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Resumo Visão semântica é uma importante linha de investigação na área de visão

por computador. A palavra-chave “semântica” implica a extracção de car-

acterísticas não apenas visuais (cor, forma, textura), mas também qualquer

tipo de informação de “alto-nível”. Em particular, a visão semântica procura

compreender ou interpretar imagens de cenas em termos dos objectos pre-

sentes e eventualmente das relações entre eles. Uma das principais áreas de

aplicação actual é a robótica. Sendo o mundo que nos rodeia extremamente

visual, a interacção entre um utilizador humano não especializado e um robô

requer que o robô seja capaz de detectar, reconhecer e compreender qual-

quer tipo de referências visuais fornecidas no âmbito da comunicação entre

o utilizador e o robô.

Para que tal seja possível, é necessária uma fase de aprendizagem, através

da qual várias categorias de objectos são aprendidas pelo robô. Depois deste

processo, o robô será capaz de reconhecer novas instâncias das categorias

anteriormente aprendidas.

Foi desenvolvido um novo agente de visão semântica que recorre a serviços

de pesquisa de imagens na Web para aprender um conjunto de categorias

gerais a partir apenas dos seus respectivos nomes. O trabalho teve como

ponto de partida o agente UA@SRVC, anteriormente desenvolvido na Uni-

versidade de Aveiro para participação no Semantic Robot Vision Challenge.

O trabalho começou pelo desenvolvimento de uma nova técnica de segmen-

tação de objectos baseada nas suas arestas e na diversidade de cor. De

seguida, a técnica de pesquisa semântica e selecção de imagens de treino

do agente UA@SRVC foi revista e reimplementada utilizando, entre outros

componentes, o novo módulo de segmentação. Por fim foram desenvolvidos

novos classificadores para o reconhecimento de objectos.

Apreendemos que, mesmo com pouca informação prévia sobre um objecto,

é possível segmentá-lo correctamente utilizando para isso uma heurística

simples que combina a diversidade da cor e a distância entre segmentos.

Recorrendo a uma técnica de agrupamento conceptual, é possível criar um

sistema de votos que permite efectuar uma boa selecção de instâncias para

o treino de categorias. Conclui-se também que diferentes classificadores são

mais eficientes quando a fase de aprendizagem é supervisionada ou autom-

atizada.





Abstract Semantic vision is an important line of research in computer vision. The

keyword “semantic” means the extraction of features, not only visual (color,

shape, texture), but also any “higher level” information. In particular, se-

mantic vision seeks to understand or interpret images of scenes in terms of

present objects and possible relations between them. One of the main areas

of current application is robotics. As the world around us is extremely visual,

interaction between a non specialized human user and a robot requires the

robot to be able to detect, recognize and understand any kind of visual cues

provided in the communication between user and robot.

To make this possible, a learning phase is needed, in which various categories

of objects are learned by the robot. After this process, the robot will be able

to recognize new instances of the categories previously learned.

We developed a new semantic vision agent that uses image search web ser-

vices to learn a set of general categories based only on their respective names.

The work had as starting point the agent UA@SRVC, previously developed

at the University of Aveiro for participation in the Semantic Robot Vision

Challenge.

This work began by developing a new technique for segmentation of objects

based on their edges and diversity of color. Then, the technique of semantic

search and selection of images from the agent UA@SRVC was revised and

reimplemented using, among other components, the new object extracting

module. Finally new classifiers were developed for the recognition of objects.

We learned that, even with little prior information about an object, it is pos-

sible to segment it correctly using a simple heuristic that combines colour

disparity and distance between segments. Drawing on a conceptual cluster-

ing technique, we can create a voting system that allows a good selection of

instances for training the categories. We also conclude that various classifiers

are most effective when the learning phase is supervised or automated.
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Chapter 1

Introduction

The purpose of this dissertation is the study, development and implementation of a se-

mantic vision agent capable of autonomously learning generic categories from the Internet,

using image retrieval web-services. After the training phase, the agent should be capable of

robustly and correctly recognizing objects, extracted from a complex scene or provided by a

human user.

1.1 Motivation

Humans primarily perceive the world through vision. This is visible for example in human

communication, where visual cues are used to transmit ideas.

For a human user to interact effectively with a robot it is necessary that the robot under-

stands the visual cues. Understanding a visual cue can be defined as the process of associating

visual information to the words expressed by the user. For example given a category name,

the robot should be able to learn how to robustly recognize instances of that category. The

ability of building a category representation without human support opens new possibilities

for robot vision.

Semantic vision enables efficient robot interaction with the visual world perceived by hu-

mans. While this problem was very explored for highly textured categories, for more generic

categories it is still an open problem. For this reason the main focus of this dissertation is

generic categories segmentation and recognition.

There are two robot competitions where the knowledge developed in this dissertation can

be integrated. An overview and the contribution to the competition is describe further.

1



1.1.1 Semantic Robot Vision Challenge

SRVC1 is a competition related to semantic vision agents. There are two possible modali-

ties, robot league and software league. Each team, in each modality, receives a list of category

names. Instances of these categories will be scattered in a complex environment, and the goal

is to detect and classify them correctly. In the first phase, called the learning phase, each

agent can connect to the Internet and retrieve images related to the names of the categories,

so that they can build representations of the categories.

After this first step, a performance phase is executed, which depends on the modality. In

the robot league, the robot can navigate inside the environment taking as many pictures as

needed. Then, it tries to detect and recognize instances of the previously learned categories

in the pictures.

In the case of the software league, a set of pictures of the environment are provided by

the competition organizers. Figure 1.1 shows a detection of an object that was correctly

recognized, as belonging to the category “Peperidge Farm Goldfish Baked Snack Crackers”, by

UA@SRVC agent on SRVC’09 competition.

Figure 1.1: Example of detection of objects in SRVC. In SRVC’09 the UA@SRVC agent cor-
rectly detected and recognized the category “Peperidge Farm Goldfish Baked Snack Crackers”,
as illustrated.

1http://www.semantic-robot-vision-challenge.org/
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1.1.2 Robocup

As RoboCup Middle Size League 2 (MSL) competition advances, new challenges are pro-

posed to the teams. One of them is the ability of the robots to play with an official FIFA

soccer ball. At the beginning of the competition the colour of the ball is announced. Since

the field is uniformly green, a simple colour based segmentation algorithm is enough to detect

and recognize the ball.

However to detect an airborne ball a colour segmentation algorithm is not enough since

the background is not uniform nor known. A new technique that relies on shape and colour

is being developed for CAMBADA MSL team 3.

The descriptor presented in section 2.3.2 (Global Shape Context or GSC) was used as a

complement to a colour segmentation algorithm for ball detection. A colour segmentation

algorithm extracts candidates from the environment that are verified for a circularity measure

extracted from the GSC descriptor. A candidate is considered a ball if there exists a high

coherence between the colour segmentation information and the descriptor information. Figure

1.2 shows an example of ball detection and recognition.

Figure 1.2: Example of an air ball detection and recognition.

For the first time this year, the team CAMBADA@Home 4 participated at Robocup@Home
5 competition. Various challenges proposed in this competition require object recognition and

tracking.

For example the “Follow Me” challenge requires that the robot is capable of recognizing

one specific person and then tracking that person while the person walks on the scene.

Other example is the “Shopping Mall” challenge that requires that the robot detects and

2http://wiki.msl.robocup-federation.org/
3http://www.ieeta.pt/atri/cambada/
4http://www.livinglab.pt/
5http://www.ieeta.pt/atri/cambada/athome/

3



recognize a set of instances from previous announced categories, this challenge is very similar

to the SRVC competition.

Various modules from UA@SRVC and the knowledge acquired with this dissertation are

being adopted to compete on these challenges. Figure 1.3 shows CAMBADA@Home robot.

Figure 1.3: CAMBADA@Home robot.

1.2 Research problems

In this section, the main areas of research are briefly introduced. First, an introduction

about object recognition, especially for generic categories that are the focus of this dissertation.

A generic category is a category that is better defined by the shape of it instances than other

type of features.

Second, contour-based algorithms are introduced. These are important because they allow

the extraction of shape features used in the learning and recognition phases.

Third, the concept and relevance of unsupervised learning is explained.

1.2.1 Object Recognition

Object detection is the task of, given an input image, being able to select a Region Of

Interest (ROI) that is, a region that is likely to contain an object. The detection problem was

not addressed in this dissertation. An approach to solve this problem based in color saliency

was developed for SRVC’2008 [1].

The focus of this dissertation is on the recognition of instances of generic categories. A

generic category is better defined by its shape than by local features. On the other hand, a

specific category usually has a high texture saliency and can be more effectively recognized

using SIFT[2] or SURF[3] features. For this reason, in this dissertation, a great effort was

placed in the shape extraction module. Since the quality of the shape is directly related to

4



the quality of the recognition process.

Figure 1.4 shows instances of both types of categories.

Figure 1.4: A comparison between generic and specific categories. The image on the left
contains an instance of a specific category (book "I am a Strange Loop"). The image on the
right contains an instance of a generic category (scissor).

Before any type of recognition can take place, it’s necessary to acquire knowledge. This step

is usually called the training phase and can be of two different types: supervised by a human

user, when the human teaches the agent the categories of different instances; or unsupervised

learning, where the agent autonomously creates categories with minimal previous information.

This dissertation focuses on unsupervised learning.

1.2.2 Contour-based segmentation

The focus of this dissertation is learning and recognizing generic categories. As previously

stated, instances of a generic category are better defined by their shape than by other types

of features. For this reason, it’s necessary algorithms for shape extraction, usually rely on

contour-based segmentation.

It’s important to distinguish edge detectors from contour-based segmentation. A popular

definition in image processing, according to Milan Sonka et. al. [4, pp. 21], is that an edge

is “a local property of a pixel and its immediate neighbourhood” while a border or contour of

a region R [4, pp. 22] “is the set of pixels within the region that have one or more neighbours

outside R”. Intuitively we can define a boundary as a set o pixels with a high edge property.

Edge detectors are a collection of very important local image pre-processing methods used

to locate abrupt changes in pixel intensity. An edge detector creates an edge map based only

on the pixel intensity and its immediate neighbourhood. It’s blind to the coherence of the

edge map, which lead to gaps, noisy contours and various other problems.

A contour-based segmentation uses more information than only pixel intensity to extract

coherent contours. Usually these algorithms are specific for some type of images and need some

type of human interaction in order to get good results. Some of the most relevant techniques
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related to this problem will be presented in the following chapter.

Figure 1.5 illustrates the difference between: a edge detection and a contour-based seg-

mentation. Image A is the original image, image B is obtained applying an edge detector.

Image C is obtained applying contour-based segmentation. While in image C the plane is

correctly segmented in image B the shape of the plane is noisy and there is some clutter.

A CB

Figure 1.5: A comparison between edge detection and contour segmentation. Image A shows
the original image. Image B shows the edge map returned by an edge detector. Image C
shows a shape extraction using a contour-based segmentation algorithm.

In the work presented in this dissertation, the only information previously known is the

category name. This information is rather insufficient to extract an correct boundary of a

object. In the following chapters, a technique to tackle this problem, based in two heuristic

rules, is presented.

1.2.3 Semantic image retrieval

As it was previously mentioned, the agent developed in this thesis should have the ability

to classify objects with minimal human intervention. Given only the names of the categories,

it should be able to construct a model that allows recognition of instances of those categories.

For this to happen the agent needs the ability to determine the meaning of the names of

the categories and then retrieve images that are relevant to learning the category. The images

can be downloaded though a common web service, for example Google Images6. The problem

with this approach is that most web services are syntax-based and not semantics-based [5].

That, combined with a exponential growth in the number of images in Internet, makes it not

possible to straightforwardly do a web search and use all obtained images to build a category

model. The quantity of unrelated images retrieved in a simple search is so high that the model

wouldn’t be reliable, as illustrated in figure 1.6.

6http://www.google.com/imghp
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Figure 1.6: Google search for "scissors". Not all results are relevant.

To achieve this goal there are roughly two possible solutions. One of then is to use a

semantic image search. However there are no publicly available semantic services. One of

the reasons of the success of the Internet is its simplicity. Such complex service is difficult to

maintain and the service provided by syntax-based search are sufficient for most uses.

The second solution is to create an abstraction layer on top of a syntax-based web service.

This layer will be responsible for verifying the semantic value of the images and the relevance

for the category. In this dissertation, unsupervised subset selection is used for selecting image

segments that can be used as training images for category learning.

For generic categories, there is another problem in semantic image retrieval. Semantic

similarity and visual similarity are different, as is explained by Mei et. al.[6]. In Figure 1.7

we can see that the peach in image A and the peach in image B aren’t visually similar but

they are semantically similar. In contrast the peach in image B is visually similar to the sun

in image C, but they are not related semantically.

Figure 1.7: Semantic similarity 6= visual similarity. Image A and B are semantically similar
but not visual similar. Image B and C are visually similar but not semantically similar.
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1.3 Objectives

The starting point of this dissertation was the Semantic Robot Vision Challenged (section

1.1.1) competition, that unfortunately is on hiatus now.

The main objectives of this dissertation are:

• Integrate the various modules of the agent UA@SRVC in only two process, one dedicated

to the learning phase and another one dedicated to the performance phase.

• Review and improve the functioning of the contour-based segmentation module.

• Review and improve the functioning of the classification module.

The unsupervised subset selection algorithm developed for the UA@SRVC agent was also

reviewed and improved, as this inevitably contributes to improving the recognition system.

Initially the work developed in this dissertation was intended to integrate the SRVC agent

(UA@SRVC) developed in 2008-2009 [1, 7, 8, 9]. With this in mind the old agent was com-

pletely converted to C code All libraries were updated to the last stable versions and the code

was cleaned for better performance. Unfortunately in the middle of the development of this

dissertation the SRVC competition entered on hiatus. From this point the development of

the agent UA@SRVC was suspended. Some of the developments were modified and used by

CAMBADA team and LUL team.

1.4 Overview of the agent

As previously stated, the SRVC competition entered on hiatus. Because of this, the de-

velopment of the UA@SRVC agent stopped. However, in the course of this dissertation, a

simplified version of the UA@SRVC agent was build. This smaller agent was developed to

test the new modules created and compare them to the modules used by UA@SRVC.

The agent receives a list of category names and using a public web service retrieves sev-

eral images from the Internet. From each image, the objects in it are extracted. Using an

unsupervised technique, that ranks and selects the most relevant objects, a category is created.

After the training phase, the agent is ready to perform. From given images, the present

objects are extracted and recognized. Figure 1.8 shows a scheme of the developed agent.
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Figure 1.8: Architecture of the developed agent.

1.5 Dissertation structure

In this section we summarize the remaining contents of the dissertation. The dissertation

is organized as follows:

Chapter 2 - Related work: In this chapter, some of the most relevant algorithms/techniques

related to the work presented in this dissertation are surveyed. The chapter is divided

in 3 sections. In the first section, the most relevant contour-based segmentation tech-

niques are presented and described in detail. The following section presents algorithms

for semantic image retrieval using syntax-based web services. The last section presents

descriptors that explore shape features to recognize objects belonging generic categories.

Chapter 3 - Object extraction and clutter removal: Completely automated extraction

of objects from an image is a very hard task. The most successful approaches either re-

quire active participation from a human user or some information regarding the context

of the object in the image. In the absence of context, the segmentation process can only

rely on information derivable from pixel intensity. This chapter describes a methodology

to automatically derive the context of the object from pixel intensity values.

Chapter 4 - Category Learning: Recognizing an object consists on extracting a represen-

tation from the object and comparing it with representations of instances of known
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categories. A category is composed by a set of Global Shape Context descriptors. The

process of recognition of recognition normally relies on knowledge acquired on a training

phase. I most works, the training phase is completely manual or supervised by a human

user. In this chapter an unsupervised category learning phase, that requires only the

category names, is presented.

Chapter 5 - Object Recognition: The agent, to be able to recognize new instances from

the previously learned categories, needs a classification system. This chapter describes

the classification system developed for the agent.

Chapter 6 - Performance Evaluation: This chapter presents an evaluation of the models

developed in this dissertation. It will be divided in four sections. First, it is evaluated

the object extraction and clutter removal algorithm (Chapter 3) comparing it with the

object extraction previously used in the UA@SRVC agent. Second, it is evaluated the

performance of the unsupervised object selection algorithm proposed in this dissertation

(Chapter 4), comparing it with the algorithm proposed by Pereira et. al. [7, 9]. Third,

the instance-based classifiers integrated in the agent (Chapter 5) are evaluated on two

different tests. The overall performance is tested with a standard k-fold cross validation.

Then a test similar to the one proposed by Pereira et al, with an increasing number

of categories, is performed allowing direct comparison. Finally a last test is presented,

where the new agent will learn categories from the Internet without any kind of human

intervention and then tries to recognize a set of objects.

Chapter 7 - Conclusion: In this dissertation, a semantic vision agent was developed and

evaluated. This final chapter summarizes the work produced and presents the major

conclusions of this dissertation. Ends with the author opinion in which path to follow

for improving the agent.
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Chapter 2

Related work

In this chapter, some of the most relevant algorithms/techniques related to the work

presented in this dissertation are surveyed. The chapter is divided in 3 sections. In the

first section, the most relevant contour-based segmentation techniques are presented and de-

scribed in detail. The following section presents algorithms for semantic image retrieval using

syntax-based web services. The last section presents descriptors that explore shape features

to recognize objects belonging generic categories.

2.1 Contour-Based Segmentation

Edge detectors are image operators that detect pixels with an abrupt change in intensity.

These operators are a very important tool in image processing because the edges of an object

can characterize its boundaries. Relying only in the pixel intensity and its neighbourhood,

these operator works at a low level.

Other, more complex, contour-based segmentation techniques exist which take into account

other type of information in order to produce more coherent object boundaries. In the context

of this thesis, these techniques are useful to extract objects from images with multiple objects

and also for clutter removal.

The remaining of this section presents several relevant contour-based algorithms.

2.1.1 Canny edge detector

One of the most widely used edge detectors available was proposed by John F. Canny in

1986 [10]. The author proposed three criteria to achieve theoretically optimal edge detection:

Detection criterion: important edges shouldn’t be missed.
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Localization criterion: the distance between the actual and the located edge should be

minimal.

One response criterion: image noise shouldn’t be considered edge, and one edge should

produce only one response.

The first step to achieve these three criteria is to reduce the effects of noise in the image.

This can be achieved with a filter based on the first derivative of a Gaussian curve. This step

helps reducing false edges produced by noise in the image. The result of this step is a slightly

blurred version of the original image.

An edge is a point where the intensity of the image changes abruptly. These points can

be found determining the gradient of the image. The gradient is extracted using filters based

on the first derivative of a 2D Gaussian curve in a direction n. The localization of the edge is

the local maximum of the image gradient.

The final edges are selected using a threshold with hysteresis. If any edge response is above

a certain threshold then those pixels are accepted as edges. On the other hand, if some edge

has a very weak response and it is not connected to a strong edge, then that edge is most

likely noise in the image. But an edge with a weak response that is connected to an edge with

a high response is more likely to be an actual edge than noise in the image.

The complete Canny edge detector algorithm:

1. Convolve an image f with a Gaussian filter of scale σ.

2. Find the location of the edges (non-maximal suppression).

3. Estimate local edge normal directions n for each pixel in the image.

4. Compute the magnitude of the edge.

5. Threshold edges in the image with hysteresis to eliminate spurious responses.

6. Repeat steps (1) to (5) for ascending values of σ.

7. Using feature synthesis, aggregate the final information about edges at multiple scales

σ.

Figure 2.1 illustrates the main steps of the Canny algorithm. Image A is the original

image. Applying a filter based on the first derivative of a Gaussian curve produces the slightly

blurred image B (algorithm step 1). The gradient operation applied to the image B produces

image C (algorithm step 2). The direction of the edges are represented in image D (algorithm

step 3). Image E is the edge map without hysteresis. Here it is visible the excess of edges
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(algorithm step 4). Finally image F is the final edge map obtained with a threshold operation

(algorithm step 7).

A B C

D E F

Figure 2.1: Example of application of the Canny edge detector. Image A shows the original
image. Image B is obtained with a smoothing operation over image A. Images C and D
represent the magnitude and direction of the gradient respectively. Image E represents the
edge map without threshold operation. Image F represents the final edge map.

Since Canny edge detector relies only in pixel intensity and it’s neighbourhood, it can’t, by

it self, extract good object boundaries. This method will produce an edge map with all edge

points in the image. At the edge level there isn’t sufficient information to produce a coherent

contour. Nevertheless the edge map can be processed for coherent contour extraction.

2.1.2 Watershed

Watershed is a very well known segmentation technique in mathematical morphology. A

gray-level image can be interpreted as a topographic map, where the gray level of a pixel is

interpreted as its altitude in the relief.
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Figure 2.2: Example of one dimension watershed. Image A shows an one dimensional “image”.
In image B the squares represents water holes, and the vertical lines represents the watersheds.

Figure 2.2 shows a very simple example of a watershed in one dimension. In each catchment

basin, there is a “hole” from where water can emerge. If the flows of water from two different

catchment basins would merge, a dam is build all the way to the surface. This dam represents

the watershed line. Applying this technique for a gray scale image, where the level of gray is

interpreted has the altitude, the result is the contour of the object.

Meyer’s flooding algorithm is one of the most common Watershed algorithms, introduced

in the early 90’s [11]:

1. A set of markers, pixels where the flooding shall start, are chosen. Each is given a

different label.

2. The neighbouring pixels of each marked area are inserted into a priority queue with a

priority level corresponding to the gray level of the pixel.

3. The pixel with the highest priority level is extracted from the priority queue. If the

neighbours of the extracted pixel that have already been labelled all have the same

label, then the pixel is labelled with their label. All non-marked neighbours that are not

yet in the priority queue are put into the priority queue.

4. Redo step 3 until the priority queue is empty.

In the end, the pixels without label are watershed lines and become the final boundaries

in the image.

The most important aspect in this method is choosing the correct catchment basins and

mark them as a “hole”. This process can be manually made by a human which, usually grants

good results. However for a complex scene this task consumes much time. Such manual

methods is also not suited for autonomous agents. There are methods to automatically select

and mark good catchment basins, but usually previous knowledge of the context of the image

is needed.
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Figure 2.3: Watershed practical example. Image A shows the original image. Applying a
smoothing operation on image A, image B is obtained. Image C is the result of a threshold
operation applied in B. Computing the distance transform of the complement of image C gives
good marker for water holes, these markers are represented in image D as white circles. Image
E and F shows the watershed lines super impose over image C and image A respectively.

Figure 2.3 shows a practical example of a watershed segmentation of a group of cells. Based

on the type of image, it’s possible to developed a technique to automatically find water holes

that produce good segmentation. In this example a distance transform operation is applied

in image C and the result is used as markers for water holes.

As we can see by the previous example this method requires precise tuning to get good

results. The distribution of water holes can be either by hand or, knowing the image type,

exploring some property that allows to automatically find good markers. Also it isn’t efficient

enough to be executed in real time.

2.1.3 Active contour

Active contours, or snakes [12], have become one of the more important object delineation

methods in image analysis, particularly in biomedical image analysis. The active contour can

be perceived as an elastic band that is placed on the object and will shrink until it delineates

the object.

A snake model is defined as an energy-minimizing spline. The snake’s energy depends on

its shape and location within the image.
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Figure 2.4: Active contour or snake simple example. Image A shows the contour as a con-
tinuous line and the snake as a dotted line. Image B shows the snake being attracted to the
contour line. Image C shows that the snake completely adopted the shape of the contour.

Figure 2.4 shows a very simple example of a snake. With multiple iteration steps of snake

energy minimization, the snake is pulled towards the true contour and finally adopts the

contour shape.

The energy function to be minimized may be written as

E∗snake =

∫ 1

0
Esnake(v(s)))ds =

∫ 1

0
(Eint(v(s)) + Eimage(v(s)) + Econ(v(s)))ds, (2.1)

where Eint represents the internal energy of the spline due to bending, Eimage represents the

image forces, Econ represents externals constrains and v(s) represents the spline equation.

The internal spline energy can be defined as:

Eint = α(s)

∣∣∣∣dvds
∣∣∣∣2 + β(s)

∣∣∣∣d2vds2
∣∣∣∣2 , (2.2)

where α(s) and β(s) specify the elasticity and stiffness of the snake.

The image energy can be defined as:

Eimage = wlineEline + wedgeEedge + wtermEterm, (2.3)

and it is composed by three terms, each one with its own weight that depends on the type

of scene in the image. The first term dictates if the snake will be attracted to bright or dark

lines. The second term controls the attraction of the snake towards contours with large image

gradients, that is, to locations of strong edges. Finally the last term controls the attraction

that line termination and corners have in the snake.

The last term of the equation 2.1 represents external constraints. These constraints can

be imposed by either a user or some other higher-level process which forces the snake towards
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or away from particular features. The final contour is the curve v(s) that minimizes the value

of the equation 2.1.

Figure 2.5: Active contour or snake practical example. The first image shows a rough snake
outlined by a human user. The second image shows the snake, after multiple iteration, delin-
eating the object.

The implementation of the algorithm uses multiple iterations to approach the final result.

Because of this reason, and the need of manually outlining the first snake, this algorithm is

not appropriated for object segmentation in autonomous agents.

2.1.4 Pb

Pb (Probability of Boundary) [13] is a boundary detector. Instead of using only pixel

intensity, like regular edge detectors, it’s constructed from brightness, color and texture cues

at multiple scales. For each cue its employed the PbC,σ(x, y, θ) which estimates the probability

of boundary for a given image channel C, scale σ, pixel (x, y) and orientation θ.

The probability of boundary is given by the difference in the image channel between two

half of a disk of radius σ centred at (x, y) and oriented at angle θ. Figure 2.6 shows an example

of one Pb.

Figure 2.6: Pb for one point, scale and direction. Image A shows the computation of a Pb
for one point, scale and direction. Image B shows the histogram with the value of the disk in
image A. Image C shows the Pb result for one scale and direction. Contour in the direction
of the disk, in image A, are highlighted.

The cues are computed over four channels: the CIELAB 1976 L channel, which measures
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brightness, and A, B channels, which measure color, as well as a texture channel derived from

texton labels [14]. The cues are also computed over three different scales [σ2 , σ, 2σ] and eight

orientations, in the interval [0, π]. The Pb detector is then constructed as a linear combination

of the local cues

Pb(x, y, θ) =

4∑
i=1

3∑
j=1

αi,jPbCi,σj (x, y, θ), (2.4)

where the weights αi,j are learned by training in an image database.

2.1.5 gPb

According to Berkeley Segmentation Dataset1, the gPb [15] is the most efficient contour

detector until this day. It is also the most computationally expensive contour detector pre-

sented in this dissertation. For real-time application this method is not viable, at least for

now.

The gPb detector consists in two main components:

mPb: a detector based on local image analysis at multiple scales (the Pb detector).

sPb: a detector based on the Normalized Cuts criterion.

The output of the mPb (previous Pb detector) is reduced to an affinity matrix W , whose

Wi,j define the similarity between pixel i and pixel j.

The sPb detector uses the affinity matrixW to solve the generalized eigenproblem, follow-

ing the Normalized Cuts approach [16], to compute the oriented contour signal sPbvj (x, y, θ).

The sPb detector is defined as follows:

sPb(x, y, θ) =
k+1∑
j=2

1√
λj
sPbvj (x, y, θ), (2.5)

and the gPb is defined by

gPb(x, y, θ) = γ · sPb(x, y, θ) +
4∑
i=1

3∑
j=1

βi,jPbCi,σj (x, y, θ), (2.6)

where γ and βi,j are weights also learned by training. To get the final gPb(x, y) signal, just

maximize the previous function by θ, threshold to remove pixels with very low probability of

being a contour pixel, skeletonize, and then renormalize. Figure 2.7 shows the full structure

of the gPb detector. Figure 2.8 shows an example of the gPb detector in various images.

1http://www.eecs.berkeley.edu/
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Figure 2.7: Architecture of the gPb detector.

Figure 2.8: Various applications of the gPb detector.

2.2 Image Retrieval and Selection

Before any attempt to recognize objects, it is necessary to learn object categories. Fergus

et. al. [17] refer that the current paradigm consists of manually collecting a large training set

of good examples of the desired object category and then performing a training phase over

the set. But there is a plentiful supply of images available at the typing of a single word using

Internet image search engines. The majority of the public web-services are syntax-based. This

means that there is no meaning extracted from the query. The result is purely based in string

matching from the resources label with the query. For this reason the quality of the images
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retrieved from Internet will be poor, e. g., the number of objects per image, the position of

the objects and scale of the objects is unknown, variable and uncontrolled.

Some researchers [18, 19, 20] developed a technique to learn categories from unlabelled and

unsegmented clustered scenes. Each object is modelled as flexible constellations of rigid parts,

where parts are very distinctive and stable image patches. These features will be represented

with a probabilist representation.

The training stage is performed over a set of images. The source of the images can be the

Internet. First the relevant object parts are detected using a clustering algorithm. Then the

statistical shape model is learned using expectation maximization. Fergus et. al. propose a

learning phase with limited supervision. In this approach, the user chooses 10 images from

the initial set and the category is learned only from those.

It preforms very well with synthetic testing (up to 90% description of desired objects vs.

background images). With images retrieved from Google Images, with an initial percentage

of 44.3% of good images, it improves to 58.9% using the completely unsupervised technique

and 65.9% with the limited supervision technique.

Fe-Fei et. al. [21] developed a method to learn object categories from only a few images

[1 ∼ 5]. It incorporates knowledge obtained from previously learnt models of unrelated cate-

gories. In this approach object categories are represented by probabilist models, while “prior”

knowledge is represented as a probability density function.

It is proposed by the authors that “The appearance of the categories we know and, more

importantly, the variability in their appearance gives us important information on what to

expect in a new category.”. An object is modelled as a flexible constellations of rigid parts

[18, 19]. They use variational Bayesian methods lo learn new unrelated categories with few

training examples. With only 1 ∼ 5 training images, the system produces models that, when

used to recognize new instances of learned categories, discriminated correctly with an error

rate of 8 ∼ 22%.

Well known techniques used to discover relevant topics in large amounts of text, e. g.,

Latent Dirichlet Allocation (LDA) and probabilist Latent Semantic Analysis (pLSA), have

been adapted for unsupervised category learning [22, 17].

Sivic et. al. [22] propose modelling images as vectors quantizing SIFT like features. These

vectors are analogies of words and used as input for the previously mentioned techniques.

After the process, the most relevant topics (in this case vectors of SIFT features) will be used

to describe the category.

Fergus et. al. [17] propose that the problem of extracting coherent components from a

large corpus of data in an unsupervised manner had many parallels with problems in the

field of textual analysis. Taking that into account the authors proposed a extended version of
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the pLSA model, developing a new model designated Translation and Scale Invariant pSLA

(TSI-pSLA).

The new technique allows to incorporate spatial information in a translation and scale

invariant manner, which is not possible with the regular technique. During the training phase,

interest regions are detected and described using SIFT features. These vectors of features will

be used as words, similar to the previous technique.

Even with a very noisy training set, the presented technique competes with existing meth-

ods that require hand-gathered collections of images.

Grauman et. al. [23] presented a method that allows automatic unsupervised category

learning from unlabelled images.

Each image is decomposed into a set of local descriptors. Those sets are nodes in a graph.

Here the weight of the edges corresponds to similarity of some subsets of the two sets of

descriptors.

After efficiently computing the pairwise affinities between the input in this space, a spectral

clustering technique is used to recover the primary grouping among the images.

Other investigators propose using meta-data to do an initial ranking of the training set of

images. These meta-data consist in words nearby the image link in the respective web page.

Berg and Forsyth [24] present a method for identifying images containing categories of

animals, relying only on four cues: text, colour, shape and texture.

The training phase consists into two steps. In the first step it is applied, a LDA method

to the words, nearby the image link, to discover a set of latent topics for each category. The

authors point out that words in images can be ambiguous, and since there is no automatic

method to solve the problem (designed polysemy-like phenomenon), it is required human aid

to confirm if a latent topic is relevant to that category or not. The images in the training set

are ranked according to the words nearby the respective web page.

For the top ranked images, three visual cues are computed. A voting with the three visual

cues and the previous word cue is performed. In the end of the process the images with higher

number of votes are selected.

For all categories tested, this technique outperforms Google text search in classification.

Schroff et. al. [25] developed a multi-modal approach that combines text, meta-data and

visual features to gather relevant images from Internet.

It starts by downloading images and the respective web-page from Internet. The retrieved

images are ranked using a Bayes estimator trained with the meta-data extracted from the text

surrounding the image. No visual features are used in this first step.

In a second step, the top ranked images are used as training data for a SVN classifier.

This classifier is then applied to the initial set, removing unrelated images.
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The tests proved that this approach performs as well as state of the art systems like [17],

while outperforming Google image search.

Vijayanarasimhan et. al. present a novel approach to learn discriminative categories from

images associated with keywords [26]. Given a list with the names of the categories, the

algorithm will provide discriminative models to distinguish them.

Taking into account the noise environment of the Internet, it is proposed an unsuper-

vised method for multiple-instance visual category learning that explicitly acknowledges and

accounts for their ambiguity.

For each category name, a set of training images are returned from multiple image search

services and using multiple languages queries. The returned training sets of images are treated

as positive bags. A positive bag is a bag that contains an unknown number of positive example

bigger than zero. On the other hand, a negative bag contains only negative examples. Negative

bags are collected from random samples in already labelled sets of categories with different

names.

It’s assumed by the authors that at least one image retrieved from the Internet contains

one category depiction, forming then a positive bag. Each image is represented as a bag of

visual words, i. e., a histogram of how many times each of the given number of prototypical

local features occur in the image.

The sparse multiple instance learning (sMIL) classifier, through iterative refinements, can

discriminate the true positive instances from the negative instances. The tests proved that

the system performs as good as state of the art unsupervised approaches.

Pereira et. al. [9, 7] present a novel method to train a visual classification system without

human interaction, using only web-services to gather images related to the category name. Ini-

tially images are searched and gathered using Google Images. As it was previously mentioned,

most of the Internet services are syntax-based and not semantics-based. For this reason, sev-

eral of the gathered images are irrelevant or contain poor representations for that category.

Other than poor representations for the category, it is highly probable that each image has

more than one object. This factor is more evident for generic categories.

Each image is pre-processed with an object extraction algorithm. The subset selection

algorithm does not depend on the object representation or nature. It can be used with all

representations if there exists a method that, given two representations returns the distance

between them. The pre-processing for object extracting depends much on the representation

used and will no be considered at this point.

After segmenting the image and extracting all relevant objects, their respective represen-

tations are computed. The objects will be clustered according to their similarity.

It is proposed that the cluster with more elements has a higher probability to better
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represent the category. The higher the percentage of good representations in the initial set,

the more correct and precise will be the extracted subset. The clustering is done using k-means

algorithm. To prevent ties between clusters, after the clustering process a post-processing step

guarantees that only one cluster has the highest number of elements assigned.

Taking into account the random nature of k-means and the fact that its performance also

depends on the number of clusters multiple runs are used. It starts with N
4 clusters and

inclemently gets to N
2 − 1. For each number of clusters, the process is repeated k times to

provide a reliable sampling. The total number of runs is then K × (N2 −
N
4 ). The number

of times, Xi, an object i appears in the cluster with more elements is updated at each run.

At the end, the objects are ranked according to Xi. The final selection is determined by the

condition
S∑
s=1

Xi(s) < η ×
N∑
i=1

Xi (2.7)

where S is the number of images included in the selection, s is a rank position, i(s) identifies

the object in rank position s, and η ∈ [0, 1] is the reject threshold. When the selection process

terminates, the remaining N−S objects are assumed noisy/irrelevant and therefore discarded.

2.3 Generic object representation and recognition

Generic categories usually don’t have highly textured features that allow robust recogni-

tion. The most salient and distinctive feature that allows robust recognition is the shape of

the object.

This section describes the most relevant representations based on shape features.

2.3.1 Shape Context

Belongie et. al. propose a descriptor based on the shape of the object, the Shape Context

[27]. The Shape Context is a property of a point rather than of the whole object. An object

is described by a set of Shape Contexts.

For a point pi a coarse histogram hi of the relative coordinates of the remaining n − 1

points is computed, hi(k) = {q 6= pi : (q − pi) ∈ bin(k)}. This histogram is called the Shape

Context of the point pi. The used histogram is log-polar, which means the descriptor is more

sensitive to positions nearby the sampling point. An example of this process is illustrated in

figure 2.9.
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Figure 2.9: Shape Context and matching. Images a and b represent sampled points used to
extract Shape Contexts. Image c represents the log-polar grid used to compute the each Shape
Context. Images d, e and f represent Shape Contexts extracted form the marked points in
image a and b. Image g represents the correspondences of points between images a and b.

It is not necessary to compute Shape Contexts for all points. The points will be sampled

and the shape context will be computed just for a subset of all the edge points that define the

shape of the object. Intuitively, since the histogram of a point describes all the other points,

Shape Contexts for all points will lead to an over detailed representation. The computational

advantages of using a subset of points are also evident.

Matching two objects is the process of finding, for each sampled point pi on the first

object, the best matching point qi on the second object. Let Cij = C(pi, qj) denote the cost

of matching the point pi with the point qj . Given the set of costs Cij between all pairs of

points pi on the first shape and qj on the second shape, matching the two shapes is given by

minimising H(π) =
∑

iC(pi, qπ(i)) subject to the constraint that the matching be one-to-one,

i.e, π is a permutation. This is an instance of the weighted bipartite matching problem,which

can be solved in O(N3) time using the Hungarian method [28].

Matching two histograms is achieved using χ2 distance as follows

Cij =
1

2

K∑
k=1

[hi(k)− hj(k)]2

[hi(k) + hj(k)]
(2.8)

where hi(k) and hj(k) denote the kth bin of the normalized histogram at pi and pj .

2.3.2 Global Shape Context (GSC)

Pereira et. al. [7, 9, 8] present the Global Shape Context, a descriptor comparable to the

Shape Context. This approach has some advantages. Since only one descriptor is used to

24



characterize all the shape of the object, the functions to extract the descriptors and match

two descriptors are computationally more efficient, which is ideal for real-time processing. On

the negative side, because it is a global descriptor, it cannot handle as well as Shape Context

or other local descriptor, partial occlusion and differences in perspective.

In the conventional Shape Context, descriptors are computed for a group of sampled points.

In the GSC, the geometric center is computed and a single descriptor is computed for this

point. After the segmentation of the object, it is used a flood filling algorithm to color the

interior of the object. Then the geometric center is defined as GCM = 1
N

∑N
i (xi, yi), where

(xi, yi) are the coordinates of the interior points. It is not trivial to compute the geometric

center since it is difficult to define the interior of a noisy shape. This problem is tackled by

the flood filling algorithm. Since the GSC is a global descriptor, the grid used is a polar grid,

not the log-polar grid used for the standard Shape Context, as seen on Figure 2.10.

Figure 2.10: Shape Context as a global descriptor. Now the Shape Context is not referring to
a single point in an object, but to the object itself.

Scale invariance is obtained by normalizing the histogram, so each cell represents the ratio

of shape points in that cell and not the absolute value. Rotation invariance is obtained during

matching by rotating the histogram as many times as angle bins.

Since, for each object, there is only one descriptor, the similarity between two global shape

representations is S(c) = 1
c , where c is the minimum χ2 distance between them. The distance

is computed angle bins times, the number of times that is required to rotate the histogram.
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2.3.3 Roy’s Shape Representation (RSR)

Deb Kumar Roy presents a representation of objects [29], that uses the tangents to the

borders of the object. Given an edge map of an object, that can be obtained using any edge

detector, and for each pair of edge points, the euclidean distance d and the angle δ between

the respective tangents are computed as illustrated in figure 2.11.

Figure 2.11: Roy’s Shape Representation.

After the calculations of the euclidean distance d and angles δ between all pairs of edge

points, a two dimensional histogram is created. This representation is invariant to rotation,

since the angle between tangents is a relative measure. It is also invariant to scale if the

distance between edge points are normalized relatively to the greater distance found.

The distance between objects can be obtained using χ2 distance (equation 2.8) similar to

the approaches used in Shape Context and GSC.

2.3.4 Object Recognition Using Junctions

Wang et. al. [30] present a new set of shape-driven features based on corner points

or junctions. Unlike the representations previously presented, this method needs a robust

corner detector. Instead of the standard Harris Corner Detector, the detector of this paper is

recommended [31].

While in the Shape Context (section 2.3.1), the sampled points are just any edge points,

this method only uses well defined junctions to produce the representation. A contour C

with n junction points can be described as C = (J1, J2, ..., Jn), where Ji is the ith junction

in the contour C. Two types of features F1 and F2 are presented. For every junction Ji, a
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feature F1(Ji) is computed based on its connected contour segments using a shape context like

approach. Unlike the Shape Context, only the points in the contour segment are considered.

The contour segments ei−1,i and ei,i+1 between Ji−1 and Ji, and Ji and Ji+1, respectively

are the path to Ji, denoted as P (Ji). The path P (Ji) is used to characterize the junctions Ji as

represented in Figure 2.12. For each sampled point pt it is computed a feature h(pt) based on 50

densely sampled points on path P (Ji). This feature is the same type of histogram used in Shape

Context 2.3.1. So the feature for junction Ji is described as F1(Ji) = (h(p
(i)
1 )), ..., (h(p

(i)
10 ))

T .

Figure 2.12: First junction feature. This feature characterizes the shape information of a
junction.

Another feature is extracted, which characterizes the shape information of the contour seg-

ment ei,i+1 using the same approach as the first feature. An example of this features is given in

Figure 2.13. 10 points are sampled at equal space in shape contour ei,i+1, (p
(i,i+1)
1 , ..., p

(i,i+1)
10 ).

For each sample point pi,i+1
t the shape context is computed based on 50 equally space points

between ei−1,i and ei+1,i+2. The final feature to define a contour segment is F2(ei,i+1) =

(h(p
(i,i+1)
1 ), ..., h(p

(i,i+1)
10 ))T .

Figure 2.13: Second junction feature. This feature characterizes the shape information of a
contour segment.

The matching is a two step process. First the F1 feature is used to classify all junctions

in the object using a K-Nearest Neighbour scheme. It is used the same distance measure as
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in Shape Context, equation 2.8. Based on the results of the kNN classifier, a set of groups of

junctions are created G′i. A graph model is created with the group of junction as vertices. The

weight of each edge is computed with dissimilarity provided by the feature F2. A shortest

path algorithm is used to localize the object, based on the previous weights. The sum of all

edge weights, on the shortest path, represents the confidence in the classification.
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Chapter 3

Object extraction and clutter removal

Completely automated extraction of objects from an image is a very hard task. The

most successful approaches either require active participation from a human user or some

information regarding the context of the object in the image. In the absence of context, the

segmentation process can only rely on information derivable from pixel intensity. This chapter

describes a methodology to automatically derive the context of the object from pixel intensity

values. More specifically, a high level processing layer has been designed that works on the

edge-based counterpart of the original image. This layer firstly identifies groups of edges as

parts of object candidates. A validation and aggregation stage is required for reliable object

segmentation. Therefore, in the second processing stage, an algorithm has been designed to

coherently aggregate the group of edges that belong to the same real object. but have been

identified as separate objects.

These functionalities will be used for two main purposes. On one hand, they will be used

to segment and extract objects from images with multiple objects, as those obtained from the

Internet. On other hand they will be used to discard clutter from images expected to contain

a single object. The source of the images will either be the Internet or an object detector.

Images retrieved from Internet,by searching for some category name, will often contain

more than one object and the image background will not be very complex. The images

provided by the user for classification and the images processed by our object detector have a

high probability of containing only one object, but a much more complex background.

The extracted objects will then be described by shape features. For this reason, it is

important to preserve the contours that lie inside the object boundary. These inner contours,

in combination with the object boundary, give a detailed description of the object’s shape.

This extra information about the shape can lead to better object recognition.

The proposed high-level layer has been designed to be robust against background noise,

support extraction of multiple object and preserve the relevant details of the shape of an
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object.

3.1 From edges to contours

The first step is to aggregate the edge pixels of an edge map (result of running Canny edge

detector [10] on the original image) into rudimentary object candidates based only on pixel

neighbourhood connectivity.

Classic neighbourhood border tracing methods, such as Moore’s neighbour tracing algo-

rithm [4, pp. 192] and Theo Pavlidis’ algorithm [32], are not suited for this task. In fact,

while searching for the neighbourhood connectivity, they only look at 8 neighbouring pixels,

or even less. In the cases where edge maps have been poorly extracted and the edges of the

contour have gaps greater than 1 pixel, the resulting contour extraction will be poor. In the

current work, it is highly likely that the edge map will be noisy, with gaps and various other

imperfections.

To tackle this problem, a more relaxed boundary tracing algorithm has been developed

(Algorithm 1). This algorithm is based on Moore’s neighbour tracing algorithm [4, pp. 192],

with the following two differences:

1. For each identified edge, the algorithm begins with a search window of size 3× 3, which

corresponds to a neighbourhood of 8 pixels. If no unexplored edge is found, the size

of the search window is increased by 2 (the search windows needs to be odd square

matrices). This process is repeated until an unexplored edge is found or the maximum

allowed size (11×11 in implementation of the algorithm) of the search window has been

reached. In contrast, the regular Moore’s neighbour tracing algorithm uses a fixed search

window of size 3× 3.

2. All the edges found in a search window are added to a stack and not just the first edge.

This guarantees the preservation of contours that lies inside the border. In contrast, the

regular Moore’s neighbour tracing algorithm that extract only the external border of

one object. As previously stated, the shape of one object benefits from the fine details

that the inner contours provide.

The edge map is swept from the top until an edge point is found. Then this edge point

is used as a starting point for the proposed contour tracing algorithm. Figure 3.1 provides

an illustration of the growth of the search window around the currently explored edge. The

search window grows until a new unexplored edge is found and added.
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Figure 3.1: Proposed algorithm for border tracing. Edges are represented by circles. Red
circles represents explored edges, blue circle represents the current explored edge, black circles
represents unexplored edges. Around the blue edge the search windows are represented.

A simplified version of the algorithm is given in Algorithm 1.

Algorithm 1 Proposed contour tracing algorithm
Input
start - the edge where the algorithm starts

Variables
stack - stack with the visited edge points with unexplored neighbourhood, initially empty;
contour - set of visibly edges, initially empty;

stack.push(start)
contour.add(start)
while not stack.empty( do
currentPoint = stack.pop()
found ← false
for wSize = 3; wSize ≤ maximumWSize && found = false; wSize ← wSize + 2 do

if unexplored point found in the current window size then
stack.push(unexploredPoint)
contour.add(unexploredPoint)
found ← true

end if
end for

end while
return currentContour

3.2 Contour aggregation metrics and criteria

The second step in the segmentation process is to aggregate the detected contour segments.
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The previous object extractor, developed for SRVC’08 [1, 9], used only a distance criterion

to decide if two contour segments should be aggregated or not. The new proposed method

uses three items of information to represent a contour segment: the geometric center, the color

histogram of the respective contour region, and the minimal bounding box. This information

is required for applying the rules for contour aggregation. Following two rules have been

proposed for identifying contours that can be aggregated:

1. If the bounding box of one contour fully contains the bounding box of another contour,

these two are merged together.

2. If the geometric centres of two contours are close enough, then the colour histograms

of the respective regions are compared. If the difference between the histograms is less

than a certain threshold, the candidates are aggregated.

In the following three subsections these rules will be explained in details.

3.2.1 Bounding box criterion

It is a reasonable assumption that if a contour is completely inside another contour, these

contours are part of the same object (see Figure 3.4 for an example). To identify whether a

contour is inside another contour is to check if all the points of one of the contours lie inside

the other. However, this approach can be computationally expensive. Therefore, a more

efficient and computationally inexpensive approach was devised. This approach is based on

the bounding box criterion, where instead of finding out if one contour is inside another, it is

found if the bounding box of one contour fully contains the bounding box of another contour.

Figure 3.2 illustrates the bounding box criterion.

Figure 3.2: Bounding box criterion. Image A shows two bounding boxes that doesn’t satisfy
the criterion. Image B shows two bounding boxes that satisfy the criterion.

Given the points that form the contour, the minimal bounding box can be computed with

Algorithm 2:
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Algorithm 2 Minimal bounding box
Input
contour - contour points

Variables
upLeftPoint - the upper left point of the bounding box
downRightPoint - the downer right point of the bounding box
rect - the bounding box

upLeftPoint ← contour.points[0]
downRightPoint ← contour.points[0]
for i← 1; i < contour.nPoints; i← i+ 1 do

if upLeftPoint.x < contour.points[i].x then
upLeftPoint.x ← contour.points[i].x

end if
if upLeftPoint.y < contour.points[i].y then
upLeftPoint.y ← contour.points[i].y

end if
if downRightPoint.x > contour.points[i].x then
downRightPoint.x ← contour.points[i].x

end if
if downRightPoint.y > contour.points[i].y then
downRightPoint.y ← contour.points[i].y

end if
end for
return rect(upLeftPoint,downRightPoint)

3.2.2 Distance

The geometric center distance criterion was the only criterion used on the previous object

extractor. Each pair of contours that matched this criterion were aggregated. In the new

algorithm, if this criterion is matched, it is still needed a match in the colour criterion to allow

an aggregation.

A flood fill algorithm is used to fill the contour. After this process, the geometric center

of the object, GC, is found as:

GC =
1

N

N∑
i

(xi, yi) (3.1)

where N is the number of points inside the contour, and (xi, yi) are the positions of the points.

After computing the geometric center for each contour, it is computed the euclidean dis-

tance for all the pairs of geometric centres. For two geometric centres GCa and a GCb, the
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euclidean distance D is given by:

D =
√
(GCa(x)−GCb(x))2 + (GCa(y)−GCb(y))2 (3.2)

If the euclidean distance D is smaller than the sum of average distances of the contour

edges to their own geometric centers multiplied by a constant factor k (equation 3.3), then

the two contour candidates will be aggregated. The algorithm was implemented with k = 1.

D < k × (ACDa +ACDb) (3.3)

Figure 3.3 explains the distance criterion. The image to the left does not match the

criterion because the euclidean distance D is bigger than the average distance of the contour

points to their own center (ACDa + ACDb). In contrast, the distance D is smaller than the

average distance of the contour points to their own center (ACDa + ACDb) in the image on

the right, which matches the criterion.

Figure 3.3: Distance criterion. The image on the left doesn’t match the distance criteria,
while the image on the right matches.

3.2.3 Colour Disparity

For the area inside each contour, a 3D histogram with colour information is extracted.

Each dimension stores information of one color channel (the colour space used is RGB). Using

the contour edges as delimiters, a color histogram of the object candidate is computed.

The disparity between two colour histograms is computed using the χ2 distance (equation
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3.4). This metric is widely used to compare histograms (section 2.3).

Dij =
1

2

R,G,B∑
r=1,g=1,b=1

[hi(r, g, b)− hj(r, g, b)]2

hi(r, g, b) + hj(r, g, b)
, (3.4)

Applying this concept to the current problem, Dij can be interpreted as the disparity in

colour between two contour segments. A color disparity value under a set threshold (0.35 in

current implementation) identifies whether contour segments can be merged or not.

3.3 Contour aggregation algorithm

The previous object extraction algorithm aggregated the contours with an iterative process

that stopped when no more contour satisfied the distance criterion (see Section 3.2.2). This

technique leads to overgrowing of the final contours, because after an aggregation two contour

will result in a new contour with different properties. These intermediate aggregates influence

the results of the remaining contours. In the new proposed algorithm, a square matrix with

the same size as the number of available contours is created. For each row (or column), each

cell in the column (or row) identifies whether the corresponding contours will be aggregated

or not. An example of an aggregation matrix is show in Table 3.1.

Contours A B C D E
A - Match - - -
B Match - Match - -
C - Match - - -
D - - - - Match
E - - - Match -

Table 3.1: Example of one aggregation matrix with 5 elements. Contours A and B, B and C,
and D and E are marked to be aggregated with each other.

After comparing each pair of contours and filling the aggregation matrix, the matrix is

reduced to allow a single step aggregation. Each of the final clusters is aggregated in just one

step, and not iterative as in the previous object extractor. Because of this the aggregation

matrix is reduced to the minimal non redundant number of aggregations needed to obtain the

final contours. For example, in Table 3.1, contours A and B, B and C, and D and E follow

the proposed rules. Computationally, aggregating candidates A and B, and then aggregating

B and C is the same as aggregating A and B and then the resulting contour AB and C. Table

3.2 shows the reduced aggregation matrix derived from the matrix in Table 3.1. Here A, B

and C, and D and E will be aggregated in a single aggregation step.
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Contours A B C D E
A - Match Match - -
B - - - - -
C - - - - -
D - - - - Match
E - - - - -

Table 3.2: Example of one simplified aggregation matrix with 5 elements. Contour A, B and
C, and D and E are marked to be aggregated with each other.

The algorithm used to reduce the aggregation matrix could, at the same time, aggregate the

respective contours. However, one of the objectives of this dissertation was the development

of generic modules that can be easily reused. Taking this into account, the reducing matrix

function was separated from the aggregation function. Allowing the use of this aggregation

technique in other components.

This technique provides two main advantages. First, the contours are compared in equal

terms and only the properties of the individual contours are taken into account for the ag-

gregation process. Second, there is no need to recalculate properties that are used only for

the aggregation process for the new contours, since they are formed in a single step. That is,

the single-step aggregation approach avoids the problem of overgrowing intermediate object

candidates.

3.4 Clutter Removal

After aggregating the selected pairs of contours, a process of selection is needed. There

is no guarantee that all the aggregated contours indeed correspond to objects. As mentioned

earlier, very little information is available about the context of the image. Therefore, no

external information is available to separate good candidates from the poor ones. This section

discusses the removal of poor object candidates.

The removal of noise is based on the hypothesis that objects inside an image will cover

greater area than noise or clutter. Using this hypothesis, the candidates are sorted by area and

all candidates with an area greater than a determined threshold are considered good object

candidates and returned.

To resolve the problem of finding the optimal threshold, an automatic thresholding method

[33, pp. 83] is used. The algorithm was adapted for a more generic scenario. For a given

population of candidates that has been sorted on the basis of a score (area, in this case),

the algorithm iteratively computes the optimal score. Based on this optimal score, the noisy

contours are separated from the relevant ones.

36



Using this algorithm allows our detector to have a dynamic threshold for contour selection.

This technique has been shown to work very well on bimodal histograms [4, pp. 180]. This

algorithm tries to aggregate the object candidates such that in the end of the process they

can be divided into two very distinct groups (clutter against the relevant contours).

The adapted version of the algorithm is the following Algorithm 3:

Algorithm 3 Automatic thresholding
Input
elements - set of elements that are ranked by a score

Variables
initialThreshold - the initial threshold
finalThreshold - refined threshold computed after multiple iterations
avgG1 - average score of elements above initial threshold
avgG2 - average score of elements bellow initial threshold
nG1 - number of elements with score above initial threshold
nG2 - number of elements with score bellow initial threshold

initialThreshold ← average(elements)
finalThreshold ← 0.0
done ← false
while not done do
avgG1 ← 0, nG1 ← 0
avgG2 ← 0, nG2 ← 0
for i ← 0; i < elements.size; i++ do

if elements[i].score > initialThreshold then
avgG1 ← elements[i].score + avgG1
nG1++

else
avgG2 ← elements[i].score + avgG2
nG2++

end if
end for
avgG1 ← avgG1 / nG1
avgG2 ← avgG2 / nG2
finalThreshold ← (avgG1 + avgG2) / 2.0
if initialThreshold = finalThreshold then
done ← true

else
initialThreshold ← finalThreshold

end if
end while
return finalThreshold
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3.5 Application example

In this section a detailed example of the proposed object extraction approach is presented.

Later, two examples that express the limitation of the approach are also presented and ex-

plained.

In figure 3.4 the principal steps of the algorithm are visually represented. The process

begins with an input image, from which an edge map is computed by applying Canny edge

detector. From the edge map, contour candidates are extracted (the bounding boxes are

represented by a red rectangle and the geometric centres are represented by a blue dot).

Following the proposed aggregation rules described earlier, the object contours are aggregated.

At the end of the aggregation step, the "bottle" object gains more detail. Finally, computing

the optimal threshold based on the area of the contours, the clutter is discarded and only the

bottle shape is returned.

Original Edge Map

Contour Tracing Contour Aggregation

Clutter 
Removal

Figure 3.4: An complete example of the proposed algorithm.

Although performing better than the previous algorithm the new approach still has some

limitations. The first limitation is related to the contour tracing algorithm and is illustrated in

Figure 3.5. In this figure, the last two bananas are so close that the contour tracing algorithm

considers them part of a single contour. This situation can be controlled by modifying the

maximum allowed size of the search window in the very first step. A small window size will

produce more contours, which in turn will require more processing time. On the other hand,

a big window size will produce less contours which can lead to aggregation of real objects.
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Figure 3.5: Example of poor contour extraction because of pixel neighbourhood.

The second limitation is related to using colour as a distinctive feature. Figure 3.6 provides

one example. The two bottles in the figure have similar colour histograms. Since their geo-

metric center is close enough to be aggregated, the algorithm returns only one object (formed

by both bottles). It is possible to control the threshold of colour disparity. With a high

threshold, contours with higher colour disparity will aggregate, whereas, a lower threshold is

more selective in the process of aggregation.

Taking in account the possible combinations of colours in objects it is not possible to define

an optimal threshold without previous information. Without previous information, a static

threshold is defined based in the results of the contour segmentation tests.

Figure 3.6: Example of inappropriate aggregation of contours.

In absence of context, segmentation of objects becomes a very hard problem. For this

reason, it is very difficult to tune the algorithm to optimal values that produce good contour

extraction. But, on an average, this approach produces interesting results when compared

with other similar approaches (without compromising the computational performance).
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Chapter 4

Category learning

Recognizing an object consists on extracting a representation from the object and compar-

ing it with representations of instances of known categories. A category is composed by a set

of Global Shape Context descriptors. The process of recognition normally relies on knowledge

acquired on a training phase. In most works, the training phase is completely manual or

supervised by a human user. In this chapter an unsupervised category learning phase, that

requires only the category names, is presented.

The technique presented here is an improvement over the algorithm presented by Pereira

et. al [9, 7] (see Section 2.2). Given a list of category names, the algorithm begins by retrieving

images from a public web-service. As previously stated, the web-services are syntax-based,

so the images retrieved are mostly noisy. Other important factor is that the images returned

are not ranked according to their visual relevance. For this reason, a ranking and selection

algorithm is necessary to create a subset of relevant objects (extracted from Internet images),

which can be used to create a faithful category representation.

This chapter is divided into four sections. In the first section, the module developed to

search and retrieve images from the Internet is presented. The next section summarizes the

object extraction and the representation method. Later, the unsupervised object relevance

evaluation algorithm is described and the final section details the object selection algorithm.

4.1 Internet-based image retrieval

The approach previously used in UA@SRVC was based on a Perl script provided by the

SRVC organizers1. One of the objectives of this dissertation was rebuild the UA@SRVC agent

to reduce external library dependencies and improve performance. Because this script depends

on Perl libraries and was not very efficient, in the context of this dissertation, a new module
1http://search.cpan.org/ grousse/WWW-Google-Images-0.6.4/lib/WWW/Google/Images.pm
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in C programming language, using the cURL2 library, was developed. This module has two

main components, as illustrated in figure 4.1:

Web-service Query: given a category name this module queries a web-service, processes

the response and extracts the image links using regular expressions;

File Download: given a link to a file, create a connection and either retrieve the file or return

a "time out error".

Figure 4.1: Architecture of the Internet search module

The retrieved images have to follow the following conditions: for now only JPG, PNG and

BMP image types are supported, because they are the most commonly used image types; and

the size of the image should lie in the range [6, 200]KB. The user has the flexibility to define

the number of images to be retrieved. There can be cases where the web-service returns less

than the specified number of images for a given category name. In such circumstances, only

these images are used for building category representations.

This new module, besides improved efficiency, provides more flexibility to the agent: more

than one web service (e.g. use of multiple search engines) for image search, and to exploit

multiple web-service applications (e.g. the use of translation services to translate search

queries into multiple languages. Eventually, the aim is to design these services for improving

the quality of category representations.

4.2 From images to object models

After retrieving the images from Internet, it is necessary to build models for the objects

present in them. The first step involves segmentation of the retrieved images to extract the

shape information of the objects present in them. The method described in Chapter 3 for
2http://curl.haxx.se/
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object extraction is used here. In short, Canny edge detector is used to create an edge map

for each image. From each edge map, one or more coherent object contours are extracted

using a set of rules that describe the distance and colour disparity between object candidates.

For each extracted object, a GSC [7, 9, 8] descriptor is computed. This representation was

chosen because is was already implemented in the UA@SRVC agent. Based on the evaluation

produced by Pereira et. al. [7, 8] it has a good performance to represent and recognize generic

categories, while it is not computational heavy. Given the shape information of an object,

its geometric center is computed using a flood fill algorithm. A 2D polar grid is placed on

the geometric center based on which a 2D histogram is filled with the information of the

shape points. The histogram is normalized with respect to the maximum distance between

the geometric center and an edge point. A more detailed summary of the GSC descriptor is

presented in Section 2.3.2.

The input of the object relevance evaluation algorithm is a square matrix, where each cell

contains the distance between each pair of objects. The algorithm is generic and can be used

with any type of object representation. The responsibility of extracting objects and their

representations are delegated to a higher level. An example of a distance matrix is given in

Table 4.1.

Objects A B C D E
A 0 DA,B DA,C DA,D DA,E

B DB,A 0 DB,C DB,D DB,E

C DC,A DC,B 0 DC,D DC,E

D DD,A DD,B DD,C 0 DD,E

E DE,A DE,B DE,C DE,D 0

Table 4.1: Example of a distance matrix for five objects

4.3 Unsupervised object relevance evaluation

Images retrieved from the Internet by searching for a given category name will always have

an amount of noise. Some of this noise will be segmented as false objects, or false instances

of the category.

For this reason, the objects are ranked based on their relevance and only the top ranked

objects are used for representing a category. This section will describe the process of evaluating

the relevance of the objects.

A human can use previous knowledge to establish semantic relations between a category

name and the relevant instances. However, in the state of the art, this task is very difficult

for an artificial agent. Assuming that at least a small number of the extracted objects are
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relevant instances of the category, and that these objects are more similar between themselves

than irrelevant objects, the relevance evaluation can build upon a similarity function. The

relevance evaluation can be achieved through clustering algorithms, as proposed by Pereira et.

al [9, 7]. Clustering is the placement of a set of observations into disjoint subsets (designated

clusters) so that the observations in the same cluster are similar in some sense. Based on the

produced clusters, the relevance of each object will be evaluated.

4.3.1 Object clustering

Pereira et. al proposed using K-means algorithm [34, 35] to cluster the objects extracted

from the images retrieved from the Internet. Given a population of n elements (x1, x2, ..., xn),

these elements can be grouped in k sets S = {S1, S2, ..., Sk}, such that, the within-cluster sum

of squares (WCSS) is minimized:

argmin
S

k∑
i=1

∑
xj∈Si

‖xj − µi‖2 (4.1)

where µi is the center of the cluster i.

This is the mathematical problem that the K-means clustering algorithm attempts to re-

solve. Using the distance matrix computed previously, the object representations are clustered

based on their similarity. In standard K-means implementations the seeding process is ran-

dom, and can be done with linear complexity using Durstenfeld shuffle algorithm [36]. After

the initial seeding process, all the remaining elements are added to the closest respective clus-

ters. The algorithm continues with an adaptation loop that iteratively assigns elements and

updates clusters until no more assignments can be made. The adaptation loop is described in

Algorithm 4.

The conventional K-means implementation suffers from two major theoretical drawbacks.

Firstly, it has been proved that in the worst case, the running time of the algorithm is

super-polynomial in relation to the input size [37]. Usually the learning phase does not need

to be in real time. But for a system that performs continuous learning, a clustering algorithm

with a worst case super-polynomial algorithm is not a good candidate.

Secondly, the approximation found can be arbitrarily bad with respect to the objective

function compared to the optimal clustering. This occurs because, when the initial seeding is

completely random, the final clusters can be very distant from the optimal distribution. This

problem is usually tackled with multiple repetitions of the clustering algorithm, which again

is not a convenient feature for a real time system when a repetition takes super-polynomial

time.
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Algorithm 4 K-means adaptation loop
Input
elementClusters - array that specifies in what cluster the element is inserted; initialized by
the seeding process
nElements - number of elements to cluster
clusters - set of clusters; initialized by the seeding process
distMatrix - square matrix with the distances between all elements

Variables
oldCluster - temporarily stores the previous cluster of one element
change - boolean variable that indicates if there were changes in the clusters

repeat
change ← false
for i← 0; i < nElements; i← i+ 1 do
oldCluster ← elementsClusters[i]
elementClusters[i] = closestCluster(i, distMatrix, clusters)
if oldCluster 6= elementsClusters[i] then
removeElementFromCluster(clusters[oldCluster], i)
addElementToCluster(clusters[elementsCluster[i]], i)

end if
end for

until change
return clusters

Because of this drawback, in the context of this dissertation the unsupervised object rele-

vance evaluation algorithm was implemented with K-means++ algorithm [37]. This clustering

algorithm tackles the previous drawbacks by improving the initial seeding process. In fact,

the only difference between K-means and K-means++ is the initial seeding process. The ini-

tial seeding proposed by K-means++ places only one random cluster center and, from that

point beyond the cluster centres are spread as far away as possible. Which means, the algo-

rithm converges rapidly to the final clustering configuration, with an improvement in the error

between the clustering produced and the optimal clustering.

The seeding process is implemented as follows:

1. Choose one center uniformly at random from the data points.

2. For each data point x, compute D(x), the distance between x and the nearest center

that has already been chosen.

3. Add one new data point at random as a new center, using a weighted probability distri-

bution where a point x is chosen with probability proportional to D(x)2.

4. Repeat Steps 2 and 3 until all remaining k cluster centers have been chosen.
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After the initial seeding process, the main loop of K-means++ is the same as K-means,

described in Algorithm 4.

4.3.2 Object scoring

As previously stated, Pereira et. al. proposed that the cluster with more elements has

higher probability of being composed of correct category instances. A voting system was

developed based on that. Since the K-means algorithm only provides an approximation, a

better result is achieved with multiple runs and multiple values of the number of clusters, k

(even with the implementation of the more reliable K-means++). The algorithm starts with

k = Total extracted objects
4 and increases to k = Total extracted objects

2 , and for each k value the

clustering is repeated 100 times.

Pereira proposed that the cluster with more elements has a higher probability to better

represent the category. But if only a few instances in the set are relevant, the biggest cluster has

a higher probability of containing clutter. Because of this, in the context of this dissertation,

a different measure of relevance is used. Based on the equation 4.1, we can compute the

compactness of each cluster. For example, for cluster i the compactness measure will be

defined as:

compactnessi =
∑
xj∈Sj

‖xj − µi‖2 (4.2)

The compactness of each cluster, in this context, measures the similarity between the

objects that constitute that cluster.

A cluster with only one element has maximum compactness, but is considered noise. An

important cluster is a cluster with maximum compactness but at least with two objects.

The measure proposed in this dissertation can be summarized as following: in each run, the

objects belonging to the most compact cluster, gain 2 points; objects that constitute clusters

with only 1 element, lose 1 point.

4.4 Object selection and category model building

The objects are firstly sorted by their relevance. Next problem is to choose an optimal

division between the relevant and non relevant objects. This problem is conceptually similar to

the problem of selecting the ideal threshold that correctly separates real object candidates from

clutter (explained in object extraction and clutter removal algorithm Section 3.4). Because

of this, the same automatic thresholding algorithm (Algorithm 3) can be and was used to

determine the optimal division between relevant and non relevant objects.

Figure 4.2 shows an example of unsupervised subset selection. After searching Internet
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with the query “apple”, 10 images were retrieved (image A). From this initial set, 10 objects

were extracted. Four of them are the actual fruit apple, while the remaining six are the brand

logo of the company Apple (image B). After the object relevance evaluation and selection,

a subset of four objects is determined (image C). From this subset, three objects are good

representations of the fruit apple, while only one object represents the brand logo. The initial

set of objects had 40% of relevant objects, and after the selection process the returned subset

had 75% of relevant objects.

A B

C

Figure 4.2: Example of unsupervised subset selection. Image A shows a set of 10 images
retrieved from Internet when searching for “apple”. Image B shows the objects extracted from
the set of images retrieved from Internet and ready to be ranked. Image C shows the result
of the unsupervised sub selection. From the four returned images, three are correct.

After determining the subset of relevant objects from the initial set of extracted objects,

a category is created. Following the previous design of the UA@SRVC agent, a category is

described by the set of GSC histograms of each of the selected objects. The main reason

for this approach is that only one instance can not represent all the fine details needed to

robustly recognize a large diversity of other representations. An example of this is the category
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bottle,for which there is a great diversity of shapes. Figure 4.3 shows five different bottles. To

allow robust recognition, a descriptor of each bottle shape should be contained in the category.

In practical terms, it is not feasible to store each possible instance to describe a category. But

storing a feasible number of instances improves the robustness of the category representation.

Figure 4.3: Example of bottle diversity.

It is important to mention here that the categories created with this method will have a

variable and uncontrolled number of instances. The number of instances depends greatly on

the category and the images retrieved from Internet. The classification system must take this

into account.
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Chapter 5

Object recognition

The agent, to be able to recognize new instances from the previously learned categories,

needs a classification system. This chapter describes the classification system developed for

the agent.

This chapter first describes category membership measures used to determine the mem-

bership of one object to one category. Second, classification algorithms that support category

representations with multiple instances are described.

5.1 Category membership measures

Section 2.3.2 describes the Global Shape Context (GSC) representation, used by the de-

veloped agent. A GSC descriptor is a 2 dimensional histogram, that captures the shape of

one object. It is a global descriptor, which means, that an object is represented by only one

histogram. This property makes the matching process very efficient. This section presents

the membership measures used to compare one object GSC histogram with the set of GSC

histograms in a category and returning the measure of membership of that object to that

category.

5.1.1 Maximum inverse χ2 distance

The distance between two histograms is evaluated by the χ2 distance (see Equation 2.8). If

two histograms have zero distance, this means that they are the same (maximum similarity).

A similarity measure can be obtained using the inverse of the distance as follows:

Spq =
1

Dpq
(5.1)
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where Dpq is the χ2 distance between objects p and q, and Spq is the similarity value between

the two objects.

One important aspect is that for GSC, rotation invariance is easily obtained in the matching

process. One of the histograms is rotated angle bin times. For each rotation the distance to

the other histogram is computed. The final distance is the minimal distance over all rotation

iterations, which corresponds to the highest similarity. Figure 5.1 illustrates the rotation of

the GSC histogram.
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Figure 5.1: Rotation of the GSC histogram. To rotate the histogram and achieve rotation
invariance, the columns are shifted. The image on the left shows the original histogram. The
image on the right shows the same histogram rotated.

As previously explained each category is composed of multiple instances. The measure of

membership of one object to one category is the maximum similarity between the object and

one of the category instances. Algorithm 5 shows the algorithm to compute this measure:

Algorithm 5 Maximum inverse χ2 distance
Input
object - GSC histogram of the object
category - set of GSC histograms describing one category

Variables
membership - stores the best membership found; initialized with -1
instance - stores the instance whit highest membership

for i← 0; i < category.NumberInstances; i← i+ 1 do
for j ← 0; j < angleBins; j ← j + 1 do

if membership < 1/chiSquareDistance(object, category[i]) then
membership ← 1/chiSquareDistance(object, category[i])
instance ← category[i]

end if
rotateHistogram(object)

end for
end for
return {membership, instance}
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5.1.2 Penalized membership

The second membership measure is similar to the maximum inverse χ2 distance with

only one difference. The membership value takes into account the positions of the category

instances in the relevance ranking (see Chapter 4), e. g., the first elements of the ranking have

a higher weight than last elements. This measure was conceived because the unsupervised

category learning ranks and sorts the instances by their relevance. Algorithm 6 is used to

compute this measure:

Algorithm 6 Penalized membership
Input
object - GSC histogram of the object
category - set of GSC histograms describing one category

Variables
membership - stores the best similarity found; initialized with -1
instance - stores the instance with highest similarity
currentSimilarity - stores the similarity for one iteration

for i← 0; i < category.NumberInstances; i← i+ 1 do
for j ← 0; j < angleBins; j ← j + 1 do
currentSimilarity ← 1/chiSquareDistance(object, category[i])
if membership < (currentSimilarity × (category.NumberInstances -
i))/category.NumberInstances then
membership ← (currentSimilarity × (category.NumberInstances -
i))/category.NumberInstances
instance ← category[i]

end if
rotateHistogram(object)

end for
end for
return {membership, instance}

5.2 Instance-based classification

In the previous section, two different category membership measures were described. Us-

ing those category membership measures, three instance-based classification algorithms were

developed. These algorithms receive an object and a set of categories and find the category

that better represents the object. The system has to take into account that each category is

composed of a variable number of instances (all the instance-based classification algorithms

are based on the k-Nearest-Neighbour rule (k-NN) [38]).
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5.2.1 Nearest Neighbour

The first instance-based classification algorithm is based on Nearest Neighbour search, or

similarity search. This algorithm is a special case of the k-Nearest-Neighbour rule, described

later, when k = 1. The main idea is to find the category that provides higher similarity.

The developed nearest neighbour classifier is given in (Algorithm 7):

Algorithm 7 Nearest neighbour classifier
Input
object - GSC histogram of the object
categories - set of categories, each category is described by a set of GSC histograms

Variables
membership - stores the best membership value found; initialized with -1
currentMembership - temporarily stores the membership value for one iteration
category - stores the best category for the object
instance - stores the instance with highest similarity

for i← 0; i < categories.Size; i← i+ 1 do
{currentMembership, instance} ← membershipMeasure(object, categories[i])
if membership < currentMembership then

membership ← currentMembership
category ← categories[i]

end if
end for
return category

5.2.2 k-Nearest-Neighbour (k-NN)

The second instance-based classification algorithm is based on the k-NN rule [38]. It uses

k rounds. In each round the category that has the higher similarity with the object earns one

vote. The winning instance of each round is not eligible in the following rounds. In the end of

the process the object will be recognized as belonging to the category that earned more votes.

Unlike the previous classifier, this type of classification is theoretically more robust when

there is not full confidence in the “prior” knowledge. In chapter 4 we presented an unsupervised

method for training categories based only on their names. The result of this method is highly

dependent on the information retrieved from the Internet. Because of this there can not be

full confidence on all instances selected for each category.

The k-NN classifier was implemented as follows (Algorithm 8):
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Algorithm 8 k-NN classifier
Input
object - GSC histogram of the object
categories - set of categories, each category is described by a set of GSC histograms
k - number of nearest neighbours

Variables
membership - stores the best similarity found; initialized with -1
currentMembership - temporarily stores the membership for one iteration
instance - stores the instance with highest similarity
currentInstance - temporarily stores the instance for one iteration
category - stores the category with higher membership
votes - set of votes for each category; initialize as empty

for i← 0; i < k; i← i+ 1 do
for j ← 0; j < categories.Size; j ← j + 1 do
{currentMembership, currentInstance} ← membershipMeasure(object, categories[j])
if membership < currentMembership and currentInstance.selected = false then
membership ← currentMembership
instance ← currentInstance
category ← categories[j]

end if
end for
votes[category] ← votes[category]+1
instance.selected ← true

end for
category ← select category with higher votes
return category

5.2.3 Weighted k-NN

The final instance-based classification algorithm is based on the Distance-Weighted k-NN

rule [39]. This algorithm is similar to the previous, with only one difference. Instead of using

equally weighted votes, it will use variable weight to vote. In this implementation a linear

decreasing progression was used (k; k − 1; ...3; 2; 1). Which means that the closest neighbour

have more weight.

This minimal change has two important consequences. First, while k-NN classification

is highly affected by ties in the votes, this system has a lower probability of producing ties.

Second, since each category has a variable number of instances, selected automatically by the

unsupervised learning system, the k-NN classification algorithm could lead to misclassifica-

tion. For example, consider two categories learned, “key” with two instances and “dog” with

three instances, and using a 5-NN classification system. Given a real key object, it will be
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classified as dog since key only has two instances. But using the proposed weighted k-NN

classification system the two key instances will have higher number of points and allowing a

correct classification. This reason makes this classification system more stable.

The weighted k-NN classifier was implemented as follows (Algorithm 9):

Algorithm 9 weighted k-NN classifier
Input
object - GSC histogram of the object
categories - set of categories, each category is described by a set of GSC histograms
k - number of nearest neighbours

Variables
membership - stores the best membership measure found; initialized with -1
currentMembership - temporarily stores the membership for one iteration
instance - stores the instance with highest similarity
currentInstance - temporarily stores the instance for one iteration
category - stores the category with higher membership
votes - set of votes for each category; initialize as empty

for i← 0; i < k; i← i+ 1 do
for j ← 0; j < categories.Size; j ← j + 1 do
{currentMembership, currentInstance} ← membershipMeasure(object, categories[j])
if membership < currentMembership and currentInstance.selected = false then
membership ← currentMembership
instance ← currentInstance
category ← categories[j]

end if
end for
votes[category] ← votes[category]+k-i
instance.selected ← true

end for
category ← select category with higher votes
return category
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Chapter 6

Performance evaluation

This chapter presents an evaluation of the models developed in this dissertation. It will be

divided in four sections. First, it is evaluated the object extraction and clutter removal algo-

rithm (Chapter 3) comparing it with the object extraction previously used in the UA@SRVC

agent. Second, it is evaluated the performance of the unsupervised object selection algo-

rithm proposed in this dissertation (Chapter 4), comparing it with the algorithm proposed by

Pereira et. al. [7, 9]. Third, the instance-based classifiers integrated in the agent (Chapter

5) are evaluated on two different tests. The overall performance is tested with a standard

k-fold cross validation. Then a test similar to the one proposed by Pereira et. al., with an

increasing number of categories, is performed allowing direct comparison. Finally a last test

is presented, where the new agent will learn categories from the Internet without any kind of

human intervention and then tries to recognize a set of objects.

Appendix A contains the complete tables with the results of the performance evaluation.

6.1 Basic evaluations measures

Two basic performance measures will be used in the analysis of the results, namely, pre-

cision and recall. These performance measures can be combined to produce F-measure (or

F-score). These measures are defined as follow:

precision =
|{relevant items} ∩ {retrieved items}|

|{retrieved items}|
(6.1)

recall =
|{relevant items} ∩ {retrieved items}|

|{relevant items}|
(6.2)

F = 2× precision× recall
precision+ recall

(6.3)
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6.2 Contour-based object extraction

A set formed by 75 images was created using a regular Internet search engine and the

following search keywords: banana, bottle, plastic objects, can, pencil sharpener, bell pepper,

pen and soccer ball. The Internet environment is noisy and unpredictable, but since this test

is to evaluate the performance of contour-based object extraction, the selection of images was

manually carried out by the author enforcing two properties: a human can without doubt

segment all the objects in the image; and no object has hidden parts.

The performance of the proposed object extraction algorithm is compared with the al-

gorithm originally used in UA@SRVC agent. Both object extraction algorithms process the

mentioned set of images. The results are examined and counted by the author.

The analysis of the performance is based on computing precision and recall. In this exper-

iment the relevant items correspond to the objects recognizable by a human and the retrieved

items are the contours extracted automatically. Table 6.1 presents the results obtained with

the original algorithm developed for the UA@SRVC agent, and the results obtained with

the new algorithm. Comparing the results, the proposed the new algorithm nearly doubles

the performance obtained with the original UA@SRVC algorithm. The original UA@SRVC

algorithm obtained 30% in F-measure, while the new algorithm obtained 56%.

Measures Original algorithm Proposed algorithm
Precision 50% 73%
Recall 21% 46%

F-measure 30% 56%

Table 6.1: Performance analysis of the original and the proposed contour-based object extrac-
tion algorithms.

The proposed algorithm isn’t a general solution for contour-based object extraction prob-

lems, but proved to work very well with the Internet images in which there is almost no context

about the objects present.

6.3 Unsupervised object subset selection

For this evaluation, the generic categories presented in the three editions of the Semantic

Robot Vision Challenge (2007, 2008, 2009) were used (see Table 6.2). For each category, 30

images were retrieved using the Internet module presented in Section 4.1. The images are

stored locally and all the evaluation is executed with this set.
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1 Banana 2 Bottle 3 Digital Camera
4 Dinosaur 5 Electric Iron 6 Eyeglasses
7 Fax Machine 8 Fork 9 Frying Pan
10 Green Apple 11 Laptop 12 Orange
13 Pumpkin 14 Red Bell Pepper 15 Red Ping Pong Paddle
16 Red Plastic Cup 17 Remote Control 18 Rolling Suitcase
19 Saucepan 20 Scientific Calculator 21 Toy Car
22 Ulu 23 Upright Vacuum Cleaner 24 White Soccer Ball

Table 6.2: Generic categories from the three editions of SRVC.

This evaluation follows the same evaluation scheme adopted by Pereira et. al. in his

work [7]. A training phase, similar to the training phase used in the SRVC competition, was

performed with the obtained images, and then the percentage of good training objects in the

initial set is compared with the percentage of good training objects in the selected subset.

The performance of the unsupervised subset selection algorithm is also evaluated using the F-

measure expression. The baseline for comparison is an agent running the original UA@SRVC

modules for object extraction and unsupervised subset selection.

In the context of these experiments, the relevant items for computing precision and recall

expressions (see Equation 6.3) are good training objects, as assessed by the author.

6.3.1 Original UA@SRVC2008 object extraction and selection modules

Figure 6.1 presents the ratio of good objects after the object extraction step with the ratio

of good objects after running the unsupervised object subset selection algorithm. Figure 6.2

presents the improvement of the subset selection as a function of the respective percentage of

good training objects in the initial set. On average, before the unsupervised subset selection,

35.11% of the objects could be considered good training objects. After subset selection, the

ratio increased to 45.77%, which represents an improvement of 10.66%. The improvement

depends highly on the quality of the initial set. In this evaluation four categories end up with

zero relevant instances (see categories 4, 12, 13, and 16 in Figure 6.1).
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Figure 6.1: Ratio of good objects before and after the unsupervised subset selection, for the
different categories in table 6.2, in the first experiment.
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Figure 6.2: Percentages of good training objects after the subset selection (yy axis) plotted
as a function of the respective percentages of good training objects in the initial set (xx axis),
in the first experiment.

The previous figures present an analysis based on precision only. In order to obtain a more

global evaluation, F-measure was used. The selection algorithm obtained 42.93% and 33.59%

for precision and recall respectively. This corresponds to an F-measure of 37.69%.

6.3.2 Original extraction module combined with the new selection module

In a second experiment, the agent was modified to include the proposed unsupervised

object subset selection algorithm. The previous test with the exact same initial set was

then repeated. Figure 6.3 presents the ratio of good training objects, before and after the

subset selection. Figure 6.4 presents the improvement of the subset selection as a function of

the respective percentage of good training objects in the initial set. On average, there were

35.11% of good objects in the initial set. After running the new subset selection algorithm

the ratio improved to 64.77% (an improvement of 29.66% over the initial set and 19% over

the previous technique).
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Figure 6.3: Ratio of good objects before and after the unsupervised subset selection, for the
different categories in table 6.2, in the second experiment.
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Figure 6.4: Percentages of good training objects after the subset selection (yy axis) plotted in
function of the respective percentages of good training objects as a the initial set (xx axis), in
the second experiment.

This algorithm obtained 65.22% and 28.63% for precision and recall respectively. This

corresponds to an F-measure of 39.79%. While, in F-measure, the proposed algorithm did not

improve much (only 2.1%) in precision it shows an improvement of 22.29% which is significant.

For this technique it is more important the precision than the recall. Since the training phase

is unsupervised, it is more important to have a high confidence in the learned categories than

having categories built from all good training objects and some possible false objects.

6.3.3 Using the developed modules for object extraction and selection

Finally, it was integrated the proposed contour-based object extraction module in the

agent and the results were compared with the previous methods. Figure 6.5 presents the

ratio of good training objects before and after the unsupervised subset selection. Figure 6.6

presents the improvement of the subset selection as a function of the respective percentage

of good training objects in the initial set. Since the segmentation algorithm is different, the

initial ratio of good training objects is 39.59%, which is a little better than the previous object

extraction method. On average after the subset selection, the percentage of good objects is

74.35%, which represents an improvement of 34.66% over the initial set and 28.58% over the

original selection algorithm. Another important aspect is that none of the categories was

created without at least one good training object, even the categories with lower ratio.
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Figure 6.5: Ratio of good objects before and after the unsupervised subset selection, for the
different categories in table 6.2, in the third experiment.
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Figure 6.6: Percentages of good training objects after the subset selection (yy axis) plotted
as a function of the respective percentages of good training objects in the initial set (xx axis),
in the third experiment.

The combination of the contour-based object extraction and unsupervised subset selection

modules produced 70.48% and 48.63% of precision and recall respectively. This corresponds

to an F-measure of 57.55%. This is an improvement of 19.86% over the original technique,

used in UA@SRVC’08 agent (see Section 6.3.1). And an improvement of 17.76% over the

agent with the new unsupervised selection algorithm and the original object extractor (see

Section 6.3.2). In both there was an improvement in precision and recall. This result shows the

importance of a good object extraction in a recognition system. The improved contour-based

object extractor improves the quality of the object shape which improves the recognition and

as a consequence improves the clustering of objects based on their similarity.

6.4 Classifiers

To evaluate the performance of the classifiers presented in this dissertation, a set of images

from the LANGG project [40] was used. It consists of 7536 images from 68 homogeneous
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categories. These images can be regrouped in terms of 49 heterogeneous categories. A ho-

mogeneous category is a category that is defined by the shape of one object. For example, a

category that represents a specific stapler. If another different stapler is added to the system

a new category is created. On the other hand, a heterogeneous category is a category that

is defined by shapes of different objects. For example, a category stapler will be defined by

the shapes all known staplers, independently of their specific shape. Tables 6.3 and 6.4 shows

the names of the 68 homogeneous and 49 heterogeneous categories respectively, present in the

LANGG image set. In general, the objects in the images are easy to segment.

Two sets of experiments were carried out, namely standard 10-fold cross validation tests,

and experiments with increasing number of categories. In the different sets of experiments,

the three used classifiers are evaluated, namely Nearest-Neighbor (NN), k-Nearest-Neighbor

(k-NN), and weighted k-Nearest-Neighbor (w-k-NN) classifiers. For the k-NN and w-k-NN,

k = 5 was used. An odd value of k minimizes the tie problem. As previously stated (see

Section 5.2.3), k-NN classifiers can lead to false classifications when it is used more rounds

than instances within a category. Since some results will be compared with the final evaluation

of the agent (see Section 6.5) it is important to choose a value of k that allows this compar-

ison. Training the agent using the unsupervised subset selection algorithm proposed in this

dissertation, the category with lower number of instances was created with only 5 instances.

For this evaluation only the maximum inverse χ2 distance membership measure was used,

since the instances used in the learning step are randomly selected and not sorted by relevance.

1 A 2 Battery 3 Bottle top 4 Boy
5 CD 6 Cigarette Box 7 Circle 8 Circuit Board
9 Duster 10 Floppy 11 Glove 12 Horse
13 Icetea can 14 Key 15 Spanner 16 Lighter
17 Mouse 18 Nail 19 One 20 Passbook
21 Pen 22 Pencil 23 Postit 24 Remote control
25 Star fish 26 Staple remover 27 Sugar packet 28 Tape
29 Teddy bear 30 Three 31 Toy bike 32 Toy car
33 Toy jeep 34 Toy saw 35 Toy scissor 36 Twenty cent
37 Ubuntu cd cover 38 USB pen 39 Train top 40 Train
41 Coffee mug 42 Tilted coffee mug 43 Tilted cup 44 Water cup
45 Coffee cup 46 Cup 47 Table knife 48 Table fork
49 Table spoon 50 Coffee spoon 51 Penguin 52 Penguin sitting
53 Stapler1 54 Stapler2 55 Stapler3 56 Water bottle
57 Ink remover bottle 58 Glue bottle 59 Screw 60 Toy screw
61 Tractor 62 Tilted tractor 63 Screw Driver 64 Toy screw driver
65 Box 66 Box2 67 Toy mobile 68 Mobile

Table 6.3: The 68 homogeneous categories in the LANG image set.
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1 A 2 Battery 3 Bottle top 4 Boy
5 CD 6 Cigarette Box 7 Circle 8 Circuit Board
9 Duster 10 Floppy 11 Glove 12 Horse
13 Icetea can 14 Key 15 Spanner 16 Lighter
17 Mouse 18 Nail 19 One 20 Passbook
21 Pen 22 Pencil 23 Postit 24 Remote control
25 Star fish 26 Staple remover 27 Sugar packet 28 Tape
29 Teddy bear 30 Three 31 Toy bike 32 Toy car
33 Toy jeep 34 Toy saw 35 Toy scissor 36 Twenty cent
37 Ubuntu cd cover 38 USB pen 39 Train 40 Cup
41 Cutlery 42 Penguin 43 Stapler 44 Bottle
45 Screw 46 Tractor 47 Screw driver 48 Box
49 Mobile

Table 6.4: The 49 heterogeneous categories in the LANG image set.

6.4.1 Cross validation with all available images

The initial set of images is randomly divided in roughly 10 equal parts. In each run,

nine parts are used for training and the remaining part is used for testing. This process is

repeated 10 times, so all parts will be used for training and testing. Tables 6.5 and 6.6 present

the results from the 10-fold cross validation evaluation for 68 homogeneous categories and 49

heterogeneous categories respectively.

With a “prior” knowledge nine times bigger than the test set, and with objects easy to

segment (selected by a human user), and without false positives, the best classifier was the

NN for both sets of categories. On average in the test with 49 heterogeneous categories, all

classifiers improve 1%. This suggests that categories composed by multiple instances have a

higher performance for heterogeneous categories.

Fold iteration Nearest Neighbour K-Nearest Neighbour Weighted K-Nearest Neighbour
1 91,77% 89,38% 90,44%
2 91,50% 89,97% 90,64%
3 91,63% 89,82% 90,93%
4 91,43% 89,51% 90,74%
5 91,31% 89,30% 90,52%
6 91,17% 89,22% 90,46%
7 91,22% 89,02% 90,31%
8 91,33% 89,19% 90,49%
9 91,28% 89,29% 90,51%
10 91,05% 88,98% 90,26%

Average 91,37% 89,37% 90,53%
Standard Deviation 0,22% 0,32% 0,20%

Table 6.5: 10-Fold cross validation of classifiers for 68 homogeneous categories.
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Fold iteration Nearest Neighbour K-Nearest Neighbour Weighted K-Nearest Neighbour
1 92,43% 90,17% 90,84%
2 93,23% 91,37% 92,83%
3 92,03% 89,91% 90,84%
4 90,57% 88,71% 90,04%
5 92,70% 89,64% 91,24%
6 92,30% 91,37% 92,56%
7 92,96% 90,70% 92,56%
8 92,30% 91,10% 91,50%
9 91,90% 91,90% 92,16%
10 90,86% 90,86% 91,26%

Average 92,13% 90,57% 91,58%
Standard Deviation 0,85% 0,96% 0,92%

Table 6.6: 10-Fold cross validation of classifiers for 49 heterogeneous categories.

6.4.2 Cross-validation with increasing number of categories

For the second set of experiments, n categories are randomly chosen and trained using a

small number of instances randomly taken from the image set (4 instances for the test with 68

homogeneous categories and 10 for test with 49 heterogeneous categories). This evaluation is

similar to the evaluation performed by Pereira et. al. [8], allowing a direct comparison between

classification algorithms with the set of 68 homogeneous categories. The key differences in

this evaluation are the contour-based object extractor and the new classification algorithms.

The test with 49 heterogeneous categories will be compared with final evaluation of the agent

(see Section 6.5). on average the unsupervised subset selection algorithm produces categories

with 10 instances, this is the reason why in the second test are used 10 images to train.

After that, the learned categories are tested with 3 different instances of the same cat-

egories. This process is repeated 5 times. Everything is repeated for increasing number of

categories, starting in 5 up to the maximum (65 for the set with 68 homogeneous categories

and 45 for the set of 49 heterogeneous categories).

Plotting the results for increasing number of categories allow to infer the scalability trend

of the system. Figures 6.7 and 6.8 plots the classification precision as a function of the

number of categories. The performances of the classifiers have a gradual decrease with the

increase of learned categories. For 68 homogeneous and 49 heterogeneous categories, the best

classifier was the NN classifier. The fact that the categories are trained with objects selected

and verified by a human user, which implies that there is a high confidence in the learned

knowledge, explains why the best classifier was the classifiers based on the Nearest-Neighbour
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rule.
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Figure 6.7: Performance of the classifiers for 68 homogeneous categories. The xx axis repre-
sents the number of categories and the yy axis represents the percentage of successful recog-
nitions.
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Figure 6.8: Performance of the classifiers for 49 heterogeneous categories. The xx axis repre-
sents the number of categories and the yy axis represents the percentage of successful recog-
nitions.

On average the NN classifier correctly recognized 81.40 ± 3.56% objects. Pereira et. al.

presented a similar evaluation, with the difference that the number of categories incremented

only to 40, the classification system correctly recognized 78.3% objects. On average, for incre-

ments until 40 categories, the NN classifiers correctly recognized 84.27±3.72% objects. Thus,

this was an improvement over the original UA@SRVC classification system. The evaluation on

the 49 heterogeneous categories has 86±3.38% of recognition for the NN classifier. This value

is not comparable with the previous evaluation since the number of categories in the system

is different and the number of instances used to train is bigger in this case. As previously

stated, the main purpose of this test was to compare with the final test of the agent. This

will allow comparing the unsupervised training method with a supervised training method.
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6.5 Semantic vision agent

The final evaluation of the agent is similar to the cross validation with increasing number

of categories presented in the previous section, with a key difference: the training phase uses

the unsupervised subset selection algorithm and not images from the LANGG set. Since it is

not easy to search homogeneous categories in the Internet, this test was only performed over

the 49 heterogeneous categories.

Based on the category names the agent retrieved 30 images from the Internet. For each

image the present objects were extracted, ranked and selected as good training object or

not. Since the categories were trained with the unsupervised subset selection method, the

instances that compose one category are sorted by its relevance. Because of this the penalized

membership measure can and was be used in the testing.

6.5.1 Maximum inverse χ2 distance

Figure 6.9 plots the classification precision as a function of the number of categories, using

maximum inverse χ2 distance membership measure. The first conclusion is that a completely

unsupervised technique to learn generic categories does not compare with a supervised one. It

is important taking into account that for each category in the set there are around 150 object

images, and only three instances are randomly selected to test at each round. The probability

of selecting an object image that can be recognized with the categories learned automatically

is low.

Unlike the previous tests the best classifier was w-k-NN with an average of 11.77% correct

recognitions. It is possible to conclude that when there is not full confidence on the “prior”

knowledge a classifier based on the weighted k-Nearest-Neighbour rule is more effective.

Figure 6.10 plots the ratio between the performance of this system and a random system,

proving that for a scenario with 10 categories or more the developed system is more efficient.
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Figure 6.9: Performance of the agent, using maximum inverse χ2 distance membership mea-
sure. The xx axis represents the number of categories and the yy axis represents the percentage
of successful recognitions.
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Figure 6.10: Learning efficiency of the developed agent, given by the ratio between the preci-
sion of the agent and the precision of a random classifier. The xx axis represents the number
of categories and the yy axis represents the ratio.

One unexpected result in this test is the increase of performance when the system learns

more categories. After analysing in detail the categories created by the unsupervised subset

selection, only a small number of them had instances similar to the objects in the set of

training images. So for a small number of categories, the probability that of one of those is a

category with good instances is low.

6.5.2 Penalized membership

Figure 6.11 plots the classification precision as a function of the number of categories,

using penalized membership measure. For all the categories the classifiers performed worst

with the penalized membership measure than with maximum inverse χ2 distance membership

measure. This can be explained by taking into account that the objects extracted from the

Internet images are ranked by their similarity, but for very heterogeneous categories (for

example bottle) an unusual shape, that is completely correct, will have a lower score in the

ranking system. Because of this there was a degradation of performance when the penalized

membership measure was used.

Still the best classifier was w-k-NN with an average of 8.8% correct recognitions. Which

reinforces the idea that, when there is not full confidence in the “prior” knowledge, a classifier

based on the weighted k-Nearest-Neighbour rule is more effective.

Figure 6.10 plots the ratio of the performance of this system with a random system.
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Figure 6.11: Performance of the agent, using penalized membership measure. The xx axis
represents the number of categories and the yy axis represents the percentage of successful
recognitions.
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Figure 6.12: Learning efficiency of the developed agent, given by the ratio between the preci-
sion of the agent and the precision of a random classifier. The xx axis represents the number
of categories and the yy axis represents the ratio.
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Chapter 7

Conclusion

7.1 Overview

In this dissertation, a semantic vision agent was developed and evaluated. This final

chapter summarizes the work produced and presents the major conclusions of this dissertation.

It ends with the author’s opinion about which path to follow for improving the agent.

A novel technique was presented to extract objects from images with complex scenes, e. g.,

images retrieved from the Internet. Without high level information about the object, except

for the category name, the process of extracting its shape can only rely on simple heuristics.

The proposed algorithm uses a simple heuristic that combines colour disparity and distance

between contour segments to agglomerate or not contours and extract a coherent shape from

the image.

A technique that allows unsupervised learning of visual categories was developed. Relying

only on the category name, images related to it are retrieved from the Internet using a pub-

lic web service. From these images objects are extracted using the segmentation algorithm

presented in this dissertation. It is proposed that the most similar objects correctly represent

the category. The relevance of each object to the category is obtained from similarity. The

objects are ranked using a clustering algorithm, which will use the similarities between objects

to form clusters. The top ranked objects will be used by the agent to learn a new category.

Even with the unsupervised subset selection process described in this dissertation, the cate-

gories learned without human intervention are noisy. Classifiers based in K-Nearest Neighbour

or the weighted K-Nearest Neighbour presented in this dissertation minimize misclassification.

The proposed algorithms were designed to be as generic as possible, which means, the

classifiers and the unsupervised subset selection algorithm do not depend on the descriptor

used. The agent was developed with Global Shape Context descriptor, since the focus of the

agent was on generic categories. Finally the performance of each algorithm was measured, as
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well as the performance of the agent as a whole.

7.2 Conclusions

The conclusions of this dissertation can be summarized into some points:

1. Without a 3rd dimension it is not possible to resolve the problem of object segmentation

in 2D images. However, very good approximations can be achieved adding a high level

layer on top of an edge detector that, based on several rules, can extract and aggregate

coherent contours.

2. Because public web services are syntax-based and not semantic-based, the majority of

the retrieved images are noise. To achieve autonomous category learning on the basis of

information available on the Internet, it is necessary to filter the relevant information in

order to build robust models of categories.

3. Unsupervised learning is a loop problem. To segment and extract good features from

one object, high level information about the object is needed. However the type of this

information required depend form its features.

4. Using the similarity measures proposed in this dissertation, unsupervised clustering tech-

niques were used to group the most similar instances. It was shown that the most com-

pact of these clusters (found using the compactness criteria) contained the most relevant

instances belonging to a category (rest of the clusters being relatively noisy). This is in

contrast to the method proposed by Pereira et. al. where the instances of the cluster

with the highest cardinality were chosen as being the most relevant ones. Our compact-

ness criteria was shown to give more reliable and consistent results in comparison to

Pereira’s selection approach.

5. A classifier based in weighted K-Nearest Neighbour proved to be more efficient when

there is less confidence in the categories, for example, when the categories are learned

without human supervision. On the other hand, when the learning was supervised by a

human user classifiers based in Nearest Neighbour proved to be the most efficient.

6. The descriptor used by the agent (Global Shape Context) relies only on the shape of

the objects. So certain categories like white soccer ball or red bell pepper don’t benefit

from the colour features.
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7.3 Future work

Finally we outline some points that we think represent the correct direction for the work

presented in this dissertation. Future developments should focus on:

1. Segment objects from complex scenes is a basic step in object detection. The algorithm

presented in this dissertation uses a simple heuristic because the only information known

about the category is its name. Using some web service to gather more information

about the category should improve the efficiency of the segmentation. For example

main dominant colour, circularity, etc.

2. Currently the agent relies only on one Web service (Google Images) and searches only in

English. Taking into account the noise environment of the Internet and the exponential

growth in terms of content, using multiple sources and multiple languages should improve

the quality of the final results.

3. For categories learned without human supervision, a weighted K-Nearest Neighbour

classifier proved to be most efficient. In this dissertation a linear decreasing function

was used to assign votes. Better performance could be achieved with other decreasing

curves, logarithm functions for example. Or by a function that relates the current round

and the similarity measure to compute the correct vote value.

4. The descriptor used was Global Shape Context which is a global descriptor that relies

only in the object shape. Other descriptor should be used or combined with this relying

in other features other than shape.

5. Since Semantic Robot Vision Challenge is in hiatus much of the knowledge presented in

this dissertation can be used in other projects. For example, CAMBADA team needs

a method to detect and recognize a generic official soccer ball in real time. A modified

version of the descriptor used in this dissertation is being currently tested.
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Appendix A

Performance tables

This appendix will include the complete data results from the contour-based object ex-

traction, unsupervised subset selection algorithm, and classification algorithms.

The first section presents 2 tables: the first table shows the results from the object ex-

traction algorithm present in UA@SRVC agent; the second table shows the results from the

colour-based object extraction presented in this dissertation.

The second section presents 3 tables: the first table shows the results from the unsupervised

subset selection algorithm developed by Pereira [7, 9]; the second table shows the results from

the unsupervised subset selection presented in this dissertation; the third table shows the

results from the unsupervised subset selection combined with the colour based segmentation

presented in this dissertation.

The third section presents 4 tables: the first table shows the results from the recognition

evaluation with 68 homogeneous categories, trained with human supervision; the second table

shows the results from the recognition evaluation with 49 heterogeneous categories, trained

with human supervision; the third table shows the results from the recognition evaluation

with 49 heterogeneous categories, trained without human supervision, using Maximum in-

verse χ2 distance; the forth table shows the results from the recognition evaluation with 49

heterogeneous categories, trained without human supervision, using penalized membership.
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A.1 Contour-based object extraction

idImages idObject Real Detected idImages idObject Real Detected idImages idObject Real Detected
0 0 TRUE TRUE 16 2 TRUE FALSE 39 4 FALSE TRUE
1 0 TRUE TRUE 16 3 FALSE TRUE 40 0 TRUE FALSE
2 0 TRUE TRUE 17 0 TRUE FALSE 40 1 TRUE FALSE
3 0 TRUE FALSE 17 1 TRUE FALSE 40 2 TRUE FALSE
3 1 TRUE FALSE 17 2 TRUE FALSE 40 3 FALSE TRUE
3 2 TRUE FALSE 17 3 FALSE TRUE 41 0 TRUE FALSE
3 3 TRUE FALSE 18 0 TRUE FALSE 41 1 TRUE FALSE
3 4 TRUE FALSE 18 1 TRUE FALSE 41 2 TRUE FALSE
3 5 TRUE FALSE 18 2 TRUE FALSE 41 3 TRUE FALSE
3 6 TRUE FALSE 18 3 FALSE TRUE 41 4 TRUE FALSE
3 7 FALSE TRUE 19 0 TRUE FALSE 41 5 TRUE FALSE
4 0 TRUE TRUE 19 1 TRUE FALSE 41 6 TRUE FALSE
5 0 TRUE TRUE 19 2 TRUE FALSE 41 7 TRUE FALSE
6 0 TRUE FALSE 19 3 FALSE TRUE 41 8 FALSE TRUE
6 1 TRUE FALSE 19 4 FALSE TRUE 42 0 TRUE TRUE
6 2 TRUE FALSE 20 0 TRUE TRUE 43 0 TRUE TRUE
6 3 FALSE TRUE 21 0 TRUE FALSE 44 0 TRUE TRUE
7 0 TRUE FALSE 21 1 TRUE FALSE 45 0 TRUE FALSE
7 1 TRUE FALSE 21 2 TRUE FALSE 45 1 TRUE FALSE
7 2 TRUE FALSE 21 3 FALSE TRUE 45 2 TRUE FALSE
7 3 TRUE FALSE 22 0 TRUE FALSE 45 3 FALSE TRUE
7 4 TRUE FALSE 22 1 TRUE FALSE 46 0 TRUE TRUE
7 5 FALSE TRUE 22 2 TRUE FALSE 47 0 TRUE TRUE
8 0 TRUE FALSE 22 3 TRUE FALSE 48 0 TRUE TRUE
8 1 TRUE FALSE 22 4 TRUE FALSE 49 0 TRUE TRUE
8 2 TRUE FALSE 22 5 TRUE FALSE 50 0 TRUE TRUE
8 3 FALSE TRUE 22 6 TRUE FALSE 51 0 TRUE TRUE
9 0 TRUE FALSE 22 7 TRUE FALSE 52 0 TRUE FALSE
9 1 TRUE FALSE 22 8 TRUE FALSE 52 1 FALSE TRUE
9 2 FALSE TRUE 22 9 FALSE TRUE 53 0 TRUE TRUE
10 0 TRUE FALSE 23 0 TRUE FALSE 54 0 TRUE FALSE
10 1 TRUE FALSE 23 1 TRUE FALSE 54 1 TRUE FALSE
10 2 TRUE FALSE 23 2 FALSE TRUE 54 2 TRUE FALSE
10 3 TRUE FALSE 23 3 FALSE TRUE 54 3 FALSE TRUE
10 4 TRUE FALSE 24 0 TRUE TRUE 55 0 TRUE FALSE
10 5 TRUE FALSE 25 0 TRUE TRUE 55 1 TRUE FALSE
10 6 TRUE FALSE 26 0 TRUE FALSE 55 2 TRUE FALSE
10 7 TRUE FALSE 26 1 TRUE FALSE 55 3 FALSE TRUE
10 8 TRUE FALSE 26 2 FALSE TRUE 56 0 TRUE TRUE
10 9 TRUE FALSE 27 0 TRUE FALSE 57 0 TRUE FALSE
10 10 TRUE FALSE 27 1 TRUE FALSE 57 1 TRUE FALSE
10 11 TRUE FALSE 27 2 FALSE TRUE 57 2 TRUE FALSE
10 12 TRUE FALSE 25 0 TRUE TRUE 57 3 TRUE FALSE
10 13 TRUE FALSE 29 0 TRUE TRUE 57 4 TRUE FALSE
10 14 TRUE FALSE 30 0 TRUE TRUE 57 5 TRUE FALSE
10 15 TRUE FALSE 31 0 TRUE TRUE 57 6 FALSE TRUE
10 16 FALSE TRUE 32 0 TRUE FALSE 58 0 TRUE FALSE
11 0 TRUE FALSE 32 1 TRUE FALSE 58 1 TRUE FALSE
11 1 TRUE FALSE 32 2 TRUE FALSE 58 2 TRUE FALSE
11 2 TRUE FALSE 32 3 TRUE FALSE 58 3 TRUE FALSE
11 3 TRUE FALSE 32 4 FALSE TRUE 58 4 FALSE TRUE
11 4 TRUE FALSE 33 0 TRUE TRUE 59 0 TRUE TRUE
11 5 TRUE FALSE 34 0 TRUE TRUE 60 0 TRUE TRUE
11 6 TRUE FALSE 35 0 TRUE TRUE 61 0 TRUE TRUE
11 7 TRUE FALSE 36 0 TRUE FALSE 62 0 TRUE TRUE
11 8 TRUE FALSE 36 1 TRUE FALSE 63 0 TRUE FALSE
11 9 TRUE FALSE 36 2 TRUE FALSE 63 1 FALSE TRUE
11 10 TRUE FALSE 36 4 FALSE TRUE 63 2 FALSE TRUE
11 11 FALSE TRUE 37 0 TRUE TRUE 64 0 TRUE FALSE
12 0 TRUE FALSE 38 0 TRUE FALSE 64 1 FALSE TRUE
12 1 TRUE FALSE 38 1 TRUE FALSE 64 2 FALSE TRUE
12 2 TRUE FALSE 38 2 TRUE FALSE 65 0 TRUE TRUE
12 3 FALSE TRUE 38 3 TRUE FALSE 66 0 TRUE TRUE
13 0 TRUE FALSE 38 4 TRUE FALSE 67 0 TRUE TRUE
13 1 TRUE FALSE 38 5 TRUE FALSE 68 0 TRUE TRUE
13 2 TRUE FALSE 38 6 TRUE FALSE 69 0 TRUE TRUE
13 3 TRUE FALSE 38 7 TRUE FALSE 70 0 TRUE TRUE
13 4 TRUE FALSE 38 8 TRUE FALSE 71 0 TRUE TRUE
13 5 TRUE FALSE 38 9 TRUE FALSE 72 0 TRUE FALSE
13 6 FALSE TRUE 38 10 TRUE FALSE 72 1 FALSE TRUE
14 0 TRUE TRUE 38 11 TRUE FALSE 72 2 FALSE TRUE
15 0 TRUE FALSE 38 12 TRUE FALSE 73 0 TRUE TRUE
15 1 TRUE FALSE 38 13 FALSE TRUE 74 0 TRUE FALSE
15 2 TRUE FALSE 39 0 TRUE FALSE 74 1 TRUE FALSE
15 3 FALSE TRUE 39 1 TRUE FALSE 74 2 FALSE TRUE
16 0 TRUE FALSE 39 2 TRUE FALSE
16 1 TRUE FALSE 39 3 TRUE FALSE

Table A.1: Results from the original contour-based object extraction algorithm.
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idImages idObject Real Detected idImages idObject Real Detected idImages idObject Real Detected
0 0 TRUE TRUE 15 2 TRUE FALSE 39 1 TRUE TRUE
1 0 TRUE TRUE 16 0 TRUE TRUE 39 2 TRUE FALSE
2 0 TRUE TRUE 16 1 TRUE TRUE 39 3 TRUE FALSE
3 0 TRUE TRUE 16 2 TRUE FALSE 40 0 TRUE TRUE
3 1 TRUE TRUE 17 0 TRUE TRUE 40 1 TRUE TRUE
3 2 TRUE TRUE 17 1 TRUE TRUE 40 2 TRUE FALSE
3 3 TRUE TRUE 17 2 TRUE TRUE 41 0 TRUE TRUE
3 4 TRUE FALSE 18 0 TRUE TRUE 41 1 TRUE TRUE
3 5 TRUE FALSE 18 1 TRUE TRUE 41 2 TRUE FALSE
3 6 TRUE FALSE 18 2 TRUE TRUE 41 3 TRUE FALSE
3 7 FALSE TRUE 19 0 TRUE FALSE 41 4 TRUE FALSE
4 0 TRUE TRUE 19 1 TRUE FALSE 41 5 TRUE FALSE
5 0 TRUE TRUE 19 2 TRUE FALSE 41 6 TRUE FALSE
6 0 TRUE TRUE 19 3 FALSE TRUE 41 7 TRUE FALSE
6 1 TRUE TRUE 20 0 TRUE FALSE 41 8 FALSE TRUE
6 2 TRUE TRUE 20 1 FALSE TRUE 41 9 FALSE TRUE
7 0 TRUE FALSE 21 0 TRUE FALSE 42 0 TRUE TRUE
7 1 TRUE FALSE 21 1 TRUE FALSE 43 0 TRUE TRUE
7 2 TRUE FALSE 21 2 TRUE FALSE 44 0 TRUE TRUE
7 3 TRUE FALSE 21 3 FALSE TRUE 45 0 TRUE TRUE
7 4 TRUE FALSE 22 0 TRUE TRUE 45 1 TRUE TRUE
7 5 FALSE TRUE 22 1 TRUE TRUE 45 2 TRUE TRUE
8 0 TRUE FALSE 22 2 TRUE FALSE 46 0 TRUE TRUE
8 1 TRUE FALSE 22 3 TRUE FALSE 47 0 TRUE TRUE
8 2 TRUE FALSE 22 4 TRUE FALSE 48 0 TRUE TRUE
8 3 FALSE TRUE 22 5 TRUE FALSE 49 0 TRUE TRUE
9 0 TRUE FALSE 22 6 TRUE FALSE 50 0 TRUE TRUE
9 1 TRUE FALSE 22 7 TRUE FALSE 51 0 TRUE TRUE
9 2 FALSE TRUE 22 8 TRUE FALSE 52 0 TRUE FALSE
10 0 TRUE TRUE 22 9 FALSE TRUE 52 1 FALSE TRUE
10 1 TRUE TRUE 23 0 TRUE FALSE 53 0 TRUE TRUE
10 2 TRUE TRUE 23 1 TRUE FALSE 54 0 TRUE FALSE
10 3 TRUE TRUE 23 2 FALSE TRUE 54 1 TRUE FALSE
10 4 TRUE TRUE 24 0 TRUE TRUE 54 2 TRUE FALSE
10 5 TRUE FALSE 25 0 TRUE FALSE 54 3 FALSE TRUE
10 6 TRUE FALSE 25 1 FALSE TRUE 55 0 TRUE FALSE
10 7 TRUE FALSE 25 1 FALSE TRUE 55 1 TRUE FALSE
10 8 TRUE FALSE 26 0 TRUE TRUE 55 2 TRUE FALSE
10 9 TRUE FALSE 26 1 TRUE TRUE 55 3 FALSE TRUE
10 10 TRUE FALSE 27 0 TRUE FALSE 55 4 FALSE TRUE
10 11 TRUE FALSE 27 1 TRUE TRUE 56 0 TRUE TRUE
10 12 TRUE FALSE 28 0 TRUE TRUE 57 0 TRUE TRUE
10 13 TRUE FALSE 29 0 TRUE TRUE 57 1 TRUE TRUE
10 14 TRUE FALSE 30 0 TRUE TRUE 57 2 TRUE TRUE
10 15 TRUE FALSE 31 0 TRUE TRUE 57 3 TRUE TRUE
10 16 FALSE TRUE 31 1 FALSE TRUE 57 4 TRUE TRUE
10 17 FALSE TRUE 32 0 TRUE TRUE 57 5 TRUE FALSE
10 18 FALSE TRUE 32 1 TRUE FALSE 58 0 TRUE TRUE
11 0 TRUE FALSE 32 2 TRUE FALSE 58 1 TRUE TRUE
11 1 TRUE FALSE 32 3 TRUE FALSE 58 2 TRUE TRUE
11 2 TRUE FALSE 32 4 FALSE TRUE 58 3 TRUE FALSE
11 3 TRUE FALSE 33 0 TRUE TRUE 59 0 TRUE TRUE
11 4 TRUE FALSE 34 0 TRUE TRUE 60 0 TRUE TRUE
11 5 TRUE FALSE 35 0 TRUE TRUE 61 0 TRUE TRUE
11 6 TRUE FALSE 36 0 TRUE FALSE 62 0 TRUE TRUE
11 7 TRUE FALSE 36 1 TRUE FALSE 63 0 TRUE FALSE
11 8 TRUE FALSE 36 2 TRUE FALSE 63 1 FALSE TRUE
11 9 TRUE FALSE 36 3 FALSE TRUE 64 0 TRUE FALSE
11 10 TRUE FALSE 37 0 TRUE TRUE 64 1 FALSE TRUE
11 11 FALSE TRUE 38 0 TRUE FALSE 65 0 TRUE TRUE
12 0 TRUE TRUE 38 1 TRUE FALSE 66 0 TRUE TRUE
12 1 TRUE TRUE 38 2 TRUE FALSE 67 0 TRUE TRUE
12 2 TRUE TRUE 38 3 TRUE FALSE 68 0 TRUE FALSE
13 0 TRUE FALSE 38 4 TRUE FALSE 68 1 FALSE TRUE
13 1 TRUE FALSE 38 5 TRUE FALSE 69 0 TRUE TRUE
13 2 TRUE FALSE 38 6 TRUE FALSE 70 0 TRUE TRUE
13 3 TRUE FALSE 38 7 TRUE FALSE 71 0 TRUE FALSE
13 4 TRUE FALSE 38 8 TRUE FALSE 71 1 FALSE TRUE
13 5 TRUE FALSE 38 9 TRUE FALSE 71 2 FALSE TRUE
13 6 FALSE TRUE 38 10 TRUE FALSE 72 0 TRUE TRUE
14 0 TRUE TRUE 38 11 TRUE FALSE 73 0 TRUE TRUE
14 1 FALSE TRUE 38 12 TRUE FALSE 74 0 TRUE TRUE
15 0 TRUE TRUE 38 13 FALSE TRUE 74 1 TRUE TRUE
15 1 TRUE FALSE 39 0 TRUE TRUE

Table A.2: Results from the proposed contour-based object extraction algorithm.
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A.2 Unsupervised subset selection

N Category Initial Set Selection Set Percentages (%)
Total
Objects

Good
Objects

Total
Objects

Good
Objects

Good
Original

Good
Selection

Variation

0 Banana 30 13 8 3 43,33% 37,50% -5,83%
1 Bottle 32 12 12 4 37,50% 33,33% -4,17%
2 Digital Camera 32 15 7 5 46,88% 71,43% 24,55%
3 Dinosaur 35 7 13 0 20,00% 0,00% -20,00%
4 Electric Iron 29 10 6 4 34,48% 66,67% 32,18%
5 Eyeglasses 30 13 6 3 43,33% 50,00% 6,67%
6 Fax Machine 30 12 11 8 40,00% 72,73% 32,73%
7 Fork 32 8 9 8 25,00% 88,89% 63,89%
8 Frying Pan 29 21 8 6 72,41% 75,00% 2,59%
9 Green Apple 32 9 9 2 28,13% 2,22% -5,90%
10 Laptop 31 14 6 5 45,16% 83,33% 38,17%
11 Orange 34 5 9 0 14,71% 0,00% -14,71%
12 Pumpkin 32 2 11 0 6,25% 0,00% -6,25%
13 Red Bell Pepper 31 9 9 2 29,03% 22,22% -6,81%
14 Red Ping Pong Paddle 33 7 12 5 21,21% 41,67% 20,45%
15 Red Plastic Cup 31 9 8 0 29,03% 0,00% -29,03%
16 Remote Control 31 9 10 1 29,03% 10,00% -19,03%
17 Rolling Suitcase 33 10 8 1 30,30% 12,50% -17,80%
18 Saucepan 30 21 8 8 70,00% 100,00% 30,00%
19 Scientific Calculator 31 10 7 5 32,26% 71,43% 39,17%
20 Toy Car 31 12 5 1 38,71% 20,00% -18,71%
21 Ulu 31 7 6 4 22,58% 66,67% 44,09%
22 Upright Vacuum Cleaner 30 13 8 6 43,33% 75,00% 31,67%
23 White Soccer Ball 35 14 9 7 40,00% 77,78% 37,78%

Average: 35,11% 45,77% 10,65%

Table A.3: Results from the original subset selection algorithm.

N Category Initial Set Selection Set Percentages (%)
Total
Objects

Good
Objects

Total
Objects

Good
Objects

Good
Original

Good
Selection

Variation

0 Banana 30 13 3 3 43,33% 100,00% 56,67%
1 Bottle 32 12 5 2 37,50% 40,00% 2,50%
2 Digital Camera 32 15 4 3 46,88% 75,00% 28,13%
3 Dinosaur 35 7 2 2 20,00% 100,00% 80,00%
4 Electric Iron 29 10 3 0 34,48% 0,00% -34,48%
5 Eyeglasses 30 13 4 3 43,33% 75,00% 31,67%
6 Fax Machine 30 12 6 6 40,00% 100,00% 60,00%
7 Fork 32 8 4 4 25,00% 100,00% 75,00%
8 Frying Pan 29 21 5 4 72,41% 80,00% 7,59%
9 Green Apple 32 9 3 3 28,13% 100,00% 71,88%
10 Laptop 31 14 4 4 45,16% 100,00% 54,84%
11 Orange 34 5 3 3 14,71% 100,00% 85,29%
12 Pumpkin 32 2 6 0 6,25% 0,00% -6,25%
13 Red Bell Pepper 31 9 6 3 29,03% 50,00% 20,97%
14 Red Ping Pong Paddle 33 7 2 0 21,21% 0,00% -21,21%
15 Red Plastic Cup 31 9 5 3 29,03% 60,00% 30,97%
16 Remote Control 31 9 4 2 29,03% 50,00% 20,97%
17 Rolling Suitcase 33 10 6 2 30,30% 33,33% 3,03%
18 Saucepan 30 21 6 6 70,00% 100,00% 30,00%
19 Scientific Calculator 31 10 5 2 32,26% 40,00% 7,74%
20 Toy Car 31 12 5 2 38,71% 40,00% 1,29%
21 Ulu 31 7 6 2 22,58% 33,33% 10,75%
22 Upright Vacuum Cleaner 30 13 9 7 43,33% 77,78% 34,44%
23 White Soccer Ball 35 14 9 9 40,00% 100,00% 60,00%

35,11% 64,77% 29,66%

Table A.4: Results from the proposed subset selection algorithm.

77



N Category Initial Set Selection Set Percentages (%)
Total
Objects

Good
Objects

Total
Objects

Good
Objects

Good
Original

Good
Selection

Variation

0 Banana 37 10 7 5 27,03% 71,43% 44,40%
1 Bottle 40 26 12 11 65,00% 91,67% 26,67%
2 Digital Camera 35 18 9 7 51,43% 77,78% 26,35%
3 Dinosaur 55 8 15 5 14,55% 33,33% 18,79%
4 Electric Iron 32 12 7 4 37,50% 57,14% 19,64%
5 Eyeglasses 49 14 16 12 28,57% 75,00% 46,43%
6 Fax Machine 32 18 16 13 56,25% 81,25% 25,00%
7 Fork 35 10 7 7 28,57% 100,00% 71,43%
8 Frying Pan 32 18 12 9 56,25% 75,00% 18,75%
9 Green Apple 37 9 7 5 24,32% 71,43% 47,10%
10 Laptop 34 16 6 4 47,06% 66,67% 19,61%
11 Orange 55 6 4 3 10,91% 75,00% 64,09%
12 Pumpkin 45 1 14 1 2,22% 7,14% 4,92%
13 Red Bell Pepper 35 10 7 6 28,57% 85,71% 57,14%
14 Red Ping Pong Paddle 35 11 18 10 31,43% 55,56% 24,13%
15 Red Plastic Cup 36 11 6 5 30,56% 83,33% 52,78%
16 Remote Control 35 14 10 10 40,00% 100,00% 60,00%
17 Rolling Suitcase 34 14 11 4 41,18% 36,36% -4,81%
18 Saucepan 29 21 3 3 72,41% 100,00% 27,59%
19 Scientific Calculator 27 11 7 6 40,74% 85,71% 44,97%
20 Toy Car 36 19 7 5 52,78% 71,43% 18,65%
21 Ulu 35 7 6 5 20,00% 83,33% 63,33%
22 Upright Vacuum Cleaner 31 25 9 9 80,65% 100,00% 19,35%
23 White Soccer Ball 31 20 11 11 64,52% 100,00% 35,48%

39,69% 74,35% 34,66%

Table A.5: Results from the proposed subset selection combined with the contour-based object
extraction.

A.3 Classifiers

N categories NN StdDev K-NN StdDev W-K-NN StdDev
5 94,67% 4,99% 86,67% 7,30% 94,67% 4,99%

10 85,33% 5,42% 74,67% 7,18% 82,00% 7,48%
15 89,78% 3,01% 78,22% 2,95% 84,44% 2,43%
20 83,00% 5,52% 73,00% 7,41% 77,00% 8,19%
25 80,27% 2,59% 70,67% 2,39% 77,07% 2,59%
30 80,00% 2,90% 70,44% 2,86% 76,00% 1,13%
35 79,43% 0,97% 69,14% 3,22% 75,62% 2,30%
40 81,67% 4,38% 67,17% 3,14% 76,33% 4,03%
45 76,30% 6,85% 65,78% 5,43% 72,59% 5,20%
50 80,00% 2,39% 66,53% 3,44% 74,67% 0,73%
55 76,24% 3,12% 62,67% 2,62% 70,55% 2,09%
60 75,67% 2,37% 64,67% 3,25% 72,22% 1,69%
65 75,79% 1,76% 64,51% 1,82% 71,28% 1,17%

Average 81,40% 3,56% 70,32% 4,08% 77,26% 3,39%

Table A.6: Results from three classifiers for the 68 categories set.
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N categories NN StdDev K-NN StdDev W-K-NN StdDev
5 94,67% 4,99% 92,00% 6,53% 93,33% 5,96%

10 88,67% 6,18% 85,33% 7,77% 86,00% 7,42%
15 92,00% 4,99% 84,89% 4,95% 86,67% 4,22%
20 88,00% 4,64% 80,67% 5,44% 85,67% 4,29%
25 84,27% 1,77% 74,93% 6,28% 78,67% 4,46%
30 84,00% 0,54% 72,89% 4,80% 77,56% 3,01%
35 81,71% 2,36% 72,95% 3,93% 77,14% 4,13%
40 82,17% 1,45% 75,67% 3,05% 79,33% 1,93%
45 78,52% 3,51% 70,67% 3,13% 74,67% 4,43%

Average 86,00% 3,38% 78,89% 5,10% 82,11% 4,43%

Table A.7: Results from three classifiers for the 49 categories set.

N categories NN StdDev K-NN StdDev W-K-NN StdDev
5 1,33% 2,67% 0,00% 0,00% 1,33% 2,67%

10 13,33% 4,22% 12,67% 8,79% 13,33% 7,60%
15 9,78% 6,68% 8,00% 5,73% 10,22% 6,53%
20 10,33% 3,86% 14,67% 3,23% 11,67% 2,79%
25 10,40% 3,42% 10,93% 2,72% 10,40% 2,72%
30 14,22% 2,76% 9,78% 1,47% 12,89% 2,39%
35 14,10% 3,04% 13,71% 2,14% 15,24% 3,01%
40 13,50% 2,38% 13,67% 2,82% 15,33% 2,01%
45 14,52% 2,63% 14,22% 1,78% 15,56% 2,61%

Average 11,28% 3,52% 10,85% 3,19% 11,77% 3,59%

Table A.8: Results from three classifiers for the 49 categories set, with maximum inverse χ2

distance membership measure. Unsupervised training phase.
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N categories NN StdDev K-NN StdDev W-K-NN StdDev
5 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

10 11,33% 5,42% 8,67% 8,59% 11,33% 6,86%
15 7,11% 3,82% 4,00% 2,95% 7,11% 5,14%
20 8,67% 2,87% 7,00% 3,86% 9,33% 2,26%
25 4,00% 2,53% 6,93% 2,72% 5,33% 1,69%
30 9,11% 1,78% 7,56% 1,91% 9,56% 1,33%
35 12,38% 2,00% 12,19% 1,85% 13,52% 2,12%
40 11,17% 1,94% 8,33% 1,75% 11,33% 2,51%
45 11,41% 1,53% 8,44% 1,91% 11,70% 1,44%

Average 8,35% 2,43% 7,01% 2,84% 8,80% 2,59%

Table A.9: Results from three classifiers for the 49 categories set, with penalized membership
measure. Unsupervised training phase.

80



Bibliography

[1] Luís Miguel Saraiva Ribeiro. Object recognition for semantic robot vision. Master’s

thesis, Universidade de Aveiro, 2008.

[2] D.G. Lowe. Object recognition from local scale-invariant features. In Computer Vision,

1999. The Proceedings of the Seventh IEEE International Conference on, volume 2, pages

1150 –1157 vol.2, 1999.

[3] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In

In ECCV, pages 404–417, 2006.

[4] Milan Sonka, Václav Hlavác, and Roger Boyle. Image processing, analysis and and ma-

chine vision (3. ed.). Thomson, 2008.

[5] D. Celik and A. Elgi. A semantic search agent approach: finding appropriate semantic

web services based on user request term(s). In Information and Communications Technol-

ogy, 2005. Enabling Technologies for the New Knowledge Society: ITI 3rd International

Conference on, pages 675 –687, dec. 2005.

[6] Tao Mei, Yong Wang, Xian-Sheng Hua, Shaogang Gong, and Shipeng Li. Coherent image

annotation by learning semantic distance. In Computer Vision and Pattern Recognition,

2008. CVPR 2008. IEEE Conference on, pages 1 –8, june 2008.

[7] Rui Manuel Fernades Pereira. Semantic image retrieval and subset selection for robot

vision. Master’s thesis, Universidade de Aveiro, 2008.

[8] Rui Pereira and Luís Seabra Lopes. Learning visual object categories with global descrip-

tors and local features. In Proceedings of the 14th Portuguese Conference on Artificial

Intelligence: Progress in Artificial Intelligence, EPIA ’09, pages 225–236, Berlin, Heidel-

berg, 2009. Springer-Verlag.

[9] Rui Pereira, Luís Seabra Lopes, and Augusto Silva. Semantic image search and subset

selection for classifier training in object recognition. In Proceedings of the 14th Portuguese

81



Conference on Artificial Intelligence: Progress in Artificial Intelligence, EPIA ’09, pages

338–349, Berlin, Heidelberg, 2009. Springer-Verlag.

[10] John Canny. A computational approach to edge detection. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, PAMI-8(6):679 –698, nov. 1986.

[11] L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm based on

immersion simulations. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 13(6):583 –598, jun 1991.

[12] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models.

INTERNATIONAL JOURNAL OF COMPUTER VISION, 1(4):321–331, 1988.

[13] D.R. Martin, C.C. Fowlkes, and J. Malik. Learning to detect natural image boundaries

using local brightness, color, and texture cues. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 26(5):530 –549, may 2004.

[14] J. Malik, S. Belongie, J. Shi, and T. Leung. Textons, contours and regions: cue integration

in image segmentation. In Computer Vision, 1999. The Proceedings of the Seventh IEEE

International Conference on, volume 2, pages 918 –925 vol.2, 1999.

[15] Bryan Catanzaro, Bor-Yiing Su, Narayanan Sundaram, Yunsup Lee, Mark Murphy, and

Kurt Keutzer. Efficient, high-quality image contour detection. In Computer Vision, 2009

IEEE 12th International Conference on, pages 2381 –2388, 29 2009-oct. 2 2009.

[16] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. In Computer Vision

and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference

on, pages 731 –737, jun 1997.

[17] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning object categories from

google’s image search. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International

Conference on, volume 2, pages 1816 –1823 Vol. 2, oct. 2005.

[18] Markus Weber, Max Welling, and Pietro Perona. Unsupervised learning of models for

recognition. In Proceedings of the 6th European Conference on Computer Vision-Part I,

ECCV ’00, pages 18–32, London, UK, 2000. Springer-Verlag.

[19] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-

invariant learning. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003

IEEE Computer Society Conference on, volume 2, pages II–264 – II–271 vol.2, june 2003.

82



[20] Robert Fergus, Pietro Perona, and Andrew Zisserman. A Visual Category Filter for

Google Images. pages 242–256. 2004.

[21] Li Fe-Fei, R. Fergus, and P. Perona. A bayesian approach to unsupervised one-shot

learning of object categories. In Computer Vision, 2003. Proceedings. Ninth IEEE Inter-

national Conference on, pages 1134 –1141 vol.2, oct. 2003.

[22] Josef Sivic, Bryan C. Russell, Alexei A. Efros, Andrew Zisserman, William T. Freeman,

Josef Sivic, Bryan C. Russell, Alexei A. Efros, Andrew Zisserman, and William T. Free-

man. W.: Discovering object categories in image collections. In In: Proceedings of the

Tenth International Conference on Computer Vision, 2005.

[23] K. Grauman and T. Darrell. Unsupervised learning of categories from sets of partially

matching image features. In Computer Vision and Pattern Recognition, 2006 IEEE Com-

puter Society Conference on, volume 1, pages 19 – 25, june 2006.

[24] Tamara L. Berg and David A. Forsyth. Animals on the web. In Proceedings of the

2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

- Volume 2, CVPR ’06, pages 1463–1470, Washington, DC, USA, 2006. IEEE Computer

Society.

[25] F. Schroff, A. Criminisi, and A. Zisserman. Harvesting image databases from the web.

In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pages 1

–8, oct. 2007.

[26] S. Vijayanarasimhan and K. Grauman. Keywords to visual categories: Multiple-instance

learning forweakly supervised object categorization. In Computer Vision and Pattern

Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1 –8, june 2008.

[27] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape

contexts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(4):509

–522, apr 2002.

[28] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms

and complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.

[29] Deb Kumar Roy. Learning words from sights and sounds: a computational model. PhD

thesis, 1999. AAI0801519.

[30] Bo Wang, Xiang Bai, Xinggang Wang, Wenyu Liu, and Zhuowen Tu. Object recognition

using junctions. In Proceedings of the 11th European conference on Computer vision:

Part V, ECCV’10, pages 15–28, Berlin, Heidelberg, 2010. Springer-Verlag.

83



[31] M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. Using contours to detect and localize

junctions in natural images. In Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on, pages 1 –8, june 2008.

[32] T. Pavlidis. Algorithms for Graphics and Image Processing, chapter 7. Springer, 1982.

[33] L.G. Shapiro and G.C. Stockman. Computer Vision. Prentice Hall, 2001.

[34] H. Steinhaus. Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci,

1:801–804, 1956.

[35] S. Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions

on, 28(2):129 – 137, mar 1982.

[36] Richard Durstenfeld. Algorithm 235: Random permutation. Commun. ACM, 7:420–,

July 1964.

[37] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding.

In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,

SODA ’07, pages 1027–1035, Philadelphia, PA, USA, 2007. Society for Industrial and

Applied Mathematics.

[38] Evelyn Fix and Jr. Discriminatory Analysis: Nonparametric Discrimination: Consistency

Properties. Technical Report Project 21-49-004, Report Number 4, USAF School of

Aviation Medicine, Randolf Field, Texas, 1951.

[39] Sahibsingh A. Dudani. The distance-weighted k-nearest-neighbor rule. Systems, Man

and Cybernetics, IEEE Transactions on, SMC-6(4):325 –327, april 1976.

[40] Luis Seabra Lopes and Aneesh Chauhan. Open-ended category learning for language

acquisition. Connect. Sci, 20:277–297, December 2008.

84


	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Semantic Robot Vision Challenge
	Robocup

	Research problems
	Object Recognition
	Contour-based segmentation
	Semantic image retrieval

	Objectives
	Overview of the agent
	Dissertation structure

	Related work
	Contour-Based Segmentation
	Canny edge detector
	Watershed
	Active contour
	Pb
	gPb

	Image Retrieval and Selection
	Generic object representation and recognition
	Shape Context
	Global Shape Context (GSC)
	Roy's Shape Representation (RSR)
	Object Recognition Using Junctions


	Object extraction and clutter removal
	From edges to contours
	Contour aggregation metrics and criteria
	Bounding box criterion
	Distance
	Colour Disparity

	Contour aggregation algorithm
	Clutter Removal
	Application example

	Category learning
	Internet-based image retrieval
	From images to object models
	Unsupervised object relevance evaluation
	Object clustering
	Object scoring

	Object selection and category model building

	Object recognition
	Category membership measures
	Maximum inverse 2 distance
	Penalized membership

	Instance-based classification
	Nearest Neighbour
	k-Nearest-Neighbour (k-NN)
	Weighted k-NN


	Performance evaluation
	Basic evaluations measures
	Contour-based object extraction
	Unsupervised object subset selection
	Original UA@SRVC2008 object extraction and selection modules
	Original extraction module combined with the new selection module
	Using the developed modules for object extraction and selection

	Classifiers
	Cross validation with all available images
	Cross-validation with increasing number of categories

	Semantic vision agent
	Maximum inverse 2 distance
	Penalized membership


	Conclusion
	Overview
	Conclusions
	Future work

	Performance tables
	Contour-based object extraction
	Unsupervised subset selection
	Classifiers

	Bibliography

