
 Universidade de Aveiro

2010

Departamento de Electrónica, Telecomunicações e
Informática

Daniel Filipe
Leonardo Figueira

Controlo do Transporte de Sessões Multicast em
Redes Dinâmicas

 Universidade de Aveiro

2010

Departamento de Electrónica, Telecomunicações e
Informática

Daniel Filipe
Leonardo Figueira

Controlo do Transporte de Sessões Multicast em
Redes Dinâmicas

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Electrónica e de Telecomunicações, realizada sob a orientação científica da
Prof. Dra. Susana Sargento, Professora auxiliar do Departamento de
Electrónica, Telecomunicações e Informática da Universidade de Aveiro e do
Prof. Dr. Augusto Neto, Colaborador do Instituto de Telecomunicações e
Professor Adjunto da Universidade Federal de Goiás.

Dedico este trabalho aos meus Pais, Irmã e Namorada pelo incansável apoio.

O júri

Presidente Prof. Dr. José Alberto Gouveia Fonseca
Professor associado do Departamento de Electrónica, Telecomunicações e Informática da
Universidade de Aveiro.

Orientadora Prof. Dra. Susana Isabel Barreto de Miranda Sargento
Professora auxiliar do Departamento de Electrónica, Telecomunicações e Informática da
Universidade de Aveiro.

Vogal Prof. Dr. Fernando José Silva Velez
Professor auxiliar do Departamento de Engenharia Electromecânica da Faculdade de Engenharia
da Universidade da Beira Interior.

Agradecimentos

Desde logo gostaria de agradecer de forma especial aos meus Pais, Irmã e
Namorada, pelo constante apoio, atenção e motivação para superar esta
importante etapa da minha vida.

À professora Susana Sargento, por toda a disponibilidade, orientação e
motivação ao longo de todos estes meses, imprescindível para a conclusão
com sucesso deste trabalho.

Ao Nuno Carapeto por ter partilhado comigo todos os seus conhecimentos,
estando sempre disponível para tirar duvidas para a elaboração do trabalho.

Ainda a todos os meus colegas de curso que tanto me apoiaram, tanto nos
melhores momentos como nos mais complicados, um grande obrigado.

Palavras-chave

Multicast, Consciencia de Contexto, Sessoes Multiparty, Qualidade de
Experiencia, Qualidade de Serviço.

Resumo

Hoje em dia assiste-se a um aumento considerável da procura de serviços ou
aplicações para múltiplos utilizadores (multiparty), como streaming de
conteúdos media, partilha de informações, colaboração entre utilizadores,
entre outros. O suporte de tais serviços pela Internet mostra-se extremamente
exigente para as actuais arquitecturas de rede, requerendo recursos e
funcionalidades completamente fora do alcance de serem suportadas. Desta
forma, é necessário investigar e desenvolver novos mecanismos que
possibilitem simultaneamente um melhor e maior controlo a este nível.

Neste âmbito, tem-se observado actualmente um aumento no número de
arquitecturas propostas, capazes de integrar as vantagens do protocolo IP
multicast na entrega e transporte de conteúdos multimédia a grupos de
utilizadores. Por outro lado, a inclusão de informação de contexto da rede,
ambiente e utilizadores proporciona uma maior personalização e adaptação
nas decisões de controlo necessárias à rede. É neste sentido que o projecto C-
Cast abordado nesta tese se enquadra, procurando especificar uma
arquitectura capaz de integrar uma quantidade abrangente de informação de
contexto por forma a fornecer personalização nas sessões de entrega de
conteúdos multimédia. Para a gestão dos recursos de rede é também proposto
um mecanismo de transporte dos conteúdos baseado em IP multicast,
juntamente com a possibilidade de adaptação dos caminhos escolhidos na
rede de core baseada na informação de contexto da rede e do utilizador. A
junção destes factores visa então possibilitar uma melhor gestão dos recursos
disponibilizados pela rede. O principal objectivo desta Tese é então focado no
desenvolvimento de um módulo inteligente, capaz de permitir o transporte
multiparty e reserva de recursos, permitindo a entrega dos conteúdos de uma
forma personalizada e independente das capacidades da rede e do utilizador,
melhorando não só a qualidade de serviço, como também a qualidade de
experiência.

De forma a implementar a proposta apresentada, recorreu-se à criação de um
novo componente organizado segundo uma arquitectura interna hierarquizada
e centralizada, na qual um único módulo (IPT Controller) central comanda
vários outros módulos (IPT Node) distribuídos ao longo de toda a rede. Após
concluída a implementação, provou-se que o componente é capaz de criar e
remover várias reservas de recursos por forma a permitir o transporte
multiparty por caminhos específicos na rede. Este mecanismo é também capaz
de modificar reservas previamente efectuadas, permitindo que as sessões
multimédia sejam capazes de responder às modificações de contexto na rede,
actualizando possíveis sessões já existentes com um mínimo de interrupção
de serviço possível para utilizadores que não tenham sofrido alterações.
Avaliando os resultados obtidos, pode-se também concluir que o impacto do
IPT na rede é ligeiro e menor em relação ao dos restantes componentes, pelo
que não é um factor decisivo no desempenho global da arquitectura.

Keywords

Multicast, Context-Awaress, Multiparty Sessions, Quality of Experience, Quality
of Service.

Abstract

Today we are witnessing a considerable increase in the demand for services or
applications for multiple users (multiparty), such as streaming media content,
information sharing, collaboration among users, among others. The support of
such services over the Internet proves to be extremely demanding for the
existing network architectures, requiring features and functionality completely
out of reach of the current networks. Thus, investigation and development of
new mechanisms that enable a superior management at this level is necessary.

In this context, it is possible to observe an increase in the number of
architectures proposed, which are able of integrating the advantages of the IP
multicast protocol in the transport and delivery of multimedia content to user
groups. Moreover, the inclusion of context information from the network,
environment and users, provides a greater customization and adaptation in the
decisions necessary to control the network. It in this context that the C-CAST
project discussed in this dissertation is included, which tries to specify an
architecture capable of integrating a comprehensive amount of context
information in order to be able to provide superior dynamic sessions to deliver
multimedia content. For the management of the network resources, it is also
proposed a mechanism for the transport of multimedia content based on IP
multicast. The possibility of path adaptation in the core network based on
context information of both users and network is also considered. Is it with the
combination of these factors that this project seeks to enable an improved
management of the network’s resources. The main objective of this dissertation
is then focused on the latter point of the C-CAST project architecture. It
proposed the development of an intelligent module capable of allowing
multiparty transport and resource reservation, enabling the delivery of
multimedia content in a personalized way, independent of network and users
capabilities, improving not only the quality of service, as well as quality of
experience.

In order to implement the proposed solution, a new component was developed,
organized according to a hierarchical and centralized architecture in which a
single central unit (IPT Controller) is able to command several other modules
(IPT Node) deployed throughout the network. It was verified that the developed
component is capable of creating and removing the necessary enforcements
on the network to enable the multiparty transport through specific data paths. It
is also capable of modifying previous enforcements, allowing the multimedia
sessions to adapt themselves to context changes avoiding as much as possible
to disrupt the existing services to users that were not subjected to
modifications. Evaluating the obtained results, it is possible to conclude that the
overall impact of the IPT component in the network is reduced and
considerably less than the one of the remaining components. Hence, the IPT
does not have a direct impact on the overall architecture performance.

i

Table of Contents

TABLE OF CONTENTS ... I

LIST OF FIGURES ... V

INDEX OF TABLES ... VII

ACRONYMS ... VIII

1. INTRODUCTION ... 1

1.1. MOTIVATION .. 1

1.2. OBJECTIVES .. 3

1.3. CONTRIBUTION OF THIS WORK.. 4

1.4. ORGANIZATION OF THE DISSERTATION ... 4

2. STATE OF THE ART ... 7

2.1. ORGANIZATION ... 7

2.2. IP MULTICAST ... 7

2.2.1. Multicast Mobility Solutions .. 10

2.2.2. Multicast Resource Allocation Mechanism ... 11

2.2.3. Multicast Overlay Routing ... 14

2.3. CONTEXT-AWARE NETWORKS .. 15

2.4. SIGNALLING PROTOCOLS ... 16

2.4.1. Next Steps in Signalling Protocol (NSIS)... 17

2.4.2. Common Open Policy Service Protocol (COPS) .. 19

2.4.3. Diameter .. 20

2.5. SUMMARY ... 24

3. C-CAST .. 27

3.1. ORGANIZATION ... 27

3.2. GENERAL CONCEPTS .. 27

3.3. CONTEXT DETECTION AND DISTRIBUTION FRAMEWORK .. 29

ii

3.4. CONTEXT-AWARE MULTIPARTY SESSION MANAGEMENT ... 30

3.4.1. Context-Aware Multiparty Transport Framework ... 31

3.5. IP TRANSPORT .. 33

3.5.1. IPT Controller ... 34

3.5.2. IPT Node ... 37

3.6. SESSION EVENTS .. 38

3.6.1. Session Creation ... 38

3.6.2. Session Modification .. 42

3.6.2.1. New User ... 42

3.6.2.2. Modified User .. 45

3.6.2.3. Removed User ... 46

3.6.3. Session Termination ... 47

3.7. SUMMARY ... 48

4. IP TRANSPORT .. 51

4.1. ORGANIZATION ... 51

4.2. IMPLEMENTATION DETAILS .. 51

4.3. IPT CONTROLLER... 52

4.3.1. NUM/NME Interface .. 52

4.3.1.1. Session Setup .. 54

4.3.1.2. Update Unicast Ports ... 57

4.3.1.3. Session Modify .. 59

4.3.1.4. Session Remove ... 62

4.3.2. MTO Controller .. 63

4.3.3. IPT Nodes ... 67

4.3.3.1. Start-up Registration ... 67

4.3.3.2. Joining/Leaving multicast group .. 70

4.4. IPT NODE .. 71

4.5. SUMMARY ... 73

5. RESULTS .. 75

5.1. ORGANIZATION ... 75

5.2. DEVELOPMENT AND INTEGRATION .. 75

iii

5.3. TEST SCENARIOS .. 77

5.4. CONTROL MESSAGE OVERHEAD EVALUATION ... 83

5.5. PROCESSING TIME EVALUATION ... 90

5.6. IPT PERFORMANCE CONCLUSIONS .. 95

5.7. SUMMARY ... 96

6. CONCLUSIONS AND FUTURE WORK ... 99

REFERENCES .. 101

v

List of Figures

Figure 1 – Unicast approach .. 8

Figure 2 – Multicast approach ... 9

Figure 3 – Firewall signalling impact for VoIP ... 17

Figure 4 – NSIS protocol stack [30] .. 18

Figure 5 – COPS basic model ... 20

Figure 6 – Diameter Proxy Agent... 22

Figure 7 – Diameter Redirect Agent .. 23

Figure 8 – Diameter message layout ... 23

Figure 9 – Diameter Attribute-Value Pairs layout ... 24

Figure 10 – Context Detection and Distribution framework layout [35] 29

Figure 11 – Context-Aware Multiparty Transport framework layout 31

Figure 12 – AMTs and Sub-AMTs [36] ... 32

Figure 13 – IPT Architecture .. 34

Figure 14 – Session Initiation message sequence [38] .. 41

Figure 15 – Session Modification: New User message sequence [38] 44

Figure 16 – Session Modification: Updated User message sequence [38] 46

Figure 17 – Session Modification: Removed User message sequence [38] 47

Figure 18 – Session Termination message sequence [38] .. 48

Figure 19 – Multiparty Group class and important functions associated 53

Figure 20 – Session Setup routine diagram ... 56

Figure 21 – Update_Unicast_Ports() routine diagram .. 58

Figure 22 – Session Modify routine diagram ... 60

Figure 23 – Session Remove routine diagram ... 63

Figure 24 – Structure of the message sent to the MTO [38] ... 64

Figure 25 – Structure of the answer sent by the MTO [38] .. 67

Figure 26 – IPT Data vector Structure ... 69

Figure 27 – Diameter message with AVPs sent to IPT Nodes ... 71

vi

Figure 28 – IPT Node architecture ... 72

Figure 29 – Testbed scheme for the various tests performed .. 76

Figure 30 – Scenario for the first test .. 78

Figure 31 – Scenario for the third test .. 82

Figure 32 – Signalling overhead percentage for session creation event 84

Figure 33 – Signalling overhead percentage for first session modification event 85

Figure 34 – Signalling overhead percentage for second session modification event 87

Figure 35 – Signalling overhead percentage for session remove event 88

Figure 36 – Processing time for Session Setup event .. 91

Figure 37 – Processing time for Session Modify event ... 92

Figure 38 – Processing time for Session Remove event .. 93

Figure 39 – Time percentage for the overall architecture in a sample session event 95

vii

Index of Tables

Table 1 – MTO message commands .. 65

Table 2 – MTO message for first test .. 79

Table 3 – Second MTO message for first test .. 80

Table 4 – MTO message for second test ... 81

Table 5 – Signalling Overhead evaluation for session creation ... 83

Table 6 – Signalling Overhead evaluation for first session modification 84

Table 7 – Signalling Overhead evaluation for second session modification 86

Table 8 – Signalling Overhead evaluation for session remove.. 88

Table 9 – Comparison of the processing times for each component in session setup 90

Table 10 – Comparison of the processing times for each component in session modify .. 92

Table 11 – Comparison of the processing times for each component in session remove . 93

Table 12 – Time spent for the overall architecture for a sample session event 94

viii

Acronyms

A

 AAA Authentication, Authorization, and Accounting

 ABC Always Best Connected

 ALM Application Layer Multicast

 AMT Abstract Multiparty Transport

 AVP Attribute-value Pair

B

 BT Bi-Directional Tunnelling

C

 CBT Core Based Tree

 C-CAST Context Casting Project

 CDE Content Delivery Enabler

 CoS Class of Service

 CSE Content Selection Enabler

 CtPD Content Processing and Delivery

 CxB Context Broker

 CxC Context Consumer

 CxH Context History

 CxP Context Provider

D

 DVMRP Distance-Vector Multicast Routing Protocol

F

 FA Foreign Agent

G

 GME Group Management Enabler

H

 HA Home Agent

ix

I

 IGMP Internet Group Management Protocol

 IP Internet Protocol

 IPT IP Transport

 ISP Internet Service Provider

M

 MA Multicast Agent

 MIRA Multi-service Resource Allocation

 MN Mobile Node

 MOSPF Multicast OSPF

 MRIB Multicast Routing Information Base

 MTO Multiparty Transport Overlay

N

 NGN Next Generation Networks

 NME Network Management Enabler

 NRS Neglected Reservation Sub-tree

 NSIS Next Steps in Signalling

 NSLP NSIS Signalling Layer Protocol

 NTLP NSIS Transport Layer Protocol

 NUM Network Use Management

O

 OSMAR Overlay for Source-Specific Multicast in Asymmetric Routing

 ON Overlay Node

P

 PIM Protocol Independent Multicast

Q

 QoE Quality of Experience

 QoS Quality of Service

R

 RADIUS Remote Authentication Dial-In User Service

 RS Remote Subscription

x

S

 SIP Session Initiation Protocol

 SLS Service Level Specifications

 SME Session Management Enabler

 SUM Session Use Enabler

T

 TCP Transmission Control Protocol

U

 UDP User Datagram Protocol

V

 VoIP Voice over IP

1

1. Introduction

1.1. Motivation

Currently, Internet Service Providers are strongly investing on new and innovative

types of services, while clients are becoming increasingly more demanding. This trend is

pushing actual network architectures to the limits, which are poorly prepared to support

the delivery of multimedia contents to several groups of users simultaneously. Therefore,

several studies and researches are being done to provide mechanisms to efficiently

support the new increased requirements.

Furthermore, with the company’s massive investments on mobile devices like

netbooks, laptops and smartphones and their enormous success on the general

population, mobility is increasingly becoming a huge factor for Next Generation Networks

(NGN). Hence, clients now expect that the new services offered by the ISPs are able to be

delivered to them anywhere in the world, at any time.

A good solution to relieve some of the new requirements imposed in the networks

is the IP multicast. Being group oriented, the IP multicast is ideal for the transmission of

the multimedia contents to the groups of users, since it is able to grant a significantly

better management of the network resources. However, due to the small support along

the existing routers in the Internet, supplemented with the weak solutions for mobility, IP

multicast is not yet a reliable alternative.

On the other hand, over the last years, several new access technologies as ADSL,

Wi-Fi, UMTS, GPRS, WiMAX and 3G were deployed in the network, significantly increasing

the range of possible underlying technologies for user’s terminals to connect to. Hence,

NGNs are required to fully support data transmission to connected terminals

independently of the access technology used.

Considering this new framework, new solutions appeared with the purpose of

addressing the current network limitations. Context-aware networks have recently gained

more popularity, since several context-information can be retrieved from the network,

environment and user’s terminals, providing essential information which can be used to

2

deliver improved services to the clients. It is particularly useful for the Always Best

Connected (ABC) concept, since the context-information can be used to select the best

possible access for each client, considering not only the network resources, but also user

preferences and environment conditions. Context information can also be used in the

core network, efficiently providing information to select the best path to the data

transmission, but also to successfully and correctly update the network forwarding paths

in situations where the network has been changed (e.g. link failure, degraded wireless

signal, noisy environment, etc).

Therefore, context-awareness is a possible solution to improve the current

multimedia services. However, several mechanisms have to be developed to guarantee

the expected QoS. Context-information should be used to join users in groups with similar

context (i.e. preferences, capabilities, requirements). IP multicast should also be used to

provide the multimedia content delivery to user groups, but also considering QoS

requirements. As such, access and core network paths through which the multimedia

data is sent should be carefully selected, not taking only into account QoS parameters,

but also the user and network context information, improving at the same time not only

the QoS experienced, but also the QoE provided.

Following these thoughts, a new approach was proposed, in the framework of ICT

C-Cast project [1], capable of allowing personalized session content delivery to multiple

users with guaranteed resources. The delivery of the multimedia contents should also, as

proposed, be independent of the underlying network access and transport technologies.

It should also take into account the several context data able to be retrieved from the

network, users and the surrounding environment, to maximize the delivery of the

multimedia contents.

Three distinct frameworks can be identified for the C-Cast project: the context

detection and delivery framework, focusing on the necessary mechanisms to gather the

various context information available in the network/users/environment and provide it to

the context consumers; the multiparty session management framework, which emphases

the various interactions necessary to manage the multimedia sessions; the multiparty

transport framework, which focus on the necessary measures to ensure the correct

3

enforcements on the network to enable the delivery of the multimedia contents to the

user’s terminals. The work developed in this Dissertation is then integrated in the C-Cast

project, more specifically in the multiparty transport framework, in which the

development of a new component responsible for the enforcement of various network

setups is proposed.

1.2. Objectives

The main objective of this Msc. Dissertation is the specification, development, test

and integration in the overall architecture of one of the components included in the

overall C-CAST project architecture, the IP Transport (IPT).

The developed component is integrated in the C-Cast project architecture. It is

able to interact with other elements in the architecture in order to provide a reliable

enforcement of the multiparty path trees on the network. It also enables support for the

modification of existing sessions, in order to provide a mechanism to keep and adapt the

network to possible context changes. These modifications should be able to update the

network with minimal service disruption for existing users that were not subjected to

modifications. Furthermore, it is also able to completely manage (create, maintain and

remove) all the multicast groups in the multimedia sessions. Finally, the IP multicast

addresses are also assigned by the IPT, requiring this module to also behave as a simple

DHCP.

The proposed solution was subjected to various test scenarios (both alone and

integrated with the remaining architecture) in order to assure the correct operation of

the developed component. It is then thoroughly tested in order to evaluate its

functionalities and the impact that the IPT component has on the network performance,

analysing factors such as the control messages overhead, processing time required and

scalability.

4

1.3. Contribution of this work

The entire solution implemented in this Dissertation is part of the C-Cast project,

being included in its architecture as an essential component in the core network decision

process. It enables the creation and removal of generic multimedia sessions, as well as

the support for dynamic modifications to already existing sessions. The enforcement of

these multimedia path trees in the network is done through another implemented

component, the IPT Node module, as well as through an additional element of the C-Cast

architecture, the Multiparty Transport Overlay (MTO).

During the development of the proposed component, it was subjected to various

test scenarios with the remaining architecture components of the C-Cast project.

Features such as the creation, modification and removal of multimedia sessions were

thoroughly tested, as well as the capability to enforce and subsequently manage the

multicast groups on the network, enabling multicast transport in specific data paths. On

its final stage, it was verified that the IPT has fulfilled the proposed objectives specified at

the beginning of this work. Thus, it was included in the demonstrator for the C-Cast

project as an essential core network component, enabling the evaluation of the overall

project performance and the impact that the usage of context information has in the

improvement for the delivery of multimedia contents to multiparty groups of clients.

A scientific paper was recently submitted to the IEEE Globecom 2010 Workshop

on Pervasive Group Communications, 'Pervasive Multiparty Transport Framework for

Ubiquitous Multimedia Services' with the results of the testbed implementation.

1.4. Organization of the Dissertation

The work developed in this dissertation is organized in six main chapters.

The current chapter introduces the dissertation in the current situation of the next

generation networks, presenting the goals and ambitions and contributions of this

Dissertation.

5

The second chapter presents the current related work developments in the

related areas, focusing on one essential aspect of this work, IP multicast. Moreover, QoS

mechanisms, context-aware networks and signalling protocols are also studied.

In the third chapter, a deep description of the overall C-CAST project architecture

is presented, defining its main components and their interactions.

The fourth chapter completely explains the component developed, explaining its

internal processing, as well as the mechanisms used to develop the interfaces with the

other elements in the C-CAST architecture.

The fifth chapter starts by presenting an overview of the development stages and

the test scenarios used to assure the correct implementation of the proposed

component. Next, a sample session is studied, presenting the interactions between the

various components, where special detail is given to the IPT and the signalling messages

exchanged. Finally, a performance evaluation of the developed component is executed,

studying parameters such as the signalling overhead introduced on the network and the

required processing time in comparison with the remaining components.

Finally, in the sixth chapter, the conclusions for the work developed during this

dissertation are presented, as well as possible improvements that should be done in

future to the IPT component and the overall architecture.

7

2. State of the Art

2.1. Organization

The current increase on the search for more and new multimedia services, capable

of delivering personalized media content imposes a completely new set of requirements,

which current network models are not able to fulfil.

To improve the delivery of the desired media contents, IP multicast is very

promising, due to its superior resource management for group transfers. However, the

lack of support of QoS and client and/or server mobility, as well as a low support by the

routers through the Internet, call for the development of new architectures and

mechanisms, capable of integrating not only user-context information, but network and

environment context as well, to provide the delivery of these new services in dynamic

sessions. As such, a significant study of the current technologies is fundamental.

Section 2.2 presents an overview of the current IP multicast protocols that support

its functionalities, as well as a description of possible solutions for the lack of QoS and

mobility support. It is also given an overview of the Multicast Overlay Routing, where its

advantages and disadvantages in comparison to the IP multicast protocols are presented.

Section 2.3 describes an overview of context-aware and cognitive networks.

Since the work developed in this dissertation heavily depends upon the exchange

of control messages between several elements in the network, signalling protocols are

also studied in section 2.4. In this section, it is given a special focus to the Diameter

protocol, since it is the one used in the developed work.

2.2. IP multicast

Regarding data transfer between various terminals over the Internet, there are

four main approaches available; unicast, multicast, broadcast and anycast. However, this

section will be focusing on unicast and multicast.

Unicast (Figure 1) transmission mode is much more oriented to point-to-point

connections, meaning that if the same source is transferring data to several clients, each

8

client has a separate connection, and as such, one copy of the same data has to be sent to

each client. To transport the data, unicast can use either TCP [2] for the delivery

guaranties, or UDP [3] for fast data delivery. In unicast, it is required that the source

specifies the IP address of each client, allowing the routers to know where the data

packets should be forwarded.

Client

Source

Client Client

Client

Figure 1 – Unicast approach

Multicast (Figure 2), on the other hand, is a group oriented delivery approach,

without the notion of a connection between the server and the clients. Instead, the

source sends the data packets to a unique IP multicast address, which represents the

entire group, and as such, only one copy of the data packets is sent by the source. The

forwarding of these packets is then assured by the network routers, duplicating the data

packets as needed, in order to deliver them to the clients that previously joined the

multicast group. To correctly setup the routing tree and forwarding rules for the multicast

traffic, the IP multicast protocol uses the information from the Multicast Routing

Information Base (MRIB) table, which is responsible for providing the next-hop along a

multicast-capable path. Unlike the unicast protocol, IP multicast only enables the data

transport through the UDP protocol. This is due to the fact that the TCP protocol forces an

acknowledge message to be sent each time the client successfully receives data, which in

the concept of a multicast group would imply that several acknowledge messages would

be received by the source for each data packet, severely damaging the scalability of the IP

multicast.

9

Client

Source

Client Client

Client

Figure 2 – Multicast approach

Packet routing in IP multicast is implemented by protocols such as Protocol

Independent Multicast (PIM) [4] [5], Distance-Vector Multicast Routing Protocol (DVMRP)

[6], Multicast Open Shortest Path First (MOSPF) [7], Core Based Tree (CBT) [8], among

others. PIM, being the most used, presents two different versions, Dense Mode (DM) and

Sparse Mode (SM). The first one assumes a scenario in which all clients are considered as

interested in the multicast group, unless they specifically stated otherwise. Sparse Mode,

on the other hand, assumes that no client in the network is interested in being in the

multicast group, and if it is, it needs to send a join request.

Communication between hosts and routers is implemented by another set of

protocols, from which the Internet Group Management Protocol (IGMP) [9] [10] and

Multicast Listener Discovery (MLD) [11] are the most used. These protocols enable clients

and sources to inform the neighbor routers that they are interested in joining a specific

multicast group. Upon the receiving of these requests, the routers will use the routing

protocols mentioned above to configure the multicast tree, assuring the creation of paths

between the source and the existing clients.

However, despite the fact that IP multicast is capable of a significant improved

management of the network resources, ISPs are reluctant to deploy and provide multicast

over the Internet [12]. The main reasons for this are related to the serious scalability

issues over large-scale networks and the requirement of a global deployment of

multicast-capable routers. Furthermore, the lack of access control support and the

10

inexistence of an appropriate pricing model, also contributed to the stall of the

commercial multicast implementation.

In order to solve these issues, more flexible solutions as the Application Layer

Multicast (ALM) [13] [14] [15] were addressed. ALM systems implement multicasting

functionality at the application layer, instead of the network routers, overcoming

infrastructure deployment issues. It enables the transmission of a single copy-packet per

flow between end hosts, independently of the underlying network between them, adding

support for IP multicast where it does not exist in the network. However, performance

issues are introduced, such as increased delivery delays.

2.2.1. Multicast Mobility Solutions

NGN will focus on providing a heterogeneous environment, enabling the

widespread of mobile terminals, which require constant network connectivity. Thus, it is

necessary the existence of an efficient mobile protocol, capable of assuring that the

handover can be executed seamlessly and without downgrading the service provided.

However, native support for mobility is not implemented in the majority of the IP

multicast protocols. Hence, the usage of certain techniques is necessary to provide a

proper integration of IP multicast with mobility. Among the available solutions, the most

used are the Bi-directional Tunnelling (BT) [16] and Remote Subscription (RS) [17],

although mixed approaches, named Agent-based solutions, are also used [18].

The BT solution proposes a mechanism in which the home agent (HA) that resides

in the home network of the mobile node (MN) acts as the multicast source for the

multicast tree. To send a join request to the multicast group, the MN starts by creating a

bi-directional tunnel to its HA, through which the join request is sent. After the HA

receives the request, it forwards it to the local multicast router. Therefore, after the

successful join to the requested multicast group, every packet sent or received by the MN

is forwarded through the bi-directional tunnel created with the HA. Thus, this mechanism

provides a complete transparency of the MN mobility, allowing the multicast tree to

remain static after the MN handovers. However, due to the fact that the multicast

packets have to always be forwarded through the bi-directional tunnel, a significant

11

increase on the delay of the data delivery is introduced, as well as an increased overhead

in the network, introducing a considerable loss of performance.

On the other hand, the RS solution proposes a completely different approach, in

which the MN re-subscribes to the previous multicast tree every time it enters on a

foreign network. Hence, this solution provides an optimal routing strategy, since the

multicast packets are always sent directly from local multicast router to the MN.

However, since the tree has to be reconfigured each time the MN network changes, a

significant message overhead is introduced. Furthermore, each time the MN network

changes, it has to re-initiate the multicast transmission subsequent to the handover,

resulting in a rigorous service disruption.

Another approach, based on the usage of Agent-based solutions, attempts to

balance the disadvantages of both solutions presented above, by mixing some of their

mechanisms. In this approach, Multicast Agents (MA) join the multicast tree in several

different networks on behalf of multicast listeners. Thus, when the multicast source

moves to a foreign network where an MA is present, it is not necessary to re-establish the

existing multicast tree, since the MA was previously instructed to join the respective

multicast group. Hence, it is only necessary to create the new path between the IP

multicast source and the MA. Therefore, this solution provides a significant reduced

overhead on the network, due to the considerably smaller necessary modifications to the

multicast tree. Furthermore, since the multicast packets are always sent directly from the

IP multicast source, the delay on the data packets delivery is also smaller. However, these

protocols cannot be directly implemented on IPv6 mobility scenarios, since Mobile IPv6

does not support foreign agents (FA).

2.2.2. Multicast Resource Allocation Mechanism

Despite of the superior resource management of the IP multicast protocol in

comparison to unicast, the integration of QoS mechanisms in IP multicast is still necessary

to assure the expected quality levels by the users on the multicast transmissions.

Resource allocation in IP multicast is done in a per-flow basis, and created on-

demand, meaning that resources are allocated to each micro-flow every time a new join-

12

request is received. However, the fact that the reservations are implemented per-flow

can pose serious scalability issues in large-scaled networks, decreasing the forwarding

performance in the network routers, as well as a significant increased control overhead.

Thus, to provide multicast communications with QoS assurance, solutions to

control the allocation of multicast resources and QoS are necessary. However, these are

generally implemented separately, due to contradicting deployment concepts. The

integrated deployment of DiffServ [19] and IP multicast is promising, since the former

allows a scalable QoS approach, while the latter saves bandwidth by preventing packet

duplication. On the other hand, their integration is not trivial, since DiffServ achieves

scalability by pushing the complexity to the edge routers, while IP multicast is exactly the

opposite, operating on a per-flow basis throughout the network. On the other hand, the

dynamic addition of new users to the multicast tree using DiffServ will cause a multicast

tree re-arrangement, imposing a negative effect on the QoS levels of the other receivers,

in case that resources are not explicitly allocated for the new user. This problem is called

Neglected Reservation Sub-tree (NRS) [20] and is responsible for the degradation of the

quality of communications that have correctly reserved their resources.

On the other hand, not only QoS requirements have to be considered while

creating the multicast tree. Factors such as routing asymmetries also play a fundamental

factor [21], and are usually ignored by the majority of IP multicast protocols, due to the

fact that these protocols build the multicast trees from the receivers to the source, while

the data travels in the reverse direction. Thus, data packets are forward through paths

that are not optimized for that purpose, leading to a loss of performance and a

consequent failure to deliver the quality levels requested by the users. This may be

caused by an array of distinct possibilities, such as different paths for both directions,

same path but different resources available for each direction, as well as quality of service

or network access restrictions.

The limited functionalities supported by DiffServ that are built to provide QoS

guarantees require the implementation of external resource allocation mechanisms, since

resource reservation and admission control is required at least to deploy Per-hop

Behaviour (PHB) and services based on the Expedited Forwarding (EF) PHB. However, the

13

integration of DiffServ and resource allocation mechanisms introduces performance

issues. On one hand, the scalability achieved in DiffServ, allowing per-class control, is

adverse to the performance degradation taken by per-flow resource allocation

mechanisms currently deployed in the Internet through Resource Reservation Protocol

(RSVP) [22]. On the other hand, the addition of new mechanisms increases system

complexity and endangers its performance, which is not desirable. DiffServ was originally

conceived for wired networks, but its aggregation concept was also extended for wireless

networks.

To overcome these issues, two main solutions are presented: Overlay for Source-

Specific Multicast in Asymmetric Routing (OSMAR) [23], which was designed to consider

QoS and network asymmetries; Multi-service Resource Allocation (MIRA) [24], which

enables the control of Class of Service (CoS) resources, also considering the network

asymmetries.

OSMAR approach was designed to be used as an overlay for source-specific

multicast protocols (e.g. PIM-SSM [25]), enabling them to provide content distribution

considering QoS while also considering network asymmetries. This is accomplished by

changing the MRIB table values. This table will then be used by the IP multicast protocols

to build the multicast tree considering the path from the source to the receivers, and thus

enabling the creation of optimal data paths, solving the reverse path problem which the

majority of the multicast protocols are subjected to.

MIRA, on the other hand, is a possible solution to control the CoS resources in

multicast trees, taking into account the asymmetric route problems. It provides the

desired QoS levels by the user for each flow by adapting the resources of the respective

CoS. Furthermore, it supports the creation of QoS aware multicast trees by manipulating

the MRIB. The update of the MRIB and CoS bandwidth is done in a single operation from

the ingress to the egress router in the direction of the access-router of the user. In the

ingress and interior routers, the configuration of the correspondent CoS in the outgoing

interface is indicated by the unicast RIB table. Then, the MRIB is updated with the IP

address of the previous visited router. As for the egress router, the CoS configuration is

done by taking into account the Service Level Specifications (SLS) established with the

14

neighbour network. After the CoS configuration and MRIB update, the PIM-SSM is

triggered by MIRA. The agents placed in the interior routers only store essential

information, as the per-class reservations, enabling an optimized control and packet

forwarding. Edge routers, on the other hand, store a significant amount of information as

a list if the involved interior routers for the reservation paths, information relative to

available CoS, information of the edge to edge per-class reservations, loss tolerance,

among others. Although it may seem, at first sight, that the edge routers are overloaded

with information, this technique makes possible that the interior routers store just the

essential information, allowing for a significant increased packet forwarding optimization.

2.2.3. Multicast Overlay Routing

As explained, the usage of the IP multicast protocol on the current networks is

poorly supported. Furthermore, IP multicast suffers from several specifications problems,

like the small IP address range for the multicast groups. On the other hand, unicast is

oriented to end-to-end communications, having poor resource management on situations

that require the same content to be sent to multiple clients simultaneously.

To provide a solution for the IP multicast problems, the multicast overlay routing

was investigated. It suggests the support for multicast functionalities through the creation

of a backbone overlay of intermediate proxies, creating multicast trees between them.

Communication (unicast or multicast) between end hosts is possible through these

proxies. This mechanism introduces a superior scalability in multicast trees management

and group membership.

Multicast overlay, unlike ALM, supports more than one group or service in the

same overlay node. This behavior makes the multicast overlay routing more suitable for

environments and applications with various groups. Furthermore, it has a better

performance than ALM in control overhead.

Overcast [26] is an ALM implemented as an overlay network. It aims for a superior

management of the network, maximizing the available bandwidth between the source

and all clients. Its architecture is based on a set of proxies organized in a distribution tree

placed in the central source for a single multicast source. The establishment of the source

15

specific tree is achieved through a distributed tree-building protocol. The maximization of

the available bandwidth is done through the usage of a self-organizing algorithm. A new

node starts by initially choosing the root as its parent, performing then a series of

searches to decide its best placement on the tree. The maximization of the bandwidth

comes, however, at the price of possible increases in the delay value, and thus it may not

be suitable for some multicast applications.

2.3. Context-Aware Networks

Context-awareness can be described as the capability of network applications to

be aware of certain information relative to the users, terminals, network and

environment. This ability is essential for future network architectures in order to provide

not only a significantly better resource management on the network, but also to improve

the quality of the services delivered to clients, taking into account all the context

information.

This improvement is possible through the inclusion of context information in the

network decisions. Context can be defined as any type of information that can be used to

define the state of an entity [27]. This entity can be any element in the network relevant

to the necessary network decisions, such as clients, client’s terminals, network situation

and the surrounding environment.

There are several types of context information. For example, context information

relative to users can be the client preferences, behaviour and profile, essential to the

improvement of the quality levels of the services delivered to them. Furthermore, other

parameters such as the client’s location and trajectory can also be important to provide a

more personalized service. Still on the client side, information about its terminal is also

fundamental, since it can provide the supported codec list, available interface list, among

others. Network information is also essential to provide the selection of the best path to

deliver the requested contents to various clients. Thus, information such as available

network resources, topology, link state and performance feedback are important, since

they are relevant factors in the selection of the best available path. Environmental

context information can also be used to provide a more personalized service to the

16

clients. For instance, by grouping environmental context information such as user

location and the location temperature, it is possible to know if the user is currently in an

outdoor environment or indoors. Hence, the WI-FI scanning could be turned off/on

accordingly, providing an improved battery management of the client’s terminals.

It is then clear that the usage of such information can provide not only a better

management of the available resources, hence improving the quality of service provided,

but also to offer the same services in a more personalized manner, delivering the

requested contents to the users considering not only the network conditions, but also the

users preferences and capabilities, leading to better levels of quality of experience.

Having knowledge of the various context information available to be gathered is

not enough to allow this information to be used by the network and/or applications. The

first step towards the utilization of context information is the usage of elements such as

sensors that are capable of collecting the available information. However, this collected

data is not often in a suitable shape to be directly used. Thus, it is necessary to organize

and format it in such a way that it becomes usable for other interested elements.

Lately [28] there has been research on the area of cognitive networks, capable of

improving the performance of complex networks, with a high volume of dynamic context

information available. A cognitive network is a network that is able to read the network

conditions and adapt itself to them, learning from past modifications. Thus, it is capable

of improving the end-to-end performance.

2.4. Signalling Protocols

In the last years, the Internet has assisted to a significant increase in the number

of users, network size and supported applications (e.g. multimedia real time applications).

This increase places an increasing demand for signalling protocols capable of enabling a

seamless control communication between various applications. One example of this need

is present in the Voice over IP (VoIP) service (Figure 3), where users behind firewalls or in

networks protected by firewalls are unable to communicate with each other. Thus, the

usage of a signalling protocol to install some firewall policies in the routers along the path

17

is essential. Upon the successful installation of these policies, the hosts are able to

successfully establish a connection.

Legend

X

Router

Sender

Internet

Receiver

Router

Router

Sender

Internet

Receiver

Router

Connection denied

Connection allowed

Connection allowed after policies instalation

Firewall policies installation

Before Firewall policies instalation

After Firewall policies instalation

Figure 3 – Firewall signalling impact for VoIP

However, several other situations exist where signalling control between

applications is necessary for a correct operation. Thus, the study of various signalling

protocols is essential to the successful implementation of the proposed objectives of this

dissertation.

2.4.1. Next Steps in Signalling Protocol (NSIS)

The Next Steps in Signalling (NSIS) [29] protocol is responsible for the

standardization of an IP signalling protocol, primarily for QoS signalling, although support

for signalling between various applications is also provided. This protocol consists of two

18

layers (Figure 4), the upper layer NSIS Transport Layer Protocol (NTLP) and the lower layer

NSIS Signalling Layer Protocol (NSLP).

Figure 4 – NSIS protocol stack [30]

The NSLP layer is designed for a particular signalling application, interacting on

one side with the lower NTLP layer, and in the other with a specific signalling application.

Furthermore, this layer may also define several rules for the messages format and/or

sequence for a specific signalling application.

On the other hand, the lower layer NTLP is designed to interact with various NSLPs

on the upper side, and with the IP layer on the lower side. Its main objective is to provide

the transport of signalling messages sent by the NSLP between two NSIS nodes. However,

19

it is also responsible for enabling the exchange of control information such as route

modification and error messages. The NTLP is formed by two separate layers, the network

transport layer such as UDP and TCP, and the core component General Internet

Messaging Protocol for Signalling (GIMPS).

The GIMPS component is responsible to determine how to reach adjacent NSIS

nodes, selecting the appropriate transport protocol and transferring the data. It is also

responsible for deciding whether the received message from the underlying layer should

be sent to the upper NSLP layer, or if it should be forwarded to the next NSIS node.

An NSIS entity (i.e. a network element that supports the NSIS protocol) may be

responsible for one of the following roles:

 Initiator: the NSIS entity is responsible for the initialization of the NSIS

signalling.

 Responder: the NSIS entity is the reception target of the signalling

message, ending the NSIS signalling.

 Forwarder: in this situation, the NSIS entity is only responsible for the

forwarding of the signalling message towards the responder.

Furthermore, the relation between various NSIS entities can be described as

neighbours and/or adjacent peers. Every NSIS entity is said to be in a neighbour

relationship with each other. However, to be in an adjacent relationship, the NSIS entities

have to support the same signalling protocol (i.e. NSLP).

2.4.2. Common Open Policy Service Protocol (COPS)

The Common Open Policy Service Protocol (COPS) [31] is a standard that specifies

a simple client/server model for supporting policy control over Quality of Service (QoS)

signalling protocols. It is used between servers known as Policy Decision Points (PDP),

where the policies are stored, and the clients known as Policy Enforcement Points (PEP),

where the policies are enforced (Figure 5).

20

Network Node

PEP

LPDP

Policy Server

PDP
COPS

Figure 5 – COPS basic model

The COPS protocol specifies two different models. In the first model, named

Outsourcing Model, all policies are stored at the PDP. Then, whenever the PEP needs to

make a decision, it sends all relevant information to the PDP, where it is analysed. The

decision based on the information received is then sent to the PEP, which is only required

to enforce it. On the other hand, in the Provisioning Model, the PEP reports its decision-

making capabilities to the PDP. The PDP then downloads relevant policies on to the PEP.

The PEP is then able to make its own decisions based on the policies received. In this

model, the Policy Information Base (PIB) is used as a policies repository.

2.4.3. Diameter

With the increase of the new services and applications, the requirements for

authentication and authorization mechanisms have greatly increased. The Remote

Authentication Dial-In User Service (RADIUS) [32] [33] protocol previously used can be

insufficient for these new requirements. Thus, a new protocol that is capable of fulfilling

new access control features while keeping the flexibility for further extension is essential.

The Diameter protocol, defined in the RFC 3588 [34], is an evolution from the

mentioned RADIUS protocol, and it is generally considered to be “twice as the RADIUS”,

since several and significant improvements were made in various different aspects. It is

also generally believed to be the next generation Authentication, Authorization, and

Accounting (AAA) protocol.

21

Diameter is implemented as a Peer-to-Peer architecture, meaning that every host

where the Diameter protocol is deployed is able to act as a client or as a server. Thus, is it

considered that the Diameter node that receives the connection request will act as the

Diameter client.

The communication mechanism between the two Diameter nodes can differ

between request types. However, in the general situation, the Diameter node will send a

request message to another Diameter node acting as a server. The Diameter server

proceeds to process the received request, and decides the appropriate actions to it. Then,

if the request is successful, the Diameter server sends a response message to the

Diameter client informing of the request success. On the other hand, if the Diameter

server is unable to perform the actions requested by the client, an error message is sent

instead. The described architecture might seem comparable to standard client-server

architecture; however, it is also possible in some situations that the Diameter server is

capable of acting as a Diameter client.

Nodes where the Diameter protocol has been deployed can be more than just

clients or servers. These are named Diameter agents, and typically there are three kinds

of Diameter agents, Relay Agent, Proxy Agent and Redirect Agent.

Relay Agent

The Diameter Relay Agent is used to route Diameter messages to the appropriate

destination based on the information contained. This routing decision is performed using

a list of supported realms and known peers. It is especially valuable since it can aggregate

requests from different realms to a specific realm, eliminating the heavy configurations

necessary of network access servers for every Diameter server change.

Proxy Agent

The Diameter Proxy Agent can also be used to route messages; however, unlike

the Relay Agent, the Proxy Agent can modify the message content. Thus, they are able to

modify these messages to implement policy decisions, such as controlling resource usage,

22

providing admission control and provisioning. The usage mechanism of this agent is

shown in Figure 6, where it is used to forward a message to a different domain. However,

if the message content is not to be modified in the Diameter proxy agent, a relay agent

would suffice.

Domain A

Domain B

Diameter
Client

Diameter
Proxy Agent

Diameter
Server

1 - Request

4 - Answer 2 - Request
3 - Answ

er

Figure 6 – Diameter Proxy Agent

Redirect Agent

Unlike other Diameter agents, the redirect agent does not forward the request

messages. Instead, when the redirect agent receives a request message, it checks its

internal routing table, returning a response message containing the redirect information

to the peer that sent the original message. Thus, the use of this agent enables the other

diameter nodes to not keep a local list of the routing entries. An example of the usage of

a redirect agent is presented in Figure 7, where it is possible to observe that the redirect

agent is out of the request message forwarding path. Since at this time the proxy agent is

not aware of the address of the Diameter server, it is necessary to perform a request to

the redirect agent to get the address.

23

Domain B

Domain A

Diameter
Client

Diameter
Proxy Agent

Diameter
Server

1 - Request

6 - Answer 4 - Request
5 - Answ

er

Diameter
Redirect Agent

2 – Request 3 – Redirect Notification

Figure 7 – Diameter Redirect Agent

The communication between various Diameter nodes is achieved through the

exchange of data packets named Diameter messages. These messages are completely

defined, as shown in Figure 8, and each message contains a value field to specify the

request type. This value is then used by the receiver to identify what type of information

is placed within the Diameter message. For each existing request type, there is a matching

answer type sharing the same command ID.

Diameter message

Version Message Length

Flags Command Code

Application ID

Hop-by-Hop ID

End-to-End ID

AVPs

Figure 8 – Diameter message layout

24

The command information is placed within one or more Attribute-value Pairs

(AVPs) (Figure 9). Several AVP Codes are defined by the Diameter protocol, and these

should be used by new applications whenever possible. The data values placed in each

AVP have to follow specific data types specified within the protocol.

Diameter Attribute-Value Pairs

AVP Code

Flags AVP Length

Vendor ID (optional)

Data

Figure 9 – Diameter Attribute-Value Pairs layout

2.5. Summary

This chapter presented an overview of some of the technologies and mechanisms

used for the support of the C-CAST project and for the work developed in this

dissertation.

A special study was done to the IP multicast protocol, which is essential for the

work developed in this dissertation, where it is possible to confirm that the use of IP

multicast effectively reduces the network load, granting an improved management of the

network’s resources. However, it was also verified that the implementation of the IP

multicast on current networks is a challenge, since some essential features are not clearly

supported, such as mobility and support for quality of service.

 Context-aware networks were also studied, were it was analysed the impact that

the usage of context information can have on the network performance. It was also

identified what are the main sources of context information relevant to the network, the

process this information has to be subjected to until it is ready to be used, and how it can

be enforced in the next generation networks through the usage of cognitive networks.

25

Finally, various signalling protocols were also studied in order to provide the

knowledge of how the exchange of control information in the developed component

should be processed.

The combination of all the concepts studied here can be merged to create a new

concept of multiparty groups of users with similar context information, to which various

multimedia contents are going to be delivered in dynamic multimedia sessions. The study

of the IP multicast protocol as well as multicast overlay routing provide mechanisms to

improve the management of the network resources used in the delivery of the

multimedia contents to the clients. The inclusion of relevant context information in the

network decision process also enables the development of an architecture network

capable of adapting itself to match the network conditions, and thus being able to deliver

services with an improved quality of experience for the connected users, and also with

assurance of the quality levels requested.

27

3. C-Cast

3.1. Organization

This chapter describes the general concepts and objectives of the C-Cast

architecture, presenting the main components, their functionalities and interaction.

Section 3.2 describes the relevance of context-aware networks, as well as the

general concepts and ideas behind the C-Cast architecture.

Section 3.3 presents a description of the context framework within the overall

architecture.

In Section 3.4, a more detailed overview of the multiparty session management

framework is presented, focusing in the necessary interactions between several

components of the network to establish the user groups and support the specified

session events. In this chapter, it is also explained how the network manages different

capabilities/preferences among users in the same multiparty groups.

Section 3.4.1 specifies the multiparty transport framework, describing the

necessary interactions and procedures to assure the correct enforcement of the

multiparty trees on the network. It is also explained how the proposed architecture can

achieve an independence of the underlying network to deliver the multimedia contents to

the users.

Finally, section 3.6 presents examples of the required communications between

the several network components for the main session events proposed.

3.2. General Concepts

The C-Cast project main objective is the development of an intelligent network,

capable of retrieving context information from users and from the underlying network,

using it to deliver personalized media content to users grouped together by similar

context. Since the same content is being forward to multiple users at the same time, the

multicast capabilities of the network should be used whenever possible, granting a better

usage of the network’s resources. However, the underlying network through which the

28

content is being forward may not completely support multicast transmission (if at all) and

as such, the developed network should be able to deliver the media content to interested

users independently of the network capabilities.

Context awareness refers to the network’s capability to gather information from

the surrounding environment and adapt itself to it, providing a better and more

personalized service delivery. The users are then grouped together by similar context

information like user’s interests, current location and similar social context. The media

content delivered to these users will then be the same. However, smaller aggregations of

users inside these groups are possible, since context information like terminal capabilities

and the access network they are connected to might be different. So, despite the media

content being delivered to all the smaller groups is the same, the QoS required by each

one is different.

This information however, does not remain static through the complete session.

Modifications to the user’s context, for example, may require that the existing groups are

re-organized to match the new current context values. This means that the network has

to be capable of making intelligent decisions to adapt itself to possible modifications,

even if these occur during the streaming of the media contents requests by the groups of

users.

By grouping together all these characteristics, the developed network will be able

to deliver media content to users based on their preferences and also adapt it to the

current network state or even the user’s terminals capabilities. Furthermore, the ability to

update the user’s context during a session guaranties that the media contents are being

delivered to users according to their requirements.

On the other hand, the network’s ability to retrieve context information and

consecutive capability of grouping together users with the same context allows that

several streams can be aggregated in multicast streams, granting a significant increase in

the system scalability.

29

3.3. Context Detection and Distribution Framework

Figure 10 – Context Detection and Distribution framework layout [35]

One of the main objectives of the Context Detection and Delivery framework

(Figure 10) is the detection and collection of available context information in the network

and environment through the use of sensor components called Context Providers (CxP).

These components are also responsible for detecting the user context information, like

preferences, supported codecs by the user’s terminal, information of the access network

the user is connected to, among others.

The collected information is then used by several components on the network to

provide a considerably more optimized set of decisions, enabling an improved usage of

the network’s resources and the assurance of delivering the quality levels expected by the

users. On the other hand, this information can also be used to grant a more personalized

service, by delivering the preferred contents in the preferred/supported formats to the

users, hence increasing the QoE provided. The elements in the network capable of using

the context information gathered are designated by Context Consumers (CxC).

The information gathered by the various CxPs is not directly delivered to the CxCs.

Since the CxPs are scattered through the network, the information is not accessible in the

30

same place, forcing the CxCs to establish several connections to retrieve the information

from several sensors simultaneously. Furthermore, the CxCs would be obliged to know in

which CxP the desired information was stored. Thus, to address these issues, the Context

Broker (CxB) was designed. This unit, together with the Context History (CxH) provides a

centralized storage for the entire context information gathered by the CxPs. The retrieval

of the context information by the CxCs is then greatly simplified, since only one

communication has to be established to gain access to the complete context information

of the network, environment and users.

3.4. Context-Aware Multiparty Session Management

The groups of users are created by the Group Management Enabler (GME)

module, which is responsible by evaluating the information provided by the context

broker (and in some cases by the CxP directly), joining different users with similar

capabilities and preferences in the same group. Users can also be joined in groups by

approximate context parameters like preferences, social network, terminal’s capabilities,

etc. The multimedia contents delivered to the user groups are then selected by the

Content Selection Enabler (CSE) based on the group’s content preferences and in the

rules of the application that invokes the CSE.

However, despite the fact that the same multimedia content is going to be

delivered to every user in the same group, not every user is going to be able to receive

that content in the same format and/or quality. This is due to the fact that the terminals

used by the users are most likely different, and as such, they possess different capabilities

and requirements. This issue is addressed by the Session Management Enabler (SME)

module, which is responsible for determining the supported formats for the media

content selected for each user in the same group. The list of selected formats is then

forwarded to the Content Processing and Delivery (CtPD).

The selection of the preferred/supported formats by the users is not sufficient to

guarantee the requested QoS. The network situation has also to be considered. Thus, if

the network is overloaded, it is preferable to deliver a certain format with lower quality

31

and lower bitrate, respecting the delivery guaranties expected by the user, than

delivering high quality content, but with poor or no delivery guaranties at all. This

selection is then accomplished by the Network Management Enabler (NME), which is

responsible for addressing the network context information and selecting the more

appropriate bit rate for every user in each group. After the more appropriate bitrate for

the content is selected, it is essential to make the necessary reservations in the network

to ensure the delivery of the multimedia content with the expected quality levels.

In the multiparty framework, it is also important to mention the Session Use

Management (SUM). This component is responsible for the complete session SIP

signalling that enables the multimedia contents to be delivered to users. It supports

several event types, namely Session Creation, Session Modification and Session Removal.

The complete explanation of the message exchange for these events is going to be

presented in section 3.6.

3.4.1. Context-Aware Multiparty Transport Framework

The context-aware multiparty transport framework (Figure 11) is composed by the

Network Use Management (NUM), the Multiparty Transport Overlay (MTO) and by the IP

Transport (IPT). Their main responsibility is to select the paths in the network through

which the contents should be streamed and enforce them.

IPT
MTO
IPT

MTO
IPT

IPT

MTO
IPT

MTO Controller

IPT

Figure 11 – Context-Aware Multiparty Transport framework layout

32

The NUM component is responsible for the selection of the best paths available

on the network to deliver the multimedia contents to the user’s terminals. It achieves its

goal through an evaluation of the network conditions, based on the network context

information, allowing it to select the paths between the streamer source and the terminal

that guarantee the QoS levels requested. After selecting the complete network setup for

the session, it sends this data to the IPT in order to successfully enforce it on the network.

The Multiparty Transport Overlay (MTO) is a generic transport service for group

communications. This service enables an independency of the underlying networks in

terms of IP multicast capabilities and IPv4/v6 support; thus allowing any user to

participate in a multiparty delivery session independently of the network he/she is

attached to and in a transparent manner to the application. The MTO fragments the

concept of Abstract Multiparty Transport (AMT) in order to introduce the concept of sub-

AMTs (Figure 12), which can be seen as sub-networks formed between each pair of

Overlay Nodes (ON). This concept allows for an increase in the network’s scalability and

reliability, enabling the MTO to treat each Sub-AMT separately from the others. Thus, if

an AMT lacks the support for multicast IP between two specific ONs, the MTO sends the

data packets through unicast connections in that Sub-AMT, while for the remaining Sub-

AMTs the data packets are sent by IP multicast, and the establishment of a path between

the two ONs in each Sub-AMT is responsibility of the multicast routing protocol used.

Figure 12 – AMTs and Sub-AMTs [36]

33

The IP Transport (IPT) is the core network component responsible for the

enforcement of the multicast paths on the network. More specifically, it is responsible for

the creation of multicast paths in the Sub-AMTs created by the MTO where IP multicast is

supported. This component loses the abstraction between unicast and multicast paths,

since it differentiates the connection types that have to be enforced. It acts as an

interface between NUM and MTO, processing NUM requests and commanding MTO to

enable the successful enforcement of the unicast paths and overlay functions. It is also

responsible for assigning IP addresses of the created multicast groups, maintaining a list

of the available and used IP multicast addresses.

3.5. IP Transport

The IPT is responsible for maintaining a direct interface with the NUM component,

through which the various requests to enforce the selected trees in the network are sent.

These requests are then internally analysed, and then enforced in the network through

the IPT Node or in the MTO. A smaller part of the global IPT component, namely the IPT

Node module, is responsible for the complete management of the IP multicast transport,

through the creation, maintenance and removal of the various existing multicast groups

in the network.

The IPT component is responsible for the complete management of the multicast

traffic, providing a reliable interface with the MTO through which it is possible to control

the underlying overlay network.

34

IP
T

 N
o

d
e

IPT
MTO

IPT
MTO

IPT
MTO

IPT

IPT

IPT Node
module

Kernel

Mrouted
Daemon

Multicast
Processing

Unit

MTO ControllerIPT Controller

Figure 13 – IPT Architecture

The IPT is implemented in a hierarchal structure, in which a centralized unit (IPT

Controller) is responsible for the complete set of necessary intelligent decisions, while

another module (IPT Node) deployed in several nodes along the network is responsible

for the enforcement and management of the multicast transport.

3.5.1. IPT Controller

The IPT Controller module provides a very important interface for NUM. It is only

through this module that the NUM is able to enforce the trees selected for the various

streams.

The interface with the NUM component provides the support for several session

events, namely session setup, session removal and session modification. It also supports a

smaller event for updating the port numbers through which the unicast terminals are

receiving the multimedia content stream. Upon receiving a new request from NUM, it is

provided to the IPT Controller a set of important data grouped in a single class object. It is

in this class that the IPT Controller finds necessary tree information such as the nodes

through which the stream is going to be sent, interested users, the connection types (i.e.

35

unicast or multicast), etc. The IPT Controller is then responsible for interpreting this data

and converting it to several commands to the MTO Controller and the various IPT Node

modules.

It is important to notice that the enforcement of these requests on the network is

not performed by a single component, but instead, it is performed simultaneously by the

MTO and the various IPT Node modules on the network. While the MTO is responsible for

the enforcement of the overlay nodes with unicast connections, the IPT Nodes are

responsible for the management of the multicast transport between the overlay nodes.

Thus, nodes with only multicast connections are completely managed by the IPT Node

module, while nodes with at least one unicast connection are managed by the MTO

component. It is also important to notice that the IPT, namely the IPT Controller central

unit, is responsible for the entire management of the multicast groups on the network, as

well as for the dynamic allocation of IP multicast addresses for those groups.

The interface with the MTO Controller is based on the exchange of control

messages through a socket connection. It is in these messages that the IPT Controller

specifies the actions to be taken by the MTO relatively to the path tree nodes,

connections and users. These messages have a very strict format, meaning that specific

data has to be placed in specific slots, even though the message has a dynamic size. The

details on the creation of these messages are explained in section 4.3.2. This interface is,

however, bi-directional, meaning that the IPT Controller is required to wait for the MTO

response, informing of the status of the requested actions (if the MTO Controller was able

or not to accomplish the requested actions) and providing the IPT Controller with some

essential data such as terminal’s port number values to which the multimedia content

packets should be sent by the leaf overlay node.

The interface with the various IPT Node modules requires the support to manage

simultaneously several units throughout the network. Thus, it is obvious that a solution

has to be found to provide the IPT Controller with complete knowledge of every active IPT

Node module in the network. Hence, a registration mechanism in the IPT Nodes was

created, in which, at the IPT Node module start-up, a message is sent to the IPT Controller

with the purpose of adding a new entry of this node in the IPT Controller database. Thus,

36

the IPT Controller contains a complete knowledge of every IPT Node module active in the

network, and some information relative to that node, such as the node’s interfaces, and

which IP address can be used to establish a connection with it. Since new register

messages can arrive at any time, it is essential that the IPT Controller is always able to

receive and process them. Thus, it was necessary to create a parallel thread to this

module, responsible for the management of the IPT Nodes information. Hence, if during

an internal processing of a NUM’s request the IPT Controller needs to send specific

command instructions to be taken by the IPT Nodes, that information is sent to this

separate thread. This thread is then responsible for grouping this data into a single

Diameter protocol message and sending it to the known address of the desired IPT Node.

As mentioned in the beginning of this section, the IPT Controller supports various

event types. The creation and removal of a tree for a specific stream provides the

mechanism to start a completely new tree to deliver the multimedia content to specific

terminals, while the session removal allows for a complete removal of an existing

enforced tree. However, the IPT Controller also supports modifications to existing

sessions, providing a mechanism for the network to react to certain changes (e.g. link

down/up, user left/joined the multimedia stream) without causing a complete service

disruption to existing users, by removing the existing tree and creating the new modified

one. Hence, the support for this event allows to maintain a completely functional service

to users who were not modified (either directly or indirectly), while at the same time,

enables an entire adaptation of the network to several types of modifications. This

mechanism is essential to the C-CAST architecture, since it is predicted that the various

context information collected can change during the existence of a session, and as such,

the network must be able to adapt to those modifications to maintain the quality levels

expected by the clients.

37

3.5.2. IPT Node

Unlike the IPT Controller module, the IPT Node is deployed in several nodes

throughout the network, providing a distributed mechanism for creating, maintaining and

removing the multicast groups assigned by the IPT Controller, in order to provide a

reliable multicast transport through specific paths.

Once the IPT Controller has decided which multicast groups are going to be

created, and to which paths they are going to be assigned, it sends the necessary control

messages to every targeted IPT Node module through a previously established socket

connection. Each message sent contains the complete information of which is the

targeted node’s interface and the multicast group to which it is going to be associated.

Since the IPT Node module is responsible for both creation and removal of multicast

groups, it is also necessary to specify the message type, more specifically, if it is a join-

request or a leave-request.

Since the communication between these two modules is done through the

signalling protocol Diameter, each data value sent has to be included in a separate

Attribute-value Pair (AVP) within the same message. Thus, for the mentioned

communication with the IPT Node module, it is necessary to create three different AVP

fields, one for each of the necessary information fields mentioned above.

After the message has been sent through the socket connection, the IPT Node

module de-encapsulates every AVP included in the diameter message received. The data

values gathered from each AVP in the diameter message are then used to enforce the

requested multicast groups on the targeted node’s interface. The multicast enforcement

on the network is done through the creation of a new socket, immediately modifying the

socket parameters to match the information received in the Diameter message. The

maintenance of the multicast groups is then achieved through the mrouted daemon [37],

capable of maintaining the multicast routing tables.

Thus, this allows that specific interfaces along several nodes on the network are

added to the multicast groups requested by the IPT Controller, which will create the

multicast tree specified by the NUM component. Hence, the multicast content data

packets are forced to travel along specific paths defined by the various IPT Node modules.

38

3.6. Session Events

As mentioned before in section 3.4, the developed architecture provides support

for various session events, such as Session Creation, Session Modification and Session

Removal. It is through these events that the network is able to deliver the requested

multimedia contents to the users. Thus, it is essential to have a complete understanding

of their behaviour.

3.6.1. Session Creation

The session creation event (Figure 14) is used to create a new session of

multimedia content delivery to a group of users. Relatively to the multiparty transport

framework, this event is associated with the creation of a completely new tree.

The first step towards the creation of a multimedia session is the selection of the

contents to be streamed to the user group. This selection is performed by the Content

Selection Enabler (CSE). After the list has been selected, it is sent to the SME. After

receiving the content list to be streamed, the SME is responsible to select the more

appropriate codecs and formats for each user. This is done through a match between the

context information of the group (provided by the CxB) and the available list of formats

and codecs (provided by the CtPD) for the content list provided. This match provides the

SME with mechanisms to adapt the contents that are going to be stream to each user to

what they support/prefer, and thus providing a more personalized service. It is also able

to adapt the content delivered to the users accordingly to their context information. One

example of this situation can be given with a user in a noisy environment. In this situation,

streaming both video and audio to the user is a mistake, since the user will not be able to

hear it correctly. Thus, the SME will replace the audio stream by subtitles.

The list with the codecs and formats selected by the SME is then sent to the NME.

Here, another selection will take place, but this time in a more network oriented point of

view. Unlike the SME, where the files were selected based on the user context

information, the NME performs a selection based on the network’s context information.

Thus, upon receiving the list from the SME, the NME will request to the CxB information

39

on the network situation, such as bandwidth used, delay, etc. Then, combining that

information it selects the more appropriate bitrate for each of the files selected by the

SME. Hence, the selections executed by the SME and NME provide mechanisms to adapt

the contents being streamed to the capabilities/preferences of the user terminals, and

also, they provide mechanisms to adapt the quality of the files transmitted considering

the network situation. Through these procedures, it is possible to improve the quality of

experience provided, and at the same time, assure the quality of service levels requested.

After these selections, it is necessary to select the path through which the

contents should be delivered. This task is achieved by the NUM component, which will

evaluate the network and select the best available paths between the streamer and each

user in the group. Upon the selection of the tree to be enforced in the network, the NUM

sends this information to the IPT.

Upon successfully receiving the tree information selected by the NUM, the IPT

(more exactly the IPT Controller) will send several commands to the various IPT Node

modules deployed through the network and/or to the MTO. Since the IPT Node module is

only responsible for enabling IP multicast transport, only nodes without unicast

connections are enforced by the IPT Node. Thus, nodes with at least one unicast

connection are not enforced by the IPT Node module, but instead, should be enforced by

the MTO component. After the necessary actions are sent to both the MTO and the

various IPT node, the network enforcement is complete and the MTO will return in an

acknowledge message the port numbers that should be used, except for the connections

to unicast terminals. A successful return message is then sent from the IPT to the NUM

and then to the SME.

After receiving the confirmation of the successful enforcement of the tree on the

network, the SME will send several SIP invites to the user’s terminals. The unicast

terminals will then return the port number to which its content should be delivered, while

the multicast terminals will join the multicast group assigned by the IPT. At this moment,

the content delivery to the multicast terminals is ready to start. However, for the unicast

terminals, it is still necessary to inform the Leaf Overlay Node (LON) to which port

number the multimedia contents should be sent. Thus, in this situation, the SME will

40

perform two simultaneous actions. First, it will send a request to the CtPD in order to

start the content streaming to the multicast users, and at the same time, it will trigger

another session event type to update the port value of the unicast terminals. This trigger

is received by the SME and forwarded to the IPT. The IPT will then send the necessary

actions to the MTO to update the port number of every unicast terminals in the group.

After this last event is complete, the streamer has already begun the content

transmission and now both terminal types (unicast and multicast) are able to receive the

multimedia contents.

41

SUM
CtPD

MTONRCSMECDECMS IPT CtrlUE

2) Group ID

5) Content Description(s)

6) Request terminal capabilities for each user (codec, resolution...)

7) Send terminal capabilities

38) Invite UE

40) OK

NME

9) Resource Setup

22) Paths

12) Register For Context Update Notification

13) Context Location (URL)

36) Session Setup Response

37) Trigger IMS to Invite UEs

50) Media Flow

1) Group ID

25) Build tree and Resource reservation request

20) Identify Paths

28) Configure Overlay (ON Tree)

29)Return result plus ON tree and ports

26) Obtain Multicast Address

23) Get Operator Policies

NIS

11) Users & bitrate & select Interface

19) Per User: selected interface + IP address

34) Enforce Response

WP3 Grouping and

Content Selection

3) SCTE 130 Request

4) SCTE 130 Response

IPT Node

31) Ok

30) Set Multicast

33) Ok

32) Set QoS

Listening port of unicast

receivers are not available

at this point an will be

updated later

35) translate IPs to UserIDs and QoS parameters back to codecs

16)trigger Interface update

17) Update context

18) New active interface & IP address

14) Request context

15) Context from TNetworkCxP; WirelessAccessCxP

24) QoS Grouping

21) Select Paths & Check resources

8) Matching user/device context to available codings

27) Setup Resources

46) Invite CtPD

41) OK

44)Enforce Unicast Port

42) Provide port & IP address (if unicast)

43) Forward unicast port and IP address

45)Enforce Unicast LON

47) OK

49) ACK

48) ACK

51) Media Flow

39) Multicast Join (if multicast)

10) Matches codecs into QoS characteristics

6b) SIP OPTIONS - Request terminal codec capabilities

7b) Request terminal codec capabilities

7b) Send terminal capabilities

Figure 14 – Session Initiation message sequence [38]

42

3.6.2. Session Modification

One of the requirements of the C-Cast architecture is that existing sessions can be

updated in order to adapt to context modifications related to

network/users/environment. Users that are receiving media content can be subjected to

changes in the network they are connected to (device handover, network condition

changes, etc) forcing the content being delivered to be updated to match these

modifications. On the other hand, during a session, new users interested in receiving the

same media contents can appear, while existing users might wish to stop receiving them.

Network modifications can also occur, in the form of a link down/up, for example. Thus, it

is necessary that the specified architecture is able to support the modifications

experienced by the existing sessions.

3.6.2.1. New User

The addition of a new user to an existing session requires a new set of

communications between the various components in the network to update the existing

tree and include the new user in the delivery path of the multimedia contents.

The update starts by the SME being informed that a new user is added to an

already existing session. Since the content list that should be sent for the existing group is

already known by the SME, it is only required to have knowledge of the user’s terminal

capabilities/preferences in order to determine the supported codecs for the new user.

This information is requested to the same component as before, the CxB. The list of the

new supported codecs/formats is then sent to the NME, which will re-evaluate the

network conditions based on the network context information and select the content files

with the more appropriate bitrate value. The NUM is then triggered to select the new

path between the streamer and the new user on the group. After the new path tree is

selected, it is necessary to enforce it in the network. Thus, it is sent to the IPT component.

Here, the IPT Controller will be required to send the necessary commands to the various

IPT Node modules on the network and to the MTO, in order to successfully enforce the

updates to the existing tree. This mechanism provides the architecture with ways to

43

update existing sessions, avoiding severely disrupting the service delivery to previous

users.

After the successful enforcement of the network, the NME sends to the SME the

session modification answer. The SME will then send a SIP invite request to the new

users. If they are multicast, the user’s terminal sends joins to the multicast group assigned

by the IPT, while if the terminal’s connection to the LON is unicast type, a response is sent

to the SME with the port number to which the multimedia contents should be streamed

to the terminal. The SME will then trigger the update unicast ports event already

explained in the section 3.6.1.

Upon completion, the new users are successfully included in the new group and

are able to start the reception of the desired multimedia contents.

44

SUM MTONRCSMECMS IPT CtrlUE

2 Request terminal capabilities (for each new user)

3) Send terminal capabilities

33) Invite UE

35) OK

NME

17) Paths

8) Register For Context Update Notification

7) Context Location (URL)

31) Session Setup Response

32) Trigger IMS to Invite UEs

5) ModifyGroupAddUser(GroupID, ListUsersAdd)

21) Update tree

15) Identify Possible groups for user

22) Configure Overlay

23) OK

20) Do Enforcement

28) Per Receiver: LON_IP, LON_Port, DestinationIP (Unicast/Multicast), Listening port (if Multicast) + CtPD: (SON_IP, SON_Port)

18) Get Operator Policies

NIS

6) Users & bitrate & select Interface

14) Per User: selected interface + IP address

29) Enforce Response

1) WP3 GroupModify

 Add User(s)

IPT Node

25) OK

24) Set Multicast

27) OK

26) Set QoS

30) translate IPs to UserIDs

11)trigger Interface update

12) Update context
13) New active interface & IP address

9) Request context & Register for Update

10) Context Response

19) QoS Grouping

16) Select Paths & Check resources

4) Codec Matching UE / MDF Codecs

36) OK

39) Provide port & IP address (if unicast)

37) Provide port & IP address (if unicast)

38) Provide port & IP address

40)Provide port & IP address (if unicast)

41) ACK

42) Media Flow

34) Multicast Join (if multicast)

Figure 15 – Session Modification: New User message sequence [38]

45

3.6.2.2. Modified User

Modifications to existing sessions are not restricted to just the addition of new

users; existing group users can also be modified (delivery path modified, connection type

modified, LON modified, etc).

Existing users can trigger a modification event from two separate conditions. One

of them is initiated by a successful network handover. In this case, the terminal’s

interface sends a SIP re-invite to SUM. A request to update the user is then sent by the

SME to the NME. The second possible modification trigger is related to a change in the

network, which is going to affect existing users or entire sessions. In this case, the NME

triggers NUM to discover a new tree.

In both situations, the NME is required to send a session modification request to

the IPT in order to enforce the updates on the network. The IPT Controller will then send

the necessary commands to the various IPT Node modules and to the MTO.

After the enforcement on the network is complete, the NME will send to the SME

the session modification answer, which will then perform a new set of SIP Invite requests

to the new user’s terminals. Afterwards, terminals will join to the multicast group (if they

are connected through a multicast connection to the LON), or return to the SME the port

number to which the multimedia contents should be streamed, triggering an update

unicast ports event (if the terminals are connected through a unicast connection).

46

SUM MTONRCSMECMS IPT CtrlUE

18) Update UE

19) OK

NME

7) Paths

16) Session Setup Response

17) Trigger IMS to update UEs

10) Update Reservations

5) Identify Paths

13) Configure Overlay

14)Result plus ON tree and ports

8) Get Operator Policies

3) UserUpdate

15) Enforce Response

IPT Node

12) Ok

11) Update

9) Update Grouping

6) Select Paths & Check resources

20) OK

1) Re Invite

2) UserUpdate

4) Update ongoing session

Trigger 2

Resource Resilience

Due to network

problems

Figure 16 – Session Modification: Updated User message sequence [38]

3.6.2.3. Removed User

As already mentioned, users can also be removed from existing sessions. In this

situation, the SME is triggered to start the removal of the user, sending afterwards a

remove user request to the NME. Subsequently, the IPT is requested by the NME to

remove the user connection from the LON. The path between the streamer and the LON

(if no other user is receiving multimedia contents through that same path) should also be

removed from the tree enforced in the network. These actions are performed by both the

IPT Node module and the MTO.

When the update to the tree is complete, the NME returns to the SME the session

modification answer. The SUM is then triggered by the SME to send a leave request (SIP

BYE) to the user’s terminals. If the user is connected through a unicast connection to the

47

LON, the removal is complete. However, if the connection between the terminal and the

LON is multicast type, an additional leave request to the multicast group is necessary.

SUM MTONRCSME IPT CtrlUE NME

2) Remove User

1) WP3 Grouping Modification

Remove user

IPT Node

16) Bye

18) OK

15) Send Byes

7) Configure Overlay

8) OK

6) Cancel Enforcement

4) OK

10) Ok

9) Cancel Multicast

12) Ok

11) Cancel QoS

5) QoS Regrouping

19) OK

3) Remove User

13) OK

14) OK

17) Multicast Leave

Figure 17 – Session Modification: Removed User message sequence [38]

3.6.3. Session Termination

The complete removal of entire sessions is also supported by the C-Cast

architecture. This process is started by the SME, which is triggered to remove an existing

session. The SME will then send a session removal request to the NME, which will trigger

the IPT to release the resources allocated in the network for this session. Upon receiving

this request, the IPT Controller sends messages to the various IPT Node and/or MTO to

release the connections previously established.

48

After the removal of the tree is complete, the NME informs the SME that the

session removal is complete. Thus, to finish this request, the SME triggers SUM to

terminate both terminals and streamer, sending SIP BYE messages to them. The session is

then completely removed, except for terminals connected through a multicast

connection, which need to send an additional leave message to the multicast group.

SUM CtPDMTONRCSME IPT CtrlUE

15) Bye

17) OK

NME

1) ResourcesTermination

4) OK

6) StopOverlay

7) OK

5) Release Resources

3) Release Resources

2) Release resources

13) OK

WP3 Session Termination

Triggered with GroupID

IPT Node

9) OK

8) Stop Multicast Enforcement

11) OK

10) Release Resources

18) Bye

22) OK

19) OK

21) ACK
20) ACK

12) OK

14) CloseSession

16) Multicast Leave

Figure 18 – Session Termination message sequence [38]

3.7. Summary

This chapter described the architecture proposed for the C-Cast project, the

various components, as well as the interactions between them. The importance of the

context-awareness was also explained, describing and explaining how its integration in

49

the various elements in the network enabled them to dynamically adapt the transmission

of multimedia contents to the groups of users. The integration of context information also

allows a new level of management of the network resources, where both user and

network context information is used to select the various formats, bitrate and

core/access data paths for the multimedia content delivery.

On the other hand, various multimedia session events were also presented, which

enable the interaction between several elements in the network to provide the selection

of the more appropriate contents formats and bitrate values, the enforcement of the

selected data paths on the network, and the necessary SIP signaling to allow the user’s

terminals to receive the multimedia data.

51

4. IP Transport

4.1. Organization

In the framework of this Dissertation, the IPT component of the C-Cast

architecture and its interfaces were implemented and integrated in the overall C-Cast

architecture.

Section 4.3 presents an overview of the intelligent central module of the

hierarchical architecture proposed for the IPT. A detailed explanation of the created

interfaces as well as the necessary internal processing is also provided.

Section 4.4 describes the complete implementation of the distributed module of

the IPT’s architecture, deployed in every router in the network, responsible for enforcing

part of the IPT Controller decisions. An explanation of the mechanism used to apply and

maintain the selected multicast groups on the network, as well as the procedure for the

data exchange between the higher level and the lower level modules is also presented.

Finally, in Section 4.5 it is summarized the work done in this Dissertation to

support the concept of dynamical networks driven by context.

4.2. Implementation Details

The IPT component proposed for this Dissertation was developed in the object

oriented programming language C++. However, considering that the multicast daemon

used (mrouted) had to be modified and since it was developed in C, part of the code

developed for the IPT was in this language as well.

As for the development platform, the IPT component is deployed in a Linux

machine (more specifically the Ubuntu 9.04). Considering the developed component, this

machine is also required to have installed a Diameter stack (used for signalling between

the IPT internal components) and the multicast daemon already mentioned (mrouted).

52

4.3. IPT Controller

The specified architecture for the IPT component can be described through a

centralized and hierarchical approach, in which a single central module (IPT Controller) is

responsible for all the high-level decisions and data processing. Connected to this central

unit are various IPT Node modules, responsible for the enforcement of the multicast

paths in the multiparty trees requested by NUM.

The IPT Controller, as mentioned, is responsible for processing the NUM requests

and sending to the MTO Controller and the various IPT Node modules several instructions

in order to successfully enforce the trees on the network. Therefore, it is essential that

interfaces with the NUM, MTO and the various IPT Node modules are developed, in order

to allow the tree requests to reach the IPT Controller and be enforced in the network.

4.3.1. NUM/NME Interface

The selection of the various paths in the network to be used to deliver the

multimedia contents to the clients is done by the NUM component. It is also responsible

for the detection of possible modifications in the network and triggering a session event

to modify the existing enforcements. On the other hand, the NME is responsible for sub-

grouping the various users by selecting the multimedia content files with the more

appropriate bitrate values. Since the NME/NUM decisions are directly enforced by the

IPT, it was necessary to develop a specific interface to handle the requests sent by this

component.

This interface consists of several routines in the IPT Controller module that can be

used in generic situations. Thus, when the NUM/NME is required to enforce a decision on

the network, it selects the more appropriate routine provided by the IPT Controller. The

request is then processed by the IPT Controller, ending in various instructions sent to the

IPT Node modules and/or MTO to enforce the request on the network. To perform these

tasks, however, the IPT Controller requires specific information relative to the decisions

taken by the NME/NUM. Essential data such as a list of the nodes through which the

multimedia contents should be streamed, the nodes to which user’s terminals are

53

connected and the various data paths selected, is necessary in order to enable a correct

enforcement on the network. This data is then made available by the NME/NUM in a class

named Multiparty Group upon the calling of the interface routines provided by the IPT

Controller.

Multiparty
Group

User Node Path

Node list

Path list

User list

getDefaultIP()getUserIP()

getNodeIP()

isMulticastEnabled()

getNodeIP()

getNextNodeIP()

getPathType()

...

...

...

Figure 19 – Multiparty Group class and important functions associated

In this class, partially shown in Figure 19, some essential routines for the

enforcement of the tree are presented. For example, when assigning a user to a stream,

routines such as getUserIP() and getNodeIP() enable the IPT Controller to know what is

the user’s IP address and which is the node to which it is connected. Other routines such

as isMulticastEnabled() inform if the user is going to receive the multimedia contents

through multicast or unicast connection. Relatively to the paths and nodes, the routines

getNodeIP() and getNextNodeIP() show which nodes connect each path, giving the IPT

Controller a complete view of the tree setup. Another essential routine is the

getPathType(), since it returns if that specific path supports IP multicast, or if it is just

limited to unicast. Through this information, the IPT Controller is also able to decide if a

specific network node should be enforced by the MTO or by an IPT Node module. This

decision is based on the incoming and outgoing connections of the node. Since the IPT

54

Node module is only capable of enforcing multicast connections, if the node has at least

one unicast connection, it has to be enforced by the MTO component.

The routines made available by the IPT Controller for this interface consist more

specifically on the Session_Setup(), Session_Remove(), Session_Modify() and

Update_Unicast_Users() routines. The first two are used, as the name suggests, for the

creation and complete removal of a tree, while the Session_Modify() routine is used to

modify paths or users in previously enforced tree. The last routine has a more specific

usage as it is only used to update the port values of unicast users, and thus, more details

for it will be given in section 4.3.1.2.

4.3.1.1. Session Setup

In the C-Cast architecture, users are grouped together due to similarities in their

context information, and are registered to streams in order to receive the desired data.

During the existence of a multimedia session, it is possible that some situations

(increased/decreased wireless signal noise, handover to a new network with different

characteristics, etc) change the user context information, forcing the NME to change the

sub-group to which the user is registered. Sub-groups are a new concept introduced by

the NME. As previously mentioned, the NME selects the more appropriate contents to be

delivered to each user based on the bitrate value of those contents. The users are then

placed in the same sub-groups if they are going to receive the multimedia contents with

the same bitrate values. If the new sub-group to which the user is sent is empty (had no

users before), the multimedia content stream specific to it is restarted from the

beginning, forcing the user to receive media contents he already had received.

Thus, to avoid this problem, it was specified that every possible multimedia

stream in the network (one for every possible sub-group) would start at the same time,

meaning that when the tree for the first stream is created, a tree for every sub-group

available is also created, even if it has no users registered to it. This way, when creating a

new tree, the IPT has to consider all possible sub-groups, creating complete trees for the

sub-groups that have unicast/multicast users associated with it, and empty trees for the

ones with no users associated. The concept of empty tree applied here is also new and

55

introduced by the IPT, consisting in a tree where only the first node in the network

(Source Overlay Node) receives the multimedia data streamed through a unicast

connection. After receiving the contents packets, it immediately discards them,

preventing that they are propagated to other nodes in the network. Thus, by using this

technique, users are able to switch sub-groups without disrupting the multimedia content

stream received.

In light of the necessary modifications to the creation of a new tree, the Session

Setup routine starts by accessing the multiparty class provided to check if the user list is

empty. If the list is indeed empty, a specific function to create empty trees is invoked,

sending the resulting message to the module responsible for its enforcement. Since the

empty tree has only one node with one incoming unicast connection, then the module

responsible for the enforcement of empty trees on the network is always the MTO.

Considering the other possibility, where the user list provided by the NME/NUM is

not empty, the IPT Controller starts by going through every node in the multiparty class

and classifying each one of them as a first node, middle node or last node. As the nodes

get tagged, the message to the MTO is built and the data for the IPT Nodes is placed in a

buffer. As seen in Figure 20, the information related to the first node in the tree is always

sent to the MTO, since the incoming connection to the node is always unicast type. The

classification of all nodes serves as a method to ease the creation of the message for the

MTO, since the creation of the MTO message has very specific rules to follow (more

details on section 4.3.2).

After going through every node in the list, the message for the MTO is complete,

and as such, it is sent. The IPT Controller then starts a polling wait until the answer from

the MTO is received. This answer message from the MTO is used as an acknowledge

message, informing the IPT Controller if every action requested to the MTO was

completed with success, as well as for displaying the port values chosen for every

connection in the network (except for terminals port numbers). If an error was returned,

the IPT Controller returns immediately to NUM with an error value. Otherwise, the IPT

Controller places the port values decided by the MTO in the multiparty class used by

56

NUM. The multicast address assigned by the IPT for the multicast groups are also placed

within this data class.

Session Setup

trigger

Is User list
Empty?

Create an
Empty Tree

Get a Node from
MultiParty Data

Is the Node the in
connection of

another Node?

Is this a MTO
node?

Join Data to
MTO Message

Add Data to
IPT Buffer

The Node has
out

connections?

No

Middle NodeNo

First Node

Last Node

Yes

Yes

No Yes

Yes

No

Are there more
nodes in MultiParty

Data?

Yes

Return OK
to NM

Send the Message
to MTO and wait
for the answer

Is Answer
OK?

Return
ERROR to

NM

No

Fill MultiParty
Data

Yes

Send Data to
IPT Node and
wait for the

answer

No

Figure 20 – Session Setup routine diagram

The control messages exchanged with the IPT Node modules have a completely

different approach than those for the MTO. Instead of being grouped in a single message,

they are split in several smaller messages, one for each interface to be added in each IPT

Node. This way, when the IPT Controller decides that a specific node is being enforced by

an IPT Node module, it sends one message for every interface to be added. Each of these

messages contains the multicast group, the interface targeted and the message type (if it

is a join or a leave message). Unlike the messages to the MTO, the messages for the IPT

Nodes are not sent directly, but are instead placed first in a buffer. This buffer is checked

periodically for new messages by a separate thread, and when new data is found, the

thread builds several AVPs, placing them together in a single Diameter message. More

details on the communications between the IPT Controller and the various IPT Node

modules are given in 4.3.3.

57

4.3.1.2. Update Unicast Ports

After the trees requested by the NUM are successfully enforced in the network,

the NME module returns to the SME. The SME then starts its SUM counterpart, initiating

the SIP signalling required to assure that the multimedia contents are able to reach the

user’s terminals. The unicast terminals, upon receiving this message, return to SUM the

port numbers to which the LONs should send the data packets. The multicast terminals

however, do not return any information to the SUM. Instead, when informed by the SME

of incoming streams, they just join the multicast group assigned to them by the IPT.

Through this description, it is possible to conclude that, after the session setup event has

been completed, the multicast terminals are able to receive the desired multimedia

streams. However, the forwarding of the multimedia contents to the unicast terminals is

not possible since the ports to which the streams should be sent is not yet known at the

time the session is created.

To solve this problem, a new interface routine between the NME/NUM and the

IPT Controller was developed. This routine is responsible for sending the updated

information of the unicast terminals to the MTO module.

58

Update Unicast Ports
trigger

Send Message to
MTO and wait for

answer

Get node from
node list

Is the node
IPT type?

Add data to
IPT buffer

Last node in
the list?

Return OK to
the NM

Is answer ok?
Return ERROR

to the NM
No

Yes

Yes

No

No

Yes

Figure 21 – Update_Unicast_Ports() routine diagram

The routine starts by searching every user in the data class provided by the NUM,

selecting all terminals connected to the LONs through unicast connections and ignoring

the ones with multicast connections. Then, the IPT Controller proceeds to discover which

nodes the selected users are connected to, placing them in the MTO message being

created. The rules on the structure of the MTO message prevent the same node to be

listed more than once. Thus, before creating a new entry in the MTO message for the

node to which the terminal is connected, the routine is forced to search in the existing

MTO message to confirm if it was listed before. If it was, than the user has to be placed in

that node. However, if no entry exists for this node, then it is necessary to create a new

one.

Through this MTO message, the updated information on the unicast users is sent

to the MTO module and applied to the network, allowing the LONs to correctly send the

multimedia contents to the unicast terminals.

59

4.3.1.3. Session Modify

During the existence of a multimedia session, several modifications can occur.

Users connected to a given LON may wish to stop the media contents being received. It is

also possible that the node to which the terminals are connected changes, forcing NUM

to select a new path between the SON and the new LON. On the other hand, even if the

users are not directly subjected to modifications, the path through which the multimedia

contents are being forwarded might be modified. This may happen due to changes in the

network context, changing the ideal path in the core network. Situations where a link

goes down are also possible, forcing a fast update to the existing tree. Without support

for session modifications, these situations would force the IPT to completely remove the

existing session and create a new one with all the modifications embedded. However, this

would cause a complete service disruption for every user in the existing multimedia

session. Thus, to support the modification of active sessions, a new routine was created in

the IPT, the Session_Modification(). This routine is responsible for analysing the data

provided by NUM, finding every modification to the existing session and taking the proper

measures to ensure that the tree that is already enforced in the network is correctly

updated.

The multiparty data provided by the NUM presents two lists for the node, users

and path information. One list has the actual tree setup, while the other has the

information of the previous tree setup. So, by comparing the new lists with the old lists,

the IPT Controller is able to identify every modification to which the existing session was

subjected.

The possible modifications an existing session is able to endure can greatly differ,

even more if it is considered that modifications on some parts of the tree can cause

modifications on other adjacent parts, considerably increasing the decision effort for the

IPT Controller. Hence, it is essential that a predefined set of classifications is created,

enabling each possible modifications to be split into several smaller modifications that are

more generic and independent from each other. This mechanism allows the IPT Controller

to correctly identify and process every possible modification to the network, no matter

60

how complex, since they are always processed as a set of smaller and more manageable

modifications.

The classifications are structured in a hierarchical way, with three major types

describing the node type, followed by a set of smaller sub-categories which classify the

possible modifications to which each node can be subjected.

Session Modify
trigger

Get a node from
new node list

Is this a new node
in the tree?

Is it a IPT type
node?

Add data to
IPT buffer

Send message to
the MTO and wait

for the answer

Is this the last
node in this list?

Is the answer
ok?

Return ERROR to
the NM

Yes

No

Yes

No

No

Get a node from
the old node list

Was this a IPT
type node?

Modification of
the node’s users
or connections?

Removed node?

Modification to
the users

connected to the
node?

Modification of the
node connections?

Removed node?

Add the connection
data to IPT buffer

Add complete
node data to the

IPT buffer

Send Message to
the MTO and wait

for the answer

Discover users
modified

Discover
connections

modified

No

No

No

Yes

Yes

Yes

Yes No

Yes

Yes

Is answer
ok?

Is this the last
node in this list?

Yes

No

No

No

Return ERROR
to the NM

Return OK to
the NM

Yes

No

Yes

No

Yes

Figure 22 – Session Modify routine diagram

The Session_Modification() routine (Figure 22) starts by going through every new

and old node in the lists provided by NUM, classifying each node as an IPT or MTO type

61

node. It can also be classified as a new node if the node is only present in the new node

list. The first two classifications are made by searching through every connection

associated with the node. If at least one of the connections is unicast, then the node is

MTO type; otherwise, it is IPT type. These last classifications are done to decide which

module should be responsible for the enforcement of the node modifications (if any) on

the network. Considering the first two node types (IPT or MTO), after the node type is

determined, the routine proceeds to find if the node was subjected to a modification.

These modifications can be the addition/removal of users or paths connected to the

node, the removal of the node or a type change (from IPT to MTO or vice-versa).

Despite the fact that all these modifications are possible on MTO and IPT type

nodes, the information required by each module on the same modification is different.

While the MTO requires detailed information about each node and which users or paths

are connected to them, the IPT Node module simply requires the multicast groups each

node’s interface is connected to. For this reason, there is no difference between the path

or user modifications to an IPT type node, since both correspond to an interface

joining/leaving a multicast group. However, for the MTO type nodes, not only is a user

modification completely different from a path modification, but even modifications to

unicast terminals are different from the ones in multicast terminals. This last situation can

be explained by the way users are assigned to the node by the MTO component. If the

user’s terminal is receiving the multimedia contents through a unicast connection, then it

is created a new connection in the node to the specific user IP address. However, if the

user’s terminal receives the multimedia contents through a multicast connection, then a

new connection is created from the node to the multicast group, and not to the specific

user IP. Thus, it is irrelevant the number of multicast terminals that are connected to that

specific node as long as at least one multicast user exists, since the multicast connection

on the node should not be re-added if a multicast user is already connected to that node.

In the same way, the multicast connection should not be removed if there are more

multicast users connected to that node.

Other possible modification to the IPT or MTO type nodes is the presence in the

old tree setup, while being absent in the new one, meaning that these nodes were

62

removed from the new tree. Messages to the responsible modules for those nodes

should then be sent, informing them that a complete removal of the nodes (as well as

every user and/or path associated to them) is to be done. Since the paths created in the

network during the session setup routine are bi-directional, then if a path between two

nodes is removed, it has to be removed in both nodes. Thus, if a node is removed from

the new tree setup, then it is also necessary to remove the path connections from every

node adjacent to it.

For the nodes classified in the beginning as new nodes, the IPT Controller has to

discover their type (IPT or MTO), using the same mechanism already stated here. After

deciding which module is going to be responsible for the node’s enforcement, the IPT

Controller proceeds to send the appropriate message(s), successfully adding the node to

the existing multimedia session.

After every node is classified and properly updated, the routine ends. The tree is

then completely updated and the only service disruption experienced by the users is due

to possible modifications in the nodes or paths leading directly to them, leaving intact

(with no service disruption) the other users with no relation to the nodes/paths modified.

4.3.1.4. Session Remove

When every multimedia content in the list selected by the CSE has been streamed

to the user’s terminals, the session ends, and as such, its information needs to be

removed from the nodes. A set of decisions is then taken by the SME and NME, ending in

a session removal command for the IPT, with the purpose to completely remove the

entire tree previously enforced. This request is sent to the IPT from the NUM component,

invoking the Session_Remove() routine, responsible for sending the appropriate messages

to the MTO and IPT Node modules to completely remove the existing tree.

The remove message to the MTO component only requires the ID of the tree to be

removed (the MTO saves the tree setup associated with its ID upon its creation). After the

message is sent, the IPT Controller waits for the MTO response confirming the successful

tree removal. However, to completely remove the existing multimedia session, besides

informing the MTO module, it is also necessary to inform the several IPT Node modules

63

responsible for enforcing the remaining tree setup. Thus, the Session_Remove() routine

searches every node in the class provided by the NM, selecting the ones that are IPT type

and ignoring the ones MTO type. For each one of those selected, the routine proceeds to

discover every interface that is assigned to a multicast group for the multimedia session

to be removed. Then, a message is sent to each interface, specifying the multicast group

to remove.

Session Remove
trigger

Get a node from
multiparty class

Is this an IPT
node?

Add message to
remove node in

IPT buffer

Are there more
nodes in multiparty

class?

Send message to
MTO and wait for

the answer

Is answer ok?
Return OK to

NM

Return ERROR to
NM

Yes

No

Yes

Yes

No

No

Figure 23 – Session Remove routine diagram

After both removals are complete, the multimedia session is completely

terminated and the IPT returns a successful message to the NUM component.

4.3.2. MTO Controller

As already mentioned, an interface between the IPT Controller and the MTO is

required, in order to enforce the NUM requests on the network. This interface is based on

the exchange of strictly defined control messages through a socket based connection.

64

Figure 24 – Structure of the message sent to the MTO [38]

The structure of the message exchanged can be split in several smaller headers

with different purposes. The command header contains the desired action to be taken by

the MTO, as well as the number and length of the message. The command number field is

used to clearly identify specific commands from each other, since a single MTO message

can contain several commands at the same time. The tree header that follows is

responsible for stating the tree ID to which the actions requested are to be taken. The last

header is the one where all the important information related to the tree setup is placed.

The data in this header is organized in a node list with a dynamic size, where each slot in

the list contains several fields with information related to a specific node. In this list, all

the information related to one node has to be placed in a single slot, meaning that the

same node cannot be listed twice. Since the size is not static, the MTO has to read the

value of the variable MTO_Tree_length to clearly know how many nodes are listed in the

message.

Each node in the node list has specific fields that allow the MTO to identify the

node’s IP address, as well as every connection to and from the node. These connections

are placed in a list with a dynamic size, specified in the ON_length field, and each slot in

the list contains the information for the origin and destination of the connection, as well

as the source and destination port number. However, with only this information the MTO

is not able to identify which is the incoming connection to the node. To discover this, the

MTO would be forced to analyse the origin and destination of each connection. However,

since each node can only have a single incoming connection, it was specified that the first

65

connection listed in the MTO message for each ON would be the incoming connection.

With this technique, it is possible for the MTO to immediately identify every connection

type in each node in the list, since the first connection listed is always the incoming

connection, and the remaining ones are the outgoing connections.

Create_MT_Tree Creates a completely new stream tree

Remove_MTO_Tree Removes an entire tree already created

Add_Connection
Adds a new connection from a node to a user, multicast group or to

another node in the tree

Remove_Connection Removes a connection that already exists

Add_ON Creates a new node to a session tree that has already been created

Remove_ON
Completely removes a node from an existing tree, as well as all its

connections to nodes, users and multicast groups

Table 1 – MTO message commands

To perform the enforcements in the network requested by the IPT, the MTO

provides a series of commands, listed in Table 1. Each one of those commands is used for

a very specific set of actions in the MTO, and in each one, the message structure

presented in Figure 24 has to be adapted to the requirements of the command.

When sending a Create_MTO_tree command, the rules followed by the IPT are

generally the same as described above. The only differences are relative to connections to

unicast and multicast terminals. Since the unicast terminals are not able to receive the

stream right after the session setup (as explained in section 3.6.1), it was decided that the

information for the unicast terminals would only be sent in a following session event

named Update Unicast Ports, and as such, they are not included in the MTO message for

this command. On the other hand, the multicast terminals information has to be included

in this command.

To remove an already created session tree, the IPT should use the command

Remove_MTO_Tree. This command differs completely from his opposite

(Create_MTO_Tree), since no data relative to the tree is sent. This is due to the MTO

storing the complete tree information and tagging it with a unique identification number.

To completely remove a path tree, the IPT Controller should then leave the node list

66

empty in the message to the MTO, placing only the identification number of the tree to

be removed in the Tree_ID field.

While the two commands already mentioned are essential to create a complete

new or remove an entire multimedia session tree, there are other situations, namely the

session modifications, which require commands that can act on specific parts of the

network without affecting the entire tree. One of these commands is the

Add_Connection, created with the purpose of enabling the IPT to add connections to

specific nodes. This feature is essential to the successful operation of the IPT module,

since some of the routines in the interface between IPT and NME/NUM (e.g.

Update_Unicast_Ports() routine) require that connections to unicast terminals are added

to nodes that belong to an already created tree. In the message to send this command to

the MTO, the IPT Controller is only required to fill the data relative to the new

connections in the appropriate slot in the node list and specify which tree is going to be

changed (tree ID). Since the MTO has completely stored the previous tree setup, the

unmodified parts can just be ignored by the IPT and be left out of the message. The

opposite situation, where a connection has to be removed, is done by the

Remove_Connection command. Since the rules for the creation of these two messages

are the same, the command distinction is just to enable the MTO to know if the

connection should be added or removed.

The two last commands presented in the Table 1 are the Add_ON and

Remove_ON, created with the purpose of enabling the IPT Controller to add or remove

specific nodes on an already existing tree. These two commands, as the Add_Connection

and Remove_Connection, are essential to provide the IPT with the capability of modifying

trees that were previously created. The message for the first command (i.e. Add_ON) is

created by specifying which nodes are new in the tree and including all connections

associated with them. For the Remove_ON command however, it is only necessary to

send the IP address of the node being removed, without including the node’s

connections. This characteristic is similar to the one in the command Remove_MTO_Tree,

and is also due to the MTO saving the complete tree information at the time of its

creation. For this reason, it is only necessary to provide to the MTO the ID of the node

67

being removed (the node’s IP address in this case) and the MTO will recognize every

connection associated with it, removing them as well.

After completing the requested enforcements requested by the IPT in the

network, the MTO needs to report to the IPT the success or failure of its actions. This is

done through an acknowledge message sent in the reverse direction.

Figure 25 – Structure of the answer sent by the MTO [38]

This message, presented in Figure 25, is very similar to the one sent by the IPT.

However, it contains an additional field in the command header, informing the status of

the requested enforcements. If the status field is set to zero, then the MTO was able to

correctly enforce the IPT requests. On the other hand, if instead of zero, the status field is

set with any other value, then there was an error with the command requested,

preventing the MTO to correctly finish the actions requested.

4.3.3. IPT Nodes

4.3.3.1. Start-up Registration

As explained, when the IPT receives the NUM requests, it enforces them in the

network through the MTO and the various IPT Node modules. The interface with the MTO

is done through the mechanism explained in section 4.3.2, where every message sent by

the IPT Controller has the same destination, the MTO Controller’s IP address. The IPT

Node modules, however, are distributed through the network forcing the IPT Controller

68

to send the requests to specific nodes. To accomplish this, the IPT Controller is required

to have a complete knowledge of every active IPT Node and which are the IP addresses

assigned to them.

Since the open-source Diameter stack used does not support peer-discovery, it

was necessary to create it, through a registration mechanism developed in the IPT Node

module. When each one of the IPT Node module starts, the registration method begins to

establish a peer-to-peer connection to the IPT Controller. If the IPT Controller is available,

the connection is created, providing a communication mechanism between the two

modules. On the other hand, if the IPT Controller module is not available, the IPT Node

blocks until a connection can be created. Next, the IPT Node will gather the address

information of all of its IPv4 interfaces and place them in a message buffer. Since the

communication between the IPT Controller and the IPT Nodes is done through a Diameter

stack, the messages exchanged between the two modules have to follow a pre-

determined structure, as explained in section 2.4.3. This way, the information relative to

the node’s interfaces is placed within a new AVP, which will then be inserted in the

Diameter message and sent through the peer-to-peer connection created.

On the IPT Controller side, however, the registration method forces some

modifications to the normal program flow. Since the IPT Controller is requested to

maintain connections to more than one IPT Node module, the IPT Controller might need

to forward data to multiple IPT Nodes at the same time. However, this would mean that

the IPT Controller would have to communicate with each IPT Node one at a time. Thus, to

develop a solution for this problem, several threads responsible for the communication

with the various IPT Node modules were created. Hence, every time a new connection to

an IPT Node is established, a new thread (named here “smaller thread”) is created and

assigned to that specific connection, assuring that connections to several IPT Nodes can

be done at the same time. On the other hand, since new connections can arrive at any

moment, it is necessary that another new thread (named here “main thread”) is created

to wait for new IPT Node modules.

On this new thread system, however, it is essential that the IPT Controller is able

to target a specific smaller thread to send the control data to an IPT Node. On the other

69

hand, it is also necessary that smaller threads have knowledge of when new data is

available to be sent. To support these features, a new vector containing an array of IPT

Data structures was created. The layout for this vector is shown in Figure 26.

IPT Data
Structure

Ipv4 Interface
List

Data Buffer

IPT Data vector

IPv4 Interface List

Data Buffer

Peer Info

IPv4 address

IPv4 address

...

Interface address

Multicast group

Join/Leave

Figure 26 – IPT Data vector Structure

When a new connection is established, the main thread will stop and wait for the

register message sent by the IPT Node. After the message is received, the IPv4 addresses

sent by the IPT Node are placed in a new slot in the vector. Then, after the IPT Node is

completely registered, a new smaller thread is going to be launched. However, since it is

necessary that this new thread has access to the correct slot on the IPT Data array, the

main thread passes the slot index for the vector as argument at the thread’s creation.

After this procedure is complete, the IPT Controller has gained a complete knowledge of

70

the IPT Node interfaces and is able to send data to it through the use of the smaller

threads.

4.3.3.2. Joining/Leaving multicast group

In the last section (4.3.3.1), it was explained the behaviour of the mechanism that

is used by the IPT Controller to know which IPT Node modules are active in the network

and what are their interface addresses. It was also explained how it is able to manage

multiple connections to these modules. However, how the data is actually sent to the

various IPT Node, and what is placed in this control message is still unclear.

As explained, each smaller thread has access to a specific slot in an IPT Data

vector. In this slot, the thread has stored the information of the peer it is connected to

and its IPv4 interfaces. Despite the fact that all this information is essential to the correct

management of the existing connections, it is not enough to allow the IPT Controller to

pass the information to a specific smaller thread. To allow this, an additional field

behaving as a data buffer was added to the IPT Data structure. This new field acts as a

shared buffer between the IPT Controller and the targeted smaller thread, enabling the

IPT Controller to send data to a specific smaller thread. This way, when during one of the

routines used in the interface with the NME/NUM the IPT Controller is required to send

enforcements to the IPT Nodes, all it needs to do is to insert the message to be sent in the

correct IPT Data slot. Since due to the data provided by the NUM module, the IPT

Controller has knowledge of the IPv4 address of the node targeted, discovering the

correct position in the IPT Data vector is done through a search for the vector’s index that

has the desired IPv4 interface. After the correct index is found and the data is inserted in

the correct buffer, the IPT Controller’s routine can continue.

Thus, the smaller threads are only required to check the data buffer on the correct

vector index. If the buffer is not empty, then the IPT Controller has placed data that has to

be sent. Hence, the data is removed and transformed in several AVPs.

71

Diameter message

AVP DataHeader

Data

Interface

Group

Join/Leave

Figure 27 – Diameter message with AVPs sent to IPT Nodes

Since the data is divided in three essential fields, the smaller thread is required to

create three different AVPs. The first contains the node’s interface being targeted, while

the multicast to join/leave is sent in the second AVP. The third AVP contains the message

type (i.e. if the interface is requested to join or leave the multicast group). The three AVPs

are then combined in a single Diameter message (Figure 27) and sent through the peer-

to-peer connection previously established.

It is important to notice that, since the data buffer present in the IPT Data

structure can be accessed by two different processes at the same time, it is essential that

the data is protected from simultaneous usage. Thus, a mutex variable was created to

prevent simultaneous accesses to the data buffer. However, since the smaller thread is

checking the data buffer in a continue loop, starvation problems might appear on the IPT

Controller, completely preventing it to access data in the buffer. To solve this issue, a

small wait was inserted between two consecutive accesses to the data buffer, giving the

IPT Controller a much more manageable time window to access it.

4.4. IPT Node

The IPT Node module is distributed through every node in the network, receiving

the enforcement requests from a central component, the IPT Controller. The task

endorsed by this module is to receive, through a peer-to-peer connection created with

the IPT Controller, the requested commands in a Diameter control message.

72

IPT NodeIPT Node

IPT Controller

Mrouted
Thread Socket ID

Kernel

Socket connection

IPT Node
module

Socket connection ...

Figure 28 – IPT Node architecture

As explained in section 4.3.3.1, as soon as the IPT Node module starts, a

connection to the centralized unit (IPT Controller) is established using a Diameter stack.

Next, the information of every IPv4 interface is gathered and placed within a vector. The

vector is then used to create an AVP, which is then inserted in a Diameter message and

sent to the IPT Controller. After this procedure, the node is properly registered and is able

to receive the IPT Controller requests through the same peer-to-peer connection.

The requests sent by the IPT Controller are placed in a Diameter message,

depicted in Figure 27. Inside the data field of this message, three AVPs are contained,

instructing the IPT Nodes of which is the interface and multicast group that should be

targeted, and if this is a join or a leave message. After the AVPs are correctly de-

encapsulated, it is necessary to instruct the machine’s kernel to perform the desired

action.

To support the IP multicast routing, a multicast daemon based in DVMRP was

installed, acting between the IPT Node module and the machine’s kernel. To add or

73

remove a multicast group from a specific interface, the IPT Node is required to create a

new socket and modify its options, such as the incoming and outgoing addresses, to

match the IPT Controller’s request. Since new requests can arrive to the IPT Node at any

time, it is necessary that a new thread is created. Thus, while the IPT Node is responsible

for listening for incoming control messages, the new thread is responsible for creating

and managing the multicast sockets. The management of the multicast control messages

exchanged between neighbour nodes is then performed by the multicast daemon

mrouted.

4.5. Summary

This chapter presented a complete overview of the implemented solution for the

IPT component.

Despite the challenge and difficulties associated with its implementation, it is

possible to conclude that the specified features and functionalities were successfully

achieved.

The central module implemented in the IPT architecture, named IPT Controller, is

responsible for identifying the NUM requests and correctly enforce them in the network

through the various IPT Node modules and the MTO. As such, the development of an

interface with all these components was necessary. Details of the interfaces created were

also given, where the proprieties of the control messages exchanged are explained.

The implementation of the IPT Node module, deployed in the network, was also

exposed in detail, carefully explaining how the interaction with the central module (i.e.

IPT Controller) was developed. It was also explained how the specific multicast paths

determined by the IPT Controller were enforced and maintained in the network.

75

5. Results

5.1. Organization

This chapter presents a performance evaluation of the proposed architecture

based on the results from different scenarios. These scenarios were chosen in order to

provide an overview of the implemented features and functionalities, and their impact on

the network.

In section 5.2 contains information on the development of the IPT component,

explaining how the modules were integrated and tested in cooperation with the

remaining C-Cast architecture elements.

Section 5.3 presents various test scenarios with the objective of presenting an

example of the IPT behaviour during various session events. In these tests, the messages

exchanged by the IPT are also presented.

Section 5.4 provides an evaluation of the message overhead created in the

network by the IPT. Several scenarios were also studied in order to identify the major

factors that influence the amount of control data exchanged.

Section 5.5 presents the necessary processing time of IPT in various session

events, considering for each one different situations. The processing times are then

compared with the components directly involved in the enforcement of the trees on the

network. Finally, it is performed an evaluation of the processing time required by the IPT

and the multiparty transport framework in comparison with the overall time required for

a session event.

Section 5.6 presents a summary of the performance results, giving a final

evaluation of the performance observed for the developed component.

5.2. Development and Integration

76

The objective of this dissertation was to specify and develop the IPT component,

and at the same time integrate it in the proposed architecture for the C-CAST project.

Thus, during the creation of the module, performing internal tests on the component was

not enough. It was also necessary to integrate the module developed on various phases

with the remaining architecture components. The development of the IPT module can be

split in three different phases.

The first phase was the creation of an interface with both NUM and MTO to

enable the creation and removal of trees. During this time, the tests were performed with

simple network setups, since the support for the session modification event was not

implemented, as well as the support for the multicast enforcement by the IPT Nodes.

Thus, simple trees were emulated in NUM and sent to the IPT, where they were

processed. The IPT would then send messages to the MTO containing the necessary

actions to be taken in order to enforce the requested tree in the network. The session

removal event was also tested in this phase, where the NUM instructed the IPT Controller

to remove the previously enforced tree on the network.

Context/Content Management

System

Session & Network

Management

NUM/NME

/IPT Ctrl
SME/SUM

Smart Environment

SunSpots SunSpots

WSN CxP

CxPs &

Terminals

IPT+MTO

IPT IPT+MTO

IPT

Unicast-only link

Multicast-capable link

Management link

Streamer

IPT+MTO
Source ON

Figure 29 – Testbed scheme for the various tests performed

77

The second phase was the development of the support for the session

modification event. This new event type had a completely new set of tests, since the

network was now supposed to be able to react to modifications such as users changing

the nodes they were connected to, users leaving the user group and new users joining.

Thus, several scenarios were created and tested thoughtfully, both with the IPT alone and

with the remaining elements of the architecture.

The last phase of development was the integration of the support for the

enforcement of multicast groups along the nodes where the IPT Node module was

deployed. In this last phase, multiple tests were completed with just the IPT, where the

communication between the central module (IPT Controller) and the distributed IPT Node

modules was completely tested. In these tests, the successful creation and removal of

multicast groups in specific paths in the network was also tested. Furthermore, after the

basic tests were performed and successfully completed, this last new feature was

included in more tests with the remaining network elements in the C-CAST architecture.

In these tests, the multicast support for the session creation, modification and removal

was tested, guaranteeing the successful enforcement of the required multicast groups

along specific paths in the network.

5.3. Test Scenarios

In this section, various tests are presented with the IPT component. First, a new

multimedia session is going to be initiated, with only one unicast user. Then, this user is

going to be subjected to a context change, forcing an update on the network through the

session modify event. After the existing user is correctly updated, a new multicast user is

going to join the same user group, triggering a session modification event as well. Finally,

the complete multimedia session is going to be removed through the session remove

event. In all these tests an explanation of the necessary interactions between the various

architecture components is going to be given, as well as examples for the signalling

messages exchanged between the IPT Controller and the IPT Node and MTO.

The first test is going to be performed with the network setup presented in Figure

30. It is also going to be considered that the unicast user is going to watch a movie, and as

78

such, it will receive two separate streams (one for audio and one for video). As it can be

seen, only one user exists in the user group and it is connected to node 5 through a

unicast connection. Since every paths in the network through which the multimedia

contents should be forwarded are all unicast type, then the complete enforcement of this

tree is going to be done by the MTO component.

Legend

IPT
IPT

MTO

IPT
MTO

IPT
MTO

IPT

Unicast
User

Multicast Connection

Unicast Connection

12

3

4 5

Streamer

Figure 30 – Scenario for the first test

Thus, in this scenario the IPT Controller will act as an interface for the NUM

requests, processing and organizing them into a single message that the MTO is able to

understand. Upon the successful creation of the user group by the GME module and the

content selection by the CSE component, the SME is going to be triggered to start a new

session. Here, the more appropriate codecs for the multimedia contents are going to be

selected, based on the user’s capabilities and preferences. The list of the

supported/preferred codecs is then sent to the NME, which will select the file to be

streamed based on the network situation and the file’s bitrate. The NUM is then invoked

to select the best path from the streamer to the user and send to the IPT Controller the

selected network setup. The IPT Controller will then send a Create_Mto_Tree message in

which the information of every node and connection essential to enable the delivery of

the multimedia contents to the user is going to be sent to the MTO (Table 2). It is also

79

important to notice in the message shown that, in the second ON included in the MTO

message, only the information relative to the incoming connection is present, while the

information for the connection between the node and the user’s terminal is not present.

As explained, unicast users are not able to receive the streams after the creation of a new

session; it is first necessary to update their ports. Thus, the information for connection

between node 5 and the terminal is only going to be sent in the following

Update_Unicast_Ports command. As a side note on the command message presented,

the real MTO message would have the node IP addresses instead of the node number

shown. However, for simplification purposes, the node’s IP addresses are going to be

replaced by the node number.

Type: Create_Mto_Tree

ON -> 1

 Src -> Streamer Dst -> 1

 Src -> 1 Dst -> 5

ON -> 5

 Src ->1 Dst -> 5

Table 2 – MTO message for first test

Considering that the user is receiving two different streams, the message

presented in Table 2 is going to be sent twice, each one with a different tree ID.

After the tree is successfully enforced in the network, the MTO will return to the

IPT Controller an acknowledge message, informing of the success of the requested

actions. The IPT will then return to NUM with success, which by its turn will inform the

SME of the session status. The SME will then perform the SIP signalling messages, inviting

the unicast user to the multimedia session. The terminal will then inform the SME of the

port number that should be used by node 5o stream the multimedia contents. In this

situation, a new event is going to be triggered by the SME component, the Update

Unicast Ports. This event is then sent to the NME. Upon the reception of this request, the

IPT Controller will send to the MTO the control message shown in Table 3. This message

includes not only the details on the connection between node 5 and the terminal, but

80

also the details on the port numbers that should be used to forward the multimedia

contents.

Type: Add_Connection

ON -> 5

 Src ->5 Dst -> Unicast User

Table 3 – Second MTO message for first test

After the enforcement of this connection on the network, the user is able to

receive the incoming multimedia streams, and as such, the session was successfully

created.

In the second test, it is going to be considered that the existing unicast user is

going to move to a significantly noisy location. This modification is detected by the CxPs,

which will inform the CxB of the context modification. The SME component is then

noticed of the user context modification. Considering that the unicast user was watching

a movie (and as such receiving two streams, one video and one audio), the SME is going

to decide that the noise modification is degrading the user’s QoE and as such, it is going

to replace it by the same video but subtitled instead. To perform this modification, the

SME is going to trigger NME to remove the existing streams and create a new one. NUM

will then select the best paths in the network and send the complete tree setup to the IPT

Controller. Here, three control messages are going to be created: two Remove_MTO_Tree

commands for the existing streams and one Create_Mto_Tree for the new stream. The

Remove_Mto_Tree does not contain any ON details, since the MTO only requires that the

tree ID is specified. The Create_Mto_Tree however has to be completely specified, as it

can be seen in Table 4.

Upon the successful enforcement on the network, the MTO will return an

acknowledge message to the IPT, which will inform NUM of the success of the

enforcement on the network of the modification to the multimedia session.

81

Type: Create_Mto_Tree

ON -> 1

 Src -> Streamer Dst -> 1

 Src -> 1 Dst -> 5

ON -> 5

 Src ->1 Dst -> 5

Table 4 – MTO message for second test

For the third test, it is going to be considered that a new user is going to be placed

in the existing user group. The new network setup can be seen in Figure 31. It is

important to notice that this new multicast user is connected to a different node than the

existing unicast user. Also, considering that nodes 3 and 4 only have multicast

connections, these are going to be enforced by the IPT Node module instead.

This modification to the existing multimedia session starts in SME, which is

informed that a new user has joined the existing group. The more appropriate codecs are

then going to be selected for the new user and sent to the NME, which will select the file

with the best bitrate, considering the network situation. After the multimedia file is

selected, NUM is triggered to select the new path through which the contents should be

forwarded in the network. Upon selecting the new tree setup, it is sent to the IPT

Controller. Here, the tree setup is going to be analysed in order to select the module that

is going to be responsible for the enforcement of the new data paths. Considering that

the new nodes only have multicast connections, the IPT Controller is going to decide that

these modifications are going to be enforced by the IPT Node modules on node 3 and 4.

The IPT Controller will then have to send one message for each IPT Node module,

specifying every interface in the node that is going to join a multicast group, and the IP

address of the multicast group. It also has to specify in these messages that the interfaces

are going to perform a join request and not a leave request. After the modifications are

enforced in the network, the IPT will return to NUM, and the SME is going to be informed

of the new status of the multimedia session. It will then send a SIP invite to the new

terminal, which will then also join the multicast group. At this moment, the new multicast

82

user is able to receive the multimedia contents, completing the modification to the

existing tree.

Legend

IPT
IPT

MTO

IPT
MTO

IPT
MTO

IPT

Unicast
User

Multicast Connection

Unicast Connection

12

3

4 5

Streamer

Multicast
User

Figure 31 – Scenario for the third test

Still considering this session modification event, it is possible to verify that the

existing enforcements on the network were updated through messages to nodes that

were not directly involved in the delivery of the multimedia contents to the user who was

already connected. Thus, the new enforcements on the network did not create any

modification on the enforcements for the previous unicast user. Thus, it is possible to

confirm that the IPT does provide mechanisms to successfully update the network’s

enforcements to match the modifications to which the session was subjected, while at

the same time, these modifications do not create service disruptions to users who were

not affected by these modifications.

In the final test, the existing multimedia session is going to be completely

removed. Thus, the SME will trigger NME to perform a session remove event. NUM will

then send the session remove request to the IPT Controller, which will inform the MTO

and the IPT Node modules on node 3 and 4 that the current enforcements have to be

released. The IPT Controller is only required to send a Remove_Mto_Tree message to the

83

MTO, specifying the tree ID to remove. For the IPT Node modules however, new

messages have to be sent, specifying every interface that is going to leave the multicast

groups. Upon the successful release of the current enforcements, the IPT will return to

NUM, reporting the success of the requested action. The SME will then receive the

session response from NME and will send SIP BYE messages for the two user terminals,

successfully terminating the existing session.

5.4. Control Message Overhead Evaluation

In this section, it is performed an evaluation of the IPT performance considering

the signalling messages. Various session events are going to be studied, where in each

one, an evaluation of the impact of the IPT in the network as well as a comparison with

other architecture components is described.

The first event evaluated is the session creation with a single user in the group.

The results obtained for this test are presented in Table 5.

From – To Signalling Message Size (bytes)

CDE – SME 1296

SME – CtPD 1739

CxB – SME 2931

SME – NME 3540

IPT – MTO 1257

SME – Streamer 3160

SME – Terminal 3613

Table 5 – Signalling Overhead evaluation for session creation

Through these results, it is possible to observe that the majority of the control

messages are exchanged between the SME component, either to get the content list from

CtPD and user context information from CxB, or to manage the SIP messages with the

streamer and the terminal. In this session event, the messages exchanged between the

IPT and the MTO (MTO message and acknowledge message) make up a small part of the

total signalling messages exchanged. Furthermore, it is important to notice that this value

includes both components together.

84

Figure 32 – Signalling overhead percentage for session creation event

In Figure 32it is shown that the signalling overhead for the messages exchanged

between the IPT and MTO is approximately 7%. Since this value considers both the

messages sent by the IPT and by the MTO, and knowing that these messages are

approximately equal (they only differ on one field, the status of the actions requested), it

is possible to conclude that the messages sent by each component only make up for 3.5%

of the total signalling overhead on the network for the session creation event.

For a second test, a session modification event is going to be performed. In this

event, one of the existing users is going to have its context information modified, and as

such, it is necessary to update its enforcement on the network. The results obtained for

this scenario are presented in Table 6.

From – To Signalling Message Size (bytes)

CxB – SME 1700

SME – NME 2340

IPT – MTO 649

SME – Terminal 3105

Table 6 – Signalling Overhead evaluation for first session modification

Again, in these results, it is possible to conclude that the signalling messages

exchanged between the IPT and the MTO are a small part of the total control information

7,39%

9,92%

16,71%

20,19%

7,17%

18,02%

20,60%

Signalling Overhead (%)

CDE – SME

SME – CtPD

CxB – SME

SME – NME

IPT – MTO

SME – Streamer

SME – Terminal

85

necessary to update the existing session. Upon the modification of the user context

information, the CxB forwards it to the SME, which will match the updated context

information with the existing content list and select the more appropriate codec. It this

situation, a new codec is going to be selected. The list of supported codecs is then sent to

the NME, where the file with the more appropriate bitrate considering the network

situation is going to be selected. Then, NUM is going to be triggered to update the

network paths for the new stream and forward it to the IPT, which will send to the MTO

the necessary actions to update the existing enforcement. After successfully complete,

the IPT returns with success to NUM, and the SME is informed that the session was

updated. It then sends the necessary SIP signalling messages to the existing terminal,

completing the session modification event.

Figure 33 – Signalling overhead percentage for first session modification event

Considering that the value presented in Figure 33 contains both messages sent by

the IPT and by the MTO, and that these messages are almost equal (as explained), the

total signalling overhead introduced on the network by the IPT component is

approximately 4.1%, which is a very low value comparing with the other components

involved.

21,81%

30,02%

8,33%

39,84%

Signalling Overhead (%)

CxB – SME

SME – NME

IPT – MTO

SME – Terminal

86

The third test is a new session modification event, but with a new user (connected

through a multicast connection) in the user group. The results obtained for this event are

presented in Table 7.

After the new user is placed in the user group by the GME and its multimedia

content selected by the CSE, the SME is triggered to update the existing session. It is

required to select the more appropriate codecs based on the new user context

information. After these are selected, the NME is invoked to select the file with the best

bitrate considering the network context information. NUM is then triggered to select the

new path through which the multimedia contents should be forwarded to the new user.

The new network setup is then sent to the IPT Controller. Since in this new test the

enforcements of the network are going to be made by both MTO and IPT Node modules,

the IPT Controller is required to exchange messages with both. After the new

enforcements are successfully completed, the IPT Controller returns with success to NUM

and the SME will have knowledge that the network enforcement was successfully

updated. It then sends the necessary SIP signalling messages to the new terminal in order

to enable the multimedia contents to be delivered to him.

From – To Signalling Message Size (bytes)

CDE – SME 1157

CxB – SME 2357

SME – NME 2701

IPT – MTO 528

IPT Ctrl – IPT Node 404

SME – Terminal 3647

Table 7 – Signalling Overhead evaluation for second session modification

Again, as depicted in Figure 34, the messages exchanged between the IPT

Controller and the MTO make up for approximately 5% (therefore 2.5% for the IPT

Controller) and that the messages exchanges by both IPT internal components (IPT

Controller and IPT Node) make up for another 3.7%, it can be concluded that the IPT was

responsible for approximately 6.2% of the complete signalling overhead introduced in the

network.

87

Figure 34 – Signalling overhead percentage for second session modification event

In the final test scenario, the existing session is going to be completely removed.

Thus, the session management framework will request the release of the current

enforcements in the network to the multiparty transport framework and send the

necessary SIP signalling messages to terminate the multimedia sessions on the user’s

terminals.

This event starts with CDE triggering the SME component to terminate the existing

session. However, unlike in the previous events, the SME is not required to interact with

the CxB or the CtPD, and as such, it will only pass to the NME component the request to

release the previously created enforcements in the network. Considering that in the

previous tests studied the IPT was requested to perform various enforcements in the

network through both the IPT Node and MTO modules, to release those reservations the

IPT will have to exchange signalling messages with both modules, as presented in Table 8.

After the release of the network enforcements is complete, the SME will send the

necessary SIP messages to the streamer and to the user’s terminals, informing them of

the session’s closure.

11,14%

22,69%

26,00%

5,08%

3,74%

35,10%

Signalling Overhead (%)

CDE – SME

CxB – SME

SME – NME

IPT – MTO

IPT Ctrl – IPT Node

SME – Terminal

88

From - To Signalling Message Size (bytes)

CDE - SME 1134

SME - NME 1248

IPT - MTO 155

IPT Ctrl - IPT Node 404

SME - Terminal 1002

SME - Streamer 756

Table 8 – Signalling Overhead evaluation for session remove

Observing the results depicted in Figure 35, it is possible to conclude that the

signalling messages exchanged between the IPT and the MTO are almost irrelevant, only

forming 3% of the total signalling communication necessary to terminate de session. The

release of the multicast enforcements through the exchange of control information

between the IPT Controller and the various IPT Node modules is more significant than the

IPT-MTO communication. However, it is still inferior to the various interactions performed

by the remaining architecture elements.

Figure 35 – Signalling overhead percentage for session remove event

Considering all the results obtained in this section, it is possible to observe that

the IPT is not responsible for throttling the network performance, since the signalling

overhead introduced in the network is considerably small in comparison with the

remaining components in the specified architecture. Furthermore, considering that these

24%

27%

3%

9%

21%

16%

Signalling Overhead (%)

CDE - SME

SME - NME

IPT - MTO

IPT Ctrl - IPT Node

SME - Terminal

SME - Streamer

89

control messages are only necessary upon specific triggers for session events, it can be

concluded that the IPT does not have a noticeable impact on the network performance.

On the other hand, it is also possible to conclude that the signalling overhead

introduced in the network by the IPT when specific session events are triggered is directly

linked with the complexity of the NUM request. This is visible comparing the session

creation and the first session modification events, where the network setup is the same:

but while in the first request the IPT Controller had to create a completely new tree, in

the second event the IPT Controller was only required to update the existing

enforcements. Thus, the amount of signalling information exchanged in the first event

was approximately twice the necessary for the second event. On the other hand, it is also

possible to observe that the inclusion of the IPT Node module in the enforcement in the

network also increases the necessary amount of signalling messages. However, even

when this is the case, the total amount of signalling overhead introduced in the network

is considerably smaller than the remaining components.

Considering the last test studied (session remove), it was visible a significant

decrease in the amount of information exchanged between the IPT and the MTO. This is

explained by the fact that, when removing previous enforcements through the MTO

component, the IPT is required to send a Remove_Mto_Tree command. However, in this

command, no information of the tree setup on the network is present, since the MTO

only requires the ID number of the tree being removed. Thus, the actual control

information exchanged for this event is significantly shorter. Additionally, considering that

various nodes on the network had been previously enforced by the IPT Node modules,

the IPT Controller was also required to release these reservations through the exchange

of signalling information with the IP Node modules. However, even in this scenario the

impact of the control information exchanged by the IPT is shorter than the ones of the

remaining architecture elements, proving that the IPT does not deteriorates the overall

architecture performance.

90

5.5. Processing Time Evaluation

Continuing the performance evaluation on the IPT, it is essential to estimate the

processing time requirements for the IPT, the variables that affect this performance, and

what is the impact of the IPT component on the overall architecture. To obtain these

results, the main session events (session setup, session modify and session remove) are

going to be subjected to a series of tests, allowing to estimate the processing time

requirements and the respective confidence intervals at 95%. For each session event

tested, the number of users being subjected to the event is also going to change from 1 to

3 users, thus allowing identifying the impact that the number of users being affected by

the various events has on the required processing times. It is also important to note that

on these first tests the only architecture elements being evaluated are the IPT, MTO and

NME/NUM.

Starting the tests with the session setup event, the results obtained are show in

Table 9 and Figure 36.

1 User

Component Time (ms) Time (%)

NME/NUM 15.2 ± 1.51 74,44%

IPT 0.44 ± 0.09 2,15%

MTO 4.78 ± 0.6 23,41%

 3 Users

Component Time (ms) Time (%)

NME/NUM 17.4 ± 1.63 70,16%

IPT 0.6 ± 0.12 2,42%

MTO 6.8 ± 0.66 27,42%

Table 9 – Comparison of the processing times for each component in session setup

91

Figure 36 – Processing time for Session Setup event

Through the observation of these results, it is clear that the impact of the IPT

component on the architecture performance is minimal, considering that it only requires

approximately 2% of the total time. On the other hand, it is also visible that by increasing

the number of users being subjected to the session events the processing times increase,

although only slightly. Thus, it is expected that as the complexity of the network setups

for the various session events increases, the processing times required by the various

components to setup the multimedia session also increase. However, despite the

complexity increase, the IPT impact on the overall performance is still minimal.

Continuing the performance evaluation, another session event was tested, the session

modification. For this event, two different situations are going to be studied. The first

corresponds to a scenario where only one user is subjected to modifications, while for the

second scenario it is considered that three users are modified simultaneously. The results

obtained for these tests are depicted in Table 10 and Figure 37.

0

2

4

6

8

10

12

14

16

18

20

NME/NUM IPT MTO

Session Setup (ms)

1 User

3 Users

92

1 User

Component Time (ms) Time (%)

NME/NUM 12.2 ± 0.66 81,44%

IPT 0.54 ± 0.04 3,60%

MTO 2.24 ± 0.23 14,95%

 3 Users

Component Time (ms) Time (%)

NME/NUM 14.8 ± 1.16 77,27%

IPT 0.72 ± 0.1 3,76%

MTO 3,63 ± 0,47 18,97%

Table 10 – Comparison of the processing times for each component in session modify

Figure 37 – Processing time for Session Modify event

Through a careful observation of the results presented, it can be concluded (in

similarity to the results for the first test) that as the network setup complexity increases,

the various components in the network are subjected to higher processing and signalling

efforts and as such, the required processing times tend to increase. Thus, it is also

expected that for the session modification event, an increase in the complexity for the

setups requested leads to higher delays. However, it is also noticeable that in both

situations the relevance of the IPT component in the total required time is almost

insignificant, proving that the developed component does not introduce a significantly

negative impact for the overall performance of the implemented architecture.

NME/NUM IPT MTO

0

2

4

6

8

10

12

14

16

18

Session Modify (ms)

1 User

3 Users

93

For the final event tested, the existing session is going to be removed, thus

triggering a session remove event. Again, for this event both versions of one and three

users are also going to be performed. The results obtained during the various tests for

this session event are shown in Table 11 and Figure 38.

1 User

Component Time (ms) Time (%)

NME/NUM 14.4 ± 0.7 71,22%

IPT 0.3 ± 0.06 1,48%

MTO 5.52 ± 0.43 27,30%

 3 Users

Component Time (ms) Time (%)

NME/NUM 15.6 ± 1.31 71,04%

IPT 0.32 ± 0.09 1,46%

MTO 6.04 ± 0.56 27,50%

Table 11 – Comparison of the processing times for each component in session remove

Figure 38 – Processing time for Session Remove event

Analysing these tests, it is possible to verify that the same conclusions as before

can be applied for the NME/NUM and MTO. However, for the IPT it is visible that there

are no significant differences in the required processing times when the network setup

0

2

4

6

8

10

12

14

16

18

NME/NUM IPT MTO

Session Remove (ms)

1 User

3 Users

94

increases in complexity (1 user affected to 3 users affected). This can be explained by the

IPT internal processing of this event. Considering that the control message exchanged

with the MTO does not require any information relative to the various nodes and

connections used to enable the delivery of the multimedia contents to the users, the

messages created for these events are similar and do not require almost no possessing of

the setups sent by NUM. Thus, the complexity of the requests does not have a significant

impact on the IPT performance for the session remove event.

The various session events studied are not however, only influenced by the

NME/NUM, IPT and MTO components. The session events require communications

between other elements in the network before the path tree can be selected and

enforced by these components. When the session event is triggered in the SME by the

CDE (as explained in section 3.6), the SME has to request a list of the available formats

and codecs from the CtPD and the group users context information from the CxB. A

match between these lists is then done to select the more appropriate formats to be

streamed to each user. Only then the NME is triggered to select the tree for this session

and enforce it in the network through the IPT and MTO. After the enforcement has been

completed in the network, the SUM is also required to manage the SIP signalling

messages to the user’s terminals, enabling the start of the reception of the requested

multimedia contents. The time results observed for the SME component for a sample

session event are presented in Table 12 and Figure 39.

Interface Time Spent (ms)

CtPD 599

CxB 847

NME/IPT/MTO 23

SIP Signalling 38

Internal Processing 45

Total 1552

Table 12 – Time spent for the overall architecture for a sample session event

Observing these results, it is possible to conclude that the enforcement of the tree

in the network represents a very small amount of time in comparison to tasks such as the

95

communication between the SME and the CtPD and CxB. Furthermore, from all the

interface communications performed by the SME, the one with the NME, IPT and MTO is

the fastest.

Figure 39 – Time percentage for the overall architecture in a sample session event

Thus, it is clear that the network setup selection and enforcement process is not

responsible for relevant negative impact on the overall architecture performance (1% of

the processing time required by all the interfaces on the SME). Furthermore considering

the small percentage of time required by the IPT component for the enforcement of the

requested trees on the network, it is clear that the developed module does not introduce

significant delays in the establishment, modification and termination of the various

sessions requested.

5.6. IPT Performance Conclusions

Considering the work developed in the IPT component and the various tests and

integrations performed with it in the C-Cast project architecture, it is possible to confirm

that the developed module is capable of performing the initial proposed objectives.

Through its utilization, it is possible to enforce various tree setups requested by the SUM

on the network. It is also possible to manage the recommended actions to be taken by

39%

55%

1% 2% 3%

Example Session Event

CtPD

CxB

NME/IPT/MTO

SIP signalling

Internal processing

96

the MTO and the distributed IPT Node modules. Finally, it is also capable of performing a

dynamic allocation of the addresses for the various multicast groups on the network.

On the other hand, considering the results presented in section 5.4 and 5.5, it is

also possible to conclude that the impact of the IPT in the network performance is

minimal. Considering the signalling overhead results obtained, IPT does not significantly

impact the network performance, since the necessary signalling messages exchanges

make up for a small part of the total signalling necessary for each session event. On the

other hand, this impact becomes event less noticeable when it is considered that these

control messages are only exchanges upon specific session even triggers, and thus are

rarely exchanged during the existence of a multimedia session. Considering possible

variables that could affect the signalling overhead values, it was concluded that the

network complexity and the necessity of enforcing trees with both components (MTO and

IPT Node) was the major influence. Thus, it is expected that, as the network increases in

scale and complexity, the necessary control messages exchanges increase. However, so

the remaining components in the network would also be subjected to the same increase,

and as such, the network performance would not be directly decreased because of the

IPT component. For the processing times required by the IPT to enforce the various

requests on the network, it is also clear that its impact will be minimal, and as such, not

negatively influencing the total time required to establish, modify and terminate the

requested sessions.

During the tests of the processing time used by the IPT, it was also clear that the

number of users does not significantly impact the IPT performance.

5.7. Summary

This chapter presented several scenarios and situations used to evaluate the

behaviour and impact of IPT module in the network.

It was verified that the implemented architecture is able to correctly enforce the

session trees in the network, through the MTO and IPT Node modules. The trees enforced

support multicast, unicast or hybrid connections, successfully enabling the delivery of

media contents to groups of users independently of the underlying network. The support

97

for dynamic sessions was also effectively implemented, considering that the IPT was able

to adapt existing enforcements on the network to match the modifications to which the

session was subjected. It was also proved in section 5.3 on the various test scenarios

studied that the IPT was able to perform these modifications without incurring service

disruptions to users who were not modified.

Despite the fact that the message overhead can vary, its impact in the network

performance and in the delivery of the multimedia contents is minimal.

Finally, the processing time required by the IPT is considerably small in the

multiparty transport framework, and almost insignificant considering to total time

required by a session event. Thus, it is possible to confirm that the developed solution is

able to implement its objectives and with an acceptable performance.

99

6. Conclusions and Future Work

The main purpose of this Dissertation was to develop and implement a new

component, capable of enabling the delivery of media contents to groups of users,

independently of the underlying network. Dynamic modifications to existing sessions

should also be supported, being triggered upon updates to the network and/or connected

users.

The proposed solutions were tested through several distinct scenarios deployed in

a general testbed, proving that it was able to create, modify and remove successfully

multiparty sessions. The implemented solution for the IPT guarantees that, through the

hierarchical architecture proposed for the component, it is possible to have a central unit

capable of processing several requests from the higher level components like the NME,

and enforcing them on modules deployed throughout the network such as IPT Node and

MTO. On the other hand, the module deployed in various nodes in the network (i.e. IPT

Node) is also capable of creating, maintaining and removing specific paths through the

network, enabling the improvement of quality of service on multicast transport through

the enforcement of the best paths available accordingly to the network and user context

information. The IPT solution implemented is also capable of successfully creating hybrid

paths in the network, enabling multicast transport where it is supported for a better

resource management, and unicast transport, where the network is not able to support

multicast.

Through the tests realized and the results obtained, it is possible to demonstrate

that the IPT component can be used to enable the delivery of multimedia contents to

dynamic sessions without creating a negative impact on the network. It is also able to

enforce and manage various multicast paths in the network while enforcing unicast paths

through the MTO, creating the support for an independency of the underlying network

capabilities. Support for the adaptation of the network to context changes was also

developed, having verified that the IPT is able to modify existing tree setups with minimal

service disruption to users who were not subjected to any modifications.

100

Considering the performance results obtained during the various test scenarios

realised, it was verified that the component was able to complete its objectives without

penalizing the network performance. Considering the control messages overhead on the

network, it was verified that it had a considerably low value in comparison to various

possible stream sizes. Furthermore, considering that these messages are only occasionally

exchanged, they do not affect the delivery of the multimedia contents. On the other

hand, evaluating the processing times required in comparison with the multiparty

transport framework, it was verified that the IPT did not influence, since the other

components required significantly more time. In comparison with the overall processing

time required in a session event for the complete C-Cast architecture, it was verified that

the IPT required less than 0.1% of the total processing time. Thus, it is possible to

conclude that the performance results obtained are significantly positive.

However, the fact that the network was implemented based on a hierarchical

structure hints at possible scalability problems. Since the central intelligent unit, IPT

Controller, is responsible for the management of every IPT Node module deployed in the

network, the presence of a significant number of these elements in the network can

severely harm the normal operation of the IPT module, raising the processing times and

message overhead in the network to unacceptable values. Hence, work is necessary to

provide a more decentralized approach to the IPT component, distributing the knowledge

of groups of IPT Nodes through more than one unit in the network, or by restructuring

the existing architecture to a more distributed approach.

101

References

1. C-Cast project. [Online] http://www.ictccast.eu/. Acedido em 23 de Maio de 2010.

2. Postel, J. Transmission Control Protocol. RFC 793. 1981.

3. —. User Datagram Protocol. RFC 768. 1980.

4. Adams, A. Protocol Independent Multicast - Dense Mode (PIM-DM). RFC 3973. 2005.

5. Fenner, B., et al. Protocol Independent Multicast-Sparse Mode (PIM-SM). IETF RFC

4601. 2006.

6. Waitzman, D. Distance Vector Multicast Routing Protocol. IETF RFC 1075. 1988.

7. Moy, J. Multicast Extensions to OSPF. RFC 1584, Proteon Inc. 1994.

8. Ballardie, A. Core Based Trees (CBT version 2) Multicast Routing. IETF RFC 2189.

1997.

9. Fenner, W. Internet Group Management Protocol, Version 2. IETF RFC 1112. 1997.

10. Cain, B., et al. Internet Group Management Protocol, Version 3. IETF RFC 2236.

2002.

11. Deering, S., Fenner, W., Haberman, B. Multicast Listener Discovery (MLD) for

IPv6 . RFC 2710. 1999.

12. Lao, L. et al. A Scalable Overlay Multicast Architecture for Large-Scale Applications.

IEEE Transactions on Parallel and Distributed Systems. 2007, Vol. 18, pp. 449-459.

13. Banerjee, S., Bhattacharjee, B., Kommareddy, C. Scalable Application Layer

Multicast. In Proc. of ACM Sigcomm. 2002.

14. Yeo, C., Lee, B., Er, M. Survey of application level multicast techniques.

Transactions of the Elsevier Computer Communications. 2004. Vols. Vol. 27, I.15, pp.

1547-1568.

15. Hosseini, M., Ahmed, D.,Shirmohammadi, S., Georganas, N. A Survey of

Application-Layer Multicast Protocols. IEEE Communication Surveys. 2007. Vol. Vol.9.

16. Harrison, T., Williamson, C., Mackrell, W., Bunt, R. Mobile multicast (mom)

protocol: multicast support for mobile hosts. MobiCom ’97: Proceedings of the 3rd annual

ACM/IEEE international conference on Mobile computing and networking. 1997.

17. Wang, Y., Chen, W. Supporting ip multicast for mobile hosts. Mob. Netw. Appl. 2001.

Vols. vol. 6, no. 1, pp. 57–66.

18. Janneteau, C., et al. Comparison of Three Approaches Towards Mobile Multicast. IST

Mobile Summit. 2003.

102

19. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W. An architecture

for differentiated service. IETF RFC 2475. 1998.

20. Wehrle, R. Bless and K. Group communication in differentiated services networks.

Cluster Computing and the Grid. 2001.

21. Pereira, V., Mendes, P. , Monteiro, E. Evaluation of an overlay for source-specific

multicast in asymmetric routing environments. IEEE GLOBECOM. 2007.

22. Wang, B., Hou, J. Multicast routing and its QoS extension: problems, algorithms, and

protocols. Network, IEEE, vol. 14, no. 1, pp. 22–36. vol. 14, no. 1, pp. 22–36, Feb 2000.

23. Mendes, P. OSMAR: Overlay for Source-specific Multicast in Asymmetric Routing

environments. NTT DoCoMo Euro-Labs. 2004.

24. Neto, A., et al. A resource Reservation Protocol Supporting QoS-aware Multicast

Trees for Next Generation Networks. IEEE ISCC. 2007.

25. Bhattacharyya, S. An Overview of Source-Specific Multicast (SSM). IETF RFC

3569. 2003.

26. Jannotti, J., Gifford, D., Johnson, K., Kaashoek, M., O’Toole, J. Overcast: reliable

multicasting with on overlay network. Proceedings of the 4th conference on Symposium on

Operating System Design & Implementation. 2000.

27. Dey, A. Understanding and using context. Personal and Ubiquitous Computing. vol. 5,

pp.4–7, 2001.

28. Thomas, R., Friend, D., DaSilva, L., McKenzie, A. Cognitive Networks: Adaptation

and Learning to Achieve End-toEnd Performance Objectives. IEEE Communications

Magazine. 2006.

29. Hancock, R., Karagiannis, G., Loughney, J., Van den Bosch, S. Next Steps in

Signaling (NSIS): Framework. RFC 4080. 2005.

30. Buford, J. Hybrid Overlay Multicast Framework. Internet Draft. 2008.

31. Durham, D., Ed., Boyle, J., Cohen, R., Herzog, S., Rajan, R., Sastry, A. The COPS

(Common Open Policy Service) Protocol . RFC 2748. 2000.

32. Rigney, C., Willens, S., Rubens, A., Simpson, W. Remote Authentication Dial In

User Service (RADIUS) . RFC 2865. 2000.

33. Rigney, C. RADIUS Accounting. 2866. 2000.

34. Calhoun, P., Loughney, J., Guttman, E., Zorn, G., Arkko, J. Diameter Base

Protocol. IETF RFC 3588. 2003.

103

35. Janneteau, C., Simoes, J., Antoniou, J., Christophorou, C., Kellil, M., Klein, A.,

Neto, A., Pinto, F., Roux, P., Sargento, S., Schotten, H., Schneider, J. Context-Aware

Multiparty Networking. ICT Mobile and Wireless Communications Summit, 2009. ICT-

MobileSummit 2009 Conference Proceedings. 2009.

36. Neto, A. et. al. Multiparty Session and Network Resource Control in the Context

Casting (C-CAST) project. Future Multimedia Networking, 2009.

37. Mrouted daemon. [Online]

http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.cmds/doc/

aixcmds3/mrouted.htm. Acedido em 18 de Março de 2010.

38. Janneteau, C., et al. Specification of context detection and context-aware multiparty

transport. Deliverable D13. 2009.

