

Universidade de Aveiro

2011

Departamento de Electrónica, Telecomunicações e
Informática

José Manuel
Santos Melo

OralCard: Sistema de Informação Web para a Saúde
Oral

OralCard: Web Information System for Oral Health

 Universidade de Aveiro

2011

Departamento de Electrónica, Telecomunicações e
Informática

José Manuel
Santos Melo

OralCard: Web Information System for Oral Health

OralCard: Sistema de Informação Web para a Saúde
Oral

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de
Computadores e Telemática (M.I.E.C.T.), realizada sob a orientação científica
do Professor Doutor José Luís Guimarães Oliveira, Professor Associado do
Departamento de Electrónica, Telecomunicações e Informática da Universidade
de Aveiro.

Dedico este trabalho à minha família.

o júri

presidente Professor Doutor Armando José Formoso de Pinho

Professor Associado com Agregação do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro

vogais Professor Doutor António Manuel de Jesus Pereira
Professor Coordenador do Departamento de Engenharia Informática da Escola Superior
de Tecnologia e Gestão do Instituto Politécnico de Leiria

 Professor Doutor José Luís Guimarães Oliveira
Professor Associado do Departamento de Electrónica, Telecomunicações e Informática
da Universidade de Aveiro

agradecimentos

Um obrigado especial ao Professor José Luís Oliveira pela minha integração
no grupo de trabalho de Bioinformática, no Instituto de Engenharia Electrónica
e Telemática de Aveiro (IEETA).
Um obrigado especial ao Pedro Lopes e ao Joel P. Arrais, que me ajudaram
com grande dedicação no desenvolvimento deste trabalho.
Um obrigado ao Nuno Rosa pela ajuda na parte biológica e científica do
trabalho.
Este projecto não estaria concluído sem reconhecer a ajuda prestada pelos
meus pais e irmãs, não só na dissertação como em todo o percurso académico
na Universidade de Aveiro.

palavras-chave

Sistema informação web, Saúde oral, Integração de dados, doenças,
proteínas, ontologias

resumo

Os sistemas de informação na web assumem-se cada vez mais como um
recurso indispensável para os que estudam as ciências biomédicas. Uma das
áreas de estudo destas ciências incide na cavidade oral e nas proteínas que
nela residem.
Existem variadas plataformas online que permitem a pesquisa de dados
específicos a microorganismos e a proteínas associadas, mas estes dados são
genéricos e não são desenhados para casos de estudo específicos.
Este trabalho tem como objectivo desenvolver uma estratégia e um protótipo
para o armazenamento de informação relacionada com a cavidade oral,
visando a sua utilização em investigação. Uma preocupação diferenciadora
prende-se com o objectivo de integrar dados obtidos experimentalmente com
referências existentes na web e estudadas por outras entidades.
O protótipo desenvolvido permite aos investigadores na área das ciências
biomédicas, sem conhecimentos específicos em bases de dados, pesquisar
proteínas, doenças e genes, e integrar novos resultados de ensaios na base
de dados existente.

keywords

Web information system, Oral health, Data integration, Diseases, Proteins,
Gene Ontologies

abstract

Information systems on the web are becoming important resources for those
studying biomedical sciences. One area of study of these sciences focuses on
the oral cavity and on proteins that reside in it.
Several online platforms provide specific knowledge on multiple
microorganisms and associated proteins, but these are generic and are not
designed for specific case studies.
This work aims to develop a strategy and a prototype for the storage of
information related to the oral cavity, aiming their use in research. It will
integrate data collected from experimental results with existing references on
the web and explored by other entities.
The prototype allows researchers in the biomedical sciences, without particular
expertise in databases, searching for proteins, genes and diseases, and
integrating new test results in the existing database.

i

José Melo

Contents

List of Acronyms .. v

List of Figures .. ix

List of Tables ... xi

1. Introduction ... 1

1.1 Motivation and Context ... 1

1.2 Objectives .. 2

1.3 Dissertation structure ... 3

2. Background Concepts and State of the Art ... 5

2.1 The emergence of data integration .. 5

2.1.1 Database Abstraction Layer ... 5

2.1.2 Object-relational Mapping.. 8

2.2 Software Architectural Patterns ... 10

2.2.1 Model-View-Controller .. 11

2.3 Software Development Methodology .. 13

2.3.1 Rapid Application Development .. 13

2.4 Web Application Frameworks (Full-stack) ... 14

2.4.1 Ruby on Rails ... 15

2.4.2 Symfony – Open Source PHP Web Framework 16

2.4.3 Liferay – Open Source Enterprise Portal.. 18

2.4.4 Molgenis ... 19

2.4.5 Conclusions .. 20

ii

José Melo

2.5 Presentation Frameworks for Web Applications (Frontend) 22

2.5.1 Stripes ... 23

2.5.2 Google Web Toolkit ... 24

2.5.3 ZK – Open Source AJAX ... 25

2.5.4 Conclusions .. 27

3. Context of the Problem ... 29

3.1 Data Integration ... 29

3.1.1 Data Warehousing .. 30

3.1.2 Data Integration Alternatives ... 32

3.1.3 Conclusions .. 35

3.2 The Oral Cavity ... 35

3.2.1 Proteins ... 37

3.2.2 Diseases .. 38

3.2.3 Pathways ... 39

3.2.4 Gene Ontology.. 40

3.3 Summary .. 41

4. Work Implementation ... 43

4.1 Backend Development ... 43

4.2 Database Architecture .. 46

4.3 Importing Data ... 49

4.4 Frontend Development .. 55

4.5 Summary .. 61

5. Results ... 63

5.1 Importing Data ... 63

5.2 Frontend ... 65

5.2.1 The Home Page .. 65

5.2.2 Protein Search and Details.. 67

5.2.3 Disease Search and Details ... 75

5.2.1 Direct access using URL Bindings ... 77

5.3 Summary .. 78

iii

José Melo

6. Conclusions and Future Work ... 79

7. Appendix ... 83

7.1 Appendix A - CD ... 83

8. References ... 85

v

José Melo

List of Acronyms

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

BRENDA Braunschweig Enzyme Database

CFML Coldfusion Markup Language

DAO Data Access Object

DBMS Database Management System

DMD Duchenne Muscular Dystrophy

DOCX Microsoft Word File Format

DOM Document Object Model

DW Data Warehouse

EBI European Bioinformatics Institute

EC Enzyme Commission

EDA Enterprise Data Access

EJB Enterprise JavaBeans

EMBL The European Molecular Biology Laboratory

EMP Embden-Meyerhof Pathway

ESB Enterprise Service Bus

ETL Extract, Transform, Load

GB Gigabyte

GO Gene Ontology

GUI Graphic User Interface

GWAS Genome-Wide Association Studies

vi

José Melo

GWT Google Web Toolkit

HGNC HUGO Gene Nomenclature Committee

HMP Human Microbiome Project

HOMD Human Oral Microbiome Database

HTML Hypertext Markup Language

IEETA Instituto de Engenharia, Electrónica e Telemática de Aveiro

IIS Internet Information Services

JDBC Java Database Connectivity

JMS Java Message Service

JPA Java Persistence Architecture

JSON JavaScript Object Notation

JSP JavaServer Pages

KEGG Kyoto Encyclopedia of Genes and Genomes

MMP8 Matrix Metallopeptidase 8

MOLGENIS Molecular Genetics Information System

MPW The Metabolic Pathways Database

MVC Model View Controller

NCBI National Center for Biotechnology Information

ODBC Open Database Connectivity

OLAP Online Analytical Processing

OLTP Online Transaction Processing

OMIM Online Mendelian Inheritance in Man

ORM Object-relational Mapping

PDB Protein Data Bank

PharmGKB The Pharmacogenomics Knowledge Base

PHP Hypertext Pre Processor

QTL Quantitative Trait Locus

RAD Rapid Application Development

RAM Random Access Memory

RCSB Research Collaboratory for Structural Bioinformatics

REST Representational State Transfer

RMI Remote Method Invocation

SMART Simple Modular Architecture Research Tool

vii

José Melo

SOAP Simple Object Access Protocol

SQL Structured Query Language

StAX Streaming API for XML

TDS Transaction Data Stores

UCP-PV Universidade Católica Portuguesa – Pólo de Viseu

UML Unified Modeling Language

UniProt The Universal Protein Resource

UniProtKBAC The UniProt Knowledgebase Accession Code

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C The World Wide Web Consortium

WAF Web Application Frameworks

WSDL Web Service Definition Language

XHTML Extensible Hypertext Markup Language

XLSX Microsoft Excel File Format

XML Extensible Markup Language

XUL XML User Interface Language

ZK ZKoss

ZUML ZK User Interface Markup Language

ix

José Melo

List of Figures

Figure 1: Model of a centralized database architecture ... 6

Figure 2: Model of a client-server architecture .. 7

Figure 3: The 3-tier architecture .. 8

Figure 4: ORM in use in one of many apps using a database 10

Figure 5: The Model-View-Controller Architecture .. 12

Figure 6: Validation configuration using Stripes ... 23

Figure 7: Central Aspects of the GWT framework .. 25

Figure 8: The ZK loader, the ZK AU engine, and the ZK client engine 26

Figure 9: Data Warehousing Architecture ... 31

Figure 10: Molgenis Architecture .. 44

Figure 11: Organism Description Structure ... 44

Figure 12: Generated Web Interface using Molgenis .. 45

Figure 13: The Identifiable entity described in XML .. 47

Figure 14: The Organism entity described in XML ... 47

Figure 15: Class diagram for Molgenis generator .. 48

Figure 16: Excerpt of a UniProt XML file ... 51

Figure 17: Registration of researched UniProts on XLSX file (client version) ... 52

Figure 18: PDB XML file for Structure Id 1A85 ... 53

Figure 19: Excerpt of XLSX file containing other organisms 54

Figure 20: Example of a query to the UniProt REST web service 54

Figure 21: OralCard Frontend Architecture ... 56

Figure 22: REST Query on a specified protein .. 57

Figure 23: Using Stripersist for reading from database 59

x

José Melo

Figure 24: Using the @Repository annotation in the ProteinDaoImpl 60

Figure 25: Using the @SpringBean annotation in the BaseActionBean 60

Figure 26: Importing proteins without multithreading ... 64

Figure 27: Importing proteins using multithreading .. 64

Figure 28: The OralCard home page .. 66

Figure 29: Suggestions in the home page while searching 66

Figure 30: Specifying the organism entity while searching 67

Figure 31: The protein search web page .. 68

Figure 32: Protein Details .. 68

Figure 33: Phanter frame .. 69

Figure 34: List of PDBs related to the protein ... 70

Figure 35: PDB's sequence image .. 70

Figure 36: PDB Structure and link for its explorer .. 71

Figure 37: The SMART tool showing the current protein 71

Figure 38: The STRING protein interaction tool ... 72

Figure 39: The PharmGKB frame .. 73

Figure 40: The BRENDA frame .. 73

Figure 41: The References tab ... 74

Figure 42: The Source relations tab ... 75

Figure 43: The disease search web page .. 76

Figure 44: The disease details web page with related proteins 76

Figure 45: A KEGG pathway related to the selected disease 77

xi

José Melo

List of Tables

Table 1: Comparison of Web Application Frameworks 22

Table 2: Comparison between frontend development frameworks 28

OralCard: Web Information System for Oral Health

1

José Melo

1. Introduction

1.1 Motivation and Context

The growing quantity of information available online is carried out in an

increasingly accelerated way. In order to be processed, this increased amount of data

requires a constant development of computer applications that must adapt to

increasingly complex requirements, particularly those related to integration of

heterogeneous data and composition of distributed services.

Oral health is an area of research where these problems are particularly relevant.

Being a very specific area of study, researchers are faced with many problems in

obtaining clinically relevant information concerning the oral cavity using an easy and

transparent way. This information must be stored and managed using tools that should

provide the user with functionalities to retrieve, store, and search this data. These tools

are designated by databases or more correctly, by database management systems

(DBMS) [1].

Usually, databases for molecular biology are centered either on a specific

organism, such as SGD for Saccharomyces, or on specific research topic, such as

STRING for protein-protein interaction. In addition, databases like Entrez or Uniprot

play a major role as hubs of biomolecular information, storing data from multiple topics

and several organisms.

Despite this effort to create long lasting hubs of biomedical data has been very

successful, one should not ignore the major contribute that many more specific

databases provide to the actual state of science. They are of special interest for small

communities that share common research interests. Examples include the DMD

OralCard: Web Information System for Oral Health

2

José Melo

database, specialized on Duchenne Muscular Dystrophy, or the HEART specialized on

heart diseases.

Aware of the redundancy of features shared by many of those databases, and of

the lack of technical expertise from the curators, several frameworks have been

proposed to ease the task of deploying new databases. Examples include LOVD [2],

specialized on annotating locus specific databases, GMODWeb [3] for organism

specific databases, or Molgenis [4] that allows deploying more generic biomedical

databases. Despite the validity of those frameworks, there is none focused on simulating

the behavior of a single human organ or set of adjacent organs. This need to partition

the data of the “whole” human system is relevant because, on the one hand, it reduces

the time and resources involved in searching, processing and curating information, and

on the other, it facilitates the use of algorithms to retrieve biologically meaningful

results.

Following this need emerged, in partnership with the pole of the Catholic

University of Viseu, the OralCard project.

OralCard will be a fundamental resource for salivary diagnostic processes of

protein biomarker studies of health and disease based on the analysis of saliva samples.

With this information system, clinical samples from patients’ saliva may be better

analysed contributing to improved diagnostic methods and to the development of more

effective therapies.

1.2 Objectives

The project’s main objective is the development of a web information system,

focusing on oral health but useful for both researchers and dentists. A comprehensive

integrated resource of the saliva proteins, currently missing in the field of oral biology,

would enable researchers to understand the basic constituents, diversity, and variability

of the salivary proteome, allowing the definition and characterization of the human oral

physiome. This will be achieved at two levels:

OralCard: Web Information System for Oral Health

3

José Melo

- For the application developer, a proprietary database and a set of tools to

retrieve biomolecular information from the major platforms, like NCBI and

UniProt;

- For the end-user, a Web portal (OralCard) directed to non-expert users, like

researchers and dentists, with a set of tools for searching and filtering data

from the database, and the possibility to add new information to it.

Through OralCard Web Portal, users will be able to perform their queries and

search among a list of provided results. For each entity (proteins, diseases, gene

ontologies), users will be able to consult and analyze a list of dependencies and

information retrieved from other major databases.

To demonstrate the usefulness of this project we also present its application in the

oral cavity research domain. A platform designed to integrate protein data related to this

field will be implemented. This will include salivary proteins obtained in proteomic

studies by different research groups, as well as proteins potentially produced and

excreted by microorganisms assigned to the oral cavity. The ultimate goal is to present a

tool for the community that contains accurate, manually curated and updated data

regarding the oral cavity, to enable interactions, categorization and exploration.

OralCard Web Portal should offer a user-friendly interface. Ideally, the portal

should take advantage of the latest technologies to ignore the concept of static pages, to

give the users a fast search engine and ready to use at any time, and provide a very

intuitive interface.

1.3 Dissertation structure

This dissertation is divided into the following chapters, excluding this one:

Chapter 2 – Background Concepts and State of the Art, presents all the tools

and frameworks that were considered and studied before choosing the best to proceed

with the project itself;

Chapter 3 – Context of the Problem, discusses the requirements for the

platform, alternatives for data integration, and the reason why a specific solution was

chosen instead of others. This section presents the motive and importance of

OralCard: Web Information System for Oral Health

4

José Melo

implementing the presented solution to the oral cavity, as the scientific and biological

topics needed to understand the current problem;

Chapter 4 – Work implementation, divided into three main topics, presents the

database architecture, the backend architecture, the frontend architecture, the decisions

made concerning to the backend implementation, as well the decisions and

implementations made concerning to the final frontend created to tackle the problems

discussed earlier;

Chapter 5 – Results, presents the measures made while importing biomolecular

data into the proprietary database and some screenshots of the final web portal;

Chapter 6 – Conclusions and Future Work, presents the review of the most

important aspects during the development of this work, discusses the results achieved

and presents some of the lessons learned as well as possible future work within this area

of research.

OralCard: Web Information System for Oral Health

5

José Melo

2. Background Concepts and State

of the Art

2.1 The emergence of data integration

The term data integration took place when databases began to be used

everywhere. One particular use case is related to the biological databases, where

information increases every day from new achievements in research. With the arrival of

high-throughput methods, the field of biology is increasingly faced with the problem of

storing, indexing and retrieving the innumerable data types and sources available. Also,

the rise of the Internet has meant that data is accessible over the web, although in

differing formats and semantics.

The goal of data integration is to incorporate these web-enabled biological

resources that reside in multiple and different sources, and assemble it in a unified way.

Examples are relational databases, ontologies and XML repositories [5].

There is not a universal approach to data integration, and many of the techniques

that are being used by IT expertise are still evolving.

Data integration focuses mainly on databases, which are an organized collection

of data. Just like a file system, a database is an organizational structure for data, making

it easy to search, to access and to manipulate.

2.1.1 Database Abstraction Layer

There are several ways to establish a database. Three types of architecture will be

referred: the centralized database architecture, the client-server architecture and the 3-

tier architecture.

OralCard: Web Information System for Oral Health

6

José Melo

The centralized database architecture (Figure 1) is a design that was implemented

in previous systems, which ran on mainframe computers to provide processing power

for all the most common functionalities, such as application, user interfaces and DBMS

functionalities. Most users accessed these functionalities using a computer terminal that

did not have almost any processing power. In order to concentrate all the treating in one

side, this was the kind of architecture used [1].

Terminals

Mainframe

Hardware

CPU
Controller Controller Controller

Memory Disk I/O Devices

Software

DBMS
Terminal display

control
Applications

Operating system

Display Monitor Display Monitor Display Monitor Display Monitor

Figure 1: Model of a centralized database architecture

Over time, users replaced their machines with computers that had some

processing capability, generating a new type of architecture: the client-server

architecture (Figure 2). This design is built on a framework that contains multiple

computers that are connected using a network. In this type of planning, the client is the

entity that can provide the user interface and some local processing; the server is the

entity that is responsible for providing services to the client, which in this particular

case refers to a database layer access [1].

OralCard: Web Information System for Oral Health

7

José Melo

Client Server

Applications DBMS

db1

db2

db3

Network

Figure 2: Model of a client-server architecture

This architecture is currently being used by most of the online systems, but there

is another type of design that has been expanding in the last years and over the time may

replace the client-server model: the 3-tier architecture (Figure 3). In this type of design,

functionalities are even more isolated than in the previous model. The core design

shows that the two main entities (client and server) cannot connect directly. A

middleware layer is used to do this job. The main purpose is the client being able to

send requests in the form of middleware processes requests, which are routed to the

server and interpreted. A response from the server goes the same way, which is then

filtered and the formatted data is finally sent to the client [1].

According to Heerschop [1], “this is the model that better fits the growth of the

new generation Internet and the shift from static to dynamic pages”. In this model, the

client corresponds to a web browser, just like Google Chrome or Mozilla Firefox, and

the server is a DBMS implementation. The middleware layer usually is a web server

like Apache Tomcat or Internet Information Services (IIS) from Microsoft.

OralCard: Web Information System for Oral Health

8

José Melo

Client Database Server

Web browser DBMS
db1

db2

db3

Web server

Web server Database driver

Intermediate language /
scripting

Http result Http query query answer

Figure 3: The 3-tier architecture

The use of dynamic content over the Internet is currently increasing, along with

the number of pages viewed in the Web. Web servers are being used more often, not

only for providing information to their staffs, but for administration purposes too. In

resume, the increasing amount of data that is being stored and accessed is a reality, and

this functionalities are possible due to network communications [1].

Most of the current online database architectures are not based in centralized

proprietary systems, but are based in the last two referred models: client server or 3-tier

models. This means that there is the need to work on methods necessary to access

information from the DBMS. All database vendors, like MySQL or Microsoft SQL

Server, have been developing their own methods for accessing data from these

management systems, including property languages and APIs used to provide

connectivity, such as JDBC (Java Database Connectivity) or ODBC (Open Database

Connectivity) [1]. These plugins make possible the access from a web application to a

database system. Web developers only have to understand how this connection to the

DBMS can be done, concentrating most of the efforts on improving web application

functionalities. This leads to a new concept, the object-relational mapping.

2.1.2 Object-relational Mapping

Object-relational mapping (ORM) can be mentioned has the join of two

concepts: the object-oriented software development and relational databases. Object-

oriented development is the key to develop flexible and scalable software systems

because it ensures “high productivity, improved reusability, better quality and enhanced

OralCard: Web Information System for Oral Health

9

José Melo

maintainability”. Relational databases are used by object-oriented applications because

they provide easiness on persistent storage needs. It is simple and features solid

mathematical basics and great performance on transaction processing. This relationship

comes by mapping classes in the object model to tables in the relational model. It might

seem that there is a direct relationship between the object model and the tables of the

data model, but using further analysis, the issues involved in this process can be more

complex [6].

An ORM is made up of objects that provide access to information contained in a

database, and keep business rules within themselves. A clear advantage of using this

approach of object-relation abstraction layer is preventing the programmer from using

syntax that is specific to a database. Using this layer, the programmer can see his calls

from the model objects to SQL queries that are customized for the database currently

being used by the application. The automation of this task becomes an advantage, in

such way that changing to another database system becomes a trivial task [7].

Thomas, D. [8], gives a nice example of ORM libraries mapping database tables

to classes. If a database contains a table “orders”, the application will have a class

named “Order”, in which its rows matches to objects of the class. One instance of

“order” will be represented as an object of class “Order”. Inside the program, several

attributes will be used to get and set each table column. For instance, the “Order” object

can have methods to get and set the amount attribute, the sales tax and others.

According to Hart, A.M. [9], a developer can radically reduce the time taken to

prototype an application using the Hibernate approach. Hibernate includes the recent

superiority mentioned in the ORM tool, such as transparent persistence, dirty checking,

efficient strategies for fetching data and a two-level cache. “Development with

Hibernate can proceed in a top-down, bottom-up, middle-out or meet-in-the-middle

fashion”.

Programmers usually prefer to work with persistence data detained in

application objects instead of using direct SQL syntax for accessing information in the

database, even if this means to work around the mismatch between data in tables and

object state. This is possible because ORM systems resolve this mismatch, being

responsible for transporting data to and from a relational database to the right objects,

using object-relational (O/R) mappings (Figure 4). Entity Java Beans (EJB) currently

uses this approach, using Hibernate 3.0, known has Java Persistence Architecture (JPA)

[9].

OralCard: Web Information System for Oral Health

10

José Melo

DatabaseDatabase

Objective intensive app ORM

Other apps

Figure 4: ORM in use in one of many apps using a database

The ORM approach makes possible the programmer to think in terms of entities

and their relationships, because it is responsible of controlling these relationships at

runtime. It keeps track of each update made in the object instance and converts it to the

necessary SQL raw syntax to make the same update in the database at commit time

(using the insert, update and delete statements) [10].

2.2 Software Architectural Patterns

 Architects and managers usually find themselves unable to evaluate the

economic impact of the architectural decisions they make. In order to help the

optimization of the software systems “value”, software engineering items were created,

attending the business goals of an enterprise. But the value and quality consequences of

architectural patterns are difficult to predict, concerning to uncertainty and change. And

this is especially important because “these decisions affect meeting an organization’s

cost, resource, time to market and quality goals” [11].

Software architectural patterns are intended to support the creation of designs that

meet quality attribute requirements. This concept has a broader scope than the concept

of a software design pattern, since it addresses numerous issues in software engineering

(computer hardware limitations, high availability and business risk) [11].

Examples of architectural patterns are ETL (Data Extraction Transformation &

Loading), Transaction Data Stores (TDS/OLTP), Dimensional Data Modelling and

Peer-to-peer. Some architectural patterns have been implemented within software

frameworks, like the Model-view-controller (MVC).

OralCard: Web Information System for Oral Health

11

José Melo

Because most of the frameworks that will be explored in this section are MVC

based, it is necessary to understand in detail what this pattern is all about.

2.2.1 Model-View-Controller

The Model-view-controller (MVC) is a pattern used to describe the requirements

necessary to develop a graphic user interface (GUI) application using an object-oriented

programming language. It was originated with Smalltalk-80, but has been used for

developing GUI applications in several programming languages [12].

Smalltalk-80 and the MVC paradigm were born for the Dynabook project, “a

portable personal information management tool envisioned by Alan Kay” [13].

The main idea for the MVC model is that the specifics of an application should

not be confused into the user interface concerns, being two distinct aspects. The user

interface is best factored into two components: presentation and interaction [13].

The MVC requires the programmer to use three types of objects to develop their

own applications: models, views and controllers. Models contain all the system

information, along with all the methods necessary to access and manipulate this

information in the backend (like a DBMS), representing the principal application

domain and encapsulating implementation details of the application’s configuration and

behavior. Views are responsible of presenting the accessed information to the user and

represent the way in which the model is presented to the user. Views should manage a

region of the display and make sure this area is consistent with the state of the model.

Finally, controllers are used to process user input data and update the current model and

view appropriately [12].

Usually each view/controller pair is connected with a single model, but a model

may have multiple view/controller pairs. When a model is modified, its associated

view/controller pairs should be changed to reproduce this modification. This is possible

due to a message sent using broadcasting to all the dependents by the model [13].

There are two types of MVC: the functional MVC and the object-oriented MVC.

As it was referred earlier, in the first model a program is structured as a model (domain-

specific aspects), view (abstract user) and controller (command loops). In contrast to

object-oriented MVC, a controller calls its view to get user input and to display results,

being active and residing of a number of recursive functions, and it calls its model to do

a domain-specific work [14].

OralCard: Web Information System for Oral Health

12

José Melo

The MVC paradigm indicates a standard cycle of interaction, beginning with a

user executing an input action. This action will result in the controller notifying that the

model has been changed. In the case of the view, it can update its display if needed. The

controller can update its method of interaction, according to the new model state. In

some cases, the model can broadcast enough information so that its dependents do not

need to ask for further information about the new state. This reduces the number of

requests/responses going around the system after the state change [13].

The MVC abstraction paradigm can be represented as follows (Figure 5):

Controller

View Model

Database

1

34 2 2

1. Browser sends request
2. Controller interacts with model
3. Controller invokes view
4. View renders next browser screen

Figure 5: The Model-View-Controller Architecture

The first step consists on a request originated by the client (web browser), which

usually consists on a user input action. This request is sent to the controller which will

interact with the model, questioning it about its state. The model will broadcast its state

to the controller and to the view using specific messages. Finally the controller will

invoke the respective view that will render the next client data (to be presented in the

browser screen) [8].

Thomas, D. [8] refers that MVC was originally intended for usual GUI

applications, “where developers found the separation for concerns led to far less

coupling, which in turn made the code easier to write and maintain”.

OralCard: Web Information System for Oral Health

13

José Melo

2.3 Software Development Methodology

A software development methodology in software engineering is a framework

that is used to structure, plan, and control the process of developing an information

system. It is important to understand the basic concepts of a software methodology in

order to evaluate a process and framework that assesses methodologies. This will enable

the reader to put the process and framework that is under investigation in a better

context, and aid in the understanding of the presented results [15].

There are several methodologies available, like the waterfall development,

prototyping, incremental development and spiral development. In this particular case

study, we are interested in a methodology that would make the development and

delivery of a high quality system faster and, if possible, with no costs. This leads to the

key objective of rapid application development.

2.3.1 Rapid Application Development

According to Coleman, G. [16], “the term Rapid Application Development or

RAD is taken to projects based around tight timescales, which use prototyping and

combine high-level development tools and techniques”.

This term was first used by James Martin in the 1990s to “distinguish the

methodology from the traditional waterfall model for systems development” [17].

There is no general definition for RAD, but it can be defined in two ways: first

as a procedure aimed at suggesting certain stages in software development, like

iterative models of software construction; and second as a group of tools that makes

object development faster, design GUIs and reusable code for client/server applications

[17].

Agarwal quotes Martin, when he writes the four fundamental aspects of fast

development: tools, methodology, people and management. These tools include the

aptitude for “planning, data and process modeling, code generation, and testing and

debugging”. A RAD methodology includes two kinds of stages: three-stage and four-

stage cycles. The four-stage cycle consists in requirements planning, user design,

construction and cutover, while in the three-stage, the first two features are merged in

one only activity. In a RAD-type development, the requirements planning and user

design can take up to 30% of the total effort [17].

OralCard: Web Information System for Oral Health

14

José Melo

RAD supporters say that this technique really improves productivity, reducing

delivery time and “gaining high usage because of the extent of user involvement in the

development” [16].

Comelan, G. [16] suggests that RAD projects can fail because three aspects are

not accurately addressed: choosing the right team, management, and customer support

of the project and the methodologies used. Nevertheless, RAD approach has some

advantages like the ease of implementation, improved user satisfaction and the short-

time to market [16].

RAD becomes attractive in these days because the world is lined by deadlines

and demanding users. The faster a software project is concluded and its capacity to

support new business can make the difference in the competitive advantage. “The

popular press extols its virtues with adjectives like evolutionary, iterative, interactive,

and dynamic, emphasizing the delivery rate increases facilitated by RAD, which range

from 25% to 1 000%” [17].

A complete set of requirements needs to be written before an application starts to

be developed, including UML diagrams and documentation, according to the usual

software engineering life cycle. The lack of versatility of programming languages and

the general speed of development are responsible for this need, joining the client’s

rationality and their difficulty of changing their minds regularly [7].

This way, the primary positive aspects of RAD are promoting strong

collaborative atmosphere and dynamic gathering of requirements, and the business

owner actively participates in prototyping, writing test cases and performing unit

testing. The primary negative aspects concern to the dependence on strong cohesive

teams and individual commitment to the project, and decision making relies on the

feature functionality team and a communal decision-making process with lesser degree

of centralized project management and engineering authority.

2.4 Web Application Frameworks (Full-stack)

Nowadays, web development is one important activity in the world of software

development, with an extensive array of tools available for developers.

A web application framework is intended for implementing a web server, capable

of handling multiple states and being designed to process a received event from among

OralCard: Web Information System for Oral Health

15

José Melo

a group of pre-determinable events to toggle from one state to another. Each state has

associated with it one or more model objects for providing the server with business

logic and access to persistent data. An application framework should also include a

context object class in order to create objects containing data relating to each state; a

context object class providing for an entry method for execution upon entry state; and

an exit method for execution upon exit of the state [18].

Next, we present several full stack frameworks, its pros and cons, and the reasons

on how the final choice was made.

2.4.1 Ruby on Rails

According to the official website, Rails is a web application development

framework written using the Ruby language, designed to make easier programming web

applications, “by making assumptions about every developer needs to get started” [19].

Ruby on Rails adopts several principles. These are:

 DRY – “Don’t Repeat Yourself” – indicates that it is not a good practice to

write the same code several times while developing a single web application.

Rails can reduce the amount of duplicated code, providing the developer one

place (according to the MVC architecture) so he can write his code;

 Convention Over Configuration – means that Rails makes assumptions about

what the user wants to do and the way he is about to do it, replacing the need

to write several configuration files. “It allows writing a Rails application

using less code than a typical Java web application uses in XML

configuration” [8, 19].

Thomas, D. [8], suggests that every Rails web application is developed using the

MVC convention. There are other tools that follow the MVC architecture, such as

Tapestry and Struts. In contrast, the author proposes that “Rails takes it further by

generating a working application that has place for each chunk of code, and all chunks

interact in a standard way”. In addition, Rails makes easy testing a web application by

creating test stubs every time the developer adds a new functionality.

Rails includes built in support for AJAX and RESTful interfaces integration and

it’s easy to deploy several releases of an application to several servers using a single

command tool (with the possibility of rolling back) [8].

OralCard: Web Information System for Oral Health

16

José Melo

This framework adopts the four values expressed in the manifesto for agile

software development:

 Individuals and interactions over processes and tools;

 Working software over comprehensive documentation;

 Customer collaboration over contract negotiation;

 Responding to change over following plan [8, 20].

With Rails “there are not heavy toolsets, no complex configurations, and no

elaborate processes”. What the developer creates is reflected at the same time in what

the customer sees, being “an intrinsically interactive process” [8].

In contrast, a web application designed with Rails is hard to debug, and its

development philosophy relies in general assumptions, and after several functionalities

implemented, it’s hard to remember what is going on in the background.

Rails also requires plugins and libraries to be all up to date and deployed along

with the web application, and when the app or server crashes, the dedicated web server

doesn’t automatically restart.

Despite its advantages, Ruby is a slow dynamic language. The new version is

doing to improve this, but statically-typed languages, such as Java or C#, is

considerable faster.

2.4.2 Symfony – Open Source PHP Web Framework

The Symfony framework is a full-stack model-view-controller (MVC) free

framework that makes it easy to develop websites in a faster way. Mainly it consists of a

library of consistent classes written in PHP. It also provides a group of good practices

which are projected to help the user to program maintainable and secure websites [21].

Symfony is packed with some features that consist on separating business rules,

server logic, and presentation rules of a web application. It contains tools and classes

designated to reduce the amount of time spent developing a complex web application.

Using this, common tasks are easily automated and the same piece of code can be used

in several applications at the same time. This way, the developer does not need to

rewrite code for mutual tasks every time a new application is built [7].

OralCard: Web Information System for Oral Health

17

José Melo

Symfony is completely written in PHP 5, being tested in several real-world

projects (Dailymotion
1
, Askeet

2
 and Delicious), and is being used in many high-demand

e-business web platforms. Symfony is compatible with the most common DBMS:

MySQL, PostgreSQL, Oracle, and Microsoft SQL Server [7].

Symfony has the advantage of being easy to start a new complex project (with

previously planned objects and database schema). Being bundled with improved

security methods to prevent attacks and code injection, the developer does not have to

worry with security specifications.

At the moment, this framework is fully compatible with Propel and Doctrine

object-relational mappings (ORM) [22].

According to Zaninotto, F. [7], Symfony was built with the main purpose of

fulfilling the following requirements:

 Easy to be installed and configured in the supported platforms;

 Independent of any DBMS;

 Follows the premise “convention over configuration”;

 Compatible with the best web development practices and design patters;

 Ready for enterprises (use of existing policies and architectures);

 Easy to extend, using vendor libraries.

Several tasks related with web applications development become automated

when using Symfony. Mainly:

 It is possible to use templates and layouts written by HTML designers, not

having to worry about how the framework works;

 Cache management takes few bandwidth and server load;

 Automated pagination, sorting and filtering;

 Easy to implement AJAX interactions [7].

Finally, Symfony provides several development environments, including many

tools that can automate several common software engineering tasks. These are:

 Code-generation tools and simple back-end administration;

 Built-in tools to make easy test-driven development;

 Logging features [7].

1
 http://www.dailymotion.com

2
 http://www.askeet.com/

http://www.dailymotion.com/
http://www.askeet.com/

OralCard: Web Information System for Oral Health

18

José Melo

Symfony has the following drawbacks:

 There is a learning curve. At first everything seems unnecessarily complex,

such has the directory structure;

 Despite being easy to start up and create the complex hierarchy of a project, it

is hard to customize individual parts;

 Documentation exists, but as a big project, the developer needs to filter lots of

it while learning.

2.4.3 Liferay – Open Source Enterprise Portal

Liferay is an open source framework that is designed for web portals. It can

include several features into a portal, like blogs, wikis, discussion forums, and

document management applications, by offering a runtime environment for hosting

Java-based portal applications, known as “portlets”.

A web portal provides an entry point to distributed information in the web,

offering a unified way to access it. According to Sarang, P. [23], and as described in the

Java Portlet Specifications (JSR 286), “a portal is a web-based application that

commonly provides personalization, authentication, [and] content aggregation from

different sources and hosts the presentation layer of information systems”. It is a user-

customizable web site that serve as a gateway to several contents collected from several

sources [23].

Liferay Portal provides a framework for creating any type of portals, like

personal, academic, regional, government, or sports web portals. Web applications

developed with this framework can be deployed in several web servers, because it

conforms rigorously with the standards [23].

Referring Sarang, P. [23], “a portlet is an application that delivers content to the

user (…) [which] includes one or more portlets, and a portlet container manages the

portlets”.

Liferay has several features that are popular among the developer community,

for instance:

 Built with Java;

OralCard: Web Information System for Oral Health

19

José Melo

 Based on tested components. It uses Apache ServiceMix, Hibernate, Java

J2EE/JEE, JGroups, jQuery, PHP, Spring, FreeMarker, and others.

 Use of standards to communicate with other software. It makes it easy to send

information from the framework to other systems. For example, AJAX,

OpenSearch and Open platform with support for web services (JSON, REST,

RMI), and others [24].

Many known vendors provide their own tools for creating these type of portals,

and servers to host portals. Oracle WebLogic Portal, IBM WebSphere Portal Server,

Glassfish Web Space Server, and Microsoft SharePoint Server can be mentioned.

Liferay framework is a portal server among open source technologies [23].

2.4.4 Molgenis

Molgenis (Molecular Genetics Information System) “is a tool for rapid

prototyping of data portals for life science projects”. It was developed by Morris

Swertz to answer the need for a suitable structure to arrange and manage data from the

Genomics research laboratories and research workflow. The amount of data produced

by high-throughput experiments is increasing at large steps, so there was the need for a

tool for processing this kind of heavy information [25].

Molgenis is known for providing bioinformaticians an easy way to model

biological data structures and simple user interfaces. By writing two simple XML files,

Molgenis converts it to a ready-to-use web application, including database, user

interfaces, exchange formats, REST/JSON, SOAP and RDF. Every time Molgenis is

generated, it automatically generates SQL raw instructions that design a specific

database, and script analysis tools in R or HTML code that would take lots of time and

effort to write by hand. This way it is easy to find errors, and any change in Molgenis

code is visible to every instance just by doing a re-generation [25].

Swertz [25] reports that Molgenis toolkit was successfully evaluated for the

rapid prototyping of many types of biomedical applications, such as GWAS
3
, QTL,

proteomics and biobanking. It makes easy to upload and exchange data and technical

documentation by featuring a tab-delimited file format. Existing databases can be easily

3
 http://gwas.nih.gov/

http://gwas.nih.gov/

OralCard: Web Information System for Oral Health

20

José Melo

converted to a standard Molgenis model, using the “ExtractModel” procedure included

in the package.

With Molgenis we can create a customizable XML model file with several

entities, each one corresponding to a table in the database backend, with different fields.

With a reusable framework and generators, we can automate common patterns and

reuse in family of projects. New features can be added once and therefore automatically

added. This becomes part of five main solutions introduced by Molgenis framework:

 Use of automatic code generation;

 Customized data model based on standards;

 Storage of datasets as black boxes, instead of decomposing them in database

tables;

 Loose linking to other programs for improved flexibility;

 Low-maintenance web-based user interface [4].

According to Swertz [4], Molgenis was developed and tuned up because of the

needs of genomic researchers, requiring a low budget and being a completely

customizable framework. This flexibility and simplicity was accomplished by making

Molgenis responsible for data management only. File decomposition and processing

tasks are attributed to dedicated software, ensuring that Molgenis does not need to be

upgraded because of new versions of data formats and tools.

Specifying all the entities using just XML definitely reduces the time spent by

the researcher on designing directly on a SQL platform all the database, which is a way

to focus more on other aspects, such as the final user interface or collecting useful data.

2.4.5 Conclusions

Initially, it was necessary to do a review on the frameworks that offer the full-

stack features. In addition to the four that have been mentioned before, there are others

based on C++, Python, Perl, ASP.NET and CFML (ColdFusion Markup Language).

The reason why the respective frameworks were chosen concerns itself primarily by

previously acquired knowledge in the languages of Java and PHP. Concerning to Ruby

on Rails, the amount of functionality could justify an investment in time learning the

Ruby language.

OralCard: Web Information System for Oral Health

21

José Melo

Symphony includes a built-in authentication system, and has more of a sense of

structuring applications than Rails does. This means that it is easier to move pieces of

functionality between Symfony applications without having the need of plugins used by

Rails. On the other side, there are more configuration files, being possible to change

settings at many levels (whole of Symfony, per application or per module). For

instance, validation can be carried out in configuration files rather than in model classes,

which makes it easier to share validation code around but it increases the number of

files to manage.

The architecture in Symfony is based on the MVC pattern, with a front-controller,

very similar to Rails. Configuration in Symfony works in a similar way to ActiveRecord

and is straightforward.

AJAX support in Symfony is built-in (using Prototype), and it has the same

concept of helpers as Rails, meaning we can build interfaces in a similar way to Rails

interfaces.

Liferay, as an enterprise portal, is designed for integrating information, people

and processes across organizational boundaries. The main advantage of this framework

over the previous ones is that no programming skills are required for basic website

installation and administration.

Molgenis is designed for rapid generation of bioinformatics web portals, and uses

Java as the programming language. Comparing this framework with the previous ones,

it does not add anything new. For this project, and for the first step, we needed a

framework that could generate a database, methods to update it in the simplest way

possible, and a simple frontend to check the results and run simple search queries. This

is the main reason why Molgenis was chosen instead of other framework. The Molgenis

framework API is a useful tool regarding on updating the database, and has the simplest

and most functional frontend out of the box.

Table 1 resumes the most relevant features and makes a comparison between

those frameworks: languages, AJAX support, MVC approach, ORM and some other

features like the possibility of migrating from databases and security options.

OralCard: Web Information System for Oral Health

22

José Melo

Table 1: Comparison of Web Application Frameworks

2.5 Presentation Frameworks for Web

Applications (Frontend)

In web application development, there are several ways to achieve results. The

developer can choose between normal servlets and JSP, which gives high flexibility and

good control over functionalities. While using a framework, certain features are not

available or not in the way the developer wants to be, leading to a lot of small

configurations around it. Frameworks are written in a generic way and try to cover

many situations, extending the code and, overall, reducing performance.

On the other side, if the web application consists in a complex project, the

developer will end up developing his own framework. This will lead to a diversity of

functionalities known only by the developer, and it will become hard for other

collaborators to understand and improve code. And if these collaborators change over

the time, spreading knowledge over the new team will have costs.

This is the reason why we chose to develop the OralCard web application using a

frontend framework. It will reduce the amount of time on complex configurations,

Framework Language Ajax
MVC

framework

MVC

Push/

Pull

ORM
Testing

framework

DB

migration

framework

Security

Symphony PHP

Prototype,

UJS and

PJS

Yes Push
Propel,

Doctrine
Yes

Yes, with

plugin

Yes,

with

plugin

Ruby on

Rails
Ruby

Prototype,

jQuery

Yes (Active

Record and

Action Pack)

Push
Active

Record
Yes Yes

Yes,

with

plugin

Liferay Java Alloy UI Yes Push Hibernate Yes Yes Yes

Molgenis Java No Yes Push Hibernate Yes Yes

Yes,

with

plugin

OralCard: Web Information System for Oral Health

23

José Melo

repetitive code, and because it has good documentation, other contributors can later grab

the application code and improve it.

We will refer three presentation frameworks: Stripes, Google Web Toolkit, and

ZK.

2.5.1 Stripes

Stripes is a framework that makes developing Java web applications easier

because it eliminates much of the configuration that traditionally has been associated

with Java web development [26]. For instance, if the developer wants to perform forms

validation, there is the need to simply add the correspondent annotation in the action

class, and leave it to Stripes (Figure 6).

Figure 6: Validation configuration using Stripes

Tim Fennell, creator of the Stripes framework, took advantage of the new

features of Java 5 and removed the need for extensive configuration over XML files.

The only XML file needed is the web.xml that is used to start any Java web application.

Using this framework, web development becomes easier because the developer does not

have to concern about shaping his code to the framework restrictions. Stripes is

designed to adjust to the programmer’s code [27].

Raw Java web development has several disadvantages, such as many repetitive

low-level tasks. Stripes automatically takes care of this, so the programmer can

concentrate his efforts on thinking about the applications features instead of “writing

clear, concise, readable, and maintainable code” [27].

Stripes framework is a MVC framework, mostly presented in the controller and

view parts. “It interacts with the programmer model leaving it independent of anything

Stripes-specific”. The relevant benefit is that data can be transported between the

programmer model and the controller/view without having to configure any complex

feature in some configurations files [27].

Stripes lets the developer choose how the model will be mapped to a database,

and several other frameworks can be used along with it. It’s intended to focus just on

@Validate (required=true, minValue=21, maxValue=100)

int temperature;

OralCard: Web Information System for Oral Health

24

José Melo

the web part of a web application development. Each request is converted into an action

which is responsible of running a Java method that will do the designated job, returning

a result. This result will be interpreted and Stripes provides the appropriate response for

the web browser [27].

Daoud, F. [27], presents a quick summary on Stripes:

 Smart Binding: Stripes makes easy the relationship between URLs,

parameters and events from HTTP to Java methods and classes. This way, the

code becomes clear to the developer, becoming easy to make an

establishment between classes, methods and properties;

 Autoloading: This means that the developer can add, remove and rename his

classes without having to worry about specifying it in configuration files;

 Validation: It’s easy to validate user input fields with Stripes (Figure 6);

 Exception handling: It is possible to design error specific pages which will

be shown when something goes wrong with the application;

 Interceptors: Before providing a response, Stripes can run interceptors, small

pieces of code developed by the programmer to specific tasks, becoming easy

to alter the data flow. As an example, a user should be logged on if he wants

to realize a desired action. The method to login can be run before showing the

desired web page;

 AJAX Integration: According to the natural request-response nature of

Stripes, it becomes easy to integrate AJAX functionalities into the web

application;

 Testing: Stripes comes with a bundle of tools created to help the developer to

create automated tests.

2.5.2 Google Web Toolkit

Google Web Toolkit (GWT) is a set of development tools, programming

utilities, and widgets, written using Java language, which allow creating rich web

applications. The main feature that defines GWT is that it makes possible to write the

browser-side of the application using Java instead of JavaScript [28].

According to Hanson, R. [28], the need to write Internet applications using Java

instead of JavaScript comes from the increasing size and complexity of Internet

OralCard: Web Information System for Oral Health

25

José Melo

applications, which are becoming richer every day. Nevertheless, writing raw JavaScript

is still possible using GWT.

GWT provides several tools for server communication, like wrappers that are

related with AJAX development and a set of classes to support JSON message format.

These tools make it easy to integrate with frameworks such as JSF, Struts, and EJB, but

also to cooperate with services hosted in servers. JUnit testing framework is also

supported with this toolkit, and it even is bundled with a special hosted-mode browser

that helps the development and debugging of an application in Java without the need to

deploy code to the server [28].

Hanson, R. [28], provides a representation of the central aspects of GWT (Figure

7). It’s visible the tools that are tied up to the compiler, and the Java libraries that all

together make up the GWT API.

JSNI
JRE

Emulation

Java to JS
Compiler

GWT

Widgets
and

Panels
I18N RPC

XML
Parser

History
Mgmt.

Junit
Integration

GWT API

Figure 7: Central Aspects of the GWT framework

2.5.3 ZK – Open Source AJAX

ZK framework is a method to incorporate AJAX into web pages. The entire

collection is based on JavaScript and AJAX. It is an event-driven, component-based

framework that enables rich user interfaces for web applications. It includes an AJAX-

based event-driven engine, a rich set of XML User Interface Language (XUL) and

XHTML components, and a markup language designated by ZK User Interface Markup

Language (ZUML). Unlike several others AJAX frameworks, ZK does not require the

developer to have strong knowledge on JavaScript programming, because it generates

all the necessary JavaScript code. It just requires some knowledge on HTML [29, 30].

OralCard: Web Information System for Oral Health

26

José Melo

In ZK, the developer does not need to handle with raw AJAX code. According

to Chen, H. [29], ZK simplifies the development of rich AJAX web applications

because:

 The event-driven engine carries the intuitive desktop programming model to

web developing;

 The XUL and XHTML components empower web applications by using off-

the-shelf building blocks;

 The ZUML markup language makes the design of rich user interfaces easy.

The AJAX-based mechanism of ZK can be described as follows (Figure 8) [29]:

Browser

Server

Internet

ZK Client Engine ZK AU Engine

ZK Loader

Create

Update

ZK
Components

DOM
URL Request

HTML page

ZK Request

ZK Response

Figure 8: The ZK loader, the ZK AU engine, and the ZK client engine

The ZK Loader receives an incoming URL request from the browser side and

generates the corresponding HTML page, including HTML, CSS, and JavaScript code,

and ZK components at the server side. Then, it sends the generated HTML page to the

client and to the ZK Client Engine. This engine is present on the client side, and its job

is to monitor incoming JavaScript events queued in the browser. If any of these events

are triggered, the ZK Client Engine will send those to the ZK AU Engine. The AU

Engine is responsible for receiving the last AJAX requests, updating ZK Components

and sending back an AJAX response to the client. Finally, the ZK Client Engine

receives this response and updates the corresponding content in the browser DOM tree

[29].

It includes several advantages like injection of code on the JSP page using tags,

use the components in the form of Java classes, and a combination of these two. With

OralCard: Web Information System for Oral Health

27

José Melo

this framework, it is not needed any backend framework, and all of the most known

middleware is compatible, like JDBC, Hibernate, EJBs and JMS [29, 30].

2.5.4 Conclusions

There are countless frameworks available in the market in order to develop web

applications. We reviewed Stripes, GWT and ZK because these are ones of the most

used in the Java language fragment.

ZK main advantage is the facility on integrating JavaScript and AJAX into the

application. It handles all the intermediate procedures needed to establish HTTP

communications between requests and responses, reducing the amount of raw code the

developer needs to input. In one way, its features are attractive in such way the

developer can design the “top design” of the application using a graphic editor, and in a

few moments the developer has a mock-up ready to use with an eye-catching frontend.

GWT is based on widgets, and its main advantage is the development of a

frontend user interface by using raw Java code. It transforms it into ready-to-use,

browser side JavaScript code.

Because ZK and GWT are mainly based on widgets and tools, we decided that

Stripes is the most suitable framework for our requirements. It is not so focused in the

final visual result of the application, but it assists the integration of useful features

concerning to the browser navigation and the interaction with the backend. Its main

advantage is its simplicity, and it does not create endless configuration files and code,

like the others frameworks.

Table 2 presents a simple comparison between those frameworks, concerning

mainly on the MVC approach and the ORM tools.

OralCard: Web Information System for Oral Health

28

José Melo

Table 2: Comparison between frontend development frameworks

Framework Language Ajax
MVC

framework

MVC

Push/Pull
ORM

Testing

framework
Security

Stripes Java Yes Yes Push JPA, Hibernate Yes

Yes, with

framework

extension

Google Web

Toolkit
Java Yes - -

JPA with

RequestFactory

Yes, with

jUnit, jsUnit,

Selenium

-

ZK
Java,

ZUML
jQuery Yes

Push and

Pull

Any J2EE ORM

framework
jUnit, ZTL

Spring

Security

OralCard: Web Information System for Oral Health

29

José Melo

3. Context of the Problem

Despite the recent boom of data stored by main biomolecular databases, the

output of many studies is stored in small, domain-specific databases. These databases

play a crucial role by enabling a faster exchange of research breakthroughs among

communities. Due to the evident lack of resources from those databases expert curators,

it is of major importance to have an easy and efficient method for prototyping and

developing new software.

In this chapter, we will present the chosen method for data integration, and the

main motives why it was selected. The oral cavity was the main case study for this

project, and we will describe why it is of major importance of including our solution to

this particular situation.

3.1 Data Integration

The web is a universal repository of information where there is an excellent

opportunity to exploit the integration of online biological resources for knowledge

discovery. A major challenge is to support the actual flow of information among the

sources and services on the web and their interconnection with legacy systems that are

designed to operate with traditional relational databases [31].

Data centralization becomes a key to deploying strategic enterprise applications.

Operational data stores, data warehouses, data marts, mash ups, and other analytic and

operational applications require a greater degree of data sharing than ever before.

Satisfying the information demands of these secondary-use business applications

becomes a primary objective, and that means moving data from the original sources to

the target business data systems.

OralCard: Web Information System for Oral Health

30

José Melo

3.1.1 Data Warehousing

A data warehouse (DW) provides information for analytical processing, decision-

making and data mining tools. A DW collects data from multiple diverse operational

source systems (OLTP – Online Transaction Processing) and stores summarized

integrated business data in a central repository used by analytical applications (OLAP –

Online Analytical Processing) [32].

The common process for obtaining decision-making information is based on

using OLAP tools. These tools have their data source based on the DW data area, in

which records are updated by ETL (Extraction, Transformation and Loading) tools. The

ETL processes are responsible for identifying and extracting the relevant data from the

OLTP source systems, customizing and integrating this data into a common format,

cleaning the data and conforming it into an adequate integrated format for updating the

data area of the DW, and lastly, loading the final formatted data into its database [32].

The demand for updated data in data warehouses has always been something that

is really needed. Data warehouse refreshment is normally performed in an offline mode,

meaning that while processes for updating the database are executed, OLAP users and

applications cannot access any data. These activities usually take place in a

predetermined loading time windows, to avoid overloading the operational OLTP

source systems with the extra workload of this workflow [32].

Active Data Warehousing is a new tendency where DWs are refreshed as many

times as possible, due to the high demands of users for new data. Nowadays, IT

managers are facing crucial challenges deciding whether to build real-time data

warehouse instead of a conventional one and whether their existing data warehouse is

going out of style and needs to be converted into a real-time data warehouse to remain

competitive [32].

Using the data in a warehouse can help the user focus on relationships and help to

understand more about the environment that the business operates in. It increases the

consistency of the data and allows it to be checked several times to determine how

relevant it is. Because most data warehouses are integrated, we can pull data from many

different areas of business.

The following illustration (Figure 9) demonstrates a typical data warehousing

architecture [33].

OralCard: Web Information System for Oral Health

31

José Melo

External Sources

Data Sources

Operational dbs

Extract
Transform
Load
Refresh

Monitoring & Administration

Metadata
Repository

Data Warehouse

Serve

OLAP Servers

Analysis

Query/
Reporting

Data Mining

Tools

Data Marts

Figure 9: Data Warehousing Architecture

A DW includes tools for “extracting data from multiple operational databases and

external sources; for cleaning, transforming and integrating this data; for loading data

into the data warehouse; and for periodically refreshing the warehouse to reflect updates

at the sources and to purge data from the warehouse”. In addition to the main

warehouse, there may be several departmental data marts. Data in the warehouse is

stored and managed by one or more warehouse servers, which present multidimensional

views of data to a variety of frontend tools: query tools, report writers, analysis tools,

and data mining tools. Finally, there is a repository for managing metadata, and tools for

monitoring and administering the warehousing system [33].

DW systems use a variety of data extraction and cleaning tools, and load and

refresh utilities for filling warehouses. This extraction from other sources is usually

implemented via gateways and standard interfaces (such as Information Builders

EDA/SQL, ODBC, Oracle Open Connect) [33].

It is necessary that the data in the warehouse is accurate, since a DW is used for

decision-making. However, as large amounts of data are involved from many sources,

there is a high probability of errors and irregularities in the data. This is why it is crucial

to use tools that help to detect data irregularities, correcting them [33].

After extracting, cleaning and transforming, data must be loaded into the

warehouse. Typically, batch load utilities are used for this purpose. In addition to

fulfilling the warehouse, “a load utility must allow the system administrator to monitor

OralCard: Web Information System for Oral Health

32

José Melo

status, to cancel, suspend and resume a load, and to restart after failure with no loss of

data integrity” [33].

Because sequential loads can take a very long time, pipelined and partitioned

parallelism are typically exploited. Doing a full load has the advantage that it can be

treated as a long batch transaction that builds up a new database [33].

However, adopting a data warehouse model means taking the time consuming to

create and to keep operating. The user might also have a problem with current systems

being incompatible with some data. Another concern is about security, especially if data

is accessible over an open network.

For data integration systems that rely on information that changes frequently, a

data warehouse approach is not ideal. One way on addressing this issue is to design

systems that pull data directly from individual data sources. Since there is no centralized

database dedicated to analysing, categorizing and integrating the data in preparation for

user queries, those responsibilities are given to other system’s components.

3.1.2 Data Integration Alternatives

As the needs of downstream consumers have become more sophisticated,

different approaches to data integration have evolved. The more traditional Extract,

Transform, Load (ETL) approach which takes data from its sources to a staging area in

which data sets are manipulated and transformed into a target representation. An

alternate approach is data virtualization, in which the data remains stored at the source

and a conceptual view is materialized on demand.

Data Virtualization

According to Weng, L. [34], a data virtualization describes an abstract view of

data, and a data service implements the mechanism to access and process data through

the data virtualization.

Lans, R. [35] defines it as the “process of offering data consumers a data access

interface that hides the technical aspects of stored data, such as location, storage

structure, API, access language, and storage technology”.

Data virtualization provides an abstraction layer that can be used for data access

by data consumers, in a consistent way. A data consumer can be any application

retrieving or manipulating data, such as reporting or data entry application. This

OralCard: Web Information System for Oral Health

33

José Melo

abstraction layer hides all the technical aspects of data storage. The applications do not

have to know the details where all the data is physically located, where the database

servers run, what programming languages are being used [35].

Data virtualization can be implemented in several different ways. Here are some

of them:

 Using a federation server, multiple data sources can be made to look as a

single one. The applications will see a unique data source, while in reality the

data is stored in multiple databases;

 An Enterprise Service Bus (ESB) can be used to develop a layer of services

that allow access to data. The applications using these services will not know

where the data is being stored, what the original source interface is and how

the storage structure is. They will only see interfaces, like SOAP or REST.

The ESB is the abstraction layer;

 Using the cloud for placing data stores. To access a data store, the

applications will see the cloud API, having no information about the physical

location of it. Technical aspects of how the data is stored and managed are

transparent;

 A proprietary software-based abstraction layer can be developed by

organizations, hiding the technical aspects of the data store [35].

Using data virtualization and data services, compact and specialized data formats

can be hidden from the applications analysing grid-based datasets. On the other side,

supporting data virtualization can require significant effort. For each dataset layout and

abstract view that is desired, a set of data services need to be developed. Another

challenge is about the fact that the design and implementation of an efficient data

virtualization and data services require interaction of two complementary entities. The

first one is the scientist or researcher, who has good knowledge of the applications,

datasets, and their format, but has less knowledge on databases and data services

implementations. The second entity is the database developer who is expert in the tools

and techniques for efficient database and data services implementations, but has low

know-how of the specific application [34].

As opposed to the traditional approach of extracting data from multiple sources

and temporarily storing those data sets at a staging area, data virtualization allows the

OralCard: Web Information System for Oral Health

34

José Melo

source data sets to remain in their original locations. Data virtualization introduces

abstraction layers over a variety of native data sources and, as a by-product, provides

relational views without requiring that data be extracted from its source. This approach

to abstraction enables the establishment of reusable data services, and the data

abstraction layers typically deployed within a data virtualization environment allow for

the presentation of a standardized a logical representation of enterprise data concepts,

thereby allowing many different downstream data consumers to see a view of the data

that is both structurally and semantically consistent [36].

Data Federation

Lans, R. [35] purposes data federation has “a form of data virtualization where

the data stored in an heterogeneous set of autonomous data stores is made accessible to

data consumers as one integrated data store by using on-demand data integration”.

This definition is based on the next five concepts:

 Data virtualization: data federation is a form of data virtualization. Not all

forms of data virtualization suggest data federation, but data federation

always effects in data virtualization;

 Heterogeneous set of data stores: An application using data federation

should be able to access different types of database servers and files with

various formats. It should be able to integrate data from all selected data

sources and offer features for transforming the data. It should allow the

applications and tools to access data using different APIs and languages;

 Autonomous data stores: Data stores accessed by data federation should be

completely autonomous, being able to operate independently;

 One integrated data store: Regardless of how and where the data is stored,

data federation should be presented as one combined data set. This involves

transformation, cleaning and enrichment of data;

 On-demand integration: This means that with data federation, integration

takes place on the fly, and not in batch. When the user asks for data, only then

data is accessed and integrated. Data is not stored in an integrated way, but

remains in its original location and format [35].

OralCard: Web Information System for Oral Health

35

José Melo

3.1.3 Conclusions

For the OralCard project, we have chosen a hybrid solution for data integration

that combines the best features of the two main solutions: data warehouse and data

virtualization.

We will implement a federation server to store identifications from several

entities, which will point or indicate the respective data sources. By knowing these ids

stored in our database, the final application can then fetch (live) all the necessary data

concerning to a protein, disease, gene ontologies, and others.

On the other side, our server will act also as a data warehouse. It will include

tools to extract, clean and transform data from external sources, and store this

information. This information can be descriptions or data related to the circumstances in

which a protein was researched.

Our system will then consist on a DW with tools to retrieve information related to

the given list of proteins, and it will work as a federation server to store ids and links

that contain detailed information.

3.2 The Oral Cavity

To access the validity of this project, the subject of the oral cavity is used as a

subject. This is relevant because it consists of a complex (eco) system where a variety of

proteins from numerous origins are present. As a result, being able to estimate the

impact of the interactions among those proteins is crucial to understand the underlying

disease mechanisms and hopefully to develop new treatment methods.

Saliva is the watery and usually frothy substance produced in the oral cavity of

humans and most other animals. It is a unique clear fluid, composed of a complex

mixture of electrolytes, proteins, and represented by enzymes, immunoglobulins and

other antimicrobial factors, such as mucosal glycoproteins, traces of albumin and some

polypeptides and oligopeptides, of importance for oral health [37].

Whole saliva is secreted mainly from three pairs of major salivary glands: the

parotid, the submandibular, and the sublingual glands. Approximately 90% of total

salivary volume results from the activity of these three pairs of glands, with the bulk of

the remainder from minor salivary glands located at various oral mucosal sites [38].

OralCard: Web Information System for Oral Health

36

José Melo

Whole saliva also contains proteins from gingival crevicular fluid, oral mucosa and oral

microbiota. The various components of saliva from these sources, together with the

plasma proteins that appear in saliva, define the physiological behaviour of the oral

cavity, the oral physiome.

Saliva is an ideal translational research tool and diagnostic medium and is being

used in novel ways to provide molecular biomarkers for a variety of oral conditions,

such as oral cancer [39, 40], dental caries [41] and periodontitis [41, 42] , as well as

systemic disorders such as breast cancer [43], Sjögren's syndrome [44], diabetes

mellitus [45], cystic fibrosis [46] and diffuse systemic sclerosis [47]. The ability to

analyze saliva to monitor health and disease is a highly desirable goal for oral health

promotion and research [48, 49]. The most important advantage in collecting saliva is

that it is obtained in a non-invasive way and is of easy access.

Over the past thirty years, there have been many efforts to determine and identify

the main salivary proteins and peptides. Nevertheless, the fluctuating nature of saliva

from different individuals, huge dynamic protein concentration ranges and the protein

detection limits of most proteomic techniques have made the saliva proteome elusive to

define [50]. Even when used for healthy individual saliva, with multi-dimensional

separations and advanced bioinformatics search software tools, proteins identified in

different saliva proteomics experiments are often inconsistent with each other except for

the most abundant proteins. To overcome the poor coverage, potential bias, and

complementary nature of each experimental measurement of the human saliva

proteome, it is necessary for biomedical researchers to collect and evaluate all reliable

publicly-available saliva protein data sets generated from different analytical and

computational platforms for healthy individuals as well as in disease conditions.

A comprehensive integrated resource of the saliva proteins would provide a high

amount of comparative power for interpreting proteomics profile changes in patient’s

saliva, and may supplement or compensate for limitations and biases associated with the

set of controls for a given study. It would also improve the ability for finding protein

biomarkers that are known to occur in healthy human saliva, for instance where a

protein is differentially expressed in a patient sample related to the quantities observed

in the study control.

OralCard will have as a vital component an integrated database, by compiling all

of the existing experimental data performed on healthy individual samples as well as in

several oral and systemic diseases. It will include a collection of microbial proteins

OralCard: Web Information System for Oral Health

37

José Melo

expected to be present in saliva due to their presence in the genomes of the oral

microbiota [51, 52] and a subset of microbial proteins determined experimentally [53].

In the next sections, there are presented some terms and definitions regarding to

the biological and scientific part of this work. The goal is to inform the general concepts

behind the entities that are being used in the exploitation of knowledge.

3.2.1 Proteins

The word protein is derived from the Greek word prôtos, meaning primary or

first rank of importance.

Proteins form the very basis of life. They regulate a variety of activities in all

known organisms, from duplication of the genetic code to transporting oxygen, and are

responsible for regulating the cellular machinery and consequently, the phenotype of an

organism. Proteins accomplish their task by three-dimensional tertiary and quaternary

interactions between various substrates such as DNA and RNA, and other proteins [54].

According to Lau, J. Y. [54], knowing the structure of the protein, we can probe

for its function and possibly apply the new knowledge to various genome projects, such

as mapping the functions of proteins in metabolic pathways for whole genomes and

presuming evolutionary relationships.

There are around 20,000 to 25,000 genes in the human genome, and they code for

as many as 100,000 proteins, which are made up of 20 amino acids [54].

Amino acids polymerize at the carboxylic acid group of one amino acid to the

amino group of the next to form a peptide. A protein is a extensive polypeptide chain.

The chemical properties of each amino acid and its unique sequence of the peptide chain

are responsible for giving the protein its exclusive function and structure. Taking out

one amino acid or moving it from the protein sequence can be detrimental to its

structure, and in the same way its biological meaning [54].

UniProt

The Universal Protein Resource (UniProt) [55] provides the scientific community

with a single, centralized, authoritative resource for protein sequences and functional

formation. It was formed by uniting the Swiss-Prot, TrEMBL [56] and PIR protein

database activities [57], and it produces three layers of proteins sequence databases.

OralCard: Web Information System for Oral Health

38

José Melo

These are the UniProt Archive (UniParc), the UniProt Knowledgebase (UniProt), and

the UniProt Reference (UniRef) databases.

The UniProt Knowledgebase is a comprehensive, fully classified, richly and

accurately annotated protein sequence knowledgebase with extensive cross-references.

This core consists of two sections: the UniProt/Swiss-Prot, with fully, manually curated

entries; and UniProt/TrEMBL, enriched with automated classification and annotation.

The UniParc is designed to capture all available protein sequence data, not just

from the aforementioned databases, but also from sources such as Ensembl [58], the

International Protein Index (IPI) [59], RefSeq [60], FlyBase [61] and WormBase [62],

making it highly comprehensive.

The UniProt databases can be accessed online
4
 or downloaded in several

formats
5
.

The Protein Data Bank

The Protein Data Bank (PDB)
6
 is the single worldwide archive of structural data

of biological macromolecules. Its depositors have varying expertise in the techniques of

X-ray crystal structure determination, NMR, cryoelectron microscopy and theoretical

modelling. PDB users consist on a diverse group of researchers in biology, chemistry

and computer scientists, educators, and students at all levels [63].

The data increase in this subject claim for new ways to collect, organize and

distribute data. Nowadays, the management of the PDB is responsibility of the Research

Collaboratory for Structural Bioinformatics (RCSB). Its goal is to create a resource

based on the most modern technology that simplifies the use and analysis of structural

data, and this creates an enabling resource for biological research [63].

3.2.2 Diseases

According to the definition provided by Biology Online, a disease is “an

abnormal condition of an organism which interrupts the normal bodily functions that

often leads to feeling of pain and weakness, and usually associated with symptoms and

signs”. It is a pathologic condition in which “the normal functioning of an organism or

4
 http://www.uniprot.org

5
 ftp://ftp.uniprot.org/pub

6
 http://www.rcsb.org/pdb

http://www.uniprot.org/
ftp://ftp.uniprot.org/pub
http://www.rcsb.org/pdb

OralCard: Web Information System for Oral Health

39

José Melo

body is impaired or disrupted resulting in extreme pain, dysfunction, distress, or death”

[64].

In order to establish a connection between a protein and several diseases, UniProt

stores in each entry a set of external ids for the diseases database, the Online Mendelian

Inheritance in Man (OMIM).

OMIM

Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative

and timely knowledgebase of human genes and genetic disorders compiled to support

human genetics research and education and the practice of clinical genetics. OMIM
7
 is

distributed by the NCBI in the web and is integrated with the Entrez suit of databases.

Each OMIM entry has a full-text summary of a genetically determined phenotype

and/or gene, and has numerous links to other genetic databases such as protein

sequence, PubMed references, and GeneTests [65].

An OMIM entry consists in an assigned six-digit number whose first digit

indicates whether its inheritance is autosomal, X-linked, Y-linked or mitochondrial. In

addition, OMIM entries are categorized by whether they contain information on genes,

phenotypes or both. This is denoted by the symbol that precedes an OMIM number

(“*”. “#”, “+”, “%” or “^”) [65].

In 2004, OMIM had about 10,000 entries describing genes with known sequence

and about 5,700 entries describing phenotypes. A log allows a quick check of the latest

additions and changes to OMIM. About 70 entries are created and 600 updates each

month [65].

3.2.3 Pathways

Pathways are “consecutive reaction steps, which are either biochemical

transformations or sequences of signalling events, such as signal transduction” [66].

Metabolism was the first functional level in human biology studied

experimentally and consequently was the source for the first database of biochemical

reactions and pathways. These databases include EMP/MPW, BRENDA
8
, ERGO

9
, and

KEGG
10

 [66].

7
 http://www.ncbi.nlm.nih.gov/omim

8
 http://www.brenda-enzymes.info/

http://www.ncbi.nlm.nih.gov/omim
http://www.brenda-enzymes.info/

OralCard: Web Information System for Oral Health

40

José Melo

KEGG

According to Kanehisa, M. [67] KEGG (Kyoto Encyclopedia of Genes and

Genomes) “is a knowledge base for systematic analysis of gene functions, linking

genomic information with higher order functional information”.

KEGG is an effort to link genomic information with higher order functional

information by computerizing current knowledge on cellular processes and by

standardizing annotations. Its functional assignment is a process of linking a set of

genes in the genome with a network of interacting molecules on the cell, such as a

pathway or a complex, representing a higher order biological function [67].

The genomic information is stored in the GENES database, which consists on a

group of gene catalogues for all the completely sequenced genomes and some partial

genomes with annotation of gene functions. It uses the PATHWAY database in order to

store the higher order functional information, which contains graphical representations

of cellular processes, such as metabolism and cell cycle. KEGG provides Java graphics

tools for browsing genome maps, comparing genome maps, and some computational

tools for sequence comparison, graph comparison and path computation [67].

3.2.4 Gene Ontology

Genomic sequencing specifies that a considerable amount of the genes specifying

the core biological functions are shared by all eukaryotes. Knowledge of the biological

role of such shared proteins in one organism can often be transferred to other organisms.

The goal for the Gene Ontology Consortium is “to create a controlled vocabulary that

can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is

accumulating and changing” [68].

The Gene Ontology (GO)
11

 provides several attributes and classifications that

cover many domains of molecular and cellular biology and are available worldwide for

use in the annotation of genes, gene products and sequences [69].

According to Harris, M. A. [69], “The GO database integrates the vocabularies

and contributed annotations and provides full access to this information in several

formats”.

9
 https://ergo.integratedgenomics.com/

10
 http://www.genome.jp/kegg

11
 http://www.geneontology.org

https://ergo.integratedgenomics.com/
http://www.genome.jp/kegg
http://www.geneontology.org/

OralCard: Web Information System for Oral Health

41

José Melo

3.3 Summary

In this chapter we presented the concept of data integration and some solutions to

implement it. These are data warehousing, data virtualization, and data federation. Data

warehousing collects data from multiple operational source systems, and stores

summarized data in a central repository. Data virtualization can be used in several ways,

such as using a federation server or taking advantage of the cloud. Data federation is a

form of data virtualization that uses on-demand data integration.

We also presented the solution chosen for the OralCard project, and it consists in

a mixture of the best features between data warehouse and data virtualization.

Finally, in order to understand the goal for this assignment, we provided general

information concerning to the oral cavity and the main entities that are related to it.

These are the proteins, diseases, pathways, and gene ontologies. There are several

online tools that provide information regarding to these objects: UniProt, Protein Data

Bank, OMIM database from NCBI, and KEGG.

In the next chapter we will present the solutions and technical aspects chosen for

the design and implementation of the OralCard web application.

OralCard: Web Information System for Oral Health

43

José Melo

4. Work Implementation

This chapter is intended to describe all the technical aspects of the work

implementation made to empower the OralCard web application. The first part will

present the technical aspects on deploying the backend, and its architecture. In the

second part it will be described the database class diagram with all the entities necessary

to the OralCard application. In the third we will present the steps taken in order to

import data to the OralCard application. In the fourth and final part will present the

topics on developing the frontend for this project.

4.1 Backend Development

For the backend we chose the Molgenis framework for generating all the

necessary tools and features needed to start fulfilling our database and to rapidly view

this data in an easy way.

As shown in the Molgenis architecture (Figure 10), to start using this framework

we need to have preinstalled a MySQL server to store its database, an Apache Tomcat

web server to be able to deploy web services and a simple user interface, and the Java

Development Kit so the framework can generate all the necessary SQL and HTML

code.

OralCard: Web Information System for Oral Health

44

José Melo

MySql
Database

Database Descriptor User Interface Descriptor

Apache Tomcat
Server

Generates
Tables

Generates a Simple
Web User Interface
Generates Web
Services: SOAP and
REST

JAVA API

Accessible to the
user

Figure 10: Molgenis Architecture

Molgenis requires the user to specify the database main structure in a XML file.

This file is denominated molgenis_db.xml, and it contains the information needed to

create MySQL tables with attributes. As an example, Figure 11 shows the necessary

code to create a table designated Organism with the attributes TaxId, Name and

ShortName. It will also be accessible through a generated id.

<entity name="Organism" implements="Identifiable">

 <description>Relevant organism information.</description>

 <field name="TaxId" type="int" unique="true" nillable="true"

 description="Taxonomic identifier of the organism." />

 <field name="Name" type="string" unique="true" description="Organism

full name." />

 <field name="ShortName" type="string" nillable="true"

 description="Organism short name." />

</entity>

Figure 11: Organism Description Structure

OralCard: Web Information System for Oral Health

45

José Melo

The developer can define how the final user interface will be structured by

defining the “guidelines” in another XML file, the molgenis_ui.xml. This will decide

which tables will be available through the web interface and which relationships

between tables will be visible to the user. The developer can also introduce some

plugins, like email or command line (not implemented in this particular case study).

By providing all the necessary requisites, the next step consists on generating all

the necessary code. By running a single file (MolgenisGenerate.java), Molgenis

generates SQL code, the java model, a web application, and web services almost ready

to use. The next step consists in deploying the SQL instructions in the MySQL server

by running the file MolgenisUpdateDatabase.java. This will create all the tables and

relationships between them in which we specified in the previous XML file. The final

and optional step is to deploy the generated web application in the Tomcat server. The

user can now insert, update, delete and search any data through the web portal.

Figure 12 shows an example of the interface. In the left side there are the links for

each table (Organisms, Proteins, and Diseases). There is a simple form to input new

data and simple search functionality. In the lower end, it is presented the relationships

between the selected tables (this example shows the existing proteins for the selected

organism). This simple user interface is available at the following link:

http://bioinformatics.ua.pt/oralome.

Figure 12: Generated Web Interface using Molgenis

http://bioinformatics.ua.pt/oralome

OralCard: Web Information System for Oral Health

46

José Melo

The next step consists on developing tools and wrappers to retrieve information

regarding the entities previously mentioned in the class diagrams.

4.2 Database Architecture

In order to gather all the necessary data for the application, we selected the

attributes that have the most importance for each entity. The system will have six main

entities:

 Organism: It is the upper entity. Each organism can have one or more

proteins associated;

 Protein: It is the main entity, the central aspect in the system’s core. A protein

usually is associated to one only organism;

 Disease: It is a single entity with no dependency. A disease can be related to

more than a protein;

 Pathway: It is a single entity with no dependency. This table is used to

retrieve the associated KEGG pathways related to a protein;

 Homology: This table is used to store multiple external information related to

a protein, like the ids related to RefSeq, InterPro, Gene3D, PFam, ProSite

and Panther;

 GO: Abbreviation for Gene Ontology, it stores the ids related to the protein

(ex. GO:0005576);

 PDB: Stores the Protein Data Bank structure id related to the protein and

some general information related to it.

Molgenis can link a table to another by one attribute. For instance, the table

Protein can have a reference to an Organism by invoking its id (a protein is linked to an

only organism). But if we want to relate a Disease to a Protein (a Protein can have

multiple diseases) we need to manually create linkable tables for this purpose. We will

call it the DiseaseProtein table. The same logic will be taken for the remaining entities.

We created a table called SourceProtein where relations can be created between a

source and a protein. A protein can be retrieved from the following sources: parotid,

parotid exosome, SM/SL, whole saliva, crevicular fluid, mucosa, tongue, and plasma.

OralCard: Web Information System for Oral Health

47

José Melo

We also take note about the regulation in which a protein was found (increase, decrease

or none of the previous), and the condition (health or disease). If a source entry has a

disease condition, we include the OMIM of the equivalent. Finally, the evidences are

related to the PubMed id which refers the selected protein.

Molgenis can create an automatic id for each table. In order to achieve this, we

created an entity Identifiable, which the framework will translate into a Java interface.

<entity name="Identifiable" abstract="true">

<description>For modeling purposes only (denoted by

abstract='true', this entity defines id field centrally.

 </description>

 <field name="Id" type="autoid" description="autogenerated id

number (autoid)" />

</entity>

Figure 13: The Identifiable entity described in XML

After creating this interface, we implemented it in the other classes (Figure 14).

<entity name="Organism" implements="Identifiable">

 <description>Relevant organism information.</description>

 <field name="TaxId" type="int" unique="true" nillable="true"

 description="Taxonomic identifier of the organism." />

 <field name="Name" type="string" unique="true"

description="Organism full name." />

 <field name="ShortName" type="string" nillable="true"

description="Organism short name." />

</entity>

Figure 14: The Organism entity described in XML

Next we present the class diagram designed for the Molgenis generator (Figure

15. Each entity has its own specific attributes. For instance, the Protein class as

attributes for its name, UniprotKBAC, and aminoacid sequence, and attributes for ids

used to open specific views in several external services, such as PharmGKB and

BRENDA.

OralCard: Web Information System for Oral Health

48

José Melo

+getId() : int
+setId() : void

«interface»
Identifiable

+PDBProtein()

-PDB : xref(PDB.id)
-Protein : xref(Protein.id)

PDBProtein

+PathwayProtein()

-Pathway : xref(Pathway.id)
-Protein : xref(Protein.id)

PathwayProtein

+HomologyProtein()

-Homology : xref(Homology.id)
-Protein : xref(Protein.id)

HomologyProtein

+DiseaseProtein()

-Disease : xref(Disease.id)
-Protein : xref(Protein.id)

DiseaseProtein

+GOProtein()

-GO : xref(GO.id)
-Protein : xref(Protein.id)

GOProtein

+SourceProtein()

-Source : xref(Source.id)
-Protein : xref(Protein.id)
-Health_Disease : Condition
-Disease : xref(Disease.id)
-Regulation : Regulation
-Evidence : xref(EvidenceType.id)
-EvidenceValue : string

SourceProtein

+Up = Up
+Down = Down
+None = -

«enumeration»
Regulation

+Health = Health
+Disease = Disease

«enumeration»
Condition

+Source()

-Name : string
-Description : string

Source

+EvidenceType()

-Name : string
-Description : string

EvidenceType

Identifiable IdentifiableIdentifiable

Identifiable

Identifiable

Identifiable Identifiable

Identifiable

+Protein()

-Name : string
-UniProtKBAC : string
-HGNC_Id : int
-EntrezGene_Id : int
-EntrezGeneSummary : string
-Ensembl_Id : string
-GeneNameSynonym : string
-PharmGKB_Id : string
-Brenda_Id : string
-EC : string
-GeneSymbol : string
-Aminoacid : string
-OrganismLink

Protein

Identifiable

*

1

*

1

*
1

+Disease()

-Source : string
-OMIM : int
-Name : string
-URL : string
-Description : string

Disease

*

1

Identifiable

+Pathway()

-Name : string
-URL : string
-Source : string
-PathwayAC : string
-Type : string
-Description : string

Pathway

Identifiable

*

1

*

1

*

1

+GO()

-Name : string
-GOID : string
-URL : string
-Type : string
-Description : string
-Parent : string

GO

Identifiable

*

1

+PDB()

-StructureId : string
-Name : string
-Keywords : string
-PublishDate : string
-ImageUrl : string

PDB

Identifiable

*

1

*

1

+Homology()

-Name : string
-HomologyAC : string
-URL : string
-Source : string
-Type : string
-Description : string

Homology

Identifiable

*

1

*

1

*

1

*

1

+Organism()

-TaxId : int
-Name : string
-ShortName : string

Organism

Identifiable

*

1

Figure 15: Class diagram for Molgenis generator

OralCard: Web Information System for Oral Health

49

José Melo

4.3 Importing Data

A key objective of the OralCard project was to create tools to obtain information

specific to each of the elements that build up the system (proteins, diseases, pathways,

and others). For this, we carried out a first survey of sources where this information

would be available.

This data fetch is made easier using Molgenis. It is bundled with a Database

API
12

 that has the advantage of hiding complex SQL commands.

To import and filter the information needed in our database, we used Java as the

programming language because it is highly compatible with the most APIs provided by

the resources that we will refer through this document (particularly Molgenis).

Importing Protein’s Data

For the particular case of proteins, the data source used was UniProt, the most

complete resource for protein sequence and functional information. It identifies each

protein with an accession code, which we will denominate as the UniProtKBAC (The

UniProt Knowledgebase Accession Code), and it is composed by one letter and several

digits (ex. P26572). This code is used as an input for the UniProt web service, which

returns a descriptive XML file with the information about the protein. This web service

is accessible in the format http://www.uniprot.org/uniprot/P26572.xml, where P26572

is the UniProtKBAC.

In order to parse the provided XML files from Uniprot, we have used the DOM

parser Java library from W3C. We could use the StAX
13

 (Streaming API for XML)

instead, which is also capable of reading XML files. The Document Object Model

(DOM) is an abstract data structure that represents XML documents as trees made up of

nodes. The org.w3c.dom package contains various interfaces that represent elements,

attributes, parsed character data, comments, and processing instructions. All of these are

subinterfaces of the Node interface, which gives basic methods for navigation and

trimming the tree [70].

A parser reads an XML document from a stream and builds a Document object

that is a tree representation of the whole document. The developer can then call

12

 http://www.molgenis.org/wiki/MolgenisDatabaseApi
13

 http://stax-utils.dev.java.net/

http://www.uniprot.org/uniprot/P26572.xml
http://www.molgenis.org/wiki/MolgenisDatabaseApi
http://stax-utils.dev.java.net/

OralCard: Web Information System for Oral Health

50

José Melo

Document methods and other DOM services to navigate the tree and extract the desired

information [70].

Figure 16 shows an excerpt of some of the information provided in a UniProt

XML file (in this particular case, the information regards to the P26572 protein). The

node uniprot is a child node of the document’s root, with several elements. From these

elements, we extract the necessary information, for instance, the name of the entry, the

recommendedName of the protein, the name of the organism as its NCBI Taxonomy id.

The UniprotJAPI
14

, from EMBL-EBI (European Bioinformatics Institute) is also

being used in order to fetch ids for external databases, such as HGNC, BRENDA or

PharmGKB.

14

 http://www.ebi.ac.uk/uniprot/remotingAPI/

http://www.ebi.ac.uk/uniprot/remotingAPI/

OralCard: Web Information System for Oral Health

51

José Melo

<?xml version='1.0' encoding='UTF-8'?>
<uniprot xmlns="http://uniprot.org/uniprot" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
 xsi:schemaLocation="http://uniprot.org/uniprot

http://www.uniprot.org/support/docs/uniprot.xsd">
 <entry dataset="Swiss-Prot" created="1992-08-01" modified="2011-04-05"
 version="106">
 <accession>P26572</accession>
 <accession>A8K404</accession>
 <accession>D3DWR1</accession>
 <accession>Q6IBE3</accession>
 <name>MGAT1_HUMAN</name>
 <protein>
 <recommendedName ref="1">
 <fullName>Alpha-1,3-mannosyl-glycoprotein 2-beta-N-

acetylglucosaminyltransferase</fullName>
 </recommendedName>
 <alternativeName>
 <fullName>N-glycosyl-oligosaccharide-glycoprotein N-

acetylglucosaminyltransferase I</fullName>
 <shortName>GNT-I</shortName>
 <shortName>GlcNAc-T I</shortName>
 </alternativeName>
 </protein>
 <gene>
 <name type="primary">MGAT1</name>
 <name type="synonym">GGNT1</name>
 <name type="synonym">GLCT1</name>
 <name type="synonym">GLYT1</name>
 <name type="synonym">MGAT</name>
 </gene>
 <organism>
 <name type="scientific">Homo sapiens</name>
 <name type="common">Human</name>
 <dbReference type="NCBI Taxonomy" id="9606" key="2" />
 <lineage>
 <taxon>Catarrhini</taxon>
 <taxon>Hominidae</taxon>
 <taxon>Homo</taxon>
 </lineage>
 </organism>

 </entry>
 <copyright>

Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License

</copyright>
</uniprot>

Figure 16: Excerpt of a UniProt XML file

As a starting point, we have used a previously created XLSX file with 17 738

UniProt entries (Figure 17, Appendix A-1). This file contains a list of UniProtKBACs,

the biological sources in which the protein was found, information regarding to the

situation the protein was found (health or disease situation), the regulation (up

regulation or down regulation), the age group and the corresponding NCBI citation. In

order to read this XLS file through the Java environment, we are using the OpenCSV
15

parser library.

15

 http://opencsv.sourceforge.net/

http://opencsv.sourceforge.net/

OralCard: Web Information System for Oral Health

52

José Melo

Figure 17: Registration of researched UniProts on XLSX file (client version)

For each input read, we first analyse the corresponding UniProt XML file and

check its organism. If it is not available in our database, we insert a new record and link

the protein to it. Next we check for the sources and its evidences. When a repeated

UniProtKBAC is found in the XLSX file, we simple merge the new information into the

existing one. We also extract from the protein XML file all the necessary external ids

(concerning to homologies, pathways, diseases, PDB’s ids, and gene ontologies).

Importing Disease’s Data

In order to retrieve data regarding to a specific disease, we used the NCBI Entrez

Programming Utilities
16

. It consists on several REST tools that provide access to Entrez

data outside of the regular web query interface and it’s helpful for retrieving search

results in the Java environment. We need to provide three parameters to the EFetch web

service URL
17

 : OMIM as the database, the disease OMIM id, and XML as the format.

After that we get a descriptive XML file, just like the UniProt output previously

described.

Occasionally this web service is down. As an alternative, we fetch the disease

name using a similar service, the ESummary
18

16

 http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html
17

 http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi
18

 http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi

http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html

OralCard: Web Information System for Oral Health

53

José Melo

Importing Pathway’s Data (KEGG)

With the aim of fetching information regarding pathways, we used the KEGG

API
19

. It consists on a SOAP/WSDL and REST interface to the KEGG system (built

using Java), allowing for searching biochemical pathways in cellular processes or

analysing the universe of genes in the completely sequenced genomes.

As input, we provide the KEGG id presented in the UniProt XML output and as a

result we obtain the corresponding pathways codes (ex. hsa:4245 results on hsa00510

and hsa01100).

Importing PDB’s Data

As the importation of diseases or proteins, fetching PDB data goes in the same

line, using a REST web service
20

. It requires the structure id contained in the UniProt

XML file in order to output a result. For instance, for the structureId 1A85 it outputs the

result shown in the Figure 18.

<?xml version='1.0' standalone='no' ?>
<PDBdescription>
 <PDB structureId="1A85" title="MMP8 WITH MALONIC AND ASPARAGINE BASED INHIBITOR"
 pubmedId="9655333" expMethod="X-RAY DIFFRACTION" resolution="2.00"
 keywords="COMPLEX (COLLAGENASE/INHIBITOR)" nr_entities="4"
 nr_residues="158" nr_atoms="1537" publish_date="1998-04-03"
 revision_date="1999-04-27"
 audit_authors="Brandstetter, H., Roedern, E.G.V., Grams, F., Engh, R.A."
 citation_authors="Brandstetter, H., Engh, R.A., Von Roedern, E.G.,

Moroder, L., Huber, R., Bode, W., Grams, F."
 status="CURRENT" />
</PDBdescription>

Figure 18: PDB XML file for Structure Id 1A85

Here, we extract the title, keywords and the date of publish. As in the previous

cases, data filtering is done by using the DOM parse library from W3C.

Importing Proteins from other Organisms

Another requirement for OralCard was to import proteins regarding to organisms

other than human. These specific organisms are described in an XLSX file, organized

by rows (Figure 19, Appendix A-2):

19

 http://www.genome.jp/kegg/soap/
20

 http://www.pdb.org/pdb/rest/describePD

http://www.genome.jp/kegg/soap/

OralCard: Web Information System for Oral Health

54

José Melo

Figure 19: Excerpt of XLSX file containing other organisms

The goal was to confront this organisms with a list of gene ontologies ids,

provided in another document (Appendix A-3). This document is presented in the

DOCX file format, and we are reading it using the Apache POI
21

, a Java API for

Microsoft documents.

The UniProt REST web service
22

 makes easy the search and retrieval task. By

building a simple query, it outputs a list of proteins that match our parameters (Figure

20). For each retrieved protein, the fetching data process is done in the same way as

previously described

http://www.uniprot.org/uniprot/?query=

organism:”Bacillus subtilis”+

AND + reviewed:yes +

AND +(go:0042597 + OR + go:0005737 + OR + go:0005634)

&format=list

Figure 20: Example of a query to the UniProt REST web service

Runtime

In order to fulfil the database, and resuming the previous sections, we need to

execute three steps. The first one is to create the oral cavity sources in the Source table.

This is done running the code provided in the file StartUpDatabase.java.

21

 http://poi.apache.org
22

 http://www.uniprot.org/uniprot

http://poi.apache.org/
http://www.uniprot.org/uniprot

OralCard: Web Information System for Oral Health

55

José Melo

Next, we update the database with the proteins and their relationships provided in

the XLSX file (Figure 17). This is done by running the script contained in the file

UpdateProteinsDatabase.java.

Finally, with the aim of updating the OralCard database with proteins regarding

to other organisms, we run the script UpdateProteinsOtherOrganisms.java. After these

steps, our database is completely fulfilled and ready to be searched.

4.4 Frontend Development

After deploying our initial web interface generated by the Molgenis framework,

we needed tools for visualization, for simple query of the database, and for insert,

update and delete records.

We also needed a customized and detailed view for each entity present on the

database, as also others features like counting the proteins for each source or presenting

search results in real time.

Considering these aspects, we developed a frontend for the OralCard project

where these features are available. This development was done using the Stripes

framework (described in the section 2.5.1) and the NetBeans IDE 7.0
23

.

For the development of the OralCard frontend, we decided for the following

architecture (Figure 21): J2EE technology, MySQL for storage, Hibernate as the

persistence framework, and Stripes for the business and client layer. jQuery was also

used along with Stripes in order to improve the client side of the application. We kept

the database we have created previously using Molgenis, and from that we built the top

tree.

23

 http://netbeans.org/

http://netbeans.org/

OralCard: Web Information System for Oral Health

56

José Melo

J
E
E
 S

e
r
v
e
r

Enterprise Information System Server

Enterprise Information System Tier(JDBC: Hibernate)

HTML CSS JavaScript AJAX

Client Tier

Business Tier

Stripersist Extension

Figure 21: OralCard Frontend Architecture

For the development of this system, we chose the Stripes framework, as

mentioned previously in the section 2.5.

Mapping the Database

With the aim of accessing the database and transform it to a Java model, we had

three possible solutions. The first one was using one of the generated web services,

REST. It has several important advantages, like scalable component interactions,

general interfaces, independently deployed connectors, reduced interaction latency and

strengthened security. Molgenis REST interface outputs JSON
24

 objects, which are a

lightweight data-interchange format, easy for machines to parse and generate, and

gradually a replacement for XML objects.

The downside of it, as a generated web service, is that it only supports

GET/PUT/POST/DELETE, and one need to have previous knowledge of the

corresponding database entry id (Figure 22). In order to make it work, we had to fetch

an entire table, query it to find the corresponding database entry id, and then make the

24

 http://json.org/

http://json.org/

OralCard: Web Information System for Oral Health

57

José Melo

transaction. This would take a large amount of time, especially for tables with thousands

of entries.

REST Query:

http://bioinformatics.ua.pt/oralome/api/rest/json/protein/2

JSON Object:

{

 "protein":{

 "readonly":false,

 "id":2,

 "__Type":"Protein",

 "___Type_options":[

 {

 "label":"Protein",

 "value":{

 "@xsi.type":"xs:string",

 "$":"Protein"

 }

 },

 {

 "label":"Interaction",

 "value":{

 "@xsi.type":"xs:string",

 "$":"Interaction"

 }

 }

],

 "name":"Ig heavy chain V-III region BUR",

 "uniProtKBAC":"P01773",

 "aminoacid":"QVQLVESGGGVVQAGTSLRLSCTASAFNLSDYAM
HWVRQAPGKGLZWVALISYGGSBTYYADSVRGR

FTISRBISKBTLYLZMKTLRTEDTAVYYCAKLI

AVAGTRBFWGQGTLVTVSL",
"organismLink":483,

 "_organismLink_Name":"Homo sapiens"

 }

}

Figure 22: REST Query on a specified protein

Also, this web service does not support general queries for others attributes. For

instance, it is impossible to query the database in order to fetch the details of a protein

named Ig heavy chain V-III region BUR without knowing its id.

The second option was to use another generated service, SOAP. Despite the

architecture being different, it also has the same main access problem of REST.

Having Molgenis this downside, and with the aim of solving this problem, we

could develop our own REST or SOAP interface, personalized in such way we could

make any kind of query to any attribute of any table. But there are frameworks

OralCard: Web Information System for Oral Health

58

José Melo

developed for the purpose of interacting with an existing database, and that’s why we

chose the third solution: querying directly the MySQL database.

In order to make the link between the Java model objects and the database

(previously created using Molgenis), there are several solutions available: using plain

JDBC, using a library that facilitates the interaction with JDBC but places on the

developer the responsibility of writing SQL, using an ORM framework, and others.

In this particular case, we decided to use JPA and Hibernate
25

. JPA is Sun’s

standard persistence specification and there is a library specifically designed to integrate

JPA with Stripes. Concerning to the specification, we chose Hibernate because it is

widely used, and some previous experience with it was acquired. Other solutions could

be used, like OpenJPA
26

 or JPOX
27

.

Stripersist
28

 is a Java library that facilitates the integration of JPA in Stripes, and

we are using it in order to save some time around needed configurations.

The first step was to convert the relational database to an object-oriented domain

model. To achieve this goal, we used the Netbeans functionality of importing Entity

Classes from Database. It uses the JDBC connector for MySql, and creates a Java

Persistence API entity class for each selected database table, complete with named

query annotations, fields representing columns, and relationships representing foreign

keys.

In order to set the JPA configuration, we need to place the persistence.xml file. It

will contain some information telling JPA to use Hibernate, and configure Hibernate to

use the MySQL database (URI, username, password, and others). The next step is to tell

Stripes framework to use Stripersist, by referring it as an extension package.

The Business and Client Tier

For the business layer, Stripes provides an extension called Stripersist, which

makes the integration of third-party libraries quite simple. It is responsible of creating

methods for creating, synchronizing and removing the data in the database, much like

an EJB container is responsible for. With a relational database previously created using

MySQL server, an object-to-relational mapping is applied fully automatically.

25

 http://www.hibernate.org/
26

 http://openjpa.apache.org/
27

 http://www.jpox.org/
28

 http://www.stripes-stuff.org/

http://www.hibernate.org/
http://openjpa.apache.org/
http://www.jpox.org/
http://www.stripes-stuff.org/

OralCard: Web Information System for Oral Health

59

José Melo

In order to configure the Stripersist, we need to place the JPA configuration in the

persistence.xml file. This is where we tell JPA to use Hibernate and configure it to use

the MySQL database, as described (Enterprise Information System Tier). Since the

model classes have been generated using the tool provided by the NetBeans IDE (Entity

Classes from Databases), we do not need to worry about adding JPA annotations. This

has already been done automatically (example: adding the @Entity annotation).

The next step is to create methods to read data from the database. We

implemented a Java DAO interface for each entity present in our database that includes

methods for reading an entire table or a specific entry, as also methods for searching.

For instance, for the Protein entity, we have a ProteinDao interface and a

ProteinDaoImpl class which will implement those methods of reading and searching.

This implementation class will also extend a BaseDaoImpl class, which contains the

core methods for reading, committing and finding entries. The BaseDaoImpl is where

we take the advantage of the Stripersist package. For instance we can read a specific

entry by invoking the command described below (Figure 23).

 public T read(ID id) {

 return Stripersist.getEntityManager().find(entityClass, id);

 }

Figure 23: Using Stripersist for reading from database

The entityClass can be a Protein, and the id identifies the entry we want to read.

This automatically returns an object related to the entity we read.

Using this approach the DAOs can use Stripersist and JPA easily, and the rest of

the application can use the DAOs without being exposed to the details of the persistence

layer.

In addition, we are using Spring
29

 for dependency injection. Spring is an open

source application framework for the Java platform, and dependency injection is the

concept of providing, from the outbound, implementations to classes that need them.

Using this methodology, classes have references only to interfaces, and not to any

specific implementation. It becomes easier to use different implementations by

29

 http://www.springsource.org

http://www.springsource.org/

OralCard: Web Information System for Oral Health

60

José Melo

changing only the configuration. The code becomes more flexible, and testing the

application is easier: we only have references to interfaces [27].

For instance, in order to establish a relationship between the ProteinDaoImpl and

the BaseActionBean (which is responsible of invoking instances of the DAOs), the

developer only needs to incorporate the @Repository (Figure 24) and the @SpringBean

(Figure 25) annotations.

@Repository("proteinDao")

public class ProteinDaoImpl extends BaseDaoImpl<Protein, Integer> implements ProteinDao

Figure 24: Using the @Repository annotation in the ProteinDaoImpl

@SpringBean protected ProteinDao proteinDao;

Figure 25: Using the @SpringBean annotation in the BaseActionBean

Regarding the client tier, we are using JSP combined with Stripes. The main

purpose is to write a JSP that retrieves the information from the action beans that were

developed using the Stripes framework. With these actions beans, we can redirect

requests to specific web pages, and take full control of the web flow.

We are using JavaScript and the jQuery framework to improve the user interface.

jQuery
30

 is a free, open source, cross-browser JavaScript library that was designed to

simplify the client-side scripting of HTML. Several jQuery plugins, such as

DataTables
31

, were used in order to transform raw HTML information, into JavaScript,

user friendly, data holders.

In order to achieve the autocomplete feature while querying the OralCard

database, we used the jQuery Autocomplete plugin with Stripes. We implemented an

action bean which will be invoked by an AJAX request, as long as the user is typing the

30

 http://jquery.com/
31

 http://www.datatables.net/

http://jquery.com/
http://www.datatables.net/

OralCard: Web Information System for Oral Health

61

José Melo

search string. An AJAX response will be delivered to the plugin, which will present the

matched results in a dropdown list.

Finally, the OralCard web application takes advantage of the CSS benefits. It is

designed to separate the document content written in JSP from the document

presentation, including elements such as the page layout, used colors and fonts. The

OralCard web application has its style defined in two separate files: The home.css for

the home screen design, and the style.css for the rest of the application.

4.5 Summary

This section described the technical aspects considered for the development of

the OralCard web application. First we explained how the Molgenis framework works,

specifying its architecture. It requires the developer to describe a XML file with the

entities that will compose the system (organism, protein, disease, gene ontology, and

others). We also were required to describe tables that would make the link between two

main entities. For instance, we need an association class PDBProtein that will establish

a relation between a Protein and a PDB.

We presented the class diagram reflecting the specification made in the

molgenis_db.xml file, the place we insert and described our tables.

After determining all the requirements, Molgenis generates a Java model, SQL

tables and a trivial web user interface. The system is now ready for importing data. In

order to achieve this task, we have described the methods chosen to gather the necessary

information for insertion in the generated tables.

The second part of the project was related to the development of a web user

interface. In this part we described the frontend architecture, the tools used (MySQL,

Hibernate, Stripes, and jQuery) and some technical aspects concerning to the

implementation itself.

In the next chapter they will be present the results achieved after the work

implementation.

OralCard: Web Information System for Oral Health

63

José Melo

5. Results

5.1 Importing Data

In order to fetch the relative data for the OralCard web application, we designed

two scripts. The first one will read the UniProtKBACs from the provided XLSX file

(Appendix A-1), and retrieve the necessary data, inserting it in the Oralome database.

The second script will read the microorganisms from a XLSX file (Appendix A-2). For

each microorganism, it will build a REST request with the gene ontology ids provided

in the DOCX file (Appendix A-3). This REST request will generate a REST response

with the UniProtKBACs that match the query.

After querying the Uniprot web service with all the given microorganisms and

gene ontology ids, we managed to get 54 805 UniProt Knowledgebase accession codes.

Next, we repeat the retrieval process made in the first script.

For the first task, we used an approach with no threads. Each protein y has a time

window x necessary for retrieving all the necessary data, and the next protein y+1 will

be explored when the protein y has finished (Figure 26). This method has the advantage

of not overloading the servers used to retrieve information, but it is considerable slow.

In order to fetch data from 11 413 proteins (Appendix A-1) using a broadband

connection, the application took around 48 hours. This slowness is derived from the

delay window between a request made to the NCBI web services and its response. The

Uniprot web service’s response has a delay window significantly short, taking out some

situations in which the service is unresponsive, forcing the application to wait a random

time in order to repeat the request.

OralCard: Web Information System for Oral Health

64

José Melo

y

y+1

...

y+n

Timeline x

A0A5E4

A0AUV5

...

UniProtKBAC n

Figure 26: Importing proteins without multithreading

With the goal of speeding up this process, we used threads in our Java code.

Having a multithreaded application means to deliver its potent power by running many

threads concurrently within a single program. The operating system can treat the

program as a bunch of separate and distinct processes. We tried to achieve a

compromise between the number of threads, the number of proteins per thread, and

occupied memory. Using a personal computer with 4GB of RAM, we managed to create

a thread y for each group of 500 proteins (Figure 27). Using this approach, the

application was able to retrieve 66 218 proteins in about 28 hours (using the two

scripts).

y

y+1

...

y+n

Timeline x

A0A5E4 A0AUV5 A0AVT1 A0N5G3 ...

O15015 O15016 O15018 O15015 ...

Uniprot a Uniprot b Uniprot c Uniprot d ...

...

Figure 27: Importing proteins using multithreading

OralCard: Web Information System for Oral Health

65

José Melo

The second approach is significantly faster, but forced us to consider the denial of

service from the external web services (NCBI, Uniprot and RCSB PDB), which

sometimes happens for a short time window. The KEGG API only supports one

connection to the web service at a time, and this can reduce the throughput, but not

significantly.

The retrieved information is available at http://bioinformatics.ua.pt/oralome.

5.2 Frontend

5.2.1 The Home Page

The OralCard web portal should provide search functionalities for every entity

contained in the database. For that, we included a home page with a text box where the

user is able to search for anything inside the domain of proteins, diseases and gene

ontologies (Figure 28). These can be a protein name or UniProtKBAC, a disease name

or its OMIM accession code, gene ontology name or its accession code, or even an

organism name.

As long as the user is typing a search string, the web application is constantly

querying the database in order to present a dropdown list with suggestions. This is done

using the AJAX possibilities (Figure 29).

http://bioinformatics.ua.pt/oralome

OralCard: Web Information System for Oral Health

66

José Melo

Figure 28: The OralCard home page

Figure 29: Suggestions in the home page while searching

In order to restrict a query to specific tables, the user can start his search with the

entity type. For instance, searching for an organism Homo sapiens is made easy by first

typing the key word organism. Suggestions only matters to the organism table (Figure

30).

OralCard: Web Information System for Oral Health

67

José Melo

Figure 30: Specifying the organism entity while searching

We also included 4 sections in the home page: About, Disclaimer, Help and

Contacts. These will serve the purposes of user assistance and general information

about the web application.

5.2.2 Protein Search and Details

We designed a specific web page for each entity. The page designed for the

protein has a search box where the user can input a query. This query can be a protein

name or a UniProtKBAC. Live results will be displayed using AJAX and a JavaScript

data table. General information is given in order to identify the protein easily: The

UniProt code, the protein’s name and the organism which is related.

In the following illustration (Figure 31) the user is searching for a UniProtKBAC,

starting with P228. The table is refreshed with all the proteins that have some similarity

with the query. This table can be filtered itself using its search box (for instance, the

user can filter the results for the Homo sapiens organism). Finally, the table can be

sorted using each column.

OralCard: Web Information System for Oral Health

68

José Melo

Figure 31: The protein search web page

Selecting the view link, we have access to the details of the selected protein

(Figure 32). We have included a summary of the protein (with its gene name, gene

synonym, HGNC, and others), and a JavaScript tab table where the user can select

specific information using different tools: Data, Structure, Domains, Interactions,

Drugs, Inhibitors, References, Diseases, Gene Ontologies, and Sources.

Figure 32: Protein Details

OralCard: Web Information System for Oral Health

69

José Melo

The first tab, Data, contains a frame that contains gene information and

classification using the Panther
32

 classification system.

Figure 33: Phanter frame

The second tab, Structure (Figure 34), covers the related PDBs that are referred

by the protein. There is information on the PDB id, title, date and links for the sequence

image (using a JavaScript gallery, Figure 35) and a widget where the user can explore

its structure (Figure 36).

32

 http://www.pantherdb.org/

http://www.pantherdb.org/

OralCard: Web Information System for Oral Health

70

José Melo

Figure 34: List of PDBs related to the protein

Figure 35: PDB's sequence image

OralCard: Web Information System for Oral Health

71

José Melo

Figure 36: PDB Structure and link for its explorer

For the Domains tab, we framed the SMART tool (Figure 37). It features a

JavaScript widget where the researcher can explore different domains within the

protein, by just dragging the mouse over it (in the P22894 protein case, the HX domain

and the ZnMc domain).

Figure 37: The SMART tool showing the current protein

OralCard: Web Information System for Oral Health

72

José Melo

With the Interactions tab, the researcher can generate a diagram showing the

protein interaction. This is done using the STRING
33

 web tool wich requires the input of

two parameters: the degree of confidence (low, medium, high or highest), the network

flavor (evidence, confidence or actions) and the maximum number of proteins the user

want to be shown (Figure 38).

Figure 38: The STRING protein interaction tool

In the Drugs tab, we have used the PharmGKB
34

. In the particular case where the

protein does not have any associated drug, a description of its gene is presented. Fr

instance, the protein P22894 is not related to any drug, thus a description of the MMP8

gene is presented (Figure 39).

33

 http://string-db.org/
34

 http://www.pharmgkb.org/

http://string-db.org/
http://www.pharmgkb.org/

OralCard: Web Information System for Oral Health

73

José Melo

Figure 39: The PharmGKB frame

Using the Inhibitors tab the OralCard application presents a frame where it links

to BRENDA
35

, An information system that represents one of the most complete enzyme

repositories. Enzymes are classified according to the Enzyme Commission (EC) list. We

use the protein’s EC number and present the BRENDA tools to show additional data. In

the given example (Figure 40) we present the frame related to the P22894 protein’s EC

(3.4.24.34).

Figure 40: The BRENDA frame

35

 http://www.brenda-enzymes.info/

http://www.brenda-enzymes.info/

OralCard: Web Information System for Oral Health

74

José Melo

Concerning to the References tab, we rely on the PubMed
36

 database to present

the reference details for the selected protein. For a first approach, we resorted to the

NCBI SOAP web service for Java in order to retrieve the journal articles citations

related to the selected proteins. Thus, because of memory issues, the destination server

for the OralCard application could not manage to use this web service. For this reason,

we recurred to NCBI web service EFetch for the PubMed database, where a XML is

retrieved and parsed.

The OralCard web application presents the user a JavaScript table (Figure 41)

with details concerning to the referred citation (citation id, source, last author, title,

journal name, publish date, and a link to the PubMed citation where more details are

available).

Figure 41: The References tab

The last two tabs refer to diseases and gene ontologies that are related to the

selected protein in the OralCard database. The application presents a link to the

respective entity where the user can search for further data.

The Sources tab presents information contained in the XLSX file (Appendix A-

1): source name, condition (health or disease), a link to the disease page, regulation (up

36

 http://www.ncbi.nlm.nih.gov/pubmed/

http://www.ncbi.nlm.nih.gov/pubmed/

OralCard: Web Information System for Oral Health

75

José Melo

or down), evidence type, and finally a link to the PubMed reference that supports the

relation (Figure 42).

Figure 42: The Source relations tab

5.2.3 Disease Search and Details

The disease dedicated search page, as the protein search, presents an input box

where the user can make a query. This query can be an OMIM number or a disease’s

name. The following example represents a search on the term Alzheimer (Figure 43).

OralCard: Web Information System for Oral Health

76

José Melo

Figure 43: The disease search web page

For each disease, a short description and a detailed table are shown (Figure 44).

We have also integrated a tab in order to consult the KEGG pathways related to the

disease. Here the user can go directly to a dedicated website or consult an illustration of

the selected pathway (Figure 45).

Figure 44: The disease details web page with related proteins

OralCard: Web Information System for Oral Health

77

José Melo

Figure 45: A KEGG pathway related to the selected disease

5.2.1 Direct access using URL Bindings

One of the requirements for the OralCard web application was to have a direct

access to a specific page for each entity. Using this direct approach, a user that already

knows the accession code for a protein, disease or gene ontology, can input the

respective entity address in order to consult its details.

We used the Stripes feature to achieve this goal. It is designated as URL bindings,

and allows the developer to customize the application’s URL fashion. Using the

@UrlBinding annotation in our Java code, and some tweaks in the web.xml file, we can

customize the application’s URL for each action.

In the OralCard web application a user can have direct access to a protein details

page using the following link:

http://bioinformatics.ua.pt/OralCard/proteins/view/P22894

The P22894 refers to the desired UniProtKBAC, and can be any of those

contained in the application’s database.

The same situation can be applied to a disease. The user can have direct access to

a disease details page using the following link:

OralCard: Web Information System for Oral Health

78

José Melo

http://bioinformatics.ua.pt/OralCard/diseases/view/104300

The 104300 number refers to the desired OMIM, and it can be any of those

contained in the application’s database.

5.3 Summary

In this section we presented the results achieved for the OralCard project. The

first part of the assignment was intended to import information from several external

services. We realized that an approach using Java threads would reduce significantly the

time consumption in this task. This difference of time was due to the delay of used web

services, such as UniProt or the Entrez Utilities.

The second part of the assignment was to develop a customized frontend

reflecting the results presented in the database. We have shown some screenshots of the

application (home page, autocomplete feature, customized views for proteins and

diseases).

Finally we described the customized links for each entity. This feature was

implemented recurring to a Stripes tool, denominated URL Bindings. This allows a

rapid and direct access to a previously selected protein or disease.

In the next chapter we will present general conclusions regarding the OralCard

project.

OralCard: Web Information System for Oral Health

79

José Melo

6. Conclusions and Future Work

The presented OralCard web application fulfils the proposed objectives of

enabling non database experts to benefit from the database’s storage and retrieval power

and scalable data management. The OralCard system provides a way for the non-expert

users to access data from proteins, diseases and gene ontologies, in a transparent and

easy way. It was built to aid the user to find in the least possible amount of time, the

looked-for entity, providing several important data about it, as of different views

retrieved from several major external databases.

In terms of implementation options, we decided to take advantage of the on-going

project Molgenis, a local microarray database. It was designed for DRY software

engineers and bioinformaticians to take better decisions regarding genomics experiment

information management. Along with the Molgenis database API, we designed tools for

data retrieval using well-known web services, such as Uniprot and Entrez Utilities, from

NCBI.

Web services from biological dedicated services have a major importance for

bioinformaticians, since they make easy the retrieval of information collected in several

warehouses. Due to its availability and its importance, they are highly requested, and

can fail without warning. For this reason, it is of major importance to develop methods

to backup these situations of denial of service, or simple its absence.

Web services also have delays between requests and responses. For this reason,

we concentrated on reducing these idle situations by creating Java threads for groups of

proteins. This will improve the throughput of the imported proteins reducing

considerably the data fetch time.

OralCard: Web Information System for Oral Health

80

José Melo

In the future, it would be important to develop a GUI to use the functionalities of

importing proteins information. Since this process takes a couple of hours to be

concluded, a GUI with controls would provide pause and resume functionalities. Also, it

would have a major importance the system to automatically update the OralCard

database, checking for updates within the external biological services.

Molgenis generates automatically a simple web user interface, which is of major

importance while downloading data, since the developer can check at any time the

correctness of this information.

In the OralCard fronted implementation, we decided to use Stripes to develop the

business tier and the client tier. Through a dedicated extension, we were able to create a

persistence layer without much effort, and we did not have to repeat the common tasks

to every entity that resides in our database.

The usage of object-relational mapping solutions based on Hibernate and

Stripersist (using a MySQL backend database), demonstrated to be a good choice for a

swift and effective development of the data access application layer. Hibernate

Annotations allow a very organized and easy way to bind the domain model classes

with the respective tables in the relational database. Stripersist includes easy to use tools

to establish the relationship between the domain model classes and the frontend DAO

classes.

In terms of web interface development choices, Stripes also includes reusable

methods to implement a MVC pattern in our web application. It uses action beans that

can be used through JSP interactions, making easy the most common Java web

development tasks for the frontend.

The decision to use Stripes, combined with jQuery, has proved to be a good

choice for web development, since it allowed intuitive development of an advanced web

based portal. Stripes does not have good documentation has other well-known

frameworks, such as GWT, making it hard to integrate with other frameworks

functionalities, such as the auto completion with jQuery. Nevertheless, since the basics

are assimilated it is very natural to use.

jQuery is a framework that was useful to model some user interface details, but it

was most used while using the autocomplete feature and for showing images using a

gallery. Since it is a widely used JavaScript framework, it was very easy to find

documentation to support some implementations.

OralCard: Web Information System for Oral Health

81

José Melo

In order to verify if the developed work was in the route of achieving the

proposed objectives, we demonstrated our results to the Portuguese Catholic University

(Viseu) biomedical researchers. The provided feedback was very satisfactory, and gave

us the green flag to carry on with the project and include more functionality to the web

application.

OralCard: Web Information System for Oral Health

83

José Melo

7. Appendix

7.1 Appendix A - CD

This CD includes the following files:

 (1) Oralome – Human Proteins.xlsx: contains data inserted manually by the

researchers (UCP-PV). It includes a list of uniprot codes, the source where

the protein was identified, a health or disease context, regulation, age group,

and an evidence (NCBI citation);

 (2) HMP and HOMD list.xlsx: contains a list of microorganisms which are

found in association with both healthy and diseased humans, and species that

are present in the human oral cavity (provided by the UCP-PV researchers) ;

 (3) Gene Ontology Codes.docx: contains a list of gene ontology codes

(provided by the UCP-PV researchers).

OralCard: Web Information System for Oral Health

85

José Melo

8. References

1. Heerschop, E., Development of a Database Abstraction Layer. Order. 501: p.

2783.

2. Fokkema, I.F.A.C., J.T. den Dunnen, and P.E.M. Taschner, LOVD: Easy

creation of a locus specific sequence variation database using an “LSDB in a

box” approach. Human mutation, 2005. 26(2): p. 63-68.

3. D O'Connor, B., et al., GMODWeb: a web framework for the Generic Model

Organism Database. Genome Biology, 2008. 9(6): p. R102.

4. Swertz, M.A., et al., Molecular Genetics Information System (MOLGENIS):

alternatives in developing local experimental genomics databases.

Bioinformatics, 2004. 20(13): p. 2075.

5. Magnani, M. and D. Montesi, A Survey on Uncertainty Management in Data

Integration. J. Data and Information Quality, 2010. 2(1): p. 1-33.

6. Lodhi, F. and M.A. Ghazali, Design of a simple and effective object-to-

relational mapping technique, in Proceedings of the 2007 ACM symposium on

Applied computing2007, ACM: Seoul, Korea. p. 1445-1449.

7. Zaninotto, F. and F. Potencier, The definitive guide to symfony2007: Apress.

8. Thomas, D., et al., Agile web development with rails, Second Edition2007:

Pragmatic bookshelf.

9. Hart, A.M., Hibernate in the classroom. J. Comput. Small Coll., 2005. 20(4): p.

98-100.

10. O'Neil, E.J., Object/relational mapping 2008: hibernate and the entity data

model (edm), in Proceedings of the 2008 ACM SIGMOD international

conference on Management of data2008, ACM: Vancouver, Canada. p. 1351-

1356.

11. Ozkaya, I., R. Kazman, and M. Klein, Quality-Attribute Based Economic

Valuation of Architectural Patterns, in Proceedings of the First International

Workshop on The Economics of Software and Computation2007, IEEE

Computer Society. p. 5.

12. Hansen, S. and T.V. Fossum, Refactoring model-view-controller. J. Comput.

Small Coll., 2005. 21(1): p. 120-129.

13. Sasine, J.M. and R.J. Toal, Implementing the model-view-controller paradigm in

Ada 95, in Proceedings of the conference on TRI-Ada '95: Ada's role in global

markets: solutions for a changing complex world1995, ACM: Anaheim,

California, United States. p. 202-211.

14. Stoughton, A., A functional model-view-controller software architecture for

command-oriented programs, in Proceedings of the ACM SIGPLAN workshop

on Generic programming2008, ACM: Victoria, BC, Canada. p. 1-12.

OralCard: Web Information System for Oral Health

86

José Melo

15. Klopper, R., S. Gruner, and D.G. Kourie, Assessment of a framework to

compare software development methodologies, in Proceedings of the 2007

annual research conference of the South African institute of computer scientists

and information technologists on IT research in developing countries2007,

ACM: Port Elizabeth, South Africa. p. 56-65.

16. Coleman, G. and R. Verbruggen, A quality software process for rapid

application development. Software Quality Journal, 1998. 7(2): p. 107-122.

17. Agarwal, R., et al., Risks of rapid application development. Commun. ACM,

2000. 43(11es): p. 1.

18. Manfredi, R. and P. Fouche, Web application framework, 2005, EP Patent

1,594,049.

19. Getting Started with Rails - What is Rails? 23-02-2011]; Available from:

http://guides.rubyonrails.org/getting_started.html#what-is-rails.

20. Agile Manifesto. 11-03-2011]; Available from: http://agilemanifesto.org/.

21. Symfony - Open-Source PHP Web Framework. 23-02-2011]; Available from:

http://www.symfony-project.org/.

22. Symfony - About. 23-02-2011]; Available from: http://www.symfony-

project.org/about.

23. Sarang, P., Practical Liferay: Java-based Portal Applications

Development2009: Springer.

24. Yuan, J.X., Liferay Portal Enterprise Intranets2008: Packt Publishing Limited.

25. Swertz, M., et al., The MOLGENIS toolkit: rapid prototyping of biosoftware at

the push of a button. BMC Bioinformatics, 2010. 11(Suppl 12): p. S12.

26. Stripes Home. 23-02-2011]; Available from: http://www.stripesframework.org.

27. Daoud, F., Stripes:... and Java web development is fun again (Pragmatic

Programmers)2008: Pragmatic Bookshelf.

28. Hanson, R. and A. Tacy, GWT in Action: Easy Ajax with the Google Web

Toolkit2007: Manning Publications Co. Greenwich, CT, USA.

29. Chen, H. and R. Cheng, ZK: Ajax without JavaScript framework2007: Springer.

30. Dobecki, M. and W. Zabierowski. Web-based content management system.

IEEE.

31. Naidu, P.G., M.J. Palakal, and S. Hartanto, On-the-fly data integration models

for biological databases, in Proceedings of the 2007 ACM symposium on

Applied computing2007, ACM: Seoul, Korea. p. 118-122.

32. Santos, R.J. and J. Bernardino, Real-time data warehouse loading methodology,

in Proceedings of the 2008 international symposium on Database engineering

\&\#38; applications2008, ACM: Coimbra, Portugal. p. 49-58.

33. Chaudhuri, S. and U. Dayal, An overview of data warehousing and OLAP

technology. SIGMOD Rec., 1997. 26(1): p. 65-74.

34. Weng, L., et al. An approach for automatic data virtualization. in High

performance Distributed Computing, 2004. Proceedings. 13th IEEE

International Symposium on. 2004.

35. Lans, R.v.d., Clearly Defining Data Virtualization, Data Federation, and Data

Integration. BeyeNetwork - Powell Media, LLC, 2010.

36. Loshin, D., Data Integration Alternatives - Managing Value and Quality; Using

a Governed Approach to Incorporating Data Quality Services Within the Data

Integration Process. Pitney Bowes - Business Insight, 2010: p. 3.

37. de Almeida, P.V., et al., Saliva composition and functions: a comprehensive

review. J Contemp Dent Pract, 2008. 9(3): p. 72-80.

http://guides.rubyonrails.org/getting_started.html#what-is-rails
http://agilemanifesto.org/
http://www.symfony-project.org/
http://www.symfony-project.org/about
http://www.symfony-project.org/about
http://www.stripesframework.org/

OralCard: Web Information System for Oral Health

87

José Melo

38. Greabu, M., et al., Saliva—a diagnostic window to the body, both in health and

in disease. J Med Life, 2009. 2: p. 124-132.

39. Nagler, R.M., Saliva as a tool for oral cancer diagnosis and prognosis. Oral

oncology, 2009. 45(12): p. 1006-1010.

40. Shpitzer, T., et al., Salivary analysis of oral cancer biomarkers. British journal

of cancer, 2009. 101(7): p. 1194-1198.

41. Rudney, J., R. Staikov, and J. Johnson, Potential biomarkers of human salivary

function: a modified proteomic approach. Archives of oral biology, 2009. 54(1):

p. 91-100.

42. Gonçalves, L.D.R., et al., Comparative proteomic analysis of whole saliva from

chronic periodontitis patients. Journal of proteomics, 2010. 73(7): p. 1334-1341.

43. Streckfus, C.F., et al., Breast cancer related proteins are present in saliva and

are modulated secondary to ductal carcinoma in situ of the breast. Cancer

investigation, 2008. 26(2): p. 159-167.

44. Hu, S., et al., Salivary proteomic and genomic biomarkers for primary Sjögren's

syndrome. Arthritis & Rheumatism, 2007. 56(11): p. 3588-3600.

45. Rao, P.V., et al., Proteomic identification of salivary biomarkers of type-2

diabetes. Journal of Proteome Research, 2009. 8(1): p. 239-245.

46. Livnat, G., et al., Salivary profile and oxidative stress in children and

adolescents with cystic fibrosis. Journal of Oral Pathology & Medicine, 2010.

39(1): p. 16-21.

47. Giusti, L., et al., Specific proteins identified in whole saliva from patients with

diffuse systemic sclerosis. The Journal of Rheumatology, 2007. 34(10): p. 2063.

48. Seymour, G.J., M.P. Cullinan, and N.C. Heng, Oral Biology: Molecular

Techniques and Applications (Methods in Molecular Biology)2010: Humana

Press.

49. Wong, D.T., Salivary diagnostics powered by nanotechnologies, proteomics and

genomics. The Journal of the American Dental Association, 2006. 137(3): p.

313.

50. Helmerhorst, E. and F. Oppenheim, Saliva: a dynamic proteome. Journal of

dental research, 2007. 86(8): p. 680.

51. Chen, T., et al., The Human Oral Microbiome Database: a web accessible

resource for investigating oral microbe taxonomic and genomic information.

Database: the journal of biological databases and curation, 2010. 2010.

52. Nelson, K.E., et al., A catalog of reference genomes from the human

microbiome. Science (New York, NY), 2010. 328(5981): p. 994-999.

53. Xie, H., et al., Proteomics analysis of cells in whole saliva from oral cancer

patients via value-added three-dimensional peptide fractionation and tandem

mass spectrometry. Molecular & Cellular Proteomics, 2008. 7(3): p. 486.

54. Lau, J.Y., Protein Structure Database for Structural Genomics Group, 2005,

Rutgers, The State University of New Jersey.

55. Bairoch, A., et al., The universal protein resource (UniProt). Nucleic acids

research, 2005. 33(suppl 1): p. D154.

56. Boeckmann, B., et al., The SWISS-PROT protein knowledgebase and its

supplement TrEMBL in 2003. Nucleic acids research, 2003. 31(1): p. 365.

57. George, D.G., W.C. Barker, and L.T. Hunt, The protein identification resource

(PIR). Nucleic acids research, 1986. 14(1): p. 11.

58. Hubbard, T., et al., The Ensembl genome database project. Nucleic acids

research, 2002. 30(1): p. 38.

OralCard: Web Information System for Oral Health

88

José Melo

59. Kersey, P.J., et al., Technical Brief The International Protein Index: An

integrated database for proteomics experiments. Proteomics, 2004. 4(1985): p.

1988.

60. Pruitt, K.D. and D.R. Maglott, RefSeq and LocusLink: NCBI gene-centered

resources. Nucleic acids research, 2001. 29(1): p. 137.

61. Drysdale, R.A. and M.A. Crosby, FlyBase: genes and gene models. Nucleic

acids research, 2005. 33(suppl 1): p. D390.

62. Stein, L., et al., WormBase: network access to the genome and biology of

Caenorhabditis elegans. Nucleic acids research, 2001. 29(1): p. 82.

63. Berman, H.M., et al., The protein data bank. Nucleic acids research, 2000.

28(1): p. 235.

64. Disease Definition. 25-05-2011]; Available from: http://www.biology-

online.org/dictionary/Disease.

65. Hamosh, A., et al., Online Mendelian Inheritance in Man (OMIM), a

knowledgebase of human genes and genetic disorders. Nucleic acids research,

2005. 33(suppl 1): p. D514.

66. Ekins, S., et al., Pathway mapping tools for analysis of high content data.

METHODS IN MOLECULAR BIOLOGY-CLIFTON THEN TOTOWA-,

2006. 356: p. 319.

67. Kanehisa, M. and S. Goto, KEGG: Kyoto encyclopedia of genes and genomes.

Nucleic acids research, 2000. 28(1): p. 27.

68. Ashburner, M., et al., Gene Ontology: tool for the unification of biology. Nature

genetics, 2000. 25(1): p. 25.

69. Harris, M., et al., The Gene Ontology (GO) database and informatics resource.

Nucleic acids research, 2004. 32(Database issue): p. D258.

70. Harold, E.R., Processing XML with Java: a guide to SAX, DOM, JDOM, JAXP,

and TrAX2003: Addison-Wesley Professional.

http://www.biology-online.org/dictionary/Disease
http://www.biology-online.org/dictionary/Disease

