
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática.

2010

João Pedro Brites
Ferreira Nogueira

DEMONSTRAÇÃO DE CRIAÇÃO DE REDES
VIRTUAIS NO ÂMBITO DO OPERADOR

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática.

2010

João Pedro Brites
Ferreira Nogueira

DEMONSTRAÇÃO DE CRIAÇÃO DE REDES
VIRTUAIS NO ÂMBITO DO OPERADOR

Dissertação apresentada à Universidade de Aveiro para cumprimento
dos requisitos necessários à obtenção do grau de Mestre em Engen-
haria de Electrónica e Telecomunicações, realizada sob a orientação
científica da Professora Dra. Susana Sargento, Professora Auxiliar do
Departamento de Electrónica, Telecomunicações e Informática da Uni-
versidade de Aveiro.

o júri / the jury

presidente / president Professor Doutor António Rui de Oliveira e Silva Borges
Professor Associado do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro

vogais / examiners committee Professora Doutora Susana Isabel Barreto de Miranda Sargento
Professora Auxiliar do Departamento de Electrónica, Telecomunicações e In-
formática da Universidade de Aveiro

Professora Doutora Maria Solange Pires Ferreira Rito Lima
Professora Auxiliar do Departamento de Informática da Escola de Engenharia
da Universidade do Minho

agradecimentos /
acknowledgements

Esta tese marca o culminar de 5 anos de trabalho na Universidade
de Aveiro. Durante estes fantásticos anos, muitas foram as pessoas
que me marcaram, incentivaram e ajudaram a desenvolver técnica e
pessoalmente.

Quero agradecer aos meus orientadores, Prof. Dra. Susana
Sargento e Engenheiro Jorge Carapinha, da PT Inovação, pelo apoio,
visão e orientação fornecidos ao longo destes meses. A conjugação
das suas diferentes perspectivas e abordagens foi uma mais-valia para
o trabalho desenvolvido.

Ao Mestre Márcio Melo, pela presença diária, abundantes dis-
cussões e partilha de conhecimentos, fundamentais para a minha
progressão e evolução.

À Portugal Telecom Inovação e ao seu departamento de Investi-
gação Aplicada e Disseminação do Conhecimento 1 (IAD1), pelo
apoio, oportunidades e condições providenciadas.

A todos os meus amigos pelo acompanhamento constante, mo-
mentos de descompressão e motivação.

À minha namorada pela sua enorme paciência, compreensão e
encorajamento.

Por fim, quero agradecer a toda a minha família, em particular
aos meus Pais, Irmãos e Avós pela confiança depositada nas minhas
capacidades e apoio ao longo de todos os anos.

palavras-chave Virtualização, Redes Virtuais, Mapeamento, Descoberta Distribuída,
4WARD, Internet do Futuro, Xen, VMware

Resumo A Internet nunca foi pensada para suportar a multiplicidade de serviços
e a quantidade de utilizadores que tem actualmente. Conjugando este
facto com uma crescente exigência quer a nível de desempenho, quer
a nível de flexibilidade e robustez, facilmente se percebe que a arqui-
tectura actual não corresponde nem às necessidades e exigências dos
utilizadores actuais nem dos futuros.

A virtualização de rede é, assim, apresentada como uma pos-
sível solução para este problema. Ao permitir que um conjunto
de redes com requisitos e arquitecturas distintos, optimizados para
diferentes aplicações, partilhem uma mesma infra-estrutura e sejam
independentes desta, permitirá o desenvolvimento de alternativas que
minimizem ou suprimam as limitações conhecidas da Internet actual.

O facto de uma mesma rede física poder ser utilizada para suportar
múltiplas redes virtuais é de grande interesse para os operadores. Ao
melhorar a utilização da infra-estrutura e a consolidação de recursos,
é possível aumentar a rentabilidade da mesma. Além desta mais
eficiente utilização, que se traduz numa vantagem competitiva, a
virtualização de rede permite o aparecimento de novos modelos de
negócio através da dissociação entre serviços e a rede física.

Neste sentido, e no âmbito do projecto 4WARD, esta dissertação
propõe-se a desenvolver uma plataforma de virtualização que permita
a avaliação, resolução de problemas e testes referentes à criação,
monitorização e gestão de redes virtuais existentes numa rede física
experimental.

Foram desenvolvidas funcionalidades dinâmicas de monitoriza-
ção de rede, através das quais é possível detectar situações de
falhas, sobre utilização ou problemas de configuração. Também foram
desenvolvidos, simulados e implementados algoritmos distribuídos
de descoberta de redes físicas e virtuais. Na vertente de gestão da
rede, foram implementados mecanismos que permitem actuar sobre
os recursos virtuais. Por fim, para que a criação inteligente de redes
virtuais fosse possível e efectuada o mais rapidamente possível, foram
desenvolvidos algoritmos de mapeamento dinâmico de redes virtuais
e optimizados os processos de criação dos respectivos nós.

Por forma a disponibilizar e testar as funcionalidades, foi desen-
volvida uma plataforma de virtualização que fornece um ambiente
gráfico e que permite, de forma intuitiva, desenhar e configurar redes
virtuais, monitorizar as redes existentes em tempo real e actuar sobre
elas. Esta plataforma foi desenvolvida de forma modular e poderá
servir como base para futuros melhoramentos e funcionalidades.

Os resultados obtidos, além de implementarem as funcionalidades
desejadas e de comprovarem a escalabilidade da arquitectura e dos
algoritmos propostos, provam que é possível a existência de uma
ferramenta única de gestão, monitorização e criação de redes virtuais.

keywords Virtualization, Virtual Networks, Embedding, Mapping, Distributed
Discovery, 4WARD, Future Internet, Xen, VMware

abstract The Internet was never designed to support the huge amount of ser-
vices and users that it has nowadays. Combined with ever-increasing
requirements for performance, flexibility, and robustness, one can
easily realize that the current architecture does not match neither the
needs nor the demands of the current and future users.

Network virtualization arises as a potential solution for these is-
sues. By letting multiple networks, optimized for different applications
with different requirements and architectures, to coexist and share the
same infrastructure in an independent way, new alternatives may be
developed that bypass the known limitations of the current Internet.

This ability to use the same physical infrastructure to hold multi-
ple virtual networks is of great interest for network operators. By
improving its infrastructure utilization and increasing the resource
consolidation, higher profitability can be achieved. Besides this com-
petitive advantage, network virtualization enables new business models
and the dissociation of the provided services from the physical network.

With that goal in mind, this Thesis, in the scope of the 4WARD
project, presents a virtualization platform that will enable the evaluation
and solving of the inherent problems associated with the creation,
monitoring and management of virtual networks, embedded in an
experimental physical network.

The developed dynamic monitoring features make the detection
of failures, misconfigurations or overloads possible. In addition,
physical and virtual network discovery mechanisms were designed,
simulated and implemented. Regarding network management, acting
upon virtual resources was also made possible. Finally, in order to
optimize and speed-up virtual network creation, dynamic mapping
algorithms and optimized node creation processes were developed.

In order to provide and test the specified features, a network vir-
tualization platform was developed containing a graphical user
interface that aims to provide the users with a simple, interactive,
intuitive way of designing and configuring virtual networks, as well as
monitoring and managing them. The developed platform poses itself as
a possible platform for future enhancements and added functionalities,
due to its modular nature.

The attained results, besides implementing the desired features
and having proven the scalability and feasibility of the proposed
algorithms, are also the evidence that the existence of a single tool to
manage, monitor and create virtual networks is feasible.

Contents

Contents i

List of Figures v

List of Tables ix

Acronyms xi

1 Introduction & Overview 11.1 Motivation . 11.1.1 Internet ‘s Origins and Evolution . 11.1.2 Current Context . 21.1.3 Enabling Innovation . 31.2 Purpose . 31.3 Contribution . 41.4 Thesis Outline . 4
2 State of the Art 72.1 Overview . 72.2 Server Virtualization . 72.2.1 Advantages . 82.2.2 Disadvantages . 92.2.3 Virtual Machine Monitor . 102.2.4 IA-32 Virtualization . 112.2.5 Virtualization Techniques . 122.2.6 Virtual Appliances . 152.2.7 Analysis of Server Virtualization Tools . 152.2.8 Libvirt: Virtualization API . 182.2.9 Summary . 192.3 Network Virtualization . 202.3.1 Design Goals . 202.3.2 Proposed Business Models . 212.3.3 Existing Technologies . 222.3.4 Existing Initiatives . 262.3.5 Mechanisms for Network Virtualization Support 272.3.6 Summary . 342.4 Network Virtualization Platforms . 34

i

2.4.1 GENI . 342.4.2 VNet Management Demonstrator v0.1 . 36
3 Platform Requirements Specification 413.1 Introduction . 413.2 Overall Description . 413.2.1 Features . 413.2.2 User Classes . 423.2.3 Operating Environment . 423.2.4 Constraints . 433.2.5 Assumptions and Dependencies . 433.3 System Features Details . 433.3.1 Physical and Virtual Resource and Topology Discovery 433.3.2 Substrate and Virtual Network Monitoring 433.3.3 Virtual Network Creation . 443.3.4 Virtual Network Management . 443.4 Interface Requirements . 453.4.1 Use Cases . 453.4.2 User Interface . 463.4.3 Software Interfaces . 473.4.4 Communication Interfaces . 473.5 Non-functional Requirements . 473.5.1 Performance . 473.5.2 Security . 473.5.3 Software Quality Attributes . 473.6 Conclusions . 48
4 Architecture & Mechanisms Design 494.1 Introduction . 494.2 Module Decomposition . 494.2.1 Control Centre module . 494.2.2 Manager module . 504.2.3 Agent module . 504.3 Data Decomposition . 504.3.1 Control Centre Data Decomposition . 504.3.2 Manager Data Decomposition . 514.3.3 Agent Data Decomposition . 514.4 Dependencies . 514.4.1 Control Centre Dependencies . 514.4.2 Manager Dependencies . 514.4.3 Agent Dependencies . 514.5 Interface Description . 514.5.1 User – Control Centre Interface . 514.5.2 Manager – Control Centre Interface . 514.5.3 Agent - Manager Interface . 524.6 Identification Process . 524.7 Virtual Network Creation . 53

ii

4.7.1 Topology and Configuration . 534.7.2 Virtual Network Mapping . 534.7.3 Virtual Resource Creation . 554.7.4 Simulation Results . 564.8 Topology Discovery . 614.8.1 Distributed Topology Discovery . 614.8.2 Centralized Topology Discovery . 664.8.3 Simulation Results . 684.9 Substrate and Virtual Network Monitoring . 704.10 Virtual Network Management . 714.11 Conclusions . 72
5 Software Implementation 755.1 Introduction . 755.2 Auxiliary Functions and Libraries . 755.2.1 XML parsing . 755.2.2 popen_noshell . 755.2.3 libvirt . 755.3 Virtual Network Control Centre . 765.3.1 Databases and Classes . 765.3.2 Module Decomposition . 775.3.3 Virtual Network Design & Configuration 815.3.4 Virtual Network Monitoring . 855.3.5 Virtual Network Management . 855.4 Virtual Network Manager . 865.4.1 Main Databases and Structures . 865.4.2 Module Decomposition . 865.4.3 Virtual Network Mapping . 905.5 Virtual Network Agent . 935.5.1 Main Databases and Structures . 935.5.2 Module Decomposition . 935.5.3 Resource Data Gathering . 1005.5.4 Virtual Network Creation . 1015.6 Conclusion . 102
6 Tests & Results 1056.1 Introduction . 1056.2 Testbed Description & General Assumptions . 1056.3 Data Gathering . 1076.3.1 Cold Boot . 1076.4 Network Discovery . 1086.4.1 Cold Network Discovery . 1086.4.2 Hot Network Discovery . 1096.5 Virtual Network Mapping & Creation . 1116.5.1 Virtual Network Mapping . 1116.5.2 Virtual Network Creation . 1126.6 Conclusions . 113

iii

7 Conclusions 1157.1 Final Conclusion . 1157.2 Future Work . 116
Bibliography 119

iv

List of Figures

1.1 Cisco IP Traffic Forecast . 2
2.1 Server Consolidation Through Virtualizaton . 92.2 Type 1 Hypervisor Architecture . 112.3 Type 2 Hypervisor Architecture . 112.4 Full Virtualization on the IA-32 architecture . 132.5 Paravirtualization on the IA-32 architecture . 142.6 Hardware-Assisted Virtualization on the IA-32 architecture 152.7 Virtual Machine vs. Virtual Appliance . 152.8 Xen’s Architecture . 162.9 Libvirt: Virtualization API . 182.10 Libvirt control methods. 192.11 SP and InP business model . 222.12 SP, VNP, VNO and InP business model . 232.13 MPLS Packet Labelling and Label Swapping . 242.14 Consumer vs. Provider Edge based VPN . 252.15 Cisco Nexus 1000V Architecture [15] . 302.16 VNet Demonstrator v0.1 Testbed . 362.17 VNet Demonstrator v0.1 Architecture . 372.18 VNet Demonstrator v0.1 Agent detail . 382.19 VNet Demonstrator v0.1 Manager detail . 39
3.1 Simplified VNet Creation use-cases . 453.2 Simplified VNet Management and Monitoring use-cases 46
4.1 Global view of the existing modules. 504.2 Virtual Network Control Center - User Interface. 524.3 Agent and Control Centre ID attribution process. 534.4 VNet Creation use-cases . 544.5 Virtual Resource creation. 564.6 Virtual Network Mapping Simulation Scenario 1 - Maximum accepted VirtualNetworks. 584.7 Virtual Network Mapping Simulation Scenario 2 594.8 Virtual Network Mapping Simulation Scenario 3 - Maximum accepted VirtualNetworks. 614.9 Topology Discovery – Assembling neighbourhood knowledge. 624.10 Virtual topology discovery example . 63

v

4.11 Discovery algorithm - Bootstrap diagram . 664.12 Discovery algorithm – Resource message received 674.13 Discovery algorithm – Delete resource message received 674.14 Distributed discovery algorithm simulation example. 694.15 Discovery Algorithm Scalability Tests – Number of Physical Nodes. 704.16 Discovery Algorithm Scalability Tests – Number of Virtual Networks. 714.17 VNet Management and Monitoring use-cases . 72
5.1 Control Centre’s Classes and Lists. 765.2 Control Centre’s VNet list hash map and class. 765.3 Control Centre’s Resource and Link classes. 775.4 Control Centre’s Display classes. 785.5 Control Centre Start Up. 785.6 Control Centre Module. 795.7 Control Centre Model Thread Diagram. 795.8 Control Centre View Thread Diagram. 795.9 Control Centre’s Dropdown & Coolbar menus. 815.10 Control Centre’s Canvas. 815.11 Control Centre View Thread main loop Diagram. 815.12 Control Centre’s Radial resource placement. 825.13 Control Center - New Resource Diagram. 825.14 Configuring a new Virtual Resource . 835.15 Control Center - New Link Diagram. 845.16 Configuring a new Link . 845.17 Control Center - Commit & Save Diagrams. 845.18 Control Center - Get VNet Diagram. 855.19 Control Center - Virtual Node Monitoring. 855.20 Manager’s VNet Entry. 865.21 Connected Agents and Control Centres Entries. 875.22 Manager - Start-Up. 875.23 Manager Module . 885.24 Manager - Agent Connection Accept Thread. 885.25 Manager - Control Centre Connection Accept thread. 895.26 Manager - Status Update thread. 905.27 Manager - Command Send thread. 905.28 Manager - Receive XML Diagram. 925.29 Manager - Map Virtual Network Diagram. 925.30 Node and Link Discovery Entries. 935.31 Agent Module . 945.32 Agent - Start-Up diagram. 945.33 Agent - Manager Connection thread diagram. 955.34 Agent - Keep Alive and ID Request thread diagram. 955.35 Agent - Template thread diagram. 965.36 Agent - Status Update thread diagram. 965.37 Agent - Update Resource Information diagram. 975.38 Agent - Delete Resource diagram. 975.39 Agent - Status Send thread diagram. 97

vi

5.40 Agent - Link Management thread diagram. 985.41 Agent - Link Management thread main loop diagram. 985.42 Agent - Passive Link Discovery thread diagram. 995.43 Agent - Active Link Discovery thread diagram. 995.44 Agent - Neighbour Hello thread diagram. 995.45 Agent - Create new Bridge. 1015.46 Agent - Create Virtual Node Diagram. 1025.47 Agent - Virtual Node Request Diagram. 102
6.1 Testbed Network. 1066.2 Reference Virtual Network. 1076.3 Agent Cold boot results. 1086.4 Cold network discovery results. 1096.5 Distributed vs. Centralized network discovery results. 1106.6 Virtual Network Mapping results. 1116.7 Virtual Network Creation results. 113

vii

viii

List of Tables

4.1 Virtual Network Mapping- Virtual Nodes’ parameters pool. 574.2 Virtual Network Mapping Simulation Scenario 1- Physical Nodes’ parameterspool. 574.3 Virtual Network Mapping Simulation Scenario 2- Number of embedded virtualnetworks. 594.4 Virtual Network Mapping Simulation Scenario 3- Physical Nodes’ parameterspool with doubled node capacity. 604.5 Virtual Network Mapping Simulation Scenario 3- Physical Nodes’ parameterspool with doubled link capacity. 604.6 Distributed discovery - 1st simulation parameters. 68
5.1 Manager to Control Centre message types. 805.2 Control Centre to Manager message types. 805.3 Agent to Manager message types. 895.4 Manager to Agent message types. 91
6.1 Testbed specification. 106

ix

x

Acronyms

AMD Advanced Micro Devices
API Application Programming Interface
ARPAnet Advanced Research Projects Agency Network
ATM Asynchronous Transfer Mode
BGP Border Gateway Protocol
CABO Concurrent Architectures are Better than One
CAN Content Addressable Network
CAPEX Capital Expenditure
CE Costumer Edge
CMS Cambridge Monitor System
CPU Central Processing Unit
CSPF Constrained Shortest Path First
CV Computer Virtualization
DNS Domain Name System
DoS Denial of Service
DR Designated Root
EPT Extended Page Tables
FEC Forwarding Equivalence Class
FTTH Fiber To The Home
GB Gigabytes
GENI Global Environment for Network Innovations
GGID GENI Global Identifier
GMC GENI Management Core

xi

GMPLS Generic Multi Protocol Label Switching
GP Generic Path
GPS Global Positioning System
GUI Graphical User Interface
HDD Hard Disk Drive
HVM Hardware Virtual Machine
IDD Isolated Driver Domain
IDE Integrated Drive Electronics
InP Infrastructure Provider
IOMMU Input/Output Memory Management Unit
IP Internet Protocol
IPTV Internet Protocol Television
IPv6 Internet Protocol Version 6
ISA Instruction Set Architecture
ISO International Standards Organization
ISP Internet Service Provider
I/O Input / Output
KB Kilobytes
L1VPN Layer 1 VPN
L2 Layer 2
L2VPN Layer 2 VPN
L3 Layer 3
L3VPN Layer 3 VPN
LAN Local Area Network
LER Label Edge Router
LSR Label Switching Router
LSP Label-Switched Path
LVM Logical Volume Management
MAC Media Access Control

xii

MIB Management Information Base
MMU Memory Management Unit
MPLS Multi Protocol Label Switching
Mpps Mega packets-per-second
MTU Maximum Transmission Unit
NAT Network Address Translation
NCP Network Control Program
NFS National Science Foundation
NGSP Next Generation Service Provider
NPT Nested Page Tables
NR Neighbourhood Resource Availability
NV Network Virtualization
NVE Network Virtualization Environment
NVSS Network Virtualization System Suite
NWGN New Generation Network
ON Overlay Network
OPEX Operational Expenditure
OS Operating System
OSI Open Systems Interconnection
P2P Peer-to-Peer
PDMA Packet Division Multiple Access
PE Provider Edge
PoP Point-of-Presence
PPP Point-to-Point Protocol
QoS Quality of Service
RAM Random Access Memory
RSVP Resource Reservation Protocol
RVI Rapid Virtualization Indexing
SDH Synchronous Digital Hierarchy

xiii

SLA Service Level Agreement
SMP Symmetric Multiprocessing
SONET Synchronous Optical Network
SP Service Provider
SSH Secure Shell
SSL Secure Sockets Layer
STP Spanning Tree Protocol
SWT Standard Widget Toolkit
TCO Total Cost of Ownership
TCP Transmission Control Protocol
TDM Time Division Multiplexing
TTL Time-To-Live
UDP User Datagram Protocol
US United States
VC Virtual Computer
VEM Virtual Ethernet Module
VLAN Virtual Local Area Network
VNCC Virtual Network Control Centre
VoIP Voice Over IP
VPN Virtual Private Network
VM Virtual Machine
VMM Virtual Machine Monitor
VN Virtual Network
VNO Virtual Network Operator
VNP Virtual Network Provider
VSM Virtual Supervisor Module
XML Extensible Markup Language

xiv

Chapter 1

Introduction & Overview

1.1 Motivation

1.1.1 Internet ‘s Origins and EvolutionThe Internet has its origins in the first large-scale packet switching network, AdvancedResearch Projects Agency Network (ARPAnet). Originally, ARPAnet’s communications werebased on Network Control Program (NCP) [18], a protocol that combined addressing andtransport. Although it performed quite well for the initially small network, scalability andflexibility concerns started to spread among the development community. Novel routingmechanisms were proposed [42] and it also became clear that separating transport fromaddressing was a requirement for a general-purpose network. In response to the scalingissues, in 1982 the Domain Name System (DNS) system was deployed and replaced thehost.txt file for naming Internet systems [51, 25, 61].On January 1st 1983, Transmission Control Protocol (TCP)/Internet Protocol (IP) wasimplemented and replaced NCP as the standard interface for network communications. Thiswas a revolutionary step that required an update to all existing nodes, about four-hundredsof them [24]. This was probably the last time such an update was possible.Since its inception, the Internet has mostly suffered evolutionary, rather than revolution-ary, updates, since it is much easier to deploy a new protocol that fills a gap than it is toreplace a protocol that despite not optimal, still works.In a commercial network, change can only happen if the motivation is sufficient, i.e.if the economic benefit to be attained is significant or if collapse is eminent. Economicreasons are not typically the crucial factor when changing a core network, in part becauseinteroperability between providers must be guaranteed, and changes that are interoperabledo not differentiate an Internet Service Provider (ISP) from its competitors. Thus, the maindriving force for change and innovation is the need to fix an immediate issue.As the Internet’s user base grew, so did the problems and requirements. For example,the initial implementation of TCP caused several network collapses due to congestion, sincethe network resources were operating at full capacity but no useful work was being done.The TCP retransmission strategy was clogging the network with unnecessary retransmittedpackets. It became evident that congestion control was a necessity in a network [45]. Insteadof trying to implement congestion control in a protocol-independent manner, a quick-fix wasto implement congestion control mechanisms for TCP; such implementation was backwardscompatible and did a good job at solving the issue.
1

Although efforts were made and standards were created to implement a lot of featuresthat were missing from the original design such as security, multicast, Quality of Ser-vice (QoS), explicit congestion notification and mobile IP, most of these technologies havenot been widely deployed. In spite of being useful, they solve problems that are not imme-diately pressing, and therefore are best described as enhancements rather than fixes to thearchitecture.Even though many extensions failed, Multi Protocol Label Switching (MPLS) and VirtualPrivate Networks (VPNs) are examples of modifications that succeed, most likely becausethey provided workarounds to some limitations of the Internet protocols within an ISP.
1.1.2 Current ContextToday’s Internet purpose is many-fold; it is widely used in business, defense, mediaand social connections. It has become a critical part of modern society and the currentglobal economy relies heavily on it. This strong dependency will continue to increase asmore and more services converge to a digital medium: circuit-switch telephony is beingconverted to Voice Over IP (VoIP); television broadcast using Internet Protocol Television(IPTV) is becoming common; cloud computing is gaining momentum; high definition contentis becoming the norm and the user base keeps on growing. Recent forecasts from Cisco,predict that in 2013, the annual global IP traffic will exceed two-thirds of a Zettabyte (667Exabyte) [16]. The expected traffic growth is shown in figure 1.1.

0

100

200

300

400

500

600

700

800

2008 2009 2010 2011 2012 2013

Total IP Traffic (Exabytes)

Mobile

Business

Consumer

Figure 1.1: Cisco IP Traffic Forecast
This kind of strain on the existing Internet backbones may force the rethinking of thecurrent architecture. Technologies developed to aid this convergence, such as QoS and IPMulticast, have not seen a wide adoption and their capacity may not be able to keep upwith user demand.The stagnation observed in the current core protocols of the Internet, which has been re-ferred to as the Internet ossification [65], presents an obstacle to innovation by only allowingmore efficient implementations of existing network layer protocols instead of providing themeans for testing and deploying new ones. While the possibility exists for developing anddeploying high layer protocols and new physical and link technologies, the network layercannot be modified. Although IP has been designed to take into account future options to

2

allow extensibility, its options remain largely unused due to the use of hardware-assistedrouting: routing packets without options is much faster. The use of options could also leadto Denial of Service (DoS) attacks on the routers; therefore, packets using options are likelyto be filtered [24]. Internet Protocol Version 6 (IPv6) tries to remedy the options issue byproviding separate end-to-end options from hop-by-hop IP options, but its adoption hasbeen very slow.The Internet, thus, became a victim of its own success.
1.1.3 Enabling Innovation

If the Internet intends to get better, fundamental changes need to take place: innovationshould not only be allowed but encouraged; there should be enough flexibility and isolationto allow experimental networks to be deployed without affecting other running networks;renewal and change must become ordinary processes.This competition between novel networks and their respective protocols and architectureswill allow the Internet to evolve and better suit their users and services’ needs.One way to build such a diversified [65] Internet could be by providing a versatile in-frastructure that could be “sliced” to create several independent networks. These networkswould then be able to run their own protocols and services and comply with different ServiceLevel Agreements (SLAs). A controlled, isolated infrastructure sharing scheme could poten-tially reduce the complexity of testing, deploying and managing new networks, protocols andservices while assuring legacy compatibility and a seamless integration with the existingISPs and their networks. It would provide a non-disruptive solution to introduce disruptivetechnologies.By implementing virtualization solutions on both the networks’ nodes and links, it ispossible to create virtual networks, which are by themselves the so called “slices” of thesubstrate network: they provide resource sharing, isolation and independency from the un-derlying physical network. The ability to create these virtual networks on-demand andon-the-fly is of great interest for network operators since it furnishes them with the meansto create and provide custom-tailored networks to their customers while at the same timeincreasing the average resource usage of their network, thus enhancing their business ad-vantages.
1.2 Purpose

The need for providing network operators with the tools to instantiate and manage virtualnetworks on top of existing physical networks was highlighted on the previous section. Tothat end, this thesis’ purpose is many-fold: to design a virtualization platform and evaluatethe respective mechanisms and algorithms that enable the embedding, management andmonitoring of these virtual networks.A virtualization platform, containing a graphical user interface, shall be created in orderto test this solution on a physical testbed and prove the feasibility and applicability ofnetwork virtualization concepts.The node and link virtualization concepts shall be explored and discussed. Severalapproaches, initiatives, existing products, tools, mapping and discovery algorithms will be
3

considered. By studying these different parts required for network virtualization, a solutionshall be found and implemented.Special attention will be given to the discovery and mapping aspects of virtual networks.The developed algorithms shall be tested for their scalability properties, and conclusionswill be made about their performance and overhead.
1.3 Contribution

As the result of the accomplishment of the proposed objectives, this Master’s Thesiscontributes with a virtualization platform that enables the deployment, management andmonitoring of virtual networks running on a substrate network, as well as with innovativephysical and virtual topology discovery and mapping algorithms.The topology discovery algorithm implemented is simple, fast, scalable, and presents alow discovery overhead. It assures that up-to-date link information is always available andtherefore allows proper network monitoring.A heurist mapping algorithm that strives to optimize the virtual links’ and nodes’ place-ment was also proposed and evaluated, both through simulation and experiments.The platform’s Graphical User Interface (GUI) aggregates the developed functionalitiesand provides an easy, intuitive and interactive way of dynamically monitoring, managingand creating virtual networks.This Thesis was developed within Portugal Telecom Inovação, and its participation inthe ICT FP7 4WARD project. As a result of the work done on this Thesis, a demonstrationwas made in the final review meeting of the 4WARD project in Kista, Sweden. This WorkPackage 3 demonstration was chosen as the main work to show in this final evaluation,and was highly appreciated by both the European Commission’s reviewers and the generalaudience.In addition, a contribution was also made to 4WARD’s 3rd Workpackage Deliverable 3.2.1[2]; an internal paper regarding the virtualization framework and developed algorithms wasaccepted for publication in the magazine Saber e Fazer from Portugal Telecom Inovação; apaper regarding virtual network discovery was submitted to IEEE Globecom 2010 Workshopon Network of the Future.In the future, it is also planned the writing of two papers regarding virtual networkmapping and the virtualization platform.
1.4 Thesis Outline

Chapter 2 will begin by providing a global overview of virtualization, existing tools andtechnologies. Focus will be given not only on server virtualization, the enabler of the devel-oped software, but also on network virtualization, its goals, challenges and existing initia-tives. At the end of the chapter, the base software that stirred this thesis will be depicted.The following chapter, Chapter 3, will deal with the requirements and specification as-pects of the developed software. The main goals, desired features, interfaces, target usersand performance requirements will be explored.The Thesis will then proceed in Chapter 4 with providing an architecture to the virtu-alization platform and its associated mechanisms. In order to address the desired features,
4

algorithms and mechanisms will be proposed. As a result, algorithms for dynamic topologydiscovery and virtual network mapping will be developed and tested through simulation.On Chapter 5, a more detailed description of each one of the software’s modules will beprovided. Its main data structures, internal organization and mechanisms will be describedand a thorough analysis will be made on how the primary functionalities were implemented.Chapter 6 shows and examines the experimental results. These results shall validate thefeasibility of the demonstrator, reveal that the proposed algorithms perform as predicted,and that the desired functionalities work as expected.This Thesis will terminate on Chapter 7 with a final conclusion on the developed tool,associated mechanisms, algorithms and performance, based on the attained results. Finally,several suggestions will be made on how to improve the platform and add new functionalities.

5

6

Chapter 2

State of the Art

2.1 Overview

Although the main purpose of this thesis is to explore concepts and develop solutions fornetwork virtualization, server virtualization works as an enabler for it and is thus discussedon section 2.2. The following section, 2.3, will deal with network virtualization aspects.On both cases, their main advantages, disadvantages and existing technologies will bediscussed, although with a greater emphasis on network virtualization.The chapter ends with an analysis of existing network virtualization platforms, on section2.4.Since this chapter will span many different concepts, the summary will be distributedthroughout the several sections.
2.2 Server Virtualization

Back when computer systems were invented, most systems were large, expensive tooperate and there was a great usage demand. Therefore, they had to evolve to becometime-sharing systems so that multiple users could use them simultaneously. However, witha growing number of computers, users and applications, it became apparent that time-sharing was not always ideal. The misuse of the system by any user, intentional or not,could jeopardize all users and grind the entire system to a halt. For companies that couldafford it, buying multiple computers mitigated these problems. Therefore, having multipleisolated systems was a wish of many organizations [55].In order to respond to organizations wishes (and make some money out of it), the firstresearch Hypervisor to offer full virtualization support was implemented on IBM’s CP-40system in January 1967 (which preceded the IBM’s revolutionary CP-67/Cambridge MonitorSystem (CMS))[17]. It supported multiple instances of client Operating Systems (OSs), inparticular the CMS. The virtualization increased robustness and stability, allowing beta andexperimental OSs to be deployed and debugged without affecting other stable running OSs.This was a great advantage since there was no need for additional, expensive, developmentsystems.Once enterprise-grade restricted, server virtualization is getting more and more commonin personal computers and workstations due to a great increase in computing performancein the past two decades. In 1993 Intel launched the Intel Pentium architecture, which was a
7

true milestone in the personal computing history: it was the first superscalar x86 processor.It explored instruction level parallelism (pipeline) and exhibited an impressive performancefor that time. Currently, dual-core Central Processing Units (CPUs) running in excess of3GHz are common, and so are becoming quad, six, eight and recently released twelve-core (e.g. Advanced Micro Devices (AMD)’s Opteron 6174) processors effectively turning adesktop commodity computer into a powerhouse of computing performance. This increasein performance and computing resource availability brought consumer computers togetherwith virtualization technologies and their advantages.After analysing the virtualization’s main virtues and issues, the following subsections willonly deal with technologies and solutions available in the literature.
2.2.1 Advantages

Besides the resource consolidation aspect, there are many other advantages to be at-tained with server virtualization, some of them will be described next.
Safety

By separating environments with different security requirements using Virtual Machine(VM)s, one may select the OS that best matches the required services and tools. Therefore,a security attack on one system would not compromise the others, due to the isolationproperty.
Trust and availability

New or experimental versions of software may be tested on the hardware that they willlater use without jeopardizing production workloads, and so, virtual systems may be usedas low-cost test systems.
Optimize resource utilization

Since different workloads tend to show peak resource use at different times of the dayand week, implementing multiple workloads in the same physical server can improve systemutilization.Additionally, because multiple OS types and releases may run on a single system, eachvirtual system may run the OS that best matches its application or user requirements, thusfurther improving the resource utilization. An example of workload consolidation may beobserved in figure 2.1
Cost

Virtualization allows multiple workloads and systems to be combined into a single phys-ical server, reducing the costs of hardware and operations. The usual approach is to con-solidate small servers into more powerful ones. Studies show that the cost reduction mayvary from 29% to 64% in some cases [43].
8

Utilization of individual servers Utilization of a single server after
consolidation

Figure 2.1: Server Consolidation Through Virtualizaton
Load balancing

Since the VM is completely controlled and encapsulated by the hypervisor, migration ismade possible and is relatively easy to do, hence enabling load balancing among multiplevirtualized servers [66].
Legacy applications

If a company in need to update its servers chooses to do so and migrate to differentoperating systems, it is possible to continue running legacy applications on the old OSwithin a VM, which reduces migration costs. One example of the support of this approachis the “XP Mode” supported by “Microsoft Windows 7”.
Versatility

The ability of taking snapshots of running VMs, the easiness of migration, shifting ofassigned resources, priority allocations, deployment of new VMs and the existence of VirtualAppliances are a big plus when considering virtualization.
2.2.2 Disadvantages

Even though the advantages are plenty, there are also some disadvantages, which willbe considered next.
Safety

According to a safety specialist from Gartner [38], nowadays, VMs are actually less safethan physical machines due to the Virtual Machine Monitor (VMM) [12].This is an interesting point of view since, if the host OS is compromised, the entire guestVMs will also become compromised. Because the VMM is a software layer, there may bevulnerabilities.
9

ManagementVirtual environments need to be created, monitored, maintained and configured. Althoughthere are a few products that aim to integrate those functionalities, they are usually notoptimal and are hard to use [12].
PerformanceA few questions remain to be answered on the subject, the first one relates to assessingthe performance penalty introduced by the VMM. In order to establish a systematic, standardperformance benchmark, the SPEC Virtualization Committee was created [59] but no resultshave been made available as of this date.Some independent results conducted by VMware comparing ESX Server with Xen (thatwere promptly questioned and re-run by Xen-Source [12]) show that the performance impactis not significant.
2.2.3 Virtual Machine MonitorA virtualized system includes a new layer of software, called the VMM or Hypervisor. Ituses a thin layer of software or firmware to achieve fine-grained, dynamic resource sharing.The main role of the VMM is to arbitrate access to the underlying physical host’s platformresources so that these resources can be effectively shared among multiple “guest” OSs [46].In 1974 Popek and Goldeberg said that “For any computer a virtual machine monitormay be constructed if the set of sensitive instructions for that computer is a subset of theset of privileged instructions” [50], where sensitive instructions refers to instructions which,in a virtualization context, may interfere in the execution of other OS who share the samehardware resources, therefore compromising the isolation between guest OSs.They also defined three main characteristics believed to be essential to the architectureof virtualizable machines [50]:• Any program run under the VMM should exhibit an effect identical with that demon-strated if the program had been run on the original machine directly. The only notableexception to this rule was timing. The software (or hardware) assisting the virtualmachine must sometimes intervene to manage the resources used by it, thus alteringthe timing characteristics of the running virtual machine.• A statistically dominant subset of the virtual processor’s instructions is executed di-rectly by the real processor. This means that a virtual machine is not the same as anemulator. An emulator analyses and intervenes on every instruction performed by thereal processor, whereas a virtual machine occasionally relinquishes the real processorto the virtual processor.• The VMM is in complete control of system resources. This means that the runningvirtual machine does not have direct access to the underlying hardware, and everyresource must go through the VMM.There two main types of Hypervisors:• Hardware based Hypervisors (Type 1 or native VM, figure 2.2.3) are run directly on thecomputer hardware and monitor the guest OSs which in turn runs one level above theHypervisor (Ex: Xen, VMware ESX Server).

10

VM

OS

Applications

VM

OS

Applications
…...

Virtual Machine Monitor

Hardware

Figure 2.2: Type 1 Hypervisor Architecture
• Software based Hypervisors (Type 2 or hosted VM, figure 2.2.3) run within a conven-tional host operating system on the second software level (the first level is dedicatedto the host’s OS), thus the VM runs on the third software level above the hardware(Ex: Microsoft Virtual Server, VMware Server, Java VM).

VM

OS

Applications

VM

OS

Applications

Virtual Machine Monitor

Hardware

Operating System

…...

Figure 2.3: Type 2 Hypervisor Architecture
2.2.4 IA-32 VirtualizationIA-32 (x86) is the dominant Instruction Set Architecture (ISA) nowadays. It is widelyused both in personal computers and in high-end, highly-reliable server applications; hence,virtualizing IA-32 would have tremendous benefits and applications. Nevertheless, unlikemainframes, x86 computers were not designed to support full virtualization; they were de-signed to run directly on the bare-metal hardware, so they assume they fully own thecomputer hardware.The x86 ISA defines four processor operation modes, named rings identified from 0 to 3.In the most commonly used x86 OSs (Microsoft Windows and UNIXes) only two modes areused: Ring 0 which detains the higher privileges and is used by the OS (kernel mode), andring 3, with lower privileges which is used by user processes (user mode).This design decision of not taking into account virtualization is most apparent in a small

11

set of essential x86 instructions (17 in total) [53] that are not required to be run on privilegedmode. These sensitive instructions behave differently in kernel mode and in user mode, soif kernel mode code is run in user mode, some instructions may not throw exceptions butinstead return incorrect (compared to the kernel mode) results. Therefore the VMM has toscan all user mode code and replace these sensitive instructions with explicit calls to theVMM.To overcome these obstacles, a procedure was outlined by Robin and Irvine [53]:• Non-sensitive, non-privileged instructions: These may be run directly on the processor;the instructions are known to be safe;
• Sensitive, privileged instructions: Trap. Since the virtual machine is run in user mode,when it attempts to use an instruction that is privileged, the CPU issues an interruption.The VMM traps this interrupt and performs whatever steps are necessary to emulatethe instruction for the virtual machine;
• Sensitive, non-privileged instructions: Any of these 17 instructions of the IA-32 archi-tecture cannot be trapped, therefore, the VMM must monitor the running VM to makesure that it does not execute these instructions.Since the virtualization of the IA-32 architecture has so many obstacles, the IA-32 does notmeet the criteria specified previously by Popek and Goldberg [50] and some clever hackinghad to be done.So, in practice, privileged instructions must be binary translated (an instruction set isemulated by another through code translation) to run safely on the processor. Anotheraspect of the IA-32 that makes it a difficult platform to virtualize is its “open-nature”, i.e.there is a great amount of diverse and different devices and device-drivers available whichdo not make the virtualization effort easy.The first commercial software supporting virtualization on the x86 platform was releasedon February 28th of 1999 by VMware and attained reasonable performance. The user-levelcode was run directly in the hardware, to attain the maximum performance, and privilegecode was run using binary translation.

2.2.5 Virtualization TechniquesAs clarified below, there are three main solutions to virtualize the x86 platform [68]:• Full Virtualization using binary translation;
• OS assisted virtualization or paravirtualization;
• Hardware assisted virtualization.

Full virtualizationImplementing a full virtualization architecture, as illustrated in figure 2.4, raises manychallenges: the first problem is the number of different devices that must be supported bythe VMM, which is very high. To solve this problem, the implementations of full virtualizationusually use generic devices (Ex: VMware) that work properly for most devices but that do notguarantee their best performance. One other inconvenient is the fact that guest operating
12

system does not know that is being executed over the VMM and so, every instruction mustbe tested by the VMM prior to being executed on the hardware.The last issue is bound to memory virtualization and virtual memory management whichis extremely difficult on the IA-32 architecture. If a given guest OS uses virtual memory,when an application makes a request for a page of memory, the OS translates the memoryaddress from the applications “virtual” space into the system’s real space using a pagetable. Unused page tables may be written to disk when they become inactive or anotherapplication requires memory. All these procedures are typically performed using specialCPU instructions for memory management. In a virtualized environment, the VMM mustintercept all virtual memory calls to the CPU and translate “virtual machine” space into thesystem’s real space using another page table, get the memory (which may be on memory ordisk) and then return it to the virtual machine. While this may not look too harsh on theperformance side, one must keep in mind that before the VMM received the memory accesscall, a page table lookup on the VMM’s page table had already been performed to see wherethe memory was located, thus requiring in total at least two context switches between theVM and the VMM, which is very expensive for a single, simple, memory access.Although there are a lot of problems with full virtualization (performance related, mostly)there are also some advantages. Full virtualization provides the best isolation and securityfor virtual machines and simplifies migration and portability, as the same OS may run vir-tualized or natively. Examples include VMWare Workstation, User Mode Linux, Microsoft’sVirtual PC and Xen (from V3.0).

Binary Translation of OS
requests

Hardware

VMM

User Apps

Guest OS

Ring 3

Ring 2

Ring 1

Ring 0

Direct Execution of User
Requests

Figure 2.4: Full Virtualization on the IA-32 architecture
Paravirtualization

Paravirtualization (figure 2.5) attempts to mitigate the problems existing in the x86 ar-chitecture that usually cause the VMM to intervene too often to perform protected tasks.Instead of going directly to the CPU to perform the task, the OS is modified to call the VMM1 and let it handle the protected task. As such, there is no need for the VMM to constantlymonitor the guest VM and the performance of this technique has proven to be superior to theone of full-virtualization (without hardware assistance). The main drawback of this approachis the need to modify guest OSs, and so, its portability is poor.Xen [9] and Denali [70] are examples of the implementation of this technique.
1The commonly used terminology is hypercall.

13

Hypercalls to the
Virtualization Layer
replace Non-virtualizable
OS instructions

Hardware

VMM

User Apps

Paravirtualized
Guest OS

Ring 3

Ring 2

Ring 1

Ring 0

Direct Execution of User
Requests

Figure 2.5: Paravirtualization on the IA-32 architecture
Hardware Assisted Virtualization

In order to address the difficulties experienced in x86 virtualization, that many developerscould not handle, most modern consumer x86 processors include some form of hardwarevirtualization support, usually either Intel-VTx or AMD-V. Even though AMD-V and Intel-VTx were developed differently and are incompatible, they serve the same purpose.This virtualization support came in the form of processor extensions, and the first gener-ation mainly addressed the issue of privileged instructions, offered no support for MemoryManagement Unit (MMU) virtualization, and exhibited a performance equal (and sometimesworst [4]) than that of binary translation techniques. These extensions allow the hypervisorto run below ring 0, in the so called root mode (figure 2.6). Nevertheless, it made the imple-mentation of virtualization software simpler, by allowing the use of classic trap-and-emulatetechniques.The next step in hardware assisted virtualization was to develop a way to virtualize Input/ Output (I/O) and devices. The first AMD specification of Input/Output Memory ManagementUnit (IOMMU), which provides a way of virtualizing I/O traffic and performing I/O communi-cation translation at the hardware level (as opposed to software level), was released in 2006[6] and is currently implemented in some workstation platforms using Opteron processorswith four or more cores and specific chipsets. In the consumer side, there is currently onlyone chipset supporting IOMMU:, AMD 890FX. AMD’s IOMMU was recently renamed to amore commercial name: AMD-Vi. Intel’s solution to I/O is dubbed “Intel-VTd” and is similarto AMD’s implementation [3].The final step in assisting virtualization was to provide proper means of efficiently ac-cessing the system memory. To this end a second level address translation was neededand AMD created the Nested Page Tables (NPT) [5] or Rapid Virtualization Indexing (RVI)while Intel created the Extended Page Tables (EPT), used in current processors based onthe Nehalem architecture [28].The combination hardware assisted processor virtualization, I/O and devices virtualiza-tion and memory access virtualization provides the necessary framework for x86 architectureto be efficiently virtualized. Not all current systems support these three techniques, but somealready do (mostly workstations) and it is likely that in the future all consumer, commodity,computers will support them.
14

OS Requests Trap to
VMM without Binary
Translation or
Paravirtualization

Hardware

VMM

User Apps

Guest OS

Ring 3

Ring 2

Ring 1

Ring 0

Direct Execution of User
Requests

Non-Root
Mode
Privilege
Levels

Root Mode
Privilege Levels

Figure 2.6: Hardware-Assisted Virtualization on the IA-32 architecture
2.2.6 Virtual Appliances

Virtual appliances (figure 2.7) are pre-built, pre-installed, and usually pre-configured atsome degree. They are software solutions VMs that are packaged, updated, maintained andmanaged as a unit, that allow the deployment and management of pre-integrated solutionstack.If, for example, one needs a network performance monitor, solutions exist (Nagios [44],Cacti [11]. . .) that allows their deployment without needing to install software on the runningsystems; it is simply required to load the appliance and configure it. This approach savesinstallation time, potential hassles with initial setup of the software, and isolation from theother running services.

Hypervisor

Hardware

Hypervisor

Hardware

Operating System

Applications
Virtual Appliance Pre-installed

pre-configured
OS and
application
stack

Install

Install

Virtual Machine Virtual Appliance

Figure 2.7: Virtual Machine vs. Virtual Appliance
2.2.7 Analysis of Server Virtualization Tools

Several tools exist nowadays; OpenVZ, Xen, VMware, Denali, Microsoft’s Virtual PC, SunxVM and Oracle VM are some of the most know tools. In the following pages, only Xen andVMware will be discussed, since they can both be considered a reference in the way theyimplement virtualization.
15

Xen

Xen is one of the most popular paravirtualization tools and was developed by the Univer-sity of Cambridge [9]. It has the main goal of paravirtualizing commodity operating systemsand aims for 100% binary compatibility for applications running in its virtual machines.One of the main advantages of using Xen is due to the fact that it performs better thanother full virtualization alternatives (with no hardware assistance). Although the guest op-erating system has to be ported to Xen, this is not a real disadvantage nowadays, since themost common OSs already provide versions supporting Xen, such as Windows XP, FreeBSD,NetBSD and the most popular Linux/Unix distributions (Fedora, Ubuntu, Debian, Open So-laris,. . .).In order to understand how Xen supports paravirtualization, one must understand twofundamental concepts: the domain and the hypervisor. The hypervisor, or VMM, was al-ready discussed. The domains are Xen’s virtual machines. There are two types of domains:the domain0 (or dom0), which is privileged, and the domainUs (or domUs), which are notprivileged. When the host computer is started, a domain 0, privileged, virtual machine iscreated. This domain accesses a control interface and executes management applications.The domUs can only be created, started, shutdown or modified from within the dom0. In thedom0, a special virtual machine is run, Linux with a modified kernel, that has access to theresources of the underlying physical machine and is allowed to communicate with the otherdomU virtual machines.Domain 0 has the drivers to the underlying hardware, while domUs have virtual driversthat must go through the domain 0 in order to access the physical resources.

XEN Hypervisor

Hardware

KernelU

DomU

Kernel0

Dom0

Apps

Virtual
Drivers

Virtual
Drivers

Backend

Native
Drivers

Control
Plane

Virtual
I/O

Devices

.…
KernelU

DomU

Apps

Virtual
Drivers

Virtual MMU Virtual CPUVirtual I/O

Hypercall / Events

Figure 2.8: Xen’s Architecture
The memory virtualization works by using a memory pool. Each VM is assigned a givenamount of memory which may be dynamically changed without needing to stop or reboot

16

the VM. Each VM may have one or more virtual interfaces. The communication between theguest OSs and Xen is performed using asynchronous I/O rings. A global overview on Xen’sarchitecture is displayed on figure 2.8.If the computer hardware where Xen is running supports virtualization, the latest versionsof Xen, (3.0 and superior) allow for one other domain type: the Hardware Virtual Machine(HVM). In this domain, full virtualization is performed, which allows unmodified OSs torun over Xen’s hypervisor. Although the main purpose of Xen was actually to avoid full-virtualization on the IA-32, with the advent of hardware assisted virtualization, much of theperformance benefits were lost, especially in systems that support processor virtualization,I/O virtualization, and also memory virtualization. It currently supports up to 64 SymmetricMultiprocessing (SMP) machines, and up to 64GB of RAM.In Xen, multiple VMs may communicate with each other using virtual networks thatdo not require any physical interface. It is therefore possible to setup full networks, withmultiple Virtual Computers (VCs) in a single physical computer, making it useful for testingclient-server environments, for example.
VMwareVMware is one of the most popular virtualization tools for the x86 platform. There aretools for all kinds of systems, from personal computers to datacenters. There are four maincategories for the available products: Management and automation, virtual infra-structure,cloud computing and virtualization platforms.The most prevalently used ones (VMware Player, Workstation, Server and Fusion – forMacOS) all rely on the Hosted Virtual Machine Architecture. They install like a regularapplication on a host OS. When the software is run, the application portion, VMApp, uses apreviously loaded driver, VMDriver, to establish the VMM component that will run directlyon the hardware and control the guest VMs.In this scheme, VMware does not need to provide drivers to every single device existingfor the IA-32 architecture; instead, it relies on the drivers of the host OS. If a guest VMperforms an I/O operation, the VMM will intercept it and perform it in the host OS on itsbehalf, using the VMDriver ; therefore it is avoided the need to interact directly with thedevices.This approach may introduce a lot of performance penalty for I/O intensive tasks, but forCPU intensive tasks, the performance is similar to that of a physical system. Each VM isexposed to a set of generic devices, such as a PS/2 keyboard and mouse, floppy and CD-ROM drives, an Integrated Drive Electronics (IDE) controller, a Soundblaster audio card,serial and parallel ports, a standard graphics display card, USB ports, and any number ofAMD PCNet Ethernet adapters. This standardization helps with portability across platformsas all VMs are configured to run on the same virtual hardware, regardless of the physicalhardware on the system.The lastest version of Vmware Workstation (v7) allows the use of 4 processors at most,up to 32GB per VM and supports over 200 OSs.One feature that adds versatility is memory over-committing (assigning VMs more mem-ory than physically available). Since it is not very likely that all VMs will be needing theirfull assigned memory at all times, memory over commiting allows a more effective (dynamic)sharing of existing physical resources.Just like Xen, VMware Workstation also provides utilities for setting up virtual networks.

17

2.2.8 Libvirt: Virtualization API

Basic ArchitectureLibvirt is a virtualization library developed by Red Hat that strives to provide a commonAPI for multiple virtualization environments and hypervisors, such as Xen, KVM, QEMUand VirtualBox (figure 2.9). It provides a hypervisor-agnostic API that allows the building ofcustomized tools to manage guest operating systems running on a host Linux node. Althoughoriginally designed as a management API for Xen, it was extended to work with otherhypervisors that despite being implemented differently provided common functionalities.The actual implementation was done in C, but bindings exist for other languages, forexample: Python, Perl, Ruby, Java and OCaml.

virsh
command-line

tool

virt-manager
GUI
tool

virt-factory
Web-based

tool

Figure 2.9: Libvirt: Virtualization API
Control MethodsIn libvirt, two distinct important concepts exist, the node refers to the physical host andthe domain refers to the guest operating system.There are two distinct control methods; in the first one, demonstrated in figure 2.10(a),the management application and domains exist on the same node, so, the management appli-cation uses libvirt to control the local domains. On the second possible model, figure 2.10(b),remote communication is required and is performed using libvirtd, the libvirt daemon run-ning on remote nodes that is installed after the installation of libvirt and that automaticallysets-up the proper drivers for the node’s hypervisor.
Hypervisor Support MechanismsMultiple-hypervisor support is possible due to a driver-based architecture that allows acommon API to service different hypervisors in a similar way. Using this architecture, some

18

Guest OS

Hypervisor

Linux Host (Domain 0)

Node

Management
Application

Guest OS

Hypervisorlibvirt

(a) Libvirt - Local control.
Linux Host (Domain 0)

Node 1

Management
Application

libvirt

Guest OS

Hypervisor

Linux Host (Domain 0)

Node 2

libvirt

libvirtd

Network(b) Libvirt - Remote control.
Figure 2.10: Libvirt control methods.

hypervisor-specific functions may not be available through libvirt. If a given hypervisor doesnot support some common features, they are marked as unsupported.
Virtualization ShellVirsh, short for virtualization shell, is an application built on top of libvirt that allows theuse of a command line interface to perform most of the libvirt’s functionality without needingto actually write a program using libvirt.
API OverviewThe provided API can be divided into four main categories:

• The hypervisor connection API, which is responsible for establishing and maintainingthe connection to the hypervisor, that can be either local or remote;
• The domain API deals with domain management by performing creation tasks, statusmonitoring and general configuration;
• The network API is in charge of the virtual network components’ management, suchas bridge binding, interface attachment and configuration;
• The storage volume and pool API allows the association and management of storagecomponents, such as Logical Volume Management (LVM) partitions and disk images;

SummaryFrom the libvirt’s analysis, one can see that this is an invaluable tool for anyone devel-oping even the simplest virtual machine management application: the flexibility and levelof control provided are enormous and greatly simplify the hard task of managing VMs. Byproviding a common interface for multiple hypervisors, the portability issues and effort du-plication are greatly reduce; hence, it promotes a faster and better application development.
2.2.9 SummaryComputer virtualization evolved a lot in the past few years, in just a matter of ten yearsconsumer-level virtualization has become not only possible but also incredibly advanced. Theexisting solutions, especially the ones relying on hardware-assisted virtualization can reachperformance levels similar to native systems. Hardware assisted virtualization is becoming

19

a reality and both AMD and Intel offer fully virtualizable x86 platforms in the workstationand server markets.The concept of virtual appliances will allow applications and functionalities to be addedon-the-fly with short deployment and configuration times and without affecting the runningservices.Further investigation and development will need to take place in order to address poten-tial security issues and develop management tools that can lower the complexity of managingmultiple virtual machines.All in all, computer virtualization is an enabler of new and revolutionary technologiesthat will allow experimental, fearless, testing on production environments and also smootherupgrade paths.
2.3 Network Virtualization

A Virtual Network (VN) may be defined as a group of virtual resources (e.g. virtual router-s/switches and virtual machines) interconnected via dedicated virtual links (e.g. Virtual LocalArea Network (VLAN)), agnostic of the underlying hardware, that allows the coexistence ofmultiple virtual networks on the same physical substrate.Just like the previously discussed server virtualization, Network Virtualization (NV) alsofosters the consolidation of resources; in this case the resource is the existing physicalnetwork. It aims not only to reduce the Total Cost of Ownership (TCO) (Capital Expendi-ture (CAPEX) plus Operational Expenditure (OPEX)) of operators, but also to provide themwith the flexibility of running network protocols independently of the physical infrastructure.This protocol independency will allow them to better adjust each VN to the desired appli-cations and services. Instead of considering only the current two main services (Data andVoice), many other services could easily be created with different speed, safety, and timingrequirements.As it stands, NV bears the burden of being the tool to revolutionize the Internet [8]. Itis seen as the only possible escape route from the current ossified Internet model wheredramatic architectural changes are not possible, but required.When deployed, NV, will allow the Internet as it is today to seamlessly run on top of it,just like any other network, and will allow experimenting and evaluating new technologiesand architectures with complete isolation and without disrupting, or risking the disruption,of the currently running services.In the following sections, the goals, current research state of NV, underlying technologiesand existing initiatives will be analysed and evaluated. Due to the fact that NV aims to be“the choice” for future networking, it presents many technical and conceptual challengeswhich will be discussed next.
2.3.1 Design Goals

Network Virtualization, as described in the previous paragraphs, presents several goalsthat can be further subdivided in small objectives to be reached. These objectives shouldalso work as guidelines when developing an algorithm or protocol for VNs, and should alsoserve the purpose of providing a means of comparison for different NV architectures.
20

Flexibility, Programmability and HeterogeneityA virtual networking environment should be flexible on every aspect. The flexibilityshould come in the form of programmability, i.e. being able to program the functionality ofevery network element and protocol, being able to use whatever topology is desired andmust be able to virtualize every type of underlying network technology, regardless if it isoptical, wireless or copper.
Scalability and ManageabilityOne of the prime reasons to employ network virtualization, is to allow the coexistence ofmultiple networks on the same substrate; therefore, scalability is one fundamental partof network virtualization. An infrastructure provider should allow as many VNs as theunderlying infrastructure can accommodate, without affecting the VNs’ performance. Themanagement tasks should be made modular and introduce accountability at every layerof networking. This modularity should simplify network management since it is simpler tomanage multiple virtual networks running in parallel than a single more complex network[22].
Isolation and SecurityIsolation must be guaranteed in order to prevent that a misbehaving virtual networkaffects other unrelated networks, whether due to misconfiguration, high resource usage orsecurity breaches.
Legacy SupportBackwards compatibility is fundamental if the envisioned network virtualization envi-ronment is to become true. There must be a seamless upgrade path from current networktechnologies and protocols to the future ones, and NV must be able to replace the currentInternet without breaking it.
2.3.2 Proposed Business ModelsDue to the extra degree of freedom, i.e. the possibility of having multiple networks on asingle substrate network, and also the fact that the services and their underlying protocolsare no longer bound to the infrastructure, decoupling the traditional role of the ISP in twoor more seems logical. This decoupling is being proposed with different models.Some authors ([22]) suggest the decoupling in two (figure 2.11):

• Infrastructure Provider (InP):InPs are responsible for deploying and managing the physical infrastructure and offertheir resources to different service providers. Their main differentiation factor may bethe quality of the resources, geographic location, tools and freedom delegated to theircustomers.
• Service Provider (SP):

21

SPs aggregate resources from one or more InP, to build virtual networks and offerend-to-end services. They can also provide network services, or even a subset of theirnetwork, to other SPs.
Service Provider

Infrastructure
Provider

Infrastructure
Provider

Figure 2.11: SP and InP business model
While others propose a more complex model ([58] – figure 2.12):

• Infrastructure Provider (InP):Just like in the previous model, its role is to provide and manage the physical infras-tructure;
• Virtual Network Provider (VNP):The VNP main function is to assemble virtual resources from one or more InP, in orderto build a virtual topology;
• Virtual Network Operator (VNO):The VNO should be responsible for the installation and operation of the VNs providedby the VNP, according to the needs of the SP;
• Service Provider (SP):In this business model, the SP is solely responsible for using the VN and providingsome services (application or network services).

2.3.3 Existing TechnologiesThis section describes some of the existing technologies that emulated network virtual-ization, to allow the coexistence of logically isolated networks. Focus will be given on foursignificant technologies: VLANs, MPLS, VPNs and Overlay Networks (ONs).
VLANsVLANs provide a means of separating broadcast domains into smaller ones, allowing thecreation of functional groups. It is a logically separated IP subnetwork and allows multiple IPnetworks and subnets to exist on the same switched network. Since they are logical entities

22

Service Provider

Virtual Network
Provider

Virtual Network
Operator

Infrastructure
Provider

Infrastructure
Provider

Figure 2.12: SP, VNP, VNO and InP business model
(each VLAN has an ID, from 1 to 4094) configured in software, they are very flexible in termsof management and reconfiguration, provide increased security (groups with sensitive datamay be separated from the rest of the network), higher performance (due to broadcastingdomain separation) and are cost effective (VLANs can be used in Linux by simply installingthe respective module).The use of VLANs can also provide increased QoS, since logical networks for differentservices may be created. A VLAN with higher priority may be created for VoIP and anotherone with less priority could be created for data. They are essentially Layer 2 constructs,even though implementations in different layers do exist. To ensure that VLAN members orgroups are properly identified and handled, frame coloring (tagging) is used. With framecoloring, packets are given the proper VLAN ID at their origin so that they may be properlyprocessed as they pass through the network. The VLAN ID is then used to enable switchingand routing engines to make the appropriate decisions as defined in the VLAN configuration.This tagging allows the multiplexing of frames from different VLANs into trunks, i.e. multipleVLANs may use a single physical link, while remaining logically separated at layer 2. Thestandard that defines VLAN tagging is IEEE 802.1q.Although useful for companies’ Local Area Networks (LANs), 802.1q suffers from someproblems: considering a costumer with a provided private link interconnecting multiple sites,if VLAN tagging is used, the provider cannot use VLANs again since that would modify thecostumer’s packets. In order to address this issue, 802.1ad, also called QinQ or Q-tunneling,was standardized in 2005. This new protocol allows the addition of an extra tag to thealready tagged packet, therefore enabling costumer tagged packets through the operators’networks. 802.1ad was replaced with an improved version, 802.1ah, in 2008.

23

MPLSMPLS [56] was created with the goal of increasing the switching speed of core networks,where routers are interconnected using high speed links (in excess of 40Gbps most of thetimes) and rely on layer 3 forwarding.In order to improve forwarding speeds, MPLS’s approach uses label switching. The useof labels introduces connection oriented mechanisms inside the connectionless IP networks,since the packets are forwarded solely based on these labels.When a packet arrives at an edge router, a Label Edge Router (LER), MPLS determinesits Forwarding Equivalence Class (FEC). All packets belonging to a particular FEC will gothrough the same path, or a set of paths in case of multi-path routing.The FEC is encoded in a short fixed length value (label) and when a packet is forwardedto the next hop, the label is sent with it; hence, in subsequent hops there is no need toanalyze the packets’ network layer header. The packet’s label will be used as an indexinto a table that specifies the next hop and corresponding new label, which replaces theprevious one. This label swapping procedure is done by the Label Switching Routers (LSRs)in hardware, at line speeds. In figure 2.13 an illustrative example of a packet going throughan MPLS enabled network is shown.When an ingress router reads a packet’s network layer information, QoS data may beextracted and a particular FEC is chosen according to it; thus, MPLS can be used to dif-ferentiate services. MPLS is widely used in core networks with major applications in trafficengineering and VPNs.The VPN capability is of high importance; using MPLS, the traffic of a given enterpriseis transferred transparently through the Internet with performance and safety guarantees.VPNs may be implemented using label stacking, i.e. a frame that already belongs to a Label-Switched Path (LSP) may travel through another LSP, thus multiple LSPs may be aggregatedinto a single LSP, similarly to Asynchronous Transfer Mode (ATM). MPLS supports unlimitedstacking.

Figure 2.13: MPLS Packet Labelling and Label Swapping
VPNsA VPN allows the creation of private networks over the public Internet infrastructurewhile maintaining confidentiality and security. It is usually used by corporations who wish tohave their branches connected, or to allow employees to access remotely to the corporations’networks. To remain private, the traffic is encrypted. Instead of using a dedicated Layer 2

24

connection, such as a leased line, a VPN uses virtual connections that are routed throughthe Internet.Two main types of VPNs can be considered, taking into account whether the operatorknows about them and plays a role in the VPN establishment or not.
• Costumer Edge (CE) based approach :The provider network is unaware of the existence of the VPN (figure 2.14(a)). The CEdevices are responsible for creating and destroying the tunnels between themselves.These are usually Layer 3 VPNs (L3VPNs), since layer 3 protocols are used to carrydata between the CEs. There are also some VPN solutions that work on upper layersof the Open Systems Interconnection (OSI) model (transport, session or application).• Provider Edge (PE) based approach:The provider network is responsible for VPN configuration and management. A con-nected CE may behave as if it were connected to a private network (figure 2.14(b)).In most cases, these provider VPNs are based on layer 3 protocols, but can also bebased on layer 1 or 2.Layer 2 VPNs transport frames between connected sites. They are independent of theupper layer protocols and are more flexible than layer 3 VPNs.Layer 1 VPNs emerged from the need to extend layer 2 / layer 3 packet-switchingconcepts to advanced circuit-switching domains (such as optical switching and GMPLS[40]). This approach to VPNs allows multi-service backbone where customers can offertheir own services with payloads of any layer (e.g. ATM, Time Division Multiplexing(TDM), IP,. . .) and provides complete isolation from other VPNs.

(a) Consumer Edge based VPN

(b) Provider Edge based VPN
Figure 2.14: Consumer vs. Provider Edge based VPN

25

Overlay NetworksOverlay Networks such as the Content Addressable Network (CAN) [52], Chord [60], Pas-try [57] and Viceroy [39] create a virtual topology on top of the physical topology with thepurpose of implementing a network service that is not available in the existing network.They are not geographically restricted, are flexible and adaptable to changes. The mostflagrant example is the Internet which was built on top of existing phone network, as anoverlay, that ended up shaping it. Multiple overlay designs have been proposed to addressseveral issues such as providing QoS guarantees [62], enabling multicasting [29], file sharing[37] and protection from DoS [32].Through the use of open-platform solutions such as PlanetLab [48], the test of overlaynetworks does not imply large expenditures or complexity. PlanetLab aims to provide both aresearch testbed and a deployment platform for new service oriented network architectures,and hopes that the weight of the developed overlay networks will end up changing thecurrent Internet architecture. Currently, there are 1086 nodes and 506 sites worldwide [49].As it stands, overlay networks are seen as a way to deploy small fixes to the “brokenInternet” and rely heavily on the IP application layer. Despite having the potential totest novel architectures (using virtual testbeds for example [8]), their current design andimplementation is not capable of supporting radically different architectures [13].
2.3.4 Existing Initiatives

AKARIAKARI, a Japanese project that started in 2005, presents a clean-slate approach to designa future Internet that shall be ready by 2015, and is expected to support human developmentfor 50 to 100 years.Given the current trends in bandwidth usage, that closely follows Moore’s Law, it isexpected that in 2015 10Gbps fiber connections will be common for home users (Fiber To TheHome (FTTH)). Thus, it is reasonable to assume that a future Internet will be largely based onoptical (with optical packet switching and optical paths) and wireless (using Packet DivisionMultiple Access (PDMA) in combination with other multiplexing techniques) technologies.Based on these premises, AKARI plans to design and prototype scalable networks withself-* properties (self-healing, self-organizing, self-configuration, self-routing,. . .) and withautonomic and distributed control.According to the AKARI roadmap, the New Generation Network (NWGN) design shouldbe completed this year.
GENIBased on the experience acquired from using PlanetLab, Global Environment for NetworkInnovations (GENI) [23] is a United States (US)’ long term virtual laboratory initiative thatfocuses on providing realistic experimental facilities in order to evaluate alternative archi-tectural structures, by deploying prototype networks and running controlled experiments.It is a generalization of the PlanetLab approach, comprised of network resources (links,nodes. . .) that are virtualizable and programmable; Thus, they can be shared and partitionedbetween many researchers and implement radical new designs. GENI is programmable atany level of abstraction (e.g. optical, IP, application,. . .), where researchers may control how

26

the nodes behave, and is able to incorporate a wide variety of network technologies suchas optical, wireless, sensors and phones. The National Science Foundation (NFS) GENI iscomposed of a fiber backbone (with 25 Point-of-Presence (PoP)), programmable core routers,optical switches, programmable edge devices, Wi-Fi, WiMax , Congnitive Radio and Sensorssubnets.
CABO

Concurrent Architectures are Better than One (CABO) [22] is a full virtualization initia-tive that aims to provide a separation between the physical network infrastructure and theservices that run on it. This split should simplify network management, by relinquishingthe responsibility for the physical devices to the infrastructure providers, allowing a serviceprovider to run several simple virtual networks concurrently and also encourage competitionbetween SPs and InPs, since the services are no longer tied to a given infrastructure. Itspluralistic philosophy, advocates flexible and extensible systems supporting multiple simul-taneous network architectures.Unlike other network virtualization initiatives, CABO’s main intent is not to revolutionizethe current internet architecture, but rather to provide a common framework that fostersbetter network services and more robust management operations. Concurrent networks aresupported through virtualization of links and routers (composing the VNs), which in turnsadd versatility regarding to the protocols running and geographic location.
4WARD

The 4WARD European Project’s goal is to explore new approaches that should enable aplurality and multitude of interoperable network architectures.The approach taken toward a new Internet architecture was not merely a technical one.Business models and impact studies were conducted, regulatory issues were taken intoconsideration, and application scenarios were proposed in order to bridge the gap betweeninnovative research results and socio-economic advantages. Four main business roles wereidentified as in 2.3.2: Infrastructure Provider (InP), Virtual Network Provider (VNP), VNOand SP. 4WARD’s research was focused in virtualization, discovery, monitoring, management(In-Network management) and provisioning techniques for network resources.
2.3.5 Mechanisms for Network Virtualization Support

Although very promising, NV presents many challenges, not only technical but alsobusiness related.The Internet is resistant to fundamental changes. Even with complete and tested NVframeworks developed, one huge issue will be to persuade the existing ISPs to deploy thisframework; their current business model is well defined and huge investments have beenmade in the current infrastructure. One possibility would be to consider the creation of aNext Generation Service Provider (NGSP), employing NV, coexisting directly with currentISPs but with substantial business advantages and added-value regarding its competition(better resource utilization, protocol independency, tiered service quality, . . .). This wouldin turn attract an increasing number of users over time.
27

Aside from the business issues, there are several challenges that must be addressed ifnetwork virtualization is to succeed. Some of these challenges and related mechanisms willbe presented next.
Router VirtualizationTwo approaches currently exist relating virtual routers:• Hardware Virtual Routers:Both Juniper and Cisco currently offer the possibility of running multiple virtual routerinstances on some of their routers. Juniper’s approach to having more than one routerin a single physical one is twofold [47]:

– Virtual Routers :These virtual routers provide separated routing tables and are therefore able toprovide layer 3 isolation. They are simplified routing instances running “under”the main routing daemon and have associated interfaces (logical or physical inter-faces). Their feature set is reduced (no Border Gateway Protocol (BGP) signalingfor example). Juniper’s M, T and J series support this technology.
– Logical Routers :Logical routers partition a single physical router into multiple logical devices,multiple daemons, that perform independent routing tasks, and therefore providea stronger isolation than virtual routers (a logical router may contain severalvirtual routers). They can be thought of as a collection of smaller full-blownrouters, with some exceptions but with more features than virtual routers, runninginside a single housing. Juniper’s M and T series support this technology.Cisco [14] also provides similar approaches in their XR-12000 and CRS-1 systems.• Software Virtual Routers:The recent increase in the number of cores of commodity CPUs (achieving 6 cores forconsumer-grade CPUs and 12 cores for workstation/server CPUs), along with advancesin Random Access Memory (RAM) whose modules have become increasingly dense (4Gigabytes (GB) modules are common nowadays) render commodity computer hardwareas a strong candidate for router virtualization.Although an incredibly high computing power is provided by these multi-core comput-ers, a main bottleneck exists: the main memory. It has been shown in [19] that thememory subsystem is the main limiting factor for high performance packet forwardingdue to its high latency. When forwarding small (e.g. 64-byte) packets which reside innon-contiguous memory location, the forwarding rate is bottlenecked by the memorylatency. By increasing the packet size, the forwarding rate can be greatly improved.In [19], by increasing the packet size from 64-byte to 1024-byte, the forwarding rateincreased from 2.5Mpps to 7.1Mpps, effectively achieving the line rate on all usedinterfaces.Several router software solutions exist, such as Click [33] modular router and XORP [71].The Virtual Router Project [20] aims to optimize such solutions (Click in particular) tovirtual environments. Although promising results have already been attained (7.1Mpps

28

forwarding rate), there is still a long way to go if virtualized computer-based routersintend to compete with hardware routers.
Switch VirtualizationAlthough some commercial solutions exist, switch virtualization still remains a hot topicnowadays. On the one hand, there are vendor solutions that offer high performance andinterface fan-out at the cost of programmability and flexibility. On the other hand, openplatforms, PC based, offer the desired programmability but not the required performance northe needed interface fan-out. In the next paragraphs, vendor solutions offering virtualizationwill be discussed as well as open source PC-based solutions.In 2008 Cisco shipped its first software virtual switch (Nexus 1000V, figure 2.15) developedin cooperation with VMware for their vSphere environments (operating inside the ESX andESXi bare-metal hypervisors). The Cisco Nexus 1000V [15] is a distributed switch composedof two primary components, Virtual Ethernet Modules (VEMs) that run inside the hypervisor,and an external Virtual Supervisor Module (VSM), that manages the VEMs. The VEMs areconfigured by the VSM and perform advanced network features, such as providing QoS,Private VLANs, link aggregation, access control lists, port security and monitoring tools. Itprovides a common switch management model, similar to other Cisco switches. Due to itspurely virtualized architecture and integration with VMware’s software, this virtual switchis fully aware of all server virtualization events, and seamlessly supports server and VEMmigration along with its security, statistics and network properties.Cisco also provides hardware virtual switches, Nexus 7000V for example, presenting thephysical switch as multiple logical devices.Juniper, on the other hand, only provides hardware virtual switches (EX-Series) that workin a similar fashion as the previously discussed virtual routers (but with no routing), i.e. agiven physical switch may contain several isolated switching instances.Open source, software based solutions also exist. One such solution is provided by Cross-bow [63, 64], a virtual switching and virtual interface software that exists for the OpenSolarisplatform with the goal of facilitating networks in a box. It helps expanding the networkingfeature set of Xen, by supporting advanced features such as VLANs, bandwidth assignmentper virtual network interface, link aggregation, IP multipath and QoS mechanisms.One other solution is provided by OpenFlow [41], a software stack designed to be installedon top of physical switches, that allows defining data flows using software (software-definednetworking). When a data packet arrives at a typical switch, its header is examined andproper action is taken. OpenFlow allows users to define (through a controller) the actionthat should be taken for a given packet header, regardless of the protocol being run.The operations are “flow-based”, and therefore, protocol independent. This flow-basedapproach allows for safe testing of new protocols on production environments; the existingprotocols are assigned the proper flow, and new ones may be tested by assigning differ-ent flows. This flow separation and programmability can therefore be seen as a form ofvirtualization.Considering the studied solutions, OpenFlow’s approach seems to be the most promisingone, since it can be installed on existing physical switches with a protocol independency onits flows. This approach should allow reduced expenditures and an significant versatility.Regarding Cisco’s Nexus 1000V, it is tied to VMware and, therefore, cannot be integratedwith other virtualization environments.

29

Figure 2.15: Cisco Nexus 1000V Architecture [15]
Hardware virtual switches provide high performance and allow consolidation but withreduced programmability.

Virtual Network MappingWhen receiving multiple VNet requests, it is of the InP best interest to optimize resourceallocation in order to reduce congestion, and maximize profitability by enabling more VNetsto coexist on the same substrate network. Efficient resource mapping must therefore dealwith simultaneously optimizing the constrained placement of nodes and links of a given VNetin the substrate network.This simultaneous optimization can be formulated as an unsplittable flow problem, knownto be NP-hard [7, 72] and therefore is only tractable for a small amount of nodes and links.In order to solve this problem, several approaches have been suggested, mostly consideringthe offline version of the problem where the VNet requests are fully known in advance.In [34], a backtracking method based on subgraph isomorphism was proposed; it consid-ers the online version of the network mapping problem, where the VNet requests are notknown in advance, and proposes a single stage approach where nodes and links are mappedsimultaneously, taking constraints into consideration at each step of the mapping. Therefore,when a bad mapping decision is detected, a backtrack to the previous valid mapping decisionis made, avoiding a costly remap. In order to reduce the search space of the algorithm, upperboundaries for the number of physical hops spanned by a virtual link are defined, as well asthe maximum amount of mapping steps, determined by evaluation tests, before consideringthat the mapping failed.Other authors, such as [36], define a set of premises about the virtual topology, i.e. the
30

backbone nodes are star-connected and the access-nodes connect to a single backbonenode. Based on these premises, an iterative algorithm is run; the backbone nodes aremapped first (arbitrarily in the first iteration), then the access nodes are connected to theclosest backbone nodes, their shortest path and link capacities are calculated next and,finally, alternative backbone mappings are evaluated. The best backbone mapping is usedin the next iteration. The algorithm terminates when no better solution than the previousone for backbone mapping is found, or when a pre-determined maximum number of iterationsis reached.A distributed algorithm was studied in [26]. Its aim was to reduce the number of mes-sages required for centralized software to have an up-to-date substrate view, to enhancethe robustness and scalability of the overall system, and to increase the speed of the VNetmapping, due to the parallel processing. It considers that the virtual topologies can bedecomposed in hub-and-spoke clusters, and that they can be mapped in each cluster in-dependently. Therefore, it reduces the complexity of the full virtual network mapping. Theroot substrate node, with the maximum available resources, is considered the hub of thecluster, and becomes responsible for coordinating the mapping of that cluster. Next, the setof substrate nodes able to support the spoke nodes is determined based on shortest pathalgorithms. In order to map the complete virtual network, the root nodes interact with eachother with the intent of making a collective mapping decision.Zhu and Ammar et al. [72] propose a heuristic and centralized algorithm for dealing withvirtual network embedding. Their approach tries to solve an online version of the problem,considering reconfigurations of the existing VNs, when VN requests arrive. In order tofurther improve the performance of the basic mapping algorithm, a subdivision technique isalso explored. The goal of the mapping algorithm is to maintain a low and balanced stress ofboth nodes and links of the substrate network; with that goal in mind, the algorithm starts bydetermining each node’s stress (number of virtual nodes running on the substrate node) andthe links’ stress (number of virtual links whose substrate path passes through each substratelink). With these weights determined, the Neighbourhood Resource Availability (NR), thattakes into account both the node stress and the local links stress, is calculated for eachnode. The node with the highest NR is selected as the start node to begin the candidateselection. Next, a set of substrate nodes is determined weighted by their distance to thepreviously selected substrate node, its node potential is calculated, and in the final step thevirtual nodes are mapped. Virtual nodes with more interfaces are assigned substrate nodeswith higher NR since virtual nodes with more interfaces are also more likely to setup morevirtual links and increase the load on both the substrate node and neighbour links.Although all these algorithms provide a solution for the virtual network mapping problem,most of them fail to take into consideration that not all virtual nodes are the same. The nodesmay have different requirements for CPU, memory and location, and their links may not beconstrained only by bandwidth, but also by latency, jitter and loss. The heterogeneity ofboth virtual and substrate resources is mostly not considered.
Resource and Topology DiscoveryA fundamental requirement in order to be able to perform the previously discussed em-bedding algorithms is to know exactly the existing physical and virtual resources’ character-istics, existing topologies (both physical and virtual) and the status of all network elementsand links.

31

The discovery methods should be aware of topologies updates in order to guarantee theconsistency of the topology databases and the detection of failures. They should be robust,fast to converge and efficient in gathering and disseminating network information with areduced footprint in the substrate network.Regarding physical topology discovery, there are multiple commercial applications thatrely on the Layer 3 information to build the physical networks’ topology, showing the logicalconnections between the resources. Hardware providers, such as Cisco [54] and Intel, havedeveloped link layer discovery protocols that strive to provide a more detailed view overthe network’s elements such as hubs, switches and bridges. However, these tools are of nouse when in a heterogeneous, multivendor environment. The IETF recognised this problemand designated a physical topology Management Information Base (MIB) [10], but failed todevelop a protocol.Although the discovery of the physical network topology is essential, the discovery ofvirtual networks’ topology is also required and presents several unaddressed challenges.Because virtual networks are a relatively new concept, and no complete network virtualiza-tion tool has been developed so far, there is a general lack of scientific studies regardingvirtual topology discovery, although guidelines have been provided by some authors. Someinitiatives, like CABO [22] advocate the use of a separate independent discovery plane, andan implementation using distributed algorithms was suggested by [13].The virtual networks are made of virtual resources laying upon physical resources whoseinterfaces and links have been configured to establish the virtual links. Therefore the in-formation regarding their topologies is spread-out throughout the physical network. If weconsider overlay networks, one will quickly realize the immense similarities between them.Since overlay networks have already been studied extensively, their topology discoverymechanisms are a good starting point for developing a virtual network discovery algorithm.Overlay topology discovery algorithms have been widely researched in part due to thepopularity of Peer-to-Peer (P2P) communities. Due to the distributed nature of P2P, thefocus has been on distributed discovery mechanisms. Gossip-based broadcast algorithms,also known as probabilistic broadcast algorithms, are popular in various contexts. Theyare known for trading reliability guarantees for scalability properties, since they impose asmaller overhead on the network than uncontrolled flooding methods.T-Man [30, 31] is one of such algorithms. It is gossip based and targets large scale andhighly dynamic systems. Assuming random overlay networks with nodes connected througha routed network, the algorithm tries to find each node’s neighbours, based on rankingfunctions that take into account the properties of each node, such as ID and geographiclocation. In this algorithm, every node maintains information about other nodes, throughpartial views, which are sets of node descriptors. Each node has two threads: an active one,responsible for initiating communications with other nodes; and a passive one that waits forincoming messages. By sharing views, each node will build its relevant neighbour table, i.e.its target topology.One other algorithm has been developed in [35]. In the context of P2P networks, itis proposed a hybrid approach to peer discovery, using a Central Cache for peers not inthe local network, i.e. behind some gateway with Network Address Translation (NAT) andmulticast, for discovering peers within the same local network. This dual approach combinesthe benefits of both the centralized and distributed model.Although none of the studied algorithms is directed specifically at virtual networks, mostof the information sharing, propagation and topology building concepts may apply, and will
32

thus lay the foundations for the proposal of a virtual topology discovery algorithm.
ManagementFrom the InP’s perspective, management tools must be provided to monitor the substrateand virtual resources. They must make sure that QoS guarantees are being uphold andshould also have a way to trigger the reconfiguration of the existing VNs in order to optimizethe resource allocation when needed.Suitable VN management tools should also be provided to VNOs, VNPs and SPs so thattheir virtual resources can be properly configured and operated.The management of a virtual network poses some issues, especially if the network spansmultiple InPs, since in this case information must be gathered from different entities. Thus,management applications should be developed with a common interface for gathering in-formation and performing operations on the resources. These management tools, besidesproviding the needed network monitoring and helping to make sure that there are no con-straint violations, should also provide accountability data.
Interfacing and InP InteroperabilityWhen requesting a new VN, a SP must, somehow, provide a description of the requiredVN. Due to the fact that a VN may be created by resorting to several InPs, a common VNdescription language, such as Extensible Markup Language (XML), should be defined.A VN embedding situation, spanning multiple InPs, requires communication betweenthem in order to create the so called folding points. Just like the requests made by the SP,this communication should also be standardized.This interoperability also plays an important role in management and topology discoverymechanisms, where the required data will have to be gathered from multiple InPs.
SecurityAlthough theoretically VNs should provide isolation, several problems arise in a virtu-alization context. The first, and perhaps the most relevant, is the safety of the physicalinfrastructure. For instance, if DoS attack is performed on a given InP’s substrate network,all the hosted virtual networks will be affected. This problem can become even more serious ifthe substrate network becomes compromised. In this situation, all the virtual networks couldalso become compromised. A misconfiguration on any substrate resource could jeopardizeall networks.Programmability of network elements, although desired, could also increase the vulner-ability if there were security holes in the programming model. Thus some initiatives, suchas CABO, propose a controlled programmability scheme, where flexibility is traded-off bysecurity.Hosted VN should take internal measures to increase their security, using encryptionmechanisms for example.
PerformanceDespite the many advantages advocated by network virtualization, the VN performancemust be comparable to other non-virtualized environments if the business model is to suc-

33

ceed. To that end, performance guarantees must exist.There is currently no specific tool or benchmark to assess VN performance, studiesshould be conducted in order to evaluate the gains, or lack thereof, and costs associatedwith network virtualization. Efficiency, security and overhead are some of the parametersthat must be looked into, so that a proper evaluation can be made.
2.3.6 SummaryThe concept of network virtualization is not new and many protocols, to some extent,provide a degree of virtualization. It was long ago perceived that the physical infrastructureshould not be tied to a specific protocol, and efforts were made to make them independent,e.g. MPLS.Network virtualization inside the operators’ network will provide them with the versa-tility to custom tailor solutions to their clients, as well as a better resource utilization and,therefore, a reduced TCO. The split of business functions will create a healthy competitionenvironment and will reduce the management complexity at every level, in turn making thecompanies more agile and capable of responding quickly to shifts in market demands.Although some virtualization tools exist today, none has been able to set a standard andprovide a full network virtualization environment with the required and desired performanceand flexibility. Several initiatives have taken place to address this issue. Some, like GENIand CABO, have already terminated and proposed a development framework, while others arestill in development, e.g. 4WARD and AKARI. As discussed, network virtualization presentsmany challenges but the potential benefits are tremendous.No commercial solution exists today for full operator network virtualization, probablybecause the core networks are still holding up; but in a near future, problems may arise dueto the massive amounts of traffic going through the Internet’s backbones and new architec-tures will need to be deployed. Network virtualization, due to its non-disruptive approachmay very well be the solution to this future problem, whether or not it will be successfuldepends heavily on the companies and their shareholders.
2.4 Network Virtualization Platforms

This section presents some of the existing network virtualization platforms, their maincharacteristics and architectures. The emphasis will be devoted to the VNet ManagementDemonstrator v0.1, since it is the base of the developed virtualization platform.
2.4.1 GENIGENI is an Internet Research project, whose overview was provided in 2.3.3. It presents acomplex network architecture that can be divided into three main levels: physical substrate,user services and GENI Management Core (GMC).At the lowest level, the physical substrate may be composed of routers, processors,links or wireless devices. On the top level, the user services provide the user with a setof functionalities designed to make the facilities accessible and to support the researchingactivities.The GMC sits in between the physical substrate and the provided user services; its goalis to provide a common-framework that is stable and long-lasting. This placing is in the

34

same conceptual position as the IP protocol, i.e. it is similar to the hourglass model, withthe GMC being its waist.
Naming

For each network component, slice, user, or object, GENI defines GENI Global Identifiers(GGIDs) which are unique, unambiguous identifiers, that present authenticity verification.
Components

The Components are the main building blocks of GENI. A component may refer to acomputer, a programmable router or access point. Each component is expected to providewell-defined remotely accessible interface. It is also expected that these components providea means for slicing them among several users, either through virtualization or partitioning,granting the user a sliver of it. These slivers must be isolated from each other, so that theycan be seen as a resource container.These components support containment; therefore, their behaviour may be restricted, i.e.limits on bandwidth or processor usage may be imposed. In addition, common interfaces forthe slivers to access the underlying network are also provided. There may be virtual server,virtual router or virtual switch interfaces.
Slices

A slice may be thought of as a set of slivers spanning several GENI components, whereservices may run, plus the users that are allowed to use the slivers.The GMC provides functionalities for creating, deleting or attaining the name of a slice.After defining the slice name, the user must proceed with instantiating the desired slivers,which require an authorization request for each component. After getting the authorizationticket, the sliver may be created. Basic functionalities for stopping, starting and destroyingslivers are provided.
Aggregates

Aggregates are defined by a set of objects or components that share some commoninterface. It provides a way for the GENI users to view a collection of components as asingle identifiable unit, and to act upon them.
Summary

GENI provides researchers with a common network framework, with basic functionalities,that is highly programmable, and thus, could be used to test network virtualization concepts,algorithms and architectures.Despite being a huge, mature, and complex project, with multiple workgroups and projectson several research areas, including the previously discussed PlanetLab, GENI does not pro-vide the means for an automatic creation of virtual networks, nor their respective discovery.It simply provides the backbones upon which these mechanisms may be developed.
35

2.4.2 VNet Management Demonstrator v0.1The VNet Management Demonstrator is a program developed by Asanga Udugama fromthe University of Bremen; its aim was to provide a demonstrator capable of showing thecreation of the VNets conceptualized in the 4WARD project. The software’s implementation,capabilities and issues will be discussed in the following paragraphs. Some of the displayedimages were taken from the software’s documentation [1].
ArchitectureIn order to test the proposed functionalities, the testbed in figure 2.16 was consideredby the author.

Figure 2.16: VNet Demonstrator v0.1 Testbed
It consisted of a PC playing the role of a router with two interfaces: a server with oneinterface and an access point connected to the router.The developed software suite is composed by four main software modules: the Agents,the Manager, the Controller and the Visualizer which are interconnected according to thefigure 2.17. The Agents, Manager and Controller were written in C; the Visualizer waswritten in Java.Although the pictures’ Repository is described as an SQL database in the documenta-tion, the source code made available uses data structures inside the Manager to keep theresources’ data.

Agent ModulesThe Agents are executed in each physical resource and have the goal of both executingthe commands given by the Manager and retrieving local resource information. In the con-sidered testbed, there are three different Agent softwares, specific for each resource: onefor the server, one for the router and another one for the access-point. The access-point’sAgent runs on the router and controls it remotely.Local data retrieval is based on statically configured files, i.e. the Agent software parsesthe configuration file and fills in the data structures containing the interface’s configurationas well as other data pertaining to the physical and virtual resources, such as resource typeand ID.As far as command execution is concerned, the Agents are able to perform the executionof three main command types:
• Resource Commands :

36

Figure 2.17: VNet Demonstrator v0.1 Architecture
These types of commands allow the bring-up and shutdown of pre-created virtualresources, resorting to scripts;

• Link Commands :This script-based commands provide the basic configuration of the virtual resource’sinterfaces; they work by connecting to the virtual machines through Secure Shell (SSH)and executing the pertaining configuration commands;
• Application Commands :These commands are only supported by the Server Agent and allow the execution ofapplications. Applications related to virtual machines are executed through SSH.

The Agents are fully threaded: there is a thread to receive commands from the Manager,another one to execute them, and a final one that deals with sending data back to theManager, as can be seen in figure 2.18.Despite the fully threaded architecture, the Agents suffer from some performance issues,since no thread signalling is used. Hence, every thread, except the command receive threadthat blocks waiting for data, performs polling to the linked list containing the commands andsleeps between successive received commands.Other issues exist with the static nature of this module: every action is preconfigured inscripts, and so are the data gathering mechanisms that are virtually non-existent since allthe data gathered comes from a configuration file parse, i.e. all information is statically andmanually defined.The virtual machine creation is also a process that requires some attention. As im-plemented, the virtual machines must have been previously created and the commands’responsibility is simply to bring them up, which is a situation not desired in a dynamic,unpredictable environment.
37

Figure 2.18: VNet Demonstrator v0.1 Agent detail
Manager ModuleThe Manager, figure 2.19, is a central entity responsible for handling the Agents runningin the physical resources. It can be run on any physical resource, as long as IP connectivityexists to all Agents. Since it is responsible for interacting, not only with the Agents, butalso with the Controller, there is some additional complexity when compared to the Agentmodules. The program is structured into four main threads:• Incoming Agent Connection Thread :This thread is responsible for accepting TCP connections from the Agents. For eachnew connection, a new thread designed to receive and handle the Agents’ messagesis created;• Incoming Controller Connection Thread :Similarly to the Incoming Agent Connection Thread, this thread accepts incoming con-nections from the Controller software and launches a handling thread for each newController connection;• Command Send Thread :This is the thread responsible for sending commands to each connected Agent; itfetches commands supplied by the Controller connection handler thread, identifies therelated Agent and sends the proper command.• Repository Update Thread :The responsibility of updating the Manager’s repository, i.e. the data structure con-taining the information about all resources and links, belongs to this thread. It receivesand processes messages from the Agent connection thread handler.

38

Figure 2.19: VNet Demonstrator v0.1 Manager detail
Just like the Agent modules, this is also a fully threaded module which has potential forhigh performance. Nevertheless, since there is no thread synchronization and signalling, allthe message queues are polled and therefore significant delays are introduced.Regarding the repository data structures, they lack versatility since there is one foreach Agent type. By having only one type of data structure, which is generic, the repositorymaintainability should increase.

Controller ModuleThe Controller module’s function is to provide a command line interface for accessing theinformation from the Manager, and performing the previously described Agent commands.It connects to the Manager via a TCP socket, sends the desired command, which can bea resource information request, performs link configuration, application execution commandand virtual resource bring-up, among others, and waits for the Manager’s reply if relevant;otherwise, it terminates.Although the idea of having a command line interface may be interesting for performingoperations or displaying bare data, for large networks its usage may become cumbersome. If,for example, a request was performed about information on ten resources and related links,the amount of data provided by this tool would probably make the data analysis difficultand not very intuitive. Besides, as it is implemented, no active connection is maintainedwith the Manager, thus rendering active monitoring of resources impossible.
Visualizer ModuleThis module aims to provide a GUI for user interaction. It provides a front-end for theController Module; therefore, all the options available for the Controller are also availablefor the GUI.It allows the display of multiple VNets, although limited to the previously describedtopology.

39

In this module, two main threads exist: a thread responsible for fetching the data fromthe Controller and another one responsible for displaying it. The Visualizer module worksby performing calls to the Controller module, i.e. executing it with arguments, and parsingits output. This Controller dependency, besides introducing overhead, may increase thecomplexity when in need to add new functionalities or correct software bugs.
Agent-Manager InteractionThis interaction is made using TCP / IP sockets where the manager plays the role ofa server, and the Agents behave as clients. When the Agent starts-up, it tries to connectto the Manager, via the preconfigured port number and IP address; when the connection issuccessful, the previously described threads start-up, and the Agent begins its operation.The lack of a connection management thread to the Manager is a main drawback: when itdisconnects, the Agent software terminates.The exchanged messages share a common format, the fields are delimited by @@ andthere is a message terminate sequence: ##. The first field indicates the message type,which can be command, information, or operation return messages.
Manager-Controller InteractionThe interaction is made through TCP / IP sockets, the Controller being the client, andonly one operation is performed each time the controller is run.Just like in the Agent-Manager interaction, the messages exchanged also have their fieldsdelimited by @@, terminate sequence ## and can be command, information, or operationreturn messages.
SummaryAs expected, this demonstrator does indeed provide the functionality of virtual networkcreation. The problem resides on the limitations of the tool and in the way in which featuresare provided. Every aspect of it is statically configured and based on specific configurationfiles and scripts.Little to none versatility exists nor intelligence on the virtual network embedding. Thetool, as it is, is not scalable: it does not predict the existence of more than two interfaces; itis bound to the presented testbed and relies on four software modules when it could do thesame tasks with three. Therefore, it increases the number of points-of-failure and reducesthe easiness of subsequent modifications.Despite all the disadvantages, it also provides some potentially good features. The mul-tithreaded nature of the Agents, the Manager and the Visualizer could lead to a versatileand high performance tool. The basis is there, but the implementation failed to take ad-vantage of features like thread signalling or socket interoperability between C and Java forconnecting directly the Manager with the Visualizer, for instance.

40

Chapter 3

Platform Requirements Specification

3.1 Introduction

On the one hand, network virtualization has been previously identified as a possiblesolution to promote innovation on the currently stagnated Internet; on the other hand, it al-lows the operators to decrease their networks’ costs by increasing the efficiency of resourceusage. To that end, this platform’s goal is to provide the operators with a network virtual-ization solution that is easy to use, versatile, and efficient in virtual network embedding, aswell as developing and evaluating virtual network mapping and discovery algorithms.The resulting network virtualization platform provides the necessary functionalities todiscover, monitor, map, deploy and manage virtual networks running on top of a substratenetwork.By using this tool, network virtualization and its inherent benefits will be made available:resource consolidation, protocol independency, isolation and legacy support are some of theadvantages delivered.The purpose of this chapter is to provide the reader with a high-level overview of theplatform. Besides introducing the necessary documentation and specifying the requiredtechnical background, a global view of the platform’s functionality, features, required envi-ronment, intended uses, interfaces, performance and security requirements is provided.Section 3.2 will provide a global perspective over the platform’s main features, intendedaudience, environment and assumptions. Further details about the platform’s features aredescribed in the Section 3.3. The chapter ends with the description of Interface (3.4) andNon-functional requirements (3.5).
3.2 Overall Description

3.2.1 Features

This platform aims to provide four main features. The first one, physical and virtualnetwork and resource discovery, is provided through distributed and centralized algorithms,the latter only for comparison purposes.In the distributed algorithm, the nodes exchange messages between each other in order tobe able to discover both the physical and virtual network topologies, while on the centralized
41

one, a central entity is responsible for determining the existing physical and virtual linksbased on resource information.Physical and virtual network and resource monitoring is the second provided feature.The platform accurately and periodically monitors the physical and virtual nodes’ static anddynamic characteristics, such as:
• CPU information : CPU usage, number of CPUs, operating frequency, brand and model;
• RAM information : RAM in use, available RAM and total RAM;
• Hard Disk Drive (HDD) information : Existing HDDs, their usage and total size;
• Static information : Resource location, by group and Global Positioning System (GPS)coordinates, description and name.
• Interface information :

– Physical Resources: Interface and link status, interface IP configuration, MediaAccess Control (MAC) address, Maximum Transmission Unit (MTU), used VLANsand link speed;
– Virtual Resource: Interface and link status, default IP configuration and assignedinterface speed.

The third feature is the virtual network deployment and mapping in the physical substrate. Itutilizes a simple GUI to design and configure a virtual network. After the proper configurationand topology are defined, a request for creation will be made, and a mapping algorithm isexecuted. The request is then either approved, and the virtual network will be efficientlyembedded on the substrate network, or refused, if it is not possible to embed the VN in thecurrent substrate.Finally, there is a management feature for the virtual networks. Acting upon a runningvirtual network is possible, the resources may be suspended, rebooted, started, shutdown ordestroyed. Changing the amount of RAM allocated to the virtual resource is also possible.
3.2.2 User ClassesThis platform is designed to be used by network administrators with total security clear-ance and access to the substrate network. The user should be experienced in Linux envi-ronments and networking.
3.2.3 Operating EnvironmentThis platform is designed to run on Fedora Core 8 and Debian Lenny Linux distributionswith the Xen kernel.Xen was chosen not only due to its performance superiority when compared to full-virtualization hypervisors, but also because the available testbed does not support hardwarevirtualization on every node. Besides, since it is open-source and the libvirt ApplicationProgramming Interface (API) is mature for the Xen kernel, developing software to work withit is made easier.

42

3.2.4 ConstraintsThe C programming language was used for programming every module except the GUI,which was programmed in Java.
3.2.5 Assumptions and DependenciesIn order to be able to properly run the software, except the GUI, the following modulesmust be installed or enabled:

• libvirt;
• libxml2;
• glibtop2;
• bridge-utils;
• 802.1q module;

To properly run the GUI the Java runtime environment should be installed.
3.3 System Features Details

3.3.1 Physical and Virtual Resource and Topology DiscoveryNetwork discovery is a fundamental feature of the software set. By providing meansof automatic discovery of both the network resources and links, the network administratorcan have a global view of the running networks and respective topologies at a glance, in asimplified manner.To that end, two possible solutions exist: a centralized and a distributed one.In the distributed approach, the nodes exchange messages to discover each other, thusevery node, virtual or physical, knows exactly its neighbours. A physical node will knowabout its physical neighbours and about the logical neighbours of the virtual nodes runningon top of it. By combining each node’s knowledge, it is possible to build a map of thefull topology, both physical and virtual. However, this process needs to be performed withminimal message exchanges and it needs to provide a fast discovery.Regarding the centralized approach, a central entity is in charge of acquiring all thedata pertaining to both physical and virtual resources. After gathering the relevant data,the topology building procedure begins. Since there is no link information, mechanismssimilar to brute-force must be used in order to determine physical and virtual links. Thus,this approach has the potential to be computationally intensive on the central node’s side.Its response to topologies changes is also computationally heavier than the distributedapproach, since any change to any topology may force the full topology recalculation.
3.3.2 Substrate and Virtual Network MonitoringResource monitoring is fundamental if one wants to have an accurate view of the virtualand physical networks at a given point in time. The monitoring functions periodically updateCPU, RAM, state, HDD and interface information; therefore, it is possible to identify diverse

43

situations, such as failures and high resource usage, where acting on the network may berequired.Monitoring for both physical and virtual link information is provided. For physical links,both link speed and reserved link bandwidth is attained; for virtual links, the only informationprovided is the reserved bandwidth.The monitoring functions are periodically performed; the periodicity is large enough sothat minor transient states do not trigger too many events (e.g. link information changeswhen an interface keeps going up and down) but also small enough so that proper actionmay be quickly performed in the case of resource or link failure, for example. They areable to properly identify failures, configuration changes and load situations. Load should becategorized in levels, e.g. CPU load, which should be evaluated in terms of its time averageand classified into a predetermined amount of load levels.
3.3.3 Virtual Network CreationThe virtual network embedding problem is a complex one, where both the resources andlinks’ placement must be optimized. This dual optimization can be computationally heavy;therefore, efficient mechanisms must be developed in order to provide a "good enough" map-ping that is not excessively time-consuming. In order to be properly done, i.e. in an efficientand optimized way, it requires an accurate view of the substrate and virtual networks. Bothstatic and dynamic status and features of the substrate network must be known and up-to-date.The virtual network creation feature requires user interaction. The user shall place theresources via drag-and-drop functions and connect them with links. After the proper network“design” and configuration, the user shall submit the desired virtual network that will beevaluated for feasibility and either approved and implemented or rejected.In order to properly perform the virtual network deployment, the substrate network’sinformation should be up-to-date; otherwise, less-than-optimal decisions, or even embeddingrefusals, may arise.
3.3.4 Virtual Network ManagementA part of the networks administrator tasks is to manage the existing networks. Thisplatform provides a basic set of management features, using the GUI a resource state maybe changed to one of the following:

• Start : If a resource is shutdown, start will trigger the boot process;
• Shutdown : If a resource is running, but not suspended, it may be properly shutdown;
• Suspend : If a resource is running, it may be suspended, its state will be saved andresume will be possible later;
• Resume : If a resource is suspended, a resume may take place;
• Destroy : The resource and its file system will be deleted.

Besides changing the resource state, the RAM amount may also be changed, even with thevirtual node running.
44

The access to the management features is performed through a menu when right clickingon the resource icon, on the GUI.The management features are only available for virtual resources.
3.4 Interface Requirements

In this section, the main user interactions will be analysed, and so will the software’scommunication interfaces and semantics.
3.4.1 Use CasesSeveral uses cases, shown if figures 3.1 and 3.2, can be considered. The Create VNetaction can be performed by a user in order to create a new virtual network or, alternatively,a previously built XML containing the virtual network description can be loaded resorting tothe Load VNet XML action. After performing any one of these actions, a created or loadedvirtual network may be selected and additional actions may be performed to further specifyand configure the virtual network. The available actions can be observed in figure 3.1.

Figure 3.1: Simplified VNet Creation use-cases
In figure 3.2, different use cases are considered. One such example is the Get VNet actionwhich triggers a request for a virtual network that can be afterwards managed or monitored.Multiple requests for different virtual networks may be performed. The Manage VNet actionallows the user to delete the related virtual network, through the Delete VNet action, orto modify some parameters of a given resource such as its state and RAM by utilizing theModify Resource action. Monitoring actions are also available through the Monitor VNetaction that allows the user to View Resource Properties.

45

Figure 3.2: Simplified VNet Management and Monitoring use-cases
3.4.2 User Interface

Main MenusIn order to easily allow the user to perform the previously specified actions, a userinterface is provided. The user interface provides the so-called coolbar with buttons whosefunctions can be easily identified by their icons. They perform virtual network build tasks,such as:
• New Virtual Router;
• New Virtual Server;
• New Link;
• Delete Link;
• Delete Resource;
• Commit Virtual Network Deployment;
• Cancel Modifications;

Besides these buttons, a menu bar is also provided, in the Actions menu the following actionsmay be performed:
• Create a new virtual network;
• Save the current virtual network to an XML file;
• Load a virtual network from an XML file;
• Quit;

46

There is also a Get VNet menu which will trigger a dropdown menu with the existing VNs.Upon selecting one virtual network, a new tab will appear with the virtual network andsubsequent updates to that virtual network will be reflected in the GUI.The last menu is the Help menu, which provides some information about the GUI.
Context MenusBy right-clicking in any one of the resource, a context menu will appear with the relatedoptions. The context menus will depend on the resource type and will provide informationabout the resources’ configuration and actions that can be executed.
3.4.3 Software InterfacesThe different modules communicate using a proper message format:

ID @@ . . . ##
Where ID is the message type, a decimal number, @@ is the separator between fieldsand ## is the message’s terminating sequence. Although not very efficient byte-wise, thismessage format allows for easier debugging.
3.4.4 Communication InterfacesAll communications use TCP sockets except for distributed discovery communicationswhich rely on User Datagram Protocol (UDP) multicast.
3.5 Non-functional Requirements

3.5.1 PerformanceThe designed platform has a low overhead, and consequently, a small performance impacton the substrate nodes and network. The CPU and RAM usage is kept to a minimum. Inthe CPU / RAM usage trade-off, higher RAM usage is preferred as opposed to higher CPUusage.
3.5.2 SecurityDue to its deployment features, the platform, or a part of it, must be run with elevatedprivileges, i.e. in root mode, and is therefore potentially dangerous for the system if itbecomes compromised or misbehaves.
3.5.3 Software Quality AttributesDue to its high importance in the operator’s network, this software should be robust andreliable. It is designed in an extensible and modular manner; new features may be addedwithout significant changes to the underlying architecture and isolated; independent testson some of the features may be performed.

47

3.6 Conclusions
This chapter described the main features desired for the platform, its environment, andconstraints. As depicted, the platform shall deliver an easy to use graphical interface, well-defined communication semantics, and a dynamic nature.The presented used cases reflect the expected interactions of the user with the tool andare believed to be sufficient for monitoring, managing, and creating virtual networks.The defined platform and library constraints shall guide and set boundaries for the de-velopment of the software.

48

Chapter 4

Architecture & Mechanisms Design

4.1 Introduction

The Architecture & Mechanisms Design chapter shall provide the reader with the nec-essary insight to properly understand all the mechanisms, modules, databases and existingdependencies of the proposed platform. By providing an in-depth view of the platform’s ar-chitecture and thorough evaluation of its algorithms, the reader shall become familiar andenlightened about it.For every desired feature, a detailed description on how to accomplish it will be providedand, in some cases, specific algorithms will be evaluated.The Chapter starts by decomposing the platform in modules in section 4.2 and describ-ing the data repositories on section 4.3. It proceeds with the description of the modules’dependencies (4.4) and interfaces (4.5). An overview will be given on how to accomplishthe previously specified features: Section 4.7 will deal with the virtual network creationfeature and related mapping algorithms; section 4.8 will proceed with designing and eval-uating the discovery features and mechanisms, while sections 4.9 and 4.10 will define withthe monitoring and management aspects, respectively.
4.2 Module Decomposition

This platform, the Network Virtualization System Suite (NVSS), is composed of threemodules: the Agent module, the Manager module and the Control Centre module; theirhierarchical decomposition can be analysed on figure 4.1. Further details about each onewill be given next.
4.2.1 Control Centre module

This module is the user’s front-end, i.e. the GUI. It provides the user with graphical andsimple to use virtual network creation, management, and monitoring functionalities. Throughdrag-and-drop mechanisms, the user may design, configure, monitor and manage the desiredvirtual networks.
49

Virtual Network
Control Centre

Virtual Network
Manager

Virtual Network
Agent

User

Substrate Network

Virtual Network
Agent

Figure 4.1: Global view of the existing modules.
4.2.2 Manager module

The Manager module’s functions are many-fold: it gathers information from the Agentsand sends them commands; it also aggregates their information to build the substrate andvirtual networks’ topologies, and to maintain an up-to-date database containing the re-sources’ static and dynamic information. Furthermore, it is the Manager’s job to keep theControl Centre with up-to-date information about its requested virtual networks and to per-form its commands, such as changing the state of a resource or mapping and deploying avirtual network request.
4.2.3 Agent module

This module is designed to run on every substrate node in order to act and periodicallygather data from it. The Agents send their local resources’ information to the Manager,provide discovery functions through a distributed algorithm, and execute resource creationand network configuration requests.
4.3 Data Decomposition

Each one of the described modules has an internal repository where the data pertainingto the virtual networks, resources and links are stored; although similar in function, theirimplementation is different in each module.
4.3.1 Control Centre Data Decomposition

The Control Centre has two main types or repositories: one relating to the displayed ob-jects that contain data about the graphically shown information, and another one containingthe complete information about nodes, links and virtual networks, which is used as a basisfor the display objects creation.
50

4.3.2 Manager Data DecompositionThe Manager needs to store information relating to the existing virtual networks, asso-ciated resources and links, and also regarding the connected Agents and Control Centres;therefore, it has three main databases.
4.3.3 Agent Data DecompositionThe Agent has two core databases: the first one stores the information about its localresources, while the second one stores data regarding its virtual or physical neighbours.
4.4 Dependencies

4.4.1 Control Centre DependenciesThe Control Centre requires the Java runtime environment and IP network connectivity.In order to be able to act on the network, the presence of the Manager is required.
4.4.2 Manager DependenciesThe Manager software requires the libxml2 module. IP network connectivity to theAgents and Control Centres is also required.
4.4.3 Agent DependenciesThe Agents require IP network connectivity to the Manager. To perform their functions,the libxml2, glibtop2, libvirt, bridge-utils, 802.1q and UDP multicast must also be installedand supported.
4.5 Interface Description

4.5.1 User – Control Centre InterfaceIn figure 4.2 the Virtual Network Control Centre (VNCC) is shown. It contains a mainmenu with drop-down buttons (e.g. Actions) and some Coolbar buttons. The virtual networksare displayed on separate tabs where the resources are drawn and interconnected with thelinks .By right-clicking on a resource, a context menu appears with additional functionalitiesregarding resource information and configuration. These menus and buttons allow the userto perform the previously specified use-cases (figures 3.1 and 3.2).
4.5.2 Manager – Control Centre InterfaceThe interface between the Manager and the Control Centre is bidirectional, where TCPsockets are used in order to exchange data. The Manager works in server mode, and acceptsincoming TCP socket connections on a configurable port number.

51

Figure 4.2: Virtual Network Control Center - User Interface.
4.5.3 Agent - Manager Interface

The interaction between Agents and the Manager is also performed using TCP sockets,in a client-server scheme, with the Manager being the server.
4.6 Identification Process

Resource Identification is a fundamental issue: both the Agents and the Control Centresmust have a unique designation so that no confusion arises about who is who. The IDallocation is relinquished to the Manager that will provide the connecting Agents and ControlCentres a non-utilized ID.The ID allocation process is simple: upon a successful connection to the Manager, theconnected module will request a new ID, if they have not yet received one. Afterwards, theManager will reply with a unique ID, as clarified in figure 4.3. Unambiguous communicationmay then take place, both from the Manager to the Agents and Controls Centres, as well asbetween Agents.The virtual resource ID allocation is different. After receiving an ID from the Manager,each Agent will build the ID of their local virtual resources based on the Managers’ allocatedID; therefore, it is guaranteed that, if the Agent ID is unique, so will the virtual resource’sID be. The ID of the virtual resources has the following format:
Physical_ID@Resource_Name

52

Figure 4.3: Agent and Control Centre ID attribution process.
4.7 Virtual Network Creation

4.7.1 Topology and ConfigurationIn order to create a new virtual network, the user may either execute the Create VNetoption or choose the Load VNet XML option.XML was chosen as the description language to store virtual networks due to its porta-bility and the existence of tools to process it in multiple programming languages.The Control Centre module provides the user with means to draw a new virtual network.By selecting and placing resources on a draw canvas and by connecting them with links, avirtual network may be specified. The placed resources may be configured to suit the userneeds; The user may specify the resources’ CPU capabilities, RAM amount, location, numberof interfaces and also perform network addressing configurations. The following use casediagram illustrates the possible actions (figure 4.4):The final step in creating a new virtual network is to commit it to the Manager. TheManager will then evaluate the specified virtual network and either accept it or refuse it.The mapping process will be described next.
4.7.2 Virtual Network MappingAs discussed in Chapter 2, the virtual network embedding problem is a complex one anda trade-off has to be chosen between computation time and embedding optimization.The virtual network mapping begins when the Manager receives a request for a newvirtual network.The proposed algorithm is based on the one from Zhu and Ammar [72], where a heuristicalgorithm tries to optimize link and node placement simultaneously. As defined, the algo-rithm presents some problems. For instance, the node stress is simply considered to bethe number of running virtual machines, and fails to take into consideration the reality ofphysical nodes, where the CPU load, core count, frequency, and available RAM amount areimportant factors. Regarding link stress, the algorithm considers the number of virtual linksgoing through a particular physical link, instead of taking into consideration the reservedlink’s bandwidth or some other metric that takes into account the different load imposed byeach virtual link.One other crucial issue is the fact that it only takes into account perfectly homogenousphysical and virtual networks, as is reflected on the single pool of candidates for virtual

53

Figure 4.4: VNet Creation use-cases
resources. Node constraints such as location and required specifications are not contem-plated, neither the limitations associated with links’ bandwidths, which are finite and cannotbe over-provisioned.Taking into consideration the said limitations, the algorithm proposed in this Thesisstarts by the determination of a link and node stress factor. Links and nodes with less stressare more prone to accepting new virtual resources.In order to properly map a virtual network, the detailed and complete view over thesubstrate network must be present. The complete proposed algorithm will be describednext.The algorithm begins with the determination of Link Stress:We define kj = 0...(LVj − 1) and i = 0...(LS − 1) where kj is the link number of a givenvirtual link belonging to the jth VNet, LVj is the number of virtual links in the same VNet,i is the link number of a given physical link and LS is the number of links of the SubstrateNetwork. One can start by establishing that the virtual link stress (SLVj) of the link kjbelonging to the jth VNet is equal to its allocated bandwidth : SLVj (kj) = BW (kj).After all virtual links’ stresses are determined, the physical links’ stresses are calculated:

54

SLS(i) is the link stress of the ith physical link and is defined as :
SLS(i) = NV∑

j=1
LVj−1∑
k=0 ((SLVj (kj)|kj ⊇ i)) (4.1)

where NV is the number of existing VNets. Afterwards, it proceeds with the determination ofNode Stress (SN), which is a combination of the currently available Substrate Node resourcesand weights active Virtual Machines, free RAM (Free RAM) amount in MB, number of CPUs(N.CPU), CPU frequency in MHz (CPU Freq.) and current CPU Load, which varies between0 and N.CPU. The Node Stress of the ith physical node is:
SNi = Number of Active VMsδ + Free RAM · CPU Freq · (N.CPU - Load) (4.2)

where δ is a small constant to avoid dividing by 0. The next step is the determination ofNode Candidates. For each node, a set of possible physical candidates is determined basedon constraints such as location, CPU number, CPU frequency and free RAM amount. Afterdetermining the candidates for each virtual node, a sorting algorithm is run that orders thevirtual nodes by their number of candidates, so that virtual nodes with fewer candidates willbe mapped first.The algorithm terminates with the final Node Mapping & Path Selection. For each possi-ble candidate v , a Constrained Shortest Path First (CSPF) algorithm to all other candidates(u) of the virtual neighbour nodes is calculated using the previously calculated Link Stressesas weights, and the path cost is stored (D(v, u)). The node potential is then determined usingthe formula: π(v) = ∑
u∈VC D(v, u) · SNv (4.3)

where VC is a set containing the candidates of the neighbour virtual nodes.Upon calculating the node potential of all candidates, the candidate with the lowest oneis selected.The algorithm terminates successfully when all the requested virtual nodes are properlymapped, each one on a different physical node chosen from within its candidate set, andthe best-constrained paths for each virtual link are determined. For each physical networksegment of a virtual link, a unique unutilized VLAN is selected, thus better utilizing thelimited amount of available VLANs.This successful mapping results in a XML, describing the mapped virtual network. Byprocessing and breaking down the mapped XML, individual commands are sent to the properAgents in order to both create the virtual nodes and set-up the virtual links.The newly created resources and virtual links will then be automatically discovered bythe Agents which will in turn update the Manager and consequently the Control Centre.
4.7.3 Virtual Resource CreationThe virtual node creation plays a fundamental role in the virtual network creation feature,and strongly influences the total time required until the virtual network creation is complete.In order to provide versatility in the creation of virtual nodes, a template mechanismwith hot-templates, i.e. template virtual machines with the file-system already created

55

Figure 4.5: Virtual Resource creation.
but not configured, are provided. By having a pool with different standard hot-templates,e.g. a template with the Linux-based XORP [71] and other with a vanilla Debian Lennydistribution, the virtual image management becomes easier on the one hand, and the nodecreation becomes faster on the other hand.The creation mechanism, illustrated in figure 4.5, works by having two ready templatesper distribution: a static-template, used as a master template, and a hot-template, that willbe modified upon the request for creating a new virtual node. After node creation, a cloningof the static-template will take place in order to restore the hot-template. This templatecache allows a significant time reduction in the node creation times if the node requests aresparse enough so that the hot-template has enough time to be restored. This is usually thecase, since a virtual network will not have two virtual resources on the same physical node,due to the network-mapping algorithm.Although the proposed mechanism only takes into account one hot-template, it couldbe further extended to support many hot-templates and mitigate the performance penaltyassociated with multiple, consecutive, node creation requests.
4.7.4 Simulation ResultsThis subsection ‘s purpose is to simulate the developed algorithm in conditions as similaras possible to the ones found on real networks, with heterogeneous resources and links.By testing the algorithm on these “closer-to-reality” conditions, insight and conclusionsabout the algorithms performance and applicability shall be taken. Regardless of the simu-lation parameters, the following simulations will all obey to a general procedure, which willbe described next.On the first step, a physical topology was generated using the Waxman random topologygeneration [69] method, with 30 physical nodes. The recommended parameters, α = 0.4 andβ = 0.4, presented some connectivity issues, especially for reduced amounts of nodes, e.g.less than 16 nodes. These settings often caused isolated nodes or clusters where there wasnot at least one path between every physical node. Hence, after generating the topologies,in the lack of full connectivity, nodes with less links were given additional links until fullconnectivity was established.The generated physical nodes were randomly attributed a set of parameters, from a poolof possible ones, such as RAM amount, number of CPUs and CPU frequency. The physicallink’s bandwidth was set at a fixed bitrate.

56

N. CPUs {1; 2; 3; 4 }
CPU Frequency (GHz) {2.0 to 3.2 in 0.1 steps }

RAM Memory (MB) {64; 128; 256; 512 }
Link Bandwidth (Mbps) {34.368 139.264 }

Table 4.1: Virtual Network Mapping- Virtual Nodes’ parameters pool.
N. CPUs {2; 4; 6; 8}

CPU Frequency (GHz) {2.0 to 3.2 in 0.2 steps }
RAM Memory (GB) {2; 4; 6}

Link Bandwidth (Mbps) {1000}
Table 4.2: Virtual Network Mapping Simulation Scenario 1- Physical Nodes’ parameterspool.

Next, virtual networks were generated using the same model, with a varying amount ofvirtual nodes. After generating the virtual topology, the virtual nodes were also randomlyattributed a set of specifications, but in their case, the link bandwidth was also random, fromwithin a pool of possible bandwidths. The virtual nodes’ available specification pool can beobserved on table 4.1.The following step finds a solution for the virtual network mapping, using the mappingalgorithm. If the mapping succeeds, the virtual nodes are placed on the physical nodes,reducing the amount of available RAM and increasing the physical nodes CPU load by arandom amount. The utilization of the physical links will also increase according to thebandwidth utilized by the virtual links.In order to evaluate the mapping algorithm, two main metrics were considered: the nodestress ratio RN and the link stress ration RL. From the definition of these two metricson equations 4.4 and 4.5, one can see that in a perfectly load balanced network, theirvalue should be 1, thus smaller stress ratios indicate better virtual network embedding inthe network. On the said equations, NS and LS are the set of substrate nodes and links,respectively. A confidence interval of 95% was considered for every result.
RN = maxv∈VS SN(v)[∑v∈VS SN(v)]/ |VS| (4.4)
RL = maxv∈VS SL(v)[∑v∈LS SL(v)]/ |LS| (4.5)

Simulation Scenario 1The first simulation scenario assumed that the physical resources had parameters takenfrom the pools of table 4.2. For each generated physical network, attempts were made tomap as many virtual networks as possible. It was considered that a given algorithm couldnot map any more virtual networks when it failed to embed 10 successive virtual networks.Two approaches of the developed algorithm were simulated, one that starts the embed-ding by selecting the virtual nodes with the least amount of physical candidates, and another
57

one that starts the mapping in a random fashion, i.e. without pre-sorting the generated vir-tual nodes.The simulation was run 100 times for different virtual network sizes. The number ofvirtual nodes ranged from 4 to 14 in increments of 2.

0 5 10 15
0

5

10

15

20

25

30

35

Number of Virtual Nodes

N
um

be
r o

f A
cc

ep
te

d
V

irt
ua

l N
et

w
or

ks

Maximum Number of Accepted Virtual Networks vs Virtual Network Size

Candidate Sort
Random Sort

Figure 4.6: Virtual Network Mapping Simulation Scenario 1 - Maximum accepted VirtualNetworks.
The results obtained may be observed on figure 4.6. As the virtual networks’ size beginsto grow, due to the increase in the number of virtual nodes, the number of maximum acceptedvirtual networks begins to decrease, which was to be expected since larger networks areharder to map due to a higher amount of constraints. Considering the case of small virtualnetworks, with 4 virtual nodes for example, the mapping algorithms were able to embedabout 33 of them, while in the case of virtual networks with twice the virtual nodes, it wasonly able to embed approximately 8.The number of maximum accepted virtual network appears to behave similarly to a de-caying exponential function, with the increase of the size of the virtual networks.The mapping algorithm performing a pre-sort of the virtual nodes, considering theiramount of physical candidates, consistently shows slightly better results than the randomone, particularly for simulations with few or many virtual nodes.

Simulation Scenario 2Although the maximum number of accepted virtual networks is important, the load dis-tribution should not be disregarded. To that end, this simulation scenario aims to evaluatethe performance of both approaches relating the node and link stress ratios, according toequations 4.4 and 4.5. In order to provide a fair comparison between the two approaches, anembed of 75 % of the previously identified maximum of accepted virtual networks was done,as observed on table 4.3.The physical nodes’ specifications were kept equal to the previous simulation’s ones. Thesimulation was run 300 times for different virtual network sizes. The number of virtual nodes
58

Number
of Virtual
Nodes

Number of
Embedded
Networks4 256 118 610 512 414 3

Table 4.3: Virtual Network Mapping Simulation Scenario 2- Number of embedded virtualnetworks.
ranged from 4 to 14 in increments of 2.

0 5 10 15
0

2

4

6

8

10

12

14

16

Number of Virtual Nodes

N
od

e
S

tre
ss

 R
at

io

Node Stress Ratio vs. Virtual Network Size

Candidate Sort
Random Sort

(a) Node Stress Ratio vs. Virtual Network Size
0 5 10 15

0

1

2

3

4

5

6

Number of Virtual Nodes

Li
nk

 S
tre

ss
 R

at
io

Link Stress Ratio vs. Virtual Network Size

Candidate Sort
Random Sort

(b) Link Stress Ratio vs. Virtual Network Size
Figure 4.7: Virtual Network Mapping Simulation Scenario 2

Starting with the figure 4.7(a), it is possible to state that, as the size of the virtualnetworks grows, the node stress ratio diminishes, showing that the network’s node load isbetter distributed.The large node stress ratio differences regarding 4 and 14 nodes virtual networks ismainly due to the way the node stress is calculated. Since the node stress is inverselyproportional to the free CPU load, which varies between 0 and NCPUs, one can realize thatas the physical nodes become loaded, and their available CPU load tends to 0, the node
59

N. CPUs {4; 8; 12; 16}
CPU Frequency (GHz) {2.0 to 3.2 in 0.2 steps }

RAM Memory (GB) {4; 8; 12}
Link Bandwidth (Mbps) {1000}

Table 4.4: Virtual Network Mapping Simulation Scenario 3- Physical Nodes’ parameterspool with doubled node capacity.
N. CPUs {2; 4; 6; 8}

CPU Frequency (GHz) {2.0 to 3.2 in 0.2 steps }
RAM Memory (GB) {2; 4; 6}

Link Bandwidth (Mbps) {2000}
Table 4.5: Virtual Network Mapping Simulation Scenario 3- Physical Nodes’ parameterspool with doubled link capacity.
stress will tend to infinity.In the 14-node virtual network embedding scenario, since only 3 virtual networks wereembedded, for a total of 42 embedded virtual nodes, it was not very likely that a set ofphysical nodes got their available CPU load close to 0; thus, their node stress was kept atmoderate levels.On the other hand, since in the case of 4-node networks, 25 virtual networks with 100virtual nodes were embedded, it was more likely that some physical nodes, possibly physicalnodes with fewer CPUs, got overloaded and that their node stress reflected that overload,thus producing higher node stress ratios. The node stress ratios followed a similar trend,with the pre-sorting approach faring slightly better overall.Regarding the evolution of the link stress ratio, observed in figure 4.7(b), with the increaseof the size of virtual networks, it is possible to note that it shows a growing behaviour. Thereason for this behaviour is quite simple. When considering the embedding of smaller virtualnetworks, the granularity for link placement optimization is high; therefore, it will be easierto better take advantage of physical links with less link stress. In the case of larger andmore complex virtual networks, there is less granularity in link placement, it is harder tooptimize link placement due to node constraints. Through the attained results, it is possibleto state that pre-sorting the nodes leads to lower link stress ratios.
Simulation Scenario 3In order to assess the impact of both the nodes’ and links’ capacity on the overall maxi-mum of accepted virtual networks, the tests of the first simulation run were repeated consid-ering two separate situations: the first one where the physical node’s capacity was doubled,according to table 4.4, and a second one where the physical links’ capacity was doubled, asobserved on table 4.5.On the first case, figure 4.8(a), the capacity of the physical nodes was doubled, only aminor improvement in the number of accepted virtual networks was achieved. In the best-case scenario, for virtual networks composed of 4 virtual nodes, the improvement was limited

60

0 5 10 15
0

5

10

15

20

25

30

35

Number of Virtual Nodes

N
um

be
r o

f A
cc

ep
te

d
V

irt
ua

l N
et

w
or

ks

Maximum Number of Accepted Virtual Networks
vs Virtual Network Size - Double Capacity Nodes

Candidate Sort
Random Sort

(a) Physical Nodes’ capacity doubled.
0 5 10 15

0

10

20

30

40

50

Number of Virtual Nodes

N
um

be
r o

f A
cc

ep
te

d
V

irt
ua

l N
et

w
or

ks

Maximum Number of Accepted Virtual Networks
vs Virtual Network Size - Double Capacity Links

Candidate Sort
Random Sort

(b) Physical Links’ capacity doubled.
Figure 4.8: Virtual Network Mapping Simulation Scenario 3 - Maximum accepted VirtualNetworks.
to 2 additional embedded virtual networks. The differences in the mapping algorithm withor without candidate sorting are barely perceptible.Regarding the doubling of link capacity, the gains realized are notorious (figure 4.8(b)).In fact, the number of accepted virtual networks almost doubled for virtual networks with 4to 8 virtual nodes, and showed significant improvements for the other virtual networks’ sizes.Considering the accomplished results, it is clear that, for the specified simulation pa-rameters, the main limiting factor for virtual network embedding is the links’ capability.Improving the nodes’ capacity barely showed any improvements, while increasing the links’bandwidth showed improvements similar to the bandwidth’s increase factor.
4.8 Topology Discovery

In order to be able to properly map new virtual networks and allow the user to monitorthe existing physical and virtual networks, mechanisms for discovering them are required.To that end, two mechanisms are proposed: a distributed one, that does not require theManager’s interaction, and a centralized one, performed by the Manager after receiving allthe resources’ information.
4.8.1 Distributed Topology DiscoveryThe distributed topology discovery, on the one hand, intends to reduce the required pro-cessing power on the Manager, while on the other hand, is a step forward towards distributed

61

embedded management in the network elements (the so-called In-Network Management).It fosters inter-Agent communication, without depending on the Manager, that could be akey enabler to future distributed functionalities.The proposed algorithm is based on concepts from both Spanning Tree Protocol (STP)and BGP. The Agents register themselves in a predefined multicast group and, afterwards,exchange messages with each other. The multicast group used is link-local, i.e. Time-To-Live (TTL) of 1, in order to avoid sending the discovery messages to nodes that do not wantit and would otherwise need to process the packet before discarding it.The distributed algorithm for full network discovery relies on the neighbourhood concept,where each physical node knows exactly who its neighbours are, and also who are thevirtual neighbours of its local virtual nodes. By aggregating each Agents knowledge, the fulltopology map may be built, it works pretty much like assembling a puzzle with the piecesnumbered, i.e. it is a straightforward process. The concept is demonstrated on picture 4.9.

Figure 4.9: Topology Discovery – Assembling neighbourhood knowledge.
In a given network segment, one of the Agents has a special function, the Designated Root(DR) function. This node is responsible for transmitting all the information about its networksegment to a new Agent arriving at the network. This approach has its roots on the spanningtree algorithm. It aims to reduce the information exchange of the distributed approach byelecting a node to exchange information. This node is responsible for transmitting all theinformation about its network segment to a new Agent arriving at the network.

62

Physical Topology DiscoveryUpon start-up and periodically, each Agent sends a multicast Hello message through itsinterfaces. The messages are specific to the interface and indicate their origin interface.This Hello message exchange allows each Agent to know its directly connected neighbours;therefore, by assembling each Agent’s knowledge, as depicted on figure 4.9, it is possible tobuild the full physical topology network map.
Virtual Topology DiscoveryThe virtual network topology is not simple to achieve, since a virtual link may spanthrough several physical links, thus, message forwarding mechanisms had to be designed.The Agents exchange information about two kinds of resources: their local resources andthe resources advertised by its neighbours that utilize the local physical node as a networkhop.Consider the simple case of figure 4.10, where a virtual link transverses one hop, P2, whichhas a bridge connecting its eth0.0500 and eth1.0800 interfaces, where eth0.0500 representsan interface using VLAN 500 and eth1.0800 uses VLAN 800.Since the bridge provides layer 2 connectivity to the two segments using VLANs, a virtuallink exists between P1 and P3 whose terminals are connected to the virtual resources V1and V3. V1 and V3 have, thus, data link layer connectivity.

Figure 4.10: Virtual topology discovery example
In order to provide P1 and P3 with knowledge about each other resources, P2 mustforward their resource advertisement messages through the proper interface. Considering theresource advertisement message coming from P1 and arriving at eth0.0500, P2 will check itsbridge entries, locate a potential output interface, in this case eth1, modify the advertisementmessage to add a new hop, and then send the message through eth1 which will be receivedby P3. When P3 receives the message, it knows that resource V1 is located at P1, connectedat its local interface eth3, and that the existing virtual link has one physical hop P2. P3then proceeds to verifying the interface from which the message was sent, i.e. eth1.0800,locates the corresponding eth3.0800 and checks if any local virtual resource, in this case V3,

63

is connected to it through a bridge. After the successful matching, it then discovers that V1is V3’s neighbour through P2 physical node and that the link transverses two physical links.The exact same mechanism also happens in the opposite direction and P1 learns about avirtual link between V1 and V3.
Designated RootThe DR is elected based on the Agents’ ID , which contains an integer allocated fromthe Manager when an Agent starts-up; the Agent with the lowest ID on a network segmentis elected the DR and is responsible for sending the networks’ information to newcomers.At start-up, every Agent ‘s DR is himself, after receiving a message from an Agent witha lower ID, the DR will be updated to reflect the new ID.The DR role is not allocated ad eternum. The DR may crash or be shut down; therefore,mechanisms that trigger a new re-election are required. Each neighbour has an expirationtimer that will trigger a new DR election if the current DR fails to communicate within agiven time period, i.e. if no Hello message is received.
Pseudo-CodeThe pseudo-code displayed on algorithm 1 depicts the overall mechanisms of the de-veloped discovery algorithm. Each interface (IFCi) has its own neighbour list and runs thispseudo-code. Since every message exchanged has a header similar to the Hello Message,the processing for this message type is done every time a message is received; hence, it isnot specified on the switch clause. Further details about each mechanism will be providedin the following paragraphs.
Bootstraping MechanismBootstraping is a fundamental issue when performing distributed discovery algorithms,it must be quick, efficient and reliable. The proposed bootstrapping mechanism is describedin the diagram of figure 4.11. In order to begin the discovery mechanisms: the Agent musthave a unique ID given by the Manager and the initial local resource discovery must becompleted.After these initial conditions are met, the discovery algorithm may start and the periodicsending of Hello messages begins. Upon receiving an Hello message, the current DR willidentify a new physical neighbour and, since it is the DR, a full update regarding the networksegments’ associated virtual resources is sent to the arriving Agent.On the new Agent’s side, after receiving any message from a previously existing physicalneighbour, an update containing its full knowledge, i.e. only local resources, will be sent.The DR will be afterwards updated based on the IDs of the discovered physical neighbours.Considering the pseudo-code displayed in algorithm 1, the core of this process is de-scribed in lines 3 to 15.
Resource Update MechanismThere are two main situations where an Agent advertises a resource. The first one iswhen a new local resource is created; the Agent where the resource resides will send updatesthrough the interfaces related to that particular resource, i.e. interfaces that are bridged to

64

Algorithm 1: Per-Interface Discovery Algorithm.
input : IFCi

1 DR = My_ID ;
2 repeat Msg_Type = Multicast_Receive(IFCi,Msg_Buffer)
3 NG = GetNeighbour(Msg_Buffer);
4 if NewNeighbour(NG) then
5 AddToNeighbourList(IFCi,NG) ;
6 if DR == My_ID then
7 SendAllKnowledge(IFCi) ;
8 end
9 else

10 ExclusiveUpdateDR(IFCi,NG) ;
11 if DR == My_ID then
12 SendAllKnowledge(IFCi) ;
13 end
14 UpdateDR(IFCi);
15 end
16 end
17 switch Msg_Type do
18 case Resource Message
19 VNG = GetVirtualNeighbour(Msg_Buffer);
20 if NewVirtualNeighbour(VNG) then
21 AddtoVirtualNeighbourList(IFCi,VNG);
22 end
23 if size (IFCList = LinkToOtherInterfaces(IFCi,VNG))>0 then
24 AddToVirtualNeighbourLists((IFCList ,VNG) ;
25 SendResourceMessage((IFCList ,VNG) ;
26 end
27 CheckForVirtualLinksWithLocalResources(VNG);
28 endsw
29 case Delete Message
30 VNG = GetVirtualNeighbour(Msg_Buffer);
31 IFCList = LocateResourceEntriesOnAllInterfaces(VNG);
32 SendDeleteMessageThroughRelevantInterfaces(IFCList ,VNG) ;
33 RemoveEntriesOnAllInterfaces(IFCList ,VNG);
34 endsw
35 endsw
36 UpdateLastContactTime(NG);
37 until Terminate Signal;

one or more virtual interfaces belonging to that resource. The new resource message willthus only be sent through relevant interfaces.The second possible situation happens when a resource may be advertised as a conse-quence of a received resource advertisement, i.e. there is an advertisement forwarding, asshown in figure 4.12. In this case, the physical hop that forwards the resource advertisementappends itself, its input, and output interfaces to the forwarded message, similarly to theBGP protocol. This “path tagging” allows the building of a complete virtual link map, wherethe physical path, with its multiple link segments, is known.As can be observed through lines 18 to 28 of algorithm 1, the Agents receiving the newresource advertisement will place an entry on the receiving interface’s knowledge databaseand will locate potential output interfaces for that resource, i.e. the Agents will verify if theyare or not a hop for any virtual link belonging to the advertised virtual resource. If they are,they will forward the resource information through the relevant interfaces; if they are not,they will just keep the resource information stored, since it may be needed later.Besides the forwarding mechanism, a local verification will also be performed in orderto assess if any one of the local virtual resources is connected through a virtual link to the
65

Start!

Listen New Phy
Neighbour?

Add to Phy
Neighbour List

Am I
The DR?

Update
Designated Root

(except new
Neighbour)

No

Send all
Knowledge

Update
Designated Root

Yes

Am I
The DR?

No

No

Yes

DR = My ID

Yes

Hello
Message
Received

Figure 4.11: Discovery algorithm - Bootstrap diagram
received resource.
Resource Removal Mechanism

One other fundamental part of topology discovery is to be able to delete virtual resourcesand maintain the consistency in the existing databases. To that end, a mechanism for virtualresource removal also exists, and is illustrated both through figure 4.13 and lines 29 to 34of algorithm 1. The forwarding mechanisms are similar to the ones of new virtual resourceadvertisement.
4.8.2 Centralized Topology Discovery

Algorithm Overview

As a comparison base, a centralized topology discovery algorithm was also developed.The algorithm is performed by the Manager upon receiving a pre-determined amount of phys-ical and virtual resources, i.e. the user executing the Manager will have to know beforehandthe number of existing resources, both physical and virtual.Although a button trigger mechanism might have been used, e.g. after pressing a buttonthe Manager would determine the existing topologies with the current resource knowledge,for testing purposes, simply specifying the number of expected resources suffices.
66

Listen New Phy
Neighbour?

Process new Phy
Neighbour

(equal to Hello
Message)

New Virtual
Neighbour?

Add to Virtual
Neighbour List

Add Virtual
Neighbour to List

of interested
interfaces with
additional Hop

(if no entry exists
already)

Send Resource
Message through
interfaces where

the Virtual
Neighbour was

added

Check for Virtual
Links with local

Resources

Yes

No

No

Yes

Resource
Message Received

Figure 4.12: Discovery algorithm – Resource message received
Listen New Phy

Neighbour?

Resource Delete
Message Received

Process new Phy
Neighbour

(equal to Hello
Message)

Locate Virtual
Neighbour entries
on all interfaces

Send Delete
Resouce Message
through interfaces
where the Virtual
Neighbour was

registered

Remove resource
entries on all

interfaces

Yes
Yes

No

Figure 4.13: Discovery algorithm – Delete resource message received
To be fair with the distributed resource discovery mechanism, a dynamic approach shouldhave been used, but that would imply a huge amount of CPU processing every time a resourcewas added or removed from the Manager’s resource database, since the changes to thephysical or virtual topologies would have to be determined.Also, implementing such a simple trigger mechanism reduces the amount of modificationsrequired to the Manager’s source code, and it is a reasonable approach given the intendeduse.

Algorithm Design

The algorithm begins with the determination of the physical topology, i.e. by taking thephysical resources one by one, checking its interface configuration and determining if anyother physical resource has an interface in the same IP network. If any of them does, thenit is considered that a physical link exists.After determining the full physical topology, it is time to determine the existing virtualnetworks’ topology. Once again, the algorithm starts by taking the resources from a givenvirtual network one by one. Firstly, the physical resource where the virtual resource residesis identified and the algorithm proceeds with determining potential output interfaces; i.e.physical interfaces bridged with the resources’ virtual interfaces, and the VLAN associatedwith each physical interface is determined.Afterwards, the algorithm locates the physical neighbours connected to each of the iden-
67

Number of physical nodes Increment Number of simulation runs4 to 50 2 10060 to 150 10 100200 to 250 50 50300 to 350 50 20400 to 500 100 10
Table 4.6: Distributed discovery - 1st simulation parameters.

tified physical interfaces, by using the already known physical topology map, and checks ifthey have a sub-interface using the same VLAN. If they do, the next step is to determinethe bridge where the sub-interface is connected. After the bridge is found, two situationsexist: Either the bridge has a local virtual interface associated to it and a new virtual linkhas been found, or the bridge has another sub-interface associated and the algorithm mustbe repeated. The algorithm is, hence, recursive.When all the virtual networks’ topology has been determined, the algorithm terminates.
4.8.3 Simulation Results

In order to assess the scalability of the proposed distributed discovery algorithm, twodifferent tests were made. The first one tested for scalability of the algorithm with theincrease of physical nodes, in the presence of a single virtual network spanning half ofthem; while the second one tested for scalability with the increase of the number of virtualnetworks.The physical topology was generated using the Waxman random topology generation[69] method, with the same parameters as the ones used earlier on the mapping algorithmsimulation on subsection 4.7.4, i.e. α = 0.4 and β = 0.4, and with full network connectivityguaranteed.After generating a physical topology, with a given number of nodes, a virtual topology wasgenerated on top of it by randomly selecting half of the physical nodes and creating virtuallinks. This virtual topology generation used a part of the Waxman method and guaranteedfull connectivity of the virtual network. A confidence interval of 95% was considered on everysimulation.Since the virtual links did not match existing physical links most of the times, the Dijkstraalgorithm was run in order to get the physical path for each virtual link.In figure 4.14 one can see an example of a generated physical network, virtual networkand the corresponding link mapping.For comparison purposes, three discovery algorithms were considered: the proposed one,and two others based on uncontrolled and probabilistic flooding, with a flooding probabilityof 50%.For the first simulation, a single random virtual network was generated on top of arandom physical network. The number of physical nodes varied between 4 and 500 in anon-uniform way. Due to the time required to complete the simulation when in the presenceof many nodes, the number of simulations runs for each considered number of physical nodesvaried according to table 4.6.
68

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Substrate Network

Physical Links
Physical Nodes

(a) Substrate network. 0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Virtual Network

Virtual Nodes
Virtual Links

(b) Virtual network.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Mapped Virtual Network

Virtual Nodes
Physical Paths

(c) Virtual network with mapped links. 0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Substrate Network with Virtual Network Embedded

Physical Links
Physical Nodes
Virtual Network

(d) Virtual network overlayed on substrate net-work.
Figure 4.14: Distributed discovery algorithm simulation example.

Considering the graphics relating the first simulation scenario, presented in figure 4.15, itis clear that the proposed algorithm is scalable and that it imposes a much smaller overheadthan flooding techniques. Regarding figure 4.15(a), exhibiting the number of exchangedmessages, in the case of 500 physical nodes, the difference between the probabilistic floodingalgorithm and the proposed algorithm is of about three orders of magnitude.With respect to the required simulation cycles, the proposed algorithm shows a behavioursimilar to that of the flooding algorithms for less than 10 physical nodes. However, for asignificant number of nodes, the number of required simulation cycles starts to stabilize onour approach, while in the other cases it continues growing.The behaviour of the flooding algorithms in respect to simulation cycles is to be expected.Since the network size keeps on growing, so will the number of hops that forward thediscovery messages; thus, the number of cycles required for the messages to reach everynode is proportional to the number of physical nodes.In the proposed algorithm, the path crossed by the discovery messages is a previouslyoptimized one; therefore, the number of simulation cycles required for convergence is muchsmaller. The stagnation in the required number of cycles observed is due to the numberof physical hops utilized by the virtual links, being kept approximately constant with the
69

-100 0 100 200 300 400 500 600
100

101

102

103

104

10
5

106

107

108

109

Number of physical nodes

N
um

be
r o

f E
xc

ha
ng

ed
 M

es
sa

ge
s

Proposed Algorithm
Uncontrolled Flooding
Probabilistic Flooding

-100 0 100 200 300 400 500 600
0

100

200

300

400

500

600

Number of physical nodes

N
um

be
r o

f s
im

ul
at

io
n

cy
cl

es

Proposed Algorithm
Uncontrolled Flooding
Probabilistic Flooding

Figure 4.15: Discovery Algorithm Scalability Tests – Number of Physical Nodes.
increase of substrate nodes, since the virtual networks are always created with half of thephysical nodes.Figure 4.16 shows the results obtained with the increase in the number of virtual networkson top of a single substrate network. It is possible to observe that its behaviour follows alinear trend, i.e. that the number of exchanged messages and required simulation cycles aremuch reduced when compared to the other approaches.
4.9 Substrate and Virtual Network Monitoring

Resource monitoring is fundamental if one wants to have an accurate view of the virtualand physical networks at a given point in time. The monitoring functions periodically updatethe resources’ information, therefore it is possible to identify diverse situations, such asfailures and high resource usage, which may require immediate action. Monitoring for bothphysical and virtual link information is also provided.To provide proper updated information, every Agent periodically checks its local re-sources’ configuration and status, and reports back to the Manager if any change occurs.These triggered, event-driven updates reduce the overhead traffic on the network. Severalparameters are monitored: CPU load (that is classified according to 6 equally distributedlevels), RAM, HDD usage, interface and link status, interface bridge attachment and config-uration, number of running virtual machines and their state. If a resource crashes or becomesmisconfigured, the network administrator will have this information and will be able to takeproper actions.Consider the case of a stable virtual network, i.e. a network with a constant load onits resources and links and no changes on its configuration. The Agent monitoring eachof the network’s resources will periodically verify their configuration, load, and state. If an
70

0 5 10 15 20 25
10

3

10
4

10
5

10
6

10
7

10
8

Number of Virtual Networks

N
um

be
r o

f E
xc

ha
ng

ed
 M

es
sa

ge
s

100 Physical Nodes

Proposed Algorithm
Uncontrolled Flooding
Probabilistic Flooding

0 5 10 15 20 25
0

500

1000

1500

2000

2500

Number of Virtual Networks

N
um

be
r o

f s
im

ul
at

io
n

cy
cl

es

100 Physical Nodes

Proposed Algorithm
Uncontrolled Flooding
Probabilistic Flooding

Figure 4.16: Discovery Algorithm Scalability Tests – Number of Virtual Networks.
interface fails, the Agent will realize that the interface state has gone from up to down, andwill therefore send the resource’s information to the Manager.The Manager will then process the resource information, compare it with its local knowl-edge about the resource and will also realize that the interface state has changed. As aresult, a subsequent update will be sent to the Control Centre which will update the in-terface state from up to down and erase all the existing links from the user’s view. Facingdisappearing links the user will verify the related interface, realize that a problem existswith it and he will take proper action.A simpler case could be demonstrated with a virtual node changing its state from runningto shutdown, or a sudden change in resource load. The Agents, Manager and Control Centrewould behave in the same way and the user would quickly identify these situations.
4.10 Virtual Network Management

Just like the previously described monitoring ability, the management feature, i.e. be-ing able to act on the network’s resources is also a fundamental one. To that end, somefunctionalities are provided such as changing the virtual resource state, i.e.: rebooting, shut-ting down, suspending or powering the resource up, the amount of assigned RAM memory,deleting the resource or even the full virtual network.The assigned RAM memory may be changed in runtime. This feature can be particularlyuseful if, for some reason, the resource requires a larger amount of RAM in some time-periods while needing less in others. If less RAM is utilized, it may be made available toother running virtual resources.The delete feature is available for either single resources or the complete virtual network,
71

and greatly simplifies the administrator work by automating the delete procedures: thevirtual machine is removed, its file system is destroyed and the associated bridges andVLANs are freed. The physical machines quickly return to a “clean” state. The virtualnetwork delete request is sent to every Agent on order to allow hop-Agents to clean-uptheir bridges and release used VLANs.Other use-cases regarding not only the management but also the monitoring featuresare exhibited in figure 4.17.

Figure 4.17: VNet Management and Monitoring use-cases
4.11 Conclusions

An analysis of the NVSS software was provided. Its modules, architecture, main databases,communication and user interfaces were described. The Control Centre and its main aspectswere described and so were the pertaining use-cases.Each intended feature was carefully scrutinized. Emphasis was given on topology dis-covery and embedding algorithms.Virtual network discovery algorithms, despite being fundamental for a future virtualizednetwork, have not been a major research target in the past few years. The developeddistributed discovery algorithm succeeded on providing a simple, fast and low overheadvirtual and physical topology discovery algorithm, as proven both by the obtained simulationresults and the experimental tests conducted.A distributed approach to topology discovery was designed and simulated. Consideringthe attained results, it has been proven that this distributed algorithm is scalable in terms of
72

the number of exchanged messages, required cycles to complete and amount of virtual net-works. The results show that the number of exchanged messages can be reduced by aboutthree orders of magnitude when compared to algorithms using uncontrolled or probabilis-tic flooding. Unlike these flooding algorithms, the number of cycles required for topologydiscovery remained approximately constant with the increase in the network size.Since the virtual network embedding problem is a complex one, an heuristics based al-gorithm was proposed in order to reduce both the embedding complexity and the requiredcomputational time. Simulations were made that showed the algorithm’s performance con-sidering heterogeneous physical and virtual networks, and conclusions were taken aboutthe impact of the virtual networks’ size, and the specifications of both physical nodes andlinks.The use-cases and desired functionalities for both monitoring and management featureswere provided. Several parameters were identified as necessary for proper network mon-itoring, such as CPU load, available RAM, physical and virtual links’ and nodes’ states.The management features include changing the state and the RAM amount of the virtualmachines in run-time.

73

74

Chapter 5

Software Implementation

5.1 Introduction
As result of the previous specification and design chapters, this chapter’s purpose is todescribe the implementation of the analysed features, functionalities, and algorithms.In-depth details will be provided about both the composition and the behaviour of everymodule. Their data structures, threads, main functions, exchanged messages and mechanismswill be discussed.Some of the main used libraries, APIs and open-source functions will be described first,on 5.2. Then, the Virtual Network Control Center on section 5.3 will be explored, followedby the Virtual Network Manager on section 5.4 and finally the Virtual Network Agent onsection 5.5. The chapter will conclude with a brief resume and analysis of the implementationdetails on section 5.6.

5.2 Auxiliary Functions and Libraries

5.2.1 XML parsingOne of the reasons for working with XML descriptions is the existence of XML APIs forboth Java and C, thus these files may be exchanged and processed easily. JDOM [27] wasused for parsing in Java while libxml2 [67] was used for C.
5.2.2 popen_noshellpopen_noshell [21] is a C function that presents the same functionality as a system orpopen call but requires far less CPU cycles to execute. This improved speed and lowerresource usage made it “the” choice for executing commands from within the Agent software,such as configuring or gathering bridge information and configuring interfaces, among others.Associated with the unlocked version of fgets, command execute and result parsing speedsare greatly increased.
5.2.3 libvirtThis API was described on chapter 2. As stated, it presents a standard interface forinteracting with multiple hypervisors, hence its functions were used extensively in the Agent

75

module both when gathering resource information and when creating or acting upon virtualresources.Since a connection to the hypervisor is required on every Agent, the static functioncmdConnect() was implemented, and so was a synchronization mutex in order to providemutually exclusive access to the hypervisor. When a function call is performed, the functionwill verify the state of the hypervisor connection, and try to connect if it is not yet established.
5.3 Virtual Network Control Centre

5.3.1 Databases and ClassesBefore going deeper into the Control Centres’ database description and details, oneconcept must be explained: The concept of a hash-map. A hash map presents a one to onerelationship between a key and a value. By hashing the key, a hashing function transformsthe key into an index of an array where the value is stored.There are six main databases in the Control Centre modules (5.1), three containing displayobjects and three other containing the resources’, links’ and virtual networks’ information.

Figure 5.1: Control Centre’s Classes and Lists.
TheVNet database, called vnetList, uses a hash map to store its keys and values (figure5.2(a)). The keys are the unique VNet ID’s while the values are VNet Objects, representedon the class diagram of figure 5.2(b).The Resource database, implemented as a resourceList, is also based on hash maps. ItsResource objects store data according to the class diagram of figure 5.3(a). There can betwo main types of resources, physical (PNode) and virtual (VResource), and the latter canalso have two types, either virtual node (VNode) or virtual router (VRouter).The Link database also uses a hash map to store its link objects (figure 5.3(b)).The remaining three databases store display objects. Starting with the Display VNetdatabase, its database is called displayVNetList and the hash map is similar to the previousones: the VNet ID is the key while the value is the DisplayVNet object.

(a) VNet list hash map. (b) VNet class.
Figure 5.2: Control Centre’s VNet list hash map and class.

76

(a) Resource class. (b) Link class
Figure 5.3: Control Centre’s Resource and Link classes.

The DisplayComponent database uses a double hash map to store its data, the first keyis a VNetID. It leads to another hash map whose key is now the resource ID and the valueis a DisplayComponent object.Finally, the Display Link database utilizes a hash map whose key is a VNet ID thatleads to a linked list of DisplayLink objects. The Display objects are described by theclasses shown in figure 5.4
5.3.2 Module DecompositionThe entry Control Centre class is the VNetVisualizer class that is in charge of readingthe Control Centre’s configuration file, containing the necessary information to connect tothe Manager (figure 5.5). Afterwards, a new object is created; the Controller initializes thepreviously described databases and launches the Control Centre’s two main threads: TheModel thread and the View thread, as depicted in figure 5.6.
Model threadThis thread is mainly used for listening to the Manager’s messages and, aside from theexception of requesting the Manager an ID at start-up, it is a passive thread. Its mainfunction is to process the Managers’ messages and update the related databases.After receiving the ID, the Model thread operation, which may be seen on figure 5.7,is straightforward: it has a main “while” loop that blocks on TCP socket readline calls.Two successive calls are performed to readline, the first one is used to determine the mes-sage type, while the second one receives the actual data. It is assumed that the message

77

Figure 5.4: Control Centre’s Display classes.

Figure 5.5: Control Centre Start Up.
containing the message type immediately precedes the message with the actual data.The message types accepted by the Model thread are described in table 5.1.
View threadThe View thread (figure 5.8) is responsible for the graphical interface. It is in charge ofhandling user interactions, of displaying the networks’ topologies and resource information,and of sending requests to the Manager. All the software’s functionalities are presented tothe user through the View thread.The view thread uses the Java’s Standard Widget Toolkit (SWT) as the main graphicalAPI. At start-up, a global initialization of the graphical interface, i.e. menus and tabs, isperformed and a request is automatically made for the substrate network.The generated GUI can be decomposed into three main sections: the dropdown menu,the coolbar menu and the tab canvas.The dropdown menu, displayed on figure 5.9, provides the user with several functionalitiesfor virtual network management and monitoring: the Action menu allows the user to createand delete new virtual networks, to load or save an XML with virtual network description,

78

Virtual Network Control Centre

Model
Thread

View
Thread

Virtual Network
Manager

User

Figure 5.6: Control Centre Module.

Figure 5.7: Control Centre Model Thread Diagram.

Figure 5.8: Control Centre View Thread Diagram.
and to exit the Control Centre. The Get VNet menu provides the user with a list of availableVNets that may be chosen for monitoring; selecting a given virtual network based on its IDwill create a new tab with the requested virtual network.The second main section of the GUI is the coolbar shown in figure 5.9 that providesthe user with quick access to regular functions when creating a virtual network. Thesefunctions include adding a new virtual server or router, removing a virtual resource, addingor removing a virtual link, committing or cancelling the modifications, and refreshing thedata of the current opened virtual network tab.The last section of the GUI is the tab canvas where the virtual networks are drawn, asseen in figure 5.10. By selecting a tab, the View thread will draw the corresponding virtualnetwork. Each resource has additional menus that can be accessed by right clicking on it.The user actions upon the Control Centre will sometimes require it to send messages tothe Manager. The exchanged message types are described on the table 5.2.The View thread’s main loop periodically performs updates on the graphical objects, sothat the existing menus and figures always reflect the current networks’ status. The diagramof figure 5.11 exemplifies the actions taken.The loop begins by removing the display objects that correspond to no longer existingcontent, i.e. resourcesand links of virtual networks that have been removed in the meanwhile.Next, checks are made to see if any new virtual network, link or resource has to be created,and if they do, the display objects are created with the matching information, menus andevent-handlers. Subsequently, they are placed on the respective VNet canvas.The placing function for a given virtual network begins by selecting the node with thehighest amount of links and placing it in the centre of the canvas with a total availableradial angle of 2π. Afterwards, a recursive function distributes the neighbour nodes in aradially uniform way and attributes them a smaller radial angle. An example result of nodeplacement algorithm is showed in figure 5.12 where one can clearly observe that the nodewith the highest number of links was placed on the centre of the drawing canvas, and that

79

Message Type DescriptionMV_MSG_USER_INFO Allows the Manager to send a message that willbe displayed to the user.MA_MSG_ID_REPLY Manager reply to a Control Centre’s ID request.Contains a unique ID.MA_MSG_VNET_LIST Contains a list of the Manager’s known virtualnetworks.MV_MSG_UPDATE_LINK Contains information about a given link.MV_MSG_DEL_RESOURCE Delete command for the specified virtual re-source.MV_MSG_DEL_PHY_RESOURCE Delete command for the specified physical re-source.MV_MSG_UPDATE_RESOURCE Contains information about a given resource.
Table 5.1: Manager to Control Centre message types.

Message Type DescriptionMV_MSG_NEW_VNET Create a new virtual network, based on a XMLdescription.MV_MSG_DEL_VNET Delete the specified virtual network.MV_MSG_GET_VNET Request information and updates for the spec-ified virtual network.MA_MSG_VNET_LIST Request a list with the existing virtual net-works.MV_MSG_START_VM Start the specified virtual node.MV_MSG_SHUTDOWN_VM Shutdown the specified virtual node.MV_MSG_REBOOT_VM Reboot the specified virtual node.MV_MSG_PAUSE_VM Suspend the specified virtual node.MV_MSG_UNPAUSE_VM Resume the specified virtual node.MV_MSG_DESTROY_VM Delete the specified virtual node.MV_MSG_SET_MEM_VM Change the specified virtual node’s RAMamount.
Table 5.2: Control Centre to Manager message types.

80

Figure 5.9: Control Centre’s Dropdown & Coolbar menus.

Figure 5.10: Control Centre’s Canvas.

Figure 5.11: Control Centre View Thread main loop Diagram.
its neighbours were radially distributed with a π2 radial angle interval.Then, the refresh function will go through each resource and update its respective Dis-playComponent object regarding its current state, load image and menu information whichmay have information that is not up-to-date.The final step will be to trigger the actual canvas redraw by using the drawDisplayfunction.After updating the display objects, the thread sleeps 500ms before checking for newupdates. The 500ms update interval was chosen as a compromise between keeping the in-formation updated as fast as possible and not having a significant impact on the usage of thecomputing resources. The chosen update interval is small enough to be barely perceptibleby the user.In the implementation, care is taken to ensure the proper synchronized access to theControl Centre’s databases.
5.3.3 Virtual Network Design & ConfigurationThis subsection will begin by explaining how the Control Centre design features wereimplemented, and how the designed virtual network is forwarded to the Manager to bemapped.

81

Figure 5.12: Control Centre’s Radial resource placement.
As previously specified, the Control Centre uses Java’s SWT API to create graphicalobjects and manage user interactions. The View thread is the one in charge of presentingthe interface to the user and handling user-generated events.When the user selects the Create new VNet command, the Control Center’s View threadwill create a new DisplayVNet object, and the related tab and drawing canvas. The followingparagraphs will describe the events necessary to the VNet design and configuration.

Placing New Resources

After the creation of the new VNet tab, the user selects one of the resource buttonson the coolbar that triggers the creation of a temporary Resource and the correspondingDisplayComponent, so that an image of the resource appears on the screen.

Figure 5.13: Control Center - New Resource Diagram.
This display component has a set of associated mouse event-handlers, as illustrated byfigure 5.13: the move handler causes the icon to change according to the mouse movement,by updating the coordinates of the display component and triggering a redraw of the canvas.The right-click handler will cancel the Insert Resource command, delete the temporary object,and reset the coolbar selection. Finally, the left-click handler will clone the temporary objectand add it to the resource list of the new VNet, with some default configuration parameterssuch as 64MB of RAM, 1 CPU and 1 interface.

82

After the resource placement, the user is able to continue to place resources at will, untilit presses the mouse’s left-button.
Configuring New ResourcesAfter placing the desired resources, the user may proceed with configuring them. Uponresource placement, event-handlers were added that trigger the opening of a configurationmenu when the mouse right-click is pressed, and allow the resource to be moved when leftclicking and dragging.After right-clicking and selecting the Configure Resource option, a menu object is createdthat appears and allows the subsequent modification of the resources configuration, suchas location, RAM amount, number of interfaces, etc. The complete menu is shown in figure5.14(a).

(a) Configure Virtual Resource. (b) Configure Virtual Interface.
Figure 5.14: Configuring a new Virtual Resource

One other menu, the Configure Interfaces menu on figure 5.14(b), allows the configurationof every virtual resource interface. Only IPv4 and IPv6 were considered, although modifi-cations to support other network protocols are possible and simple. The specified interfaceconfigurations will be enforced upon resource creation.
Configuring New LinksOne other button on the coolbar allows the placement of new links. By selecting theoption, a selection menu object will be created and the user will be prompted with a requestto specify both a source and destination for the link through a drop-down menu that listsall the VNet’s resources (figure 5.15).After proper selection, i.e., if no link exists already and if the source is not equal tothe destination, a new configuration menu will be created where the link details can bespecified, as shown in figure 5.16. When all the desired parameters are configured, the linkwill be created and drawn in the canvas using Java’s class GC. A straight line connectingboth resources, with each resource’s interface specified and the link bandwidth placed on

83

top of the connecting line, symbolizes the link. Additionally, two link entries are added tothe VNet’s link list, each one representing a link direction.

Figure 5.15: Control Center - New Link Diagram.

Figure 5.16: Configuring a new Link
Saving and Committing a Virtual NetworkAfter all resources and links are placed and configured, the user has the option to savethe design for later use, or commit it to the Manager (figure 5.17).If the user chooses to save the design, it may access the main menu Actions and selectthe Save VNet XML option that will trigger a file browser window to appear. After choosingthe desired file name, the XMLAddNodes and XMLAddLinks methods will build the XMLstructure and the XMLOutputter will be in charge of placing the appropriate data on aFileOutputStream object created after specifying the file name.In order to proceed with the virtual network creation, the user has to select the coolbarbutton Commit, that will trigger the sending of an XML message to Manager, built using asimilar process to the Save VNet XML command, but writing to a StringWriter instead.

Figure 5.17: Control Center - Commit & Save Diagrams.
The created string may then be sent through a TCP socket. Since the generated XMLwill have an undetermined size, the message will be sent in several parts, depending onboth the message size and on the constant MSG_BUFFER_SIZE. The messages will have afield containing the VNet name and the message part number. The last message will have

84

an additional field containing the string XML_END to signal the completeness of the XMLmessage.
5.3.4 Virtual Network MonitoringIf the monitoring of a virtual network is desired, the Control Centre provides a main menubutton, the Get VNet button, that will request a list of available VNets to the Manager anddisplay it (figure 5.18). After selecting the desired virtual network, the Control Centre willregister itself as interested in the specified virtual network, so that the Manager will notonly send it the current information regarding the requested virtual network, but it will alsosend subsequent updates to that virtual network.

Figure 5.18: Control Center - Get VNet Diagram.
This “per-request” mechanism ensures that the connected Control Centres do not becomeoverloaded with information about virtual networks that are of no interest to them.After requesting the virtual network, the previously described drawing mechanisms willdisplay it on the proper tab canvas, similar to the one of figure 5.10, where the virtualresources and link can easily be monitored. On figure 5.19 it is possible to see the availableload and states for a given virtual resource, which can be monitored almost in real-time.

State CPU Load

Name Mapping

Possible States

Running

Paused

Shutdown

Changing

Possible CPU Loads

85-100%

67% -84%

51-66%

34-50%

17%-33%

0-16%

Figure 5.19: Control Center - Virtual Node Monitoring.
5.3.5 Virtual Network ManagementThe management features includes changing the state of a virtual resource, the RAMamount in run-time, deleting the resource or even the complete virtual network.The access to the resource management functions is done by right-clicking the virtualnode and selecting the desired action. The Control Centre will then use the Managerconnection to send a command message containing information about the desired actionand the target virtual resource or network.The message follows the standard format:CMD_ID @@ Control_Centre_ID @@ Data # #.

85

The data field depends on the command message type. If, for example, one wants to changethe RAM amount, it will contain the resource ID and the target memory amount.
5.4 Virtual Network Manager

5.4.1 Main Databases and Structures

Main DatabasesThe Manager uses linked lists to store all its data. Regarding the resources’, links’and virtual networks’ data storage, there are 2 main databases: the VNet List is a linkedlist of pointers to VNet structures, each one containing a linked-list of pointers to VNetNodes which in turn also have a linked list of pointers to related Links. This hierarchicalarchitecture optimizes resource and link searches. The full data structure hierarchies canbe seen on figure 5.20

Figure 5.20: Manager’s VNet Entry.
The second database is a redundant one, the Main Resource List is a linked list thatholds pointers to all the resources. This pointer database is kept for compatibility purposes.Each database has its own associated mutex, used for synchronizing access from multiplethreads.

Auxiliary DatabasesSince the Manager accepts connections to multiple Control Centres and Agents, thestorage of information regarding the connected modules is required. To that end, additionallinked lists exist that store the Agents’ and Control Centres’ information. These connectionentries are depicted in figure 5.21.The connected Agents’ data structure contains the necessary socket ID, physical resourceID, information about the Agent’s connection handler thread and the time of last contact.The data structure containing the Control Centres’ connection information is a bit morecomplex. It contains the Control Centre’s ID, the requested VNets, a temporary list and aninternal message linked list used for sending messages to the respective Control Centre.Thread synchronization and control variables are also included within this data structure.
5.4.2 Module DecompositionAs discussed in the previous chapters, it is the Manager’s job to assemble the entirenetwork’s information, provide unique IDs to each Agent and Control Centre, and to act onthe networks. The subsequent sections will describe each one of the Manager’s threads,their roles and interactions. The Manager’s start-up sequence is described on the diagramof figure 5.22.

86

Figure 5.21: Connected Agents and Control Centres Entries.
The Manager is responsible for connecting both multiple Agents and multiple ControlCentres. To that end, threads exist that launch additional handler threads for each connectedAgent and Control Centre.

Figure 5.22: Manager - Start-Up.
Besides the connection handling threads, there are additional threads used to processthe received resources’ and pending links’ information, update the Manager’s databasesand trigger Control Centre updates: if a resource or link update is detected in a virtualnetwork previously requested by one or more Control Centres, an update will be sent viathe respective Control Centre’s TX thread.Figure 5.23 summarizes the existing threads on the Manager’s module.

Agent Connection Accept thread

When an Agent tries to establish a connection with the Manager, this is the thread thatwill handle the connection request. The thread start-up and Agent accepting process canbe described through the diagram of figure 5.24.If a TCP socket connection is accepted, a new agent connection data structure is createdand filled in with the related socket ID, thread information and other additional fields. Thissocket ID will allow receiving and sending data from and to that Agent.In order to receive the Agent’s messages in a parallel way, an Agent handler thread islaunched for each connected Agent; therefore, there will be as many Agent handler threadsas Agents. The admissible messages types to be received are described in table 5.3.
87

Virtual Network Manager

Connected
Agent N

Connected
Control Centre 1

Connected
Control Centre M

Connected
Agent 1

Control
Centre 1

Agent 1

Agent
Accept
Thread

Control
Centre Accept

Thread

Status
Update
Thread

Command
Send

Thread

Agent
RX

Thread 1
Control

Centre TX
Thread 1

Control
Centre RX
Thread 1

Agent N

Agent
RX

Thread N

Control
Centre M

Control
Centre TX
Thread M

Control
Centre RX
Thread M

Figure 5.23: Manager Module

Figure 5.24: Manager - Agent Connection Accept Thread.
Agent Connection Handler thread

As previous explained, one of these threads is created when a new Agent connects.At start-up, clean-up handlers are registered; next, the thread enters its main loop thatblocks waiting for incoming messages and processes the received messages according totheir message type.The clean-up handlers assure that, when the connection is lost to a particular Agent, theutilized blocking socket receive function will generate an error that will trigger the threadexit and the respective cleaning mechanisms.The Agent will then be removed from the connected Agent’s list, the related physical andvirtual resources and links will be removed and the Control Centres will be notified of thesedeletions.These cleaning mechanisms shall provide the required databases consistency.
88

Message Type DescriptionMA_MSG_ID_REQUEST Request an ID.MA_MSG_KEEPALIVE Used for keep-alive messages.MA_MSG_TYPE_INFO Send resource information.MA_MSG_DEL_RESOURCE Signal the deletion of a specified resource.MA_MSG_TYPE_NEIGHBOUR Inform the Manager about a new neighbour,physical or virtual.
Table 5.3: Agent to Manager message types.

Control Centre Connection Accept thread

Similarly to the Agent Connection Accept thread, this thread accepts Control Centreconnections and launches the respective handling threads, but in this case two threads willbe launched per connected Control Centre: a Control Centre Connection handler for RX andanother one for TX (figure 5.25).

Figure 5.25: Manager - Control Centre Connection Accept thread.
Just like in the Agent’s case, for each accepted Control Centre connection, a ControlCentre connection data structure containing relevant thread control variables and messagelist is created.The Control Centre RX thread is similar to the Agent Connection handler one; it willblock on a receive call to the connected Control Centre’s socket and process the receivedmessages afterwards. It accepts the message types described in table 5.2.The Control Centre TX thread also blocks waiting for messages on its message list. Uponreceiving the signal of a new message available on the list, the message will be processedand sent to the pertaining Control Centre. The available message types were previouslydescribed on table 5.1.

Status Update thread

This is the thread that will process the resource information messages received by theAgents’ Connection handlers. Every resource message received is processed by this threadthat checks for resource updates and for pending links, i.e. link information received forresources that have not yet been inserted on the database. If resource updates are found,the updated resources’ information will be sent to the Control Centres that have requestedthe resources’ virtual networks. The full process is depicted in the diagram of figure 5.26.The status update thread blocks and waits for new resource messages on its messagelist. The access to the message list is controlled using a mutex. After placing a new message,a signal is sent to the status update thread that will wake up and process it.
89

Figure 5.26: Manager - Status Update thread.
Command Send threadWhen a thread wishes to send a command to an Agent, this is the thread to whom therequest has to be made. It is responsible for sending the desired commands to the Agents.The available message types are described in table 5.4.Just like the Status Update thread, the Command Send thread is also blocking and sleepswhile waiting for new messages. When a new message arrives, it wakes up, processes it,and sends the command to the associated Agent. The thread’s behaviour is illustrated inthe diagram of figure 5.27.

Figure 5.27: Manager - Command Send thread.
5.4.3 Virtual Network MappingAfter designing and configuring the virtual network using the Control Centre, the nextstep is to determine on which physical nodes the virtual nodes should be placed, and howthe virtual links should be assigned to physical ones. This problem was presented on 2.3.5and a solution was developed for it on chapter 4, section 4.7.2. The Manager, thus, has toimplement this algorithm and enforce its result.
Receiving the Virtual Network XMLSubsection 5.3.3 ended with the Control Centre sending the fragmented XML message tothe Manager, which has, therefore, to perform its reconstruction, as demonstrated in figure5.28. The multiple messages that compose the virtual network description XML are assumedto be received in the proper order, since we are dealing with a TCP socket.

90

Message Type DescriptionMA_MSG_RESOURCE_UPDATE Request information about the specified re-source.MA_MSG_FULL_UPDATE Request information about all the Agent’s re-sources and links.MA_MSG_ID_REPLY Reply to an ID request with an unique ID.MA_MSG_NODE_CREATE Create the XML specified virtual node.MA_MSG_BRIDGE_CREATE Create the XML specified bridge and vlannedinterfaces.MA_MSG_LINK_DELETE Request a link deletion.MV_MSG_DEL_VNET Request a virtual network deletion, i.e. re-source and associated links deletion.MV_MSG_START_VM Start the specified virtual node.MV_MSG_SHUTDOWN_VM Shutdown the specified virtual node.MV_MSG_REBOOT_VM Reboot the specified virtual node.MV_MSG_PAUSE_VM Suspend the specified virtual node.MV_MSG_UNPAUSE_VM Resume the specified virtual node.MV_MSG_DESTROY_VM Delete the specified virtual node.MV_MSG_SET_MEM_VM Change the specified virtual node’s RAMamount.
Table 5.4: Manager to Agent message types.

When receiving the first part of a message containing an XML, or a fragment of it, theManager will extract the VNet identifier and add a temporary XML message structure to thetemporary linked list on the connected Control Center’s entry. When receiving subsequentparts of the same XML, identified by the part number and the VNet ID, the Manager willsimply append them to the temporary XML. When the last piece is received, the messageis removed from the temporary list and the next step, which is the mapping of the virtualnetwork, will begin.
Virtual Network Mapping

The virtual network mapping function, observed in figure 5.29, follows the algorithmspecified in 4.8. Firstly, the map_vnet() function parses the XML, using libxml’s functions,and converts it into a regular data structure, similar to the data structure of the existingvirtual networks, i.e. a virtual network entry with a linked list of resources containing therelated links.The function proceeds with locating the physical network entry, from within the existingnetworks, and follows with a candidate selection for each of the virtual nodes. In thiscandidate selection, each virtual resource is compared with every physical resource in orderto assess which ones satisfy the CPU, memory, HDD, and location constraints. For eachvirtual node, a linked list is filled with the possible physical candidates.The algorithm continues with the determination of the physical links’ stress. To thatend, for every physical link, the amount of allocated bandwidth used by virtual links, is
91

Figure 5.28: Manager - Receive XML Diagram.

Figure 5.29: Manager - Map Virtual Network Diagram.
determined, thus determining the links’ stress. Afterwards, the node stress determinationbegins and is done for every physical node.Next, the virtual nodes are sorted considering the number of physical candidates, sothat virtual nodes with less possible physical nodes are mapped first. The actual mappingfunction will then take place. For each virtual node’s link, a Constrained Shortest PathFirst (CSPF) Dijkstra algorithm is run both for every physical candidate as well as for eachlink’s destination virtual node’s candidates, so that the node potential factor is determined.For each virtual node, the physical candidate with the lowest node potential, that has notbeen chosen yet, is selected as the embedding node.After mapping every virtual node, the same CSPF algorithm is run in order to determinethe final physical path for each virtual link. These virtual links may use different VLANson each physical segment. The determination of the VLAN to be used is based on theinformation attained from both the origin and destination physical interfaces that composethe physical segment, and choses a non-utilized VLAN on both ends.The relevant link information such as physical hops and utilized physical interfaces isadded to the virtual links’ structures.Finally, by taking the virtual network’s structure, which now has the mapping informationon it, an XML containing the mapping information is produced and the mapping functionterminates.
Virtual Network CommittingThe mapped XML produced by the mapping algorithm contains information about everylink and node of the virtual network and has, therefore, to be further breakdown on nodes’and bridges’ configuration XMLs that will in turn be sent to the respective Agents.Thus, for each virtual node, an XML file is produced, and for each virtual link, identifiedby a unique link ID, multiple XML bridge and interface configuration files will be produced,depending on the number of physical hops contained on a virtual link.

92

The virtual network creation is enforced by sending the XMLs to the appropriate Agents.
5.5 Virtual Network Agent

5.5.1 Main Databases and Structures
Main DatabasesJust like the Manager, the Agents also use linked lists to store their data. There are twomain databases: The Main Resource List stores the information of all local resources in alinked list, while the Neighbour List stores information about the Agent’s neighbours, alsoin a linked list. The neighbour database encompasses both physical and virtual neighbourinformation.The access to each database is controlled by individual mutexes.

(a) Node Entry. (b) Link DiscoveryEntry.
Figure 5.30: Node and Link Discovery Entries.

As can be seen in figure 5.30(a), each node entry contains information about the resource’sCPU, RAM, HDDs and interfaces. There is also additional information about the resource,such as its ID and status. Synchronization variables deal with the concurrent access to theresource, since multiple threads may try to access it at the same time.
Auxiliary DatabasesBecause the discovery mechanism requires a pair of threads for sending and receivingper interface, a linked list exists containing control data structures. These control structurescontain relevant thread control variables and a message list for inter-thread communication,as well as the required data for the discovery algorithm, such as the Designated Root ID,as can be seen on figure 5.30(b).
5.5.2 Module DecompositionDue to the multitude of tasks performed by the Agents, there are several threads runningwithin the module. A global overview of these threads is shown in figure 5.31 and the Agent’sstart-up procedure is illustrated on the diagram of figure 5.32. The threads’ functionalitieswill be described on the following paragraphs.

93

Virtual Network Agent

Interface NInterface 1

Virtual Network
Manager

Keep Alive
ID Request

Thread

Template
Manag.
Thread

Status
Update
Thread

Status
Send

Thread

Command
Receive
Thread

Manager
Connection

Thread

Link Disc.
Manag.
Thread

Active Link
Disc.

Thread 1

Passive
Link Disc.
Thread 1

Active Link
Disc.

Thread N

Passive
Link Disc.
Thread N

Interface 1
Neighbour

Agent 1

Interface N
Neighbour

Agent 1

Interface 1
Neighbour

Agent J

Interface N
Neighbour

Agent K

Neighbour
Hello

Thread

Link
Messaging

Thread

Figure 5.31: Agent Module

Figure 5.32: Agent - Start-Up diagram.
Manager Connection thread

This thread is in charge of establishing a connection to the Manager and inform the restof the threads when a connection is established or lost. If there is no Manager connection, itwill periodically try to connect until it is successful or the program terminates (figure 5.33).Upon a successful connection, if the Agent does not have a valid ID, an ID request willbe immediately sent in order to speed-up the Manager information update process.
Keep-alive and ID request thread

The Keep-alive and ID request thread periodically checks the Agent’s ID (figure 5.34).If the ID is not valid, a request for a valid ID will be sent to the Manager; otherwise, akeep-alive message will be sent. The purpose of the keep-alive messages is to allow the
94

Figure 5.33: Agent - Manager Connection thread diagram.
Manager to identify situations where communication problems with the Agent exist.

Figure 5.34: Agent - Keep Alive and ID Request thread diagram.
Template Management thread

The Template Management thread has two main functions: the first one is to build a poolof available virtual machine templates and make them ready-to-use, while the second oneis to accept incoming virtual machine creation request and commit them. These functionsare illustrated on the diagram of figure 5.35.The Template Management thread waits for node request to arrive on the Node RequestList. Upon receiving a request for a new virtual node, it checks whether the requesteddistribution exists or not. If it does, it launches a new thread responsible for node creationand replenishing of the utilized template image.
95

As a part of the node creation process, this thread will verify the newly created nodestatus, check for virtual links and insert it in the main resource list.

Figure 5.35: Agent - Template thread diagram.
Status Update threadThis thread performs the resource data gathering and resource update checks. It runsperiodically and checks for consistency in the resource database (figure 5.36).

Figure 5.36: Agent - Status Update thread diagram.
The thread relies on a function that checks for local resource updates (figure 5.37). If aresource is created, deleted or modified, it is this thread’s function to identify the updates,keep the database updated, and signal threads that may be interested in certain resourcechanges. It gathers CPU, RAM, HDD, state, and interface data.Interface changes on the physical resource will trigger a re-evaluation of the link discov-ery threads. If a change is detected on virtual interfaces’ associated bridges, a verificationof the consistency in the virtual links databases will take place, and appropriate measuresare taken if the resource needs to be advertised.Regardless of the update detected, the thread will inform the Manager of a resourceupdate, by sending a message to the Status Send thread.The deletion of no longer existing virtual nodes is not as simple as removing the entryfrom the local database. The Manager must be warned about the resource deletion andso must the physical neighbours, so that they can remove neighbour entries related to thedeleted resource. The deletion process is shown in figure 5.38.

Status Send threadThe outgoing Manager communications go through this thread; it receives message re-quests from other threads and informs the Manager accordingly.The requests are made by placing a request structure on the Status List and signallingthe thread (figure 5.39).The message types sent to the Manager by this thread are defined on table 5.3.
Command Receive threadAs opposed to the Status Send thread, the Command Receive thread receives the Man-ager’s messages and takes the proper action to execute the requested commands.

96

Figure 5.37: Agent - Update Resource Information diagram.

Figure 5.38: Agent - Delete Resource diagram.

Figure 5.39: Agent - Status Send thread diagram.
It is a blocking thread; therefore, it is only active when there is data to be read from thesocket.The possible receive commands were previously described on table 5.4.

Link Discovery Management threadThe distributed neighbour link discovery process is managed by this thread. It launchesboth a passive and active discovery thread per active physical interface; the passive thread isin charge of receiving multicast messages, while the active thread is responsible for sendingthem. Figures 5.40 and 5.41 illustrate this thread’s main procedures.The Agents implement the algorithm described on the previous chapter, in section 4.8.During runtime, several modifications may happen regarding physical and virtual interfaceconfiguration, state, and addition or removal of virtual resources. Due to the highly dynamicnature of production networks, the implemented algorithm must be ready to withstand allthese possible events and keep the topology information consistent and updated.In order for the discovery mechanism to begin, the Agent must have completed the bootprocess, i.e. all the information about itself and its resources must have been acquired. When
97

this information gathering is complete and the Agent attains a valid ID, the link discoverymanagement thread, that blocks at start-up waiting for the boot ready and valid ID signals,resumes its execution.

Figure 5.40: Agent - Link Management thread diagram.
The Agent will firstly locate the physical node’s database entry and afterwards launchtwo important threads: the neighbour_hello and the link_messaging threads. The first oneperiodically sends hello beacons through every interface, while the second one is a proxythread that enables the sending of messages to each interface’s active discovery threads.They will both be described next.The main loop of the link management thread, figure 5.41, begins by identifying eachactive and running physical interface, and creates a passive discovery thread per each iden-tified interface that will be in charge of subsequently launching the corresponding activethread. The passive link discovery thread is in charge of receiving multicast messages, whilethe active link discovery thread is responsible for sending them.

Figure 5.41: Agent - Link Management thread main loop diagram.
After every passive thread is launched, the link management thread will block waitingfor modifications relating to the physical node’s interface configuration. If any modificationis detected, a check will be made in order to determine which discovery threads shouldbe terminated and if any should be created. If, for example, an interface goes down, theassociated active and passive threads will be shut down but the data structures will remainintact and ready for the thread restart if the interface goes back up.

Passive Link Discovery ThreadWhen the passive link discovery thread begins (figure 5.42), the first step is to properlyconfigure a socket to receive multicast messages. The socket creation follows a standardprocedure: initially, a socket is created and set to enable port reuse, so that other socketsmay receive on the same port number; afterwards, a socket bind to the multicast address ismade and, subsequently, the interface is registered on the multicast group.The resulting socket identifier may now be used to receive messages from the multicastgroup. Since every multicast message is received on all interfaces, each passive threadperforms a message filtering function to determine if the message effectively arrived on itsinterface. This check is based on the interface’s and message’s source IP information. If amessage is received from a different network than the interface’s one, it is discarded.
98

After creating and configuring the multicast socket, the passive link discovery thread willlaunch the active link discovery thread, responsible for sending multicast messages.

Figure 5.42: Agent - Passive Link Discovery thread diagram.
Active Link Discovery Thread

As previously explained, this will be the thread in charge of sending multicast messages.At start-up, it creates and configures a socket with the desired multicast address, that maythen be used to send multicast messages.The thread waits for new messages on the link discovery entry’s message list. Whena message is received, it will process and send the message via the multicast socket. Thedescribed behaviour may be analysed in the diagram of figure 5.43.

Figure 5.43: Agent - Active Link Discovery thread diagram.
Neighbour Hello thread

The main duty of this thread is to periodically send Hello messages to the Agents’neighbours. This thread also serves the purpose of identifying “expired” neighbours, i.e. theneighbours that have not sent any message in a previously pre-determined amount of time.Expired physical neighbours and related virtual neighbours will be removed from thelocal neighbour database (figure 5.44).

Figure 5.44: Agent - Neighbour Hello thread diagram.
99

Link Messaging threadThis thread works like a proxy in the way that it provides the other threads with aninterface for easily announcing new or deleted resources.If a local resource is added or removed, this thread will be notified and act accordingly.If a new resource is added, it will check for virtual links, and notifying the relevant linkdiscovery threads of a new resource. If, on the other hand, a resource is removed, it willlocate the interfaces previously utilized by the removed resource and send multicast deletemessages to the physical neighbours that will then act accordingly.
5.5.3 Resource Data GatheringThe resource data gathering mechanism runs periodically and resorts on several systemtools.The libvirt’s virDomainGetInfo and virNodeGetInfo functions supply information regardingboth virtual and physical domain state, allocated RAM memory, number of CPU cores andrespective frequency.Detailed CPU information is gathered from the /proc/cpuinfo file, and CPU load is com-puted between successive resource data checks.The determination of CPU load is different for virtual and physical resources. The physicalnode’s CPU load calculation is performed by gathering the CPU’s processing time from theglibtop’s glibtop_get_cpu call. The difference in total CPU processing time is divided bythe total actual bygone amount of time, and a load amount in per cent is determined. Themaximum CPU load equals the amount of CPU cores times 100%, i.e. for 8 cores, the maximumload would be 800%.Determining the amount of free RAM is simpler. For virtual resources, it is simply thedifference between the allocated maximum amount of RAM and the currently in use RAM.This info is provided by the virDomainGetInfo call. For the physical resource, glibtop providesthe glibtop_get_mem call, and the total amount of available RAM is considered to be thesum of the free, cached and buffered memory.Interface configuration information is more difficult to gather. When the number of bridgesand interfaces on the system begins to grow, the time required to perform calls to ifconfigor brctl will increase. Taking into consideration that gathering interface data for a singleresource may require several ifconfig and brctl calls, it is easy to verify that performingmultiple successive calls is an unviable option; it presents scalability issues.In order to reduce the performance penalty of ifconfig, the glibtop network calls wereused. These calls conveniently provide all the interfaces’ configuration and statistics on adata structure, thus avoiding the need to perform multiple calls for a single interface.On the other hand, although brctl’s code is public, the efforts made to integrate it with theAgent’s software failed, and no library was found that could provide the same information.Hence, a mutex-locked buffer cache was created for it in order to speed up successive calls.A data structure was created to hold the bridges’ and associated interfaces’ info using linkedlists, so that accessing the brctl info on this list presents a reduced performance penaltywhen comparing with accessing it directly through the console command.This brctl cache provides a mean for explicitly requiring a cache update, so that when afunction absolutely requires up-to-date bridge information, it may request it.Detailed data gathering of virtual interfaces’ configuration presents some issues. Since

100

the Agent has no means of knowing what is the interface configuration inside the runningvirtual machines, it has to rely on the XML file saved upon creating the virtual machine;therefore, it only knows the default interface configuration.The HDD information is attained from the Linux’s df -h command for the physical re-sources and from the size of the image file for virtual resources.
5.5.4 Virtual Network Creation

The virtual network creation process may be subdivided into two main phases: the firstone is related to the establishment of the virtual links and bridges, which are required forproper virtual machine start-up, while the second phase is the creation and configuration ofthe virtual nodes.
Bridge & Interface Configuration

All the physical nodes belonging to a virtual link will have a bridge named after thevirtual network and the link ID. If, for example, a virtual network exists called Alpha, andthat virtual network has a virtual link with an ID equal to 10, the physical nodes hostingthat virtual link will each have a bridge named VNetAlpha.010.Each virtual link may be composed by several physical links utilizing different VLANs.For every physical link, a non-utilized VLAN number is identified and utilized, resulting inphysical sub-interfaces that use the selected VLAN. The previously described bridges willbring the different links, that resort to VLANs, together. The bridge creation process isrepresented in figure 5.45.The bridges on physical hops will simple connect two different physical sub-interfaces,while the ones on the edge nodes, i.e. the bridges located on the same physical nodes asthe virtual nodes, will bridge the physical interfaces sub-interfaces and the virtual nodes’interfaces associated with that virtual link.

Figure 5.45: Agent - Create new Bridge.
An XML message containing the bridge, interface and QoS information for a given virtuallink is sent to the relevant Agent, which will in turn save it on a predefined folder, processit, configure the interfaces, create the bridge if it does not exist already, and associate theinterfaces with the bridge.The bridge configuration process is executed before the nodes’ creation, so that whenthe nodes are created and their status updated, everything will be in place.

101

Virtual Node CreationUpon virtual network mapping, each Agent with a resource mapped on it will receive anXML message containing the virtual node’s information that will be saved on a predefinedfolder for future access.

Figure 5.46: Agent - Create Virtual Node Diagram.
The Agent processes the XML message and proceeds with converting it to a resourcedata structure that will be sent to the Template Management thread for creation (figure 5.46).After proper validation, the node creation process will proceed, according to the diagram offigure 5.47.

Figure 5.47: Agent - Virtual Node Request Diagram.
Firstly, the hot template image folder and XML file will be renamed to match the re-quested node’s name. Afterwards, the template XML file will be modified according to therequested node’s data.The configuration of the virtual interfaces and change of the virtual machines’ hostnamerequires the mounting of the virtual node’s file system, and modification of some configurationfiles, which will depend on whether the environment is Debian of Fedora based.After properly unmounting the file system, a call to the libvirt’s virDomainDefineXMLfunction will define the virtual node, and a final call to virDomainCreate will effectivelycreate and start it.Although the virtual machine will take a few seconds to be ready for use, everything isproperly configured; therefore the node’s information is gathered, added to the main resourcelist, the Manager is informed about this new resource, and a verification is made to checkfor the existence of virtual links.

5.6 Conclusion
This chapter presented the implementation of the three that compose the virtualizationplatform: the Control Centre, the Manager, and the Agent.The Virtual Network Control Centre was the first module analysed in depth. Sincethis is the front-end for the software suite, the implemented mechanisms mainly deal with

102

presenting the acquired data to the user, feeding back commands to the Manager, andsubsequently to the Agents.Dynamic virtual network drawing and designing functionalities were implemented. Theyaim to facilitate the creation of virtual networks. Comprehensive configuration options wereprovided for configuring both the resources and the links, with several details available forconfiguration and specification.Commodity functionalities, such as saving or loading XML files, were made availableand so were other “simple” but useful options, such as deleting an entire virtual networkat once, or having the ability to monitor different networks at the same time simply byrequesting them and opening a new tab. One other interesting feature is the ability tomonitor almost in real-time the state and load of both physical and virtual resources. Thisreal-time approach enables network administrators to quickly identify potential issues inthe network, for example.The user interface is simple to use and was made intuitive, in part due to the drag anddrop mechanism, simple menus, and the coolbar, that provides a quick short-cut to accessthe mainly used tools when designing a virtual network.Next, the underlying mechanisms and threads of the Virtual Network Manager wereexplored. Besides providing aggregation functionalities for building the networks’ topologiesand keeping the Control Centres up-to-date, the Manager is in charge of implementing theessential virtual network embedding algorithm and to send the resulting mapping to thechosen physical nodes. It resembles a gateway in the way that it provides a separationbetween the user interface, the Control Center, and the Agents running on the substratenetwork. Its implementation makes the simultaneous operation of multiple users on thesubstrate network possible, since it accepts an undetermined amount of Control Centresconnections.Finally, the Agent module was analysed. This module is in charge of running on eachphysical node, and plays an important role, since it is responsible for gathering and detectingchanges in resource information, creating and configuring the virtual resources, interfacesand bridges. One other critical feature is the implementation of the distributed discoveryalgorithm, that provides the fundamental network topology data.

103

104

Chapter 6

Tests & Results

6.1 Introduction
The purpose of this chapter is to assess the performance of the developed virtualizationplatform, regarding the previously developed mechanisms.The chapter will begin, in section 6.2, by introducing the utilized testbed, resorting tothe developed graphical interface to display it. Next, a base virtual network is specified thatis used as a reference on the experimental testing performed.In section 6.3, the performance of the Agents will be evaluated, with respect to the scalingof the time required to gather local resource information. The chapter will proceed in section6.4, where the time required for performing virtual and physical network topology discoverywill be evaluated, considering different start-up situations.Afterwards, in section 6.5, the performance of the mapping algorithm and of the timerequired to create new virtual networks, will be examined.The chapter ends on section 6.6, with a global overview and discussion of the attainedresults.

6.2 Testbed Description & General Assumptions
The testbed is composed of 6 physical nodes and is connected according to figure 6.1,attained from the developed virtualization platform.The main specifications of the substrate nodes may be found in table 6.1.In the following tests, the Manager was running on a separate physical machine, directlyconnected to the physical node Mary. The created virtual networks were always a replicaof the underlying physical network. The virtual nodes were configured with 1 CPU, 64MBof RAM, 1GB of HDD and 1Mbps links. This virtual network is depicted in figure 6.2, andshall uniformly load every physical node and link and be used as a reference.During the tests, the virtual nodes were idle and so were the physical nodes and links,no other activity or task was being run on the testbed.The maximum amount of created virtual networks was 40, which corresponds to 40 virtualnodes in each physical node. This limitation is mainly due to the node with the least amountof memory, Gabrielle that would present instability issues with 45 virtual nodes.The results presented on the following sections always assume a 95% confidence interval.

105

Figure 6.1: Testbed Network.

Node Susan Lynette Gabrielle Bree Eddie Mary
CPU Model IntelPentiumD950

IntelPentiumD950
Intel Core2 DuoE6400

Intel XeonE3110 Intel XeonX3220 Intel XeonX3330
CPU Freq. 3.40GHz 3.40GHz 2.13GHz 3.00 GHz 2.40GHz 2.66GHz
CPU Cores 2 2 2 2 4 4
CPU Threads 4 4 2 2 4 4
RAM Amount 6GB 6GB 4GB 6GB 6GB 6GB
RAM Freq. 533MHzDDR2 667MHzDDR2 533MHzDDR2 667MHzDDR2 667MHzDDR2 667MHzDDR2

Table 6.1: Testbed specification.

106

Figure 6.2: Reference Virtual Network.
6.3 Data Gathering

Data gathering is a very important feature if an updated view of the existing networks’status and characteristics is intended. Its performance may be a critical factor: if the datagathering procedures take too long, the reaction to failures or other events may be delayed.This delay may cause severe consequences on the network’s performance, as the networkadministrator may not realize that there is a problem until it is too late.In order to assess the cold boot and status update time, virtual networks with the samenumber of nodes as the substrate network were created, as previously described.
6.3.1 Cold BootCold boot is described as the time it takes for each physical node to fully discover andupdate the information about itself and its virtual nodes, i.e. the time required since theAgents start up until they are ready to perform discovery tasks and send a full update tothe Manager.This test intends to demonstrated the dependency between this start up time, the numberof running virtual machines and the capability of the physical nodes.
MethodologyIn order to assess the cold boot time, the time difference between the Agent start-up andthe end of the first status update call was measured.This procedure was repeated 10 times for every considered amount of virtual networks.

107

Results & Discussion

Figure 6.3 exhibits the time required to boot with the increase in the number of existingvirtual machines.

-5 0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
ol

d
B

oo
t T

im
e

(m
s)

Virtual Networks

Cold Boot Time vs Number of Existing Virtual Networks

gabrielle

mary

susan

bree

eddie

lynette

Figure 6.3: Agent Cold boot results.
It is clear that the substrate nodes have very different capabilities, and that the boottime is heavily dependent on the CPU processing power. The physical nodes using the oldIntel NetBurst architecture, i.e. Susan and Lynette, perform worse than the ones relying onthe more recent Intel Core 2 architecture. The performance disparity between Susan andLynette seems to be associated with the difference in RAM speed.

6.4 Network Discovery

6.4.1 Cold Network Discovery

The time required since every Agent has booted up until the full physical and virtualnetwork’s topologies have been discovered is designated the cold virtual network discoverytime.When every Agent boots up and the Manager is disconnected, the discovery mechanismsare frozen, waiting for a valid ID from the Manager. When the Manager is brought up andquickly allocates an ID to every Agent, the discovery mechanism takes place and everyAgent exchanges link discovery messages.Upon discovering virtual links, the Manager will be updated and will build the virtualand physical networks’ topologies. Therefore, the cold virtual network discovery time canalso be tough of as the time required for the Manager to have an updated global view sinceits start-up, considering the situation where no Agent has a valid ID, and thus, the linkdiscovery process has not yet begun.
108

MethodologyFor every virtual network created, the cold discovery time was measured 10 times. Inevery time, the Manager and Agents were firstly shutdown. Afterwards, every Agent wasbrought up. When every Agent had finished its cold boot, the Manager was started and beganwaiting until a predetermined amount of resources and links were received, depending onthe number of the currently running virtual networks.The elapsed time reflects, not only the time required for the Agents to discover itsphysical and virtual neighbours, but also the time required for transmitting the informationto the Manager, and the time required by the Manager to process this information and buildthe network topologies.
Results & Discussion

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

D
is

co
ve

ry
 T

im
e

(m
s)

Virtual Networks

Cold Start: Manager Physical & Virtual Network Topology Discovery Time vs Virtual Networks

Figure 6.4: Cold network discovery results.
Evaluating figure 6.4, it is possible to notice that the time required for discovery seemsto follow a linear trend. Taking into account the results attained from the simulation resultsof the discovery algorithm, this trend was to be expected.

6.4.2 Hot Network DiscoveryThis test is similar to the previous one, with the exception that in this case the Agentsalready have a valid ID and have already exchanged discovery messages with each other;thus, the hot virtual network discovery time reflects the time required for the Agents to sendresource and link messages to the Manager and its processing time. In order to provide acomparison base, the centralized network discovery algorithm was also run.
MethodologyIn this test, every Agent had already booted up and been given an ID from the Manager;thus, the network discovery had been completed.

109

The Manager was programmed to terminate its execution upon receiving and processingthe expected amount of nodes and links, which was variable according to the number ofvirtual networks running at a given instant. It had two operation modes: the first oneutilized a centralized topology discovery algorithm, while the second one utilized the linkinformation sent by the Agents to the Manager to build the topologies.A script was created that executed the Manager 100 times in a successive way, bothfor the centralized and the distributed algorithms, with a 1 second delay between Managertermination and restart.With the increase of the number of virtual networks, one can evaluate the scaling of thediscovery times with the number of existing virtual networks.
Results & Discussion

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

Virtual Networks

D
is

co
ve

ry
 T

im
e

(m
s)

Manager Physical & Virtual Network Topology Discovery Time vs Virtual Networks

Centralized
Distributed

Figure 6.5: Distributed vs. Centralized network discovery results.
Comparing the achieved results, displayed in figure 6.5, with the discovery times of theprevious subsection, it is possible to state that the discovery process is faster. This is to beexpected since these measurements simple incorporate the time required for the Agents tosend their neighbour information to the Manager, and the time it takes for the Manager toprocess or aggregate this information.By comparing the results of the centralized and distributed approach, one can state that,as the number of virtual networks begins to grow, the distributed approach provides lowerdiscovery times than the centralized one. For 40 virtual networks, the time difference is20ms, or about 17%.This is a very important conclusion, as it already shows that distributed approaches needto be supported in future and complex networks.

110

6.5 Virtual Network Mapping & Creation

6.5.1 Virtual Network MappingOne of the main reasons of having opted for a heurist approach when designing a mappingalgorithm on section 4.7.2 was due to the fact that these heuristic algorithms tend to imposea lighter load on the computing resources and are, thus, faster than the optimal algorithms.In this section, the performance of the proposed algorithm will be evaluated with thegoal of assessing if it presents a viable option in production environments, i.e. if it is fastenough. In spite of the small-scale testbed, some insight should also be gained about thescaling of the algorithm with the increase in the number of existing virtual networks.
MethodologyIn order to assess the mapping times, 40 virtual networks, like the ones specified in 6.2were created, one at the time. The time required for the Manager to process the receivedunmapped XML and return a mapped one was measured. The tests were repeated 3 times.
Results & Discussion

0 5 10 15 20 25 30 35 40
6

8

10

12

14

16

18

20

22

24

26

V
irt

ua
l N

et
w

or
k

M
ap

pi
ng

 T
im

e(
m

s)

Number of Existing Virtual Networks

Analysis of a 6 Node VNet Required Mapping Time vs Existing VNets

Figure 6.6: Virtual Network Mapping results.
The time required to perform the mapping is shown to increase with the number ofexisting virtual networks (figure 6.6). Since the mapping procedure only depends on thevirtual network to be embedded and on the physical network, it would be expected that themapping times remained constant.This is not the case. In order to understand the increase in the required mapping time,one must take into consideration that when performing the mapping, the Manager needs to

111

update the physical links’ load, and therefore needs to access each existing virtual network.Thus, for each additional virtual network, the Manager will need more time to calculate thephysical links’ stress. This increment in needed time is revealed in the attained results, thatclearly show a linear scaling with the number of existing virtual networks.Regarding the absolute mapping times, they remain in the order of low tens of mil-lisecond, which is very good and can be considered real-time. One must, however, takeinto consideration the lack of complexity in both the embedded and physical networks, thatmakes the mapping process easier. The considerable deviations on the measured mappingtimes are probably due to the Manager’s need to lock the different resources’ mutexes, whileperforming the mapping.
6.5.2 Virtual Network CreationVirtual network creation should be as fast as possible, as an operator must be able torespond promptly to every embedding request.In order to evaluate the time required for creating a virtual network on the availabletestbed and its scaling with the amount of previously existing virtual networks, several testswere performed.
MethodologyVirtual network creation tests were performed considering that a given amount of virtualnetworks already existed on the testbed. The amount of previously existing virtual networkswas varied between 0, i.e. without virtual networks, and 39.For each considered point, a virtual network as created and deleted 10 times and thetime required for creation was recorded. The created virtual networks are the same as theones previously specified in 6.2.The considered creation time encompasses the time required for the Manager to split themapped XML and send the different command messages to the Agents, as well as the timerequired for the Agents to report back with updated information about the created resourcesand links, i.e. the time required to perform the discovery of the created virtual network. TheManager was in charge of measuring these creation times.
Results & DiscussionThe results accomplished regarding virtual network creation times, shown in figure 6.7,seem to follow a linear trend with the increase in the amount of existing virtual networks.It is worth noting that the total creation time, encompassing both node creation andsubsequent topology discovery, only depends on the slowest physical node, from the oneschosen to have a virtual node embedded. Considering the physical node’s performanceestimates attained in section 6.3, one can see that the slowest node, Susan, is about threetimes slower than the fastest node, Mary.The demonstrated increase in discovery times is due to the increase in time required togather resource information. It is worth noting that, when the virtual node is created, theused virtual machine template will be regenerated, imposing a severe strain on the physicalnode’s slow HDD, thus further slowing down the data gathering and subsequent discoveryprocess.

112

0 5 10 15 20 25 30 35 40
10

15

20

25

30

35

40

45

50

55

60
V

irt
ua

l N
et

w
or

k
C

re
at

io
n

an
d

D
yn

am
ic

 D
is

co
ve

ry
 T

im
e

(s
)

Number of Existing Virtual Networks

Analysis of a 6 Node VNet Creation and Dynamic Discovery Time vs Existing VNets

Figure 6.7: Virtual Network Creation results.
Significant deviations were attained when measuring the creation time. Because thesemeasurements depend on every physical node, their respective discovery threads, mutexlocks, time required for gathering resource information and also the performance of thehypercalls, large variations were verified.

6.6 Conclusions

This chapter presented the main results achieved with the virtualization platform, re-garding the time required for the Agents boot, and the time needed for discovering, creatingand mapping virtual networks.Regarding one of the potential bottlenecks of the Agents, data gathering, it was shownthat even for 40 virtual networks, the required amount of time remains within acceptableboundaries, with a worst-case scenario of about 4 seconds.The implemented discovery algorithm was shown to provide discovery times that shouldbe barely perceptible for the human user, under 200ms. The distributed discovery algorithmperformed better than the centralized one with 20 or more existing virtual networks, provingits better scalability.The final tests, concerning virtual network creation and mapping times, also providedgood results. The mapping algorithm was able to quickly map the virtual networks, withmapping results in the order of tens of millisecond. The achieved virtual network creationtimes, although significantly larger, also remained within acceptable boundaries, havingtaken less than 1 minute to create a 6 node virtual network even with the substrate networkalready accommodating 39 virtual networks.Overall, the attained results demonstrate that the performance and scalability of the tool
113

is very good for about 40 virtual networks, the testing limit.

114

Chapter 7

Conclusions

7.1 Final Conclusion

Considering the goals set to be achieved, the first conclusion is that they were indeedmet.Initially, the software’s constraints, guidelines, and desired features were provided. Itserved the purpose of being a reference along the design and implementation stages. Theplatform’s requirements, communication semantics, constraints, and the use-cases were es-tablished.The design stage refined the software’s architecture (chapter 4), further defined the fea-tures, analysed potential issues and presented solutions for virtual network embedding anddiscovery.Virtual network discovery algorithms, despite being fundamental for future virtualizednetworks, have not been a research target in the past few years. In order to fill the existingresearch gap, a distributed approach for virtual network discovery was proposed, basedon concepts from overlay networks, bridging, and routing protocols. An extended analysisand description of the developed algorithm was done. In addition, simulation tests wereperformed that confirmed the algorithm’s feasibility and performance.The results achieved proved the algorithm’s low overhead and scalability properties,concerning both the number of exchanged messages and required simulation cycles. Infact, for physical networks with 500 nodes, the algorithm was able to provide a messageoverhead that was more than three orders of magnitude lower than flooding-based algorithmsperforming the same task.With respect to the scalability tests, with an increasing amount of virtual networks, thetests revealed a linear behaviour, with a much lower overhead penalty when compared tothe said flooding mechanisms. These results further clarified the scalability properties ofthe proposed discovery algorithm.The experimental virtual network discovery tests have validated the previously accom-plished simulation results. It was shown that the discovery algorithm behaves linearly withthe increase in the number of existing virtual networks. Even more relevant was the com-parison between the distributed algorithm and a centralized approach. This comparison,revealed that performance advantages can be attained with the distributed algorithm whenthe number of virtual networks to be discovered starts to increase. It is expected that withan additional increase in the complexity of the virtual networks, the performance advantage
115

of the distributed approach will be even more significant. Thus, distributed algorithms willhave to be supported on future network virtualization platforms.Virtual network mapping algorithms, on the other hand, have been studied by severalauthors, and some solutions have been proposed. Nonetheless, several issues were foundthat had to be addressed by the developed algorithm, such as the heterogeneity of bothphysical and virtual resources.The performance of the proposed mapping algorithm was also tested on a simulationenvironment. The simulation results showed the behaviour of the mapping algorithm ondifferent scenarios, which considered heterogeneous specifications for physical and virtualnetworks, as well as virtual networks with different dimensions.Based on the attained results, it was possible to assess the scaling of the number ofaccepted virtual networks with their size, the impact of the embedded virtual networks’size on the load distribution on both physical nodes and links, and also the impact of thesubstrate network characteristics on the number of accepted virtual networks. These resultsprovide guidelines for what should be expected on a real production environment.With respect to the experimental results, it was shown that the mapping algorithm followsa linear trend with the increase of existing virtual networks. This trend is a good indicativeof the mapping algorithm performance, although additional tests on larger and more complexsubstrate and virtual networks should be performed.The required time to create virtual networks is a reflex of the performance of both theresource information gathering and virtual node creation mechanisms. The results achieved,show that even with a substrate network running near its limits, with 40 virtual networksembedded, the virtual network creation procedure is still able to provide fast virtual networkcreation times, i.e. less than 1 minute.Every module was thoroughly analysed on chapter 5. Throughout this analysis, it wasclear that a high performance design approach was taken and that task parallelism was fullyexplored.The provided GUI makes the interaction with the user easy and intuitive to the point thatdesigning, monitoring, and managing virtual networks is as easy as using a network simula-tor. The Manager examination demonstrated its mapping and data aggregation mechanisms,and, finally, the Agents’ analysis revealed their main techniques developed for improving theperformance of several critical features, such as virtual node creation and data gathering.All of the attained results demonstrated the scalability and performance properties ofthe developed platform and respective algorithms. They have also proved that the existenceof a single tool to efficiently and quickly instantiate and perform dynamic discovery andmonitoring of virtual networks is feasible .The virtualization platform developed can, therefore, perform the tasks that it was setto achieve: it is able to efficiently and intelligently map virtual networks into substratenetworks, to perform discovery tasks, to monitor, and manage virtual networks.
7.2 Future Work

Although many of the desirable and needed features and mechanisms for a networkvirtualization platform were implemented, other features are also important and should beaddressed.Reconfiguration features could increase the versatility in virtual network management, by
116

allowing on-the-fly addition, removal and reconfiguration of virtual nodes and links. Whencombined with migration features, several opportunities arise: virtual nodes and links couldbe reassigned to other locations without disrupting the virtual networks, in order to compen-sate for physical resources’ and/or links’ overload; the maintenance of the substrate networkcould be done without affecting the virtual networks; power savings could be achieved byshutting down unneeded or underused physical resources.Fault-tolerance mechanisms have to be developed so that the virtual networks’ operationis not compromised, even in the case of physical resources’ failures.The security aspects are not to be disregarded. In a substrate network running multiplevirtual networks, care must be taken to ensure that access to the virtual networks is doneon a secure way. Besides, virtual networks should not pose security risks to other onesrunning on the same substrate.The access to virtual networks’ information and management capabilities should resort tosecure procedures, through authentication for example. In addition, the messages exchangedbetween each developed module, on the management network, should be made secure.One other fundamental feature on production environments is the ability to create virtualnetworks spanning multiple InPs. Therefore, standard communication mechanisms should bedeveloped and so should mapping algorithms that take into account multiple providers andtheir particularities.Taking into account the described issues and lack of functionalities, it is clear that thereis still a lot of work to be done if this network virtualization platform ever intends to takeits place in an operator’s network.

117

118

Bibliography

[1] 4WARD Consortium: Virtualisation approach: Evaluation and integration. Technicalreport, ICT-4WARD project, Deliverable D3.2., January 2010.
[2] 4WARD Consortium: Virtualisation approach: Evaluation and integration - update. Tech-nical report, ICT-4WARD project, Deliverable D3.2.1, June 2010.
[3] Abramson, Darren, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier, Ra-jesh Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu, and John Weigert: IntelVirtualization Technology for directed I/O. Intel Technology Journal, 10(3):179–192, Au-gust 2006, ISSN 1535-766X. http://developer.intel.com/technology/itj/

2006/v10i3/2-io/1-abstract.htm.
[4] Adams, Keith and Ole Agesen: A comparison of software and hardware techniques forx86 virtualization. SIGOPS Oper. Syst. Rev., 40:2–13, October 2006, ISSN 0163-5980.

http://doi.acm.org/10.1145/1168917.1168860.
[5] AMD: Amd-v™ nested paging. White paper, July 2008. http://developer.amd.

com/assets/NPT-WP-1%201-final-TM.pdf.
[6] AMD: AMD I/O Virtualization Technology (IOMMU) Specification - R 1.26. White paper,February 2009. http://www.amd.com/us-en/assets/content_type/white_

papers_and_tech_docs/34434.pdf.
[7] Andersen, David G.: Theoretical approaches to node assignment. UnpublishedManuscript, December 2002.
[8] Anderson, Thomas, Larry Peterson, Scott Shenker, and Jonathan Turner: Over-coming the Internet Impasse through Virtualization. Computer, 38:34–41, April2005, ISSN 0018-9162. http://portal.acm.org/citation.cfm?id=1058219.

1058273.
[9] Barham, Paul, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, RolfNeugebauer, Ian Pratt, and Andrew Warfield: Xen and the art of virtualization. SIGOPSOper. Syst. Rev., 37:164–177, October 2003, ISSN 0163-5980. http://doi.acm.org/

10.1145/1165389.945462.
[10] Bierman, A. and K. Jones: Physical Topology MIB - RFC 2922, 2000. http://www.

faqs.org/rfcs/rfc2922.html.
[11] Cacti: Cacti. http://www.cacti.net/.

119

http://developer.intel.com/technology/itj/2006/v10i3/2-io/1-abstract.htm
http://developer.intel.com/technology/itj/2006/v10i3/2-io/1-abstract.htm
http://doi.acm.org/10.1145/1168917.1168860
http://developer.amd.com/assets/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/assets/NPT-WP-1%201-final-TM.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/34434.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/34434.pdf
http://portal.acm.org/citation.cfm?id=1058219.1058273
http://portal.acm.org/citation.cfm?id=1058219.1058273
http://doi.acm.org/10.1145/1165389.945462
http://doi.acm.org/10.1145/1165389.945462
http://www.faqs.org/rfcs/rfc2922.html
http://www.faqs.org/rfcs/rfc2922.html
http://www.cacti.net/

[12] Carissimi, Alexandre: Virtualização: da teoria a soluções. In Simpósio Brasileiro deRedes de Computadores 2008, pages 173–207, Rio de Janeiro - Brazil, 2008. Rio deJaneiro - Brazil.
[13] Chowdhury, N. Mosharaf K. and Raouf Boutaba: A survey of network virtualization. Com-puter Networks, 54(5):862–876, April 2010, ISSN 1389-1286. http://dx.doi.org/

10.1016/j.comnet.2009.10.017.
[14] Cisco: Cisco. http://www.cisco.com/.
[15] Cisco: Cisco Nexus 1000V Datasheet. http://www.cisco.com/en/US/prod/

collateral/switches/ps9441/ps9902/data_sheet_c78-492971.pdf.
[16] Cisco: Cisco Visual Networking Index—Forecast and Methodology 2008–2013. Whitepaper, June 2009. http://www.cisco.com/en/US/solutions/collateral/

ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf.
[17] Comeau, Les: CP-40, The Origin of VM/370. In Proceedings of SEAS AM82, September1982.
[18] Crocker, S.: Protocol Notes; RFC 36 - Updated by RFC 39 and 44, march 1970. http:

//tools.ietf.org/html/rfc36.
[19] Egi, Norbert, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Felipe Huici, andLaurent Mathy: Towards high performance virtual routers on commodity hardware. InCoNEXT ’08: Proceedings of the 2008 ACM CoNEXT Conference, pages 1–12, New York,NY, USA, 2008. ACM, ISBN 978-1-60558-210-8.
[20] Egi, Norbert, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Felipe Huici, LaurentMathy, and Panagiotis Papadimitriou: The virtual router project. http://nrg.cs.

ucl.ac.uk/vrouter/.
[21] Famzah, Ivan Zahariev: popen_noshell. http://code.google.com/p/

popen-noshell/.
[22] Feamster, Nick, Lixin Gao, and Jennifer Rexford: How to lease the internet in your sparetime. SIGCOMM Comput. Commun. Rev., 37(1):61–64, 2007, ISSN 0146-4833.
[23] GENI: GENI - Global Environment for Network Innovations. http://www.geni.net/.
[24] Handley, M.: Why the internet only just works. BT Technology Journal, 24(3):119–129,2006, ISSN 1358-3948.
[25] Harrenstien, Ken, Vic White, and Elizabeth Feinler: Hostnames server - rfc 811, March1982. http://www.faqs.org/rfcs/rfc811.html.
[26] Houidi, I., W. Louati, and D. Zeghlache: A Distributed Virtual Network Mapping Al-gorithm. In Communications, 2008. ICC ’08. IEEE International Conference on, pages5634–5640, 2008. http://dx.doi.org/10.1109/ICC.2008.1056.
[27] Hunter, Jason and Brett McLaughlin: JDOM. http://www.jdom.org/.

120

http://dx.doi.org/10.1016/j.comnet.2009.10.017
http://dx.doi.org/10.1016/j.comnet.2009.10.017
http://www.cisco.com/
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9902/data_sheet_c78-492971.pdf
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9902/data_sheet_c78-492971.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://tools.ietf.org/html/rfc36
http://tools.ietf.org/html/rfc36
http://nrg.cs.ucl.ac.uk/vrouter/
http://nrg.cs.ucl.ac.uk/vrouter/
http://code.google.com/p/popen-noshell/
http://code.google.com/p/popen-noshell/
http://www.geni.net/
http://www.faqs.org/rfcs/rfc811.html
http://dx.doi.org/10.1109/ICC.2008.1056
http://www.jdom.org/

[28] Intel: First the Tick, Now the Tock: Next Generation Intel Microarchitecture (Ne-halem). White paper, April 2008. http://www.intel.com/pressroom/archive/
reference/whitepaper_nehalem.pdf.[29] Jannotti, John, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, and James W.O’Toole, Jr.: Overcast: reliable multicasting with on overlay network. In Proceedingsof the 4th conference on Symposium on Operating System Design & Implementation -Volume 4, OSDI’00, pages 14–14, Berkeley, CA, USA, 2000. USENIX Association. http:
//portal.acm.org/citation.cfm?id=1251229.1251243.[30] Jelasity, Márk, Alberto Montresor, and Ozalp Babaoglu: T-Man: Gossip-based fast over-lay topology construction. Comput. Netw., 53(13):2321–2339, 2009, ISSN 1389-1286.[31] Jelasity, Márk and Ozalp Babaoglu: T-Man: Gossip-based overlay topology manage-ment. In In 3rd Int. Workshop on Engineering Self-Organising Applications (ESOA’05),pages 1–15. Springer-Verlag, 2005.[32] Keromytis, Angelos D., Vishal Misra, and Dan Rubenstein: SOS: secure overlay services.In Proceedings of the 2002 conference on Applications, technologies, architectures, andprotocols for computer communications, SIGCOMM ’02, pages 61–72, New York, NY,USA, 2002. ACM, ISBN 1-58113-570-X. http://doi.acm.org/10.1145/633025.
633032.[33] Kohlera, E., R. Morris, B. Chen, J. Jahnotti, and M. F. Kasshoek: The click modularrouter. In ACM Transaction on Computer Systems, vol. 18, no. 3, pages 263–297. ACM,2000. http://read.cs.ucla.edu/click/click.[34] Lischka, Jens and Holger Karl: A virtual network mapping algorithm based on subgraphisomorphism detection. In VISA ’09: Proceedings of the 1st ACM workshop on Virtualizedinfrastructure systems and architectures, pages 81–88, New York, NY, USA, 2009. ACM,ISBN 978-1-60558-595-6.[35] Liu, Yu, Guangxi Zhu, and Hao Yin: A practical hybrid mechanism for peer discovery. InIntelligent Signal Processing and Communication Systems, 2007. ISPACS 2007. Interna-tional Symposium on, pages 706 –709, nov. 2007.[36] Lu, Jing and Jonathan Turner: Efficient mapping of virtual networks onto a shared sub-strate. Technical report, Washington University in St. Louis, 2006. http://www.arl.
wustl.edu/~{}jl1/research/tech_report_2006.pdf.[37] Lua, Eng Keong, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim: A survey andcomparison of peer-to-peer overlay network schemes. IEEE Communications Surveysand Tutorials, 7:72–93, 2005.[38] MacDonald, Neil: Neil macdonald’s gartner blog. http://blogs.gartner.com/
neil_macdonald/.[39] Malkhi, Dahlia, Moni Naor, and David Ratajczak: Viceroy: a scalable and dynamicemulation of the butterfly. In Proceedings of the twenty-first annual symposium onPrinciples of distributed computing, PODC ’02, pages 183–192, New York, NY, USA, 2002.ACM, ISBN 1-58113-485-1. http://doi.acm.org/10.1145/571825.571857.

121

http://www.intel.com/pressroom/archive/reference/whitepaper_nehalem.pdf
http://www.intel.com/pressroom/archive/reference/whitepaper_nehalem.pdf
http://portal.acm.org/citation.cfm?id=1251229.1251243
http://portal.acm.org/citation.cfm?id=1251229.1251243
http://doi.acm.org/10.1145/633025.633032
http://doi.acm.org/10.1145/633025.633032
http://read.cs.ucla.edu/click/click
http://www.arl.wustl.edu/~{}jl1/research/tech_report_2006.pdf
http://www.arl.wustl.edu/~{}jl1/research/tech_report_2006.pdf
http://blogs.gartner.com/neil_macdonald/
http://blogs.gartner.com/neil_macdonald/
http://doi.acm.org/10.1145/571825.571857

[40] Mannie, E.: Generalized Multi-Protocol Label Switching (GMPLS) Architecture; RFC3945, 2004. http://tools.ietf.org/html/rfc3945.
[41] McKeown, Nick, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,Jennifer Rexford, Scott Shenker, and Jonathan Turner: OpenFlow: enabling inno-vation in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, 2008.

http://portal.acm.org/citation.cfm?id=1355734.1355746.
[42] McQuillan, J., I. Richer, and E. Rosen: The new routing algorithm for the arpanet. Com-munications, IEEE Transactions on, 28(5):711 – 719, may 1980, ISSN 0090-6778.
[43] Menascé, Daniel A.: Virtualization: Concepts, Applications, and Performance Modeling,2005.
[44] Nagios: Nagios. http://www.nagios.org/.
[45] Nagle, John: Congestion control in IP/TCP internetworks. SIGCOMM Comput. Commun.Rev., 14(4):11–17, 1984, ISSN 0146-4833.
[46] Neiger, Gil, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig: Intel VirtualizationTechnology: Hardware Support for Efficient Processor Virtualization. Intel TechnologyJournal, 10(3):167–177, August 2006, ISSN 1535-766X. http://developer.intel.

com/technology/itj/2006/v10i3/1-hardware/1-abstract.htm.
[47] Networks, Juniper: Juniper networks. http://www.juniper.net/us/en/.
[48] Peterson, Larry, Tom Anderson, David Culler, and Timothy Roscoe: A blueprint for in-troducing disruptive technology into the internet. SIGCOMM Comput. Commun. Rev.,33:59–64, January 2003, ISSN 0146-4833. http://doi.acm.org/10.1145/774763.

774772.
[49] PlanetLab: PlanetLab - An Open Platform for Developing, Deploying, and AccessingPlanetary-Scale Services. http://www.planet-lab.org/.
[50] Popek, Gerald J. and Robert P. Goldberg: Formal requirements for virtualizable thirdgeneration architectures. Commun. ACM, 17(7):412–421, 1974, ISSN 0001-0782.
[51] Postel, J.: Computer mail meeting notes - rfc 805, February 1982. http://www.faqs.

org/rfcs/rfc805.html.
[52] Ratnasamy, Sylvia, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker: Ascalable content-addressable network. SIGCOMM Comput. Commun. Rev., 31:161–172,August 2001, ISSN 0146-4833. http://doi.acm.org/10.1145/964723.383072.
[53] Robin, John Scott and Cynthia E. Irvine: Analysis of the Intel Pentium’s ability to supporta secure virtual machine monitor. In Proceedings of the 9th conference on USENIX Secu-rity Symposium - Volume 9, pages 10–10, Berkeley, CA, USA, 2000. USENIX Association.

http://portal.acm.org/citation.cfm?id=1251306.1251316.
[54] Rodriguez, Sergio R.: Topology Discovery Using Cisco Discovery Protocol. CoRR,abs/0907.2121, 2009.

122

http://tools.ietf.org/html/rfc3945
http://portal.acm.org/citation.cfm?id=1355734.1355746
http://www.nagios.org/
http://developer.intel.com/technology/itj/2006/v10i3/1-hardware/1-abstract.htm
http://developer.intel.com/technology/itj/2006/v10i3/1-hardware/1-abstract.htm
http://www.juniper.net/us/en/
http://doi.acm.org/10.1145/774763.774772
http://doi.acm.org/10.1145/774763.774772
http://www.planet-lab.org/
http://www.faqs.org/rfcs/rfc805.html
http://www.faqs.org/rfcs/rfc805.html
http://doi.acm.org/10.1145/964723.383072
http://portal.acm.org/citation.cfm?id=1251306.1251316

[55] Rose, Robert: Survey of system virtualization techniques. Technical report, 2004.
[56] Rosen, E.: Multi-protocol label switching (mpls) architecture; rfc 3031, 2001. http:

//tools.ietf.org/html/rfc3031.
[57] Rowstron, Antony and Peter Druschel: Pastry: Scalable, Decentralized Object Location,and Routing for Large-Scale Peer-to-Peer Systems. In Middleware ’01: Proceedings ofthe IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg,pages 329–350. Springer-Verlag, 2001. http://www.springerlink.com/content/

7y5mjjep0hqlctv6.
[58] Schaffrath, Gregor, Christoph Werle, Panagiotis Papadimitriou, Anja Feldmann, RolandBless, Adam Greenhalgh, Andreas Wundsam, Mario Kind, Olaf Maennel, and LaurentMathy: Network virtualization architecture: proposal and initial prototype. In VISA’09: Proceedings of the 1st ACM workshop on Virtualized infrastructure systems andarchitectures, pages 63–72, New York, NY, USA, 2009. ACM, ISBN 978-1-60558-595-6.
[59] SPEC: SPEC Virtualization Committee. http://www.spec.org/

specvirtualization/index.html.
[60] Stoica, Ion, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan:Chord: A scalable peer-to-peer lookup service for internet applications. In SIGCOMM’01: Proceedings of the 2001 conference on Applications, technologies, architectures,and protocols for computer communications, pages 149–160, New York, NY, USA, 2001.ACM, ISBN 1-58113-411-8.
[61] Su, Zaw Sing and Jon Postel: Domain naming convention for internet user applications- rfc 819, August 1982. http://www.faqs.org/rfcs/rfc819.html.
[62] Subramanian, Lakshminarayanan, Ion Stoica, Hari Balakrishnan, and Randy H. Katz:OverQos: an overlay based architecture for enhancing internet QoS. In NSDI’04: Pro-ceedings of the 1st conference on Symposium on Networked Systems Design and Im-plementation, pages 6–6, Berkeley, CA, USA, 2004. USENIX Association.
[63] Tripathi, S., N. Droux, K. Belgaied, and S. Khare: Crossbow Virtual Wire: Network in aBox. In USENIX LISA ’09. USENIX Association, nov 2009.
[64] Tripathi, Sunay, Nicolas Droux, Thirumalai Srinivasan, and Kais Belgaied: Crossbow:from hardware virtualized NICs to virtualized networks. In VISA ’09: Proceedings ofthe 1st ACM workshop on Virtualized infrastructure systems and architectures, pages53–62, New York, NY, USA, 2009. ACM, ISBN 978-1-60558-595-6.
[65] Turner, Jon and David Taylor: Diversifying the internet. In In Proc. IEEE GLOBECOM,pages 755–760, 2005.
[66] Uhlig, Rich, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Martins, AndrewV. Anderson, Steven M. Bennett, Alain Kagi, Felix H. Leung, and Larry Smith: Intelvirtualization technology. Computer, 38(5):48–56, 2005, ISSN 0018-9162.
[67] Veillard, Daniel: libxml2. http://www.xmlsoft.org/.

123

http://tools.ietf.org/html/rfc3031
http://tools.ietf.org/html/rfc3031
http://www.springerlink.com/content/7y5mjjep0hqlctv6
http://www.springerlink.com/content/7y5mjjep0hqlctv6
http://www.spec.org/specvirtualization/index.html
http://www.spec.org/specvirtualization/index.html
http://www.faqs.org/rfcs/rfc819.html
http://www.xmlsoft.org/

[68] VMware: Understanding Full Virtualization, Paravirtualization, and Hardware As-sist. White paper, October 2007. http://www.vmware.com/files/pdf/VMware_
paravirtualization.pdf.

[69] Waxman, B.M.: Routing of multipoint connections. Selected Areas in Communications,IEEE Journal on, 6(9):1617 –1622, dec 1988, ISSN 0733-8716.
[70] Whitaker, Andrew, Marianne Shaw, and Steven D. Gribble: Denali: Lightweight VirtualMachines for Distributed and Networked Applications. In In Proceedings of the USENIXAnnual Technical Conference, 2002.
[71] XORP: XORP - eXtensible Open Router Platform. http://www.xorp.org/.
[72] Zhu, Y. and M. Ammar: Algorithms for assigning substrate network resources to vir-tual network components. In INFOCOM 2006. 25th IEEE International Conference onComputer Communications. Proceedings, pages 1–12, 2006.

124

http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.xorp.org/

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction & Overview
	Motivation
	Internet ‘s Origins and Evolution
	Current Context
	Enabling Innovation

	Purpose
	Contribution
	Thesis Outline

	State of the Art
	Overview
	Server Virtualization
	Advantages
	Disadvantages
	Virtual Machine Monitor
	IA-32 Virtualization
	Virtualization Techniques
	Virtual Appliances
	Analysis of Server Virtualization Tools
	Libvirt: Virtualization API
	Summary

	Network Virtualization
	Design Goals
	Proposed Business Models
	Existing Technologies
	Existing Initiatives
	Mechanisms for Network Virtualization Support
	Summary

	Network Virtualization Platforms
	GENI
	VNet Management Demonstrator v0.1

	Platform Requirements Specification
	Introduction
	Overall Description
	Features
	User Classes
	Operating Environment
	Constraints
	Assumptions and Dependencies

	System Features Details
	Physical and Virtual Resource and Topology Discovery
	Substrate and Virtual Network Monitoring
	Virtual Network Creation
	Virtual Network Management

	Interface Requirements
	Use Cases
	User Interface
	Software Interfaces
	Communication Interfaces

	Non-functional Requirements
	Performance
	Security
	Software Quality Attributes

	Conclusions

	Architecture & Mechanisms Design
	Introduction
	Module Decomposition
	Control Centre module
	Manager module
	Agent module

	Data Decomposition
	Control Centre Data Decomposition
	Manager Data Decomposition
	Agent Data Decomposition

	Dependencies
	Control Centre Dependencies
	Manager Dependencies
	Agent Dependencies

	Interface Description
	User – Control Centre Interface
	Manager – Control Centre Interface
	Agent - Manager Interface

	Identification Process
	Virtual Network Creation
	Topology and Configuration
	Virtual Network Mapping
	Virtual Resource Creation
	Simulation Results

	Topology Discovery
	Distributed Topology Discovery
	Centralized Topology Discovery
	Simulation Results

	Substrate and Virtual Network Monitoring
	Virtual Network Management
	Conclusions

	Software Implementation
	Introduction
	Auxiliary Functions and Libraries
	XML parsing
	popen_noshell
	libvirt

	Virtual Network Control Centre
	Databases and Classes
	Module Decomposition
	Virtual Network Design & Configuration
	 Virtual Network Monitoring
	 Virtual Network Management

	Virtual Network Manager
	Main Databases and Structures
	Module Decomposition
	Virtual Network Mapping

	Virtual Network Agent
	Main Databases and Structures
	Module Decomposition
	Resource Data Gathering
	Virtual Network Creation

	Conclusion

	Tests & Results
	Introduction
	Testbed Description & General Assumptions
	Data Gathering
	Cold Boot

	Network Discovery
	Cold Network Discovery
	Hot Network Discovery

	Virtual Network Mapping & Creation
	Virtual Network Mapping
	Virtual Network Creation

	Conclusions

	Conclusions
	Final Conclusion
	Future Work

	Bibliography

