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resumo 
 

 

A doença de Alzheimer é caracterizada por defeitos na sinalização mediada 
pela acetilcolina. A tacrina foi anteriormente utilizada como inibidor da 
acetilcolinesterase (AChE) aprovado para o tratamento da doença de 
Alzheimer. Contudo, o tratamento com tacrina apresentava alguns efeitos 
tóxicos associados à disfunção mitocondrial, produção de ROS e peroxidação 
lipídica. Alterações no metabolismo de esfingolípidos também estão 
associadas com o desenvolvimento e progressão desta doença.  
Neste estudo, a espectrometria de massa foi utilizada para identificar o perfil 
fosfolipídico das membranas mitocondriais não-sinápticas de cérebro de ratos, 
antes e após o tratamento com a tacrina, e seus análogos (amostras T1 e T2). 
Os resultados obtidos com este estudo permitiu-nos perceber que o 
tratamento com tacrina induz alterações no conteúdo dos fosfolípidos 
mitocondriais, parece aumentar a susceptibilidade da PS mitocondrial à 
oxidação, e afecta a bioenergética mitocondrial. O tratamento com os 
análogos T1 e T2 parece induzir menores alterações nos parâmetros 
avaliados, quando em comparação com a tacrina. O análogo T1 mostrou ser o 
mais eficiente na capacidade de inibir a actividade da AchE. Este trabalho 
contribui para uma melhor compreensão dos efeitos da tacrina na função 
mitocondrial cerebral, e para a pesquisa de novos análogos da tacrina, com 
mais eficiência inibitória e com menos efeitos toxicológicos.  
Para melhor compreender as alterações de esfingolípidos induzidas por 
stresse oxidativo, um possível processo subjacente à doença de Alzheimer, 
estudaram-se as modificações oxidativas específicas de SM (d18:1/16:0), 
SPC (d18:1) e Cer (d18:1/18:0) induzidas pelo radical hidroxilo gerado sob 
condições da reacção de Fenton (H2O2 e Fe

2+
), utilizando a espectrometria de 

massa. Os resultados obtidos com este estudo permitiram-nos identificar, pela 
primeira vez, vários produtos de oxidação produzidos durante a oxidação da 
SPC e SM. Este trabalho contribui para uma melhor compreensão do 
comportamento de alguns esfingolípidos sob condições de stresse oxidativo, 
fundamental para a sua possível detecção em sistemas biológicos. 
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abstract 

 
Alzheimer disease is characterized by defects in the signaling mediated by 
acetylcholine. Tacrine was used as acetylcholinesterase (AChE) inhibitor 
approved for the treatment of Alzheimer’s disease. However, tacrine treatment 
has some toxicological effects associated with mitochondrial dysfunction, ROS 
generation and lipid peroxidation. Deregulation in sphingolipid metabolism is 
also associated with establishment and progression of this disease.  
In this study, mass spectrometry was used to identify the membrane 
phospholipid profile of rats brain non-synaptic mitochondria, before and after 
treatment with tacrine and its analogues (samples T1 and T2). The results 
obtained with this study allowed us to understand that treatment with tacrine 
induces changes in mitochondrial phospholipid content, seems to increase the 
susceptibility to oxidation of mitochondrial PS, and affects mitochondrial 
bioenergetics. O tratamento com os análogos T1 e T2 parece induzir menores 
alterações nos parâmetros avaliados, quando em comparação com a tacrina. 
Treatment with T1 and T2 analogues seems to induce less change in evaluated 
parameters, comparing with tacrine. T1 analogue was shown to be the most 
efficient of all in its inhibitory capacity for AchE activity.  
This work contributes to a better understanding of the effects of tacrine in brain 
mitochondrial function, and to research of new tacrine analogues with more 
inhibitory efficiency and with lower toxicological effects. 
 To better understand the changes in sphingolipid-induced oxidative stress, a 
possible process underlying Alzheimer's disease, we studied the oxidative 
modification of specific SM (d18:1/16:0), SPC (d18:1) and Cer (d18:1/18:0) 
induced by hydroxyl radical generated under conditions of Fenton reaction 
(H2O2 and Fe

2+
), using mass spectrometry. The results of this study allowed us 

to identify for the first time, several oxidation products produced during the 
oxidation of SM and SPC. This work contributes to a better understanding of 
the behavior of some sphingolipids under conditions of oxidative stress, 
important for its possible detection in biological systems. 
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Introduction 

Alzheimer disease is a progressive neurodegenerative disorder characterized by 

dementia, cognitive impairment, memory loss [1,2], and defects in the signaling mediated 

by acetylcholine [3,4]. Tacrine was used as acetylcholinesterase (AChE) inhibitor approved 

for the treatment of Alzheimer’s disease. However, several evidences suggest that Tacrine 

have toxicological effects, namely neuro [5] and hepatotoxic effects [6,7], and is 

associated with mitochondrial dysfunction [8,9], ROS generation and lipid peroxidation 

[10]. Alzheimer disease has been also associated with sphingolipid metabolism 

deregulation [11]. 

Phospholipids and sphingolipids are important structural components of cellular and 

subcellular membranes, and thus they are essential in maintaining the integrity and 

functions of cell. It has been suggested that changes in phospholipid structure namely 

triggered under oxidative stress conditions have been associated with toxicological effects 

of some drugs and inflammatory processes. 

Oxidative stress occurs due to a change in the redox balance of cells, as a result of 

increased of ROS and RNS production and/or decreased of antioxidant defenses, leading 

to cell damage and progressive decrease of physiological functions. It is well known that 

oxidative stress causes structural and functional damage to cell components such as 

lipids, proteins, nucleic acids (DNA and RNA) and carbohydrates [12]. These toxic effects 

have been associated to aging and development of various diseases, including 

neurodegenerative diseases, diabetes and other diseases related to aging [13]. 

Mitochondria are the primary site of ROS production as a result of electron transfer 

process that occurs during oxidative phosphorylation. Brain contains at least two major 

populations of mitochondria, based on cellular localization [14], which include the 

synaptic mitochondria, which primarily originate from the synaptic bouton of neurons, 

and non-synaptic mitochondria, originate from neuronal and glial cell bodies [15]. 

Mitochondrial membrane phospholipids can influence various functions such as 

mitochondrial activity of the electron transport chain, properties of membrane fluidity 

and permeability, and ATP synthesis [15]. 
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1. Alzheimer Disease and Tacrine treatment 

Neurodegenerative diseases include a group of diseases in which occurs destruction 

of brain cells, including neurons, which is a natural process, but in this case, this occurs at 

a faster pace and causes the malfunction of brain. When it happens, depending on the 

disease, there is a loss of motor functions, physiological and/or cognitive ability. Examples 

of neurodegenerative diseases are Parkinson's disease, multiple sclerosis, Alzheimer's 

disease, among others. The pathophysiology of neurodegenerative diseases is multi-

factorial, encompassing processes such as oxidative stress, mitochondrial alterations, 

protein aggregation, endosomal stress, inflammation, among others. 

 

1.1 Alzheimer Disease 

Alzheimer’s disease (AD), was first described by Alois Alzheimer in 1906, and is a 

progressive neurodegenerative disorder characterized by dementia, progressive, selective 

and irreversible loss of specific populations of neurons which affects the regions that 

control memory and cognitive functions [1,2], such as the hippocampus, amygdala and 

cortical regions, resulting in the reduction of its functions. Brain regions involved in this 

process are reduced in size due to loss of neurons and synapses. During normal aging 

process, a decrease in brain weight, which is accelerated over the years, changes in 

neurons number, and a significant reduction in brain cells volume are also observed, but 

never to the extreme seen in neurodegenerative diseases. Alzheimer's disease is 

generally classified into two groups: Alzheimer's disease with early onset (occurring 

before 65 years of age), which represents between 5-10% of cases of Alzheimer's disease 

and late-onset Alzheimer's (occurring after 65 years of age), which represents about 90-

95% of cases. Age is therefore considered a dominant risk factor in development and 

progression of AD, largely as a direct consequence of increased life expectancy. The 

progressive nature of neurodegenerative process suggests an age-dependent process, 

which culminates with synaptic failure and neuronal damage in brain regions critical to 

memory and mental functions, as a result of an increase in oxidative, metabolic and 

inflammatory processes. The aging process is associated with an increased production of 

ROS and formation of radicals in mitochondria during energy metabolism, especially in 
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the central nervous system due to its high oxygen demand and high metabolic rate; a 

concomitant decrease in antioxidant defense ability, and consequent increase in oxidative 

processes affecting lipids, proteins and nucleic acids. Hence, there is a progressive loss in 

body's ability to combat environmental and physiological stress, and for repairing the 

cellular constituents successively, several oxidative changes occurs which increase the 

susceptibility of individuals to develop this disease. 

Genetic factors are also considered high risk factors; however, its implications needs 

be better understood. To date only four genes have been implicated in the 

pathophysiology of AD, in spite of other genes can be associated with this disease. 

Nevertheless it represents only a small percentage of cases, early onset Alzheimer's 

disease is considered the most severe form of the disease, being the majority of cases 

caused by mutations in one of these three genes: amyloid precursor protein (APP) gene 

located in chromosome 21, and presenilin 1 and presenilin 2 genes located on 

chromosomes 14 and 1, respectively. Late onset Alzheimer's disease represents the 

majority of cases of AD, which have very complex patterns, and the apolipoprotein E 

(ApoE) gene on chromosome 19 is the only one consistently associated with disease, 

because a common polymorphism in this gene (e4) confers an increased risk of AD. 

Physiological changes thought to play significant roles in the pathology of AD are 

degeneration and neuronal death in brain regions involving memory and learning;  and 

include changes in redox status and oxidative stress; mitochondrial dysfunction and 

consequent decrease of ATP production and increased excitotoxicity mediated by calcium 

(Ca2+); presence of pathologic markers associated with this disease: accumulation of 

extracellular senile plaques, mostly formed by β-amyloid peptide deposits, and formation 

of intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein 

aggregation [16]; dysfunction and loss of synapses; neurotransmission failures; defects in 

the cholinergic system, such as defects in the signaling mediated by acetylcholine [3,4]. 

Since changes in signaling mediated by neurotransmitters has been considered as one 

of the processes involved in AD development, current therapeutic approaches used in AD 

treatment focuses on increasing cholinergic neurotransmission in brain through the use 
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of drugs that act as inhibitors of cholinesterase (ChEs) activity. One of these drugs is 

tacrine. 

 

1.2 Tacrine 

Tacrine or 1,2,3,4-tetrahydroacridin-9-amine (THA, also known as Cognex®) (figure 1) 

was the first drug approved for the treatment of Alzheimer Disease [17]. Tacrine is a 

centrally acting reversible cholinesterase inhibitor, which blocks the degradation of 

acetylcholine in the neurons of cerebral cortex by suppression AChE and BChE [18] and 

thereby increasing cholinergic transmission [19]. However, this drug is no longer used due 

of severe side effects [20]. Prolonged use of tacrine has proven to be hepatotoxic [6,7] 

with liver cell necrosis [17] and to induce mitochondrial dysfunction [8,9]. Tacrine 

accumulation within mitochondria induces severe mtDNA depletion, enhances p53, and 

induces mitochondrial permeability transition and Bax protein leading to cell apoptosis, 

after several weeks of treatment [17]. Oxidative stress and lipid peroxidation, evidenced 

by enhanced ROS production and glutathione (GSH) depletion [10,17]  are supposed to 

increase during tacrine treatment, and being associated with it toxic effects. 

 

 

N

NH2  
 

 

Figure 1. Chemical structure of tacrine (1,2,3,4-tetrahydroacridin-9-amine). 

 

Although side effects of tacrine treatment, the search for tacrine analogues is still of 

interest. Modifications on the tacrine structure have been performed, either by 

increasing the number of rings or changing their size or introducing heteroatoms [21]. 

Recently Campos and collaborators have proposed new tacrine analogues [21], and 

two of them were studied and analyzed in this work (figure 2).  
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Figure 2. Chemical structure of tacrine analogues; (A) T1, 8-Amino-1,5,6,7-tetrahydro-1 

phenylcyclopenta[e]pyrrolo[3,2-b]pyridine-3-carbonitrile; (B) T2, 9-Amino-5,6,7,8-tetrahydro-1-phenyl-1H-

pyrrolo[3,2-b]quinoline-3-carbonitrile. 

 

1.3 Tacrine and Phospholipids 

Tacrine possesses a hydrophobic aromatic ring system, together with a short side 

chain containing a protonating amino group (figure 1), characteristic of a large number of 

drugs [22], which could binds to phospholipids and in membrane, probably, interacts with 

their negatively charged phosphate group, whereas the aromatic moiety resides either in 

the interfacial region, because tacrine is an amphipathic molecule, or deeper within the 

membrane [22]. In fact, Lehtonen and co-authors (1996) demonstrates that tacrine 

preferential binds by electrostatic interaction to acidic phospholipid-containing 

membranes and located in the interfacial region of the lipid bilayer, may be followed by 

penetration of the drug into the bilayer [22]. 

Considering the essential role of mitochondria in cell function, particularly in energy 

production, and also in the generation of free radicals during oxidative phosphorylation, 

is particularly important to explore and study the mitochondrial changes and its 

constituents, including lipid after tacrine treatment in order to understand their side 

effects. 
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2. Mitochondria, Oxidative Stress and Lipid Peroxidation 
 

2.1 Mitochondrial Dysfunction 

Mitochondria are involved in a number of cellular functions and are key components 

in the development, aging and cell death. The many functions of mitochondria include the 

production of cellular ATP, participation in the synthesis of key metabolites, cellular 

health monitor for intervening in the initiation and regulation of cell death by apoptosis, 

calcium buffering and homeostasis, and the primary source of endogenous reactive 

oxygen species [23], as well as in cell signaling, degradation of neurotransmitters, 

detoxification of aldehydes, nucleotide transport, mitochondrial protein import, among 

others. 

The intracellular distribution of mitochondria is essential for cell physiology, so 

mitochondria are localized in subcellular regions with high metabolic needs [23,24]. Brain 

cells have high metabolic needs since they are highly differentiated cells which require 

large amounts of ATP for its normal function and neurotransmission. Since the neuronal 

ATP is produced by oxidative metabolism, neurons are highly dependent on the 

mitochondrial function and energy providing to various activities. In neurons, 

mitochondria are involved in synaptic transmission, Ca2+ homeostasis regulation, 

axonal/dendritic transport, ion channels and ion pump activity, maintenance of 

membrane potential, release or uptake of neurotransmitters [23,25]. Neurons are 

particularly sensitive to changes in mitochondrial function since they are extremely 

energy dependent with many neuronal activities [23]. Not surprisingly, mitochondrial 

injury can have severe consequences for neuronal function and survival. Mitochondrial 

dysfunction and the resulting energy deficit triggers the onset of neuronal degeneration 

and death, which is observed in brains with AD [26,27]. 

Changes in mitochondrial function, namely in electron transport chain, are associated 

with a decreased rate of production of ATP (adenosine triphosphate), an increase of ROS 

levels and consequent increase in cellular oxidative stress, altered homeostasis and Ca2+ 

influx, with consequent excitotoxicity [28], since mitochondria serves as Ca2+ high-

capacity compartment, but over-abstraction and increased Ca2+ in mitochondria has been 

associated with an increased ROS production, inhibition of ATP synthesis, induction of 
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permeability transition, cytochrome c release [26], mitochondrial membrane 

depolarization and apoptosis [29]. 

Mitochondrial dysfunction has been linked to AD [30], because once the 

mitochondrial oxidative phosphorylation is the major source of ROS, there may be an 

intrinsic link between the mitochondrial alterations in neurodegenerative diseases and 

the involvement of oxidative stress. In fact, evidences indicate that mitochondrial 

abnormalities and oxidative damage are early events in AD [31], and oxidative stress 

originating in mitochondria is a primary event associated with neurodegeneration. 

Increased neuronal oxidative stress may result from mitochondrial dysfunction, or may 

lead to this phenomenon. However, it is often difficult to distinguish whether the 

mitochondrial defects are a primary cause of toxicity or instead reflect secondary 

collateral damage, or is likely to have a contribution from both. In both cases, this 

increased oxidative can exacerbate mitochondrial dysfunction.  

Since increase of ROS and oxidation has been associated with side effects of tacrine 

and their new chemically analogues, is particularly important to explore and study 

functional and structural changes in mitochondrial phospholipids that may occur due 

tacrine treatment, considering that phospholipids are one the main target of ROS. 

 

2.2 Oxidative Stress 

Oxidative stress has been currently defined as a change in the redox balance of cells, 

as a result of increased production ROS and RNS and/or decreased of antioxidant 

defenses.  However, oxidative stress may be better defined as a disruption of redox 

signaling, rather than as an imbalance of pro-oxidants and antioxidants [32], which leads 

to an excess of free radicals in the body and, consequently, cellular damage and gradual 

reduction of physiological functions occurs. 

ROS, key players in the process of oxidative stress, can be divided into radical species 

(as superoxide anion and hydroxyl radical) and non-radical species (as hydrogen 

peroxide), and are produced by a series of cellular oxidative metabolic processes, the 

most important being oxidative phosphorylation of mitochondrial respiratory chain [33]. 

Mitochondria is the major site of ROS production because the pumping of protons (H+) 
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across the membrane during oxidative phosphorylation leads to accumulation of 

electrons, which when in excess can be transferred directly to oxygen (especially 

complexes I and III), forming superoxide anion radical (O2
•-) which is more polar than 

oxygen and cannot easily cross through membranes by simple diffusion, hence not a 

particularly reactive molecule. Its deleterious effects are related to its ability to generate 

secondary species; O2
•- can be reduced to hydroxyl radical (•OH) or undergo spontaneous 

or catalytic dismutation by superoxide dismutase (SOD) to form hydrogen peroxide 

(H2O2), which has the ability to cross lipid membranes by diffusion because it is soluble 

and relatively nonpolar, acting in regions far from their places of synthesis, making this 

molecule relatively dangerous and toxic to the cells. O2
•- can also react with nitric oxide to 

form peroxynitrite (ONOO-), which is a powerful oxidizing agent [34]. However, transition 

metals may also be sources of oxidant species [12]. In fact, H2O2 can be converted to •OH 

via the Fenton reaction, which occurs through the reaction of iron ions (Fe2+) and H2O2, 

with the consequent production of •OH (equation 1), which is the most reactive oxygen 

species generated in living systems, being responsible for the oxidation of biomolecules, 

including lipids. 

     Fe2+ + H2O2                   Fe3+ + •OH + OH- (equation 1) 
 

 

 

O2
•- can also react with H2O2 in the presence of metals such as Cu2+ and Fe2+, featuring 

the call of Haber-Weiss reaction, which also culminates in the formation of •OH (equation. 

2). 
 

 

 

     H2O2 + O2
•-         Fe2+      O2+ •OH + OH- (equation 2) 

 

 

Despite being a relatively small body mass, brain needs high oxygen consumption due 

to their high need for ATP, thus increasing mitochondrial activity and thus the production 

of a relatively high level of ROS. Increased neuronal oxidative stress resulting from 

excessive production of ROS causes damage to neuronal membranes as lipid peroxidation 

and protein oxidation. The central nervous system is particularly susceptible to oxidative 

damage because it has a high energy requirement, high consumption of oxygen, a deficit 

in antioxidant defenses compared with other organs, high concentrations of lipids rich in 

polyunsaturated fatty acids [35], particularly arachidonic acid (20:4) and docosahexaenoic 
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acid (22:6), which are the main targets of oxidation [36], and high content of transition 

metals that can act as potent pro-oxidants [35]. Given these characteristics, it is expected 

that the oxidative damage in brain manifests predominantly in the form of lipid 

peroxidation, as described by Praticò (2002) [37] as result of physiopathological processes 

or due treatment with drugs. 

 

2.3 Lipid Peroxidation 

Oxidative stress causes changes in a diversity of native phospholipids found in living 

species which results in a vast number of structurally different oxidation products, which 

may have different biological activities that depends not only on the location, but also on 

the nature of the changes. Oxidized phospholipids are the result of a series of radical 

catalyzed chemical reactions and their presence in biological membranes induces changes 

in physical properties such as fluidity and acyl packing, which can have an impact on the 

integrity of the membrane, causing apoptotic events [35]. 

Lipid peroxidation has been defined as the cascade of biochemical events that include 

a cyclic series of reactions, with different phases (initiation, propagation and termination 

cyclic), resulting from the action of ROS on lipid membrane. 

It is known that is initiated by the attack of reactive chemical species such as •OH, 

capable of abstracting a hydrogen atom from a reactive methyl group of a 

polyunsaturated lipid (LH), with the formation of lipid alkyl radical (L•), which was the key 

factor for the onset of lipid peroxidation. The presence of a double bond in the fatty acid 

weakens the C–H bonds on the carbon atom nearby to the double bond and thus 

facilitates the hydrogen abstracting. The lipid alkyl radical (L•) resulting from the initiation 

reacts with oxygen to form a lipid peroxyl radical (LOO•) which can abstract a hydrogen 

atom from adjacent polyunsaturated fatty acid in membrane to produce a lipid 

hydroperoxide (LOOH) and a second lipid radical [39]. The resulting peroxide may be 

cleaved, by reduced metals, such as Fe2+, producing alkoxyl (RO•) or epoxiperoxil (OROO•) 

radicals, and both stimulate the chain reaction of lipid peroxidation by abstracting 

additional hydrogen atoms. Therefore, the formation of lipid peroxyl radical initiates the 

called “lipid peroxidation chain”, which has as main product the lipid hydroperoxide 
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(LOOH) [36]. It should be emphasized that the chain propagation is carried by lipid peroxyl 

radicals independent of the type of chain-initiating free radicals. The sequence of 

reactions shown in Figure 3 illustrates the phenomenon.  

 

 
 

Figure 3. Steps of membrane lipid peroxidation [53]. 

 

 

 

 

It became evident recently that lipid peroxidation as well as ROS/RNS exert various 

biological functions in vivo such as regulators of gene expression, signaling messengers, 

activators of receptors and nuclear transcription factors, and inducers of adaptive 

responses [40]. Lipid oxidation products also change the properties of biological 

membranes, because their polarity and shape may differ significantly from the structures 

of their parent molecules. Thus, lipid peroxidation is associated with disruption of 

hydrophobic interactions in biological membranes leading to loss of structural and 

functional characteristics, such as lipid-lipid and lipid-protein interactions, selective 

permeability, phospholipid asymmetry, decreased fluidity and membrane potential and 

increased permeability [36,40,41] leading to cell death. Injure to mitochondria induced by 

lipid peroxidation can direct to further ROS generation [40] and be associated with 

mitochondrial dysfunction. 

Taking this into account, will be of high importance to research early (oxidative) 

changes in cellular and subcellular biomolecules, namely in lipids. 
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3. Lipids 

Lipids can be defined based on their solubility in organic solvents or by presence of 

long hydrocarbon chains. Thus lipids comprise a vast number of chemical molecules, 

structurally and functionally distinct, resulting from combinations of fatty acids with 

different structures. Species can be nonpolar (sterols), neutral (triacylglycerides) and 

polar (phospholipids) [42]. 

Cellular lipids form a membrane bilayer and are therefore essential for their structural 

integrity and functionality; allow protein trafficking and anchoring to the membrane; 

provide an appropriate hydrophobic environment for membrane proteins function and 

interactions; serve as storage of energy, which can be rapidly and easily accessed; 

membrane lipids are involved in intra and intercellular signaling since a variety of 

bioactive lipids can be produce by enzymatic reactions [43]. 

Currently, based on their chemical structure and biosynthesis, lipids are classified into 

eight categories - fatty acids, glycerolipids, glycerophospholipids, sphingolipids, sterol 

lipids, prenol lipids, saccharolipids and polyketides - which contain different classes and 

subclasses of molecules [42,56]. In most mammalian cells, phospholipids represent 

approximately 60% of total lipids, the sphingolipids comprise roughly 10% of total fat and 

the remaining percentage corresponds to the non-polar lipids. 

Fatty acids are the most simple and one of the most important lipid classes. 

Structurally, the natural fatty acids have a saturated or unsaturated hydrocarbon chain 

with 14 to 24 carbon atoms and 0 to 6 double bounds. The difference of polyunsaturated 

fatty acids of less unsaturated, is the presence of repeated units =CH-CH2-CH=, which 

defines its significantly role in the membrane, producing a highly flexible structure 

[44,53]. Functionally, they are precursors of a variety of bioactive lipid molecules [42]. 

The glycerolipids include monoacylglycerides, diacylglycerides and triacylglycerides, which 

are very important in cell energy storage and as mediators in metabolic processes and 

disease. Sterol lipids which include cholesterol are important components of lipid 

membrane and are involved in signaling regulation and cellular fluidity modulation [45]. 
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3.1 Phospholipids 

Phospholipids are the major building blocks of biological membranes, where they play 

an important structural role as part of the lipid bilayer, modulate membrane trafficking, 

are indispensable as precursors for various regulators of intra-and extracellular 

metabolism and the function of organelles. Metabolites derived from their degradation 

are important intracellular signaling molecules involved in processes such as proliferation 

and apoptosis [46]. They are therefore involved in the regulation and control of cellular 

functions in health and disease. There are two major groups of phospholipids: 

glycerophospholipids and the sphingolipids. 

Glycerophospholipids are the major components of biological membranes, and have 

inherent biological activities by acting as second messengers themselves or as precursors 

for the generation of second messengers. Glycerophospholipids consist of a glycerol 

backbone to which are attached two fatty acid chains at sn-1 and sn-2 by ester linkages, 

and at least one phosphate group at position sn-3. The phosphate group can bind to a 

polar molecule by phosphodiester bonds [47], forming the so-called polar head group of 

phospholipids [48]. They are amphipathic molecules, i.e., the head comprising the 

phosphate group is polar or hydrophilic and the tail formed by chains of fatty acids is 

nonpolar or hydrophobic. Phospholipids contain a high number of species with different 

polar head groups, different linkages at sn-1 positions and different combinations of fatty 

acyl chains in the sn-1 and sn-2 which may also vary in length and degree of unsaturation, 

making them high complex molecules. 

Seven classes of glycerophospholipids are commonly recognized based in the 

chemical structure of head group that are linked to the phosphate: phosphatidic acid 

(PA), phosphatidylcholines (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), 

phosphatidylglycerol (PG), phosphatidylnositol (PI). Figure 4 represents the general 

structure of glycerophospholipids. 
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Figure 4. General structure of glycerophospholipids. R
1
 and R

2
 represent the fatty acyl chains esterified to 

glycerol backbone [53]. PA – Phosphatidic acid, PC – Phosphatidylcholine, PE – Phosphatidylethanolamine, 

PS – Phosphatidylserine, PG – Phosphatidylglycerol, PI – Phosphatidylinositol. 

 
 

Due to the different chemical bonds of the aliphatic chains at the sn-1 position of 

glycerol backbone in phospholipids, each class is further divided into three subclasses, 

i.e., phosphatidyl, plasmenyl and plasmanyl (figure 5), corresponding to the ester, vinyl 

ether, and alkyl ether linkages, respectively [43]. In mammalians, ether linkages occur 

predominantly in PCs and PEs. Plasmanyl species typically exist as PC species, whereas 

plasmenyl species mainly exist as PE species with the exception of the heart where 

plasmenyl PC species predominate. The main significance of ether species relate to the 

production of platelet activating factor (1-alkyl-2-acetyl-PC) and its concomitant 

implication in blood coagulation and inflammatory responses. In most cellular membrane 

lipids, the phosphatidyl subclass of phospholipids is predominant; however in 

electroactive cellular membrane such as neuronal cells, plasmenyl subclasses are major 

components of phospholipids [43]. 

 

 

Figure 5. Glycerophospholipids subclasses based on the linkage of aliphatic chain at the sn-1 position of 

glycerol backbone; (a) phosphatidyl, (b) plasmenyl and (c) plasmanyl. R
1
 and R

2
 represent the fatty acyl 

chains esterified to glycerol backbone [53] and X represents the head group. 
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Lysospecies exist having only one fatty acyl or fatty alcohol moiety attached to the 

glycerol phosphate backbone. Lysospecies occur as intermediates in glycerophospholipid 

biosynthesis, and act as second messengers. 

Cardiolipin (CL, 1,3-bis(sn-3-phosphatidyl)-sn-glycerol) is a dimeric phospholipid 

containing two phosphatidic acids linked by a central glycerol group that holds two more 

molecules of glycerol in its structure, and has four fatty acyl chains. The relationship 

between the three glycerol molecules creates a unique environment for each ester 

linkage [49]. The fact that the headgroup alcohol is shared by two phosphate moieties is a 

feature with important implications regarding the overall physical properties of CL within 

the context of a lipid bilayer, namely in their mobility and conformational flexibility [50]. 

Figure 6 represents the general structure of cardiolipin. 

 

 

 

 

 

 

Figure 6. Structure of cardiolipin. R
1
, R

2
, R

1’
 and R

2’
represent the fatty acyl chains esterified to glycerol 

backbone. 
 

 

 

 

Sphingolipids (SPs) are amphipatic lipids which share a common structural feature: a 

sphingosine backbone as the main chain (Figure 7). SPs are known bioactive compounds 

playing important roles in diverse cellular processes, as proliferation, differentiation, 

signaling, apoptosis, inflammation [51,52], biological recognition, cell growth, membrane 

organization, among others, in addition to its role in membrane structure. They are 

classified into different classes, such as ceramide (Cer), which contain a fatty acid linked 

via an amide bond to sphingosine backbone (Figure 7); sphingomyelins (SM) which 

contain an amide linked fatty acid, as well as a polar head group (phosphocholine) 

attached to the sn-1 hydroxyl group in the sphingosine backbone; 

sphingosylphosphorylcholine, a lyso sphimgomyelin which has a phosphocholine polar 

head attached to the sn-1 hydroxyl group in the sphingosine backbone but don’t have any 
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fatty acyl chain; cerebroside and other glycosphingolipids (gangliosides, sulfatide, among 

others) based on a polar head group linked to the sn-1 position of sphingosine [43]. 

Phosphorylation of sphingosine or ceramide results in sphingosine-1-phosphate and 

ceramide-1-phosphate, respectively.  

 

 

 

 

 

 

Figure 7. General structure of sphingosine (a), ceramide (b) and sphingomyelin (c). R
1
 represents the 

sphingosine backbone; R
2
 represents the fatty acyl chain esterified to sphingosine backbone. 

 

3.2 Lipids and Brain 

Lipids, particularly phospholipids, are fundamental to the architecture and function of 

the central nervous system, being essential as structural components, and this is evident 

based on lipid content and dry weight of nerve tissue, with a high concentration of lipids, 

similar to adipose tissue [53,54].  

Nerve tissue contains a variety of lipids including neutral lipids such as cholesterol, 

glycolipids such as galactosylceramide and gangliosides, and phospholipids such as PC, PE, 

PS, several species of CL, sphingolipids, among others. The glycerophospholipids are 

important in the structure and functioning of the brain membranes and sphingolipids are 

important in many cellular processes including differentiation, proliferation and 

apoptosis, in the nervous system [55]. 

Main of fatty acids esterified to glycerol in brain phospholipids [56,57] are presented 

in Table 1. These fatty acids have varying degrees of unsaturation, and brain 

polyunsaturated fatty acids are present in higher percentage. 

Neuronal membranes are highly specialized on the reception, processing and 

transmission of information, functions that are dependent on the balance between the 

amounts of membrane phospholipids, neutral lipids and glycolipids. However, the 

composition and lipid metabolism both change with brain development and anatomic 
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region [53] and cellular and subcellular localization. In addition, differences in 

phospholipid classes, diversity within each class and susceptibility to oxidation must be 

considered. The homeostasis of membrane lipids, especially those of mitochondrial 

membrane in neurons, and myelin, are essential to prevent the loss of synaptic plasticity, 

cell death and neurodegeneration [55].  

 

Table 1. Fatty acyl chains more common in brain phospholipids and its nomenclature. 

12:0 Dodecanoic Lauroyl Saturated Non-oxidizable 

14:0 Tetradecanoic Myiristoyl Saturated Non-oxidizable 

16:0 Hexadecanoic Palmitoyl Saturated Non-oxidizable 

18:0 Octadecanoic Stearoyl Saturated Non-oxidizable 

18:1 (n-9) 9-Octadecanoic Oleoyl Monounsaturated Non-oxidizable 

18:2 (n-6) 9,12-Octadecadienoic Linoleoyl Polyunsaturated Oxidizable 

20:4 (n-6) 5,8,11,14-Eicosatetraenoic Arachidonoyl Polyunsaturated Oxidizable 

22:5 7,10,13,16,19-Docosapentaenoic Docosapentaenoyl Polyunsaturated Oxidizable 

22:6 (n-3) 4, 7,10,13,16,19-Docosahexenoic Docosahexaenoyl Polyunsaturated Oxidizable 
 

Fatty acyl is designated as 18:1, where 18 indicates the summed number of carbon atoms and 

1 designates the number of double bonds at both positions.  

 

3.3 Mitochondrial Membrane Phospholipids 

Brain contains at least two major populations of mitochondria, based on cellular 

localization [14], which include the non-synaptic mitochondria, originate from neuronal 

and glial cell bodies, and the synaptic mitochondria, originate from the synaptic bouton of 

neurons [15]. 

The mitochondrial membrane phospholipids, which include PC, PE, PI, PS, PA, PG and 

CL, can influence various functions such as mitochondrial activity of the electron transport 

chain (Electron Transport Chain, ETC), the transport of nucleotides, the mitochondrial 

protein import, the properties of membrane fluidity and permeability and ATP synthesis 

[15, 58]. 

Phosphatidylcholine and phosphatidylethanolamine are the most abundant 

phospholipid in membrane cells [59] and higher proportions are found in mitochondria, 

where they are obviously a key building block of membrane bilayers. Phosphatidylinositol 

plays an important role as a key membrane constituent and appear to have crucial roles 
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in interfacial binding of proteins, regulation of proteins at the cell interface, cell growth 

and differentiation, motility, calcium mobilization and oncogenesis [60,61] as a 

participant in essential metabolic processes as cellular signaling, both directly and via a 

number of metabolites. Phosphatidylserine are present in low abundance in 

mitochondria, but may enhance mitochondrial function because they are precursors to 

mitochondrial phosphatidylethanolamine. Phosphatidic acid has the simplest polar head 

group, and serves as a precursor and metabolite in the biosynthetic and catabolism 

pathways of phospholipids [60]. Phosphatidylglycerol is synthesized only in mitochondria 

of non-photosynthetic eukaryotes, where it is used as the precursor for cardiolipin [60].   

Cardiolipin is a specific inner mitochondrial membrane phospholipid, which is 

responsible for about 25% of all mitochondrial lipids [62]. In the brain, CL containing long 

unsaturated fatty acid chains like arachidonic (20:4), docosatetraenoic (22:4) and 

docosahexaenoic (22:6) [63], which are highly susceptible to oxidative damage [62,63] by 

ROS [62], beside its close association with ECT, in the inner mitochondrial membrane, 

which are known to be  a major source of ROS in mitochondria [64]. CL are very 

susceptible to oxidative damage [63,64] being suggested as the preferred substrate to 

undergo oxidation in neuronal diseases [38,63]. 

CL has been proposed to play a central role in mitochondrial function, energy 

metabolism and apoptosis since as an integral part of the inner mitochondrial membrane 

where is essential for maintenance of membrane fluidity and osmotic stability [64] and is 

associated with many mitochondrial proteins, namely respiratory complexes I, III, IV, V, 

and ADP-ATP carrier [65]. CL contribute to association of complexes III and IV, and 

consequently for development, assembly and stabilization of the mitochondrial 

respiratory chain supercomplexes [66], improving the efficiency of oxidative 

phosphorylation, by elimination the need for diffusion of substrates and products 

between the individual components of the ETC [67]. Besides its role in mitochondrial 

bioenergetics, CL electrostatically anchors cytochrome c to the inner mitochondrial 

membrane [68] and can therefore play an important regulatory role in the release of 

cytochrome c, which triggers the events of apoptosis being a key role in programmed cell 

death [69]. Decrease in mitochondrial CL content [62,64,70] or alteration in CL structure, 
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namely due to an increase in CL peroxidation [62,64,71] or changes in fatty acyl profile 

[64], have been associated with mitochondrial dysfunction [64], namely ECT dysfunction 

and release of cytochrome c from mitochondria. Since oxidized CL has a considerable 

lower affinity for cytochrome c [70] and subsequent tissue degeneration [62] and cell 

death, and several pathological conditions, particularly neurodegenerative diseases such 

as AD since CL an is important component of mitochondrial membrane.  

 

3.4 Lipids and Alzheimer Disease  
 

These essential roles of lipids are evidenced by the specific brain lipid disorders that 

are associated with multiple neuronal diseases, and changes in brain lipid levels due to 

increased or decreased synthesis, or altered metabolism may result in their homeostatic 

deregulation and culminate in neurodegeneration. It has been suggested that 

sphingolipids loss, changes in the composition of phospholipids and their fatty acids 

and/or the formation of lipid peroxidation products may lead or accelerate the 

neurodegeneration and pathogenesis of AD [55]. 

Loss of neuronal membrane phospholipids and fatty acyl chains has been 

hypothesized to be an early metabolic event in amyloid plaques and neurofibrillary 

tangles formation, and synapses and neurons loss, resulting in neurodegeneration [55]. 

Phospholipids changes in AD include increase in degradation products as lysoPC, gliceroPC 

and gliceroPE [72] and decrease in PE [73]. ROS are generated under oxidative stress in 

AD, so phospholipids oxidation of biological membranes is also associated with 

progression of this disease. AD has been associated with loss of docosohexaenoic and 

araquidonic acid [74]. Decreases of polyunsaturated fatty acids in neurons are associated 

with lower fluidity and apoptosis. 

Deregulation of sphingolipid metabolism also leads to the establishment and 

progression of diseases such as neurodegenerative diseases, including Alzheimer [11]. 

Sphingomyelins are reported to decrease Aβ production [75], while gangliosides seem to 

increase its production [76]. Evidences demonstrate that ceramide accumulates in many 

tissues, including in brain, during aging [77], inducing cell dysfunction, ROS production, 

disruption of the respiratory chain membrane and apoptosis [78,79], leading to 
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neurodegeneration. Han and colleagues (2002) [80] reported increases in ceramide levels 

in AD patients.  

Since AD is associated to sphingolipid metabolism alterations, and on the other hand 

to oxidative stress, there are no studies that correlate these two factors. The lack of 

knowledge in this area leads us to propose as one main goal of this work the study of the 

behavior and changes that occur in sphingolipids under oxidative stress.  

Mass spectrometry has recently been used as the main analytical technique for 

analysis of lipid/phospholipid oxidation products and also in profile in cells or tissues, an 

approach that often involves preparative chromatography techniques, generically known 

as Lipidomic. 

 

4. Lipidomic 

Lipidomics  can be defined as the systematic and large-scale study of structure, 

function and interactions of lipids with other lipids, proteins and other molecules in 

biological samples (biological fluids, tissues, cells, among many others), as well as the 

study of lipid changes that occur during pathophysiological disturbances [81], in response 

to different stimuli or situations through the integration of multiple modern technologies 

as mass spectrometry, being an emerging field of research and rapidly expanding [82]. It 

is considered a branch belonging to a broader field known as metabolomics, since the 

lipids are biological metabolites. But is itself a distinct discipline due to the unique and 

specific functions of lipids in relation to other metabolites. 

Lipidomic usually involve several steps, beginning with the extraction of lipids from 

tissues or cells by methods that exploit the high solubility of the hydrocarbon chains of 

lipids in organic solvents, and include the method of Bligh and Dyer [83], their separation, 

usually by chromatography, identification and quantification of each molecular species 

[84] using phosphorous assay that measures the inorganic phosphate present in the 

sample, and additional analysis of the lipid profile by mass spectrometry (figure 8). This 

methodology is also applied in the analysis of lipid peroxidation products that are 

generated in in vivo conditions, named as oxidative lipidomic. 
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Figure 8. Lipidomics, techniques employed in the analysis of lipids. 

 

4.1 Lipid Extraction 

The lipid extraction methods exploit the high lipid solubility of the hydrocarbon chains 

of lipids in organic solvents, and include the Bligh and Dyer method [83], which will be 

used during this study, and is based on lipid extraction using a mixture of 

chloroform/methanol (1:2), getting the lipids in the hydrophobic phase of lower density. 

Methanol breaks down the lipid-protein bonds and inactivates the lipase, while the 

chloroform dissolves fat. The success of phase extraction of lipids from cells, tissues or 

biological fluids is fundamental to the success of subsequent analysis. 

 

4.2 Lipid Separation 

Since the lipids obtained from extracts of biological samples include species of 

different classes, it is necessary their separation, which usually requires a multi-step 

chromatography to allow identification and quantification of each molecular species [84]. 

All the systems consist of a chromatographic stationary phase (liquid or solid) and a 

mobile phase (liquid or gas). The sample components are separated based on their 

physical and chemical characteristics, and according to the different affinity for the two 

phases. The separation of lipids from biological samples can be conducted using HPLC 

(High Performance Liquid Chromatography), that has the advantage of being coupled to 

MS or by TLC which is nowadays an important technique used for the separation of 

different classes of phospholipids in biological samples. 
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4.2.1 Thin Layer Chromatography (TLC) 

TLC is used to separate the components of a mixture, but can also be used to quantify, 

identify and purify components in the mixture.  

In TLC, separation of complex mixtures is achieved on a stationary phase due to 

polarity differences of the analytes with the mobile and stationary phases [85]. Since TLC 

uses a mobile phase consisting of a liquid (eluent) and a solid stationary phase, is a solid-

liquid adsorption technique, in which the solvent molecules compete with the analyte 

molecules for binding sites on the stationary phase. In lipidomics, TLC has the advantage 

that it can be used at a preparative scale and allows the separation of different lipid 

classes from total lipid extracts, and also achieves separation even within the 

phospholipid classes, in an easy, quick and relatively inexpensive, so it is often used prior 

to detection by mass spectrometry [86]. This technique has been used for analysis of 

oxidized phospholipids and is also a useful method to separate headgroup-modified 

phospholipids [85]. 

For separation of phospholipids are usually used glass plates which have a stationary 

phase applied, being the most common coating silica gel (SiO2). On the surface of silica 

gel, the oxygen atoms are linked to protons forming hydroxyl groups which make the 

surface of silica gel highly polar. Thus, the polar portion of the analyte interacts strongly 

with the surface of the gel particle and nonpolar portion interacts more weakly. Analyte 

molecules can bind to silica in two ways: by hydrogen bonding and dipole-dipole 

interactions. There are several chemical modifications that can be made to the silica gel 

to improve separation of phospholipids classes, as coating the plate with boric acid [86]. 

For silica gel chromatography, the mobile phase is an organic solvent or mixture of 

organic solvents ranging in polarity. Using appropriate mixtures of solvents is possible to 

separate and quantify different classes of lipids [87]. As the mobile phase moves along 

the surface of the silica gel it transports the analyte particles of the stationary phase. 

However, the analyte molecules are only free to move with the solvent if they are not 

bound to the surface of the silica gel. Thus, the fraction of time that the analyte is bound 

to the surface of the silica gel relative to the time it spends in solution determines the 

retention factor of the analyte. The ability of an analyte to bind to the surface of the silica 
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gel in the presence of a particular solvent or mixture of solvents can be viewed as a the 

sum of two competitive interactions. First, polar groups in the solvent can compete with 

the analyte for binding sites on the surface of the silica gel. Therefore, if a highly polar 

solvent is used, it will interact strongly with the surface of the silica gel and will leave few 

sites on the stationary phase free to bind with the analyte. The analyte will, therefore, 

move quickly past the stationary phase. Similarly, polar groups in the solvent can interact 

strongly with polar functionality of the analyte and prevent interaction of the analyte with 

the surface of the silica gel. This effect also leads to rapid movement of the analyte past 

the stationary phase [88]. So, phospholipids will migrate on the stationary phase a certain 

distance based upon their composition and affinity for the mobile phase [86]. 

In normal phase TLC, the stationary phase (normally silica gel) is polar and the mobile 

phase is quite apolar [85], so the more non-polar components have more affinity with 

apolar mobile phase and elute in front of the more polar components, which have higher 

affinity to the stationary phase. Normal phase chromatography is the standard method of 

phospholipid class separation according to polarity differences caused by differences of 

the headgroups of the PL of interest [85]. In reverse phase TLC, the stationary phase 

consists at linked carbon chains, usually with 18 carbons, and the mobile phase consists of 

polar solvents; the elution order of phospholipids is the inverse of the normal phase TLC. 

The separated lipid fractions can be easily visualized by binding to a dye. This is a 

critical step when the lipids are then analyzed by mass spectrometry because the staining 

methods are necessary that do not result in alterations of the molecular weight of the 

analyte. One very useful dye is primuline because it binds non-covalently to the apolar 

fatty acyl residues of lipids can be easily removed from the lipid, and does not affect a 

subsequent MS analysis [89]. The separated and identified species can be removed from 

the spots on the TLC plates and lipids re-extracted with chloroform and methanol, and 

analyzed by mass spectrometry.  

 

4.3 Mass Spectrometry 

Mass spectrometry (MS) is a powerful analytical technique which has high sensitivity, 

specificity, selectivity and speed, that can be used to identify unknown compounds. It is 
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based on the detection of ions (charged molecules) after their separation according to 

both their total atomic mass (m) and electrical charge (z) by electric and magnetic fields 

[36,46]. Data generated by the mass spectrometer is represented by the ration of mass of 

the ion and it charge (as m/z) versus their relative abundance (as a relative intensity) [46]. 

The components of a mass spectrometry instruments are: a system to introduce the 

sample into the source of ionization, in which is produced in a beam of ions in gas phase 

resulting from ionization of analyte molecules from the sample, the mass analyzer, where 

the ions are selected and separated according to the ratio mass/charge (m/z) and 

detector, in which the separated ions are collected and characterized by producing a 

signal whose intensity is related to the number of detected ions (Figure 9). The detector is 

connected to a computer that allows to integrate the information received and 

transformed it into a mass spectra, according to the relative abundance in function of the 

m/z of each ion [46]. The mass spectrometers are complex instruments which allow 

obtain the mass of small molecules, and having a special characteristic: they need a high 

vacuum (10-5-10-7 Torr) [46] to allow unperturbed transmission and detection of the gas 

phase ions without simultaneous reactions.  

 
 

Figure 9. Mass spectrometer components. 

 

Mass spectrometry has been used to identify, as well as the elucidation of relations 

between structure-activity of different membrane lipids. The combination of sensitivity, 

specificity, selectivity and speed of mass spectrometry are the ideal technique for the 

analysis of lipids [46]. 

Mass spectrometry has been highly used in lipidomic analysis to identify, quantify and 

characterize the chemical and functional properties of lipids. Lipidomic progress has been 
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improved by the development of new mass spectrometric techniques, particullary soft 

ionization techniques [90] and new more robust instruments. For analysis of 

phospholipids two ionization methods are commonly used: Electrospray Ionization (ESI) 

and Desorption/Ionization Matrix-Assisted Laser (MALDI). These soft ionization 

techniques allows the analysis of biomolecules of high molecular weight, nonvolatile and 

thermolabile, without excessive degradation and with a high probability of detection of 

the molecular ion, and the study of intact lipid molecular species from very small amounts 

of samples, with minimal sample preparation (without derivatization) [43]. 

 

4.3.1 Ionization Source 

Electrospray Ionization (ESI) 

Electrospray ionization generates molecular ions at atmospheric pressure by passing 

stream containing a sample solution through a small capillary at a low flow rate [103]. In 

ESI a solution containing the analyte of interest dissolved in a solvent more volatile than 

the analyte, such as methanol is continuously infused into the source through a metallic 

needle using in a continuous flow a syringe pump. A high voltage is applied to the metallic 

needle creating a significant amount of charge at the end of the needle, producing a fine 

spray of highly charged droplets [91,92]. 

This high voltage will charge the molecules of the solvent, in which the sample is 

mixed, as well as the sample molecules, producing ions primarily via protonation (in 

positive ion mode) such as [M+H]+ or deprotonation (in negative ion mode) as [M-H]- or 

via formation of cations adduct (e.g. Na+) or anions adduct (e.g. Cl-), depending on the 

chemical properties of the molecules.  

Once they are charged, with the same charge, the molecules will repel one another 

forcing the liquid to exit trough the tip, initially forming a cone of liquid, known as Taylor 

cone, after which the droplets form the final spray. After release of the droplets, they 

undergo further division and solvent will gradually evaporate, through a flowing stream of 

heated inert gas, usually nitrogen, producing a decrease in the volume of the drop until it 

reaches a value close to the limit of Rayleigh instability, in which the unstable drop 

undergoes fission in smaller drops. When the ions become close enough together their 
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electric charges will make them repel each other, because of the Coloumb force. This will 

force the droplets to divide into smaller droplets until each droplet corresponds to a 

single charged molecule and the solvent is completely evaporated (Figure 10) [91,92].  

The major advantages of ESI-MS are high accuracy, sensitivity, reproducibility, 

applicability to complex phospholipid solutions without prior derivatization [47], and as 

soft ionization technique molecules are not broken apart, instead they remain intact. ESI-

MS of lipids represents one of the most sensitive, discriminating, and direct methods to 

assess alterations in cellular lipidome directly from lipid extracts of biological samples 

[43,91]. 

The charged ions formed by ESI are then transported to the analyzer. ESI sources can 

be combined with distinct types of mass analyzers such as quadrupole (Q), ion trap, time-

of-flight (TOF), cyclotron resonance of Fourier / Fourier transform ino cyclontron (FT-ICR) 

and orbitrap [46].  

 
 

 

Figure 10. Schematic representation of ion formation by ESI (http://www.chm.bris.ac.uk/ms/theory/esi-

ionisation.htm) 

 

4.3.2 Analyzers 

After being ionized, sample is sent to the mass spectrometer and is then separated by 

a component of the mass spectrometer, referred to as analyzer, according to their ratio 

m/z, and independently of their chemical conformation. If different ionization methods 

require that samples can be analyzed, the different mass analyzers can determine the 

minimum difference in mass values that can be distinguished and identified as individual 

species of analyte. 

http://www.chm.bris.ac.uk/ms/theory/esi-ionisation.htm
http://www.chm.bris.ac.uk/ms/theory/esi-ionisation.htm
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Several analyzers are used in mass spectrometers, as quadrupolo, ion trap, time-of-

flight. These analyzers can be used individually in mass spectrometers, or can be 

combined into complex instruments, the most commonly used Q-TOF, Q-Trap, and triple 

quadrupoles. They all differ in accuracy (the error in determining the precise mass 

compared with the theoretical value), resolution (mass divided by the value of the 

difference in mass between two ions with a small difference in mass) [47], dynamic range 

and capability to perform tandem mass spectrometry. 

Quadrupole, the most used mass analyzers, are ion beam analyzers. The quadrupole 

is composed by two pairs of parallel rolls connected at the same potential to which is 

applied a direct and an alternate current between each pair of rolls that affects the 

trajectory of the ions and allows the transmission of ions through the quadrupole mass 

analyzer. Only the ion with a certain m/z value will reach the detector, while the rest will 

collide with rods and lose charge or will be ejected. By varying the electrical signals from 

one quadrupole, one can vary the range of the m/z transmitted. They are relatively 

inexpensive, small size, easy to use and maintain, and able to provide good accuracy in 

the measured mass values. However, the resolution is limited, have limited capacity in 

terms of range and resolving power, and have limited suitability for analysis of tandem 

mass spectrometry. Moreover, there is a great waste of information since the ions to pass 

through the quadrupole, are selected according to their mass, so only one value of mass 

reaches the detector. 

Triple quadrupole mass spectrometer is a tandem mass spectrometer consisting of 

two quadrupole mass spectrometers in series, with an only quandrupole between them 

to act as a collision cell. The first (Q1) and third (Q3) quadrupoles serve as mass filters, 

whereas the middle (q2) quadrupole serves as a collision cell, which using an inert gas 

such as Ar, He, or N2 gas provide fragmentation of a selected precursor ion (selected in 

Q1). Subsequent fragments are passed through to Q3 where they may be filtered or 

scanned. This configuration is often abbreviated QqQ. 

Linear Ion Trap is a multipole ion-dimensional where the ions are confined radially by 

a two-dimensional (2D) radio frequency (RF) field, and axially by stopping potentials 

applied to end electrodes, for long periods of time, can act as a source of ions, ion-
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chamber reactions molecule and analyzer. As the ions are trapped and accumulate over 

the time and can be combined with other mass analyzers and used to isolate ions of 

selected mass to charge ratios, to perform tandem mass spectrometry experiments, and 

to study ion molecule chemistry [93]. However, it has several disadvantages such as low 

accuracy and low dynamic range. 

Time-of-flight (TOF) instruments are simple, relatively inexpensive, with high 

sensitivity and accuracy, and unlimited masses analyzable, but have limited resolution. 

The operating principle of TOF involves measuring the time differences that generated 

and accelerated ions take to travel from the ion source and reach to the detector. These 

ions are accelerated through a flight tube of variable length by an electric field pulse. 

Based on difference in obtained velocity, ions will be separated according to m/z.  All the 

ions are accelerated with the same kinetic energy; their velocities are inversely 

proportional to the square root of their mass, so the ions hit the detector sequentially in 

order of increasing value of m/z and therefore the lighter ions gain higher speeds and 

reach the detector before the ions with higher mass and low speed. Thus, the detection 

sensitivity is lower for heavier ions than for lighter ions. To increase the sensitivity of 

detection, the ions are accelerated before reaching the detector. 

In this work we used three different spectrometers, ESI-Ion Trap, ESI-Q-TOF2 and ESI-

QqQ which combines several types of analyzers, making them significantly more sensitive. 

These instruments use the same method of ionization (ESI), however, different mass 

analyzers, which allow to obtain different types of information. The Ion Trap allows for 

tandem mass spectrometry (MSn). These instruments can be used as complementary 

analytical techniques. 

 

4.3.3 Tandem Mass Spectrometry 

The main characteristics of mass spectra obtained with soft ionization methods are 

the absence of fragmentation, which allows the accurate determination of molecular 

masses of constituents of mixtures. However, in these conditions is obtained little 

information about its molecular structure. 
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Tandem mass spectrometry is based on selection and isolation of interest ions, with 

specific m/z in a first mass analyzer, followed by fragmentation in collision cell by 

interaction with a gas, resulting ionic products that are separated in terms of m/z values   

and characterized by a second mass analyzer (Figure 11). Usually several analyzers are 

coupled in series, however, in some instruments, like the linear ion trap, only one 

analyzer is able to perform multiple mass spectrometry becoming efficient instruments in 

structural identification of molecules as phospholipids [60]. This technique is identified as 

MS/MS, however, the number of steps can increase in order to perform MSn (n 

represents the number of generations of ions to be analyzed). 

There are several ways in MS/MS: precursor ion scanninig, in which masses of the 

precursor are checked at the first analyzer, sequentially transmitted to collision cell and 

the  product ion is selected in the second mass analyzer that transmits only a m/z, 

informing on the precursors of an ion fragment; product ion scanning, in which a 

precursor ion with a given m/z is selected in the first mass analyzer, followed by its 

fragmentation in collision cell and then all the resulting masses are scanned in second 

mass analyzer, reporting the fragments of a precursor ion; and neutral loss scanning, 

which ions are sequentially separated at the first analyzer, transmitted to collision cell, 

and second analyzer reports the same ions that lose a predetermined neutral molecule 

[81,94]. 

 

Figure 11. Schematic representation of tandem mass spectrometry. 
 

 

 

 

Using this technology, we can draw several conclusions about the structure of 

molecules and analyzed the spectra obtained give us not only the forms of molecular 
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break more often, as the most favorable. Mass spectrometry MS/MS has been used for 

detailed study and characterization of several molecules, including amino acids and 

phospholipids. 

 

4.4 Mass Spectrometry in phospholipids analysis 

Mass spectrometry is the most powerful contemporary analytical approach in 

lipidomics [54]. Due the combination of sensitivity, specificity, selectivity and speed, mass 

spectrometry is the ideal technique for the analysis of lipids; has been used to identify, 

quantify and characterize the chemical and functional properties of each lipid 

component, as well as the elucidation of relations between structure-activity of different 

membrane lipids and providing information about the molecular identity, composition 

and oxidative state. Tandem mass spectrometry provides detailed information necessary 

for the structural characterization of new lipid, and the selectivity required to determine 

the lipid species present in complex mixtures [95]; precursor ion scan and neutral loss of 

polar head groups or fatty acids are widely used in the detection and identification of 

structural lipids [96], but a knowledge of the fragmentation patterns is required. Either 

ESI- or MALDI-MS can analyze phospholipid positively or negatively charged, as described 

in table 1, because each class of lipids has the ability to acquire positive or negative 

charges, while in solution, under an ionization source of high energy [46], and the 

resulting spectra of lipids appears to be considerably different in different modes.  

 

Table 2. Phospholipid classes that can be analyzed by ESI or MALDI in positive (species easily protonated 

forming [M+X]
+
 ions) and negative (species easily deprotonated forming [M-X]

-
 ions) modes. Some species 

are easily analyzed in both modes. 
 

 

Positive Mode [M+X]
+
, X= H, Na, Li, etc Negative Mode [M-H]

-
 

PC PI 

PS PG 

PE PA 

SM PS 

 PE 

 CL 

 Cer 
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In negative mode, phospholipids can form [M-H]- ions or [M-2H+X]- (X=Na, Li, K) 

adduct ions; in positive mode can form [M+H]+ ions or [M+X]+, [M+2X-H]+ or [M+3X-2H]+ 

(X=Na, Li, K) adduct ions [97]. 

Phosphatydilcholines are characterized by the presence of a quaternary nitrogen 

atom whose positive charge is neutralized by the negative charge of the phosphate 

group. The quaternary nitrogen atom readily forms protonated ions [MH]+ under 

ionization because the phosphate anion can be protonated [60]. The product ion spectra 

of [MH]+ ions show an abundant product ion at m/z 184 correspondent to the choline 

polar head [H2PO4(CH2)2N(CH3)3]+ (figure 12). Other product ions with low relative 

abundance include those formed from loss of HPO4(CH2)2N(CH3)3 (183 Da) and loss of 

fatty acyl chains placed at sn-1 (R1COOH and R1=C=O) and sn-2 (R2COOH and R2=C=O)  

[38]. The formation of [M+H-R2CH2CH=C=O]+ is more favorable than the [M+H-

R1CH2CH=C=O]+ ion, arising from losses of the fatty acyl substituents at sn-2 and sn-1 as 

ketenes, respectively, while the formation of R1CO2H is more favorable than R2CO2H, 

arising from losses of the fatty acyl substituents at sn-1 and sn-2 as acids. Therefore, the 

position of the fatty acyl on the glycerol backbone can be assigned [97]. 

Ionization of PC also produced cationized molecules, such as [M+Na]+ [60], and the 

product ion spectra show neutral loss of trimethylamine (59 Da), polar head 

HPO4(CH2)2N(CH3)3 (−183 Da) and sodiated polar head NaPO4(CH2)2N(CH3)3 (−205 Da) 

(figure 12), loss of fatty acyl chains at sn-1 (R1COONa and R1COOH) and sn-2 (R2COONa 

and R2COOH), the product ion at m/z 147 (cyclophosphane group), and acyl product ions 

R1CO+ and R2CO+ [38]. Tandem MS analysis of plasmalogen phosphocholines shows 

fragment ions involving loss of polar head and the loss of alkenyl or alkyl chains (sn-1 or 

sn-2 fatty acids) as alcohols and ketene/acid (R1OH and R2=C=O/R2COOH) [35]. The higher 

relative abundance of the product ions resultant from loss of sn-2 acyl chains (1-acyl-2-

lysophosphatidylcholine), which is a more favorable fragmentation pathway, allows 

identifying the relative position of fatty acyl chains [38,60]. Since the PC class has a 

positive charge in the nitrogen, there are few MS studies in the negative mode. 

Due to their common choline head group, both PC and SM ionize similarly (figure 12). 

However, PC and SM can be easily discriminated, since protonated PC molecules appear 
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at even m/z values, whereas protonated molecules of SM exhibit odd m/z values. This is 

due to the presence of an additional nitrogen atom in SM [98].  

 

 

 
 

 

 

 

Figure 12. Typical structure of phosphatidylcholine (A), sphingomyelin (B) and their fragments ions and 

neutral losses. R
1
 and R

2
 represent the fatty acyl chains esterified to glycerol backbone (A). R

1
 represents 

the sphingosine backbone and R
2
 represents the fatty acyl chain esterified to sphingosine backbone(B). 

 

Phosphatydilethanolamine may ionize either in positive or negative mode. Tandem 

mass spectra of the [M+H]+ ions undergo loss of 141 Da which corresponds to neutral loss 

of the polar head (HPO4(CH2)2NH3) [60]. Ionization of PE also produced cationized 

molecules, such as [M+Na]+. The fragmentation pathway of these ions include, apart from 

loss of 141 Da, the loss of aziridine (-43 Da, CH2CH2NH) (figure 13). Fragmentation of [M-

H]- ions of PE [38] leads to abundant carboxylate anion of sn-1 (R1COO-) and sn-2 (R2COO-) 

acyl residues. The relative abundance of R2COO- is usually higher than the R1COO- anion. 

Other product ions corresponding to neutral loss of sn-1 and sn-2 fatty acyl residues 

(RCOOH and RCH2CH=C=O) are also detected [38]. The loss of fatty acyl as ketene/acid at 

sn-2 position is more favorable [97].The product ion produced by loss of 141 Da is absent. 

In positive mode, tandem MS analysis of plasmalogen phosphoethanolamines shows 

fragment ions involving loss of polar head, aziridine and the loss of alkenyl or alkyl chains 

(sn-1 or sn-2 fatty acids) as alcohols and ketene/acid (R1OH and R2=C=O/R2COOH). [M-H]- 

ions spectra only give one carboxylate anion from sn-2 [97]. 
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Figure 13. Typical structure phosphatidylethanolamine and its neutral losses. R
1
 and R

2
 represent the fatty 

acyl chains esterified to glycerol backbone. 

 

Phosphatydilserine class ionize preferentially in the negative mode with formation of 

*M−H+- or *M−2H+X]- (X= Na, Li, K) ions [38]. The [M-H]- PS product ion spectra typically 

shows major loss of serine group (−87 Da) (figure 14) and carboxylate anions (R1COO- and 

R2COO-) allows discovering structural features of PS [38]. The sn-1 carboxylate anion is 

typically more abundant than the sn-2 [60]. Fatty acyl chains may also be lost as ketene 

([RxCH2CH=C=O]-) or as acid ([M-H-RxCO2H]-); loss of fatty acyl at sn-2 position is more 

favorable [60,97].  

 

 
 

Figure 14. Typical structure of phosphatidylserine and its neutral loss. R
1
 and R

2
 represent the fatty acyl 

chains esterified to glycerol backbone. 

 

 

Phosphatidic acid class (figure 15 A) ionizes preferentially in the negative mode [60]. 

The sn-1 carboxylate anion (R1COO-) was typically more abundant than the sn-2 

carboxylate anion (R2COO-) [60]. There are also ions that corresponds to a neutral loss of 

sn-1 and sn-2 fatty acyl groups as ketenes ([M-H-RCH2CH=C=O]-) or carboxylic acids ([M-
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H-RCOOH]-) [38], being the last one more favorable [97]. In these cases, the loss of fatty 

acyl at sn-2 position, as acid or ketene, is more favorable than at sn-1 [97]. 

Phosphatdydilinositol class also ionize preferentially in negative mode [60] and shows 

a characteristic fragment corresponding to phosphoinositol at m/z 241 [43] (figure 15 B). 

Fatty acyl chains are preferentially losses as acid ([M-H-RxCO2H]-) in a more favorable way 

from sn-2 position. The relative intensity of carboxylate anions (R1COO- and R2COO-) is 

close [97]; however tandem mass spectrometry allows identifying specific fatty acyl 

substituents and R1COO- was typically a little more abundant than R2COO-. 

 

 

 
 

Figure 15. Typical structure of phosphatidic acid (A), phosphatidylinositol (B), and its fragment ions. R
1
 and 

R
2
 represent the fatty acyl chains esterified to glycerol backbone. 

 

 

Phosphatidylglycerol (figure 16) ionize preferentially in negative mode as [M-H]- ions 

and shows a characteristic fragment at m/z 153 correspondent to glycerophosphate and 

at m/z 171 which are the neutral loss of glycerol polar head group. The loss of fatty acyl at 

sn-2 position as ketene ([M-H-R2CH2CH=C=O]-), acid ([M-H-R2CO2H]-) or carboxylate anion 

(R2COO-) are the most favorable; loss of sn-1 fatty acyl is more favorable as acid (R1CO2H) 

than as ketene (R1CH2CH=C=O) [97]. 

 

 
 

 

 

Figure 16. Typical structure of phosphatidylglycerol, and its fragment ion and neutral loss. R
1
 and R

2
 

represent the fatty acyl chains esterified to glycerol backbone. 
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CL ionize in the form of mono or double charge species ([M-H]- or [M-2H]2-) [35,112] 

and sodium adducts ([M+Na-2H]-) preferentially in negative mode [38]; however can also 

be analyzed in positive mode ([M+Na]+ or [M-2H+3Na]+). Fragmentation of the 

*M−2H+Na+- ions yield abundant product ions from loss of monoacylphosphatidylglycerol 

and diacylglycerol groups, and loss of fatty acyl chains [38,99].  

Ceramide (figure 17) can ionize in both positive and negative mode, as [M+H]+ and 

[M+X]+ (X= Na, Li, K) species or [M-H]- and [M+X]- (X= Cl-, CH3CO2
-, CF3CO2

-) species, 

respectively. Ceramide fragmentation results in the formation of two interesting ions 

corresponding to loss of 30 and 32 Da, which corresponds to loss of HCHO and CH3OH. 

The loss of fatty acyl moiety may be in the form of ketene as RCH2CH=C=O, amide as 

RCONH2 or carboxylate anion (RCO2
-). Several others ions corresponding to loss or 

cleavage of sphingosine backbone may be also present in both modes [100]. 

 

 
 

Figure 17. Typical structure ceramide and its neutral losses. R
1
 represents the sphingosine backbone and R

2
 

represents the fatty acyl chain esterified to sphingosine backbone. 

 

Several studies reporting the analysis of brain lipids using mass spectrometry (ESI-and 

MALDI-MS and MS/MS) were carried out in recent years by Kiebish and co-authors 

(2008). They used a lipidomic approach for the study of lipids from non-synaptic and 

synaptic brain mitochondria of C57BL/6J (B6) rats [15]; in the discovery of new species of 

brain lipids [101]; in the study of the profile of phospholipids and in lysophospholipids of 

rat brains after ischemic stroke [102]; to quantify lysophosphatidic acid in rat brain tissue 

[103], among others. 

Mass spectrometry (MS) has been used to identify both non-oxidized and oxidized 

phospholipids [38,97,101] and the specific structures of oxidation products generated 

during distinct oxidative processes [38]. Product ion in tandem mass spectra of oxidized 
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phospholipids allow identifying changes in the fatty acyl chain and specific features such 

as presence of new functional groups in the molecule and their location along the fatty 

acyl chain [38]. The different oxidation products may be responsible for distinct biological 

effects and are very likely to modify the properties of biological membranes, because 

their polarity and shape may differ significantly from the structures of native molecules, 

thus increasing the relevance of identifying each specific oxidation product in order to 

understand their specific biological significance and effects [62].  

Glycerophosphocholines (PC) are the most studied class of oxidized phospholipids by 

mass spectrometry and oxidized products have been identified by MS in biological fluids 

and tissues [38]. Khaselev and Murphy (1999) reported the results of the oxidation by 

Fenton reaction of PE from bovine brain [104]. Maskrey and collaborators (2007) used LC-

MS and MS/MS to recognize the role of oxidation products of arachidonic acid esterified 

to glycero-phosphatidylethanolamines as contributors or mediators in inflammatory 

response [105]. Several studies identified and studied phosphatidylserine hydroperoxy 

and hydroxy species using ESI-MS and ESI-MS/MS in negative mode. Tyurina et al. 

identified mono-hydroperoxy derivatives of PS generated by gama-irradiation to induce 

intestinal injury [106]. Bayir and collaborators also propose the presence of PS 

hydroperoxides derivatives in traumatic brain injury after controlled cortical impact [63]. 

The hydroperoxy and hydroxyl PS derivates also identified by Tyurin and collaborators 

during apoptosis induced in neurons by staurosporine [107] and in cells and tissues after 

pro-apoptotic and pro-inflammatory stimuli [108]. The same group, using oxidative 

lipidomics approach, showed that the pattern of phospholipid oxidation during apoptosis 

is nonrandom and that phosphatidylserine (PS) is one of the preferred peroxidation 

substrates [109]. Kagan and collaborators studied cardiolipin oxidation induced by 

different conditions in several biological samples by ESI-MS and MS/MS, in the negative 

mode [M-H]- and [M-2H]2- [63, 106, 109].  Shadyro and collaborators showed oxidative 

modification of cardiolipin using MALDI–MS [110,111]. 

However, sphingomyelins and sphingolipids oxidative modifications have not been a 

subject of interest by researchers.  
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5. Aims 

 AD onset and development have been correlated either with increasing in ROS 

production and also in changes in sphingolipid metabolism. However there is a lack of 

knowledge about the effect of ROS in sphingolipids.  One of the aims of this work is to 

study the induced changes of sphingolipids under oxidative stress conditions, and which 

may help to understand the changes that occur in sphingolipids during the pathological 

process associated with AD, since deregulation in sphingolipid metabolism has been 

associated with establishment and progression of this disease [11]. All oxidation products 

resulting from sphingolipids oxidation are identify and characterized by mass 

spectrometry. 

Alzheimer disease has several aspects that remain unclear, related to 

pathophysiological process and treatment. Tacrine was used for the treatment of AD [17], 

however, some toxicological effects has been reported for tacrine [6-10, 17] and also 

associated with cell apoptosis.  

Considering the lipid changes in mitochondria due to oxidative stress has been 

considered key intermediates in apoptosis, another aim of this study is to evaluate the 

changes in phospholipid profile of brain mitochondria of rats treated with tacrine and also 

with two analogues proposed [21], by mass spectrometry coupled with separation 

techniques, in order to better understand the side effects associated with tacrine 

treatment. 
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Abstract 

Sphingolipids are involved in several biological processes namely proliferation, 

differentiation, migration, intra- and extracellular signaling, senescence, apoptosis, 

inflammation, among others, some have been associated with oxidative stress conditions. 

So in the present study, different sphingolipids ((d18:1/16:0) N-palmitoyl-Derythro-

sphingosylphosphorylcholine (SM), (d18:1) sphingosylphosphorylcholine (SPC) and 

(d18:1/18:0) ceramide (Cer) were oxidized by the hydroxyl radical, generated under 

Fenton reaction conditions, and the oxidation reaction was monitored by ESI-MS in 

positive mode. Analyisi of ESI-MS spectra allow to see that ceramide does not oxidized 

while SPC and SM show some oxidation products that were analyzed by ESI-MS/MS. This 

approach allowed identifying hydroxyl and keto derivatives of SPC and 

acetaldehydephosphorylcholine derivative (m/z 226). SM oxidation occurs exclusively in 

sphingosine backbone with formation of SPC, hydroxyl and keto derivatives of SPC and 

the oxidation product at m/z 226. This study may give new insight and could help to 

understanding the behavior and biological roles of the sphingolipids under oxidative 

stress conditions. 

 

Keywords (3): sphingolipids, oxidation, mass spectrometry 
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Introduction 

Sphingolipids are a class of lipids that play important cellular roles both as structural 

components of membranes, for example, as components of raft lipids, and as signaling 

molecules that mediate a diverse set of cellular events [51,52]. This class of lipids includes 

a range of structurally related compounds, such as sphingosylphosphorylcholine (SPC), 

ceramides (CM), sphingomyelin (SM), among others. Despite sharing a common sphingoid 

backbone, these sub-classes have distinct properties and functions. 

Ceramides (Figure 1a) exert a wide range of biological functions in relation to cellular 

signaling and cellular responses to stress, including cell cycle arrest, differentiation, 

apoptosis, senescence and immune responses [112-118]. Ceramide (Cer) can be formed 

through sphingomyelinases (SMase)-dependent catabolism of SM and by de novo 

synthesis. Sphingomyelin can be synthesized by transferring phosphocholine to ceramide 

by sphingomyelin synthase (Scheme 1). 

 

 

 
 

 

Figure 1. Structure of ceramide d18:1/18:0 (a), sphingomyelin d18:1/16:0 (b) and 

sphingosylphosphorylcholine d18:1 (c). 

 

 

 

Sphingomyelins (SM) (Figure 1b) are structural components of membranes and key 

components of lipid rafts and lipoproteins. These lipids can be enzymatically converted to 

ceramide and to sphingosylphosphorylcholine (SPC) as shown in Scheme 1. 

Sphingosylphosphorylcholine (Figure 1c) affects diverse biological processes such cell 

growth [119], proliferation [120], cell migration [121], apoptosis [122], among others, 

acting as a signaling molecule.  
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Although SM and Cer have been extensively studied, studies involving SPC are limited, 

although it has been suggested that this class of sphingolipids plays an important role in 

signaling pathways. 

A few studies have implied that SPC may be involved in inflammation and ROS 

production, and may, therefore, be related to apoptosis and cell death [123,124]. 

Deregulation of sphingolipid metabolism leads to the onset and progression of various 

diseases such as neurodegenerative diseases, cardiovascular diseases, chronic 

inflammation or cancer [125,126]. Oxidized phospholipids have been postulated to be 

involved in many pathophysiological processes such as those mentioned above, as 

reviewed recently [127]. In recent years, most studies on oxidized phospholipids have 

focused on the changes induced in phosphatidylcholines, phosphatidylethanolamines, 

phosphatidylserines and cardiolipin [38,128]. However, no studies were conducted to 

investigate the effect of oxidative stress, at the molecular level, on sphingolipids in 

general or in sphingomyelins in particular, although recently, it has been reported that 

myeloperoxidase induces oxidation of SM [129]. 

 

 
 

Scheme 1. Alternative metabolic pathways to produce either SPC or ceramide enzymatically from 

sphingomyelin. 
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In the present work, we have studied the effect of oxidative stress, using hydrogen 

peroxide (H2O2/Fe2+) as ROS inducing agent, on sphingolipids. We have selected as 

models of sphingolipids, a ceramide (Cer), a sphingomyelin (SM), and a 

sphingosylphosphorylcholine (SPC), which is a lysosphingomyelin, as represented in 

Figure 1. These sphingolipids contain the same sphingosine as backbone and SM and Cer 

contain a C16 and C18 saturated fatty acyl chain, respectively. Previous studies have 

shown that saturated fatty acyl chains in phospholipids are not likely to be oxidized under 

Fenton conditions [38]. In recent years, electrospray mass spectrometry has become an 

important tool in the structural characterization of sphingolipids [51,52], and oxidized 

phospholipids [38]. The aim of this paper is perform the structural characterization of 

oxidative products of sphingolipids, using electrospray ionization mass spectrometry (ESI-

MS), tandem mass spectrometry (ESI-MS/MS) and by exact mass measurements. 

 

Experimental 

Materials 

Sphingomyelin (d18:1/16:0) N-palmitoyl-D-erythrosphingosylphosphorylcholine (SM) 

and lyso sphingomyelin (d18:1) sphingosylphosphorylcholine (SPC) were purchased from 

Sigma-Aldrich (Madrid, Spain) and ceramide (d18:1/18:0) was purchased from Avanti 

Polar Lipids, Inc. (Alabama, USA).   

FeCl2 and H2O2 (30%, w/v) used for the peroxidation reaction were acquired from 

Merck (Darmstadt, Germany) and ammonium hydrogencarbonate was purchase from 

Riedel-de Haёn (Germany). All solvents used were HPLC grade. 

All standards and reagents were used without further purification. 

 

Oxidation of sphingolipids by Fenton reaction 

The SM (d18:1/16:0), SPC (d18:1) and ceramide (d18:1/18:0) were subjected to 

oxidation under the conditions described for the Fenton reaction. Both sphingolipids 

were diluted to concentration of 1.42 mM using CHCl3 and dried under nitrogen flow. 

Then, 223 µL of ammonium hydrogenocarbonate buffer 5mM (pH 7.4) was added to the 

sphingolipids, vortex well for 2 minutes, placed in water bath ultasons (Selecta Ultrasons) 
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for 1 minute, and vortex well again, to form the lipid vesicles.  The oxidation was 

performed by adding 25 µL of H2O2 50mM and 2 µL of FeCl2 40µM to a final volume of 

250 µL. The mixture was vortex well and incubated at 37ºC in the dark for several days. 

The extent of oxidation was monitored by electrospray mass spectrometry (ESI-MS). 

Controls were performed by replacing H2O2 with water. 

 

Q-TOF 2 conditions  

Analysis of the oxidation products was carried out by positive mode ESI-MS and 

MS/MS, using a Q-TOF2 mass spectrometer (Micromass, Manchester, UK), with the 

following electrospray conditions: a flow rate of 10 L.min-1, the voltage applied to the 

needle with a 3kV, a cone voltage at 30 V, source temperature at the source of 80ºC, 

solvation temperature of 150ºC. The resolution was set to about 9,000 (FWHM). Mass 

spectra were acquired for 1 minute. Tandem mass spectra (MS/MS) were acquired by 

collision-induced decomposition (CID), using argon as the collision gas (measured 

pressure in the penning gauge ~ 6x10-5 mBar). The collision energy used was between 25 

to 30 eV.  Tandem mass spectra were acquired for 1 minute. Data acquisition was carried 

out with a MassLynx 4.0 data system. For the accurate mass measurements, the lock 

mass in each mass spectrum was the calculated monoisotopic mass/charge of  the native 

sphingolipid (non-modified phospholipid) and the empirical formula, observed and 

calculated mass/charge ratio, the double bond equivalent and mass error were 

determined for the ions observed in the MS spectra and correspondent to the new 

oxidation products.  

 

Results and Discussion 

The ESI-MS spectra of non-modified SM, SPC and Cer, acquired in the positive mode, 

show prominent peaks corresponding to [M+H]+ ions at m/z 703.6, 465.4, and 566.6, 

respectively (Figure 2). The MS spectra of non-modified ceramide also show peaks at m/z 

588.6 ([M+Na]+) and  at m/z 548.6 (loss of water from the protonated molecular ion). 

The ESI-MS analysis of oxidized samples shows the formation of oxidation products 

from SPC and SM, while no oxidation products were observed from ceramide (Figure 2). 
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These last results were confirmed after seven days of oxidation (Figure 2 C2), revealing 

that, under these experimental conditions, ceramide is not susceptible of being oxidized. 

Comparison of ESI-MS spectra between control (Figure 2 A1) and oxidation reactions 

(Figure 2 A2) of SPC, shows new peaks at m/z 481.4, 495.4, 493.4 and 226. The ions 

located at higher m/z than the unmodified SPC were identified as protonated molecules 

formed by addition of one and two oxygen atoms: at m/z 481.4 (SPC+O), 495.4 (SPC+2O-

2Da) and 493.4 (SPC+2O-4Da). These species presumably correspond to hydroxyl and keto 

derivatives, as observed during oxidation of phospholipids [38]. 

Comparison of ESI-MS spectra of SM between control (Figure 2 B1) and oxidation 

reactions (Figure 2 B2), shows new peaks at m/z 465.4, identified as SPC, and also at m/z 

481.4 (SPC+O), 495.4 (SPC+2O-2Da) and 493.3 (SPC+2O-4Da) and 226.1. It is important to 

note that the same peaks are observed after SM and SPC oxidation. No oxidation 

products due to addition of oxygen atoms (SM+nO) were observed, contrary to that 

observed in phospholipids oxidation [38,128]. Subsequently, accurate mass 

measurements were determined and presumed oxidation species were further analyzed 

by tandem mass spectrometry. Analyses of these samples were also performed in 

negative mode, but no additional oxidation products were identified (data not shown). 

The mass measurement accuracy of positively ionized species, using the QTOF mass 

spectrometer, was consistently < 20.8 ppm (-3.7-9.7mDa), which is adequate to 

determine the elemental composition of the oxidation products. The ion peak at m/z 

481.5 corresponds to [SPC+O+H]+ , with an elemental formula of C23H50N2O6P (error of 1.6 

ppm for SPC and 11.5 ppm for SM); The ion peak at m/z 493.5 corresponds to [SPC+2O-

2Da+H]+ (C23H46N2O7P, error of 1.7 ppm for SPC and -6.2 ppm for SM); The ion peak at 

m/z 495.5 corresponds to [SPC+2O-4Da+H]+ (C23H48N2O7P error -3.7 ppm for SPC and -7.5 

ppm for SM); The ion peak at m/z 226.1 corresponds to acetaldehydephosphatidylcholine 

(C7H17NO5P, error -10.3 ppm for SPC); And the ion peak at m/z 465.4 corresponds to 

[SPC+H]+  (C23H50N2O5P, error 20.8 ppm for  SM). These results confirm that the oxidation 

products observed in oxidation of SM have the same molecular formula as those 

observed for SPC oxidation. This is indicative that oxidation of SM involves the 

sphingosine backbone and elimination of the acyl chain. 
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Figure 2. ESI-MS spectra of non-oxidized (A1) and oxidized (A2) SPC after one day of oxidation; non-oxidized 

(B1) and oxidized (B2) SM after seven days of oxidation; non-oxidized (C1) and oxidized (C2) Cer after seven 

days of oxidation. 
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Tandem mass spectra were used to identify the structures of the oxidation products 

observed for SPC and SM (Figure 3). Interpretation of the MS/MS spectra showed that the 

species observed at the same m/z were identical, providing further evidence that the 

oxidation products observed in oxidation of SM have the same structure as those 

observed for SPC oxidation. The MS/MS spectra of SM and SPC standards show a product 

ion at m/z 184.2, which is consistent with a phosphatidylcholine polar head group. Figure 

3A-D shows the MS/MS spectra of the oxidation products observed in the ESI-MS spectra 

of oxidized SPC and SM. The tandem mass spectra of these oxidation products also show 

the product ion peak at m/z 184.2, confirming that they also have the 

phosphatidylcholine polar head group. The MS/MS spectrum of oxidation product 

observed at m/z 481.5 [M+H+O]+, identified as the hydroxyl derivative of the SPC, show a 

product ion at m/z 298.4 (Figure 3A). This product ion is formed by cleavage of the 

sphingosine chain in the vicinity of the hydroxyl group, thus confirming the location of 

this group in C5 of sphingosine. In fact, phospholipid hydroxyl derivatives show typical 

fragmentation pattern due to cleavage of the C-C bonds next to the oxidation site, as 

observed in studies of oxidation of phosphatidylcholines, phosphatidylethanolamine and 

fatty acids, which allows to determine the location of the hydroxyl group [130-132]. 

The oxidation product observed at m/z 495.5 (SPC+2O-2Da), was identified as the 

oxidation product with additional keto and hydroxyl groups in the SPC moiety. It was not 

possible to identify the location of the keto moiety since the MS/MS spectrum of this ion 

only shows the product ion at m/z 184.2 (Figure 3B). We propose that C6 is most 

favorable oxidation site, since this leads to a conjugation system with the double bond of 

sphingosine, although alternative oxidation sites cannot be excluded. In that case, the 

hydroxyl group should be present on C2 (Figure 3B, Scheme 2). The tandem mass spectra 

of the oxidation product at m/z 493.5 ([M+H+2O-4Da]+) shows the product ion peak at 

m/z 184.2 and a product ion at m/z 226.1 (acetaldehydephosphatidylcholine) (Figure 3C). 

Similarly, we propose that this oxidation product has a keto group present on C6, a 

hydroxyl group on C2 and an additional double bond, most probably due to oxidation of 

the hydroxyl group of the sphingosine to a keto group (Figure 3C, Scheme 2).  
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In the mass spectra of oxidized SPC, the major peak attributed to an oxidation product 

is observed at m/z 226.1 (Figure 2 A2). This peak is also present, with the low relative 

abundance, in the mass spectra of oxidized SM samples (Figure 2 B2). 

The elemental formula of C7H17NO5P (error -1.5 ppm) was deduced from accurate 

mass measurements of molecular ion peak at m/z 226.1. The MS/MS spectrum of this 

oxidation product shows product ions at m/z 184.2 (choline polar head group), and at m/z 

104.1 (-N(CH3)3(CH2)2OH), 86.1 (-N(CH3)3CHCH2), 123.0 (-COHCH2HPO3) and 167.0 (-

N(CH3)3) (Figure 3D).  

Altogether, this information suggests that the oxidation product observed at m/z 

226.1 was produced by the oxidative cleavage of C2-C3 bond of the sphingosine backbone 

(Scheme 2). The C2 carbon is a tertiary carbon, allowing the formation of a tertiary 

radical, in consequence by abstraction of a sphingosine hydrogen atom by the hydroxyl 

radical, which seems to be stabilized by the presence of a free primary amine group [133-

135]. This intermediary leads to the formation of alkoxyl radical, which may induce 

cleavage of the sphingosine backbone and further loss of NH2 termini.  

Interestingly, it was possible to detect the presence of SPC oxidation products just 

after one day of oxidation, while for SM, oxidation products were only detected after 

seven days of oxidation. This observation suggests that SPC is more susceptible to 

oxidative modification compared to SM. Curiously, a recent study found that SPC induces 

apoptosis of endothelial cells through reactive oxygen species-mediated activation [124]. 
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Figure 3. ESI-MS/MS spectrum of oxidation products of SPC by hydroxyl radical under Fenton reaction 

conditions. A) ESI-MS/MS spectrum of the ion at m/z 481 ([M-H+O]
+
); B) ESI-MS/MS spectrum of the ion at 

m/z 495 ([M-H+2O-2Da]
+
); C) ESI-MS/MS spectrum of the ion at m/z 493 ([M-H+2O-4Da]

+
); D) ESI-MS/MS 

spectrum of ion at m/z 226.  
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Scheme 2. Structure of oxidation products of SM and SPC by hydroxyl radical under Fenton reaction 

conditions. 

 

 

Conclusions 

The purpose of the current study was to determine the changes in sphingolipids 

molecular structure under oxidative stress conditions. This study has shown that SPC is 

more susceptible to oxidative modification compared to SM. No oxidation products were 

observed from ceramide. Also, we have shown that oxidation of SM involves the 

sphingosine backbone and elimination of the acyl chain and we have identified several 

oxidation products. These findings enhance our understanding of sphingolipids oxidation, 

although more research is needed to better understand its biological relevance. 
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Abstract 

Alzheimer's disease is a neurodegenerative disorder characterized by progressive 

impairments in memory and cognition. Recently, the development and progression of 

Alzheimer's disease was also associated with increased neuronal oxidative stress and 

mitochondrial dysfunction, which contributes to increasing the oxidative processes at the 

neuronal level, affecting multiple cellular components, including phospholipids. Tacrine is 

a cholinesterase inhibitor used to improve neuronal communication by inhibiting the 

degradation of a signaling molecule called acetylcholine. Unfortunately there is some 

evidence for toxicity of tacrine. However, the search for tacrine analogues, with less 

toxicological effects, is still of interest. In this study, mass spectrometry coupled with 

separation techniques was used to identify alteration in the profile of phospholipids from 

non-synaptic mitochondria of rat brain treated with tacrine and two proposed analogues 

T1 and T2. Bioenergetics assays was used to evaluate the activity of non-synaptic 

mitochondrial respiratory complexes isolated from rats treated with tacrine, T1 and T2 

analogues. Tacrine induced some significant changes in mitochondrial phospholipid 

profile, namely in PC, PI, PE and CL content, seems to increase the susceptibility of PS to 

undergo oxidation, and affects the activity of mitochondrial enzymes. T1 and T2 

analogues also induce some of these changes but in a less expressive way comparing with 

tacrine. 

 

Key-words (4): phospholipids, mass spectrometry, mitochondria, tacrine 
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Introduction 
 

Alzheimer's disease (AD) is the generic name for a process of progressive dementia 

characterized in the early stages by a profound inability to form new memories. The 

prevalence of this disease in developed countries has increased substantially with the 

increase in life expectancy. Thus, age is considered the main risk factor supporting the 

hypothesis that oxidative stress should play an important role in disease pathogenesis 

[136]. Even knowing that, the molecular mechanisms underlying the onset of disease as 

well as various aspects related to its progression still remain unclear, and no effective 

therapy for AD is available yet. However, experimental evidences show that the 

pathological hall-marks of AD are the extracellular accumulation of senile plaques (mostly 

formed by deposition of amyloid-beta peptide) and the intracellular formation of 

neurofibrillary tangles composed by hyperphosphorylated tau protein [137]. Additionally, 

clinical and laboratory analyses of AD suggests the involvement of early synaptic 

dysfunction followed by a progressive synaptic loss, formation of neurofibrillary tangles 

and finally neuronal death [138]. Considering that cholinergic dysfunction and neuronal 

loss in brain regions involved in learning and memory contribute to the cognitive deficit in 

AD [139] as well as the fact that acetylcholinesterase (AChE) activity is increased around 

senile plaques [140], the therapeutic strategies to treat this disease have mainly focused 

on drugs to increase cholinergic transmission by blocking the Acetylcholine hydrolysis. In 

this context, tacrine, a reversible AChE inhibitor partly competitive with the substrate 

acetylcholine [141], was the first molecule approved for the clinical treatment of AD. 

Unfortunately, the clinical use of this molecule has been demonstrated to induce side 

effects, including hepatotoxicity as indicated by an increase in transaminase levels [142]. 

Although the molecular mechanisms of hepatotoxicity are still not understood, 

experimental studies suggest that the toxic tacrine-metabolites [142,143], oxidative stress 

[144,145], biophysical changes in cell membrane organization [22,146,147] and 

mitochondria impairment [8] play an important role in tacrine toxicity. Despite the toxic 

effects caused by tacrine have limited its therapeutic use in AD, they have also stimulated 

research in order to design tacrine-related compounds with improved efficiency and 
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biological selectivity [148]. However, the attributes of neuroprotection assigned to tacrine 

as well as to several tacrine-analogues cannot be accounted exclusively through their 

action on AChE. 

For example, tacrine inhibits the axonal-potassium efflux increasing the duration of 

the action potentials [149]. In addition, the uptake of noradrelalina, dopamine and 

seronotina by storage vesicles is also inhibited by tacrine, suggesting widespread effects 

on the monoaminergic system [150].  

The above results suggest that the biological effects of the cholinesterase inhibitor 

tacrine congeners are membrane connected as consequence of changes in organization 

and/or lipid composition, as is also postulated for others protonatable lipophilic amines 

[147,151]. An interaction favoured by lipophilic and amphipatic character of these 

compounds. 

On the other hand, the mitochondrium is an organelle with high relevance to the 

eukaryotic cells, since they are responsible for the synthesis of more than 90% of the ATP 

used by the cell [152]. Changes in mitochondria functionality, which are dependent of 

specific lipid membrane composition [15], have a relevant importance to clarify the 

mechanism underlying xenobiotics toxicity [152]. The mitochondria-phospholipid 

composition influence the cell susceptibility to apoptosis and/or necrosis, since it reflect 

the redox state of cell and modulate the cytochrome c release [153,154].  

Thus, the aim of the present work is to evaluate the effects induced by a single dose 

of tacrine or two novel tacrine analogues (figure 1) on lipid profile of non-synaptic rat 

brain mitochondria and how these putatively changes are reflected on mitochondrial 

bioenergetics.  

Additionally, the effects of those compounds on brain AChE activity were also 

evaluated. The Phospholipids profile was evaluated by mass spectrometry, using a 

lipidomic approach [155]. The different Phospholipids classes were initially separated by 

TLC and further analyzed by ESI-MS and by tandem mass spectrometry (ESI-MS/MS), 

allowing the identification of the detailed structural, namely PL polar head and fatty acyl 

composition. 
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Figure 1. Chemical structure of Tacrine and analogues. Tacrine - 1,2,3,4-tetrahydroacridin-9-amine; T1 -8-

Amino-1,5,6,7-tetrahydro-1-phenylcyclopenta[e]pyrrolo[3,2-b]pyridine-3-carbonitrile; T2 -9-Amino-5,6,7,8-

tetrahydro-1-phenyl-1H-pyrrolo[3,2-b]quinoline-3-carbonitrile. 

 

Main PLs identified in non-synaptic mitochondria included phosphatidylcholines (PC), 

phosphatidylethanolamines (PE), phosphatidylinositols (PI), phosphatidylserines (PS), 

cardiolipins (CL), and small amounts of sphingomyelin (SM). Therefore, the 

characterization the brain mitochondrial lipid changes connected with tacrine or with 

tacrine analogues are important to understand the mechanism underlying chemical 

toxicity and/or positive biomedical benefits of these AChE inhibits. 

 

Experimental 

 

Material 

Biological Samples 

As biological material we used non-synaptic mitochondria from brain cortex of male 

Wistar rats non-treated (control) and treated with tacrine and two analogues (T1 and T2). 

Male Wistar rats were purchased from Charles River (Spain, Barcelona).  

 

Cholinesterase Assay 

Acetylthiocholine iodide (ATCI) and 5,5’-dithiobis-(2-nitrobenzoic acid) (DNTB) were 

purchased from Sigma-Aldrich (Madrid, Spain). 
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Thin Layer Chromatography (TLC) and Silica Extraction  

For TLC were used the TLC silica gel 60 plates with concentrating zone 2.5x20cm, 

(Merck, Germany) and reagents: boric acid (DHB chemicals), absolute ethanol (Panreac, 

Spain), triethylamine (Merck, Germany), primuline and acetone (Sigma-Aldrich, Spain), 

chloroform (HPLC grade), methanol (HPLC grade), purified milli-Q water (Millipore, USA).  

The phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamines 

(PE), phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin (SM), ceramide and 

cardiolipin (CL) standards were purchased from Avanti Polar Lipids, Inc (Alabama, USA).  

All standards and reagents were used without further purification. 

 

Quantification 

For quantification were used perchloric acid 70 % (Panreac, Spain), ammonium 

molibdate (Riedel-de Haёn, Germany), ascorbic acid (VWR BDH Prolabo, UK), chloroform 

(HPLC grade) and sodium dihydrogenphosphate dihydrated, NaH2PO4.2H2O (Riedel-de 

Haёn, Germany). All reagents were used without further purification. 

 

Animal Care 

The experiments were carried out in accordance with the National (DL 129/92; DL 

197/96; P 1131/97) and European Convention for the Protection of Animals used for 

Experimental and Other Scientific Purposes and related European Legislation (OJ L 222, 

24.8.1999). Male Wistar rats, purchased from Charles River (Spain, Barcelona) were 

acclimatized to standard laboratory conditions (temperature 24±2ºC, relative humidity 

55±5% and a 12 hour photoperiod) in polycarbonate cages (five rats per cage) for 1 week 

prior to the beginning of the experiment. During the entire period of the study, the mice 

were fed both water and supplemented standardized diet ad libitum.  

 

Drug Treatment 

Twenty male Wistar rats, weighing between 250 and 300 g, were randomly assigned 

to four experimental groups, with five animals in each. In the Control group, rats were 

intraperitoneally injected with a single dose of DMSO (the solvent used to solubilise the 
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three drugs); In the Tacrine treatment group, the animals were injected intraperitoneally 

with a single dose of tacrine (15 mg/Kg); In T1 and T2 experimental groups, the tacrine 

analogues were also administered intraperitoneally at single dose of 30 mg/Kg, which is, 

in terms of molar concentration, equivalent to the dose of tacrine. Eighteen hours after 

treatment, control and treated animals were sacrificed by cervical displacement and the 

cerebral cortex was dissected and used to isolate non-synaptic brain mitochondria and to 

determine brain Acetylcholinesterase activity. 

 

Cholinesterase Assay 

Rat brain AChE activity was determined colorimetrically by Ellman’s Method, with 

slightly modifications [156]. Samples of cerebral cortex of the control and treated rats 

were diced and homogenized (1:10 w/v) in cold buffer containing 160 mM sucrose, 10 

mM Tris-HCl, pH 7.2. The homogenates were centrifuged at 10 000 g for 10 min, at 4ºC. 

The pellet was discharged and the supernatant used for the enzymatic assays. The protein 

concentration of the supernatants was determined by biuret method using bovine serum 

albumin as a standard [157]. Afterwards, 10 μL of brain homogenate was placed in quartz 

cuvettes containing 2 ml of the phosphate buffer (0.1 M  KH2PO4, pH 7.4) and 10 μL of 

Ellman’s reagent (0.15 mM of DTNB (5,5'-Dithio-bis(2-nitrobenzoic acid) in 0.1 M 

phosphate buffer pH 7.4). After pre-incubation for 2 minutes, the reaction was initiated 

by adding acetylthiocholine (ACTI), as substrate. The catalytic activity is measured by 

following the increase of the absorbance at 412 nm (i.e., the yellow anion 5-thio-2-

nitrobenzoate produced from thiocholine when it reacts with DTNB) for 3 minutes, using 

a Cary 50 UV-Vis spectrophotometer, at 25ºC. The AChE activity was evaluated as a 

function of substrate concentration, using seven concentrations of ACTI ranging from 28 

to 3000 μM, to determine the Michaelis-Menten kinetic parameters Km (Michaelis 

constant) and Vmax (maximal velocity). 
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Non-synaptic brain mitochondrial isolation and purification 

Non-synaptic rat brain mitochondria were isolated combining differential 

centrifugation and discontinuous ficoll and sucrose density gradients centrifugation. First, 

the non-synaptic mitochondria fraction was obtained with a ficoll gradient, and then 

purified using a sucrose discontinuous gradient to yield highly enriched mitochondria 

populations free of miyelin contamination, as previously described [15]. Briefly, the 

cerebral cortex obtained from control and treated animals were homogenized with a 

Potter–Elvehjem in a medium (MIB) containing 0.32 M sucrose, 10 mM Tris–HCl, and 1 

mM ethylenediaminetetraacetic (EDTA), pH 7.4. Mitochondria isolation was performed at 

4ºC without delay using differential centrifugation. The homogenate was differentially 

centrifuged at 1000 g for 5 min. Supernatant was collected and the pellet was washed 

twice by centrifugation at 1000 g for 5 min, collecting the supernatants each time. The 

collected supernatant was then spun at 14 000 g for 15 min. Supernatant was discarded 

and the pellet, which contained primarily non-synaptic mitochondria, synaptosomes, and 

myelin, was resuspended in MIB and was layered on a 7.5/12% discontinuous Ficoll 

gradient, made from a 20% Ficoll stock with MIB. The gradient was centrifuged at 73 000 

g for 36 min (4ºC) in a Beckman L5-75B ultracentrifuge, rotor type 75 TI. The Ficoll 

gradient purified non-synaptic mitochondria were collected as a pellet below 12% Ficoll. 

The pellet, containing non-synaptic mitochondria was resuspended in MIB containing 0.5 

mg/mL bovine serum albumin (BSA) and centrifuged at 12 000 g for 15 min. The resulting 

pellet was collected and resuspended in MIB. The resuspended pellet was layered on a 

discontinuous sucrose gradient containing 0.8/1.0/1.3/1.6 M sucrose. The gradients were 

made from a 1.6 M sucrose stock containing 1 mM EDTA-K and 10 mM Tris–HCl, pH 7.4. 

The discontinuous sucrose gradient was centrifuged at 50 000 g for 2 h (4ºC) in a 

Beckman L5-75B ultracentrifuge, rotor type 75 TI. Purified NS mitochondria were 

collected at the interface of 1.3 and 1.6 M sucrose and resuspended in (1:3, v/v) Tris-

EDTA buffer (1 mM EDTA-K and 10 mM Tris–HCl, pH 7.4) containing 0.5 mg/mL BSA and 

centrifuged at 18 000 g for 15 min. The pellet was then resuspended in MIB and 

centrifuged at 12 000 g for 10 min. The pellet was again resuspended in MIB and 
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centrifuged at 8200 g for 10 min. The final concentration of the mitochondrial protein 

was determined by the biuret method [157], using BSA as standard. 

 

Determination of mitochondrial enzyme activity 

Complex I – The activity of this enzyme complex was evaluated spectrofluorometry, 

monitoring the decrease in fluorescence at 450 nm caused by NADH oxidation, as 

previously described [158]. The non-synaptic mitochondria obtained by differential 

centrifugation were submitted to three cycles of freezing/thawing. Afterwards, a volume 

of the mitochondrial fraction corresponding to 0.5 mg of protein was placed in quartz 

cuvettes containing 2 ml of the buffer solution (KH2PO4 25 mM, MgCl2 10 mM; pH 7.4) 

and KCN 1 mM. The reaction was initiated by the addition of NADH 50 µM. The 

fluorescence intensity was monitored as a function of time in a Varian Eclipse 

fluorescence spectrophotometer equipped with a thermostated cell holder, at 30ºC. The 

fluorescence intensity of NADH was measured at 450 nm with an excitation at 366 nm. 

The bandpass was 3 nm for excitation and emission beams. After to NADH fluorescence 

emission peak was reached, dodecylubiquinone 162.5 µM was added, with a consequent 

fall in fluorescence emission, graphically expressed by a line whose slope allowed the 

determination of mitochondrial complex I activity. In the final of each assay, a specific 

complex I inhibitor (rotenone 3.8 µM) was added, in order to guarantee that the rate of 

fluorescence decay were indeed complex I enzyme activity. Enzyme activity was the 

difference between the slopes of the lines before and after rotenone addition, 

determined with the software provided with the spectrofluorimeter. This value is 

expressed in arbitrary units. 

 

Complex IV – The complex IV enzyme activity was evaluated by O2 consumption 

associated with cytochrome c oxidation, in the presence of rotenone (specific inhibitor of 

complex I) and antimycin A (inhibitor of complexes II–III) [159]. The oxygen uptake was 

measured by the polarography technique using a Clark type oxygen electrode (Hansatech) 

coupled to a computer. Chamber volume adjustable from 1 to 2 ml is thermo stated at 

30ºC. Mitochondrial homogenate (0.5 mg) was resuspended in 1 ml of standard reaction 
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medium (130 mM sucrose, 50 mM KCl, 5 mM MgCl2, 5 mM KH2PO4, and 5 mM Hepes, 

pH 7.2) supplemented with 3 µM rotenone, 0.1 µM antimycin A and 15 µM cytochrome c. 

The reaction was initiated with 10 µL of Ascorbate 500 mM/TMPD 250 mM, and O2 

consumption was was monitored for 5 min. KCN (2 mM) was used to inhibit complex IV 

activity. The difference between O2 uptake before and after KCN addition was used to 

determine complex IV enzyme activity, expressed in nmol O2/min/mg protein. 

 

FoF1-ATPase – The activity of the FoF1-ATPase of non-synaptic brain mitochondria was 

determined by an electrometric technique (pH electrode), as previously described [160]. 

The cleavage of ATP releases protons. Thus, the kinetic of the reaction can be evaluated 

recording the continuous pH changes in reaction medium with pH electrode. The reaction 

occurred, at 30ºC, in open reaction thermostated chamber with permanent magnetic 

stirring in 2 ml of reaction medium (130 mM sucrose, 60 mM KCl, 0.5 mM Hepes and 2.5 

mM MgCl 2, pH 7.0). The reaction medium was supplemented with rotenone 3 µM and 

0.5 mg of mitochondrial protein and the reactions were initiated by the addition of 2 mM 

ATP-Mg. The release of protons was followed continuously with a Crison pH evaluation 

system consisting of a glass electrode connected to a Kipp and Zonen recorder. The 

addition of oligomycin (1 µg) to the medium completely abolished the production of 

protons. At the end of the reaction, pH titration was performed, using a standard HCl 

solution, for system calibration. 

 

Extraction of phospholipids  

The total lipids were extracted from of each mitochondrial extract according to the 

method of Bligh and Dyer [83]. We added 3.75 mL of CHCl3:MeOH (1:2 v/v) to each 1 mL 

of mitochondrial extract, vortexed well and incubated on ice for 30 min. Then, an 

additional volume of 1.25 ml chloroform and 1.25 ml dH2O were added and finally, 

following vigorous vortex, samples were centrifuged at 1000 g for 5 min at room 

temperature, using a Mixtasel Centrifuge (Selecta), to obtain a two-phase system: 

aqueous upper phase and organic bottom phase which lipids were obtained. These 

extracts were dried with a nitrogen flow and stored at -20ºC for further analysis. 
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Separation of phospholipids classes by Thin Layer Chromatography (TLC) 

PL classes from the total lipid extract were separated by thin layer chromatography 

(TLC) using silica gel 60 with concentrating zone 2.5x20cm. Prior to separation, plates 

were pre washed with CHCl3:MeOH (1:1 v/v) and then were left in the hotte to dry for 15 

min. After being dried, plates were sprayed with a solution of boric acid in ethanol (2.3% 

w/v) and placed in an oven at 100ºC for 15 min. Then, plates were left in the hotte to cool 

for subsequent application of lipid extracts. In each spot was applied 20 µL of 

phospholipid solution in chloroform (with a concentration of 150 µg of phospholipid per 

100 µl). To control, we applied three spots with a mixture of phospholipids standards, 

including phosphatidylcholine, phosphatidylethanolamine and ceramide; sphingomyelin, 

phosphatidylserine and cardiolipin; phosphatidylinositol and phosphatidic acid. 

The plates were dried in nitrogen flow and developed in solvent mixture 

chloroform/ethanol/water/triethylamine (30:35:7:35, v/v/v/v), in a chromatographic 

chamber. After complete elution, plates were left in the hotte until complete eluent 

evaporation. For phospholipids spots development, TLC plates were sprinkled with a 

primuline solution (50 µg/100 mL acetone: water, 80:20, v/v) and left to dry in the hotte. 

Then, we identified the different spots with UV light (λ = 254 nm). After identification of 

spots by comparison with phospholipid standards, spots were scraped off from the plates 

to glasses tubes. The different phospholipid classes were further quantified using the 

phosphorus assay, or were extracted from the silica with CHCl3:MeOH (2:1) and analyzed 

by mass spectrometry in positive and negative modes, after dilution with methanol. 

 

Quantification of phospholipids 

In order to determine the phospholipid content of each lipid extract and compare the 

lipid content in each phospholipid class obtained by TLC, a phosphorus assay was 

performed according to Bartlett and Lewis [161].  

For TLC samples, the silica spots were scraped off from the plates to glasses tubes for 

posterior quantification. In case of lipid extracts, 10 µL of sample were previously 

transferred to a glass tube and left to dry under a nitrogen flow until complete 

evaporation. Then, 650 µL of perchloric acid 70% were added to tubes, which were then 
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incubated for 45 min at 180ºC in the heating block (Stuart, U. K.); then were left to cool. 

To all tubes were added 3.3 mL of H2O and vortexed well, 0.5 ml of ammonium 

molybdate (2.5 g ammonium molybdate/ 100 mL H2O) and vortexed well and 0.5 mL of 

ascorbic acid (10 g ascorbic acid/ 100 mL H2O) and vortexed well, followed by incubation 

for 10 min at 100ºC in a water bath. We also prepared several tubes for phosphate 

standards at concentrations of 0.1; 0.2; 0.4; 0.8; 1.6 and 2 µg of phosphorus from a 

phosphate standard solution of NaH2PO4.2H2O (100 µg/ mL of P), and underwent the 

same treatment of samples. After cool, 1 mL of samples being from TLC was transferred 

to an eppendorf and centrifuged at 4000 rpm for 5 min, in a Mini Spin Plus (Eppendorf) in 

order to remove silica from phospholipid; colored solution were removed and used to 

following read the absorvance. Finally, 200 µL of each standard and sample were added 

to each spot plate and were measured at 800 nm in a plate reader (Multiscan 90, 

ThermoScientific). 

The amount of phosphorus present in each sample was calculated by linear regression 

through the graph which relates the amount of phosphorus present in the patterns (X-

axis) and absorbance obtained from duplicates of various concentrations (Y-axis). The 

amount of phospholipid was directly calculated by multiplying the amount of result 

phosphorus by 25. The percentage of each phospholipid class refers to the total 

percentage of phospholipid phosphorus recovered from TLC, and was calculated by 

relating the amount of phosphorus in each spot to the total amount of phosphorus in the 

sample, thus giving the relative abundance of each PL class. 

 

Silica Extraction 

In order to analyze the different phospholipid classes by mass spectrometry, TLC spots 

corresponding to all identified classes were scraped off from the plates with the help of a 

spatula to a piece of aluminum paper, and then transferred to a glass tube. To all tubes 

were added 450 µL of CHCl3, vortex well and left to stand for 5 min, in order to be able to 

extract the phospholipids from the silica. Then, samples, one by one, were filtered under 

vacuum with a sand plate funnel; 450 µL of CHCl3/MeOH (1:1 v:v) were added to the 

tubes, vortex well and then filtered again. In order to remove some vestiges of silica 
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which might still exist, all samples were filtered again using a syringe (Hamilton GASTIGHT 

1 mL, Sigma-Aldrich, Spain) containing filters (Syringe Driver Filter 0.22 µm, Millipore-

Millex, USA). In order to recover some vestiges of sample, after filtration of samples the 

syringe was washed twice with 200 µL of chloroform. After each sample filtration, syringe 

and filter was thoroughly washed with methanol, and filter was changed every two 

filtered samples. The filtered samples were dried under nitrogen flow and were re-

suspended in 100 µL of CHCl3 to mass spectrometry analysis, or stored at -4ºC for further 

analysis. 

 

Instrumentation 

Extracts of each class of phospholipids were analyzed by mass spectrometry 

mass using electrospray ionization, using two different mass spectrometers: an 

electrospray linear ion trap and a triple quadrupole instrument.  

The LQX linear ion trap mass spectrometer (ThermoFinnigan, San Jose, 

CA) was used in positive mode, with the following electrospray conditions: 

electrospray voltage of 5 kV, capillary temperature of 275ºC, gas flow of 25 units. In 

negative mode were used the same conditions by changing only: electrospray voltage of 

4.7 kV. Isolation with of 0.5 Da was used with a 30 ms activation time for MS/MS 

experiments. Full scan MS spectra and MS/MS spectra were acquired with a 50 ms and 

200 ms maximum ionization time, respectively. Normalized collision energyTM (CE) was 

varied between 15 and 30 of arbitrary units for MS/MS performed on ions of interest. 

Data acquisition and treatment of results was performed using the Xcalibur data system 

(V2.0). 

The triple quadruple instrument (Micromass, Manchester, UK) was used in positive 

mode for parent scan experiments, with the following electrospray conditions: 

electrospray voltage was 3.5 kV, capillary temperature of 300ºC, gas flow of 32 units. An 

isolation width of 0.5 Da was used with a 30 ms activation time for MS/MS experiments. 

Full scan MS spectra and MS/MS spectra were acquired with a 50 ms and 200 ms 

maximum ionization time, respectively. Normalized collision energyTM (CE) was varied 
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between 20 and 30 for MS/MS. Data acquisition was carried out with a Mass Lynx data 

system (V4.0). 

 

Statistical analysis 

Results are presented as means ± standard error (raw data or expressed as 

percentage of control), for the number of results indicated. Results were analysed using 

the one way ANOVA test. The level of significance used was P < 0.05. 

 

Results and Discussion 

 

Acetylcholinesterase (AchE) activity 

In order to confirm the biological effects of tacrine and its two proposed analogues 

we tested their capacity to inhibit AchE activity. Similar to tacrine, T1 and T2 analogues 

show inhibitory capacity for AchE, though tacrine T1 analogue was shown to be the most 

efficient in inhibiting AchE (figure 2). These results also confirm that as tacrine, T1 and T2 

analogues can cross the blood brain barrier. 

By analysis of Michaelis-Menten kinetic parameters (Km and Vmax) of brain 

acetylcholinesterase of control and treated groups we can conclude that inhibition 

exerted by tacrine and its analogues is non-competitive since increasing in Ach 

concentration, the degradation rate stops. 

 

Electron Transport Chain (ECT) activities 

Electron transport chain activities have been used to determine the effects of tacrine 

and its analogues in brain mitochondrial bioenergetics. The activities of Complexes I, IV, 

and V were significantly decreased for tacrine treated mitochondria. T1 analogue affects 

the activity of mitochondrial Complexes I and IV. In T2 analogue treated mitochondria the 

activity of Complex I was also decreased (figure 3). 
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Figure 2. Comparison of the values of the brain Acetylcholinesterase activity (AchE) of the four 

experimental groups (control, tacrine, T1 and T2 tacrine analogues). Data were fit to a Michaelis-Menten 

kinetic equation using the error minimization procedure of the KaleidaGraph software with a
2
between 

successive iterations less than 0.001%. Insert - Apparent Michaelis-Menten kinetic parameters of brain 

acetylcholinesterase of control and the animal groups treated with tacrine and with its analogues (T1 and T2).  

 
 

Figure 3. Comparison of the values of the enzyme activity of non-synaptic brain mitochondria of the four 

experimental groups (control, tacrine, T1, T2) for each of the complexes studied (I, IV and ATPase, in the 

presence of the substrate of each complex (NADH, ascorbate/TMPD or ADP, respectivelly). *Significantly 

different from control group (P < 0.05). 
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Lipidomic analysis of phospholipid profile of rat brain non-synaptic mitochondria  

Lipidomics analysis of phospholipid profile of rat brain mitochondria was studied to 

evaluate the effect of treatment with tacrine and other synthetic analogues (T1 and T2) in 

phospholipid profile. This study was performed by analysis by ESI-MS in positive and 

negative modes of different classes of phospholipids, phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), 

sphingomyelin (SM), and cardiolipin (CL), after preliminary separation by Thin Layer 

Chromatography (TLC). Molecular characterization and fatty acyl composition within each 

class was assessed by ESI-MS and ESI-MS/MS. The different classes of phospholipids were 

also quantified using phosphorus assay [160]. 

 

Separation by Thin layer Chromatography (TLC) and phospholipid classes content 

Phospholipid classes were fractionated by TLC and each class was identified by 

comparison with standards applied and subsequently confirmed by ESI-MS and ESI-

MS/MS. A typical TLC profile of major phospholipid classes from the rat brain 

mitochondria are shown in figure 4. Different phospholipid spots were visualized using a 

primuline spray.  
 

 

Figure 4. TLC of total lipid extract from rat brain non-synaptic mitochondria before (non-treated sample - 

control) and after tacrina and its analogues (T1 and T2) treatment. SM – sphingomyelin, PA – Phosphatidic 

Acid, PC– phosphatidylcholine, PI – phosphatidylinositol, PS – phosphatidylserine, PE – 

phosphatidylethanolamine, CL– cardiolipin, Cer-1P – Ceramide 1-Phosphate. 
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To evaluate the variation of phospholipid content each spot was quantified using 

phosphorous assay and the results are shown in figure 5. This analysis was performed in 

triplicate for each sample and different samples obtained in different days in order to 

confirmed the reproducibility.  
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Figure 5.  Phospholipid (PL) content of rat brain mitochondria non-treated and treated with tacrina and 

their analogues. SM – sphingomyelin, PC – phosphatidylcholine, PI – phosphatidylinositol, PS – 

phosphatidylserine, PE – phosphatidylethanolamine, CL– cardiolipin, Cer-1P – Ceramide 1-Phosphate. PL 

content, % from total refers to the percentage of phospholipid phosphorus recovered from respective TLC. 

* p < 0,05 versus non-treated, ** p < 0,01 versus non-treated, *** p < 0,001 versus non-treated, n=3 

independent experiments. 

 

In all samples, PC and PE represented the two dominant phospholipid classes of the 

total phospholipids, and this is in accordance with the results obtained by Kiebish and 

collaborators (2008) [15], that studied the lipid content of mitochondria from rat brain. 

Additionally other phospholipids in the order of their abundance – PS > PI > SM > CL > 

Cer-1P – in tacrine treated mitochondria; PS > CL > PI > SM > Cer-1P – in non-treated and 

tacrine T1 analogue treated mitochondria; and PS > PI > CL > SM > Cer-1P – in tacrine T2 

analogue treated mitochondria were detected on the plates. No significant variation was 

observed for PS content. SM was increased in rat mitochondria treated with tacrina 

although not in a statistically significant way. PC were significantly decreased in all treated 

mitochondria while CL were significantly decreased only in Tacrina and T2 analogue 

treated mitochondria; PI levels were statistically increased in tacrina and T2 analogues 
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treated mitochondria; PE levels were statistically increased only in tacrina treated 

mitochondria comparing with non-treated mitochondria.  

To evaluated if changes in content occur also with variation in the profile of the PL in 

each class, each spot was analysed by MS. 

 

Analysis by MS 

The characterization of molecular species included in each class was performed after 

extraction of silica and analyzed by MS in a positive mode for PC and SM and negative for 

PS, PI, PE and CL. 

 

PE is one of the most abundant PLs in the membrane bilayers cell. The molecular 

species of PE were analyzed in negative mode, showing the [M-H]-. The species identified 

from PE spot included two groups of molecular species: diacyl-PE (m/z 690, 714, 718, 744, 

762, 764, 766, 768, 790, 794) and alkenyl-PE (m/z 726, 728, 750, 774, 776, 778) as 

resumed in table 1, and as shown in figure 6. All these ions were induced fragmentation 

by collision with a gas and the MS/MS spectrum obtained allowed the confirmation of 

these species, their composition in fatty acyl residues of both diacyl-PE and alkenyl-PE, 

and proposed localization along the glycerol backbone (table 1). For example, MS/MS 

spectra of diacyl PE at m/z 790, which dominated among other PE molecular species in all 

samples, show two abundant ions at m/z 283 and m/z 327, that correspond to stearic 

(C18:0) and docosahexaenoic (C22:6) acid fatty acyl residues, respectively (table 1). This 

approach was applied to all PE species allowing the confirmation of fatty acyl residues 

composition.  

Analysis of table 1 indicates a predominance of unsaturated fatty acid namely oleic 

acid  (C18:1), linoleic acid  (C18:2), eicosatrienoic acid (C20:3), eicosatetraenoic acid 

(C20:4), , adrenic acid (22:4) and docosahexaenoic acid (C22:6). 

Curiously in tacrine treated mitochondria some ions detected in this spot show 

fragmentation pathways distinct from PE. This fragmentation correspond a neutral loss 58 

Da, which were identified recently to be typical of phospholipids with a terminal acetic 

acid in the polar head [135]. Interesting this modified phospholipids were formed during 

http://en.wikipedia.org/wiki/Oleic_acid
http://en.wikipedia.org/wiki/Oleic_acid
http://en.wikipedia.org/wiki/Linoleic_acid
http://en.wikipedia.org/w/index.php?title=Eicosatrienoic_acid&action=edit&redlink=1
http://en.wikipedia.org/wiki/Eicosatetraenoic_acid
http://en.wikipedia.org/wiki/Docosatetraenoic_acid
http://en.wikipedia.org/wiki/Docosahexaenoic_acid
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PS in vitro oxidation. These species also contain oxygen atoms insertion in PS fatty acyl 

chains. Their composition was also confirmed by MS/MS as shown in figure 7.  

 

 

Table 1. Major PE molecular species from rat brain non-synaptic mitochondria. 

Class 
[M-H]

-
 m/z Fatty Acyl Chains 

(C:N) Control Tacrine T1 T2 

PE 
     

Diacyl species 

690 (32:0) 16:0/16:0 16:0/16:0 16:0/16:0 16:0/16:0 

714 (34:2) 16:0/18:2 16:0/18:2 16:0/18:2 16:0/18:2 

718 (34:0) 16:0/18:0 16:0/18:0 16:0/18:0 16:0/18:0 

744 (36:1) 18:0/18:1 18:0/18:1 18:0/18:1 18:0/18:1 

745 (34:2) ----- 16:0/18:1+O-2Da ----- ----- 

747 (34:1) ----- 16:0/18:1+O 16:0/18:1+O 16:0/18:1+O 

762 (38:6) 16:0/22:6 16:0/22:6 16:0/22:6 16:0/22:6 

764 (38:5) 18:1/20:4 18:1/20:4 18:1/20:4 18:1/20:4 

766 (38:4) 18:0/20:4 18:0/20:4 18:0/20:4 18:0/20:4 

768 (38:3) 18:0/20:3 18:0/20:3 18:0/20:3 18:0/20:3 

768 (38:3) 20:1/18:2 20:1/18:2 20:1/18:2 20:1/18:2 

790 (40:6) 18:0/22:6 18:0/22:6 18:0/22:6 18:0/22:6 

794 (40:4) 18:0/22:4 18:0/22:4 18:0/22:4 18:0/22:4 

794 (40:4) 20:0/20:4 20:0/20:4 20:0/20:4 20:0/20:4 

794 (40:4) 20:3/20:1 20:3/20:1 20:3/20:1 20:3/20:1 

PE 
     

Alkenyl-acyl species 

726 (36:2) 18:1p/18:1 18:1p/18:1 18:1p/18:1 18:1p/18:1 

728 (36:1) 18:0p/18:1 18:0p/18:1 18:0p/18:1 18:0p/18:1 

728 (36:1) 16:0p/20:1 16:0p/20:1 16:0p/20:1 16:0p/20:1 

750 (38:4) 18:0p/20:4 18:0p/20:4 18:0p/20:4 18:0p/20:4 

750 (38:4) 16:0p/22:4 16:0p/22:4 16:0p/22:4 16:0p/22:4 

774 (40:6) 18:0p/22:6 18:0p/22:6 18:0p/22:6 18:0p/22:6 

776 (40:5) 18:1p/22:4 18:1p/22:4 18:1p/22:4 18:1p/22:4 

778 (40:4) 18:0p/22:4 18:0p/22:4 18:0p/22:4 18:0p/22:4 

 

Phospholipids are designated as follows: diacyl 38:6 PE, where 38 indicates the summed number of 

carbon atoms at both the sn-1, sn-2, positions and 6 designates the summed number of double bonds at 

both positions. +O corresponds to molecular species of PS containing one hydroxyl group and +O-2Da 

corresponds to molecular species of PS containing one keto group. These m/z values indicate ratios of 

mass to charge for singly charged [M-H]
-
 ions; p - an sn-1 vinyl ether (alkenyl- or plasmalogen) linkage. 
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Figure 6. General PE structure; Negative ESI-MS spectra of PE molecular species from non-treated (A), 

tacrina (B), T1 (C) and T2 tacrine analogues (D) treated samples  from rat brain non-synaptic mitochondria 

after their separation by TLC. 

 

 

 

The typical PS neutral loss of 87 Da [162], is not observed for these ions but instead, is 

observed a neutral loss of 58 Da thus indicating that these products are formed from 

oxidative modification in PS polar head due to the loss of 58 Da (87-29) [135]. Ions with 

m/z 745 and 747 corresponds to [760-H+O-2Da-29]- and [760-H+O-29]- (figure 7). Ion at 

m/z 747 is also present in tacrine analogues treated mitochondria. The presence of 

oxidized species of PS which co-eluted in PE spot may suggest that the increase in PE 

content observed for tacrine and T2 analogue treated mitochondria (figure 5) may be due 

to the presence of these oxidized species instead of an increase in PE synthesis. 
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Figure 7. The MS/MS spectra of the [M-H+O-2Da-29]
-
 (A) and [M-H+O-29]

-
  (B) ions obtained by oxidation of 

PS (16:0/18:1) and the structures proposed [135].  

 

 

Analysis of PS revealed molecular species at m/z 760, 788, 790, 806, 810, 834, 838, 

842, 844, 862 and 864 (figure 8, table 2). The major ion for treated samples was observed 

at m/z 834 containing C18:0 (stearic acid) and C22:6 (docosahexaenoic acid) fatty acyl 

residues, while the non-treated mitochondria shows several abundant PS species being 

the ion at m/z 806, containing C18:2 (linoleic acid) and C20:4 (arachidonic acid) fatty acyl 

residues, the most abundant. MS spectrum of tacrine treated mitochondria (figure 8 B) 

shows an increase in relative abundance of ion at m/z 788 and a decrease in ions at m/z 

806 and 862, by comparison with non-treated mitochondria (figure 8 A).  

ESI-MS and MS/MS spectra of PS from tacrina and analogues treated mitochondria 

revealed some oxidized products corresponding to insertion of oxygen atoms in PS fatty 

acyl chains. This oxidation products were identified as PS hydroxide ([M-H+O]-), keto ([M-

H+O-2Da]-) and peroxide ([M-H+2O]-) derivatives, as have already been reported to be 

formed for PS under oxidative conditions, and were already studied by others groups 

[106,107]. Ions at m/z 774, 776 and 792 corresponds to [760-H+O-2Da]-, [760-H+O]-, and 

[760-H+2O]-, respectively (table 2 and 3). These oxidized products are not present in non-

treated mitochondria suggesting that tacrina increase the susceptibility to oxidation of 

mitochondrial PS. In tacrine analogues treated mitochondria these oxidation products are 

present in much lower abundance, which may suggest that tacrine analogues are less 

capable to increase the susceptibility to oxidation of mitochondrial PS. 
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Some PS oxidized products detected in PS spot correspond to oxidized species with a 

neutral loss 57 Da and 58 Da, which were identified recently to be typical of 

phospholipids with a terminal acetamide and acetic acid, respectively, in the polar head 

[135]. The typical PS neutral loss of 87 Da [162], is not observed for these ions but 

instead, is observed a neutral loss of 58 and 57 Da, respectively thus indicating that these 

products are formed from oxidative modification in PS polar head due to the loss of 58 Da 

(87-29) and 57 (87-30) [135]. Their composition was also confirmed by MS/MS as shown 

in figure 9. Ions at m/z 730 and 731 corresponds to [760-H-30]- and [760-H-29]-, 

respectively. Ion at m/z 730 was also detected in tacrine analogues treated mitochondria 

but in much lower abundance.  

 

 

 

 
 

Figure 8. General PS structure; Negative ESI-MS spectra of PS molecular species from non-treated (A), 

tacrina (B), T1 (C) and T2 tacrine analogues (D) treated samples  from rat brain  non-synaptic mitochondria 

after their separation by TLC. 
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Table 2. Major PS molecular species from rat brain non-synaptic mitochondria. 

Class 
[M-H]

-
 m/z Fatty Acyl Chains 

(C:N) Control Tacrine T1 T2 

PS 
     

Diacyl species 

730 (34:1) ----- 16:0/18:1 16:0/18:1 16:0/18:1 

731 (34:1) ----- 16:0/18:1 ----- ----- 

760 (34:1) 16:0/18:1 16:0/18:1 16:0/18:1 16:0/18:1 

774 (34:2) ----- 16:0/18:1+O-2Da 16:0/18:1+O-2Da 16:0/18:1+O-2Da 

776 (34:1) ----- 16:0/18:1+O 16:0/18:1+O 16:0/18:1+O 

788 (36:1) 18:0/18:1 18:0/18:1 18:0/18:1 18:0/18:1 

790 (36:0) 18:0/18:0 18:0/18:0 18:0/18:0 18:0/18:0 

792 (34:1) ----- 16:0/18:1+OO 16:0/18:1+OO 16:0/18:1+OO 

806 (38:6) 18:2/20:4 18:2/20:4 18:2/20:4 18:2/20:4 

810 (38:4) 18:0/20:4 18:0/20:4 18:0/20:4 18:0/20:4 

834 (40:6) 18:0/22:6 18:0/22:6 18:0/22:6 18:0/22:6 

838 (40:4) 18:0/22:4 18:0/22:4 18:0/22:4 18:0/22:4 

842 (40:2) 18:0/22:2 18:0/22:2 18:0/22:2 18:0/22:2 

844 (40:1) 18:0/22:1 18:0/22:1 18:0/22:1 18:0/22:1 

862 (42:10) 20:4/22:6 20:4/22:6 20:4/22:6 20:4/22:6 

864 (42:4) 20:0/22:4 20:0/22:4 20:0/22:4 20:0/22:4 
 

 

Phospholipids are designated as follows: diacyl 40:6 PS, where 40 indicates the summed number of 

carbon atoms at both the sn-1, sn-2, positions and 6 designates the summed number of double bonds at 

both positions; +O corresponds to molecular species of PS containing one hydroxyl group, +O-2Da 

corresponds to molecular species of PS containing one keto group, and +OO correspond to molecular 

species of PS containing one peroxy group. These m/z values indicate ratios of mass to charge for singly 

charged [M-H]
-
 ions.  

 

 

Figure 9. The M/MS spectra of the [M-H-30]
-
  (A) and [M-H-29]

-
 (B) ions obtained by oxidation of PS 

(16:0/18:1) head and the structures proposed [135]. 
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Table 3. Major PS oxidized products from rat brain non-synaptic mitochondria due to tacrine and T1 and 

T2 analogues treatment. 

Class 
[M-H]- m/z 

Fatty Acyl Chains Oxidation products 
(C:N) 

PS 

  
[M-H+16]- [M-H-29]- [M-H-30]- [M-H-32]- 

760 (34:1) 16:0/18:1 776 731 730 792 

774 (34:2) 16:0/18:1+O-2Da ----- 745 ----- ----- 

776 (34:1) 16:0/18:1+O ----- 747 ----- ----- 

792(34:1) 16:0/18:1+OO ----- 763 ----- ----- 

 

Phospholipids are designated as follows: diacyl 34:1 PS, where 34 indicates the summed number of 

carbon atoms at both the sn-1, sn-2, positions and 1 designates the summed number of double bonds at 

both positions; +O correspond to molecular species of PS containing 1 hydroxy group ([M-H+16]
-
), and 

+OO correspond to molecular species of PS containing 1 peroxy group ([M-H+32]
-
). [M-H+29]

- 

correspond to molecular species of polar head oxidized PS with loss of 58 Da and [M-H+30]
- 
correspond 

to molecular species of polar head oxidized PS with loss of 57 Da. These m/z values indicate ratios of 

mass to charge for singly charged [M-H]
-
 ions.   

 

 

Analysis of PI in negative mode by ESI-MS revealed a predominant [M-H]− ion at m/z 

885 (figure 10 A), identified as PI C18:0 (stearic acid) and C20:4 (arachidonic acid). 

The other PIs identified are presented in table 5. Characteristic fragments 

characterizing the polar head group of PI, at m/z 241 identified as inositolphosphate with 

loss of water molecule and m/z 97 as [H2PO4]2- anion was also identified [49]. Although PI 

class increased with treatment with tacrine and analogues, the PI composition doesn’t 

change, since MS is similar for both PI spot, and representative spectra of PI are shown in 

figure 10 A.  

Tacrine is a lipophilic drug able to crosses the mitochondrial membrane [8], probably 

by interaction with phospholipids. Tacrine has an amine group positively charged at 

physiological pH that allows its insertion in membranes, increasing membrane positive 

charge. Probably, the observed increase in PI content in tacrine treated mitochondria may 

occur to balance the charges in mitochondrial membrane surface. Since PI classes are 

important signaling molecules, as described previously [60], this increase may suggest 

that signaling processes which involves these lipids are altered. Increase in PI content may 
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be also related with toxicological mechanism of this drug, since is described that tacrine 

preferentially binds to acidic-phospholipid containing membrane [22]. So these changes 

in PI content may allow the insertion of tacrine in mitochondrial membrane and probably 

allows it to crosses to membrane. 

 

CL is located almost exclusively in the mitochondrial inner membrane where it 

constitutes about 20% of the total lipid composition. It is associated with several 

mitochondrial proteins and is essential for the optimal function of numerous enzymes 

that are involved in mitochondrial energy metabolism and has been implicated in the 

process of apoptosis. This phospholipid has a dimeric structure, corresponding at two 

phosphatidylglycerols connect with a glycerol backbone in the center [99]. So it has four 

alkyl groups and potentially possesses two negative charges resulting in either singly 

charged [M-H]− or doubly charged [M-2H]2− ions observable in the MS spectra [98]. Singly 

charged ions of CL in negative mode were represented by at least 7 different molecular 

clusters with m/z  1427, 1455, 1477, 1499, 1525, 1553 and 1575 with a variety of fatty 

acid residues (from C16:0 to C22:6). Typical ions formed during fragmentation process of 

CL (a, b, a+56, or b+136) were identified in MS2 spectra as described by Hsu and co-

authors [98] and are resumed in table 4. CL composition doesn’t change between 

samples, since MS is similar for both CL spots, and representative spectra of CL are shown 

in figure 10 B. 

Decrease in CL content due to tacrine and T2 analogue treatment (figure 5) may be 

due to a decrease in its production which could be related to increase in PI content, since 

they are produced from same precursor (scheme 1). This preference for increase PI 

content instead CL content may be related to toxicity mechanism of these drugs. CL is a 

phospholipid essential for normal mitochondrial function and bioenergetics due to its 

interaction with complexes III and IV, and also forms a complex with cytochrome c which 

plays a regulatory role in apoptosis. Analysis of figure 3 shows that in tacrine treated 

mitochondria the activity of mitochondrial complexes I, IV and V are significantly 

decreased which may be related with this decrease in CL content.  
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Decreases in CL content may be also related with changes in PS content. By analysis 

of table 3 is possible to observe that at least seven species of oxidized PS were derived 

from PS 16:0/18:1. So decreases in CL content may be due to remodeling of CL species 

with C16:0 and C18:1 as fatty acyl chains in order to restore PS 16:0/18:1 levels. 

 

 

 

 

Scheme 1. Phospholipid biosynthetic pathways. CDP-choline – cytidine diphosphate, DAG – Diacylglycerol, 

CDP-DAG – cytidine diphosphate diacylglycerol.  PA – Phosphatidic Acid, PC – phosphatidylcholine, PE – 

phosphatidylethanolamine, PG – Phosphatidylglycerol, PI – phosphatidylinositol, PS – phosphatidylserine, 

CL– cardiolipin, SM – sphingomyelin. 

 

 

PC is one of the most abundant PLs in the cell, and the most important structural PL in 

the membrane. PC ionize in positive mode as [M+H]+ and the typical MS/MS spectra show 

a major ion correspondent to the choline phosphate fragment ion at m/z 184  [60]. Since 

in the MS spectra it is also observed the [M+Na]+ ions that can lead to some 

misinterpretations and in order to obtain exclusively the [M+H]+ ions, parent scan of the 

m/z 184 was performed (figure 10 D) and demonstrated the presence of the major PC 

molecular species as [M+H]+ ions at m/z  734, 746, 760, 782, 788, 806, 810 and 834. 
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However, ions regarding structural information are of low abundance. We performed 

MS/MS analysis of all these ions to obtain the confirmation of fatty acyl residues 

composition of both diacyl-PC and alkenyl-PC and their location along the glycerol 

backbone (table 6).  

On the other hand the MS/MS spectra of the alkenyl-acyl show only the R2C=C=O, and 

considering the molecular weight it allows to identify the composition of alkenyl chain. 

This approach was applied to all PC species allowing the confirmation of fatty acid 

composition. Although PC class content decreases by treatment with tacrine and 

analogues (figure 5), the PC composition doesn’t change, since MS is similar for both PC 

spots, and representative spectra of PC are shown in figure 10 D. 

Decrease in PC content may be related to increase in SM content verified for all 

conditions as shown in figure 5, since the precursors and synthesis pathways of these two 

lipids are related (scheme 1). On the other hand, decreases in PC content may be also 

related with PS content alterations. By analysis of figure 10 D is possible to observe that 

the major PC molecular specie is at m/z 760, which corresponds to 16:0/18:1 (table 6), 

and by analysis of table 3 is possible to observe that at least seven species of oxidized PS 

were derived from PS 16:0/18:1. So decreases in PC content by be due to remodeling of 

polar head by phospholipase D of PC species with C16:0 and C18:1 as fatty acyl chains in 

order to restore PS 16:0/18:1 levels. 

It is also important refer that this decrease in PC content may also be associated with 

the toxicological mechanism of this drug, because may contribute to alterations in 

mitochondrial membrane integrity and properties. 

 

SM has important functions in the cytoplasmic membrane structure and cell signaling. 

As PC, SM species ionize in positive mode as [M+H]+ forming a typical choline phosphate 

fragment ion at m/z 184  as the common abundant fragment ion [60]. SM identification 

was obtained by parent scan of the ion m/z 184 similar as performed for PC, but they can 

be easily discriminated since PC appear at even m/z values, whereas protonated 

molecules of SM exhibit odd m/z values due to the presence of an additional nitrogen 

atom in SM (figure 10 C) [49]. The major SM molecular species identified are resumed in 
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table 6, and corresponds at m/z 703 and 731, which correspond to SM containing a C16:0 

(palmitic acid) and C18:0 (stearic acid) fatty acyl chains, respectively. MS spectrum of SM 

from all spots is similar, and representative spectra of SM are shown in figure 10 C. 

The increase in SM content (figure 5) may suggest that the signaling processes which 

involve these lipids are altered. 

 

 

 

 

 

Figure 10. Representative ESI-MS spectrum in negative mode of PI (A) and CL (B) molecular species, and 

parent scan of SM (C) and PC (D) molecular species obtained for all samples from rat brain non-synaptic 

mitochondria and general structure of each class. 
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Table 4. Major CL molecular species from rat brain non-synaptic mitochondria. 

CL Diacyl species 

[M-2H]
2- 

m/z [M-H]
- 
m/z Fatty Acyl Chains 

701.5 1402.8 (68:2) 16:1/16:0/18:1/18:0; 18:1/18:1/16:0/16:0; 18:2/18:0/16:0/16:0 

710.5 1421.7 (70:7) 16:1/(18:2)3; 20:4/18:1/16:1/16:1; 20:4/18:2/16:1/16:0 

711.5 1423.7 (70:6) 16:1/18:1/(18:2)2; 20:4/18:1/16:1/16:0 

712.5 1425.7(70:5) 16:1/18:2/(18:1)2; 16:2/(18:1)3;18:2/18:1/18:0/16:2; 16:1/18:0/(18:2)2 

713.5 1427.7 (70:4) 16:1/(18:1)3; 18:2/(18:1)2/16:0 

716.5 1432.9 (70:2) (18:0)2/16:1/18:1; 18:0/(18:1)2/16:0 

722.5 1446.8(72:9) 16:1/16:0/18:3/22:5; 16:1/18:1/18:3/20:4; (20:4)2/16:1/16:0; 20:4/(18:2)2/16:1 

723.5 1447.8 (72:8) (18:2)4; 16:1/18:1/18:2/20:4; 16:0/18:1/18:3/20:4 

724.5 1449.7 (72:7) 16:1/18:1/18:2/20:3; 18:1/(18:2)3; 20:4(18:1)2/16:1; 20:4/18:2/18:1/16:0 

725.4 1451.7 (72:6) (18:1)2/(18:2)2; 16:1/(18:1)2/20:3; 20:4/(18:1)2/16:0 

726.5 1453.8 (72:5) 16:0/(18:1)2/20:3; (18:1)3/18:2 

727.5 1455.8 (72:4) (18:1)4; 16:0/(18:1)2/20:2 

736.4 1473.7 (74:9) 18:1/(18:2)2/20:4; (20:4)2/18:1/16:0; 16:1/18:1/18:1/22:6; 16:0/18:1/18:2/22:6 

737.5 1475.8 (74:8) 16:1/(18:1)2/22:5; 16:1/18:2/20:3/20:2; 16:0/(18:1)2/22:6 ;16:0/18:1/20:4/20:3; 20:4/18:2/(18:1)2 

738.5 1477.8 (74:7) (18:1)3/20:4; 16:1/18:2/20:3/20:1 

739.5 1479.8 (74:6) (18:1)2/18:0/20:4; 16:0/18:1/20:4/22:4; 16:0/18:0/20:4/22:5; 20:3/(18:1)3 

746.5 1493.7 (76:13) 16:1/18:2/20:4/22:6; 22:6/18:3/(18:2)2 

747.5 1495.7 (76:12) 16:1/18:2/20:3/22:6; (20:4)2/(18:2)2; (20:4)3/16:0/22:6/20:4/18:1/16:1; (22:6)2/(16:0)2; 22:6/(18:2)3 

748.5 1497.6 (76:11) 18:1/18:2/(20:4)2 

749.5 1499.8 (76:10) (18:1)2/(20:4)2; 18:0/(18:2)2/22:6 

750.5 1501.8 (76:9) 20:4/20:3/(18:1)2; 22:6/(18:1)3 

751.5 1503.8 (76:8) 18:1/18:2/20:3/20:2; 16:0/18:2/20:2/22:4; 22:6/(18:1)2/18:0 

752.5 1505.8 (76:7) 16:0/18:1/20:3/22:3; 16:0/18:0/20:1/22:6/ 20:4/20:2/18:1/18:0; 20:4/20:1/(18:1)2 

758.5 1517.9 (78:15) 16:1/18:2/(22:6)2; 22:6/(20:4)2/16:1 

759.5 1519.9 (78:14) (18:2)1/(20:4)3 

760.5 1521.9 (78:13) (18:1)1/(20:4)3; 18:1/18:2/20:4/22:6 

761.5 1523.8 (78:12) (18:1)2/20:4/22:6 

762.5 1525.1 (78:11) (18:1)2/20:3/22:6; 22:6/20:4/18:1/18:0 

765.5 1532.1 (78:8) 16:1/18:1/20:3/22:3; 22:3/18:1/20:0/22:6 

772.5 1545.1 (80:15) 18:1/(20:4)2/22:6 

773.5 1547.1 (80:14) 18:0/(20:4)2/22:6; (22:6)2/(18:1)2; 22:6/20:4/20:3/18:1 
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Table 4. Continued.  

CL Diacyl species 

[M-2H]
2- 

m/z [M-H]
- 
m/z Fatty Acyl Chains 

774.5 1549.2 (80:13) 18:1/18:0/(22:6)2; (18:1)2/22:5/22:6; 18:0/(20:4)2/22:5; 16:0/20:3/(22:5)2; 18:2/(20:3)2/22:5; 18:0/20:3/20:4/22:6 

776.5 1553.3 (80:11) (18:1)2/22:5/22:4; 18:1/18:0/22:4/22:6 

784.5 1569.1 (80:17) 18:1/20:4/(22:6)2; 22:6/(20:4)2/20:3 

785.5 1571.2 (80:16) 18:1/20:3/(22:6)2 

790.5 1582.3 (82:11) 20:4/20:0/20:2/22:4 
 

 

 

Phospholipids are designated as follows: tetra-acyl 78:8 CL, where 78 indicates the summed number of 

carbon atoms at both sn-1, sn-2, sn-1’ and sn-2’ positions and 8 designates the summed number of double 

bonds at both the sn-1, sn-2, and sn-1’ and sn-2’ positions. These m/z values indicate ratios of mass to 

charge for singly charged [M-H]
-
 ions and doubly charged ions [M-2H]

2-
. 

 

While TLC analysis not allowed the separation of phosphatidic acid (PA) class since it 

eluted in the spot of PE, we were able to identify, based on MS/MS analysis, the two 

major species of PA at m/z 673 corresponding to PA C16:0 (palmitic acid) and C18:1 (oleic 

acid) and at m/z 701 corresponding to PA C18:0 (stearic acid) and C18:1 (oleic acid) (table 

5). 

 

Table 5. Major PI and PA molecular species from rat brain non-synaptic mitochondria. 

Class [M-H]- m/z Fatty Acyl Chains 

PI 
  

Diacyl species 

857 (36:4) 16:0/20:4 

859 (36:3) 18:2/18:2 

885 (38:4) 18:0/20:4 

887 (38:3) 18:0/20:3 

   

PA 
  

Diacyl species 
673 (34:1) 16:0/18:1 

701 (36:1) 18:0/18:1 

 

Phospholipids are designated as follows: diacyl 38:4 PI, where 38 indicates the summed number of carbon 

atoms at both the sn-1, sn-2, positions and 4 designates the summed number of double bonds at both 

positions; diacyl 34:1 PA, where 34 indicates the summed number of carbon atoms at both the sn-1, sn-2, 

positions and 1 designates the summed number of double bonds at both positions. These m/z values 

indicate ratios of mass to charge for singly charged [M-H]
-
 ions. 
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Ceramides are key elements in the metabolism of sphingolipids and important 

messengers for various cellular processes, including apoptosis [114]. By analysis of figure 

5 there are no significant alterations in ceramide 1-phosphate levels, between samples. 

Due to its low abundance in samples, ceramide couldn’t be analyzed by MS. 

 

Table 6. Major PC and SM molecular species from rat brain non-synaptic mitochondria. 

Class [M+H]+ m/z Fatty Acyl Chains 

PC 
  

Diacyl species 

734 (32:0) 16:0/16:0 

734 (32:0) 14:0/18:0 

760 (34:1) 16:0/18:1 

760 (34:1) 18:0/16:1 

782 (36:4) 16:0/20:4 

782 (36:4) 18:1/18:3 

788 (36:1) 18:0/18:1 

788 (36:1) 16:0/20:1 

806 (38:6) 16:0/22:6 

806 (38:6) 18:4/20:2 

810 (38:4) 18:0/20:4 

810 (38:4) 18:1/20:3 

810 (38:4) 16:0/22:4 

810 (38:4) 18:3/20:1 

810 (38:4) 20:0/18:4 

834 (40:6) 18:1/22:5 

834 (40:6) 18:0/22:6 

834 (40:6) 20:2/20:4 

834 (40:6) 16:0/24:6 

PC 
  

Alkenyl-acyl species 746 (34:0) 18:0p/18:0 

   

SM 

  

703 (16:0) d18:1/16:0 

731 (18:0) d18:1/18:0 
 

 

 

 

Phospholipids are designated as follows: diacyl 40:6 PC, where 40 indicates the summed number of 

carbon atoms at both the sn-1, sn-2, positions and 6 designates the summed number of double bonds at 

both positions. d18:1/16:0 SM, where d18:1 indicates the sphingosine chain and 16:0 indicates the fatty 

acyl residue. These m/z values indicate ratios of mass to charge for singly charged [M+H]
+
 ion. 
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Conclusions 

Biological effects of tacrine and its analogues were evaluated by AchE assay.  Similarly 

with tacrine, two tacrine analogues show inhibitory capacity for AchE but tacrine T1 

analogue was shown to be the most efficient in inhibiting AchE, being a promising 

alternative to tacrine for treatment of AD disease. 

Mass spectrometry was used to evaluate the effects of tacrine and analogues 

treatment in phospholipid profile of non-synaptic mitochondria. Tacrine induced some 

significant changes in mitochondrial phospholipid profile, namely in PC, PI, PE and CL 

content, and seems to increase the susceptibility of PS to undergo oxidation. Treatment 

with tacrine analogues, T1 and T2, also induce changes in phospholipid content, seems to 

increase the susceptibility of PS to undergo oxidation but in a less expressive way than 

tacrine.  

Both tacrine and analogues affects the activity of mitochondrial complexes activities 

and consequently the mitochondrial bioenergetics and cellular function, but once again 

the effects of analogues were less expressive than tacrine. Alterations in CL content and 

occurrence of oxidized PS products could be the result of mitochondrial increased ROS 

promoted by tacrine and analogues, namely due to incorporation on mitochondrial 

membrane, and in the other hand may also contribute to decrease on mitochondrial 

respiratory complexes. These results may suggest that changes in phospholipids and in 

mitochondrial bioenergetics are involved in neuronal side effects of these drugs, similarly 

as observed for hepatotoxic effect which were related with changes in mitochondrial 

bioenergetics.  

These findings may suggest that proposed tacrine T1 analogue could be an alternative 

to tacrine in the therapy of AD, probably presenting less side effects. 
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Since Alzheimer disease is associated with an increase in cellular oxidative stress and 

deregulation in sphingolipids metabolism, we performed a study of SM, SPC and Cer 

oxidation in vitro, in order to evaluate the molecular changes induced to its sphingolipids 

when subjected to oxidative stress conditions.  

 Sphingolipids are involved in several biological processes, namely inflammation and 

apoptosis which have been associated with oxidative stress conditions. SM, SPC and Cer 

were oxidized by the hydroxyl radical, generated under Fenton reaction conditions, and 

the oxidation reaction was monitored by ESI-MS in positive mode. Analysis of mass 

spectra data after oxidation allows detecting oxidation products in the ESI-MS spectra of 

SPC and SM, while no oxidation products were observed in the case of ceramide.  

The oxidations products detected in ESI-MS spectrum of oxidized SPC correspond to 

the oxidation products formed by insertion of 1 or 2 oxygen atoms, as ketene groups, and 

from cleavage of sphingosine backbone. In the oxidized SM spectrum were present ions 

corresponding to SPC and their oxidation products which indicate that oxidation of SM 

involve the sphingosine backbone and elimination of acyl chain. The faster oxidation of 

SPC, in comparison with SM, suggests that SPC is more prone to oxidation which may be 

involved in the SPC induced ROS generation observed previously [124]. 

Tacrine was used as AChE inhibitor approved for AD treatment. In order to evaluate 

the effects of tacrine and its analogues in brain, we performed an enzymatic assay of 

acetilcholinesterase activity. Tacrine reduced the AchE activity; T2 analogue was shown to 

be less efficient than tacrine in its inhibitory capacity, and T1 analogue was shown to be 

the more efficient of all.  

In this work we have also study the effects of tacrine, and its two analogues (T1 and 

T2), in phospholipid profile of rat brain mitochondria and in mitochondrial bioenergetics. 

Previous studies have demonstrated that tacrine treatment has proven to be hepatotoxic 

[6,7,20], contribute to mitochondrial dysfunction [8,9], ROS production, lipid peroxidation 

[10,17] and apoptosis [20]. However, there are no studies that relate the effects of 

tacrine treatment with alterations in mitochondrial bioenergetics and phospholipid 

content in brain.  
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Mitochondrial complexes activities were measured to determine the effects of tacrine 

and analogues in brain mitochondrial bioenergetics, and try to correlate these effects 

with changes in mitochondrial phospholipid profile due to these compounds treatment. 

In order to achieve the aims of this work we performed a lipidomics analysis of 

phospholipid profile of rat brain mitochondria for evaluate the effect of tacrine and two 

proposed analogues, T1 and T2. The first approach performed in lipidomics analysis 

consisted in separation of phospholipid classes by TLC, followed by quantification using 

phosphorus assay. Tacrine treatment induces significant changes in content of PI and CL 

comparing with a control. Tacrine is a lipophilic molecule with an amine group positively 

charged at physiological pH that allows its insertion in membranes, increasing membrane 

positive charge. Probably, the observed increase in PI content in tacrine treated 

mitochondria may occur to balance the charges in mitochondrial membrane surface. 

Decrease in PC content may occurs to reduce the excess of positive charge in membrane 

surface, or on the other hand may be related with PS content changes: PC 16:0/18:1 may 

suffer remodeling in polar head in order to restore PS 16:0/18:1 levels because at least 

seven species of oxidized PS were derived from this molecular specie. However, this 

decrease in PC content may also contribute to alterations in mitochondrial membrane 

properties. Tacrine T2 analogue also affects significantly the PC and PI content, while T1 

analogue only affects significantly the content of PC.  No apparent change occurs in PS 

content despite this also be a negatively charged phospholipid. PE content increases in 

treated mitochondria, but this alteration occurs due to presence of oxidation products of 

PS that co-eluted with PE class. The increment of global negative charge of PS by 

formation of oxidized species could be related to the metabolic changes resulting from 

tacrine incorporation on mitochondrial membrane. The occurrence of oxidized PS 

products could be the result of mitochondrial increased ROS promoted by tacrine and 

analogues, namely due to incorporation on mitochondrial membrane, and in the other 

and may also contribute to decrease on activity of mitochondrial respiratory complexes. 

Both tacrine and analogues treated mitochondria showed significant decreased in 

activity of complex I (NADH quinone oxidoreductase), and tacrine and T1 analogue also 

affect significantly the complex IV (cytochrome c oxidase) activity. It has been shown that 
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cytochrome c oxidase and FoF1 ATPase have a specific requirement for CL [111]. Since 

tacrine treatment affects significantly the CL levels, the cytochrome oxidase and FoF1 

ATPase activity was significantly reduced in samples treated with tacrine comparing with 

a control, as we expected. For tacrine analogues, the activity of these complexes was also 

reduced. Alterations in CL content due to tacrine and T2 analogue treatment may be due 

to a decrease in its production which could be related to increase in PI content, since they 

are produced from same precursor, or may occur as result of remodeling of CL species 

with C16:0 and C18:1 as fatty acyl chains in order to restore the PS 16:0/18:1 levels. 

ESI-MS and ESI-MS/MS analysis in positive and negative modes of different 

phospholipid classes was performed in order achieve the molecular characterization and 

fatty acyl chain composition within each class. Although significant changes in content of 

some phospholipids classes (PC, PI, PE, CL), no significant changes in mitochondrial 

phospholipid profile of PC, SM, PI, and CL were verify between samples. 

ESI-MS and MS/MS analysis of tacrine treated mitochondria revealed the formation of 

PS oxidation products, due to oxidative modification in PS polar head (neutral loss of 57 

and 58 Da) or oxidized products corresponding to insertion of oxygen atoms in PS fatty 

acyl chains. Oxidized products due to polar head PS modifications were also detected in 

PE spot and correspond to a neutral loss of 58 Da, which were identified recently to be 

typical of phospholipids with a terminal acetic acid in the polar head. These oxidized 

products are not present in non-treated mitochondria suggesting that tacrina increase the 

susceptibility to oxidation of mitochondrial PS. In tacrine analogue treated mitochondria 

these oxidation products are also present but in much lower abundance, which may 

suggest that tacrine analogues are less capable to increase the susceptibility to oxidation 

of mitochondrial PS.  
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The oxidation products, formed during in vitro reaction of the hydroxyl radical with 

selected spingolipids, SPC, SM and Cer, were identified by Electrospray Mass 

Spectrometry (ESI-MS) and Electrospray Tandem Mass Spectrometry (ESI-MS/MS). 

Oxidation products formed by addition of 1 and 2 oxygen atoms, as kete groups, to SPC 

were characterized by ESI-MS/MS. SM oxidation involves the formation of SPC and their 

oxidation products. Ceramide does not prone oxidation in the used experimental 

conditions. 

These findings may allow to a better understanding of the behavior of some 

sphingolipids under oxidative stress, and the biological roles of the oxidized lipids.  

The effect of tacrine and its two proposed analogues as therapeutic agents for 

Alzheimer disease in non-synaptic mitochondria phospholipid profile were analyzed by 

Electrospray Mass Spectrometry (ESI-MS) and Electrospray Tandem Mass Spectrometry 

(ESI-MS/MS). Acetylcholinesterase activity and mitochondrial respiratory complexes 

activity were also determined.  

Similarly with tacrine, two tacrine analogues show inhibitory capacity for AchE but 

tacrine T1 analogue was shown to be the most efficient in inhibiting AchE, being a 

promising alternative to tacrine for treatment of AD disease. 

Tacrine induced significant changes in mitochondrial phospholipid profile, namely in 

PC, PE, PI and CL content, seems to increase the susceptibility of PS to undergo oxidation, 

and affects the activity of mitochondrial complexes and consequently the mitochondrial 

bioenergetics and cellular function. T1 and T2 tacrine analogues treatment, also induce 

changes in phospholipid content, seems to increase the susceptibility of PS to undergo 

oxidation, and affects the activity of mitochondrial complexes, but in a less expressive 

way than tacrine. These results may suggest that changes in phospholipids profile and in 

mitochondrial bioenergetics are involved in neuronal side effects of these drugs, similarly 

as observed for hepatotoxic effect, which were related with changes in mitochondrial 

bioenergetics.  

These findings may suggest that proposed tacrine T1 analogue affects mitochondrial 

phospholipid profile and mitochondrial function in a less significant way, and has a 

greater inhibitory capacity comparing with tacrine and T2 analogue, thus indicating that 
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this analogue could be an alternative to tacrine in the therapy of AD, probably presenting 

less side effects.  

This work contributes to a better understanding of the biological and toxicological 

effects of tacrine in brain mitochondrial function, and to research of new tacrine 

analogues with more inhibitory efficiency and with lower toxicological effects.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 CHAPTER VI 

References 



 

 



 
 

 

 

 

 

 

 

 

References 

113 
 

References 

[1] Kung, H. F.; Lee, C. W.; Zhuang, Z. P.; Kung, M. P.; Hou, C. and Plӧssl, K. (2001) Novel 

stilbenes as probes for amyloid plaques. Journal of the American Chemical Society, 

123(50):12740-12741. 

*2+ Fӧrstl, H. and Kurz, A. (1999) Clinical features of Alzheimer’s disease. European 

Archives of Psychiatry and Clinical Neuroscience, 249(6):288-290. 

[3] Sivaprakasam, K. (2006) Towards a unifying hypothesis of Alzheimer’s disease: 

cholinergic system linked to plaques, tangles and neuroinflammation. Current 

Medicinal Chemistry, 13(18):2179-2188. 

[4]  Tabet, N. (2006) Acetyl cholinesterase inhibitors for Alzheimer’s disease: anti-

inflammatories in acetylcholine clothing. Age Ageing, 35(4):336-338. 

[5] De Ferrari, G. V.; von Bernhardi, R.; Calderón, F. H:; Luza, S. C. and Inestrosa, N. C. 

(1998) Responses induced by tacrine in neuronal and non-neuronal cell lines. Journal of 

Neuroscience Research, 52(4):435-444. 

*6+ O’brien, J. T.; Eagger, S. and Levy, R. (1991) Effects of tetrahydroaminoacridine on liver 

function in patients with Alzheimer’s disease. Age Ageing, 20(2):129-131. 

[7] Summers, W. K.; Koehler, A. L.; Marsh, G. M.; Tachiki, K. and Kling, A. (1989) Long-term 

hepatotoxicity of tacrine. Lancet, 1(8640):729. 

[8] Berson, A.; Renault, S.; Letteron, P.; Robin, M. A.; Fromenty, B.;  Fau, D.;  Le Bot, M. A.; 

Riche, C.; Durand-Schneider, A. M.; Feldmann, G. and Pessayre, D. (1996) Uncoupling 

of rat and human mitochondria: A possible explanation for tacrine-induced liver 

dysfunction. Gastroenterology, 110(6):1878-1890. 

[9] Robertson, D. G.; Braden, T. K.; Urda, E. R.; Lalwani, N. D. and de la Iglesia, F. A. (1998) 

Elucidation of mitochondrial effects by tetrahydroaminoacridine (tacrine) in rat, dog, 

monkey and human hepatic parenchymal cells. Archives of Toxicology, 72(6):362-371. 

[10] Lagadic-Gossmann, D.; Rissel, M.; Le Bot, M. A. and Guillouzo, A. (1998) Toxic effects 

of tacrine on primary hepatocytes and liver epithelial cells in culture. Cell Biology and 

Toxicology, 14(5):361-373. 

[11] Gangoiti, P.; Camacho, L.; Arana, L.; Ouro, A.; Granado, M. H.; Brizuela, L.; Casas, J.; 

Fabriás, G:; Abad, J. L.; Delgado, A. and Gómez-Muñoz, A. (2010) Controlo f 

metabolismo and signaling of simple bioactive sphingolipids: implications in disease. 

Progress in Lipid Research, 49(4):316-334. 

[12] Valko, M.; Rhodes, C. J.; Moncol, J.; Izakovic, M. and Mazur, M. (2006) Free radical, 

metals and antioxidant in oxidative stress-induced cancer. Chemico-Biological 

Interactions, 160(1):1‐40. 

[13] Halliwell, B. and Gutteridge, J. M. C. (1999) Oxidative stress: adaptation, damage, 

repair and death. Free Radicals in Biology and Medicine. 3rd ed., Oxford: Oxford 

University Press, cap.4, 246-350. 

http://www.bentham.org/cmc/
http://www.bentham.org/cmc/


 

 
 

 

Chapter VI 

114 
 

[14] Lai, J. C. K. and Clark, J. B. (1989) Isolation and characterization of synaptic and 

nonsynaptic mitochondria from mammalian brain. Neuromethods, 11:43-98. 

[15] Kiebish, M. A.; Han, X.; Cheng, H.; Lunceford, A.; Clarke, C. F.; Moon, H.; Chuang, J. H. 

And Seyfried, T. N. (2008) Lipidomic analysis and electron transport chain activities in 

C57BL/6J mouse brain mitohondria. Journal of Neurochemistry, 106(1):299-312. 

[16] Morishima-Kawashima, M. and Ihara, Y. (2002) Alzheimer’s disease: beta-Amyloid 

protein and tau. Journal of Neuroscience Research, 70(3):392-401. 

[17] Giacobini E. (1998) Invited review: Cholinesterase inhibitors for Alzheimer’s disease 

therapy: from tacrine to future applications. Neurochemistry International, 32(5-

6):413-419. 

[18] Ezoulin, M.J.; Dong, C. Z.; Liu, Z.; Chen, H. Z.; Heymans, F.; Lelièvre, L.; Ombetta, J. E.; 

Massicot, F. (2006) Study of PMS777, a new type of acetylcholinesterase inhibitor, in 

human HeCL cells. Comparison with tacrine and galanthamine on oxidative stress and 

mitochondrial impairment. Toxicology In Vitro, 20(6):824-831.  

 [19] Stachlewitz, R. F.; Arteel, G. E.; Raleigh, J. A.; Connor, H. D.; Mason, R. P. and 

Thurman, R. G. (1997) Development and characterization of a new model of tacrine-

induced hepatotoxicity: role of the sympathetic nervous system and hypoxia-

reoxygenation. Journal of Pharmacology and Experimental Therapeutics, 282(3):1591-

1599. 

[20] Polinsky, R. J. (1998) Clinical pharmacology of rivastigmine: a new-generation 

acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clinical 

Therapeutics, 20(4):634-647.  

[21] Salaheldin, A. M.; Oliveira-Campos, A. M. F.; Parpot, P.; Rodrigues, L. M.; Oliveira, M. 

M. and Peixoto, F. P. (2010) Synthesis of New Tacrine Analogues from 4-Amino-1H-

pyrrole-3-carbonitrile. Helvetica Chimica Acta, 93(2):242-248. 

[22+ Lehtonen, J. Y.; Rytӧmaa, M. and Kinnunen, P. K. (1996) Characteristics of the binding 

of tacrine to acidic phospholipids. Biophysical Journal, 70(5):2185-2194. 

[23] Su, B.; Wang, X.; Zheng, L.; Perry, G.; Smith, M. A. and Zhu, X. (2010) Abnormal 

mitochondrial dynamics and neurodegenerative diseases. Biochimica et Biophysica 

Acta, 1802(1):135-142. 

[24] Frazier, A. E.; Kiu, C.; Stojanovski, D.;Hoogenraad, N. J. and Ryan, M. T. (2006) 

Mitochondrial morphology and distribution in mammalian cells. Bilogical Chemistry, 

387(12):1551-1558. 

[25] Kann, O. and Kovacs, R. (2007) Mitochondria and neuronal activity. American Journal 

of Physiology. Cell Physiology, 292(2):641-657. 

[26] Moreira, P. I.; Santos, M. S.; seiça, R. and oliveira, C. R. (2007) Brain mitochondrial 

dysfunction as a link between Alzheimer’s disease and diabetes. Journal of Neurological 

Sciences, 257(1-2):206-214. 

[27] Mattson, M. P. and Chan, S. L. (2003) Neuronal and glial calcium signaling in 

Alzheimer’s disease. Cell Calcium, 34(4-5):385-397. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Frazier%20AE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kiu%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Stojanovski%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hoogenraad%20NJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ryan%20MT%22%5BAuthor%5D


 
 

 

 

 

 

 

 

 

References 

115 
 

[28] Rego, A.C. and Oliveira, C. R. (2003) Mitochondrial dysfunction and relative oxygen 

species in excitotoxicity and apoptosis: implications for the pathogenesis of 

neuroidegenerative diseases. Neurochemical Research, 28(10):1563-1574. 

[29+ Spӓt, A.; Szanda, G.; Csordás, G. and Hajnóczky, G. (2008) High- and low-calcium-

dependent mechanisms of mitochondrial calcium signaling. Cell Calcium, 44(1):51-63. 

[30] Hirai, K.; Aliev, G.; Nunomura, A.; Fujioka, H.; Russell, R. L.; Atwood, C. S.; Johnson, A. 

B.; Kress, Y.; Vinters, H. V.; Tabaton, M.; Shimohama, S.; Cash, A. D.; Siedlak, S. L.; 

Harris, P. L. R.; Jones, P. K.; Petersen, R. B.; Perry, G. And Smith, M. A. (2001) 

Mitochondrial abnormalities in Alzheimer's disease. Journal of Neurocience, 

21(9):3017-3023.  

[31] Wallace, D. C. (2005) A mitochondrial paradigm of metabolic and degenerative 

diseases, aging, and cancer: a dawn for evolutionary medicine. Annual Review of 

genetics, 39:359-407. 

[32] Jones, D. P.; Lemasters, J. j.; Han, D.; boelsteril, U. A. and Kaplowitz, N. (2010) 

Mechanisms of pathogenesis in drug hepatotoxicity putting the stress on mitochondria. 

Molecular Interventions, 10(2):98-111. 

[33] Moreira, P. I.; Zhu, X.; Wang, X.; Lee, H. G.; Nunomura, A.; Petersen, R. B.; Perry, G. 

and Smith, M. A. (2010) Mitochondria: a therapeutic target in neurodegeneration. 

Biochimica et Biophysica Acta, 1802(1):212-220. 

[34] Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J. (2007) Free 

radicals and antioxidants in normal physiological functions and human disease. The 

International Journal of Biochemistry & Cell Biology, 39(1)44-84. 

[35] Floyd, R. A (1999) Antioxidants, oxidative stress, and degenerative neurological 

disorders. Proceedings of the Society for Experimental Biology and Medicine, 

222(3):236-245. 

[36] Niki, E.; Yoshida, Y.; Satio, Y. and Noguchi, N. (2005) Lipid peroxidation: mechanisms, 

inhibition, and biological effects. Biochemical and Biophysical Research 

Communications, 338(1):668-676. 

[37] Patricò, D. (2002) Oxidative imbalance and lipid peroxidation in Alzheimer’s disease. 

Drug Development Research, 56(3):446-451. 

[38] Domingues, M. R. M.; Reis, A. and Domingues, P. (2008) Mass spectrometry analysis 

of oxidized phospholipids. Chemistry and Physics of Lipids, 156(1-2):1-12. 

 [39] Catalá, A. (2006) An overviewof lipid peroxidationwith emphasis in outer segments of 

photoreceptors and the chemiluminescence assay. International Journal of 

Biochemistry & Cell Biology, 38(9):1482-1495. 

[40] Niki, E. (2009) Lipid Peroxidation: physiological levels and dual biological effects. Free 

Radical Biology & Medicine, 47(5):469-484. 

[41] Fruhwirth, G. O.; Loidl, A. and hermetter, A. (2007) Oxidized phospholipids: from 

molecular properties to disease. Biochimica et Biophysica Acta, 1772(7):718-736. 

http://www.elsevier.com/locate/biocel
http://www.elsevier.com/locate/biocel
http://onlinelibrary.wiley.com/doi/10.1002/ddr.20050/abstract


 

 
 

 

Chapter VI 

116 
 

[42] Hu, C.; van der Heijden R.; Wang, M.; van der Greef, J.; Hankemeier, T. and Xu, G. 

(2009) Analytical strategies in lipidomics and applications in disease biomarker 

discovery. Journal of Chromatography B, Analytical Technologies in the Biomedical and 

Life Sciences, 877(26):2836-2846. 

[43] Han, X. and Gross, R. W. (2005) Shotgun lipidomics: Electrospray ionization mass 

spectrometric analysis and quantitation of the cellular lipidomes directly from crude 

extracts of biological samples. Mass Spectrometry Reviews, 24(3):367-412. 

[44] Wassall, S. R. and Stillwell, W. (2008) Docosahexaenoic acid domains: the ultimate 

non-raft membrane domain. Chemistry and Physics of Lipids, 153(1):57-63. 

[45] McDonald, J. G.; Thompson, B. M.; McCrum, E.C.; Russell, D.W. (2007) Extraction and 

analysis of sterols in biological matrices by high performance liquid chromatography 

electrospray ionization mass spectrometry. Methods in Enzymology, 432:145-170. 

[46] Milne, S.; Ivanova, P.; Forrester, J. and Alex Brown, H. (2006) Lipidomics: an analysis 

of cellular lipids by ESI-MS. Methods, 39(2):92-103. 

[47] Peretó, J.; López-García, P. and Moreira, D. (2004) Ancestral lipid biosynthesis and 

early membrane evolution. Trends in Biochemical Sciences, 29(9):469-477. 

[48] Hein, E. M.; Blank, L. M.; Heyland, J.; Baumbach, J. I.; Schmid, A. and Hayen, H. (2009) 

Glycerophospholipid profiling by high-performance liquid chromatography/mass 

spectrometric fragmentation experiments in parallel. Rapid Communications in Mass 

Spectrometry, 23(11):1636-1646. 

[49] Schlame, D. R. and Greenberg, M. L. (2000) The biosynthesis and functional role of 

cardioloipin. Progress in Lipid Research, 39(3):257-288. 

[50] Allegrini, P. R.; Pluschke, G. and Seelig, J. (1984) Cardiolipin conformation and 

dynamics in bilayer-membranes as seen by deuterium magnetic-resonance. 

Biochemistry, 23(26):6452-6458. 

[51] Won, J. S. and Singh, I. (2006) Sphingolipid signaling and redox regulation. Free 

Radical Biology & Medicine, 40(11):1875-1888. 

[52] Merrill Jr, A. H:, Sullards, M. C.; Allegood, J. C.; Kelly, S. and Wang, E. (2005) 

Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of 

sphingolipids by liquid chromatrography tandem mass spectrometry. Methods, 

36(2):207-224. 

[53] Sparvero, L. J.; Amoscato, A. A.; Kochanek, P. M.; Pitt, B. R.; Kagan, V. E. and Bayir, H. 

(2010) Mass-spectrometry based oxidative lipidomics and lipid imaging: applications in 

traumatic brain injury. Journal of Neurochemistry, 115(6):1322-1336. 

[54] Han, X. (2007) Neurolipidomics: challenges and developments. Frontiers in 

Bioscience, 12:2601-2615. 

[55] Mielke, M. M. and Lyketsos, C. G. (2006) Lipids and the pathogenesis of Alzheimer’s 

disease: is there a link? International Review of Psychiatry, 18(2):173-186. 

[56] Fahy, E.; Subramaniam, S.; Brown, H. A.; Glass, C. K.; Merrill, A. H. Jr.; Murphy, R. C.; 

Raetz, C. R.; Russell, D. W.; Seyama, Y.; Shaw, W. Shimizu, T.; Spener, F.; van Meer, G.; 

http://www.google.pt/url?sa=t&source=web&cd=1&ved=0CBUQFjAA&url=http%3A%2F%2Fwww.elsevier.com%2Flocate%2Finca%2F405916&rct=j&q=Trends+Biochem.+Sci.+&ei=K_cITOGrHcaT4gb7l7yiAQ&usg=AFQjCNF4t6Q-HBhEyLzd-LEzrfCsU8PjJQ


 
 

 

 

 

 

 

 

 

References 

117 
 

VanNieuwenhze, M.S.; White, S.H.; Witztum, J. and Dennis, E.A. (2005) A 

comprehensive classification system for lipids. Journal of Lipid Research, 46(5):839-862. 

[57] Fahy, E.; Subramaniam, S.; Murphy, R. C.; Nishijima, M.; Raetz, C. R. H.; Shimizu, T.; 

Spener, F.; van Meer, G.; Wakelam, M. J. O. and Dennis, E. A. (2009) Update of the 

LIPID MAPS comprehensive classification system for lipids. Journal of Lipid research, 

50(9-14):9-14. 

[58] Hiren, R. M.; Surendra, S. K. and Minal, A. P. (2008) Ageing-induced alterations in 

lipid/phospholipid Profiles of rat brain and liver mitochondria: implications for 

mitochondrial energy-linked functions. Journal of Membrane Biology, 221(1):51-60. 

[59] Zinser, E.; Sperka-Gottlieb, C. D.; Fasch, E. V.; Kohlwein, S. D.; Paltauf, F. and Daum G. 

(1991) Phospholipid synthesis and lipid composition of subcellular membranes in the 

unicellular eukaryote Saccharomyces cerevisiae. The Journal of Bacteriology, 

173(6):2026-34. 

[60] Pulfer, M. and Murphy, R. C. (2003) Electrospray mass spectrometry of phospholipids. 

Mass Spectrometry Reviews, 22(5):332-364. 

[61] Kiefer, S.; Rogger, J.; Melone, A.; Mertz, A. C.; Koryakina, A.; Hamburger, M. and 

Küenzi, P. (2010) Separation and detection of all phosphoinositoide isomers by ESI-MS. 

Journalk of Pharmaceutical and Biomedical Analysis, 53(3):552-558. 

[62] Pope, S.; Land, J. M. and Heales, S. J. (2008) Oxidative stress and mitochondrial 

dysfunction in neurodegeneration; cardiolipin a critical target? Biochimica et 

Biophysica Acta, 1777(7-8):794-799. 

[63] Bayir, H.; Tyurin, V.A.; Tyurina, Y. Y.; Viner, R.; Ritov, V.; Amoscato, A. A.; Zhao, Q.; 

Zhang, X. J.; Janesko-Feldman, K. L.; Alexander, H.; Basova, L. V.; Clark, R.S.; Kochanek, 

P. M. and Kagan, V. E. (2007) Selective early cardiolipin peroxidation after traumatic 

brain injury: an oxidative lipidomics analysis. Annals of Neurology, 62(2):154-169. 

[64] Chicco, A. J. and Sparagna, G. C. (2007) Role of cardiolipin alterationsin mitochondrial 

dysfunction and disease. American Journal of Physiology-Cell Physiology, 292(1):C33-

44. 

[65] Beyer, K. and Nuscher, B. (1996) Specific cardiolipin binding interferes with labeling of 

sulfhydryl residues in the adenosine diphosphate/adenosine triphosphate carrier 

protein from beef heart mitochondria. Biochemistry, 35(49):15784-15790. 

[66] Joshi, A. S.; Zhou, J.; Gohil, V. M.; Chen, S. and Greenberg, M. L. (2009) Cellular 

functions of cardiolipin in yeast. Biochimica et Biophysica Acta, 1793(1):212-218. 

[67] Zhang, M.; Mileykovskaya, E. and Dowhan,W. (2002) Gluing the respiratory chain 

together. Cardiolipin is required for supercomplex formation in the inner mitochondrial 

membrane. The Journal of Biological Chemistry, 277(46):43553-43556. 

 [68] Tuominem, E. K. J.; Wallace, C. J. A. and Kinnunen, P. K. J (2002) Phospholipid-

cytochrome c interaction-Evidence for the extended lipid anchorage. Journal of 

Biological Chemistry, 277(11):8822-8826. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zinser%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sperka-Gottlieb%20CD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fasch%20EV%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kohlwein%20SD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Paltauf%20F%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Daum%20G%22%5BAuthor%5D
http://jb.asm.org/
http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291098-2787
http://www.elsevier.com/locate/bba
http://www.elsevier.com/locate/bba
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Joshi%20AS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zhou%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gohil%20VM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Chen%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Greenberg%20ML%22%5BAuthor%5D
http://www.elsevier.com/locate/bba


 

 
 

 

Chapter VI 

118 
 

[69] Kagan, V. E.; Tyurina, Y. Y.; Bayir, H.; Chu, C. T.; Kapralov, A. A.; Vlasova, I. I.; Belikova, 

N. A.; Tyurin, V. A.; Amoscato, A.; Epperly, M.; Greenberger, J.; DeKosky, S.; Shvedova, 

A. A. And Jiang, J. (2006) The “pro-apoptotic genies” get out of mitochondria: oxidative 

lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chemico-

Biological Interactions, 163(1–2):15-28. 

[70] Belikova N. A., Vladimirov Y. A., Osipov A. N. et al. (2006) Peroxidase activity and 

structural transitions of cytochrome C bound to cardiolipin-containing membranes. 

Biochemistry, 45(15):4998-5009. 

[71] Belikova, N. A.; Jiang, J.; Tyurina, Y. Y.; Zhao, Q.; Epperly, M. W.; Greenberger, J. and 

Kagan, V. E. (2007) Cardiolipin-specific peroxidase reactions of cytochrome C in 

mitochondria during irradiation-induced apoptosis.  International Journal of Radiation 

Oncology Biology Physics, 69(1):176-186. 

[72] Nitsch, R. M.; Blusztajn, J. K.; Pittas, A. G.; Slack, B. E.; Growdon, J. H. and Wurtman, 

R. J. (1992) Evidence for a membrane defect in Alzheimer disease brain. Proceedings of 

the National Academy of Sciences, 89(5):1671-1675. 

[73] Han, X.; Holtzman, D. M. and McKeel, D. W. Jr. (2001) Plasmalogen deficiency in early 

Alzheimer's disease subjects and in animal models: molecular characterization using 

electrospray ionization mass spectrometry. Journal of Neurochemistry, 77(4):1168-80. 

[74] Tully, A. M.; Roche, H. M.; Doyle, R.; Fallon, C.; Bruce, I.; Lawlor, B.; Coakley, D. and 

Gibney, M. J. (2003) Low serum cholesteryl ester-docosahexaenoic acid levels in 

Alzheimer’s disease: a case-control study. British Journal of Nutrition, 89(4):483-489. 

[75] Grimm, M. O.; Grimm, H. S.; Patzold, A. J.; Zinser, E. G.; Halonen, R.; Duering, M.; 

Tschape, J. A.; De Strooper, B.; Muller, U.; Shen, J. And Hartmann, T. (2005) Regulation 

of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nature 

Cell Biology, 7(11):1118-1123. 

[76] Zha, Q.; Ruan, Y.; Hartmann, T.; Beyreuther, K. and Zhang, D. (2004) GM1 ganglioside 

regulates the proteolysis of amyloid precursor protein. Molecular Psychiatry, 9(10):946-

952. 

[77] Lightle, S. A.; Oakley, J. I. and Nikolova-Karakashian, M. N. (2000). Activation of 

sphingolipid turnover and chronic generation of ceramide and sphingosine in liver 

during aging. Mechanisms of Ageing and Development, 120(1-3):111-125. 

[78] Birbes, H.; Bawab, S. E.; Obeid, L. M. and Hannun, Y. A. (2002) Mitochondria and 

ceramide: intertwined roles in regulation of apoptosis. Advances in Enzyme Regulation, 

42:113-129. 

[79] Ruvolo, P. P. (2003). Intracellular signal transduction pathways activated by ceramide 

and its metabolites. Pharmacological Research, 47(5):383-392. 

[80] Han, X.; Holtzman, D. M.; McKeel Jr., D. W.; Kelley, J. And Morris, J. C. (2002) 

Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s 

disease: Potential role in disease pathogenesis. Journal of Neurochemistry, 82(4):809-

818. 

http://www.google.pt/url?sa=t&source=web&cd=2&ved=0CB0QFjAB&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fjournal%2F03603016&rct=j&q=Int.+J.+Radiat.+Oncol.+Biol.+Phys.+&ei=L_MITLCxIsqu4QaKvflv&usg=AFQjCNHeZRS5BYT7rQ6BdlWpI229mRVn5Q
http://www.google.pt/url?sa=t&source=web&cd=2&ved=0CB0QFjAB&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fjournal%2F03603016&rct=j&q=Int.+J.+Radiat.+Oncol.+Biol.+Phys.+&ei=L_MITLCxIsqu4QaKvflv&usg=AFQjCNHeZRS5BYT7rQ6BdlWpI229mRVn5Q
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nitsch%20RM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Blusztajn%20JK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pittas%20AG%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Slack%20BE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Growdon%20JH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wurtman%20RJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wurtman%20RJ%22%5BAuthor%5D
http://pt.wikipedia.org/wiki/Proceedings_of_the_National_Academy_of_Sciences
http://pt.wikipedia.org/wiki/Proceedings_of_the_National_Academy_of_Sciences
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Han%20X%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Holtzman%20DM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22McKeel%20DW%20Jr%22%5BAuthor%5D
http://www.blackwellpublishing.com/jnc_enhanced/
http://journals.cambridge.org/action/displayJournal?jid=BJN
http://www.nature.com/ncb/
http://www.nature.com/ncb/
http://www.nature.com/mp/
http://www.elsevier.com/wps/product/cws_home/427


 
 

 

 

 

 

 

 

 

References 

119 
 

[81] Watson, A. D. (2006) Thematic review series: systems biology approaches to 

metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid 

analysis in biological systems. Journal of Lipid Research, 47(10):2101-2111. 

[82] Lagarde, M.; Geloen, A.; Record, M.; Vance, D. and Spencer, F. (2003) Lipidomics is 

emerging. Biochemistry. Biochimica et Biophysica Acta, 1634(3):61. 

[83] Bligh, E. G. and Dyer, W. J. (1959) A rapid method of total lipid extraction and 

purification. Canadian Journal of Biochemistry and Physiology, 37(8): 911-917. 

[84] Wolf, C. and Quinn, P. J. (2008) Lipidomics: Practical aspects and applications. 

Progress in Lipid Research, 47(1): 15-36. 

[85] Fuchs, B.; Süϐ, R.; Teuber, K.; Eibisch, M. and Schiller, J. (2011) Lipid analysis by thin-

layer chromatography – A review of the current state. Journal of Chromatography A, 

1218(19):2754-2774. 

[86] Peterson, B. L. and Cummings, B. S. (2006) A review of chromatographic methods for 

the assessment of phospholipids in biological samples. Biomedical Chromatography, 

20(3): 227-243. 

[87] Carrasco-Pancorbo, A.; Navas-iglesias, N. and Cuadros-rodrigues, L. (2009) From lipid 

analysis towards lipidomics, a new challange for the analytical chemistry of the 21st 

century. Part 1: Modern lipid analysis. Trends in Analytical Chemistry, 28(3):263-278. 

[88] Bele, A. A. and Khale, A. (2011) An overview on thin layer chromatography.  

International Journal of Pharmaceutical Sciences and Research, 2(2): 256-267. 

[89+ Schiller, J.;  Süß, R.; Arnhold, J.; Fuchs, B.;  Leßig, J.; Müller, M.; Petkovid, M.;  

Spalteholz, H.;  Zschörnig, O. and Arnold, K.  (2004) Matrix-assisted laser desorption 

and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid 

research. Progress in Lipid Research, 43(5):449-488. 

[90] Adibhatla, R. M.; Hatcher, J. F. and Dempsey, R. J. (2006) Lipids and lipidomics in 

brain injury and diseases. Journal of the American Association of Pharmaceutical 

Scientists, 8(2):314-321. 

[91] Han, X. and Gross, R. W. (2003) Global analyses of cellular lipidomes directly from 

crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. 

Journal of Lipid Research, 44(6):1071-1079. 

[92] Cole, R.B. (2000) Some tenets pertaining to electrospray ionization mass 

spectrometry. Journal of Mass Spectrometry, 35(7):763-772. 

[93] Douglas, D. J.; Frank, A. J. and Mao, D. M. (2005) Linear ion traps in mass 

spectrometry. Mass Spectrometry Reviews, 24(1):1-29. 

[94] Cui, Z. and Thomas, M. J. (2009) Phospholipid profiling by tandem mass spectrometry. 

The Journal of Chromatography B: Analytical Technologies in the Biomedical and Life 

Sciences, 877(26):2709-2715. 

[95] Zehethofer, N. and D. M. Pinto (2008). Recent developments in tandem mass 

spectrometry for lipidomic analysis. Analytica Chimica Acta, 627(1): 62-70. 

http://www.elsevier.com/locate/bba


 

 
 

 

Chapter VI 

120 
 

[96] Taguchi, R.; Houjou, T.; Nakanishi, H.; Yamazaki, T.; Ishida, M.; Imagawa, M. And 

Shimizu, T. (2005) Focused lipidomics by tandem mass spectrometry. Journal of 

Chromatography, 823(1):26-36. 

[97] Hsu, F.-F. and Turk, J. (2009) Electrospray ionization with low-energy collisionally 

activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms 

of fragmentation and structural characterization. Journal of Chromatograpgy B. 

Analytical technologies in the Biomedical and Life Sciences, 877(26):2673-2695. 

[98] Brügger, B.; Erben, G.; Sandhoff, R.; Wieland, F. T. and Lehmann, W. D. (1997) 

Quantitative znalysis of biological membrane lipids at the low picomole level by nano-

electrospray ionization tandem mass spectrometry. Proceedings of the National 

Academy of Sciences, 94(6):2339-2344. 

[99] Hsu, F.- F.; Turk, J.; Rhoades, E. R.; Russell, D. G.; Shi, Y. and Groisman, E. A. (2005) 

Structural characterization of cardiolipin by tandem quadrupole and multiple-stage 

quadrupole ion-trapmass spectrometrywith electrospray ionization. Journal of 

American Society of Mass Spectrometry, 16(4):491-504. 

[100] Hsu, F.-F. and Turk, J. (2002) Characterization of ceramides by low energy collisional-

activated dissociation tandem mass spectrometry with negative-ion electrospray 

ionization. Journal of American Society of Mass Spectrometry, 13(5):558-570. 

[101] Guan, Z. (2009) Discovering novel brain lipids by liquid chromatography/tandem 

mass spectrometry. Journal of Chromatography B, 877(26):2814-2821. 

[102] Wang, H. Y.; Liu, C. B.; Wu, H. W. and Kuo, J. S. (2010) Direct profiling of 

phospholipids and lysophospholipids in rat brain sections after ischemic stroke. Rapid 

Communications in Mass Spectrometry, 24(14):2057-2064. 

[103] Aaltonen, N.; Laitinen, J. T. and Lehtonen, M. (2010) Quantification of 

lysophosphatidic acids in rat brain tissue by liquid chromatography-electrospray 

tandem mass spectrometry. Journal of Chromatography B, 878(15-16):1145-1152. 

[104] Khaselev, N. and Murphy, R. C. (1999) Susceptibility of plasmenyl 

glycerophosphoethanolamine lipids containing arachidonate to oxidative degradation. 

Free Radical Biology & Medicine, 26(3-4):275-284. 

[105] Maskrey, B. H.; Bermúdez-Fajardo, A.; Morgan, A. H.; Stewart-Jones, E.; 

Dioszeghy,V.; Taylor, G. W.; Baker, P. R. S.; Coles, B.; Coffey, M. J.; Kühn, H. and 

O’Donnell,V.B. (2007) Activated platelets and monocytes generate four 

hydroxyphosphatidylethanolamines via lipoxygenase. Journal of Biological Chemistry, 

282(28):20151-20163. 

[106] Tyurina, Y. Y.; Tyurin, V. A.; Epperly, M. W.; Greenberger, J. S. and Kagan, V. E. 

(2008) Oxidative lipidomics of gamma-irradiation-induced intestinal injury. Free Radical 

Biology & Medicine, 44(3):299-314. 

[107] Tyurin, V. A.; Tyurina, Y. Y.; Feng, W.; Mnuskin, A.; Jiang, J.; Tang, M.; Zhang, X.; 

Zhao, Q.; Kochanek, P.  M.; Clark, R. S.; Bayir, H. and Kagan, V. E. (2008) Mass-

spectrometric characterization of phospholipids and their primary peroxidation 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Guan%20Z%22%5BAuthor%5D
http://www.elsevier.com/locate/chromb
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wang%20HY%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Liu%20CB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wu%20HW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kuo%20JS%22%5BAuthor%5D
http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291097-0231
http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291097-0231
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Aaltonen%20N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Laitinen%20JT%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lehtonen%20M%22%5BAuthor%5D
http://www.elsevier.com/locate/chromb


 
 

 

 

 

 

 

 

 

References 

121 
 

products in rat cortical neurons during staurosporine-induced apoptosis. Journal of 

Neurochemistry, 107(6), 1614-1633. 

[108] Tyurin, V. A.; Tyurina, Y.; Jung, M. Y.; Tungekar, M. A.; Wasserloos, K. J.; Bayir, H.; 

Greenberger, J. S.; Kochanek, P. M.; Shvedova, A. A.; Pitt, B. and Kagan, V. E. (2009) 

Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and 

phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory 

stimuli. Journal of Chromatography B. Analytical Technologies in the Biomedical and 

Life Sciences, 877(26):2863-2872. 

[109] Tyurina, Y. Y.; Tyurin, V. A.; Zhao, Q.; Djukic, M.; Quinn, P. J.; Pitt, B. R. and  Kagan, 

V. E. (2004). Oxidation of phosphatidylserine: a mechanism for plasma membrane 

phospholipid scrambling during apoptosis? Biochemical and Biophysical Research 

Communications, 324(3):1059-1064. 

[110] Shadyro, O.; Yurkova, I.; Kisel, M.; Brede, O. and Arnhold, J. (2004) Formation of 

phosphatidic acid, ceramide, and diglyceride on radiolysis of lipids: Identification by 

MALDI-TOF mass spectrometry. Free Radical Biology & Medicine, 36(12):1612-1624. 

[111] Yurkova, R.; Huster, D. and Arnhold, J. (2009) Free radical fragmentation of 

cardiolipin by cytochrome c. Chemistry and Physics of Lipids, 158(1):16-21. 

[112] Hannun, Y. A. and Luberto, C. (2000) Ceramide in the eukaryotic stress response. 

Trends in Cell Biology, 10(2):73-80. 

[113] Kolesnick, R. N. and Krӧnke, M. (1998) Regulation of ceramide production and 

apoptosis. Annual Review of Physiology, 60:643-465. 

[114] Okazaki, T.; Kondo, T.; Kitano, T. and Tashima, M. (1998) Diversity and complexity of 

ceramide signalling in apoptosis. Cell Signalling, 10(10):685-692. 

[115] Obeid, L. M. and Hannun, Y. A. (1995) Ceramide: a stress signal and mediator of 

growth suppression and apoptosis. Journal of Cellular Biochemistry, 58(2):191-198. 

[116] Fishbein, J. D.; Dobrowsky, R. T.; Bielawska, A.; Garrett, S. and Hannun Y. A. (1993) 

Ceramide-mediated growth inhibition and CAPP are conserved in Saccharomyces 

cerevisiae. Journal of Cellular Biochemistry, 268(13):9255-9261. 

[117] Venable, M. E.; Lee, J. Y.; Smyth, M. J.; Bielawska, A. and Obeid, L. M. (1995) Role of 

ceramide in cellular senescence. Journal of Cellular Biochemistry, 270(51):30701-

30708. 

[118] Chao, M. V. (1995) Ceramide: a potential second messenger in the nervous system. 

Molecular and Cellular Neuroscience, 6(2):91-96. 

[119] El Alwani, M.; Wu, B. X.; Obeid, L. M. and Hannun, Y. A. (2006) Bioactive 

sphingolipids in the modulation of the inflammatory response. Pharmacology and 

Therapeutics, 112(1):171-183. 

[120] Meyer zu Heringdorf, D.; Himmel, H. M. and Jakobs, K. H. (2002) 

Sphingosylphosphorylcholine-biological functions and mechanisms of action. 

Biochimica et Biophysica Acta, 1582(1-3):178-189. 

http://www.blackwellpublishing.com/jnc_enhanced/
http://www.blackwellpublishing.com/jnc_enhanced/


 

 
 

 

Chapter VI 

122 
 

[121] Desai, N. N.; Carlson, R. O.; Mattie, M. E.; Olivera, A.; Buckley, N. E.; Seki, T.; 

Brooker, G. and Spiegel, S. (1993) Signaling pathways for sphingosylphosphorylcholine-

mediated mitogenesis in Swiss 3T3 fibroblasts. Journal of Cell Biology, 121(6):1385-

1395. 

[122] Boguslawski, G.; Lyons, D.; Harvery, K. A. and English, D. (2000) 

Sphingosylphosphorylcholine induces endothelial cell migration and morphogenesis. 

Biochemical and Biophysical Research Communications, 272(2):603-609. 

[123] Wirrig, C.; Hunter, I.; Mathieson, F. A. and Nixon, G. F. (2011) 

Sphingosylphosphorylcholine is a proinflammatory mediator in cerebral arteries. 

Journal of Cerebral Blood Flow and Metabolism, 31(1)212-221.  

[124] Joen, E. S.; Lee, M. J.; Sung, S. M. and Kim, J. H. (2007) Sphingosylphosphorylcholine 

induces apoptosis of endothelial cells through reactive oxygen species-mediated 

activation of ERK. Journal of Cellular Biochemistry, 100(6):1536-1547. 

[125] Merrill, A. H. Jr (1991) Cell regulation by sphingosine and more complex 

sphingolipids. Journal of Bioenergetics and Biomembranes, 23(1):83-104. 

[126] Kolesnick, R. N. and Hemer, M. R. (1990) Characterization of a ceramide kinase 

activity from human leukemia (HL-60) cells. Separation from diacylglycerol kinase 

activity. Journal of Biologycal Chemistry, 265(31):18803-18808. 

[127] Bochkov, V. N.; Oskolkova, O. V.; Birukov, K. G.; Levonen, A. L.; Binder, C. J. and 

Stӧckl, J. (2010) Generation and biological activities of oxidized phospholipids. 

Antioxidants and Redox Signaling, 12(8):1009-1059. 

[128] Maciel, E.; Domingues, P. and Domingues, M. R. (2011) Liquid 

chromatography/tandem mass spectrometry analysis of long-chain oxidation products 

of cardiolipin induced by the hydroxyl radical. Rapid Communications in Mass 

Spectrometry, 25(2):316-326. 

[129] Nusshold, C.; Kollroser, M.; Kӧfeler, H.; Rechberger, G.; Reicher, H.; Ullen, A.; 

Bernhart, E.; Waltl, S.; Kratzer, I.; Hermetter, A.; Hackl, H.; Trajnoski, Z.; Hrzenjak, A.; 

Malle, E. and Sattler, W. (2010) Hypochlorite modification of sphingomyelin generates 

chlorinated lipid species that induce apoptosis and proteome alterations in 

dopaminergic PC12 neurons in vitro. Free Radical Biology and Medicine, 48(12):1588-

1600. 

[130] Reis, A.; Domingues, P.; Ferrer-Correia, A. J. and Domingues, M. R. (2004) Tandem 

mass spectrometry of intact oxidation products of diacylphosphatidylcholines: evidence 

for the occurrence of the oxidation of the phosphocholine head and differentiation of 

isomers. Journal of Mass Spectrometry, 39(12):1513-1522. 

[131] Wheelan, P.; Zirrolli, J. A. and Murphy, R. C. (1995) Analysis of hydroxy fatty acids as 

pentafluorobenzyl ester, trimethylsilyl ether derivatives by electron ionization gas 

chromatography/mass spectrometry. Journal of The American Society for Mass 

Spectrometry, 6(1):40-51. 



 
 

 

 

 

 

 

 

 

References 

123 
 

[132] Domingues, M. R.; Simões, C.; da Costa, J. P.; Reis, A. and Domingues, P. (2009) 

Identification of 1-palmitoyl-2-linoleoyl-phosphatidylethanolamine modifications under 

oxidative stress conditions by LC-MS/MS. Biomedical Chromatography, 23(6):588-601. 

[133] Davies, M. J. (1996) Protein and peptide alkoxyl radicals can give rise to C-terminal 

decarboxylation and backbone cleavage. Archives of Biochemistry and Biophysics, 

336(1):163-172 

[134] Xu, G. and Chance, M. R. (2007) Hydroxyl radical-mediated modification of proteins 

as probes for structural proteomics. Chemical Reviews, 107(8):3514-3543. 

[135] Maciel, E.; da Silva, R. N.; Simões, S.; Domingues, P. and Domingues, M. R. (2011) 

Phosphatidylserine Oxidation by Fenton Reaction: Recognition of Oxidation of Serine 

Polar Head by TLC and Mass Spectrometry. Journal of The American Society for Mass 

Spectrometry, accepted for publication. 

[136] Smith, C. D.; Carney, J. M.; Starke-Reed, P. E.; Oliver, C. N.; Stadtman, E. R.; Floyd, R. 

A. and Markesbery, W. R. (1991) Excess brain protein oxidation and enzyme 

dysfunction in normal aging and Alzheimer disease. Proceedings of the National 

Academy of Sciences USA, 88(23): 10540-10543. 

 [137] Selkoe, D. J. (1994) Alzheimer’s disease: a central role for amyloid. Journal of 

Neuropathology and Experimental Neurology, 53(5):438-447. 

[138] Terry, R. D. (2000) Cell death or synaptic loss in Alzheimer disease. Journal of 

Neuropathology and Experimental Neurology, 59(12):1118-1119. 

[139] Walsh, D. M. and Selkoe, D. J. (2004) Deciphering the molecular basis of memory 

failure in Alzheimer's disease. Neuron, 44(1):181-193.  

[140] Talesa, V. N. (2001) Acetylcholinesterase in Alzheimer's disease. Mechanisms of 

Ageing and Development, 122(16):1961-1969.  

[141] Heilbronn, E. (1961) Inhibition of cholinesterase by tetrahydroaminoacric. Acta 

Chemica Scandinavica, 15:1386-1390. 

[142] Watkins, P. B.; Zimmerman, H. J.; Knapp, M. J.; Gracon, S. I. and Lewis, K. W. (1994) 

Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. 

Journal of the American Medical Association, 271(13):992-998. 

[143] Spaldin, V.; Madden, S.; Pool, W. F.; Woolf, T. F. and Park, B. K. (1994) The effect of 

enzyme inhibition on the metabolism and activation of tacrine by human liver 

microsomes. British Journal of Clinical Pharmacology, 38(1):15-22. 

[144] Meng, Q.; Ru, J.; Zhang, G.; Shen, C.; Schmitmeier, S. and Bader, A. (2007) Re-

evaluation of tacrine hepatotoxicity using gel entrapped hepatocytes. Toxicology 

Letters, 168(2):140-147. 
[145] Osseni, R. A.; Debbasch, C.; Christen, M. O.; Rat, P. and Warnet, J. M. (1999) 

Tacrine-induced reactive oxygen species in a human liver cell line: the role of anethole 

dithiolethione as a scavenger. Toxicology In Vitro, 13(4-5):683-688. 

[146] Galisteo, M.; Rissel, M.; Sergent, O.; Chevanne, M.; Cillard, J.; Guillouzo, A. and 

Lagadic-Gossmann, D. (2000) Hepatotoxicity of tacrine: occurrence of membrane 



 

 
 

 

Chapter VI 

124 
 

fluidity alterations without involvement of lipid peroxidation. Journal of Pharmacology 

and Experimental Therapeutics, 294(1):160-167. 
[147] Sergent, O.; Ekroos, K.; Lefeuvre-Orfila, L.; Rissel, M.; Forsberg, G. -B.; Oscarsson, J.; 

Andersson, T. B. and Lagadic-Gossmann, D. (2009) Ximelagatran increases membrane 

fluidity and changes membrane lipid composition in primary human hepatocytes. 

Toxicology In Vitro, 23(7):1305-1310. 

[148] Kozurkova, M.; Hamulakova, S.; Gazova, Z.; Paulikova, H. and Kristian, P. (2011) 

Neuroactive Multifunctional Tacrine Congeners with Cholinesterase, Anti-Amyloid 

Aggregation and Neuroprotective Properties. Pharmaceuticals, 4(2):382-418. 
[149] Hallivel, J. V. and Grove, E. A. (1989) 9-Amino-1,2,3,4-tetrahydroacridine (THA) 

blocks agonist-induced potassium conductance in rat hippocampal neurones. European 

Journal of Pharmacology, 163(2-3):369-372. 

[150] Drukarch, B.; Leysen, J. E. and Stoof, J. C. (1988) Further analysis of the 

neuropharmacological profile of 9-amino-1,2,3,4-tetrahydroacridine (THA), an alleged 

drug in the treatment of Alzheimer’s disease. Life Sciences, 42(9):1011-1017. 

[151] Antunes-Madeira, M. C.; Videira, R. A.; Klüppel, M. L. W. and Madeira, V. M. C. 

(1995) Amiodarone effects on membrane organization evaluated by fluorescence 

polarization. International Journal of Cardiology, 48(3):211-218. 
[152] Wallace, D. C. (1999) Mitochondrial diseases in man and mouse. Science, 

283(5407):1482-1488. 
[153] Kagan, V. E.; Borisenko, G. G.; Tyurina, Y. Y.; Tyurin, V. A.; Jiang, J.; Potapovich, A. I.; 

Amoscato, A. A. and Fujji, Y. (2004) Oxidative lipidomics of apoptosis: redox catalytic 

interations of cytochrome c with cardiolipin and phosphatidylserine. Free Radical 

Biology and Medicine, 37(12):1963-1985. 

[154] Petrosillo, G.; Casanova, G.; Matera, M.; Ruggiero, F. M. and Paradies. G. (2006) 

Interaction of peroxidized cardiolipin with rat-heart mitochondrial membranes: 

induction of permeability transition and cytochrome c release. FEBS Letters, 

580(27):6311-6316. 

[155] Maciel, E.; Domingues, P.; Marques, D.; Simoes, C.; Reis, A.; Oliveira, M. M.; Videira, 

R. A.; Peixoto, F. and Domingues, M. R. M. (2011) Cardiolipin and oxidative stress: 

Identification of new short chain oxidation products of cardiolipin in in vitro analysis 

and in nephrotoxic drug-induced disturbances in rat kidney tissue. International Journal 

of Mass Spectrometry, 301(1-3):62-73. 

[156] Ellman, G. L.; Courtney, K. D.; Andres, B. Jr. and Featherstone, R. M. (1961) A new 

and rapid colorimetric determination of acetylcholinesterase activity. Biochemical 

Pharmacology, 7:88-95. 

[157] Gornall, A. G.; Bardawill, C. and David, M. M. (1949). Determination of serum 

proteins by means of the biuret reaction. Journal of Biological Chemistry, 177(2):751-

756. 

http://www.elsevier.com/locate/freeradbiomed
http://www.elsevier.com/locate/freeradbiomed
http://www.febsletters.org/


 
 

 

 

 

 

 

 

 

References 

125 
 

[158] Monteiro, P.; Duarte, A. I.; Moreno, A.; Gonçalves, L. M. and Providência, L. A. 

(2003) Carvedilol improves energy production during acute global myocardial 

ischaemia. European Journal of Pharmacology, 482(1-3):245-253. 

[159] Vilela, S. M. F.; Santos, D. J. S. L.; Felix, L.; Almeida, J. M.; Antunes, L. and Peixoto, F. 

(2009) Are fentanyl and remifentanil safe opioids for rat brain mitochondrial 

bioenergetics? Mitochondrion, 9(4):247-253. 

[160] Madeira, V. M. C.; Antunes-Madeira, M. C. and Carvalho, A. P. (1974) Activation 

energies of the ATPase activity of sarcoplasmic reticulum. Biochemical and Biophysical 

Research Communications, 58(4):897-904. 

[161] Bartlett, M. E. and Lewis, D. H. (1970) Spectrophotometric determination of 

phosphate esters in the presence and absence of orthophosphate. Analytical 

Biochemistry, 36(1):159-167. 

[162] Hsu, F. -F. and Turk, J. (2005) Studies on Phosphatidylserine by Tandem Quadrupole 

and Multiple Stage Quadrupole Ion-Trap Mass Spectrometry with Electrospray 

Ionization: Structural Characterization and the Fragmentation Processes. Journal of the 

American Society for Mass Spectrometry, 16(9):1510-1522. 

 

 

 

 

 
 

 

 

 

 

 

 

 

http://www.sciencedirect.com/science/journal/00032697
http://www.sciencedirect.com/science/journal/00032697

