]) . Departamento de o .
Universidade de Aveiro Electrbénica, Telecomunicacdes e Informatica.

2010

Jodo Pedro Brites DEMONSTRACAO DE CRIAGAO DE REDES
Ferreira Nogueira VIRTUAIS NO AMBITO DO OPERADOR

]) . Departamento de o .
Universidade de Aveiro Electrbénica, Telecomunicacdes e Informatica.

2010
Jodo Pedro Brites DEMONSTRACAO DE CRIAGAO DE REDES
Ferreira Nogueira VIRTUAIS NO AMBITO DO OPERADOR

Dissertacdo apresentada a Universidade de Aveiro para cumprimento
dos requisitos necessarios a obtengao do grau de Mestre em Engen-
haria de Electrénica e Telecomunicacodes, realizada sob a orientacao
cientifica da Professora Dra. Susana Sargento, Professora Auxiliar do
Departamento de Electrénica, Telecomunicagdes e Informatica da Uni-
versidade de Aveiro.

o juri / the jury

presidente / president

vogais / examiners committee

Professor Doutor Anténio Rui de Oliveira e Silva Borges
Professor Associado do Departamento de Electrénica, Telecomunicagbes e
Informética da Universidade de Aveiro

Professora Doutora Susana Isabel Barreto de Miranda Sargento
Professora Auxiliar do Departamento de Electronica, Telecomunicagdes e In-
formatica da Universidade de Aveiro

Professora Doutora Maria Solange Pires Ferreira Rito Lima
Professora Auxiliar do Departamento de Informatica da Escola de Engenharia
da Universidade do Minho

agradecimentos /
acknowledgements

Esta tese marca o culminar de 5 anos de trabalho na Universidade
de Aveiro. Durante estes fantasticos anos, muitas foram as pessoas
que me marcaram, incentivaram e ajudaram a desenvolver técnica e
pessoalmente.

Quero agradecer aos meus orientadores, Prof. Dra. Susana
Sargento e Engenheiro Jorge Carapinha, da PT Inovacéo, pelo apoio,
visdo e orientacdo fornecidos ao longo destes meses. A conjugacao
das suas diferentes perspectivas e abordagens foi uma mais-valia para
o trabalho desenvolvido.

Ao Mestre Marcio Melo, pela presenga diaria, abundantes dis-
cussdes e partilha de conhecimentos, fundamentais para a minha
progressao e evolugao.

A Portugal Telecom Inovacdo e ao seu departamento de Investi-
gacao Aplicada e Disseminagdo do Conhecimento 1 (IAD1), pelo
apoio, oportunidades e condi¢des providenciadas.

A todos os meus amigos pelo acompanhamento constante, mo-
mentos de descompressao e motivagao.

A minha namorada pela sua enorme paciéncia, compreensdo e
encorajamento.

Por fim, quero agradecer a toda a minha familia, em particular
aos meus Pais, Irm&os e Avés pela confianga depositada nas minhas
capacidades e apoio ao longo de todos 0s anos.

palavras-chave

Resumo

Virtualizagdo, Redes Virtuais, Mapeamento, Descoberta Distribuida,
4WARD, Internet do Futuro, Xen, VMware

A Internet nunca foi pensada para suportar a multiplicidade de servigos
e a quantidade de utilizadores que tem actualmente. Conjugando este
facto com uma crescente exigéncia quer a nivel de desempenho, quer
a nivel de flexibilidade e robustez, facilimente se percebe que a arqui-
tectura actual ndo corresponde nem as necessidades e exigéncias dos
utilizadores actuais nem dos futuros.

A virtualizagdo de rede é, assim, apresentada como uma pos-
sivel solugcdo para este problema. Ao permitir que um conjunto
de redes com requisitos e arquitecturas distintos, optimizados para
diferentes aplicagdes, partiihem uma mesma infra-estrutura e sejam
independentes desta, permitird o desenvolvimento de alternativas que
minimizem ou suprimam as limita¢gdes conhecidas da Internet actual.

O facto de uma mesma rede fisica poder ser utilizada para suportar
multiplas redes virtuais é de grande interesse para os operadores. Ao
melhorar a utilizagdo da infra-estrutura e a consolidagé&o de recursos,
€ possivel aumentar a rentabilidade da mesma. Além desta mais
eficiente utilizagdo, que se traduz numa vantagem competitiva, a
virtualizacdo de rede permite o aparecimento de novos modelos de
negocio através da dissociacao entre servigos e a rede fisica.

Neste sentido, e no ambito do projecto 4WARD, esta dissertacao
propde-se a desenvolver uma plataforma de virtualizagdo que permita
a avaliacao, resolugdo de problemas e testes referentes a criacao,
monitorizagao e gestdo de redes virtuais existentes numa rede fisica
experimental.

Foram desenvolvidas funcionalidades dindmicas de monitoriza-
cao de rede, através das quais € possivel detectar situagbes de
falhas, sobre utilizagéo ou problemas de configuragao. Também foram
desenvolvidos, simulados e implementados algoritmos distribuidos
de descoberta de redes fisicas e virtuais. Na vertente de gestdo da
rede, foram implementados mecanismos que permitem actuar sobre
0s recursos virtuais. Por fim, para que a criagé@o inteligente de redes
virtuais fosse possivel e efectuada o mais rapidamente possivel, foram
desenvolvidos algoritmos de mapeamento dindmico de redes virtuais
€ optimizados os processos de criagao dos respectivos nés.

Por forma a disponibilizar e testar as funcionalidades, foi desen-
volvida uma plataforma de virtualizagdo que fornece um ambiente
grafico e que permite, de forma intuitiva, desenhar e configurar redes
virtuais, monitorizar as redes existentes em tempo real e actuar sobre
elas. Esta plataforma foi desenvolvida de forma modular e podera
servir como base para futuros melhoramentos e funcionalidades.

Os resultados obtidos, além de implementarem as funcionalidades
desejadas e de comprovarem a escalabilidade da arquitectura e dos
algoritmos propostos, provam que é possivel a existéncia de uma
ferramenta Unica de gestao, monitorizagédo e criagao de redes virtuais.

keywords

abstract

Virtualization, Virtual Networks, Embedding, Mapping, Distributed
Discovery, 4WARD, Future Internet, Xen, VMware

The Internet was never designed to support the huge amount of ser-
vices and users that it has nowadays. Combined with ever-increasing
requirements for performance, flexibility, and robustness, one can
easily realize that the current architecture does not match neither the
needs nor the demands of the current and future users.

Network virtualization arises as a potential solution for these is-
sues. By letting multiple networks, optimized for different applications
with different requirements and architectures, to coexist and share the
same infrastructure in an independent way, new alternatives may be
developed that bypass the known limitations of the current Internet.

This ability to use the same physical infrastructure to hold multi-
ple virtual networks is of great interest for network operators. By
improving its infrastructure utilization and increasing the resource
consolidation, higher profitability can be achieved. Besides this com-
petitive advantage, network virtualization enables new business models
and the dissociation of the provided services from the physical network.

With that goal in mind, this Thesis, in the scope of the 4WARD
project, presents a virtualization platform that will enable the evaluation
and solving of the inherent problems associated with the creation,
monitoring and management of virtual networks, embedded in an
experimental physical network.

The developed dynamic monitoring features make the detection
of failures, misconfigurations or overloads possible. In addition,
physical and virtual network discovery mechanisms were designed,
simulated and implemented. Regarding network management, acting
upon virtual resources was also made possible. Finally, in order to
optimize and speed-up virtual network creation, dynamic mapping
algorithms and optimized node creation processes were developed.

In order to provide and test the specified features, a network vir-
tualization platform was developed containing a graphical user
interface that aims to provide the users with a simple, interactive,
intuitive way of designing and configuring virtual networks, as well as
monitoring and managing them. The developed platform poses itself as
a possible platform for future enhancements and added functionalities,
due to its modular nature.

The attained results, besides implementing the desired features
and having proven the scalability and feasibility of the proposed
algorithms, are also the evidence that the existence of a single tool to
manage, monitor and create virtual networks is feasible.

Contents

Contents i
List of Figures v
List of Tables ix
Acronyms xi
1 Introduction & Overview 1
1.1 Motivationo 1
111 Internet ‘s Origins and Evolution 1

112 Current Context 2

11.3 Enabling Innovation o 3

1.2 Purpose 3
1.3 Contribution e 4
14 Thesis Outline e 4

2 State of the Art 7
21 0verview 7
22 Server Virtualization 7
221 Advantages. 8

222 Disadvantages 9

223 Virtual Machine Monitoro Lo 10

224 1A-32 Virtualization 11

225 \Virtualization Techniques oL 12

226 Virtual Appliances 15

227 Analysis of Server Virtualization Tools 15

228 Libvirt: Virtualization APl 18

229 Summary 19

23 Network Virtualization 20
231 Design Goals 20

23.2 Proposed Business Models L. 21

233 Existing Technologies 22

234 Existing Initiatives 26

235 Mechanisms for Network Virtualization Support 27

236 Summary 34

24 Network Virtualization Platforms L. 34

3

240 GENI .o 34

242 VNet Management Demonstrator vO.1 oL 36
Platform Requirements Specification 4
371 Introduction 4
32 Overall Description 4

3271 Features 4

322 UserClasses i 42

323 Operating Environmento Lo 42

324 Constraints L 43

325 Assumptions and Dependencies L. 43
33 System Features Details L 43

331 Physical and Virtual Resource and Topology Discovery 43

3.3.2 Substrate and Virtual Network Monitoring 43

33.3 Virtual Network Creation 44

334 Virtual Network Management 44
34 Interface Requirements 45

340 Use Cases 45

342 UseriInterface 46

343 Software Interfaceso 47

344 Communication Interfaces L o oo 47
35 Non-functional Requirements 47

351 Performance 47

352 Security ... 47

353 Software Quality Attributes. 47
3.6 Conclusions 48
Architecture & Mechanisms Design 49
41 Introduction 49
42 Module Decomposition 49

421 Control Centre module L 49

422 Manager module 50

423 Agentmodule 50
43 Data Decomposition. 50

431 Control Centre Data Decomposition. 50

43.2 Manager Data Decomposition 51

433 Agent Data Decomposition L L 51
44 Dependencies. 51

441 Control Centre Dependencies 51

442 Manager Dependencies 51

443 Agent Dependencies 51
45 Interface Description 51

451 User — Control Centre Interface 51

45.2 Manager — Control Centre Interface 51

453 Agent - Manager Interface oo o L 52
4.6 lIdentification Process 52
47 Virtual Network Creation 53

i

6

471 Topology and Configuration oL 53

472 Virtual Network Mapping L oL 53
473 Virtual Resource Creation 55
474 Simulation Results L 56
48 Topology Discovery 61
481 Distributed Topology Discovery, 61
48.2 Centralized Topology Discovery 66
483 Simulation Results L 68
49 Substrate and Virtual Network Monitoring 70
410 Virtual Network Management L o 71
411 Conclusions 72
Software Implementation 75
51 Introduction 75
52 Auxiliary Functions and Libraries o oL 75
521 XMLparsing 75
522 popen_noshell 75
523 libvirt . ..o 75
53 Virtual Network Control Centre 76
531 Databases and Classes 76
53.2 Module Decomposition 77
53.3 Virtual Network Design & Configuration 81
534 Virtual Network Monitoring L L. 85
535 Virtual Network Management 85
54 Virtual Network Manager 86
541 Main Databases and Structures L. 86
54.2 Module Decomposition 86
543 Virtual Network Mapping o 90
55 Virtual Network Agent 93
55.1 Main Databases and Structures Lo 93
55.2 Module Decomposition 93
553 Resource Data Gathering oL oL 100
55.4 Virtual Network Creation 101
50 Conclusion 102
Tests & Results 105
6.1 Introduction L 105
6.2 Testbed Description & General Assumptions 105
6.3 Data Gathering 107
631 Cold Boot. 107
6.4 Network Discovery 108
0.41 Cold Network Discovery 108
0.42 Hot Network Discovery 109
6.5 Virtual Network Mapping & Creation 111
6.5.1 Virtual Network Mapping o L 111
6.5.2 Virtual Network Creation 112
6.0 Conclusions L 113

iit

7 Conclusions

7.1 Final Conclusion

7.2 Future Work

Bibliography

v

List of Figures

11

2.1
22
23
24
25
2.6
27
2.8
29
2.10
211
212
213
214
215
2.16
217
218
219

31
32

4.1
4.2
43
44
45
4.6

47
4.8

4.9
410

Cisco IP Traffic Forecast 2
Server Consolidation Through Virtualizaton 9
Type 1 Hypervisor Architecture 11
Type 2 Hypervisor Architecture 11
Full Virtualization on the IA-32 architecture 13
Paravirtualization on the IA-32 architecture 14
Hardware-Assisted Virtualization on the IA-32 architecture 15
Virtual Machine vs. Virtual Appliance L. 15
Xen's Architecture 16
Libvirt: Virtualization APl 18
Libvirt control methods. 19
SP and InP business model 22
SP, VNP, VNO and InP business model 23
MPLS Packet Labelling and Label Swapping 24
Consumer vs. Provider Edge based VPN 25
Cisco Nexus 1000V Architecture [15] 30
VNet Demonstrator v0.1 Testhed 36
VNet Demonstrator v0.1 Architecture 37
VNet Demonstrator v0.1 Agent detail 38
VNet Demonstrator v0.1 Manager detail 39
Simplified VNet Creation use-cases 45
Simplified VNet Management and Monitoring use-cases 46
Global view of the existing modules. 50
Virtual Network Control Center - User Interface. 52
Agent and Control Centre ID attribution process. 53
VNet Creation use-cases 54
Virtual Resource creation. L 56
Virtual Network Mapping Simulation Scenario 1 - Maximum accepted Virtual

Networks. 58
Virtual Network Mapping Simulation Scenario 2 59
Virtual Network Mapping Simulation Scenario 3 - Maximum accepted Virtual

Networks. 61
Topology Discovery — Assembling neighbourhood knowledge. 62
Virtual topology discovery example L. 63

411
412
413
414
415
416
417

5.1

52

53

54

55

5.6

57

5.8

59

5.10
511
512
513
5.14
5.15
5.16
517
518
519
5.20
5.21
522
523
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
532
533
5.34
535
5.36
537
538
5.39

Discovery algorithm - Bootstrap diagram 66

Discovery algorithm — Resource message received 67
Discovery algorithm — Delete resource message received 67
Distributed discovery algorithm simulation example. 09
Discovery Algorithm Scalability Tests — Number of Physical Nodes. 70
Discovery Algorithm Scalability Tests — Number of Virtual Networks. 71
VNet Management and Monitoring use-cases 72
Control Centre’s Classes and Lists. 76
Control Centre's VNet list hash map and class. 76
Control Centre's Resource and Link classes. 77
Control Centre’s Display classes. 78
Control Centre Start Up. 78
Control Centre Module. L 79
Control Centre Model Thread Diagram. 79
Control Centre View Thread Diagram. 79
Control Centre’'s Dropdown & Coolbar menus. 81
Control Centre’s Canvas. 81
Control Centre View Thread main loop Diagram. 81
Control Centre's Radial resource placement. 82
Control Center - New Resource Diagram.. 82
Configuring a new Virtual Resource 83
Control Center - New Link Diagram. 84
Configuringanew Link 84
Control Center - Commit & Save Diagrams. 84
Control Center - Get VNet Diagram. 85
Control Center - Virtual Node Monitoring. 85
Manager’'s VNet Entry.o 86
Connected Agents and Control Centres Entries. 87
Manager - Start-Up. 87
Manager Moduleo 88
Manager - Agent Connection Accept Thread.. 88
Manager - Control Centre Connection Accept thread. 89
Manager - Status Update thread. 90
Manager - Command Send thread. 0L 90
Manager - Receive XML Diagram. L. 92
Manager - Map Virtual Network Diagram. 92
Node and Link Discovery Entries. 93
Agent Module 94
Agent - Start-Up diagram. 94
Agent - Manager Connection thread diagram. 95
Agent - Keep Alive and ID Request thread diagram. 95
Agent - Template thread diagram. L. 96
Agent - Status Update thread diagram. 96
Agent - Update Resource Information diagram. 97
Agent - Delete Resource diagram. L L. 97
Agent - Status Send thread diagram. o000 oL 97

vi

5.40
541
5.42
543
5.44
5.45
5.46
5.47

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Agent - Link Management thread diagram. 98
Agent - Link Management thread main loop diagram. 98
Agent - Passive Link Discovery thread diagram.. 99
Agent - Active Link Discovery thread diagram. 99
Agent - Neighbour Hello thread diagram. 99
Agent - Create new Bridge. 101
Agent - Create Virtual Node Diagram. 102
Agent - Virtual Node Request Diagram.. 102
Testbed Network. 106
Reference Virtual Network. o 107
Agent Cold boot results. 108
Cold network discovery results. L 109
Distributed vs. Centralized network discovery results. 110
Virtual Network Mapping results. o 111
Virtual Network Creation results.. 113

vit

viit

List of Tables

4.1
42

43

4.4

45

4.6

5.1
52
53
54

6.1

Virtual Network Mapping- Virtual Nodes' parameters pool.. 57
Virtual Network Mapping Simulation Scenario 1- Physical Nodes’ parameters

pool. . . 57
Virtual Network Mapping Simulation Scenario 2- Number of embedded virtual

networks. 59
Virtual Network Mapping Simulation Scenario 3- Physical Nodes’ parameters

pool with doubled node capacity. oL 60
Virtual Network Mapping Simulation Scenario 3- Physical Nodes’ parameters

pool with doubled link capacity. 60
Distributed discovery - 1°t simulation parameters. 68
Manager to Control Centre message types.. 80
Control Centre to Manager message types.. 80
Agent to Manager message types. o 89
Manager to Agent message types. oo 91
Testbed specification. L 106

X

Acronyms

AMD Advanced Micro Devices

API1 Application Programming Interface

ARPAnet Advanced Research Projects Agency Network
ATM Asynchronous Transfer Mode

BGP Border Gateway Protocol

CABO Concurrent Architectures are Better than One
CAN Content Addressable Network

CAPEX Capital Expenditure

CE Costumer Edge

CMS Cambridge Monitor System

CPU Central Processing Unit

CSPF Constrained Shortest Path First

CV Computer Virtualization

DNS Domain Name System

DoS Denial of Service

DR Designated Root

EPT Extended Page Tables

FEC Forwarding Equivalence Class

FTTH Fiber To The Home

GB Gigabytes

GENI Global Environment for Network Innovations
GGID GENI Global Identifier

GMC GENI Management Core

xi

GMPLS Generic Multi Protocol Label Switching
GP Generic Path

GPS CGlobal Positioning System

GUI Graphical User Interface

HDD Hard Disk Drive

HVM Hardware Virtual Machine

IDD Isolated Driver Domain

IDE Integrated Drive Electronics

InP Infrastructure Provider

IOMMU Input/Output Memory Management Unit
IP Internet Protocol

IPTV Internet Protocol Television

IPv6 Internet Protocol Version 6

ISA Instruction Set Architecture

ISO International Standards Organization
ISP Internet Service Provider

1/O Input / Output

KB Kilobytes

L1VPN Layer 1 VPN

L2 Layer 2

L2VPN Layer 2 VPN

L3 Layer 3

L3VPN Layer 3 VPN

LAN Local Area Network

LER Label Edge Router

LSR Label Switching Router

LSP Label-Switched Path

LVM Logical Volume Management

MAC Media Access Control

xit

MIB Management Information Base
MMU Memory Management Unit

MPLS Multi Protocol Label Switching
Mpps Mega packets-per-second

MTU Maximum Transmission Unit

NAT Network Address Translation

NCP Network Control Program

NFS National Science Foundation
NGSP Next Generation Service Provider
NPT Nested Page Tables

NR Neighbourhood Resource Availability
NV Network Virtualization

NVE Network Virtualization Environment
NVSS Network Virtualization System Suite
NWGN New Generation Network

ON Overlay Network

OPEX Operational Expenditure

OS Operating System

OSI Open Systems Interconnection

P2P Peer-to-Peer

PDMA Packet Division Multiple Access
PE Provider Edge

PoP Point-of-Presence

PPP Point-to-Point Protocol

QoS Quality of Service

RAM Random Access Memory

RSVP Resource Reservation Protocol
RVI Rapid Virtualization Indexing

SDH Synchronous Digital Hierarchy

xiit

SLA Service Level Agreement
SMP Symmetric Multiprocessing
SONET Synchronous Optical Network
SP Service Provider

SSH Secure Shell

SSL Secure Sockets Layer

STP Spanning Tree Protocol

SWT Standard Widget Toolkit
TCO Total Cost of Ownership

TCP Transmission Control Protocol
TDM Time Division Multiplexing
TTL Time-To-Live

UDP User Datagram Protocol

US United States

VC Virtual Computer

VEM Virtual Ethernet Module
VLAN Virtual Local Area Network
VNCC Virtual Network Control Centre
VolIP Voice Over IP

VPN Virtual Private Network

VM Virtual Machine

VMM Virtual Machine Monitor
VN Virtual Network

VNO Virtual Network Operator
VNP Virtual Network Provider
VSM Virtual Supervisor Module

XML Extensible Markup Language

Xiv

Chapter 1

Introduction & Overview

1.1 Motivation

1.1.1 Internet ‘s Origins and Evolution

The Internet has its origins in the first large-scale packet switching network, Advanced
Research Projects Agency Network (ARPAnet). Originally, ARPAnet's communications were
based on Network Control Program (NCP) [18], a protocol that combined addressing and
transport. Although it performed quite well for the initially small network, scalability and
flexibility concerns started to spread among the development community. Novel routing
mechanisms were proposed [42] and it also became clear that separating transport from
addressing was a requirement for a general-purpose network. In response to the scaling
issues, in 1982 the Domain Name System (DNS) system was deployed and replaced the
host.txt file for naming Internet systems [51, 25, 61].

On January 1°' 1983, Transmission Control Protocol (TCP)/Internet Protocol (IP) was
implemented and replaced NCP as the standard interface for network communications. This
was a revolutionary step that required an update to all existing nodes, about four-hundreds
of them [24]. This was probably the last time such an update was possible.

Since its inception, the Internet has mostly suffered evolutionary, rather than revolution-
ary, updates, since it is much easier to deploy a new protocol that fills a gap than it is to
replace a protocol that despite not optimal, still works.

In a commercial network, change can only happen if the motivation is sufficient, i.e.
if the economic benefit to be attained is significant or if collapse is eminent. Economic
reasons are not typically the crucial factor when changing a core network, in part because
interoperability between providers must be guaranteed, and changes that are interoperable
do not differentiate an Internet Service Provider (ISP) from its competitors. Thus, the main
driving force for change and innovation is the need to fix an immediate issue.

As the Internet’s user base grew, so did the problems and requirements. For example,
the initial implementation of TCP caused several network collapses due to congestion, since
the network resources were operating at full capacity but no useful work was being done.
The TCP retransmission strategy was clogging the network with unnecessary retransmitted
packets. It became evident that congestion control was a necessity in a network [45]. Instead
of trying to implement congestion control in a protocol-independent manner, a quick-fix was
to implement congestion control mechanisms for TCP; such implementation was backwards
compatible and did a good job at solving the issue.

Although efforts were made and standards were created to implement a lot of features
that were missing from the original design such as security, multicast, Quality of Ser-
vice (QoS), explicit congestion notification and mobile IP, most of these technologies have
not been widely deployed. In spite of being useful, they solve problems that are not imme-
diately pressing, and therefore are best described as enhancements rather than fixes to the
architecture.

Even though many extensions failed, Multi Protocol Label Switching (MPLS) and Virtual
Private Networks (VPNs) are examples of modifications that succeed, most likely because
they provided workarounds to some limitations of the Internet protocols within an ISP.

1.1.2 Current Context

Today'’s Internet purpose is many-fold; it is widely used in business, defense, media
and social connections. It has become a critical part of modern society and the current
global economy relies heavily on it. This strong dependency will continue to increase as
more and more services converge to a digital medium: circuit-switch telephony is being
converted to Voice Over IP (VolP); television broadcast using Internet Protocol Television
(IPTV) is becoming common; cloud computing is gaining momentum; high definition content
is becoming the norm and the user base keeps on growing. Recent forecasts from Cisco,
predict that in 2013, the annual global IP traffic will exceed two-thirds of a Zettabyte (667
Exabyte) [16]. The expected traffic growth is shown in figure 1.1.

Total IP Traffic (Exabytes)

800 -+
700 -
600 -
500 -

Mobile
400 -

. W Business
300
m Consumer
200 -
ol
0 - T T T T T

2008 2009 2010 2011 2012 2013

Figure 1.1: Cisco IP Traffic Forecast

This kind of strain on the existing Internet backbones may force the rethinking of the
current architecture. Technologies developed to aid this convergence, such as QoS and IP
Multicast, have not seen a wide adoption and their capacity may not be able to keep up
with user demand.

The stagnation observed in the current core protocols of the Internet, which has been re-
ferred to as the Internet ossification [65], presents an obstacle to innovation by only allowing
more efficient implementations of existing network layer protocols instead of providing the
means for testing and deploying new ones. While the possibility exists for developing and
deploying high layer protocols and new physical and link technologies, the network layer
cannot be modified. Although IP has been designed to take into account future options to

allow extensibility, its options remain largely unused due to the use of hardware-assisted
routing: routing packets without options is much faster. The use of options could also lead
to Denial of Service (DoS) attacks on the routers; therefore, packets using options are likely
to be filtered [24]. Internet Protocol Version 6 (IPv6) tries to remedy the options issue by
providing separate end-to-end options from hop-by-hop IP options, but its adoption has
been very slow.

The Internet, thus, became a victim of its own success.

1.1.3 Enabling Innovation

If the Internet intends to get better, fundamental changes need to take place: innovation
should not only be allowed but encouraged; there should be enough flexibility and isolation
to allow experimental networks to be deployed without affecting other running networks;
renewal and change must become ordinary processes.

This competition between novel networks and their respective protocols and architectures
will allow the Internet to evolve and better suit their users and services’ needs.

One way to build such a diversified [65] Internet could be by providing a versatile in-
frastructure that could be “sliced” to create several independent networks. These networks
would then be able to run their own protocols and services and comply with different Service
Level Agreements (SLAs). A controlled, isolated infrastructure sharing scheme could poten-
tially reduce the complexity of testing, deploying and managing new networks, protocols and
services while assuring legacy compatibility and a seamless integration with the existing
ISPs and their networks. It would provide a non-disruptive solution to introduce disruptive
technologies.

By implementing virtualization solutions on both the networks’ nodes and links, it is
possible to create virtual networks, which are by themselves the so called “slices” of the
substrate network: they provide resource sharing, isolation and independency from the un-
derlying physical network. The ability to create these virtual networks on-demand and
on-the-fly is of great interest for network operators since it furnishes them with the means
to create and provide custom-tailored networks to their customers while at the same time
increasing the average resource usage of their network, thus enhancing their business ad-
vantages.

1.2 Purpose

The need for providing network operators with the tools to instantiate and manage virtual
networks on top of existing physical networks was highlighted on the previous section. To
that end, this thesis’ purpose is many-fold: to design a virtualization platform and evaluate
the respective mechanisms and algorithms that enable the embedding, management and
monitoring of these virtual networks.

A virtualization platform, containing a graphical user interface, shall be created in order
to test this solution on a physical testbed and prove the feasibility and applicability of
network virtualization concepts.

The node and link virtualization concepts shall be explored and discussed. Several
approaches, initiatives, existing products, tools, mapping and discovery algorithms will be

considered. By studying these different parts required for network virtualization, a solution
shall be found and implemented.

Special attention will be given to the discovery and mapping aspects of virtual networks.
The developed algorithms shall be tested for their scalability properties, and conclusions
will be made about their performance and overhead.

1.3 Contribution

As the result of the accomplishment of the proposed objectives, this Master's Thesis
contributes with a virtualization platform that enables the deployment, management and
monitoring of virtual networks running on a substrate network, as well as with innovative
physical and virtual topology discovery and mapping algorithms.

The topology discovery algorithm implemented is simple, fast, scalable, and presents a
low discovery overhead. It assures that up-to-date link information is always available and
therefore allows proper network monitoring.

A heurist mapping algorithm that strives to optimize the virtual links’ and nodes’ place-
ment was also proposed and evaluated, both through simulation and experiments.

The platform’s Graphical User Interface (GUI) aggregates the developed functionalities
and provides an easy, intuitive and interactive way of dynamically monitoring, managing
and creating virtual networks.

This Thesis was developed within Portugal Telecom Inovacéo, and its participation in
the ICT FP7 4WARD project. As a result of the work done on this Thesis, a demonstration
was made in the final review meeting of the 4WARD project in Kista, Sweden. This Work
Package 3 demonstration was chosen as the main work to show in this final evaluation,
and was highly appreciated by both the European Commission’s reviewers and the general
audience.

In addition, a contribution was also made to 4WARD’s 3" Workpackage Deliverable 3.2.1
[2]; an internal paper regarding the virtualization framework and developed algorithms was
accepted for publication in the magazine Saber e Fazer from Portugal Telecom Inovacéo; a
paper regarding virtual network discovery was submitted to IEEE Globecom 2010 Workshop
on Network of the Future.

In the future, it is also planned the writing of two papers regarding virtual network
mapping and the virtualization platform.

1.4 Thesis Outline

Chapter 2 will begin by providing a global overview of virtualization, existing tools and
technologies. Focus will be given not only on server virtualization, the enabler of the devel-
oped software, but also on network virtualization, its goals, challenges and existing initia-
tives. At the end of the chapter, the base software that stirred this thesis will be depicted.

The following chapter, Chapter 3, will deal with the requirements and specification as-
pects of the developed software. The main goals, desired features, interfaces, target users
and performance requirements will be explored.

The Thesis will then proceed in Chapter 4 with providing an architecture to the virtu-
alization platform and its associated mechanisms. In order to address the desired features,

algorithms and mechanisms will be proposed. As a result, algorithms for dynamic topology
discovery and virtual network mapping will be developed and tested through simulation.

On Chapter 5, a more detailed description of each one of the software’s modules will be
provided. lts main data structures, internal organization and mechanisms will be described
and a thorough analysis will be made on how the primary functionalities were implemented.

Chapter 6 shows and examines the experimental results. These results shall validate the
feasibility of the demonstrator, reveal that the proposed algorithms perform as predicted,
and that the desired functionalities work as expected.

This Thesis will terminate on Chapter 7 with a final conclusion on the developed tool,
associated mechanisms, algorithms and performance, based on the attained results. Finally,
several suggestions will be made on how to improve the platform and add new functionalities.

Chapter 2

State of the Art

2.1 Overview

Although the main purpose of this thesis is to explore concepts and develop solutions for
network virtualization, server virtualization works as an enabler for it and is thus discussed
on section 2.2. The following section, 2.3, will deal with network virtualization aspects.
On both cases, their main advantages, disadvantages and existing technologies will be
discussed, although with a greater emphasis on network virtualization.

The chapter ends with an analysis of existing network virtualization platforms, on section
2.4.

Since this chapter will span many different concepts, the summary will be distributed
throughout the several sections.

2.2 Server Virtualization

Back when computer systems were invented, most systems were large, expensive to
operate and there was a great usage demand. Therefore, they had to evolve to become
time-sharing systems so that multiple users could use them simultaneously. However, with
a growing number of computers, users and applications, it became apparent that time-
sharing was not always ideal. The misuse of the system by any user, intentional or not,
could jeopardize all users and grind the entire system to a halt. For companies that could
afford it, buying multiple computers mitigated these problems. Therefore, having multiple
isolated systems was a wish of many organizations [55].

In order to respond to organizations wishes (and make some money out of it), the first
research Hypervisor to offer full virtualization support was implemented on IBM's CP-40
system in January 1967 (which preceded the IBM's revolutionary CP-67/Cambridge Monitor
System (CMS))[17]. It supported multiple instances of client Operating Systems (OSs), in
particular the CMS. The virtualization increased robustness and stability, allowing beta and
experimental OSs to be deployed and debugged without affecting other stable running OSs.
This was a great advantage since there was no need for additional, expensive, development
systems.

Once enterprise-grade restricted, server virtualization is getting more and more common
in personal computers and workstations due to a great increase in computing performance
in the past two decades. In 1993 Intel launched the Intel Pentium architecture, which was a

true milestone in the personal computing history: it was the first superscalar x86 processor.
It explored instruction level parallelism (pipeline) and exhibited an impressive performance
for that time. Currently, dual-core Central Processing Units (CPUs) running in excess of
3GHz are common, and so are becoming quad, six, eight and recently released twelve-
core (e.g. Advanced Micro Devices (AMD)’'s Opteron 6174) processors effectively turning a
desktop commodity computer into a powerhouse of computing performance. This increase
in performance and computing resource availability brought consumer computers together
with virtualization technologies and their advantages.

After analysing the virtualization’'s main virtues and issues, the following subsections will
only deal with technologies and solutions available in the literature.

2.21 Advantages

Besides the resource consolidation aspect, there are many other advantages to be at-
tained with server virtualization, some of them will be described next.

Safety

By separating environments with different security requirements using Virtual Machine
(VM)s, one may select the OS that best matches the required services and tools. Therefore,
a security attack on one system would not compromise the others, due to the isolation
property.

Trust and availability

New or experimental versions of software may be tested on the hardware that they will
later use without jeopardizing production workloads, and so, virtual systems may be used
as low-cost test systems.

Optimize resource utilization

Since different workloads tend to show peak resource use at different times of the day
and week, implementing multiple workloads in the same physical server can improve system
utilization.

Additionally, because multiple OS types and releases may run on a single system, each
virtual system may run the OS that best matches its application or user requirements, thus
further improving the resource utilization. An example of workload consolidation may be
observed in figure 2.1

Cost

Virtualization allows multiple workloads and systems to be combined into a single phys-
ical server, reducing the costs of hardware and operations. The usual approach is to con-
solidate small servers into more powerful ones. Studies show that the cost reduction may
vary from 29% to 64% in some cases [43]

Utilization of a single server after
consolidation

Utilization of individual servers

Figure 2.1: Server Consolidation Through Virtualizaton

Load balancing

Since the VM is completely controlled and encapsulated by the hypervisor, migration is
made possible and is relatively easy to do, hence enabling load balancing among multiple
virtualized servers [66].

Legacy applications

If a company in need to update its servers chooses to do so and migrate to different
operating systems, it is possible to continue running legacy applications on the old OS
within a VM, which reduces migration costs. One example of the support of this approach
is the “XP Mode” supported by “Microsoft Windows 7".

Versatility

The ability of taking snapshots of running VMs, the easiness of migration, shifting of
assigned resources, priority allocations, deployment of new VMs and the existence of Virtual
Appliances are a big plus when considering virtualization.

2.2.2 Disadvantages

Even though the advantages are plenty, there are also some disadvantages, which will
be considered next.

Safety

According to a safety specialist from Gartner [38], nowadays, VMs are actually less safe
than physical machines due to the Virtual Machine Monitor (VMM) [12].

This is an interesting point of view since, if the host OS is compromised, the entire guest
VMs will also become compromised. Because the VMM is a software layer, there may be
vulnerabilities.

Management

Virtual environments need to be created, monitored, maintained and configured. Although
there are a few products that aim to integrate those functionalities, they are usually not
optimal and are hard to use [12].

Performance

A few questions remain to be answered on the subject, the first one relates to assessing
the performance penalty introduced by the VMM. In order to establish a systematic, standard
performance benchmark, the SPEC Virtualization Committee was created [59] but no results
have been made available as of this date.

Some independent results conducted by VMware comparing ESX Server with Xen (that
were promptly questioned and re-run by Xen-Source [12]) show that the performance impact
is not significant.

2.2.3 Virtual Machine Monitor

A virtualized system includes a new layer of software, called the VMM or Hypervisor. It
uses a thin layer of software or firmware to achieve fine-grained, dynamic resource sharing.
The main role of the VMM is to arbitrate access to the underlying physical host's platform
resources so that these resources can be effectively shared among multiple “guest” OSs [46].

In 1974 Popek and Goldeberg said that “For any computer a virtual machine monitor
may be constructed if the set of sensitive instructions for that computer is a subset of the
set of privileged instructions” [50], where sensitive instructions refers to instructions which,
in a virtualization context, may interfere in the execution of other OS who share the same
hardware resources, therefore compromising the isolation between guest OSs.

They also defined three main characteristics believed to be essential to the architecture
of virtualizable machines [50]:

e Any program run under the VMM should exhibit an effect identical with that demon-
strated if the program had been run on the original machine directly. The only notable
exception to this rule was timing. The software (or hardware) assisting the virtual
machine must sometimes intervene to manage the resources used by it, thus altering
the timing characteristics of the running virtual machine.

e A statistically dominant subset of the virtual processor’s instructions is executed di-
rectly by the real processor. This means that a virtual machine is not the same as an
emulator. An emulator analyses and intervenes on every instruction performed by the
real processor, whereas a virtual machine occasionally relinquishes the real processor
to the virtual processor.

e The VMM is in complete control of system resources. This means that the running
virtual machine does not have direct access to the underlying hardware, and every
resource must go through the VMM.

There two main types of Hypervisors:

e Hardware based Hypervisors (Type 1 or native VM, figure 2.2.3) are run directly on the
computer hardware and monitor the guest OSs which in turn runs one level above the
Hypervisor (Ex: Xen, VMware ESX Server).

10

Applications Applications

OS ees o0 OS

VM VM
& /) AN J

Virtual Machine Monitor

Hardware

Figure 2.2: Type 1 Hypervisor Architecture

e Software based Hypervisors (Type 2 or hosted VM, figure 2.2.3) run within a conven-
tional host operating system on the second software level (the first level is dedicated
to the host’s OS), thus the VM runs on the third software level above the hardware
(Ex: Microsoft Virtual Server, VMware Server, Java VM).

Applications Applications

os ees 00 Os

Virtual Machine Monitor

Operating System

Hardware

Figure 2.3: Type 2 Hypervisor Architecture

2.2.4 1A-32 Virtualization

IA-32 (x86) is the dominant Instruction Set Architecture (ISA) nowadays. It is widely
used both in personal computers and in high-end, highly-reliable server applications; hence,
virtualizing IA-32 would have tremendous benefits and applications. Nevertheless, unlike
mainframes, x86 computers were not designed to support full virtualization; they were de-
signed to run directly on the bare-metal hardware, so they assume they fully own the
computer hardware.

The x86 ISA defines four processor operation modes, named rings identified from 0 to 3.
In the most commonly used x86 OSs (Microsoft Windows and UNIXes) only two modes are
used: Ring 0 which detains the higher privileges and is used by the OS (kernel mode), and
ring 3, with lower privileges which is used by user processes (user mode).

This design decision of not taking into account virtualization is most apparent in a small

11

set of essential x86 instructions (17 in total) [53] that are not required to be run on privileged
mode. These sensitive instructions behave differently in kernel mode and in user mode, so
if kernel mode code is run in user mode, some instructions may not throw exceptions but
instead return incorrect (compared to the kernel mode) results. Therefore the VMM has to
scan all user mode code and replace these sensitive instructions with explicit calls to the
VMM.

To overcome these obstacles, a procedure was outlined by Robin and Irvine [53]:

e Non-sensitive, non-privileged instructions: These may be run directly on the processor;
the instructions are known to be safe;

e Sensitive, privileged instructions: Trap. Since the virtual machine is run in user mode,
when it attempts to use an instruction that is privileged, the CPU issues an interruption.
The VMM traps this interrupt and performs whatever steps are necessary to emulate
the instruction for the virtual machine;

e Sensitive, non-privileged instructions: Any of these 17 instructions of the IA-32 archi-
tecture cannot be trapped, therefore, the VMM must monitor the running VM to make
sure that it does not execute these instructions.

Since the virtualization of the IA-32 architecture has so many obstacles, the IA-32 does not
meet the criteria specified previously by Popek and Goldberg [50] and some clever hacking
had to be done.

So, in practice, privileged instructions must be binary translated (an instruction set is
emulated by another through code translation) to run safely on the processor. Another
aspect of the IA-32 that makes it a difficult platform to virtualize is its “open-nature”, i.e.
there is a great amount of diverse and different devices and device-drivers available which
do not make the virtualization effort easy.

The first commercial software supporting virtualization on the x86 platform was released
on February 28th of 1999 by VMware and attained reasonable performance. The user-level
code was run directly in the hardware, to attain the maximum performance, and privilege
code was run using binary translation.

2.2.5 Virtualization Techniques
As clarified below, there are three main solutions to virtualize the x86 platform [68]:
e Full Virtualization using binary translation;

e OS assisted virtualization or paravirtualization;

e Hardware assisted virtualization.

Full virtualization

Implementing a full virtualization architecture, as illustrated in figure 2.4, raises many
challenges: the first problem is the number of different devices that must be supported by
the VMM, which is very high. To solve this problem, the implementations of full virtualization
usually use generic devices (Ex: VMware) that work properly for most devices but that do not
guarantee their best performance. One other inconvenient is the fact that guest operating

12

system does not know that is being executed over the VMM and so, every instruction must
be tested by the VMM prior to being executed on the hardware.

The last issue is bound to memory virtualization and virtual memory management which
is extremely difficult on the IA-32 architecture. If a given guest OS uses virtual memory,
when an application makes a request for a page of memory, the OS translates the memory
address from the applications “virtual” space into the system’s real space using a page
table. Unused page tables may be written to disk when they become inactive or another
application requires memory. All these procedures are typically performed using special
CPU instructions for memory management. In a virtualized environment, the VMM must
intercept all virtual memory calls to the CPU and translate “virtual machine” space into the
system’s real space using another page table, get the memory (which may be on memory or
disk) and then return it to the virtual machine. While this may not look too harsh on the
performance side, one must keep in mind that before the VMM received the memory access
call, a page table lookup on the VMM'’s page table had already been performed to see where
the memory was located, thus requiring in total at least two context switches between the
VM and the VMM, which is very expensive for a single, simple, memory access.

Although there are a lot of problems with full virtualization (performance related, mostly)
there are also some advantages. Full virtualization provides the best isolation and security
for virtual machines and simplifies migration and portability, as the same OS may run vir-
tualized or natively. Examples include VMWare Workstation, User Mode Linux, Microsoft’s
Virtual PC and Xen (from V3.0).

Ring 3 Direct Execution of User
Requests

Ring 2

Ring 1 m Binary Translation of OS
requests

Figure 2.4: Full Virtualization on the IA-32 architecture

Paravirtualization

Paravirtualization (figure 2.5) attempts to mitigate the problems existing in the x86 ar-
chitecture that usually cause the VMM to intervene too often to perform protected tasks.
Instead of going directly to the CPU to perform the task, the OS is modified to call the VMM
T and let it handle the protected task. As such, there is no need for the VMM to constantly
monitor the guest VM and the performance of this technique has proven to be superior to the
one of full-virtualization (without hardware assistance). The main drawback of this approach
is the need to modify guest OSs, and so, its portability is poor.

Xen [9] and Denali [70] are examples of the implementation of this technique.

"The commonly used terminology is hypercall.

13

Direct Execution of User

Ring 3
Requests
Ring 2
. Paravirtualized
Ring 1 Guest OS H'ypercglls.to the
Virtualization Layer
Ring 0 VMM replace Non-virtualizable

OS instructions

Figure 2.5: Paravirtualization on the |A-32 architecture

Hardware Assisted Virtualization

In order to address the difficulties experienced in x86 virtualization, that many developers
could not handle, most modern consumer x86 processors include some form of hardware
virtualization support, usually either Intel-VTx or AMD-V. Even though AMD-V and Intel-
VTx were developed differently and are incompatible, they serve the same purpose.

This virtualization support came in the form of processor extensions, and the first gener-
ation mainly addressed the issue of privileged instructions, offered no support for Memory
Management Unit (MMU) virtualization, and exhibited a performance equal (and sometimes
worst [4]) than that of binary translation techniques. These extensions allow the hypervisor
to run below ring 0, in the so called root mode (figure 2.6). Nevertheless, it made the imple-
mentation of virtualization software simpler, by allowing the use of classic trap-and-emulate
techniques.

The next step in hardware assisted virtualization was to develop a way to virtualize Input
/ Output (1/O) and devices. The first AMD specification of Input/Output Memory Management
Unit (IOMMU), which provides a way of virtualizing 1/O traffic and performing I/O communi-
cation translation at the hardware level (as opposed to software level), was released in 2006
[6] and is currently implemented in some workstation platforms using Opteron processors
with four or more cores and specific chipsets. In the consumer side, there is currently only
one chipset supporting IOMMU:, AMD 890FX. AMD’s IOMMU was recently renamed to a
more commercial name: AMD-Vi. Intel’s solution to 1/O is dubbed “Intel-VTd” and is similar
to AMD’s implementation [3].

The final step in assisting virtualization was to provide proper means of efficiently ac-
cessing the system memory. To this end a second level address translation was needed
and AMD created the Nested Page Tables (NPT) [5] or Rapid Virtualization Indexing (RVI)
while Intel created the Extended Page Tables (EPT), used in current processors based on
the Nehalem architecture [28].

The combination hardware assisted processor virtualization, 1/O and devices virtualiza-
tion and memory access virtualization provides the necessary framework for x86 architecture
to be efficiently virtualized. Not all current systems support these three techniques, but some
already do (mostly workstations) and it is likely that in the future all consumer, commodity,
computers will support them.

14

Ring 3 User Apps Direct Execution of User

Requests

Non-Root Ring 2

Mode g

Privilege

Levelsg Ring 1 OS Requests Trap to
VMM without Binary

Ring 0 m Translation or

Paravirtualization

Root Mode VMM

Privilege Levels

Hardware

Figure 2.6: Hardware-Assisted Virtualization on the 1A-32 architecture

2.2.6 Virtual Appliances

Virtual appliances (figure 2.7) are pre-built, pre-installed, and usually pre-configured at
some degree. They are software solutions VMs that are packaged, updated, maintained and
managed as a unit, that allow the deployment and management of pre-integrated solution
stack.

If, for example, one needs a network performance monitor, solutions exist (Nagios [44],
Cacti[11]...) that allows their deployment without needing to install software on the running
systems; it is simply required to load the appliance and configure it. This approach saves
installation time, potential hassles with initial setup of the software, and isolation from the
other running services.

Virtual Machine Virtual Appliance

Virtual Appliance Pre-installed

Install Applications pre-configured
OS and
. application
stack

[P/l Operating System

4

Hypervisor Hypervisor

Hardware

Hardware

Figure 2.7: Virtual Machine vs. Virtual Appliance

2.2.7 Analysis of Server Virtualization Tools

Several tools exist nowadays; OpenVZ, Xen, VMware, Denali, Microsoft’s Virtual PC, Sun
xVM and Oracle VM are some of the most know tools. In the following pages, only Xen and
VMware will be discussed, since they can both be considered a reference in the way they
implement virtualization.

Xen

Xen is one of the most popular paravirtualization tools and was developed by the Univer-
sity of Cambridge [9]. It has the main goal of paravirtualizing commodity operating systems
and aims for 100% binary compatibility for applications running in its virtual machines.

One of the main advantages of using Xen is due to the fact that it performs better than
other full virtualization alternatives (with no hardware assistance). Although the guest op-
erating system has to be ported to Xen, this is not a real disadvantage nowadays, since the
most common OSs already provide versions supporting Xen, such as Windows XP, FreeBSD,
NetBSD and the most popular Linux/Unix distributions (Fedora, Ubuntu, Debian, Open So-
laris,...).

In order to understand how Xen supports paravirtualization, one must understand two
fundamental concepts: the domain and the hypervisor. The hypervisor, or VMM, was al-
ready discussed. The domains are Xen’s virtual machines. There are two types of domains:
the domain0 (or dom0), which is privileged, and the domainUs (or domUs), which are not
privileged. When the host computer is started, a domain 0, privileged, virtual machine is
created. This domain accesses a control interface and executes management applications.
The domUs can only be created, started, shutdown or modified from within the dom0. In the
domO, a special virtual machine is run, Linux with a modified kernel, that has access to the
resources of the underlying physical machine and is allowed to communicate with the other
domU virtual machines.

Domain 0 has the drivers to the underlying hardware, while domUs have virtual drivers
that must go through the domain O in order to access the physical resources.

Virtual
1/0
Devices

Control
Plane

Dom0 DomU

KernelU KernelU

KernelO

Virtual

N 'v . .
ative Drivers Virtual Virtual

Drivers Drivers Drivers
Backend

Hypercall / Events

Virtual I/0 Virtual MMU Virtual CPU

XEN Hypervisor

Hardware

Figure 2.8: Xen's Architecture

The memory virtualization works by using a memory pool. Each VM is assigned a given
amount of memory which may be dynamically changed without needing to stop or reboot

16

the VM. Each VM may have one or more virtual interfaces. The communication between the
guest OSs and Xen is performed using asynchronous 1/O rings. A global overview on Xen's
architecture is displayed on figure 2.8.

If the computer hardware where Xen is running supports virtualization, the latest versions
of Xen, (3.0 and superior) allow for one other domain type: the Hardware Virtual Machine
(HVM). In this domain, full virtualization is performed, which allows unmodified OSs to
run over Xen's hypervisor. Although the main purpose of Xen was actually to avoid full-
virtualization on the IA-32, with the advent of hardware assisted virtualization, much of the
performance benefits were lost, especially in systems that support processor virtualization,
I/O virtualization, and also memory virtualization. It currently supports up to 64 Symmetric
Multiprocessing (SMP) machines, and up to 64GB of RAM.

In Xen, multiple VMs may communicate with each other using virtual networks that
do not require any physical interface. It is therefore possible to setup full networks, with
multiple Virtual Computers (VCs) in a single physical computer, making it useful for testing
client-server environments, for example.

VMware

VMware is one of the most popular virtualization tools for the x86 platform. There are
tools for all kinds of systems, from personal computers to datacenters. There are four main
categories for the available products: Management and automation, virtual infra-structure,
cloud computing and virtualization platforms.

The most prevalently used ones (VMware Player, Workstation, Server and Fusion — for
MacOS) all rely on the Hosted Virtual Machine Architecture. They install like a regular
application on a host OS. When the software is run, the application portion, VMApp, uses a
previously loaded driver, VMDriver, to establish the VMM component that will run directly
on the hardware and control the guest VMs.

In this scheme, VMware does not need to provide drivers to every single device existing
for the IA-32 architecture; instead, it relies on the drivers of the host OS. If a guest VM
performs an 1/O operation, the VMM will intercept it and perform it in the host OS on its
behalf, using the VMDriver; therefore it is avoided the need to interact directly with the
devices.

This approach may introduce a lot of performance penalty for 1/O intensive tasks, but for
CPU intensive tasks, the performance is similar to that of a physical system. Each VM is
exposed to a set of generic devices, such as a PS/2 keyboard and mouse, floppy and CD-
ROM drives, an Integrated Drive Electronics (IDE) controller, a Soundblaster audio card,
serial and parallel ports, a standard graphics display card, USB ports, and any number of
AMD PCNet Ethernet adapters. This standardization helps with portability across platforms
as all VMs are configured to run on the same virtual hardware, regardless of the physical
hardware on the system.

The lastest version of Vmware Workstation (v7) allows the use of 4 processors at most,
up to 32GB per VM and supports over 200 OSs.

One feature that adds versatility is memory over-committing (assigning VMs more mem-
ory than physically available). Since it is not very likely that all VMs will be needing their
full assigned memory at all times, memory over commiting allows a more effective (dynamic)
sharing of existing physical resources.

Just like Xen, VMware Workstation also provides utilities for setting up virtual networks.

17

2.2.8 Libvirt: Virtualization API
Basic Architecture

Libvirt is a virtualization library developed by Red Hat that strives to provide a common
APl for multiple virtualization environments and hypervisors, such as Xen, KVM, QEMU
and VirtualBox (figure 2.9). It provides a hypervisor-agnostic AP| that allows the building of
customized tools to manage guest operating systems running on a host Linux node. Although
originally designed as a management API for Xen, it was extended to work with other
hypervisors that despite being implemented differently provided common functionalities.

The actual implementation was done in C, but bindings exist for other languages, for
example: Python, Perl, Ruby, Java and OCaml.

QEMU =~ #7 AKVM

virsh

1 R —— P —
: virt-factory virt-manager :
1 | command-line Web-based GUI :
: tool tool tool 1

1

Figure 2.9: Libvirt: Virtualization API

Control Methods

In libvirt, two distinct important concepts exist, the node refers to the physical host and
the domain refers to the guest operating system.

There are two distinct control methods; in the first one, demonstrated in figure 2.10(a),
the management application and domains exist on the same node, so, the management appli-
cation uses libvirt to control the local domains. On the second possible model, figure 2.10(b),
remote communication is required and is performed using libvirtd, the libvirt daemon run-
ning on remote nodes that is installed after the installation of libvirt and that automatically
sets-up the proper drivers for the node’s hypervisor.

Hypervisor Support Mechanisms

Multiple-hypervisor support is possible due to a driver-based architecture that allows a
common API to service different hypervisors in a similar way. Using this architecture, some

18

Hypervisor

RS ibvi m

Linux Host (Domain 0) Linux Host (Domain 0) Linux Host (Domain 0)
I
IR | Network |

(a) Libvirt - Local control. (b) Libvirt - Remote control.

Guest OS Management Guest OS T mam— o -
Application libvirtd

Figure 2.10: Libvirt control methods.

hypervisor-specific functions may not be available through libvirt. If a given hypervisor does
not support some common features, they are marked as unsupported.

Virtualization Shell

Virsh, short for virtualization shell, is an application built on top of libvirt that allows the
use of a command line interface to perform most of the libvirt's functionality without needing
to actually write a program using libvirt.

API Overview

The provided API can be divided into four main categories:

e The hypervisor connection API, which is responsible for establishing and maintaining
the connection to the hypervisor, that can be either local or remote;

e The domain API deals with domain management by performing creation tasks, status
monitoring and general configuration;

e The network APl is in charge of the virtual network components’ management, such
as bridge bhinding, interface attachment and configuration;

e The storage volume and pool APl allows the association and management of storage
components, such as Logical Volume Management (LVM) partitions and disk images;

Summary

From the libvirt's analysis, one can see that this is an invaluable tool for anyone devel-
oping even the simplest virtual machine management application: the flexibility and level
of control provided are enormous and greatly simplify the hard task of managing VMs. By
providing a common interface for multiple hypervisors, the portability issues and effort du-
plication are greatly reduce; hence, it promotes a faster and better application development.

229 Summary

Computer virtualization evolved a lot in the past few years, in just a matter of ten years
consumer-level virtualization has become not only possible but also incredibly advanced. The
existing solutions, especially the ones relying on hardware-assisted virtualization can reach
performance levels similar to native systems. Hardware assisted virtualization is becoming

19

a reality and both AMD and Intel offer fully virtualizable x86 platforms in the workstation
and server markets.

The concept of virtual appliances will allow applications and functionalities to be added
on-the-fly with short deployment and configuration times and without affecting the running
services.

Further investigation and development will need to take place in order to address poten-
tial security issues and develop management tools that can lower the complexity of managing
multiple virtual machines.

All in all, computer virtualization is an enabler of new and revolutionary technologies
that will allow experimental, fearless, testing on production environments and also smoother
upgrade paths.

2.3 Network Virtualization

A Virtual Network (VN) may be defined as a group of virtual resources (e.g. virtual router-
s/switches and virtual machines) interconnected via dedicated virtual links (e.g. Virtual Local
Area Network (VLAN)), agnostic of the underlying hardware, that allows the coexistence of
multiple virtual networks on the same physical substrate.

Just like the previously discussed server virtualization, Network Virtualization (NV) also
fosters the consolidation of resources; in this case the resource is the existing physical
network. It aims not only to reduce the Total Cost of Ownership (TCO) (Capital Expendi-
ture (CAPEX) plus Operational Expenditure (OPEX)) of operators, but also to provide them
with the flexibility of running network protocols independently of the physical infrastructure.
This protocol independency will allow them to better adjust each VN to the desired appli-
cations and services. Instead of considering only the current two main services (Data and
Voice), many other services could easily be created with different speed, safety, and timing
requirements.

As it stands, NV bears the burden of being the tool to revolutionize the Internet [8]. It
is seen as the only possible escape route from the current ossified Internet model where
dramatic architectural changes are not possible, but required.

When deployed, NV, will allow the Internet as it is today to seamlessly run on top of it,
just like any other network, and will allow experimenting and evaluating new technologies
and architectures with complete isolation and without disrupting, or risking the disruption,
of the currently running services.

In the following sections, the goals, current research state of NV, underlying technologies
and existing initiatives will be analysed and evaluated. Due to the fact that NV aims to be
“the choice” for future networking, it presents many technical and conceptual challenges
which will be discussed next.

2.3.1 Design Goals

Network Virtualization, as described in the previous paragraphs, presents several goals
that can be further subdivided in small objectives to be reached. These objectives should
also work as guidelines when developing an algorithm or protocol for VNs, and should also
serve the purpose of providing a means of comparison for different NV architectures.

20

Flexibility, Programmability and Heterogeneity

A virtual networking environment should be flexible on every aspect. The flexibility
should come in the form of programmability, i.e. being able to program the functionality of
every network element and protocol, being able to use whatever topology is desired and
must be able to virtualize every type of underlying network technology, regardless if it is
optical, wireless or copper.

Scalability and Manageability

One of the prime reasons to employ network virtualization, is to allow the coexistence of
multiple networks on the same substrate; therefore, scalability is one fundamental part
of network virtualization. An infrastructure provider should allow as many VNs as the
underlying infrastructure can accommodate, without affecting the VNs' performance. The
management tasks should be made modular and introduce accountability at every layer
of networking. This modularity should simplify network management since it is simpler to

manage multiple virtual networks running in parallel than a single more complex network
[22].

Isolation and Security

Isolation must be guaranteed in order to prevent that a misbehaving virtual network
affects other unrelated networks, whether due to misconfiguration, high resource usage or
security breaches.

Legacy Support

Backwards compatibility is fundamental if the envisioned network virtualization envi-
ronment is to become true. There must be a seamless upgrade path from current network
technologies and protocols to the future ones, and NV must be able to replace the current
Internet without breaking it.

2.3.2 Proposed Business Models

Due to the extra degree of freedom, i.e. the possibility of having multiple networks on a
single substrate network, and also the fact that the services and their underlying protocols
are no longer bound to the infrastructure, decoupling the traditional role of the ISP in two
or more seems logical. This decoupling is being proposed with different models.

Some authors ([22]) suggest the decoupling in two (figure 2.11):

e [nfrastructure Provider (InP):

InPs are responsible for deploying and managing the physical infrastructure and offer
their resources to different service providers. Their main differentiation factor may be
the quality of the resources, geographic location, tools and freedom delegated to their
customers.

e Service Provider (SP):

21

SPs aggregate resources from one or more InP, to build virtual networks and offer
end-to-end services. They can also provide network services, or even a subset of their
network, to other SPs.

Infrastructure Infrastructure
Provider Provider

Figure 2.11: SP and InP business model

While others propose a more complex model ([58] - figure 2.12):

o Infrastructure Provider (InP):

Just like in the previous model, its role is to provide and manage the physical infras-
tructure;

e Virtual Network Provider (VNP):

The VNP main function is to assemble virtual resources from one or more InP, in order
to build a virtual topology;

e Virtual Network Operator (VNO):

The VNO should be responsible for the installation and operation of the VNs provided
by the VNP, according to the needs of the SP;

e Service Provider (SP):

In this business model, the SP is solely responsible for using the VN and providing
some services (application or network services).

2.3.3 Existing Technologies

This section describes some of the existing technologies that emulated network virtual-
ization, to allow the coexistence of logically isolated networks. Focus will be given on four
significant technologies: VLANs, MPLS, VPNs and Overlay Networks (ONs).

VLANSs

VLANSs provide a means of separating broadcast domains into smaller ones, allowing the
creation of functional groups. It is a logically separated IP subnetwork and allows multiple IP
networks and subnets to exist on the same switched network. Since they are logical entities

22

Virtual Network
Operator

%

Vlrtual Netwo k

Infrastructure Infrastructure
Provider Provider

Figure 2.12: SP, VNP, VNO and InP business model

(each VLAN has an ID, from 1 to 4094) configured in software, they are very flexible in terms
of management and reconfiguration, provide increased security (groups with sensitive data
may be separated from the rest of the network), higher performance (due to broadcasting
domain separation) and are cost effective (VLANs can be used in Linux by simply installing
the respective module).

The use of VLANs can also provide increased QoS, since logical networks for different
services may be created. A VLAN with higher priority may be created for VolP and another
one with less priority could be created for data. They are essentially Layer 2 constructs,
even though implementations in different layers do exist. To ensure that VLAN members or
groups are properly identified and handled, frame coloring (tagging) is used. With frame
coloring, packets are given the proper VLAN ID at their origin so that they may be properly
processed as they pass through the network. The VLAN ID is then used to enable switching
and routing engines to make the appropriate decisions as defined in the VLAN configuration.
This tagging allows the multiplexing of frames from different VLANs into trunks, i.e. multiple
VLANs may use a single physical link, while remaining logically separated at layer 2. The
standard that defines VLAN tagging is IEEE 802.1q.

Although useful for companies’ Local Area Networks (LANs), 802.1q suffers from some
problems: considering a costumer with a provided private link interconnecting multiple sites,
if VLAN tagging is used, the provider cannot use VLANs again since that would modify the
costumer’s packets. In order to address this issue, 802.1ad, also called QinQ or Q-tunneling,
was standardized in 2005. This new protocol allows the addition of an extra tag to the
already tagged packet, therefore enabling costumer tagged packets through the operators’
networks. 802.1ad was replaced with an improved version, 802.1ah, in 2008.

23

MPLS

MPLS [56] was created with the goal of increasing the switching speed of core networks,
where routers are interconnected using high speed links (in excess of 40Gbps most of the
times) and rely on layer 3 forwarding.

In order to improve forwarding speeds, MPLS's approach uses label switching. The use
of labels introduces connection oriented mechanisms inside the connectionless IP networks,
since the packets are forwarded solely based on these labels.

When a packet arrives at an edge router, a Label Edge Router (LER), MPLS determines
its Forwarding Equivalence Class (FEC). All packets belonging to a particular FEC will go
through the same path, or a set of paths in case of multi-path routing.

The FEC is encoded in a short fixed length value (label) and when a packet is forwarded
to the next hop, the label is sent with it; hence, in subsequent hops there is no need to
analyze the packets’ network layer header. The packet’s label will be used as an index
into a table that specifies the next hop and corresponding new label, which replaces the
previous one. This label swapping procedure is done by the Label Switching Routers (LSRs)
in hardware, at line speeds. In figure 2.13 an illustrative example of a packet going through
an MPLS enabled network is shown.

When an ingress router reads a packet’s network layer information, QoS data may be
extracted and a particular FEC is chosen according to it; thus, MPLS can be used to dif-
ferentiate services. MPLS is widely used in core networks with major applications in traffic
engineering and VPNs.

The VPN capability is of high importance; using MPLS, the traffic of a given enterprise
is transferred transparently through the Internet with performance and safety guarantees.
VPNs may be implemented using label stacking, i.e. a frame that already belongs to a Label-
Switched Path (LSP) may travel through another LSP, thus multiple LSPs may be aggregated
into a single LSP, similarly to Asynchronous Transfer Mode (ATM). MPLS supports unlimited
stacking.

Swap
s Label
Push wap[____ W Swa Pop
Label Label @:ﬂ e Label
e A == — PR = E—
—_— — — —
LER LSR E/B LSR LER
LSR
MPLS Core Network

Figure 2.13: MPLS Packet Labelling and Label Swapping

VPNs

A VPN allows the creation of private networks over the public Internet infrastructure
while maintaining confidentiality and security. It is usually used by corporations who wish to
have their branches connected, or to allow employees to access remotely to the corporations’
networks. To remain private, the traffic is encrypted. Instead of using a dedicated Layer 2

24

connection, such as a leased line, a VPN uses virtual connections that are routed through
the Internet.

Two main types of VPNs can be considered, taking into account whether the operator
knows about them and plays a role in the VPN establishment or not.

e Costumer Edge (CE) based approach :

The provider network is unaware of the existence of the VPN (figure 2.14(a)). The CE
devices are responsible for creating and destroying the tunnels between themselves.

These are usually Layer 3 VPNs (L3VPNSs), since layer 3 protocols are used to carry
data between the CEs. There are also some VPN solutions that work on upper layers
of the Open Systems Interconnection (OSI) model (transport, session or application).

e Provider Edge (PE) based approach:

The provider network is responsible for VPN configuration and management. A con-
nected CE may behave as if it were connected to a private network (figure 2.14(b)).

In most cases, these provider VPNs are based on layer 3 protocols, but can also be
based on layer 1 or 2.

Layer 2 VPNs transport frames between connected sites. They are independent of the
upper layer protocols and are more flexible than layer 3 VPNs.

Layer 1 VPNs emerged from the need to extend layer 2 / layer 3 packet-switching
concepts to advanced circuit-switching domains (such as optical switching and GMPLS
[40]). This approach to VPNs allows multi-service backbone where customers can offer
their own services with payloads of any layer (e.g. ATM, Time Division Multiplexing
(TDM), IP,...) and provides complete isolation from other VPNs.

§ P Provider Core [
L ﬂ = Network \\&%j,
r [
| Remote |
I
: Headquarters Worker :
L CE Based VPN Connection_ J
(@) Consumer Edge based VPN
CE PE PE CE
Router Router f Router Router
Provider Core)
Network ‘@—@1
Lo " N
- =
| Site 1 Site2 |

I PE Based VPN Connection |

(b) Provider Edge based VPN

Figure 2.14: Consumer vs. Provider Edge based VPN

25

Overlay Networks

Overlay Networks such as the Content Addressable Network (CAN) [52], Chord [60], Pas-
try [57] and Viceroy [39] create a virtual topology on top of the physical topology with the
purpose of implementing a network service that is not available in the existing network.
They are not geographically restricted, are flexible and adaptable to changes. The most
flagrant example is the Internet which was built on top of existing phone network, as an
overlay, that ended up shaping it. Multiple overlay designs have been proposed to address
several issues such as providing QoS guarantees [62], enabling multicasting [29], file sharing
[37] and protection from DoS [32].

Through the use of open-platform solutions such as PlanetLab [48], the test of overlay
networks does not imply large expenditures or complexity. PlanetLab aims to provide both a
research testbed and a deployment platform for new service oriented network architectures,
and hopes that the weight of the developed overlay networks will end up changing the
current Internet architecture. Currently, there are 1086 nodes and 506 sites worldwide [49].

As it stands, overlay networks are seen as a way to deploy small fixes to the “broken
Internet” and rely heavily on the IP application layer. Despite having the potential to
test novel architectures (using virtual testbeds for example [8]), their current design and
implementation is not capable of supporting radically different architectures [13].

2.3.4 Existing Initiatives
AKARI

AKARI, a Japanese project that started in 2005, presents a clean-slate approach to design
a future Internet that shall be ready by 2015, and is expected to support human development
for 50 to 100 years.

Given the current trends in bandwidth usage, that closely follows Moore's Law, it is
expected that in 2015 10Gbps fiber connections will be common for home users (Fiber To The
Home (FTTH)). Thus, it is reasonable to assume that a future Internet will be largely based on
optical (with optical packet switching and optical paths) and wireless (using Packet Division
Multiple Access (PDMA) in combination with other multiplexing techniques) technologies.

Based on these premises, AKARI plans to design and prototype scalable networks with
self-* properties (self-healing, self-organizing, self-configuration, self-routing,...) and with
autonomic and distributed control.

According to the AKARI roadmap, the New Generation Network (NWGN) design should
be completed this year.

GENI

Based on the experience acquired from using PlanetLab, Global Environment for Network
Innovations (GENI) [23] is a United States (US)' long term virtual laboratory initiative that
focuses on providing realistic experimental facilities in order to evaluate alternative archi-
tectural structures, by deploying prototype networks and running controlled experiments.

It is a generalization of the PlanetLab approach, comprised of network resources (links,
nodes...) that are virtualizable and programmable; Thus, they can be shared and partitioned
between many researchers and implement radical new designs. GENI is programmable at
any level of abstraction (e.g. optical, IP, application,...), where researchers may control how

26

the nodes behave, and is able to incorporate a wide variety of network technologies such
as optical, wireless, sensors and phones. The National Science Foundation (NFS) GENI is
composed of a fiber backbone (with 25 Point-of-Presence (PoP)), programmable core routers,
optical switches, programmable edge devices, Wi-Fi, WiMax , Congnitive Radio and Sensors
subnets.

CABO

Concurrent Architectures are Better than One (CABO) [22] is a full virtualization initia-
tive that aims to provide a separation between the physical network infrastructure and the
services that run on it. This split should simplify network management, by relinquishing
the responsibility for the physical devices to the infrastructure providers, allowing a service
provider to run several simple virtual networks concurrently and also encourage competition
between SPs and InPs, since the services are no longer tied to a given infrastructure. Its
pluralistic philosophy, advocates flexible and extensible systems supporting multiple simul-
taneous network architectures.

Unlike other network virtualization initiatives, CABO’s main intent is not to revolutionize
the current internet architecture, but rather to provide a common framework that fosters
better network services and more robust management operations. Concurrent networks are
supported through virtualization of links and routers (composing the VNs), which in turns
add versatility regarding to the protocols running and geographic location.

4WARD

The 4WARD European Project’s goal is to explore new approaches that should enable a
plurality and multitude of interoperable network architectures.

The approach taken toward a new Internet architecture was not merely a technical one.
Business models and impact studies were conducted, requlatory issues were taken into
consideration, and application scenarios were proposed in order to bridge the gap between
innovative research results and socio-economic advantages. Four main business roles were
identified as in 2.3.2: Infrastructure Provider (InP), Virtual Network Provider (VNP), VNO
and SP. 4WARD's research was focused in virtualization, discovery, monitoring, management
(In-Network management) and provisioning techniques for network resources.

2.3.5 Mechanisms for Network Virtualization Support

Although very promising, NV presents many challenges, not only technical but also
business related.

The Internet is resistant to fundamental changes. Even with complete and tested NV
frameworks developed, one huge issue will be to persuade the existing ISPs to deploy this
framework; their current business model is well defined and huge investments have been
made in the current infrastructure. One possibility would be to consider the creation of a
Next Generation Service Provider (NGSP), employing NV, coexisting directly with current
ISPs but with substantial business advantages and added-value regarding its competition
(better resource utilization, protocol independency, tiered service quality, ...). This would
in turn attract an increasing number of users over time.

27

Aside from the business issues, there are several challenges that must be addressed if
network virtualization is to succeed. Some of these challenges and related mechanisms will
be presented next.

Router Virtualization
Two approaches currently exist relating virtual routers:

e Hardware Virtual Routers:

Both Juniper and Cisco currently offer the possibility of running multiple virtual router
instances on some of their routers. Juniper’s approach to having more than one router
in a single physical one is twofold [47]:

— Virtual Routers :

These virtual routers provide separated routing tables and are therefore able to
provide layer 3 isolation. They are simplified routing instances running “under”
the main routing daemon and have associated interfaces (logical or physical inter-
faces). Their feature set is reduced (no Border Gateway Protocol (BGP) signaling
for example). Juniper's M, T and] series support this technology.

- Logical Routers :
Logical routers partition a single physical router into multiple logical devices,
multiple daemons, that perform independent routing tasks, and therefore provide
a stronger isolation than virtual routers (a logical router may contain several
virtual routers). They can be thought of as a collection of smaller full-blown
routers, with some exceptions but with more features than virtual routers, running
inside a single housing. Juniper's M and T series support this technology.

Cisco [14] also provides similar approaches in their XR-12000 and CRS-1 systems.

e Software Virtual Routers:

The recent increase in the number of cores of commodity CPUs (achieving 6 cores for
consumer-grade CPUs and 12 cores for workstation/server CPUs), along with advances
in Random Access Memory (RAM) whose modules have become increasingly dense (4
Gigabytes (GB) modules are common nowadays) render commodity computer hardware
as a strong candidate for router virtualization.

Although an incredibly high computing power is provided by these multi-core comput-
ers, a main bottleneck exists: the main memory. It has been shown in [19] that the
memory subsystem is the main limiting factor for high performance packet forwarding
due to its high latency. When forwarding small (e.g. 64-byte) packets which reside in
non-contiguous memory location, the forwarding rate is bottlenecked by the memory
latency. By increasing the packet size, the forwarding rate can be greatly improved.
In [19], by increasing the packet size from 64-byte to 1024-byte, the forwarding rate
increased from 2.5Mpps to 7.1Mpps, effectively achieving the line rate on all used
interfaces.

Several router software solutions exist, such as Click [33] modular router and XORP [71].
The Virtual Router Project [20] aims to optimize such solutions (Click in particular) to
virtual environments. Although promising results have already been attained (7.1Mpps

28

forwarding rate), there is still a long way to go if virtualized computer-based routers
intend to compete with hardware routers.

Switch Virtualization

Although some commercial solutions exist, switch virtualization still remains a hot topic
nowadays. On the one hand, there are vendor solutions that offer high performance and
interface fan-out at the cost of programmability and flexibility. On the other hand, open
platforms, PC based, offer the desired programmability but not the required performance nor
the needed interface fan-out. In the next paragraphs, vendor solutions offering virtualization
will be discussed as well as open source PC-based solutions.

In 2008 Cisco shipped its first software virtual switch (Nexus 1000V, figure 2.15) developed
in cooperation with VMware for their vSphere environments (operating inside the ESX and
ESXi bare-metal hypervisors). The Cisco Nexus 1000V [15] is a distributed switch composed
of two primary components, Virtual Ethernet Modules (VEMSs) that run inside the hypervisor,
and an external Virtual Supervisor Module (VSM), that manages the VEMs. The VEMs are
configured by the VSM and perform advanced network features, such as providing QoS,
Private VLANSs, link aggregation, access control lists, port security and monitoring tools. It
provides a common switch management model, similar to other Cisco switches. Due to its
purely virtualized architecture and integration with VMware's software, this virtual switch
is fully aware of all server virtualization events, and seamlessly supports server and VEM
migration along with its security, statistics and network properties.

Cisco also provides hardware virtual switches, Nexus 7000V for example, presenting the
physical switch as multiple logical devices.

Juniper, on the other hand, only provides hardware virtual switches (EX-Series) that work
in a similar fashion as the previously discussed virtual routers (but with no routing), i.e. a
given physical switch may contain several isolated switching instances.

Open source, software based solutions also exist. One such solution is provided by Cross-
bow [63, 64], a virtual switching and virtual interface software that exists for the OpenSolaris
platform with the goal of facilitating networks in a box. It helps expanding the networking
feature set of Xen, by supporting advanced features such as VLANs, bandwidth assignment
per virtual network interface, link aggregation, IP multipath and QoS mechanisms.

One other solution is provided by OpenFlow [41], a software stack designed to be installed
on top of physical switches, that allows defining data flows using software (software-defined
networking). When a data packet arrives at a typical switch, its header is examined and
proper action is taken. OpenFlow allows users to define (through a controller) the action
that should be taken for a given packet header, regardless of the protocol being run.

The operations are “flow-based”, and therefore, protocol independent. This flow-based
approach allows for safe testing of new protocols on production environments; the existing
protocols are assigned the proper flow, and new ones may be tested by assigning differ-
ent flows. This flow separation and programmability can therefore be seen as a form of
virtualization.

Considering the studied solutions, OpenFlow’s approach seems to be the most promising
one, since it can be installed on existing physical switches with a protocol independency on
its flows. This approach should allow reduced expenditures and an significant versatility.
Regarding Cisco’'s Nexus 1000V, it is tied to VMware and, therefore, cannot be integrated
with other virtualization environments.

29

Cisco Nexus
1000V
VEM

Cisco Nexus

ke 1O

1Cisco Nexus
1 1000V
VEM

Virtual Supervisor Module (VSM) Virtual Ethernet Module (VEM)
Virtual Appliance Running Cisco - Enables Advanced Networking
NX-OS (Supports High Availability) Capability on the Hypervisor
Performs Management, Monitoring, A A— - Provides Each VM with Dedicated
and Configuration E' E' “Switch Port”

Tightly Integrates with VMware - Collection of VEMs = 1 vNetwork
vCenter Server Distributed Switch

Cisco Nexus 1000V VSM VMware vCenter Server

Figure 2.15: Cisco Nexus 1000V Architecture [15]

Hardware virtual switches provide high performance and allow consolidation but with
reduced programmability.

Virtual Network Mapping

When receiving multiple VNet requests, it is of the InP best interest to optimize resource
allocation in order to reduce congestion, and maximize profitability by enabling more VNets
to coexist on the same substrate network. Efficient resource mapping must therefore deal
with simultaneously optimizing the constrained placement of nodes and links of a given VNet
in the substrate network.

This simultaneous optimization can be formulated as an unsplittable flow problem, known
to be NP-hard [7, 72] and therefore is only tractable for a small amount of nodes and links.
In order to solve this problem, several approaches have been suggested, mostly considering
the offline version of the problem where the VNet requests are fully known in advance.

In [34], a backtracking method based on subgraph isomorphism was proposed; it consid-
ers the online version of the network mapping problem, where the VNet requests are not
known in advance, and proposes a single stage approach where nodes and links are mapped
simultaneously, taking constraints into consideration at each step of the mapping. Therefore,
when a bad mapping decision is detected, a backtrack to the previous valid mapping decision
is made, avoiding a costly remap. In order to reduce the search space of the algorithm, upper
boundaries for the number of physical hops spanned by a virtual link are defined, as well as
the maximum amount of mapping steps, determined by evaluation tests, before considering
that the mapping failed.

Other authors, such as [36], define a set of premises about the virtual topology, i.e. the

30

backbone nodes are star-connected and the access-nodes connect to a single backbone
node. Based on these premises, an iterative algorithm is run; the backbone nodes are
mapped first (arbitrarily in the first iteration), then the access nodes are connected to the
closest backbone nodes, their shortest path and link capacities are calculated next and,
finally, alternative backbone mappings are evaluated. The best backbone mapping is used
in the next iteration. The algorithm terminates when no better solution than the previous
one for backbone mapping is found, or when a pre-determined maximum number of iterations
is reached.

A distributed algorithm was studied in [26]. Its aim was to reduce the number of mes-
sages required for centralized software to have an up-to-date substrate view, to enhance
the robustness and scalability of the overall system, and to increase the speed of the VNet
mapping, due to the parallel processing. It considers that the virtual topologies can be
decomposed in hub-and-spoke clusters, and that they can be mapped in each cluster in-
dependently. Therefore, it reduces the complexity of the full virtual network mapping. The
root substrate node, with the maximum available resources, is considered the hub of the
cluster, and becomes responsible for coordinating the mapping of that cluster. Next, the set
of substrate nodes able to support the spoke nodes is determined based on shortest path
algorithms. In order to map the complete virtual network, the root nodes interact with each
other with the intent of making a collective mapping decision.

Zhu and Ammar et al. [72] propose a heuristic and centralized algorithm for dealing with
virtual network embedding. Their approach tries to solve an online version of the problem,
considering reconfigurations of the existing VNs, when VN requests arrive. In order to
further improve the performance of the basic mapping algorithm, a subdivision technique is
also explored. The goal of the mapping algorithm is to maintain a low and balanced stress of
both nodes and links of the substrate network; with that goal in mind, the algorithm starts by
determining each node’s stress (number of virtual nodes running on the substrate node) and
the links’ stress (number of virtual links whose substrate path passes through each substrate
link). With these weights determined, the Neighbourhood Resource Availability (NR), that
takes into account both the node stress and the local links stress, is calculated for each
node. The node with the highest NR is selected as the start node to begin the candidate
selection. Next, a set of substrate nodes is determined weighted by their distance to the
previously selected substrate node, its node potential is calculated, and in the final step the
virtual nodes are mapped. Virtual nodes with more interfaces are assigned substrate nodes
with higher NR since virtual nodes with more interfaces are also more likely to setup more
virtual links and increase the load on both the substrate node and neighbour links.

Although all these algorithms provide a solution for the virtual network mapping problem,
most of them fail to take into consideration that not all virtual nodes are the same. The nodes
may have different requirements for CPU, memory and location, and their links may not be
constrained only by bandwidth, but also by latency, jitter and loss. The heterogeneity of
both virtual and substrate resources is mostly not considered.

Resource and Topology Discovery

A fundamental requirement in order to be able to perform the previously discussed em-
bedding algorithms is to know exactly the existing physical and virtual resources’ character-
istics, existing topologies (both physical and virtual) and the status of all network elements
and links.

31

The discovery methods should be aware of topologies updates in order to guarantee the
consistency of the topology databases and the detection of failures. They should be robust,
fast to converge and efficient in gathering and disseminating network information with a
reduced footprint in the substrate network.

Regarding physical topology discovery, there are multiple commercial applications that
rely on the Layer 3 information to build the physical networks’ topology, showing the logical
connections between the resources. Hardware providers, such as Cisco [54] and Intel, have
developed link layer discovery protocols that strive to provide a more detailed view over
the network’s elements such as hubs, switches and bridges. However, these tools are of no
use when in a heterogeneous, multivendor environment. The IETF recognised this problem
and designated a physical topology Management Information Base (MIB) [10], but failed to
develop a protocol.

Although the discovery of the physical network topology is essential, the discovery of
virtual networks’ topology is also required and presents several unaddressed challenges.
Because virtual networks are a relatively new concept, and no complete network virtualiza-
tion tool has been developed so far, there is a general lack of scientific studies regarding
virtual topology discovery, although guidelines have been provided by some authors. Some
initiatives, like CABO [22] advocate the use of a separate independent discovery plane, and
an implementation using distributed algorithms was suggested by [13].

The virtual networks are made of virtual resources laying upon physical resources whose
interfaces and links have been configured to establish the virtual links. Therefore the in-
formation regarding their topologies is spread-out throughout the physical network. If we
consider overlay networks, one will quickly realize the immense similarities between them.
Since overlay networks have already been studied extensively, their topology discovery
mechanisms are a good starting point for developing a virtual network discovery algorithm.

Overlay topology discovery algorithms have been widely researched in part due to the
popularity of Peer-to-Peer (P2P) communities. Due to the distributed nature of P2P, the
focus has been on distributed discovery mechanisms. Gossip-based broadcast algorithms,
also known as probabilistic broadcast algorithms, are popular in various contexts. They
are known for trading reliability guarantees for scalability properties, since they impose a
smaller overhead on the network than uncontrolled flooding methods.

T-Man [30, 31] is one of such algorithms. It is gossip based and targets large scale and
highly dynamic systems. Assuming random overlay networks with nodes connected through
a routed network, the algorithm tries to find each node’s neighbours, based on ranking
functions that take into account the properties of each node, such as ID and geographic
location. In this algorithm, every node maintains information about other nodes, through
partial views, which are sets of node descriptors. Each node has two threads: an active one,
responsible for initiating communications with other nodes; and a passive one that waits for
incoming messages. By sharing views, each node will build its relevant neighbour table, i.e.
its target topology.

One other algorithm has been developed in [35]. In the context of P2P networks, it
is proposed a hybrid approach to peer discovery, using a Central Cache for peers not in
the local network, i.e. behind some gateway with Network Address Translation (NAT) and
multicast, for discovering peers within the same local network. This dual approach combines
the benefits of both the centralized and distributed model.

Although none of the studied algorithms is directed specifically at virtual networks, most
of the information sharing, propagation and topology building concepts may apply, and will

32

thus lay the foundations for the proposal of a virtual topology discovery algorithm.

Management

From the InP’s perspective, management tools must be provided to monitor the substrate
and virtual resources. They must make sure that QoS guarantees are being uphold and
should also have a way to trigger the reconfiguration of the existing VNs in order to optimize
the resource allocation when needed.

Suitable VN management tools should also be provided to VNOs, VNPs and SPs so that
their virtual resources can be properly configured and operated.

The management of a virtual network poses some issues, especially if the network spans
multiple InPs, since in this case information must be gathered from different entities. Thus,
management applications should be developed with a common interface for gathering in-
formation and performing operations on the resources. These management tools, besides
providing the needed network monitoring and helping to make sure that there are no con-
straint violations, should also provide accountability data.

Interfacing and InP Interoperability

When requesting a new VN, a SP must, somehow, provide a description of the required
VN. Due to the fact that a VN may be created by resorting to several InPs, a common VN
description language, such as Extensible Markup Language (XML), should be defined.

A VN embedding situation, spanning multiple InPs, requires communication between
them in order to create the so called folding points. Just like the requests made by the SP,
this communication should also be standardized.

This interoperability also plays an important role in management and topology discovery
mechanisms, where the required data will have to be gathered from multiple InPs.

Security

Although theoretically VNs should provide isolation, several problems arise in a virtu-
alization context. The first, and perhaps the most relevant, is the safety of the physical
infrastructure. For instance, if DoS attack is performed on a given InP’s substrate network,
all the hosted virtual networks will be affected. This problem can become even more serious if
the substrate network becomes compromised. In this situation, all the virtual networks could
also become compromised. A misconfiguration on any substrate resource could jeopardize
all networks.

Programmability of network elements, although desired, could also increase the vulner-
ability if there were security holes in the programming model. Thus some initiatives, such
as CABO, propose a controlled programmability scheme, where flexibility is traded-off by
security.

Hosted VN should take internal measures to increase their security, using encryption
mechanisms for example.

Performance

Despite the many advantages advocated by network virtualization, the VN performance
must be comparable to other non-virtualized environments if the business model is to suc-

33

ceed. To that end, performance guarantees must exist.

There is currently no specific tool or benchmark to assess VN performance, studies
should be conducted in order to evaluate the gains, or lack thereof, and costs associated
with network virtualization. Efficiency, security and overhead are some of the parameters
that must be looked into, so that a proper evaluation can be made.

2.3.6 Summary

The concept of network virtualization is not new and many protocols, to some extent,
provide a degree of virtualization. It was long ago perceived that the physical infrastructure
should not be tied to a specific protocol, and efforts were made to make them independent,
e.g. MPLS.

Network virtualization inside the operators’ network will provide them with the versa-
tility to custom tailor solutions to their clients, as well as a better resource utilization and,
therefore, a reduced TCO. The split of business functions will create a healthy competition
environment and will reduce the management complexity at every level, in turn making the
companies more agile and capable of responding quickly to shifts in market demands.

Although some virtualization tools exist today, none has been able to set a standard and
provide a full network virtualization environment with the required and desired performance
and flexibility. Several initiatives have taken place to address this issue. Some, like GENI
and CABO, have already terminated and proposed a development framework, while others are
still in development, e.g. 4WARD and AKARI. As discussed, network virtualization presents
many challenges but the potential benefits are tremendous.

No commercial solution exists today for full operator network virtualization, probably
because the core networks are still holding up; but in a near future, problems may arise due
to the massive amounts of traffic going through the Internet’s backbones and new architec-
tures will need to be deployed. Network virtualization, due to its non-disruptive approach
may very well be the solution to this future problem, whether or not it will be successful
depends heavily on the companies and their shareholders.

2.4 Network Virtualization Platforms

This section presents some of the existing network virtualization platforms, their main
characteristics and architectures. The emphasis will be devoted to the VNet Management
Demonstrator v0.1, since it is the base of the developed virtualization platform.

2.41 GENI

GENI is an Internet Research project, whose overview was provided in 2.3.3. It presents a
complex network architecture that can be divided into three main levels: physical substrate,
user services and GENI Management Core (GMC).

At the lowest level, the physical substrate may be composed of routers, processors,
links or wireless devices. On the top level, the user services provide the user with a set
of functionalities designed to make the facilities accessible and to support the researching
activities.

The GMC sits in between the physical substrate and the provided user services; its goal
is to provide a common-framework that is stable and long-lasting. This placing is in the

34

same conceptual position as the IP protocol, i.e. it is similar to the hourglass model, with
the GMC being its waist.

Naming

For each network component, slice, user, or object, GENI defines GENI Global Identifiers
(GGIDs) which are unique, unambiguous identifiers, that present authenticity verification.

Components

The Components are the main building blocks of GENI. A component may refer to a
computer, a programmable router or access point. Each component is expected to provide
well-defined remotely accessible interface. It is also expected that these components provide
a means for slicing them among several users, either through virtualization or partitioning,
granting the user a sliver of it. These slivers must be isolated from each other, so that they
can be seen as a resource container.

These components support containment; therefore, their behaviour may be restricted, i.e.
limits on bandwidth or processor usage may be imposed. In addition, common interfaces for
the slivers to access the underlying network are also provided. There may be virtual server,
virtual router or virtual switch interfaces.

Slices

A slice may be thought of as a set of slivers spanning several GENI components, where
services may run, plus the users that are allowed to use the slivers.

The GMC provides functionalities for creating, deleting or attaining the name of a slice.
After defining the slice name, the user must proceed with instantiating the desired slivers,
which require an authorization request for each component. After getting the authorization
ticket, the sliver may be created. Basic functionalities for stopping, starting and destroying
slivers are provided.

Aggregates

Aggregates are defined by a set of objects or components that share some common
interface. It provides a way for the GENI users to view a collection of components as a
single identifiable unit, and to act upon them.

Summary

GENI provides researchers with a common network framework, with basic functionalities,
that is highly programmable, and thus, could be used to test network virtualization concepts,
algorithms and architectures.

Despite being a huge, mature, and complex project, with multiple workgroups and projects
on several research areas, including the previously discussed PlanetLab, GENI does not pro-
vide the means for an automatic creation of virtual networks, nor their respective discovery.
It simply provides the backbones upon which these mechanisms may be developed.

35

2.4.2 VNet Management Demonstrator v0.1

The VNet Management Demonstrator is a program developed by Asanga Udugama from
the University of Bremen; its aim was to provide a demonstrator capable of showing the
creation of the VNets conceptualized in the 4WARD project. The software’s implementation,
capabilities and issues will be discussed in the following paragraphs. Some of the displayed
images were taken from the software’s documentation [1].

Architecture

In order to test the proposed functionalities, the testbed in figure 2.16 was considered
by the author.

Figure 2.16: VNet Demonstrator v0.1 Testbed

It consisted of a PC playing the role of a router with two interfaces: a server with one
interface and an access point connected to the router.

The developed software suite is composed by four main software modules: the Agents,
the Manager, the Controller and the Visualizer which are interconnected according to the
figure 2.17. The Agents, Manager and Controller were written in C; the Visualizer was
written in Java.

Although the pictures’ Repository is described as an SQL database in the documenta-
tion, the source code made available uses data structures inside the Manager to keep the
resources’ data.

Agent Modules

The Agents are executed in each physical resource and have the goal of both executing
the commands given by the Manager and retrieving local resource information. In the con-
sidered testbed, there are three different Agent softwares, specific for each resource: one
for the server, one for the router and another one for the access-point. The access-point’s
Agent runs on the router and controls it remotely.

Local data retrieval is based on statically configured files, i.e. the Agent software parses
the configuration file and fills in the data structures containing the interface’s configuration
as well as other data pertaining to the physical and virtual resources, such as resource type
and 1D.

As far as command execution is concerned, the Agents are able to perform the execution
of three main command types:

e Resource Commands :

36

VNet Visualizer |- —=| VNet Controller

«
»
VNet Manager - —
VNet Repository
WNet Agent VNet Agent WNet Agent

Figure 2.17: VNet Demonstrator v0.1 Architecture

These types of commands allow the bring-up and shutdown of pre-created virtual
resources, resort'mg to scripts;

e Link Commands :

This script-based commands provide the basic configuration of the virtual resource’s
interfaces; they work by connecting to the virtual machines through Secure Shell (SSH)
and executing the pertaining configuration commands;

e Application Commands :

These commands are only supported by the Server Agent and allow the execution of
applications. Applications related to virtual machines are executed through SSH.

The Agents are fully threaded: there is a thread to receive commands from the Manager,
another one to execute them, and a final one that deals with sending data back to the
Manager, as can be seen in figure 2.18.

Despite the fully threaded architecture, the Agents suffer from some performance issues,
since no thread signalling is used. Hence, every thread, except the command receive thread
that blocks waiting for data, performs polling to the linked list containing the commands and
sleeps between successive received commands.

Other issues exist with the static nature of this module: every action is preconfigured in
scripts, and so are the data gathering mechanisms that are virtually non-existent since all
the data gathered comes from a configuration file parse, i.e. all information is statically and
manually defined.

The virtual machine creation is also a process that requires some attention. As im-
plemented, the virtual machines must have been previously created and the commands’
responsibility is simply to bring them up, which is a situation not desired in a dynamic,
unpredictable environment.

37

Status Information and

VNet Agent Command Queue
Repository VNet Manager
Communication
Functionalityy
VNet Manager
A ~| Command Receipt
. Handler Thread
Command Execution |
Thread
Status Collection - Status information
Thread - Sender

Operating System Functionality to control resource virtualization

Figure 2.18: VNet Demonstrator v0.1 Agent detail

Manager Module

The Manager, figure 2.19, is a central entity responsible for handling the Agents running
in the physical resources. It can be run on any physical resource, as long as |IP connectivity
exists to all Agents. Since it is responsible for interacting, not only with the Agents, but
also with the Controller, there is some additional complexity when compared to the Agent
modules. The program is structured into four main threads:

e Incoming Agent Connection Thread :

This thread is responsible for accepting TCP connections from the Agents. For each
new connection, a new thread designed to receive and handle the Agents’ messages
is created;

e Incoming Controller Connection Thread :

Similarly to the Incoming Agent Connection Thread, this thread accepts incoming con-
nections from the Controller software and launches a handling thread for each new
Controller connection;

e Command Send Thread :

This is the thread responsible for sending commands to each connected Agent; it
fetches commands supplied by the Controller connection handler thread, identifies the
related Agent and sends the proper command.

e Repository Update Thread :

The responsibility of updating the Manager’s repository, i.e. the data structure con-
taining the information about all resources and links, belongs to this thread. It receives
and processes messages from the Agent connection thread handler.

38

VVNet Manager

VNet Visualizer
dler Thread
VNet Controller
Handler Thread |W

Synchronization Layer

a Control Functionality
VNetAgent |, —
Handler Thread
VNet Agent |» Repository
Handler Thread
VNet Agent r
Handler Thread

Figure 2.19: VNet Demonstrator v0.1 Manager detail

Just like the Agent modules, this is also a fully threaded module which has potential for
high performance. Nevertheless, since there is no thread synchronization and signalling, all
the message queues are polled and therefore significant delays are introduced.

Regarding the repository data structures, they lack versatility since there is one for
each Agent type. By having only one type of data structure, which is generic, the repository
maintainability should increase.

Controller Module

The Controller module’s function is to provide a command line interface for accessing the
information from the Manager, and performing the previously described Agent commands.
It connects to the Manager via a TCP socket, sends the desired command, which can be
a resource information request, performs link configuration, application execution command
and virtual resource bring-up, among others, and waits for the Manager’s reply if relevant;
otherwise, it terminates.

Although the idea of having a command line interface may be interesting for performing
operations or displaying bare data, for large networks its usage may become cumbersome. |f,
for example, a request was performed about information on ten resources and related links,
the amount of data provided by this tool would probably make the data analysis difficult
and not very intuitive. Besides, as it is implemented, no active connection is maintained
with the Manager, thus rendering active monitoring of resources impossible.

Visualizer Module

This module aims to provide a GUI for user interaction. It provides a front-end for the
Controller Module; therefore, all the options available for the Controller are also available
for the GUI.

It allows the display of multiple VNets, although limited to the previously described
topology.

39

In this module, two main threads exist: a thread responsible for fetching the data from
the Controller and another one responsible for displaying it. The Visualizer module works
by performing calls to the Controller module, i.e. executing it with arguments, and parsing
its output. This Controller dependency, besides introducing overhead, may increase the
complexity when in need to add new functionalities or correct software bugs.

Agent-Manager Interaction

This interaction is made using TCP / IP sockets where the manager plays the role of
a server, and the Agents behave as clients. When the Agent starts-up, it tries to connect
to the Manager, via the preconfigured port number and IP address; when the connection is
successful, the previously described threads start-up, and the Agent begins its operation.
The lack of a connection management thread to the Manager is a main drawback: when it
disconnects, the Agent software terminates.

The exchanged messages share a common format, the fields are delimited by @@ and
there is a message terminate sequence: ##. The first field indicates the message type,
which can be command, information, or operation return messages.

Manager-Controller Interaction

The interaction is made through TCP / IP sockets, the Controller being the client, and
only one operation is performed each time the controller is run.

Just like in the Agent-Manager interaction, the messages exchanged also have their fields
delimited by @@, terminate sequence ## and can be command, information, or operation
return messages.

Summary

As expected, this demonstrator does indeed provide the functionality of virtual network
creation. The problem resides on the limitations of the tool and in the way in which features
are provided. Every aspect of it is statically configured and based on specific configuration
files and scripts.

Little to none versatility exists nor intelligence on the virtual network embedding. The
tool, as it is, is not scalable: it does not predict the existence of more than two interfaces; it
is bound to the presented testbed and relies on four software modules when it could do the
same tasks with three. Therefore, it increases the number of points-of-failure and reduces
the easiness of subsequent modifications.

Despite all the disadvantages, it also provides some potentially good features. The mul-
tithreaded nature of the Agents, the Manager and the Visualizer could lead to a versatile
and high performance tool. The basis is there, but the implementation failed to take ad-
vantage of features like thread signalling or socket interoperability between C and Java for
connecting directly the Manager with the Visualizer, for instance.

40

Chapter 3

Platform Requirements Specification

3.1 Introduction

On the one hand, network virtualization has been previously identified as a possible
solution to promote innovation on the currently stagnated Internet; on the other hand, it al-
lows the operators to decrease their networks’ costs by increasing the efficiency of resource
usage. To that end, this platform’s goal is to provide the operators with a network virtual-
ization solution that is easy to use, versatile, and efficient in virtual network embedding, as
well as developing and evaluating virtual network mapping and discovery algorithms.

The resulting network virtualization platform provides the necessary functionalities to
discover, monitor, map, deploy and manage virtual networks running on top of a substrate
network.

By using this tool, network virtualization and its inherent benefits will be made available:
resource consolidation, protocol independency, isolation and legacy support are some of the
advantages delivered.

The purpose of this chapter is to provide the reader with a high-level overview of the
platform. Besides introducing the necessary documentation and specifying the required
technical background, a global view of the platform’s functionality, features, required envi-
ronment, intended uses, interfaces, performance and security requirements is provided.

Section 3.2 will provide a global perspective over the platform’s main features, intended
audience, environment and assumptions. Further details about the platform’s features are
described in the Section 3.3. The chapter ends with the description of Interface (3.4) and
Non-functional requirements (3.5).

3.2 Overall Description

3.2.1 Features

This platform aims to provide four main features. The first one, physical and virtual
network and resource discovery, is provided through distributed and centralized algorithms,
the latter only for comparison purposes.

In the distributed algorithm, the nodes exchange messages between each other in order to
be able to discover both the physical and virtual network topologies, while on the centralized

4

one, a central entity is responsible for determining the existing physical and virtual links
based on resource information.

Physical and virtual network and resource monitoring is the second provided feature.
The platform accurately and periodically monitors the physical and virtual nodes’ static and
dynamic characteristics, such as:

e CPU information : CPU usage, number of CPUs, operating frequency, brand and model;
o RAM information : RAM in use, available RAM and total RAM;
e Hard Disk Drive (HDD) information : Existing HDDs, their usage and total size;

e Static information : Resource location, by group and Global Positioning System (GPS)
coordinates, description and name.

e [nterface information :

— Physical Resources: Interface and link status, interface IP configuration, Media
Access Control (MAC) address, Maximum Transmission Unit (MTU), used VLANs
and link speed;

— Virtual Resource: Interface and link status, default IP configuration and assigned
interface speed.

The third feature is the virtual network deployment and mapping in the physical substrate. It
utilizes a simple GUI to design and configure a virtual network. After the proper configuration
and topology are defined, a request for creation will be made, and a mapping algorithm is
executed. The request is then either approved, and the virtual network will be efficiently
embedded on the substrate network, or refused, if it is not possible to embed the VN in the
current substrate.

Finally, there is a management feature for the virtual networks. Acting upon a running
virtual network is possible, the resources may be suspended, rebooted, started, shutdown or
destroyed. Changing the amount of RAM allocated to the virtual resource is also possible.

3.2.2 User Classes

This platform is designed to be used by network administrators with total security clear-
ance and access to the substrate network. The user should be experienced in Linux envi-
ronments and networking.

3.2.3 Operating Environment

This platform is designed to run on Fedora Core 8 and Debian Lenny Linux distributions
with the Xen kernel.

Xen was chosen not only due to its performance superiority when compared to full-
virtualization hypervisors, but also because the available testbed does not support hardware
virtualization on every node. Besides, since it is open-source and the libvirt Application
Programming Interface (API) is mature for the Xen kernel, developing software to work with
it is made easier.

42

3.2.4 Constraints

The C programming language was used for programming every module except the GUI,
which was programmed in Java.
3.2.5 Assumptions and Dependencies

In order to be able to properly run the software, except the GUI, the following modules
must be installed or enabled:

libvirt;

libxml2;

glibtop2;
e Dbridge-utils;
e 802.1q module;

To properly run the GUI the Java runtime environment should be installed.

3.3 System Features Details

3.3.1 Physical and Virtual Resource and Topology Discovery

Network discovery is a fundamental feature of the software set. By providing means
of automatic discovery of both the network resources and links, the network administrator
can have a global view of the running networks and respective topologies at a glance, in a
simplified manner.

To that end, two possible solutions exist: a centralized and a distributed one.

In the distributed approach, the nodes exchange messages to discover each other, thus
every node, virtual or physical, knows exactly its neighbours. A physical node will know
about its physical neighbours and about the logical neighbours of the virtual nodes running
on top of it. By combining each node’s knowledge, it is possible to build a map of the
full topology, both physical and virtual. However, this process needs to be performed with
minimal message exchanges and it needs to provide a fast discovery.

Regarding the centralized approach, a central entity is in charge of acquiring all the
data pertaining to both physical and virtual resources. After gathering the relevant data,
the topology building procedure begins. Since there is no link information, mechanisms
similar to brute-force must be used in order to determine physical and virtual links. Thus,
this approach has the potential to be computationally intensive on the central node’s side.
Its response to topologies changes is also computationally heavier than the distributed
approach, since any change to any topology may force the full topology recalculation.

3.3.2 Substrate and Virtual Network Monitoring

Resource monitoring is fundamental if one wants to have an accurate view of the virtual
and physical networks at a given point in time. The monitoring functions periodically update
CPU, RAM, state, HDD and interface information; therefore, it is possible to identify diverse

43

situations, such as failures and high resource usage, where acting on the network may be
required.

Monitoring for both physical and virtual link information is provided. For physical links,
both link speed and reserved link bandwidth is attained; for virtual links, the only information
provided is the reserved bandwidth.

The monitoring functions are periodically performed; the periodicity is large enough so
that minor transient states do not trigger too many events (e.g. link information changes
when an interface keeps going up and down) but also small enough so that proper action
may be quickly performed in the case of resource or link failure, for example. They are
able to properly identify failures, configuration changes and load situations. Load should be
categorized in levels, e.g. CPU load, which should be evaluated in terms of its time average
and classified into a predetermined amount of load levels.

3.3.3 Virtual Network Creation

The virtual network embedding problem is a complex one, where both the resources and
links’ placement must be optimized. This dual optimization can be computationally heavy;
therefore, efficient mechanisms must be developed in order to provide a "good enough" map-
ping that is not excessively time-consuming. In order to be properly done, i.e. in an efficient
and optimized way, it requires an accurate view of the substrate and virtual networks. Both
static and dynamic status and features of the substrate network must be known and up-to-
date.

The virtual network creation feature requires user interaction. The user shall place the
resources via drag-and-drop functions and connect them with links. After the proper network
“design” and configuration, the user shall submit the desired virtual network that will be
evaluated for feasibility and either approved and implemented or rejected.

In order to properly perform the virtual network deployment, the substrate network’s
information should be up-to-date; otherwise, less-than-optimal decisions, or even embedding
refusals, may arise.

3.3.4 Virtual Network Management

A part of the networks administrator tasks is to manage the existing networks. This
platform provides a basic set of management features, using the GUI a resource state may
be changed to one of the following:

e Start : If a resource is shutdown, start will trigger the boot process;
e Shutdown : If a resource is running, but not suspended, it may be properly shutdown;

e Suspend : If a resource is running, it may be suspended, its state will be saved and
resume will be possible later;

e Resume : If a resource is suspended, a resume may take place;
e Destroy : The resource and its file system will be deleted.

Besides changing the resource state, the RAM amount may also be changed, even with the
virtual node running.

44

The access to the management features is performed through a menu when right clicking
on the resource icon, on the GUI.
The management features are only available for virtual resources.

3.4 Interface Requirements

In this section, the main user interactions will be analysed, and so will the software’s
communication interfaces and semantics.

3.4.1 Use Cases

Several uses cases, shown if figures 3.1 and 3.2, can be considered. The Create VNet
action can be performed by a user in order to create a new virtual network or, alternatively,
a previously built XML containing the virtual network description can be loaded resorting to
the Load VNet XML action. After performing any one of these actions, a created or loaded
virtual network may be selected and additional actions may be performed to further specify
and configure the virtual network. The available actions can be observed in figure 3.1.

New Resource

Configure Resource
Get VNet _/

Select VNet Delete Link
User
Load VNet XML
Delete f@

Save VNet XML Cance® COm\m_ItVN)

Figure 3.1: Simplified VNet Creation use-cases

In figure 3.2, different use cases are considered. One such example is the Get VNet action
which triggers a request for a virtual network that can be afterwards managed or monitored.
Multiple requests for different virtual networks may be performed. The Manage VNet action
allows the user to delete the related virtual network, through the Delete VNet action, or
to modify some parameters of a given resource such as its state and RAM by utilizing the
Modify Resource action. Monitoring actions are also available through the Monitor VNet
action that allows the user to View Resource Properties.

45

.

/ Delete VNet

Manage VNet
Modify State
) « use/»/7 fy—/
-~
~ S
e
Request VNet —~ S¢use »

. N Modify RAM
User ‘/

«use» View Resource

Monitor VNet Properties

i

Figure 3.2: Simplified VNet Management and Monitoring use-cases

3.4.2 User Interface
Main Menus

In order to easily allow the user to perform the previously specified actions, a user
interface is provided. The user interface provides the so-called coolbar with buttons whose
functions can be easily identified by their icons. They perform virtual network build tasks,
such as:

e New Virtual Router;

New Virtual Server;

New Link;

Delete Link;

Delete Resource;
e Commit Virtual Network Deployment;
e Cancel Modifications;

Besides these buttons, a menu bar is also provided, in the Actions menu the following actions
may be performed:

e Create a new virtual network;
e Save the current virtual network to an XML file;
e lLoad a virtual network from an XML file;

e Quit;

46

There is also a Get VNet menu which will trigger a dropdown menu with the existing VNs.
Upon selecting one virtual network, a new tab will appear with the virtual network and
subsequent updates to that virtual network will be reflected in the GUI.

The last menu is the Help menu, which provides some information about the GUL.

Context Menus

By right-clicking in any one of the resource, a context menu will appear with the related
options. The context menus will depend on the resource type and will provide information
about the resources’ configuration and actions that can be executed.

3.4.3 Software Interfaces

The different modules communicate using a proper message format:
D@ ... ##

Where ID is the message type, a decimal number, @@ is the separator between fields
and #7 is the message’s terminating sequence. Although not very efficient byte-wise, this
message format allows for easier debugging.

3.4.4 Communication Interfaces

All communications use TCP sockets except for distributed discovery communications
which rely on User Datagram Protocol (UDP) multicast.

3.5 Non-functional Requirements

3.5.1 Performance

The designed platform has a low overhead, and consequently, a small performance impact
on the substrate nodes and network. The CPU and RAM usage is kept to a minimum. In
the CPU / RAM usage trade-off, higher RAM usage is preferred as opposed to higher CPU
usage.

3.5.2 Security

Due to its deployment features, the platform, or a part of it, must be run with elevated
privileges, i.e. in root mode, and is therefore potentially dangerous for the system if it
becomes compromised or misbehaves.

3.5.3 Software Quality Attributes

Due to its high importance in the operator’s network, this software should be robust and
reliable. It is designed in an extensible and modular manner; new features may be added
without significant changes to the underlying architecture and isolated; independent tests
on some of the features may be performed.

47

3.6 Conclusions

This chapter described the main features desired for the platform, its environment, and
constraints. As depicted, the platform shall deliver an easy to use graphical interface, well-
defined communication semantics, and a dynamic nature.

The presented used cases reflect the expected interactions of the user with the tool and
are believed to be sufficient for monitoring, managing, and creating virtual networks.

The defined platform and library constraints shall guide and set boundaries for the de-
velopment of the software.

48

Chapter 4

Architecture & Mechanisms Design

4.1 Introduction

The Architecture & Mechanisms Design chapter shall provide the reader with the nec-
essary insight to properly understand all the mechanisms, modules, databases and existing
dependencies of the proposed platform. By providing an in-depth view of the platform's ar-
chitecture and thorough evaluation of its algorithms, the reader shall become familiar and
enlightened about it.

For every desired feature, a detailed description on how to accomplish it will be provided
and, in some cases, specific algorithms will be evaluated.

The Chapter starts by decomposing the platform in modules in section 4.2 and describ-
ing the data repositories on section 4.3. It proceeds with the description of the modules’
dependencies (4.4) and interfaces (4.5). An overview will be given on how to accomplish
the previously specified features: Section 4.7 will deal with the virtual network creation
feature and related mapping algorithms; section 4.8 will proceed with designing and eval-
uating the discovery features and mechanisms, while sections 4.9 and 4.10 will define with
the monitoring and management aspects, respectively.

4.2 Module Decomposition

This platform, the Network Virtualization System Suite (NVSS), is composed of three
modules: the Agent module, the Manager module and the Control Centre module; their
hierarchical decomposition can be analysed on figure 4.1. Further details about each one
will be given next.

4.2.1 Control Centre module

This module is the user’s front-end, i.e. the GUI. It provides the user with graphical and
simple to use virtual network creation, management, and monitoring functionalities. Through
drag-and-drop mechanisms, the user may design, configure, monitor and manage the desired
virtual networks.

49

Virtual Network
| el
Manager

Substrate Network

User

Virtual Network Virtual Network
Agent Agent

e =

| \

Figure 4.1: Global view of the existing modules.

4.2.2 Manager module

The Manager module’s functions are many-fold: it gathers information from the Agents
and sends them commands; it also aggregates their information to build the substrate and
virtual networks’ topologies, and to maintain an up-to-date database containing the re-
sources’ static and dynamic information. Furthermore, it is the Manager’s job to keep the
Control Centre with up-to-date information about its requested virtual networks and to per-
form its commands, such as changing the state of a resource or mapping and deploying a
virtual network request.

4.2.3 Agent module

This module is designed to run on every substrate node in order to act and periodically
gather data from it. The Agents send their local resources’ information to the Manager,
provide discovery functions through a distributed algorithm, and execute resource creation
and network configuration requests.

4.3 Data Decomposition

Each one of the described modules has an internal repository where the data pertaining
to the virtual networks, resources and links are stored; although similar in function, their
implementation is different in each module.

4.3.1 Control Centre Data Decomposition

The Control Centre has two main types or repositories: one relating to the displayed ob-
jects that contain data about the graphically shown information, and another one containing
the complete information about nodes, links and virtual networks, which is used as a basis
for the display objects creation.

50

4.3.2 Manager Data Decomposition

The Manager needs to store information relating to the existing virtual networks, asso-
ciated resources and links, and also regarding the connected Agents and Control Centres;
therefore, it has three main databases.

4.3.3 Agent Data Decomposition

The Agent has two core databases: the first one stores the information about its local
resources, while the second one stores data regarding its virtual or physical neighbours.

4.4 Dependencies

4.41 Control Centre Dependencies

The Control Centre requires the Java runtime environment and IP network connectivity.
In order to be able to act on the network, the presence of the Manager is required.

4.4.2 Manager Dependencies

The Manager software requires the libxml2 module. IP network connectivity to the
Agents and Control Centres is also required.

4.4.3 Agent Dependencies

The Agents require IP network connectivity to the Manager. To perform their functions,
the libxml2, glibtop2, libvirt, bridge-utils, 802.1q and UDP multicast must also be installed
and supported.

4.5 Interface Description

451 User — Control Centre Interface

In figure 4.2 the Virtual Network Control Centre (VNCC) is shown. It contains a main
menu with drop-down buttons (e.g. Actions) and some Coolbar buttons. The virtual networks
are displayed on separate tabs where the resources are drawn and interconnected with the
links .

By right-clicking on a resource, a context menu appears with additional functionalities
regarding resource information and configuration. These menus and buttons allow the user
to perform the previously specified use-cases (figures 3.1 and 3.2).

4.5.2 Manager — Control Centre Interface

The interface between the Manager and the Control Centre is bidirectional, where TCP
sockets are used in order to exchange data. The Manager works in server mode, and accepts
incoming TCP socket connections on a configurable port number.

51

P GWARD -Wirtlal Network Gontroll Gentre) =)]6)
Actions Get Vhet Help

..5 % -'8 Jd JC; v XS mlnovn;ﬁo

Substrate |Grey

Miranda Izzie Meredith
@Gabrielle <—-10.0Mb/s @Susan <—-20.0MIs @Eddie

eth ethd
e 3 10.0Mbs — etho e 20.0Mbis —> €th e
b erhi Y eth? Y

W

et
10.00Mbis—> <-TOgMIDs 10.0MD/5-—> <--10.00MbIs <-10.0Mis
=--10.04 l‘m"s T0.0Mbis > <--10.0YDs 0. =
th0 2 2
Dere George Christina
@Lynette . 10.0MbJs--> @Bree 30.0Mb/s-——> @Mary

ethi
e i <--10.0MbJs exhd e 3 <-30.0Mbis ethy e 3
4 p b

Figure 4.2: Virtual Network Control Center - User Interface.

4.5.3 Agent - Manager Interface

The interaction between Agents and the Manager is also performed using TCP sockets,
in a client-server scheme, with the Manager being the server.

4.6 Identification Process

Resource Identification is a fundamental issue: both the Agents and the Control Centres
must have a unique designation so that no confusion arises about who is who. The ID
allocation is relinquished to the Manager that will provide the connecting Agents and Control
Centres a non-utilized ID.

The ID allocation process is simple: upon a successful connection to the Manager, the
connected module will request a new ID, if they have not yet received one. Afterwards, the
Manager will reply with a unique ID, as clarified in figure 4.3. Unambiguous communication
may then take place, both from the Manager to the Agents and Controls Centres, as well as
between Agents.

The virtual resource 1D allocation is different. After receiving an ID from the Manager,
each Agent will build the ID of their local virtual resources based on the Managers’ allocated
ID; therefore, it is quaranteed that, if the Agent ID is unique, so will the virtual resource’s
ID be. The ID of the virtual resources has the following format:

Physical_ID@Resource_Name

52

Agent Manager Control Centre Manager

Determine unique
Agent ID

Determine unique
Control Centre ID

ID request ID request

ID reply ID reply

Figure 4.3: Agent and Control Centre ID attribution process.

4.7 Virtual Network Creation

4.7.1 Topology and Configuration

In order to create a new virtual network, the user may either execute the Create VNet
option or choose the Load VNet XML option.

XML was chosen as the description language to store virtual networks due to its porta-
bility and the existence of tools to process it in multiple programming languages.

The Control Centre module provides the user with means to draw a new virtual network.
By selecting and placing resources on a draw canvas and by connecting them with links, a
virtual network may be specified. The placed resources may be configured to suit the user
needs; The user may specify the resources’ CPU capabilities, RAM amount, location, number
of interfaces and also perform network addressing configurations. The following use case
diagram illustrates the possible actions (figure 4.4):

The final step in creating a new virtual network is to commit it to the Manager. The
Manager will then evaluate the specified virtual network and either accept it or refuse it.
The mapping process will be described next.

4.7.2 Virtual Network Mapping

As discussed in Chapter 2, the virtual network embedding problem is a complex one and
a trade-off has to be chosen between computation time and embedding optimization.

The virtual network mapping begins when the Manager receives a request for a new
virtual network.

The proposed algorithm is based on the one from Zhu and Ammar [72], where a heuristic
algorithm tries to optimize link and node placement simultaneously. As defined, the algo-
rithm presents some problems. For instance, the node stress is simply considered to be
the number of running virtual machines, and fails to take into consideration the reality of
physical nodes, where the CPU load, core count, frequency, and available RAM amount are
important factors. Regarding link stress, the algorithm considers the number of virtual links
going through a particular physical link, instead of taking into consideration the reserved
link's bandwidth or some other metric that takes into account the different load imposed by
each virtual link.

One other crucial issue is the fact that it only takes into account perfectly homogenous
physical and virtual networks, as is reflected on the single pool of candidates for virtual

53

Visualizer
« extend »

< Link alread!
Specify Origin and exists
Destination N

i\

N
« inclu\dQ»
‘ N\ Specify Link

« ué‘,e » Configuration
New ReitD I
Specify Resource
«use » 7 Parameters
Configure Resource
Create VNet ,,_/Z\ «use»
_A T~ -\ Specify Interface

Configuration
Select VNet Delete Link "

;4

User Manager

Load VNet XML

Delete Resource

>
U

_«extend »

VNet request
refused

Save VNet XML Cancel Changes Commit VNet

t

Reconfigure VNet

Figure 4.4: VNet Creation use-cases

resources. Node constraints such as location and required specifications are not contem-
plated, neither the limitations associated with links’ bandwidths, which are finite and cannot
be over-provisioned.

Taking into consideration the said limitations, the algorithm proposed in this Thesis
starts by the determination of a link and node stress factor. Links and nodes with less stress
are more prone to accepting new virtual resources.

In order to properly map a virtual network, the detailed and complete view over the
substrate network must be present. The complete proposed algorithm will be described
next.

The algorithm begins with the determination of Link Stress:

We define k; = 0...(Ly; — 1) and i = 0...(Ls — 1) where k; is the link number of a given
virtual link belonging to the ji VNet, Ly, is the number of virtual links in the same VNet,
i is the link number of a given physical link and Ls is the number of links of the Substrate
Network. One can start by establishing that the virtual link stress (Spv;) of the link k;

belonging to the j!" VNet is equal to its allocated bandwidth : Swv(kj) = BW(k;).

After all virtual links’ stresses are determined, the physical links’ stresses are calculated:

54

Sis(i) is the link stress of the it physical link and is defined as :

N\/ LV/ —1

Sis(i) =) Y ((Swv(kj)lk; 2 i) (4.1)

j=1 k=0

where Ny is the number of existing VNets. Afterwards, it proceeds with the determination of
Node Stress (Sn), which is a combination of the currently available Substrate Node resources
and weights active Virtual Machines, free RAM (Free RAM) amount in MB, number of CPUs
(N.CPU), CPU frequency in MHz (CPU Freq.) and current CPU Load, which varies between
0 and N.CPU. The Node Stress of the i'" physical node is:

Se = Number of Active VMs
N = 5+ Free RAM - CPU Freq - (N.CPU - Load)

(4.2)

where 0 is a small constant to avoid dividing by 0. The next step is the determination of
Node Candidates. For each node, a set of possible physical candidates is determined based
on constraints such as location, CPU number, CPU frequency and free RAM amount. After
determining the candidates for each virtual node, a sorting algorithm is run that orders the
virtual nodes by their number of candidates, so that virtual nodes with fewer candidates will
be mapped first.

The algorithm terminates with the final Node Mapping & Path Selection. For each possi-
ble candidate v, a Constrained Shortest Path First (CSPF) algorithm to all other candidates
(u) of the virtual neighbour nodes is calculated using the previously calculated Link Stresses
as weights, and the path cost is stored (D(v, u)). The node potential is then determined using
the formula:

m(v)= Y D(v,u)- S, (4.3)

ueVe

where V¢ is a set containing the candidates of the neighbour virtual nodes.

Upon calculating the node potential of all candidates, the candidate with the lowest one
is selected.

The algorithm terminates successfully when all the requested virtual nodes are properly
mapped, each one on a different physical node chosen from within its candidate set, and
the best-constrained paths for each virtual link are determined. For each physical network
segment of a virtual link, a unique unutilized VLAN is selected, thus better utilizing the
limited amount of available VLANSs.

This successful mapping results in a XML, describing the mapped virtual network. By
processing and breaking down the mapped XML, individual commands are sent to the proper
Agents in order to both create the virtual nodes and set-up the virtual links.

The newly created resources and virtual links will then be automatically discovered by
the Agents which will in turn update the Manager and consequently the Control Centre.

4.7.3 Virtual Resource Creation

The virtual node creation plays a fundamental role in the virtual network creation feature,
and strongly influences the total time required until the virtual network creation is complete.
In order to provide versatility in the creation of virtual nodes, a template mechanism
with hot-templates, i.e. template virtual machines with the file-system already created

55

Create New
Virtual Node

Restore
hot-template

hot-template
ready?

Modify
hot-template

Start Virtual
Node

Wait for ready
signal

Figure 4.5: Virtual Resource creation.

but not configured, are provided. By having a pool with different standard hot-templates,
e.g. a template with the Linux-based XORP [71] and other with a vanilla Debian Lenny
distribution, the virtual image management becomes easier on the one hand, and the node
creation becomes faster on the other hand.

The creation mechanism, illustrated in figure 4.5, works by having two ready templates
per distribution: a static-template, used as a master template, and a hot-template, that will
be modified upon the request for creating a new virtual node. After node creation, a cloning
of the static-template will take place in order to restore the hot-template. This template
cache allows a significant time reduction in the node creation times if the node requests are
sparse enough so that the hot-template has enough time to be restored. This is usually the
case, since a virtual network will not have two virtual resources on the same physical node,
due to the network-mapping algorithm.

Although the proposed mechanism only takes into account one hot-template, it could
be further extended to support many hot-templates and mitigate the performance penalty
associated with multiple, consecutive, node creation requests.

4.7.4 Simulation Results

This subsection ‘s purpose is to simulate the developed algorithm in conditions as similar
as possible to the ones found on real networks, with heterogeneous resources and links.

By testing the algorithm on these “closer-to-reality” conditions, insight and conclusions
about the algorithms performance and applicability shall be taken. Regardless of the simu-
lation parameters, the following simulations will all obey to a general procedure, which will
be described next.

On the first step, a physical topology was generated using the Waxman random topology
generation [69] method, with 30 physical nodes. The recommended parameters, a = 0.4 and
B = 0.4, presented some connectivity issues, especially for reduced amounts of nodes, e.g.
less than 16 nodes. These settings often caused isolated nodes or clusters where there was
not at least one path between every physical node. Hence, after generating the topologies,
in the lack of full connectivity, nodes with less links were given additional links until full
connectivity was established.

The generated physical nodes were randomly attributed a set of parameters, from a pool
of possible ones, such as RAM amount, number of CPUs and CPU frequency. The physical
link's bandwidth was set at a fixed bitrate.

56

N. CPUs {1234}
CPU Frequency (GHz) | {2.0 to 3.2 in 0.1 steps }
RAM Memory (MB) {64; 128; 256; 512 }
Link Bandwidth (Mbps) {34.368 139.264 }

Table 4.1: Virtual Network Mapping- Virtual Nodes' parameters pool.

N. CPUs {2; 4, 6, 8}
CPU Frequency (GHz) | {2.0 to 3.2 in 0.2 steps }
RAM Memory (GB) {2; 4, 6}
Link Bandwidth (Mbps) {1000}

Table 4.2: Virtual Network Mapping Simulation Scenario 1- Physical Nodes’ parameters
pool.

Next, virtual networks were generated using the same model, with a varying amount of
virtual nodes. After generating the virtual topology, the virtual nodes were also randomly
attributed a set of specifications, but in their case, the link bandwidth was also random, from
within a pool of possible bandwidths. The virtual nodes’ available specification pool can be
observed on table 4.1.

The following step finds a solution for the virtual network mapping, using the mapping
algorithm. If the mapping succeeds, the virtual nodes are placed on the physical nodes,
reducing the amount of available RAM and increasing the physical nodes CPU load by a
random amount. The utilization of the physical links will also increase according to the
bandwidth utilized by the virtual links.

In order to evaluate the mapping algorithm, two main metrics were considered: the node
stress ratio Ry and the link stress ration R;. From the definition of these two metrics
on equations 4.4 and 4.5, one can see that in a perfectly load balanced network, their
value should be 1, thus smaller stress ratios indicate better virtual network embedding in
the network. On the said equations, Ns and Ls are the set of substrate nodes and links,
respectively. A confidence interval of 95% was considered for every result.

maxyevs Sn(V)

T [ev. SN VS|

maxyeves Si(v)

[2_vers StV |Ls]

Rn

(4.4)

R, = (4.9)

Simulation Scenario 1

The first simulation scenario assumed that the physical resources had parameters taken
from the pools of table 4.2. For each generated physical network, attempts were made to
map as many virtual networks as possible. It was considered that a given algorithm could
not map any more virtual networks when it failed to embed 10 successive virtual networks.

Two approaches of the developed algorithm were simulated, one that starts the embed-
ding by selecting the virtual nodes with the least amount of physical candidates, and another

57

one that starts the mapping in a random fashion, i.e. without pre-sorting the generated vir-
tual nodes.

The simulation was run 100 times for different virtual network sizes. The number of
virtual nodes ranged from 4 to 14 in increments of 2.

Maximum Number of Accepted Virtual Networks vs Virtual Network Size

3 |
° it —o— Candidate Sort

30 & Random Sort

25

20

Number of Accepted Virtual Networks

0 5 10 15
Number of Virtual Nodes

Figure 4.6: Virtual Network Mapping Simulation Scenario 1 - Maximum accepted Virtual
Networks.

The results obtained may be observed on figure 4.6. As the virtual networks’ size begins
to grow, due to the increase in the number of virtual nodes, the number of maximum accepted
virtual networks begins to decrease, which was to be expected since larger networks are
harder to map due to a higher amount of constraints. Considering the case of small virtual
networks, with 4 virtual nodes for example, the mapping algorithms were able to embed
about 33 of them, while in the case of virtual networks with twice the virtual nodes, it was
only able to embed approximately 8.

The number of maximum accepted virtual network appears to behave similarly to a de-
caying exponential function, with the increase of the size of the virtual networks.

The mapping algorithm performing a pre-sort of the virtual nodes, considering their
amount of physical candidates, consistently shows slightly better results than the random
one, particularly for simulations with few or many virtual nodes.

Simulation Scenario 2

Although the maximum number of accepted virtual networks is important, the load dis-
tribution should not be disregarded. To that end, this simulation scenario aims to evaluate
the performance of both approaches relating the node and link stress ratios, according to
equations 4.4 and 4.5. In order to provide a fair comparison between the two approaches, an
embed of 75 % of the previously identified maximum of accepted virtual networks was done,
as observed on table 4.3.

The physical nodes’ specifications were kept equal to the previous simulation’s ones. The
simulation was run 300 times for different virtual network sizes. The number of virtual nodes

58

Number Number of
of Virtual | Embedded
Nodes Networks

4 25

6 11

8 6

10 5

12 4

14 3

Table 4.3: Virtual Network Mapping Simulation Scenario 2- Number of embedded virtual
networks.

ranged from 4 to 14 in increments of 2.

Node Stress Ratio vs. Virtual Network Size Link Stress Batio vs. Virtual Network Size

I .
16 T —+— Candidate Sort] Nl - gangldatessr(tm
andom So

Random Sort
14 = /
5
12 /l/

2 L,
© ©
" \ 4
[2] [%)]
[} [}
£ s | £
%) &3
) T x #
o : =
§ 6 —— - :/
\ ,
4
1
2
0 0
0 5 10 15 0 5 10 15
Number of Virtual Nodes Number of Virtual Nodes
(@) Node Stress Ratio vs. Virtual Network Size (b) Link Stress Ratio vs. Virtual Network Size

Figure 4.7: Virtual Network Mapping Simulation Scenario 2

Starting with the figure 4.7(a), it is possible to state that, as the size of the virtual
networks grows, the node stress ratio diminishes, showing that the network’s node load is
better distributed.

The large node stress ratio differences regarding 4 and 14 nodes virtual networks is
mainly due to the way the node stress is calculated. Since the node stress is inversely
proportional to the free CPU load, which varies between 0 and N¢pys, one can realize that
as the physical nodes become loaded, and their available CPU load tends to 0, the node

59

N. CPUs {4; 8,12, 16}
CPU Frequency (GHz) | {2.0 to 3.2 in 0.2 steps }
RAM Memory (GB) {4; 8, 12}
Link Bandwidth (Mbps) {1000}

Table 4.4: Virtual Network Mapping Simulation Scenario 3- Physical Nodes' parameters
pool with doubled node capacity.

N. CPUs {2; 4, 6, 8}
CPU Frequency (GHz) | {2.0 to 3.2 in 0.2 steps }
RAM Memory (GB) {2; 4; 6}
Link Bandwidth (Mbps) {2000}

Table 4.5: Virtual Network Mapping Simulation Scenario 3- Physical Nodes’ parameters
pool with doubled link capacity.

stress will tend to infinity.

In the 14-node virtual network embedding scenario, since only 3 virtual networks were
embedded, for a total of 42 embedded virtual nodes, it was not very likely that a set of
physical nodes got their available CPU load close to 0; thus, their node stress was kept at
moderate levels.

On the other hand, since in the case of 4-node networks, 25 virtual networks with 100
virtual nodes were embedded, it was more likely that some physical nodes, possibly physical
nodes with fewer CPUs, got overloaded and that their node stress reflected that overload,
thus producing higher node stress ratios. The node stress ratios followed a similar trend,
with the pre-sorting approach faring slightly better overall.

Regarding the evolution of the link stress ratio, observed in figure 4.7(b), with the increase
of the size of virtual networks, it is possible to note that it shows a growing behaviour. The
reason for this behaviour is quite simple. When considering the embedding of smaller virtual
networks, the granularity for link placement optimization is high; therefore, it will be easier
to better take advantage of physical links with less link stress. In the case of larger and
more complex virtual networks, there is less granularity in link placement, it is harder to
optimize link placement due to node constraints. Through the attained results, it is possible
to state that pre-sorting the nodes leads to lower link stress ratios.

Simulation Scenario 3

In order to assess the impact of both the nodes’ and links’ capacity on the overall maxi-
mum of accepted virtual networks, the tests of the first simulation run were repeated consid-
ering two separate situations: the first one where the physical node’s capacity was doubled,
according to table 4.4, and a second one where the physical links" capacity was doubled, as
observed on table 4.5.

On the first case, figure 4.8(a), the capacity of the physical nodes was doubled, only a
minor improvement in the number of accepted virtual networks was achieved. In the best-
case scenario, for virtual networks composed of 4 virtual nodes, the improvement was limited

60

Maximum Number of Accepted Virtual Networks Maximum Number of Accepted Virtual Networks

vs Virtual Network Size - Double Capacity Nodes vs Virtual Network Size - Double Capacity Links
T T
—o— Candidate Sort - —o— Candidate Sort
% 1 Random Sort || % Random Sort

50

30

25 40

20

30

15

20

10

Number of Accepted Virtual Networks
Number of Accepted Virtual Networks

0 5 10 15 0 5 10 15
Number of Virtual Nodes Number of Virtual Nodes
(a) Physical Nodes’ capacity doubled. (b) Phuysical Links' capacity doubled.

Figure 4.8: Virtual Network Mapping Simulation Scenario 3 - Maximum accepted Virtual
Networks.

to 2 additional embedded virtual networks. The differences in the mapping algorithm with
or without candidate sorting are barely perceptible.

Regarding the doubling of link capacity, the gains realized are notorious (figure 4.8(b)).
In fact, the number of accepted virtual networks almost doubled for virtual networks with 4
to 8 virtual nodes, and showed significant improvements for the other virtual networks’ sizes.

Considering the accomplished results, it is clear that, for the specified simulation pa-
rameters, the main limiting factor for virtual network embedding is the links' capability.
Improving the nodes’ capacity barely showed any improvements, while increasing the links’
bandwidth showed improvements similar to the bandwidth'’s increase factor.

4.8 Topology Discovery

In order to be able to properly map new virtual networks and allow the user to monitor
the existing physical and virtual networks, mechanisms for discovering them are required.
To that end, two mechanisms are proposed: a distributed one, that does not require the
Manager’s interaction, and a centralized one, performed by the Manager after receiving all
the resources’ information.

4.8.1 Distributed Topology Discovery

The distributed topology discovery, on the one hand, intends to reduce the required pro-
cessing power on the Manager, while on the other hand, is a step forward towards distributed

61

embedded management in the network elements (the so-called In-Network Management).
It fosters inter-Agent communication, without depending on the Manager, that could be a
key enabler to future distributed functionalities.

The proposed algorithm is based on concepts from both Spanning Tree Protocol (STP)
and BGP. The Agents register themselves in a predefined multicast group and, afterwards,
exchange messages with each other. The multicast group used is link-local, i.e. Time-To-
Live (TTL) of 1, in order to avoid sending the discovery messages to nodes that do not want
it and would otherwise need to process the packet before discarding it.

The distributed algorithm for full network discovery relies on the neighbourhood concept,
where each physical node knows exactly who its neighbours are, and also who are the
virtual neighbours of its local virtual nodes. By aggregating each Agents knowledge, the full
topology map may be built, it works pretty much like assembling a puzzle with the pieces
numbered, i.e. it is a straightforward process. The concept is demonstrated on picture 4.9.

7 Y i@ Y Y

s Nodezk Node3 | [Nodesw Nodeﬂ \

y \< \ ,,/ N

" r

L Node4 \ - Node7 ‘ . Node1 wmdem

m %
Node1's Neighbourhood Node7's Neighbourhood

\ Node5 | Node6 [Node9

Topology assembled from Node1's and
Node7's Neighbourhood knowledge

Figure 4.9: Topology Discovery — Assembling neighbourhood knowledge.

In a given network segment, one of the Agents has a special function, the Designated Root
(DR) function. This node is responsible for transmitting all the information about its network
segment to a new Agent arriving at the network. This approach has its roots on the spanning
tree algorithm. It aims to reduce the information exchange of the distributed approach by
electing a node to exchange information. This node is responsible for transmitting all the
information about its network segment to a new Agent arriving at the network.

62

Physical Topology Discovery

Upon start-up and periodically, each Agent sends a multicast Hello message through its
interfaces. The messages are specific to the interface and indicate their origin interface.
This Hello message exchange allows each Agent to know its directly connected neighbours;
therefore, by assembling each Agent’'s knowledge, as depicted on figure 4.9, it is possible to
build the full physical topology network map.

Virtual Topology Discovery

The virtual network topology is not simple to achieve, since a virtual link may span
through several physical links, thus, message forwarding mechanisms had to be designed.

The Agents exchange information about two kinds of resources: their local resources and
the resources advertised by its neighbours that utilize the local physical node as a network
hop.

Consider the simple case of figure 4.10, where a virtual link transverses one hop, P2, which
has a bridge connecting its eth0.0500 and eth1.0800 interfaces, where eth0.0500 represents
an interface using VLAN 500 and eth1.0800 uses VLAN 800.

Since the bridge provides layer 2 connectivity to the two segments using VLANS, a virtual
link exists between P1 and P3 whose terminals are connected to the virtual resources V1
and V3. V1 and V3 have, thus, data link layer connectivity.

V1 V3

Virtual Link

vethO vethO

eth0.0500 eth0.0500 eth1.0800

VLAN 500 VLAN 800

ethO eth1

Figure 4.10: Virtual topology discovery example

In order to provide P1 and P3 with knowledge about each other resources, P2 must
forward their resource advertisement messages through the proper interface. Considering the
resource advertisement message coming from P1 and arriving at eth0.0500, P2 will check its
bridge entries, locate a potential output interface, in this case eth1, modify the advertisement
message to add a new hop, and then send the message through eth1 which will be received
by P3. When P3 receives the message, it knows that resource V1 is located at P1, connected
at its local interface eth3, and that the existing virtual link has one physical hop P2. P3
then proceeds to verifying the interface from which the message was sent, i.e. eth1.0800,
locates the corresponding eth3.0800 and checks if any local virtual resource, in this case V3,

63

is connected to it through a bridge. After the successful matching, it then discovers that V1
is V3's neighbour through P2 physical node and that the link transverses two physical links.
The exact same mechanism also happens in the opposite direction and P1 learns about a
virtual link between V1 and V3.

Designated Root

The DR is elected based on the Agents’ ID , which contains an integer allocated from
the Manager when an Agent starts-up; the Agent with the lowest ID on a network segment
is elected the DR and is responsible for sending the networks’ information to newcomers.

At start-up, every Agent ‘s DR is himself, after receiving a message from an Agent with
a lower ID, the DR will be updated to reflect the new ID.

The DR role is not allocated ad eternum. The DR may crash or be shut down; therefore,
mechanisms that trigger a new re-election are required. Each neighbour has an expiration
timer that will trigger a new DR election if the current DR fails to communicate within a
given time period, i.e. if no Hello message is received.

Pseudo-Code

The pseudo-code displayed on algorithm 1 depicts the overall mechanisms of the de-
veloped discovery algorithm. Each interface (IFC;) has its own neighbour list and runs this
pseudo-code. Since every message exchanged has a header similar to the Hello Message,
the processing for this message type is done every time a message is received; hence, it is
not specified on the switch clause. Further details about each mechanism will be provided
in the following paragraphs.

Bootstraping Mechanism

Bootstraping is a fundamental issue when performing distributed discovery algorithms,
it must be quick, efficient and reliable. The proposed bootstrapping mechanism is described
in the diagram of figure 4.11. In order to begin the discovery mechanisms: the Agent must
have a unique ID given by the Manager and the initial local resource discovery must be
completed.

After these initial conditions are met, the discovery algorithm may start and the periodic
sending of Hello messages begins. Upon receiving an Hello message, the current DR will
identify a new physical neighbour and, since it is the DR, a full update regarding the network
segments’ associated virtual resources is sent to the arriving Agent.

On the new Agent’s side, after receiving any message from a previously existing physical
neighbour, an update containing its full knowledge, i.e. only local resources, will be sent.
The DR will be afterwards updated based on the IDs of the discovered physical neighbours.

Considering the pseudo-code displayed in algorithm 1, the core of this process is de-
scribed in lines 3 to 15.

Resource Update Mechanism

There are two main situations where an Agent advertises a resource. The first one is
when a new local resource is created; the Agent where the resource resides will send updates
through the interfaces related to that particular resource, i.e. interfaces that are bridged to

04

Algorithm 1: Per-Interface Discovery Algorithm.

input : IFC;
1 DR =My_ID ;
2 repeat Msg_Type = Multicast_Receive(IFC;,Msg_Buffer)
3 NG = GetNeighbour(Msg_Buffer);
4 if NewNeighbour(NG) then
5 AddToNeighbourList(IFC;NG) ;
6 if DR == My_ID then
7 | SendAllKnowledge(IFC;) ;
8 end
9 else
10 ExclusiveUpdateDR(IFC;,NG) ;
1 if DR == My_ID then
12 | SendAllKnowledge(IFC;) ;
13 end
14 UpdateDR(IFC;);
15 end
16 end
17 switch Msg_Type do
18 case Resource Message
19 VNG = GetVirtualNeighbour(Msg_Buffer);
20 if NewVirtualNeighbour(VNG) then
21 ‘ AddtoVirtualNeighbourList(IFC; VNG);
22 end
23 if size (IFCyis¢ = LinkToOtherInterfaces(IFC;,VNG))>0 then
24 AddToVirtualNeighbourLists((IFCyst, VNG) ;
25 SendResourceMessage((IFCyst, VNG) ;
26 end
27 CheckForVirtualLinksWithLocalResources(VNG);
28 endsw
29 case Delete Message
30 VNG = GetVirtualNeighbour(Msg_Buffer);
31 IFCist = LocateResourceEntriesOnAllinterfaces(VNG);
32 SendDeleteMessageThroughRelevantinterfaces(IFCy;s¢,VNG) ;
33 RemoveEntriesOnAllinterfaces(IFCy;s¢, VNG);
34 endsw
35 endsw
36 UpdateLastContactTime(NG);

37 until Terminate Signal;

one or more virtual interfaces belonging to that resource. The new resource message will
thus only be sent through relevant interfaces.

The second possible situation happens when a resource may be advertised as a conse-
quence of a received resource advertisement, i.e. there is an advertisement forwarding, as
shown in figure 4.12. In this case, the physical hop that forwards the resource advertisement
appends itself, its input, and output interfaces to the forwarded message, similarly to the
BGP protocol. This “path tagging” allows the building of a complete virtual link map, where
the physical path, with its multiple link segments, is known.

As can be observed through lines 18 to 28 of algorithm 1, the Agents receiving the new
resource advertisement will place an entry on the receiving interface’s knowledge database
and will locate potential output interfaces for that resource, i.e. the Agents will verify if they
are or not a hop for any virtual link belonging to the advertised virtual resource. If they are,
they will forward the resource information through the relevant interfaces; if they are not,
they will just keep the resource information stored, since it may be needed later.

Besides the forwarding mechanism, a local verification will also be performed in order
to assess if any one of the local virtual resources is connected through a virtual link to the

65

Start!

DR =My ID
Hello
Message
Received
. New Phy Add to Phy
> Listen Neighbour? Yes > Neighbour List
A
Update
Am | No .| Designated Root
The DR? (except new
Neighbour)
Yes
Send all . Yes Am|
Knowledge The DR?
No

Update
Designated Root

Figure 4.11: Discovery algorithm - Bootstrap diagram

received resource.

Resource Removal Mechanism

One other fundamental part of topology discovery is to be able to delete virtual resources
and maintain the consistency in the existing databases. To that end, a mechanism for virtual
resource removal also exists, and is illustrated both through figure 4.13 and lines 29 to 34
of algorithm 1. The forwarding mechanisms are similar to the ones of new virtual resource
advertisement.

4.8.2 Centralized Topology Discovery
Algorithm Overview

As a comparison base, a centralized topology discovery algorithm was also developed.
The algorithm is performed by the Manager upon receiving a pre-determined amount of phys-
ical and virtual resources, i.e. the user executing the Manager will have to know beforehand
the number of existing resources, both physical and virtual.

Although a button trigger mechanism might have been used, e.g. after pressing a button
the Manager would determine the existing topologies with the current resource knowledge,
for testing purposes, simply specifying the number of expected resources suffices.

06

y Reso;rce ved Process new Phy
essage Receive ;
C Listen N_ew Phy Neighbour
Neighbour? (equal to Hello
Message)
No
Add Virtual
Neighbour to List
-) of interested
No m:}”r:ggs;l Yes—p NA:id I’:Ec:{,:lr"ttiaslt » interfaces with
9 . 9 additional Hop
(if no entry exists
already)
Send Resource
Check for Virtual Message through
) . interfaces where
Links with local |« . <
Resources the Virtual
Neighbour was
added

Figure 4.12: Discovery algorithm — Resource message received

Resource Delgte Jes Process new Phy

Listen Message Received New Phy Yes Neighbour

’ Neighbour? (equal to Hello
Message)

No | ‘
Send Delete
Locate Virtual ’;erzzuﬁx:;:gg: Remove resource
Neighbour entries ————»| 9 " entries on all
. where the Virtual .
on all interfaces ; interfaces

Neighbour was

registered

Figure 4.13: Discovery algorithm — Delete resource message received

To be fair with the distributed resource discovery mechanism, a dynamic approach should
have been used, but that would imply a huge amount of CPU processing every time a resource
was added or removed from the Manager’s resource database, since the changes to the
physical or virtual topologies would have to be determined.

Also, implementing such a simple trigger mechanism reduces the amount of modifications
required to the Manager’s source code, and it is a reasonable approach given the intended
use.

Algorithm Design

The algorithm begins with the determination of the physical topology, i.e. by taking the
physical resources one by one, checking its interface configuration and determining if any
other physical resource has an interface in the same IP network. If any of them does, then
it is considered that a physical link exists.

After determining the full physical topology, it is time to determine the existing virtual
networks’ topology. Once again, the algorithm starts by taking the resources from a given
virtual network one by one. Firstly, the physical resource where the virtual resource resides
is identified and the algorithm proceeds with determining potential output interfaces; i.e.
physical interfaces bridged with the resources’ virtual interfaces, and the VLAN associated
with each physical interface is determined.

Afterwards, the algorithm locates the physical neighbours connected to each of the iden-

67

Number of physical nodes | Increment | Number of simulation runs
4 to 50 2 100
60 to 150 10 100
200 to 250 50 50
300 to 350 50 20
400 to 500 100 10

Table 4.6: Distributed discovery - 1%t simulation parameters.

tified physical interfaces, by using the already known physical topology map, and checks if
they have a sub-interface using the same VLAN. If they do, the next step is to determine
the bridge where the sub-interface is connected. After the bridge is found, two situations
exist: Either the bridge has a local virtual interface associated to it and a new virtual link
has been found, or the bridge has another sub-interface associated and the algorithm must
be repeated. The algorithm is, hence, recursive.

When all the virtual networks’ topology has been determined, the algorithm terminates.

4.8.3 Simulation Results

In order to assess the scalability of the proposed distributed discovery algorithm, two
different tests were made. The first one tested for scalability of the algorithm with the
increase of physical nodes, in the presence of a single virtual network spanning half of
them; while the second one tested for scalability with the increase of the number of virtual
networks.

The physical topology was generated using the Waxman random topology generation
[69] method, with the same parameters as the ones used earlier on the mapping algorithm
simulation on subsection 4.7.4, ie. a = 0.4 and 8 = 0.4, and with full network connectivity
guaranteed.

After generating a physical topology, with a given number of nodes, a virtual topology was
generated on top of it by randomly selecting half of the physical nodes and creating virtual
links. This virtual topology generation used a part of the Waxman method and guaranteed
full connectivity of the virtual network. A confidence interval of 95% was considered on every
simulation.

Since the virtual links did not match existing physical links most of the times, the Dijkstra
algorithm was run in order to get the physical path for each virtual link.

In figure 4.14 one can see an example of a generated physical network, virtual network
and the corresponding link mapping.

For comparison purposes, three discovery algorithms were considered: the proposed one,
and two others based on uncontrolled and probabilistic flooding, with a flooding probability
of 50%.

For the first simulation, a single random virtual network was generated on top of a
random physical network. The number of physical nodes varied between 4 and 500 in a
non-uniform way. Due to the time required to complete the simulation when in the presence
of many nodes, the number of simulations runs for each considered number of physical nodes
varied according to table 4.6.

68

Substrate Network Virtual Network

---------- Physical Links O Virtual Nodes

or Physical Nodes || or —— Virtual Links ||
8t s d
7+ 7+ B
6 6 B
5} 5} B
4t 41 i
3 3t B
2+ 2+ 4
10 10 B
% 1 2 s 4 5 & 7 8 9 w0 %0 1 2 s 4 5 6 7 8 9 10
(@) Substrate network. (b) Virtual network.

Mapped Virtual Network Substrate Network with Virtual Network Embedded

10 T T T T T T T T

O VirtualNodes || | e Physical Links
or o Physical Paths O e o Physical Nodes ||
8r 1 8t —o6— Virtual Network ||
7 o | N S N |
6f R A A i
5 4 st S F e |
(<]
¢ e i v el 1
3] st .. ,
Y -
2 4 20 8
1 4 1t i
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
(c) Virtual network with mapped links. (d) Virtual network overlayed on substrate net-
work.

Figure 4.14: Distributed discovery algorithm simulation example.

Considering the graphics relating the first simulation scenario, presented in figure 4.15, it
is clear that the proposed algorithm is scalable and that it imposes a much smaller overhead
than flooding techniques. Regarding figure 4.15(a), exhibiting the number of exchanged
messages, in the case of 500 physical nodes, the difference between the probabilistic flooding
algorithm and the proposed algorithm is of about three orders of magnitude.

With respect to the required simulation cycles, the proposed algorithm shows a behaviour
similar to that of the flooding algorithms for less than 10 physical nodes. However, for a
significant number of nodes, the number of required simulation cycles starts to stabilize on
our approach, while in the other cases it continues growing.

The behaviour of the flooding algorithms in respect to simulation cycles is to be expected.
Since the network size keeps on growing, so will the number of hops that forward the
discovery messages; thus, the number of cycles required for the messages to reach every
node is proportional to the number of physical nodes.

In the proposed algorithm, the path crossed by the discovery messages is a previously
optimized one; therefore, the number of simulation cycles required for convergence is much
smaller. The stagnation in the required number of cycles observed is due to the number
of physical hops utilized by the virtual links, being kept approximately constant with the

09

10 ‘ ; 600 : ‘ ‘ ‘ :
! ‘ —— Proposed Algorithm
10° =] Uncontrolled Flooding s
= s00L —— Probabilistic Flooding
g 10" > /
= # (2]
3 v o /
3 10° f > 400
= o
b S
=S
5 7 E 7
8 7 E 300
2 1 % 7
w * 7 kS
y— X il —
o > 2 o)
o 10’ “I‘ £ 200]
g i 2
Z 10
- 100
. +— Proposed Algorithm
10 .o
Uncontrolled Flooding £
. —— Probabilistic Flooding -
10 I I T T 0 <+ <+
-100 0 100 200 300 400 500 600 -100 0 100 200 300 400 500 600
Number of physical nodes Number of physical nodes

Figure 4.15: Discovery Algorithm Scalability Tests — Number of Physical Nodes.

increase of substrate nodes, since the virtual networks are always created with half of the
physical nodes.

Figure 4.16 shows the results obtained with the increase in the number of virtual networks
on top of a single substrate network. It is possible to observe that its behaviour follows a
linear trend, i.e. that the number of exchanged messages and required simulation cycles are
much reduced when compared to the other approaches.

4.9 Substrate and Virtual Network Monitoring

Resource monitoring is fundamental if one wants to have an accurate view of the virtual
and physical networks at a given point in time. The monitoring functions periodically update
the resources’ information, therefore it is possible to identify diverse situations, such as
failures and high resource usage, which may require immediate action. Monitoring for both
physical and virtual link information is also provided.

To provide proper updated information, every Agent periodically checks its local re-
sources’ configuration and status, and reports back to the Manager if any change occurs.
These triggered, event-driven updates reduce the overhead traffic on the network. Several
parameters are monitored: CPU load (that is classified according to 6 equally distributed
levels), RAM, HDD usage, interface and link status, interface bridge attachment and config-
uration, number of running virtual machines and their state. If a resource crashes or becomes
misconfigured, the network administrator will have this information and will be able to take
proper actions.

Consider the case of a stable virtual network, i.e. a network with a constant load on
its resources and links and no changes on its configuration. The Agent monitoring each
of the network’s resources will periodically verify their configuration, load, and state. If an

70

100 Physical Nodes

10 100 Physical Nodes
2500 ‘ ‘ ,
—+—Proposed Algorithm ‘
Uncontrolled Flooding
7 —=— Probabilistic Flooding /K
3 10 ——— 2000 /
g %
® =l — 3
8 - S
= o
2 10 f&/x/i & 1500 /
ol =
2 =7 S
© 4 =]
S E
5 -
i 1o’ © 1000 Vi
o 3
§ :
£ Z
P
10 — 500 G
= —+— Proposed Algorithm |
j&/ Uncontrolled Flooding |
—=— Probabilistic Flooding || -
10° I I 9 0 WWWW

I
0 5 10 15 20 25 0 5 10 15 20 25
Number of Virtual Networks Number of Virtual Networks

Figure 4.16: Discovery Algorithm Scalability Tests — Number of Virtual Networks.

interface fails, the Agent will realize that the interface state has gone from up to down, and
will therefore send the resource’s information to the Manager.

The Manager will then process the resource information, compare it with its local knowl-
edge about the resource and will also realize that the interface state has changed. As a
result, a subsequent update will be sent to the Control Centre which will update the in-
terface state from up to down and erase all the existing links from the user’s view. Facing
disappearing links the user will verify the related interface, realize that a problem exists
with it and he will take proper action.

A simpler case could be demonstrated with a virtual node changing its state from running
to shutdown, or a sudden change in resource load. The Agents, Manager and Control Centre
would behave in the same way and the user would quickly identify these situations.

410 Virtual Network Management

Just like the previously described monitoring ability, the management feature, i.e. be-
ing able to act on the network’s resources is also a fundamental one. To that end, some
functionalities are provided such as changing the virtual resource state, i.e.: rebooting, shut-
ting down, suspending or powering the resource up, the amount of assigned RAM memory,
deleting the resource or even the full virtual network.

The assigned RAM memory may be changed in runtime. This feature can be particularly
useful if, for some reason, the resource requires a larger amount of RAM in some time-
periods while needing less in others. If less RAM is utilized, it may be made available to
other running virtual resources.

The delete feature is available for either single resources or the complete virtual network,

71

and greatly simplifies the administrator work by automating the delete procedures: the
virtual machine is removed, its file system is destroyed and the associated bridges and
VLANSs are freed. The physical machines quickly return to a “clean” state. The virtual
network delete request is sent to every Agent on order to allow hop-Agents to clean-up
their bridges and release used VLANSs.

Other use-cases regarding not only the management but also the monitoring features
are exhibited in figure 4.17.

Visualizer
Choose other VNet Delete VNet €USe>- Select VNet
« extend »
VNet is physical
|
\\/ «use » = Modify State
Manage VNet Modif}ﬁmjz
. : S use »
~

AN

Modify RAM
& = Get VNet :
\ _/ View Interface

User Configurations &

Choose other

Resource Manager

| « ex‘ end »
«use » Resa:rce is
| vif ual
| V
«use»_ View Resource « use 1> View Running

Figure 417: VNet Management and Monitoring use-cases

411 Conclusions

An analysis of the NVSS software was provided. Its modules, architecture, main databases,
communication and user interfaces were described. The Control Centre and its main aspects
were described and so were the pertaining use-cases.

Each intended feature was carefully scrutinized. Emphasis was given on topology dis-
covery and embedding algorithms.

Virtual network discovery algorithms, despite being fundamental for a future virtualized
network, have not been a major research target in the past few years. The developed
distributed discovery algorithm succeeded on providing a simple, fast and low overhead
virtual and physical topology discovery algorithm, as proven both by the obtained simulation
results and the experimental tests conducted.

A distributed approach to topology discovery was designed and simulated. Considering
the attained results, it has been proven that this distributed algorithm is scalable in terms of

72

the number of exchanged messages, required cycles to complete and amount of virtual net-
works. The results show that the number of exchanged messages can be reduced by about
three orders of magnitude when compared to algorithms using uncontrolled or probabilis-
tic flooding. Unlike these flooding algorithms, the number of cycles required for topology
discovery remained approximately constant with the increase in the network size.

Since the virtual network embedding problem is a complex one, an heuristics based al-
gorithm was proposed in order to reduce both the embedding complexity and the required
computational time. Simulations were made that showed the algorithm’s performance con-
sidering heterogeneous physical and virtual networks, and conclusions were taken about
the impact of the virtual networks’ size, and the specifications of both physical nodes and
links.

The use-cases and desired functionalities for both monitoring and management features
were provided. Several parameters were identified as necessary for proper network mon-
itoring, such as CPU load, available RAM, physical and virtual links’ and nodes’ states.
The management features include changing the state and the RAM amount of the virtual
machines in run-time.

73

74

Chapter 5

Software Implementation

5.1 Introduction

As result of the previous specification and design chapters, this chapter’s purpose is to
describe the implementation of the analysed features, functionalities, and algorithms.

In-depth details will be provided about both the composition and the behaviour of every
module. Their data structures, threads, main functions, exchanged messages and mechanisms
will be discussed.

Some of the main used libraries, APIs and open-source functions will be described first,
on 5.2. Then, the Virtual Network Control Center on section 5.3 will be explored, followed
by the Virtual Network Manager on section 5.4 and finally the Virtual Network Agent on
section 5.5. The chapter will conclude with a brief resume and analysis of the implementation
details on section 5.6.

5.2 Auxiliary Functions and Libraries

5.2.1 XML parsing

One of the reasons for working with XML descriptions is the existence of XML APIs for
both Java and C, thus these files may be exchanged and processed easily. JDOM [27] was
used for parsing in Java while libxml2 [67] was used for C.

5.2.2 popen_noshell

popen_noshell [21] is a C function that presents the same functionality as a system or
popen call but requires far less CPU cycles to execute. This improved speed and lower
resource usage made it “the” choice for executing commands from within the Agent software,
such as configuring or gathering bridge information and configuring interfaces, among others.

Associated with the unlocked version of fgets, command execute and result parsing speeds
are greatly increased.

5.2.3 libvirt

This APl was described on chapter 2. As stated, it presents a standard interface for
interacting with multiple hypervisors, hence its functions were used extensively in the Agent

75

module both when gathering resource information and when creating or acting upon virtual
resources.

Since a connection to the hypervisor is required on every Agent, the static function
cmdConnect() was implemented, and so was a synchronization mutex in order to provide
mutually exclusive access to the hypervisor. When a function call is performed, the function
will verify the state of the hypervisor connection, and try to connect if it is not yet established.

5.3 Virtual Network Control Centre

5.3.1 Databases and Classes

Before going deeper into the Control Centres’ database description and details, one
concept must be explained: The concept of a hash-map. A hash map presents a one to one
relationship between a key and a value. By hashing the key, a hashing function transforms
the key into an index of an array where the value is stored.

There are six main databases in the Control Centre modules (5.1), three containing display
objects and three other containing the resources’, links" and virtual networks’ information.

Graphical Information Information Storage
Class List Class List
DisplayVNet displayVNetList VNet wnetList
DisplayComponent displayResourceListMap Resource resourcelList
DisplayLinks displayLinkListMap Link linkList

Figure 5.1: Control Centre's Classes and Lists.

TheVNet database, called vnetList, uses a hash map to store its keys and values (figure
5.2(a)). The keys are the unique VNet ID’s while the values are VNet Objects, represented
on the class diagram of figure 5.2(b).

The Resource database, implemented as a resourcelist, is also based on hash maps. Its
Resource objects store data according to the class diagram of figure 5.3(a). There can be
two main types of resources, physical (PNode) and virtual (VResource), and the latter can
also have two types, either virtual node (VNode) or virtual router (VRouter).

The Link database also uses a hash map to store its link objects (figure 5.3(b)).

The remaining three databases store display objects. Starting with the Display VNet
database, its database is called displayVNetList and the hash map is similar to the previous
ones: the VNet ID is the key while the value is the DisplayVNet object.

G VNet
upeiList o wnetlD : String
Key Hash Function Value o infallpdated : boolean
StingietD Lo VNet Object Shiemporanibag eankisise
(@) VNet list hash map. (b) VNet class.

Figure 5.2: Control Centre's VNet list hash map and class.

76

© Resource © VRouter @ Link
e res_name : String © nodel : String
© dizplay_name : String o nodel_narme : Sting
o state int . ° nude1_if - String
e ifs : LinkedList¢Interface> T oo
o vnei_id : String ° node2 :Strlng
O mEm o0k o node?_name : String
o mem_mex int o node?_if : String
e mem_free :int © VResource o wnet_id : String
e hdd : LinkedList¢<HDD>» < o |inklD ; String
© load : String © temporary :hoolean = false
© load level :int ° infolUpdated : boolean
@ active_wr 1int
o inactive_wr :int
© e et sl ©® VNode 1 | +Link
o res_desc : String
e res_local : Sfring 1 +gos
o res_type :int
o resourcelD : String © aos
o .
o Esi__rﬁj_ld +Sting ° duplex.: String
o cpu_string : Stiing T o handwidth : double
o cpu_mhz :int - o latency : double
e os 1 String o jitter : cloukle
o temporary : boolean = false o |oss double
e infollpdated : boolean o link load - double
e imagePath : String o guaranteed : int
o popupOptionList : String[*] { unique } e cloneq) Q0%

(a) Resource class. (b) Link class

Figure 5.3: Control Centre’s Resource and Link classes.

The DisplayComponent database uses a double hash map to store its data, the first key
is a VNetlID. It leads to another hash map whose key is now the resource ID and the value
is a DisplayComponent object.

Finally, the Display Link database utilizes a hash map whose key is a VNet ID that
leads to a linked list of Displaylink objects. The Display objects are described by the
classes shown in figure 5.4

5.3.2 Module Decomposition

The entry Control Centre class is the VNetVisualizer class that is in charge of reading
the Control Centre’s configuration file, containing the necessary information to connect to
the Manager (figure 5.5). Afterwards, a new object is created; the Controller initializes the
previously described databases and launches the Control Centre’'s two main threads: The
Model thread and the View thread, as depicted in figure 5.6.

Model thread

This thread is mainly used for listening to the Manager’s messages and, aside from the
exception of requesting the Manager an ID at start-up, it is a passive thread. Its main
function is to process the Managers’ messages and update the related databases.

After receiving the ID, the Model thread operation, which may be seen on figure 5.7,
is straightforward: it has a main “while” loop that blocks on TCP socket readline calls.
Two successive calls are performed to readline, the first one is used to determine the mes-
sage type, while the second one receives the actual data. It is assumed that the message

77

© DisplayComponent

resourcelD : String

COMP SIZE ¥ :int=80{readonlk}
COMP SIZE Y :int=80{readonly }
resourceMame : String
displayComposite : Composite
titteLabel : Lahel

image : Image

imagelabel : Label

loadLabel : Lahel

loadlmage : Image © DisplayLink @ DisplayVNet
stateLakbel : Label o linkD : String -

statelmage : Image o 1 -int o wnetlD : Sting

lack i o tahltem : CTahltem

ocA cint oyl sint

locY - int o X2 :.int o tabCanvas : Canvas
start_theta - doukle o 2 :int o temparary : hoaolean = false
end_theta : double

place_computed : boolean = false
heginx :int

heginy :int

maxx int

rnasy’ :int

mir : int

miry’ :int

mouseDown : boolean
temporary : boolean = false
clone () : DisplayCompaonent

®#|0o o 0o 0 0O 0 0O O O O O O O O O O0COOCOOCOO OO O

Figure 5.4: Control Centre's Display classes.

Join Threads

Start Control PETEE . Launch
Configuration
Centre , Controller
File
Launch View Launch Model
Start Controller Thread Thread

Figure 5.5: Control Centre Start Up.

containing the message type immediately precedes the message with the actual data.
The message types accepted by the Model thread are described in table 5.1.

View thread

The View thread (figure 5.8) is responsible for the graphical interface. It is in charge of
handling user interactions, of displaying the networks’ topologies and resource information,
and of sending requests to the Manager. All the software’s functionalities are presented to
the user through the View thread.

The view thread uses the Java's Standard Widget Toolkit (SWT) as the main graphical
API. At start-up, a global initialization of the graphical interface, i.e. menus and tabs, is
performed and a request is automatically made for the substrate network.

The generated GUI can be decomposed into three main sections: the dropdown menu,
the coolbar menu and the tab canvas.

The dropdown menu, displayed on figure 5.9, provides the user with several functionalities
for virtual network management and monitoring: the Action menu allows the user to create
and delete new virtual networks, to load or save an XML with virtual network description,

78

Virtual Network 9
Manager =

User

Figure 5.6: Control Centre Module.

Start Mcdel Connect to Send ID
Thread Manager Request

Figure 5.7: Control Centre Model Thread Diagram.

Start View Setup Window View Thread
Thread and Menus Main Loop

Figure 5.8: Control Centre View Thread Diagram.

Receive &
Process
Messages

and to exit the Control Centre. The Get VNet menu provides the user with a list of available
VNets that may be chosen for monitoring; selecting a given virtual network based on its ID
will create a new tab with the requested virtual network.

The second main section of the GUI is the coolbar shown in figure 5.9 that provides
the user with quick access to regular functions when creating a virtual network. These
functions include adding a new virtual server or router, removing a virtual resource, adding
or removing a virtual link, committing or cancelling the modifications, and refreshing the
data of the current opened virtual network tab.

The last section of the GUI is the tab canvas where the virtual networks are drawn, as
seen in figure 5.10. By selecting a tab, the View thread will draw the corresponding virtual
network. Each resource has additional menus that can be accessed by right clicking on it.

The user actions upon the Control Centre will sometimes require it to send messages to
the Manager. The exchanged message types are described on the table 5.2.

The View thread’s main loop periodically performs updates on the graphical objects, so
that the existing menus and figures always reflect the current networks’ status. The diagram
of figure 5.11 exemplifies the actions taken.

The loop begins by removing the display objects that correspond to no longer existing
content, i.e. resourcesand links of virtual networks that have been removed in the meanwhile.
Next, checks are made to see if any new virtual network, link or resource has to be created,
and if they do, the display objects are created with the matching information, menus and
event-handlers. Subsequently, they are placed on the respective VNet canvas.

The placing function for a given virtual network begins by selecting the node with the
highest amount of links and placing it in the centre of the canvas with a total available
radial angle of 27r. Afterwards, a recursive function distributes the neighbour nodes in a
radially uniform way and attributes them a smaller radial angle. An example result of node
placement algorithm is showed in figure 5.12 where one can clearly observe that the node
with the highest number of links was placed on the centre of the drawing canvas, and that

79

Message Type

Description

MV_MSG_USER_INFO

Allows the Manager to send a message that will
be displayed to the user.

MA_MSG_ID_REPLY

Manager reply to a Control Centre’s ID request.
Contains a unique ID.

MA_MSG_VNET_LIST

Contains a list of the Manager's known virtual
networks.

MV_MSG_UPDATE_LINK

Contains information about a given link.

MV_MSG_DEL_RESOURCE

Delete command for the specified virtual re-
source.

MV_MSG_DEL_PHY_RESOURCE

Delete command for the specified physical re-
source.

MV_MSG_UPDATE_RESOURCE

Contains information about a given resource.

Table 5.1: Manager to Control Centre message types.

Message Type

Description

MV_MSG_NEW_VNET Create a new virtual network, based on a XML
description.

MV_MSG_DEL_VNET

Delete the specified virtual network.

MV_MSG_GET_VNET

Request information and updates for the spec-
ified virtual network.

MA_MSG_VNET_LIST

Request a list with the existing virtual net-
works.

MV_MSGCG_START_VM Start the specified virtual node.

MV_MSG_SHUTDOWN_VM | Shutdown the specified virtual node.

MV_MSG_REBOOT_VM

Reboot the specified virtual node.

MV_MSG_PAUSE_VM Suspend the specified virtual node.

MV_MSG_UNPAUSE_VM

Resume the specified virtual node.

MV_MSG_DESTROY_VM

Delete the specified virtual node.

MV_MSG_SET_MEM_VM Change the specified virtual node’'s RAM
amount.

Table 5.2: Control Centre to Manager message types.

80

By

‘ | Get Vet Help

New VNet

Delete VNet lalh & _‘,8 J/O' J’(;; v X =
Load VNet XML

Save VNet XML

Quit

Figure 5.9: Control Centre’s Dropdown & Coolbar menus.

Substrate £ . TestxWe

Mary Susan Gabrielle
0.0/1000.0Mbis > 0.0/100.0MbJs—>
<~0.0/1000.0Mb/s 3 <—-0.00200.0Mb/5 3
r‘ r‘ /
a.ﬂ»zmr!ﬂ.wwm-» <--0.0/200. 00b/'s 0.0/100.0Mbis—> <--13.0/200.0MDs
<--0.0/1004.0MDs 0.0/2000.0MbJs > <=-0,0400.00Mb/s 13.0/200.00MbJs —>
Eddie Bree Lynette

0.0/1000.00bis--> 0.0/1000.00TI/5-->

<—0.0/1000.0MbJs <=-0.0/1000.0Mbis. ' 3
3 b B

Figure 5.10: Control Centre's Canvas.

: Delete Create New : Refresh
Vo Thread Obsolete Display . Display Obj. Draw Display Sleep
P Display Obj. Objects ! Data

Figure 5.11: Control Centre View Thread main loop Diagram.

J

its neighbours were radially distributed with a 7 radial angle interval.

Then, the refresh function will go through each resource and update its respective Dis-
playComponent object regarding its current state, load image and menu information which
may have information that is not up-to-date.

The final step will be to trigger the actual canvas redraw by using the drawDisplay
function.

After updating the display objects, the thread sleeps 500ms before checking for new
updates. The 500ms update interval was chosen as a compromise between keeping the in-
formation updated as fast as possible and not having a significant impact on the usage of the
computing resources. The chosen update interval is small enough to be barely perceptible
by the user.

In the implementation, care is taken to ensure the proper synchronized access to the
Control Centre’s databases.

5.3.3 Virtual Network Design & Configuration

This subsection will begin by explaining how the Control Centre design features were
implemented, and how the designed virtual network is forwarded to the Manager to be
mapped.

81

Figure 5.12: Control Centre’s Radial resource placement.

As previously specified, the Control Centre uses Java's SWT API to create graphical
objects and manage user interactions. The View thread is the one in charge of presenting
the interface to the user and handling user-generated events.

When the user selects the Create new VNet command, the Control Center’s View thread
will create a new DisplayVNet object, and the related tab and drawing canvas. The following
paragraphs will describe the events necessary to the VNet design and configuration.

Placing New Resources

After the creation of the new VNet tab, the user selects one of the resource buttons
on the coolbar that triggers the creation of a temporary Resource and the corresponding
DisplayComponent, so that an image of the resource appears on the screen.

%(New Resource

Move Mouse Left-Click Right-Click

Updgte Clone canchl
Location Resource

Place New

Resource

Figure 5.13: Control Center - New Resource Diagram.

This display component has a set of associated mouse event-handlers, as illustrated by
figure 5.13: the move handler causes the icon to change according to the mouse movement,
by updating the coordinates of the display component and triggering a redraw of the canvas.
The right-click handler will cancel the Insert Resource command, delete the temporary object,
and reset the coolbar selection. Finally, the left-click handler will clone the temporary object
and add it to the resource list of the new VNet, with some default configuration parameters
such as 64MB of RAM, 1 CPU and 1 interface.

82

After the resource placement, the user is able to continue to place resources at will, until
it presses the mouse’s left-button.

Configuring New Resources

After placing the desired resources, the user may proceed with configuring them. Upon
resource placement, event-handlers were added that trigger the opening of a configuration
menu when the mouse right-click is pressed, and allow the resource to be moved when left
clicking and dragging.

After right-clicking and selecting the Configure Resource option, a menu object is created
that appears and allows the subsequent modification of the resources configuration, such
as location, RAM amount, number of interfaces, etc. The complete menu is shown in figure
5.14(a).

" Contigure VituallResolrce =
— N Eantigure Vitualintertacer =)
Warning: Interface Configuration
flame VRL will only take effect on new,
GPS: :] non created Virtual Resources!
— Interface: stho | v |
Group: v —
— Link Hw: Ethernet |~ |
DHCP: Yes [~ |
CPU Freguency (MHz): C] Address Family: |_|
SRp——— Pve Address T
‘Cancel| | Close|
(@) Configure Virtual Resource. (b) Configure Virtual Interface.

Figure 5.14: Configuring a new Virtual Resource

One other menu, the Configure Interfaces menu on figure 5.14(b), allows the configuration
of every virtual resource interface. Only IPv4 and IPv6 were considered, although modifi-
cations to support other network protocols are possible and simple. The specified interface
configurations will be enforced upon resource creation.

Configuring New Links

One other button on the coolbar allows the placement of new links. By selecting the
option, a selection menu object will be created and the user will be prompted with a request
to specify both a source and destination for the link through a drop-down menu that lists
all the VNet's resources (figure 5.15).

After proper selection, i.e., if no link exists already and if the source is not equal to
the destination, a new configuration menu will be created where the link details can be
specified, as shown in figure 5.16. When all the desired parameters are configured, the link
will be created and drawn in the canvas using Java's class GC. A straight line connecting
both resources, with each resource’s interface specified and the link bandwidth placed on

83

top of the connecting line, symbolizes the link. Additionally, two link entries are added to
the VNet's link list, each one representing a link direction.

Specify Source
New Link and Configure Link
Destination

Figure 5.15: Control Center - New Link Diagram.

By Gonfigure alnew Link =)
VR4 -> VR7 VR7 =- VR4
Interface: etho |E| Interface: atho |Z\
QOS: Guaranteed |E| Qos: Guaranteed |:\
BandwidthiMbjs): [| Bandwidthbis): [
Duplex: Full |E| Duplex: Full |T\

|Cance||

Figure 5.16: Configuring a new Link

Saving and Committing a Virtual Network

After all resources and links are placed and configured, the user has the option to save
the design for later use, or commit it to the Manager (figure 5.17).

If the user chooses to save the design, it may access the main menu Actions and select
the Save VNet XML option that will trigger a file browser window to appear. After choosing
the desired file name, the XMLAddNodes and XMLAddLinks methods will build the XML
structure and the XMLOutputter will be in charge of placing the appropriate data on a
FileOutputStream object created after specifying the file name.

In order to proceed with the virtual network creation, the user has to select the coolbar
button Commit, that will trigger the sending of an XML message to Manager, built using a
similar process to the Save VNet XML command, but writing to a StringWriter instead.

Commit Make XML Sat i

Manager

Specify File

Sawe XML
Name

Figure 5.17: Control Center - Commit & Save Diagrams.

The created string may then be sent through a TCP socket. Since the generated XML
will have an undetermined size, the message will be sent in several parts, depending on
both the message size and on the constant MSG_BUFFER_SIZE. The messages will have a
field containing the VNet name and the message part number. The last message will have

84

an additional field containing the string XML_END to signal the completeness of the XML
message.

5.3.4 Virtual Network Monitoring

If the monitoring of a virtual network is desired, the Control Centre provides a main menu
button, the Get VNet button, that will request a list of available VNets to the Manager and
display it (figure 5.18). After selecting the desired virtual network, the Control Centre will
register itself as interested in the specified virtual network, so that the Manager will not
only send it the current information regarding the requested virtual network, but it will also
send subsequent updates to that virtual network.

Chosen VNet

Get VNet Send VNet List Displa_y VNet
Request List

Figure 5.18: Control Center - Get VNet Diagram.

Get Request

Cancel

This “per-request” mechanism ensures that the connected Control Centres do not become
overloaded with information about virtual networks that are of no interest to them.

After requesting the virtual network, the previously described drawing mechanisms will
display it on the proper tab canvas, similar to the one of figure 5.10, where the virtual
resources and link can easily be monitored. On figure 5.19 it is possible to see the available
load and states for a given virtual resource, which can be monitored almost in real-time.

Possible CPU Loads
Possible States 85-100% 3

Running » A7 GeB?'regee 67% -84% E |
N L@Bree J M i

Paused LL| ame - 3 apping 51-66% 3

Shutdown . . CPU Load 34-50% |

Changing o3 17%-33% 3

0-16% E|

Figure 5.19: Control Center - Virtual Node Monitoring.

5.3.5 Virtual Network Management

The management features includes changing the state of a virtual resource, the RAM
amount in run-time, deleting the resource or even the complete virtual network.

The access to the resource management functions is done by right-clicking the virtual
node and selecting the desired action. The Control Centre will then use the Manager
connection to send a command message containing information about the desired action
and the target virtual resource or network.

The message follows the standard format:

CMD_ID @@ Control_Centre_ID @@ Data # #.

85

The data field depends on the command message type. If, for example, one wants to change
the RAM amount, it will contain the resource ID and the target memory amount.

5.4 Virtual Network Manager

5.4.1 Main Databases and Structures
Main Databases

The Manager uses linked lists to store all its data. Regarding the resources’, links'
and virtual networks' data storage, there are 2 main databases: the VNet List is a linked
list of pointers to VNet structures, each one containing a linked-list of pointers to VNet
Nodes which in turn also have a linked list of pointers to related Links. This hierarchical
architecture optimizes resource and link searches. The full data structure hierarchies can
be seen on figure 5.20

VNet Entry on VNet Node o.m Link Entry
VNet Naodes - Node Lirks - Link Data
VNet ID Node Data

Figure 5.20: Manager’s VNet Entry.

The second database is a redundant one, the Main Resource List is a linked list that
holds pointers to all the resources. This pointer database is kept for compatibility purposes.

Each database has its own associated mutex, used for synchronizing access from multiple
threads.

Auxiliary Databases

Since the Manager accepts connections to multiple Control Centres and Agents, the
storage of information regarding the connected modules is required. To that end, additional
linked lists exist that store the Agents’ and Control Centres’ information. These connection
entries are depicted in figure 5.21.

The connected Agents’ data structure contains the necessary socket ID, physical resource
ID, information about the Agent’s connection handler thread and the time of last contact.

The data structure containing the Control Centres’ connection information is a bit more
complex. It contains the Control Centre’s ID, the requested VNets, a temporary list and an
internal message linked list used for sending messages to the respective Control Centre.
Thread synchronization and control variables are also included within this data structure.

5.4.2 Module Decomposition

As discussed in the previous chapters, it is the Manager’s job to assemble the entire
network’s information, provide unique IDs to each Agent and Control Centre, and to act on
the networks. The subsequent sections will describe each one of the Manager’s threads,

their roles and interactions. The Manager’s start-up sequence is described on the diagram
of figure 5.22.

86

Connected Connected
Agent Entry Control Centre
Socket 215
D Socket
ID
RX Thread RX Thread
Last Contact T Thread

VNet Requests
Message List
Temporary XML

Synchronization

Figure 5.21: Connected Agents and Control Centres Entries.

The Manager is responsible for connecting both multiple Agents and multiple Control
Centres. To that end, threads exist that launch additional handler threads for each connected
Agent and Control Centre.

Load Setup Signal Launch Agent
Start Manager Configuration & P =19 Connection
. Handlers
Options Thread

Launch Control Launch LTt SES Wait for
Centre Conn. Command Update Thread Terminate
Thread Send Thread P Signal

Figure 5.22: Manager - Start-Up.

Besides the connection handling threads, there are additional threads used to process
the received resources’ and pending links’ information, update the Manager’s databases
and trigger Control Centre updates: if a resource or link update is detected in a virtual
network previously requested by one or more Control Centres, an update will be sent via
the respective Control Centre’'s TX thread.

Figure 5.23 summarizes the existing threads on the Manager’s module.

Agent Connection Accept thread

When an Agent tries to establish a connection with the Manager, this is the thread that
will handle the connection request. The thread start-up and Agent accepting process can
be described through the diagram of figure 5.24.

If a TCP socket connection is accepted, a new agent connection data structure is created
and filled in with the related socket ID, thread information and other additional fields. This
socket ID will allow receiving and sending data from and to that Agent.

In order to receive the Agent’'s messages in a parallel way, an Agent handler thread is
launched for each connected Agent; therefore, there will be as many Agent handler threads
as Agents. The admissible messages types to be received are described in table 5.3.

87

Virtual Network Manager

Command Status Control
Send Update Centre Accept
Thread Thread Thread

Connected Connected Connected Connected
Agent 1 Agent N Control Centre 1 Control Centre M

Control Control
Centre RX Centre RX
Thread 1 Thread M

Control Control
Centre TX Centre TX
Thread 1 Thread M

T 2J3ud)
TEXUER)
|oajuo)

Figure 5.23: Manager Module

Figure 5.24: Manager - Agent Connection Accept Thread.

Agent Connection Handler thread

As previous explained, one of these threads is created when a new Agent connects.
At start-up, clean-up handlers are registered; next, the thread enters its main loop that
blocks waiting for incoming messages and processes the received messages according to

their message type.

The clean-up handlers assure that, when the connection is lost to a particular Agent, the
utilized blocking socket receive function will generate an error that will trigger the thread
exit and the respective cleaning mechanisms.

The Agent will then be removed from the connected Agent’s list, the related physical and
virtual resources and links will be removed and the Control Centres will be notified of these

deletions.

These cleaning mechanisms shall provide the required databases consistency.

88

Message Type Description

MA_MSC_ID_REQUEST Request an ID.
MA_MSGC_KEEPALIVE Used for keep-alive messages.
MA_MSGC_TYPE_INFO Send resource information.

MA_MSG_DEL_RESOURCE Signal the deletion of a specified resource.
MA_MSGC_TYPE_NEIGHBOUR | Inform the Manager about a new neighbour,
physical or virtual.

Table 5.3: Agent to Manager message types.

Control Centre Connection Accept thread

Similarly to the Agent Connection Accept thread, this thread accepts Control Centre
connections and launches the respective handling threads, but in this case two threads will
be launched per connected Control Centre: a Control Centre Connection handler for RX and
another one for TX (figure 5.25).

tart Control Create & Bind & Listen Accept Control Create new Launch Control Launch Control
Centre Conn. Configure to Socket Centre Control Centre Centre RX Centre TX
Thread Socket - Connectlons Entry Thread Thread

Figure 5.25: Manager - Control Centre Connection Accept thread.

Just like in the Agent’s case, for each accepted Control Centre connection, a Control
Centre connection data structure containing relevant thread control variables and message
list is created.

The Control Centre RX thread is similar to the Agent Connection handler one; it will
block on a receive call to the connected Control Centre’s socket and process the received
messages afterwards. It accepts the message types described in table 5.2.

The Control Centre TX thread also blocks waiting for messages on its message list. Upon
receiving the signal of a new message available on the list, the message will be processed
and sent to the pertaining Control Centre. The available message types were previously
described on table 5.1.

Status Update thread

This is the thread that will process the resource information messages received by the
Agents’ Connection handlers. Every resource message received is processed by this thread
that checks for resource updates and for pending links, i.e. link information received for
resources that have not yet been inserted on the database. If resource updates are found,
the updated resources’ information will be sent to the Control Centres that have requested
the resources’ virtual networks. The full process is depicted in the diagram of figure 5.26.

The status update thread blocks and waits for new resource messages on its message
list. The access to the message list is controlled using a mutex. After placing a new message,
a signal is sent to the status update thread that will wake up and process it.

89

Add Resource Check Pending Update Control
Entry Links Centres

Start Status C:;thgts;ige :e l:z:rscse Resource Fg':s n:)z?cr: Resource Update
ists? i ?
Update Thread Message List [Exists? e Different? Resource

Check Pendlng Update Control .
[Links Centres Update Links

Ye:

[Wait for New] No More
= ~ 2
Signal Messages?

Figure 5.26: Manager - Status Update thread.

Command Send thread

When a thread wishes to send a command to an Agent, this is the thread to whom the
request has to be made. It is responsible for sending the desired commands to the Agents.
The available message types are described in table 5.4.

Just like the Status Update thread, the Command Send thread is also blocking and sleeps
while waiting for new messages. When a new message arrives, it wakes up, processes it,
and sends the command to the associated Agent. The thread’'s behaviour is illustrated in
the diagram of figure 5.27.

ot \(ﬁg:: Message Get Agent Process -) More No
end Thread Send List entry Message J ommands?

Wait for New
C

Signal

Figure 5.27: Manager - Command Send thread.

5.4.3 Virtual Network Mapping

After designing and configuring the virtual network using the Control Centre, the next
step is to determine on which physical nodes the virtual nodes should be placed, and how
the virtual links should be assigned to physical ones. This problem was presented on 2.3.5
and a solution was developed for it on chapter 4, section 4.7.2. The Manager, thus, has to
implement this algorithm and enforce its result.

Receiving the Virtual Network XML

Subsection 5.3.3 ended with the Control Centre sending the fragmented XML message to
the Manager, which has, therefore, to perform its reconstruction, as demonstrated in figure
5.28. The multiple messages that compose the virtual network description XML are assumed
to be received in the proper order, since we are dealing with a TCP socket.

90

Message Type Description

MA_MSG_RESOURCE_UPDATE | Request information about the specified re-
source.

MA_MSG_FULL_UPDATE Request information about all the Agent’s re-
sources and links.

MA_MSG_ID_REPLY Reply to an ID request with an unique ID.

MA_MSG_NODE_CREATE Create the XML specified virtual node.

MA_MSG_BRIDGE_CREATE Create the XML specified bridge and vlanned
interfaces.

MA_MSGC_LINK_DELETE Request a link deletion.

MV_MSG_DEL_VNET Request a virtual network deletion, i.e. re-
source and associated links deletion.

MV_MSG_START_VM Start the specified virtual node.

MV_MSG_SHUTDOWN_VM Shutdown the specified virtual node.

MV_MSG_REBOOT_VM Reboot the specified virtual node.

MV_MSG_PAUSE_VM Suspend the specified virtual node.

MV_MSG_UNPAUSE_VM Resume the specified virtual node.

MV_MSG_DESTROY_VM Delete the specified virtual node.

MV_MSG_SET_MEM_VM Change the specified virtual node’'s RAM
amount.

Table 5.4: Manager to Agent message types.

When receiving the first part of a message containing an XML, or a fragment of it, the
Manager will extract the VNet identifier and add a temporary XML message structure to the
temporary linked list on the connected Control Center's entry. When receiving subsequent
parts of the same XML, identified by the part number and the VNet ID, the Manager will
simply append them to the temporary XML. When the last piece is received, the message
is removed from the temporary list and the next step, which is the mapping of the virtual
network, will begin.

Virtual Network Mapping

The virtual network mapping function, observed in figure 5.29, follows the algorithm
specified in 4.8. Firstly, the map_vnet() function parses the XML, using libxml's functions,
and converts it into a regular data structure, similar to the data structure of the existing
virtual networks, i.e. a virtual network entry with a linked list of resources containing the
related links.

The function proceeds with locating the physical network entry, from within the existing
networks, and follows with a candidate selection for each of the virtual nodes. In this
candidate selection, each virtual resource is compared with every physical resource in order
to assess which ones satisfy the CPU, memory, HDD, and location constraints. For each
virtual node, a linked list is filled with the possible physical candidates.

The algorithm continues with the determination of the physical links' stress. To that
end, for every physical link, the amount of allocated bandwidth used by virtual links, is

91

Locate
Temporary

Append to
Temporary XML

XML Part Extract Partial
Received Message

Map VNet

Temporary
Figure 5.28: Manager - Receive XML Diagram.

) S Convert XML to N Select S Calculate Link
<Map Vet Structure Candidates & Node Stress

Sort Virtual Determine Build Mapped
[Nodes ey MDD | Physical Paths XML]

Figure 5.29: Manager - Map Virtual Network Diagram.

determined, thus determining the links' stress. Afterwards, the node stress determination
begins and is done for every physical node.

Next, the virtual nodes are sorted considering the number of physical candidates, so
that virtual nodes with less possible physical nodes are mapped first. The actual mapping
function will then take place. For each virtual node's link, a Constrained Shortest Path
First (CSPF) Dijkstra algorithm is run both for every physical candidate as well as for each
link's destination virtual node’s candidates, so that the node potential factor is determined.
For each virtual node, the physical candidate with the lowest node potential, that has not
been chosen yet, is selected as the embedding node.

After mapping every virtual node, the same CSPF algorithm is run in order to determine
the final physical path for each virtual link. These virtual links may use different VLANs
on each physical segment. The determination of the VLAN to be used is based on the
information attained from both the origin and destination physical interfaces that compose
the physical segment, and choses a non-utilized VLAN on both ends.

The relevant link information such as physical hops and utilized physical interfaces is
added to the virtual links" structures.

Finally, by taking the virtual network’s structure, which now has the mapping information
on it, an XML containing the mapping information is produced and the mapping function
terminates.

Virtual Network Committing

The mapped XML produced by the mapping algorithm contains information about every
link and node of the virtual network and has, therefore, to be further breakdown on nodes’
and bridges’ configuration XMLs that will in turn be sent to the respective Agents.

Thus, for each virtual node, an XML file is produced, and for each virtual link, identified
by a unique link ID, multiple XML bridge and interface configuration files will be produced,
depending on the number of physical hops contained on a virtual link.

92

The virtual network creation is enforced by sending the XMLs to the appropriate Agents.

5.5 Virtual Network Agent

5.5.1 Main Databases and Structures
Main Databases

Just like the Manager, the Agents also use linked lists to store their data. There are two
main databases: The Main Resource List stores the information of all local resources in a
linked list, while the Neighbour List stores information about the Agent’s neighbours, also
in a linked list. The neighbour database encompasses both physical and virtual neighbour
information.

The access to each database is controlled by individual mutexes.

CPU Entry 0..n Interface Entry
Specification Node Entry Status s Ilé)lﬁt:;very
Load Description & ID Type Interface
Status Configuration Message List
Performance
Interfaces Designated Root
CPU Active Socket
Memory Entry Memory 0.m HDD Entry Active Thread
Maximum HD[.) - - Name Passive Socket
Used Synchronization Total Passive Thread
Free Free Synchronization

(a) Node Entry. (b) Link Discovery

Entry.
Figure 5.30: Node and Link Discovery Entries.

As can be seen in figure 5.30(a), each node entry contains information about the resource’s
CPU, RAM, HDDs and interfaces. There is also additional information about the resource,
such as its ID and status. Synchronization variables deal with the concurrent access to the
resource, since multiple threads may try to access it at the same time.

Auxiliary Databases

Because the discovery mechanism requires a pair of threads for sending and receiving
per interface, a linked list exists containing control data structures. These control structures
contain relevant thread control variables and a message list for inter-thread communication,
as well as the required data for the discovery algorithm, such as the Designated Root ID,
as can be seen on figure 5.30(b).

5.5.2 Module Decomposition

Due to the multitude of tasks performed by the Agents, there are several threads running
within the module. A global overview of these threads is shown in figure 5.31 and the Agent’s
start-up procedure is illustrated on the diagram of figure 5.32. The threads’ functionalities
will be described on the following paragraphs.

93

Template
\ELET:-S
Thread

Status
Send
Thread

Keep Alive
ID Request [
Thread

NETH
Update
Thread

Manager
Connection
Thread

Command
Receive
Thread

Link Disc. Link
Manag. Messaging
Thread Thread

Interface 1

Active Link
Disc.
Thread 1

Passive
Link Disc.
Thread 1

Neighbour
Hello
Thread

Interface N

Active Link
Disc.
Thread N

Passive
Link Disc.
Thread N

Virtual Network

Manager

Interface 1
Neighbour
Agent 1

Interface 1
Neighbour
Agent)

Figure 5.31: Agent Module

Interface N
Neighbour

Agent 1

Interface N
Neighbour
Agent K

Figure 532: Agent - Start-Up diagram.

Manager Connection thread

This thread is in charge of establishing a connection to the Manager and inform the rest
of the threads when a connection is established or lost. If there is no Manager connection, it
will periodically try to connect until it is successful or the program terminates (figure 5.33).

Upon a successful connection, if the Agent does not have a valid ID, an ID request will
be immediately sent in order to speed-up the Manager information update process.

Keep-alive and ID request thread

The Keep-alive and ID request thread periodically checks the Agent’s ID (figure 5.34).
If the ID is not valid, a request for a valid ID will be sent to the Manager; otherwise, a
keep-alive message will be sent. The purpose of the keep-alive messages is to allow the

94

Manager
onnected?

Figure 5.33: Agent - Manager Connection thread diagram.

Manager to identify situations where communication problems with the Agent exist.

Manager
onnected?

Figure 5.34: Agent - Keep Alive and ID Request thread diagram.

Template Management thread

The Template Management thread has two main functions: the first one is to build a pool
of available virtual machine templates and make them ready-to-use, while the second one
is to accept incoming virtual machine creation request and commit them. These functions
are illustrated on the diagram of figure 5.35.

The Template Management thread waits for node request to arrive on the Node Request
List. Upon receiving a request for a new virtual node, it checks whether the requested
distribution exists or not. If it does, it launches a new thread responsible for node creation
and replenishing of the utilized template image.

95

As a part of the node creation process, this thread will verify the newly created node
status, check for virtual links and insert it in the main resource list.

Start Template Locate Launch hot- Get Requests Launch Node .
Management Available (w from Node Creation R\gal::ezrsh:ervu\;l
Thread Templates /Lrestore Threads) Request List Threads q 9

Figure 5.35: Agent - Template thread diagram.

Status Update thread

This thread performs the resource data gathering and resource update checks. It runs
periodically and checks for consistency in the resource database (figure 5.36).

Start Status s Signal Boot Sleep Update
Update Thread Resource Ready REaTED Re=ollice
Information Check Period Information

Figure 5.36: Agent - Status Update thread diagram.

The thread relies on a function that checks for local resource updates (figure 5.37). If a
resource is created, deleted or modified, it is this thread’s function to identify the updates,
keep the database updated, and signal threads that may be interested in certain resource
changes. It gathers CPU, RAM, HDD, state, and interface data.

Interface changes on the physical resource will trigger a re-evaluation of the link discov-
ery threads. If a change is detected on virtual interfaces’ associated bridges, a verification
of the consistency in the virtual links databases will take place, and appropriate measures
are taken if the resource needs to be advertised.

Regardless of the update detected, the thread will inform the Manager of a resource
update, by sending a message to the Status Send thread.

The deletion of no longer existing virtual nodes is not as simple as removing the entry
from the local database. The Manager must be warned about the resource deletion and
so must the physical neighbours, so that they can remove neighbour entries related to the
deleted resource. The deletion process is shown in figure 5.38.

Status Send thread

The outgoing Manager communications go through this thread; it receives message re-
quests from other threads and informs the Manager accordingly.

The requests are made by placing a request structure on the Status List and signalling
the thread (figure 5.39).

The message types sent to the Manager by this thread are defined on table 5.3.

Command Receive thread

As opposed to the Status Send thread, the Command Receive thread receives the Man-
ager’s messages and takes the proper action to execute the requested commands.

96

Bridges
Modified or
ew Res.

Physical
Resource?

Updated?

Interface
Modified?

Figure 5.37: Agent - Update Resource Information diagram.

(e (REEOEEM Mmoo

Figure 5.38: Agent - Delete Resource diagram.

More No
essages?

Yes

Figure 5.39: Agent - Status Send thread diagram.

It is a blocking thread; therefore, it is only active when there is data to be read from the
socket.

The possible receive commands were previously described on table 5.4.

Link Discovery Management thread

The distributed neighbour link discovery process is managed by this thread. It launches
both a passive and active discovery thread per active physical interface; the passive thread is
in charge of receiving multicast messages, while the active thread is responsible for sending
them. Figures 5.40 and 5.41 illustrate this thread’s main procedures.

The Agents implement the algorithm described on the previous chapter, in section 4.8.
During runtime, several modifications may happen regarding physical and virtual interface
configuration, state, and addition or removal of virtual resources. Due to the highly dynamic
nature of production networks, the implemented algorithm must be ready to withstand all
these possible events and keep the topology information consistent and updated.

In order for the discovery mechanism to begin, the Agent must have completed the boot
process, i.e. all the information about itself and its resources must have been acquired. When

97

this information gathering is complete and the Agent attains a valid ID, the link discovery
management thread, that blocks at start-up waiting for the boot ready and valid ID signals,
resumes its execution.

Locate Active
Physical
Interfaces

Terminate no
longer valid
Threads

Launch
Passive Disc.
Threads

Wait for
Physical Node
Modifications

Link Manag.
Thread Main
Loop

Figure 5.40: Agent - Link Management thread diagram.

The Agent will firstly locate the physical node’s database entry and afterwards launch
two important threads: the neighbour_hello and the link_messaging threads. The first one
periodically sends hello beacons through every interface, while the second one is a proxy
thread that enables the sending of messages to each interface’s active discovery threads.
They will both be described next.

The main loop of the link management thread, figure 5.41, begins by identifying each
active and running physical interface, and creates a passive discovery thread per each iden-
tified interface that will be in charge of subsequently launching the corresponding active
thread. The passive link discovery thread is in charge of receiving multicast messages, while
the active link discovery thread is responsible for sending them.

Wait for Boot

Ready Signal
No

Boot Ready?

Wait for Valid
ID Signal

Start Link
Management
Thread

v [Launch] [Launch Link] Link Manag.
£s Nei Ir M ing Thread Main
L Hello Thread J l Thread J Loop

Figure 5.41: Agent - Link Management thread main loop diagram.

After every passive thread is launched, the link management thread will block waiting
for modifications relating to the physical node's interface configuration. If any modification
is detected, a check will be made in order to determine which discovery threads should
be terminated and if any should be created. If, for example, an interface goes down, the
associated active and passive threads will be shut down but the data structures will remain
intact and ready for the thread restart if the interface goes back up.

Passive Link Discovery Thread

When the passive link discovery thread begins (figure 5.42), the first step is to properly
configure a socket to receive multicast messages. The socket creation follows a standard
procedure: initially, a socket is created and set to enable port reuse, so that other sockets
may receive on the same port number; afterwards, a socket bind to the multicast address is
made and, subsequently, the interface is registered on the multicast group.

The resulting socket identifier may now be used to receive messages from the multicast
group. Since every multicast message is received on all interfaces, each passive thread
performs a message filtering function to determine if the message effectively arrived on its
interface. This check is based on the interface’s and message’s source |IP information. If a
message is received from a different network than the interface’s one, it is discarded.

98

After creating and configuring the multicast socket, the passive link discovery thread will
launch the active link discovery thread, responsible for sending multicast messages.

Create
Multicast
Socket

Passive Link
Discovery
Thread

Launch Active
Link Discovery
Thread

Receive
Multicast
Message

Process
Multicast
Message

Msg from thi
Interface?

No

Figure 5.42: Agent - Passive Link Discovery thread diagram.

Active Link Discovery Thread

As previously explained, this will be the thread in charge of sending multicast messages.
At start-up, it creates and configures a socket with the desired multicast address, that may
then be used to send multicast messages.

The thread waits for new messages on the link discovery entry's message list. When
a message is received, it will process and send the message via the multicast socket. The
described behaviour may be analysed in the diagram of figure 5.43.

Active Link Create Get Message Wait for New
Discovery \({ W from Internal ’::;cse:se Send Message Message
Thieasll | socket) U st 9 Signal

Figure 5.43: Agent - Active Link Discovery thread diagram.

Neighbour Hello thread

The main duty of this thread is to periodically send Hello messages to the Agents’
neighbours. This thread also serves the purpose of identifying “expired” neighbours, i.e. the
neighbours that have not sent any message in a previously pre-determined amount of time.

Expired physical neighbours and related virtual neighbours will be removed from the
local neighbour database (figure 5.44).

Remove
expired Phy.
Neighbours

Signal New
Message

J/
Neighbour Sleep Hello G;'is":::s"'"k Place Hello
Hello Thread Period i i Message

Figure 5.44: Agent - Neighbour Hello thread diagram.

99

Link Messaging thread

This thread works like a proxy in the way that it provides the other threads with an
interface for easily announcing new or deleted resources.

If a local resource is added or removed, this thread will be notified and act accordingly.
If @ new resource is added, it will check for virtual links, and notifying the relevant link
discovery threads of a new resource. If, on the other hand, a resource is removed, it will
locate the interfaces previously utilized by the removed resource and send multicast delete
messages to the physical neighbours that will then act accordingly.

5.5.3 Resource Data Gathering

The resource data gathering mechanism runs periodically and resorts on several system
tools.

The libvirt's virDomainGetinfo and virNodeGetlnfo functions supply information regarding
both virtual and physical domain state, allocated RAM memory, number of CPU cores and
respective frequency.

Detailed CPU information is gathered from the /proc/cpuinfo file, and CPU load is com-
puted between successive resource data checks.

The determination of CPU load is different for virtual and physical resources. The physical
node’s CPU load calculation is performed by gathering the CPU’s processing time from the
glibtop’s glibtop_get_cpu call. The difference in total CPU processing time is divided by
the total actual bygone amount of time, and a load amount in per cent is determined. The
maximum CPU load equals the amount of CPU cores times 100%, i.e. for 8 cores, the maximum
load would be 800%.

Determining the amount of free RAM is simpler. For virtual resources, it is simply the
difference between the allocated maximum amount of RAM and the currently in use RAM.
This info is provided by the virDomainGetinfo call. For the physical resource, glibtop provides
the glibtop_get_mem call, and the total amount of available RAM is considered to be the
sum of the free, cached and buffered memory.

Interface configuration information is more difficult to gather. When the number of bridges
and interfaces on the system begins to grow, the time required to perform calls to ifconfig
or bretl will increase. Taking into consideration that gathering interface data for a single
resource may require several ifconfig and brctl calls, it is easy to verify that performing
multiple successive calls is an unviable option; it presents scalability issues.

In order to reduce the performance penalty of ifconfig, the glibtop network calls were
used. These calls conveniently provide all the interfaces’ configuration and statistics on a
data structure, thus avoiding the need to perform multiple calls for a single interface.

On the other hand, although brctl's code is public, the efforts made to integrate it with the
Agent’s software failed, and no library was found that could provide the same information.
Hence, a mutex-locked buffer cache was created for it in order to speed up successive calls.
A data structure was created to hold the bridges’ and associated interfaces’ info using linked
lists, so that accessing the brctl info on this list presents a reduced performance penalty
when comparing with accessing it directly through the console command.

This brctl cache provides a mean for explicitly requiring a cache update, so that when a
function absolutely requires up-to-date bridge information, it may request it.

Detailed data gathering of virtual interfaces’ configuration presents some issues. Since

100

the Agent has no means of knowing what is the interface configuration inside the running
virtual machines, it has to rely on the XML file saved upon creating the virtual machine;
therefore, it only knows the default interface configuration.

The HDD information is attained from the Linux's df -h command for the physical re-
sources and from the size of the image file for virtual resources.

5.5.4 Virtual Network Creation

The virtual network creation process may be subdivided into two main phases: the first
one is related to the establishment of the virtual links and bridges, which are required for
proper virtual machine start-up, while the second phase is the creation and configuration of
the virtual nodes.

Bridge & Interface Configuration

All the physical nodes belonging to a virtual link will have a bridge named after the
virtual network and the link ID. If, for example, a virtual network exists called Alpha, and
that virtual network has a virtual link with an ID equal to 10, the physical nodes hosting
that virtual link will each have a bridge named VNetAlpha.010.

Each virtual link may be composed by several physical links utilizing different VLANS.
For every physical link, a non-utilized VLAN number is identified and utilized, resulting in
physical sub-interfaces that use the selected VLAN. The previously described bridges will
bring the different links, that resort to VLANSs, together. The bridge creation process is
represented in figure 5.45.

The bridges on physical hops will simple connect two different physical sub-interfaces,
while the ones on the edge nodes, i.e. the bridges located on the same physical nodes as
the virtual nodes, will bridge the physical interfaces sub-interfaces and the virtual nodes’
interfaces associated with that virtual link.

Bring Down
Bridge

REEE Bring Up Bring Up
New Bridge Configure . Save XML
e trs Interfaces Bridge

Create &
Configure
Bridge

Figure 5.45: Agent - Create new Bridge.

An XML message containing the bridge, interface and QoS information for a given virtual
link is sent to the relevant Agent, which will in turn save it on a predefined folder, process
it, configure the interfaces, create the bridge if it does not exist already, and associate the
interfaces with the bridge.

The bridge configuration process is executed before the nodes’ creation, so that when
the nodes are created and their status updated, everything will be in place.

101

Virtual Node Creation

Upon virtual network mapping, each Agent with a resource mapped on it will receive an
XML message containing the virtual node’s information that will be saved on a predefined
folder for future access.

Create New Convert XML to Add to Node Signal New
Virtual Node structure Create List Node Request

Figure 5.46: Agent - Create Virtual Node Diagram.

The Agent processes the XML message and proceeds with converting it to a resource
data structure that will be sent to the Template Management thread for creation (figure 5.46).
After proper validation, the node creation process will proceed, according to the diagram of
figure 5.47.

New Node et el lerEE distro Yes [=] [Generate]
Request . hot-template . Cc i
Distro | hot-template - Files

Received ready?

Wait for ready
signal

Mount Define and Update Signal New Signal New FesEe
Filesystem & Start Virtual Resource Resource Resource
hot-template

Update Config. Node Information (Multicast) (Manager)

Figure 5.47: Agent - Virtual Node Request Diagram.

Firstly, the hot template image folder and XML file will be renamed to match the re-
quested node’s name. Afterwards, the template XML file will be modified according to the
requested node's data.

The configuration of the virtual interfaces and change of the virtual machines’ hostname
requires the mounting of the virtual node’s file system, and modification of some configuration
files, which will depend on whether the environment is Debian of Fedora based.

After properly unmounting the file system, a call to the libvirt's virDomainDefine XML
function will define the virtual node, and a final call to virDomainCreate will effectively
create and start it.

Although the virtual machine will take a few seconds to be ready for use, everything is
properly configured; therefore the node’s information is gathered, added to the main resource
list, the Manager is informed about this new resource, and a verification is made to check
for the existence of virtual links.

5.6 Conclusion

This chapter presented the implementation of the three that compose the virtualization
platform: the Control Centre, the Manager, and the Agent.

The Virtual Network Control Centre was the first module analysed in depth. Since
this is the front-end for the software suite, the implemented mechanisms mainly deal with

102

presenting the acquired data to the user, feeding back commands to the Manager, and
subsequently to the Agents.

Dynamic virtual network drawing and designing functionalities were implemented. They
aim to facilitate the creation of virtual networks. Comprehensive configuration options were
provided for configuring both the resources and the links, with several details available for
configuration and specification.

Commodity functionalities, such as saving or loading XML files, were made available
and so were other “simple” but useful options, such as deleting an entire virtual network
at once, or having the ability to monitor different networks at the same time simply by
requesting them and opening a new tab. One other interesting feature is the ability to
monitor almost in real-time the state and load of both physical and virtual resources. This
real-time approach enables network administrators to quickly identify potential issues in
the network, for example.

The user interface is simple to use and was made intuitive, in part due to the drag and
drop mechanism, simple menus, and the coolbar, that provides a quick short-cut to access
the mainly used tools when designing a virtual network.

Next, the underlying mechanisms and threads of the Virtual Network Manager were
explored. Besides providing aggregation functionalities for building the networks’ topologies
and keeping the Control Centres up-to-date, the Manager is in charge of implementing the
essential virtual network embedding algorithm and to send the resulting mapping to the
chosen physical nodes. It resembles a gateway in the way that it provides a separation
between the user interface, the Control Center, and the Agents running on the substrate
network. Its implementation makes the simultaneous operation of multiple users on the
substrate network possible, since it accepts an undetermined amount of Control Centres
connections.

Finally, the Agent module was analysed. This module is in charge of running on each
physical node, and plays an important role, since it is responsible for gathering and detecting
changes in resource information, creating and configuring the virtual resources, interfaces
and bridges. One other critical feature is the implementation of the distributed discovery
algorithm, that provides the fundamental network topology data.

103

104

Chapter 6

Tests & Results

6.1 Introduction

The purpose of this chapter is to assess the performance of the developed virtualization
platform, regarding the previously developed mechanisms.

The chapter will begin, in section 6.2, by introducing the utilized testbed, resorting to
the developed graphical interface to display it. Next, a base virtual network is specified that
is used as a reference on the experimental testing performed.

In section 6.3, the performance of the Agents will be evaluated, with respect to the scaling
of the time required to gather local resource information. The chapter will proceed in section
6.4, where the time required for performing virtual and physical network topology discovery
will be evaluated, considering different start-up situations.

Afterwards, in section 6.5, the performance of the mapping algorithm and of the time
required to create new virtual networks, will be examined.

The chapter ends on section 6.6, with a global overview and discussion of the attained
results.

6.2 Testbed Description & General Assumptions

The testbed is composed of 6 physical nodes and is connected according to figure 6.1,
attained from the developed virtualization platform.

The main specifications of the substrate nodes may be found in table 6.1.

In the following tests, the Manager was running on a separate physical machine, directly
connected to the physical node Mary. The created virtual networks were always a replica
of the underlying physical network. The virtual nodes were configured with 1 CPU, 64MB
of RAM, 1GB of HDD and 1Mbps links. This virtual network is depicted in figure 6.2, and
shall uniformly load every physical node and link and be used as a reference.

During the tests, the virtual nodes were idle and so were the physical nodes and links,
no other activity or task was being run on the testbed.

The maximum amount of created virtual networks was 40, which corresponds to 40 virtual
nodes in each physical node. This limitation is mainly due to the node with the least amount
of memory, Gabrielle that would present instability issues with 45 virtual nodes.

The results presented on the following sections always assume a 95% confidence interval.

105

By

AWARD' - Virtal Network Control Centre

BEE

Actions Get WNet Help

B wd o

Substrate

T

=--39.0/1000. 00 1b/s
39.0/1000.0Mb/s --=

;A
XK o

=--39.0/1000.00b/s

Susan

29.0/200.00Mb/5--=

m INOVACAOD

Gabrielle

39.0/1000.00b/s --=

—
i

<--39.0/1000.0M1h/s
F9.0/1000. 00TD/s >

=--39.0/100.00Mb/s

39.0/100.0Mb/s—=

—ehz

=--30.0/10|

B

eth

. ONb/s

29.0/200.0Mbs >

Ed_t:. Eres Ly.n_ette
iﬁ '3 . . 5 = 'a <--39. . 5 > 'a
Figure 6.1: Testhed Network.
Node Susan Lynette | Gabrielle Bree Eddie Mary
CPU Model Intel Intel Intel Core | Intel Xeon | Intel Xeon | Intel Xeon
PentiumD | PentiumD | 2 Duo | E3110 X3220 X3330
950 950 E6400
CPU Freq. 3.40GHz 3.40CGHz 213GHz 3.00 GHz | 2.40GHz 2.66GHz
CPU Cores 2 2 2 2 4 4
CPU Threads 4 4 2 2 4 4
RAM Amount 6GB 6GB 4GB 6GB 6GB 6GB
RAM Freq. 533MHz 667/MHz 533MHz 667MHz 667MHz 667MHz
DDR2 DDR2 DDR2 DDR2 DDR2 DDR2

Table 6.1: Testbed specification.

106

y NARD! - Virtuall Network: Gentre @@ E
Actions Get WNet Help

..5 % ;-3 Jd JQ' v X G |nouncno

Substrate | Testxw27 22

M

@Mary LOMbis--> @Susa” ethi -1 0Mbis @Gabr\elle
ﬁ a “—LOMis e i L0Mbis —= e 3
L0yAhs--= 1 0pAhs--= LONMDB/s--> <—-L0Mh/s

<-LO0Mbis <-L0Mbis -2 ibis LOMBs >
0
L
Lynette
@Eddle <1 0MbIs @Bree L0MbDis—> ey

e 3 Lonbss > e i <—-L0Mbis CL _ e 3
b

Figure 6.2: Reference Virtual Network.

6.3 Data Gathering

Data gathering is a very important feature if an updated view of the existing networks'’
status and characteristics is intended. Its performance may be a critical factor: if the data
gathering procedures take too long, the reaction to failures or other events may be delayed.
This delay may cause severe consequences on the network’s performance, as the network
administrator may not realize that there is a problem until it is too late.

In order to assess the cold boot and status update time, virtual networks with the same
number of nodes as the substrate network were created, as previously described.

6.3.1 Cold Boot

Cold boot is described as the time it takes for each physical node to fully discover and
update the information about itself and its virtual nodes, i.e. the time required since the
Agents start up until they are ready to perform discovery tasks and send a full update to
the Manager.

This test intends to demonstrated the dependency between this start up time, the number
of running virtual machines and the capability of the physical nodes.

Methodology

In order to assess the cold boot time, the time difference between the Agent start-up and
the end of the first status update call was measured.
This procedure was repeated 10 times for every considered amount of virtual networks.

107

Results & Discussion

Figure 6.3 exhibits the time required to boot with the increase in the number of existing
virtual machines.

Cold Boot Time vs Number of Existing Virtual Networks

4500 :
susan
4000
3500 lynette
2 3000
[0} gabrielle
E 2500 bree———|
5 |
8 2000 ddie
s
ko) mary
S 1500
o
1000
500
i
0 [
5 0 5 10 15 20 25 30 35 40 45

Virtual Networks

Figure 6.3: Agent Cold boot results.

It is clear that the substrate nodes have very different capabilities, and that the boot
time is heavily dependent on the CPU processing power. The physical nodes using the old
Intel NetBurst architecture, i.e. Susan and Lynette, perform worse than the ones relying on
the more recent Intel Core 2 architecture. The performance disparity between Susan and
Lynette seems to be associated with the difference in RAM speed.

6.4 Network Discovery

6.4.1 Cold Network Discovery

The time required since every Agent has booted up until the full physical and virtual
network’s topologies have been discovered is designated the cold virtual network discovery
time.

When every Agent boots up and the Manager is disconnected, the discovery mechanisms
are frozen, waiting for a valid ID from the Manager. When the Manager is brought up and
quickly allocates an ID to every Agent, the discovery mechanism takes place and every
Agent exchanges link discovery messages.

Upon discovering virtual links, the Manager will be updated and will build the virtual
and physical networks' topologies. Therefore, the cold virtual network discovery time can
also be tough of as the time required for the Manager to have an updated global view since
its start-up, considering the situation where no Agent has a valid ID, and thus, the link
discovery process has not yet begun.

108

Methodology

For every virtual network created, the cold discovery time was measured 10 times. In
every time, the Manager and Agents were firstly shutdown. Afterwards, every Agent was
brought up. When every Agent had finished its cold boot, the Manager was started and began
waiting until a predetermined amount of resources and links were received, depending on
the number of the currently running virtual networks.

The elapsed time reflects, not only the time required for the Agents to discover its
physical and virtual neighbours, but also the time required for transmitting the information
to the Manager, and the time required by the Manager to process this information and build
the network topologies.

Results & Discussion

Cold Start: Manager Physical & Virtual Network Topology Discovery Time vs Virtual Networks
160

140

=y
N
o

100

[o}
o

[}
o

Discovery Time (ms)

N
o

N
o

0 5 10 15 20 25 30 35 40
Virtual Networks

Figure 6.4: Cold network discovery results.

Evaluating figure 6.4, it is possible to notice that the time required for discovery seems
to follow a linear trend. Taking into account the results attained from the simulation results
of the discovery algorithm, this trend was to be expected.

6.4.2 Hot Network Discovery

This test is similar to the previous one, with the exception that in this case the Agents
already have a valid ID and have already exchanged discovery messages with each other;
thus, the hot virtual network discovery time reflects the time required for the Agents to send
resource and link messages to the Manager and its processing time. In order to provide a
comparison base, the centralized network discovery algorithm was also run.

Methodology

In this test, every Agent had already booted up and been given an ID from the Manager;
thus, the network discovery had been completed.

109

The Manager was programmed to terminate its execution upon receiving and processing
the expected amount of nodes and links, which was variable according to the number of
virtual networks running at a given instant. It had two operation modes: the first one
utilized a centralized topology discovery algorithm, while the second one utilized the link
information sent by the Agents to the Manager to build the topologies.

A script was created that executed the Manager 100 times in a successive way, both
for the centralized and the distributed algorithms, with a 1 second delay between Manager
termination and restart.

With the increase of the number of virtual networks, one can evaluate the scaling of the
discovery times with the number of existing virtual networks.

Results & Discussion

Manager Physical & Virtual Network Topology Discovery Time vs Virtual Networks
160

140 -

120

100 =

80

60 =

Discovery Time (ms)
iy
\K

40 =

20— —©o— Centralized ||
T Distributed

. | |
0

5 10 15 20 25 30 35 40
Virtual Networks

Figure 6.5: Distributed vs. Centralized network discovery results.

Comparing the achieved results, displayed in figure 6.5, with the discovery times of the
previous subsection, it is possible to state that the discovery process is faster. This is to be
expected since these measurements simple incorporate the time required for the Agents to
send their neighbour information to the Manager, and the time it takes for the Manager to
process or aggregate this information.

By comparing the results of the centralized and distributed approach, one can state that,
as the number of virtual networks begins to grow, the distributed approach provides lower
discovery times than the centralized one. For 40 virtual networks, the time difference is
20ms, or about 17%.

This is a very important conclusion, as it already shows that distributed approaches need
to be supported in future and complex networks.

110

6.5 Virtual Network Mapping & Creation

6.5.1 Virtual Network Mapping

One of the main reasons of having opted for a heurist approach when designing a mapping
algorithm on section 4.7.2 was due to the fact that these heuristic algorithms tend to impose
a lighter load on the computing resources and are, thus, faster than the optimal algorithms.

In this section, the performance of the proposed algorithm will be evaluated with the
goal of assessing if it presents a viable option in production environments, ie. if it is fast
enough. In spite of the small-scale testbed, some insight should also be gained about the
scaling of the algorithm with the increase in the number of existing virtual networks.

Methodology

In order to assess the mapping times, 40 virtual networks, like the ones specified in 6.2
were created, one at the time. The time required for the Manager to process the received
unmapped XML and return a mapped one was measured. The tests were repeated 3 times.

Results & Discussion

Analysis of a 6 Node VNet Required Mapping Time vs Existing VNets
26

24 =

22

s)

20

Virtual Network Mapping Time(m
1
N\
[
L
|
I

0 5 10 15 20 25 30 35 40
Number of Existing Virtual Networks

Figure 6.6: Virtual Network Mapping results.

The time required to perform the mapping is shown to increase with the number of
existing virtual networks (figure 6.6). Since the mapping procedure only depends on the
virtual network to be embedded and on the physical network, it would be expected that the
mapping times remained constant.

This is not the case. In order to understand the increase in the required mapping time,
one must take into consideration that when performing the mapping, the Manager needs to

111

update the physical links’ load, and therefore needs to access each existing virtual network.
Thus, for each additional virtual network, the Manager will need more time to calculate the
physical links’ stress. This increment in needed time is revealed in the attained results, that
clearly show a linear scaling with the number of existing virtual networks.

Regarding the absolute mapping times, they remain in the order of low tens of mil-
lisecond, which is very good and can be considered real-time. One must, however, take
into consideration the lack of complexity in both the embedded and physical networks, that
makes the mapping process easier. The considerable deviations on the measured mapping
times are probably due to the Manager'’s need to lock the different resources’ mutexes, while
performing the mapping.

6.5.2 Virtual Network Creation

Virtual network creation should be as fast as possible, as an operator must be able to
respond promptly to every embedding request.

In order to evaluate the time required for creating a virtual network on the available
testbed and its scaling with the amount of previously existing virtual networks, several tests
were performed.

Methodology

Virtual network creation tests were performed considering that a given amount of virtual
networks already existed on the testbed. The amount of previously existing virtual networks
was varied between 0, i.e. without virtual networks, and 39.

For each considered point, a virtual network as created and deleted 10 times and the
time required for creation was recorded. The created virtual networks are the same as the
ones previously specified in 6.2.

The considered creation time encompasses the time required for the Manager to split the
mapped XML and send the different command messages to the Agents, as well as the time
required for the Agents to report back with updated information about the created resources
and links, i.e. the time required to perform the discovery of the created virtual network. The
Manager was in charge of measuring these creation times.

Results & Discussion

The results accomplished regarding virtual network creation times, shown in figure 6.7,
seem to follow a linear trend with the increase in the amount of existing virtual networks.

It is worth noting that the total creation time, encompassing both node creation and
subsequent topology discovery, only depends on the slowest physical node, from the ones
chosen to have a virtual node embedded. Considering the physical node’s performance
estimates attained in section 6.3, one can see that the slowest node, Susan, is about three
times slower than the fastest node, Mary.

The demonstrated increase in discovery times is due to the increase in time required to
gather resource information. It is worth noting that, when the virtual node is created, the
used virtual machine template will be regenerated, imposing a severe strain on the physical
node’s slow HDD, thus further slowing down the data gathering and subsequent discovery
process.

112

Analysis of a 6 Node VNet Creation and Dynamic Discovery Time vs Existing VNets

60

[$)]
a1

[$)]
o

I
o

N
o

Virtual Network Creation and Dynamic Discovery Time (s)
w
4]

30 -+
// 1 1
25
20 1 _s
150+
10
0 5 10 15 20 25 30 35 40

Number of Existing Virtual Networks

Figure 6.7: Virtual Network Creation results.

Significant deviations were attained when measuring the creation time. Because these
measurements depend on every physical node, their respective discovery threads, mutex
locks, time required for gathering resource information and also the performance of the
hypercalls, large variations were verified.

6.6 Conclusions

This chapter presented the main results achieved with the virtualization platform, re-
garding the time required for the Agents boot, and the time needed for discovering, creating
and mapping virtual networks.

Regarding one of the potential bottlenecks of the Agents, data gathering, it was shown
that even for 40 virtual networks, the required amount of time remains within acceptable
boundaries, with a worst-case scenario of about 4 seconds.

The implemented discovery algorithm was shown to provide discovery times that should
be barely perceptible for the human user, under 200ms. The distributed discovery algorithm
performed better than the centralized one with 20 or more existing virtual networks, proving
its better scalability.

The final tests, concerning virtual network creation and mapping times, also provided
good results. The mapping algorithm was able to quickly map the virtual networks, with
mapping results in the order of tens of millisecond. The achieved virtual network creation
times, although significantly larger, also remained within acceptable boundaries, having
taken less than 1 minute to create a 6 node virtual network even with the substrate network
already accommodating 39 virtual networks.

Overall, the attained results demonstrate that the performance and scalability of the tool

113

is very good for about 40 virtual networks, the testing limit.

114

Chapter 7

Conclusions

7.1 Final Conclusion

Considering the goals set to be achieved, the first conclusion is that they were indeed
met.

Initially, the software’s constraints, guidelines, and desired features were provided. It
served the purpose of being a reference along the design and implementation stages. The
platform’s requirements, communication semantics, constraints, and the use-cases were es-
tablished.

The design stage refined the software’s architecture (chapter 4), further defined the fea-
tures, analysed potential issues and presented solutions for virtual network embedding and
discovery.

Virtual network discovery algorithms, despite being fundamental for future virtualized
networks, have not been a research target in the past few years. In order to fill the existing
research gap, a distributed approach for virtual network discovery was proposed, based
on concepts from overlay networks, bridging, and routing protocols. An extended analysis
and description of the developed algorithm was done. In addition, simulation tests were
performed that confirmed the algorithm’s feasibility and performance.

The results achieved proved the algorithm’s low overhead and scalability properties,
concerning both the number of exchanged messages and required simulation cycles. In
fact, for physical networks with 500 nodes, the algorithm was able to provide a message
overhead that was more than three orders of magnitude lower than flooding-based algorithms
performing the same task.

With respect to the scalability tests, with an increasing amount of virtual networks, the
tests revealed a linear behaviour, with a much lower overhead penalty when compared to
the said flooding mechanisms. These results further clarified the scalability properties of
the proposed discovery algorithm.

The experimental virtual network discovery tests have validated the previously accom-
plished simulation results. It was shown that the discovery algorithm behaves linearly with
the increase in the number of existing virtual networks. Even more relevant was the com-
parison between the distributed algorithm and a centralized approach. This comparison,
revealed that performance advantages can be attained with the distributed algorithm when
the number of virtual networks to be discovered starts to increase. It is expected that with
an additional increase in the complexity of the virtual networks, the performance advantage

115

of the distributed approach will be even more significant. Thus, distributed algorithms will
have to be supported on future network virtualization platforms.

Virtual network mapping algorithms, on the other hand, have been studied by several
authors, and some solutions have been proposed. Nonetheless, several issues were found
that had to be addressed by the developed algorithm, such as the heterogeneity of both
physical and virtual resources.

The performance of the proposed mapping algorithm was also tested on a simulation
environment. The simulation results showed the behaviour of the mapping algorithm on
different scenarios, which considered heterogeneous specifications for physical and virtual
networks, as well as virtual networks with different dimensions.

Based on the attained results, it was possible to assess the scaling of the number of
accepted virtual networks with their size, the impact of the embedded virtual networks’
size on the load distribution on both physical nodes and links, and also the impact of the
substrate network characteristics on the number of accepted virtual networks. These results
provide guidelines for what should be expected on a real production environment.

With respect to the experimental results, it was shown that the mapping algorithm follows
a linear trend with the increase of existing virtual networks. This trend is a good indicative
of the mapping algorithm performance, although additional tests on larger and more complex
substrate and virtual networks should be performed.

The required time to create virtual networks is a reflex of the performance of both the
resource information gathering and virtual node creation mechanisms. The results achieved,
show that even with a substrate network running near its limits, with 40 virtual networks
embedded, the virtual network creation procedure is still able to provide fast virtual network
creation times, t.e. less than 1 minute.

Every module was thoroughly analysed on chapter 5. Throughout this analysis, it was
clear that a high performance design approach was taken and that task parallelism was fully
explored.

The provided GUI makes the interaction with the user easy and intuitive to the point that
designing, monitoring, and managing virtual networks is as easy as using a network simula-
tor. The Manager examination demonstrated its mapping and data aggregation mechanisms,
and, finally, the Agents’ analysis revealed their main techniques developed for improving the
performance of several critical features, such as virtual node creation and data gathering.

All of the attained results demonstrated the scalability and performance properties of
the developed platform and respective algorithms. They have also proved that the existence
of a single tool to efficiently and quickly instantiate and perform dynamic discovery and
monitoring of virtual networks is feasible .

The virtualization platform developed can, therefore, perform the tasks that it was set
to achieve: it is able to efficiently and intelligently map virtual networks into substrate
networks, to perform discovery tasks, to monitor, and manage virtual networks.

7.2 Future Work

Although many of the desirable and needed features and mechanisms for a network
virtualization platform were implemented, other features are also important and should be
addressed.

Reconfiguration features could increase the versatility in virtual network management, by

116

allowing on-the-fly addition, removal and reconfiguration of virtual nodes and links. When
combined with migration features, several opportunities arise: virtual nodes and links could
be reassigned to other locations without disrupting the virtual networks, in order to compen-
sate for physical resources’ and/or links’ overload; the maintenance of the substrate network
could be done without affecting the virtual networks; power savings could be achieved by
shutting down unneeded or underused physical resources.

Fault-tolerance mechanisms have to be developed so that the virtual networks’ operation
is not compromised, even in the case of physical resources’ failures.

The security aspects are not to be disregarded. In a substrate network running multiple
virtual networks, care must be taken to ensure that access to the virtual networks is done
on a secure way. Besides, virtual networks should not pose security risks to other ones
running on the same substrate.

The access to virtual networks’ information and management capabilities should resort to
secure procedures, through authentication for example. In addition, the messages exchanged
between each developed module, on the management network, should be made secure.

One other fundamental feature on production environments is the ability to create virtual
networks spanning multiple InPs. Therefore, standard communication mechanisms should be
developed and so should mapping algorithms that take into account multiple providers and
their particularities.

Taking into account the described issues and lack of functionalities, it is clear that there
is still a lot of work to be done if this network virtualization platform ever intends to take
its place in an operator’s network.

117

118

Bibliography

[1] 4WARD Consortium: Virtualisation approach: Evaluation and integration. Technical
report, ICT-4WARD project, Deliverable D3.2,, January 2010.

[2] 4WARD Consortium: Virtualisation approach: Evaluation and integration - update. Tech-
nical report, ICT-4WARD project, Deliverable D3.2.1, June 2010.

[3] Abramson, Darren, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier, Ra-
jesh Sankaran, loannis Schoinas, Rich Uhlig, Balaji Vembu, and John Weigert: Intel
Virtualization Technology for directed I/O. Intel Technology Journal, 10(3):179-192, Au-
gust 2006, ISSN 1535-766X. http://developer.intel.com/technology/itj/
2006/v10i3/2-io/1l-abstract.htm

[4] Adams, Keith and Ole Agesen: A comparison of software and hardware techniques for
x86 virtualization. SIGOPS Oper. Syst. Rev.,, 40:2-13, October 2006, ISSN 0163-5980.
http://doi.acm.org/10.1145/1168917.1168860.

[5] AMD: Amd-v™ nested paging. White paper, July 2008. http://developer.amd.
com/assets/NPT-WP-1%201-final-TM.pdf.

[6] AMD: AMD 1/O Virtualization Technology (IOMMU) Specification - R 1.26. White paper,
February 2009. http://www.amd.com/us—-en/assets/content_type/white_
papers_and_tech_docs/34434 .pdf.

[7] Andersen, David G.. Theoretical approaches to node assignment. Unpublished
Manuscript, December 2002.

[8] Anderson, Thomas, Larry Peterson, Scott Shenker, and Jonathan Turner: Over-
coming the Internet Impasse through Virtualization. Computer, 38:34-41, April
2005, ISSN 0018-9162. http://portal.acm.org/citation.cfm?id=1058219.
1058273.

[9] Barham, Paul, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, lan Pratt, and Andrew Warfield: Xen and the art of virtualization. SIGOPS
Oper. Syst. Rev., 37:164-177, October 2003, ISSN 0163-5980. http://doi.acm.org/
10.1145/1165389.945462.

[10] Bierman, A. and K. Jones: Physical Topology MIB - RFC 2922, 2000. http://www.
fags.org/rfcs/rfc2922.html.

[11] Cacti: Cacti. http://www.cacti.net/.

119

http://developer.intel.com/technology/itj/2006/v10i3/2-io/1-abstract.htm
http://developer.intel.com/technology/itj/2006/v10i3/2-io/1-abstract.htm
http://doi.acm.org/10.1145/1168917.1168860
http://developer.amd.com/assets/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/assets/NPT-WP-1%201-final-TM.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/34434.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/34434.pdf
http://portal.acm.org/citation.cfm?id=1058219.1058273
http://portal.acm.org/citation.cfm?id=1058219.1058273
http://doi.acm.org/10.1145/1165389.945462
http://doi.acm.org/10.1145/1165389.945462
http://www.faqs.org/rfcs/rfc2922.html
http://www.faqs.org/rfcs/rfc2922.html
http://www.cacti.net/

[12] Carissimi, Alexandre: Virtualizacdo: da teoria a solugées. In Simpdsio Brasileiro de
Redes de Computadores 2008, pages 173-207, Rio de Janeiro - Brazil, 2008. Rio de
Janeiro - Brazil.

[13] Chowdhury, N. Mosharaf K. and Raouf Boutaba: A survey of network virtualization. Com-
puter Networks, 54(5):862-876, April 2010, ISSN 1389-1286. http://dx.doi.org/
10.1016/3j.comnet.2009.10.017.

[14] Cisco: Cisco. http://www.cisco.com/.

[15] Cisco: Cisco Nexus 1000V Datasheet. http://www.cisco.com/en/US/prod/
collateral/switches/ps9441/ps9902/data_sheet_c78-492971.pdf.

[16] Cisco: Cisco Visual Networking Index—Forecast and Methodology 2008-2013. White
paper, June 2009. http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/white_paper_cl1-481360.pdf.

[17] Comeau, Les: CP-40, The Origin of VM|370. In Proceedings of SEAS AMB82, September
1082.

[18] Crocker, S.: Protocol Notes; RFC 36 - Updated by RFC 39 and 44, march 1970. http:
//tools.ietf.org/html/rfc36.

[19] Egi, Norbert, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Felipe Huici, and
Laurent Mathy: Towards high performance virtual routers on commodity hardware. In
CoNEXT '08: Proceedings of the 2008 ACM CoNEXT Conference, pages 1-12, New York,
NY, USA, 2008. ACM, ISBN 978-1-60558-210-8.

[20] Egi, Norbert, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Felipe Huici, Laurent
Mathy, and Panagiotis Papadimitriou: The virtual router project. http://nrg.cs.
ucl.ac.uk/vrouter/.

[21] Famzah, Ivan Zahariev: popen_noshell. http://code.google.com/p/
popen—-noshell/.

[22] Feamster, Nick, Lixin Gao, and Jennifer Rexford: How to lease the internet in your spare
time. SIGCOMM Comput. Commun. Rev., 37(1):61-64, 2007, ISSN 0146-4833.

[23] GENI: GENI - Global Environment for Network Innovations. http://www.geni.net/.

[24] Handley, M.: Why the internet only just works. BT Technology Journal, 24(3):119-129,
2006, ISSN 1358-3948.

[25] Harrenstien, Ken, Vic White, and Elizabeth Feinler: Hostnames server - rfc 811, March
1982. http://www.fags.org/rfcs/rfc811.html.

[26] Houidi, I, W. Louati, and D. Zeghlache: A Distributed Virtual Network Mapping Al-
gorithm. In Communications, 2008. ICC '08. IEEE International Conference on, pages
5634-5640, 2008. http://dx.doi.org/10.1109/ICC.2008.1056.

[27] Hunter, Jason and Brett McLaughlin: JDOM. http://www. jdom.org/.

120

http://dx.doi.org/10.1016/j.comnet.2009.10.017
http://dx.doi.org/10.1016/j.comnet.2009.10.017
http://www.cisco.com/
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9902/data_sheet_c78-492971.pdf
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9902/data_sheet_c78-492971.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://tools.ietf.org/html/rfc36
http://tools.ietf.org/html/rfc36
http://nrg.cs.ucl.ac.uk/vrouter/
http://nrg.cs.ucl.ac.uk/vrouter/
http://code.google.com/p/popen-noshell/
http://code.google.com/p/popen-noshell/
http://www.geni.net/
http://www.faqs.org/rfcs/rfc811.html
http://dx.doi.org/10.1109/ICC.2008.1056
http://www.jdom.org/

[28] Intel: First the Tick, Now the Tock: Next Generation Intel Microarchitecture (Ne-
halem). White paper, April 2008. http://www.intel.com/pressroom/archive/
reference/whitepaper_nehalem.pdf.

[29] Jannotti, John, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, and James W.
O'Toole, Jr.: Overcast: reliable multicasting with on overlay network. In Proceedings
of the 4th conference on Symposium on Operating System Design & Implementation -
Volume 4, OSDI'00, pages 14-14, Berkeley, CA, USA, 2000. USENIX Association. http:
//portal.acm.org/citation.cfm?id=1251229.1251243.

[30] Jelasity, Mérk, Alberto Montresor, and Ozalp Babaoglu: T-Man: Gossip-based fast over-
lay topology construction. Comput. Netw., 53(13):2321-2339, 2009, ISSN 1389-1280.

[31] Jelasity, Mark and Ozalp Babaoglu: T-Man: Gossip-based overlay topology manage-
ment. In In 3rd Int. Workshop on Engineering Self-Organising Applications (ESOA'05),
pages 1-15. Springer-Verlag, 2005.

[32] Keromytis, Angelos D., Vishal Misra, and Dan Rubenstein: SOS: secure overlay services.
In Proceedings of the 2002 conference on Applications, technologies, architectures, and
protocols for computer communications, SIGCOMM 02, pages 61-72, New York, NY,
USA, 2002. ACM, ISBN 1-58113-570-X. http://doi.acm.org/10.1145/633025.
633032.

[33] Kohlera, E., R. Morris, B. Chen, J. Jahnotti, and M. F. Kasshoek: The click modular
router. In ACM Transaction on Computer Systems, vol. 18, no. 3, pages 263-297. ACM,
2000. http://read.cs.ucla.edu/click/click.

[34] Lischka, Jens and Holger Karl: A virtual network mapping algorithm based on subgraph
isomorphism detection. In VISA '09: Proceedings of the 1st ACM workshop on Virtualized
infrastructure systems and architectures, pages 81-88, New York, NY, USA, 2009. ACM,
ISBN 978-1-60558-595-6.

[35] Liu, Yu, Guangxi Zhu, and Hao Yin: A practical hybrid mechanism for peer discovery. In
Intelligent Signal Processing and Communication Systems, 2007. ISPACS 2007. Interna-
tional Symposium on, pages 706 —709, nov. 2007.

[36] Lu, Jing and Jonathan Turner: Efficient mapping of virtual networks onto a shared sub-
strate. Technical report, Washington University in St. Louis, 2006. http://www.arl.
wustl.edu/~{}jll/research/tech_report_2006.pdf.

[37] Lua, Eng Keong, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim: A survey and
comparison of peer-to-peer overlay network schemes. |[EEE Communications Surveys
and Tutorials, 7:72-93, 2005.

[38] MacDonald, Neil: Neil macdonald’s gartner blog. http://blogs.gartner.com/
neil macdonald/.

[39] Malkhi, Dahlia, Moni Naor, and David Ratajczak: Viceroy: a scalable and dynamic
emulation of the butterfly. In Proceedings of the twenty-first annual symposium on
Principles of distributed computing, PODC '02, pages 183-192, New York, NY, USA, 2002.
ACM, ISBN 1-58113-485-1. http://doi.acm.org/10.1145/571825.571857.

121

http://www.intel.com/pressroom/archive/reference/whitepaper_nehalem.pdf
http://www.intel.com/pressroom/archive/reference/whitepaper_nehalem.pdf
http://portal.acm.org/citation.cfm?id=1251229.1251243
http://portal.acm.org/citation.cfm?id=1251229.1251243
http://doi.acm.org/10.1145/633025.633032
http://doi.acm.org/10.1145/633025.633032
http://read.cs.ucla.edu/click/click
http://www.arl.wustl.edu/~{}jl1/research/tech_report_2006.pdf
http://www.arl.wustl.edu/~{}jl1/research/tech_report_2006.pdf
http://blogs.gartner.com/neil_macdonald/
http://blogs.gartner.com/neil_macdonald/
http://doi.acm.org/10.1145/571825.571857

[40] Manntie, E.: Generalized Multi-Protocol Label Switching (GMPLS) Architecture; RFC
3945, 2004. http://tools.ietf.org/html/rfc3945.

[41] McKeown, Nick, Tom Anderson, Hart Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner: OpenfFlow: enabling inno-
vation in campus networks. SIGCOMM Comput. Commun. Rev.,, 38(2):69-74, 2008.
http://portal.acm.org/citation.cfm?id=1355734.1355746.

[42] McQuillan, J.,, I. Richer, and E. Rosen: The new routing algorithm for the arpanet. Com-
munications, IEEE Transactions on, 28(5):711 — 719, may 1980, ISSN 0090-6778.

[43] Menascé, Daniel A.: Virtualization: Concepts, Applications, and Performance Modeling,
2005.

[44] Nagios: Nagios. http://www.nagios.org/.

[45] Nagle, John: Congestion control in IP/TCP internetworks. SIGCOMM Comput. Commun.
Rev., 14(4):11-17, 1984, ISSN 0146-4833.

[46] Neiger, Gil, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig: Intel Virtualization
Technology: Hardware Support for Efficient Processor Virtualization. Intel Technology
Journal, 10(3):167-177, August 2006, ISSN 1535-766X. http://developer.intel.
com/technology/it3j/2006/v10i3/1-hardware/l-abstract.htm.

[47] Networks, Juniper: Juniper networks. http://www. juniper.net/us/en/.

[48] Peterson, Larry, Tom Anderson, David Culler, and Timothy Roscoe: A blueprint for in-
troducing disruptive technology into the internet. SIGCOMM Comput. Commun. Rev.,
33:59-64, January 2003, ISSN 0146-4833. http://doi.acm.org/10.1145/774763.
774772.

[49] PlanetLab: PlanetLab - An Open Platform for Developing, Deploying, and Accessing
Planetary-Scale Services. http://www.planet-lab.org/.

[50] Popek, Gerald J. and Robert P. Goldberg: Formal requirements for virtualizable third
generation architectures. Commun. ACM, 17(7):412-421, 1974, ISSN 0001-0782.

[51] Postel, J.: Computer mail meeting notes - rfc 805, February 1982. http://www.fags.
org/rfcs/rfc805.html.

[52] Ratnasamy, Sylvia, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker: A
scalable content-addressable network. SIGCOMM Comput. Commun. Rev., 31:161-172,
August 2001, ISSN 0146-4833. http://doi.acm.org/10.1145/964723.383072.

[53] Robin, John Scott and Cynthia E. Irvine: Analysis of the Intel Pentium’s ability to support
a secure virtual machine monitor. In Proceedings of the 9th conference on USENIX Secu-
rity Symposium - Volume 9, pages 10-10, Berkeley, CA, USA, 2000. USENIX Association.
http://portal.acm.org/citation.cfm?id=1251306.1251316.

[54] Rodriguez, Sergio R.: Topology Discovery Using Cisco Discovery Protocol. CoRR,
abs/0907.2121, 2009.

122

http://tools.ietf.org/html/rfc3945
http://portal.acm.org/citation.cfm?id=1355734.1355746
http://www.nagios.org/
http://developer.intel.com/technology/itj/2006/v10i3/1-hardware/1-abstract.htm
http://developer.intel.com/technology/itj/2006/v10i3/1-hardware/1-abstract.htm
http://www.juniper.net/us/en/
http://doi.acm.org/10.1145/774763.774772
http://doi.acm.org/10.1145/774763.774772
http://www.planet-lab.org/
http://www.faqs.org/rfcs/rfc805.html
http://www.faqs.org/rfcs/rfc805.html
http://doi.acm.org/10.1145/964723.383072
http://portal.acm.org/citation.cfm?id=1251306.1251316

[55]
[56]

[57]

[58]

[59]

[60]

[67]

[62]

[63]

[64]

[65]

[66]

[67]

Rose, Robert: Survey of system virtualization techniqgues. Technical report, 2004.

Rosen, E.: Multi-protocol label switching (mpls) architecture; rfc 3031, 2001. http:
//tools.ietf.org/html/rfc3031.

Rowstron, Antony and Peter Druschel: Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems. In Middleware '01: Proceedings of
the IFIPJACM International Conference on Distributed Systems Platforms Heidelberyg,
pages 329-350. Springer-Verlag, 2001. http://www.springerlink.com/content/
7y5mjjepOhglctve.

Schaffrath, Gregor, Christoph Werle, Panagiotis Papadimitriou, Anja Feldmann, Roland
Bless, Adam Greenhalgh, Andreas Wundsam, Mario Kind, Olaf Maennel, and Laurent
Mathy: Network virtualization architecture: proposal and initial prototype. In VISA
‘09: Proceedings of the 1st ACM workshop on Virtualized infrastructure systems and
architectures, pages 63-72, New York, NY, USA, 2009. ACM, ISBN 978-1-60558-595-6.

SPEC: SPEC Virtualization Committee. http://www.spec.org/
specvirtualization/index.html.

Stoica, lon, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan:
Chord: A scalable peer-to-peer lookup service for internet applications. In SIGCOMM
‘01: Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 149-160, New York, NY, USA, 2001.
ACM, ISBN 1-58113-411-8.

Su, Zaw Sing and Jon Postel: Domain naming convention for internet user applications
- rfc 819, August 1982. http://www.fags.org/rfcs/rfc819.html.

Subramanian, Lakshminarayanan, lon Stoica, Hari Balakrishnan, and Randy H. Katz:
OverQos: an overlay based architecture for enhancing internet QoS. In NSDI'04: Pro-
ceedings of the 1st conference on Symposium on Networked Systems Design and Im-
plementation, pages 6-6, Berkeley, CA, USA, 2004. USENIX Association.

Tripathi, S., N. Droux, K. Belgaied, and S. Khare: Crossbow Virtual Wire: Network in a
Box. In USENIX LISA '09. USENIX Association, nov 2009.

Tripathi, Sunay, Nicolas Droux, Thirumalai Srinivasan, and Kais Belgaied: Crossbow:
from hardware virtualized NICs to virtualized networks. In VISA "09: Proceedings of
the 1st ACM workshop on Virtualized infrastructure systems and architectures, pages
53-62, New York, NY, USA, 2009. ACM, ISBN 978-1-60558-595-6.

Turner, Jon and David Taylor: Diversifying the internet. In In Proc. IEEE GLOBECOM,
pages 755-760, 2005.

Uhlig, Rich, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Martins, Andrew
V. Anderson, Steven M. Bennett, Alain Kagi, Felix H. Leung, and Larry Smith: Intel
virtualization technology. Computer, 38(5):48-56, 2005, ISSN 0018-9162.

Veillard, Daniel: libxml2. http://www.xmlsoft.org/.

123

http://tools.ietf.org/html/rfc3031
http://tools.ietf.org/html/rfc3031
http://www.springerlink.com/content/7y5mjjep0hqlctv6
http://www.springerlink.com/content/7y5mjjep0hqlctv6
http://www.spec.org/specvirtualization/index.html
http://www.spec.org/specvirtualization/index.html
http://www.faqs.org/rfcs/rfc819.html
http://www.xmlsoft.org/

[68] VMware: Understanding Full Virtualization, Paravirtualization, and Hardware As-
sist. White paper, October 2007. http://www.vmware.com/files/pdf/VMware_
paravirtualization.pdf.

[69] Waxman, B.M.: Routing of multipoint connections. Selected Areas in Communications,
IEEE Journal on, 6(9):1617 -1622, dec 1988, ISSN 0733-8716.

[70] Whitaker, Andrew, Marianne Shaw, and Steven D. Gribble: Denali: Lightweight Virtual
Machines for Distributed and Networked Applications. In In Proceedings of the USENIX
Annual Technical Conference, 2002.

[71] XORP: XORP - eXtensible Open Router Platform. http://www.xorp.org/.

[72] Zhu, Y. and M. Ammar: Algorithms for assigning substrate network resources to vir-
tual network components. In INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings, pages 1-12, 2006.

124

http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.xorp.org/

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction & Overview
	Motivation
	Internet ‘s Origins and Evolution
	Current Context
	Enabling Innovation

	Purpose
	Contribution
	Thesis Outline

	State of the Art
	Overview
	Server Virtualization
	Advantages
	Disadvantages
	Virtual Machine Monitor
	IA-32 Virtualization
	Virtualization Techniques
	Virtual Appliances
	Analysis of Server Virtualization Tools
	Libvirt: Virtualization API
	Summary

	Network Virtualization
	Design Goals
	Proposed Business Models
	Existing Technologies
	Existing Initiatives
	Mechanisms for Network Virtualization Support
	Summary

	Network Virtualization Platforms
	GENI
	VNet Management Demonstrator v0.1

	Platform Requirements Specification
	Introduction
	Overall Description
	Features
	User Classes
	Operating Environment
	Constraints
	Assumptions and Dependencies

	System Features Details
	Physical and Virtual Resource and Topology Discovery
	Substrate and Virtual Network Monitoring
	Virtual Network Creation
	Virtual Network Management

	Interface Requirements
	Use Cases
	User Interface
	Software Interfaces
	Communication Interfaces

	Non-functional Requirements
	Performance
	Security
	Software Quality Attributes

	Conclusions

	Architecture & Mechanisms Design
	Introduction
	Module Decomposition
	Control Centre module
	Manager module
	Agent module

	Data Decomposition
	Control Centre Data Decomposition
	Manager Data Decomposition
	Agent Data Decomposition

	Dependencies
	Control Centre Dependencies
	Manager Dependencies
	Agent Dependencies

	Interface Description
	User – Control Centre Interface
	Manager – Control Centre Interface
	Agent - Manager Interface

	Identification Process
	Virtual Network Creation
	Topology and Configuration
	Virtual Network Mapping
	Virtual Resource Creation
	Simulation Results

	Topology Discovery
	Distributed Topology Discovery
	Centralized Topology Discovery
	Simulation Results

	Substrate and Virtual Network Monitoring
	Virtual Network Management
	Conclusions

	Software Implementation
	Introduction
	Auxiliary Functions and Libraries
	XML parsing
	popen_noshell
	libvirt

	Virtual Network Control Centre
	Databases and Classes
	Module Decomposition
	Virtual Network Design & Configuration
	 Virtual Network Monitoring
	 Virtual Network Management

	Virtual Network Manager
	Main Databases and Structures
	Module Decomposition
	Virtual Network Mapping

	Virtual Network Agent
	Main Databases and Structures
	Module Decomposition
	Resource Data Gathering
	Virtual Network Creation

	Conclusion

	Tests & Results
	Introduction
	Testbed Description & General Assumptions
	Data Gathering
	Cold Boot

	Network Discovery
	Cold Network Discovery
	Hot Network Discovery

	Virtual Network Mapping & Creation
	Virtual Network Mapping
	Virtual Network Creation

	Conclusions

	Conclusions
	Final Conclusion
	Future Work

	Bibliography

