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Resumo 

 
A Ria de Aveiro é um dos principais sistemas estuarinos de águas pouco 
profundas de Portugal. Situa-se na costa Norte de Portugal e está sujeita, 
dentro da sua complexa rede de canais e zonas intertidais, a um stress 
elevado (natural e o antropogénico).  
Realizaram-se vários estudos de modelação numérica na Ria de Aveiro, mas 
nenhum deles teve como objectivo o estudo da dinâmica da pluma estuarina 
da laguna para o Oceano Atlântico. Estes fluxos estuarinos de águas menos 
densas penetram nas águas oceânicas (mais salinas), produzindo uma 
circulação na camada superficial para o largo durante as situações de vazante.  
As plumas estuarinas caracterizam-se normalmente por apresentarem uma 
estrutura côncava radial, podendo a sua forma variar devido a diversos 
factores: diferenças entre propriedades da água do oceano e da descarga 
estuarina; variações batimétricas; e factores meteorológicos, em particular a 
direcção e intensidade dos ventos. 
Este trabalho tem como principal objectivo um estudo preliminar de modelação 
numérica da pluma estuarina da Ria de Aveiro, assim como uma avaliação 
qualitativa desta para condições extremas (máxima e mínimas) e típicas de 
descarga fluvial, para todas as fontes de água doce da Ria, para o mês de 
Janeiro.  
Neste âmbito foi implementado para a Ria de Aveiro o modelo numérico de 
volumes finitos Mohid em modo 2D, de forma quantificar o fluxo (e as suas 
propriedades) que a laguna injecta no oceano. O modelo foi calibrado e 
validado (processos hidrodinâmicos e de transporte), tendo-se obtido valores 
de erro de RMS e Skill que comprovam a precisão das suas previsões 
numéricas. Posteriormente, foram simulados os três diferentes cenários de 
caudal fluvial estabelecidos.  
Após este processo, e seguindo a metodologia de utilização de modelos 
aninhados, foram criados outros dois domínios costeiros. O primeiro (no modo 
2D) abrange toda a Península Ibérica e zonas envolventes, com uma 
resolução variável (0.02º-0.04º), sendo forçado por um modelo global de maré 
nas suas fronteiras laterais. O segundo (no modo 3D), de maior resolução 
(0.01º), localiza-se entre a Figueira da Foz e Caminha. A descarga horária 
calculada por simulação utilizado o modelo da Ria de Aveiro é imposta neste 
segundo domínio, na localização da embocadura, possibilitando o estudo da 
dinâmica da Ria de Aveiro.  
Os resultados das simulações para a zona costeira adjacente à Ria de Aveiro 
mostram padrões semelhantes comparativamente a imagens de satélite 
obtidas pelo sensor TM-Landsat7 à superfície, para um cenário de intenso 
caudal fluvial. Nas simulações com caudais máximos a pluma expande-se até 
cerca de 25 km da embocadura da laguna, apresentando uma forma côncava 
em frente à mesma. A pluma é posteriormente advectada para a direita (efeito 
de Coriolis) e após o estabelecimento do equilíbrio geostrófico é transportada 
para Norte. Para os caudais típicos os resultados têm padrões semelhantes, 
mas menos acentuados. No caso das simulações para o caudal mínimo a 
pluma é inexistente. Neste cenário, as diferenças de salinidade (<0.5 psu) são 
mínimas e são os gradiente térmicos que tendem a controlar a formação da 
pluma. 
Esta abordagem poderá ser um ponto de partida para novos estudos e 
melhoramentos na monitorização da dinâmica da pluma da Ria de Aveiro.     
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Abstract 

 
The Ria de Aveiro is one of the largest shallow water estuarine systems of 
Portugal. It is located on the northern coast of Portugal and it is characterized 
by a large number of narrow channels and intertidal areas, subject to an 
enormous natural and anthropic stress. Therefore, it becomes essential the 
numerical study of its hydrodynamics. 
In recent years, several studies regarding numerical modeling of the lagoon 
have been performed, but none of them had its focus on the dynamics of the 
estuarine plume of the lagoon to the Atlantic Ocean. This buoyant plume injects 
less dense water which penetrates onto the coastal zone. Then, it is generated 
an offshore movement in the surface layer during the ebbing.  
The structure of the estuarine plume is usually characterized by a buoyant 
bulge, propagating radially.  Their shape may vary due to several factors: 
differences in the ocean and estuarine discharge water properties; bathymetric 
variations; and meteorological factors, in particular the wind direction and 
intensity. 
The main objective of this study is to perform a preliminary study of the Ria de 
Aveiro estuarine plume, as well as its qualitative assessment during extreme 
river discharges conditions (maximum and minimum) and a typical value to 
January. 
The baroclinic finite volume numerical model, Mohid, was implemented to the 
Ria de Aveiro in a 2D mode, in order to quantify the flow (and its properties) 
that the lagoon injects into the ocean. The model was calibrated and validated 
(hydrodynamic and transport processes), and the RMS errors and Skill values 
reflect the good performance of the model. After the three different river 
discharges scenarios were simulated. 
Then, based on the nested models methodology were created two other 
coastal domains. The first (2D mode) covers the entire Iberian Peninsula and 
surrounding areas, with a variable resolution (0.02º-0.04º), and it was forced by 
a global tidal model in its lateral boundaries. The second (3D mode), with more 
resolution (0.01º) is located between Figueira da Foz and Caminha, and 
includes the coastal area of the plume propagation. The hourly lagoon 
discharge, previously calculated through the model runs of Ria de Aveiro, was 
imposed in the lagoon mouth location, in order to allow the study of the 
estuarine plume dynamics. 
The forecast results for the coastal zone adjacent to Ria de Aveiro show similar 
patterns comparing to satellite images obtained by the TM sensor-Landsat7, at 
the surface, to a day of intense river inflow. In the highest flow simulation, the 
plume expands to about 25 km, creating a bulge in front of the lagoon mouth. 
Then, it is advected to the right (Coriolis effect) and after the establishment of 
the geostrophic balance is extended along the northern coast. The typical 
inflow results have similar patterns, but less pronounced. The simulations for 
the minimum inflow rate show that the plume is almost nonexistent. In this 
scenario, the salinity differences are minimal (<0.5 psu) and the thermal 
gradients tend to control the estuarine plume establishment. 
This approach could be a starting point for further studies and improvements in 
the monitoring of the dynamics of Ria de Aveiro plume. 
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1 Introduction 

1.1 Motivations and aims 

Estuaries and the adjacent shelf are very complex and highly dynamic regions subject to 

enormous natural and anthropic stress. The Ria de Aveiro lagoon is an evident example of this, 

since it is inserted in heavily populated region and in the vicinity of important commercial and 

fishing ports.  

The estuarine dynamics is determined by a complex interaction between tide, waves, wind 

and buoyancy inputs from rivers. Usually, the investigation of coastal processes is been performed 

independently for estuaries and the adjacent coast. This work seeks a wider and integrated 

assessment of how changes in the major forcing factors affect the hydrodynamic and, in the future, 

biogeochemical response of coupled estuarine-coastal systems.  

It is essential to note that estuaries impact the adjacent shelf through the estuarine plumes, 

affecting the physical and biogeochemical features of these coastal regions. According to Orton and 

Jay [2005], major rivers inject freshwater onto the adjacent shelf where mixing of these river 

plumes takes place, affecting the transport and transformation of dissolved and particulate materials 

at the coastal margin. Therefore, extreme events of river discharge associated to torrential rain 

episodes, that are becoming more frequent in southern Europe [IPCC, 2007] will affect the balance 

of these coupled systems [Choi and Wilkin, 2006; Guo and Valle-Levinson, 2007; Lihan et al., 

2008]. 

According to Mestres et al. [2007], estuarine plumes are relevant to many aspects of the 

coastal environment, from shelf circulation [Weaver and Hsieh, 1987] to biogeochemical processes 

[Naudin et al., 2001; Le Pape et al., 2003; Chen and Gardner, 2004], including the enhancement of 

biological production due to river borne nutrients, the hampering of primary production because of 

the reduction in light penetration [Froidefond et al., 1998] and other processes related to coastal 

pollution, larval transport and sediment or geochemical transport across the shelf [Jouanneau and 

Latouche, 1982; Fichez et al., 1992; Morris et al., 1995; Blanton et al., 1997]. These factors will 

influence, directly or indirectly, various socio-economic aspects that affect the entire population in 

areas near the lagoon/river mouth.  

In recent years, various studies about the Ria de Aveiro have been performed with several 

numerical models, such as: MOHID [Vaz, et al., 2007; 2009a], ELCIRC [Picado et al., 2010], and 

SIMSYS2D [Dias, 2001; Dias and Lopes, 2006; Mendes et al., 2009]. Nevertheless, no studies 

regarding the Ria de Aveiro estuarine plume were carried out.  

Vaz [2007] presents a study which had as the main objective the research of the Espinheiro 

channel’s thermohaline dynamics as a function of two major forcings: tides and river inflow using 

field experiments and numerical modelling simulations. The Mohid numerical model was then 

implemented using a numerical grid of 40 × 40 m for the central area of the lagoon, and then used 

to study the channels hydrography.  

Although this intensive study of the Ria de Aveiro hydrodynamics, this model configuration 

is not suitable to be used in this work since it has some limitations. A future goal of this work will 

be the coupling of other Mohid modules, such as the biogeochemical model (Life, Mateus, 2006). 

As stated before, the study of estuarine plumes include other scientific areas beyond the physical 

dynamics. The numerical grid bathymetry used by Vaz [2007] turns the computational effort too 
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high to allow the coupling with ecological modules. Thus, it became necessary to build a lower 

resolution grid (100 × 100 m).   

The main objective of this study is carrying out a preliminary and qualitative analysis of the 

Ria de Aveiro estuarine plume behavior under some extreme and typical rivers discharges 

scenarios during January. Combined with this principal objective, there are other specific 

objectives such as: update and construct a numerical grid for the Ria de Aveiro using  the most 

recent bathymetry data set; calibrate and validate the numerical model Mohid (hydrodynamic and 

transport modules in a 2D mode) for the Ria de Aveiro lagoon with a numerical grid with 100 m of 

cell width; implement a nested methodology to couple the Ria de Aveiro model with coastal zone 

model; and build thematic maps of the possible Ria de Aveiro estuarine plumes observations from 

remote sensing data from TM sensor of the LANDSAT7 satellite and qualitatively compare with 

the modeling results. 

1.2 State of the Art 

1.2.1 Mohid 

In this work is used the numerical model Mohid – Water Modelling System. Mohid is a 3D 

baroclinic finite volume marine model, designed for coastal and estuarine shallow water 

applications, like the study of Ria de Aveiro dynamics. The model is under continuous 

development at the Instituto Superior Técnico (Universidade Técnica de Lisboa) [Santos, 1995; 

Martins et al., 2001; Leitão, 2003: Leitão et al., 2005]. Mohid is constituted by several other 

modules like an Eulerian/Lagrangen transport module, or a sediments module. The hydrodynamic 

model may be used to force biogeochemical models [Mateus, 2006]. A complete description of the 

model physics can be found in Leitão [2003] and Leitão et al. [2005]. 

Since its creation, Mohid has been applied to different coastal and estuarine areas, showing 

its capability to simulate complex flows features. In Portugal, several estuarine systems have been 

studied: Douro [Silva, 1996] and Mondego rivers [Saraiva, et al., 2007] (river mouths); Ria de 

Aveiro [Trancoso et al., 2005; Vaz et al., 2005, 2007, 2009a], Óbidos lagoon [Santos et al., 2006; 

Malhadas et al., 2009] and Ria Formosa [Silva et al., 2002] (coastal lagoons); Tagus 

[Braunschweig et al., 2003; Vaz et al., 2009b], Sado [Martins et al., 2001], and Guadiana estuaries 

[Saraiva, et al., 2007] (coastal plain estuaries). Furthermore, Mohid has been implemented in other 

parts of Iberian Peninsula: for example in the Galician Rias (Ria de Pontevedra [Villarreal et al., 

2002] and Ria de Vigo [Taboada et al., 1998; Montero, 1999].  

Besides these, other studies were performed in open sea: on the Iberian Coast, including the 

Portuguese coastal circulation [Coelho et al., 2002], slope Cantabrian current [Villarreal et al., 

2004], and Algarve coastal circulation [Leitão et al., 2005], and on the North Sea [Bernardes, 

2007]. 

All this extensive number of studies in several coastal environments, with different 

resolutions and the ability to future incorporation of other modules (such as biogeochemical) allow 

to show that the numerical model, Mohid, has the total capabilities to simulate the dynamics of the 

Ria de Aveiro estuarine plume. 
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1.2.2 Estuarine Plume 

There is an extensive literature on buoyant plumes in shelf water, including observational, 

laboratory model, and mathematical (including numerical) model studies. Garvine [1987] 

developed a classic model of plume dynamics which balance the buoyancy force with the Coriolis 

force that causes the river outflow to turn right in the northern hemisphere. These buoyant outflows 

may also contain a bulge in its vicinity. Yankovsky and Chapman [1997] incorporated a bulge in a 

steady-state model and distinguished the surface-advected plume from bottom-advected plume. 

Recent modeling and laboratory studies of buoyant outflows provide a more detailed 

characterization of bulge structure [Fong and Gyer, 2001; Avicola and Huq, 2003; Horner-Devine 

et al., 2006]. Other studies show that local wind forcing significantly affects the dispersal of river 

plume [Whitney and Garvine, 2005; Choi and Wilkin, 2006]. Tidal effects on estuarine plume are 

also study in recent times by Guo and Valle-Levinson [2007].  

In Portugal, they were found several biological studies including some research about the 

interaction of the coastal ocean with estuarine plumes dynamic. Vaz et al. [2009b] studied the 

Tagus estuarine plume dynamics induced by wind and freshwater discharges. In this work a three-

dimensional ocean circulation model (Mohid) with realistic high and low frequency forcing is used 

to get insight on how the Tagus River plume responds to wind and freshwater discharge during 

winter. 
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2 Study area 

2.1 General Description 

Located on the northern coast of Portugal (40°38’ N, 8°45’ W), the Ria de Aveiro (Figure 2.1) 

is a shallow water lagoon – the most extensive in Portugal [Teixeira, 1994] – separated from the 

Atlantic Ocean by a sand dune barrier. It has an irregular geometry, and its only connection with 

Atlantic Ocean is through an artificial channel (Barra de Aveiro), opened in the beginning of 19
th
 

century [Dias, 2001].It reaches a maximum width of 8.5 km and extends for over 45 km. Four main 

branches radiate from this sea entrance: Mira, São Jacinto, Ílhavo and Espinheiro channels. The 

Mira channel is an elongated shallow arm, with 29 km length. S. Jacinto channel is about 29 km 

long, and Ílhavo and Espinheiro are 15 and 17 km, respectively [Dias, 2001].  

 

 

Figure 2.1: The Ria de Aveiro lagoon. 

 

It provides natural conditions for harbour, and navigation facilities and it is also a place of 

discharge of domestic and industrial wastes. It offers good conditions for agricultural development 

along its borders and for the set up of a large number of small and medium industries.  

There are a considerable number of semi-professional and part-time fishermen who 

economically depend on the productivity of the lagoon waters. Meanwhile, an increasing number 

of recovered pans for aquaculture purposes imply that in near future this activity may become 

economically promising. The harbour reveals a strong development in recent years due to the 

increasing number of industries in Aveiro region. Due to the development of some of the referred 

activities, the lagoon is being subjected to considerable pollution stress. For example, the most 
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enclosed and remote arms of the lagoon show evident signs of advanced eutrophication, some 

communities and animal species have survival problems, there is microbiological contamination 

from large discharge of untreated sewage and there is industrial pollution. The recent progress of 

saline intrusion is another important problem, responsible for significant saline stress in the low-

lying lands of Baixo Vouga. Once flooded by sea water, previously fertile lands are unsuitable for 

growing crops for several years because of the saline deposits which remain after the floods have 

receded [Frazão et al., 2010].  

 

2.2 Physical Description 

The Ria de Aveiro presents a significant variable area due to the large tidal influence on its 

hydrodynamics. In spring tides it reaches a maximum area of 83 km
2
 at high tide, which reduces to 

a minimum of 66 km
2
 at low tide [Dias, 2001]. The system is characterized by extensive intertidal 

areas, essentially mudflats, salt marsh and old saltpans. The average depth of the Ria de Aveiro is 1 

m (relative to the local datum), but the navigation channels close to its mouth and the areas 

contiguous to the ports are deeper, because of the constant dredging operations to allow the access 

of large ships to the harbor. 

The lagoon is mesotidal, presenting a tidal amplitude at the inlet of 0.6 m in neap tides and 

3.2 m in spring tides - average 2 m [Dias et al., 2000]. Moreover, the semidiurnal tides are the 

major factor influencing the hydrodynamics of the lagoon [Dias et al., 2000]. The M2 and S2 

constituents represent 88% and 10% of total tidal energy, respectively [Dias, 2001]. The M2 

constituent presents, at lagoon mouth, an amplitude of ~0.96 m and a phase of ~78º. The S2 shows 

an amplitude of ~0.36 m and a phase of ~80º, in line with harmonic analysis of Sea Surface 

Elevation (SSE) measured in 1987 by Hydrographic Institute of Portuguese Navy and presented by 

Vaz et al. [2007]. According to Araújo, et al. [2008], the Ria de Aveiro lagoon show an average 

increase of 0.245 m in M2 amplitude and 17.4º decrease in phase, over 16 years (1987 – 2004). 

Its estimated tidal prism is 136.7      m
3
, at lagoon mouth, for maximum spring tide and 34.9 

      m
3
 for maximum neap tide [Dias, 2001] and, in almost all situations it is very large 

compared with estimated total freshwater input. According with Moreira et al. [1993] it is about 1.8 

     m
3 
during a tidal cycle. 

In extreme situations of wind and freshwater forcing, these can also influence the Ria de 

Aveiro hydrodynamics. There are several rivers discharging along all the surrounding area of Ria 

de Aveiro. The most important, considering the mean river inflow rate, are the Vouga (~50 m
3
s

-1
), 

Antuã (~5 m
3
s

-1
), and Boco (maximum value of 0.47 m

3
s

-1
). Besides these, there are also some 

other smaller rivers that discharge into the northern channels (Caster, Gonde and Fontela) and to 

the Mira Channel. In spite of the complex interaction between its morphology, tidal effects and its 

tributary river drainage seasonal variability, the Ria de Aveiro can nonetheless be considered a 

vertically homogeneous estuarine environment during most of the year. During an exceptional 

situation of strong freshwater flows, the lagoon is weakly stratified [Dias et al., 1999]. 
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3 Estuarine Plumes 

3.1 Introduction 

River or estuaries discharge into the coastal ocean represent a major link between terrestrial 

and marine systems. Furthermore, the majority of the world human population is located around 

coastal and estuarine zones.  Thus, those discharges are an important anthropogenic pollution 

pathway to the ocean. These flows are fewer dense than the saline ocean water and this difference 

produce a buoyancy force that drives the plume circulation. This buoyant outflow is advected onto 

the near shelf during the ebbing and when it is spread over more saline coastal water, vertical 

mixing occurs (including a stronger seaward transport). In compensation, the lower layer tends to 

flow landward, onto the estuary.  

The structure of the estuarine plume, as it is expected in the Ria de Aveiro, may take a 

variety of shapes depending on the ambient flow, bottom topography, inflow properties, and wind 

forcing. For example, the interaction between the buoyant surface and the bottom, among other 

things, determines the extent of the sediment transport near the bottom as well as the stratification 

and dynamics of the plume. Chao [1988] and Marsaleix et al. [1998] show that the topography of 

the continental shelf plays an important role in the estuarine plume evolution. The effect of seaward 

bottom slope limits the offshore development of the bulge by increasing the anticyclonic vorticity 

to the orographic lifting of undercurrent. For example, the presence of a canyon in front of the 

estuarine mouth reinforces the barotropic circulation with the generation of coastally trapped waves 

[Weaver and Hsieh, 1987]. 

Some studies on the northern Portuguese and Galician shelf highlight important 

characteristics of the system response to wind events and river runoff.  Santos et al. [2004] and 

Ribeiro et al. [2005] reveal the influence of the buoyancy from the rivers, which combine with a 

warmer and saltier poleward current, on the shelf/slope circulation during the autumn. Otero et al. 

[2010] reveal in their study the role of the alongshore winds in the confinement – downwelling 

favourable – or export of the buoyant outflow – upwelling favourable.  

The buoyant outflows may also contain a bulge-like region in the vicinity of the outflow, and 

the cross-shelf extent of these bulges can be several times the width of the downstream coastal 

current [Chant et al., 2008]. 

3.2 Near and Far-field Plume 

Hetland [2005] decomposes the system estuary or river plume into three components: the 

estuary; the near-field and far-field plumes. Essentially, the estuary and the near-field plume are 

characterized by powerful mixing of fresh and salt water. The near-field plume also can be 

characterized by supercritical Froude number, enhanced mixing, and rapid water mass 

modification.  The supercritical flow is initiated by topographic control at the estuary mouth and 

results in intense mixing and high flow speeds that are typically not present in the coastal ocean 

which it is controlled by variations in river flow and tides. The far-field plume refers to the region 

outside the influence of the river runoff, and it is mainly modulated by the wind forcing [Halverson 

and Pawlowicz, 2008]. Figure 3.1 shows an idealized numerical simulation of a near-field plume. 
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Figure 3.1: An idealized near-field plume simulation. The upper panel shows a gray-scale of surface 

salinity, the lower panel shows a cross-section of salinity down the center of the plume. The freshwater 

flow is initiated at t=0 hours (a) t=1.0 hours; b) t=2.5 hours; c) t=5.0 hours; and d) t=6.0 hours) [Robert 

D. Hetland: http://pong.tamu.edu/~rob/plume/near_movie.mov]. 

3.3 Surface advected plumes 

Yankovksy and Chapman [1997] developed a simple theory that predicts the vertical 

structure and offshore spreading of a localized buoyant inflow onto a continental shelf. The theory 

is based on two competing mechanisms that move the buoyant fluid offshore: 1- the radial spread 

of lighter water over the ambient water, being deflected by the Coriolis force and producing an 

anticyclonic cyclostrophic plume, and 2- offshore transport of buoyant water in the frictional 

bottom boundary layer that moves the entire plume offshore while maintaining contact with the 

bottom. Considering the Hetland [2005] classification, the Ria de Aveiro estuarine plume can be 

defined as a near-field plume. Consequently, being classified as a near-field plume it is also a 

surface-advected plume. Thus, in this work only the surface-advected plume theory will be 

described in detail. 

 They developed a formulation to quantify the distance (  ) that the plume moves offshore 

in an idealized model, without any exterior forcing except the inflow value:  

 

   
           

  

         
      

 (3.1) 

 

where   is the reduced gravity,     is the inflow depth,    is a constant and spatially uniform 

velocity inflow, and   is the Coriolis parameter.  

 They formulated the computation of another important variable in the estuarine plume 

dynamics:    is considered the depth which the plume remains attached to the bottom: 

 

http://pong.tamu.edu/~rob/plume/near_movie.mov
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 (3.2) 

 

  is the inflow width.   

Detailed explanations about the base of these theoretical calculations may be found in 

Yankovksy and Chapman [1997].It’s possible to identify three scenarios from these values:  

1-   >   , and    is offshore of   : A bottom-advected plume is generated.  

2-   <   : The predicted equilibrium depth for the bottom-advected plume is 

shallower than the depth of the buoyant inflow, so bottom boundary layer have 

no influence. A surface-advected plume is generated (Figure 3.2). In this case 

    . 

3-   >    ,    is shoreward of    (i.e. 0 <       ): An intermediate plume is 

generated. 

 

If the values of    indicate that it is a surface-advected plume it is interesting to take into 

account the     magnitude. Two limits are important: 1) if the   
 <<     ,    = 4.24   . Where     

may be referred to as the barotropic Rossby radius of the buoyant inflow and it is equal to:  

 

    
      

   

 
 (3.3) 

  

 These are the cases of weak buoyant flows or large density differences. 2) In the limit of 

strong inflow or small density difference   
  >>     , then the    

   

 
, and inflows turns in an 

inertial circle.  

 

 
Figure 3.2: Scheme of a surface-advected plume [Yankovksy and Chapman, 1997]. 

 

Another point of view based on the two nondimensional parameters simplifies the 

interpretation referred before. Considering the definitions of Burger ( ) and Rossby (  ) numbers:  

 

  
      

   

  
 (3.4) 

    
  

  
 (3.5) 

 

The Rossby number is a measure of nonlinear advection of momentum through the coast 

or, more specifically, the rate of inflow. While the Burger number is a measure of the influence of 



 

 

 
10  Estuarine Plumes 

buoyancy. Yankovsky and Chapman [1997], according to these terms, built a diagram (Figure 3.3) 

which turn easier the identification of each type of estuarine or river plume:   

 

 
Figure 3.3: Regions of various plume types based on the Yankovksy and Chapman [1997] theory.
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4 Numerical Model: Mohid 

4.1 The Numerical Model Equations 

 The numerical model Mohid solves the three-dimensional incompressible primitive 

equations. Hydrostatic equilibrium is assumed as well as the Boussinesq and Reynolds 

approximations. The hydrostatic approximation gives: 

                      
 

  

   (4.1) 

Equation (4.1) relates pressure at any depth with the atmospheric pressure at the sea 

surface, the sea level and pressure anomaly integrated between that level and the surface. Using the 

Boussinesq approximation it is possible to describe the total pressure gradient as the sum of the 

gradients of the atmospheric pressure, the sea surface elevation (barotropic pressure gradient) and 

the density distribution (baroclinic pressure gradient): 

 

  

   
 
     
   

    
  

   
    

   

   

 

 

   (4.2) 

 

This decomposition is substituted in the 3D incompressible primitive equations and yields 

to the mass momentum equation (4.3): 

 

   
  

 
       

   
  

 

  
 
     
   

  
    

  
 
  

   
  

 
 

  
  

  

   

 

  

    
 

   
  

   
   

            (4.3) 

Equation (4.3) shows how the horizontal velocity components are calculated, where    are 

the velocity vector components in the horizontal Cartesian    directions (i = 1; 2),    are the 

velocity vector components in the three Cartesian directions     ( j = 1; 2; 3),      is the 

atmospheric pressure, and   is the turbulent viscosity.   is the specific mass,    is its anomaly,    is 

the reference specific mass,   is the free surface level,      represents the specific mass at the free 

surface, g is the acceleration of gravity, t is the time,   is the Earth’s velocity of rotation, and   is 

the alternate tensor. 

The mass balance equation (continuity) is: 

 

   
   

 
   
   

 
   
   

   (4.4) 

 

  The density   is calculated as a function of temperature and salinity by the equation of state 

[Leendertse and Liu, 1978]: 

                                                       

                                           
(4.5) 
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The vertical velocity is calculated from continuity equation (4.4) by integrating between 

the bottom and the depth   where    is to be calculated:  

 

        
 

    
      

  

  

 
 

    
      

  

  

 (4.6) 

 

To obtain the free surface equation, the Continuity Equation (4.2) is integrated over the 

whole water column. The integration limits are the free surface elevation,       , and the bottom, 

   (where   is the depth). 

 

  

  
  

 

   
   

 

  

    
 

   
   

 

  

    (4.7) 

 

The model solves a transport equation for salinity and water temperature, in this case, or 

any tracer for other works and studies. The formulation of the advection-diffusion equation is: 

 

  

  
   

  

   
 
  

   
  

  

   
     (4.8) 

 

where   is the transported property,   is the diffusion coefficient and    is a possible source or 

sink term.  

4.2 Discretization 

Mohid uses a finite volume approach to perform the spatial discretization that is fully 

described in Martins et al. [2001] and Leitão [2003]. In the horizontal direction is adopted an 

Arakawa C staggered grid [Arakawa and Lamb, 1977].  

 The temporal discretization is carried out using a semi-implicit algorithm: the ADI 

(Alternate Direction Implicit), described in Abbott and Basco [1994]. In all simulations was used 

the 6 equation algorithm discretization scheme by Leendertse [1967]. This algorithm calculates 

alternatively one component of horizontal velocity implicitly while the other is calculated 

explicitly, avoiding the calculation of the internal and external modes with different time steps 

[Leitão, 2003]. 

4.3 Boundary Conditions 

 Five different types of boundaries were used in this work: bottom, free surface, lateral 

closed boundary, lateral opened boundary and moving boundary. At the free surface boundary all 

advective fluxes across the surface are assumed null which means   (vertical flux) is null: 

 

                (4.9) 

 

Diffusive flux of momentum is imposed assuming clearly a wind surface stress,    :  
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                    (4.10) 

  

where    is the vertical eddy viscosity. The wind stress is computed according to a quadratic 

friction law: 

                (4.11) 

  

where     is the wind speed measured 10 m above the sea surface,    is the air density and    is a 

drag coefficient which is a function of the wind speed. In this work, the wind stress forcing was not 

considered. 

The bottom shear stress is calculated using a non-slip method with a quadratic law which 

depends on the near bottom velocity: 

 

  
   
   

               
    

        (4.12) 

 

 In the 2D mode, the bottom drag coefficient (  ) is calculated based on the Manning 

coefficient ( ): 

           (4.13) 

 

While for the 3D mode the    calculation is based on a logarithmic law and on the von 

Karman constant ( ) (4.14): 

 

   
 

  
     

 

  
 

 
(4.14) 

 

where           is the depth of the water column,   
  is the bottom roughness length and    is 

the distance from the bottom to the middle point at each layer.  

 At the ocean open boundary the free surface elevation is imposed and at the river 

boundaries the flow is specified. A free slip condition is imposed at the lateral boundary condition 

by specifying a zero normal component of mass and momentum diffusive fluxes at cell faces in 

contact with land. 

 Moving boundaries are closed boundaries whose position varies with time. In domains with 

large intertidal zones, like Ria de Aveiro, are very frequent. The uncovered cells must be tracked 

and with this purpose a criterion base in Figure 4.1 is used. H MIN is the depth bellow which cell is 

considered uncovered. In this case a thin volume of water above the uncovered cell is conserved. 

The cell of position i, j is considered uncovered when one of the two following situation is true 

[Leitão, 2003; Vaz, et al., 2005]:  
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Figure 4.1: Conditions for a cell to be considered uncovered (moving boundaries) [Leitão, 2003]. 

 

                           (4.15) 

 

                             (4.16) 

 

 The second condition of (4.15) assures that the cell is not being covered by the tidal wave 

propagating from left to right and the second condition of (4.16) assures that the cell is not being 

covered by the tidal wave propagating from right to left. The noise formed by the abrupt change in 

velocity at the dry cells is controlled with a careful choice of HMIN (in this simulation: HMIN = 

0.10 m) [Leendertse and Liu, 1978]. 

 

4.4 Surface heat fluxes parameterizations 

 The interaction between air and water in shallow water systems, like the Ria de Aveiro, is 

of extreme importance and it also influences the temporal variability of the various physical, 

chemical and biological processes. The water-air heat exchanges are determined by five distinct 

processes: atmospheric longwave radiation, solar shortwave radiation, water longwave radiation, 

and sensible and latent heat flux. In Mohid, the total heat surface flux is obtained summing the 

three last processes referred before. The solar and atmospheric radiation entering in the water 

column is parameterized as exponential function of depth by the law proposed by Kraus [1972]:  

 

             
  

       
  

             (4.17) 

 

   and    refer to the long and shortwave radiation component, respectively.   is positive 

downward, being     the sea surface. The values of   ,     and    where published by Paulson 

and Simpson [1977] according to the classification found in Jerlov [1968].  

 Mohid uses the formulation found in Brock [1981] to quantify the incoming solar radiation 

in the water surface which depends on the sun height, atmospheric absorption and albedo: 

 

                         (4.18) 
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   is the incoming solar radiation [Wm
-2

],     is the Solar Constant [Wm
-2

],    is the atmospheric 

transference,     is the neubulosity (% of cloud cover). The net longwave radiation    [Wm
-2

] is 

calculated using [Swinbank, 1963]: 

 

                          
                      (4.19) 

 

where   is he Stefan-Boltzmann constant (             Wm
-2

K
-4

) and    is the radiation 

reflected by the sea surface (%).     [Wm
-2

] (infrared radiation) is calculated applying the Stefan-

Boltzmann law: 

 

                    
  (4.20) 

 

where   is the water emissivity (~0.97) and    is the water temperature [K]. The latent    and 

sensible    heat fluxes [Wm
-2

] are obtained using the Dalton and Bowen laws, respectively 

(adopted from Chapra [1997]): 

 

                
                  (4.21) 

 

                   
           (4.22) 

 

 The    is the wind speed [ms
-1

],      is the saturated water pressure [mmHg],    is the 

relative humidity [values ranges from 0 to 1],      is the air saturation pressure [mmHg],    is the 

Bowen coefficient [~ 0.47 mmHGK
-1

],    and    is the water and air temperature [K]. The latent 

heat flux is directly related to pressure vapour deficit and sensible heat is related to the water-air 

temperature difference.  

  



 

 

 
16  Numerical Model: Mohid 

 



 

 

   
Hydrodynamic Model Implementation to the Ria de Aveiro 17 

5 Hydrodynamic Model Implementation to the Ria de Aveiro 

5.1 Numerical Grid Construction 

 Apart of the boundary conditions, the bathymetry is probably the most important factor that 

affects the flow in shallow waters systems such as Ria de Aveiro. The bathymetry controls the 

spatial variability of the current magnitude and direction, constituting a factor which ensures the 

realism of the numerical model [Cheng et al., 1991; Dias and Lopes, 2006].  

 Over the last years, the Ria de Aveiro hydrodynamics has been extensively studied using 

numerical modeling tools (Dias et al., 1999, 2000; Vaz et al. 2005, 2007; Picado et al., 2010). 

However, the large areas of low lying lands that surround this lagoon were not described in the 

numerical grids used for the previous hydrodynamic modeling applications. Although the study of 

the mean sea level rise effects in Ria de Aveiro hydrodynamics in not an aim of this work, this low 

lying lands will probably be frequently flooded in the near future [IPCC, 2007], why justifies the 

inclusion of these data in the numerical bathymetry to develop this work 

 In order to build a numerical grid for Ria de Aveiro, a preliminary actualization of 

available bathymetric data for the lagoon was performed with the most recent sounding information 

using the ArcGis® software. The main data base concerning depth sounding values for Ria de 

Aveiro was obtained from a general survey carried out in 1987/88 by the Hydrographic Institute of 

Portuguese Navy (IH). This depth database was updated using field data from several recent 

surveys performed by the Harbor Administration (APA) at the inlet channels and by the 

Hydrographic Regional Administration (ARH) at S.Jacinto channel. It was also updated with 

topography data from an available Digital Terrain Model for the adjacent low lying lands (Figure 

5.1).  

 Two numerical bathymetries were developed in order to evaluate the importance of 

including the low lying lands when simulating the lagoon hydrodynamics.  The first one comprises 

data until 2 meters above the local datum (grid 1), and the other until 7 m above the local datum 

(grid 2), with the adjacent low lying lands. In order to eliminate grid irregularities which may 

constitute a cause of instability, and to ensure that there are no closed channels and that all the 

water may circulate, the previous numerical grids were manually corrected using MohidGIS 

software based in Google Earth® software observations. Finally, the numerical rectangular grid 

developed had 387 by 219 cells in y and x directions, respectively, with a spatial resolution of 100 

m (Figure 5.1).  

 Mendes et al. [submitted] adopted a methodology to compare hydrodynamic changes 

induced by the use of these two numerical grids. After the Mohid-2D model implementation for the 

Ria de Aveiro and in order to evaluate tidal changes induced by considering the adjacent low lying 

lands, it were computed the velocity fields for the two grids used in this simulation. It was also 

performed harmonic analysis (Pawlowicz et al., 2002) to sea level height and current velocity 

model outputs for both grids. Moreover, ellipse parameters were assessing to complement the 

comparison of the numerical bathymetries. Mendes et al. (submitted) follow the Xu (2000) 

methodology which defined four parameters to the ellipses: the Semi-Major Axis of ellipses 

(SEMA) corresponds to the maximum current velocity value at each station; the angle between 

SEMA and the northern semi-major axis is the preferential flow direction (inclination (INC)); and 
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the eccentricity (ECC) is the ration of semi-minor to semi-major ellipses axis and evaluates the 

direction time variability. 

 
Figure 5.1: A) Map of depth databases used in numerical bathymetry actualization. B) Numerical grid 

of the Ria de Aveiro lagoon.  

 

 The results show that the maximum speed during the simulation period reached 2.62 ms
-1

 

for the numerical grid 1, while for the numerical grid 2 the maximum was 2.71 ms
-1

.  Near the 

mouth of the lagoon the mean velocity modulus variation is ~ 0.02 ms
-1

. This deviation increases in 

the central areas and in the northern S. Jacinto channel. The maximum difference in those areas is 

0.10 ms
-1

. Close to the low lying lands the velocity is typically lower than 1 ms
-1

.  

 The SEMA difference values are significantly higher (0.02 ms
-1

 for the M2 and 0.01 ms
-1

 

for the S2 constituent close to the mouth of the lagoon). These results are consistent with the 

velocity values. There is also a phase delay between both simulations. For the M2 and the S2 

constituents, this delay is higher at northern S. Jacinto channel (~ 5 minutes). The ECC in all 

stations is near zero which represents a current polarization in one direction. 

B) A) 
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 Figure 5.2A) reveals that the relative differences between the M2 amplitude (for both grids) 

are almost negligible (< 5%). Moreover, the phase difference (Figure 5.2B)), over the entire length 

of the lagoon never exceeds 5° (~10 minutes). For the S2, the relative differences in amplitude are 

slightly larger when compared with the M2 constituent but never exceeding 7 % of local constituent 

amplitude range (Figure 5.2C). The S2 phase differences reach values of around 10º (20 minutes) 

(Figure 5.2D). The major deviations values, either in amplitude and phase of the two harmonic 

constituents, are located in the areas with a large concentration of narrow channels which include 

an adjacent low-lying land area. It is clear that the differences are amplified from the lagoon mouth 

to the upstream areas.  

 

 
Figure 5.2: A) Relative difference of M2 amplitude between grid 1 (data from 2 m above local datum) 

and grid 2 (data from 7 m above local datum). B) Phase difference of M2 between grid 1 and grid 2; C) 

Relative difference of S2 amplitude between grid 1 and grid 2; D) Phase difference of S2 between grid 1 

and grid 2.   
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 The Mendes et al. [submitted] study reveals that although the differences in the numerical 

results for the general circulation of the Ria de Aveiro are negligible when considering the low 

lying coastal adjacent flooded areas, some consistent patterns were found that suggest that the 

inclusion of these areas are important for more accurate studies. The velocity differences patterns 

and SEMA results are consistent with the results reported by Picado et al. [2010], where show how 

a 5.6% increase in the Ria de Aveiro flooded area due to the deterioration of the local salt pans 

walls corresponding to an increase of about 5-6% of the tidal currents intensity. Thus, the grid 2 is 

implemented in this work to ensure that future studies on extreme events in Ria de Aveiro lagoon 

(extreme river discharges, mean sea-level rise, storm surges, etc) can be done with this model 

configuration.  

5.2 Hydrodynamic Model Calibration  

 The model calibration is based on the adjustment of parameters to which the model is most 

sensitive. In Ria de Aveiro, according to Dias and Fernandes [2006], the magnitude of the bottom 

friction coefficient determines changes in the tidal wave propagation within the lagoon. Thus, in 

order perform the model calibration the tunning parameter is the Manning coefficient (n) (Equation 

4.13). A Manning coefficient grid was constructed, based on values used by Vaz et al., [2007], and 

localized fine-tuning had been done based on the Hsu et al. [1999] procedure.  

 In this work, the model calibration was carried out by comparing observed surface 

elevation data with model results, and by comparing the amplitude and phase of the harmonic tidal 

constituents. For the model calibration, the data available are from field works carried out in Ria de 

Aveiro 2003. All data were collected in the framework of the PhD Thesis of Araújo [2005] and the 

measurements were performed every six minutes, except in station F where measurements were 

done every half hour. At the open ocean boundaries, the free surface elevation was specified from 

50 tidal constituents obtained after harmonic analysis [Pawlowicz et al., 2002] of data measured at 

a tide gauge located close to the lagoon mouth, during 1987. These tidal constituents were imposed 

at the ocean open boundaries with a phase and amplitude corrector factor in a way that the model 

results reproduce the free surface elevation at station A (lagoon mouth).  

5.2.1 Results 

 The calibration was performed at 11 stations within lagoon. Figure 5.3 shows the 

comparison between the computed and observed SSE time series for two days in each station. The 

model performance was measured by RMS errors and using a Skill parameter:  

 

     
 

 
                

 

 

   

   
 
   (4.23) 

 

         
        

 

                    
  (4.24) 
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 Where       and        are the observed and computed SSE, respectively,   is the 

number of measurements in the time series,   is sea surface elevation and    the time mean. Based 

in Dias et al. [2009] the RMS values should be compared with the local tidal amplitude and if those 

errors are lower than 5% of the amplitude, the agreement between model and observations results 

should be considered excellent and if they range between 5% and 10% the agreement should be 

considered very good. In the case of predictive model Skill, a method was developed by Wilmott 

[1981] and recently used by Warner et al. [2005] and Li et al. [2005], the perfect agreement 

between model results and observations yield a Skill of one and complete disagreement yield a skill 

of zero. Skill values higher than 0.95 should be considered representative of an excellent agreement 

between model results and observations [Dias et al., 2009]. 

 It is important to note that in order to compare model results with measurements the low 

frequency signal was removed from the data, considering a cut-off frequency of 0.0000093 Hz (30 

h). In general, the results revealing an accurate reproduction of SSE in the Ria de Aveiro lagoon. 

The RMS values ranges from 2.2% to 9.8% of the local amplitude in all stations. Thus, the 

agreement between predictions and observations, in all stations, ranges from very well to excellent. 

 

 

Figure 5.3: Comparison between SSE time series for stations A, B, C, D, E, F, G, H, I, J, and K used in 

the hydrodynamic calibration procedure (● red: data; black solid line: model). 

 

 At station A, the computed and observed data comparison should be perfect. The difference 

is ~7 cm, which represents an error of 2.2% when it was compared with local tidal amplitude. This 

difference may be justified by an ineffective tidal phase and amplitude correction factor from the 

open boundary to station A, or considering that the same phase and amplitude values for all the 

tidal constituents were imposed in all the open ocean boundaries (north, west, and south 

boundaries), not taking into a account with the local differences. This small error may partially 

explain the errors found in the other stations within the lagoon. In stations A, B, C, D and H the 

disagreement is lower than 5% of local tidal range. In general, the errors increase with the distance 
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between the station and the lagoon mouth. This justification can be set for all stations, except for 

the station G, where the error is higher (RMS = 0.26 m). This difference can be explained for the 

gap of actual bathymetric data in the area before the station (Figure 5.1). Other important error 

source is the inaccurate definitions of bathymetry. For example, the Ílhavo channel has, in some 

sections, a width of 10 m, causing a complete misfit when it is considered a numerical grid cell 

with 100 m.  The Skill values in all stations are higher than 0.95, except in station G, representing 

an excellent agreement between model forecasts and observations.  

 The direct comparison of RMS errors and Skill parameter has the disadvantage of 

quantifying phase lags over time series. Consequently, in this work it was also performed a 

harmonic analysis [Pawlowicz et al., 2002] of the predicted and observed SSE in order to quantify 

separately the amplitude and phase lags for all stations (Figure 5.4).  

 The tidal constituent comparison shows major disagreement at the upstream stations. 

Furthermore, station G results reveal an important discrepancy, mainly in the M2 and M4 amplitude 

and phase when compared with other stations.  

 It is important to focus that the most significant differences are for constituents M2 and S2,, 

which represent ~ 90% of the tidal energy in Ria de Aveiro lagoon [Dias et al., 1999]. The analysis 

of these results shows that the mean amplitude difference, in all stations, for the M2 component is 

about 8 cm, and the mean phase difference is about 8º. This value corresponds to a difference of 

about 16 minutes in the arrival of tidal wave. But, in the station near the lagoon mouth (Station A) 

this difference is much smaller than the average value (less than 30 s in phase and 1.5 cm in 

amplitude). For the S2 constituent, the mean amplitude and phase deviation in all stations is higher. 

The mean amplitude difference is ~3 cm and phase difference is 10º, which means that the average 

delay is about 20 minutes.   

 For the N2 constituent and the diurnal constituents K1 and O1 the deviation pattern in 

amplitude and phase is very similar with the other components referred before (M2 e S2). It is 

important to explain that the apparent error present in the O1 phase at stations J e K only appears 

inFigure 5.4:  Figure 5.4 because of the adopted graph scale. Actually, the difference between the 

predicted and observed O1 phase is ~16º (69 minutes) at station J and ~23º (98 minutes) at station 

K. The mean N2, K1 and O1 amplitude difference in all stations, compared with the mean 

constituent amplitude is 10%, 18% and 11%, respectively. Regarding the phase of these 

constituents, the mean difference is about 9º (19 minutes), 13º (52 minutes), and 11º (78 minutes), 

respectively. 

 The M4 is a harmonic constituent which represents a short-period harmonic term in order to 

take into account the change in the form of a tidal wave resulting from shallow water condition. In 

shallow waters the progression of a tidal wave is modified by several physical factors which 

depend on the square or higher powers of the tidal amplitudes. The relationship involving the 

square of the amplitude has produced additional harmonics (M4 example for the M2 tidal 

constituent). The relationships are more complicated because there are several types of non-linear 

activity which influence the dynamics: bottom friction, effects due to the water depth being 

comparable to the tidal amplitude, and curvature imposed on the flow patterns by topography 

[Pugh, 1996]. In summary, the generation and/or enhancement of M4 component are related with 

the water depth and channels/estuary geometry. 

 The model forecasts show that the M4 harmonic constituent reproduction is not as accurate 

as for the other constituents. This mismatch can be explained by some bathymetric errors and by 

the fact of that numerical grid resolution used implies some inaccuracies in reproducing the 
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complex geometry of the Ria de Aveiro lagoon. The M4  mean difference for all stations is about 

2.3 cm (40% of the mean amplitude) and the phase delay is about 11º, which represent 11 minutes. 

Nevertheless, the results for the M4 constituent are considered accurate for the purposes of this 

work.  

 Although the differences between model predictions and field data it is concluded that the 

hydrodynamic calibration was successfully reached.  

 

 

Figure 5.4: Comparison between model predicted and observed amplitude and phase for the major 

semi-diurnal and diurnal constituents (M2 – 12.42 h; S2 – 12 h; N2 – 12.9 h; K1 – 23.93 h; O1 – 25.82 h) 

and for the shallow water overtide of the principal lunar constituent, M4 (6.21 h). The black and white 

bars represent the observed and predicted values, respectively. 

5.3 Hydrodynamic Model Validation 

 The validation of a model is a procedure for testing the models predictions accuracy with 

an independent observed data set. The data used to perform this task correspond to a period during 

June 1997, where model performance was evaluate by comparing RMS errors between time series 

of predicted and observed SSE, and of current velocity for eleven and ten stations, respectively.   

5.3.1 Results 

 The procedure was carried out without any change in the tidal input characteristics and in 

the correction factor, referred in the calibration procedure. Also, the Manning coefficients were not 

modified. 
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 It is important to note that regarding the comparison of current velocity, the values change 

rapidly in space, both in magnitude and direction, from point to point. This behavior of the velocity 

magnitude and direction reflects the irregular geometry of the lagoon. The bathymetry influence 

and the fact that the model results represent the average over the vertical (and horizontal), and that 

field data are measured in a single point value is significant to justify some expected differences. In 

order to compare the velocities, the main flow direction was found for measurements and 

predictions at each station. These directions were almost coincident and the current velocities 

values were projected along them. The perpendicular flow direction velocities are almost null and 

were not considered. The results are shown in Figure 5.5 and Figure 5.6. 

 The RMS errors for the SSE range from 3 to 8% at six stations (B, H, J, O, P, and Q) and 

between 12 e 16% at the other four stations. Figure 5.5 shows a pattern similar to that obtained for 

the calibration procedure. The discrepancies are larger in the Mira and North of the São Jacinto 

channels. These differences can be explained with the use of older bathymetric values for the Mira 

channel and with the gap of bathymetric values in the area near station F. In the other stations the 

agreement between observed and computed results is rather good. 

 In the case of the current velocity comparison, it is verified that there are larger differences 

than those obtained for the SSE validation. In this case the RMS errors are very high. These errors 

vary between 12% and 50% for all stations, except in station Q where the error is 89%. This value 

is linked to the magnitude of current velocity, which is lower than in the other stations. Indeed, the 

lower values are more susceptible to errors due to the rapid changes of magnitude and direction. 

The location of this station can be the other reason for the large error found. Station Q is located at 

the end of Ílhavo channel, which is characterized by narrow areas that are not well resolved by the 

numerical grid used in the simulations (100 m). The error of the 50% in station K and of 32% in 

station L and P can be explain by the same reasons referred for the SSE validation procedure 

discussion. The results near the lagoon mouth and for the stations located at the main channels 

(Espinheiro, South of São Jacinto, North of Mira and Ílhavo channels) show lower RMS errors, 

revealing a good reproduction of the observed data set. 

 According to these results, it may be considered that the model reproduces with sufficient 

accuracy the SSE and current velocity data for these stations despite some differences between 

them. Therefore, it may be concluded that the hydrodynamic model is validated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

   
Hydrodynamic Model Implementation to the Ria de Aveiro 25 

 

 
Figure 5.5: Comparison between SSE time series for stations B, H, K, J, L, M, N, O, P, and Q, used in 

the hydrodynamic validation procedure (● red: data; black solid line: model). 

 

 

 

Figure 5.6: Comparison between time series of along flow direction for stations B, H, K, J, L, M, N, O, 

P, and Q, used in the hydrodynamic validation procedure (● red: data; black solid line: model). 
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6 Calibration and Validation of the Salt and Heat Transport 

Model 

6.1 Introduction 

 Assuming that the barotropic flows have been calibrated and validated for the Ria de 

Aveiro, the procedure used to calibrate the salt and heat transport consists in comparing measured 

and predicted salinity and temperature time series for several stations distributed along the main 

lagoon channels. In the study area (shallow water system), the horizontal patterns of water 

temperature are strongly influenced by the exchanges between the atmosphere and the water 

surface.  These patterns adjust dynamically to different sea and lagoon water temperature, and also 

to meteorological forcing. Vaz [2007] illustrates how the meteorological forcing affects the water 

temperature and concludes that the major changes in the temperature horizontal patterns are visible 

after 12 tidal cycles in the model simulations. 

6.2 Calibration 

6.2.1 Data set and Methods 

 The measurements used for the salt and water temperature calibration were obtained during 

July 1996 (from 09/07/1996 to 28/07/1996). The set includes a 25 hours time series of hourly data 

measured at seven different stations distributed along the lagoon. These observations were 

performed after a long dry period, where the rivers flows input are expected to be low. The 

meteorological data were imposed from the NCEP data base (nearest grid point: 40.953 ºN, -9.375 

ºW), concurrent with the simulation periods. At the ocean open boundary was specified a salinity 

value of 36.5 psu and a water temperature of 14 ºC. The rivers flows were not known for this 

period and are used as a calibration parameter. The river discharges values used here were: Vouga 

river- 2 m
3
s

-1
; Antuã river- 0.5 m

3
s

-1
; Boco river- 0.2 m

3
s

-1
; Valas de Mira- 2 m

3
s

-1
; Caster river- 0.5 

m
3
s

-1
; and Gonde river- 0.5 m

3
s

-1
. The fluvial water temperature was also specified:  Vouga river- 

18 ºC; Antuã river- 23 ºC; Boco river and Valas do Mira- 18 ºC; and Caster and Gonde rivers- 25 

ºC. The salinity values were specified as 0 psu for each. 

 It was chosen to simulate a spin-off period of 20 days (the time to dynamic equilibrium is 

much longer than for the hydrodynamics), starting only with tidal and freshwater input. The result 

of this simulation was used as the initial salinity field condition. The salinity field, in Mohid, is 

independent of meteorological data. In another simulation it was computed the water temperature 

initial field condition. It was simulated a spin-off period of 7 days. Therefore this methodology 

doesn’t require a large computational time and by assumption becomes a more realistic way of 

representing the initial salinity, or water temperature, field. After the dynamically adjustment, the 

time step to select the water temperature field is the same as for the salinity initial condition. Both 

heat and salt diffusion coefficients were set to 5 m
2
s

-1
.  

 The simulation for the models calibration was performed using the water temperature and 

salinity initial fields previously calculated. The heat and salt transport computation begun at the 

time step correspondent to initial field instant in order to not compromise the results. Also, this 

simulation was carrying out with the freshwater, meteorological data and tidal inputs. 
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6.2.2 Results 

 The comparison between computed and measured salinity data is depicted in Figure 6.1. 

For a quantitative assessment of the adjustment it was determined the Root Mean Square error– 

RMS (Section 5.2.1 in Chapter 4) for all the stations (shown in each plot). 

 In general, it was achieved a good agreement between predicted and measured time series. 

The model reproduces the salinity data in almost all stations. The phase and amplitude results show 

slight differences between them. During two tidal cycles the RMS values are lower than 5% of the 

local mean salinity for all stations, except for stations H and J. In station H the RMS value is 2.1 

(~6% of the mean salinity) while in the station J the RMS error is 2.9 (~9% of the mean salinity). 

Those stations have higher salinity variations over time, which indicates that they are more 

influenced by the freshwater inputs than the other stations. The major deviations can be related to 

inaccuracies of real river inflow. The freshwater inflows were considered constant, which means 

that in the stations under stronger fluvial influence, the model cannot reproduce accurately the 

salinity variations. 

 The comparison between the model predicted and measured water temperature (Figure 6.2) 

shows a good agreement. The RMS error values are about 5% for B, J, L, and R stations. The errors 

are larger for stations D, H, and M, ranging from 8% to 14% of the local mean water temperature. 

These discrepancies may be due to errors when imposing the river water temperature at the land 

boundaries. In the water temperature modeling several other variables can introduce errors: the 

cloud cover variations (in this work was imposed a constant value, representing the mean value 

during the simulation periods); the numeric grid resolution (the solar and atmospheric radiation is 

parameterized as exponential function – Sector: 4.4, Chapter: 4); and in this study the spatial 

variations of meteorological data input were not considered. 

 According to these results it may be considered that the mixing processes in the Ria de 

Aveiro are well reproduced by the model, and that the water temperature distributions are well 

described by the model. 

 
Figure 6.1: Comparison between salinity time series for the stations used during the calibration 

procedure. (● red: data; black solid line: model).  
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Figure 6.2: Comparison between water temperature time series for the stations used during the 

calibration procedure. (● red: data; black solid line: model). 

  

6.3 Validation 

 The salt and heat transport model was validated through the comparison of model 

predictions with an independent field data set. The salinity and water temperature values are 

measured during June 1997 at 11 stations along the Ria de Aveiro. Here, the observed data 

correspond to a wet period. Consequently, the transport model is validated in different conditions 

than those occurred during the calibration process.  

 The freshwater inflows used were: Vouga river - 13 m
3
s

-1
; Antuã river - 11 m

3
s

-1
; Boco 

river - 7 m
3
s

-1
; Valas de Mira - 2 m

3
s

-1
; and Caster and Gonde rivers - 3 m

3
s

-1
. The freshwater 

temperatures were set to 24 ºC and the salinity was specified 0 psu. At the ocean open boundary it 

was specified a salinity value of 36.5 psu and a water temperature of 18 ºC. Once more, 

meteorological data from the NCEP database were used and both heat and salt diffusion 

coefficients were set to 5 m
2
s

-1
. 

6.3.1 Results 

 The comparison between model predictions and measured salinity and water temperature 

data is depicted in Figure 6.3 and Figure 6.4, respectively. It was achieved a good agreement 

between predicted and measured salinity values. In general the results are worst than those obtained 

in the calibration, as found also in the hydrodynamic calibration and validation procedures. The 

stations H, L, M, and S reveal a RMS error lower than 10% of the local mean salinity. 

Nevertheless, the amplitude in some stations is not accurately reproduced. In stations D, J, K, and 

R the RMS errors range from 19% to 31%. The salinity temporal evolution is well represented by 

the model, but the amplitude range is lower than expected. The RMS errors are higher than 50% of 

the local mean salinity for stations T, U, and V. These stations are located near the far end of Mira 
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and Ílhavo channels, near the freshwater sources, being strongly influenced by the boundary 

conditions that were chosen (freshwater inflow, salinity and water temperature values). 

 For the water temperature was found an agreement similar to that described for the 

calibration procedure. The RMS errors range from 1% to 22% of the local mean temperature for 

each station. The errors are about 5% in stations D, J, L, M, R, and S, representing a very good 

agreement between the predicted and measured water temperature. These results mean that the 

water temperature changes are very well represented by the model. The exception occurs for the 

stations located at the Mira channel (H: ~6%, K: ~7%, and V: ~6%). Once more, the worst results 

were found for the stations near freshwater sources at Ílhavo channel (T: ~8% and U: ~22%). 

Although the results for these stations are not very good, it is significant that they are better than 

those found for the salinity validation procedure. This means that the freshwater temperature values 

imposed on the boundary conditions are reliable. Despite the errors described, the salt and heat 

transport models may be considered validated. Therefore, the numerical model reproduces 

accurately the salinity and heat transport processes in Ria de Aveiro.  

 

 

 
Figure 6.3: Comparison between salinity time series for the stations used during validation procedure. 

(● red: data; black solid line: model). 
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 Figure 6.4: Comparison between water temperature time series for the stations used during validation 

procedure. (● red: data; black solid line: model). 
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7 Estuarine Plume Simulation 

 The nested coupled coastal models methodology was adopted in order to simulate the 

idealized approximation of the Ria de Aveiro estuarine plume (same pattern as in Figure 3.1). 

 To characterized the estuarine plume salinity stratification, with a low computational effort, 

it was necessary to implement a numerical model using a two level nesting configuration (Figure 

7.2): the first level (D1) is a 2D barotropic tidally driven model with a variable low resolution; the 

second domain (D2) is a 3D baroclinic model with higher spatial accuracy where the plume 

propagation is expectable. In the second domain it was imposed the Ria de Aveiro discharges in 

one cell which corresponds to the lagoon mouth. These lagoon discharges (and its properties) are 

the results of the Ria de Aveiro 2D hydrodynamic model predictions (previously calibrated and 

validated – see Chapters 5and 6) for three different scenarios of rivers inflows: i) typical; ii) 

extreme maximum; iii) and extreme minimum. 

 Yankovksy and Chapman [1997] formulations were calculated based on discharges values 

of the Ria de Aveiro 2D model simulations. Therefore, the    and    (where    is the distance how 

the plume moves offshore in an ideal model, without any exterior forcing except the inflow and    

is the equilibrium plume depth representing a balance between buoyancy and inertial forces) were 

qualitatively compared with the 3D estuarine plume simulation results (see Section 3.3).  

 Moreover, the estuarine plume model performance was qualitatively evaluated through the 

comparison with the sensor TM images of the satellite LandSat7. In this procedure it was used the 

results of the band 6 (Thermal Infrared Band - these band values are being applied on some studies 

to identify surface temperature on land or water (http://landsat.gsfc.nasa.gov/news/news-

archive/soc_0011.html)) in order to compare difference surface temperature patterns. The 

temperature data used through calibration and validation of the transport model showed that there 

are differences between the lagoon and the ocean water temperature. Dias [2001] and Vaz et al. 

[2005] also show that this thermal gradient in a system like the one studied in this work is strongly 

dependent on the balance between the spring/neap tidal cycle and the rivers inflow. According to 

these facts, it was chosen the day of the image based on high values of Vouga River freshwater 

inflow (according to www.snirh.pt), which is the main estuarine plume forcing, and on the 

available images to download.  

7.1 The Ria de Aveiro Runoff  

 In order to obtain the Ria de Aveiro lagoon outflow for the adjacent ocean it was decided to 

simulate a real period during January 2007 with the lagoon 2D model. This option had into account 

a future comparison and integration of the model predictions with the work carried out by Vaz et 

a.,[2009b] to study the Tagus estuarine plume. This model implementation was performed for two 

extreme scenarios of maximum and minimum freshwater inflow into Ria de Aveiro, corresponding 

to flood and dry seasons, and for one typical situation. The river discharges values were 

extrapolated from Génio et al. [2008] (Table 7.1). The salinity input is set to 0 psu in each 

discharge point. 

 

 

 

 

http://www.snirh.pt/
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Table 7.1: River discharges values used in the Ria de Aveiro outflow simulation. 

 

 All simulations were carried out using the same methodology described for the 2D 

hydrodynamic calibration and validation model runs. In order to compute a Ria de Aveiro input for 

the coastal model it was compute this outflow through a longitudinal section located near the 

lagoon mouth (Figure 7.1). 

 

 
Figure 7.1: Location of the transversal section used to compute the Ria de Aveiro lagoon outflow. 

   

 Hourly discharges flow through this section were determined using the magnitude values of 

   on the 4 cells that define the section (the    values were negligible) and the depth values for 

each cell. Salt and water temperature at the traversal section were determined by the mean value for 

these 4 cells.  

7.2 Nested Coastal Model 

 As it was referred at the beginning of the Chapter 7, a two level nesting model was 

implemented in the coastal adjacent area of the Ria de Aveiro lagoon (Figure 7.2). The two 

numerical grids were created based on bathymetric values from Etopo database 

(http://www.ngdc.noaa.gov/). D1 is a 2D barotropic tidally driven model, which uses the FES2004 

global solution [Lyard et al., 2006] as forcing, and has variable horizontal resolution (0.02º- 0.04º). 

This model domain covers most of the Atlantic coast of the Iberia and Morocco. D2 level is a 3D 

baroclinic model which has 0.01 º of horizontal resolution; including an area from the north of 

Mondego estuary to the Minho estuary, extending  ~50 km offshore. The domain D2 has a 142 × 

43 cells in x and y directions, respectively. 

 A sigma-level vertical discretization was adopted for the 3D model, with D2 having 20 

vertical layers in average and extreme minimum outflows simulations and 15 layers in case of 

extreme maximum outflow. This difference is linked to some computational problems related to 

vertical viscosity and/or to the time step chosen during the simulations tests.  On the bottom, the 

shear friction stress is imposed based on Equation 4.14 and the vertical viscosity and diffusivity are 

computed by the non-dimensional General Ocean Turbulence Model (GOTM) [Burchard et al., 

Discharges ( m
3
s

-1
) Vouga Antuã Boco Valas de Mira Caster Gonde 

Extreme  Maximum 1000 100 5 50 5 5 

Typical 150 15 5 19 5 5 

Extreme Minimum   2 0.5 0.5 0.5 0.5 0.5 

http://www.ngdc.noaa.gov/mgg/global/global.html
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1999] using a     turbulent scheme. Initial conditions for the 3D transport model are set to 36.5 

psu and 17ºC for the salinity and water temperature, respectively. 

 

 
Figure 7.2: Location of the D1 and D2 domains. 

 

 The horizontal viscosity and diffusivity coefficients are set to 2 m
2
s

-1
 and 20 m

2
s

-1
 for D2 

and D1 domains, respectively. In the same order, the time steps are 60 s and 180 s. The freshwater 

discharges were imposed offline (see previous section).  

 The meteorological forcing was not considered in this set of simulations. For this reason 

are not shown any results of the water temperature besides those that had been computed.  

7.3 Results and Discussion  

 Model predictions for mean, extreme maximum and extreme minimum Ria de Aveiro 

lagoon outflows are shown in Figure 7.3, Figure 7.4, and Figure 7.5, respectively. These figures 

show the predictions for the following four moments: two hours after discharge peak values for 

spring and neap tide. As there is a phase delay between velocity and salt transport, identified as 

close to 90º between V(t) and S(t) by Vaz [2007] for the Espinheiro channel, the model predicted 

results are presented those two hours after each discharge peak value in order to distinguish the 

estuarine plume based on the salinity values. 

 The model predictions for mean and extreme maximum outflow scenarios correspond very 

well to the ideal near-field plume described by Hetland [2005] (Figure 3.1). Both simulations show 

an offshore bulge propagating to the open sea. Also, the predictions show salinity stratification 

from the lagoon mouth to the plume maximum extension. After the bulge formation, the near-field 

plume is advected to the right due to the Coriolis effect, extending along the northern coast due to 

accumulation of water in geostrophic equilibrium. These patterns suggest an approximation to the 

surface-advected plume presented by Yankovksy and Chapman [1997], (Figure 3.2).  

 The model predictions for the minimum river inflow scenario present a quasi-inexistent 

plume. In Figure 7.5 it is important to note that the scale and the reference isohaline are closer to 

the ocean salinity than in the other figures. The salinity differences are minimal (<0.5 psu) which 
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can enable the control of the estuarine plume by water temperature gradients. During January the 

lagoon waters are colder than the ocean waters, as it is expected. Figure 7.5 C shows an intrusion of 

cold and less salty water below the salt ocean waters.  During the summer when the lagoon waters 

are warmer than the ocean waters, it is expectable that with the minimum extreme river inflow 

(more predictable in this season) a small near-field plume will be established.  

 In addition to this general discussion, they were calculated, for the mean and extreme 

maximum discharge scenarios, the    (Equation 3.1) and    (Equation 3.2). The values introduced 

in the formulations are set to:         = 0.2114 ms
-1

 and            = 0.2262 ms
-1

 (mean 

inflow velocity, based only in the negative discharge values);   =15 m (it is the cell depth where 

the discharge was imposed);  =1000 m (D2 domain resolution cell). The    value was calculated 

according to the next formula: 

 

    
       

  
 (6.1) 

 

where   =9.81 ms
-2

,   =1026 kgm
-3

 (ocean);               kgm
-3

;                  

kgm
-3

. In this case                ms
-2

 and                   ms
-2

. The Coriolis factor, 

 , was calculated by:  

 

             (6.2) 

 

where =7.269 s
-1

 and    =40º. Thus,            s
-1

. 

 In case of the extreme maximum discharge,    is calculated by    = 4.24    because   
 << 

     (see Section 3.3). The             is about 49 km and             is 2.9 m. The 

maximum extension of the near-field plume in the Figure 7.4 indicates a value close to 25 km. In 

the case of mean lagoon outflow the          calculated is about 25 km (Equation 3.1) and the 

observations show a maximum extension of ~13 km (Figure 7.5). In this evaluation it is important 

to note that Yankovksy and Chapman [1997] formulated these equations based on a constant inflow 

value which it is not the case here analyzed. This difference is expected and the value reflected the 

tidal effect on the Ria de Aveiro lagoon outflow.  

 Burger and Rossby numbers were also calculated following Equations 3.4 and 3.5, and 

considering                  m,              m,                  and 

             . Using the diagram depicted in Figure 3.3, these values indicate that the Ria de 

Aveiro lagoon near-field plume is a surface-advected plume. It is important to refer that the plume 

for the mean discharge scenario is closer to the intermediate plume than for the other run (see 

Yankovsky and Chapman [1997]).    

 The    (Equation 3.2) is an important factor to measure the equilibrium depth. This issue 

describes the relative importance between the density differences (buoyancy forces), the flow input 

and the Coriolis parameter. A higher input flow rate and a larger density difference between these 

two flows, makes the plume depth    (near the mouth) larger. A larger density difference means a 

higher buoyancy force. Then, it is easy to note that in the extreme maximum discharge scenario 

(with a lesser density input flow) the buoyancy force is greater than for the mean discharge. The    

calculation (           = 2.9 m and          5.6 m) and the analysis of Figure 7.1C and 

6.2C reveal that in this two scenarios the density gradient is more important than the mean velocity 
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input flux. Also, it is expectable that with a small depth, the offshore extension of the near-field 

plume will be greater, caused by the velocity input in this the buoyancy layer. This case is close to 

the two-layer classic dynamic model described in the early estuarine plumes studies [Garvine, 

1987].  

 To post-processing the sensor TM images it was used the ArcGis® software. It was chosen 

an image from day 18
th
 December 2006 as an example. The comparison between the remote 

sensing image and the model prediction does not pretended to reproduce a concurrent scenario and 

therefore the season is not fundamental. In the post-processing procedure it was created a RGB 

image of composite band (321 - visible) to verify the establishment of an estuarine plume. In 

addition, it was used the band 6 (Thermal Infrared Band) to indentify the different water 

temperature patterns.  

 This post-processing approach doesn’t indicate the absolute surface temperature; only 

suggest different patterns in water thermal quality. With this objective, the reflectance values from 

Thermal Infrared Band were reclassified, using the color scale, in order to clearly distinguish the 

thermal properties of the mouth lagoon water into the coastal waters. Thus, Figure 7.6 shows a 

possible Ria de Aveiro estuarine plume during a winter period. It is evident the similarities between 

the predictions and the observed image. The bulge radius has about 14 km which is close to the one 

found for the mean discharge scenario. The inflow direction is different (NE-SW) from the 

predicted direction (E-W), but the northern advection alongshore is visible. 

 Winds direction and magnitude, before the establishment of this plume (Figure 7.6E) had 

some variability, despite some northern wind predominance. This can explain the higher presence 

of estuarine waters southern the lagoon mouth than northern. The predominant coastal current is to 

the north, but it is usually weak and more variable than the summer coastal current (N-S).  
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Figure 7.3: Average discharge scenario predictions during January. A) Time series of discharge 

through the lagoon mouth (red line means the limit between the positive (into the lagoon) and negative 

(into the ocean) outflow; the green points represent the time for model outputs; 0 is the simulation 

initial time). B) Salinity horizontal patterns and velocity fields for each time step – 1, 2, 3, and 4. C) 

Salinity cross-section perpendicular to Ria de Aveiro mouth in each time step – 1, 2, 3, and 4 (salinity 

values above 36 psu are shown in white).   
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Figure 7.4: Extreme maximum discharge scenario predictions during January. A) Time series of 

discharge through the lagoon mouth (red line means the limit between the positive (into the lagoon) 

and negative (into the ocean) outflow; the green points represent the time for model outputs; 0 is the 

simulation initial time). B) Salinity horizontal patterns and velocity fields for each time step – 1, 2, 3, 

and 4. C) Salinity cross-section perpendicular to Ria de Aveiro mouth in each time step – 1, 2, 3, and 4 

(salinity values above 36 psu are shown in white).     
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Figure 7.5: Extreme minimum discharge scenario predictions during January. A) Time series of 

discharge through the lagoon mouth (red line means the limit between the positive (into the lagoon) 

and negative (into the ocean) outflow; the green points represent the time for model outputs; 0 is the 

simulation initial time). B) Salinity horizontal patterns and velocity fields for each time step – 1, 2, 3, 

and 4. C) Salinity cross-section perpendicular to Ria de Aveiro mouth in each time step – 1, 2, 3, and 4 

(salinity values above 36 psu are shown in white).   
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Figure 7.6: Landsat7-TM observations in 18th December 2006. A) Composite of RGB bands of TM 

sensor (visible image). B) Thermal Infrared Band of TM sensor. C) Reclassification of Thermal 

Infrared Band to distinguished the surface ocean waters with the same thermal characteristics as the 

lagoon mouth waters. D) Tidal prediction for Aveiro by neptuno.fis.ua [Marta-Almeida and Dubert, 

2006] (11:04 was the time detection); E) Meteorological conditions computed for Aveiro by 

windguru.cz. 
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8 Conclusions and Future Improvements  

 All the proposed objectives for this work were achieved. The Mohid – 2D hydrodynamic 

and transport modules were implemented for Ria de Aveiro, including the construction of an actual 

numerical bathymetry appropriate to perform the numerical coupling with coastal models (Chapter 

5). Furthermore, the use of two numerical grids demonstrated that differences in the general 

circulation of the Ria de Aveiro are negligible when considering the low lying coastal adjacent 

flooded areas, but some consistent patterns were found that suggest that the inclusion of these areas 

are important for more accurate studies.  

 The models (hydrodynamic and transport) were successfully calibrated and validated by 

comparing predicted and independent measured data sets. 

 The nested coupling between the coastal and the Ria de Aveiro models was achieved and it 

allowed the study of the estuarine plume formation.    

 It was constructed a thematic map of the Ria de Aveiro estuarine plume from remote 

sensing image (Section 7.3). The Ria de Aveiro of estuarine plume predicted by the Mohid 3D 

numerical model has a similar pattern to the plume detected in the TM-Landsat7 image. The Ria de 

Aveiro estuarine plume was classified as a near-field and surface-advected plume, according to the 

Hetland [2005] and Yankovsky and Chapman [1997] formulations The Ria de Aveiro estuarine 

plume was classified as a near-field and surface-advected plume, according to the Hetland [2005] 

and Yankovsky and Chapman [1997] formulations. The lagoon near-field plume is characterized 

by a bulge near the mouth which is advected alongshore to the north due to the geostrophic 

equilibrium between the Coriolis and surface pressures. This circulation was found for mean and 

extreme maximum outflows scenarios. The plume is almost inexistent for minimum river inflows 

scenario. In this case the salinity differences between the lagoon and the ocean are minimal, which 

can induce an estuarine plume controlled by the horizontal thermal gradients.  

 This work constitutes a starting point for further studies and improvements in the 

monitoring of the dynamics of the Ria de Aveiro near-field plume. The next step of this work will 

be to carry out a simulation with low outflow rate, but in the summer period. From this approach it 

is expected to show is the establishment of a smaller estuarine plume when compared to the higher 

discharge scenarios.  

 Another improvement to perform in the future consists in linking the different outflow 

scenarios to different wind fields forcing. In fact, the wind forcing could play a critical role in the 

processes conducting to the plume establishment and induce different plume properties [Whitney 

and Garvine, 2005]. 

 The coastal currents are also important in plume dynamics [Fong and Gyer, 2002]. 

Therefore, it is also relevant to incorporate in this model the coastal currents forcing, especially the 

Portugal Coastal Current and its seasonal changes (it should be used as forcing the MERCATOR 

Global Ocean results [Bahurel et al., 2001]).  

 A final improvement for the estuarine plume simulation studies consists in defining 

accurate inputs for the river inflows and in incorporating local meteorological data (air temperature, 

radiation, wind fields, cloud cover, etc...) to be determined from meteorological models providing 

good temporal and spatial resolution values. 

 Thus, the Ria de Aveiro estuarine plume model (hydrodynamic and transport) could 

accurately calibrated and validated by remote sensing images (with more resolution and confidence 
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than those used in Section 7.3) comparison. The calibration and validation of this model could be 

improved using observed field data offshore Ria de Aveiro lagoon (if available). This approach 

could be more expensive than the remote sensing calibration and validation method, but will 

present more realistic results and may make possible the acquisition of another type of data, such as 

biogeochemical data.  

 As referred in the introduction chapter (Section 1.1), the estuarine plumes are relevant to 

many aspects of the coastal environment: the enhancement of biological production; the hampering 

of primary production; coastal pollution; larval transport; sediment and geochemical transport; etc. 

For these reasons, many of them linked to the socio-economic factors which are important to the 

populations, one of most important improvements to perform will consist in the incorporation of an 

ecological model (i.e. Mohid.life [Mateus, 2006]).  
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