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Abstract

In this paper we study behavioral systems whose trajectories are given as solutions of
quaternionic difference equations. As happens in the commutative case, it turns out that
quaternionic polynomial matrices play an important role in this context. Therefore we focus
our attention on such matrices and derive new results concerning their Smith form. Based
on these results, we obtain characterizations of system theoretic properties of quaternionic
behaviors.

1 Introduction

In the eighties, J. C. Willems introduced the rather innovative behavioral approach to dynamical
systems [9, 10], which essentially consists in extracting all the knowledge about a system from
its behavior, i.e., the set of its admissible trajectories. Unlike the classical approaches, in the
behavioral approach one looks at the set of trajectories without imposing any structure, that is,
without speaking of inputs and outputs or of causes and effects at an early stage. This point
of view does not only unify the previous approaches, fitting them within an elegant theory, but
it also permits to study a larger class of dynamical systems including situations where it is not
possible or desirable to make any distinction between input and output variables.

During the last two decades the importance of the noncommutative quaternion algebra has been
widely recognized. In fact, using this algebra, phenomena occurring in areas such as electro-
magnetism, quantum physics and robotics may be described by a more compact notation that
leads to a higher efficiency in computational terms [2, 4].

Systems with quaternionic signals were already investigated in the classic state-space approach [1].
Here we study quaternionic behavioral systems. As we will show, quaternionic polynomial ma-
trices, and in particular their Smith form, play an important role in this context. Therefore, a
considerable part of our work is devoted to the study of such matrices.

The structure of the paper is as follows. In Section 2, after introducing the quaternionic skew-
field, we define and state some properties of quaternionic polynomials. Thereafter, in Section 3
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we give some fundamental definitions of behavioral theory, showing how to extend the usual
concepts based on commutative linear algebra to the quaternionic algebra. In Section 4, we
define the quaternionic Smith form and characterize the (complex) Smith form of a class of
complex matrices which can be used to represent quaternionic matrices, and make its relation
to the quaternionic Smith form explicit. Finally, Section 5 is devoted to the characterization
of dynamical properties of quaternionic behaviors. Proofs of results which are not given in the
paper can be found in [5].

2 Quaternions

The real and complex fields are here denoted byR andC, respectively. The set

H = {a + bi + cj + dk : a, b, c, d ∈ R} ,

wherei, j, k are called imaginary units and are defined by the relations

i2 = j2 = k2 = ijk = −1,

is an associative but noncommutative algebra overR called quaternionic skew-field. For any
η = a + bi + cj + dk ∈ H, its conjugateis η = a− bi− cj − dk and itsnorm is |η| =

√
ηη =√

a2 + b2 + c2 + d2.

Definition 2.1. The set ofquaternionic polynomialsis defined by

H[s] =

{
p(s) =

N∑
l=0

pls
l, pl ∈ H, N ∈ N

}
.

Sum and product of polynomials are defined as in the commutative case with the additional rule
(asn) (bsm) = absn+m, i.e., roughly speaking,s commutes with constant values.

We shall use the more general algebraH[s, s−1] of quaternionic Laurent polynomials, or L-
polynomials, i.e., polynomials with positive and negative powers ofs.

To simplify the notation, we will indicate the product of polynomialsp(s) andq(s) aspq(s). We
may also omit the indeterminates and writep ∈ H[s] if no ambiguity arises.

As usual,Hg×r[s] is the set ofg × r polynomial matrices. Since each matrixA ∈ Hg×r[s] may
be uniquely written asA = A1 + A2j, whereA1, A2 ∈ Cg×r[s], an injectiveR-linear map:
Hg×r[s] → C2g×2r[s] can be defined such that

A 7→ Ac =
[

A1 A2

−A2 A1

]
. (2.1)

The matrixAc is called thecomplex adjoint matrixof A. In general, any complex matrix with
the structure (2.1) is said to be acomplex adjoint matrix.

A bijectiveR-linear map:Hg×r[s] → C2g×r[s] may be as well defined such that

A 7→ AC =
[

A1

−A2

]
, (2.2)

which, in particular, maps column vectors into column vectors.
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3 Quaternionic Behavioral Systems

According to [6, Def. 1.3.1], adynamical systemΣ is defined as a tripleΣ = (T, W,B), where
T is a set calledtime axis, W a set calledsignal space, andB, called thebehavior, is a subset of
WT = {w : T → W}.
Here we only considerT = Z andW = Hr, for somer ∈ N. This class of systems is called
discrete-time quaternionic systems.

We assume that the system behaviorB can be described by means of a matrix difference equa-
tion, i.e., the trajectoriesw in B are the solutions of an equation of the form

RNw(t + N) + · · ·+ RM+1w(t + M + 1) + RMw(t + M) = 0, ∀ t ∈ Z, (3.1)

whereRp ∈ Hg×r, p = M, . . . , N , N ≥ M , M,N ∈ Z.

If we define theshift operatorby (στw)(t) = w(t + τ), for everyt, τ ∈ Z, the left-hand side of
equation (3.1) can be written in the more compact form

R(σ, σ−1)w(t) =
N∑

l=M

Rlσ
lw(t) =

N∑
l=M

Rlw(t + l). (3.2)

This notation reveals thatBmay be described as the kernel of the difference operatorR(σ, σ−1) ∈
Hg×r[σ, σ−1] acting on(Hr)Z, i.e.,

B = kerR(σ, σ−1) =
{

w ∈ (Hr)Z : R(σ, σ−1)w = 0
}

. (3.3)

Note that ifB is the kernel of a difference operator, it islinear on the right, i.e., for anyw1, w2 ∈
B andα1, α2 ∈ H, w1α1 + w2α2 ∈ B, andshift-invariant, i.e.,στB = B for all τ ∈ Z.

The shift operatorσ commutes with any quaternionic value and this fact induces the isomor-
phismH[s, s−1] ∼= H[σ, σ−1]. This suggests, as it is usual within the behavioral approach, to
consider the L-polynomial matrix

R(s, s−1) =
N∑

l=M

Rls
l, (3.4)

which is akernel representationof the behavior (3.3), and try to relate its algebraic properties to
dynamical properties ofB.

Notice that, unlike the real or complex case, there is not a unique way to define quaternionic
polynomials. However, other definitions (see, e.g., [7]) are apparently useless here, while the
one we chose fits well into this context.

By extending to sequences the map (2.2), we define for any behaviorB the complex behavior
BC =

{
wC : w ∈ B

}
, wherewC(t) = (w(t))C. BC is called thecomplex formof B and, as

the following proposition shows, admits a kernel representation which can be derived from any
kernel representation ofB.
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Proposition 3.1. LetR ∈ Hm×n[s, s−1]. Then(ker R(σ, σ−1))C = kerRc(σ, σ−1).

Proof. Let v ∈ (ker R(σ, σ−1))C. Then, by definition there existsw ∈ ker R(σ, σ−1) such that
v = wC. SinceRw = 0 thenRcv = RcwC = (Rw)C = 0. Hencev ∈ ker Rc(σ, σ−1).
Conversely, letv ∈ ker Rc(σ, σ−1). This uniquely determinesw (see formula (2.2)) such that
v = wC. ThenRw = 0, since(Rw)C = RcwC = Rcv = 0, and sov ∈ (ker R(σ, σ−1))C.

It can be proved too, that ifBC = ker R̃(σ, σ−1) then there exists a quaternionic matrixR
such thatB = ker R(σ, σ−1). This confirms the equivalence ofB andBC, thus showing that
there is no loss of generality in studying only kernel representations, since this is the standard
representation of the most studied class of real and complex behaviors – i.e., the linear, shift-
invariant and complete ones (see [10]).

At this point it is natural to ask what algebraic properties of a quaternionic matrix are preserved
passing to its complex adjoint. In the following,unimodularmatrices are defined analogously
to the commutative case andfull row rank (frr) matrices are L-polynomial matricesR such that
for any L-polynomial row vectorX, XR = 0 impliesX = 0. A matrix is full column rankif its
transpose if frr.

Lemma 3.2. A quaternionic L-polynomial matrixR is frr if and only ifRc is frr. More generally,
for every quaternionic L-polynomial matrixR, rank R = n if and only ifrank Rc = 2n.

Proposition 3.3. Given two quaternionic L-polynomial matricesA andB, if the equation

Ac = MBc (3.5)

holds with a complex L-polynomial matrixM , then there exists a quaternionic L-polynomial
matrixT such thatA = TB. Moreover, ifB is frr thenM = T c.

Corollary 3.4. LetU ∈ Hr×r[s, s−1]. ThenU is unimodular if and only ifU c ∈ C2r×2r[s, s−1]
is unimodular.

In the sequel we investigate a fundamental equivalence relation for kernel representations.

Definition 3.5. Let Rl ∈ Hgl×r[s, s−1], l = 1, 2. ThenR1 andR2 are said to beequivalent
representationsif ker R1(σ, σ−1) = kerR2(σ, σ−1).

Example 3.6. Consider the following quaternionic polynomial matrices

R1 =
[
s −i
0 s− k

]
, R2 =

[
s + k 0

j 1

]
. (3.6)

These are equivalent representations of the same behavior which, as it is easy to check, is

ker R1(σ, σ−1) = kerR2(σ, σ−1) =
{

w(t) =
[
j
1

]
ktq, q ∈ H

}
.

A straightforward calculation shows thatR2 = UR1, where

U =
[

1 −i
−j s− k

]
is an unimodular L-polynomial matrix.
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We will show that, as in the real and complex case, two representations are equivalent if and
only if each one is a left multiple of the other, as in the previous example. This main result is a
consequence of the following statement.

Theorem 3.7. Let R1 andR2 be two kernel representations ofB1 andB2, respectively. Then
B1 ⊆ B2 if and only ifXR1 = R2 for some quaternionic L-polynomial matrixX.

Proof. By Proposition 3.1,

B1 ⊆ B2 ⇔ ker Rc
1(σ, σ−1) ⊆ ker Rc

2(σ, σ−1)

which, as stated in [8], holds if and only if there exists a complex matrixY such thatY Rc
1 =

Rc
2. However, from Proposition 3.3, this is equivalent to saying thatXR1 = R2 for some

quaternionic matrixX, thus proving the theorem.

Corollary 3.8. Two quaternionic representationsR1 andR2 are equivalent if and only if there
existX1 andX2 such thatR1 = X1R2 andR2 = X2R1. Moreover, if both matrices are frr
thenX1 = X−1

2 , i.e.,X1 andX2 are unimodular matrices.

Remark 3.9. Sincesl is an invertible element inH[s, s−1], it follows that, for anyl ∈ Z,

ker R(σ, σ−1) = kerσlR(σ, σ−1).

As a consequence, it is always possible to choose a polynomial kernel representation of a behav-
ior. Indeed, ifR ∈ Hg×r[s, s−1] is a representation ofB then, for an adequate integerM > 0,
sMR(s, s−1) ∈ Hg×r[s] is still a representation ofB. Therefore, without loss of generality, we
shall always choose polynomial kernel representations.

As in the commutative case, the quaternionic Smith form plays an important role in the study
of quaternionic behavioral systems, in particular in the characterization of controllability and
stability. Thus, we dedicate the following section to a detailed analysis of this form.

4 Quaternionic Smith Form

The main result of this section is the characterization of the Smith form of complex adjoint
matrices and its relation to the quaternionic Smith form. We assume that the reader is already
familiar with the Smith form for real and complex L-polynomial matrices.

Before tackling this subject, it is necessary to state some basic, but rather surprising, properties
of quaternionic polynomials.

Conjugacy is extended to quaternionic polynomials by linearity and by the ruleasn = asn, ∀a ∈
H. With this definition, the following properties hold [5].

Proposition 4.1. Letp, q ∈ H[s]. Then

1. pq = q p.
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2. pp = pp ∈ R[s].

3. If pq ∈ R[s], thenpq = qp.

A polynomiald is adivisor of the polynomialp, d | p, if it divides p on the right and on the left,
i.e., if there exist polynomialsr andl such thatp = dr andp = ld. It turns out that, to define the
Smith form in the quaternionic case, an even stronger concept of divisibility has to be used.

Endow the algebraH[s] with a similarity relation∼ which induces equivalence classes

[q] =
{
p ∈ H[s] : ∃α∈H, p(s) = αq(s)α−1

}
.

Definition 4.2. The polynomiald ∈ H[s] is a total divisorof p ∈ H[s] if [d] | [p], i.e., if for any
d′ ∈ [d] andp′ ∈ [p], d′ | p′. Thegreatest real factorof p, r = grf p, is the (unique) highest
degree monic real factor of the polynomialp.

The concept of total divisor has been introduced long ago by Jacobson [3], but the definition
given in this paper is new as well as the characterizations presented by the following proposition.

Proposition 4.3. Letp, d ∈ H[s]. Then the following conditions are equivalent [5]:

1. [d] | [p];

2. d| grf p;

3. p = dab with da ∈ R[s] anda, b ∈ H[s].

Factors of a polynomialp are usually related to its zeros that, also in the quaternionic case, are
defined as those valuesλ ∈ H such thatp(λ) = 0. Unfortunately, the relation between factors
and zeros ofp is not as simple as for real or complex polynomials. Indeed, ifr = pq ∈ H[s],
then in generalr(λ) 6= p(λ)q(λ). However, ifq(λ) = 0 thenr(λ) = 0 but zeros ofp are not
necessarily zeros ofr. For example,p(s) = (s− i) andq(s) = j are factors ofr(s) = pq(s) =
js− k but, whilep(i) = 0, r(i) = ji− k = −2k 6= 0.

The following lemma collects some basic results about zeros of quaternionic polynomials. First,
define theminimal polynomial of the equivalence class[λ], λ ∈ H, as the real polynomial

Ψ[λ] = (s− λ)(s− λ) = s2 − 2(Re λ)s + |λ|2. (4.1)

Lemma 4.4. Letp ∈ H[s]. Then

1. Ψ[ν] = Ψ[λ] if and only ifν ∼ λ.

2. If p(ν) = p(λ) = 0 with λ 6=ν∼λ thenΨ[λ] | p. If Ψ[λ] | p thenp(ν) = 0 for everyν ∼ λ.

3. If p(λ) = 0 thenΨ[λ] | pp. If Ψ[λ] | pp thenp(ν) = 0 for someν ∼ λ.

In the following this notation is used:diag(a1, . . . , an) is a (not necessarily square) matrix with
suitable dimensions whose first elements on the main diagonal area1, . . . , an and all the other
entries are zero.
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Theorem 4.5. Let R ∈ Hg×r[s, s−1]. Then there exist L-polynomial unimodular matricesU
andV such that

URV = Γ = diag(γ1, . . . , γn) ∈ Hg×r[s],

wheren is the rank ofR andγl, l = 1, . . . , n, are monic polynomials such thatγl(0) 6= 0 and
[γl] | [γl+1], l = 1, . . . , n − 1. If R ∈ Hg×r[s], henceU andV are polynomial matrices too,
then it is not possible to guarantee thatγl(0) 6= 0.

The matrixΓ introduced in Theorem 4.5 is aquaternionic Smith formof R. Note that, unless it
is real, the quaternionic Smith form is not unique.

Before stating the main theorem about quaternionic and complex Smith forms, we give an aux-
iliary result. As in the commutative case, two matricesR andS are said to be equivalent if there
exist unimodular matricesU andV such thatUR = SV .

Proposition 4.6. For all monicq ∈ H[s] there existsp ∈ C[s] such thatqc andpc are equivalent
and grf(q) = grf(p). Furthermore, for all monicp ∈ C[s], the complex Smith form ofpc is
diag(r, rcc), wherep = rc andr = grf(p).

The following theorem characterizes the complex Smith form of polynomial complex adjoint
matrices and gives its relation to their quaternionic Smith forms. The result is trivially general-
ized to L-polynomial matrices.

Theorem 4.7. 1. A polynomial matrix

∆ = diag(δ1, δ
′
1, . . . , δn, δ′n) ∈ C2g×2r[s],

is the complex Smith form of the complex adjoint matrixRc, for someR ∈ Hg×r[s], if
and only if it is a real matrix,δ1|δ′1| · · · |δn|δ′n and, for everyl = 1, . . . , n, δl, δ

′
l are monic

polynomials which share exactly the same real zeros.

2. If Γ = diag(γ1, . . . , γm) ∈ Hg×r[s] is a quaternionic Smith form ofR, thenm = n and,
for everyl = 1, . . . , n,

δl = grf(γl) andγlγl = δlδ
′
l.

Proof. 1. “If” part. It follows from the hypothesis that there exist complex polynomialscl,
with no real zeros, such thatδ′l = δlclcl,. Therefore, sinceδl = grf(δlcl), diag(δl, δ

′
l) =

diag(δl, δlclcl) is equivalent todiag(δlcl, δlcl) by Proposition 4.6. Hence,∆ is equivalent to

diag(δ1c1, δ1c1, . . . , δncn, δncn) ∈ C2g×2r[s],

which, in turn, is equivalent to the complex adjoint matrix,Rc, of

R = diag(δ1c1, . . . , δncn) ∈ Hg×r[s].

“Only if” part. Let ∆ be the complex Smith form ofRc. Suppose thatΓ = diag(γ1, . . . , γn) ∈
Hg×r[s] is a quaternionic Smith form ofR. By Lemma 3.2 it is clear thatm = n. Let γl = rldl,
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whererl = grf(γl). By Proposition 4.6, there existscl ∈ C[s] with no real zeros such thatγc
l is

equivalent todiag(rl, rlclcl) and consequently,Γc is equivalent to

∆′ = diag(r1, r1c1c1, . . . , rn, rncncn). (4.2)

Next we show that∆′ is the complex Smith form ofRc, and hence∆ = ∆′. Since∆′ is equiv-
alent toRc, we only need to show that it satisfies the required division properties. Obviously,
rl | rlclcl, l = 1, . . . , n.

We will prove thatrlclcl | rl+1. By Proposition 4.3 we know that

γl+1 = abγl, bγl ∈ R[s], a, b ∈ H[s]. (4.3)

The fact thatγl = rldl dividesbγl ∈ R[s] implies that also the least real multiple ofγl, i.e.,
rldldl, is a factor ofbγl, and hence, by (4.3), a factor ofγl+1. Note thata | b ⇒ grf(a) | grf(b)
and therefore we have thatrldldl | grf(γl+1) = rl+1. However, by Proposition 4.6, we know
that the matricesγc

l and(rlcl)c are similar and must have the same determinant

r2
l dldl = r2

l clcl, (4.4)

and thusrlclcl = rldldl | rl+1. Therefore,∆ = ∆′, i.e.,δl = rl andδ′l = rlclcl, l = 1, . . . , n,
and consequentlyδ1|δ′1| · · · |δn|δ′n. It is obvious that∆ is a real matrix. Moreover, since the
polynomialscl have no real zeros, we have thatδl andδ′l do have the same real zeros.

2. In the previous point we have seen thatm = n, andδl = rl = grf(γl). Finally, note that
equation (4.4) states exactly thatδlδ

′
l = γlγl.

Remark 4.8. Since the complex Smith form is unique, it follows from Theorem 4.7 that if

Γ = diag(γ1, . . . , γm) and Γ′ = diag(γ′1, . . . , γ
′
m)

are quaternionic Smith forms of a quaternionic matrixR, thenγlγl = γ′lγ
′
l, l = 1, . . . ,m.

However, the reciprocal fact is not true. For instance, letγ = s2 + 1 andγ′ = (s + i)(s + j).
It is easily checked thatγγ = γ′γ′ = (s2 + 1)2 but, sinceγ 6∼ γ′, they are not equivalent and
cannot be quaternionic Smith forms of the same polynomial.

5 Dynamical properties of quaternionic behaviors

Being isomorphic,B andBC share the same dynamical properties (the definitions for real or
complex systems may be found in [6]). Therefore it is possible to studyB using a representation
of BC at the cost of an increased size and, consequently, of a lower computational efficiency.

In this section it is shown how basic but fundamental dynamical properties of a quaternionic
behavior can be characterized in terms of its kernel representations.
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Autonomy

We start by introducing the concept of autonomous behaviors, i.e., the ones whose trajectories
are completely determined once their ‘past’ is known.

Definition 5.1. A behaviorB is calledautonomousif for all w1, w2 ∈ B

w1(t) = w2(t) for t < 0 ⇒ w1 ≡ w2.

Clearly, if B is a linear behavior thenB is autonomous if and only ifw(t) = 0, t < 0 implies
thatw(t) = 0 for everyt. As in the commutative case the following proposition holds.

Proposition 5.2. LetR ∈ Hg×r[s] andB = kerR(σ). Then these conditions are equivalent:

(i) B is autonomous;

(ii) R is full column rank;

(iii) B is a finite dimensional vector space.

Controllability

The ‘opposite’ of autonomous behaviors are the controllable ones in which it is possible to
switch freely from one to another of its trajectories in finite time.

Definition 5.3. A behaviorB of a time-invariant dynamical system is calledcontrollableif for
any two trajectoriesw1, w2 ∈ B, and any time instantt1, there existst2 > t1 and a trajectory
w ∈ B such that

w(t) =
{

w1(t), t ≤ t1;
w2(t), t ≥ t2.

(5.1)

When property (5.1) holds,w1 andw2 are said to beconcatenablein B. ThereforeB is control-
lable if all its trajectories are concatenable inB.

In the commutative case there are many characterizations of controllability. Some of them still
hold in the quaternionic case and are collected in the following proposition. We recall that a
matrix is left prime if it admits only unimodular left factors.

Proposition 5.4. LetR ∈ Hg×r[s] be frr andB = kerR(σ). Then the following conditions are
equivalent:

(i) B is controllable;

(ii) R is left prime;

(iii) the quaternionic Smith form ofR is
[
I 0

]
;

(iv) there exists an image representation, i.e.,∃M ∈ Hr×m[s] such thatB = Im M(σ).
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However, the most well-known characterization of controllability, which corresponds to the Hau-
tus criterion for state-space models, does not hold in the quaternionic case. Namely, even if
ker R(σ) is controllable, the rank ofR(λ) may depend on0 6= λ ∈ H.

For instance, any unimodular matrixU is a kernel representation of the (trivially) controllable
behaviorB = {0} butU(λ) is not necessarily invertible for all0 6= λ ∈ H. Let, for example,

U =
[
−is + k js
−i j

]
and V =

[
−k ks
1 −s− j

]
.

SinceUV = I, U andV are unimodular matrices. However,U
(

1
2j

)
is not invertible. Indeed,

U
(

1
2j

) [
1
k

]
=

[
1
2k −1

2
−i j

] [
1
k

]
=

[
0
0

]
.

As in the commutative case every behavior can be decomposed into a (unique) controllable and
an autonomous part.

Theorem 5.5. Every quaternionic behaviorB contains a unique controllable subbehaviorBc

and in any decomposition
B = Bc ⊕ Ba,

Ba is an autonomous subbehavior ofB.

Stabilizability

A property which is weaker than controllability is stabilizability. In a stabilizable behavior,
instead of switching, we may steer asymptotically, i.e., in infinite time, from one trajectory to
any other within the behavior.

Definition 5.6. A dynamical system with behaviorB is calledstabilizableif for every trajectory
w ∈ B,there exists a trajectoryw′ ∈ B such that

w′(t) = w(t) , t < 0 and lim
t→+∞

w′(t) = 0.

The characterization of stabilizability for a complex behaviorB ⊆ (Cr)Z is given by the next
result, which is the discrete version of [6, Thm. 5.2.30].

Theorem 5.7. LetB be a complex behavior with kernel representationR ∈ Cg×r[s]. ThenB is
stabilizable if and only ifrank R(λ) is constant for allλ ∈ C such that|λ| ≥ 1.

For quaternionic behaviors the following result holds.

Theorem 5.8. LetB be a quaternionic behavior with kernel representationR ∈ Hg×r[s] and
let Γ = diag(γ1, . . . , γn) be a quaternionic Smith form ofR. Then

B is stabilizable⇔ γn(λ) = 0 ⇒ |λ| < 1, λ ∈ H.
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Proof. As we mentioned,B is stabilizable if and only ifBC is stabilizable and so, to check
this property, we may analyze the complex Smith form ofRc, ∆ = diag(δ1, δ

′
1 . . . , δn, δ′n) ∈

R2g×2r[s]. SinceRc and∆ are equivalent, by Theorem 5.7B is stable if and only ifδ′n(µ) = 0
with µ ∈ C⇒ |µ| < 1.

We first show that this is equivalent toδ′n(λ) = 0 with λ ∈ H ⇒ |λ| < 1. One implication
is obvious. On the other side, letλ ∈ H \ C be such thatδ′n(λ) = 0. By Lemma 4.4.1 and
the definition (4.1) ofΨ[λ], it follows that there existsµ ∈ [λ] ∩ C and that|µ| = |λ|. Since
δ′n ∈ R[s], alsoδ′n(λ) = 0 and, sinceλ 6= λ ∼ λ, by Lemma 4.4.2 it follows thatδ′n(µ) = 0 too
and therefore|λ| = |µ| < 1.

Now we just need to show that

δ′n(ν) = 0 with ν ∈ H ⇒ |ν| < 1 ⇔ γn(λ) = 0 with λ ∈ H ⇒ |λ| < 1.

Recall that by Theorem 4.7 he have
γnγn = δnδ′n. (5.2)

“⇒” Let λ ∈ H be such thatγn(λ) = 0. By Lemma 4.4.3 we have thatγnγn(λ) = 0 which by
(5.2) implies thatδnδ′n(λ) = 0. As δl, δ

′
l ∈ R[s] for anyl, thenδnδ′n(λ) = δn(λ)δ′n(λ) and thus

δn(λ) = 0 or δ′n(λ) = 0. Eventually, sinceδn | δ′n, it must beδ′n(λ) = 0 and, by hypothesis,
|λ| < 1.

“⇐” Let ν ∈ H be such thatδ′n(ν) = 0. This implies thatδnδ′n(ν) = 0 and by (5.2) we have
thatγnγn(ν) = 0. The same equation says thatγnγn ∈ R[s] and therefore, as it was shown in
the first part of the proof,Ψ[ν] | γnγn. By Lemma 4.4.3 there existsλ ∼ ν such thatγn(λ) = 0,
and since|ν| = |λ| < 1 the statement is proved.

Stability

Stability is a rather important property of dynamical systems. Roughly speaking, a dynamical
system is said to be stable if small perturbations produce small effects.

Definition 5.9. A dynamical system with behaviorB is (asymptotically) stableif for every
trajectoryw ∈ B, lim

t→+∞
w(t) = 0.

As for stabilizability the following result holds. Note that the only difference is that in this case
the behavior is autonomous, i.e., the representation matrix is full column rank.

Theorem 5.10.LetB a quaternionic behavior with full column rank kernel representationR ∈
Hg×r[s] and letΓ = diag(γ1, . . . , γr) be a quaternionic Smith form ofR. ThenB is stable if
and only if

γr(λ) = 0 with λ ∈ H ⇒ |λ| < 1.

Observability

Another dynamical property of a behavior is observability, which expresses the possibility of
obtaining information concerning some components of a trajectory by observing the values of
the other ones.
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Definition 5.11. Let Σ = (T, W,B) be a time-invariant dynamical system and suppose that
the trajectories inB are partitioned asw = (w1, w2). We say thatw2 is observablefrom w1 if
(w1, w2), (w1, w

′
2) ∈ B implies thatw2 = w′2.

Clearly, for linear behaviorsB, w2 is observable fromw1 if and only if (0, w2) ∈ B implies that
w2 = 0. In particular, ifB is given asR1(σ)w1 = R2(σ)w2, thenw2 is observable fromw1 if
and only ifker R2(σ) = {0}.
The following theorem characterizes observability. The proof is analogous to the commutative
case [6].

Theorem 5.12. Let R1 ∈ Hg×r1 [s] and letR2 ∈ Hg×r2 [s]. LetB be the behavior defined by
R1(σ)w1 = R2(σ)w2. Then the following conditions are equivalent:

(i) w2 is observable fromw1;

(ii) R2 is right prime;

(iii) the Smith form ofR2 is

[
I
0

]
.
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