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Abstract

In this paper we propose a definition of determinant for quater-
nionic polynomial matrices. This definition is later used in the study
of stability of linear quaternionic systems within the behavioral set-
ting.

1 Introduction

The quaternions, introduced by Hamilton in 1843, may be favorably used to
describe phenomena occurring in areas such as electromagnetism and quan-
tum physics [11], by means of a compact notation that leads to a higher
efficiency in computational terms [5]. In particular, they are a powerful tool
in the description of rotations. It is not uncommon to find situations, es-
pecially in robotics, where the rotation of a rigid body depends on time,
and this dynamics is advantageously written in terms of quaternionic dif-
ferential or difference equations. The attempt to analyse and to control the
corresponding dynamics motivates the study of such equations from a system
theoretic point of view.

As is well known, the asymptotical stability (henceforth simply referred as
stability) of a discrete-time state space system x(t + 1) = Ax(t) with real
or complex coefficients, is characterized by the location of the eigenvalues of
the system matrix A, i.e., of the zeros of the determinant of the polynomial
matrix sI − A.
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Theorem 1. [6] The state system x(t + 1) = Ax(t) is stable if and only if
det(λI − A) 6= 0, ∀λ ∈ C such that |λ| ≥ 1.

In a more general setting, the growth of the solutions (or trajectories) of a
linear higher order difference equation with constant real or complex (square)
matrix coefficients

Rpw(t + p) + · · ·+ R1w(t + 1) + R0w(t) = 0, (1)

can also be characterized in terms of the zeros of the determinant of the
polynomial matrix R(s) := Rps

p + · · ·+ R1s + R0.

Theorem 2. [8] The system described by (1) is stable if and only if det R(λ) 6=
0, ∀λ ∈ C such that |λ| ≥ 1.

When trying to generalize these results to systems with quaternionic co-
efficients, one is confronted with the lack of a notion of determinant for
quaternionic polynomial matrices. Indeed, due to the non-commutativity of
the field of quaternions, the determinant of quaternionic matrices cannot be
defined as in the commutative (eg, real or complex) case. Several definitions
have been proposed for matrices over the quaternionic skew field [1], but this
work has not been extended to the polynomial ring case.

In this paper we try to fill in this gap by proposing a concept of determinant
for quaternionic polynomial matrices. This concept is later used in the study
of stability of linear quaternionic systems.

2 Preliminaries

We first introduce some preliminary concepts on quaternions and quater-
nionic polynomials.

The set
H = {a + bi + cj + dk : a, b, c, d ∈ R} ,

where the imaginary units i, j, k satisfy i2 = j2 = k2 = ijk =−1 and, conse-
quently,

ij = k = −ji, jk = i = −kj, ki = j = −ik,

is an associative but noncommutative division algebra over R called quater-
nionic skew field. The real and imaginary parts of a quaternion η = a + bi+
cj+dk are defined as Re η = a and Im η = bi+cj+dk, respectively, whereas,
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similar to the complex case, the conjugate η is given by η = a− bi− cj− dk
and the norm |η| is defined as |η| =

√
ηη.

Two quaternions η and ν are said to be similar, η ∼ ν, if there exists a
nonzero α ∈ H such that η = ανα−1. Similarity is an equivalence relation
and we denote by [ν] the equivalence class containing ν.

Unlike the real or complex case, there are several possible ways to define
quaternionic polynomials since the coefficients can be taken to be on the
right, on the left or on both sides of the indeterminate (see, e.g., [9]). In this
paper we will adopt the following definition.

The set of quaternionic polynomials is defined by

H[s] =

{
p(s) =

n∑
l=0

pls
l, pl ∈ H, n ∈ N

}
.

The sum and product of polynomials are defined as in the commutative case
with the additional rule (asn) (bsm) = absn+m.

Conjugacy is extended to quaternionic polynomials by linearity and by the
rule asn = asn, ∀a ∈ H.

3 Determinants of quaternionic and quater-

nionic polynomial matrices

Before presenting the notion of determinant for quaternionic matrices we
note that, due to the noncommutativity of H, the definition adopted for real
or complex matrices is not suitable in the quaternionic case.

Indeed, let A ∈ Rn×n and denote by Al, l = 1, . . . , n the columns of A, i.e.,
A =

[
A1| · · · |An

]
. It is well know that, by definition, the determinant of A

satisfies, among others, the following properties [2]

i) det
( [

A1| · · · |αAl| · · · |An

] )
= α det

( [
A1| · · · |Al| · · · |An

] )
, α ∈ R;

ii) det I = 1, where I is the identity matrix.

Let, for instance

A =

[
i 0
0 j

]
,
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and suppose that the previous properties i) and ii) hold for quaternionic
matrices. Then

det A = det

[
i 0
0 j

]
= i det

[
1 0
0 j

]
= ij det

[
1 0
0 1

]
= ij = k

whereas, on the other hand

det A = det

[
i 0
0 j

]
= j det

[
i 0
0 1

]
= ji det

[
1 0
0 1

]
= ji = −k,

leading to an absurd. Therefore other defining properties must be considered
for quaternionic determinants.

After an unsuccessful attempt to define the determinant of a quaternionic
matrix made by Arthur Cayley in 1845 [3], only in the twentieth century
new developments in this topic were achieved and some different definitions
such as the determinants of Dieudonné [4], Study [10] and Moore [1] were
given.

Our definition of determinant for quaternionic polynomial matrices is based
on the definition of the Dieudonné determinant, with the necessary adjust-
ments to the polynomial case.

In order to introduce the Dieudonné determinant, we will use the following
notation, according to [1].

Denote by Plm the matrix that is obtained from the identity by interchanging
the lth and mth rows. Denote by Blm(α), where α ∈ C and C is a set, the
matrix that is obtained from the identity by adding the mth row multiplied by
α to the lth row. Finally denote by SL(n, C) the set of all n×n matrices that
can be decomposed as a product of matrices of the types Plm and Blm(α),
α ∈ C.

Definition 3. [4] Let A ∈ Hn×n; the Dieudonné determinant of A, denoted
by Ddet(A), is defined as follows.

• If A has not full rank, then Ddet(A) := 0.

• Otherwise, let U ∈ SL(n, H) be such that

UA = diag(1, . . . , 1, α), α ∈ H. (2)

Then Ddet(A) := |α|.
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Note that Ddet can be regarded as a generalized determinant in the sense
that it satisfies the following properties:

G1) It is zero if and only if the corresponding matrix has not full rank.

G2) It satisfies the product rule.

G3) It is equal to one for matrices of the type Blm(α).

Definition 3 cannot be directly extended to the polynomial case, since it is
in general not possible to bring up a polynomial matrix into the form (2).
Therefore, in the definition that we propose, we consider instead a triangular
form.

Definition 4. We define the function Pdet(·) : Hn×n[s] → R[s] as follows.

Let R ∈ Hn×n[s]. Let further U ∈ SL(n, H[s]) be such that UR is upper
triangular, i.e.,

UR = T =


γ1 ∗ · · · ∗ ∗
0 γ2

. . .
...

...

0 0
. . . ∗ ∗

...
...

. . . γn−1 ∗
0 0 · · · 0 γn

 . (3)

Then

Pdet(R) :=
n∏

l=1

γlγl.

Example 5. Let

R(s) =

[
(s + 2j)(s + j) (s + 2j)(2s + k)(s + 3i) + 2s + 3

s + j (2s + k)(s + 3i)

]
.

Then

R = UT =

[
s + 2j 1

1 0

] [
s + j (2s + k)(s + 3i)

0 2s + 3

]
,

and U ∈ SL(n, H[s]). Therefore

Pdet(R) = (s + j)(s + j)(2s + 3)(2s + 3) = (s2 + 1)(2s + 3)2.
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It turns out that the definition of the function Pdet(·) given above is well-
posed, i.e., if there exists another triangular matrix T ′ 6= T , where T is the
matrix defined in (3), such that T ′ = U ′R, with U ′ ∈ SL(n, H[s]), then the
elements of the main diagonal of T ′, γ′1, . . . , γ

′
n, are such that

n∏
l=1

γ′lγ
′
l =

n∏
l=1

γlγl.

Moreover, it can be shown that Pdet(·) is a generalized determinant in the
sense that it satisfies properties G1, G2 and G3.

As should be expected, the zeros of Pdet(sI − A) can be related with the
eigenvalues of the associated matrix A. A quaternion λ is said to be a right
eigenvalue of A ∈ Hn×n if Av = vλ, for some nonzero quaternionic vector
v ∈ Hn. The vector v is called a right eigenvector associated with λ. The set

σr(A) = {λ ∈ H : Av = vλ, for some v 6= 0}

is called the right spectrum of A.

Theorem 6. Let A ∈ Hn×n. Then

λ ∈ σr(A) ⇔ λ is a zero of Pdet(sI − A).

This allows to relate the zeros of Pdet(R) with the right eigenvalues of the
companion matrix [7] associated with R(s).

Corollary 7. Let R(s) = Ins
m + Rm−1s

m−1 + · · ·+ R1s + R0 ∈ Hn×n[s] and

A =


0 In 0 · · · 0
0 0 In · · · 0
...

...
...

. . .
...

0 0 0 · · · In

−R0 −R1 −R2 · · · −Rm−1

 ∈ Hmn×mn

be the block companion matrix of R. Then

λ ∈ σr(A) ⇔
(
Pdet R

)
(λ) = 0.

4 Quaternionic system stability

The definition of the polynomial determinant Pdet allows to extend Theorems
1 and 2 on system stability to the quaternionic case.
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Theorem 8. Let A ∈ Hn×n. Then the following statements are equivalent.

(i) The quaternionic system described by x(t + 1) = Ax(t) is stable.

(ii) σr(A) ⊂ SZ := {q ∈ H : |q| < 1}

(iii) All the zeros of Pdet(sI − A) lie in SZ.

Based on this theorem and Corollary 7, it is not difficult to prove our final
result.

Theorem 9. Consider the system

R (σ) w = 0, (4)

with R(s) := Rmsm + · · ·+ R1s + R0 ∈ Hn×n[s]. This system is stable if and
only if all the zeros of Pdet

(
R(s)

)
lie in SZ.
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[4] J. Dieudonné. Les déterminants sur un corps non commutatif. Bull.
Soc. Math. Fr., 71:27–45, 1943.

[5] D. Hestenes. New foundations for classical mechanics. Kluwer Academic
Publishers Group, Dordrecht, The Netherlands, 1986.

7



[6] T. Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, 1980.

[7] P. Lancaster and M. Tismenetsky. The theory of matrices. Computer
Science and Applied Mathematics. Academic Press Inc., Orlando, FL,
1985.

[8] J. W. Polderman and J. C. Willems. Introduction to Mathematical Sys-
tems Theory: A Behavioral Approach, volume 26 of Texts in Applied
Mathematics. Springer-Verlag, Berlin, 1997.

[9] S. Pumplün and S. Walcher. On the zeros of polynomials over quater-
nions. Comm. Algebra, 30(8):4007–4018, 2002.

[10] E. Study. Zur theorie der linearen gleichungen. Acta Math., 42:1–61,
1920.

[11] P. B. Visscher and X. Feng. Quaternion-based algorithm for micromag-
netics. Phys. Rev. B, 65(104412), 2002.

8


