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Redes de Comunicações

Methodologies for Traffic Profiling in

Communication Networks
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resumo A Internet pode ser vista como uma plataforma em constante evolução onde

novos e diferentes serviços e aplicações estão constantemente a emergir. De

facto, muitas das aplicações dominantes, tais como redes sociais, aparece-

ram recentemente tendo sido rapidamente adotadas pela comunidade de

utilizadores da Internet. Todas estas novas aplicações requerem a imple-

mentação de novos protocolos que apresentam diferentes requisitos de rede

de acordo com o serviço que implementam. Toda esta diversidade levou à

necessidade de construção eficiente de perfis de utilizadores através do ma-

peamento do tráfego destes na aplicação que o originou. Várias tarefas de

gestão de redes tais como a otimização de recursos, desempenho da rede,

personalização de serviços e segurança podem beneficiar de um eficiente

mapeamento de tráfego. No entanto, esta é uma tarefa dif́ıcil devido à

complexidade inerente dos protocolos existentes e a várias restrições que

impedem a análise dos conteúdos do tráfego. De facto, muitas tecnologias,

tais como a encriptação do tráfego, são amplamente utilizadas para pro-

teger a confidencialidade e integridade das comunicações na Internet. Por

outro lado, várias limitações legais impedem também a análise dos tráfego

de utilizadores da Internet de modo a proteger a sua confidencialidade e

privacidade. Consequentemente, novas metodologias de discriminação de

tráfego são necessárias para uma eficiente construção de perfis de tráfego

e de utilizadores. Esta tese propõe várias metodologias que permitem uma

construção precise de perfis de tráfego e que operam eficientemente sob as

várias restrições que foram atrás mencionadas. Através da análise das com-

ponentes de frequência presentes no tráfego capturado e da avaliação da

presença dos vários eventos causados e relacionados com os utilizadores e

com a própria rede, as metodologias propostas são capazes de construir um

perfil para cada uma das aplicações da Internet estudadas. O uso de vários

modelos probabiĺısticos permite uma associação exata do tráfego analisado

à aplicação correspondente. Várias extensões podem ser feitas às metodolo-

gias propostas de modo a permitir a identificação de perfis iĺıcitos escondidos

em comunicações leǵıtimas bem como a classificação de tráfego em tempo

real. Um novo paradigma para a gestão de redes com e sem fios é também

proposto, em que através da análise de métricas da camada 2 e das várias

componentes de frequência presentes é posśıvel uma construção eficiente

de perfis dos utilizadores ligados em termos das aplicações-web usadas. Por

fim, alguns cenários de utilização vão ser apresentados e discutidos.





keywords Internet Traffic, Internet Applications, Internet Attacks, Traffic Profiling,

Multi-Scale Analysis

abstract Nowadays, the Internet can be seen as an ever-changing platform where new

and different types of services and applications are constantly emerging. In

fact, many of the existing dominant applications, such as social networks,

have appeared recently, being rapidly adopted by the user community. All

these new applications required the implementation of novel communication

protocols that present different network requirements, according to the ser-

vice they deploy. All this diversity and novelty has lead to an increasing need

of accurately profiling Internet users, by mapping their traffic to the originat-

ing application, in order to improve many network management tasks such

as resources optimization, network performance, service personalization and

security. However, accurately mapping traffic to its originating application

is a difficult task due to the inherent complexity of existing network proto-

cols and to several restrictions that prevent the analysis of the contents of

the generated traffic. In fact, many technologies, such as traffic encryption,

are widely deployed to assure and protect the confidentiality and integrity

of communications over the Internet. On the other hand, many legal con-

straints also forbid the analysis of the clients’ traffic in order to protect

their confidentiality and privacy. Consequently, novel traffic discrimination

methodologies are necessary for an accurate traffic classification and user

profiling. This thesis proposes several identification methodologies for an

accurate Internet traffic profiling while coping with the different mentioned

restrictions and with the existing encryption techniques. By analyzing the

several frequency components present in the captured traffic and inferring

the presence of the different network and user related events, the proposed

approaches are able to create a profile for each one of the analyzed Internet

applications. The use of several probabilistic models will allow the accurate

association of the analyzed traffic to the corresponding application. Several

enhancements will also be proposed in order to allow the identification of

hidden illicit patterns and the real-time classification of captured traffic.

In addition, a new network management paradigm for wired and wireless

networks will be proposed. The analysis of the layer 2 traffic metrics and

the different frequency components that are present in the captured traffic

allows an efficient user profiling in terms of the used web-application. Fi-

nally, some usage scenarios for these methodologies will be presented and

discussed.





Contents

Contents i

List of Figures v

List of Tables vii

Acronyms ix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Applicability Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 State-of-the-art 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Traffic Classification and Network Anomaly Detection . . . . . . . . . . . . . 13

2.2.1 Port-Based Classification Approaches . . . . . . . . . . . . . . . . . . 14

2.2.2 Payload-Based Classification Approaches . . . . . . . . . . . . . . . . 15

2.2.3 Statistical-Based Classification Approaches . . . . . . . . . . . . . . . 17

2.2.4 Real-Time Classification Approaches . . . . . . . . . . . . . . . . . . . 21

2.2.5 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Intrusion and Attacks Detection . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Host Level Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Network Level Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Hybrid Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Botnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Command & Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Botnets Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

i



2.4.3 Botnet Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.4 Detecting Botnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 User Profiling in Network Management . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Background 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Internet Traffic, Internet Applications and their Dynamics . . . . . . . . . . . 45

3.2.1 Data-Streams Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Traffic Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Traffic Scaling Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 Multi-Scale Traffic Analysis . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.4 Some preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Classification Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Traffic Classification based on Clustering of the Multi-Scale Decomposition

Estimators 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Classification Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Traffic Classification based on Probabilistic Modeling of the Traffic Multi-

Scale Frequency Components 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Unidimensional Probabilistic Modeling of the Decomposition Estimators . . . 78

5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.2 Choosing the decomposition scales . . . . . . . . . . . . . . . . . . . . 79

5.2.3 Classification using unidimensional Gaussian distributions . . . . . . . 81

5.2.4 Classification using unidimensional generic distributions . . . . . . . . 82

5.3 Multidimensional Probabilistic Modeling of the Decomposition Estimators . . 83

5.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.2 Classification using Multidimensional Gaussian Approaches . . . . . . 84

5.3.3 Classification using Multidimensional Generic Approaches . . . . . . . 85

5.4 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

ii



5.4.1 Unidimensional Probabilistic Approaches . . . . . . . . . . . . . . . . 86

5.4.2 Multidimensional Probabilistic Approaches . . . . . . . . . . . . . . . 91

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Enhancing Classification Approaches 97

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Some preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Window-Based Classification Approaches . . . . . . . . . . . . . . . . . . . . 99

6.3.1 Gaussian Window-Based Multidimensional Classification Approach . . 99

6.3.2 Generic Window-Based Multidimensional Classification Approach . . 99

6.3.3 Data-Stream Classification . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.1 Gaussian Window-Based Multidimensional Classification Based on Non-

Sampled Traffic Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4.2 Identification of Illicit Traffic using Generic Window-Based Multidi-

mensional Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 User Profiling for Network Management Purposes based on Traffic Scalo-

grams 107

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Classification Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.1 Legitimate Internet applications . . . . . . . . . . . . . . . . . . . . . 111

7.3.2 Identification of illicit traffic . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8 Conclusions and Future Work 121

Bibliography 125

iii



iv



List of Figures

1.1 Average Web-based attacks per day, by month, 2009–2010 (source [Sec11a]). . 4

1.2 Evolution of attack toolkits and notable innovations (source [Sec11b]). . . . . 5

1.3 Proposed architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Classification approach used in [MP05]. . . . . . . . . . . . . . . . . . . . . . 16

2.2 Flow Diagram for the anomaly detection approach proposed in [SM07]. . . . 26

2.3 Communications between compromised hosts and the bot-master using the

C&C infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Botnets life-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Flow Diagram for the botnet detection system proposed in [KRH07]. . . . . . 38

2.6 Overall data collection architecture proposed in [ARZMT06]. . . . . . . . . . 41

3.1 Frequency regions mapping into network and users mechanisms. . . . . . . . . 47

3.2 Traffic generated by an Internet application: data-streams vs Internet flows. . 48

3.3 Sample Web-Browsing traffic for the upload and download directions. . . . . 50

3.4 Sample Video-Streaming traffic for the upload and download directions. . . . 51

3.5 Sample BitTorrent traffic for the upload and download directions. . . . . . . . 52

3.6 Sample NMap traffic for the upload and download directions. . . . . . . . . . 52

3.7 Sample Snapshot traffic for the upload and download directions. . . . . . . . 53

3.8 A typical wavelet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Multi-Scale Traffic Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.10 Traffic classification concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.11 Relations between the several classification metrics. . . . . . . . . . . . . . . . 62

4.1 Flow diagram of clustering based classification methodology. . . . . . . . . . . 67

4.2 Flow diagram of the off-line and on-line classification methodology. . . . . . . 68

4.3 Normalized multi-scale estimators for the different upload+download traffic

flows, (left) first order, (right) second order. . . . . . . . . . . . . . . . . . . . 69

4.4 Normalized multi-scale estimators for the different download traffic flows, (left)

first order, (right) second order. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

v



4.5 Normalized multi-scale estimators for the different upload traffic flows, (left)

first order, (right) second order. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Unidimensional Probabilistic Modeling of the Multi-Scale Decomposition Es-

timators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Algorithm for determining the best decomposition scales. . . . . . . . . . . . 80

5.3 Multi-scale estimators for the different stochastic processes of sampled data-

streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Distributions for first order decomposition estimators of the 5 minutes traces

of the studied Internet applications and attacks. . . . . . . . . . . . . . . . . 87

5.5 Distributions for first order decomposition estimators of the 15 minutes traces

of the studied Internet applications and attacks. . . . . . . . . . . . . . . . . 87

5.6 Multi-scale estimators for the different stochastic processes of sampled data-

streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7 Sample Estimators extracted from sample Web-Browsing, NMap and Snapshot

streams (top) and Sample Estimators extracted from sample Web-Browsing,

Streaming and BitTorrent streams (bottom). . . . . . . . . . . . . . . . . . . 92

6.1 Window-Based Classification Concept. . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Classification Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1 On-Line News Traffic Patterns and corresponding Wavelet Scalograms . . . . 112

7.2 On-Line Video Traffic Patterns and corresponding Wavelet Scalograms . . . . 113

7.3 On-Line Photo Sharing Traffic Patterns and corresponding Wavelet Scalograms 114

7.4 On-Line e-mail Traffic Patterns and corresponding Wavelet Scalograms . . . . 115

7.5 On-Line Social Networking Traffic Patterns and corresponding Wavelet Scalo-

grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.6 Differentiating Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.7 Host Scan Traffic Patterns and corresponding Wavelet Scalograms . . . . . . 118

7.8 Information Theft Traffic Patterns and corresponding Wavelet Scalograms . . 118

7.9 Internet Applications and Attacks and corresponding frequency mapping regions.119

vi



List of Tables

2.1 P2P protocols and their characteristic strings used in [KBB+04]. . . . . . . . 15

2.2 P2P protocols and their characteristic strings used in [MW06]. . . . . . . . . 17

2.3 Network traffic allocated to each category in [MZ05]. . . . . . . . . . . . . . . 19

4.1 Percentage of correctly classified data-streams for the upload+download traffic

statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Percentage of correctly classified data-streams for the upload+download traffic

statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Percentage of correctly classified data-streams for the download traffic statistics. 73

4.4 Percentage of correctly classified data-streams for the download traffic statistics. 73

4.5 Percentage of correctly classified data-streams for the upload traffic statistics. 74

4.6 Percentage of correctly classified data-streams for the upload traffic statistics. 74

5.1 Percentage of correctly classified data-streams for the first order moment using

5 minutes traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Percentage of correctly classified data-streams for the first order moment using

15 minutes traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Percentage of correctly classified data-streams using a unidimensional generic

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Percentage of correctly classified data-streams using a unidimensional Gaussian

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Percentage of correctly classified data-streams using unidimensional generic

and Gaussian distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Percentage of correctly classified data-streams using a multidimensional Gaus-

sian distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Percentage of correctly classified data-streams using a multidimensional generic

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.8 Percentage of correctly classified data-streams using multidimensional generic

and Gaussian distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

vii



6.1 Time, in seconds, required for traffic classification . . . . . . . . . . . . . . . . 102

6.2 Percentage of correctly identified data-streams of mixed traffic. . . . . . . . . 104

7.1 On-Line Applications with their corresponding web sites and frequency map-

ping regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 On-Line Applications with their corresponding frequency mapping regions and

classification results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Internet Applications with their corresponding frequency mapping regions and

classification results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

viii



Acronyms

AP Access Point

CCS Conversation Content Sequence

CDF Cumulative Distribution Function

CI Confidence Interval

CoS Class-of-Service

CWT Continuous Wavelet Transform

DoS Denial-of-Service

DDoS Distributed Denial-of-Service

DWT Discrete Wavelet Transform

DBSCAN Density Based Spatial Clustering of Applications with Noise

EWMA Exponentially Weighted Moving Average

FCA Formal Concept Analysis

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

IAT Inter-Arrival Time

IDSes Intrusion Detection Systems

IMAP Internet Message Access Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IPTV Internet Protocol Television

ix



IRC Internet Relay Chat

k-NN k-Nearest Neighbors

ML Machine Learning

MSE Mean Squared Error

PCA Principal Component Analysis

PDF Probability Distribution Function

P2P Peer-to-Peer

POP Post Office Protocol

QoS Quality-of-Service

SFS Sequential Forward Selection

SPs Service Providers

SMTP Simple Mail Transfer Protocol

SSH Secure Shell

TCP Transmission Control Protocol

UA University of Aveiro

UDP User Datagram Protocol

WB Web-Browsing

WiFi Wireless Fidelity

x



Chapter 1

Introduction

The Internet can be seen as a constantly evolving domain that became, in recent years, the

most powerful communications platform on the Planet, being an excellent means for accessing

and sharing different types of information, services and applications. In fact, nowadays,

Internet users are able to watch on-line videos, watch Internet Television (IPTV) broadcasts,

use chatting applications, make voice and video calls and many more. The Network also began

to be intensively used for a wide range of military, research, commercial and financial purposes:

nowadays, it is possible to perform several financial transactions either using on-line banking

services, which are widely available, or accessing services provided by companies adopting

pure e-commerce based business models. These companies have been able to obtain increasing

revenues in the last years, proving that such business models are becoming widely adopted by

the consumers. In addition, the recent emergence of Web 2.0 services changed the Internet

itself and the way users interact with it. Indeed, the contents available on the Internet are more

user-centered, since users are now active producers of contents and information, being also able

to share such contents with the on-line community. The emergence of a vast set of applications

based on this new Internet concept, such as social networks, have contributed to this revolution

and such applications are nowadays dominant. Other technologies, such as HTML 5 and

IPv6, also promise a complete revolution on the way users interact with the Internet and

experience its contents. Furthermore, the increasing relevance of cloud computing and of the

applications based on this novel paradigm present a significant challenge to the Internet and

its infrastructures by requiring significant storage and connectivity demands. As a final note

and, despite the promising features and revolutions that these applications present, several

security issues and vulnerabilities emerge [GWS11]. One can then conclude that the Internet

is currently facing an unprecedented challenge [BDF+09].

As the Internet grew in size and complexity, the challenge of provisioning, managing and

securing it became intrinsically linked to the understanding of Internet applications and of

the generated traffic. On the other hand, all these new applications and services implemented

novel communication paradigms that require distinct resources from the network, according
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to the application or service they implement. Currently, satisfying the clients’ needs is abso-

lutely mandatory and the ability of mapping all this traffic to the source application offers

invaluable informations about which resources to allocate to the traffic, which is essential

to guarantee a high quality and availability of the network services. Consequently, in re-

cent years, building accurate user and traffic profiles became tasks of critical importance for

many different networking aspects, such as network performance, network resources manage-

ment, service personalization and security. For instance, Service Providers (SPs) and network

managers can more easily infer the bandwidth and delay requirements, assigning the corre-

sponding traffic to the most adequate class of service and, thus, offering a more satisfying

Quality-of-Service (QoS). Network performance can also be enhanced by inferring resources

requirements from the usage profile of each client, thus allowing a better management of the

network resources. In addition, by predicting future user requirements, network resources can

also be timely allocated in order to prevent their future saturation. Service personalization

and content customization can also be greatly improved since the delivery of related contents

and applications is eased by inferring the applications and contents that are more requested

by network users. Network security can also be improved: by accurately mapping traffic to its

originating application, flows generated by illicit applications or flows presenting suspicious

patterns can be more easily detected. Therefore, by performing a timely detection of security

attacks or compromised hosts, it is easier to achieve a better protection of the remaining con-

nected clients and critical network infrastructures, thus avoiding incommensurable monetary

losses [Ins11]. Many methodologies have been proposed to address the traffic classification

issue, but they had to evolve together with the complexity of the emerging Internet applica-

tions and services and of the Internet itself [DP10]. Most of the existing methodologies are

based on the statistical analysis of Internet traffic or on the deep-inspection of the contents

of the packets. However, many considerable constraints, such as traffic encryption and legal

restrictions, prevent the efficient deployment of these classification approaches. The main

reason behind these constraints is the protection of the confidentiality and privacy of users’

on-line communications. In fact, privacy is a key aspect when considering traffic analysis and

many approaches have been proposed to cope with imposed restrictions [MM10].

Indeed, in the last years, we have also assisted to a dramatic increase on the number and

variety of Internet-based attacks [Sec11a]. Such increase, illustrated in figure 1.1, was caused

by the growing interest of the hacker community, who shifted their focus from exhibitionism

purposes to financial gains due to the wide adoption of e-commerce business models and

e-banking services. The aim is now to profit from existing vulnerabilities on the mentioned

services, causing considerable financial losses to both clients and companies. As a consequence,

users’ confidence in these services and their providing companies can be seriously damaged,

with consequent incommensurable losses. As reported in [Ins11], in 2010 the organizational

cost of a data breach rose to $7.2 million. In addition, the evolution of the attack kits used
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by perpetrators made them more professional, thus more marketable and easy to deploy. The

attacks carried out by such attack toolkits have also become more stealth, more distributed

and more difficult to detect, prevent and mitigate. Such evolution is illustrated in figure 1.2,

which shows the evolution and emergence of novel attack toolkits as well as their growing

sophistication.

Botnets emerged as the cornerstone of on-line criminal activities by allowing the use

of several compromised hosts, under the control of a single master entity - the bot-master,

for specific illicit purposes. These include launching Distributed Denial-of-Service attacks

(DDos), sending spam and phishing e-mails, stealing private information, among others. Due

to their volume, diverse capabilities and robustness, they pose a significant and growing threat

to enterprise networks, costumers and to the Internet as a whole [Ell10]. Detecting botnet

compromised machines, the so called bots, is a difficult task and traditional network and host

security systems, such as firewalls and Intrusion Detection Systems (IDSes), are unable to

successfully complete it due to the stealth and distributed nature of botnets. Moreover, the

inability of these systems to operate in encrypted traffic scenarios also prevents them from

performing an accurate and timely detection of the traffic generated by the compromised

hosts. Indeed, the communications between compromised hosts and their masters use traffic

encryption for hindering purposes. Moreover, such communications can run on top of well-

known protocols, such as the ubiquitous HTTP protocol, thus preventing security systems

from detecting such traffic.

It can be concluded that new paradigms and methodologies for the analysis of Internet

traffic and for the detection of illicit traffic are necessary that can cope with all the mentioned

restrictions are necessary. Our thesis addresses this issue and several classification method-

ologies are proposed. Such approaches analyze different traffic metrics extracted from the

captured traffic and explore the different frequency components present in order to obtain

Multi-Scale Application Signatures that enable the accurate association of unknown traffic

with the corresponding Internet applications. In addition, such approaches also allow an

accurate identification of low-impact and stealth anomalies.

1.1 Motivation

The issue of traffic classification has been recently object of several research works. The

need for novel classification methodologies that can cope with the complexity of existing

networks, with their increasing capacity and bandwidth and with the emergence of several

novel Internet applications was one of the motivations behind our work. In addition, the

need of accurately and timely identifying illicit traffic or traffic presenting suspicious patterns

was also an important motivation for our work. Besides, there is a lack of methodologies

that characterize Internet traffic in terms of the generated traffic patterns, encompassing
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Symantec Internet Security Threat Report
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Because users are more likely to be protected against older vulnerabilities, attack toolkit developers 

advertise their toolkits based on the rate of success of the vulnerabilities that are included and the newness 

of the exploits. To remain competitive and successful, attack kit developers must update their toolkits to 

exploit new vulnerabilities as they emerge on the threat landscape. Thus, the kit developers must either 

discontinue the use of less-successful exploits in favor of newer ones with higher success rates, or 

incorporate new exploits that the kits are programmed to try first. In the future, Java exploits may be 

dropped or marginalized in favor of other technologies that developers consider more vulnerable. To protect 

against all Web-based attacks, users should employ intrusion protection systems and avoid visiting 

unknown websites.
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A rootkit is a collection of tools that allow an attacker to hide traces of 

a computer compromise from the operating system and, by extension, 

the user. They use hooks into the operating system to prevent files 

and processes from being displayed and prevent events from being 

logged. Rootkits have been around for some time—the Brain virus was 

the first identified rootkit to employ these techniques on the PC 

platform in 1986—and they have increased in sophistication and 

complexity since then.

The primary goal of malicious code that employs rootkit techniques is 

to evade detection. This allows the threat to remain running on a 

compromised computer longer and, consequently, increases the potential harm it can do. If a Trojan or 

backdoor is detected on a computer, the victim may take steps to limit the damage, such as changing online 

banking passwords and canceling credit cards. However, if the threat goes undetected for an extended 

period, this not only increases the possibility of theft of confidential information, but also gives the attacker 

more time to capitalize on this information.

Figure 1.1: Average Web-based attacks per day, by month, 2009–2010 (source [Sec11a]).

different traffic metrics, together with a lack of approaches decomposing network traffic into

the several frequency components and evaluating the frequency components and dynamics

of the traffic generated by the several Internet applications. It is known that traffic of any

Internet application is generated and shaped by several events and mechanisms occurring

in different components of the frequency spectrum. Such components include low frequency

events, such as the user interactions or requests, mid-range frequency events, which include

the traffic sessions, created by the user requests, and high frequency events, which encompass

events such as packet arrivals. Since different Internet applications require different user

interactions, creating different frequency events and components, obviously different traffic

patterns are generated, allowing us to create an unique frequency spectrum profile that can be

seen as a signature for each Internet application. Existing classification methodologies either

need to inspect the contents of captured traffic, thus not coping with the several privacy

restrictions imposed by Service Providers (SPs) and with the encryption of such contents

which prevent their analysis, or need to analyze the complete flow in order to perform some

form of statistical analysis over the captured traffic.

In addition, we also propose a new network management paradigm based on the accurate

profiling of Internet users. The proposed paradigm evaluates the frequency components and

the dynamics of the captured Internet traffic by performing a multi-scale decomposition. This

consists of analyzing traffic in several scales, i.e different aggregation levels, in order to capture

the above mentioned mechanisms. Several differentiating regions can be defined in whole
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Figure 1.2: Evolution of attack toolkits and notable innovations (source [Sec11b]).

frequency spectrum and the analyzed traffic can be accurately mapped to the corresponding

Internet application. The obtained results allow us to conclude that the proposed approach

enables an accurate traffic mapping and user profiling. As the approach is based on the

analysis of different traffic metrics that can be extracted according to each classification

scenario, it complies with the several existing traffic analysis restrictions and can be deployed

in encrypted traffic scenarios, where the contents of the packets are not available for analysis,

or scenarios where strong restrictions prevent the analysis of the network traffic.

1.2 Objectives

There are several objectives for this PhD work. The first one is the implementation of

classification methodologies that allow an accurate traffic classification and an accurate iden-

tification of Internet-based attacks. Such tasks are essential for building user profiles, which

is a critical task in many crucial network management tasks. The proposed methodologies

must also cope with the different limitations imposed by many existing privacy and legal

restrictions that prevent the inspection of the payloads of the captured traffic. In addition,

proposed approaches must cope with traffic encryption, since it is a widely deployed tech-

nique for protecting the confidentiality of on-line communications by encrypting the packets

contents.
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The implementation of user profiling techniques in wired and wireless network scenarios

is another objective of this work. By performing a promiscuous monitoring of all connected

hosts, different traffic metrics will be measured/inferred, allowing the definition of a User

Profile as the set of Internet applications that are used by a specific user.

The identification of profile changes and of hidden illicit patterns constitute an important

objective in order to detect stealth and low-impact attacks. Finally, the timely association

of captured traffic to the generating Internet application and the timely identification of

Internet-based attacks are also crucial objectives of this PhD. To address this issue, different

non-sampled traffic metrics must be inferred in order to reduce the amount of time required

for obtaining an accurate traffic classification.

1.3 Applicability Scenarios

In this section, we propose and describe a network management and profiling platform

where the different approaches proposed in this thesis can be deployed. In addition, some

possible deployment scenarios will also be presented.

An overall diagram with the different components of the envisioned platform is presented

in figure 1.3. To begin with, several network probes can be deployed to monitor each network

segment in order to capture the sent and received traffic. Measurements can also be made

at other critical network points, such as ingress and egress nodes, where all traffic has to

flow through. Several traffic metrics can then be extracted from the captured traffic, being

subsequently decomposed in their frequency/time components. From such decomposition,

a wavelet spectrum is obtained and a profile, which depicts several frequency components,

is built for the traffic generated in each host by each Internet application. When analyzing

known traffic, i.e traffic whose generating application is known, a Multi-Scale Signature is

obtained for each application class. These signatures allow the association of unknown traffic

to the generating application and can be stored in a database for future traffic classification.

A classifier is used to associate captured and unknown traffic with the corresponding appli-

cation class and after a validation process, which can be performed by network managers,

the corresponding (and already stored) Multi-Scale Application Signature can be updated,

which enables an adaption to changing network conditions, such as bandwidth, and conse-

quently to changing applications profiles. The classification is then passed to the user profiling

module that creates and updates the profile of each user accordingly. Finally, the network

management module interacts with classifier and user profiling modules in order to perform

(i) counter-measures when illicit traffic is detected or (ii) other optimization tasks on the

monitored network in order to improve its performance.

The Classifier module will be addressed in chapters 4 to 6, which propose different method-

ologies to perform an accurate classification of the analyzed traffic to the corresponding Inter-
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Figure 1.3: Proposed architecture.

net application. Such methodologies cope with the several existing privacy, legal and technical

restrictions, being also able to analyze encrypted traffic and identifying the generating Inter-

net application. These features enable the proposed platform to be deployed in scenarios

having stringent restrictions.

The User Profiling Module will be addressed in chapter 7, which proposes an approach for

the accurate profiling of the users that are connected to wired and wireless networks. User

Profiles are, in our work, defined as the set of used web-applications and, by performing an

analysis of the several frequency components present in the traffic generated by a local host,

the proposed approach can create accurate user profiles.

Several usage scenarios can be envisioned for the proposed profiling platform. To begin

with, our platform can be used for profiling users connected in wired and wireless networks.

Indeed, the proposed approach is able to analyze traffic sent over secure wireless networks by

deploying probes that do not register in the network(s) and can promiscuously monitor the

different connected clients. The monitoring and profiling platform can be also deployed for

the identification of compromised hosts inside a network. The identification of such hosts has

a critical importance, since traditional network defense mechanisms and intrusion protection

systems only look for attacks coming from outside the network. Therefore, compromised hosts

inside the network are free to run all kinds of illicit activities and need to be identified in order

to stop them. This can be achieved by monitoring each host and issuing an alert whenever
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a pattern of illicit or suspicious traffic is detected at any scale of analysis: in this case, the

proposed framework univocally identifies the compromised host. Several counter-measures,

which include isolating that host from the network or simply shutting it down, can then be

taken. Such use case is illustrated in figure 1.3.

As already mentioned, our traffic classification approaches are immune to existing privacy

restrictions and, consequently, the proposed platform can be deployed in encrypted traffic

scenarios where the payload of the packets is not accessible. Consequently, this paradigm

is also suitable for the analysis of Virtual Private Network (VPN) connections, of Internet

tunnels and of secured wireless networks.

1.4 Structure of the Thesis

The thesis is divided in eight chapters.

In chapter 2, the most relevant related work is presented. The chapter covers several

research topics that are related to this thesis, including traffic classification, intrusion and

attacks detection and the detection of traffic generated by botnets and by compromised hosts.

To conclude this chapter, some important related to User Profiling is discussed.

Chapter 3 presents some relevant definitions that are common to all presented traffic

models and classification approaches. These include the definition of data-stream as a traffic

grouping methodology, representing the object of analysis, modeling and classification. A

presentation of the legitimate Internet applications that will be studied, as well as of the

illicit applications that will be emulated, is also provided in this chapter. The different gen-

erated and captured traffic patterns are described and the capturing methodology is also

explained. Subsequently, a comparison between some of the most used signal frequency anal-

ysis methodologies, together with an explanation of the advantages and drawbacks associated

to each decomposition approach, is also given. Continuous and discrete transforms are pre-

sented and discussed, highlighting the advantages and issues associated to each transform.

Our multi-scale analysis approach is then presented, explaining how such analysis is enabled

by Continuous or Discrete Wavelet Transforms (CWTs or DWTs). Subsequently, some re-

alted preliminary definitions are also given, since they will be intensively used in subsequent

chapters.

Chapter 4 presents a classification methodology for grouping the traffic presenting simi-

lar behaviors over the analyzed range of decomposition scales. The proposed approach uses

unsupervised clustering algorithms for analyzing the high frequency components of the sev-

eral studied Internet applications and grouping the ones with similar behaviors. The first

and second order moment of analysis are used and the obtained results show that unknown

traffic can be accurately assigned to the corresponding application. In addition, an accurate

identification of stealth and low-impact Internet attacks was achieved. The accuracy of the
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approach was evaluated using different classification metrics.

Several proposed probabilistic modeling approaches are presented and defined in chapter

5. We start by presenting unidimensional probabilistic models that include Gaussian and

generic probability distributions. Two different approaches were used to select the decom-

position scales that are used for traffic classification. The chapter starts by presenting an

approach that uses the first decomposition scales for modeling the high frequency compo-

nents generated by the different Internet applications and by some relevant, low-impact and

stealth anomalies. After a short introduction, an algorithm for selecting the most appro-

priate decomposition scales is presented. For each decomposition scale, the algorithm uses

known traffic for inferring the parameters of the distributions of each Internet application

and chooses the ones in which the distributions are more separated. The unidimensional

probabilistic models used for associating unknown traffic to the corresponding Internet ap-

plication are then presented. Such models analyze each scale of analysis separately, inferring

distributions for each Internet application in the different decomposition scales and then com-

puting a final value. Subsequently, multidimensional approaches that map each one of the

selected decomposition scales into a dimension in order to generate a n-dimensional space

are presented. These approaches enable the analysis of the correlations between the used

decomposition scales, in order to infer more accurate distributions. The models that are used

are multidimensional generic and Gaussian approaches. Finally, a discussion of the obtained

results and a comparison between the different approaches are provided.

Chapter 6 presents an enhancement that can be made to all proposed classification ap-

proaches in order to increase the classification accuracy. Such enhancements enable the iden-

tification of profile changes in the traffic generated by an Internet application, allowing the

identification of hidden illicit patters, or the real-time traffic classification of network traf-

fic. The results obtained show that the proposed enhancements can be used for accurately

identifying hidden illicit patterns and for enabling a timely traffic classification and a timely

identification of low-impact and stealth anomalies.

Chapter 7 presents a novel user profiling paradigm for wired and wireless networks based

on the analysis of different traffic metrics, according to the restriction of the classification

scenario. In the proposed scenario, promiscuous monitoring probes that do not authenticate

with the Access Point of the monitored network are used for capturing the traffic each host

sends and receives. Since the monitoring probes do not register in the monitored network,

they cannot be detected by the monitored host neither by the Access Point. Layer 2 traffic

metrics are captured from the traffic generated and received by each one of the hosts of

the monitored network and, by using Continuous Wavelet Transforms (CWTs), appropriate

scalograms are constructed in order to depict the most important frequency components of

the captured traffic. Subsequently, the creation of differentiating regions associated to each

one of the studied web-applications (indicating the characteristic frequency components of
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the traffic it generates) allows an accurate identification of unknown traffic. In this way,

it is possible to characterize the connected hosts in terms of the web-applications they use,

which constitutes our definition of user profile. The obtained results prove that the proposed

approach is suitable for creating such usage profiles.

Finally, Chapter 8 presents the most relevant conclusions as well as some directions for

future work.

1.5 Major Contributions

The following constitute the major contributions achieved with this thesis:

• Proposal and analysis of a traffic classification approach based on the clustering of the

multi-scale decomposition estimators. This approach models the first and second order

multi-scale components and is able of accurately grouping the traffic presenting the

similar frequency components. In this manner, an efficient grouping of the traffic pre-

senting the same multi-scale behavior is achieved and an accurate traffic discrimination

is obtained together with the identification of some of the most used Internet attacks.

This approach was presented in [RSN09a], [RSN09b], [RSN11e];

• Proposal and analysis of a legitimate and illicit traffic discrimination methodology based

on unidimensional probabilistic models. Two different approaches were used for select-

ing the most appropriate decomposition scales. The first consisted in analyzing the first

scales in an attempt to model the high-frequency events present in the captured traffic

and is presented in [RSN10]. The second approach consisted in deploying an algorithm

for choosing the decomposition scales where the distributions are more separated. In

this manner, we can optimize our methodologies. Two different models were used for

assigning unknown Internet traffic to the corresponding application. These assume that

the distributions generated by the multi-scale decomposition estimators can be mod-

eled with Gaussian approaches, while the second uses generic probabilistic approaches

for classifying captured traffic. Once again, an accurate traffic mapping was achieved

together with an accurate identification of two widely deployed Internet attacks. The

proposed models were presented in [RSNR11];

• Proposal of a legitimate and illicit traffic identification model based on the use of mul-

tidimensional probabilistic models for assigning Internet traffic to the generating appli-

cation. The previously mentioned algorithm was used for choosing the most suitable

decomposition scales for an accurate traffic classification and two multidimensional mod-

els were used. The first one uses multivariate Gaussian distributions for modeling the

multi-scale traffic components and was presented in [RSN11b], while the second uses

multidimensional generic approaches and was presented in [RSN11c];
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• Proposal of an enhancement for the classification methodologies which consists on

the usage of several sliding classification windows that allow the identification of hid-

den illicit patterns embedded inside legitimate communications and was presented on

[RSN11c]. The use of non-sampled traffic metrics allowed us to achieve a timely traffic

classification together with an accurate identification of some significant illicit traffic.

The mentioned work is presented in [RSN11d];

• Proposal and analysis of a user profiling approach for wired and wireless networks.

The approach uses promiscuous monitoring probes that capture the traffic generated

by each connected client in every network segment. Several traffic metrics are then

extracted and decomposed and the obtained parameters can be accurately assigned to

the generating Internet application. The proposed approach can also be deployed for

monitoring different hosts connected in different wireless networks since the monitoring

probes do not authenticate with the Access Point(s) of the monitored network(s). Layer

2 traffic metrics are then extracted and decomposed using a CWT and the analysis of

the resulting scalograms allows an evaluation of the different frequency components,

enabling the accurate assignment of the analyzed traffic to its corresponding application.

The profiling approach was presented in [RSN11a].
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Chapter 2

State-of-the-art

2.1 Introduction

This chapter presents the most relevant work that has been carried out in the fields

addressed by this PhD. Several areas are related to the classification methodologies that we

will propose. So, let us start by presenting the the most relevant work and the different

methodologies that have been proposed in the traffic classification area. After that, the field

of intrusion and security attacks detection is discussed, followed by a discussion of the most

relevant work on the field of Botnets detection. Finally, the need of an accurate user profiling

is discussed, together with the presentation of the most relevant related work.

2.2 Traffic Classification and Network Anomaly Detection

The problem of classifying Internet traffic has been studied for many years and constitutes

a very active research field. In fact, the ability to accurately associate captured traffic with its

source application is of critical importance for many network activities. For instance, network

administrators can easily build and identify application usage trends that can be essential for

many network management tasks, including traffic engineering, network links optimization

and service personalization [CKS+09]. The identification of emerging applications can also be

achieved by an accurate traffic mapping, which can help network administrators in identifying

applications that can change the network resources demands and, consequently, lead to a

saturation of some of those resources. Network security can be also improved, because an

accurate mapping between traffic and its source application will certainly lead to an easier

identification of illicit traffic or traffic presenting an anomalous behavior.

The main concept behind traffic classification is the ability to infer, from captured traf-

fic, the necessary characteristics that will allow an accurate association of the traffic to its

originating Internet application. Many approaches have been proposed over the years, which

had also to evolve together with the increasing complexity of existing and emerging Internet
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applications and services. In the following sub-sections, the different methodologies will be

presented, together with a discussion of their main advantages and drawbacks and the most

relevant work that has been done so far.

2.2.1 Port-Based Classification Approaches

Ports numbers are divided in three ranges: Well Known Ports, Registered Ports and Dy-

namic and/or Private Ports. The Well-Known range spans from 0 to 1023 and corresponds

to ports reserved for privileged use, while Registered Ports are those from 1024 to 49151. Fi-

nally, Dynamic and/or Private Ports are the ones located between 49152 and 65535, inclusive.

These numbers are assigned by IANA [IAN11].

The first deployed classification approach explores the concept that each Internet appli-

cation uses a specific port number. For instance, HTTP traffic uses port number 80, while

DNS uses port number 53; SMTP runs on top of port 25 and FTP uses ports 21 and 22.

Therefore, a simple association between the used port and the corresponding services can be

performed in order to classify traffic. Some works using this approach were proposed, being

able to achieve accurate results [MKK+01].

However, in the last years this approach became inefficient since many emerging appli-

cations started to use ephemeral ports in an attempt to disguise themselves by using ports

that are usually associated to different protocols. Peer-to-Peer protocols and voice or video

transmission protocols started to exhibit such behaviors in order to bypass proxies and fire-

walls. A study conducted by Madhukar et. al. [MW06] proved that port-based analysis no

longer provided accurate results when compared to other identification methods, since un-

known traffic varied between 40% to 65% of the total traffic. This study also confirmed that

unknown traffic was more evident at night periods, which might suggest that this was gener-

ated by Peer-to-Peer (P2P) applications. In a related work, Sen et. al. [SSW04] stated that

the default port of the Kazaa protocol only accounted for 30% of the total traffic generated

by this protocol. In [KBB+03], the authors developed several classification heuristics that

allowed them to identify P2P traffic running over nonstandard ports. The authors concluded

that, according to the protocol and metric that was used, approximately 30% to 70% of P2P

traffic could not be identified using standard ports. In [KBB+04] the authors went beyond the

known port classification limitation for identifying P2P traffic and developed a framework and

heuristics to measure camouflaged P2P traffic. Their work consisted in reverse engineering of

the protocols and identification of characteristic strings in the payload. The results obtained

showed that P2P applications evolved to use arbitrary ports for communication. Finally, in

[MP05] an analysis and quantification of the errors due to this classification approach were

presented and the results obtained showed that more than 28% of the captured traffic could

not be classified.
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2.2.2 Payload-Based Classification Approaches

One of the most accurate classification approaches is based on the fact that many Internet

protocols and applications use characteristic strings in the payloads of the generated packets

that can actually distinguish them. Such strings are also known as digital signatures and

consist of specific byte sequences. Therefore, this approach is based on the inspection of the

payloads of the captured packets searching for digital signatures that can be used to identify

the generating Internet application [MW06].

In one of the first works, presented in [SSW04], the authors proposed application level

signatures for an efficient identification of P2P traffic. The authors analyzed the available

documentation and packet-level traces from the different existing P2P clients in order to

obtain the application-level signatures, which were then used to develop on-line filters that

could efficiently track P2P traffic in high-speed network links. Authors were able to achieve

very accurate classification results, with less than 5% of false positives and false negatives.

However, the approach required a previous knowledge of each application in order to develop

the corresponding signatures, which prevents this approach from automatically adapting itself

to new/emergent applications.

A very important work [KBB+04] addressed the reports that claimed a significant de-

crease in P2P file-sharing traffic. The authors started by measuring traffic from all known

P2P protocols and, using reverse-engineering, analyzed these protocols in order to identify

characteristic strings in the payload, like the ones shown in table 2.1. Several classification

heuristics were then proposed to accurately determine if the analyzed traffic was generated

by a P2P protocol or not. These included analyzing the source or destination port and

determining if it matched ”known P2P ports”, in which case the flow was tagged as P2P.

Subsequently, the authors compared the payload of each packet against the obtained charac-

teristic signatures, which allowed them to determine the exact P2P protocol. Their findings

contradicted the reports that claimed a decrease on the volume of P2P traffic and also pointed

some obstacles for an accurate identification of this type of traffic.

In [MP05], authors used payload analysis to quantify the errors associated to port-based

classification approaches. The traffic used for classification was captured from a site referred

Table 2.1: P2P protocols and their characteristic strings used in [KBB+04].
P2P Protocol String Transport Protocol

eDonkey2000 0xe3, 0xc5 TCP/UDP
Fasttrack ”GIVE” / 0x270000002980 TCP/UDP
BitTorrent ”0x13Bit” TCP
Gnutella ”GNUT” / ”GIVE” / ”GND” TCP/UDP
MP2P GO!!, MD5, SIZ0x20 TCP
Direct Connect ”$MyN”,”$Dir” / ”$SR” TCP/UDP
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The successful identification of specific flows caused by a particular network
application reveals important information about the hosts active in our trace.
Our technique utilises this information to build a knowledge base for particular
host/port combinations that can be used to validate future classification by test-
ing conformance with already-observed host roles (Method IX). One outcome
of this operation is the identification of hosts performing port scanning where
a particular destination host is contacted from the same source host on many
sequential port numbers. These flows evidently do not belong to a particular
application (unless port scanning is part of the applications looked into). For a
different set of flows, this process validated the streaming audio from a pool of
machines serving a local broadcaster.

Method IX can be further enhanced to use information from the host name
as recorded in the DNS. While we used this as a process-of-last-resort (DNS
names can be notoriously un-representative), DNS names in our trace did reveal
the presence of an HTTP proxy, a Mail exchange server and a VPN endpoint
operating over a TCP/IP connection.

3.3 Classification Approach

An illustration of the flow through the different identification sub-methods, as
employed by our approach, is shown in Figure 2. In the first step we attempt to
reduce the number of flows to be further processed by using context obtained
through previous iterations. Specific flows in our data can be seen as “child”
connections arising from “parent” connections that precede them. One such ex-
ample is a web browser that initiates multiple connections in order to retrieve
parts of a single web page. Having parsed the “parent” connection allows us to
immediately identify the “child” connections and classify them to the causal web
application.
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Fig. 2. Classification procedure.

A second example, that has a predominant effect in our data, is passive
FTP. Parsing the “parent” FTP session (Method VIII) allows the identification

Figure 2.1: Classification approach used in [MP05].

to as Genome Campus, hosting several Biology-related facilities. The captured traffic was

grouped into flows for a more-efficient processing of the collected information and for retrieving

context for an appropriate identification of the network application that generated each flow.

Flows were classified according to the approach illustrated in figure 2.1 and very accurate

classification results were obtained.

In [HSSW05], authors explored the automatic extraction of application signatures by

applying three statistical machine learning algorithms, namely Näıve Bayes, AdaBoost and

Regularized Maximum Entropy models. In this manner, their classification approach was able

to scale in order to allow traffic identification on high-speed links. The studied applications

were FTP control, SMTP, POP3, IMAP, HTTPS, HTTP and SSH, and were chosen because

they cover a wide range of application classes and it was very easy to obtain the required

pre-classified training set, since these applications still use mainly their default ports. The

authors also evaluated the durability of the extracted signatures by classifying traffic traces

collected 7 months after their first data set. The classification errors only slightly increased,

which indicated that the classifiers maintained a good performance and the signatures could

be used for long time periods.

In a study addressing network traffic measurements for P2P applications [MW06], the

authors compared three different classification methods: port-based, payload signatures and

transport-layer analysis. Traffic traces collected during 2 years at the University of Calgary

were used to verify the accuracy of the three different methods. As already mentioned in

section 2.2.1, the port-based approach was unable to classify 30% to 70% of the captured

traffic. Authors then used several application signatures to identify the P2P protocol that was

behind each captured packet. The available documentation and packet-level traces were used

to infer the most accurate signatures and this approach was used to establish ground-truth,
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Table 2.2: P2P protocols and their characteristic strings used in [MW06].
P2P Protocol String

Gnutella2 ”GNUTELLA”
KaZaA ”X-Kazaa”
BitTorrent ”.BitTorrent”

i.e, results that are close to the ones determined by using manual inspection. Their analysis

focused on P2P protocols transmitting data over TCP, which were the vast majority, and on

reassembled TCP streams, so that signatures that span several packets could be detected.

In addition, signature matching needs only to be performed once per stream, which reduces

analysis overhead. The analyzed P2P applications were Gnutella2, KaZaA and BitTorrent

and the used signatures are shown in table 2.2. The results obtained with these signatures

were quite accurate and this method did not classify any non-P2P flow as P2P. The authors

also pointed out some disadvantages of using this approach, including the fact that many

privacy regulations prevent the deep-inspection of the contents of the captured traffic and the

need of knowing in advance which applications are going to be identified. In addition, many

P2P protocols started to use encryption, which turned this approach into an infeasible one.

Many issues are raised when deploying such an approach. In fact, many privacy restrictions

prevent the analysis of the packets contents, while many technical issues appear when using

this classification approach in high-speed network links [MM10]. In addition, the constant

updates that are required to keep all the signatures databases accurate and suitable for traffic

classification constitute a significant drawback of this approach. Finally, traffic encryption

that is widely deployed to assure the confidentiality and integrity of on-line communications

by encrypting the traffic contents prevents the use of this approach.

2.2.3 Statistical-Based Classification Approaches

The study of the statistical properties of the traffic flows, which is based on the fact that

different applications typically generate different traffic patterns that enable the identifica-

tion of their underlying protocols, can be a very efficient identification approach, even when

unknown P2P protocols are included [MW06, HCL08].

A very important work using this classification paradigm presented a methodology for the

identification of P2P traffic at the transport layer based on the connection patterns and was

proposed in [KBFc04]. It addressed the ability of P2P applications to disguise their presence

by using arbitrary ports and the many restrictions preventing payload-based approaches. In

this impressive work, the authors started by pointing out the different limitations associ-

ated to payload-based classification approaches and then presented their nonpayload P2P

traffic classification methodology, which used two heuristics. The first one examines source-
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destination IP pairs that use both TCP and UDP for data transfer, since most of the studied

P2P protocols use both layer 4 protocols. In fact, control traffic, such as queries and query-

replies, use UDP, while data transfers run on top of TCP. The second heuristic is based on

how peers connect to each other and the authors examined all source {srcIP, srcPort} and

destination {destIP, destPort} pairs. The pairs for which the number of connected IPs is

equal to the number of connected ports are considered as P2P. This methodology was able to

identify more than 90% of P2P bytes, even with bit-rates as high as 220 Mbps.

In a ground-breaking work [RSSD04], authors presented a methodology for associating

captured traffic to its Class-of-Service (CoS) and described the requirements and associated

challenges, outlining a solution framework for measurement based classification of traffic for

QoS purposes. These authors stated that the chosen signatures are insensitive to the used

application layer protocol but are able to determine how an application is used: interactively

or for bulk-data transport. These signatures can then be used to determine the CoS for each

IP packet. The work focused on four broad application classes:

• Interactive: this class encompasses traffic which is required by a user to perform multiple

real-time interactions with a remote system;

• Bulk data transfer: traffic used to transfer large data volumes over the network without

any real-time constraints;

• Streaming : multimedia traffic with real-time constraints;

• Transactional : traffic which is used in a small number of request response pairs which

can represent a transaction.

Several features were extracted from captured traffic at different levels: packet, flow and

connection levels. Several feature vectors were built and two methods were then used for

classification: Nearest Neighbors (NN) and Linear Discriminant Analysis (LDA). Large traffic

traces from different network locations were used to assess the accuracy of the methodology,

which presented low error rates.

A novel classification paradigm based on the identification of host behavior patterns at

the transport layer was proposed in an impressive work [KPF05] with the title BLINC. The

mentioned traffic patterns are analyzed at three levels of increasing detail. The first one, the

social level, captures the behavior of a host in terms of the number of hosts it communicates

with, which the authors refer to as popularity. The information required for analyzing such

level consists only on the source and destination IP addresses. The functional level captures

the functional role of the host in the network, i.e, if it is a consumer or a provider of a service

or if it participates in collaborative communications. The additional information required

for analyzing the functional role is the source port, because if a single port is used for most

of the communications, it is likely that the host is providing a service offered in that port.
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Finally, the application level captures the transport layer interactions between hosts in order

to identify the source application. The authors use the 4-tuple (IP addresses and ports) and

include additional flow information, such as the number of packets or bytes transferred as well

as the transport protocol. These informations are then used to generate a library of graphlets

that are used to seek for matches and classifying captured traffic. The proposed approach

copes with all the existing privacy, technical and practical constraints that prevent the usage

of payload-based approaches. It was tested against three real traffic traces captured in the

Internet link of two access networks. BLINC was able to classify more than 90% of all flows

with more than 95% accuracy. However, connection patterns require a large amount of flow

data and finished flow lifetime to perform the analyses. BLINC is then more suitable for an

off-line traffic analysis of multiple flows.

The use of Bayesian classification methodologies was proposed in [MZ05], where hand-

classified traffic data was used as input to a supervised Näıve Bayes classifier. The discrim-

inators used for this analysis included the TCP ports, the Inter-Arrival Time (IAT) and its

Fourier transform, the payload and the effective bandwidth. By performing some refinements

over the classifier, the authors were able to reach an accuracy of 95% when mapping traffic

of several protocols into different categories, as shown in table 2.3. The main disadvantage

of this approach is that requires many training traces, since the ratio between training and

test traces is 1:1, which is not always achievable. In addition, if the network and/or traffic

parameters change, the classifiers have to be re-trained.

In [BTA+06], the early identification of TCP traffic was addressed based on the anal-

ysis of the first five packets of a TCP connection. The authors collected the size of these

packets and used unsupervised clustering techniques to group the packets presenting similar

profiles. A training phase was used for creating the classes, while the classification phase uses

them to determine the application associated to each TCP flow. Traffic belonging to several

protocols was accurately identified, with accuracy rates always higher than 80%. This work

Table 2.3: Network traffic allocated to each category in [MZ05].
Classification Example Application

BULK FTP
DATABASE postgres, sqlnet oracle, ingres
INTERACTIVE ssh, klogin, rlogin, telnet
MAIL imap, pop2/3, smtp
SERVICES X11, dns, ident, ldap, ntp
WWW www
P2P KaZaA, BitTorrent, GnuTella
ATTACK Internet worm and virus attacks
GAMES Half-Life
MULTIMEDIA Windows Media Player, Real
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was of seminal importance since it opened a wide range of new possibilities for on-line traffic

classification. However, several issues are associated to this approach. To begin with, the

approach is sensitive to packets arriving out of order, since the spatial representation of the

traffic flows changes. In addition, applications exchanging similar packets will be assigned to

the same label, while applications presenting unknown behaviors are not classified. Finally,

this approach does not cope with traffic encryption that may prevent the analysis of the TCP

headers.

In the same year, the work published in [EAM06] demonstrated that cluster analysis can

be effectively used to identify groups of traffic that are similar using only transport layer

statistics. Two unsupervised clustering techniques (K-Means and DBSCAN) were used to

achieve an accurate traffic identification. The first was chosen due to its simplicity and works

by partitioning objects into K number of clusters. The algorithm starts by randomly choos-

ing the K centroids of each cluster and assigns each observation to the closest cluster. The

K centroids are then recomputed and the assignment of observations to the closest clus-

ter is repeated. This process is repeated until a convergence criteria is met. Such criteria

can include no (or minimal) reassignment of observations to new cluster centers, or minimal

decrease in squared error [JMF99]. DBSCAN (Density Based Spatial Clustering of Applica-

tions with Noise) is a clustering algorithm that considers clusters as dense areas of objects

separated by less dense areas [EpKSX96]. Therefore, the created clusters can have an arbi-

trary shape, being not limited to a spherical one, and does not require a pre-defined number

of clusters, which can be seen as an advantage over partition-based algorithms. The third

used algorithm was AutoClass, which is a probabilistic model-based clustering technique and

allows the automatic selection of the number of clusters. The defined clusters allow the ob-

jects to be fractionally assigned to more than one cluster. The probabilistic model is then

built by determining the number of clusters and by inferring the parameters of the different

probabilistic distributions. The studied protocols were HTTP, P2P, POP3 and SMTP and

the mentioned clustering techniques were used, comparing their accuracy. The connections

that DBSCAN labeled as noise reduced the overall accuracy of this algorithm, since they are

considered as misclassification mistakes. However, DBSCAN presented the highest accuracy

when classifying three of the studied protocols, while K-Means was the fastest approach.

Instead of classifying traffic based on statistics of individual flows, the authors in [HCL09]

focused on building behavioral profiles describing the dominant patterns of a target appli-

cation. A two-level matching mechanism is then used to classify captured traffic, where the

first determines if a host participates in the application by comparing its behavior with the

profiles. Subsequently, each flow of the host is compared to the profiles in order to identify

the ones that were generated by the studied application. The selected target application

was P2P and several rules were obtained for TCP and UDP connections, which are merged

from different training traces. Then, the authors looked back at the behavior of each host
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to construct application profiles. The classification results proved that their approach can

accurately identify BitTorrent traffic. However, the number of rules required for classification

was very high, which raises some issues on the scalability of their approach as well its ability

to classify traffic on-the-fly.

In a recent work [HGPS11], the authors propose a ”two-way” application of k -means

clustering techniques that consists in analyzing a bidirectional flow as two unidirectional flows.

The authors argue that, in this way, they are able to increase the classification accuracy by as

much as 18% when compared to other similar approaches. In addition, they state that their

approach generates fewer clusters, which implies that fewer calculations have to be performed

to classify traffic. Several discriminators were proposed and the authors used their own version

of the Sequential Forward Selection (SFS) algorithm to choose the best discriminators. It

starts by clustering the training data according to each of the several discriminators separately

and then determines the best ones by evaluating how many flows were assigned to the correct

cluster. In the following iterations, the previously selected discriminators are combined with

all the others individually to cluster the data. The best combination is selected until no

improvement is made. The k -means clustering technique was used due to its fast training

times and ease of implementation. Their results showed indeed an increase in the accuracy

when compared to some other works.

However, this method suffers from the fact that traffic with the same statistical behavior

can be classified as belonging to the same application, which may not be true, and traffic with

unknown behavior is not classified. Clustering techniques are useful tools for grouping traffic

with similar characteristics [EAM06], but they have to rely on other identification techniques

to label the clusters. Machine Learning Classifiers are also based on the statistical analysis

of Internet traffic and can provide accurate identification results using only transport layer

information [MHLB]. Recent works use wavelets, alone or combined with other techniques,

on the detection of traffic anomalies [GHYC06, LG09]. However, these works did not explore

the multi-scale characteristics of network traffic for the detection of network anomalies and

do not provide a flow-based analysis, which is more suitable for the classification of attacks.

2.2.4 Real-Time Classification Approaches

Real-Time traffic classification is a fundamental task for many network management de-

cisions: by timely identifying the applications that generate traffic on a specific network link,

network managers can optimize the utilization of their networks; better Quality-of-Service

(QoS) can be offered to connected clients, while preventing the saturation of many network

resources; the timely identification of malicious traffic or traffic presenting anomalous patterns

is also crucial to assure the protection of the connected hosts and network resources. However,

achieving such ability is not an easy task. The inherent complexity of current network appli-

cations and services and the existence of several privacy and legal restrictions that prevent
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the analysis of the packets contents are important obstacles for an accurate and timely traffic

classification. One of the first research works that addressed this issue [NA06] emphasized the

need to achieve an accurate traffic mapping well before a flow has finished, also considering

situations when the onset of the flow was lost. Therefore, this reference proposed a training

approach for the classifier based on short sub-flows, extracted from full-flows examples of the

studied Internet applications. This optimization was subsequently evaluated by deploying a

Näıve Bayes classifier, achieving a high classification performance.

In 2007, a work presented in [BMM+07] studied the real-time detection of Skype traf-

fic. The authors presented a model for the Skype message building process and described

in detail the several messages exchanged by Skype clients. The approach consisted in two

complementary techniques: the first uses the Pearson’s Chi-Square statistical test to detect

whether and which messages are encrypted and to detect Skype’s fingerprint. This allows the

distinction between the traffic generated by Skype clients from the one of other VoIP sources.

The second builds stochastic models based on packet arrival rate and packet length, which

are then used as features on a decision process based on Näıve Bayes classifiers. This allows

the quantitative evaluation of the resemblance of potential Skype flows to the characteristics

inferred from the stochastic models. The accuracy of the obtained results was verified by

comparing the results obtained with these two presented classifiers with the ones obtained

when performing payload inspection. Note that this inspection is made difficult by obfusca-

tion and cryptographic techniques. When using both presented techniques, the percentage of

False Positives drops to almost zero.

In [HJC08], a set of flow attributes is proposed to characterize the negotiation behaviors,

in the application layer perspective, for both TCP and UDP traffic flows. The authors state

that an application-layer perspective shows more potential discriminating characteristics than

a transport-layer perspective. In addition, the authors also state that these attributes are

available at the early-stage and consequently, are suitable for real-time traffic classification.

The authors defined application interaction rounds as the basic ”block” for capturing the

application characteristics, where each one consists of two parts. These parts consist of two

TALK blocks, where the first is a series of data packets transmitted in one direction and the

second is a series of data packets transmitted in the opposite direction. TCP control packets

were used to determine the initializer and listener of each flow. For UDP flows, the initializer

is the one that sends the first packet. Several discriminators such as layer 7 transmitted

size, throughput, IAT and response time were defined and analyzed for the different defined

TALK blocks. Several machine learning algorithms implemented in WEKA [WEK11], such as

Näıve Bayes, Sequential Minimal Optimization (SOM) and pruned C4.5 decision trees, were

deployed for assessing the accuracy of the discriminators. The classification accuracy using

all these approaches was determined and proved that, using their ML approaches with the

application layer metrics, the authors could achieve a high accuracy with low False Positive
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(FP) rate. The authors also claimed that this work presented an accuracy increase of around

8% to 21% when compared to some other previous works. However, this work lacks of

novel classification methodologies, since the authors only deploy machine learning algorithms

implemented in WEKA and their approach is not able to analyze encrypted traffic.

In a more recent work [JG10], authors propose a FPGA-based parallel architecture to

accelerate the statistical identification of multimedia applications, while assuring high accu-

racy. Applications such as Skype, Instant Messaging and IPTV were studied and by using the

k -Nearest Neighbors (k -NN) algorithm and a Locality Sensitive Hashing (LSH) the approach

can be deployed in high bandwidth links. According to the presented results, this approach

was able to achieve an accuracy of more than 99%. In [BBL10], the fast identification of Bit-

Torrent traffic was addressed by using machine learning techniques to select the features that

could be used for real-time traffic classification. The importance of a timely identification of

BitTorrent traffic comes from the fact that it is the most popular P2P client and is one of the

most dominant traffic generating applications in the Internet. Therefore, its early identifica-

tion allows network operators to better manage the resources of their networks and provide a

better QoS to their clients. The authors examined complete TCP flows in order to determine

the best differentiating statistics for BitTorrent classification, and four discriminators were

proposed:

1. Minimum payload : some messages exchanged by the BitTorrent protocol present small

size packets, with 5-17 bytes of payload;

2. Small Packet Ratio: BitTorrent protocol serves two purposes: data exchange and infor-

mation updates between peers. Small Packet Ratio is then defined as the ratio of the

count of small packets to total packets within a flow;

3. Large Packet Ratio: This is defined as the the ratio of the count of large packets to

total packets within a flow;

4. Smaller Payload Standard Deviation: Each flow consists of data flowing in two direc-

tions. For each direction, the standard deviation of the TCP payload size was computed

and the smallest value was used.

The suitability of the presented discriminators was then evaluated using sub-flows with

300 packets size, in order to assure that each has at least one characteristic packet, using

the approach presented in [NA06]. The authors have trained and tested a classifier based on

the C4.5 algorithm implemented in WEKA and evaluated the four discriminators separately

and together. In addition, sub-flows of different sizes were used to evaluate the effect of the

number of analyzed packets in the classification accuracy. Accurate classification results were

obtained when using the four discriminators and when evaluating flows of 150 and 300 packets.

In addition, the authors were also able to distinguish other client-server bulk transfers from
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BitTorrent traffic. However, their approach relies on the analysis of TCP packets and it is

known that there are implementations of BitTorrent protocol that use UDP as the transport-

layer protocol, which prevents the classification of such traffic.

2.2.5 Anomaly Detection

The problem of anomaly detection consists in identifying, or finding, patterns in data

that are compliant with the expected behavior. Anomaly Detection can be used in many

different fields; in network security, it is more related to dealing with several security issues,

like identifying patterns of unknown attacks, intrusion attempts or zero-day attacks. Different

approaches have been proposed to face this diversity of problems.

Machine Learning

In [LCD04], a methodology for the detection, identification and quantification of network-

wide anomalies was proposed. Principal Component Analysis (PCA) was used to perform the

separation of the high-dimensional space occupied by a set of network traffic measurements

into disjoint subspaces. Such subspaces correspond to normal and anomalous network con-

ditions, enabling the identification of volume anomalies and their corresponding flows. The

authors analyzed data collected from two backbone networks, Sprint-Europe and Abilene,

and deployed PCA on a measurement matrix that denotes the time-series of all links. They

determined that although both networks have more than 40 links, the vast majority of the

variance in the time-series of each link can be captured by 3 or 4 principal components. These

components are then mapped into new axis, which are then separated in two subspaces: the

normal (S) and anomalous (S) subspaces. Anomalies are then detected by separating the

link traffic into their normal and anomalous components. To evaluate their approach, the au-

thors first isolated true anomalies and evaluated their subspace method quantitatively, more

precisely the detection probability and the false alarm probability. Then, anomalies of differ-

ent sizes were inserted in different flows and the proposed detection approach was applied.

The detection rates obtained were very high and are independent of when the anomaly was

injected.

Another work [WZ06] proposed the use of clustering algorithms together with factor anal-

ysis and Mahalanobis distance. Factor analysis allowed the authors to uncover the structure of

a set of variables from an unknown sample, reducing the attribute space to a smaller number of

factors, which enables a more efficient characterization of normal activities. The Mahalanobis

distance was used for determining the ”similarity” between a set of values extracted from an

unknown sample to a set of values extracted from known samples and, therefore, determining

if those unknown samples constitute, or not, an anomaly. The authors were then able to (i)

identify outliers based on a training model and (ii) cluster attacks by abnormal features. The

1998 DARPA intrusion detection dataset [LFG+00] was used for obtaining attack-free data

24



Traffic Classification and Network Anomaly Detection

for the training set and the 1999 Dataset [Dar11] was then used to evaluate their approach.

The experimental results showed that the proposed approach is able to accurately identify

Internet attacks with a tolerable false alarm rate.

In [SM07], the authors propose a general framework for the detection and classification

of novel attacks that uses a new Support Vector Machine (SVM) technique, named en-

hanced SVM, which combines supervised and unsupervised SVM techniques for providing

unsupervised learning and low false alarm rate. It consists of an hybrid machine learning ap-

proach for anomaly detection. The overall structure of the framework comprises four major

phases/components and is depicted in figure 2.2. The first consists on the on-line processing of

captured traffic and a real-time filter using TCP/IP Fingerprinting is used to drop malformed

packets. An off-line processing is also performed in this phase and includes data clustering

using Self-Organized Feature Maps (SOFM), which is an unsupervised neural network model

for analyzing and visualizing high-dimensional data into two dimensional lattices in order to

create a profile of the normal and legitimate traffic. In addition, a packet field selection using

Genetic Algorithms (GA) is also performed in order to extract optimized information from

raw Internet packets. The subsequent phase consists of preprocessing the filtered packets in

order to allow a high detection performance. Packets relationships based on traffic flows are

considered in order to charge Support Vector Machine (SVM) with temporal characteristics,

during this phase. The third phase consists in training/testing the previously mentioned En-

hanced SVM, which combines two learning methods: soft margin SVM (supervised method)

and one-class SVM (unsupervised method). In this manner, the Enhanced SVM inherits the

high performance of soft margin SVM, while presenting a high novelty detection capability

associated to one-class SVM. Finally, the last phase consists in verifying the approach using

a validation test that showed that the proposed approach managed to detect novel forms of

attacks, while presenting a low False Positive rate.

A more recent work [DHKR09] proposed the use of Machine Learning (ML) techniques to

explore the correlations between packet and flow level informations, allowing the association

of packet level alarms with a feature vector inferred from flow records. The authors claim

that their work presents some key contributions such as the ability of detecting unwanted

traffic using a set of flow signatures, which allows their classifiers to operate in network links

with very high-speed links. A set of flow level predicates is built from each flow indicating its

transport-layer protocol and other numerical attributes such as the number of packets. The

rules from the popular IDS Snort [Sno11] were used, and for each one a score was computed

over the previously mentioned flow attributes. If this score exceeds an operating threshold

θ, a ML alarm is issued while classification mistakes are minimized by assigning weights to

each Snort rule. An architecture for exploring their methodologies at a network scale was

also proposed, where flow records are collected from a set of interfaces across the monitored

network in order to capture all flowing network traffic. A set of packet monitors is then
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accordance with the IP identification number. The third step includes the Enhanced SVM machine learning
approach (for training and testing), as described in chapter 1. The SVM model combines two kinds of
machine learning methods: soft margin SVM (supervised method) and one-class SVM (unsupervised
method). In doing so, the Enhanced SVM approach inherits the high performance of soft margin SVM,
and the novelty detection capability of one-class SVM. The final step entails verifying the approach using
both an m-fold cross validation test, and comparing the proposed framework with real world NIDSs, such
as Bro [31] and Snort [34].

The rest of this paper is organized as follows. In Section 3, we introduce SOFM, PTF, and GA, which are
supplemental techniques employed to enhance the performance of the proposed approach. In Section 4, we
present combine supervised and unsupervised SVM methods and the proposed machine learning approach.
In Sections 5 and 6, we explain experimental methods along with data preprocessing, data description, and
parameter settings. In the last section, we conclude with a summary and discussion of future work.

3. Packet profiling, filtering and field selecting approach

3.1. Packet profiling using SOFM

Collecting normal data is one of the most important aspects in the field of machine learning because this
collected data is required for training a supervised learning system. Moreover, the normal data can provide an
intelligent criterion to an unsupervised machine learning system. In the proposed machine learning frame-
work, packets for normal learning is needed as a measure of the correct learning. Thus, we have to provide
a reasonable rule in order to show the packets used for learning have normal characteristics. However, this
is not a simple task; for this reason, a new method is needed, such as a data mining scheme, to construct a
normalized group (normal profile) with normal packets (attack-free). If we provide a reasonable method
for creating a normal profile, it will enhance the generalized detection capability of the framework. Another
tool required in the data mining area is data clustering. In this section, we use the machine learning algorithm
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Figure 2.2: Flow Diagram for the anomaly detection approach proposed in [SM07].

deployed in specific sites in order to capture a representative mix of traffic, and each monitor

is equipped with a set of packet level rules. The produced alerts are then forwarded to the ML

trainer that correlates the different packet alerts with the flow generated by the same traffic

and generates a set of flow level alerting rules. Finally, a Runtime Flow Classifier applies

these rules to all flow records, producing flow-level alerts.

In [BSM10], an analysis of the effects of packet sampling and of temporal aggregation

on the signal properties was carried out and some techniques were suggested to overcome

such effects. The authors state that these techniques introduce noise, distortion and aliasing

on the analyzed signal and show that the aliasing introduced by the aggregation step has

the largest impact. They subsequently propose a replacement for this step, which consists

on the implementation of a low-pass filter that decreases the aliasing effects. The authors

proved that, by applying their approach, the performance of anomaly detection systems can

be largely improved.

Wavelet Analysis

Wavelet analysis has been widely applied on the field of anomaly detection due to its

time-frequency property that allows the decomposition of a signal into several components,

each one at a different frequency.
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In [KPA02], wavelets are used for the analysis and characterization of flow based traffic

behaviors. NetFlow signals are split into three different frequency ranges, starting from the

low frequency components that account for patterns over long periods of time, such as several

days. Mid-frequency components account for daily events such as daily variations in the flows

attributes, while high-frequency components account for short term variations. These three

components are obtained by dividing the obtained wavelet decomposition coefficients in three

different intervals, generating signals from these coefficients. Subsequently, algorithms are

used to detect anomalies on the generated signals by setting thresholds at the mentioned levels.

The obtained results showed that this approach was able to provide an accurate identification

of some forms of DoS attacks and port scans due to the anomalies that are generated in the

mid and high-frequency components. Nevertheless, some recent and stealth attacks do not

generate anomalies at this frequency levels, and consequently, cannot be detected using this

approach.

Kim et. al proposed in 2004 a technique for the detection of traffic anomalies by analyz-

ing the correlation of the destination IP addresses in the traffic flowing from a local network

[KRV04]. Their study was performed at an egress router and the authors stated that des-

tination IP addresses presented a high correlation degree and changes in these values could

indicate an anomaly. DWTs were then applied to the correlation data of the destination ad-

dresses over several time-scales. Deviation from normal profiles generated alarms that could

be passed to network administrators.

A work addressing some of the limitations of wavelet based anomaly detection, such as its

computation complexity, was presented in [GHYC06]. The authors presented a novel anomaly

detection approach based on wavelet transforms that is able to adjust the decomposition

process adaptively. The algorithm can select different time-frequency resolutions according

to the characteristics of the analyzed traffic signal. It maintains the same ability of detecting

anomalies at various frequencies, specially at the mid-range and high frequency components

that cannot be detected by multi-resolution analysis. The results obtained with simulated

attacks showed that the proposed approach could detect network traffic anomalies in a timely

manner. However, DDoS was the only simulated attack, so other stealth forms of attacks

should have also been simulated in order to verify the ability of the proposed approach to

detect them.

In [KR06], the authors present NetViewer, which is a network measurement approach

for the real-time detection, identification and visualization of security attacks and anomalous

traffic. NetViewer passively monitors and extracts samples of network packet headers that

are then represented as images. Therefore, a series of samples can be seen as a sequence of

frames or video, enabling a visual representation of the attacks that can be understood by

the human eye. Some image processing and video compression techniques can be used for the

detection of anomalies. The authors state that ”scenes changes” can reveal sudden changes
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in the captured traffic or anomalies and that ”motion prediction” techniques can be used

to understand some of the attacks. NetViewer is composed by three components. The first

consists in generating the image signal from the samples of network traffic. The second consists

in detecting the anomalies that are present in the generated images. As already mentioned,

image processing and video compression techniques are deployed at this phase. Finally, in the

last stage the detected anomalies are identified together with the identification of the attacker

and victim. The obtained results were very promising, with an overall accuracy of more than

90%. However, this analysis approach does not seem to cope with traffic encryption since the

packet headers may not be accessible.

In a more recent work [LG09], the authors proposed a new network signal modeling

approach where wavelet approximations are combined with system identification theory. The

architecture of the proposed approach consists of three components:

1. feature analysis;

2. normal network traffic modeling ;

3. intrusion detection.

In the first component, the authors defined and generated fifteen features to character-

ize network traffic behaviors. Based on these features, the second component models and

represents normal daily traffic by a set of wavelet approximation coefficients, which can be

predicted using an AutoRegressive with eXogenous (ARX) model. The output of this model

represents the deviation of the input signal from the normal behavior signals and is then

passed to the third component that performs intrusion detection by using an algorithm to

detect outliers. The 1999 DARPA intrusion detection dataset [Dar11] was used to validate

this identification approach and the authors were able to accurately identify different types of

attacks. In addition, the accuracy of the approach was also verified by three days of collected

traffic from Fred-eZone, a free Wireless Fidelity (WiFi) network service provider [Fre11] and

the results were still accurate although some attacks were not detected, which decreased the

classification accuracy. As a drawback, we can mention the fact that the data from which

the normal traffic models are inferred needs to be free of intrusions and attacks, which is not

easy to guarantee.

Wavelets have also been applied, with promising results, on the implementation of pro-

totypes for the detection of specific types of attacks. For instance, in [Ram02] an approach

named WADeS (Wavelet based Attack Detection Signatures) was proposed for the detection

of DDoS attacks and consisted in applying WTs on captured network traffic signals. Subse-

quently, the variance of the decomposition coefficients was used to estimate the occurrence of

the attack. Another prototype for the real-time detection of anomalies, named Waveman, was

proposed in [HTS06]: authors used different metrics to evaluate the performance of various
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wavelet functions on detecting different types of anomalies, like DoS and port-scans, part of

the 1999 intrusion detection dataset [Dar11] and also real network traffic data.

2.3 Intrusion and Attacks Detection

As mentioned in chapter 1, the recent and stunning increase in the number and variety

of Internet attacks has given a tremendous importance to the network security area. Several

solutions are currently being deployed, at a network or an host level, for the identification,

mitigation and prevention of IP-based attacks. In the following sub-sections, both approaches

will be presented, together with the associated advantages and drawbacks.

2.3.1 Host Level Solutions

Host based approaches reside in the monitored host and aim to monitor activities and

events of a single host, tracking changes that were made to important files and directories in

order to detect suspicious activities. The data sources comprise system and processes logs,

file system monitoring, network configuration monitoring and many more.

One example of host based approaches are anti-virus applications, which rely on a database

containing known patterns of attacks that enables an accurate identification of those attacks.

Such databases need to be constantly updated in order to detect new and emerging threats

and, with the ever increasing number of new attacks and vulnerabilities, can become very

complex and unmanageable. In addition, generating the signature for the identification of

an unknown threat can be a time-consuming and complex task due to the amount of traffic

samples that must be analyzed in order to generate the correct signature [YA09]. Anti-virus

are also unable to discover highly sophisticated and stealth attacks that present unknown

patterns or patterns similar to legitimate applications. In addition, once a machine becomes

infected, these tools are not able to detect the illicit traffic it sends, which may consist of

requests to servers or other hosts on the network or traffic containing stolen confidential data.

All these communications present profiles that are similar to normal traffic and, consequently,

are not detected as illicit traffic. These are the biggest threats to corporations because, once a

host becomes infected, the whole network, its services and confidential data are compromised.

Personal firewalls can also be an effective tool for preventing a computer infection by

blocking traffic from unauthorized applications. This protection can be compared to a ”digital

shield” around the host that restricts incoming and outgoing network activity to the monitored

host. Although it can provide a considerable protection, by blocking some illicit applications,

firewalls require an average know-how from the user, which rarely happens: by misusing

the firewall, an user can inadvertently open a breach in his network security. Moreover,

personal firewalls cannot prevent illicit traffic embedded in normal communications supported

by authorized applications or services.
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There are several issues associated to host-based and monitoring approaches that have

already been described and discussed. However, an important aspect is the fact that the

ever-growing databases used by Host Level Solutions force these softwares to consume more

and more resources of the protected host, which constitutes a major drawback [YA09]. In

addition, host based approaches require that one agent per monitored host is deployed, which

raises the cost of deploying such approaches on a large network.

2.3.2 Network Level Solutions

Network based detection approaches monitor specific network segments and devices and

analyze the flowing network traffic for suspicious patterns and activities. At this level, IDSes

such as Snort [Sno11, Roe99] and Bro [Bro11], and network firewalls may appear as the most

adequate approaches for guaranteeing the security of a network, its connected hosts and its

infrastructure. These systems are deployed in strategic points of the network, such as ingress

and egress nodes, so that all the traffic flowing to and from all hosts of the monitored network

can be analyzed.

IDSes operate by inspecting the contents of the captured packets in order to find digital

signatures, or patterns, of known threats. Such patterns are stored on a database that needs

to be constantly updated. However, scanning every single packet and inspecting its contents,

against the databases that contain all known attack patterns, is a complex and computa-

tionally intensive task. This raises several scalability issues that prevent their deployment

on network links with high bandwidth since these systems will not be able to analyze and

compare the contents of all packets flowing through such links. IDSes can also be deployed

in a distributed manner, in which several probes monitor each one of the network hosts.

However, the correlations that the probes must perform in order to discover distributed and

stealth attacks are extremely complex. Since IDSes also rely on databases containing the

known forms of attacks, they suffer from the same drawbacks associated to anti-virus, which

were already listed in the previous sub-section. These include the need of constant updates

and an increase on the complexity of such databases and the inability of detecting unknown

threats and stealth forms of attacks presenting normal traffic characteristics [KDL04]. As

pointed out in [Gol11], some simple techniques can also be used to circumvent detection by

IDSes. Finally, these tools are also unable to cope with encrypted traffic and with the diverse

confidentiality restrictions, all of them preventing the analysis of the contents of the packets.

Network firewalls scan the flowing network traffic and use a set of rules to decide which

traffic can pass through the firewall and which traffic must be dropped. In this manner, traffic

generated by illicit or suspicious applications can be easily blocked. Firewalls usually create

a Demilitarized Zone (DMZ), which separate servers from the remaining protected network

in order to avoid the propagation of intrusions. However, several issues are also tipically

associated to network firewalls, including their inability to offer a secure protection against
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stealth attacks targeting authorized services on the monitored network.

2.3.3 Hybrid Approaches

Cisco’s Intrusion Prevention System (IPS) is an example of an hybrid platform for the

detection of several types of attacks and threats that works simultaneously at the network

and host levels [Cis11]. Threats are mitigated by performing deep packet inspection of all

network packets and monitoring the processes that are running on the different network hosts.

Such software usually limits the user ability to run other types of programs or perform tasks

different from the ones that are allowed by the monitoring software. This fact usually dis-

suades companies from using this platform. Besides, since the platform relies on an extensive

database of known threats and attacks, it suffers from the same limitations of all other IDSes.

2.3.4 Conclusions

We can then conclude that there is a stringent need for new methodologies that can

identify unknown, distributed and stealth attacks, can cope with different privacy restrictions

that govern most of current networks and with traffic encryption. In order to achieve these

requirements, new paradigms for the analysis of IP traffic and for the identification of IP-based

security attacks must be developed.

2.4 Botnets

The recent and alarming increase on the number, variety and stealthiness of reported

Internet attacks is tightly connected to the emergence of Botnets, which are nowadays con-

sidered the most serious threat to the Internet. They have become the cornerstone of on-line

criminal activities and consist of networks of compromised hosts running an autonomous piece

of software, the bots, and controlled via a command and control (C&C) infrastructure [Ell10].

The administrator of this infrastructure is known as as the bot-master and uses it to send

instructions and commands to the controlled machines. So, a botnet consists of a collection of

compromised machines running the bot program under the control of the bot-master. Botnets

are used for several illegal purposes that will be presented and discussed in sub-section 2.4.3.

Botnets recruit new vulnerable systems using methods also deployed by other classes of

malware, such as remote exploitation of known vulnerabilities. However, what distinguishes

them from the remaining classes of malware is the fact that botnets use a communications

infrastructure and the fact all compromised machines are able to cooperate towards a single

purpose.
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2.4.1 Command & Control

Communications betweens bots and their masters are achieved through a C&C infras-

tructure. The interaction of the compromised hosts (bots) with this infrastructure and, con-

sequently, with the bot-master is depicted in figure 2.3. The bots, under the control of the

bot-master, connect using the pre-defined communications channel to obtain the instructions.

This channel can be implemented using a variety of Internet protocols, including the ubiqui-

tous HTTP protocol, P2P networks or the IRC (Internet Relay Chat) protocol, which is still

widely used. In fact, in an early stage, such communications were performed using the IRC

protocol, since it was a scalable solution that required minimal administration efforts [CJM05].

The simplicity of the IRC protocol and its flexibility in allowing different forms of commu-

nications (point-to-point, point to multi-point) are some of the reasons why bot-masters still

prefer this communication protocol. In addition, its flexibility and the availability of many

open-source implementations, allowing bot-masters to use their own version of the protocol,

are also very important factors [ARZMT06] [NI07]. However, blocking such communications

was very easy to achieve by simply closing the ports used by the IRC protocol. Consequently,

the structure of botnets had to evolve to a more distributed one, involving Peer-to-Peer ar-

chitectures and protocols [DD08, WSZ10]. In fact, the main feature a P2P C&C is the fact

that there is no centralized server that can be shutdown, which makes the disruption of this

infrastructure much more difficult. On the other hand, as already mentioned, these com-

munications can run on top of the HTTP protocol, whose ports are never closed in private

networks, making this infrastructure very resilient. C&C communications can also be hidden

inside common traffic patterns or encrypted traffic, making their detection and disruption

even more difficult.

The bot-master can then send his instructions to the compromised hosts using the com-

munications channel. In this way, the compromised hosts can be controlled remotely without

the knowledge of the owners of the compromised machines. These instructions can include

scanning for vulnerable systems or taking part in a distributed attack.

2.4.2 Botnets Life Cycle

Botnets follow similar steps throughout their existence. The general life cycle of a botnet

can be divided in four main phases (figure 2.4):

1. initial infection - exploit;

2. secondary infection - bot download;

3. maintenance & update - join;

4. malicious activities - commands.

32



Botnets

Figure 2.3: Communications between compromised hosts and the bot-master using the C&C
infrastructure.

The first phase comprises the initial infection of a machine that can be performed in many

different ways, including exploiting the vulnerabilities of an operative system or software.

Host scanning is one of most used techniques for assessing the open ports, and consequently,

the open service on a specific host. In addition, users may perform an accidental down-

load and execution of malicious code while opening e-mail attachments or browsing through

compromised or malicious web-sites. After the initial infection, the second phase (secondary

infection) takes place, consisting in the download and execution of the botnet code so that the

compromised machine can join the botnet and perform the requested actions. This download

can be performed by using several protocols such as FTP, TFTP and HTTP. Subsequently, a

secure connection with the C&C server must be performed and the bot-master has to obtain

feedbacks from the bots, perform updates and/or add modules to the malicious code running

in the different machines before performing an attack. Finally, the fourth phase consists in

performing the attacks ordered by the bot-master. In the following sub-section, the most

relevant usages and security attacks of botnets are presented and discussed.

2.4.3 Botnet Uses

The cumulative and seemingly infinite computational power and bandwidth resources of

all compromised hosts make botnets suitable for performing highly distributed, stealth and

massive attacks [SG10, ADPG+10, Ell10]. In the following paragraphs we present and explain

some of the usually conducted security attacks.
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Figure 2.4: Botnets life-cycle

Distributed Denial-of-Service (DDoS) attacks

The idea behind a Denial-of-Service (Dos) security attack is to make a computer resource

unavailable to its users. Most commonly, such computer resource consists of an Internet site

or service and the attack is an attempt to prevent its correct functioning or its availability.

So, a DDoS consists in a multitude of compromised systems attacking a single target and

botnets are specially tailored for this type of security attacks. Some of the methods for these

attacks use UDP and SYN flooding [NI07].

Sending Spam

One of the most popular uses of Botnets is spamming, which consists on sending unsolicited

e-mail messages. According to a recent report [Lab10], in the fourth quarter of 2010 more

than 50 billion spam messages were generated per day. The same report states that spam

was responsible for more than 80% of all e-mails.

Botnets have enabled such type of attacks to be deployed at large scale due to the combined

bandwidth and computational power of all compromised hosts under the control of a bot-

master. Many other advantages can be enumerated, such as shifting all costs (computational,

bandwidth and reputation) of performing such attack to the true owners of the bots. In

addition, the use of the IP addresses of the bots prevents counter-measures such as blacklisting
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IP addresses originating spam messages.

Flooding Attacks

These attacks target at saturating the available bandwidth in a network. They work by

sending a large volume of traffic consuming all bandwidth of a connection or overwhelming

the resources of routers and servers.

Exploit Scanning

Another usage of bots is to perform host scans in order to determine the open ports and

their services in the surrounding systems. In this manner, the vulnerabilities associated to

such services can be used to gain control of those machines.

Download and installation

A common feature all bots present is the ability to download and execute binaries. Such

downloads can be performed by FTP, TFTP and HTTP and are the most used method for

updating the malicious code in a compromised host.

Click Fraud

A click fraud occurs when an automated script or a computer program attempts to im-

itate a legitimate user performing a click on pay-per-click advertisement [MKR07]. Botnets

are the perfect tool for carrying out such type of fraud since they are composed by hun-

dreds/thousands of compromised hosts that can issue web requests representing ”clicks” on

the previously mentioned advertisements. These frauds are very difficult to detect, since they

are carried out by different hosts in different locations [NI07].

Phishing

Recently, phishing attacks have increased dramatically and are one of the main causes

is the fact that botnet malware started to incorporate phishing abilities. These consist in

displaying pre-built fake web-pages visited by Internet users or redirecting the user to a fake

web-site controlled by the bot-master in order steal authentication credentials [DCJ10] [Sec10].

Such events are usually triggered by keywords in the address of the visited web-page, which

correspond to sites known by hosting financial and on-line banking services.

2.4.4 Detecting Botnets

The detection of botnets, their compromised hosts and attacks is a complex task. To begin

with, the traffic bots exchange resembles legitimate communications. In addition, since these
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networks are composed by several thousands of infected machines, their attacks are highly

distributed. IDSes, such as Snort [Sno11] and OSSEC [OSS10], may seem appropriate tools for

such task but their inability to detect zero-day threats and distributed attacks prevents them

from efficiently detecting botnets attacks [BY06]. In some cases, communications between the

compromised hosts and the bot-master are encrypted, making most of the IDSes unable to

detect them. In fact, botnets have become so ubiquitous that the Shadowserver Foundation

continuously monitored more than 6000 botnets C&C servers in 2010 [Sha11]. Nowadays,

more than 100 million computers are estimated to be part of criminal networks.

There are three main botnet detection approaches: active and passive approaches and

approaches based on darknets/honeynets [SG10]. Active approaches imply capturing bots

malware, deactivating its malicious parts and analyzing all the commands sent and received

while executing the harmless bot code. In addition, specialized bots that simulate the behavior

of real bots can also be created. This enables the bot to connect to a C&C server and observe

the activity on the mentioned server. The main drawback of this approach is that such bots

are easily detected by the bot-masters and, consequently, several counter-measures can be

taken, such as disconnecting the mentioned bot. On the other hand, passive approaches work

with more subtle sources of information, such as the traffic generated by the analyzed botnet

and other created effects like broken packets and uncompleted sessions. Since they do not

create any flow of information back to the botnet control infrastructure, they are not detected

by the bot-master. Finally, darknets constitute a completely passive approach because they

are composed by Internet systems used with the only purpose of being compromised, thus

allowing an insight into the studied Internet threats. Such approach provides far more critical

information than any other available security tool [AH10]. Similar to network telescopes,

darknets are deployed in unused IP addresses [SG10, YBP05]. In the following sub-sections

we present these approaches, together with the most relevant work that has been done so far.

Active & Passive Analysis

Several approaches have been suggested for addressing the botnet detection problem.

Based on the fact that botmasters perform DNS blacklist (DNSBL) queries to determine

if their spamming bots are listed, the authors in [RFD06] propose the use of heuristics to

determine the queries that are likely to be executed by botmasters. Subsequently, the authors

built query graphs that allowed them to focus on subgraphs presenting a higher percentage

of reconnaissance lookups. In this manner, an identification of likely bots can be achieved.

In addition, some high-level results indicated that botnets are being used to perform DNSBL

reconnaissance on behalf of bots in other botnets and that the distribution of these queries

suggests that such activities can be detected in real-time. However, most of DNS blacklists

only respond to queries issued by verified mailhosts, which makes this approach inappropriate

for the detection of compromised hosts.
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In [DZL06], the use of time-zones for modeling the propagation of botnets is proposed.

Authors base their work on the fact that most of the compromised hosts, being machines of

Internet users, will be shutdown in night periods. Subsequently, diurnal propagation models

were created using shaping functions, which allows the prediction of the botnet population

growth. Consequently, the responses to the different botnets can be prioritized. However, the

data collection process required by this approach is very disruptive and, consequently, can be

easily detected by botnet operators.

In [KRH07], authors developed an anomaly-based passive analysis algorithm for the de-

tection of IRC botnet controllers with less than 2% false-positives. Controllers running on any

random port can be detected without using any known signatures. The proposed algorithm,

shown in figure 2.5, uses transport-layer flow summary data, which reduces the amount of

data that needs to be processed and identifies hosts with suspicious behaviors (suspected

bots) by aggregating triggers. The flows sent and received by such hosts are then isolated and

analyzed in order to identify candidate control flows. These control flows are then aggregated

and analyzed in order to isolate suspected controllers and controller ports. The obtained

results allowed the identification of 376 unique botnet controllers IP addresses between Au-

gust 2006 and February 2007. Finally, the authors argue that their methods present several

advantages, such as the fact that the data analysis is completely passive, so it cannot be

detected by botnet operators and does not interfere with network operations. In addition,

their analysis algorithm is scalable to very large networks and is able to show the dynamics

of botnets. However, access to Tier-1 networks is difficult, which prevents the usage of this

approach in general scenarios.

In the same year, a network quality indicator, named uncleanliness, was proposed in

[CSF+07], which indicates the propensity of hosts in a network to be compromised by external

entities. Authors state that unclean network will present two main properties, which are

spatial and temporal uncleanliness. The first relates to the tendency for compromised hosts

to cluster within unclean networks, while the second relates to the tendency for unclean

networks to contain compromised hosts for long periods of time. Using reports of network

activities and traffic logs of large networks, evidence of the previously mentioned properties

were shown and such properties were then used to predict future botnet addresses.

In [YR08], the authors proposed a system to detect malware (including botnets) by aggre-

gating traffic that shared the same external destination, similar payload and involved internal

hosts with similar OS platforms. The main idea behind this approach is that malware rarely

affects only one host in a network and, consequently, all the compromised hosts can be easily

detected if such aggregation is performed to the traffic flowing to and from the gateway of the

network. Binary vectors are formed for each one of the internal hosts, PCA is deployed for

data reduction and clustering algorithms were used to group the vectors presenting similar

behaviors. The authors were able to accurately detect platform-dependent malware infections
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Fig. 2. Data flow diagram for the botnet analysis system.

traffic. Identification of CCCs involves initially the collection
of all flow records generated by the suspected bots. The
objective for isolating flows from the suspected bots is to allow
correlation and modeling of suspected controller activity. In
addition, the flow activity can also help to characterize activity
associated with these suspected bots that may otherwise have

been unnoticed. For example, additional ports used for attack
vector may be identified. This information may be useful to
help assess the threats posed by particular botnets.

Many controllers use ports typically associated with IRC,
therefore these ports (e.g., 6667, 6668, 7000/tcp) are checked
first to determine if there are obvious candidate controllers that

Figure 2.5: Flow Diagram for the botnet detection system proposed in [KRH07].

reporting to common sites. However, this classification approach does not cope with traffic

encryption, since in these cases payload comparisons cannot be performed.

In 2009, a published work proposed a mechanism for detecting new types of botnet spam-

ming attacks against Web e-mail providers through the construction of large user-user graphs

and looking for connected subgraph components [ZXY+09]. In this manner, the authors can

uncover and evaluate the correlations between botnet activities and detect stealthy bots that

otherwise are difficult to detect in an isolated way. Botgraph was implemented as a distributed
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application on a computer cluster in order to cope with the huge amount of data that had

be analyzed and is composed by two components: aggressive sign-up detection and stealthy

bot-user detection. The first consists in detecting sudden increases in signup activities from

an IP address and a simple EWMA (Exponentially Weighted Moving Average) was used to

accomplish such task. The second component consists in detecting stealthy-botnet users by

building the afore mentioned user-user graphs. These are built by assigning to each user a

vertex and the weight between two vertices is determined by the features used to determine

the similarity between two users. Such features include the number of common IP addresses

logged in by two users since, as the authors state, for each spammer the number of bot-users

is much higher than the number of bots. This implies that multiple bot-users must log-in

from a common bot, therefore, from a common IP address. The authors applied their de-

tection tools to Hotmail logs containing informations from more than 500 million users, over

which 26 million were successfully detected as botnet-created user accounts. In addition, their

graphical approach proved to be adequate for the analysis of large datasets. Despite being

a very promising and accurate procedure, it lacks the ability of identifying other types of

botnets that do not generate spam but perform other types of security attacks, such as DDoS.

In a recent work [MGT+10], the analysis of the characteristics of packet size sequences

belonging to TCP conversations between IRC zombies and their C&C servers was proposed.

According to the authors, these conversations present a quasi-periodic nature, which allows

their differentiation from the remaining TCP connections. For this purpose, the authors

defined the Conversation Content Sequence (CCS) as the packet size sequence corresponding

to the packets of the conversation between the IRC client and its server, after the client joins

a certain channel. A framework was then developed for analyzing this traffic and detecting

the flows generated by bot controlled machines. This platform starts by filtering IRC traffic

from the remaining captured traffic and then computes the average packet size for all filtered

flows. The ones exceeding a certain threshold are tagged as generated by botnets, while the

quasi-periodicity of these flows is measured by determining the most frequent sub-string in the

whole conversation. Consequently, the periodicity of each one of the flows is measured and, if

it exceeds an established threshold, then the analyzed flow is considered as being generated

by a botnet. The approach was tested in real botnet traces captured from honeynets and the

authors reached an accurate identification.

Another recent work [BOB+10] performed a reverse-engineering of the Zeus botnet crime-

ware toolkit. This botnet was chosen since, in many recent reports, Zeus has been considered

to be the most serious botnet threat, with more than 3.6 million infected computers only

in the U.S. [FC09]. The authors aimed to unveil the underlying architecture of the Zeus

crimeware toolkit and enable its mitigation. A tool was also proposed to allow the extraction

of the configuration information from the binary bot executables. Authors were also able to

extract the encryption key that is used to encrypt the communications between the bots and
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the C%C servers, which allows a direct interaction with the mentioned servers.

In the same year, a DNS-based detection approach was proposed to detect botnet collusion

by analyzing anomalies in the degree distribution of visited domains [BSS10]. The work aims

to detect C&C traffic that, as the authors state, is crucial for the botnets operation. The

authors perform detection by observing the DNS traffic of a group of potentially infected

computers and counting the number of computers that visit the same domain. Domains with

a high number of visits can indicate a C&C domain and, using thresholds, legitimate domains

are distinguished from the ones hosting C&C servers.

Using darknets

In an attempt to describe and understand the behaviors and the life-cycles of botnets,

[ARZMT06] proposes a distributed measurement platform. Measurements were carried out

during more than three months and more than 190 IRC botnets were tracked. The used data

collection architecture is depicted in figure 2.6, and consists of three different logical phases.

The first comprises collecting as many bot binaries as possible, while the second consists in

analyzing the collected binaries using gray-box testing to extract the features of suspicious

binaries. This is achieved by a two-phase procedure that includes (i) deriving a network

signature of the analyzed binary and (ii) extracting the IRC-specific features. Finally, the

third phase consists of tracking botnets using IRC and DNS trackers. The results achieved

allowed authors to conclude that botnets are a major contributor to unwanted traffic in the

Internet and that the scanning traffic generated by botnets differs from the traffic generated

by malware (worms). This is most likely due to the human intervention that launches the

scanning traffic in botnets.

In a recent work [SG10], the use of automated and self-adapting systems based on machine

learning techniques was proposed. The authors analyzed information collected at three levels:

1. single packet level;

2. network access level;

3. TCP conversation level.

At the first level, the packets headers were analyzed in order to identify patterns, such as

unusual combinations of flags and TCP options, that could indicate that they are malicious

or spam. At the second level, the authors analyzed the access patterns of bots to a darknet,

as well as the patterns of communications between bots and between bots and the command

center. Such analysis is performed without looking into the contents of the packets. Finally,

at the third level, the authors try to distinguish between legitimate and illegitimate TCP

conversations. One example are the SMTP connections sending regular e-mails and the ones
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Figure 2: Overall data collection architecture.

MALWARE COLLECTION. As we show later, a significant portion
of botnet-related spreading activity is localized, targeting certain
parts of the IP space. Any single vantage point is thus likely to
miss substantial portions of such scanning activity. We attempt to
minimize this undesired effect by deploying our collection archi-
tecture on a conglomeration of distributed darknets 2. This collec-
tion includes a large locally deployed darknet and 14 distributed
nodes using the PlanetLab testbed [18]. These nodes have access
to darknet IP space located in ten different /8 prefixes.

In this distributed darknet, we deploy a modified version of the
nepenthes platform [2]. In short, nepenthesmimics the replies
generated by vulnerable services in order to collect the first stage
exploit (typically a Windows shellcode). In the case of the Planet-
Lab nodes, several modifications to nepenthes were necessary.
For one, these nodes are setup to deliver traffic destined to the dark-
net as raw packets through a special proxy interface. However,
since nepenthes does not support raw sockets, packet transla-
tion is required to transform the raw packets and inject them to a
local tunneling interface. To do so, we configured nepenthes to
bind to the tunneling interface using regular sockets and receive the
packets via a translation module written in Click [15]. Moreover,
since PlanetLab nodes do not allow user-level processes to bind to
privileged ports, the Click module also performs port translation.
The process is shown pictorially in Figure 3.

To prevent excessive downloads and reflection attacks caused by
“heavy hitters” requesting the same URL multiple times, we dis-
able the on-line download modules in nepenthes. Instead, we
generate a list of the URL targets to be downloaded, and send this
list to a machine designated this task. This download station, filters
the list and extracts the unique sources and URLs. All previously
unseen URL targets are subsequently downloaded.

2The term darknet is used to denote an allocated but unused portion
of the IP address space.
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Figure 3: PlanetLab configuration.

Additionally, to complement the role of nepenthes, we make
use of a honeynet. The primary reason for doing so is to ensure
catching exploits missed by nepenthes. These failures are most
likely due to the responder’s inability to mimic unknown exploit
sequences or to parse certain shellcodes. Currently, our honeynet is
composed of a number of honeypots running unpatched instances
of Windows XP in a virtualized environment [21]. Each honeypot
instance is assigned a static private-space IP address on a separate
VLAN. Infected honeypots are allowed to sustain IRC connections
with unique botnet IRC servers until the virtual machines are re-
imaged. At that point, all suspect binaries are retrieved by com-
paring the disk contents of the virtual machine to a clean Windows
image. As with the binaries collected by the responders, the bina-
ries retrieved from the honeynet are also sent to an analysis engine
for graybox testing (discussed in Section 3.1).
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Figure 2.6: Overall data collection architecture proposed in [ARZMT06].

sending spam or malware. However, in this analysis, an inspection of the contents of the

packets is performed and consequently, it must be restricted to unencrypted traffic.

The results obtained for the first level of analysis presented a very high accuracy on the

identification of three of the eight considered spambots. A system to distinguish between

static and dynamic IP addresses was also built, with an estimated accuracy of 99.15%. This

system allowed authors to determine, as expected, that most bots IP addresses are dynamic.

For the second level of analysis, the authors determined that different spambots presented

similar access patterns, which indicates that these spambots could be controlled by the same

operators. In the third level, the authors determined that although different spambots present

similar access patterns, they generate very different types of spam and most of the spam data

is sent in a single packet.

Reference [LWLS06] suggested a machine learning based approach for botnets detection

using some general network-level traffic features of chat-like protocols such as IRC; in [BS06]

authors combined IRC statistics and TCP work weight for the detection of IRC-based bot-

nets; BotSniffer [GZL08] is an anomaly-based botnet C&C detection system that also used

horizontal correlation, although it was mainly used for detecting centralized C&C activities

(e.g., IRC and HTTP); reference [GPY+07] described BotHunter, a passive bot detection

system that used dialog correlation to associate IDS events to a user-defined bot infection

dialog model. Finally, the use of payload signatures and decision tree models was studied in

[LTRG09].
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2.5 User Profiling in Network Management

Profiling is a very useful tool for a variety of network management tasks, personalization

and security. Indeed, in the recent years, personalization of web-contents and services became

very important issues due to the emergence of many web-services such as e-commerce business

models. In fact, it is argued that the ability of efficiently addressing the needs of a specific

users can be economically more profitable than over more traditional segmentation methods.

The main key technical issue is the development of accurate user profiles. There are several

definitions for what a user profile is [GA05], but a common definition states that an user profile

consists of a description of the user interests, behaviors and preferences [IALS11]. Therefore,

it consists of a collection of user-related data that is adequate for the system [AT99]. User

profiling can then be seen as the process of gathering, organizing and interpreting the user

profile information. However, these definitions vary according to the classification objective.

In our work, we define a profile as the set of Internet applications and services each user runs

and interacts with. This definition is more appropriate for network management purposes

since, as previously explained, by monitoring the users’ traffic, mapping it into the originating

Internet applications and building accurate user profiles, many network management tasks

can be greatly improved.

A very important issue in user profiling is the set of rules used for building such profiles.

In [AT99], the authors present a method for validating the set of rules used for building

user profiles. The authors proposed a process for building user profiles that uses several

data mining algorithms for discovering association and classification rules. Despite achieving

efficient rules for building profiles, the authors always require human validation, although

many approaches could be deployed for efficiently validating such rules.

Many works, like for example [IALS11], have addressed the issue of building accurate user-

profiles that are able to describe the most important features. However, the set of features

and, consequently, the definition of what is an user profile vary according to the objective

of the classification. A pragmatical approach can consist in determining the domain name

associated with the host/server that is being contacted. Subsequently, a simple association

between the obtained domain and the services it runs can be performed [TRKN10, TRKN08].

In these works, the authors state that all information needed to profile any Internet endpoint

is available around us - in the Internet. Therefore, in order to build an accurate profile

authors simply have to query the most used search engine (Google) and divide the querying

results into several tags describing the requested services. The obtained results proved that

the approach is suitable for the proposed purpose, enabling even more accurate results than

some of the state-of-the-art tools. Our work differs from the presented ones in the fact that

a user profile is now defined as the set of web-based applications that are being used, that is,

the focus is placed on applications that allow users to share on-line information and contents.

In [MSS+06] the authors built end-host profiles with the purpose of defending against
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worm attacks. A profile is defined as the community of hosts an end-system normally inter-

acts with, which is defined as the Community of Interest (COI). The authors exploit some

properties of enterprise networks such as well-known topologies, knowledge of all end-hosts al-

lowed and the control of all configurations in all routers and switches of the network. Training

data was collected over several weeks to obtain a ”normal communications pattern”, which

should restrict the ability of worms exploiting vulnerabilities on the network. The authors

then build profiles that tolerate some deviation to normal profile in order to cope with changes

on the network and on the user profiles. Finally, some known behavior of worms are used

for assuring that the training data is free of attacks. As results, the authors discuss that

rules should differentiate traffic running on fixed ports numbers from the traffic using random

ports defined on-the-fly. Using the created profiles and rules, the authors were able to prevent

attacks to the monitored networks. However, the accuracy of this approach depends on the

profiles used and it is assumed that the patterns of an attack always deviate from normal

communication profiles.

In [jKLLK10] a novel approach for building user profiles of concept networks for personal-

ized search is proposed. The authors define and model a user profile as a networked structure

of concepts, which are defined with the formal concept analysis that allows the use of Formal

Concept Analysis (FCA) theory. A concept contains a user’s query intention and reflects the

user’s preferences. Whenever a new query is issued, a session interest concept is generated

and new concepts are then merged in the current concept network, i.e a user profile. Similar-

ities between new concepts and the existing ones are also computed and a reference concept

hierarchy is used for this purpose. The obtained results show that the proposed approach is

able to improve the accuracy of search results in terms of personal preference.

Many network management tools are currently available, since this is also an active re-

search field. One example is the Open Network Management System (Open NMS), an open-

source platform that performs many network management tasks [NMS11], such as event and

notification management, service assurance and performance measurement. Its scalability

allows to monitor thousands of devices in a single network. However, the monitoring of the

hosts service is based on the ports that the administrator associates with the different net-

work applications, which constitutes a shortcoming of this platform. In [DP10] the growing

complexity of the Internet and the increasing number of users and services are discussed for

attaining flexible and scalable management solutions. Some important guidelines and re-

search directions are provided to cope with the increasing complexity of the Internet and its

applications.
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2.6 Conclusions

In this section, the most relevant work in the different areas addressed by our classification

methodologies has been presented. Such fields include traffic classification, intrusion and

attacks detection and the detection of botnets. The issues associated to the different mentioned

works have been discussed in an attempt to introduce some of the most important motivations

that lead us to fulfill this work.
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Chapter 3

Background

3.1 Introduction

In this chapter, several important background concepts are presented. We start by pre-

senting the main Internet applications, the different mechanisms that generate and shape

the traffic of each application and its main characteristics. Subsequently, the definition of

data-stream is presented, together with its importance in the analysis of the different traffic

dynamics. Having in mind that these dynamics are spread through the different sessions

that are established with remote hosts and servers, the data-stream concept should be suf-

ficiently comprehensive to incorporate them. The captured traffic and the studied Internet

applications are then presented, together with an explanation of the capturing procedure.

A discussion on Fourier Transforms (FTs) and Wavelet Transforms (WTs), as well as a

discussion on the advantages and limitations associated to each decomposition approach, is

also provided. Then, the Multi-Scale Traffic Analysis methodology is proposed, together with

a description of which dynamics are intended to be analyzed by this approach. The chapter

will then proceed with some important preliminary definitions that will be intensively used

in subsequent chapters. Finally, the classification metrics used to evaluate the accuracy of

the proposed classification approaches are also presented.

3.2 Internet Traffic, Internet Applications and their Dynamics

The Internet is a global network of interconnected networks comprising billions of users

worldwide. As already mentioned in chapter 1, in recent years this Network has grown

in size, complexity and importance. In addition, the recent and stunning increase on the

services and applications available implied implementing novel communication paradigms

and transporting different types of data, such as files, voice, video and many more. The

well known Internet Protocol (IP) is used to connect and transport this data between all the

connected computers and it can be seen as the universal language of the Internet, understood
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by every computer and connected device, thus enabling internetworking. Despite being able

to forward packets throughout the Internet, it does not guarantee their successful and timely

delivery to its intended recipients. These tasks have to be assured by other transport-layer

specific protocols, such as TCP, which ensure a reliable and ordered delivery of the requested

packets. TCP exploits the ability of the IP protocol to forward and understand the headers of

the packets and implements appropriate control channels that enable the detection of dropped

packets and packets delivered out of order. On top of this, applications are able to transmit

data over the Internet by requesting it to the transport layer and letting it handle all the

transport sessions establishments and IP packets transmissions. The encapsulation of the

different layers and their corresponding network protocols is a very important concept in

networking, which leads to the creation of different frequency components on the Internet

traffic [FGW98].

A very important aspect of Internet applications is that each application requires different

user interactions, according to the implemented service, and generate different interactions

with remote hosts and servers that lead to the creation of different traffic dynamics. For

instance, web-browsing applications require frequent user interactions that originate different

traffic peaks corresponding to user requests and to the subsequent download of web pages.

In addition, the number of simultaneously contacted HTTP servers is typically low. These

applications are also more tolerant to delay and jitter and do not perform a large bandwidth

consumption. On the other hand, video applications do not require so frequent user interac-

tions and present a constant and considerable bandwidth consumption due to the transmission

of videos. These applications are sensitive to delays and jitter, since they affect the quality

of the video reception and perception. The number of contacted servers is typically very low,

leading to the creation of a single Internet session with the server that hosts the video. Appli-

cations involving the download of large files over P2P networks generate even more different

traffic patterns, which can be characterized by a large and varying bandwidth consumption

and, like web-browsing, are also tolerant to delays that may occur on the links. The number

of simultaneously contacted hosts is high, since such applications enable the simultaneous

download of different file chunks from different hosts in order to speed up the file transfer.

On the other hand, several events and mechanisms shape Internet traffic and create its

different frequency components. For instance, an Internet user performing a request on a web-

application, such as web-browser, creates a set of Internet sessions that, in turn, create a set

of Internet packets that are transmitted over the physical connecting medium. These events

create several frequency components in different frequency spectrum regions. This concept

is illustrated in figure 3.1, which shows three different frequency spectrum regions, together

with their corresponding events. Low frequency components account for human events that,

in the Internet world, are associated with human/user behaviors and actions. Between the

low and high frequency regions, we have created a mid-range frequency region that accounts
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Figure 3.1: Frequency regions mapping into network and users mechanisms.

for network events such as the creation of traffic sessions and the corresponding traffic control

mechanisms. Other used control mechanisms, such as traffic shaping, are also covered by this

region. Finally, in the high-frequency spectrum region, protocol and Internet events, such as

packets arrivals, are accounted for. Internet applications presenting these components are the

ones that generate a considerable amount of traffic with a high number of received packets.

All these frequency components are spread over the different simultaneous interactions that

are generated by an Internet application with the various remote clients and servers. The

analysis of such components is critical for achieving an efficient differentiation between the

dynamics generated by the different Internet applications. In the following sub-section, a

novel traffic definition will be presented to address this issue.

3.2.1 Data-Streams Definition

As previously mentioned, an Internet application generates several and simultaneous in-

teractions with remote hosts and/or remote servers that lead to the creation of very different

traffic dynamics. Traditionally, Internet traffic is grouped in flows according to the classic

five-tuple definition:

• source and destination IP addresses;

• source and destination port numbers;

• transport-layer protocol.
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Figure 3.2: Traffic generated by an Internet application: data-streams vs Internet flows.

However, such flows only correspond to one of the many interactions generated by an

Internet application. In order to be able to analyze and classify such interactions and their

different frequency components, the restrictive classical definition of Internet flow was replaced

by the definition of data-stream. This consists of all traffic (in the upload or download

directions) of a local IP address that is univocally identified by a numeric identifier that can

be defined as:

1. a specific TCP/UDP (local or remote) port number - for unencrypted traffic;

2. the Security Parameters Index (SPI) in ESP headers, in the case of IPsec tunnels, or any

other specific identifier of IP-level encrypted tunnel technology - for encrypted traffic.

Therefore, data-streams are uniquely identified by a 2-tuple (IP address, unique identifier).

We use this definition since we strongly believe that the analysis of the different simultaneous

interactions generated by an Internet application as a whole provides a deeper insight into

how applications behave. The analysis of such frequency components can play an important

role in traffic discrimination. The presented concept is illustrated in figure 3.2, which shows

a comparison between data-streams and the classical Internet flows.

In addition, we can define known data-streams as streams that are analyzed a priori to

determine its originating application(s) and unknown data-streams as traffic streams that are

created by an unknown application that will be used to assess the accuracy of the proposed

classification methodologies.
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3.2.2 Traffic Traces

This sub-section presents the real traffic traces that were captured to evaluate the accu-

racy of the different proposed classification methodologies. The traffic of the several studied

Internet applications was passively collected at the communications network of University of

Aveiro and was measured between September 2008 and September 2010. The captured traffic

is composed by unencrypted IP/TCP and IP/UDP packets, while TCPDump, publicly avail-

able at [TCP11], was used to capture the full header and the first 10 payload bytes. In order

to verify the ability of the different proposed classification and identification methodologies,

traffic was divided in two categories:

1. Licit Applications: used to assess the ability of identifying and classifying legitimate

Internet traffic;

2. Illicit Applications: used to assess the ability of identifying and classifying traffic with

illicit patterns and low-impact and stealth anomalies.

• These consist of intrusion attempts or traffic corresponding to information theft

that our classification methodologies must correctly identify.

Let us first present the traffic of the studied legitimate applications, how it was captured,

the protocols that were used and the traffic patterns that were obtained.

Licit Applications

In order to evaluate the ability of the proposed classification methodologies to provide an

accurate identification of legitimate Internet applications, we divided them into three main

categories:

• Web-Browsing - browsing though websites, reading available information and pressing

the available links to request other web pages;

• Video Streaming - watching a video from a Television channel website;

• Large Files Download - download of files through P2P networks and protocols.

We captured and analyzed traffic belonging to all these licit Internet applications. Let

us present the traffic that was generated and captured for each application, as well as the

clients that were used to generate it. All traffic was sampled at a rate of 100 ms and the

time series that were extracted are the number of captured bytes and packets per sampling

interval, together with their arrival instants.
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Figure 3.3: Sample Web-Browsing traffic for the upload and download directions.

Web-Browsing Web-browsing traffic was captured by browsing through the most impor-

tant Portuguese newspaper web-sites, reading the available news. Traffic was captured for

both the upload and download directions and the number of bytes per sampling interval is

shown in figure 3.3.

Several non-periodic and very short duration peaks can be observed, corresponding to the

user requests and the subsequent download of the requested pages. The non-periodicity of

these peaks is related to the user profile and usage of the on-line news services, which is a

characteristic of Web-browsing traffic.

Video Streaming Video Streaming traffic was generated by using the streaming services

offered by some important Portuguese television channels that are available on their web-sites.

Therefore, the Streaming service ran on top of the HTTP protocol and the main used channel

was SIC [SIC11]. Such solution is in fact the cheapest and simplest manner of streaming video

contents from a website. The captured traffic (number of bytes per sampling interval) is

shown in figure 3.4, where we can see that the profile generated by this application consists in

a constant bandwidth consumption with small variability, which is due to the transmission of

the requested video. In addition, some periodic and very short duration peaks, with significant

absolute values, can also be observed, corresponding to the synchronization between the client

and the Streaming server.

Large Files Download One of the main uses of the Internet is the download of large files.

Such downloads are usually performed using P2P networks and clients. In our work, we used

the most deployed P2P client/protocol: BitTorrent [BTS09]. The captured traffic is shown
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Figure 3.4: Sample Video-Streaming traffic for the upload and download directions.

in figure 3.5 and presents a high and constant bandwidth consumption, with a noticeable

variability around the average bandwidth.

Illicit Applications

In order to assess the accuracy of detecting illicit applications and traffic presenting illicit

patterns, some widely deployed low-impact and stealth attacks were emulated at our lab.

Specifically, host scans and information theft were deployed in order to replicate the behavior

of compromised hosts. The following sub-sections will present the emulated attacks.

NMap/Host Scans The first emulated attack consisted in host scans replicating the be-

havior of a compromised host instructed to scan its neighbor hosts in order to determine

their open ports and, consequently, the services they run. Subsequently, the vulnerabilities

associated to those services can be exploited for gaining access/control to the attacked host

[NI07]. The well-known NMap application [NMa11, Lyo09] was used to scan hosts in our

research lab. A discrete profile was used in order to bypass possible protection and detection

mechanisms, such as IDSes and proxies: this profile consisted of a sequential port scan with

one second of interval between (SYN) probes and a waiting time of 15 seconds. The traffic

generated by these scans is shown in figure 3.6.

Snapshots/Information Theft Snapshots/Information theft is one of the most common

attacks in compromised hosts and can be achieved by capturing snapshots, which are pictures

of the current screen contents showing what is being displayed, and sending them to the
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Figure 3.5: Sample BitTorrent traffic for the upload and download directions.
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Figure 3.6: Sample NMap traffic for the upload and download directions.

attacker. Such snapshots can be captured when a trigger, such as a key word appearing

in a window of a browser or on the URL of a page, occurs [NI07]. To emulate such type of

attacks, we have captured small pictures (335x180 pixels, 120KBytes) of a host in our research

lab and uploaded it to its bot-master via FTP. We assumed that the user was browsing the

Web and performed requests with an exponentially distributed interval with average equal

to 120 seconds [ZAN99]. Therefore, the uploads of the captured snapshot were performed
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Figure 3.7: Sample Snapshot traffic for the upload and download directions.

according to this exponential distribution. The captured traffic, in the upload and download

directions, is shown in figure 3.7. Some non-periodic peaks can be seen, corresponding to the

establishment of the FTP connection with the remote host/server and the subsequent upload

of the captured file.

3.3 Traffic Scaling Analysis

In this section, the most relevant methodologies for the analysis of the frequency com-

ponents of signals and time-series are discussed. We start by presenting Fourier Transforms

(FTs) and describing their mathematical formulation. The advantages and drawbacks asso-

ciated to this approach are also discussed, followed by a description of WT, which is a signal

analysis methodology that is able to address some of the issues associated to FTs. Finally,

we will present our multi-scale traffic analysis approach, explaining how wavelets are used in

the approach.

3.3.1 Fourier Transform

The FT is the most used technique for analyzing the frequency spectrum of a stochastic

process, by decomposing it into complex exponential functions having different frequencies

[Mor96].

Let us define L2(R) as the set of square and integrable functions, i.e, the set of real

functions x(t) satisfying:
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∫ +∞

−∞
|x2(t)|dt <∞ (3.1)

with the inner product defined as:

〈x, y〉 =

∫ +∞

−∞
x(t)y∗(t)dt (3.2)

and norm

‖x‖ = 〈x, x〉1/2 (3.3)

Subsequently, the Fourier transform of a function x(t) ∈ L2(R) can be defined as:

X(w) =

∫ +∞

−∞
x(t)e−iwt (3.4)

where w denotes the frequency of the analyzing sinusoid. Since the support of the sinusoid

is not localized, FTs have a poor time resolution and are only suitable for the analysis of

stationary signals, i.e, signals presenting the same frequency component in the whole range

of analysis. Consequently, FTs are unable to provide time-frequency representation, where

the different frequency components of a non-stationary process are depicted together with

the time-intervals where they occur. Therefore, time-varying signals or signals with transient

and/or sudden changes require other analysis tools [Mor96].

3.3.2 Wavelets

As mentioned in sub-section 3.3.1, FTs require that the analyzed signal is stationary,

that is, the frequency components of the analyzed data do not change over time. In many

cases, such restriction is respected by the analyzed data and an accurate decomposition can

be achieved. However, this is not the case with Internet traffic, which is known to be non-

stationary since it presents different frequency components at different time intervals. By

assuming non-stationarity [TC98], WTs are able to provide a time-frequency representation

of a signal and are widely applied in many different areas such as signal processing, image

analysis and compression, turbulence analysis and analysis of stocks market exchange rates.

In fact, this is a powerful technique for understanding the complexity of real world processes.

Wavelets are mathematical functions that are used to divide a given signal into its different

frequency components. They were introduced in 1980 by geophysicist J. Morlet to perform

signal decomposition and approximation, and consist of a short duration wave-like oscillation

with a limited amplitude, occurring during a short period of time that gives it a good time

and frequency resolution. Wavelets enable the analysis of each one of the signal components

in an appropriate scale and present several advantages over other signal analysis techniques,
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such as Fourier Transforms. As already mentioned, FTs are more suitable to analyze periodic

data, while WTs are more adequate to analyze functions with discontinuities and peaks.

Since wavelets present a compact support, they present a very good time resolution and

can, consequently, provide information concerning both time and frequency, while FTs only

provide frequency information. In addition, the infinite set of basis functions for wavelets is

another important advantage over Fourier Transforms, which use a finite set of basis functions

(sines and cosines).

A wavelet ψ(t) can be defined as a pass-band function oscillating at a central frequency

f0, satisfying the admissibility condition [YY94, Dau92]:

0 < CΨ = 2π

∫ +∞

−∞

|Ψ(w)|2

|w|
dw <∞ (3.5)

where CΨ is the admissibility constant and Ψ(w) is the FT of ψ. To achieve this condition,

it is sufficient that the mean of the function vanishes, that is:∫ +∞

−∞
ψ(t)dt = 0 (3.6)

which implies that wavelets must have a band-pass like spectrum and a wave-like form. Such

properties enable an effective localization in both time and frequency, as opposite to FTs.

The wavelet ψ is designated as the mother wavelet and one example is shown in figure 3.8.

The following sections will present the two different types of WTs: the Continuous and

Discrete Wavelet Transforms. The characteristics of each type of transform will be discussed,

as well as its most appropriate usage scenarios.
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Figure 3.8: A typical wavelet.
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Continuous Wavelet Transform (CWT)

The use of a wavelet decomposition based on a CWT allows the analysis of any process

in both time and frequency domains. By scaling and translating the mother wavelet ψ, a set

of functions ψτ,s, the wavelet daughters, can be generated:

ψτ,s(t) =
1√
|s|
ψ(
t− τ
s

), s, τ ∈ R, s 6= 0 (3.7)

where τ and s are the translation and scale parameters, respectively. The first parameter is

used for shifting the mother wavelet in time, while the second parameter controls the width

of the window analysis and, consequently, the frequency that is being analyzed. Since this

is a continuous transform, both τ and s must be incremented continuously and the trans-

form has to be integrated over all time, which makes this transform a heavy computational

task. By varying these parameters, a multi-scale analysis of the entire captured process can

be performed, providing a description of the different frequency components present in the

decomposed process together with the time-intervals where each one of those components is

located. Given a time series x(t) ∈ L2(R), its CWT Cψx (τ, s) can be defined as [SSB03]:

Cψx (τ, s) =
1√
|s|

∫ −∞
+∞

x(t)ψ∗(
t− τ
s

)dt, s, τ ∈ R (3.8)

where ∗ denotes the complex conjugation of the base wavelet function ψ(t) ∈ L2(R) and
1√
|s|

is used as an energy preservation factor.

By analyzing the original time series in the whole range of decomposition scales, CWTs are

able to provide a representation of that series in the time and frequency domains. A Wavelet

Scalogram can be defined as the normalized energy Êx(τ, s) over all possible translations (set

T) in all analyzed scales (set S), and is computed as:

Êx(τ, s) = 100

∣∣∣Ψψ
x (τ, s)

∣∣∣2∑
τ ′∈T

∑
s′∈S

∣∣∣Ψψ
x (τ ′, s′)

∣∣∣2 (3.9)

The volume bounded by the surface of the scalogram is the mean square value of the

process. The analysis of these scalograms enables the discovery of the different frequency

components, for each scale (frequency) of analysis. For instance, the existence of a peak in

the scalogram at a low frequency indicates the existence of a low-frequency component in the

analyzed time-series, while a peak in the scalogram at a high-frequency corresponds to an

existing high-frequency component. In addition, assuming that the process x(t) is stationary

over time, several statistical information, such as the standard deviation, can be obtained:
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σx,s =

√
1

|T|
∑
τ∈T

(Êx(τ, s)− µx,s),∀s ∈ S (3.10)

where µx,s =
1

|T|
∑
τ∈T

Êx(τ, s), and |T| denotes the cardinality of set T.

Since it is a computationally heavy task, this transform is more suitable for off-line proce-

dures. In our work, this approach was used to perform user profiling, as presented in chapter

7, since such profiling is a task that is performed off-line.

Discrete Wavelet Transform (DWT)

DWTs can be also used to represent functions and signals both in their time and fre-

quency components. Another advantage of DWTs is the fact that they are computationally

less complex, since its complexity is O(N) while the complexity of the Fast Fourier Trans-

form is O(Nlog(N)). This makes such transforms suitable for real-time tasks, which in this

thesis comprise traffic decomposition, analysis and classification. Consequently, DWTs will

be intensively used in our traffic classification approaches, proposed in chapters 5 and 6.

These approaches are suitable for deployment in network traffic classifier modules, as already

presented in section 1.3.

By performing a scaling change, which may consist of an expansion or a compression,

and a temporal shift on the mother wavelet, we obtain ψj,k = 2−j/2ψ(2−jt − k), that is the

oscillating central frequency moves to 2−jf0 and the origin of the temporal reference to 2jk.

Note that j represents the temporal scale, k represents the kth coefficient corresponding to

scale j, with j0 being the largest time scale. DWTs also use a low-pass function, φ(t), known

as scaling function, that can be scaled and temporarily shifted in a similar way to function

ψ(t). Therefore, a signal x(t) can be built as a sum of the scaling and wavelet functions:

x(t) =
∑
k

cx(j0, k)φj0,k(t) +
∞∑
j=j0

∑
k

dx(j, k)ψj,k(t) (3.11)

where φj0,k(t) and ψj,k(t) are, respectively, a generic scaling function and a generic wavelet

function. cx(j0, k) are the scaling coefficients and dx(j, k) are the wavelet coefficients. The

logarithm of the wavelet coefficients, for the moment of order q, of the wavelet coefficients

can be defined as:

yq,j = log2

(
1

K

K∑
k=1

|dx(j, k)|q
)
, q ∈ R (3.12)

and will be hereafter generically designated as multi-scale estimators, where K is the number

of coefficients to be analyzed at time scale j. The scaling behavior of any stochastic process

can be studied by an analysis of the Log-scale Diagram (LD), which is a log-log plot of
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the estimators yq,j of the wavelet details at each scale, against scale, completed with the

Confidence Intervals (CIs) about the estimates at each scale [AFTV00].

3.3.3 Multi-Scale Traffic Analysis

In our work, we will use wavelets to analyze and decompose network traffic at several

scales, i.e different aggregation levels, in order to evaluate and correlate the different charac-

terizing frequency spectrum components and the corresponding underlying network mecha-

nisms. As explained in section 3.2, Internet traffic is generated by low-frequency events such

as user requests and controlled by components present in the mid-range frequency spectrum,

which account for the creation of Internet sessions and the different existing traffic control

mechanisms. All these events and components create high-frequency events that correspond

to the arrival of Internet packets. For instance, when a user performs a request using an

Internet application, such as clicking on a link in a web site or requesting an on-line video,

several processes are created by the operating system. Each one of these processes creates

a set of Internet sessions, each generating a traffic flow. At the network layer, each one of

these connections will transmit and receive the requested data in several packets. This is

shown in figure 3.9, which illustrates how the mechanisms present in the different scales are

related, how they shape Internet traffic and how they can be analyzed. By analyzing traffic

generated by an Internet application, shown in the left side of the figure, and zooming into

the observed dynamics we are able to infer all the mechanisms present at the different scales

of analysis and assess their influence in the global dynamics of the traffic. Components such

as the time intervals between user requests (represented by ∆1), their starting instants (rep-

resented by ∆2x) and predominance can be evaluated by performing a change on the scale

of analysis, which corresponds to perform a ”zoom in” in the analyzed traffic. Finally, the

components created by Internet packets, their arrival instants (represented as ∆3x) can also

be evaluated by performing another change on the scale of analysis, which corresponds to

another ”zoom in” in the analyzed traffic. The main concept of our approaches and analysis

consists in evaluating the presence of each one of the mentioned mechanisms, which can be

done by using the appropriate scale of aggregation, or frequency scale. In this manner, we

aim to obtain characteristic spectral signatures describing the several frequency components,

for each studied application, which will enable an accurate traffic discrimination.

The underlying concept of our approach consists of analyzing the several interactions

created by an Internet application. These may consist of several and simultaneous sessions

with different remote hosts and servers. For unencrypted traffic, the traffic of the different

applications can be monitored separately, while for unencrypted traffic this may not be pos-

sible as illustrated in Figure 3.10. Therefore, we have created the definition of data-stream,

presented in section 3.2.1, which consists of all traffic that is sent and received by an Internet

application class and identified by a numeric identifier. Such identifier can include the (i)

58



Traffic Scaling Analysis

User 
Requests 

Internet 
sessions 

Internet 
packets 

Time 

Δ1 

Δ1 

Δ21 

Δ31 

Δ3 

Δ22 

Δ21 Δ22 

Δ32 

Δ31 Δ33 

Δ33 

Δ3 x<< Δ2x << Δ1  
Δ32 

Application 
Traffic 

Time 

Time 

Time 

Frequency 

Figure 3.9: Multi-Scale Traffic Dynamics.

local/remote port (for unencrypted traffic) or (ii) any specific identifier of IP-level encrypted

tunnel technology (for encrypted traffic). For the latter case, the samples that are analyzed

in a sampling-window of a data-stream can consist of traffic generated by several applica-

tions running simultaneously on a client. However, if the traffic captured in a time interval

is generated by only one application, then in the corresponding sampling-window the com-

ponents of the Multi-Scale Signature of the corresponding application class can be observed

and identified. The analysis of data-streams over sliding sampling-windows of a pre-defined

length ∆t, as illustrated in Figure 3.10, from where traffic samples are extracted enables a

continuous monitoring of the traffic of each application, increasing the classification accuracy

of our approach. This also enables the identification of stealth, low impact and distributed

threats/anomalies.

This multi-scale analysis for the traffic classification approaches was enabled by using the

tool available at [Dar08] that estimates the q-th order wavelet estimators, based on a DWT.

This methodology examines the behavior of the q-th order moment estimators over a set of

aggregation/decomposition scales thus enabling the analysis of all the frequency components

present in the analyzed traffic. On the other, the multi-scale analysis for the user profiling

approaches were enabled by implementing the CWT and decomposing the extracted traffic

metrics using such implemented functions.
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3.3.4 Some preliminary definitions

In this section, some important definitions that are common to all classification approaches

will be presented. Let us begin by defining the two different types of data-streams that are

used in this thesis. The first consist of known data-streams, that is, traffic identified via deep-

packet inspection, whenever possible, or traffic generated in a controlled lab environment.

These are used for labeling the classification clusters and for inferring the parameters of the

different probabilistic distributions. The second type consists of unknown data-streams and

are used to assess the accuracy of the proposed methodology.
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Figure 3.10: Traffic classification concept.

Let A represent the number of studied applications, M represent the number of unknown

data-streams of each Internet application that will be classified, N correspond to the number

of known data-streams of each Internet application, S represent the number of stochastic pro-

cesses that are extracted from the data-streams, Q represent the number of different statistical

moments that are considered and J the number of time-scales considered in each individual

DWT analysis. In addition, let

Γz = (s, q, j) ∈ N3, s = 1, . . . , S, q = 1, . . . , Q, j = 1, . . . , J (3.13)

represent the z − th element of the set

D = {Γz, z = QJ(s− 1) + J(q − 1) + j} (3.14)

that indexes all the available stochastic processes, moments and time-scales. Moreover, let
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Ea,Γz = {eia,Γz , i = 1, . . . , N} (3.15)

represent the set of the estimators, as defined in (3.12), obtained from the element Γz that

indexes a scale j, j = 1, . . . , J , at the order q, q = 1, . . . , Q, moment of the wavelet estimators

obtained from a multi-scale analysis of a stochastic process s, s = 1, . . . , S, of a known data-

stream i, i = 1 . . . , N , of an application a.

On the other hand, let us define

UΓz = {uiΓz , i = 1, . . . ,M} (3.16)

as the set of the estimators obtained for the element Γz that indexes a scale j, j = 1, . . . , J , at

the order q, q = 1, . . . , Q, moment as defined in (3.12), obtained from a multi-scale analysis

of a stochastic process s, s = 1, . . . , S, of an unknown data-stream i, i = 1 . . . ,M .

3.4 Classification Metrics

An important criterion when evaluating the accuracy of traffic classification approaches

is their accuracy [NA08]. A set of metrics have been proposed, the most common being:

• False Positives (FPs);

• False Negatives (FNs);

• True Positives (TPs);

• True Negatives (TNs).

Assuming a particular traffic class X and assuming that the classifier has two outputs

(member belonging or not to class X), these metrics can be defined as follows:

• False Positives (FPs): percentage of members of other classes incorrectly assigned to

class X;

• False Negatives (FNs): percentage of members of class X incorrectly assigned to other

classes;

• True Positives (TPs): percentage of members of class X correctly assigned to class X;

• True Negatives (TNs): percentage of members of other classes correctly assigned to

other classes;

The relations between the different classification metrics are shown in figure 3.11. For

simplification purposes, the positive and negative results correspond to a member of a class

being assigned, or not, to the correct class. These metrics will be used to evaluate the accuracy

of our classification methodologies.
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Figure 3.11: Relations between the several classification metrics.

3.5 Conclusions

Several background concepts, which are intensively in the following chapters, were pre-

sented in this section. We began by providing an explanation on the dynamics of the traffic

generated by different Internet applications. Then, the definition of data-stream was pre-

sented, also explaining how traffic can be grouped into data-streams according to the classifi-

cation restrictions. This chapter also presented the different legitimate Internet applications

that were studied, as well as the emulated security threats. The captured traffic was also

presented. Some notions on traffic scaling analysis were also presented, as well as a discussion

on the most relevant existing methodologies for signal frequency analysis. The advantages

and issues associated to each approach were also discussed, followed by a presentation of the

different multi-scale traffic analysis approaches that will be proposed in this thesis. Some

preliminary definitions were also presented, as well as the classification metrics that will be

used throughout the thesis.
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Chapter 4

Traffic Classification based on

Clustering of the Multi-Scale

Decomposition Estimators

4.1 Introduction

This chapter presents the first proposed classification methodology which is based on the

usage of clustering algorithms for grouping the estimators that present the same behavior over

the analyzed decomposition scales. By studying the components present in the first scales of

the first and second order moment of analysis of the estimators of the known data-streams of

each Internet application, we are able to build different groups for each Internet application

to which the estimators of the unknown data-streams can be assigned to. In this manner,

the corresponding data-streams can be classified. Groups will be built based on clustering

algorithms, so the next paragraphs will present some important background on this issue.

Subsequently, a presentation of the classification methodology and of the obtained results is

provided. Finally, some conclusions are discussed.

4.2 Definitions

Clustering aims to partition a set of objects into groups, or clusters, in such a way that

objects in the same group are similar, whereas objects in different clusters are distinct. The

creation of clusters is based on the concept of proximity between objects and groups of objects

[KR90]. There are two common approaches to cluster observations: the hierarchical and non-

hierarchical, among which the partition methods are the most common.

Hierarchical clustering techniques proceed by either a successive series of merges (agglom-

erative hierarchical methods) or by successive divisions (divisive hierarchical methods). The

63



Traffic Classification based on Clustering of the Multi-Scale Decomposition Estimators

agglomerative methodologies start with as many clusters as objects and end with only one

cluster, containing all objects. These are based on a measure of proximity between two ob-

jects and a criterion, relying on the distance between clusters, to decide which are the two

closest clusters to be merged in each step of the agglomerative hierarchical procedure. Dif-

ferent approaches to measure the distance between clusters give rise to different hierarchical

methods. A widely used method is the Wards’s method, also known as the incremental sum

of squares method, that uses the (squared) within-cluster and between-cluster distances to

decide which clusters should be merged. Divisive methods work in the opposite direction.

Partitioning non-hierarchical clustering consists in dividing the data set into a predeter-

mined number of non-overlapping clusters, so that each data object belongs to a cluster. One

example of a partitioning clustering methodology is the K-Means algorithm [Mac67], which is

also one of the simplest deploying a squared error criterion which acts as an objective function.

It starts with a random initial partition and performs several reassignments of the analyzed

patterns to the clusters based on similarity measures between the patterns and the clusters

[JMF99]. The algorithm builds spherical clusters and attempts to find a user-chosen k num-

ber of clusters in the data set in such a way that they should be disjoint and represented

by their centroid. Within each cluster, this algorithm maximizes the homogeneity through a

minimization of the Mean Squared Error (MSE) which is computed as follows:

MSE =
k∑
i=1

n∑
j=1

|xj − ci| (4.1)

where ci represents the centroid of the cluster i and xj represents the j-th data point contained

in the mentioned cluster.

The algorithm starts by randomly choosing the centroids of the K clusters. Subsequently,

objects are assigned to the closest cluster and, then, the centroids of each cluster are iteratively

re-computed and re-partitioned according to the new centers. This process continues until

all members inside each cluster stabilize. Let X = {x1, x2, . . . , xn} be a set of points in Rd.
After randomly choosing the K centers c1, c2, . . . , cK ∈ Rd, the data points are assigned to

the corresponding cluster as follows [EAM06]:

1. For each i, j ∈ {1, . . . , k}, set the cluster Ci as the set of points in X that are closer to

ci than to cj ,∀j 6= i;

2. For each i ∈ {1, . . . , k}, recompute the clusters centroids ci as the center of all points,

using the new membership in Ci : ci =
1

|Ci|
∑
xj∈Ci

xj ;

3. If a converge criterion is not met, repeat steps 1 and 2. Otherwise, return the created

clusters.
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Typical convergence criteria include no reassignment of any pattern from a cluster to any

other or no decrease, after some iterations, on the MSE.

Another example of a clustering algorithm is DBSCAN (Density Based Spatial Clustering

of Applications with Noise), which is a density-based algorithm. Density-based algorithms re-

gard clusters as dense areas of objects that are separated by less dense areas. These clustering

algorithms have an advantage over partition-based algorithms because they are not limited

to finding spherical shaped clusters but can find clusters of arbitrary shapes. The DBSCAN

algorithm is based on the concepts of density-reachability and density-connectivity, notions

that are used to define what the DBSCAN algorithm considers as a cluster: a cluster is

defined as the set of objects in a data set that are density-connected to a particular core

object. Any object that is not part of a cluster is categorized as noise. This is in contrast to

K-Means, which assigns every object to a cluster. The DBSCAN algorithm works as follows:

initially, all objects in the data set are assumed to be unassigned; DBSCAN then chooses

an arbitrary unassigned object p from the data set; if DBSCAN finds p is a core object, it

finds all the density-connected objects based on the input parameters and it assigns all these

objects to a new cluster; if DBSCAN finds p is not a core object, then p is considered to be

noise and DBSCAN moves onto the next unassigned object. Once every object is assigned,

the algorithm stops.

The K-Means algorithm will be used in our classification methodology, mainly due to its

simplicity and to the fact that it allows users to choose the number of clusters, allowing us to

choose the number of studied applications.

4.3 Classification Methodology

The classification methodology uses two types of data-streams, defined in section 3.3.4,

which are sampled in order to extract the following metrics:

• number of bytes and packets per sampling interval in the upload and download directions

per sampling interval;

• number of bytes and packets per sampling interval in the download direction per sam-

pling interval;

• number of bytes and packets per sampling interval in the upload direction per sampling

interval.

Then, the multi-scaling analysis, presented in section 3.3.2, is performed to the obtained

metrics using the tool available at [Dar08], as explained in section 3.3.3. In order to minimize

the effects of the different values of available bandwidth, the qth order spectrum estimators

obtained from this analysis were normalized to zero mean. So, the normalized estimators ŷq,j

for the q-th order moment are computed as follows:
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ŷq,j = yq,j −
J∑
i=1

yq,j
J

(4.2)

where J represents the maximum time scale considered for the qth order spectrum. This allows

us to observe the variation of the behavior patterns over the time scales, for the different traces,

independently of the absolute values of the original data. We made this normalization since

we want to differentiate applications based on the variations of their multi-scaling behavioral

patterns and not based on their absolute values. Since both types of estimators, the ones

obtained from the multi-scale decomposition of known traffic and of unknown traffic were

normalized to zero mean, we use the notation introduced in (3.12) since it can extended to

the different types of data-streams.

The normalized obtained decomposition estimators ŷq,j were mixed and processed together

in order to create clusters which will be labeled based on the assignment of the estimators

obtained from the multi-scale decomposition of the known data-streams. We use an unsuper-

vised clustering that provides a good and accurate cluster arrangement and where the number

of clusters is pre-defined and equal to the different types of applications of the known flows.

The clustering will group in the same cluster the spectrum estimators with similar behavior

over the range of spectrum orders and considered decomposition scales. In this step, we used

the K-Means algorithm, since it is one of the simplest and most efficient clustering tech-

niques, besides allowing the choice of the number of clusters and always converging to a local

optimum. The classification process based on the clustering algorithm is depicted in figure

4.1. Each normalized estimator is mapped into a J-dimensional data point and the clustering

starts by randomly choosing k -points as the k -centroids of the initial clusters. The remain-

ing data points, corresponding to the remaining estimators, are then assigned to the closest

cluster. Subsequently, a new centroid is computed according to the performed assignments

and if, after some iterations a converge criterion, which in our work included the stability

of the centroids of each cluster as well the MSE, is met the algorithm stops. Otherwise, the

data points are again assigned to the clusters according to the new centroids, each centroid

is then recomputed and the convergence criterion is checked. When the algorithm stops,

each cluster is assigned to the Internet application which has more estimators from known

data-streams assigned to that cluster. All J-dimensional data-points, corresponding to the

normalized estimators of the analyzed decomposition scales, are then classified. Moreover, it

is an unsupervised technique, which is more appropriate for traffic classification since it does

not rely on pre-defined classes. This is an important issue, since the profile of the training

samples can be very different from the ones of the test samples, for the same group. At the

end of this process, the created clusters obtained contain the known traffic streams, together

with the unknown ones, allowing us to classify all traffic data-streams that can be further

inputted to the classification tool. At the end, whenever possible and optionally, a validation
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Figure 4.1: Flow diagram of clustering based classification methodology.

process (based on traditional identification techniques) can be performed in order to validate

the classification and, if necessary, reclassify all traffic based on newly added known flows.

The proposed classification methodology can be adapted to a on-line procedure that relies

on data obtained from an off-line procedure that is periodically executed. This is illustrated

in figure 4.2 which presents a flow diagram that illustrates this off-line/on-line classification

methodology. Such off-line procedure comprises the multi-scale decomposition of the sampled

traffic metrics, the clustering of the the decomposition estimators and the association of each

data-stream with an Internet application.

4.4 Classification Results

This section presents the results that were achieved and evaluates the performance and

accuracy of the proposed classification methodology. Three distinct traffic statistics were con-

sidered for analysis in order to enable a comparative study on the differentiating capabilities

of the different traffic data:

• number of transmitted bytes per sampling interval (independently of the traffic direc-

tion);

67



Traffic Classification based on Clustering of the Multi-Scale Decomposition Estimators

Known Streams

Stream 

Sampling

Unknown 

Streams

Stream 

Sampling

Extraction of 

the Multiscale 

Estimators

Processing of 

the Multiscale 

Estimators

On-line 

measurement

New 

Stream?

Sampling of the 

first ∆ seconds

Extraction of 

the Multiscale 

Estimators

Counter-

Measures

Validation 

(optional)

Classification Classification

Yes

No

Off-line/Periodical On-line

Illicit 

Traffic?

On-line 

Measurements

Figure 4.2: Flow diagram of the off-line and on-line classification methodology.

• number of downloaded bytes per sampling interval;

• number of uploaded bytes per sampling interval.

The sampling intervals used in this work were 100 ms and all flows were truncated to 30-

minutes. Only the first two decomposition moments were considered for analysis (Q = 2) with

the first decomposition scales (J = 5). Figure 4.3 shows the log-scale diagrams of the normal-

ized first and second order wavelet spectrum decomposition estimators for the bidirectional

(upload+download) traffic streams in the considered decomposition scales. As previously

mentioned, the estimators in the log-scale diagram quantify the traffic scaling properties over

the different temporal scales. Higher time scales are physically related to long-term actions,

mainly at the user-level, such as user clicks over web page links or file download requests.

Lower time scales are related to short-term interactions, such as packet/data generation and

queuing or transmission control session dynamics. We have only used the first five decom-

position scales for analysis, since at the higher scales the estimators tend to mix themselves.

This is due to the fact that the long-term actions associated to these scales become similar

for all applications. Several independent iterations (100) were performed in order to minimize
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Figure 4.3: Normalized multi-scale estimators for the different upload+download traffic flows,
(left) first order, (right) second order.

the effect of the initial choice of the random centroids.

As can be seen, for the first moment of the bidirectional profile there is a clear sepa-

ration between all flows of the different Internet applications, which suggests that applying

clustering analysis will lead to a very accurate separation of the analyzed data-streams on

different clusters. In order to evaluate the accuracy of the proposed methodology, we used

the classification of the known data-streams and verified if the different estimators obtained

from the analysis of the unknown data-streams were correctly assigned to the cluster that

was suggested/defined for each one of the selected protocols. Table 4.1 presents the classifi-
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Figure 4.4: Normalized multi-scale estimators for the different download traffic flows, (left)
first order, (right) second order.

cation results, using only the first order moment estimators, for the bidirectional profile. The

classification accuracy is very high since all illicit traffic flows were correctly identified, as

well as all WB data-streams. Some Torrent data-streams were wrongly assigned to the other

applications, which can be explained by the nature of the P2P protocol that, when the client

is connected to only one peer, reduces the overall communication to a client-server paradigm.

Such paradigm can become similar to any other application whose profile consists in a simple

client-server interaction. Some of the Video-Streaming streams were also classified as WB

traffic, which can be explained by the fact that we have stream-alike transfers (for example,
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Figure 4.5: Normalized multi-scale estimators for the different upload traffic flows, (left) first
order, (right) second order.

YouTube video downloads) embedded in HTTP communications. Therefore, it is possible to

conclude that the proposed identification approach is able to accurately identify the three

legitimate analyzed applications (Video-Streaming, BitTorrent and Web-Browsing) and was

also able to identify 100% of the illicit traffic streams (port scan and snapshot).

When analyzing only the unidirectional profiles, whose log-scale diagrams are shown in

figures 4.4 and 4.5, the accuracy decreases, as shown in tables 4.3 to 4.6. Indeed, for the first

order normalized multi-scale estimators of the download case, the number of misclassified

legitimate traffic streams increases. Indeed, the number of Web-Browsing streams assigned to
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Table 4.1: Percentage of correctly classified data-streams for the upload+download traffic
statistics.

Using the first order moment

Identified as
NMap Snapshot Web-Browsing Streaming Torrent

NMap 100% 0% 0% 0% 0%
CI 100%-100% 0%-0% 0%-0% 0%-0% 0%-0%

Snapshots 0% 100% 0% 0% 0%
CI 0%-0% 100%-100% 0%-0% 0%-0% 0%-0%

Web-Browsing 0% 0.20% 99.60% 0% 0.20%
CI 0%-0% 0.07%-0.33% 99.20%-100% 0%-0% 0%-0.53%

Streaming 1.50% 1.80% 1.20% 93.50% 2.00%
CI 0.90%-2.10% 1.16%-2.44% 0.66%-1.74% 92.70%-94.30% 1.33%-2.67%

Torrent 1.90% 1.50% 2.70% 1.50% 92.40%
CI 1.25%-2.55% 0.90%-2.10% 1.3%-4.01% 1.00%-2.00% 90.10%-94.70%

other applications increases which can be explained by the fact that such data-streams may be

originated by the visualization of an YouTube video, thus creating a download profile similar

to the one corresponding to Streaming flows, or by the download of a large file available on a

web-site, thus creating a profile similar to BitTorrent download traffic. On the other hand, the

flows classified as Snapshot can be originated by the transfer of a file to an FTP server, which

makes the profile of Web-browsing similar to the one corresponding to Snapshots. Most of the

illicit flows were correctly identified, which confirms that traffic download statistics can be

efficiently used for the identification of illicit traffic or of traffic presenting suspicious profiles.

Table 4.2: Percentage of correctly classified data-streams for the upload+download traffic
statistics.

Using the second order moment

Identified as
NMap Snapshot Web-Browsing Streaming Torrent

NMap 100% 0% 0% 0% 0%
CI 100%-100% 0%-0% 0%-0% 0%-0% 0%-0%

Snapshots 0% 100% 0% 0% 0%
CI 0%-0% 100%-100% 0%-0% 0%-0% 0%-0%

Web-Browsing 10.50% 7.50% 62.60% 12.00% 7.40%
CI 8.49%-12.51% 5.64%-9.36% 60.65%-64.55% 9.69%-14.31% 5.67%-9.13%

Streaming 20.40% 17.80% 18.30% 21.40% 22.10%
CI 17.39%-23.41% 14.72%-20.88% 15.55%-21.05% 20.65%-22.15% 18.84%-25.36%

Torrent 6.90% 6.10% 5.80% 5.80% 75.40
CI 4.87%-8.93% 4.17%-8.03% 3.91%-7.69% 3.87%-7.73% 73.74-77.06
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Table 4.3: Percentage of correctly classified data-streams for the download traffic statistics.

Using the first order moment

Identified as
NMap Snapshot Web-Browsing Streaming Torrent

NMap 99.90% 0% 0.10% 0% 0%
CI 99.73%-100.00% 0%-0% 0.03%-0.17% 0%-0% 0%-0%

Snapshots 3.00% 88.00% 5.00% 2.00% 2.00%
CI 0.15%-5.85% 82.39%-93.61% 1.36%-8.64% 0.66%-3.34% 0.87%-3.13%

Web-Browsing 3.50% 3.50% 86.60% 3.00% 3.40%
CI 2.38%-4.62% 2.43%-4.57% 85.32%-87.8%8 1.96%-4.04% 2.21%-4.59%

Streaming 3.40% 3.70% 3.10% 86.30% 3.50%
CI 2.61%-4.19% 2.89%-4.51% 2.33%-3.87% 84.95%-87.65% 2.57%-4.43%

Torrent 1.60% 3.80% 1.70% 3.50 % 89.40%
CI 0.99%-2.21% 1.84%-5.76% 0.70%-2.70% 2.06%-4.94% 87.07%-91.73%

Table 4.4: Percentage of correctly classified data-streams for the download traffic statistics.

Using the second order moment

Identified as
NMap Snapshot Web-Browsing Streaming Torrent

NMap 100% 0% 0% 0% 0%
CI 100%-100% 0%-0% 0%-0% 0%-0% 0%-0%

Snapshots 0% 100% 0% 0% 0%
CI 0%-0% 100%-100% 0%-0% 0%-0% 0%-0%

Web-Browsing 4.90% 6.20% 79.00% 4.80% 5.10%
CI 3.71%-6.09% 4.98%-7.42% 77.03%-80.97% 3.73%-5.87% 4.09%-6.11%

Streaming 17.00% 16.70% 16.10% 33.80% 16.40%
CI 13.86%-20.14% 13.83%-19.5%7 12.93%-19.27% 29.80%-38.32% 13.19%-19.61%

Torrent 17.10% 19.00% 12.30% 17.00% 34.60%
CI 13.24%-20.96% 14.58%-23.42% 8.62%-15.98% 12.96%-21.04% 30.04%-39.10%

For the first order moments of the upload profile, the number of misclassified Web-

Browsing and Video-Streaming streams increases, when compared to the previous cases. In

fact, for Web-Browsing traffic,some streams were classified as Torrent, which can be caused

by the transfer of a big file to an HTTP server that makes the upload profile of these flows to

become similar to the Torrent profile. In addition, some streams were also assigned to Video-

Streaming application which can due to some traffic generated when watching an embedded

video on a web-page. The generated upload profile becomes similar to the one of Streaming

applications since the client has to synchronize the video with the remote server. For the

Video-Streaming application, the number of streams that were misclassified also increased,

which is due to the similarity that exists between the Web-Browsing and Streaming upload
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Table 4.5: Percentage of correctly classified data-streams for the upload traffic statistics.

Using the first order moment

Identified as
NMap Snapshot Web-Browsing Streaming Torrent

NMap 100% 0% 0% 0% 0%
CI 100%-100% 0%-0% 0%-0% 0%-0% 0%-0%

Snapshots 10.00% 68% 4.00% 12.00% 6.00%
CI 4.99%-15.01% 63.04%-72.96% 0.73%-7.27% 6.58%-17.42% 2.04%-9.96%

Web-Browsing 9.70% 11.40% 53.90% 13.20% 11.80%
CI 7.42%-11.98% 8.86%-13.94% 51.24%-56.56% 10.38%-16.02% 9.07%-14.53%

Streaming 19.30% 21.30% 16.00% 28% 15.40%
CI 16.18%-22.42% 18.03%-24.57% 13.35%-18.65% 23.99%-32.01% 12.21%-18.59%

Torrent 0% 0.30% 0% 0% 99.70
CI 0%-0% 0.00%-0.60% 0%-0% 0%-0% 88.80%-93.40%

Table 4.6: Percentage of correctly classified data-streams for the upload traffic statistics.

Using the second order spectrum

Identified as
NMap Snapshot Web-Browsing Streaming Torrent

NMap 99.50% 0.50% 0% 0% 0%
CI 99.00%-100.00% 0%-1.33% 0%-0% 0%-0% 0%-0%

Snapshots 1.00% 98.00% 0% 0% 1.00%
CI 0%-2.66% 96.00%-100.00% 0%-0% 0%-0% 0.33%-1.66%

Web-Browsing 6.70% 5.10% 76.70% 6.70% 4.80%
CI 5.38%-8.02% 3.84%-6.36% 75.38-78.02% 5.36%-8.04% 3.50%-6.10%

Streaming 2.20% 2.50% 4.30% 86.4% 4.60%
CI 1.30%-3.10% 1.55%-3.45% 3.02%-5.58% 81.97-90.83% 3.34%-5.86%

Torrent 2.20% 2.50% 4.30% 4.60% 86.40%
CI 1.30%-3.10% 1.55%-3.45% 3.02%-5.58% 3.34%-5.86% 85.21%-87.59%

profiles since both applications, on the client side, mostly send acknowledgments to signalize

the reception of packets (Web-Browsing) or for synchronization purposes (video streaming).

The classification accuracies for the BitTorrent and NMap applications were very high due to

the unique profile of both applications. For BitTorrent, the fact the peer also uploads its files

leads to the generation of significant traffic to the other connected peers. This creates a very

distinct profile that our approach can accurately identify. For the NMap, the upload traffic

consists of the SYN/ACK and SYN/RST packets sent to signalize that a requested port on

the local host is either open or closed, respectively. This also creates an upload profile which

is characteristic of the NMap application which is also accurately identified.
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When analyzing the second order normalized decomposition estimators in all directions,

the accuracy of our methodology decreases. These estimators account for the variance of the

analyzed data, which can be seen as a measure of how spread out a distribution is. As can be

seen from the analysis of tables 4.4 and 4.6, the accuracy of the methodology decreases for

the licit traffic flows. This is due to the fact that the shape of the distributions of the traffic

statistics become similar and, consequently, the distinction between the flows of the different

protocols becomes less noticeable, leading to worse classification results.

The classification results were also computed for 5 and 15 minutes long traces. However,

the classification accuracy when using such traces was considerably lower (between 30%-

60% for all applications). Therefore, only the classification for the 30 minutes traces were

presented.

4.5 Conclusions

In this chapter, we presented a first study that demonstrates that multi-scale traffic analy-

sis is an accurate means to differentiate legitimate Internet applications and identify Internet

attacks. The proposed methodology is based on clustering the multi-scale estimators inferred

from different traffic profiles. By applying this framework to three licit applications (Web-

Browsing, Streaming and BitTorrent) and two illicit applications (port scan and snapshot)

that are very common on botnets, very accurate classification results were obtained using

traffic statistics such as the number of bytes per sampling interval, independently of the traf-

fic direction, and using only the first and second order multi-scale spectrum. Moreover, the

identification was only based on the analysis of the first five time scales of the traffic for

modeling the high-frequency components of the analyzed traffic.

A main drawback of this methodology is the fact that requires long traffic traces in order to

obtain acceptable classification results, which compromises its suitability for pseudo real-time

classification systems.
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Chapter 5

Traffic Classification based on

Probabilistic Modeling of the Traffic

Multi-Scale Frequency Components

5.1 Introduction

This chapter presents several traffic classification approaches based on probabilistic models

for associating unknown traffic to the corresponding Internet application. Our approaches can

be divided in two main categories. The first comprises unidimensional probabilistic models

in which each decomposition scale is analyzed separately. Classification is then performed

by inferring an overall value that is obtained by considering the values at the several scales.

The second comprises multidimensional probabilistic models in each the decomposition are

jointly analyzed. Such distributions are inferred by mapping each decomposition scale to a

dimension to generate a multidimensional space in which the probability distributions are

generated. These distributions allow the analysis of the correlations between the values of

the several decomposition scales in order to infer more accurate models.

These probabilistic methodologies enable an accurate traffic classification with short data-

streams making them more suitable to be used in pseudo real-time classification systems, such

as the architecture presented in section 1.3.

We start by presenting the several unidimensional approaches and subsequently the mul-

tidimensional ones. A section presenting, comparing and discussing the classification results

is then provided followed by a discussion of the advantages and drawbacks associated to the

several classification methodologies.
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5.2 Unidimensional Probabilistic Modeling of the Decompo-

sition Estimators

In this section we present our proposed classification methodologies based on the use

of unidimensional probabilistic approaches for modeling the behavior of the multi-scale de-

composition estimators. These methodologies constitute an enhancement to the approach

presented in chapter 4, since the use of probabilistic classification methodologies enables a

more accurate modeling of the different frequency components present in the analyzed Inter-

net traffic. The different decomposition scales are evaluated separately and traffic is assigned

to the Internet application whose distribution best fits its several frequency components.

This section starts by presenting some important background concepts and, then, a clas-

sification approach that models the first decomposition scales of the first order moment of

analysis is presented. Then, an algorithm for the selection of the decomposition scales is pre-

sented, in order to enable more accurate classification results. Subsequently, two additional

probabilistic modeling approaches are discussed: the first uses unidimensional Gaussian ap-

proaches to model the distributions generated by the estimators of the known data-streams

of each Internet application, in a separate way for each decomposition scale; the second uses

unidimensional generic probabilistic approaches. A discussion and comparison of the obtained

results is then provided at the end of the chapter.

5.2.1 Background

The main concept of the approaches presented in this chapter, illustrated in figure 5.1, is

the use of unidimensional probabilistic approaches for modeling the multi-scale decomposition

estimators obtained from the analysis of the traffic of the different Internet applications.

Such probabilistic models describe the behavior and the frequency components present in the

analyzed traffic in the several decomposition scales.

The estimators obtained from the multi-scale decomposition of the known data-streams

were used to validate the assumption that, for each application and scale, they can be modeled

using Gaussian distributions. The Lilliefors goodness-of-fit test was used, allowing us to verify

the null hypothesis that a sample in a vector comes from a distribution belonging to the

Gaussian family, against the alternative that it does not [Lil67]. Assuming a random sample

X1, X2, . . . , Xn of size n, the test proceeds as follows:

1. Compute the sample mean X =
1

N

N∑
i=1

Xi for use as an estimate of µ;

2. Compute the sample variance s =

√√√√ 1

N − 1

N∑
i=1

(Xi −X)2 as an estimate of σ;
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Figure 5.1: Unidimensional Probabilistic Modeling of the Multi-Scale Decomposition Estima-
tors.

3. Compute the ”normalized” sample values Zi defined as Zi =
Xi −X

s
, i = 1, . . . , n from

which the test will be computed;

4. Let S(x) be the distribution function whose parameters are inferred from the samples

Zis. The Lilliefors test statistic T1 is defined as: T1 = sup
x
|F ∗(x) − S(x)| where F ∗(x)

is the standard normal distribution function.

Two hypothesis result from the test:

• H0 - this is the null hypothesis which determines that the samples come from a normal

distribution;

• H1 - the distribution function of the samples Xi is non-normal.

All the conducted tests did not reject the null hypothesis, that is, all the estimators can

be approximated by a Gaussian distribution.

5.2.2 Choosing the decomposition scales

In this section, we present an algorithm that enhances our classification scheme. This

algorithm (illustrated in figure 5.2) evaluates all the available decomposition scales contained

in the set D, defined in (3.14), and selects the ones that can provide the best differentiation
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Figure 5.2: Algorithm for determining the best decomposition scales.

between applications. The main idea behind this approach is to determine the minimum

distances between the distributions of the estimators of the different Internet applications in

each scale of analysis, and use the ones where such distances are maximum. In this way,

we are able to assure that the different distributions are well separated, which is essential in

order to assure an accurate traffic discrimination.

In the following lines, the total number of decomposition scales, per Internet application,

that will be used for analyzing all distributions is denoted by N. For all the available de-

composition scales of all stochastic processes of all applications, we compute ea,Γz , β
−
a,Γz

and

β+
a,Γz

, which represents the mean, the inferior and the superior quantiles, respectively, of the

distribution inferred from the known estimators of an application a at time-scale j, moment

q and stochastic process s, identified by Γz as defined in (3.13). These quantiles allow us

to characterize the distributions inferred from the multi-scale estimators and determine their

relative positions, for a specific decomposition scale, and can be defined as:

P [eia,Γz < β−a,Γz ] = ρ−, ∀a
P [eia,Γz < β+

a,Γz
] = ρ+, ∀a

(5.1)

where ρ− and ρ+ represent a inferior and a superior distributions thresholds defined a priori.

In order to quantify the (dis)similarity between the distributions inferred from the esti-

mators of the different applications, we define, for all elements Γz of the set D, the following

metric:
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∆a,α,Γz =

{
β−α,Γz − β

+
a,Γz

, ēα,Γz > ēa,Γz

β−a,Γz − β
+
α,Γz

, ēα,Γz ≤ ēa,Γz
(5.2)

with a = 1, . . . , A and α = 1, . . . , A ∧ α 6= a, where it is assumed that the estimators of all

elements Γz of the set D, defined in (3.14), of all N known data-streams, follow a generic

probabilistic distribution with average

ēa,Γz =
1

N

N∑
i=1

eia,Γz (5.3)

We can then define as (dis)similarity metric for each application and for each process,

moment and dimension defined by Γz, the minimum distance between the estimators distri-

bution of one application a, a = 1, . . . , A, to all the remaining ones. This can be formulated

as follows:

da,Γz = min
α

[∆a,α,Γz ],∀α 6= a (5.4)

The set C, |C| = L, which refers to the set of the chosen dimensions, for all applications

can subsequently be defined. In addition, let

ζl = {ηl, νl, γl} ∈ N3 (5.5)

represent the l− th element, indexing a stochastic process ηa, moment νa and scale γa, of the

set C such that, for all elements of the set D, the L-distances da,Γz are higher, i.e,

C = {ζl|da,ζl =
n

max
z

[da,Γz ]} (5.6)

with a = 1, . . . , A, n = 1, . . . ,N, l = 1, . . . , L where L = NA(a − 1) + n and
n

max
z

[da,Γz ]

represents the n-th maximum distances.

5.2.3 Classification using unidimensional Gaussian distributions

In this section, we present a classification methodology based on the assumption that the

multi-scale estimators for a specific application process within the same scale (of the same

moment) follow a Gaussian distribution with mean ēa,s,q,j , inferred as defined in (5.3), and

(not-null) variance σ2
a,s,q,j inferred as:

σ2
a,Γz =

1

N − 1

N∑
i=1

(eia,Γz − ea,Γz)
2. (5.7)

with s = 1, . . . , S, q = 1, . . . , Q and j = 1, . . . , J .

The analysis is performed over the decomposition scales that were selected using the
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algorithm described in section 5.2.2. For each of the selected decomposition scales, the dis-

tribution generated by the estimators of the known data-streams of each application are then

used to determine to which distribution describes best the frequency components present in

the corresponding decomposition scale. Therefore, let the probability value Pi,a,ζl which is

computed as:

Pi,a,ζl =
e

(
−(uiζl

−ea,ζl
)2

2σ2
a,ζl

)
√

2πσ2
a,ζl

du (5.8)

with i = 1, . . . ,M , a = 1, . . . , A, represent the probability that a multi-scale quantifier of the

stochastic process ηa of an unknown data-stream i, at scale γa from moment νa indexed by ζl,

belongs to the Gaussian distribution of the estimators of application a in the same time-scale.

Let Pi,a, i = 1, . . . ,M, a = 1, ..., A designate the probability that the unknown data-stream

i is originated by application a. This probability will be estimated by averaging the partial

probabilities, defined in (5.8), over the time scales of better differentiation defined by ({ζl =

(ηl, νl, γl), l = 1, . . . , L}):

Pi,a =
1

L

L∑
l=1

Pi,a,ζl . (5.9)

Finally, an unknown data-stream i is associated with an application α whose distribution

maximized the previously computed value, i.e

∃α, Pi,α = max
a

[Pi,a] (5.10)

for i = 1, . . . ,M , a = 1, . . . , A and α = 1, . . . , A.

5.2.4 Classification using unidimensional generic distributions

In this section, we present a classification methodology based on the assumption that the

multi-scale estimators for a specific application process within the same scale (of the same

moment) follow a generic distribution effectively characterized by an average value ēa,s,q,j

and quantiles β−a,s,q,j and β+
a,s,q,j at thresholds ρ− and ρ+, respectively. Therefore, we use

the quantiles as defined in (5.1) and the average as defined in (5.3) to compute a metric (of

distance) Γi,a,ηa,νa,γa between a multi-scale quantifier of the unknown data-stream i and the

general distribution of the multi-scale estimators of stochastic process s of application a in

scale j of moment q. This distance metric is calculated over the set of selected time scales

previously identified, and defined by {ζl = (ηl, νl, γl), l = 1, . . . , L}:
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Γi,a =
1

L

L∑
l=1

∣∣∣β+
a,ζl

+ β−a,ζl − 2uiζl

∣∣∣ (5.11)

with i = 1, . . . ,M and a = 1, . . . , A.

Finally, an unknown data-stream i is associated with an application α such that

∃α,Γi,α = min
α

[Γi,a]. (5.12)

for i = 1, . . . ,M , a = 1, . . . , A and α = 1, . . . , A.

5.3 Multidimensional Probabilistic Modeling of the Decom-

position Estimators

This section presents probabilistic approaches that use multivariate and multidimensional

distributions to model the behaviors and frequency components present in each scale of anal-

ysis. The use of multidimensional approaches allows the analysis of the correlations between

the estimators at the different scales of analysis, which enables the use of more accurate dis-

tributions. A more accurate identification and discrimination of the traffic generated by the

different Internet applications, as well as the identification of illicit traffic can be achieved.

5.3.1 Background

The main concept behind the methodologies presented in this chapter is the use of multidi-

mensional distributions. A multidimensional distribution is inferred for each studied Internet

application, as illustrated in figure 5.3. Unknown traffic is then classified based on the distri-

butions generated by the estimators obtained from the multi-scale decomposition.

A vector x = [x1, x2, . . . , xn]T is said to have a Gaussian distribution with mean µ ∈ Rn

and covariance matrix Σ if its probability density function is given by [Do08]

P(x;µ,σ) =
1

(2π)n/2|Σ|1/2
exp

(
− 1

2σ2
(x− µ)2

)
(5.13)

The coefficient
1

(2π)n/2
is used as an energy preservation factor used to ensure that

1

(2π)n/2

∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞

(
− 1

2σ2
(x− µ)2

)
dx1dx2 . . . dxn = 1 (5.14)

When working with multiple variables, the covariance matrix provides a succinct way to

analyze the correlations between all pairs of variables.

There are several advantages associated to the usage of such approaches. For example,

in cases where the analyzed data has a high dimensionality or complexity, multidimensional
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Figure 5.3: Multi-scale estimators for the different stochastic processes of sampled data-
streams.

approaches are adequate for modeling and providing a single output value. Besides, the use

of these approaches allows the study of the correlation between the values of the different

variables, which leads to more accurate distributions.

5.3.2 Classification using Multidimensional Gaussian Approaches

This sub-section presents a classification methodology that is based on the assumption

that the multi-scale estimators, for a specific application, follow a multivariate Gaussian

distribution. Thus, let us define, for each application, a L−vector of mean values ~ea =

(ēa,ζl),∀l = 1, . . . , L, and a L−vector of variances ~σ2
a = (σ2

a,ζl
), ∀l = 1, . . . , L, which can be

inferred as:

ēa,ζl =
1

N

N∑
i=1

eia,ζl , ∀l (5.15)

σ2
a,ζl

=
1

N − 1

N∑
i=1

(eia,ζl − ea,ζl)
2,∀l (5.16)

Therefore, let us define the probability that the multi-scale estimator uiC obtained from

the multi-scale decomposition of a stochastic process of the i−th unknown data-stream, using

the set of chosen dimensions C defined in (5.6), belongs to the Gaussian distribution whose

parameters are inferred from the estimators obtained from the multi-scale decomposition of

the known data-streams of an application a, using the same set of dimensions, as:
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Pi,a =
1

(2π)L/2|Σa,C |1/2
e−

1
2

(uiC− ~ea)TΣ−1
a,C(uiC− ~ea) (5.17)

∀a = 1, . . . , A, ∀i = 1, . . . ,M , where ~ea is a L-vector and |Σa,C | is the determinant of Σa,C ,

which is the L× L covariance matrix in the set of dimensions indexed by C.

Finally, an unknown data-stream i is associated with an application α such that

∃α, Pi,α = max
a

[Pi,a] (5.18)

for i = 1, . . . ,M , a = 1, . . . , A and α = 1, . . . , A.

5.3.3 Classification using Multidimensional Generic Approaches

Let us now assume that the distributions inferred from the estimators of the known data-

streams, of each studied application, follow a generic multi-dimensional distribution. There-

fore, the estimator uiC obtained from the multi-scale decomposition of a stochastic process

of the i−th unknown data-stream, using the set of chosen dimensions C defined in (5.6), will

be classified according to the distance Di,a, a = 1, . . . , A to the distribution corresponding

to the Internet application a. The distance used in this work is the Mahalanobis distance

since it considers the correlations between the different variables and can be defined as follows

[Mah36]:

Di,a =
√

(uiC − ~ea)TΣ−1
a,C(uiC − ~ea),∀a (5.19)

where Σ−1
a,C is the covariance matrix in the set of dimensions indexed by C. The i -th unknown

data-stream will then be associated to the distribution of the application α that minimizes

the distance defined in (5.19), i.e:

∃α,Di,α = min
a

[Di,a] , a = 1, . . . , A (5.20)

5.4 Classification Results

This section presents the identification results obtained from applying the previously pre-

sented classification methodologies. First, we present the results obtained when classify-

ing the streams using unidimensional probabilistic approaches, as described in section 5.2.

Subsequently, the results obtained when using multidimensional probabilistic approaches, as

described in section 5.2, are presented.

The identification methodologies were applied to traffic data-streams extracted from: (i)

licit TCP and UDP traffic traces passively collected at the University of Aveiro network on

September 15, 2008 and (ii) illicit traces that were experimentally generated in our laboratory
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in order to simulate some of the most relevant botnet uses. The total number of considered

applications was 5 (A = 5), 3 licit and 2 illicit. The licit applications data-streams that were

extracted (and classified a priori) from the collected traffic belong to file-sharing (BitTorrent),

Video Streaming and Web-Browsing. On the other hand, the illicit applications (NMap and

Snapshots) were generated with the profile described in section 3.2.2. The complete dataset

is composed by 50 data-streams of each application.

5.4.1 Unidimensional Probabilistic Approaches

Without selecting decomposition scales

In this section we present the classification results obtained using unidimensional Gaussian

distributions only, as described in section 5.2.3, without using the selection scales algorithm.

Therefore, we consider the first moment (Q = 1) and first five decomposition scales (J = 5).

The analyzed metric is the number of captured bytes sent and received by a local host (S = 1).

The classification results were computed by comparing the classification achieved with the

proposed methodology with the real applications of the data-streams, that are known a priori.

We considered 5 and 15 minutes long data-streams. We only used the first 5 scales, since the

estimators of all applications tend to converge at higher scales. Figures 5.4 and 5.5 show box

plots with the 25%, 50%, 75% and 95% quantiles of the estimators of the first order moment

of the normalized multi-scale decomposition estimators corresponding to 5 minutes and 15

minutes data-streams, respectively. From these plots, we can observe that the distributions of

the estimators of the Web-Browsing and Snapshot streams almost overlap in all scales. This

suggests that some Web-Browsing and Snapshot streams might be misclassified. However,

for the 15 minutes data-streams (Figure 5.5) the Snapshot traffic estimators are now more

concentrated around the mean, which suggests that the accuracy will be higher. For the

remaining estimators’ distributions, we can observe that, at least in one scale, they are very

separated and therefore they should not be misclassified.

The numerical results obtained, for the 5 minutes traffic traces, are presented in Table

5.4.1. It is possible to observe that the results obtained are relatively accurate for all appli-

cations with a percentage of correctly identified data-streams between 72% and 100%. For

Web-Browsing traffic, the correct classification percentage is lowest, as some of these data-

streams were misclassified as Snapshot, which is in accordance with the previous analysis.

This result can also be explained by the fact that the multi-scale estimators of the Web-

Browsing data-streams have an higher variance, resulting from the various and heterogeneous

user behaviors, making this distribution to partially overlap with the distribution of the snap-

shot estimators (which has a much lower variance) at all scales. Moreover, several protocols,

such as file sharing and video streaming, run on top of Web-Browsing communications, which

justifies the large variance that the estimators of these streams present and some of the

classification mistakes that are obtained.
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Figure 5.4: Distributions for first order decomposition estimators of the 5 minutes traces of
the studied Internet applications and attacks.
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Figure 5.5: Distributions for first order decomposition estimators of the 15 minutes traces of
the studied Internet applications and attacks.

The classification results for the 15 minutes data-streams are presented in Table 5.4.1,

where we can observe that the accuracy of the results for all applications is higher. This

can be explained by the fact that since traces are longer, they contain more information and

more differentiating characteristics of the different applications. This obviously allows a more

accurate decomposition of each data-stream and, therefore, a better analysis of the several

frequency components, leading to better classification results.
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Table 5.1: Percentage of correctly classified data-streams for the first order moment using 5
minutes traces.

Identified as
NMap Snapshot Web-Browsing Streaming Torrent

NMap 100% 0% 0% 0% 0%
CI 100%-100% 0%-0% 0%-0% 0%-0% 0%-0%

Snapshots 0% 74.01% 23.89% 1.89% 0.21%
CI 0%-0% 69.92%-78.10% 19.61%-28.17% 1.47%-2.31% 0.08%-0.33%

Web-Browsing 0% 23.65% 72.39% 1.16% 2.80%
CI 0%-0 20.53%-26.78% 69.39%-75.39% 0.82%-1.50% 2.37%-3.23%

Streaming 0% 1.91% 5.54% 92.52% 0.03%
CI 0%-0% 1.42%-2.40% 4.90%-6.20% 91.85%-93.18% 0%-0.09%

Torrent 0% 0.41% 3.68% 0.07% 95.84%
CI 0%-0% 0.07%-0.74% 2.93%-4.44% 0.05%-0.09% 94.92%-96.76%

Table 5.2: Percentage of correctly classified data-streams for the first order moment using 15
minutes traces.

Identified as
NMap Snapshot Web-Browsing Streaming Torrent

NMap 100% 0% 0% 0% 0%
CI 100%-100% 0%-0% 0%-0% 0%-0% 0%-0%

Snapshots 0% 95.34% 4.66% 0% 0%
CI 0%-0% 94.00%-96.67% 3.33%-6.00% 0%-0% 0%-0%

Web-Browsing 0% 15.48% 74.52% 0.22% 9.78%
CI 0%-0% 12.72%-18.23% 71.47%-77.58% 0%-0.48% 8.24%-11.32%

Streaming 0% 0% 0.09% 98.48 1.430%
CI 0%-0% 0%-0% 0%-0.25% 97.94%-99.01% 0.91%-1.95%

Torrent 0% 0% 1.49% 0% 98.51%
CI 0%-0% 0%-0% 0.59%-2.38% 0%-0% 97.62%-99.41%

Using selected decomposition scales

Let us now present the results obtained when using the algorithm for identifying the

decomposition scales more suitable for an accurate traffic identification, presented in section

5.2.2. The considered stochastic processes were the byte counts per sampling interval (0.1

seconds) in the download (s = 1) and upload directions (s = 2) and the packet counts per

sampling interval (0.1 seconds) in the download (s = 3) and upload directions (s = 4). These

estimators were computed for the first eight time-scales (J = 8) of the first three order

moments (Q = 3).

Figure 5.6 shows an example of some of the obtained decomposition estimators, as defined

in (3.12), for all the available stochastic processes, moments and time-scales. We can observe

that estimators for data-streams of the same application have a strong similarity, while data-

streams of different applications exhibit relative dissimilarity. This suggests that an accurate
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Table 5.3: Percentage of correctly classified data-streams using a unidimensional generic dis-
tribution

Identified as
NMap Snapshot Web-Browsing Streaming Torrent

NMap 100% 0% 0% 0% 0%
CI 100%-100% 0%-0% 0%-0% 0%-0% 0%-0%

Snapshots 0% 100% 0% 0% 0%
CI 0%-0% 100%-100% 0%-0% 0%-0% 0%-0%

Web-Browsing 0% 0% 94.13% 5.87% 0%
CI 0%-0% 0%-0% 92.72%-95.55% 4.45%-7.28% 0%-0%

Streaming 0% 0% 10.40% 55.47% 34.13%
CI 0%-0% 0%-0% 8.99%-11.81% 52.92%-58.02% 31.53%-36.73%

Torrent 0% 1.46% 0% 0.07% 98.47%
CI 0%-0% 0.67%-2.26% 0%-0% 0%-0.02% 97.67%-99.26%

classification of the traffic streams is possible. Moreover, the flows originated by the illicit

activities present very particular behaviors, caused by the nature of the traffic data-streams,

that differs from the licit ones. This indicates that an accurate identification of such illegal

activities will be achieved.
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Table 5.4: Percentage of correctly classified data-streams using a unidimensional Gaussian
distribution

Identified as
NMap Snapshot Web-Browsing Streaming Torrent

NMap 100% 0% 0% 0% 0%
CI 100%-100% 0%-0% 0%-0% 0%-0% 0%-0%

Snapshots 0% 91.53% 1.47% 4.67% 2.33%
CI 0%-0% 89.50%-93.57% 0.86%-2.08% 2.99%-6.35% 1.35%-3.31%

Web-Browsing 4.40% 1.80% 92.80% 1.00% 0%
CI 3.47%-5.33% 0.78%-2.82% 91.38%-94.22% 0.48%-1.52% 0%-0%

Streaming 0% 1.20% 8.87% 77.26% 12.67%
CI 0%-0% 0.19%-2.21% 7.57%-10.16% 74.63%-79.88% 10.49%-14.84%

Torrent 0% 1.93% 0% 5.07% 93.00%
CI 0%-0% 0.83%-3.03% 0%-0% 3.78%-6.35% 91.88%-94.12%

Table 5.5: Percentage of correctly classified data-streams using unidimensional generic and
Gaussian distributions.

Generic distribution methodology Gaussian distribution methodology
Identified as Identified as

Licit traffic Illicit traffic Licit traffic Illicit traffic

Licit traffic 99.51% 0.49% 96.89% 3.11%
CI 99.25%-99.77% 0.23%-0.75% 96.24%-97.54% 2.47%-3.75%

Illicit traffic 0% 100% 4.23% 95.77%
CI 0%-0% 100%-100% 3.22%-5.24% 94.75%-96.79%

Tables 5.4.1 to 5.4.1 show the identification results obtained after the completion of the

100 independent experiments, together with the corresponding 95% CI. The results include,

for both methodologies, the identification performance when identifying (i) individual ap-

plications and (ii) groups of licit/illicit applications. This last set of results is much more

relevant to a network traffic data analysis with the purpose of identifying the source(s) of

illicit activities in a network.

We can see that the classification accuracy in both methodologies is very high for all

studied applications, except for the Video-Streaming application. This result is explained by

the fact that the traffic generated by the Video-Streaming application reveals a near-constant

bandwidth utilization that includes some pseudo-periodic short duration bursts associated

with pseudo-periodic periods of bandwidth starvation. These characteristics make the stream-

ing profile similar, in some parts, to Web-Browsing (pseudo-periodic short bursts) and, in

other parts, similar to BitTorrent (high bandwidth utilization, but with less variation), mak-

ing the decision process complex and susceptible to errors. However, it is important to notice

that both methodologies performed extremely well when identifying illicit traffic as a group.

The methodology that assumes a generic distribution of the estimators had a perfect score of
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classification. Nevertheless, the methodology where a generic distribution of the multi-scale

estimators is assumed performed better when identifying and differentiating individual ap-

plications. The proposed identification methodologies also returned a very small percentage

of false positives when identifying illicit traffic. These values make both methodologies very

interesting tools for network security purposes, since the margin of error is acceptable in such

complex, and many times, restricted environments.

5.4.2 Multidimensional Probabilistic Approaches

In this section, the results obtained with the multidimensional classification methodologies

are presented and discussed. The classification methodologies were applied to the data-streams

presented in section 3.2.2. The stochastic processes considered in this work are the bytes and

packets counts in the upload and download directions, per sampling interval of 0.1 seconds

(S = 4). The analysis was performed for the first three order moments (Q = 3), while the

number of chosen dimensions, per application, was equal to 2 (N = 2) and the total number

of used dimensions was 10 (L = 10).

Before inferring the multi-dimensional distributions, we had to verify if the estimators of

the known data-streams, for each dimension, followed a Gaussian distribution or not. The

Lilliefors goodness-of-fit test was used, which verifies the null hypothesis that a vector sample

comes from a distribution of the Gaussian family, against the alternative that it does not

[Lil67]. All the tests did not reject the null hypothesis, that is, all the estimators, for each

dimension, can be approximated by a Gaussian distribution. Figures 5.4.2 and 5.7 show some

of the estimators obtained from the multi-scale decomposition of the known data-streams of

the studied protocols. For illustration purposes, we only show three dimensions and three

applications per figure. We can see that the estimators obtained from streams of the same

application are positioned in the same region and are separated from the ones of the remaining

applications on the same multi-dimensional space. We can also assume that, by using more

dimensions per application, these differentiations will increase. Thus, the distributions in-

ferred from these estimators will be very differentiable, which results in a good discrimination

between the traffic of the different applications. This suggests that the results will present a

very high accuracy. However, we can see that some of the estimators of the Streaming traffic

are somehow spread and some of them even approximate the estimators of the Web-Browsing

protocol. This suggests that some of the Streaming traffic can be classified as Web-Browsing

traffic.

In order to evaluate the accuracy of the proposed methodology and to assess the influence

of the random choice of the known traffic streams, 100 independent iterations were run. In

each iteration, 20 streams were randomly chosen as known streams (N = 20), while the

remaining ones were used as unknown streams (M = 30) and classified in order to evaluate

the efficiency of the proposed methodology. The threshold values ρ− and ρ+ were set to 5%
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Figure 5.7: Sample Estimators extracted from sample Web-Browsing, NMap and Snapshot
streams (top) and Sample Estimators extracted from sample Web-Browsing, Streaming and
BitTorrent streams (bottom).

and 95%, respectively.

Table 5.6 shows the identification results obtained, together with the corresponding 95%

CI, when using multidimensional Gaussian approaches. We can see that the percentage of

correctly classified flows is always higher than 91%. For the illicit traffic, the classification rates

are equal to 100% and 97.23%, for the NMap and Snapshot streams respectively. This shows

that these attacks can be identified with very high accuracy using this methodology. For the

Snapshot case, some of the streams were erroneously classified as Web-Browsing traffic, which

can be explained by the fact that the Snapshot traffic was emulated through the upload of a

desktop image every time the user performed a click while browsing the Internet. Therefore,

the profiles of these two protocols may become similar. In addition, some Streaming traffic was

classified erroneously as Web-Browsing traffic, which is in accordance with a previous analysis

presented in this section. This can be explained by the fact that, nowadays, most web pages
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have embedded streaming contents and consequently, some of the data sets identified as Web-

Browsing incorporate some characteristics of Streaming traffic. Therefore, the profile of some

Streaming traffic may become similar to the one of Web-Browsing traffic (and vice-versa).

Table 5.6: Percentage of correctly classified data-streams using a multidimensional Gaussian
distribution.

Identified as
NMap Snapshot Web-Browsing Streaming Torrent

NMap 100% 0% 0% 0% 0%
CI 100%-100% 0%-0% 0%-0% 0%-0% 0%-0%

Snapshots 0% 97.23% 2.77% 0% 0%
CI 0%-0% 96.84%-97.63% 2.37%-3.16% 0%-0% 0%-0%

Web-Browsing 0% 0% 97.20% 1.83% 0.97%
CI 0%-0% 0%-0% 96.63%-97.77% 1.52%-2.15% 0.53%-1.40%

Streaming 0% 0% 8.13% 91.50% 0.37%
CI 0%-0% 0%-0% 7.12%-9.15% 90.45%-92.55% 0.19%-0.54%

Torrent 0% 0% 1.17% 3.13% 95.70%
CI 0%-0% 0%-0% 0.47%-1.86% 2.56%-3.71% 94.76%-96.64%

Table 5.7: Percentage of correctly classified data-streams using a multidimensional generic
distribution.

Identified as
NMap Snapshot Web-Browsing Streaming Torrent

NMap 99.87% 0% 0.13% 0% 0%
CI 99.71%-100% 0%-0% 0%-0.29% 0%-0% 0%-0%

Snapshots 0% 97.94% 2% 0% 0.06%
CI 0%-0% 97.48%-98.38% 1.55%-2.45% 0%-0% 0%-0.17%

Web-Browsing 0% 0% 99.93% 0.07% 0%
CI 0%-0% 0%-0% 99.82-100 0%-0.18% 0%-0%

Streaming 0% 0% 2.80% 97.13% 0.07%
CI 0%-0% 0%-0% 1.72%-3.88% 96.06%-98.20% 0%-0.18%

Torrent 0% 0% 6% 0.10% 93.90%
CI 0%-0% 0%-0% 4.51%-7.49% 0%-0.19% 92.44%-95.43%

The results obtained when modeling the distributions generated by the estimators with

multidimensional generic approaches are shown in table 5.7. It can be seen that the classi-

fication results are very accurate, with an accuracy for all applications of more than 90%.

This proves that multivariate generic approaches are suitable for an accurate legitimate traffic

discrimination as well as to an accurate identification of low-impact illicit traffic.

Finally, table 5.4.2 shows the classification results when considering only two groups of

applications: the legitimate and the illegitimate groups. It can be seen that the classifi-

cation accuracy is very high when assigning data-streams to these mentioned groups. This
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assesses that the proposed approaches are suitable for the identification of hosts running illicit

applications.

Table 5.8: Percentage of correctly classified data-streams using multidimensional generic and
Gaussian distributions.

Generic distribution methodology Gaussian distribution methodology
Identified as Identified as

Licit traffic Illicit traffic Licit traffic Illicit traffic

Licit traffic 100% 0 100% 0
CI 100%-100% 0-0 100%-100% 0-0

Illicit traffic 1.06% 98.94% 0 100%
CI 0.78%-1.34% 100%-100% 0-0 100%-100%

When comparing the classification results obtained in this section with the ones obtained

with clustering algorithms, the accuracy are similar. However, the traffic traces used for

analysis in this section are shorter since they comprise only 5 minutes of traffic. It can

be concluded that the probabilistic approaches enable an accurate traffic mapping and an

accurate identification of stealth and low-impact attacks using shorter traffic traces. This

constitutes an important enhancement to the clustering approaches since these require longer

traffic traces.

5.5 Conclusions

In this chapter, several identification methodologies were proposed. They rely on a multi-

scale analysis of sampled traffic flows, enabling the identification of illicit activities on en-

crypted communications scenarios. The first proposed methodology consisted in modeling

the distributions generated by the multi-scale decomposition estimators of the known data-

streams using unidimensional probabilistic approaches. We started by analyzing only the first

decomposition scales in an attempt of evaluating the presence of high-frequency events in the

captured traffic. The used traffic streams had 5 and 15 minutes long, which enabled us to

study the effect of the amount of data available and extracted from the traffic traces.

In order to optimize the classification approaches, our subsequent work focused on the use

of all the available decomposition scales and more moments of analysis. Traffic classification

was then based on identifying the time-scales where the different multi-scale estimators of

the several Internet applications are better discriminated. Each application is conveniently

identified based on the time scale where its multi-scale decomposition estimators are better

separated.

The first proposed classification methodologies are based on two different approaches.

The first uses unidimensional probabilistic modeling approaches. Using these probabilis-

tic approaches, two classification methodologies were proposed: the first assumes that the
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multi-scale decomposition estimators follow Gaussian Distributions and the other uses generic

probabilistic models which compute the distances between the quantiles of the empirical dis-

tributions for classifying estimators extracted from unknown data-streams.

The second approach consisted in deploying multidimensional probabilistic models for

traffic classification. A dimension was mapped to each of the chosen decomposition scales in

order to generate a multidimensional space. In this manner, we can analyze the correlation

between the estimators of the several decomposition scales (corresponding to dimensions)

which allows us to infer more accurate distributions, modeling more accurately the distribu-

tions of the several Internet applications. Two models were then also used: the first deploys

multidimensional Gaussian approaches while the second uses multidimensional generic ap-

proaches.

In order to evaluate the accuracy of the proposed classification methodologies, these were

applied to some of the most used licit Internet applications and two popular illicit applications,

and the results obtained show that they were able to accurately classify Internet traffic and

identify illicit activities. Moreover, one of the methodologies was able to identify all illicit

tested traffic and consequently, enable the identification of the network elements that are

responsible for generating anomalous activities even in encrypted traffic scenarios.

By comparing the results presented in sections 5.4.2 and 5.4.1, we can conclude the use

of multidimensional probabilistic approaches provides more accurate classification results.

Indeed, the percentage of correctly classified data-streams of each studied Internet application

increases when using such modeling approach. This is due to the fact that, such approaches,

by generating a multidimensional space, allow the analysis of the correlation of the estimators

of each analyzed dimension. This allows us to infer more accurate probabilistic approaches

which enable a more accurate modeling of the different frequency components present in

the analyzed data-streams. Therefore, the inferred distributions are more precise, allowing

also a more accurate differentiation of unknown traffic. In the case of Multivariate Gaussian

Distributions, it is assumed that the estimators follow Gaussian distributions in each one

of the dimensions which, as shown in the tests verifying the suitability of this approach,

constitutes a valid approach. On the other hand, for some applications, by not assuming

Gaussian distributions, generic distributions can be deployed which may in fact increase the

accuracy of the traffic mapping. As a drawback, multidimensional probabilistic modeling is

a more intensive and resource consuming task.
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Chapter 6

Enhancing Classification

Approaches

6.1 Introduction

All the classification approaches presented in previous chapters enabled an accurate clas-

sification of the traffic generated by the most significant legitimate Internet applications,

together with an accurate identification of the traffic generated by stealth and low impact

Internet attacks. However, a considerable number of traffic samples extracted from each data-

stream had to be analyzed in order to achieve such an accurate traffic mapping. Traffic profile

changes were not analyzed since data-streams were considered to be generated by only one

Internet application. Besides, we also believe that the detection of such profile changes will

enable the detection of traffic presenting suspicious patterns only in some time intervals.

So, in order to be able to detect these profile changes, this chapter proposes an enhance-

ment to the previously presented traffic classification methodologies : analyze and classify

a data-stream using several classification windows of constant size. This will allow a more

accurate traffic classification since each captured data-stream can then be assigned to one

application according to the classification of the different windows. The accuracy increases

with the increase on the number of analysis windows. This approach allows the identification

of changes in the profile of the traffic generated by an Internet application as well as the iden-

tification of traffic presenting illicit patterns only in some periods of time in order to bypass

detection and protection tools, as illustrated in figure 6.1. The use of appropriate threshold

values enables the assignment of such traffic to different categories that can be used later by

network managers to take appropriate counter-measures.

This chapter presents two windowed-based classification methodologies. Subsequently,

some classification scenarios and the obtained results are presented and discussed. Finally,

some conclusions are provided debating the advantages of the proposed improvement.
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Figure 6.1: Window-Based Classification Concept.

6.2 Some preliminary definitions

Let us extend some definitions presented in section 3.3.4 in order to cope with classification

enhancement proposed in this chapter. Let w = 1, . . . ,W represent the w-th classification

window, where W represents the total number of classification windows per data-stream. In

addition, let

Ewa,Γz = {ei,wa,Γz , i = 1, . . . , N ;w = 1, . . . ,W} (6.1)

represent the estimators, as defined in (3.12), obtained from the w-th window of analysis for

element Γz that indexes a scale j, j = 1, . . . , J , at the order q, q = 1, . . . , Q, moment of the

wavelet decomposition estimators, of a stochastic process s, s = 1, . . . , S, extracted from a

known data-stream i, i = 1 . . . , N , of an application a. The mean of the different estimators

obtained from the multi-scale decomposition of know data-streams generated by an Internet

application a, at each scale j, can be defined as:

ewa,Γz =
1

N

N∑
i=1

ei,wa,Γz (6.2)

Moreover, let us define, for each application a and classification window w, a L−vector of

mean values ~ewa = (ēwa,Γz),∀l = 1, . . . , L,

On the other hand, let us define

UwΓz = {ui,wΓz
, i = 1, . . . ,M} (6.3)

as the estimators obtained for the w-th classification window for element Γz that indexes a

scale j, j = 1, . . . , J , at the order q, q = 1, . . . , Q, moment as defined in (3.12), extracted from

a stochastic process s, s = 1, . . . , S, of an unknown data-stream i, i = 1 . . . ,M .

Each classification window, of each data-stream i, will be associated to an Internet appli-

cation. The methodologies used to perform such association will be presented in the following
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sections.

6.3 Window-Based Classification Approaches

In the following sub-sections, two different window-based classification approaches are

presented, including multivariate Gaussian and generic probabilistic distributions to asso-

ciate the multi-scale estimators obtained from the multi-scale decomposition of the different

classification windows of each unknown data-stream.

6.3.1 Gaussian Window-Based Multidimensional Classification Approach

In this methodology, the distributions whose parameters are inferred from the estimators

obtained from the multi-scale decomposition of the known data-streams of each studied appli-

cation are modeled using multivariate Gaussian probabilistic approaches. Therefore, for the

w-th classification window of an unknown data-stream i, the obtained estimators will be clas-

sified according to the probability of belonging to the multidimensional Gaussian probabilistic

distributions of each Internet application, which is computed as:

Pwi,a =
1

(2π)L/2|Σw
a |1/2

e−
1
2

(ui,wΓz
−~ewa )TΣwa

−1(ui,wΓz
−~ewa ) (6.4)

∀a = 1, . . . , A, ∀i = 1, . . . ,M,∀w = 1, . . . ,W , where ~ewa is a L-vector, defined in (5.15), and

|Σa| is the determinant of Σw
a , which is the L×L covariance matrix of application a in window

w.

The estimators obtained from the w-th classification window extracted from an unknown

data-stream i will be assigned to the distribution of application α that maximizes the com-

puted probability:

cwi = α : Pwi,α = max
a

[Pwi,a] (6.5)

where cwi represents the classifier of the w-th classification window of the i-th unknown data-

stream.

6.3.2 Generic Window-Based Multidimensional Classification Approach

Let us now assume that the distributions whose parameters are inferred from the estima-

tors obtained from the multi-scale decomposition of the known data-streams of each Internet

application follow a generic multidimensional distribution. Thus, for the w-th classification

of the i-th unknown data-stream, the obtained decomposition estimators will be classified

according to the distance Dw
i,a, a = 1, . . . , A, to the distribution of application a:

Dw
i,a =

√
(ui,wΓz

− ewa,Γz)
TΣw

a
−1(ui,wΓz

− ewa,Γz),∀a (6.6)
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where Σw
a is the covariance matrix.

The w -th classification window extracted from the unknown data-stream i will then be

associated to the distribution of application α that minimizes the distance defined in (6.6),

i.e:

cwi = α : Dw
i,α = min

a

[
Dw
i,a

]
, a = 1, . . . , A (6.7)

where cwi represents the classifier of the w-th classification window of the i-th unknown data-

stream.

6.3.3 Data-Stream Classification

A final classification must be performed based on the several classifications that were

obtained for the different classification windows of each analyzed data-stream. A data-stream

can be classified as:

• Contains only traffic from an application α (or application group α),

• Contains a mixture of traffic from an application α (or application group α) and others,

• Does not contain traffic from application α (or application group α).

Therefore, let us define Ni,α as the weight of application α (or application group α) in

data-stream i over W analyzed classification windows:

Ni,α =
1

W

W∑
w=1

A∑
a=1

(cwi == a), α = 1, . . . , A (6.8)

where A represents the total number of applications (or application groups) and operator ==

represents a comparison function which outputs 1 if both terms are equal and 0 otherwise.

The final classification of data-stream i is performed based on (empirically) predefined

thresholds %− and %+:

Ci =


Application/Group α if Ni,α ≥ %+

Mixture if %− < Ni,α < %+

Not Application/Group α if Ni,α ≤ %−
(6.9)

6.4 Results

This section presents the classification results obtained when enhancing the proposed

classification methodologies with the use of several classification windows. Two classification

scenarios are considered for analysis. The first uses a Gaussian window-based multidimen-

sional methodology applied to non-sampled traffic metrics, the Inter-Arrival Time (IAT) and
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the packet length, enabling a faster (pseudo real-time) classification. The second scenario

uses a generic window-based multidimensional classification approach to identify illicit traffic

or traffic composed by mixtures of licit and illicit excerpts.

6.4.1 Gaussian Window-Based Multidimensional Classification Based on

Non-Sampled Traffic Metrics

In this section, we present the classification results obtained when using the Gaussian

window-based multidimensional methodology applied to non-sampled traffic metrics (Inter-

Arrival Time (IAT) and packet length). In this scenario, we included one additional ap-

plication, P2P-TV, whose traffic was captured as described in [Pet10]. A pseudo real-time

traffic classification paradigm was achieved since classification was faster, while maintaining

a similar accuracy level. The IAT (S = 1) and length (S = 2) of each packet in the download

direction and IAT (S = 3) and length (S = 4) of each packet in the upload direction were

the chosen stochastic traffic processes. In order to evaluate the accuracy of the proposed

classification approach and its dependency on the number of the classification windows, 100

independent simulations were performed. For each one, 20 data-streams (N = 20) of each

Internet application were chosen as known data-streams. The remaining streams (M = 30)

were used as unknown data-streams and were further classified. The classification approach

presented in section 6.3.1 was used for classifying each one of the different classification win-

dows based on the distributions of the different studied applications. The parameters of such

distributions were inferred from the estimators obtained from the multi-scale decomposition

of known data-streams of each Internet application. The size of each window was then set to

128 packets. The chosen thresholds were %+ = 90% and %− = 10%. The use of several classi-

fication windows allows an increase on the classification accuracy, since more differentiating

characteristics can be inferred from the traffic of the different studied Internet applications.

Each data-stream was assigned to an Internet application according to (6.8) and (6.9).

Let us start by analyzing the time, shown in table 6.1, that is required to obtain the

number of packets necessary for performing an analysis with the different number of anal-

ysis/classification windows. For web-browsing traffic, it can be seen that the time that is

required in order to have enough metrics for one analysis/classification window is 14 seconds,

for the upload traffic, while only 11.3 seconds are required for the download traffic. The

amount of time for the download direction is lower than the one of the opposite direction,

because more traffic flows down to the user due to the download of the requested web-pages.

However, for web-browsing applications, these values depend on the user profile and on the

number of performed requests. For the BitTorrent traffic, only 3.35 and 2.69 seconds are nec-

essary to obtain a sufficient number of packets for one analysis window, for the download and

upload directions respectively. The amount of traffic generated by peers when downloading,

and simultaneously uploading, a file allows us to capture the required number of packets in a
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Table 6.1: Time, in seconds, required for traffic classification

Number of Analysis Windows
1 2

Upload Download Upload Download
Web-Browsing 14.14 11.38 15.20 12.28
Torrent 3.35 2.69 3.61 2.90
P2P-TV 0.81 0.78 0.87 0.84
Streaming 6.99 6.63 7.53 7.13
NMap 7.78 6.11 8.40 6.57
Snapshots 85.98 51.12 92.20 53.33

Number of Analysis Windows
3 4

Upload Download Upload Download
Web-Browsing 16.26 13.18 17.35 14.09
Torrent 3.87 3.11 4,13 3.32
P2P-TV 0.93 0.93 0.99 0.96
Streaming 8.06 7.63 8.60 8.13
NMap 9.03 7.03 9.66 7.50
Snapshots 98.80 56.92 105.37 60.53

small period of time. For performing an analysis with 4 classification windows, these values

increase to 4.13 and 3.32 seconds, for the download and upload directions respectively. When

classifying P2P-TV traffic, these values decrease considerably due to the fact this application

generates a significant amount of traffic, with very low IATs, which is caused by the download

and upload of a TV channel broadcast using P2P networks. The amount of time necessary

for obtaining a sufficient number of packets for performing an analysis with 4 classification

windows does not reach 1 second, which confirms that traffic generated by this application

can be quickly identified. About 8 seconds are required to perform classification using four

analysis windows for the video Streaming traffic, because this application generates a less

amount of traffic when compared with P2P file download and P2PTV applications. In fact,

Video-Streaming consists of the transmission of a video between a server and a client, while

for P2P-TV many peers are involved in the video transfer and, consequently, more traffic is

generated. About 9 seconds of upload traffic and 7 seconds of download traffic are required

for capturing a sufficient number of packets for performing a classification based on 4 analysis

windows for the NMap application. For the Snapshots traffic, these values increase consider-

ably due to the fact that uploads of stolen confidential information are only performed when

users perform requests on a browser. In addition, the number of exchanged packets per upload

is not significant since only small images or text files are sent to a remote server.

The classification accuracy, together with their 95% confidence intervals, as a function of

the number of used classification windows, is illustrated in figure 6.2. It can be seen that

for one classification window the results are already quite accurate, being the Snapshot and
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Figure 6.2: Classification Accuracy.

Video Streaming applications the ones that present the lowest accuracy values. However,

by increasing the number of classification windows, the accuracy increases for all studied

Internet applications, as expected. In fact, when using 4 classification windows the accuracy

is higher than 90% for all applications. This is due to the fact that more metrics can be

obtained from the captured streams when using more analysis windows, which enables the

use of more accurate probabilistic distributions leading to a better discrimination between

the traffic generated by the different applications.

6.4.2 Identification of Illicit Traffic using Generic Window-Based Multidi-

mensional Classification

Now, the considered stochastic processes are the byte count per sampling interval (0.1

seconds) in the download (s = 1) and upload directions (s = 2) and the packet count per

sampling interval (0.1 seconds) in the download (s = 3) and upload directions (s = 4).

These estimators were computed for the first eight time-scales (J = 8) of the first three order

moments (Q = 3). The width, ∆t, of the time-windows over which data-streams were sampled

was approximately equal to 100 seconds, which at a sampling interval of 0.1 seconds gave us

1024 samples per data-stream, per sampling window. We considered 8 classification windows

per data-stream.

From all captured data-streams, 20 of them from each application were randomly chosen

as known data-streams (N = 20) and some samples were extracted from these streams. The
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Table 6.2: Percentage of correctly identified data-streams of mixed traffic.

Identified as
Licit Illicit + Licit Illicit

Licit 100% 0% 0%
Illicit 3% 97% 0%
Licit + Illicit 10% 0% 90%

remaining ones were used as unknown data-streams (M = 30) and samples were also extracted

from them and classified in order to evaluate the efficiency of the classification methodology.

The approach presented in section 6.3.2 was used for associating each one of the classification

windows to the corresponding Internet application. Each data-stream was assigned to an

application group according to (6.8), considering the following two application groups:

• Licit traffic: HTTP (Web-browsing), Streaming and Torrent,

• Illicit traffic: NMAP and Snapshots.

The classification was performed as described in section 6.3.3 and with thresholds %+ =

90% and %− = 10%. The obtained results were very accurate, as shown in Table 6.4.2. The

identification of embedded illicit patterns in legitimate communications was achieved for 90%

of all traffic streams that had hidden illicit patterns. These results confirm that the proposed

enhancement and the use of appropriate thresholds allow an accurate identification of hidden

illicit patterns in legitimate traffic streams.

6.5 Conclusions

Methodologies that can accurately and timely classify Internet traffic and Internet attacks

are critical in order to assure several network management tasks. In fact, network resources

can be optimized, better QoS can be achieved and security can also be improved by accurately

identifying traffic with suspicious behaviors.

This chapter presented an enhancement to all classification methodologies that were pre-

sented in chapter 5. By analyzing, decomposing and classifying data-streams over several

classification windows, the classification accuracy was increased, as well as the identification

of profile changes and of hidden illicit patterns embedded in licit traffic. The ability to identify

these behaviors was achieved by using several sampling windows over which different traffic

metrics were extracted and decomposed. This makes our classification approaches suitable

for the detection of some of the most stealth and well engineered attacks and intrusion at-

tempts. In addition, the timely classification of Internet traffic and of illicit patterns was

enabled by using non-sampled traffic metrics, such as the IAT and packet length, for each

packet of a data-stream. In this manner, we were able to build a pseudo real-time profile for
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each data-stream that is updated with the capture of new packets. The obtained results were

sufficiently accurate and also proved that the proposed enhancement is suitable for a real-time

traffic classification paradigm. In addition, two commonly deployed security attacks were also

accurately and timely classified, which proved that the proposed approaches are suitable for

security attacks and intrusion detection.
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Chapter 7

User Profiling for Network

Management Purposes based on

Traffic Scalograms

7.1 Introduction

This chapter proposes and describes an approach for accurate profiling of the users con-

nected in wired/wireless networks. As already discussed, user profiling is a critical task for

many network management tasks. In fact, the ability to accurately build efficient user-profiles

can have a crucial importance for many different aspects. To begin with, one can more easily

infer the bandwidth and delay requirements that are more suitable for a certain user and

network resources can then be optimized and better distributed among several users. There-

fore, better Quality-of-Service (QoS) standards can be achieved for every connected client.

Besides, by accurately profiling connected users, network managers can create groups of users

requesting similar contents, which eases the delivery of appropriate and related contents and

services. In this way, more accurate business models can be built, leading to increasing rev-

enues. Security can also be effectively improved since it is possible to detect users presenting

illicit profiles or profiles presenting unknown applications, triggering alarms and providing

counter-actions, such as disconnecting malicious users. In can be concluded that an accurate

user profiling is crucial for allowing all the connected clients to experience a better QoS and

allowing network managers to perform a better management of the network infrastructures

and resources.

There are several definitions for an user profile [GA05], but a common definition can state

that it consists of a description of the user’s interests, behaviors and preferences. Therefore,

the process of creating such profiles can be seen as the process of gathering the appropriate

information in order to obtain all these characteristics. In this work, we adopt a very specific
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definition of user-profile, which is more oriented to the set of web-applications that each user

runs and interacts with. Consequently, the focus is placed on applications that allow users

to share on-line information and contents. Our analysis is achieved through a promiscuous

wireless monitoring approach in which monitoring probes, which do not require authentica-

tion with the Access Point (AP), are user for promiscuously monitoring all connected clients

and for collecting different layer 2 traffic metrics. We then perform a wavelet decomposition

at different scales of analysis as described in section 3.3.3. By decomposing captured Internet

traffic generated by different clients running different web-based applications and analyzing

it at the different scales, we can build a Multi-Scale Application Signature that depicts the

different frequency components characteristic of each studied on-line web-based applications.

As will be shown later, these applications require different user interactions, thus creating

different traffic patterns that lead to distinct frequency profiles. It is then possible to map

all these components into the corresponding user and/or network event and to accurately

assign the captured traffic into its originating on-line web-based application. After infer-

ring these characteristic signatures, classification can be performed as quickly as a perfect

match is obtained. The speed of classification depends on the profile characteristics and can

range from few seconds to few minutes, depending if differentiating characteristics appear at

network/service scales or human scales, respectively.

Our profiling approach is suitable for being deploying in a user profiling module as the one

described in section 1.3. Such module can deploy the approach presented in this chapter for

associating the analyzed traffic with the corresponding Internet application and for building

accurate user profiles. Such task should be an off-line methodology more suitable to be

performed using CWTs due to the computational complexity of this transform. as discussed

in section 3.3.2. In addition, our definition of user-profile requires more frequency details

for building accurate frequency descriptions of the traffic generated by the different web-

applications and CWTs are a more appropriate tool for such detailed analysis.

The proposed profiling approach will be validated by analyzing traffic sent to several clients

connected to a 802.11 wireless network and inferring the applications that are being run by

the different clients. The obtained results prove that it is possible to accurately assign traffic

to its originating on-line web-application, thus providing a reliable and accurate description

of the usage of web-based applications. The use of Layer 2 metrics allows our classification

approach to become appropriate for the classification of encrypted traffic, where the payloads

of the packets are not available, and also to circumvent possible technical, legal and privacy

restrictions that prevent the inspection of the contents of the packets.

The following sections will present our profiling methodology together with some classifi-

cation results obtained when considering two different scenarios. The first assumes only that

legitimate applications are used by the connected clients and, consequently, no illicit traffic is

considered for analysis. In such scenario, we wanted to evaluate the ability of our profiling ap-
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proach of accurately differentiating the traffic generated by licit and allowed on-line Internet

applications. The second scenario assumes compromised hosts in the monitored network and

two stealth and low-impact attacks were emulated for assessing the ability of our approach

of identifying such traffic. In addition, we also performed a discrimination between some

important legitimate on-line Internet applications.

7.2 Classification Methodology

In this section, we present a simple classification approach that allows us to illustrate the

ability to accurately classify traffic based on the analysis proposed in section 3.3. The main

concept consists of dividing the frequency spectrum into different regions and evaluating the

power of the CWT decomposition multi-scale estimators in those regions. Three different

frequency spectrum regions, together with their corresponding events, were shown in Figure

3.1. As explained in section 3.3, low frequency components account for human events that,

in the Internet world, are associated to human/user behaviors and actions. Between the low

and high frequency regions, we have created a mid-range frequency region that accounts for

network events such as the creation of traffic sessions and the corresponding traffic control

mechanisms. Finally, in the high-frequency spectrum region, protocol and Internet events

such as packets arrivals are accounted for. All these mappings into events, which can then

be associated to the corresponding Internet applications, allow a simple but effective traffic

assignment. In this manner, we can assess and quantify the different network and user

mechanisms and the interactions present in the traffic of each one of the mentioned Internet

applications.

By defining characteristic regions of the scalogram statistics, for the different applications,

in different frequency sub-sets, it is possible to identify profiles presenting components char-

acteristic to each web-application. Such regions are inferred from the scalograms obtained

from the decomposition of the known traffic of each web-application. Let us consider the

(positive) region R+
a as the region defined as a function of a frequencies (positive) sub-set

s+
a and energy variation (positive) sub-set Σ+

a for which we always have the characteristic

statistical values of application a. Moreover, we define the (negative) region R−a as a function

of a frequencies (negative) sub-set s−a and energy variation (negative) sub-set Σ−a for which

we never have characteristic statistical values of application a.

R+
a = f(s+

a ,Σ
+
a ) ∧R−a = f(s−a ,Σ

−
a ) (7.1)

A traffic trace process x(t) is classified as belonging to web-application a if, for all scales

belonging to sub-set s+
a , the energy standard deviation σx,s belongs to region R+

a and, simul-

taneously, for all scales belonging to sub-set s−a the energy standard deviation σx,s does not

belong to region R−a :
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C(x) = a⇐ ∀s ∈ s+
a , σx,s ∈ R+

a ∧ ∀s ∈ s−a , σx,s /∈ R−a (7.2)

The classification decision can be made as soon as all conditions are met. Note that, even

if time T grows and allow more classification precision, decisions can nevertheless be made

with small T sub-sets (short-time analysis and decision).

The inference of regions R+
a and R−a (defined by s+

a ,Σ
+
a , s
−
a ,Σ

−
a ) can be performed by

solving the following optimization problem:

max
s+
a ,Σ

+
a ,s
−
a ,Σ

−
a

∑
∀i∈Ia

C(i) == a

 ∧ min
s+
a ,Σ

+
a ,s
−
a ,Σ

−
a

∑
∀i/∈Ia

C(i) == a

 , ∀a (7.3)

where == represents a comparison function which outputs 1 if both terms are equal and 0

if terms are different. Ia represents the subset of processes (known as) belonging to web-

application a. Within the scope of this chapter, this optimization problem was solved (not

for the optimal solution) using exhaustive search. However, more advanced algorithms can

be applied to find (sub)optimal solutions.

Several regions can then be created, in the different frequency sub-sets, for each studied

web-application a. The higher the number of regions of an application, the higher the abil-

ity to analyze the different frequency components and consequently, a more accurate traffic

mapping can be achieved. An algorithm was created to automatically define such regions

while satisfying the presented conditions by using known simple geometrical equations, such

as ellipses.

7.3 Results

In order to verify the accuracy of the presented approach, traffic from several connected

clients using the studied Internet application classes was captured in the wireless network of

University of Aveiro since we could guarantee the ground-truth of the different traffic traces.

This traffic was captured by the monitoring probes in different points of the network and at

different time moments. We inferred the number of captured packets per sampling interval

(0.1 seconds) in the download direction, i.e traffic sent to the local hosts. The multi-scale

analysis presented in section 3.3.2 and the analysis depicted in section 7.2 was applied to all

captured data-streams. The mother wavelet used was the fourth derivative of the Gaussian

function which is defined as follows:

ψ(t) = C
d4

dt4
e
−t2

2 (7.4)

where C is such that

∫ +∞

−∞
|ψ(t)|2dt = 1.
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The normalized energy (Êx(τ, s)) in all time slots (τ ∈ T,T = {0, . . . , 3000}), and time-

scales 1 to 128 (s ∈ S,S = {1, . . . , 128}), for all data-streams. The obtained scalograms were

normalized for the whole length of the process, as described in equation 3.9 and the several

differentiating regions were inferred according to equations (7.1) to (7.3).

A note should be made about the classification results and the corresponding confidences

intervals that will be presented in the following sections. Few iterations were performed

due to the low number of traffic traces that could be collected and such results, together

with the corresponding confidence intervals, should then be analyzed as a proof-of-concept

assessing the ability of the presented approach of depicting accurately the different frequency

components and of performing an accurate traffic assignment.

7.3.1 Legitimate Internet applications

Let us first evaluate the ability of the proposed approach of discriminating the traffic

generated by legitimate on-line services. For such purpose, five significant on-line Internet

services were considered for this analysis: on-line news, on-line mail, social networking, photo

sharing and video services. Several usage scenarios were created to generate traffic from

these services: for example, on-line news traffic was generated by visiting the most important

Portuguese newspaper site and browsing through the available news; on-line video download

traffic was generated by watching videos in YouTube; in order to generate traffic from an

on-line photo-sharing application, an account was created in Flickr and only the traffic gener-

ated while browsing other users’ photos was considered for analysis; on-line e-mail traffic was

generated by using the services offered by GMail, specifically traffic generated only by the au-

tomatic synchronizations between the client web-terminal and the GMail server; finally, social

networking traffic was generated by using an account created on Facebook and interacting

with the news updates coming from the remaining connected users, which does not include

chatting and gaming. Table 7.3.1 shows the mapping between the available web-applications

and the web-services that were used to generate traffic from each application.

Figures 7.1 to 7.5 show the captured traffic metrics, the download rate in bytes per sec-

ond, sampled in 0.1 seconds intervals together with the corresponding wavelet scalograms for

the different web-applications that were previously mentioned. The analysis of these figures

reveals differentiating characteristics that are caused by the distinct traffic patterns presented

by these applications, whose origin lies in the distinct human and network/service interaction

characteristics. On-line news traffic (Figure 7.1), for example, presents several aperiodic peaks

of short duration and considerable amplitude. Such peaks are caused by the user clicks on hy-

per links while browsing through the available news, causing the download of a new page that

presents the requested news, thus creating considerable low frequency components. In addi-

tion, the scalograms generated by this application present some considerable mid-frequency

components, due to the considerable number of created Transmission Control Protocol (TCP)
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Figure 7.1: On-Line News Traffic Patterns and corresponding Wavelet Scalograms

sessions, while there are some considerable high frequency components due to packets arrivals.

On-Line video services (Figure 7.2) generate high-bandwidth traffic with a low IAT between

packets, which is caused by the download of the requested video at the full available net-

work bandwidth. Consequently, there are considerable high-frequency components, caused

by packets arrivals, while there are no considerable low-frequency components because the

number of user clicks is not so relevant. On-line Photo-sharing (Figure 7.3) applications usu-

ally generate several traffic peaks with pseudo-periodicity, due to the pseudo-periodic clicks

that are performed by the user while requesting for another picture. Such peaks are usually

of low amplitude, since they only consist on the download of one picture using a single TCP

session. Consequently, we can notice several high frequency components, of low amplitude,

spread over the corresponding scalogram, while there are also some low frequency compo-

nents. On-line email applications (Figure 7.4) generate traffic presenting very low frequent

traffic peaks, corresponding to the initial and automatic synchronization between server and

client. These peaks have very short duration and are less frequent than the ones of the pre-

viously presented on-line applications. Therefore, there are small high-frequency components

caused by the synchronization traffic that merely checks for new e-mails, while low-frequency

components are not widely spread over the traffic scalogram due to near periodical nature of

network/service events. Finally, on-line social networking applications (Figure 7.5) generate

traffic presenting more frequent traffic peaks, of lower amplitude, which are generated by the

status updates created by other connected users, which usually consist only of text messages.

Therefore, there are less low-frequency components, while the high-frequency components are

also less present in the process due to the small amount of traffic exchanged.
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Figure 7.2: On-Line Video Traffic Patterns and corresponding Wavelet Scalograms

Figure 7.6 presents a graph of the standard deviation (over time) of the multi-scale decom-

position estimators versus the corresponding frequency, or scale of analysis, of four different

flows (randomly chosen from the data-set) belonging to each web-application. According to

this figure, by analyzing the variation profile of the network process energy throughout the

whole range of frequencies it is possible to obtain an accurate association between a given

traffic flow and the application that originated it, simply by performing an analysis in the

differentiating regions, as explained in section 7.2. The depicted regions were inferred by solv-

ing the minimization processes described in equations (7.1) to (7.3), using exhaustive search

algorithms in predefined solution sets and including the complete dataset.

Let us begin by analyzing the inferred regions and describing the differentiating traffic

characteristics that led to them, since each region characterizes a sub-frequency range that is

mapped into specific human and network/service events. For instance, region A was assigned

to on-line e-mail application since it comprises very-low frequency events, usually triggered

by very rare events. For the mentioned application, such events are generated by the initial

download of the e-mail web interface and the periodic synchronizations between the appli-

cation running on the client side and the remote server. Region B was assigned on-line

news, photo-sharing and social networking applications since it encompasses low frequency

events. These include user clicks requesting new contents suitable to on-line news browsing

or clicks performed when browsing through pictures provided from an on-line photo-sharing

community or interactions generated by social networking applications and their news feeds.

Therefore, the differentiation between these three applications will have to include more mid

and high frequency regions. Regions D and E encompass mid-frequency events such as the
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Figure 7.3: On-Line Photo Sharing Traffic Patterns and corresponding Wavelet Scalograms

ones associated with TCP and HTTP interactions. Region D was assigned to the on-line news

application since it includes traffic presenting higher energy variation in the corresponding

frequency range, implying that a higher number of TCP sessions are created. Such behavior

is more likely to be created by user clicks on on-line news sites, since the download of a

new page comprises several TCP and HTTP sessions. On the other hand, the second re-

gion (E) was assigned to social-networking applications as it comprises traffic presenting a

lower number of created Internet sessions, since there is lower energy variation in that re-

gion of frequencies. This is more characteristic of social-networking applications, since the

interaction with the news feed and the corresponding status updates create less TCP sessions

than applications mapped into region D. Region C comprises traffic from the on-line video

and photo-sharing applications since it includes traffic presenting low energy variation on

low-frequency events, such as user clicks, or events with similar inter-event time. Both char-

acteristics can be associated to on-line video applications, since they require a low number

of user clicks, and photo-sharing applications, where the time between clicks presents lower

variation. Region F comprises traffic generated by on-line news and video services and is

characterized by a significant amount of high frequency events, such as packets arrivals, suit-

able to describe the high-frequency profile created by on-line video applications or web-pages

with embedded video, characteristics of on-line news applications. On the other hand, region

H can be seen as a region characteristic of applications such as photo-sharing which typically

present a low number of events on this frequency range. Indeed, a low number of packets

is required to download a shared picture. Region G is located between the two previously

mentioned regions and presents more significant high-frequency components than region H
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Figure 7.4: On-Line e-mail Traffic Patterns and corresponding Wavelet Scalograms

Figure 7.5: On-Line Social Networking Traffic Patterns and corresponding Wavelet Scalo-
grams

and less high-frequency components than region F. Such region can be used to identify flows

with a considerable (but not high) packet arrival rate or presenting a deviation from the

normal profile of the generating application. Each studied web-application was mapped into

one or more of the presented regions, as shown in table 7.3.1, and an algorithm was created

to detect and classify the scalograms of the different captured traffic streams. Such algorithm
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Figure 7.6: Differentiating Regions

simply needs to detect the variation of frequency components of the several scalograms in

the inferred regions, mapped into web-applications as described in table 7.3.1, and assign the

corresponding traffic accordingly.

Table 7.1: On-Line Applications with their corresponding web sites and frequency mapping
regions.

Service Web site

On-Line News Publico (www.publico.pt)

On-Line Video YouTube (www.youtube.com)

Photo Sharing Flickr (www.flickr.com)

On-Line E-mail GMail (www.gmail.com)

Social Networking Facebook (www.facebook.com)

Let us now analyze the classification results that were achieved by applying the above

presented approach, which are shown in table 7.2 together with their confidence intervals.

Most of the generated traffic is accurately mapped into the corresponding web-application.

However, there are some classification errors that need to be explained. The association of

some on-line traffic to video services can be due to the fact that some requested news pre-

sented embedded videos. Therefore, the profile can become similar to the one corresponding

to video applications. Some flows from web-video traffic were assigned to on-line news, which

can happen when watching several small duration movies, since in this case the user can make

more clicks in order to request for new contents, creating significant low-frequency compo-
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Table 7.2: On-Line Applications with their corresponding frequency mapping regions and
classification results.

Service Regions Classification Accuracy

On-Line News B and D and (G or F) 88.00%
CI 87.30%-88.70%

On-Line Video C and F and not(B) 88.90%
CI 88.00%-89.80%

Photo Sharing B and E and H 85.72%
CI 84.32%-87.12%

On-Line E-mail A and (E or D) 87.50%
CI 86.40%-88.60%

On-Line E-mail B and E and G 88.55%
CI 87.30%-89.80%

nents that are characteristic of on-line web-applications. Some classification mistakes also

occurred for photo-sharing applications where some flows were classified as social-networking

flows, which can occur when a user receives some status updates from other users through

the photo-sharing service. Some web e-mail traffic was also associated to social networking

applications, which can be due to the fact that when there is a small amount of e-mail up-

dates the application profile gets more similar to social networking small message exchange.

Finally, some social networking flows were associated to on-line news, which can occur if a

considerable number of status updates occurs in a small time frame.

7.3.2 Identification of illicit traffic

Let us now evaluate the accuracy of our approach for the identification of low-impact and

stealth attacks. Therefore, the studied applications comprised two emulated security attacks

to verify the ability of identifying compromised hosts and three other legitimate applica-

tions (On-Line News, On-Line Video and On-Line Photo-Sharing). The first emulated attack

consists of an host-scan using the well-known application NMap [Lyo09] for replicating the

behavior of a compromised host scanning for available services, and corresponding vulnera-

bilities, in other connected hosts. The second emulated illicit application was an Information

Theft attack which consisted of taking snapshots of the users’ desktops and uploading the

captured pictures, every time the user performed a click, to a remote server in order to steal

confidential information. Figures 7.7 and 7.8 show the the download rate, in bytes per second

sampled in 0.1 seconds intervals, and the corresponding wavelet scalograms for the two con-

sidered illicit applications. These figures reveal the specificities of the emulated attacks. To

begin with, host scan traffic presents small peaks corresponding to the response to the several

Syn packets sent to verify if a port is open or not. On the other hand, Information Theft

traffic presents non-periodic traffic peaks which correspond to the acknowledgments sent by

the remote server when receiving the uploaded snapshots of the user’s screen. Such upload

are performed when the user performs a click on a web-page.
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Figure 7.7: Host Scan Traffic Patterns and corresponding Wavelet Scalograms
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Figure 7.8: Information Theft Traffic Patterns and corresponding Wavelet Scalograms

Several differentiating regions, shown in Figure 7.9 and mapped into the corresponding

application in table 5.4.1, emerged in the frequency spectrum. Region A was associated to

illicit traffic and encompasses very low frequency events which are created by commands sent

to compromised hosts in order to perform a scan or an upload of stolen confidential infor-

mations. This region can, thus, be associated to stealth attacks. Network scans also map to

another differentiating region (region E), since these scans do not generate substantial mid

range frequency components due to the low variance between scanning probes and to the
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Figure 7.9: Internet Applications and Attacks and corresponding frequency mapping regions.

low number and variation of the created traffic flows. Snapshots can be identified by analyz-

ing other frequency spectrum components in which differentiating regions, such as region C,

emerge due to the high energy associated to the creation of file transfer sessions, which are

automatic mechanisms associated to user clicks on web-pages. On the other hand, region B

was associated to on-line news applications since it encompasses less significant low-frequency

events corresponding to user requests typically generated in such services. Region D was asso-

ciated to photo-sharing applications and includes low-frequency events occurring periodically

with low variation since, when using these services, users typically perform periodic requests

for downloading other shared images. Region F can be associated to on-line news and video

applications since it was created for analyzing the creation of traffic sessions and the pres-

ence of traffic control mechanisms. The mentioned services generate significant mid-range

frequency components. Finally, regions G and H differentiate applications presenting high

and low high-frequency events, respectively. Region G was associated to on-line video ser-

vices since it comprises applications generating a high amount of network traffic with low

IAT. On the other hand, region H includes applications that do not present significant high-

frequency components, indicating that they generate a small amount of network traffic. This

set includes on-line news, photo-sharing, network scans and snapshots. This classification

methodology allowed us to achieve an accurate classification of the traffic generated by the

different applications and an accurate identification of some of the most used Internet attacks,
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Table 7.3: Internet Applications with their corresponding frequency mapping regions and
classification results.

Internet Applications Regions Classification Accuracy

On-Line News B and F and H 90.00%
CI 89.00%-91.00%

On-Line Video F and G 88.90%
CI 88.10%-89.70%

Photo-Sharing D and H 85.75%
CI 84.70%-86.80%

Network Scans A and E 99.00%
CI 98.00%-100.00%

Information Theft A and C and H 90.00%
CI 89.20%-90.80%

as shown in table 5.4.1. Some classification overlaps can occur due to similarities between

the different classes. This occurred for the On-Line News and Video classes since these are

becoming intrinsically connected as many journal web-pages contain embedded videos. On

the other hand, some Photo-Sharing traffic was assigned to the News class due to irregular

user interactions. Some data-streams generated by the emulated attacks were assigned to

legitimate application classes due to the stealthiness and low-impact of these attacks. This

can cause the illicit traffic to become similar to application classes such as On-Line News.

7.4 Conclusions

This chapter presented an approach for the identification of different web-applications

used by distinct clients connected to a wired or wireless network, together with an identifica-

tion of some important Internet security attacks. By using traffic monitoring and capturing

probes, which do not require authentication, we were able to infer layer 2 traffic metrics and

perform a Continuous Wavelet Decomposition in order to infer the corresponding traffic scalo-

grams. By analyzing the frequency components present in these scalograms, it was possible

to define regions in the frequency spectrum comprising events characteristic to the different

web-applications which allowed the accurate identification of the traffic generated by each of

the different studied Internet services. By defining user profile as the set of used Internet

applications it is possible to build accurate user profiles for different management tasks. The

results achieved show that the proposed approach can accurately identify the different web-

applications that were run by the connected clients, together with an accurate identification

of some Internet-based attacks.
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Chapter 8

Conclusions and Future Work

The emergence of the Internet as de facto communications platform has lead to the need

of accurate user and traffic profiling. In fact, the different services, applications and the

ever increasing number of users involved in the Internet has presented several challenges to

researchers, Service Providers (SPs) and ultimately to the users themselves. The increas-

ing competition for markets and clients has made SPs increase the capacities of the offered

services, which brings a serious repercussion for network management. In addition, the het-

erogeneity of the Internet applications and their requirements created a need of an accurate

mapping of Internet traffic to its originating application(s). Several purposes can be envi-

sioned for such task but the need to perform an efficient management of the network resources

and infrastructures, together with the need to timely identify illicit and suspicious traffic have

lead to the need of novel methodologies for traffic classification. The increasing capacity of

the network links together with the increasing complexity of the Internet ecosystem, where

several privacy and technical limitations prevent the analysis of the contents of exchanged

traffic, lead to the need for methodologies that can cope with the mentioned restrictions.

This thesis addresses this issue by proposing several traffic classification approaches that are

suitable to be deployed in scenarios with stringent restrictions.

The recent and alarming increase on the number and variety of Internet attacks has also

increased the need for a timely identification of traffic presenting illicit and/or suspicious

patterns. In addition, we have also witnessed the emergence of botnets as a platform for

performing different illicit activities. Due to their distributed architecture, the detection of

botnets and of the compromised hosts under the control of bot-masters has become a complex

task that most of existing detection methodologies are not able to accurately accomplish. This

also lead to a need for novel botnet detection approaches. The traffic classification approaches

proposed in this thesis are also suited to accurately detect traffic presenting illicit patterns.

Several scientific contributions were provided in this thesis, which enabled a deeper un-

derstanding of the traffic generated by the several existing Internet applications. The main

concept behind all the proposed approaches consists on the analysis of the different traffic
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generating events and controlling mechanisms. We explored the fact that different Internet

applications require different interactions from the user. Such user requests generate a set

of Internet sessions, each one creating a set of Internet packets. These are the low (user

events), mid (traffic sessions) and high (Internet packets) events that our approaches evalu-

ate. By extracting several traffic metrics and performing a multi-scale decomposition of the

captured traffic, our approaches are able to depict the several frequency components present

in the captured streams. This allows the construction of Multi-Scale Signatures for each one

of the studied Internet applications. We started by using unsupervised clustering algorithms

for grouping streams whose multi-scale decomposition estimators present similar variations

in the analyzed decomposition scales. Such approach enabled a very accurate and efficient

grouping of traffic generated by the same Internet applications, together with an accurate

identification of low-impact and stealth attacks. However, the traffic traces used were very

long in order to capture sufficient metrics for the clustering algorithm to be able to perform

an accurate traffic mapping.

This disadvantage was addressed by using several probabilistic models that enable an ac-

curate association of unknown traffic to the corresponding applications. Such models include

unidimensional Gaussian and generic distributions in which each one of the several decom-

position scales is analyzed separately to provide traffic classification. Such models were able

to provide very accurate traffic classification as well as the identification of some of the most

used web security attacks. In addition, the usage of these approaches allowed a reduction on

the length of each analyzed data-stream. Subsequently, multidimensional models were used to

evaluate the correlation between the estimators of the several decomposition scales in order

to provide more accurate probabilistic models. All the proposed methodologies enabled an

accurate mapping of the analyzed data-streams and the analysis of the mentioned correlations

proved to be an important aspect to be analyzed, since the accuracy of the traffic classification

approaches was significantly increased. All these probabilistic approaches can be enhanced

by using a methodology that performs traffic classification over multiple time-windows. In

addition, the analysis of non-sampled traffic metrics allowed a reduction on the size of the

classification windows, enabling a real-time traffic classification.

A user-profiling approach for wired and wireless networks was also proposed, together

with a monitoring platform where our approaches can be applied. User profiles are defined

as the set of web-based applications run by the user and the use of decomposition and iden-

tification models presented in sections 3.3.2 and 7.2 enabled an identification of the most

significant frequency components present in the traffic of each connected host. In this man-

ner, such components can then be mapped into the application that generated them and an

accurate identification of the used web-applications can be performed, enabling an accurate

user profiling. Different traffic metrics can be used for analysis according to the scenario and

to the existing restrictions. For instance, in wireless networks layer 2 traffic metrics can be

122



inferred since the deployed monitoring probes do not authenticate with the AP of the mon-

itored network. Therefore, these cannot be detected by any of the connected hosts and can

simultaneously monitor clients from different networks.

As future work, the analysis of more probabilistic distributions for our classification

methodologies is envisioned. In addition, the use of non-stationary time series represent-

ing the several inferred traffic metrics allows the use of several models that can perform a

more accurate traffic decomposition, together with a prediction of future values. More stealth

and low-impact attacks can be emulated and the analysis of C&C traffic of botnets constitute

important future work directions. In addition, the development of a platform for monitoring,

sampling and analyzing the traffic with our methodologies is also planned, as well as the use

of probabilistic approaches for modeling the components present in the different regions of

the frequency spectrum for the profiling methodologies. Other decision mechanisms, as well

the use of differentiating regions with arbitrary shapes, are also planned. This will provide a

more accurate discrimination of the frequency components present in the captured traffic and

constitute an important enhancement to the work presented in chapter 7. The use of more

traffic metrics and other probabilistic models also constitute an important work that should

be conducted in the future.
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