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Abstract

In this paper we study behavioral systems whose trajectories are given as solutions of
quaternionic difference equations. As happens in the commutative case, it turns out that
quaternionic polynomial matrices play an important role in this context. Therefore we focus
our attention on such matrices and derive new results concerning their Smith form. Based
on these results, we obtain characterizations of system theoretic properties of quaternionic
behaviors.

1 Introduction

In the eighties, J. C. Willems introduced the rather innovative behavioral approach to dynamical
systems [9, 10], which essentially consists in extracting all the knowledge about a system from
its behavior i.e., the set of its admissible trajectories. Unlike the classical approaches, in the
behavioral approach one looks at the set of trajectories without imposing any structure, that is,
without speaking of inputs and outputs or of causes and effects at an early stage. This point
of view does not only unify the previous approaches, fitting them within an elegant theory, but
it also permits to study a larger class of dynamical systems including situations where it is not
possible or desirable to make any distinction between input and output variables.

During the last two decades the importance of the noncommutative quaternion algebra has been
widely recognized. In fact, using this algebra, phenomena occurring in areas such as electro-
magnetism, quantum physics and robotics may be described by a more compact notation that
leads to a higher efficiency in computational terms [2, 4].

Systems with quaternionic signals were already investigated in the classic state-space approach [1].
Here we study quaternionic behavioral systems. As we will show, quaternionic polynomial ma-
trices, and in particular their Smith form, play an important role in this context. Therefore, a
considerable part of our work is devoted to the study of such matrices.

The structure of the paper is as follows. In Section 2, after introducing the quaternionic skew-
field, we define and state some properties of quaternionic polynomials. Thereafter, in Section 3
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we give some fundamental definitions of behavioral theory, showing how to extend the usual
concepts based on commutative linear algebra to the quaternionic algebra. In Section 4, we
define the quaternionic Smith form and characterize the (complex) Smith form of a class of
complex matrices which can be used to represent quaternionic matrices, and make its relation
to the quaternionic Smith form explicit. Finally, Section 5 is devoted to the characterization
of dynamical properties of quaternionic behaviors. Proofs of results which are not given in the
paper can be found in [5].

2 Quaternions

The real and complex fields are here denote®@andC, respectively. The set

H={a+bi+cj+dk : a,b,c,de R},
wherei, j, k are called imaginary units and are defined by the relations

i? =42 =k =ijk=—1,

is an associative but noncommutative algebra @exalled quaternionic skew-field. For any
n=a+bi+cj+ dk € H, itsconjugateis 7 = a — bi — ¢j — dk and itsnormis |n| = /nm =
Va2 + b2 + 2 + &2
Definition 2.1. The set ofquaternionic polynomialg defined by

N
H[s] = {p<s> =Y ns' meH Ne N}.
1=0
Sum and product of polynomials are defined as in the commutative case with the additional rule
(as™) (bs™) = abs™™™, i.e., roughly speaking; commutes with constant values.

We shall use the more general algebig, s—!] of quaternionic Laurent polynomialsor L-
polynomialsi.e., polynomials with positive and negative powers of

To simplify the notation, we will indicate the product of polynomia{s) andg(s) aspq(s). We
may also omit the indeterminateand writep € Hjs] if no ambiguity arises.

As usual H9*"[s] is the set ofy x r polynomial matrices. Since each matdxe HY*"[s] may
be uniquely written asl = A; + Ayj, whereA;, Ay € C9*"[s], an injectiveR-linear map:
H9*"[s] — C29%?7[s] can be defined such that

Ay Az}

B (2.1)

AHAC:{

The matrix A€ is called thecomplex adjoint matrixof A. In general, any complex matrix with
the structure (2.1) is said to becamplex adjoint matrix

A bijective R-linear map:H9*"[s] — C29*"[s] may be as well defined such that
A
c_| ‘1
A A = {—AQ] , (2.2)
which, in particular, maps column vectors into column vectors.
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3 Quaternionic Behavioral Systems

According to [6, Def. 1.3.1], @ynamical systerl is defined as a tripl& = (T, W, B), where
T is a set calledime axis W a set callesgignal spaceandB, called thebehavior is a subset of
WT = {w: T — W}.

Here we only considef’ = Z andW = H", for somer € N. This class of systems is called
discrete-time quaternionic systems

We assume that the system behaworan be described by means of a matrix difference equa-
tion, i.e., the trajectories in 3 are the solutions of an equation of the form

Ryw(t+ N)+ -+ Ryw(t+ M+ 1)+ Ryw(t+ M) =0, Vit € Z, (3.1)

whereR, € H9*",p=M,...,N,N > M, M,N € Z.

If we define theshift operatorby (c7w)(t) = w(t + 7), for everyt, T € Z, the left-hand side of
equation (3.1) can be written in the more compact form

N N
R(o, 0 Yw(t) =Y Riolw(t) =) Ruw(t+1). (3.2)
=M =M

This notation reveals th#& may be described as the kernel of the difference opeR{ioyo ') €
H9*"[o, 0~1] acting on(H")?, i.e.,

B=kerR(o,07 ') = {w e (H"? : R(o,0 HYw = 0} . (3.3)

Note that ifB is the kernel of a difference operator, itiisear on the righti.e., for anyw,, wy €
Banday, as € H, wiay + weas € B, andshift-invariant i.e.,c™B = B for all + € Z.

The shift operator commutes with any quaternionic value and this fact induces the isomor-
phismH[s, s~!] = H[o,o~!]. This suggests, as it is usual within the behavioral approach, to
consider the L-polynomial matrix

N
R(s,s7 1) = Z Rys', (3.4)
I=M

which is akernel representationf the behavior (3.3), and try to relate its algebraic properties to
dynamical properties d8.

Notice that, unlike the real or complex case, there is not a unique way to define quaternionic
polynomials. However, other definitions (see, e.g., [7]) are apparently useless here, while the
one we chose fits well into this context.

By extending to sequences the map (2.2), we define for any behavtee complex behavior

B = {w®: w e B}, wherew®(t) = (w(t))®. BC is called thecomplex formof B and, as

the following proposition shows, admits a kernel representation which can be derived from any
kernel representation &.



Proposition 3.1. Let R € H™*"[s, s71]. Then(ker R(c,01))¢ = ker R%(0,071).

Proof. Letv € (ker R(o,0~1))C. Then, by definition there exists € ker R(o, o~ ') such that
v = w®. SinceRw = 0 thenR% = R‘w® = (Rw)® = 0. Hencev € ker R°(c,071).
Conversely, let € ker R°(o,0~1). This uniquely determines (see formula (2.2)) such that
v =w®. ThenRw = 0, since(Rw)® = R°w® = R°v =0, and sw € (ker R(o,c~1))¢. O

It can be proved too, that IB® = ker R(c,c 1) then there exists a quaternionic matiix

such thatB = ker R(o,o~1). This confirms the equivalence #f and B, thus showing that

there is no loss of generality in studying only kernel representations, since this is the standard
representation of the most studied class of real and complex behaviors — i.e., the linear, shift-
invariant and complete ones (see [10]).

At this point it is natural to ask what algebraic properties of a quaternionic matrix are preserved
passing to its complex adjoint. In the followingnimodularmatrices are defined analogously

to the commutative case afdl row rank (frr) matrices are L-polynomial matricds such that

for any L-polynomial row vectoX', X R = 0 implies X = 0. A matrix isfull column rankif its
transpose if frr.

Lemma 3.2. A quaternionic L-polynomial matrig is frr if and only if R¢ is frr. More generally,
for every quaternionic L-polynomial matri, rank R = n if and only ifrank R¢ = 2n.

Proposition 3.3. Given two quaternionic L-polynomial matricélsand B, if the equation
A¢ = M B¢ (3.5)

holds with a complex L-polynomial matriX/, then there exists a quaternionic L-polynomial
matrix T" such thatd = T'B. Moreover, ifB is frr then M = T°.

Corollary 3.4. LetU € H"*"[s, s~ 1]. ThenU is unimodular if and only it/¢ € C27*?"[s, s71]
is unimodular.

In the sequel we investigate a fundamental equivalence relation for kernel representations.

Definition 3.5. Let R; € H9*"[s,s7!], I = 1,2. ThenR; and R, are said to bequivalent
representationsf ker R1(o, 0~ !) = ker Ry(o, 07 1).

Example 3.6. Consider the following quaternionic polynomial matrices

s =i _|s+k O
Rl_{o s—k:}’ R2—|: ; J. (3.6)

These are equivalent representations of the same behavior which, as it is easy to check, is

ker R1(0,0~") = ker Ro(0,0~!) = {w(t) _ m kg, q € H} .

A straightforward calculation shows th&:, = U Ry, where

is an unimodular L-polynomial matrix.



We will show that, as in the real and complex case, two representations are equivalent if and
only if each one is a left multiple of the other, as in the previous example. This main result is a
consequence of the following statement.

Theorem 3.7. Let R, and R, be two kernel representations Bf and B35, respectively. Then
By C By ifand only if X Ry = R, for some quaternionic L-polynomial matrix.

Proof. By Proposition 3.1,
By C By < ker R$(0,07 ') C ker R§(0,071)

which, as stated in [8], holds if and only if there exists a complex mafrsuch thaty’ R{ =
RS. However, from Proposition 3.3, this is equivalent to saying tkd; = R for some
quaternionic matrixX, thus proving the theorem. O

Corollary 3.8. Two quaternionic representatiori®; and R, are equivalent if and only if there
exist X; and X5, such thatR; = X 1Ry and Ry = X9 R;. Moreover, if both matrices are frr
thenX; = X2‘1, i.e., X1 and X5 are unimodular matrices.

Remark 3.9. Sinces! is an invertible element ifil[s, s~1], it follows that, for anyl € Z,
ker R(o,0 ') = ker o' R(o, 07 1).

As a consequence, itis always possible to choose a polynomial kernel representation of a behav-
ior. Indeed, ifR € H9*"[s, s~!] is a representation d# then, for an adequate integkf > 0,
sMR(s,s71) € H9*"[s] is still a representation a8. Therefore, without loss of generality, we

shall always choose polynomial kernel representations.

As in the commutative case, the quaternionic Smith form plays an important role in the study
of quaternionic behavioral systems, in particular in the characterization of controllability and
stability. Thus, we dedicate the following section to a detailed analysis of this form.

4 Quaternionic Smith Form

The main result of this section is the characterization of the Smith form of complex adjoint
matrices and its relation to the quaternionic Smith form. We assume that the reader is already
familiar with the Smith form for real and complex L-polynomial matrices.

Before tackling this subject, it is necessary to state some basic, but rather surprising, properties
of quaternionic polynomials.

Conjugacy is extended to quaternionic polynomials by linearity and by thestle- as™, Va €
H. With this definition, the following properties hold [5].

Proposition 4.1. Letp, ¢ € H]s]. Then

1. pqg =qp.



2. pp =pp € R[s].
3. If pg € R[s|, thenpg = gp.

A polynomiald is adivisor of the polynomiab, d | p, if it divides p on the right and on the left,
i.e., if there exist polynomials and! such thap = dr andp = Id. It turns out that, to define the
Smith form in the quaternionic case, an even stronger concept of divisibility has to be used.

Endow the algebr&i[s] with a similarity relation~ which induces equivalence classes
lq] = {p € H[s] : FaecH, p(s) = ag(s)a"'}.

Definition 4.2. The polynomiald € H]s] is atotal divisorof p € Hs] if [d] | [p], i.e., if for any
d € [d] andp’ € [p], d'|p’. Thegreatest real factoof p, r = grf p, is the (unique) highest
degree monic real factor of the polynomial

The concept of total divisor has been introduced long ago by Jacobson [3], but the definition
given in this paper is new as well as the characterizations presented by the following proposition.

Proposition 4.3. Letp, d € H][s]. Then the following conditions are equivalent [5]:

1. [d]|[p];
2. d| grfp;

3. p=dab withda € R[s] anda, b € H]s].

Factors of a polynomiagb are usually related to its zeros that, also in the quaternionic case, are
defined as those valuese H such thaip(\) = 0. Unfortunately, the relation between factors
and zeros op is not as simple as for real or complex polynomials. Indeed,#f pq € H]s],

then in generat(\) # p(A)g(X). However, ifg(\) = 0 thenr(X) = 0 but zeros ofp are not
necessarily zeros of For examplep(s) = (s — i) andq(s) = j are factors of(s) = pq(s) =

js — k but, whilep(i) = 0, r(i) = ji — k = =2k # 0.

The following lemma collects some basic results about zeros of quaternionic polynomials. First,
define theminimal polynomial of the equivalence clds$, \ € H, as the real polynomial

U= (s—A)(s—\) =5 —2(ReA)s + |A]~. (4.1)
Lemma 4.4. Letp € HJs]. Then
1. ¥, = ¥y ifand only ify ~ .
2. Ifp(v) = p(A) = O with A#£ v~ A thenWy [ p. If ¥y [pthenp(v) = 0 for everyv ~ .
3. Ifp(\) = 0 thenW y [ pp. If Wiy | pp thenp(v) = 0 for somer ~ .

In the following this notation is usedtiag(a1, . .., ay) is a (not necessarily square) matrix with
suitable dimensions whose first elements on the main diagonal are. , a,, and all the other
entries are zero.



Theorem 4.5. Let R € H9*"[s,s~!]. Then there exist L-polynomial unimodular matridés
andV such that
URV =T = diag(y1,...,vn) € HI*"[s],

wheren is the rank ofR and~;, [ = 1,...,n, are monic polynomials such that(0) # 0 and
Yl [vial, L =1,...,n— 1. If R € H9*"[s], henceU andV are polynomial matrices too,
then it is not possible to guarantee that0) + 0.

The matrixI" introduced in Theorem 4.5 isquaternionic Smith fornef R. Note that, unless it
is real, the quaternionic Smith form is not unique.

Before stating the main theorem about quaternionic and complex Smith forms, we give an aux-
iliary result. As in the commutative case, two matri¢eandsS are said to be equivalent if there
exist unimodular matrice§ andV such that/ R = SV'.

Proposition 4.6. For all monicq € Hs] there exist® € C|s| such tha;® andp® are equivalent
andgrf(q) = grf(p). Furthermore, for all monip € C|s], the complex Smith form of is
diag(r, rcc), wherep = rc andr = grf(p).

The following theorem characterizes the complex Smith form of polynomial complex adjoint
matrices and gives its relation to their quaternionic Smith forms. The result is trivially general-
ized to L-polynomial matrices.

Theorem 4.7. 1. A polynomial matrix
A = diag(6y,0%,...,0n,0.,) € C29%? 4],

is the complex Smith form of the complex adjoint matftfx for someR € HI*"[s], if
and only if it is a real matrixg || - - - [9,,|d;, and, for every =1, ..., n, §;, §; are monic
polynomials which share exactly the same real zeros.

2. IfT' = diag(y1,...,vm) € H9*"[s] is a quaternionic Smith form @&, thenm = n and,
foreveryl=1,...,n,
o = grf(’yl) andfyﬁl = 5152

Proof. 1. “If” part. It follows from the hypothesis that there exist complex polynomigjs
with no real zeros, such thaf = §;c;c;,. Therefore, since; = grf(d;¢;), diag(d;,0;) =
diag(d;, ;1) is equivalent taliag(d;c;, 0;¢;) by Proposition 4.6. Hence\ is equivalent to

diag(d1c1,01€1, ..., OnCn, Oncy) € (CQQXQT[S],
which, in turn, is equivalent to the complex adjoint matii¥, of

R = diag(51€1, vy 6ncn) € HQXT[S]'

“Only if” part. Let A be the complex Smith form aR°. Suppose thaf = diag(y1,...,7.) €
H9*"[s] is a quaternionic Smith form d®. By Lemma 3.2 itis clear that = n. Let~y;, = rdj,



wherer; = grf(v;). By Proposition 4.6, there exists € C[s] with no real zeros such thaf is
equivalent taliag(r;, r;¢;¢;) and consequently;© is equivalent to

A" = diag(r1,71¢1C1, .+, Try TRCnCn)- 4.2)

Next we show that\’ is the complex Smith form ok¢, and hence\ = A’. SinceA’ is equiv-
alent toR¢, we only need to show that it satisfies the required division properties. Obviously,
] ‘TlClEl, l=1,...,n.

We will prove thatr;c;¢; | r;+1. By Proposition 4.3 we know that

Y41 = aby, by € R[s], a,b € H]s]. (4.3)

The fact thaty, = r;d; dividesby; € R[s] implies that also the least real multiple gf i.e.,
rdyd, is a factor ofby;, and hence, by (4.3), a factor 9f ;. Note thata | b = grf(a) | grf(b)
and therefore we have thaid;d; | grf(y,.1) = r.1. However, by Proposition 4.6, we know
that the matrices; and(r;c;)¢ are similar and must have the same determinant

TZQ dﬂl = ’I”?CZEZ, (44)

and thus¢¢ = Tldlal ‘ TI41- Therefore A = A/, i.e., 6, = 7 and&l’ =rce,l=1,...,n,
and consequently; |81 - - - |0,,]0},. It is obvious thatA is a real matrix. Moreover, since the
polynomialsc; have no real zeros, we have tldgandd; do have the same real zeros.

2. In the previous point we have seen that= n, andd; = r; = grf(~;). Finally, note that
equation (4.4) states exactly thiad, = ;7. O

Remark 4.8. Since the complex Smith form is unique, it follows from Theorem 4.7 that if

I = diag(y1,. %) and T’ = diag(+,..., 7))

are quaternionic Smith forms of a quaternionic maftixheny;7, = %’7[, I=1,...,m.
However, the reciprocal fact is not true. For instance;let s2+1andy = (s+14)(s + j).

It is easily checked thaty = 7/ = (s% + 1)? but, sincey ¢ 4/, they are not equivalent and
cannot be quaternionic Smith forms of the same polynomial.

5 Dynamical properties of quaternionic behaviors

Being isomorphic3 and B¢ share the same dynamical properties (the definitions for real or
complex systems may be found in [6]). Therefore it is possible to sudlsing a representation
of BT at the cost of an increased size and, consequently, of a lower computational efficiency.

In this section it is shown how basic but fundamental dynamical properties of a quaternionic
behavior can be characterized in terms of its kernel representations.



Autonomy

We start by introducing the concept of autonomous behaviors, i.e., the ones whose trajectories
are completely determined once their ‘past’ is known.

Definition 5.1. A behaviorB is calledautonomoudf for all wy,ws € B
wi(t) = we(t) fort <0 = w; = we.

Clearly, if B is a linear behavior the8§ is autonomous if and only i (¢) = 0, t < 0 implies
thatw(t) = 0 for everyt. As in the commutative case the following proposition holds.

Proposition 5.2. Let R € H9*"[s] and B = ker R(o). Then these conditions are equivalent:

(1) Bis autonomous;
(7) Ris full column rank;

(731) Bis afinite dimensional vector space.

Controllability

The ‘opposite’ of autonomous behaviors are the controllable ones in which it is possible to
switch freely from one to another of its trajectories in finite time.

Definition 5.3. A behaviorB of a time-invariant dynamical system is calledntrollableif for
any two trajectoriesv;, wo € B, and any time instant,, there existg, > ¢; and a trajectory

w € B such that
f own(t), t <ty
w(t) = { ws(t), 1> 1o, (5.1)

When property (5.1) holdsy; andw, are said to beoncatenablén 5. Therefore3 is control-
lable if all its trajectories are concatenabledn

In the commutative case there are many characterizations of controllability. Some of them still
hold in the quaternionic case and are collected in the following proposition. We recall that a
matrix is left prime if it admits only unimodular left factors.

Proposition 5.4. Let R € H9*"[s] be frr andB = ker R(o). Then the following conditions are
equivalent:

(i) Bis controllable;

(13) Ris left prime;

(i) the quaternionic Smith form a@tis [ 0];
(

iv) there exists an image representation, i\/ € H"*"[s| such that3 = Im M (o).



However, the most well-known characterization of controllability, which corresponds to the Hau-
tus criterion for state-space models, does not hold in the quaternionic case. Namely, even if
ker R(o) is controllable, the rank af(\) may depend of # A € H.

For instance, any unimodular matrix is a kernel representation of the (trivially) controllable
behaviorB = {0} butU(\) is not necessarily invertible for &l # A € H. Let, for example,

U:[ZSj.Lk ‘7‘.5] andV:[/IC s }
—1 J 1 —s—3j

SinceUV = I, U andV are unimodular matrices. Howevéf,(%j) is not invertible. Indeed,

1A (1] 3k —51[1] _[o
U(z‘j)[k——i i1kl = lo]-
As in the commutative case every behavior can be decomposed into a (unique) controllable and

an autonomous part.

Theorem 5.5. Every quaternionic behavioB contains a unique controllable subbehavif
and in any decomposition
B = Bc S Bm

B, is an autonomous subbehavior/®f

Stabilizability

A property which is weaker than controllability is stabilizability. In a stabilizable behavior,
instead of switching, we may steer asymptotically, i.e., in infinite time, from one trajectory to
any other within the behavior.

Definition 5.6. A dynamical system with behavidf is calledstabilizableif for every trajectory
w € B,there exists a trajectony’ € B such that

w'(t)=w(t),t<0 and lim w'(t)=0.

t—+00

The characterization of stabilizability for a complex behavfoC ((C’“)Z is given by the next
result, which is the discrete version of [6, Thm. 5.2.30].

Theorem 5.7. Let B be a complex behavior with kernel representatidore C9*"[s]. ThenB is
stabilizable if and only ifank R(\) is constant for all\ € C such thaf\| > 1.

For quaternionic behaviors the following result holds.

Theorem 5.8. Let 5 be a quaternionic behavior with kernel representati®ne H9*"[s] and
letI" = diag(y1,...,7v,) be a quaternionic Smith form @t. Then

B is stabilizable < ~,(A\) =0=|A\| < 1, A € H.
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Proof. As we mentionedp is stabilizable if and only if3© is stabilizable and so, to check
this property, we may analyze the complex Smith formR6f A = diag(d1,0]...,0n,9,,) €
R29%27[s]. SinceR* and A are equivalent, by Theorem 5Fis stable if and only i/, (i) = 0
with p € C = |u| < 1.

We first show that this is equivalent &) (\) = 0 with A € H = |A\| < 1. One implication
is obvious. On the other side, late H \ C be such that),(\) = 0. By Lemma 4.4.1 and
the definition (4.1) ofl(, it follows that there existg € [A\] N C and that/u| = [)|. Since
8! € R[s], alsod,(A) = 0 and, since\ # X\ ~ \, by Lemma 4.4.2 it follows that/, (1) = 0 too
and therefore\| = |u| < 1.

Now we just need to show that

S(v)y=0withv e H=|v| <1 & vy, (A\)=0withA e H= |\ < 1.

Recall that by Theorem 4.7 he have
Y Vn = OO0, (5.2)

“="Let X\ € H be such that,,(\) = 0. By Lemma 4.4.3 we have that7, (1) = 0 which by
(5.2) implies thab,,0;,(\) = 0. As §;, 9, € R[s] for anyl, thend,,d,,(\) = 0,(\)d,,(A) and thus
dn(A) = 0ord,(N) = 0. Eventually, since, | ¢/, it must bed,,(\) = 0 and, by hypothesis,
|A] < 1.

“«<" Let v € H be such thabt/,(v) = 0. This implies that,,6,,(v) = 0 and by (5.2) we have
that+,,7,,(v) = 0. The same equation says thaty,, € R[s| and therefore, as it was shown in
the first part of the prooff'(, [ v,,7,,- By Lemma 4.4.3 there exisfs~ v such thaty,(\) = 0,
and sincdr| = || < 1 the statement is proved. O

Stability

Stability is a rather important property of dynamical systems. Roughly speaking, a dynamical
system is said to be stable if small perturbations produce small effects.

Definition 5.9. A dynamical system with behavids is (asymptotically) stabléf for every
trajectoryw € B, . lir+n w(t) = 0.

As for stabilizability the following result holds. Note that the only difference is that in this case
the behavior is autonomous, i.e., the representation matrix is full column rank.

Theorem 5.10. Let 5 a quaternionic behavior with full column rank kernel representatidbsa
H9*"[s] and letI’ = diag(y1,-..,7) be a quaternionic Smith form d?. ThenB is stable if
and only if

Y(A) =0withA e H = |\ < 1.

Observability

Another dynamical property of a behavior is observability, which expresses the possibility of
obtaining information concerning some components of a trajectory by observing the values of
the other ones.
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Definition 5.11. Let ¥ = (T, W, B) be a time-invariant dynamical system and suppose that
the trajectories i3 are partitioned as) = (wy, wy). We say thatv, is observablgrom w; if
(w1, wa), (w1, w)) € Bimplies thatwy = w).

Clearly, for linear behavior8, ws is observable fromw; if and only if (0, ws) € B implies that

we = 0. In particular, ifB is given asRk;(o)w; = Ra(0o)ws, thenw, is observable fromw; if

and only ifker Ry(o) = {0}.

The following theorem characterizes observability. The proof is analogous to the commutative
case [6].

Theorem 5.12.Let R, € H9*"[s] and letRy € HY9*"2[s]. LetB be the behavior defined by
Ri(0)w; = Ra(o)ws. Then the following conditions are equivalent:

(1) wo is observable fromwy;

(73) R isright prime;

(73¢) the Smith form oR?; is H
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