

6.5 Acronyms

ADC Analog-to-digital converter
DAQ Data acquisition board
FIR Finite impulse response
MSE Mean squared error
PWM Pulse-width modulation
RSMD Root-mean-square deviation
SPI Serial Peripheral Interface Bus
STD Standard deviation

51

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Document Structure

	Fundamental concepts
	Real-time systems
	Types of real-time tasks concerning time constraints
	Types of real-time tasks concerning its periodicity
	Basic concepts
	Scheduling algorithms
	RTLinux

	Kinematics
	Forward kinematics
	Inverse kinematics

	Trajectory planning
	Polynomial trajectory
	Point-to-point motion
	Continuous motion

	System architecture
	Hardware
	Software
	Device Drivers
	Filters
	Internal scheduler
	Trajectory planning
	Control systems

	Experimental assessment
	Time measurements
	Filters
	Internal Scheduler

	Control System
	Proportional controller
	Proportional-Integral Controller
	PID Controller
	Cascade controller
	Motor Linearity

	Network sniffer
	Configuration
	Implementation
	Test

	Conclusions and Future Work
	Bibliography
	Appendix A
	Circuit

	Apendix B
	Acronyms

