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Palavras-chave

Resumo

Algoritmos, arvore, didmetro, grafo, matriz duplamente estocastica,
nimero de arestas, nimero de faces, nimero de vértices, politopo de

Birkhoff aciclico, politopo de Birkhoff tridiagonal.

Neste trabalho estabelece-se uma interpretacdo geométrica, em termos
da teoria dos grafos, para vértices, arestas e faces de uma qualquer
dimens3o do politopo de Birkhoff aciclico, X,, = Q,(T"), onde T' é uma
arvore com n vértices. Generaliza-se o resultado obtido por G. Dahl,
[18], para o célculo do didmetro do grafo G(Qf), onde Qf é o politopo
das matrizes tridiagonais duplamente estocdsticas. Adicionalmente,

para ¢ = 0, 1,2, 3 sdo obtidas férmulas explicitas para a contagem do

t
n’

numero de g—faces do politopo de Birkhoff tridiagonal, 2!, e é feito
o estudo da natureza geométrica dessas mesmas faces. S3o, também,
apresentados algoritmos para efectuar contagens do niimero de faces de

dimensao inferior a de uma dada face do politopo de Birkhoff aciclico.






Keywords

Abstract

Acyclic Birkhoff polytope, algorithms, diameter, doubly stochastic
matrix, graph, number of edges, number of faces, number of vertices,

tree, tridiagonal Birkhoff polytope.

In this work using graph theory, we give a geometrical interpretation
of vertices, edges, and faces of any dimension of the acyclic Birkhoff
polytope, T, = Q,(T'), were T' is a tree with n vertices. We genera-
lize a proposition from G. Dahl, [18], that allows the calculation of the
diameter of the graph G(€2), where Q! denotes the polytope of tridi-
agonal doubly stochastic matrices. Furthermore, for ¢ = 0,1, 2,3 we
obtain some explicit formulae for counting the number of ¢—faces of
the tridiagonal Birkhoff polytope, Q! , and the study of its geometrical
nature is done. For a given p-face of Q! we determine the number of
faces of lower dimension that are contained in it and we discuss its na-
ture. Some algorithms allowing an exhaustive account on the number

of edges and faces of the acyclic Birkhoff polytope are presented.
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Chapter 1

Introduction

1.1 Background and motivation

General polyhedra are fundamental mathematical objects. They are of
great interest in a vast range of fields of pure and applied mathematics, such
as probability theory, the optimal assignment problem, linear and integer
optimization, just to name few. Though, it is still not known some basic
properties of these objects. Counting the number of vertices of a general
polyhedra is a major challenging open problem in polyhedral combinatorics.
In what follows we adopt the geometric terminology of Griinbaum, [20].

A polyhedron can be considered as the intersection of a finite family of
closed halfspaces of R". As a halfspace is the solution of a linear inequality
(i.e., an inequality of the form a’x < 3, where a € R" and 8 € R), a
polyhedron is the solution of a linear system Ax < b, where A € R™*™ and
b € R™. Furthermore, any polyhedron in R™ is a closed convex set, [17].
Here, we are interested in a particular family of polyhedra, those who are
bounded: namely the polytopes.

A polytope P C R™ is the convex hull of a finite number of points. Thus,

1



2 1. Introduction

for a fixed m € N and zy,...,2z, € R",

i=1

Birkhoff studied this issue using matrices, namely doubly stochastic ma-
trices, i.e., square matrices with real nonnegative entries and all rows and
columns sums equal to one, [1, pg 59], [2]. This denomination is associa-
ted to probability distributions and it is amazing the diversity of branches
of mathematics in which doubly stochastic matrices arise (geometry, com-
binatorics, optimization theory, graph theory and statistics). This class of
matrices has been studied quite extensively, especially in its relation with the
van der Waerden ““conjecture” for the permanent (cf. [6]).

The set of n x n doubly stochastic matrices, denoted by §2,,, viewed as a
subset of R™™ is a closed, bounded convex set. Therefore, €2, is a polytope,
the so-called Birkhoff polytope, whose dimension is (n — 1)2. In fact, the
dimension of the linear space of n x n real matrices is n2. There are 2n linear
conditions on the row sums and the column sums of n x n doubly stochastic
matrices. Since the sum of all rows sums in these matrices is equal to the sum
of all columns sums, only 2n — 1 of those linear conditions are independent
at most. Hence, the dimension of Q, is equal to n?> — (2n — 1) < (n — 1),
21, pg 70]. The other inequality follows easily.

We present here an example, for the case n = 3 we obtain

I—-p—q p q
Q3 = r l—r—s s :0<p,q,r,s,t,u<1and
t U 1—t—u

ptgq=r+t,r+s=ptutt+u=q+sp+q<lir+s<1lt+u<l}
and the dimension of €23 is 4. Notice that we have 6 conditions, but only 5

of them are independent.
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A point = of a convex set S is an extreme point of S if x does not belong
to the relative interior of any segment contained in S; the extreme points of

a polytope are called vertices, [20].

An n x n permutation matrix is a point of €2,,, moreover, it is an extreme
point of the referred polytope, [1, 4]. According to the Birkhoff-von Neumann
theorem, [2, 4], any doubly stochastic matrix can be written as a convex
combination of finitely many permutation matrices, and the extreme points,
or vertices, of the Birkhoff polytope are exactly the permutation matrices,
[1, 4]. In fact, Q, is the convex hull of all permutation matrices of order n
(cf.[9]). This polytope is also known as transportation polytope or polytope of
doubly stochastic matrices. Observe that, from previous example, if p = g =
r=s=t=uwu=0, we have I3, the identity matrix of order 3; when either
s=u=1orgq=t=1or p=r =1 and the remaining parameters are zero,
we obtain one of the 3 x 3 transposition matrices; if either t = p =5 =1
or r = u = ¢ = 1 and the others parameters are zero, then we obtain the

remaining permutation matrices of order 3.

R. Brualdi and P. Gibson devoted their attention to the study of affine and
combinatorial properties of €2,, in several papers where they studied the con-
vex polytope of doubly stochastic matrices in association with (0, 1)—matrices,

see, for instance, [5, 6, 7, 8].

A face F of a polyhedron P is either () or P or there exists a hyperplane
H = {z € R": "z = a} such that F = H NP. Therefore, a face F of P
is a set of the form F = {z € P : ¢’z = a}, where ¢’z < «, ( ¢ € R" and
a € R), for all z € P, [17]. The empty set and P are the improper faces of
P, while all other faces are called proper faces. A vertex of a polyhedron P is
a minimal proper face of P (i.e., a proper face that does not strictly contain

any other proper face of P). A maximal proper face of P (i.e., a proper face
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of P that is not strictly contained in any proper face of P) is called a facet
of P.

A face F of a polytope P is itself a polytope, and the faces of F are also
faces of P.

If P has dimension n, each face of dimension n — 2, denoted by (n — 2)-
face, is contained in precisely two facets (faces of dimension n—1) of P and it
is equal to their intersection. Furthermore, each p-face, —1 <p <k <n-—1,
of P is the intersection of a family of k-faces of P containing it. Note that
when p = —1, the correspondent face is (). This family contains at least
k — p+ 1 members, [20].

Now, we dedicate our attention to the polytope €, that is the set of all

n x n real matrices X = [z;;] that satisfy the constraints

T4 Z 0, Z,j = 1, cee, N, (111)

k=1 k=1

We can find the previous concept and next assertions in [6]. The faces
of €, can be obtained by replacing some of the inequalities of (1.1.1) by
equalities. Note that the constraints of (1.1.1) are not independent (because

of the constraints in (1.1.2)). Hence, considering

KC{(i,j):i,j=1,...,n}

a face of ), is determined by replacing (1.1.1) by

zij >0, (i,j) € K
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If A = [a;] is an n x n (0,1)—matrix, where a;; = 1 if and only if
(i,7) € K, the face F consists of all nxn doubly stochastic matrices X = [z;]
such that x;; < a;5, 4,7 = 1,...,n. This face is denoted by F4. The n x n
permutation matrices P such that P < A are precisely the vertices of F 4. If
A" is an nxn (0,1)—matrix such that for each permutation matrix P, P < A
if and only if P < A’, then F4 = Fa.. Therefore, if there exist r,s =1,...,n
such that a,; = 1 for which there is no permutation matrix P = [p;;], with
prs = Land P < A, then F4 = Fa, where A’ is obtained from A by replacing
ays by 0. Therefore, to determine the nonempty faces of €2, it is only need
to consider those n x n (0,1)—matrices A = [a;;] such that a,; = 1 implies
that there exists a permutation matrix P = [p;;] with p,s = 1 and P < A.
These matrices are said to have total support, [23].

Another important concept is the concept of fully indecomposable matriz.
In fact, if A is an n X n nonnegative matrix, with n > 1, A is fully inde-
composable provided there do not exist permutation matrices P and () such

that
A O

PAQ = : (1.1.3)
Az Ay

where A; and A, are square matrices. If A is an 1 x 1 matrix, A is fully inde-
composable if it is not a zero matrix. Assuming that A is doubly stochastic
and (1.1.3) holds, the property that all row and column sums of A equal 1
implies A3 = O. By iterating this argument on A; and A, it can be said, [4],
that there are permutation matrices P’ and @)’ such that P’AQ’ is a direct
sum of fully indecomposable matrices. Attending to [22, Theorem 1], pre-
vious conclusions can be extended to matrices with the pattern of a doubly
stochastic matrix. We mean by the pattern or support of a matrix, the set

of the positions of the nonzero entries of the matrix.

From [6, 22|, a (0,1)—matrix has total support if and only if there ex-
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ist permutation matrices P’ and )’ such that matrix P’AQ" is a direct
sum of fully indecomposable matrices. Therefore, from previous assertions
the nonempty faces of €2,, are in one-to-one correspondence with the n x n
(0, 1)—matrices which can be permuted to direct sums of fully indecompos-
able matrices, called fully indecomposable components. A fully indecompos-
able component of order 1 is a trivial component.

Furthermore, if A is an n x n (0, 1)—matrix with total support then we
say that the matrix and the face F4 are in one-to-one correspondence.

Moreover, it is established that the pattern of doubly stochastic matrices
of order n are precisely the (0,1)—matrices of order n with total support.

This result can be found in [4, Theorem 9.2.1], and it is presented below.

Theorem 1.1.1. [}/ Let n be a positive integer. Then the pattern of doubly
stochastic matrices of order n are precisely the (0,1)—matrices of order n
with total support. There is a bijection between the nmonempty faces of the
polytope Q,, of doubly stochastic matrices and the (0,1)—matrices A of order
n with total support. This bijection is given by

A+— Fa={X€Q,: X < A};

moreover, diim Fa = 04—2n+k where k is the number of fully indecomposable

components of A and o4 equals the numbers of 1’s in A.

If A has total support it is a Boolean sum of permutation matrices of
order n, [4]. Note that the Boolean arithmetic is based on Boolean operations
“and” (A) and “or” (V) over the set {0, 1}, in particular the Boolean sum is
0 if both summands are 0, otherwise is equal to 1.

The matrix corresponding to €2, is the n X n matrix whose entries are all

equal to 1, [4, pg 385]. In fact, €, is the convex hull of the n! permutation
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matrices of order n, and it can be represented by the Boolean sum of all
these permutation matrices.

From the results already mentioned and cited in [6], the subset of €,
whose elements are the n x n tridiagonal doubly stochastic matrices is a face
of €,,. Moreover, as a face of a polytope is itself a polytope, [20], then this
set is a polytope, called tridiagonal Birkhoff polytope and it is denoted by
.

O ={A€Q, : Ais tridiagonal}.

In [18], G. Dahl discussed and studied the facial structure of this polytope
and stated that Qf is a polytope in R"*" of dimension n — 1. As the vertices
of a face of a polytope are also vertices of the polytope, the vertices of Qf are
the n x n tridiagonal permutation matrices. The author established that QF
has f,41 vertices, where f,, 1 denotes the (n+1)-th Fibonacci number. Recall
that the n-th Fibonacci number is determined by the well-known recurrence

relation
fn+2:fn+fn+1v (1'1'4)

with initial conditions f; = 1 and f, = 1. Furthermore, the edges of QF were

also described. The author established the next theorem, where it is used
0 1

10

the notation J = [1] and K =

Theorem 1.1.2. [18] (i) QL is a polytope in R™*™ of dimension n — 1 with
fni1 vertices (i) Its vertex set consists of all tridiagonal permutation matri-

ces; these are matrices of order n that can be written as a direct sum

where each matriz A;(i <t), called a block, equals either J or K.
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(iii) Consider a vertex A as in (1.1.5). Then each adjacent vertex of A
is obtained from A by either

(a) interchanging a sequence of consecutive blocks J, K, K, ..., K (witht >
1 Ks) and the sequence K, K, ..., K, J (witht Ks), or

(b) by interchanging a sequence of consecutive blocks K, K, ..., K (with
t >1 Ks) and the sequence J, K, K,..., K, J (witht —1 Ks).

The graph G(€) denotes the graph of Qf ( or skeleton), that is, the
graph whose vertices and edges are the vertices and edges of the polytope
QL. Dahl determine the diameter of G(£2f), which is defined as the maximum
of d(u,v) taken over all pairs u,v of vertices, where d(u,v) is the smallest
number of edges in a path between u and v in G(Q2f). The result is the next

theorem:
Theorem 1.1.3. [18] The diameter of G(,) equals | %] .

Here, |x] represents the largest integer less than or equal to x.

The particular interest of previous theorem, as well of the research in-
volving the study of the diameter of the graph of a polytope, is related to
the fact that the diameter gives a bound on the maximum number of ite-
rations needed for solving, using the simplex method, a linear program on a

polytope, [4, pg 374].

Recently, C. M. da Fonseca and E. Marques de Sa (cf. [16]), established a
closer connection between vertex counting in Qf, and Fibonacci numbers. In
particular, the main results on alternating parity sequences - strictly increa-
sing sequences of integers, with a finite numbers of entries, such that any two

adjacent entries have opposite parities - are applied to determine the number
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of vertices of an arbitrarily given face of Q. An expression for the number
of edges of Qf is also provided. The next results can be found in [16].

As previously said €2, is a face of €, and the faces of Qf, are the faces of
the latter which are contained in the former. Moreover, the faces of Q) are
in one-to-one correspondence with n x n tridiagonal (0, 1)—matrices A that
have total support (this means that A is a boolean sum of n x n tridiagonal
permutation matrices), [6]. In their work the authors deal with matrices of
this kind. The face of !, corresponding to an n x n tridiagonal (0, 1)—matrix
with total support A is Fy = {X € Q) : a;; = 0 = xz;; = 0}. It was also
established that A is a direct sum of square blocks, A=A, @A, ®--- D A,

where each A; (i =1,...

e Type 1 A; =[1], an 1 X 1 matrix;

e Type 2 A; = K, where K is the matrix

e Type 3 A; is not of the previous two types, and all super-diagonal

entries of A; are 1’s.

If A, is of Type 3 then the first and the last diagonal entries are 1, otherwise

A would not have total support.

An example of a 4 x 4 matrix of Type 3 is displayed

It is also defined an S-matriz, as a symmetric tridiagonal (0, 1)—matrix,

different from [1] and K, with all super-diagonal entries equal to one, and

o O = =

1
0
1
0

= = = O

= = O O

0
1

1
0

,p) is one of the following types:

Y
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with first and last diagonal entries equal to one. The blocks A; of Type 3 are
called S-blocks of A.

Given an S-matrix B, of order m, b; is an wnner entry of B, if by; = 1
and 1 < i < m. In previous example, the entry bsz is an inner entry. It was
also established that only the multi-set of S-matrices of A is important in

the study of a single face F4 ( see [16]) and they prove the following:

Lemma 1.1.4. [16] Any S-matriz has total support and is fully indecompo-

sable.

According to [6] and [4, Theorem 9.2.1] previously presented, if B is an
m x m fully indecomposable (0, 1)—matrix with total support, dim Fp = op
- 2m + 1, where opg is the number of 1’s in B. If B is an S-matrix, C. M.
da Fonseca and E. Marques de S& obtained dim Fp=1 4 w, where w is the

number of inner entries of B. Therefore, they stated:

Lemma 1.1.5. [16] dim Fa= s + ta, where s, is the number of S—blocks

of A, and v is the sum of the numbers of inner entries in the S—blocks of

A.

All these results motivated us to the formulation of some problems des-
cribed in Section 1.3. Before that section we introduce some notation and
basic notions underlying the problems formulated during the development of

this work.

1.2 Terminology and further definitions

In this section we recall further more-or-less standard definitions on graph
theory, which will be used in the sequel. Here, we adopt the same concepts,

definitions and terminology used in [3, 19].
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A graph G is a pair (V(G), E(G)), where V(@) is a nonempty finite set
of vertices (or nodes), and E(G) is a set of unordered pairs of vertices called
edges. The number of vertices and the number of edges of G are denoted by
|[V(G)| and |E(G)|, respectively. To |V (G)| we also call order of G. An edge
containing the vertices ¢ and j is represented by e = ij and we say that ¢
and j are adjacent, or that j is a neighbor of 7, and this is denoted by 7 ~ j.
We also say that e is incident on both ¢ and j. The vertices ¢ and j are the

endpoints of the edge 7.

The neighborhood of a vertex v in G, denoted by Ng(v) ( or simply N(v))
is the set of the neighbors of v in G. If § C V(G), N(S) denotes the vertices
in V(G)\S with a neighbor in S.

The degree of a vertex v in G, denoted by dg(v) (or simply d(v)) is the

number of edges incident in it, and we have d(v) = |N(v)|.

A graph G whose vertex set can be partitioned into two subsets X and
Y such that each edge of G has a vertex on X and the other vertex in Y, is
said a bipartite graph, and is denoted by G = G[X,Y].

A graph G whose edges are directed is a directed graph, also know as a
digraph, and its edges are called arcs. An arc of a digraph is an ordered pair

of distinct vertices.

The adjacency matriz of a graph G with |V (G)| = n is the n x n matrix
A = [a;j] whose entries a;; are equal to 1 if the vertices i ~ j, otherwise are

0.

Let A = [a;;] be an m X n matrix. A way to represent the structure of
the nonzero entries of A is by a bipartite graph. Let U = {uy,us, ..., un}
and W = {wy, ws,...,w,}, such that |U| = m, [W| =nand UNW = 0,
the bipartite graph associated with A is the graph, BG(A), with vertex set
V = U UW whose edges are all the pairs w;w; for which a;; # 0.
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We represent by diag(ay, ..., a,) the n x n diagonal matrix whose entry
(i,1) is a;.

If the matrix A = [a;;] is of order n we may represent its nonzero structure
by a digraph, DG(A), whose vertex set is a set V' = {vy,...,v,}. There is an
arc (v;,v;) from v; to v; if and only if a;; # 0. Note that a nonzero diagonal
entry of A determines an arc from a vertex to itself. If the matrix A is also
symmetric, we may represent its nonzero structure by the graph G(A). The
vertex set of G(A) is a set V = {vy,...,v,}, and there is an edge joining v;
and v; if and only if a;; # 0, [4].

In a graph, to each edge e (or, vertex v) we can associate a numerical
positive label w(e) ( or, w(v)) called the weight of the edge e (or, the vertex
v). Similarly to the above, we can associate to a weighted graph a matrix
whose support corresponds to the weights of edges and/or vertices of the
graph.

A subgraph of a graph G is a graph G’ such that V(G') C V(G) and
E(G") C E(G). The subgraph of G induced by V' # 0, denoted by G[V'], is
the subgraph of G whose vertex set is V/ C V(G) and whose edge set is the
set of edges of G that have both endpoints in V".

Let S be a subset of E(G). We denote the graph with vertex set V(G)
and edge set E(G)\S by G\S.

A spanning subgraph of G is a subgraph of G whose vertex set is V(G).
Let G be a graph and G’ a subgraph of G. The spanning subgraph of G,
denoted by G\G', is the graph such that V(G\G') = V(G) and E(G\G') =
E(G)\E(G).

If G is a graph and I C V(G), G\I denotes the subgraph of G obtained
from G deleting all the edges incident on the elements of I and whose vertex

set is V(G\I) = V(G)\I.
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Given two graphs Gy = (V(Gy), E(G1)) and Gy = (V(G3), E(Gs)), the
union of G7 and G5, here denoted by G U Gy, is the graph G = G; UGy =
(V(G1)UV(Gs), E(G1)U E(G5)). If V(G1) NV (G3) = B the union is said to
be a disjoint union and it is denoted by G;UG5

Given two graphs G; = (V(Gy), E(G1)) and Gy = (V(Gs), E(Gs2)), the
intersection of G and (g, denoted by G1 N G, is the graph G = G1 NGy =
(V(GY)NV(Gy), E(G1)NE(Gy)), if V(G1)NV (G3) # 0, otherwise G1NGy = .

A path (of length k) in G is a sequence (vg, vy, . . ., vx) of distinct vertices
of G such that v;_1v; € E(G), for i = 1,..., k. A path from vy to v in G
is denoted by (vg, vx)-path, where the vertex vy is the origin, the vertex vy
is the terminus and the vertices vy, ...,vx_1 are said internal vertices of the
path; the edge vgv; is called initial edge. The vertices vy and v, are said to
be joined by the path. The number of edges is the length of the path. A
path with n vertices is also denoted by P,.

A graph is connected if any two of its vertices are joined by a path,
otherwise the graph is disconnected.

The distance of two vertices u and v of a connected graph G, d(u,v) is
the smallest number of edges in a path between v and v in G.

The diameter of a connected graph G, denoted by diam(G) is the maxi-
mum of d(u,v) taken over all pairs u,v of vertices in GG. For a disconnected
graph G, the diameter of GG is defined to be the diameter of its largest con-
nected component.

A cycle is a connected graph whose vertices are all of degree two. An
acyclic graph is a graph without cycles.

A tree is a connected acyclic graph. Moreover, a tree is a minimal con-

nected graph, in fact deleting any edge it becomes disconnected. Let T,, (or

simply T') be a tree with n vertices. We have, |E(T)| = |[V(T)] — 1. In a
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tree any two vertices are connected by an unique path. The vertices of T' of
degree one are called endpoints.

A star with n vertices, S,, is a tree in which there is a vertex of degree
greater than one, called central vertex, and n — 1 vertices of degree one.

A generalized star (or a starlike tree) is a tree T having at most one vertex
of degree greater than two. This vertex is called the central vertex. Note
that this definition also includes the particular case of stars. A branch of a
generalized star is a path with origin in the central vertex and terminus in
an endpoint of the generalized star. A generalized star with k£ > 1 branches
of lengths ¢, ..., is denoted by S, . 4, -

A matching on a graph G is a set of edges of G such that no two of them
are incident on the same vertex. The largest possible matching on a graph is
called a mazimum matching. The number of edges of a maximum matching
on a graph G is called matching number of G. A matching that covers every

vertex of GG is a perfect matching of G.

1.3 An overview

In this subsection we present a summary of what is done in the chapters
of this thesis. Chapter 2 starts with the definition of the acyclic Birkhoff
polytope, denoted by Q,(T"). Then, we give an interpretation of vertices and
edges as well as the faces of any dimension of Q,,(7") in terms of graph theory,
and we establish a more general result than the one presented in first section
— Theorem 1.1.3, due to G. Dahl relating to the diameter of the tridiagonal
Birkhoff polytope — for the diameter of the acyclic Birkhoff polytope. As the
text develops some illustrative examples are provided. The results of this

chapter can be found in [12].
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Counting basic objects as the vertices of polyhedra is a demanding pro-
blem in general, even for the most basic structured polytopes. In Chapter 3
we determine the number of g-faces, for some ¢ > 1, of Q! the tridiagonal
Birkhoff polytope. We present some explicit formulae for counting the num-
ber of edges, the number of faces and the number of cells of this polytope.
The particular cases of Q}, Q} and Qf are presented, [14].

The summary of Chapter 4 is the following: we start introducing an
illustrative example for counting the edges of the polytope associated to a
particular tree. Led by this example, we present an algorithm for counting,
in the general case, the number of edges of the acyclic Birkhoff polytope. We
also give an alternative algorithm to count the number of edges of an acyclic
Birkhoff polytope. In Sections 4 and 5 we consider the problem of counting
the faces of the acyclic Birkhoff polytope. We also present two algorithms
and, in addition, we present some examples. These algorithms allow us to
find the number of faces of any acyclic Birkhoff polytope. For stars and
starlike trees we present some explicit formulae. Finally, in last sections,
we give explicit expressions allowing us to count the number of faces of any
dimension of the acyclic Birkhoff polytope in the particular case of a star,
and the number of facets of the acyclic Birkhoff polytope. For a general tree
it seems harder to present concise formulae. The results of this chapter can
be found in [13].

Finally, in Chapter 5, we study the number of vertices of a p-face of QF,
presenting some explicit formulae for particular cases and, an algorithm for
the general case. The number of faces of lower dimension that are contained
in a face of Q2 is determined and its nature is discussed. In fact, a 2-face
of Qf is a triangle or a rectangle and its cells can only be tetrahedrons,

pentahedrons or hexahedrons. This issue is studied in detail, [15].






Chapter 2

The diameter of the acyclic

Birkhoff polytope

One of the goals of this chapter is to introduce a new polytope, the
acyclic Birkhoff polytope €Q,(T'), and extend the results established by G.
Dahl related with the tridiagonal Birkhoff polytope, Q! namely the counting
of vertices, the study of its adjacency and the determination of the diameter
of its skeleton. These results can be found in [18] and were presented in the

previous chapter.

We characterize the acyclic Birkhoff polytope in a matricial way. Also,
using as motivation the results presented in [16], already presented in Chap-
ter 1, in a similar way, we establish a result that allow us to determine the
dimension of a face of §2,,(7"). Note that in [16] an expression for the dimen-
sion of any face of Q! is given. Later, we present a way to count the number
of vertices of the acyclic Birkhoff polytope and we determine the diameter of

its skeleton. The results presented in this chapter can be found in [12].

17
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2.1 Acyclic Birkhoff polytope

Firstly, in this section, we introduce the concept of acyclic Birkhoff poly-

tope:

Definition 2.1.1. The acyclic Birkhoff polytope, Q,(T'), is the set of nonne-
gative doubly stochastic matrices whose support correspond to (some subset

of) the edges and vertices of a fixed tree T with n vertices.

In fact, ©,(T) is the set of real square matrices [a;;], with nonnegative
entries and all rows and columns sums equal to one, such that a;; = 0
provided 4j is not an edge, for ¢ # 7, in the given tree T

Since the matrices are doubly stochastic, the diagonal entries are of the
form a; =1 — Z a;j, as we prove in next proposition. Moreover, if a;; # 0
and a;, # 0, th]eNI; a; = 0. To this matrices we call acyclic matrices. Note

that doubly stochastic tridiagonal matrices are a particular case of acyclic

matrices.

Proposition 2.1.2. Given a tree T with n vertices, each matriz A = [a;;]
in Qu(T) is symmetric and
a; =1— Z ij
jri

fori=1,...,n.

Proof. From definition of doubly stochastic matrix if follows: a;; = 1—2 @;j.

j=1
n

As A is nonnegative Z a;j > Z ;.

j=1 g~
n
As a;; = 0 if i o j, it results g a;; < g ;-
j=1 I~

Therefore, a;; =1 — g jj.
ji

The symmetry follows directly from the fact that A € Q, (7). O
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Recalling the structure of Q,(7") and the way to obtain a face of the
Birkhoff polytope explained in Chapter 1 and cited in [6], we can say that,
as Q' the acyclic Birkhoff polytope, Q,(T), is a face of €2,,. In the present
case, Q,(T), the entries equal to zero, resulting from (1.1.1), correspond to
the nonexistence of an edge in T. Noting that the vertices of €, are the
n X n permutation matrices, the vertices of €2, (7)) are the n x n permutation
matrices whose support correspond to a spanning subgraph of T

Consider E(T') = {ejy,eq,...,e,-1} the set of edges of T" ordered lexico-
graphically. For n > 3, define the polytope
T = 2= (Tepy 1 Te, ;) ER"™ 1 >0, and Z T, <li=1,....n

eJEEi
where each E;, i = 1,...,n, is the set of edges of T" incident on the vertex

i. From now on, for simplicity, the vector x € R"™! with components Te,,
that is, © = (Te,, Tey, - - -, Te, ), Will be denoted by z = (z,,2,,...,x,_,).
Moreover, we identify the vertices with their labels. Now we prove that T™
and Q,(7T") are affinely isomorphic.

In fact, for each vector x € R"! define the associated n x n matrix
A, = [b;j] such that,

bi=1— Y x,i=1....n
2 €E;

and if W, ={j:j~i,j>i},bi10 =Ty where L € Ly ={j—i: je€W;}
and ¢ = 1,...,n. Moreover, for each ¢ the entry b;1¢; = ;1. On the
other hand, for each k € (N(i)\W;) = W/, we have b;;_¢ = x;_p, where
veli={i—k: keW!}

Defined in this way, A, is symmetric and the entries above its principal
diagonal, where for each £k = 1,...,n — 1, x; lies on the k£ + 1 column, are

the components of z. If x € T™, then A, is doubly stochastic. Therefore
A, € Q,(T).
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Now, we are going to prove that every matrix in €, (7") has the form A,

for some z € T™.

Proposition 2.1.3. The following sets are equal
{A, :x €T} =Q,(T).

Proof. The inclusion {A, : x € T"} C Q,(T) follows immediately. For the
opposite inclusion, consider a matrix A in €2, (7), for a given tree T with n
vertices. Therefore, A has the properties defined in Proposition 2.1.2.
Consider the entries above the principal diagonal and define x;,, 1 =
ajipe where l € Ly ={j—i: jeW},i=1,....n—land W, ={j:j ~
ii> b,
Let © = (21,22, ...,2,_1), we will now verify that A = A,:

As A is doubly stochastic ay;; = 1 — Z a1p-
p~1
As Ty = A1 041, where ¢ € L1 = {j —1: ] € Wl}, a1 = 1-— Zl’g, that is

leLy
equal to the entry (1,1) of A,.

For a given ¢ > 1, we have a; 1y = j14—1, where { € L; = {j —i: j € W;},

and, for each k € W/, a; = Qi (i — k) = Ti-er
——
(/
Therefore, as A is doubly stochastic

Qi = 1= Qigpe, = Qi = = ity — Gii—eg = 70— Qigg—er
= 1- E Tite—1 — E Ti—p
teL; vel)
and this entry is equal to the entry (i,7) of A,, as desired. ]

Here, to a bullet circle @ and to an open circle, o, we call, respectively,
closed vertex and open vertex of G. We represent a standard graph with

open vertices.



2.1 Acyclic Birkhoff polytope 21

FExample 2.1.4. For the tree with five vertices, T,

Oy

e
01 — 02 — 03
AN

O35

the polytope T7 is the following set
T° = {x: (1, e, T3, T4) ER*: 2>0,2; <1, 214+x9 <1, and 79 + 235+ 74 < 1}.

Bearing in mind Proposition 2.1.2, and that T° and Q5(T) are affinely
isomorphic, we may associate for each vector x € T° the following acyclic

matrix

[(1-2, 0 o 0 |
1 1 =21 — 29 T2 0 0
0 Ty 1—29— 23— 24 T3 T4
0 0 Z3 1 — a3 0

I 0 0 Ty 0 1—x4_

In particular, considering a path P with n vertices, each element of €, (P)

is a tridiagonal matrix and we may state:

Proposition 2.1.5. [18] Given a path P with n vertices, each matriz of

Q,(P) is symmetric, tridiagonal with the form

1— T T
T 1— 1 — Ty XTo
o)
Tpn—2
Tn—2 11— Tp—2 — Tp—1 Tn—1
Tp—1 1— Tp—1
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In the same way, for a star S with n vertices we have:

Proposition 2.1.6. Given a star S with n vertices, each matriz of €0,(5) is

of the form
1 —x— — Tp-1 Ty Tp—1
I 1-— X1 0
Tp_1 0 1 -2y

Notice that €, (P) and ,(S) are affinely isomorphic, respectively, to
Pr={zeR"':2>0andx; +z;1 <1, fori=1,...,n—2},
(cf. [18]), and
S”:{xER"_l cox>20andx; + -+ 2,1 < 1},

respectively.

2.2  Faces of ,(7T)

In this section we present more specific notation.
Given an usual graph G we can consider a subgraph of G with the property

of assign to each of its vertices two possible colors.

Definition 2.2.1. A bicolored (vertex) subgraph of G is a subgraph G’ of
G such that G' = (V(G"), E(G")) with E(G’) C E(G) and the vertex set
is a subset of V(G) where some vertices can be closed, i.e., V(G') can be

partitioned into V,UV.
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In the literature the concept of bicolored graph is also known as 2-
stratified graph i.e., a graph where the vertex set is partitioned into two
subsets (cf. [11]).

Using the results presented in [16] and described in first chapter as moti-
vation, we present here a different approach for the structure of the faces of
the acyclic Birkhoff polytope, €, (7).

In this section we study the faces of €2,(7"). We have already seen in
Chapter 1 that Q,,(7) is a face of 2,,, therefore the faces of Q,,(T") are the faces
of Q,, which are contained in 2, (7). Also, it was stated in [6] and presented
in Chapter 1 that the faces of ), F 4, are in one-to-one correspondence with
n X n matrices having total support.

That a matrix whose pattern is the same as the pattern of a doubly
stochastic matrix has total support also follows from the fact that the extreme
points of €, are permutation matrices, [22, Corollary 1]. A doubly stochastic
matrix A is then a convex combination of permutation matrices, that is there
exist permutation matrices Py, Ps,..., P, (1 < t < n), and positive real
numbers ¢, ¢, . .., ¢; with ¢;+co+- - ~+¢; = 1 such that A = ¢; Py +co Po+- - -+
¢t Py, [4, Theorem 1.7.1], and therefore every nonzero entry of A belongs to a
nonzero diagonal, [4, pg 381]. Furthermore, from the above discussion, and
apart from row and column permutation, the pattern of a doubly stochastic
matrix is a direct sum of fully indecomposable (0, 1)—matrices, [4, pg 381].

In the case of §2,(7"), the faces of Q,(T") are in one-to-one correspondence
with n x n acyclic (0, 1)—matrices having total support. Let, then, A be
an n x n acyclic (0,1)—matrix having total support and consider the face

associated to it, denoted by
Fa={X €Q(T): aij =0= z;; = 0}.

Apart from permutation of rows and columns, A is a direct sum of blocks
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A, A=A ®--- DAy, where each A, t =1,...,p is of the following types:
Type 1 A; = [1], an 1 x 1 matrix;

01
Type 2 A; = K, where K is the 2 x 2 matrix ;

10

Type 3 This type is not one of the previous two types and at least two of its
diagonal entries are equal to one. These matrices are symmetric and
in each row there are at least two entries equal to one. If its entries
a;j = 1 and a;; = 1 then aj; = 0, for k # ¢, j. Moreover, if a;; = 1 and
for all k& # i, j,ay = 0, then a; = 1, otherwise A would not have total

support.

Ezample 2.2.2. For example the matrix

(1100 0]
10100
B=|01111
00110
0010 1]

is a matrix of Type 3.

Definition 2.2.3. A T-matriz is a symmetric matrix described in Type 3.

The blocks A; of A of Type 3 are called T-blocks of A.

Definition 2.2.4. If B is a T-matrix of order n we say that b; is an inner
entry of B if b; = 1 and in row (column) i there exist at least three entries

equal to 1.

In the previous example, b3z is an inner entry.
Similarly to what was mentioned in Chapter 1, if a matrix A = [a;;] is

of order n we may represent its nonzero structure by a bicolored digraph
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DGy(A). The vertex set of DGy(A) is a set V. = {1,...,n} and there is
an arc (4,7) from ¢ to j if and only if ¢ # j and a;; # 0, (4,5 = 1,...,n),
and the vertex i is closed if and only if a;; # 0. If the matrix A = [a;] is
also symmetric we may represent its nonzero structure by a bicolored graph
Gp(A). The vertex set of Gy(A) is aset V ={1,...,n} and there is an edge
ij from ¢ to j if and only if ¢ # j and a;; # 0, (7,7 = 1,...,n), and the vertex
i is closed if and only if a;; # 0.

As a face of ,,(T") can be represented by an acyclic, total support (0,1)—
matrix, that (apart permutation of rows and columns) is a direct sum of
blocks of Types 1, 2 and 3, we can associate to each block of previous type a
bicolored subgraph Gy(A;), for each j = 1,...,¢. Moreover, as each acyclic
total support (0, 1)—matrix A = [a;;] can be written as a direct sum of blocks
Ay, we can associate to a matrix A of this type, the following finite union of
bicolored subgraphs Gy(A1)UGy(A2)U - - - UG, (A;) ( displayed in this order).

Therefore the following correspondence can be established
A= Al D A2 DD At — Gb(Al)UGb(A2>U s UGb(At>

Recall that R. Brualdi established the correspondence A +— F,, for a
total support (0, 1)—matrix, [4, pg 382]. Then, it follows that to a face F4 of
the acyclic Birkhoff polytope we can associate the union of a finite number of
bicolored subgraphs Gy(A;)UG,(A2)U---UG,(A;), which one can be of the
following types:

Type 1 A closed vertex, e.

Note that from the above definition, to this type of bicolored subgraph

we associate an 1 x 1 matrix A = [1] (the matrix of Type 1 described above).

Type 2 An open edge o _ o .
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To an open edge we associate the matrix

01
K= (the matrix of Type 2 described above).

10

Type 3 This type is not one of the previous two types, and is a connected

bicolored subgraph of T, with all endpoints closed.

Definition 2.2.5. A T-component is a bicolored subgraph of T" of Type 3.

An inner entry of a T-component is a closed vertex which is not an endpoint.

Ezxample 2.2.6. Consider the tree with five vertices Tj

o
/
0O —-0—-0
AN
o
. _
1—a Ty 0 0
I 1— T — X2 T 0
QB(T): X€Q5:X: 0 ) l—29— 23— 24 T3
0 0 T3 1-— T3
0 0 T4 0
\ L
The matrix ~ -
11000
10100
B=101111
00110
00101
has total support (for r,s = 1,...,5, b,y = 1 implies that there exists a

permutation matrix P = [p;;] with p,; = 1 and P < B). We can associate to

B the bicolored subgraph

Xyq

0

1—1’4
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/

®e O —eo

N

Example 2.2.7. Given the path Ps, the path with 5 vertices,

0—0—-0—-0—0,
one of its bicolored subgraph of Type 3 is, for example,
e— 0 _0—e.

Therefore, its associated matrix is:

11
11

o
—

= O = O
—_

The next matrix

o o o o =
[ B N )
O = = =k O
_ o =) o o
= o O O

0 1

has total support (it can be directly verified using the definition) and it is
the direct sum of a block of Type 1, A; = [1], and the T-block presented
immediately above. This matrix represents a face of 2%, and this face is also

represented by the union of two bicolored subgraphs:

[ J e —© _0—e.
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As we said in Chapter 1, a matrix can be represented by a bipartite graph.
Let H = [hy;] be a T-block of order n, (n > 1) and let BG(H) be the bipartite
graph associate to H. Then V(BG(H)) = UUW, where U = {uy,...,u,}
and W = {wy,...,w,} are the sets of vertices corresponding, respectively, to
rows and columns of H. As H is a T-block, it has in each row (column) at
least two entries equal to one, and it has at least two rows (columns) where
there are exactly two entries equal to one. Moreover for ¢ # j, if h;; = 1 then

hj; = 1. From the support of the matrix H we have:

- BG(H) is connected;

Vv e V(BG(H)),d(v) > 2;

-Vi=1,...,n,d(u;) = d(w;) and it is equal to the number of 1’s that

are in the respective i-th row (column);
- UinjiwiNUj;
- 4,0 # 7 and u; ~ wj A~ wj = N(u;) N N(w) = {w,};

- Vi,j = 1,...,n, u; and u; have at least a distinct neighbor, that is,

N(ui) # N(u;).
Next lemma is relevant to prove that a T-block H has total support.
Lemma 2.2.8. Any edge of BG(H) belongs to a perfect matching on it.
In order to prove this lemma we need the following theorem:

Theorem 2.2.9. [3, Hall’s theorem, Theorem 16.4] A bipartite graph G =

(X, Y] has a matching which covers every vertex in X if and only if

IN(S)| > |S| for all S C X.
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Proof. Next we present the proof of previous lemma:

The case n < 3 is trivial.

Suppose that n > 3. Let ww; be any edge in BG(H), and let G =
BG(H)\{u;, w;}. Then we have:

G is bipartite and V(G) = U\ {u; JUW\{w; };
- E(G) = E(BG(H))\ {wwy, : wy € N(u;)} U{ww; : v, € N(w,)})
- dg(wy) = dpemy(wy) — 1, for all wy, € N(u;).

- dg(ul) = dBG(H)(Ul) —1, for all u; € N(Uh)

dg(v) > 1, for all v € G and in G, |N(ug) U N(u;)| > 2 were uy and v
are distinct neighbors in BG(H) of wj.

Now we use Theorem 2.2.9. Let U’ be any subset of U\{w;} and N(U’) =
{w, € W\{w,} : 3w € U wwy, € E(G)} we will see that |U'| < |N(U')|.

In fact if |U’| = 2 we have to consider the following situations:

- Ifforallu € U', u € N(wj), then dg(u) = dpgmy(u) > 2 and [N (U')| >

3. Therefore the previous inequality is true.

-If Jue U :u € Npguy(wj), as in BG(H), |N(uy) U N(u;)| > 3 (note
that wj, and u; can have a common neighbor) and w; € N (U'),

then, in G, Ng(U') = (N(ux) U N(w))\{w;} and the inequality holds.

The proof follows by induction on the cardinality of U’. Suppose that
the inequality is true for U’ such that |U’| < n. Join a vertex u; to U’

and consider U*=U" U {u;}. We can have:
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— w; & Npgmy(w;), then it has in G at least two neighbors and each

of them can not be simultaneously neighbor of two vertices in U’
that share a common neighbor (w; or any other vertex in common)
otherwise the matrix H would not be acyclic. Therefore |N(U*)| >
|N(U")|+1 then, by induction hypothesis follows, |U*| = |U’|+1 <
IN(U) +1 < [N(U)].
If none of elements in U’ share a neighbor, |U’| < [N(U’)|. The
vertex u;, can be neighbor of all neighbors of the elements in U’,
but |[U'| +1 < |N(U")|, therefore, |[N(U*)| > [N(U")| > |U'|+1 =
|U*|. The inequality holds.

— Consider now that w; € Npg(w;). By induction hypothesis
we have |U'| < |N(U')|. If we have |U'| < |[N(U')|, [U'| +1 <
|IN(U")|, furthermore, |N(U")| < |[N(U*)|, then |U*| = |U'| +1 <
|IN(U*)|. If |[U'| = |N(U")|, this means that w; was neighbor of
some ( eventually, all) elements of U’ or the elements of U’ share
neighbors. The added vertex, u;, cannot be neighbor of a neighbor
of an element of U’ that was neighbor of w;, otherwise H is not
acyclic. By the same argument, u; can not be neighbor of any
element that was neighbor of a vertex of U’ that shares neighbors.

Therefore in |N(w;)| there are at least one element that does not

belong to N(U’). Therefore N(U*) > |N(U')|+1 > |U'|+1 = |U*|

Then by, Hall’s Theorem, there exists in G a perfect matching, M’,
with |[M'| =n — 1.

Thus , M = {w;w;} UM" is a perfect matching in BG(H).
[

Note that the bipartite graph associated to a permutation matrix of order
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n, P, has n two by two disjoint edges. If H is an n x n matrix, such that
P < H, BG(P) is a matching of BG(H). In addition, the first bipartite
graph is a perfect matching of the last one.

The following proposition will be useful to establish an expression to

calculate the dimension of any face of the acyclic Birkhoff polytope.

Proposition 2.2.10. Any T-block of order n, (n > 1) has total support and

is fully indecomposable.

Proof. Recalling the definition of a total support matrix for a T-block H =
[hij], for each entry h;; = 1 there exists a permutation matrix P such that
pi; = 1 and P < H. This means that for each edge u,w; of the bipartite
graph associate to H, BG(H), there is a perfect matching M in BG(H),
such that u,w; € M.
Therefore, if H is a T-block, it follows straightforward from previous lemma
that H is a matrix with total support.
The matrix H has total support and BG(H) is a connected graph, by [4,
Theorem 1.3.7] we conclude that H is fully indecomposable.

O

As for the case of tridiagonal Birkhoff polytope it only matters the multi-
set of T-block of A in the study of a single face Fu, [16], [5, Corollary 2.5].
In fact, according [6, 7], if A is a (0, 1)—matrix of order n with total support
and considering that A = A; @ --- ® A, has a trivial fully indecomposable
component, then A is similar to a matrix A* such that A* = [1] & A" where
A’ is the matrix obtained from A* by striking out the first row and the
first column. Each matrix X = [z;;] in F4- has 13 = 1 and z1; = 251 =
0, i,j = 2,...,n, then F4+ and Fu have the same essential combinatorial

and geometric structure, [8, Theorem 2.1]. And the same happens with
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F 4. Thus trivial fully indecomposable components can be omitted from the
dimension discussion, [4, pg 385].
From [6, Theorem 2.5] and [5, Theorem 2.7], if B, of order m, has total

support and is fully indecomposable, the dimension of Fg , dim Fg, is
dim Fg =0 —2m + 1,

where op is the number of entries equal to one in B. So, for a T-component,
and considering its T-block B (as it is fully indecomposable and has total
support),

dim Fg =0 — 1+ w,

where w and g are, respectively, the number of inner entries and closed
endpoints of the T-component. In fact, op is equal to the number of closed
endpoints, g plus the number of inner entries, w, and 2(m — 1) entries equal
to one ( m — 1 entries equal to one above and below the principal diagonal

of the T'—block, respectively). Therefore,
dmFp=0p+w+(m—-1)+(m—-1)-2m+1=0p—1+w.

Bearing in mind that dim F, is the sum of dim F4, for the T-blocks A;

of A, [6, Corollary 2.6], we may state the following proposition:

Proposition 2.2.11. Let t4 be the number of T-components in the union
of the bicolored subgraph of T that represents a face Fu. Let 04 and vty be,
respectively, the sum of all closed endpoints and the number of inner entries

i all T-components. Then
dimFy =04+ 14—ty .

From now on we only work with bicolored subgraphs. As a consequence

of the previous proposition, and as a vertex of a polytope has dimension 0,
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each vertex of €2, (7") will be identified with a bicolored subgraph of T" whose
diameter is at most one. In this case we only have the union of bicolored

subgraphs of Type 1 and bicolored subgraphs of Type 2.

FExample 2.2.12. For the graph T" defined in Example 2.1.4, the seven vertices
of Q5(T) are:

° . o .
/
e o o e 0-—0 e o O e o O
N
° . . o
Vi Vs Vs Vi
° o °
/
o—0 e o—0 o 0o—o0 o
N
° . o
Vs Ve Vi

10000 10000 10000
01000 00100 01000
00100, |lo1o0o00], [0o0010].
00010 00010 00100
(ooo0o01| |0o0001] 00001
(10000 (01000 (01000
01000 10000 10000
00001 00100 00010
00010 00010 00100
oo100| [00001] |o0o0o01
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o o o = O
o o o o
o o O O
o = O O O
o O = O O

Recalling the structure of the faces of ,(T") previously presented, for
example, the vertex Vj is a 0-face which is the union of three bicolored sub-

graphs of Type 1 and one bicolored subgraph of Type 2.

2.3 Counting vertices and edges

We are now able to establish a recurrence relation to count the number of
vertices of €2, (T), for a given tree T' with n vertices. In general, we denote by
fo(T') the number of vertices (0-faces) of the polytope €2, (7") and by fo.;(T)
the number of bicolored subgraphs of T" that contains the edge ij and whose
diameter is at most one. Note that the number of vertices of €2, (T) is the
number of matchings in 7'

Let 75 be any edge of the tree T. We have

Jo(T) = fo(T"\ij) + fo.i;(T), (2.3.1)

with initial conditions fo(f)) = fo(v) = 1, where v is a vertex of T'.

Recall that G. Dahl, [18], stated for a path P with n vertices, that

Jo(P) = fns1, (2.3.2)

where f,,11 is the (n + 1)-th Fibonacci number.
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The previous relation satisfies (2.3.1). In fact, let P, be a path with n
vertices, and consider one of its edges. Without loss of generality we can
choose the first edge considered from the left to the right, ujus. Applying
(2.3.1), we obtain fo(P,) = fo(Pn\tiu2) + fousu,(F); the first summand is
fo(Pn—1) = f. and the second one is equal to fo(P,_2) = f,—1. Taking into
account the recurrence relation (1.1.4), we obtain fy(P,) = fu4+1 and (2.3.1)
holds.

Notice that if

G=T,UT,U---UT, |
with ny, ..., n, positive integers, and T),; are disjoint trees, for j =1,...,p,
the number of bicolored subgraphs of G whose diameter is at most one,
denoted by go(G), follows straightforward from the characterization of the

vertices of the acyclic Birkhoff polytope as the union of a finite number of

bicolored subgraphs of Types 1 and 2, and is given by

90(G) = fo(Tn,) X fo(Tny) X -+ % fo(Th,) (2.3.3)
Ezample 2.3.1. Let S = S; 11 be the star with four vertices presented below:

@) @)
|/
o—20O
Let ij be any edge of S. The number of vertices of Q4(5) is fo(S) =
Jo(S\ij) + f0.5(S) = fo(Ps) + fo.;(S) = 3+ 1 = 4. The vertices of §4(S) are

represented by the 4 x 4 permutation matrices:

(1000 (o100l [1o000] [1000]
010 0 1000 0010 000 1
oo10| |oo1o| ot1too|l |0010
(0001] |ooo1| |0001] |0100
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and recalling the identification of each vertex of the polytope 4(S) as a
bicolored subgraph of S whose diameter is at most one, to each previous

permutation matrix corresponds one of the following bicolored subgraphs

[ J [ J O [ ] [ ] ) [ ] [ ]

\ /

[ J [ J O [ ] @) [ ] o —20O

The first bicolored subgraph ( that results from the union of four bicol-
ored subgraphs of Type 1) and two of the others correspond to the number
fo(S\7j) and the reminder one corresponds to fy;;(.5).

Erample 2.3.2. For the graph presented in Example 2.1.4, the number of
vertices of Q5(7T) is fo(T5) = fo(Ts \ ij) + fo.i(T5) = 4+ 3 = 7, where ij
is taken as the first edge considered from the left to the right. The vertices

were presented in Example 2.2.12.

Ezample 2.3.3. Let S’ = 5123 be the starlike tree presented below:

The number of vertices of 7(S") is fo(S") = fo(S" \ij) + fo,i;(S") where
17 is any edge. Therefore if ij is the first edge considered from the left to the

right we obtain:
folS) = fo(Ps) + fo(Ps) x fo(Py) =13+ 3 x 2 =19.

We present the nineteen vertices of S’

[ ] [ ] [ ] [ ] [ ] OoO—20 ([ ] ([ ] ([ ] [ ] O —o0O [ ] [ ]
[ ] ([ ] [ ]
[ ] ([ ] [ ]

Vi Va Vs
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[ ] [ ] O —20O [ ] [ ] [ ] [ ] O — O [ ] (@] [ ] [ ] [ ]
[ J [ ] (‘)
[ ] [ ] [ ]
Vi Vs Ve
[ ] [ ] [ ] [ ] [ ] O —O0O O —O0 [ ] O —20O [ ] O —20O
(@] [ ] [ ]
(‘) [ ] [ J
Va Vs Vo
O —20O [ ] [ ] [ ] [ ] O —O0O O —O0 [ ] O —20O [ ] [ ]
(@] [ ] (@]
: . :
Vio Vi Via
[ J [ J [ J o —2O [ ] (@] [ ] O —2O [ J (e} O —2O [}
o 5 ;
(‘3 [ ] [ ]
Vis Via Vis
[ J [ J o —2O [} o —2O o —2O [} O —O [ ] O —O
o (e} (@]
; ; o
Vie Viz Vig
[ ] O —O O —O
O
\
O

Vig

Proposition 2.3.4. Let G = S, , be a generalized star with n branches,

with n, q positive integers. Then

fo(G) = i3 (ferr +1fq)
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where f, and f,1 are the q-th and the (¢ + 1)-th Fibonacci’s numbers, res-
pectively.

Proof. The proof follows by induction on n. In fact, for n = 1, GG is a path
with ¢ + 1 vertices, and by the recurrence relation presented in (2.3.1) the
result follows easily.

¢ i1s a generalized star with n branches, then by induction

.....

hypothesis fo(G) = 251 (fyr1 + 1)
Let now G’ be a star with n + 1 branches of length q. We have

folG) = fo(G) x fo(Py) + fo(Py-1) x (fo(F))"
= f;-;ll (fq+1+nfq) fq+1+fq X (;L+1
= f(;LJrl (fq+1 + (n + 1)fq)

In the particular case of ¢ = 1 we have fo(S) =n + 1.

..........
----------

..........

FExample 2.3.5. Consider the double generalized star:

O O @) @) @)

VA
NN

O O @) @) @)

Using formulae (2.3.1) and (2.3.3), and previous proposition when ¢ = 1,
we obtain fo(G) =10 x 8 + 1.
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..........

with m and n branches, respectively. Then

fO<G) = f"i_ll (fp+1 + mfp) ’ f;tll (fq+1 + nfq) + f;n : f(?

fO(G) - fO (Sp ..... pUSq ~~~~~ q) + fo (Uﬁl(Pp—l)iU U?:1 (Pq—l)j)

were for each ¢ and for each j, (P,—1); and (FP,_1); denote, respectively, a

..........

= Jfo (Sp ----- p) - fo (Sq,... q) + (H Jo(Pp-1)i - HfO(Pq—l)j)

j=1

and applying Proposition 2.3.4, and (2.3.2) we obtain

fﬁi%fpﬂ +mfy) - f:J:ll(qurl +mfy) + (fm)? - (fu)
]

In the particular case of p = ¢ =1 we have fo(G) = (m+1)(n+1)+ 1.

Since an edge (1-face) of the acyclic Birkhoff polytope 2,,(T"), is the union
of bicolored subgraphs of Type 1, Type 2, and exactly one bicolored subgraph
of Type 3, without inner entries and with two closed endpoints, we can also

describe the edges of Q, (7). Next, we provide some examples of the fifteen

edges of Q5(T).

FExample 2.3.7. For the graph T defined in Example 2.1.4, some of the fifteen
edges of Q5(7T) are:
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° ° °
/
e eo—o e o0 e o O
AN AN
° ° °
Viva VaVy VaVy
° . °
/ / /
e —-0—0 o—o e o—o o
AN
° ° °
VaVe V5 Ve VeVz

By Proposition 2.2.11, a 2-face of the acyclic Birkhoff polytope €, (T")
is the union of bicolored subgraphs of Type 1, Type 2 and one bicolored
subgraph of Type 3 with one inner entry and two closed endpoints; or the
union of bicolored subgraphs of Type 1, Type 2 and one bicolored subgraph of
Type 3 with three closed endpoints and without inner entries; or the union
of bicolored subgraphs of Type 1, Type 2 and two bicolored subgraphs of
Type 3 each one with two closed endpoints and without inner entries.

In a 2-face (or simply a face) we have at least one bicolored subgraph of
Type 3. If the vertices V;, V; and V}, belong to a face we denote this face by
ViV Vi.

Ezample 2.3.8. Some 2-faces of Q5(7T):

° ° °
/ / /
e—o o e—eo O o—o0 e
AN AN
° ° °
ViVsVeVs VaVyViVe VsVsVr
° ° °
/ / /
e o —o e o0 e —-0—0
AN AN
° ° °
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Example 2.3.9. A 3-face (a cell) of Q5(7T):

/

® — @ —O

AN

2.4 Adjacency of vertices of (2,(T)

In this section we will present a result that allow us to say when two ver-
tices of Q,(T") are adjacent. Let G = (V(G4), E(G1)), G2 = (V(Gs), E(G3))
be two bicolored subgraphs of order p, p > 1 of G, where V(G;) = V}!UV!
and V(Gy) = V2UVZ We define bicolored sum of subgraphs G1 and Gy as
the bicolored subgraph of GG, such that

G B Gy = G(V,UV,, E(G1) U E(Gs))

where V, = V! NV2and V, = VIUVZ i.e.,

ol@o? = o,
ol Ho?2 = o
olHe? = e,
o' He? = o

where o!, 02 o', o2 denote the open and closed vertices of the bicolored sub-

graphs (G; and G, respectively.

The cell presented in Example 2.3.9 is obtained from the bicolored sum
of faces V3V, Vs and VaV5V, or from the faces Vo VgVz and Vo Va V.

Next, we establish an adjacency criterium for the vertices of the acyclic
Birkhoff polytope, Q,(T"). Firstly we introduce the concepts of complemen-
tary bicolored subgraphs.
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Definition 2.4.1. Given the path P, with n vertices
0—0—0—0—0—0---

the spanning bicolored subgraphs

and

are said complementary (in B,).

Remark 2.4.2. 1f P, has odd order then the following two bicolored subgraphs

and

are complementary.

If P, has even order then the two bicolored subgraphs

o o —20O o —20O o —O [ J
and
O —2O O —2O O —O O —O
were - - - represents the union of open edges, are complementary.

Let H; and Hs be the union of a finite number of bicolored subgraphs of
Types 1 and 2 obtained from 7" and P/ and letF,, k < n, be the union of a
finite number of bicolored subgraphs of Types 1 and 2 obtained from a path
with k vertices. Let V1, V5 be two vertices of Q,,(T). Suppose that U denotes

the usual union of graphs,

Vi = HiUPLUH,
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and

‘/2 - H1UP,;'UH2

The edge that contains V; and V5, if exists, is of the form:
H e—o0o—o0o—+..—0—e H,

We point out that the bicolored sum of the bicolored subgraphs corres-
ponding to the O—faces V; and V5 gives only one T-component with two
closed endpoints and no inner entries.

If the sequence of open edges described in the two situations of remark

(2.4.2) is empty we have the minimal case of P; and P as follows

Hy o—o H,

The previous observations lead to the main theorem of this section:

Theorem 2.4.3. Let H, and Hy be the union of a finite number of bicolored
subgraphs of Types 1 and 2 obtained from T and P and P} are the union
of a finite number of bicolored subgraphs of Types 1 and 2 obtained from a
path with k vertices. Let Vi, Vy be two vertices of Q,(T), then Vi and Va are
adjacent if and only if

Vi = HyUPLUH,

and

Vo = HUP'UH,.

and P and P} are complementary.
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The adjacency criterion presented for the tridiagonal Birkhoff polytope by
G. Dahl, in a matricial form, in Chapter 1, (also see [18]), follows straightfor-
ward from the previous theorem. In fact to the blocks J and K presented in
Theorem 1.1.2(744) correspond bicolored subgraphs of Type 1 and Type 2, re-
spectively, and those sequences of blocks that interchanges are here replaced

by complementary bicolored subgraphs.

Example 2.4.4. Consider again Example 2.2.12. By Theorem 2.4.3 the fol-

lowing pairs of vertices of the polytope Q5(7) are adjacent:

[ ] [ ]
[ J [ J [ J [ ] o —20O

[ J [ ]

[ [ ]
[ J o —0O o—20O [ ]

[ J [ ]

[ J @)
[ ] o —0O OoO—2o0 O

[ ] [ ]

From the previous criterion and the vertices of Example 2.1.4 we can
establish the adjacency relations for all vertices of the polytope Q5(T), and
obtain the edges and faces of the respective polytope. See the figure below:
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Bearing in mind the 19 vertices of Q7(5”), where S” = S} 5 3, and using the
adjacency criterion, we obtain the skeleton of the respective polytope that is

depicted in the next figure:

Vi
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2.5 The diameter of G(2,(T))

In this section, for a given tree with n vertices we present the diameter
of G(Q,(T)), the graph of ,(T), whose vertices and edges correspond to
vertices and edges of the polytope Q,(7T"). Actually this section generalizes
an expression for the diameter of the tridiagonal Birkhoff polytope and the
result can be seen in Chapter 1, Theorem 1.1.3, see also [18]. In fact the
diameter of Q! is equal to [ %], where n is the number of vertices of a given
path.

Recalling the definition of matching in a graph, the matching number of
G, B(G), is the number of edges present in a maximum matching.

We determine in the next theorem the diameter of G(£2,(7')) which is
defined as the maximum of d(V, V"), taken over all pairs of vertices V, V",

where d(V, V") is the smallest length of a path between V and V' in the
connected graph G(£2,(T)).

Theorem 2.5.1. Given a tree T with n vertices, the diameter of G(§2,(T))
is equal to B(T).

Proof. We start by proving that there are two vertices V' and V' such that
d(V,V') = B(T). In fact, let V and V' be two vertices of §2,(7") such that
there are no common open edges (at same place) in their representations
and the union of the open edges in each bicolored subgraph consists in a
maximum matching in 7'.

For example, V' is represented by the bicolored subgraph that is just
the union of subgraphs of Type 1, (i.e., closed vertices), and V' is a vertex
whose bicolored subgraph is composed by a maximum matching in 7" (i.e.,
considered with closed vertices and open edges).

Let Vi be a vertex of ,(T) that only differs from V' in an open edge,
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for simplicity, consider that is the first edge considered from left to right,
e1. Vi is adjacent to V. Compare V; with V' by Theorem 2.4.3. If they
are adjacent, then d(V,V’) = 2 and this means that n = 4 or n = 5 and
a maximum matching has 2 edges. If they are not adjacent, let V5 be the
vertex of Q,(T") that differs from V; only in an open edge, eq, different from
e1 (note that V5 differs from V' in two open edges, and it is adjacent to V;
and d(V,V,) = 2). Again, we use Theorem 2.4.3 to analyze if V5 is adjacent
to V’. If the answer is affirmative then d(V, V') = 3, this means that n = 6
or n = 7 and the matching number is 3; otherwise consider V3 that differs in
its representation from V5 in one open edge, different from the two previous
one, and so on. The process stops after k£ steps, where k is the number of

open edges presents in V’. Therefore,

d(V, V') = B(T).

Next, given two any vertices V' and V' of Q,(7T), that are not in the

previous situation, we always can express V and V' as:

V = HlL:JHQ

and

V' = HjUH,,

where H; and H! , i = 1,2, represent finite unions of bicolored subgraphs of
Types 1 and 2. V and V' are such that:

If Hy = Hj # 0, recalling that we are not in the initial situation, then,
in the representations of V' and V' either we have at least one open edge

in common, or the union of the open edges in their representation is not a
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maximum matching. As
[E(V)UEWVINEWV)NEWV)]| < B(T),

we have

dV,V') < B(T)-1.

If H, # H{, and in this case H; and H| must be complementary bicolored

subgraphs in V' and V', in some path in T, see Definition 2.4.1, then let

By Theorem 2.4.3, V and V are adjacent. From previous case, we get

d(V,V') < B(T) — 1. Therefore

d(V,v") < B(T) .

When the tree is the path with n vertices,

and, therefore, Theorem 1.1.3 follows from Theorem 2.5.1.



Chapter 3

The number of faces of the

tridiagonal Birkhoff polytope

The facial structure of the Birkhoff polytope was extensively studied, see
for instance [5, 6, 7, 8]. Recently (in 2008) E. Marques de S& and C. M. da
Fonseca gave expressions that allow to count the vertices and the edges of
Qf | [16]. These authors used the concept of alternating parity subsequences,
that are strictly increasing finite sequences of integers such that any two
adjacent elements have opposite parities. The results are presented in the

form of products of Fibonacci numbers, and in consequence they determine

t
n’

the number of vertices of any face of {2, and also they gave the number of

edges and the number of faces of QFf.

Here, considering the representation of a face of {2, using bicolored sub-
graphs, we also give the number of vertices and edges of Qf  however consi-
dering a different approach from [14]. Moreover we also count the faces of
Q! and its cells. We present this counting to the particular cases of Qf,

and Q.

49
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3.1 Counting the edges of !,

It is referred in previous chapter, that an edge (i.e., 1-face) of the tridi-
agonal Birkhoff polytope Q! is the union of bicolored subgraphs of Type 1,
Type 2, and exactly one bicolored subgraph of Type 3, without inner en-
tries and with two closed endpoints. As a consequence of Proposition 2.2.11,
the number of edges of !, is equal to the number of bicolored subgraphs of
P, that have a T-component with two closed endpoints and without inner

entries, i.e., a bicolored subgraph of the following type

H e—o0o—o0o—---—o0o—e H,

J

where H; and H; (i,j = 1...,n — 2) are the union of a finite number of
bicolored subgraphs of Types 1 and 2. Hj represents the empty set and in
this case, we convention that fo(f) = 1.
In this section we present a formula for f;(P,), the number of 1-faces of
Depending on the number of open vertices that are between the end-
points, the subgraph of Type 3 (T-component) can have one of the following

configurations:

I1.

®e —-O0—e

I1I.

®e—O0—0—e
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and so on.

If the T-component does not have internal open vertices (we are in case
I), it can occupy the same position as the edges of P,, i.e, n — 1 positions.
Each of those possibilities gives rise to several distinct bicolored subgraphs.
For example, if the T-component occupies the first edge of the path, the

remaining n — 2 vertices give rise to a path P, 5, then

fO(Pn—2) = fa—211

is the number of the possible distinct bicolored subgraphs associated to this
case. Doing the same for the remaining possible positions, we obtain the

number of bicolored subgraphs associated to this T-component:

n—2 n—2
> folPe) fo(Paca) = frarfaa-kin.
k=0 k=0

If the T-component has exactly one internal open vertex (case II) it can
be in the same position as two consecutive edges of P,, i.e., n — 2 possible
positions. For example, if the T-component occupies the first two consecutive
edges of the given path, we will have P,_3 as remaining path, and, in this

case, we obtain
fO(Pn—?)) = fn—3+1

distinct bicolored subgraphs. Proceeding in the same way for the remain
possible positions, we obtain

n—3

> fertfassokin,
k=0

different bicolored subgraphs.
In general, if the T-component has p internal open vertices, with p < n—2,

the number of bicolored subgraphs associated to this T-component will be
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given by
n—2—p

Z fk+1 fn—2—p—k+1 .

k=0
Therefore, we can state the following proposition:

Proposition 3.1.1. The number of edges of %, f1(P,), is

2 n—

3
|

p

2—
Z fk-i—lfn—p—k—l- (311)

k=0

i
o

3.2 Counting the faces of (),

We proceed presenting a general formula for the number of faces (2-faces)
of the tridiagonal Birkhoff polytope associated to a path with n vertices,
(n > 3), Q. Taking into account the formula (2.2.11) this number is equal
to a sum whose two summands are the number of all bicolored subgraphs
with one T-component with two closed endpoints and one inner entry, and
the number of bicolored subgraphs with two T-components with two closed
endpoints and without inner entries.

Suppose that the bicolored subgraph has one T-component with two
closed endpoints and one inner entry. Taking into account that the open
vertices can take several positions, the T-component can have one of the

configurations presented below:

o without open vertex:

o —0— 0o
¢ one open vertex:

®e—O0O—0—8e0 , ®e—0 —0—eo
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& two open vertices:

®e— @ -0 —0—e0 s e —O0O—0—0—e , ® -0 —0—0—0

o n — 3 open vertices:

e-e-0-0-0-® , €-0O--0-0-® , ..., ., €—-0-0-0-0—80

Let us consider the union of closed vertices, o, and open edges, o _ o,
involving k vertices, denoted by Hj, with the convention that H, is empty.
If the T-component does not contain internal open vertices, it can occupy

n — 2 different positions on the path. Namely,

H, e—e—e H, 5, , withk=0,...,n-3.

Therefore we have

n—3
Z karlfnfku
k=0

different bicolored subgraphs.
Suppose now that the T-component contains exactly one internal open

vertex, o. The T-component can occupy the n — 3 positions on the path:

H, e—e—o0o—e H, ,,, withk=0...,n-4

As the internal open vertex of the T-component can occupy two different

positions we obtain, in this case

n—4
2 Z fk+1 fn—k—S
k=0
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different bicolored subgraphs.
Analogously, we can obtain the number of bicolored subgraphs with one
T-component, that is:

n

3
)

—-Pp

p Z fk—l—lfn—p—k—l-

2
1 k=0

3
I

When the bicolored subgraph contains two T-components with two closed
endpoints and without inner entries, two distinct situations can occur: whe-
ther the T-components have internal open vertices or not. If none of the
T-components contains internal open vertices, n — 4, (n > 4), of the initial
vertices of the path stay free. The T-components can occupy several different

positions, which are

H,y, o—eo H; e—e [

The number of different bicolored subgraphs with these two T-components

1s:

—J

Y fenifiafaons.

—4
k=0

B~

n—4an

i
o
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If one of the T-components has an internal open vertex, o, and if the other
one does not have any internal open vertices, n — 5 of the initial vertices of

the path stay free. The T-components can occupy some different positions:

Hy oe—o—e Hy e—e H, -

Hy oe—o—e H,: e—e H,

H, s oe—o0o—e H, e—e H,.

Since the order of the T-components can be switched, the final number
of different bicolored subgraphs is:

n—5n—>5—j

2 Z Z Jrr1fis1 fomj—r—a-

j=0 k=0
If both of the T-components have one internal open vertex, we can have
all the following situations considered below:
Hy oe—o—e H; e—0—e H, ¢

Hy oe—o—e H,6 s e—o0o—e H,

H eoe—o—e H;, e—o—e H, -

H oe—o—e H, ., e—o—e H,
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H, s oe—o0o—e H, e—o—e H,.

Note that the number of different bicolored subgraphs obtained in this
way is equal to the number of different bicolored subgraphs obtained in the
case when one of the T-component has two internal open vertices and the
other one does not have any internal open vertices. In this situation, six of

the n vertices of the path are used by the T-components. Therefore we have

n—6 n—6—j

3 Z Z Jrrrfierfomj—r—s

j=0 k=0
different bicolored subgraphs.

Similarly, the number of distinct bicolored subgraphs obtained from the
configurations of the T-components if one of them has an internal open vertex
and the other one has two internal open vertices is the same as if one of
the configurations of the T-component has three internal open vertices and
the other one does not have internal open vertices. So, when seven of the
n vertices of the path are used by the T-components, the final number of

different bicolored subgraphs is

n—7n—T—j

AN fenifisifa ks

j=0 k=0

We point out that there exists a relation between the number of sums
with two integer summands and the possible configurations that can occur
in the T-components.

For example, if the number of vertices involved in the T-components is
seven, as the T-components have four closed endpoints, only three of the ver-
tices are internal, and we have four possibilities, as we show in the following
decomposition:

3=3+0=2+1. (3.2.1)
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This means that the number of bicolored subgraphs having a T-component
without internal open vertices and the other T-component with 3 internal
open vertices is the same as the number of bicolored subgraphs that have a
T-component with an internal open vertex and the other one with 2 internal
open vertices.

The number of different sums that appears in (3.2.1) is the number of
integer partitions of 3 in two parts. In fact, given an integer ¢, the number

i

of integer partitions of ¢ in two parts is equal to [5 + 1J, see [10]. If the

T-components contain k vertices of the initial path, k — 4 of these vertices

are inner entries. Therefore, we are going to have V”‘—fj integer partitions of

k — 4 in two parts and, attending to addition commutativity, we have k — 3

different sums. Therefore, the number of different bicolored subgraphs with

two T-components that use p — 1, (1 < p < n — 3)internal open vertices is

equal to
n—3—pn—3—p—j
p E E JerrfirSnp—jr—2,
j=0 k=0

and the number of different bicolored subgraphs with two T-components is

-3 n—3—pn—3—p—j

3
p Z Jesrfiv1fo—p—j—r—2-

j=0 k=0

3

—_

bS]

Finally, we can write the following proposition:

Proposition 3.2.1. The number of faces of QL f2(P,), is given by:

n—2—p — n—3—pn—3—p—j

2
D Z JrrrSn—p—i— 1+Z p Z Z T fim fn—p—j—r—2 -
=0 7=0

- (3.2.2)

7
[\

fo( P

=
Il
—_
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3.3 Counting the cells of O

In this section we present a formula for counting the number of cells of Qf
using the representation of a face by the union of bicolored subgraphs. This
number is equal to the sum of the number of bicolored subgraphs with one 7-
component with two closed endpoints and two inner entries, with the number
of bicolored subgraphs with two T-components with two closed endpoints,
and one of them with one inner entry, and with the number of bicolored
subgraphs with three T-components and without inner entries.

Suppose that the bicolored subgraph that represents a cell has one T-
component with two closed endpoints and two inner entries. Since P, has n
vertices, the T-component, and the respective bicolored subgraph, can have

one of the configurations presented below:
H, oeo—e—0o—e H, ,,, withk=0...,n-4

If we have p open vertices, for p = 0,....n —4 and k =0,...,n — 4 — p,

another configuration can be, for example:

H, e—e—-—-0—0— . —0—0—0—e Hn—4—k—p~

As we have discussed in the previous section, the internal open vertices can
occupy several positions and the T-component can be without internal open
vertices, with one internal open vertex and so on. Similarly to previous
discussion, we must consider now the number and the position of the internal
open vertices varying. Note that if we have p internal open vertices, the T-

component have p+ 2 internal vertices and two of them are closed. Choosing,

(P+2)(p+1)
2

different T-components of this kind, and we obtain the number of bicolored

successively, two of the p 4+ 2 vertices we get the C§+2 =

subgraphs with one T-component. :
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W~

n— n—

(p+2)(p =
p— > ferrfaponos. (3.3.1)
k=0

i
(e

Now, suppose that the bicolored subgraph has two T-components with

two closed endpoints and with one inner entry, that is:

H, e—e—o H, o—e H, 5 .

where k,j =0,...,n—5and j+k <n—>5.

Let us denote the number of internal open vertices present in both T-components
by p, (0 <p<n-—25).

If p = 0, as the T-components can switch, the number of bicolored subgraphs

is two;

If p=1, we can have 2(C# CJ + C{ Cj) = 2(2 + 1) bicolored subgraphs;

If p = 2, we can have 2(C} C§ + C? C} + C{ C?) = 2(3 + 2+ 1) bicolored
subgraphs; and so on.

If we have p internal open vertices, the number of bicolored subgraphs is
2ACT CY+CYC 4+ CIC) =2((p+ 1) +p+ -+ 2+ 1] = 22D
Hence the number of different bicolored subgraphs with these two T-components

is presented below:

ot

n—

(p+2)(p+1)

—pn—35—p—j

Jrer1fivifo—p—j—i—a. (3.3.2)

'Mm

Il
o

k=0

i
o

J

The last case occurs when the bicolored subgraph has three T-components

with two closed endpoints and without inner entries:

H, oe—eo H; o—o H, e—e H, ¢, ;y,

where 0, k,j =0,...,n—6 and 7 + k 4+ ¢ < n — 6. The number of different
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bicolored subgraphs with these three T-components is presented below:

n—

3
o:

—pn—6—p—_€n—6—p—~—j

6—
Z ferrfjrforfopojrs. (3.3.3)

=0 J k=0

(p+2 (p+1)

3
I
o
Il
=)

Proposition 3.3.1. The total number of cells of QL f3(P,), is given by the
sum of the expressions (3.3.1), (3.8.2) and (3.5.3).

3.4 Some particular cases

We conclude this chapter providing a full description of the previous re-
sults in the particular cases of the tridiagonal Birkhoff polytopes Qf, 2 and
Given the path Pj

O —-0—-0

the associated tridiagonal Birkhoff polytope €2 is affinely isomorphic to the

set:

{(z,y) eR* : 2,y >0andz+y < 1},

and it can be geometrically represented by

Bearing in mind that dimension of € is two, its proper faces are only
vertices and edges.

Setting
1 10
A=111 11,
011
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according to [16], Fa is Q% and its vertices are Fa,, Fa,, Fa,, the three

permutation matrices:

100 010 100
A= 101 0], Ao=11 0 0 |, As=10 0 1],
00 1 001 010

Recalling [16] Fp is an edge if and only if B has only a S-block and no inner
entry. Therefore, the edges of Qf are Fp,, Fp,, Fag, for

1 10 1 00 1 10
Bi=|(110], By=10111], Bs;=1101
0 0 1 011 01 1

Using the graph representation introduced by us, Q% can be represented
by:
e 0 __o

each vertex is represented by the union of bicolored subgraphs of Type 1 and

Type 2, and they are:

[ ) [ ) [ ) O —-0 [ ) [ ] O —0
141 Vs Vs

and each edge is represented by the union of bicolored subgraphs, as follows:

e — 0O [ ] [ ] o — 0 ®e O —eo

ViV, ViVs VoV

Finally, it is straightforward from formulae (2.3.1) and (3.1.1) that the

number of vertices and the number of edges is three.
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Now, given the path Py,
O —-—0—-0—0

the associated tridiagonal Birkhoff polytope, €2}, is affinely isomorphic to:

{(x,y,z)€R3 cx,y,z>=20and x +y < 1, y+z<1}.

Therefore, to each vector of the previous set we can associate the following

matrix, ( see Proposition 2.1.5)

l—=z x 0 0
x l—x—y Y 0
0 Y l—y—=z z
0 0 z 1—=z2

Similarly, in a matricial way, and according to [16], we can represent F,

by the following matrix:

Its five vertices, Fa,, Fa,, Fay, Fa, and Fa,, are represented by the five

permutation matrices:

10 0 01 00 1 0 0

01 0 1 0 0 0 0 1 0
Al - ) A2 A3 =

00 0 0010 0 0 0

00 1 00 01 0 01

1 100

1110
A—

0111

0011
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1 000 0100

0100 1 000
A4 ) A5 -

0001 0001

0010 0010

According to [16, Proposition 5.2], Fp is an edge of QY if and only if, B has
only a S-block , without inner entries. Each of the following matrices can
be written as a direct sum of J and K matrices and with only one S-block
without inner entries. Therefore, the eight edges of Q) are represented by

FBI? ‘FBQ7 FBs? JT_-B4> ‘FBs ‘FB67 ‘FB77 ‘FBS7 where

1 00 1 000 1 00
1 00 01 10 010
Bl B2 - ) B3 )
010 01 10 0 01
0 01 00 01 0 01
1 00 01 00 1 00
0 00 1 00 0 011
B4 B5 - ) BG )
010 00 11 010
0 01 0011 0 01
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—_ =

0
0

0

—_

0
1

= = O O

—_

0
0

—_

0
0

- o O O

o = O O

Again by [16, pg 1318] the faces of dimension two can be split into two cases:
(7) the matrix that represents the face has only a S-block with one inner
entry, (i7) the matrix that represents the face has two S-blocks, and no inner
entries. As each of the five matrices C; represented below are in the described
situation and satisfies the definition of face of the polytope, and there are no

more matrices in this situation, the five faces of Q} are F¢,, Fo,, Fou, Fou,

Fe, where
1 100 1 100 1 000
1110 1 010 0110
01: 702: 703: Y
0110 0111 0111
0001 0011 0011
1 100 1100
1110 1100
04: 9 05:
0101 0011
0011 0011

As dim€}=3, there are no proper faces of this polytope with dimension

greater than 2.

According to graph representation, €} is represented by the bicolored

graph:
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and the five vertices are represented by

Each of the eight edges of Qf is represented by one of the following bicolored

subgraphs:
[ ] [ ] ) [ ] o — 0 ) [ ] [ ] o — o e O —o )
ViVa ViVs ViVy VaVs
o —-0 o — o [ ® O —o ® O -0 —o o — 0 O —o0
VaVs V3Vy V3Vs ViVs

And, finally, its five faces are:

e_o_9o o o_o eo__o e eoe_o__o
ViVaVs ViVaVy ViVsVy
e_e_0O_o e_O0O_o_—o
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Applying formulae (2.3.1), (3.1.1) and (3.2.1) we can easily get to above
results, i.e., five, eight and five, for its number of vertices, edges and faces,
respectively.

The tridiagonal Birkhoff polytope, QL is associated to the path Ps

©O—0—-0-—-0-—0

and is affinely isomorphic to:

{(x,y,z,t)ER4 cx,y,2,t >0 and v4+y <1, y+2<1and z+t<1}.

To each vector (z,y, z,t) of this set we can associate the 5 x 5 tridiagonal

(0, 1)—matrix (see Proposition 2.1.5)

1l—x x 0 0 0
x l—2x—y Y 0 0
0 l—y—=2 z 0
0 z l—2z—-t ¢
I 0 0 0 t 1—t_

The polytope Qf is represented by the 5 x 5 tridiagonal matrix

(1100 0]
11100
A=101 110
00111
(000 1 1

From (1.1.2) the number of vertices of Qf is fo(P5) = f¢ = 8. This
vertices, seen in a matricial way, are the 5 X 5 permutation matrices P5 such

that P5 S A.
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We will not make an exhaustive representation of all the faces of Q. We
will apply the formulae obtained in previous sections to count those faces.

The number of edges of Q2 is, applying (3.1.1):

3—p

3
=3 fir1 fipi = 18.

o

From (3.2.1), we obtain for the number of the faces of QL:
2—p 2—j—
ZpikH Jaep—i + ZPZ Z S fivfa—p—jr = 17.
p=1 p=1 j=0 k=0

Finally, the number of cells of Qf is given by Proposition 3.3.1. Asn < 6,

we consider only the two first summands, (3.3.1), (3.3.2), and we obtain

1
f3(P5) = ZW—pHZﬁ;H Jo—p-kt
p=0
0 P —J
P+2)p+1) Zka—H fiv1 fimp—j—k
=0 7=0 k=0

I
~ =






Chapter 4

Face counting on an acyclic

Birkhofl polytope

In the sequel of the study done in the previous chapter, we are now
concerned with several counting problems associated to faces of Q,(T). In
this chapter we present algorithms for counting the number of edges of €2,,(T),
in general, and also we find explicit expressions for this number when 7" has
certain structure such as stars and starlike trees. Moreover, we describe
algorithms for counting the number of faces of €2,,(7") and we also discuss its
complexity restricted only to the number of necessary iterations to obtain
results. In this way we compare the algorithms presented. Some examples

are provided.

The next proposition follows from Proposition 2.2.11 and it is used to
determine the number of faces of dimension m of the polytope associated to

two disjoint trees.

Proposition 4.0.1. Let T and T" be two disjoint trees with n and n’ vertices,

respectively, if g, ts the number of bicolored subgraphs of an acyclic graph

69
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corresponding to faces of dimension m, then, for m < min{n,n'},
Gn(TUT) =" for n(T) f(T).
k=0

Proof. Let T = (V(T),E(T)) and T" = (V(T"), E(T")) be two trees with
n and n' vertices, respectively, such that V(T') N V(T") = (). Consider two
vertices, vy in T and vy in 77, Let Ty = (V(T1), E(T1)) be a tree with
V(Ty) =V(T)uV(T") and E(T)) = E(T)U E(T") U{vpvr }. The number of
bicolored subgraphs of T} that do not contain the edge vrvy and represent

a face of dimension m < min{n,n’} of 4,/ (11) is

For each £ =0...,m let:

e fr(T) be the number of bicolored subgraphs that correspond to faces
of Q,(T), with dimension k, where each of them has t, T-components
and, from Proposition 2.2.11, the sum of its closed endpoints and inner

entries is equal to k + to, (¥);

o fm—i(T') be the number of bicolored subgraphs that correspond to
faces of Q,/(T"), with dimension m — k, where each of them has ¢
T-components, and from Proposition 2.2.11, the sum of its closed end-

points and inner entries is equal to m — k + t;, (**).

Let us consider the union of a bicolored subgraph described in (*) with
a bicolored subgraph described in (**). It is a bicolored subgraph of T that
does not have the edge vrvyv, it has tg + ¢, T-components and the sum of its
closed endpoints and inner entries is (k+t)+(m—Fk+t). The dimension of a

face of €2, (11) corresponding to this bicolored subgraph is, by Proposition
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2.2.11, equal to m. Considering the union of each bicolored subgraphs in
(*) with each bicolored subgraphs in (**) we obtain fy(T") f,,—(T") bicolored
subgraphs of T} and to each of them corresponds a face of dimension m of
Qi (T1). For k= 0...,m, sum all the previous values and we obtain the
desire number.

]

For better understanding let us present the example below. Consider the

next two trees

@) @)
/ /
@) @) @)
N VRN
O—O0—0—0 @) @) @)
/ N N
@) O —O0O o —20O
I\ I\
@) @) ©) @)
T T
The tree T can be the following
@) @)
/ /
@) @) @)
AN VRN VRN
O—O0—0—0 o —O0O @)
/ N AN
o o—o o—o
N I\
@) @) @) @)

Therefore:

- a bicolored subgraph of 7' (with one T-component and the sum of its
closed endpoints and inner entries equal to five) that corresponds to a

face of dimension four of Q, (7)) is:



72 4. Face counting on an acyclic Birkhoff polytope

o o
AN AN
o o—o e o
AN
° °o—o
N
o o

- a bicolored subgraph of 7" (with one T-component and the sum of its
closed endpoints and inner entries is equal to foour) that corresponds

to a face of dimension three of €, (7") is:

- The union of the two previous bicolored subgraphs is a bicolored sub-
graph of 77 ( with two T-components, and its sum of closed endpoints
and inner entries is equal to nine) that corresponds to a face of dimen-

sion seven of Qg (77).

° °
o o o
AN N N
o o—o e o e o
AN AN
° oo o—e
N N
o o o o

4.1 Counting the edges of 2,(T)

In the previous chapter using bicolored subgraphs we presented a formula

to count the number of edges of the tridiagonal Birkhoff polytope, QF:
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3
w

n—a—p

2—
Z fk—l—l fn—p—k—h

k=0

Il
o

p

This section is devoted to present algorithms for counting the number
of edges of €,(T) for a given tree with n vertices. Those algorithms are
compared.

In Chapter 2 we describe an edge of €2,,(7") in terms of bicolored sub-
graphs. In fact, an edge is the union of bicolored subgraphs of Type 1, Type
2, and exactly one bicolored subgraph of Type 3, without any inner entries
and exactly two closed endpoints. Consequently it is represented by the

union of bicolored subgraphs in the following form:

H, e—o—o—---—o0—e H;

where H; and H; have the same meaning presented in Section 3.1 of Chapter
3. Hy represents the empty set and, in this case, it is conventioned that
fo(0) =1 (recall 2.3.1).

In order to motivate what following we start by presenting the edges of

Q5(T5), where T5 is the tree:

/
O —-0—-0
AN
@)
The fifteen edges of Q5(7T) are:
[ ] (] [ ] [ ]
/
o — 0 [ ] ®e—0 @) ®o—0 @) [ ] o — 0
N
[ ] [ ] (] [ ]

aq a9 as ay
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[ ] [ ] [ ] [ ]
/ /
[ ] [ ] [ ] O —0 [ ] [ ] [ ] [ ] O — 0O [ ]
AN AN
[ ] [ ] [ ] [ ]
Qs Qg ar ag
[ J [ J [ J [ J
/ /
®e—-—0O0—e0 [ ] ® — O [ ] ® — O [ ] [ ] (@]
AN AN
[ ] [ ] [ ] [ ]
Q9 aio ai 12
[ J [ J [ J
/ /
O — 0O (@] ® -0 —0 ® -0 —0
AN AN
[ ] [ ] [ ]
ais a4 a1s

If the number of vertices of the tree increases, even with a small growth,
an exhaustive exhibition of all edges of €2,,(7") becomes harder.

The next example provides a motivation for an algorithm to calculate the
number of edges of §2,,(T), for a given tree with n vertices. In this example,
we consider the starlike tree S’ = Sj 53 with 3 branches of lengths 1,2,3
presented below:

O—0—0—0—0

\
o
\
O
According to Proposition 2.2.11, the number of edges of the polytope Q2(5")
is equal to the number of bicolored subgraphs of S’ that have one bicolored
subgraph of Type 3 with two closed endpoints and without inner entries.
The bicolored subgraph of Type 3 (a T-component) has one of the fol-

lowing configurations:

®e—o 66 -O0C—o :--- 6 - 0—-—0—0—-0—8e,
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As diam(S") = 5, there is no other possibility for the configuration of
the T-component. Each of those possibilities gives rise to several distinct
bicolored subgraphs that correspond to an edge of 2;(S’). For example, if
the T-component has the first configuration, it can occupy the same position
as the edges of S’. Using the previous procedure, we will distinguish the cases
to be discussed.

Suppose that the T-component “occupies” the position of:

1. the first edge of 5’,

2. the fourth edge of 5,

3. the sixth edge of 5,
O—O0—0—0—0
[ ]

The number of edges of the polytope Q7(S’) having the T-component
in each of the previous positions is given respectively by: fo(P3) fo(P) =
3x2=06, fo(Ts) =7 and fo(P5) = 8.

For the remaining cases, that are not presented in this description, the
calculation of the number of edges of Q;(.S”) is determined using similar argu-
ments. Therefore, the total number of edges obtained from this T-component

is given by the expression:

fo(Ps) fo(P2) + fo(P1) fo(P) fo(P2) + fo(Pu) fo(Pr)+
+fo(T5) + fo(Pr) fo(P3) fo(P1) + fo(Ps) = 33.
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If the T-component has the second configuration, it can “occupy” the
same position as two consecutive edges of S’, as we can see next. Assume

that it “occupies” the position of:

1. the first two edges of 57,

2. the first and fifth edges of 5,

® O O—0—0

3. the last two edges of S,

o e o0o—0—0
O
The number of edges of the polytope Q7(S’) having the T-component
in each of the previous positions is given respectively by: fo(P) fo(P2) =
2x2=4, fo(Ps) fo(P1) =3 x1=3and fo(P) fo(Ps) = 3.
Again, for the remaining cases the calculation uses similar arguments.
Therefore, the number of edges obtained from this T-component is given by

the following expression:

Jo(P%2) fo(P) + fo(Pr) fo(P2) fo(Pr) + fo(Pa) + fo(P3) fo(Pr)+
+fo(P1) fo(P2) fo(P1) + fo(P1) fo(P3) = 19.
If the T-component has the third configuration, it can “occupy” the same
position as three consecutive edges of S’. Suppose that it “occupies” the

position of:
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7

1. the three first consecutive edges of S’,

The number of edges of the polytope Q;(S") having the T-component in

each of the previous positions is given respectively by: fo(P;) fo(P2) = 2 and

fo(Ps) = 3. For the remaining cases the calculation is similar. Therefore, the

total number of edges that is obtained from this T-component is given by

the following expression:

Jo(P) fo(P2) + fo(P1) fo(P2) + fo(P1) fo(P2)+
Jo(P1) fo(P1) fo(Pr) + fo(P3)

If the T-component has the fourth configuration, it can “occupy” the

same position as four consecutive edges of S’. Consider that it “occupies”

the position of :

1. the first four edges of S’,

I
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3. the second, third, fifth and sixth edges of 5,

Similarly, the number of edges of the polytope Q7(S’) having the T-
component in each of the previous positions is given respectively by: fo(P,) =
2, fo(P1) fo(P1) =1 and fo(P1) fo(F1) = 1.

If the T-component has the last configuration, it can “occupy” the same
position as five consecutive edges of S’. Consider that it “occupies” the po-

sition of:

1. the second, third, fourth, fifth and sixth edges of S’,

The number of edges of the polytope 7(S”) having the previous T-component
is given by fo(P;) = 1.

Therefore the total number of edges of €27(.S”) is the sum of all the previous
values, i.e., fi(S") = 67.

The illustration presented above gives rise to the first algorithm that allow
us to count the number of edges of Q,,(T), for a given tree 7.

An edge is a face of dimension 1. From Proposition 2.2.11, as 1 = 041 —t,
0 >2 t>1and ¢ > 0, we obtain the unique solution # = 2, ¢t = 1 and
t = 0. Therefore, the bicolored subgraphs that represent an edge of €2,,(T),
have one T-component with two endpoints and without inner entries.

The idea is firstly consider each edge individually, as a path of length

one and can be regarded as a T-component with two closed endpoints and
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without internal open vertices. Each of these paths gives origin to go(7T\ P)
different bicolored subgraphs.

Then, each pair of consecutive edges, considered individually, is a path
of length two and can be regarded as a T-component with two endpoints
and without inner entries but with an open vertex. Each path of length
two gives origin to go(7'\ Ps) different bicolored subgraphs. We continue in a
constructive process until the number of consecutive adjacent edges reaches
the diameter of the tree.

We proceed as follows:
Algorithm 1

The input is a tree T such that diam(T) = p.

step 1 ¢ Fori € {1,...,p} consider each path P of T, with i edges, and calculate
the value go(T \P);

final step ¢ Sum all the values obtained in the previous steps and exit.

The sum obtained in the final step is the number of edges of €2,,(7').

If T is a path P with n vertices, this algorithm leads to Proposition
3.1.1 obtained in Chapter 3. However, if T" is a star S with n vertices, the
application of this algorithm provides a closed formula for the number of

edges of the polytope €, (5).

Proposition 4.1.1. Let S be a star with n vertices, then

n(n—l).

fi1(8) = 5

Proof. In fact, S has n — 1 edges and each one of them gives rise to an

edge of the acyclic Birkhoff polytope €,(S); the graph S has C5~! pairs of
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consecutive edges and each pair gives rise again to an edge of Q,(S). Since
diam(S) = 2, there is only one possibility to count the edges of €2,(S) and

therefore,

£(S)=(n—1)+ (n— 1)2(n— 2) _ n(n2— o)

4.2 An alternative algorithm for f,(7)

Let T and T’ be two trees with n and n’ vertices, respectively, such
that 7" is a subgraph of 7. Suppose that 7] is a bicolored subgraph of T”
that represents a p-face, with 0 < p < min{n,n’}, of the acyclic Birkhoff
polytope associate to 7”. Then, in T, we can identify go(7\7") different
bicolored subgraphs, such that each of them represents a p-face of €, (7T)
that “contains” the configuration of the referred p-face of Q,/(7"). Recall
that go(7\7") denotes the number of bicolored subgraphs of 7" that are the
union of a finite number of bicolored subgraphs of Type 1 and Type 2 whose
diameter is at most one, and it is also equal to the number of matchings in
the graph T\T".

In order to illustrate this property let us consider the trees T and T’

presented below:

o o
/ /
o o o
AN RN
0O—0—0—0 ¢} o <
/ AN AN
o o—o 0O—o0
N |\
o o o o
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One 3-face of Qg(7") has the following configuration :

The polytope Q13(7) has go(T\T") = go(T5) = 7 faces of dimension three
that “contains” the referred configuration. The next example is one of these

seven faces:

°
o o

AN AN

o o—o e o

N

° o—e
RN

o o

Expressions giving the number of edges of the tridiagonal Birkhoff poly-
tope are known, see Chapter 3 and reference [14]. Therefore, the next algo-
rithm for calculating f;(7") has the underlying idea to consider all different
paths obtained using two endpoints of the original tree. We compute the
number of the edges of tridiagonal Birkhoff polytopes associated to them.
However, in this counting, some of the configurations of the edges of €, (7T")

are going to be repeated and must be removed.

Algorithm 2

The input is a tree T" with n vertices.

step 1 ¢ for each pair of different endpoints of the tree T consider the path P
between them and compute f;(P) go(T\P);
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step 2 4 sum all the numbers obtained in step 1;

step 3 4 for each pair of different paths considered at step 1, let P’ be the path
from their intersection. Compute f1(P’) go(T\P');

step 4 4 sum all the numbers obtained in step 3;

final step ¢ Calculate the difference between the numbers obtained in steps 2 and

4.

Ezample 4.2.1. For S’ = S} 53 presented in the first part of this section, we
count f1(S”). Here attending to the last algorithm we have:

fi(S) = [i(B5) fo(P) + fi(Py) fo(Ps) + f1(Fe) fo(P1)—
Lf1(P2) fo(P2) fo(Ps) + fi(Ps) fo(Pr) fo(Ps)+

f1(Py) fo(Pr) fo(P2)]
= 18x2+8x3+38x1—-[1x2x3+3x1x3

+8 x 1 x 2]
= 67

Applying Algorithm 2 to a starlike tree, next proposition follows:

Proposition 4.2.2. Let 8" = S, , ... p. be a starlike tree with n branches of
lengths p1,...,pn and N = p; + pa + -+ + p, + 1 vertices. The number of
edges of Qn(S") is given by

n

2y

=1

fl(Ppi+1) HfO(Ppk)
ki

fi <Ppi+17j+1) H fO(Ppk)

ki,

A=Y

1<i<j<n

Proof. For each pair of different branches of S of lengths p; and p;, consider
the path B, 1. Without loss of generality, for each ¢ = 1,...,n -1, j

will run over all values from ¢ 4+ 1 to n. From this, the next sum represents
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the number of the configurations of all edges of polytopes associated to the

mentioned paths

D

1<i<j<n

fl(PP¢+Pj+1> H fO(PPk)

k#i,j

(4.2.1)

The previous number includes edges of Qy(S’) that appear repeatedly and
must be removed. They correspond to edges of polytopes associated to paths
that result from the intersection of two different paths that have a common

part and that number is given by the following expression:

n

(n—Z)Z

=1

fl(Ppi+1) HfO(Ppk)
ki

(4.2.2)

The final number of the edges of Q2 (S”) is given by the difference between
the expressions (4.2.1) and (4.2.2). O

Recall that the formulae (4.2.1) and (4.2.2) involve only the expressions of
fo(P,) and fi(P,) for any n, that can easily be determined (c.f. [18, 16, 14]).

4.3 Comparing algorithms

Restricting the complexity of the algorithms only to the number of neces-
sary iterations to get results, maintaining the other operational parameters
constant, Algorithm 1 needs 62 iterations while Algorithm 2 needs § + §2,
where 0 is the total number of paths obtained from 7' considering all possible
lengths. However, it depends on the implementations that can be done. The
computational implementation of the algorithms is not already done but we
present below a different form to write the Algorithms 1 and 2 in such a way

that we can study its complexity and compare them.
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Consider the following data structure: V is the set of all vertices of the
tree T" and Paths is the set of all different paths in the tree considering all
possible lengths. All paths saved in this data structure have an unique index.

Consider now the following methods:

- diam(T) gives the length of one of the largest path of T’

- LengthPath(P) gives 0 if the path does not exist and gives Ip if Ip is
the length of the path P;

- § =LengthPaths(7T') gives the total number of paths existing in the tree

and saved in the data structure Paths;

- PathTerminal(P) gives true if the path P is formed with terminal ver-

tices of the tree, false other cases;

- IntersectPath(FP,, P,) gives 0 if the path P, does not intersect the path
P, and gives the path P; if P,N P, = P,.

As we said we can rewrite the previous algorithms in the following form:
Algorithm 1
Let Sum =0
For ¢« = 1 to diam(T)

For p = 1 to LengthPaths(T")

If LengthPath(P) = i then let Sum = Sum + go(T\P)

Next p

Next 7

To get the final result, after running Algorithm 1, the total number of
iterations is 62. Note that, to determine diam(T') we need to run all the paths

of the tree and therefore we need § iterations.
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We present Algorithm 2 in two stages. The Stage I finds all the paths P
of the tree with terminal vertices and, for each one, calculate fi(P)go(T\P).

The Stage II finds all the intersections P’ between two different paths
and, for each one, calculate fi(P")go(T\P').

We present the details below:

Algorithm 2

Stage |

Let Suml =0

For p = 1 to LengthPaths(T")
If PathTerminal(P) = true then
let Suml = Suml + f1(P)go(T\P)

Next p

To obtain a result after running this stage, we need ¢ iterations.
The Stage II can be implemented in two forms:
Stage 11
(Implementation 1)
Let Sum2 =0
For P, =1 to LengthPaths(T)
For P, = 1 to LengthPaths(T")
If P, # P, then
P’ =IntersectPath(P,, P,)
If P'# 0 then let Sum2 = Sum?2 + f1(P")go(T\P')
end If
Next P,
Next P,.

To obtain a result after running Stage II with this implementation, we
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need 62 iterations.
Stage I1
(Implementation 2)
Let Sum2 =0
For P, =1 to LengthPaths(7T") — 1
For P, = P, + 1 to LengthPaths(T)
P’ =IntersectPath(P,, P,)
If P’ # 0 then let Sum2 = Sum2 + f1(P")go(T\P’)
Next P,

Next P,.

We need 1 + Z j—1) = 2— iterations to obtain a result after run-
ning Stage II Wlth thls implementation. This expression can be obtained by

induction.
Now, we can compare the different implementations of Algorithm 2:

a) Algorithm 2 with Stage I and Stage IT (implementation 1) needs ¢ + 6>

iterations to obtain the final result.

b) Algorithm 2 with Stage I and Stage II (implementation 2) needs § +
1+ Z (j — 1) = &2 iterations to obtain the final result.
=3

In conclusion, b) is more efficient than a).
Now, we can compare Algorithms 1 and 2.

Algorithm 1 is more efficient than Algorithm 2 (with implementation 1)
but, Algorithm 2 (with implementation 2) is more efficient than Algorithm
1.
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4.4 Counting the 2-faces of Q,(7)

In Chapter 3, the Proposition 4.4.1 gives a formula to count the number

of 2-faces of Qf:

n— n—2—p n—3 n pn—3—p—j

2 _3—
fo(P) = ZP Z Jr1 frp—k—1 +ZP Z Z Jrs1 fiv1 famp—j—i—2 -
k=0

1 p=1  j=0 k=0

(4.4.1)
All these problems related with the counting of faces of Q! motivated
us to study the same problem for the acyclic Birkhoff polytope. We start

enumerating the faces of Q,(5), where S is a star with n vertices.

Proposition 4.4.1. Let S be a star with n vertices. The number of 2-faces

of Q,(S) is
n(n—1)(n — 2).
6

Proof. According to Proposition 2.2.11, the number of faces of 2,,(.5) is equal

f2(5> =

to the sum of the number of all bicolored subgraphs with one T-component,
with two closed endpoints and one inner entry, with the number of all bi-
colored subgraphs with one T-component with three closed endpoints and
without inner entries.

The T-component can have one of the configurations presented below:

®  two closed endpoints and one inner entry:
o—0—o
®  three closed endpoints without inner entries:

®e—O0O—e0
.
Recall that S has n — 1 edges. Therefore, due to the configurations of

the T-component it follows that we have Cy ', in the first case, and C§



88 4. Face counting on an acyclic Birkhoff polytope

in the second case, different bicolored subgraphs of S. The sum of these two

values gives f(5). O

As in Section 2, we use again Proposition 2.2.11, to obtain the com-
position (in number and structure) of the T-components presented in the
configuration of a bicolored subgraph that represents a 2-face.

Let T be a tree with n vertices, and F be a 2-face of €2,,(7). As dim F = 2,
from the relation 2 = 6 + 1 —t where 6 > 2, + > 0 and ¢t > 1, we only have

three possibilities.
1.0=21r=1andt=1;
2.0=3,1=0and t =1;
3.0=4,1=0and t =2.

Each one leads to a different stage of the next algorithm that will allow

an exhaustive account for the number of the 2-faces of Q, (7).

Algorithm 3
The input is a tree, T', with vertex set V' and diam(T) = q.

Stage I Computation of the number of bicolored subgraphs with a T-compo-

nent with two endpoints and one inner entry:

step 1 A For i =2,..., ¢ consider each path P of T" with i edges calculate go(T
\P), compute (i — 1)go(T \P), and sum all the values obtained,;

final step A Sum all the values obtained at step 1 and exit.

Stage II Computation of the number of bicolored subgraphs with a T-compo-

nent with three endpoints and without inner entries:
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step 1 A for each vertex v of T" whose degree is greater than 2, we consider
each of the triplets of incident edges on v, i.e., stars with three

branches and a central vertex v;

step 2 A for each of these stars, S, we consider all starlike trees, S’ with

central vertex v containing S as a subgraph. For each S’ we cal-

culate go(T \S');
step 3 A sum all the values obtained in step 2;

step 4 A consider the starlike trees with origin in the same star and with
a common vertex i # v whose degree in T is greater than 2, for
each pair of these starlike trees consider their intersection S* and

calculate go(7T\S™);
step 5 A sum all the values obtained in step 4;

final step A calculate the difference between the values obtained in steps 3 and

5, respectively.

Stage III Computation of the number of bicolored subgraphs with two T-compo-

nents each one with two endpoints and without inner entries:

We start fixing a T-component (called first T-component) and we vary
the another one in configuration and in position. Then, for each p =
1,...,diam(T) the first T-component can occupy the position of a path
in T, P, ,, with length p, where ¢; is its initial edge.

step 1 A If the first T-component occupies the position of a path in T with
initial edge e; and length p, P,, ,,, compute fo(0)g1(T[V\V(P., »)]);

step 2 A If the first T-component occupies the position of a path in T with
initial edge e, and length p, P, , compute fo(P1)g1(T[V\(V (e1)U
V(Pesp));
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step ¢ A If the first T- component occupies the position of a path in T" with
initial edge e; and length p, P., , compute go(H)g1(T[V\(V(H)U
V(Fe, )]
Here, H is the subgraph of T" with edge set
E(H)={e1,ea,...,e;-1}\{e : e is incident on some vertex of P,, ,}
and vertex set:

V(H)=V(egUea U---Ue;)\V(P, ).

final step A Repeat the previous step until the diameter of each connected
component of the induced subgraph T[V\(V(H) U V(F,,,))] is

equal to 0 and sum all values obtained at this stage.

Stage IV Sum all values computed at Stages I, II and III.

In order to illustrate this algorithm we present a description of the way
we can count the 2-faces of Q5(7").

Stage I If we have exactly one T-component, then one of the following
configurations may occur:

® the T-component has two endpoints and one inner entry:
o — 0 — 0o

From the first step of the algorithm we have: go(T\{1,2,3}) = go(T\{2, 3,5})
= g0(T\{2,3,4}) = fo(P1) = 1 and go(T'\{3,4,5}) = fo(P) = 2. We sum all
of these numbers. Therefore, we have five 2-faces of Q5(7) and the respective

configurations are:

F1 FQ F3
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® the T-component has one open vertex and its configuration can be
e—o0—eo—o
From the application of the step 2 we have:
go(T\{1,2,3,4}) =1 and ¢o(T\{1,2,3,5}) = 1.

We compute 2¢0(T\{1,2,3,4}) + 2go(7T\{1,2,3,5}) = 4. The corresponding

configurations of the four 2-faces of Q5(7") are:

[ ] [ ]
/
®e—O0O—eo ®e—O0—eo
AN
[ ] [ ]
Fs Fy
[ ] [ ]
/
®— 0 —O ®e— 0 —O
AN
[ ] [ ]
Fy Fy

Note that the two last one are due from the fact that the configuration of

the T-component can also be
e — @ —0—o0

As diam(Ts) = 3 we do not have another possibility, we finish this stage
adding the values obtained: 5+ 4 = 9.
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Stage II If the T-component has three endpoints without inner entries

it can have the following configuration:

/
oo
AN
°
or
°
/
e—0—o0
AN
°

As in Ty, we only have one vertex with degree greater than 2 and we
only have a triplet of incident edges in this vertex, which correspond to the

2-faces, respectively,

[ [ J
/ /
[ J ® —O ® — 0O —0O
AN AN
[ J [ J
Fio Fiy

Note that from the application of step 2 we only have two starlike trees. As
result of this stage we have two faces of Q25(7") and this number of faces results
from the sum of ¢go(7T\{2,3,4,5}) = fo(v) = 1 with go(T\{1,2,3,4,5}) =
fo(0) = 1.

Stage III If the bicolored subgraph has two T-components with two
endpoints and without inner entries.

We start fixing the first T-component without open vertices. The second
one can have, or not, open vertices. As diam(Ts) = 3, the number of open

vertices must be necessarily one. Therefore we have two possibilities:



4.4 Counting the 2-faces of §,,(T) 93

and

attending to stepl, we calculate

fo(0) f1(Ps) = 3.
Suppose now that the first T-component will occupy the position of e,, as
diam(T[V\V(e; Ueg)]) =0

we must stop the process.

So, the configurations of the three faces obtained are:

o [ )
/
o — 0 [ ] o — 0 [ )
AN
[ ] [ )
Fiy Fis
and
[ ]
/
e — 0 (e)
AN
o
Fuy

Stage IV In this way we obtain the number of all the 2-faces of Q5(7")

5+2x2+2+3=14.
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4.5 Counting the faces of (,(T) revisited

In this section, as we have previously done for the counting of the edges
of Q,(T), we will consider paths between terminal vertices of the tree. We
count the faces associated to them.

So, in order to count the faces of Q5(7T") we start with maximal paths
between terminal vertices in 75, that is, whose diameter is equal to diam/(T5).
We have two possibilities:

® let P, be the path constituted by the vertices 1,2,3 and 4

o

/

O—0—0
o
The faces of the tridiagonal Birkhoff polytope associated to the previous

path correspond to the following representations:

° ° °
/ /
o —90o—o e o —o e—0—eo

o o) o

° °
/ /
e—0—0 e—9o o

o o

® let P; be the path formed by vertices 1,2,3 and 5

O—0—0
AN

o

the faces of the respective tridiagonal Birkhoff polytope correspond to:

*o— 60— o [ o — 0 e —O—e
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®e—0 —0O o — 0 [ ]

AN AN

The previous representations will correspond to the 2-faces Fi, Fo, F3,
Fe, Fr, Fs, Fo, Fio and Fi3 of Q5(T). Observe that the representation of F;
appears in both cases. This is due to the fact that the vertices 1,2 and 3 are
common to both paths, Py N P; = P, here is the path with vertices 1,2 and
3. So in the end we must remove the faces of 5(7T") that appear repeated.
Therefore, so far we have nine different faces.

Now we consider all paths between terminal vertices of T whose diameter

is equal to diam(Ts) — 1.

® Let P; be the path constituted by the vertices 3,4 and 5 of T5

The face of the respective tridiagonal Birkhoff polytope associated to this

path is obtained from:

The representation above corresponds to the faces Fy and Fs of Q5(7).
Until here we have obtained twelve 2-faces but one of them is repeated.

Therefore we have eleven different faces.

There is no possibility to obtain from the original tree more paths with
terminal vertices of T.
As in the configuration of a face we can have two T-components, we must

consider the situation that involves two disjoint paths. Each T-component
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belongs to one of the paths, corresponding to an edge of the corresponding
tridiagonal Birkhoff polytope.

The faces of Q5(7") obtained from a 1-face of Q5 (P,), where P, has vertices
1 and 2 of T5, and from an 1-face of Q3(P}), that is,

o
/
o—o0 o
AN
o
are
° ° °
/ /
e—o o e—9o o e—eo O
AN AN
° ° °

In this case, the first two 2-faces correspond to Fjo and Fi3 and they
have previously appeared from the polytopes associated to Py and Pj, and
the third 2-face corresponds to the face Fi4 of Q5(T).

Due to the nature of the initial graph, previous bicolored subgraphs are
the only possibility.

Finally, we are going to analyze the faces for which bicolored subgraphs
have a T-component with three endpoints and without inner entries. As this
T-component needs at least 4 vertices, 3 endpoints and one open vertex in its
interior, it remains only a free vertex. From this, we obtain two configurations
corresponding to the faces Fig and Fi; of Q5(7T).

Therefore, it is possible to express fo(75) from the number of faces, edges
and vertices of polytopes corresponding to paths and from the number of
bicolored subgraphs which have a T-component with 3 endpoints and without

mner entries.

This illustration leads to the following algorithm for counting the faces

of Q,(T).
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Algorithm 4

The input is a tree T" with vertex set V.

Stage I Computation of the number of configuration of all faces of polytopes

associated to different paths.

step 1 4 For each pair of different terminal vertices of the tree T' consider

the path P between them and compute fo(P)go(T\P);
step 2 ¢ Sum all the numbers obtained in step 1;

step 3 4 For each pair of different paths of stepl let P’ be its intersection.
Compute fo(P')go(T\P");

step 4 4 Sum all the numbers obtained in step 3;

step 5 ¢ Calculate the difference between the numbers obtained in steps 2

and 4;
step 6 ¢ For each path P considered in step 1 compute f;(P);

step 7 4 Delete all edges incident on any vertex of P and call to the re-
maining graph G;

step 8 ¢ Let G be any connected component of GG. For each pair of terminal

vertices of G consider the path P between them and compute
f(P);
step 9 ¢ Compute fi(P) X fl(lg);

step 10 ¢ Consider all paths of T formed with all terminal vertices of P and

P and distinct from them;

step 11 4 In each paths formed in step 10, delete all edges that join P and
P and let M and M’ be the two subgraphs obtained;

step 12 4 Compute ¢ (M) x g1(M');
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step 13 ¢ Sum all the products obtained in step 12;

step 14 ¢ Subtract the value obtained in step 13 to the value obtained in
step 9;

step 15 4 Calculate go(T\(P U G));
step 16 ¢ Multiply the values obtained in steps 14 and 15;
final step 4 Sum the values obtained in steps 5 and 16.

Stage II Computation of the number of bicolored subgraphs corresponding

to the T-component which has 3 endpoints and no inner entries.

step 1 4 For each vertex v of T', whose degree is greater than 2, we consider
each of the triplets of incident edges on v, i.e, starlike trees with

branches with maximum length.

step 2 4 For each Sy, 4, s = 5" let i =0,1...,p; — 1, compute

Jo(Bp1=i) fo(Ppo—j) fo(Fps—k)90(T\S"),
forall j =0,1,...,po—1land k=0,1,...,p3 — 1;

final step ¢ Sum all the values determined in previous step.
Stage III Sum the values obtained in final steps of stages I and II.

Recall that, as we have seen, the maximum number of closed endpoints

of a T-component is at most three.

Proposition 4.5.1. Let S" = S, p,....p. be a starlike tree with n branches of
lengths p1,...,pp and N = py + pa + - -+ 4+ p, + 1 vertices. The number of
faces of Qn(S') is given by

fo(T) =
Z [f2(Ppi+Pj+1)Hf0(PPk> - (n_2)ZfQ(Ppi+1)Hf0(Ppk)+
1<i<j<n ki, i=1 ki
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Z (fl(PPi+pj+1> _fl(Ppi+1) _fl(PPjJrl)) fl(Ppk) H fO(PPe)

1<i<j<n (+i,4,k
Akt

+3 | XS B fo(Bo-) foPo—s) [T F6(P)

J#kFL | 0<r<p;—1 04,5,k
i#£j 0<s<p;—1
0<t<pir—1

Proof. For each pair of different branches of S’ p; and p;, consider the path
P,

pitp;+1- Without loss of generality, for each 4, ¢ = 1,...,n — 1, j will run

all values from 7 + 1 to n.
The next sum represents the number of the configurations of all faces of

polytopes associated to the referred paths,

Z f2(Ppi+Pj+1> H fO(P:Dk)

1<i<j<n i#kA]

When the faces of the polytopes corresponding to those paths are conside-
red,

(n—2)>_ f(Pp)[[fo(P)
i=1 ki

is the number of faces that are going to appear repeated. Therefore, that
number has to be excluded from the previous expression.

Now, we must consider the 2-faces resulting from two T-components
where one of them is in a branch and the other T-component has its two

endpoints in two different branches. It results the following number

Y (APoipa) = i) = LBy ) AE) | ] B

1<i<j<n 01,k
i#kA
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Finally, the number of bicolored subgraphs corresponding to the T-compo-

nents which have three endpoints and no inner entries is

Z Z fO(Ppi—T)fO(ij—s)fO(Ppk—t) H fO(PP/z)

kA | 0<r<pi—1 0£ijk
i 0<s<p,;—1
7 SS5pj
# \o<t<pi—1

Here, if k < n, then f,(Py) = 0.

From the previous considerations we get the desired result.

4.6 Counting faces of any dimension of ¢2,(S)

For a given star with n vertices, we have already seen in sections 4.1 and

4.4, Propositions 4.1.1 and 4.4.1, respectively, that

7S = (0 1)+ g = M=)
and
fo(S)=Cit+ Oyt = n(n — 16)5(71 — 2)'

In this section our aim is to obtain an expression for the number of p-faces
of the acyclic Birkhoff polytope associated to S, for 3 <p <n —1.

This number is equal to the number of bicolored subgraphs with one T-
component and whose sum of closed endpoints and inner entries equals to
p+ 1

Bearing in mind that diam(S) = 2, the T-components that we can con-
sider to characterize a p-face, with 3 < p < n—1, are only of the two different

types:

i) with p closed endpoints and one inner entry; and
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i1) with p + 1 closed endpoints and without inner entries.
The number of p-faces of €,,(.S), whose bicolored subgraphs have, respec-
tively, the first and second T-components are given by

n—1 n—1
C, " and Oy

Therefore, the number of p-faces of €2,(5) is given by

n! "
(p+Din—p—1 "

As this last expression is also valid for the cases p = 0,1,2, we can

1o(8) = Cpt 4+ Gyt =

p

establish the following:

Proposition 4.6.1. Let S be a star with n vertices, f,(S) = C},,.

4.7 Counting facets of €2,(T)

Finally, we present an expression for the number of facets of Q, (7). Ta-
king into account Proposition 2.2.11, the next proposition allows us to deter-
mine the number of facets of any acyclic Birkhoff polytope 2,,(T"). Here, an
pendant edge is an edge of the tree that is terminal, i.e., one of its vertices
is an endpoint of the graph, and an inner-edge is an edge of the tree that is

not a pendant edge, i.e., whose both vertices are not endpoints of the tree.

Proposition 4.7.1. Let T be a tree with n (n > 2) vertices, where p of them

are endpoints. The number of facets of the polytope Q,(T) is 2n —p — 1.

Proof. Considering Proposition 2.2.11, we are looking for all different bicol-

ored subgraphs of T' verifying

n—2=0+.—t.
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Regarding that in any bicolored subgraph 6 4+ < n, the bicolored subgraphs
that we are searching for have at most two T-components. If the bicolored
subgraph has only one T-component, we can have two different cases:

Case 1. All the endpoints of T are endpoints of the T-component. By
(2.2.11), the T-component has n — p — 1 inner entries. Therefore, the T-
component must have one (and only one) vertex of T' that is not an inner
entry. As this vertex can occupy n — p different positions in 7', we have n —p
different bicolored subgraphs and each of them represents a facet.

Case 2. The T-component has p — 1 endpoints that are also endpoints of
the graph T and one endpoint that is not an endpoint of the graph T, i.e.,
one of the pendant edges of the graph T' is not an edge of the T-component.

The number of different pendant edges of the graph T is p. Therefore
we have p different possibilities to get the bicolored subgraph and we have p
different bicolored subgraphs whose corresponding face has dimension n — 2,
and each of them represents a facet of Q,,(T).

If the bicolored subgraph has two T-components, all the vertices of the
bicolored subgraph must be closed. In this particular situation, the 7-
component must be “apart” by one inner edge. Since the number of edges of
the tree T is n — 1, we have n — 1 — p inner edges and consequently we have
n — 1 — p bicolored subgraphs of the graph T" and each of them represents
a facet of Q, (7). From the previous calculations we obtain the number of

facets of the polytope Q,(T):

m—p)+p+(n—1—-p)=2n—p—1.



Chapter 5

Faces of faces of the tridiagonal

Birkhoff polytope

In this chapter using bicolored subgraphs we extend some results of [16],
namely we count the faces of lower dimension contained in a given p-face of
the tridiagonal Birkhoff polytope, €, (P) = QF, where P is a path with n
vertices. Observe that, in this case, the configuration of a face of dimension
greater than 0, has always a T-component with the shape of a path.

In the last section of Chapter 3 we made the description of the faces of

QL. Regarding the previous study, we have the skeleton of this polytope:

As we can see, one face of the previous three dimensional polytope is a

rectangle while the others are triangles. Note that the rectangular face is

103
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represented by:

and it can be determined by two of its four edges:

e — 0 [ ] ) o —0 o —eo [ ] [ ] o — o o — 0 O —o0

ViVs VaVs ViV, ViVs

It has the four vertices:

and

Vi Vs
One of the triangular faces is, for example:
e—©® _0—oeo

whose three edges and three vertices are, respectively:

L] e __O—oeo ® O —-0—e [ Q) o —o
V3Vy V3Vs ViVs
and
e O0O_0 o e ®© Oo_o 0O_0 O0—o
V3 Vi Vs

Motivated by these examples we are interested in the study of the nature

and number of faces of lower dimension contained in a given p-face of Qf.
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In the next section we determine the maximum number of different possible

T-components that can be present in the bicolored subgraph that represents

t
n’

a given p-face of (2!, with p > 2. In Section 2 we give the number of ver-
tices of a given face and in Sections 3 and 4 we present the number of faces
of lower dimension contained in a given 2-face and a 3-face (a cell) of Qf
respectively. For the obtained formulae we need to manipulate some rela-
tions with Fibonacci numbers, namely, attending to the Fibonacci’s num-
bers property: foim = fafm-1 + far1fm, we obtain the following relation
fofme1r + fov1fm = fafm + fazm, with n,m € N. In Section 5 we present

some applications of the results given in the previous sections. The results

presented in this chapter can be found in [15].

5.1 Configurations of the T-components in a

face of Q)

In this section we are interested to find what is the maximum number of
T-components that can be present in the bicolored subgraph that represents
a p-face. According to Chapter 2, Proposition 2.2.3, the configuration of a
p-face of €, (T) is the union of bicolored subgraphs of Type 1, Type 2 and
t bicolored subgraphs of Type 3 with ¢ inner entries and 6 closed endpoints
such that:

p=0+1—t. (5.1.1)

Observe also that only the bicolored subgraphs of Type 3 vary in shape,
the remaining bicolored subgraphs are static whereas these ones are dynamic.
Therefore, in order to find the number of possibilities that allow us to cons-
truct a p-face we only use the number and the shape of the T-components.

In the specific case of a path, the number of T-components, ¢, is half
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of the number of its closed endpoints, 6. Therefore, the expression (5.1.1)

becomes

p=1+1, (5.1.2)

and the total number of T-components included on the representation of a
p-face is given by:

t=p—1 (5.1.3)

In fact, for each py > 1 the pairs of integers (¢,po — ¢), ¢t > 0, lye on
a straight line, (5.1.3) and give all the possibilities for the number of 7-
components that can be present in the bicolored subgraph that represents
the p-face. The maximum value of t is reached at + = 0 and this maximum
equals to py.

From previous considerations follows the proposition that gives the max-

imum number of T-components that allow us to obtain a p-face:

Proposition 5.1.1. The maximum number of T-components that can be

present in the bicolored subgraph that represents a p-face of QU is p.

We present next example to illustrate Proposition 5.1.1. Here H; has the

same meaning as presented in Chapter 2.

Ezxample 5.1.2. The number of T-components that can be present in the
bicolored subgraph that represents a 4-face of Q! is, from Proposition 5.1.1,
equal to 4. Ast =4 —1, ¢ >0 and t > 1, we have to discuss the number of

inner entries. In fact, if:

x =0, then t =4 and the representation of the face is:
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x ¢ =1, then t = 3 and the representation of the face can be the following

one (or a permutation of the position of the three T-components):

H eo—o H, o—0—0o H; e—eo [,

* (=2, then t = 2.

As2 =240 = 1+1, now we can have two situations: one T-component
has two inner entries and the other one does not have inner entries, or

each of the T-components has one inner entry.

In the first case, the representation of the face can be the following one

(or a permutation of the position of the two T-components):

H o—eo Hy, o—0o—0—0 [

In the second case, the representation of the face is:

H eo—0o—0o H, o—0o—0o M5

x ¢ =3, then t = 1. The representation of the face is:

H o—0o—0o—0—0o [H,

We can say that the representation of a p-face can have at least one and
at most p T-components. However, when ¢ and ¢ are both greater than one,
to determine the distribution of inner entries in each T-component we must
consider the integer partitions of ¢ in ¢ parts. The number of these partitions

can be determined appealing to generating functions, see [10].
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5.2 Number of vertices in one p-face of

From previous section we can say that we have at most p T-components
in the configuration of a p-face of Qf. Due to the dynamic nature of the
bicolored subgraphs of Type 3, is the variation of these that gives origin to
distinct vertices of a face. Next, we present the study of number of vertices
contained in a p-face of Q2 in different situations. Firstly, we present a
way of counting the number of vertices contained in a p-face of Qf whose
configuration has only a T-component. We start our study considering a
T-component with two sequences of closed vertices and one sequence of open

vertices between them.

Definition 5.2.1. A string of open (closed) vertices is a sequence of open
(closed) vertices. We say that the string has length k if it has exactly k

consecutive open (closed) vertices.

5.2.1 A configuration with just a T-component with

one string of open vertices

Suppose that the face has the configuration present below. Let i,k > 1.
We have i + 7 + k = m, where j is the length of the string of open vertices
that is between two strings of consecutive closed vertices with lengths ¢ and

k, respectively:
H oe—eo .06—0—0.0—0—0 . .0—0 H

When j = 0 the p-face coincide with the configuration of the polytope
Qf and this study has already been done in Chapter 2. Therefore, from now

on, we consider j > 0.
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Let P,, be the path that has the same shape of the previous T-component,
that is, the path with ¢ + 5 + k = m vertices.
The next proposition gives the number of vertices contained in the pre-

vious p-face.

Proposition 5.2.2. The number of vertices contained in the face that has

only a T-component with the previous configuration is:

- fo(Piyk) if j is even

o fo(Pisk—1) + fo(Pim1) fo(Pr—1) if j is odd.

Proof. In order to construct the vertices of the p-face and bearing in mind
its nature — that is, a vertex is identified as a bicolored subgraph whose
diameter is at most one — the strings of the ¢ initial and the £ final vertices of
the bicolored subgraph can be replaced by closed vertices and/or open edges
while the string of j open vertices can only be replaced by open edges.

If j is even, we can have the following two situations. The first one is

described below:

1 positions % open edges E positions
Here, we have ¢ positions that can be occupied either by closed vertices or
open edges, % open edges followed by k positions that can also be occupied
either by closed vertices or open edges. This gives origin to fo(FP;)fo(Pr)

vertices of the p-face. The second situation is:

: +2
1 — ]_ positions 2 open edges k — 1 positions
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In this case, we have ¢ — 1 positions that can be occupied either by closed

vertices or open edges, ]%2 open edges followed by k£ — 1 positions that can
be occupied either by closed vertices or open edges. This gives origin to
fo(Pi—1) fo(Pr—1) vertices of the p-face.

Therefore, when j is even the total number of vertices of the p-face with

the previous configuration is:

fO(Pi)fO(Pk:) + fO(Pi—l)fO(Pk—l) = fi—i—lfk-i—l + fsz = fi+k+1 = fO(PiJrk)-

Consider now that j is an odd number. We also have two cases. The first

one is the following:

1 — ]_ positions ) open edges k positions

In this case we have ¢ — 1 positions that can be occupied either by

closed vertices or open edges; ’%1 open edges followed by k positions that

can be occupied either by closed vertices or open vertices. This will origin

fo(Pi—1) fo(Py) vertices of the p-face. The second case is:

1 positions open edges k — 1 positions
2

Here, we have 7 positions that can be occupied by closed vertices or open

edges, % open edges followed by k£ — 1 positions that can be occupied by

closed vertices or open edges. This gives origin to fo(P;)fo(Prx_1) vertices of

the p-face.

Therefore, when 7 is an odd number the total number of vertices of the
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p -face with this configuration is:

Jo(Pima) fo(Pr) + fo(Bi) fo(Pr—1) = fifkrr + firi S
= fifwr1 + (fi+ fim1) f
= fiforr + ficafi + fidk
= firk+ filk
= fo(Pirr-1) + fo(Li-1) fo(Pi-1).

]

FExample 5.2.3. Suppose that we have a 4-face in which configuration has

only a T-component as the following:
®e—0 —0 - O0O—0—ee—0

From Proposition 5.2.2 the 4-face has fo(Psy2) = fo(Ps) = 8 vertices. The

referred vertices are:

Example 5.2.4. Suppose that we have a 3-face that has in its configuration

only a T-component with the following configuration:

®e—0 - O0O—0—0—e—o
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From Proposition 5.2.2 the number of vertices of the 3-face is:

fo(Pava—1) + fo(Pa-1) fo(Pa1) = fo(Ps) + fo(P1) fo(Pr) = 4.

Such vertices are:

H o o—o0o o—o o—o Hy

Corollary 5.2.5. The number of vertices of a p-face of a polytope that has in
its configuration only a T-component with only one open vertex that occupies

the position immediately after (or before) to an endpoint is fo(Ppi1).
Proof. As j =i =1, the configuration of the T-component is
e—0—0—0- - 0—0—@

Note that the T-component has p 4+ 2 vertices and p — 1 of them are inner
entries. It results from Proposition 5.2.2 that, as j is odd, the number of

vertices of the p-face is:

fo(Prip—1) + fo(Pi-1) fo(Fp-1) = for1 + fo = for2 = fo(Pps1)-

5.2.2 A configuration with just a 7T-component with

two strings of open vertices

Consider now that the p-face has in its configuration only a T-component
where, from the left to the right, we have a string of closed vertices with

length 7, a string of open vertices with length j;, a string of closed vertices
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with length k, a string of open vertices with length js and finally a string of
closed vertices with length i5. See the graph depicted in the next figure:

e 06 - 0—-0 - 0—0—0—0 6—0—0 0—0—0 0—0

~—~ ~— ~—~ ~—~ ~—~
il jl k j2 7;2
We can state the next proposition that gives the number of vertices contained

in the face that has the configuration described above.

Proposition 5.2.6. The number of vertices contained in the face that has

only a T-component with the previous configuration is

- for k> 1,

- Jo(Piy+k+iy) if J1 and jo are even numbers

- Jo(Pi—1) fo(Piy—1) fo(Pr—2) + fo(Pi—1) fo(Piy1k—2) +
Jo(Py—1) fo(Piysk—2) + fo(Pivis+r—2) if j1 and jy are odd numbers

- Jo(Piysirio—1) + fo(Piy—1) fo(Pyi4k—1) if J1 is even and j; is odd

- Jo(Piyykrin—1) + fo(Piy—1) fo(Piyrr—1) if j1 s odd and ja is even
- for k=1,

- fo(Py,4iy+1) if j1 and jo are both even
- Jo(Pi) fo(Pigi1) + fo(Fi—1) fo(Pi—1) if j1 is even and jy is odd
- Jo(Pi+1) fo(P) + fo(Pi—1) fo(Pip—1) if ji is odd and j» is even

- Jo(Pi21) fo(Pigs1) + fo(Pyy) fo(Pis—1) if 1 and jo are odd numbers.
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Proof. When we construct the vertices contained in the p-face the strings
of open vertices give origin to open edges. Therefore we have to consider
two different hypothesis: j7; and j have the same parity or j; and jo have
different parities.

Firstly suppose that k£ > 1.

« If 7; and j5 are both even numbers, we can consider the following four

situations:
O—0 0O—0 0O—o0 0O—o0
~~~ ~~ ~~~
'L.l positions %open edges kpositions %open edges 22 positions
o —0 o —0 L o —0 o —0
~~ ~~~ ~~~
j1+2
Zl_lp ‘%oe k_lp %oe ng
o0—o0 o0—0 o—o0 0—-0

~~~ ~~~ ~~~

. ) .

Z]_p %oe k_lp %oe 22_1]:)
O—o0 0O—o0 0O—o0 0O—0
~~~ ~~~ ~~~

Zl_lp %0494 k_2p %0494 22_1p

The previous cases lead, respectively, to the following numbers of vertices of
the p-face:

fo(Pi) fo(Pr) fo(Pi)s fo(Pi—1) fo(Pr-1)fo(Pi), fo(Piy) fo(Pr—1) fo(Fiy—1)
and fo(Pi, 1) fo(Pr—2) fo(Pi,—1)-

Therefore, the number of distinct configurations of the vertices contained in
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the respective p-face is:

Jo(Pi) fo(Pe) fo( i) + fo(Pi—1) fo(Pr—1) fo(Fr,)  +
Jo(Piy) fo(Pr=1) fo(Piy—1) + fo(Pi-1) fo(Pi-2) fo(Pi-1) =
(fiasrforr + fir fi) fiarn + (fivr fo + Jis fomt) fin =
fistwirfigtr + fivenfia =

Jitbtior1 =
fO(Pil+k+i2)

x If 7; is even and js is odd, we can obtain the following four situations:

~~~ ~~~ ~~

. jo+1

le, %oe k_lp 32;_ o. e ng
O —0 o —0 ... o —0 o —0

~~ ~~ ~~~

. ; io+1 .

Zl p. % o. e. k p. J2;_ o. e. 7/2 - 1 p.
o —0 o —0 L o —0O o —O0O

~~~ ~~~ ~~~

. 142 041 .

21 - 1 p. % 0. e. k_2 p. ng_ o. e. 22 p
0O—o0 0O—o0 oO—o0 oO—o0
~~~ ~~~ ~~~

. j1+2 jo+1

21_1p4 %oc k_lp Jz;oc Z2_1p

Each one of these cases will rise to

Jo(Pi) fo(Pe—1) fo(Pi)s fo(Pi) fo(Pr) fo(Pi—1)s fo(Pi-1) fo(Pr—2) fo(Fi,) and
Jo(Ps—1) fo(Px—1) fo(Pi,—1) vertices of the p-face, respectively.

Therefore, using same reasoning, the number of distinct configurations of the
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vertices that are contained in the p-face is:

Jo(Piy) fo(Pi—1) fo(Fiy) + fo(Piy) fo(Pr) fo(Pis—1)  +
Jo(Pi—1) fo(Pr—2) fo(Fi,) + fo(Pi—1) fo(Pr—1) fo(Pip—1) =
Jo(Piyrk-1) fo(Piy—1) + fo(Piyyiprn—1)
x If 71 is odd and 7, is even, changing in this last expression i; by 75 and

vice versa, the number of the vertices of the p-face is:
Jo(Pigrr—1) fo(Pi,—1) + fo(Pitigsn—1)

x If j; and jy are both odd numbers, we use similar reasoning to obtain

the desired expression.
Now we will study the remaining case.

Let £k =1, i1,75 > 1 and the representation of the T-component is:

e -0 - 0—-0—0-0—0—0—0—0--0—@- 0 —@

We split the proof into four subcases:

* if 71 and js are both even, the number of vertices contained in the p-face

is:
fo(Pi) fo(Piy) + fo(Pi—1) fo(Pi) + fo( i) fo(Pry—1) =
Jo(Biytip 1)
x if j1 is even and js is odd, the number of vertices contained in the p-face
Is :
Jo(Piy) fo(Piy) + fo( i) fo(Piy—1) + fo(Pi—1) fo(Pi—1) =
Jo(Piy—1) fo(Piy—1)

x if 77 is odd and js is even, the number of vertices contained in the p-face
is:

fO(BQ)fU(Pil-i-l) + fO(Pi1—1)f0(Pi2—1)
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x if j; and j, are both odd the number of vertices contained in the p-face

18:

Jo(Pi 1) fo(Pi,) + fo(Py—1) fo(Pi—1) + fo(Py) fo(Piy—1) =
fo(Pi—1) fo(Pipia) + fo(Piy) fo(Pip-1)-

The next corollary follows immediately from the previous proposition.

Corollary 5.2.7. Let i1 = io = 1 and ji, k,jo > 1. The representation of

the T-component is:

e - 0—0 - 0—0—0— 0 ®—0—0--0—8e

The number of vertices contained in the face that has only a T'-component in

the previous conditions is fo(Pryo).

5.2.3 A configuration with just a T-component with s

strings of open vertices

Given a p-face of Q! it is important to notice what are the differences

between a configuration that can be associated to a vertex that belongs to
the p-face and a configuration of a vertex of Qf which is not a vertex of a
given p-face.

In fact, all vertices contained in the p-face are vertices of Qf but there
are vertices of f that are not vertices contained in the p-face namely, those
in whose representation it appears as closed, at least one of the vertices of
the bicolored subgraph that are open in the configuration of the p-face.

Therefore, a vertex V of Q) is a vertex of the p-face if and only if all

bicolored subgraphs of Type 1 and Type 2 of the configuration of the p-face
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are the same as in the configuration of V, and if all vertices that are open in
the T-components of the representation of the p-face still remain open in the
configuration of V.

Let us consider that the T-component has s + 1 strings of closed vertices
with lengths i1, ..., 711, and s strings of open vertices with lengths 71, ..., js,
placed alternately, where 44 + -+ +4541 + 71 + -+ Js = m. Bearing in mind
the previous observations, in order to count the number of vertices of the

p-face we proceed as follows:

(1) We count the number of vertices of Qf | fo(Pn) = fimi1;

(2) we must exclude the vertices of Q that have in its configuration at
least a closed vertex in a position of an open one of the T-component.

The remaining vertices of the polytope Q2 are vertices of the p -face.

Using this procedure we present an algorithm to count the number of
vertices of the p-face described in the previous section. This algorithm, when
s = 1, provides another way to count the number of vertices in the p-face
present in the Subsection 5.2.1. In the following algorithm we will represent

an edge e = ij by {i,j}.

Algorithm
The input is a bicolored subgraph with m vertices that corresponds to

the T-component with s = 1, of the representation of the p-face.

step 1 4 Let P;, be the path corresponding to the string of open vertices of length
j1. Compute the number of vertices of Qf in which configuration have,
at least, a closed vertex in any position of the vertices of P;, and does

not have any of the open edges {i1,i; + 1} and {i; + 71,41 + j1 + 1},
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step 2 ¢

step 3 ¢

step 4 ¢

that is
Jo(Pa)ao(Pa\ Py ), it jy s odd (o1)

or

(fo(Py,) — D)go(Pn\Pj,), if 71 is even. (el)

Compute the number of vertices of Q2 that have in its configuration
at least a closed vertex in any position of P;, and that have in its
configuration the open edge {i;,i; + 1} and does not have the open

edge {i1 + 1,41 + j1 + 1}, that is
fo(Pi—1)(fo(Pj—1) — 1) fo(P,), if j1 is odd (02)
or

f0<PZ'1*1)f0<Pj1*1)f0(Piz)7 if J1 1s even. (62)

Compute the number of vertices of Qf that have in its configuration
at least a closed vertex in any position of P;, and that have in its
configuration the open edge {i; + ji,4; + j1 + 1} and does not have the
open edge {iy,i; + 1}, that is

Jo(Piy)(fo(Pj—1) — 1) fo(Piy—1),if j1 is odd (03)
or

fO(Pi1)f0(Pj1—1)f0(Pi2—1)7if jl Is even. (63)

Compute the number of vertices of !, that have in its configuration at
least a closed vertex of P, and that have the two open edges {i1,4;+1}

and {’Ll +j1, le +]1 + 1}7 that is
fO(Pilfl)fO(Ph*?)fO(Pizfl)v if jl is odd (04)

or

Jo(Piy—1)(fo(Pj—2) — 1) fo(Pi—1), if j1 is even. (e4)
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final step ¢ Compute the number of vertices of the p-face, that is, for j; odd, the
difference between fo(P,,) and the sum of the expressions (el), (e2),
(e3) and (e4) and, for j; even, is the difference between fy(P,,) and
the sum of the expressions (01),(02), (03), (04).

Recalling the examples studied in the first subsection and applying the

previous algorithm we obtain:

Example 5.2.8. The number of vertices contained in the 4-face in which con-
figuration has only the following T-component with one string of open ver-
tices

®e—0 —0 - O0O—0—e0e—e0

1s:

Jo(Pr) = (fo(P2) = 1) fo(Ps) fo(P2) — fo(P2) fo(Pr) fo(F2)
—fo(P3) fo(Pr) fo(Pr) — fo(P2)(fo(FPo) — 1) fo(P2) =8.

Ezxample 5.2.9. The number of vertices contained in the 3-face in which con-

figuration has only the next T-component

®o—0 — O —0—0—0—0
1s:

Jo(Pr) = fo(P2) fo(Ps) fo(Pa) — fo(P1)(fo(P2) — 1) fo(F2)
—fo(P2)(fo(P2) = 1) fo(Pr) — fo(Pr) fo(P1) fo(Pr) = 4.

The next algorithm provides a way to count the number of vertices of the

p-face for s > 2.
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For each k£ =1,2,...,s consider the open edges

Mk

k
Cok—1 = { (42 + Ji) —Jk,Z(il+jl)—jk+1}
=1

=1

and

k k
o = {Z u+ g ,Z i+ Ji) +1}
=1 =1

Let us denote the set of these edges by £ = {e.,c=1,...,2s} C E(P,,).
Given an open edge of L each of its vertices belongs to a different string.
One vertex belongs to a string of open vertices and the other one belongs to
a string of closed vertices, not necessarily by this order. If a string has only a
vertex, and it is neither the first nor the last string, there are two open edges

of £ with a common vertex, we denote the number of those open edges by v.

Algorithm: The input is a bicolored subgraph with m vertices that
corresponds to a T-component of the representation of a p-face that has only
a T-component in which configuration there are s strings of open vertices with
lengths ji,...,js and s+ 1 strings of closed vertices with lengths i1, ... 7511
placed alternately. We denote by P, a path corresponding to a string of length
a and by P,\v the path resulting from P, deleting its origin or its terminus,
which is called v; P. = {P, : ilgpriyand Py =A{P,:a=j1,...,js}
Letm=id14+---4+ig1+5+ -+ Js

stage I . Computation of the number of vertices of Qf, whose configuration has
at least a closed vertex in any position of the vertices of one of the
Pj,...,P;, and does not have any of the open edges that belongs to
L:
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step 1 ¢ If at least one of the j; is odd compute:

IT AP
PEP,UP,
If all j; are even compute:

[H fo(P) =1

PeP,

I1 5@).

PeP.

stage IT . Computation of the number of vertices of Q! whose configuration has
at least a closed vertex in any position of the vertices of one of the

P; ..., P;,, and have exactly one of the open edges that belongs to L:

step 1 ¢ Foreachc=1,...,2s consider e, € L, and let j, = Jg, it cis even

Or Jk = Jest, if ¢ is odd.

* If ¢ is odd and j; is odd and all j4, with d # k, are even

compute:

@) TI f@) - fE\e)- ] HEP) -1

PEP\{Pi, } PeP\{Pj, }

or, if ¢ is odd and j; is even or at least one of the j4, with

d # k, is odd compute:

fo(P\v) - T APy - fo@\v)- T fo(P)

PEPN{P;, } PeP\{Pj, }

* if ¢ is even and j; is odd and all jz, with d # k, are even

compute:
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fO(PikH\U)' H fO(P) fo(ij\U) ) H fO(P) —1

PEPC\{Pi;H_l} PEPO\{ij}

or, if ¢ is even and j; is even or at least one of the j;, with

d # k, is odd compute:

fo(Pu\o) - T fo®)-fo(B\o) - I fo(P)

PEPC\{Pik+1} PEPO\{ij}

final step ¢ Sum all the values obtained in previous step.

stage III . Computation of the number of vertices of Q! whose configuration has
at least a closed vertex in any position of the vertices of one of the
le AR Pjs’

pair of edges e, e., € L, Let P. (P,) and P.(P,,) be the paths

and has exactly two of the open edges of £. For each

corresponding to the strings of closed (open) vertices such that e., has

a vertex on P, (P,,) and e., has a vertex on P,, (P,,).

stepl ¢ If P, # P,, and P,., # P., and
* if the lengths of P, and P,, are both odd and all the remain

paths of P, have length even compute

Jo(Per\v) - fo(Pe,\v) - II  fup)

PePN\{Pe;,Pey}

Jo(Po,\v) - fo(Po,\v) - II fo(P) =1

PEPO\{P01 7P02}

* if at least one of the lengths of P, , P,, is even or at last one
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of the remain paths of P, has length odd compute

fo(Pe,\v) - fo(Pey\v) - II fo(P) - fo(Po,\v) - fo(FPo,\v)-

PePN\{Pey,Pey}
I 5P,

PEP,\{Poy ,Poy}
step2 ¢ If Py, = Fp, and
* if the lengths of all paths in P, are even compute

Jo(Pe,\v) - fo(Pey\v) - I s

Pepc\{Pcl 7P62}
fo(Po\{o,0}) - [ fo(P)—1
PeP,\{Po, }
* if at least one of the paths in P, has length odd compute:

fo(Per\v) - fo(Pe,\v) - I s

PEPN{Pey,Pey}

fo(Po\on, v}y [T fo(P).

PEP\{Po, }
step3 ¢ If P., = P., and
* if the lengths of P,, and P,, are both odd and all the remain
paths of P, have length even compute

fo(Pu\ovve}) - [ folP):

PePN{Pec, }
fo(Po\v) - fo(P\o) - [T fo(P) =1
PeP\{Poy,Poy}
* if at least one of the lengths of P, , P,, is even or at last one
of the remain paths of P, has length odd compute
fo(P Mo, vad) - T fo(P) - fo(Poy\v) - fo(Poy\v)-

PePN\{Pe, }

I 5.

PEP\{Poy,Poy }
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final step ¢ Sum all values obtained in previous steps.

stage IV . For each triplet of edges in £, we proceed with the same reasoning as

in the previous stage.

We continue this procedure until we reach |£| — v.

final stage . Computation of the number of vertices of the face.

step 1 ¢ Sum all the values obtained at final steps of Stages I, II and so

on;
step 2 4 compute fo(P,)

step 3 ¢ compute the difference between the values obtained in step 2 and

in step 1.

In order to illustrate the previous algorithm we present an example:

Example 5.2.10. Consider a 4-face of Qf represented by the following bico-
lored subgraph

H oe—e—0—0—0o—e—e—0—0—e H,

The T-component has 10 vertices spread over 3 strings of closed vertices
and 2 strings of open vertices; |£| = 4 and v = 0. Next, we present the

calculations for each stage.

Stage I ( As the lengths of the strings of open vertices are odd, we are in the

first situation)

fo(P2) - fo(P3) - fo(Ps) - fo(Py) - fo(P) =2x3x2x2x1=24
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stage I (As |£| = 4, we have four possibilities in step 1)

step 1 fo(P1) - fo(P2) - fo(P1) - [fo(P2) - fo(P2) — 1] =6
Jo(Pr) - fo(B2) - fo(P1) - [fo(P2) - fo(P2) — 1] =6
fo(Pr) - fo(P2) - fo(P1) - fo(Ps) - fo(P1) =6
Jo(Bo) - fo(B2) - fo(B2) - fo(Ps) - fo(P1) = 12

final step 6 +6+ 6+ 12 =30

stage III (As the open edges do not have vertices in common, we have 6 possi-

bilities in this stage)

step 1 Jo(Pr) - fo(Pr) - fo(P1) - fo(P2) - fo(F1) =2
Jo(Pr) - fo(Bo) - fo(B2) - fo(F2) - fo(P1) =4
fo(P1) - fo(Po) - fo(P2) - fo(P2) - fo(P1) =4
step 2 Jo(Pr) - fo(P1) - fo(P1) - fo(P1) - fo(P2) =2
fo(Fo) - fo(P2) - fo(P1) - fo(Fo) - fo(Ps) =6

step 3 fo(Po) - fo(P1) - fo(P2) - fo(P1) - fo(Pe) = 4

final step 2+4+4+246+4 =22

stage IV ( We have 4 triplets of open edges)

step 1 fo(Pr) - fo(Fo) - fo(P1) - fo(Pr) - fo(P1) =1
Jo(Pr) - fo(Bo) - fo(P1) - fo(Fo) - fo(P1) =1
fo(Pr) - fo(Fo) - fo(P1) - [fo(P2) - fo(Fo) — 1] =1
fo(Po) - fo(Po) - fo(P2) - [fo(P2) - fo(Fo) — 1] =2

final step 1+14+14+2=25

stage V (The maximum number of open edges is 4, we have one case)
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step 1 fo(P1) - fo(Po) - fo(Fo) - fo(P1) - fo(Fo) =1

final step 1
final Stage (To complete the precedure)

step 1 fi1 =89
step2 244+30+224+5+1=82

final step 89 — 82 =7

This 4-face has 7 vertices.

5.2.4 A configuration with ¢ T-components

Consider now a p-face with the next configuration:

HUT OH UT U - OT U Ha

For each T-component T}, 7 = 1, ..., ¢, we compute the number of vertices of
the face of Qf whose configuration has only 7; as T-component. We represent

this number by A;.

Proposition 5.2.11. The number of the vertices of the described p-face is:

[ (5.2.1)

Proof. Tt follows directly using the same argument as in the proof of Propo-

sition 4.0.1 when m = 0.
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5.3 Faces of lower dimension of a given 2—face
of O

In this section we present the number of vertices and edges that gives
origin to the 2-faces of the tridiagonal Birkhoff polytope, Q2 and we describe
their representation in terms of bicolored subgraphs. We denote by w, w > 0,
the number of internal vertices of a T-component.

For the representation of a 2-face we describe the following cases:

Case 1. We have one T-component with one inner entry and two closed
endpoints. Between these closed endpoints we have w > 1. One of these
internal vertices is the inner entry and it can occupy all the positions of the

internal vertices as we can see in the following representation:

H eoe—o0o—0 - e -0—e H,

Case 2. We have two T-components each one with two closed endpoints
and without inner entries. Between each pair of endpoints we can have a
finite number of internal vertices. The bicolored subgraph represented below

describe this situation:
H oe—o0o.-o0—e H, e—o0o-0—e H;

5.3.1 Number and representation of vertices of a 2-face

of O

In both previously cases, the T-components satisfy the conditions of

Proposition 5.2.2 and therefore the number of vertices of a 2-face, F,is :

e In the first case fo(F) = fo(Ps) = 3;
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e In the second case each T-component gives origin to fo(P,) vertices,

thus, by Proposition 5.2.10, the number of vertices of the 2-face is
fo(F) = fo(P2) fo(P2) = 4.

Next we represent the vertices in terms of bicolored subgraphs.

Consider the bicolored subgraph given at Case 1. The number of vertices
that gives origin to this configuration is three. Without loss of generality we
assume that the inner entry occupies the first internal position, from the left
to the right.

If w = 1, the vertices that gives origin to the T-component have the following

representation:

H o o o H

and

H, o o—o H,
If w > 1is odd, from the previous configurations we can obtain the represen-
tation of each of the three vertices, adding immediately to the left of the last
closed vertex or open edge, the union of [“’T_l] open edges. We represent this

union by the symbol ~. Therefore, the representation of each of the three

vertices that gives origin to the configuration of the 2-face is:

H o o~ [H

H o—o~e H,

and

H eoe~o—o0o H,
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If w = 2, the configuration of the face results from the bicolored sum of the

three vertices represented by:

and

H, o—o o—o Hy

If w > 2 is even, from this last configurations we can obtain the representation
of each of the three vertices, adding immediately to the left of the last closed
vertex or open edge, the union of “’T_Q open edges, whose union is represented
by ~ . Therefore the configuration of the three vertices that gives origin to
the face is:

H o eoe~o0—0 Hy
H o o—o~e Hy

and

H, o—o~o—o0o H,y

Consider now that the bicolored subgraph is given as in Case 2. In this
case the 2-face results from the bicolored sum of three of the four vertices

whose representation is the following:

H o o Hy, o o H;
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Hy, o—o Hy o—o H;

Here, if we have a finite number of internal vertices in each T-component, we
use a similar procedure as we did in Case 1. The representation of the four

vertices are:

* when the numbers of internal vertices are both odd

H o—o~e Hy, e~o0—0 H;

H e~o—0o Hy, e~o0o—o H;
H eoe~o—0o Hy o—o~e Hj
H o—o~e Hy o—o0o~e H;
*x when the numbers of internal vertices are both even
H eoe~o0o—0 e H, e~o—o0o e H;
H o—o~o0—0 H; e~o—o0 e Hj
H o—o~o0o—0o Hy o—o~o0o—o0 Hjy
H eoe~o—0o e Hy o—o~o—o0 H;y

x when the numbers of internal vertices of the first and second T-compo-

nents are respectively odd and even

H o—o~e Hy; e~o0o—o0 e H;

H eoe~o—0o Hy; e~o—o e H;
H oe~o0o—0 Hy o—o~o0o—o0 Hj

H o—o~e Hy o—o~o0o—o0 Hj;
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*x when the numbers of internal vertices of the first and second T-compo-
nents are even and odd, respectively, we have a similar situation as we
described above, in the previous representation of the vertices we only

change the order of the T-components.

So, in general, the number of vertices of a face of {2f is three or four and it
is equal to the number of closed vertices (closed endpoints plus inner entries)

that can be present in the T-components of the representation of the 2-face.

5.3.2 Edges of a 2-face of (0,

As the number of edges of a 2-face is equal to the number of its vertices,
the number of edges of a 2-face of !, is three or four and the faces are trian-
gles or rectangles. When the face has in its configuration the 7T-component
described at Case 1 it has the three vertices present at Subsection 5.3.1 and

the following three edges:

H o o—0o H,

and

H eoe—o—e H,

Without loss of generality, here, we considered the simplest situation.
Similarly, when w > 1, we obtain the general configurations of the three
edges of the face.

The bicolored subgraphs present at Case 1 results from three vertices and
three edges. Therefore, the faces that are associated to them are triangles.

If the representation of the 2-face contains the bicolored subgraph given

by Case 2, we have a face with four vertices and consequently with four edges.
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These last ones, in the simplest situation, are represented by:

H eo—e M
Hy o—o H,
Hy e—e M
Hy o o M

[ ] [ ]
o — 0
OoO—20O
o — 0

Hj

Similarly, when w > 1, we obtain the configuration of the four edges

of the face. The faces that are associated to these bicolored subgraphs are

rectangles.

Therefore, from previous considerations, we can state the following propo-

sition:

Proposition 5.3.1. A 2-face of Q' is a triangle or a rectangle.

5.4 Faces of lower dimension of a given cell

of O

Now we will study the elements (vertices, edges and faces) of a 3-face of a

tridiagonal Birkhoff polytope. As p = 3 we have, from Proposition 5.1.1 that

the total number of different configurations, in number of T-components, to

obtain a 3 -face of Qf, is 3 and their representations are:

Case 1. one T-component with two closed endpoints and two inner entries;

Case 2. two T-components each of them with two closed endpoints and one of

them with one inner entry;

Case 3. three T-components with two closed endpoints and without inner en-

tries.



134 5. Faces of faces of the tridiagonal Birkhoff polytope

As in the previous section, we can have in each T-component a finite
number of open internal vertices, but first we consider the simplest situation:
the T-component does not have open vertices.

Suppose that the T-component has the configuration as in Case 1.

- If all internal vertices are inner entries the configuration of the cell is:
H o—0o—0o—0o H

In this case the cell has the “same elements” as Qf, i.e. fo(F) =
fo(Py) = 5, and its configuration is obtained from the bicolored sum of

at least three of the following five vertices:

H o o—o e Hy

Hi o—o o—o Hy

Applying the adjacency criterium, (Proposition 2.4.3), to these vertices
we find eight edges, and five faces. Attending to previous section, four
of these faces are triangles and one of them is a rectangle. This cell is

a pentahedron.

Suppose that the T-component presents in the configuration of the cell
has internal open vertices. If we have one internal open vertex, it can

be, or not, adjacent to an endpoint:
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x if the internal open vertex is adjacent to an endpoint, the configura-

tion of the cell is
H oe—0o—e—e—e H,
and, attending to Proposition 5.2.2,

Jo(F) = fo(Py)

and we are in the previous situation: this cell is a pentahedron (a

pyramid).
xif the internal open vertex is not adjacent to an endpoint the cell has
the following configuration:

H o—eo—0—0—0o H

Bearing in mind Proposition 5.2.2,

fo(F) = fo(Ps) + fo(Py) fo(P1) = 4.

The previous configuration is obtained from three of the following four

vertices:

H o o o—0 e H,
H o o—o e e H
H o—o o—o e H,
H o o—o o—o H,

These vertices are pairwise adjacent and we have four 2—faces, all of

them are triangles. This cell is a tetrahedron.

- If w > 1, bearing in mind Propositions 5.2.2 and 5.2.6, the remain

possibilities in this case will be similar to the previous ones.
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Suppose now that we are in Case 2. In this case, if the T-components do

not have open internal vertices, its configuration is:

H eo—0o—0o H, eo—o H;

and, by Proposition 5.2.10, the number of vertices of the cell is fo(F) =
fo(P3) fo(P2) = 3 x 2 = 6. They correspond to five faces: the two first ones
are triangles and the three last ones are rectangles, whose configurations are

the following;:

H e—o.o0o—e—0-0--e Hy o—o~o0o—0 Hs
H e—o0.0o—e—0-0--e Hy e~e H;
and, if in the first T-component w is even
H e—o..o—e e Hy e—oc--.0—e H;
or, if in the first T-component w is odd
H o~o—9o H, e—0..0—e H;
H o—o~e—e Hy e—0-.-0—e H;

In this case, the cell is a pentahedron (a prism).

Suppose, now, that we are in Case 3. If in all T-components, w = 0, the

configuration of the cell is:
H o—o H, o—o H; e—e H,

Independently of the number of the internal open vertices that can be
present in each T-component, each of these corresponds to fo(FP2) = 2 con-

figurations. Therefore, by Proposition 5.2.10, we have 2 x 2 x 2 = 8 vertices.
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They correspond to six faces, each of them is a rectangle. In this case the
cell is a hexahedron.

In conclusion, the cells of the tridiagonal Birkhoff polytope can only be:
tetrahedrons; pentahedrons with four triangular faces and one rectangular
face, pentahedrons with two triangular faces and three rectangular faces;
hexahedrons with six rectangular faces. Therefore we can establish the fol-

lowing;:

Proposition 5.4.1. A 3-face of Q, is a tetrahedron, or a pentahedron or

an hexahedron.

The number of 2-faces of a cell depends on the number of closed endpoints
and inner entries and, in certain cases, it depends also of the position of the

internal open vertices that can exist in its configuration.

5.5 Consequences of previous sections

In this section we will present some results derived from the previous
ones. Firstly we illustrate the situation with an example.

Let P; be the path

O—0—0—0—0—0—0

One face of Qf is:

This face results from the following vertices
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[ J [ J [ ] [ ] [ J [ J [ J o —20 [ ] [ ] [ ] [ ] [ ]
Vi Va

[ J [ J oO—0O [ J [ J [ J o —20O o —20O [ ] [ ] [ ]
Vs Vi

In this case the face is a rectangle. Note that if we consider the bicolored
sum of the configurations of the vertices V; and V5 we obtain the configuration
of an edge, the vertices are adjacent. We have the same situation if we
consider the vertices Vi and V3. However, if we consider the bicolored sum
of the configurations of the vertices V5 and V3 we obtain the configuration of
the face. This means that the previous vertices are not adjacent. In fact, if
we consider the polygonal line that join the vertices Vi, V5 and V3, it is an
open line.

The bicolored sums of V; with V; and V5 with V3 are equal to the con-
figuration of the face where the vertices belong. This means that V; is an
opposite vertex to V4 and that V5 is opposite to V3, concerning to this face.

In fact, if V; and V; with ¢ # j, are two vertices of a 2-face of f, as the

n’

2-faces of Q) are rectangles or triangles, then V; and V; are adjacent or are

opposite. Therefore we can state:

Proposition 5.5.1. Let V; and V; with i # j, be two vertices of a 2-face
of Q. If the bicolored sum of V; and V; is equal to the bicolored subgraph
that represents the referred 2-face then V; and V; are not adjacent (they are

opposite vertices) and the face is a rectangle.

Ezample 5.5.2. Consider the following vertices from Qf:
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If we consider their bicolored sum we obtain the following bicolored sub-

graph

This bicolored subgraph is the configuration of a 2-face, this means that
the two given vertices are opposite and the face is a rectangle.

From this last configuration we can get the two remaining vertices of the

face. Namely:

Note that this last ones are opposite vertices too.

In a general way, given two vertices of 2, V; and V;} its bicolored sum is
the configuration of a face F of 2, whose dimension is p. If p = 1 the vertices

are adjacent, if p > 1 the vertices are opposite in the p-face. Returning to

QL if we consider the vertices

Vi: @ o e e o o o
and
Ve: o—0o o—0 o—o0 e

Their bicolored sum is
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and this is the bicolored subgraph of P; that represents a 3-face, so this
means that 1V, and Vg are opposite vertices of the referred cell.

Attending to the nature and number of the configuration of the T-compo-
nents that belongs to the configuration of a face we can state the following

propositions:

Proposition 5.5.3. Fvery tridiagonal Birkhoff polytope whose dimension is

greater than one, has at least one triangular face.

Proof. As the dimension of the tridiagonal Birkhoff polytope is greater than
one, it corresponds to a path P, with at least three vertices. Therefore, P,
has, at least, one bicolored subgraph with a T-component with two closed

endpoints and one inner entry. O]

Proposition 5.5.4. Fvery tridiagonal Birkhoff polytope whose dimension is

greater than two, has at least one rectangular face.

Proof. As the dimension of the tridiagonal Birkhoff polytope is greater than
two, it corresponds to a path P, with at least four vertices. Therefore, P,
has, at least, one bicolored subgraph with two T-components each of them

with two closed endpoints and without inner entries. O

Moreover, from the discussion we made in Chapter 3, Proposition 3.2.1

we have that the number of triangles present in QY is given by

n—2 n—2—p

2
p Z fk+1fn*p*k71~

p=1 k=0

and the number of quadrangular faces of Qf is

—pn—3—p—j

—3—
p Z Jerrfjs1fn-p—jn—2-

p=1 7=0 k=0
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The next proposition follows from the discussion made in Chapter 3 for

Proposition 3.3.1:

Proposition 5.5.5. Fvery tridiagonal Birkhoff polytope whose dimension is
greater than three (four or five), has at least a cell that is a pentahedron (also,

hezahedron or tetrahedron).
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